
IMS/ESA

Administration Guide:
Database Manager
Version 6

SC26-8725-04

IBM

IMS/ESA

Administration Guide:
Database Manager
Version 6

SC26-8725-04

IBM

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on
page xiii.

Fifth Edition (October 1999) (Softcopy Only)

This edition replaces and makes obsolete the previous edition, SC26-8725-03. This edition is available in softcopy
only. The technical changes for this edition are summarized under “Summary of Changes” on page xix and are
indicated by a vertical bar to the left of a change.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, BWE/H3

P.O. Box 49023

San Jose, CA, 95161-9023

U.S.A.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1974, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices . xiii
Programming Interface Information xiii
Trademarks . xiv
Product Names . xv

Preface . xvii
Summary of Contents . xvii
Prerequisite Knowledge . xviii
Change Indicators . xviii

Summary of Changes . xix
Changes to the Current Edition of this Book xix
Changes to This Book for V6 xix
Library Changes for Version 6 xix

Chapter 1. Introduction . 1
About This Chapter . 1
Database Administration Overview 1
Database Administration Tasks 2
Concepts and Terminology . 4

How Data Is Stored in a Database 5
The Hierarchy. 6
The Database. 9
The Database Record . 10
The Segment . 11

Optional Functions . 14
How To Define Your Database to IMS 15
How Application Programs View the Database 16

Chapter 2. Participating in Reviews 17
About This Chapter . 17
The Design Review . 17

Role of the Database Administrator 17
General Information About Reviews 17

Design Review 1 . 18
Design Review 2 . 18
Design Review 3 . 19
Design Review 4 . 19
Code Inspection 1. 20
Who Attends Code Inspection 1. 20
Code Inspection 2. 20
Security Inspection . 21
Post-Implementation Review . 21

Chapter 3. Analyzing Data Requirements 23
About This Chapter . 23
Local View . 24

Local View 1. Current Roster. 25
Local View 2. Schedule of Classes 26
Local View 3. Instructor Skills Report 26
Local View 4. Instructor Schedules 27

Designing a Conceptual Data Structure 28
Implementing the Structure with DL/I 29

© Copyright IBM Corp. 1974, 1999 iii

Assigning Data Elements to Segments 29
Resolving Data Conflicts . 30

Chapter 4. Designing a Fast Path Database 33
Choosing a Database Type . 33

Sequential Storage Method 34
Direct Storage Method . 34
Performance Considerations Overview 34
IMS Databases . 35
Databases Supported with DBCTL. 36
Databases Supported with DCCTL 36
HSAM Databases . 36
HISAM Databases . 40
SHSAM, SHISAM and GSAM Databases 49
HDAM and HIDAM Databases 52

Chapter 5. Choosing Additional Database Functions 83
About This Chapter . 84
Using Logical Relationships . 84
Defining a Logical Relationship 85
Unidirectional Logical Relationships 86
Bidirectional Physically Paired Logical Relationship 88
Bidirectional Virtually Paired Logical Relationship 88
Pointing and Pointers in Logical Relationships 89

Logical Parent Pointer . 90
Logical Child Pointer . 91
Physical Parent Pointer . 92
Logical Twin Pointer . 93

Sequence of Pointers in a Segment’s Prefix 94
Counter Used in Logical Relationships 94
Intersection Data . 95

Fixed Intersection Data . 95
Variable Intersection Data . 95
FID, VID, and Physical Pairing 96

Establishing Logical Relationships Between Segments in the Same Database
(Recursive Structures) . 97

Paths Used in Logical Relationships 101
The Logical Child Segment . 102
Defining Sequence Fields for Databases Using Logical Relationships 103
Defining Sequence Fields for Real Logical Children 103
Defining Sequence Fields for Virtual Logical Children 104
Relationship of Control Blocks When a Logical Relationship Is Used. 104
How to Specify Use of Logical Relationships in the Physical DBD. 105
Specifying Bidirectional Logical Relationships 107
Checklist of Rules for Defining Logical Relationships in Physical Databases 107

Logical Child Rules . 107
Logical Parent Rules . 108
Physical Parent Rules . 108

How to Specify Use of Logical Relationships in the Logical DBD 108
Checklist of Rules for Defining Logical Databases 110

Definition of Crossing a Logical Relationship 110
Definition of First and Additional Logical Relationships Crossed. 111
Rules for Defining Logical Databases 113

Choosing Replace, Insert, and Delete Rules for Logical Relationships 114
Performance Considerations for Logical Relationships 116

Logical Parent Pointers . 116

iv IMS/ESA V6 Admin Guide: DB

KEY/DATA Considerations 117
Sequencing Logical Twin Chains 118
Placement of the Real Logical Child in a Virtually Paired Relationship . . . 118
Using Secondary Indexes 118
Choosing Secondary Indexes Versus Logical Relationships 139
Using Variable-Length Segments 140

Chapter 6. Database Design Considerations for Full Function 165
About This Chapter . 166
Specifying Free Space (HDAM and HIDAM Only). 166
Estimating the Size of the Root Addressable Area (HDAM Only) 167
Determining Which Randomizing Module To Use (HDAM Only). 168

Write Your Own Randomizing Module 168
Assess the Effectiveness of the Randomizing Module 168

Choosing HDAM Options. 169
Minimizing I/O Operations 169
Maximizing Packing Density 170

Choosing a Logical Record Length for a HISAM Database 170
Logical Record Length Considerations 170
Rules to Observe . 172
Calculating How Many Logical Records Are Needed to Hold a Database

Record . 173
Specifying Logical Record Length 173

Choosing a Logical Record Length for HD Databases 173
Determining the Size of CIs and Blocks 173
Choosing Buffering Options . 174

Multiple Buffers in Virtual Storage 174
“Use” Chain . 174
The Buffer Handler . 174
Background Write Option. 174
Shared Resource Pools . 175
Using Separate Subpools 175
Hiperspace Buffering . 175
Buffer Size . 175
Buffer Numbers . 176
VSAM Buffer Sizes . 176
OSAM Buffer Sizes . 177
Specifying Buffers . 177

Using OSAM Sequential Buffering 178
About SB . 178
Benefits of Using SB . 179
Flexibility of SB Use . 179
How SB Buffers Data . 180
Virtual Storage Considerations for SB 181
How to Request the Use of SB 181

Determining Which VSAM Options to Use 184
Optional Functions Specified in the OPTIONS Control Statement 185
Optional Functions Specified in the POOLID, DBD, and VSRBF Control

Statements . 187
Optional Functions Specified in the Access Method Services DEFINE

CLUSTER Command . 188
Determining Which OSAM Options to Use 190
Determining Which Dump Option to Use (DUMP Parameter) 191
Deciding Which FIELD Statements to Code in the DBD 191
Planning for Maintenance . 191
Using Design Aids for Your Database 191

Contents v

DB/DC Data Dictionary . 191

Chapter 7. Designing a Fast Path Database 193
Choosing a Database Type . 194

Databases Supported With DBCTL 195
Databases Supported With DCCTL 195
Main Storage Databases (MSDBs) 195
Data Entry Databases (DEDBs) 201
Converting MSDBs to DEDBs 214
Using Fixed-Length Segments in DEDBs 215
Examples of Defining Segments 215

Fast Path Synchronization Points. 215
Phase 1 - Build Log Record. 215
Phase 2 - Write Record to System Log 216

Monitoring and Tuning Fast Path Systems 216
Using the Fast Path Log Analysis Utility 217
Interpreting Fast Path Analysis Reports 218
Tuning Fast Path Systems 219
Factors Influencing Fast Path Performance 220

Registering Databases . 225
Fast Path Virtual Storage Option 226

Enhancements to DEDBs 226
Restrictions Using VSO DEDB Areas 227
Defining a VSO DEDB Area. 228
Defining a VSO Cache Structure Name 229
Block-Level Sharing of VSO DEDB Areas 232
How IMS Fast Path (VSO) Uses Data Spaces 233
Resource Control and Locking. 234
Preopen Areas and VSO Areas in a Data Sharing Environment 235
Input / Output Processing 236
Checkpoint Processing . 238
VSO Options Across IMS Restart. 238
Emergency Restart Processing 238
VSO Options with XRF . 239

Chapter 8. Database Design Considerations for Fast Path 241
About This Chapter . 242
MSDB Design Considerations 242

Calculating Virtual Storage Requirements for an MSDB 242
Understanding Resource Allocation, a Key to Performance 243
Designing to Minimize Resource Contention. 245
Choosing MSDBs to Load and Page-Fix 246
Auxiliary Storage Requirements for an MSDB 248

DEDB Design Considerations 248
DEDB Design Guidelines. 249
Considering the DEDB Area 249
Determining the Size of the CI. 251
Determining the Size of the UOW 251
Processing Option P (PROCOPT=P) 252
DEDB Randomizing Routine Design 252
Multiple Copies of an Area Data Set 253
Record Deactivation . 253
Physical Child Last Pointers 254
Subset Pointers . 254

High-Speed Sequential Processing (HSSP) 254
Why HSSP? . 254

vi IMS/ESA V6 Admin Guide: DB

Limitations and Restrictions When Using HSSP 255
Using HSSP . 255
HSSP Processing Option H (PROCOPT=H) 256
Image-Copy Option . 256
UOW Locking . 256
Private Buffer Pools . 257

Designing a DEDB or MSDB Buffer Pool 257
Buffer Requirements . 257
Normal Buffer Allocation (NBA) 257
Overflow Buffer Allocation (OBA) 258
Fast Path Buffer Allocation Algorithm 258
System Buffer Allocation (DBFX) 258
Determining the Fast Path Buffer Pool Size 258
Fast Path Buffer Performance Considerations 259
The NBA Limit and Sync Point. 259
The DBFX Value and the Low Activity Environment 259

Designing a DEDB Buffer Pool in the DBCTL Environment 260
Buffer Requirements . 260
Normal Buffer Allocation for BMPs 260
Normal Buffer Allocation for CCTL Regions and Threads 261
Overflow Buffer Allocation for BMPs. 261
Overflow Buffer Allocation for CCTL Threads 261
Fast Path Buffer Allocation Algorithm for BMPs 261
Fast Path Buffer Allocation Algorithm for CCTL Threads 262
System Buffer Allocation (SBA) 262
Determining the Size of the Fast Path Buffer Pool 262
Fast Path Buffer Performance Considerations 263
The NBA/FPB Limit and Sync Point 263
The DBFX Value and the Low Activity Environment 263
A Note on Fast Path Buffer Allocation in IMS Regions 264

Chapter 9. Developing Your Test Database 265
About This Chapter . 265
Understanding Test Requirements 265

What Kind of Database? . 266
What Kind of Sample Data? 266
What Kind of Application Program? 266

Ways to Design, Create, and Load a Test Database 267
Using Testing Standards . 267
Using IBM Programs to Develop a Test Database 267

Chapter 10. Establishing Standards and Procedures 271
About This Chapter . 271
Standards and Procedures . 271
Establishing Naming Conventions 273
Using the Dictionary to Enforce and Control Standards and Procedures . . . 274

Chapter 11. Implementing Your Database Design 277
About This Chapter . 277
Coding Database Descriptions as Input for DBDGEN the Utility 277

The DBD Statement . 278
The DATASET Statement 278
The SEGM Statement . 279
The FIELD Statement . 279
The LCHILD Statement . 279
The XDFLD Statement . 279

Contents vii

The DBDGEN and END Statements 280
Using the DB/DC Data Dictionary 280

Coding Program Specification Blocks as Input to the PSBGEN Utility 280
The Alternate PCB . 281
The Database PCB Statement. 281
The SENSEG Statement . 281
The SENFLD Statement . 282
The PSBGEN Statement . 282
The END Statement . 282
Using the DB/DC Data Dictionary 282

Building the Application Control Blocks (ACBGEN) 282
Generated Program Specification Blocks 284

Chapter 12. Loading Your Database 285
About This Chapter . 285
Estimating the Minimum Size of the Database 286

Step 1. Calculate the Size of an Average Database Record 286
Step 2. Determine Overhead Needed for DEDB CI resources 288
Step 3. Determine the Number of CIs or Blocks Needed 289
Step 4. Determine the Number of Blocks or CIs Needed for Free Space 292
Step 5. Determine the Amount of Space Needed for Bit Maps 292

Allocating Data Sets . 293
Allocating OSAM Data Sets. 293
Example of Allocating an OSAM Data Set 294
Cautions When Allocating OSAM Data Sets 294

Writing a Load Program . 295
The Load Process . 295
Status Codes for Load Programs. 296
Using SSAs in a Load Program 296
Loading a Sequence of Segments with the D Command Code 297
Loading a HISAM Database 304
Loading a SHISAM Database 305
Loading a GSAM Database 305
Loading an HDAM Database 305
Loading a HIDAM Database 305
Loading a Database with Logical Relationships or Secondary Indexes 305

Loading Fast Path Databases 305
Loading an MSDB . 305
Loading a DEDB . 305
Loading Sequential Dependent Segments 307

Chapter 13. Monitoring Your Database 309
About This Chapter . 309
Using the Database Monitor 310
Using Database Monitoring Aids 312

Access Method Services (LISTCAT Command) 312
HIDAM ESDS LISTCAT Report 313
HDAM ESDS LISTCAT Report. 317
HISAM or Index KSDS LISTCAT Report 317
IEHLIST Utility (LISTVTOC Command) 319
HD Reorganization Unload Utility 319
HISAM Reorganization Unload Utility 319
DL/I Test Program . 319
Database Surveyor Utility 319
Fast Path Log Analysis Utility 320
IMS System Utilities/Database Tools 320

viii IMS/ESA V6 Admin Guide: DB

Batch Terminal Simulator. 321
IMS Monitor Summary and System Analysis Program II 321
The DL/I System Service STAT Call 322

Chapter 14. Tuning Your Database 323
About This Chapter . 324
Reorganizing the Database . 325

When Should You Reorganize? 325
Steps in Reorganizing . 325
Protecting Your Database 325
Using the Reorganization Utilities. 326

Changing DL/I Access Methods 341
Procedure for Changing from HISAM to HIDAM 341
Procedure for Changing from HISAM to HDAM 342
Procedure for Changing from HIDAM to HISAM 344
Procedure for Changing from HIDAM to HDAM 345
Procedure for Changing from HDAM to HISAM 346
Procedure for Changing from HDAM to HIDAM 347
Procedure for Changing to DEDBs 349

Changing the Hierarchic Structure 349
Changing the Sequence of Segment Types 349
Combining Segments . 350
Procedure for Changing the Hierarchic Structure 350

Changing Direct-Access Storage Devices. 351
Tuning OSAM Sequential Buffering 351

Well-Organized Database 351
Badly-Organized Database 352
Ensuring a Well-Organized Database 352

Adjusting HDAM Options . 352
Adjusting Buffers. 353

VSAM Buffers . 353
OSAM Buffers. 354
Procedure for Adjusting VSAM and OSAM Database Buffers 355
OSAM Sequential Buffering . 355
Procedure for Adjusting Sequential Buffers 356
Adjusting VSAM Options . 356

Procedure for Adjusting VSAM Options Specified in the OPTIONS Control
Statement . 356

Procedures for Adjusting VSAM Options Specified in the Access Method
Service DEFINE CLUSTER Command 357

Adjusting OSAM Options . 358
Changing the Amount of Space Allocated. 358
Changing Operating System Access Methods 359
Changing the Number of Data Set Groups 359

Chapter 15. Modifying Your Database 365
About This Chapter . 366
Adding Segment Types . 367

Unloading and Reloading Using the Reorganization Utilities 367
Without Unloading or Reloading 368
Using Your Own Unload and Reload Program 369

Deleting Segment Types . 369
Moving Segment Types . 369
Changing Segment Size . 370
Changing Data in a Segment (Except for Data at the End of a Segment) 370
Changing the Position of Data in a Segment 371

Contents ix

Adding Logical Relationships 371
Example 1. DBX Exists, DBY Is to Be Added 371
Example 2. DBX and DBY Exist, DBZ Is to Be Added 372
Example 3. DBX and DBY Exist, DBZ Is to Be Added 373
Example 4. DBX and DBY Exist, DBZ Is to Be Added 374
Example 5. DBX Exists, DBY Is to Be Added 374
Example 6. DBX and DBY Exist, DBZ Is to Be Added 375
Example 7. DBX and DBY Exist, DBZ Is to Be Added 377
Example 8. DBX and DBY Exist, DBZ Is to Be Added 379
Example 9. DBY Exists, DBZ Is to Be Added 379
Example 10. DBY Exists, DBZ Is to Be Added 380
Example 11. DBX and DBY Exist, DBZ Is to Be Added. 380
Example 12. DBX and DBY Exist, DBZ Is to Be Added. 381
Example 13. DBX and DBY Exist, Segment Y and DBZ Are to Be Added 381
Steps in Reorganizing a Database to Add a Logical Relationship 382
Some Restrictions on Modifying Existing Logical Relationships 385
Summary on Use of Utilities When Adding Logical Relationships 386

Adding a Secondary Index . 386
Adding or Converting to Variable-Length Segments 387

Method 1. Converting Segments or a Database 387
Method 2. Converting Segments or a Database 388

Converting to the Segment Edit/Compression Facility 388
Converting Databases for Data Capture Exit Routines and Asynchronous Data

Capture . 389
Converting a Logical Parent Concatenated Key From Virtual to Physical or

Physical to Virtual . 389
Using the Online Change Function 390

Maintaining Continuous Availability of IFP and MPP Regions 391
Changing Randomizer and Exit Routines 392
Making Online Changes at the DEDB and Area Level 397

Extending DEDB Independent Overflow Online 400

Chapter 16. Establishing Security 403
Restricting the Scope of Data Access 403
Restricting Processing Authority 403
Restricting Access by Non-IMS Programs 405

Protecting Data with VSAM Passwords 405
Encrypting Your Database 405

Using the Dictionary to Help Establish Security 405

Appendix A. Meaning of Bits in the Delete Byte 407
Bits in the Delete Byte. 407
Bits in the Prefix Descriptor Byte 407

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships 409
How to Specify Rules in the Physical DBD 409

The Replace Rules . 410
The Insert Rules . 414
Introduction to Delete Rules. 419
Delete Rules . 421

Appendix C. Using OSAM as the Access Method 447
OSAM Information for Database Access 447

Appendix D. Correcting Bad Pointers 449

x IMS/ESA V6 Admin Guide: DB

Bibliography . 451
IMS/ESA Version 6 Library . 451

Index . 453

Readers’ Comments — We’d Like to Hear from You 471

Contents xi

xii IMS/ESA V6 Admin Guide: DB

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Subject to IBM’s valid
intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, are the responsibility of the
user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling (1) the exchange of information between independently created programs
and other programs (including this one) and (2) the mutual use of the information
that has been exchanged, should contact:

IBM Corporation
555 Bailey Avenue, W92/H3
P.O. Box 49023
San Jose, CA 95161-9023

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Programming Interface Information
This book is intended to help the database administrator manage IMS databases.

This book also documents General-use Programming Interface and Associated
Guidance Information, Product-sensitive Programming Interface and Associated
Guidance Information, and Diagnosis, Modification or Tuning Information provided
by IMS.

General-use programming interfaces allow the customer to write programs that
obtain the services of IMS.

General-use Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

© Copyright IBM Corp. 1974, 1999 xiii

General-Use Programming Interface

General-use Programming Interface and Associated Guidance Information...

End of General-Use Programming Interface

Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of
IMS. Use of such interfaces creates dependencies on the detailed design or
implementation of the IBM software product. Product-sensitive programming
interfaces should be used only for these specialized purposes. Because of their
dependencies on detailed design and implementation, it is to be expected that
programs written to such interfaces may need to be changed in order to run with
new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

Product-Sensitive Programming Interface

Product-sensitive Programming Interface and Associated Guidance Information...

End of Product-Sensitive Programming Interface

Diagnosis, Modification or Tuning Information is provided to help the customer
diagnose, modify, or tune IMS.

Attention : Do not use this Diagnosis, Modification or Tuning Information as a
programming interface.

Diagnosis, Modification or Tuning information is identified where it occurs, either by
an introductory statement to a chapter or section or by the following marking:

Diagnosis, Modification or Tuning Information

Diagnosis, Modification or Tuning Information...

End of Diagnosis, Modification or Tuning Information

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

ACF/VTAM
Advanced Function Printing
AFP
BookManager
CICS
DATABASE 2
DataPropagator Nonrelational
DPropNR
DB2
ES/9000
IBM
IMS

IMS/ESA
IMS Client Server/2
MVS
MVS/DFP
MVS/ESA
OS/390
PSF
RACF
Resource Measurement Facility
RMF
SP
VTAM

xiv IMS/ESA V6 Admin Guide: DB

Product Names
In this book, the licensed program “DB2 for MVS/ESA” is referred to as “DB2”.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

Notices xv

xvi IMS/ESA V6 Admin Guide: DB

Preface

This book helps you administer your IMS/ESA databases. It describes how to
design, implement, and maintain different types of databases.

Summary of Contents
The IMS/ESA Administration Guide: Database Manager contains 16 chapters and
appendixes as follows:

“Chapter 1. Introduction” on page 1, describes concepts and technology, optional
functions, how to define your database to IMS, and how application programs
view the database.

“Chapter 2. Participating in Reviews” on page 17, describes how to participate in
reviews from database design to post-implementation.

“Chapter 3. Analyzing Data Requirements” on page 23, describes how to
analyze data requirements, design conceptual data structures, and implement
the structure with DL/I.

“Chapter 4. Designing a Fast Path Database” on page 33, describes how to
choose full function database types and lock protocols.

“Chapter 5. Choosing Additional Database Functions” on page 83, describes how
to choose additional database functions, secondary indexes, and multiple data
set groups.

“Chapter 6. Database Design Considerations for Full Function” on page 165,
describes how to consider database design, choose logical record length, and
use high-speed sequential processing for full function systems.

“Chapter 7. Designing a Fast Path Database” on page 193, describes how to
choose, monitor, and tune, a fast path systems.

“Chapter 8. Database Design Considerations for Fast Path” on page 241,
describes how to consider database design, choose logical record length, and
use high-speed sequential processing for fast path systems.

“Chapter 9. Developing Your Test Database” on page 265, describes how to
understand test requirements, and design, create, and load a test database.

“Chapter 10. Establishing Standards and Procedures” on page 271, describes
how to establish naming conventions, and use the dictionary to inform and
control standards and procedures.

“Chapter 11. Implementing Your Database Design” on page 277, describes how
to code database descriptions (DBDs), program specification blocks (PSBs), and
application control blocks (ACBs).

“Chapter 12. Loading Your Database” on page 285, describes how to load data,
estimate the minimum size of the database, allocate data sets, and write a load
program.

“Chapter 13. Monitoring Your Database” on page 309, describes how to use the
database monitor and database monitoring aids.

“Chapter 14. Tuning Your Database” on page 323, describes how to reorganize
the database, and change DL/I access methods, hierarchic structures, and direct
access storage devices (DASDs).

“Chapter 15. Modifying Your Database” on page 365, describes how to add,
delete, and move segment types, change segment size, and add logical
relationships.

“Chapter 16. Establishing Security” on page 403, describes how to restrict the
scope of data access, processing authority, and access by non-IMS programs.

© Copyright IBM Corp. 1974, 1999 xvii

“Appendix A. Meaning of Bits in the Delete Byte” on page 407, describes the
meaning of bits in the delete and prefix descriptor bytes.

“Appendix B. Replace, Insert, and Delete Rules for Logical Relationships” on
page 409, describes how to specify rules in a physical DBD and a rules
summary.

“Appendix C. Using OSAM as the Access Method” on page 447, describes how
to use overflow sequential access method (OSAM) as an access method.

“Appendix D. Correcting Bad Pointers” on page 449, describes how to use
reorganization to correct bad pointers.

Summary of Library Changes for V5 describes the IMS library changes for
Version 5.

Appendixes are followed by a bibliography and an index.

Prerequisite Knowledge
Before using this book, you should understand basic IMS/ESA concepts and your
installation’s IMS/ESA system. IMS/ESA can run in the following environments: DB
Batch, DCCTL, TM Batch, DB/DC, DBCTL. You should understand the
environments that apply to your installation. The IMS/ESA concepts explained here
pertain only to administering the IMS/ESA database. You should also know the
COBOL, PL/I, or assembler language, and how to use DL/I calls.

For an introduction to IMS, see IMS/ESA General Information on the web at:
http://www.software.ibm.com/data/ims

IMS/ESA Application Programming: Design Guide describes how to design and
code an application program.

For definitions of terms used in this manual and references to related information in
other IMS manuals, see IMS/ESA Master Index and Glossary.

Change Indicators
Technical changes are indicated in this publication by a vertical bar (|) to the left of
the changed text. If a figure has changed, a vertical bar appears to the left of the
figure caption.

xviii IMS/ESA V6 Admin Guide: DB

Summary of Changes

Changes to the Current Edition of this Book
This edition, which is in softcopy only, includes technical and editorial changes.

Changes to This Book for V6
This book contains new and changed information about the following subjects:

v Fast Path Online Change

v DEDB Online Change

v Database Image Copy 2 Support

v OSAM Database Coupling Facility Caching

v Shared SDEPs

v Shared VSO

It also contains additional information on performance and HSSP considerations.

Changes have been made to the following chapters:

Chapter 1 Introduction

Chapter 6 Database Design Considerations for Full Function

Chapter 7 Designing a Fast Path Database

Chapter 9 Developing Your Test Database

Chapter 11 Implementing Your Database Design

Chapter 13 Monitoring Your Database

This edition incorporates new technical information for Version 6 as well as editorial
changes and technical corrections made to previously published information.

Library Changes for Version 6
The IMS/ESA Version 6 library differs from the IMS/ESA Version 5 library in these
major respects:

v IMS/ESA Common Queue Server Guide and Reference

This new book describes the IMS Common Queue Server (CQS).

v IMS/ESA DBRC Guide and Reference

This new book describes all the functions of IMS Database Recovery Control
(DBRC).

v The IMS Application Programming summary books (IMS/ESA Application
Programming: Database Manager Summary, IMS/ESA Application Programming:
Transaction Manager Summary, and IMS/ESA Application Programming: EXEC
DLI Commands for CICS and IMS Summary) are no longer included with the IMS
library.

v The Softcopy Master Index is not included.

v All information about IRLM 1.5 and data sharing using IRLM 1.5 has been
removed from the IMS V6 books. If you use IRLM 1.5, and want to migrate to
using IRLM 2.1 and Sysplex data sharing, see IMS/ESA Release Planning Guide.

© Copyright IBM Corp. 1974, 1999 xix

v The chapter that was titled ″Database Control (DBCTL) Interface″ in the
″IMS/ESA″ Customization Guide has been revised for Open Database Access
(ODBA) and moved to ″Appendix A, Using the Database Resource Adapter
(DRA)″ in the ″IMS/ESA″ Application Programming: Database Manager.

xx IMS/ESA V6 Admin Guide: DB

Chapter 1. Introduction

About This Chapter . 1
Database Administration Overview 1
Database Administration Tasks 2
Concepts and Terminology . 4

How Data Is Stored in a Database 5
Root Segment . 5
Parent and Child Segment 5
Segment Type and Occurrence 6
Relationship Between Segments 6

The Hierarchy. 6
Numbering Sequence in a Hierarchy: Top to Bottom. 7
Numbering Sequence in a Hierarchy: Movement and Position 8
Numbering Sequence in a Hierarchy: Level 8

The Database. 9
The Database Record . 10
The Segment . 11

Segment Code . 12
Delete Byte . 12
Pointer and Counter Area 12
The Data Portion . 12
The Three Data Portion Field Types 13

Optional Functions . 14
How To Define Your Database to IMS 15
How Application Programs View the Database 16

About This Chapter
This chapter describes the tasks of database administration and discusses the key
concepts and terms used in this book.

Database Administration Overview
The task of database administration is to design, implement, and maintain a
database. The IMS/ESA Administration Guide: Database Manager describes the
tasks involved in administering the Information Management Systems/Enterprise
Systems Architecture (IMS/ESA) database manager. IMS/ESA (hereafter referred to
as IMS) is composed of two parts: a database manager and a transaction manager.
The database manager manages physical storage of records in the database. The
transaction manager manages the terminal network, the input and output of
messages, and online system resources. The administration of the IMS/ESA
transaction manager is covered in the IMS/ESA Administration Guide: Transaction
Manager.

Whenever possible, this book presents the various database administration tasks in
the order in which you normally perform the tasks. You perform some tasks in a
specific sequence in the database development process. Other tasks, however, are
ongoing, and you do not perform them in any special sequence. It is important for
you to grasp not only what the tasks are (see “Database Administration Tasks” on
page 2), but also how they interrelate (see Figure 1 on page 4) in the overall
process of developing a database system.

© Copyright IBM Corp. 1974, 1999 1

This book addresses each major task in a separate chapter. This chapter provides
the following information:

v Database administration tasks

v Concepts and technology

v Optional functions

v How to define your database to IMS

v How application programs view the database

The database administrator should consider the advantages of using command
level Data Language I (DL/I). For detailed information, see IMS/ESA Application
Programming: Database Manager and IMS/ESA Application Programming: EXEC
DLI Commands for CICS and IMS.

Whenever tasks differ for Customer Information Control System (CICS) users, a
brief description about the differences is included.

CICS accesses IMS databases via the database resource adapter (DRA). CICS or
other transaction management subsystems (excluding IMS/ESA Transaction
Manager) can access IMS full-function databases and data entry databases
(DEDBs) in a DB/DC or DBCTL environment via the DRA.

DBCTL supports non-message-driven batch message processors (BMPs).

DBCTL has its own log and participates in database recovery. Locking is provided
by IMS program isolation or Internal Resource Lock Manager (IRLM).

Data Communications Control (DCCTL) is a transaction management subsystem
that does not support full-function DEDBs or MSDBs (main storage databases), but
does support GSAM databases in BMP regions. To access databases in a DCCTL
environment, DCCTL must connect to an external subsystem that provides
database support.

Database Administration Tasks
Participating in design reviews. Design reviews are a series of formal meetings
you attend in which the design and implementation of the database are
examined. Design reviews are an ongoing task during the design and
implementation of a database system. They are also held when new
applications are added to an existing system.

Analyzing data requirements. After the users at your installation identify their
data processing requirements, you will construct data structures. These
structures show what data will be in your database and how it will be organized.
This task precedes the actual design of the database.

Designing your database. After data structures are identified, the next step is to
design your database. Database design involves:

– Choosing how to physically organize your data

– Deciding which IMS processing options you need to use

– Making a series of decisions about design that determine how well your
database performs and utilizes available space

Developing a test database. Before the applications that will use your database
are cut over to production status, they should be tested. Depending on the form
of your existing data, you can use one or more of the IMS Database Design
Aids to design, create, load, and test your test database.

Database Administration Overview

2 IMS/ESA V6 Admin Guide: DB

Implementing your database design. After your database is designed, implement
the design by describing the database’s characteristics and how application
programs will use it to IMS. This task consists of coding database descriptions
(DBDs) and program specification blocks (PSBs), both of which are a series of
macro statements. Another part of implementing the database design is
determining whether to have the application control blocks (ACBs) of the
database prebuilt or built dynamically.

Loading your database. After database characteristics are defined, write an
initial load program to put your data into the database. After you load the
database, application programs can be run against it.

Monitoring your database. When the database is running, routinely monitor its
performance. A variety of tools for monitoring the IMS system are available.

Tuning your database. Tune your database when performance degrades or
utilization of external storage is not optimum. The routine monitoring you do
helps you determine when the system needs to be tuned and what type of
tuning needs to be done. Like monitoring, the task of tuning the database is
ongoing.

Modifying your database. As new applications are developed or the needs of
your users change, you might need to make changes to your database.
Examples of these changes include database organization, database hierarchies
(or the segments and fields within them), and addition (or deletion) of IMS
functions. Like monitoring and tuning, the task of modifying the database is
ongoing.

Recovering your database. Database recovery involves restoring a database to
its original condition after it is rendered invalid by some failure. The task of
developing recovery procedures and performing recovery is an important one.
However, because it is difficult to separate data recovery from system recovery,
the task of recovery is treated separately in IMS/ESA Operations Guide.

You can use Database Recovery Control (DBRC) in recovering your databases.
If your databases are registered in RECON, DBRC gains control during
execution of these IMS utilities:

– Database Image Copy

– Online Database Image Copy

– Database Image Copy 2

– Change Accumulation

– Database Recovery

– Log Recovery

– Log Archive

– DEDB area data set create

– HD and HISAM Reorganization Unload and Reload

You must ensure that all database recoveries use the IMS/ESA Version 6
utilities, as opposed to Version 4 or Version 5.

Related Reading : For more information on using these utilities, see the
IMS/ESA Utilities Reference: System, the IMS/ESA Utilities Reference: Database
Manager, and the IMS/ESA Utilities Reference: Transaction Manager.

Establishing security. You can keep unauthorized persons from accessing the
data in your database by using program communication blocks (PCBs). With
PCBs, you can control how much of the database a given user can see, and
what can be done with that data. In addition, you can take steps to keep
non-IMS programs from accessing your database.

Database Administration Tasks

Chapter 1. Introduction 3

Setting up standards and procedures. It is important to set standards and
procedures for application and database development. This is especially true in
an environment with multiple applications. If you have guidelines and standards,
you will save time in application development and avoid problems later on such
as inconsistent naming conventions or programming standards.

Figure 1 depicts tasks in the database development process and shows how the
chapters of IMS/ESA Administration Guide: Database Manager fit into this process.

Concepts and Terminology
This section discusses the terms and concepts you need to understand to perform
the administration tasks just outlined.

You must know the following to understand this section:

v What a database is and why you store your data in it rather than in several files
(explained in IMS/ESA General Information on the web at:
http://www.software.ibm.com/data/ims

v What a DL/I call is and how to code it. You must understand function codes and
Segment Search Arguments (SSAs) in DL/I calls and know what is meant when a
call is referred to as qualified or unqualified (explained in IMS/ESA Application
Programming: Database Manager).

Figure 1. Tasks in the Database Development Process

Database Administration Tasks

4 IMS/ESA V6 Admin Guide: DB

How Data Is Stored in a Database
The data in a database is grouped into a series of database records. Each
database record is composed of smaller groups of data called segments. A segment
is the smallest piece of data IMS can store. Segments, in turn, are made up of one
or more fields.

Figure 2 shows a record in a school database. Each of the boxes is a segment or
separate group of data in the database record. The segments in the database
record contain the following information:

COURSE The name of the course

INSTR The name of the teacher of the course

REPORT A report the teacher needs at the end of the course

STUDENT The names of students in the course

GRADE The grade a student received in the course

PLACE The room in which the course is taught

The segments within a database record exist in a hierarchy. A hierarchy is the order

in which segments are arranged. The order implies something. The school database
is storing data about courses that are taught. The COURSE segment is at the top
of the hierarchy. The other types of data in segments in the database record would
be meaningless if there was no COURSE.

Root Segment
The COURSE segment is called the root segment. Only one root segment exists
within a database record. All other segments in the database record (such as:
INSTR, REPORT, STUDENT, GRADE, and PLACE) are called dependent
segments. The existence of dependent segments hinges on the existence of a root
segment. For example, without the root segment COURSE, there would be no
reason for having a PLACE segment stating in which room the course was held.

One other thing to note about dependency in the database record, is that the third
level of dependent segments REPORT and GRADE is subject to the existence of
second level segments INSTR and STUDENT. For example, without the second
level segment STUDENT, there would be no reason for having a GRADE segment
indicating the grade the student received in the course.

Parent and Child Segment
Another set of words used to refer to how segments relate to each other in a
hierarchy is parent segment and child segment. A parent segment is any segment

Figure 2. A Database Record in a School Database

Concepts and Terminology

Chapter 1. Introduction 5

that has a dependent segment beneath it in the hierarchy. COURSE is the parent of
INSTR, and INSTR is the parent of REPORT. A child segment is any segment that
is a dependent of another segment above it in the hierarchy. REPORT is the child
of INSTR, and INSTR is the child of COURSE. Note that INSTR is both a parent
segment in its relationship to REPORT and a child segment in its relationship to
COURSE.

Segment Type and Occurrence
The terms used to describe segments so far (root, dependent, parent, and child)
describe the relationship between segments. The terms segment type and segment
occurrence, however, distinguish between a type of segment in the database (the
COURSE segment or the INSTR segment) and a specific segment (the course
segment for a math course). The database record looked at so far is really the
design you might come up with for a database record. The database record shows
the segment types that are going to be in the database. Figure 3 shows an actual
database record, based on this design.

A segment occurrence is a single specific segment. MATH is a single occurrence of
the COURSE segment type. BAKER and COE are multiple occurrences of the
STUDENT segment type.

Relationship Between Segments
One final term for describing segments is twin segment. Twin (like root, dependent,
parent, and child) describes a relationship between segments. Twin segments are
multiple occurrences of the same segment type under a single parent. In Figure 3,
BAKER and COE are twins. They have the same parent (MATH), and are of the
same segment type (STUDENT). PASS and INC are not twins. Although PASS and
INC are the same segment type, they do not have the same parent.

The following section discusses the hierarchy in more detail. Subsequent sections
describe the objects in a database, what they consist of and the rules governing
their existence and use. These objects are:

The database record

The segments in a database record

The fields within a segment

The Hierarchy
A database is composed of a series of database records, records contain
segments, and segments are arranged in a hierarchy in the database record.

Figure 3. The School Database Record in Storage

Concepts and Terminology

6 IMS/ESA V6 Admin Guide: DB

Numbering Sequence in a Hierarchy: Top to Bottom
When a database record is stored in the database, the hierarchic arrangement of
segments in the database record is the order in which segments are stored.
Starting at the top of a database record (at the root segment), segments are stored
in the database in the sequence shown by the numbers in Figure 4.

The sequence goes from the top of the hierarchy to the bottom in the first (leftmost)
path or leg of the hierarchy. When the bottom of the database is reached, the
sequence is from left to right. When all segments have been stored in that path of
the hierarchy, the sequencing begins in the next path to the right, again proceeding
from top to bottom and then left to right. (In the second leg of the hierarchy there is
nothing to go to at the right.) The sequence in which segments are stored is loosely
called “top to bottom, left to right.”

Figure 4 shows sequencing of segment types. Observe the segment occurrences
and note the sequence in which segments are stored.

Figure 5 shows the same database record, but this time it is an actual record rather
than an abstract design.

Figure 4. Sequence in a Hierarchy (Showing Segment Types Only)

Figure 5. Sequence in a Hierarchy (Showing Segment Types and Occurrences)

Concepts and Terminology

Chapter 1. Introduction 7

Note that the numbering sequence is still initially from top to bottom. At the bottom
of the hierarchy, however, observe that there are two occurrences of the REPORT
segment.

Because you are at the bottom of the hierarchy, both segment occurrences are
picked up before you move to the right in this path of the hierarchy. Both reports
relate to the instructor segment JAMES; so it makes sense to keep them stored
together in the database. In the second path of the hierarchy, there are also two
segment occurrences in the student segment. You are not at the bottom of the
hierarchic path until you reach the grade segment PASS. So, sequencing is not
“interrupted” by the two occurrences of the student segment BAKER and COE. This
makes sense because you are keeping student and grade BAKER and PASS
together.

Note that the grade INC under student COE is not considered another occurrence
under BAKER. COE and INC become a separate path in the hierarchy. Only when
you reach the bottom of a hierarchic path is the “top to bottom, left to right”
sequencing interrupted to pick up multiple segment occurrences. You can refer to
sequencing in the hierarchy as “top to bottom, front to back, left to right”, but “front
to back” only occurs at the bottom of the hierarchy. Multiple occurrences of a
segment at any other level are sequenced as separate paths in the hierarchy.

As noted before, this numbering of segments represents the sequence in which
segments are stored in the database. If an application program requests all
segments in a database record in hierarchic sequence or issues Get-Next (GN)
calls, this is the order in which segments would be presented to the application
program.

Numbering Sequence in a Hierarchy: Movement and Position
Other terms that show the numbering sequence in a hierarchy are: movement and
position. When talking about movement through the hierarchy, it always means
moving in the sequence implied by the numbering scheme. Movement can be
forward or backward. When talking about position in the hierarchy, it means being
located (positioned) at a specific segment. The terms movement and position are
used when talking about how segments are accessed when an application program
issues a call.

A segment is the smallest piece of data IMS can store. If an application program
issues a Get-Unique (GU) call for the student segment BAKER (see Figure 5 on
page 7), the current position is immediately after the BAKER segment occurrence. If
an application program then issues an unqualified GN call, IMS moves forward in
the database and returns the PASS segment occurrence.

Numbering Sequence in a Hierarchy: Level
A final term you need to know about hierarchies is: level. Level is the position of a
segment in the hierarchy in relation to the root segment. The root segment is
always on level one. Figure 6 on page 9 illustrates levels.

Concepts and Terminology

8 IMS/ESA V6 Admin Guide: DB

The Database
IMS allows you to define nine different database types. You define the database
type that best suits your application’s processing requirements. You need to know
that each IMS database has its own access method, because IMS runs under
control of the MVS operating system. The operating system does not know what a
segment is because it processes logical records, not segments. IMS access
methods therefore manipulate segments in a database record. When a logical
record needs to be read, operating system access methods (or IMS) are used.

Table 1 lists the IMS database types you can define, the IMS access methods they
use and the operating system access methods you can use with them. Although
each type of database varies slightly in its access method, they all use database
records.

Table 1. Types of IMS Databases and the MVS Access Methods They Can Use

Type of
Database

IMS Access Method Used IMS or Operating System
Access Methods that Can Be
Used

HSAM Hierarchical Sequential Access Method BSAM or QSAM

SHSAM Simple Hierarchical Sequential Access
Method

BSAM or QSAM

HISAM Hierarchical Indexed Sequential Access
Method

VSAM

SHISAM Simple Hierarchical Indexed Sequential
Access Method

VSAM

GSAM¹ Generalized Sequential Access Method BSAM

HDAM Hierarchical Direct Access Method VSAM or OSAM

HIDAM Hierarchical Indexed Direct Access
Method

VSAM or OSAM

MSDB² Main Storage Database N/A

DEDB¹ Data Entry Database Media Manager

Notes:

1. Only available to BMPs through DBCTL.

2. Not applicable to DBCTL.

Figure 6. Levels in the Database

Concepts and Terminology

Chapter 1. Introduction 9

The Database Record
A database consists of a series of database records, and a database record
consists of a series of segments. Another thing to understand is that a specific
database can only contain one kind of database record. In the school database, for
example, you can place as many school records as desired. You could not,
however, create a different type of database record, such as the following medical
database record, and put it in the school database.

The only other thing to understand is that a specific database record, when stored
in the database, does not need to contain all the segment types you originally
designed. To exist in a database, a database record need only contain an
occurrence of the root segment. In the school database, all four of the records
shown in Figure 7 can be stored.

However, no segment can be stored unless its parent is also stored. For example,
you could not store:

Figure 7. Example of Records That Can Be Stored in the School Database

Concepts and Terminology

10 IMS/ESA V6 Admin Guide: DB

Occurrences of any of the segment types can later be added to or deleted from the
database.

The Segment
A database record consists of one or more segments, and the segment is the
smallest piece of data IMS can store. Here are some additional facts you need to
know about segments:

v A database record can contain a maximum of 255 segment types. The space you
allocate for the database limits the number of segment occurrences.

v You determine the length of a segment; however, a segment cannot be larger
than the physical record length of the device on which it is stored.

v The length of segments is specified by segment type. A segment type can be
either variable or fixed in length.

Figure 8 on page 12 shows the format of both a fixed-length and a variable-length
segment. Segments consist of two parts (a prefix and the data), except when using
a SHSAM or SHISAM database. In SHSAM and SHISAM databases, the segment
consists of only the data. In a GSAM database, segments do not exist for reasons
explained later.

IMS uses the prefix portion of the segment to “manage” the segment. The prefix
portion of a segment consists of: segment code, delete byte, and in some
databases, a pointer and counter area. Application programs do not “see” the prefix
portion of a segment. The data portion of a segment contains your data, arranged
in one or more fields.

For information on MSDB and DEDB segments, see “Main Storage Databases
(MSDBs)” on page 195 and “Data Entry Databases (DEDBs)” on page 201.

Concepts and Terminology

Chapter 1. Introduction 11

Segment Code
IMS needs a way to identify each segment type stored in a database. It uses the
segment code field for this purpose. When loading a segment type, IMS assigns it a
unique identifier (an integer from 1 to 255). IMS assigns numbers in ascending
sequence, starting with the root segment type (number 1) and continuing through all
dependent segment types in hierarchic sequence.

Delete Byte
When an application program deletes a segment from a database, the space it
occupies might or might not be immediately available to reuse. Deletion of a
segment is described in the discussions of the individual database types. For now,
know that IMS uses this prefix byte to track the status of a deleted segment.

For information on the meaning of each bit in the delete byte, see “Appendix A.
Meaning of Bits in the Delete Byte” on page 407.

Pointer and Counter Area
The pointer and counter area exists in HDAM and HIDAM databases, and in some
special circumstances, HISAM databases. The pointer and counter area can contain
two types of information:

v Pointer information consists of one or more addresses of segments to which a
segment points. (These addresses only exist in HDAM, HIDAM, and in some
special cases, HISAM databases.)

v Counter information is used when logical relationships, an optional function of
IMS, are defined. (Counter information can exist in HISAM, HDAM, and HIDAM
databases.)

The length of the pointer and counter area depends on how many addresses a
segment contains and whether logical relationships are used. These topics are
covered later in this book.

The Data Portion
The data portion of a segment contains one or more data elements. The data is
processed and unlike the prefix portion of the segment, seen by an application
program.

Figure 8. Formats of Segments

Concepts and Terminology

12 IMS/ESA V6 Admin Guide: DB

The application program accesses segments in a database using the name of the
segment type. If an application program needs to reference part of a segment, a
field name can be defined to IMS for that part of the segment. Field names are
used in segment search arguments (SSAs) to qualify calls. An application program
can see data even if you do not define it as a field. But an application program
cannot qualify an SSA on the data unless it is defined as a field.

The maximum number of fields that you can define for a segment type is 255. The
maximum number of fields that can be defined for a database is 1000. Note that
1000 refers to types of fields in a database, not occurrences. The number of
occurrences of fields in a database is limited only by the amount of storage you
have defined for your database.

The Three Data Portion Field Types
You can define three field types in the data portion of a segment: a sequence field,
data fields, and for variable-length segments, a size field stating the length of the
segment. The first two field types contain your data, and an application program
can use both to qualify its calls. However, the sequence field has some other uses
besides that of containing your data.

You can use a sequence field, often referred to as a key, to keep occurrences of a
segment type in key sequence under a given parent. For example, in the following
database record, there are three segment occurrences of the STUDENT segment,
and the STUDENT segment has three data elements:

Suppose you need the STUDENT segment, when stored in the database, to be in
alphabetic order by student name. If you define a field on the NAME data as a
unique sequence field, IMS stores STUDENT segment occurrences in alphabetic
sequence as follows:

When defined in a root segment of a HISAM, HDAM, or HIDAM database, a
sequence field gives an application program access to a specific root segment.
Because each database record has only one root segment, this means that an
application program has access to a specific database record. When a sequence
field is defined, a database does not need to be searched sequentially to find a

Concepts and Terminology

Chapter 1. Introduction 13

specific database record. Also, database records can be retrieved sequentially in
HISAM and HIDAM databases when a sequence field is defined in the root
segment.

You can also use a sequence field in other ways when using the IMS optional
functions of logical relationships or secondary indexing. These other uses are
discussed in detail later in this book.

The important things to know now about sequence fields are that:

v You do not always need to define a sequence field. This book describes cases
where a sequence field is necessary.

v The sequence field value can be defined as unique or non-unique.

v The data or value in the sequence field is called the “key” of the segment.

The next section of this chapter deals with the optional database function which you
might need to use. Once the option functions are explored, the last two sections of
this chapter briefly describe how to define a database to IMS, and how an
application program views a database.

Optional Functions
IMS has several optional functions you can use for your database. These are
discussed briefly below and described in detail in “Chapter 5. Choosing Additional
Database Functions” on page 83. You need a cursory understanding of these
functions before reading the rest of the book because they may be referred to
before they are actually described.

The functions are as follows:

Logical relationships is a function you can use to let an application program
access a logical database record. A logical database record can consist of
segments from one or more physical database records. Physical database
records can be stored in one or more databases. So a logical database record
lets an application program view a database structure that is different from the
physical database structure.

For example, if a logical data structure contains segments from two different
physical databases, a segment can be accessed from two different paths:

– A segment can be physically stored in the path where it is most frequently
used and where the most urgent response time is required.

– A pointer containing the location of the segment can be physically stored in
the alternate path needed by another application program.

Secondary indexing is a function you can use to access segments in a database
in a sequence other than the one defined in the sequence field.

Variable-length segments is a function you can use to make the data portion of
a segment type variable in length. Use variable-length segments when the size
of the data portion of a segment type varies greatly from one segment
occurrence to the next. With variable-length segments, you define the minimum
and maximum length of a segment type. Defining both minimum and maximum
length saves space in the database whenever a segment is shorter than the
maximum length.

Field-level sensitivity is a function you can use to:

– Deny an application program access to selected fields in a segment for
security purposes.

Concepts and Terminology

14 IMS/ESA V6 Admin Guide: DB

– Allow an application program to use a subset of the fields that make up a
segment (so it does not need to process fields it does not use) or use fields
in a segment in a different order. Use field-level sensitivity in this way to
accommodate the differing needs of your application programs.

Segment edit/compression is a function you can use with segments to:

– Encode or “scramble” segment data when it is on the device so only
application programs with access to the segment receive the data in decoded
form.

– Edit data so application programs can receive data in a format other than the
one in which it is stored.

– Compress data when writing a segment to the device, so the Direct Access
Storage Device (DASD) is better utilized.

A Data Capture exit routine is used to capture segment data when an
application program updates IMS databases with an insert, replace, or delete
call. This is a synchronous activity that happens within the unit of work or
application update. Captured data is used for data propagation to DB2
databases. You can also use Data Capture exit routines to perform tasks other
than data propagation.

Asynchronous Data Capture is a function you use to capture segment data
when an application program updates IMS databases with an insert, replace, or
delete call. This is an asynchronous activity that happens outside of the unit of
work or application update. Captured data is used for data propagation to DB2
databases asynchronously. You can also use Asynchronous Data Capture to
perform tasks other than data propagation.

DPROPNR (DataPropagator NonRelational) allows you to propagate the
changed data to or from IMS and DB2 both synchronously and asychronously.

Related Reading : for more information on DPROPNR see Data Propagator
NonRelational MVS/ESA An Introduction.

Multiple data set groups is a function you can use to put some segments in a
database record in data sets other than the primary data set. This can be done
without destroying the hierarchic sequence of segments in a database record.

One reason to use multiple data set groups is to accommodate the differing
needs of your applications. By using multiple data set groups, you can give an
application program fast access to the segments in which it is interested. The
application program simply bypasses the data sets containing unnecessary
segments. Another reason for using multiple data set groups is to improve
performance by, for example, separating high-use segments from low-use
segments. You might also use multiple data set groups to save space by putting
segment types whose size varies greatly from the average in a separate data
set group.

How To Define Your Database to IMS
Define the characteristics of your database to IMS by coding and generating a DBD
(database description). A DBD is a series of macro instructions that describes a
database’s organization and access method, the segments and fields in a database
record, and the relationship between types of segments.

If you have the IBM DB/DC (database/data communication) Data Dictionary, you
can use it to define your database (except for DEDBs and MSDBs). The DB/DC
Data Dictionary may contain all the information you need to produce a DBD.

Optional Functions

Chapter 1. Introduction 15

How Application Programs View the Database
You control how an application program views your database. An application
program might not need use of all the segments or fields in a database record. And
an application program may not need access to specific segments for security or
integrity purposes. An application program may not need to perform certain types of
operations on some segments or fields. For example, an application program needs
read access to a SALARY segment but not update access. You control which
segments and fields an application can view and which operations it can perform on
a segment by coding and generating a PSB (program specification block).

A PSB is a series of macro instructions that describe an application program’s
access to segments in the database. A PSB consists of one or more program
communication blocks (PCB), and each PCB describes the application program’s
ability to read and use the database. For example, an application program can have
different views and uses of the same database. An application program can access
several different databases and can have several PCBs in its PSB.

If you have the IBM DB/DC Data Dictionary, you can use it to define an application
program’s access to the database. It can contain all the information needed to
produce a PSB.

How Application Programs View the Database

16 IMS/ESA V6 Admin Guide: DB

Chapter 2. Participating in Reviews

About This Chapter . 17
The Design Review . 17

Role of the Database Administrator 17
General Information About Reviews 17

Design Review 1 . 18
Design Review 2 . 18
Design Review 3 . 19
Design Review 4 . 19
Code Inspection 1. 20
Who Attends Code Inspection 1. 20
Code Inspection 2. 20
Security Inspection . 21
Post-Implementation Review . 21

About This Chapter
One of the best ways to make sure a good database design is developed and
effectively implemented is to review the design at various stages in its development.
The sections of this chapter describe the reviews typically conducted during
development of a database system. The types of reviews are:

Design reviews 1, 2, 3, and 4

Code inspections 1 and 2

Security inspection

Post-implementation review

The Design Review
Design Reviews ensure that the functions being developed are adequate, the
performance is acceptable, the installation standards met, and the project is
understood and under control. Hold reviews during development of the initial
database system and, afterward, whenever a program or set of programs is being
developed to run against it.

Role of the Database Administrator
The role of database administration in the review process is an important one.
Typically, a member of the database administration staff, someone not associated
with the specific system being developed, moderates the reviews. The moderator
does more than just conduct the meeting. The moderator also looks to see what
impact development of this system has on existing or future systems. You, the
database administrator responsible for developing the system, need to participate in
all reviews.

Your role in the review process is to ensure that a good database design is
developed and then effectively implemented. The role is ongoing and provides a
supporting framework for the other database administration tasks described in this
book.

General Information About Reviews
The sections of this chapter describe reviews typically held during system
development. (For purposes of simplicity, “system” describes the object under

© Copyright IBM Corp. 1974, 1999 17

review. In actuality, the “system” could be a program, set of programs, or an entire
database system.) The number of reviews, who attends them, and their specific role
in the review will differ slightly from one installation to the next. What you need to
understand is the importance of the reviews and the tasks performed at them. Here
is some general information about reviews:

v People attending all reviews (in addition to database administrators) include a
review team and the system designer. The review team generally has no
responsibility for developing the system. The review team consists of a small
group of people whose purpose is to ensure continuity and objectivity from one
review to the next. The system designer writes the initial functional specifications.

v At the end of each review, make a list of issues raised during the review. These
issues are generally change requirements. Assign each issue to a specific
persons for resolution, and set a target date for resolution. If certain issues
require major changes to the system, schedule other reviews until you resolve all
major issues.

v If you have a data dictionary, update it at the end of each review to reflect any
decisions that you made. The dictionary is an important aid in keeping
information current and available especially during the first four reviews when you
make design decisions.

Design Review 1
The first design review takes place after initial functional specifications for the
system are complete. Its purpose is to ensure that all user requirements have been
identified and that design assumptions are consistent with objectives. No detailed
design for the system is or should be available at this point. The review of the
specifications will determine whether the project is ready to proceed to a more
detailed design. When design review 1 concludes successfully, its output is an
approved set of initial functional specifications.

People who attend design review 1, in addition to the regular attendees, include
someone from the organization that developed the requirement and anyone
participating in the development of detailed design. You are at the review primarily
for information. You also look at:

The relationship between data elements

Whether any of the needed data already exists

Design Review 2
The second design review takes place after final functional specifications for the
system are complete. This means the overall logic for each program in the system
is defined, as well as the interface and interactions between programs. Audit and
security requirements are defined at this point, along with most data requirements.
When design review 2 is successfully concluded, its output is an approved set of
final functional specifications.

Everyone who attended design review 1 should attend design review 2. People
from test and maintenance groups attend as observers to begin getting information
for test case design and maintenance. Those concerned with auditing and security
can also attend.

Your role in this review is still primarily to gather information. You also look at:

v Whether the specifications meet user requirements

v Whether the relationship between data items is correct

The Design Review

18 IMS/ESA V6 Admin Guide: DB

v Whether any of the required data already exists

v Whether audit and security requirements are consistent with user requirements

v Whether audit and security requirements can be implemented

Design Review 3
The third design review takes place after initial logic specifications for the system
are complete. At this point, high level pseudo code or flowcharts are complete.
These can only be considered complete when major decision points in the logic are
defined, calls or references to external data and modules are defined, and the
general logic flow is known. All modules and external interfaces are defined at this
point, definition of data requirements is complete, and database and data files are
designed. Initial test and recovery plans are available, however, no code has been
written. When design review 3 concludes successfully, its output is an approved set
of initial logic specifications.

Everyone who attended design review 2 should attend design review 3. If the
project is large, those developing detailed design need only be present during the
review of their portion of the project.

It is possible now that logic specifications are available.

Your role in this review is to ensure that the flow of transactions is consistent with
the database design you are creating.

At this point in the design review process, you are designing hierarchies and
starting to design the database. These tasks are described in “Chapter 3. Analyzing
Data Requirements” on page 23, “Chapter 4. Designing a Fast Path Database” on
page 33, “Chapter 5. Choosing Additional Database Functions” on page 83, and
“Chapter 6. Database Design Considerations for Full Function” on page 165.

Design Review 4
The fourth design review takes place after design review 3 is completed and all
interested parties are satisfied that system design is essentially complete. No
special document is examined at this review, although final functional specifications
and either initial or final logic specifications are available. The primary objective of
this review is to make sure that system performance will be acceptable.

At this point in the development process, sufficient flexibility exists to make
necessary adjustments to the design, since no code exists but detailed design is
complete. Although some design changes undoubtedly occur once coding is begun;
these changes should not impact the entire system. Although no code exists at this
point, you can and should run tests to check that the database you have designed
will produce the results you expect.

When design review 4 concludes successfully, database design is considered
complete.

The people who attend all design reviews (moderator, review team, database
administrator, and system designer) should attend design review 4. Others attend
only as specific detail is required.

At this point in the review process, you are almost finished with the database
administration tasks along with designing and testing your database. These tasks

Design Review 2

Chapter 2. Participating in Reviews 19

are described in “Chapter 3. Analyzing Data Requirements” on page 23, “Chapter 4.
Designing a Fast Path Database” on page 33, and “Chapter 9. Developing Your Test
Database” on page 265.

Code Inspection 1
The first code inspection takes place after final logic specifications for the system
are complete.

At this point, no code is written but the final functional specifications have been
interpreted. Both pseudo code and flowcharts have a statement or logic box for
every 5 to 25 lines of assembler language code, 5 to 15 lines of COBOL code, or 5
to 15 lines of PL/I code that needs writing. In addition, module prologues are
written, and entry and exit logic along with all data areas are defined.

The objective of this review is to ensure that the correctly developed logic interprets
the functional specification. Code inspection 1 also provides an opportunity to
review the logic flow for any performance implications or problems. When code
inspection 1 successfully concludes, its output is an approved set of final logic
specifications.

Who Attends Code Inspection 1
Code inspection 1 is attended primarily by those doing the coding. People who
attend all design reviews (moderator, review team, database administrator, and
system designer) also attend the code inspection 1. Testing people present the test
cases that will be used to validate the code, while maintenance people are there to
learn and evaluate maintainability of the database.

Your role in this review is now a less active one than it has been. You are there to
ensure that everyone adheres to the use of data and access sequences defined in
the previous reviews.

At this point in the review process, you are starting the database administration
tasks defined in “Chapter 9. Developing Your Test Database” on page 265,
“Chapter 11. Implementing Your Database Design” on page 277, and “Chapter 12.
Loading Your Database” on page 285.

Code Inspection 2
The code inspection 2 takes place after coding is complete and before testing by
the test organization begins. The objective of the second code inspection is to make
sure module logic matches pseudo code or flowcharts. Interface and register
conventions along with the general quality of the code are checked. Documentation
and maintainability of the code are evaluated.

Everyone who attended code inspection 1 should attend code inspection 2.

Your role in this review is the same as your role in code inspection 1.

At this point in the review process, you are almost finished with the database
administration tasks of developing a test database, implementing the database
design, and loading the database.

Design Review 4

20 IMS/ESA V6 Admin Guide: DB

During your testing of the database, you should run the DB monitor (described in
“Chapter 13. Monitoring Your Database” on page 309) to make sure your database
still meets the performance expectations you have established.

Security Inspection
The security inspection is optional but highly recommended if security is a
significant concern. Security inspections can take place at any appropriate point in
the system development process. Define security strategy early, and check its
implementation during design reviews. This particular security inspection takes
place after all unit and integration testing is complete. The purpose of the review is
to look for any code that violates the security of system interfaces, secured
databases, tables, or other high-risk items.

People who attend the security inspection review include the moderator, system
designer, designated security officer, and database administrator. Because the
database administrator is responsible for implementing and monitoring the security
of the database, you might, in fact, be the designated security officer. If security is a
significant concern, you might prefer that the review team not attend this inspection.

During this and other security inspection, you are involved in the database
administration task of establishing security defined in “Chapter 16. Establishing
Security” on page 403.

Post-Implementation Review
It is highly recommended that you conduct a post-implementation review. The
post-implementation review is typically held about six months after the database
system is running. Its objective is to make sure the system is meeting user
requirements.

Everyone who has been involved in design and implementation of the database
system should attend the post-implementation review. If the system is not meeting
user requirements, the output of this review should be a plan to correct design or
performance problems to meet user requirements.

Code Inspection 2

Chapter 2. Participating in Reviews 21

Post-Implementation Review

22 IMS/ESA V6 Admin Guide: DB

Chapter 3. Analyzing Data Requirements

About This Chapter . 23
Local View . 24

Local View 1. Current Roster. 25
List of Current Roster Data Elements. 25
Current Roster Mappings 25

Local View 2. Schedule of Classes 26
List of Schedule of Classes Data Elements 26
Schedule of Classes Mappings 26

Local View 3. Instructor Skills Report 26
List of Instructor Skills Report Data Elements. 26
Instructor Skills Report Mappings 27

Local View 4. Instructor Schedules 27
List of Instructor Schedules Data Elements 27
Instructor Schedules Mappings 27

Designing a Conceptual Data Structure 28
Implementing the Structure with DL/I 29

Assigning Data Elements to Segments 29
Resolving Data Conflicts . 30

Analyzing Requirements for Secondary Indexes. 30
Analyzing Requirements for Logical Relationships 30

About This Chapter
One of the early steps of database design is developing a conceptual data structure
that satisfies your end user’s processing requirements. So, before you can develop
a conceptual data structure, familiarize yourself with your end user’s processing and
data requirements.

Developing a data structure is a process of combining the data requirements of
each of the tasks to be performed, into one or more data structures that satisfy
those requirements. The method explained here describes how to use the local
views developed for each business process to develop a data structure.

A business process, in an application, is one of the tasks your end user needs
done. For example, in an education application, printing a class roster is a business
process.

A local view describes a conceptual data structure and the relationships between
the pieces of data in the structure for one business process.

To understand the method explained in this chapter, you need to be familiar with the
terminology and examples explained in the introductory chapter on application
design in IMS/ESA Application Programming: Design Guide. That chapter of the
design guide explains how to develop local views for the business processes in an
application.

Included in this chapter are the following topics:

Local View
Introduces you to the local view examples and explains the information that
makes up a local view.

© Copyright IBM Corp. 1974, 1999 23

Designing a Conceptual Data Structure
Explains how you can develop a conceptual data structure based on the
local views for the business processes in an application.

Implementing the Structure with data language 1 (DL/I)
Explains how you implement the structure you have developed with DL/I.
The considerations explained are: assigning data elements to segments
and resolving data conflicts with DL/I.

Local View
Designing a structure that satisfies the data requirements of the business processes
in an application requires an understanding of the requirements for each of those
business processes. A local view of the business process describes these
requirements because the local view provides:

v A list of all the data elements the process requires and their controlling keys

v The conceptual data structure developed for each process, showing how the data
elements are grouped into data aggregates

v The mappings between the data aggregates in each process

This chapter uses a company that provides technical education to its customers as
an example. The education company has one headquarters, called HQ, and several
local education centers, called Ed Centers. HQ develops the courses offered at
each of the Ed Centers. Each Ed Center is responsible for scheduling classes it will
offer and for enrolling students for those classes.

A class is a single offering of a course on a specific date at an Ed Center. There
might be several offerings of one course at different Ed Centers, and each of these
offerings is a separate class.

The local views used in this chapter are for the following business processes in an
education application:

Current Roster

Schedule of Classes

Instructor Skills Report

Instructor Schedules

The following information summarizes the local views developed in the introductory
chapter on application design in IMS/ESA Application Programming: Design Guide.

Notes for local views :

v The asterisks (*) in the data structures for each of the local views indicate the
data elements that identify the data aggregate. This is the data aggregate’s key;
some data aggregates require more than one data element to uniquely identify
them.

v The mappings between the data aggregates in each process are given in
mapping notation. A one-to-many mapping means for each A aggregate there are
one or more B aggregates; shown like this: Í────────ÊÊ

A many-to-many relationship means that for each A aggregate there are many B
aggregates, and for each B aggregate, there are many A aggregates; shown as
follows: ÍÍ────────ÊÊ

24 IMS/ESA V6 Admin Guide: DB

Local View 1. Current Roster

List of Current Roster Data Elements
The following is a list of the data elements and their descriptions for our technical
education provider example.

Data Element Description

CRSNAME Course name

CRSCODE Course code

LENGTH Length of class

EDCNTR Ed Center offering class

DATE Date class is offered

CUST Customer that sent student

LOCTN Location of customer

STUSEQ# Student’s sequence number

STUNAME Student’s name

STATUS Student’s enrollment status

ABSENCE Student’s absences

GRADE Student’s grade for class

INSTRS Instructors for class

Current Roster Mappings
The mappings for the current roster are:

Course Í────────ÊÊ Class

Class Í────────ÊÊ Student

Class Í────────ÊÊ Instructor

Customer/locationÍ────────ÊÊ Student

Figure 9. Current Roster Conceptual Data Structure

Local View

Chapter 3. Analyzing Data Requirements 25

Local View 2. Schedule of Classes

List of Schedule of Classes Data Elements
The following is a list of the schedule of classes and their descriptions for our
example.

Data Element Description

CRSCODE Course code

CRSNAME Course name

LENGTH Length of course

PRICE Price of course

EDCNTR Ed Center where class is offered

DATE Dates when class is offered at a particular Ed
Center

Schedule of Classes Mappings
The only mapping for this local view is:

Course Í────────ÊÊ Class

Local View 3. Instructor Skills Report

List of Instructor Skills Report Data Elements
The following is a list of the instructor skills report data elements and their
descriptions for our technical education provider example.

Data Element Description

INSTR Instructor

CRSCODE Course code

CRSNAME Course name

Figure 10. Schedule of Classes Conceptual Data Structure

Local View

26 IMS/ESA V6 Admin Guide: DB

Instructor Skills Report Mappings
The only mapping for this local view is:

Instructor Í────────ÊÊ Course

Local View 4. Instructor Schedules

List of Instructor Schedules Data Elements
The following is a list of the instructor schedules data elements and their
descriptions for our example.

Data Element Description

INSTR Instructor

CRSNAME Course name

CRSCODE Course code

EDCNTR Ed Center

DATE Date when class is offered

Instructor Schedules Mappings
The mappings for this local view are:

Instructor Í────────ÊÊ Course

Course Í────────ÊÊ Class

Figure 11. Instructor Skills Report Conceptual Data Structure

Figure 12. Instructor Schedules Conceptual Data Structure

Local View

Chapter 3. Analyzing Data Requirements 27

Designing a Conceptual Data Structure
Analyzing the mappings from all the local views is one of the first steps in designing
a conceptual data structure. Two kinds of mappings affect the segments:
one-to-many and many-to-many.

A one-to-many mapping means that for each segment A there are one or more
segment Bs; shown like this: A Í────────ÊÊ B. For example, in the Current Roster
(Figure 9 on page 25), there is a one-to-many relationship between course and
class. For each course, there can be several classes scheduled, but a class is
associated with only one course. A one-to-many relationship can be represented as
a dependent relationship: In the course/class example, the classes are dependent
on a particular course.

A many-to-many mapping means that for each segment A there are many segment
Bs, and for each segment B there are many segment As. This is shown like this: A
ÍÍ────────ÊÊ B. A many-to-many relationship is not a dependent relationship, since
it usually occurs between data aggregates in two separate data structures and
indicates a conflict in the way two business processes need to process that data.

When you implement a data structure with DL/I, there are three strategies you can
apply to solve data conflicts:

Defining logical relationships

Establishing secondary indexes

Storing the data in two places (also know as, carrying duplicate data).

Related Reading : “Resolving Data Conflicts” on page 30 explains the kinds of
data conflicts that secondary indexes and logical relationships can resolve.

The first step in designing a conceptual data structure is to combine the mappings
of all the local views. To do this, go through the mappings for each local view and
make a consolidated list of mappings (see Table 2). As you review the mappings:

v Do not record duplicate mappings. At this stage you need to cover each
variation, not each occurrence.

v If two data aggregates in different local views have opposite mappings, use the
more complex mapping. This will include both mappings when they are
combined. For example, if local view #1 has the mapping A Í────────ÊÊ B, and
local view #2 has the mapping A ÍÍ────────Ê B, use a mapping that includes
both these mappings. In this case, this is A ÍÍ────────ÊÊ B.

Table 2. Combined Mappings for Local Views
Mapping Local View
Course Í────────ÊÊ Class 1, 2, 4
Class Í────────ÊÊ Student 1
Class Í────────ÊÊ Instructor 1
Customer/location Í────────ÊÊ Student 1
Instructor Í────────ÊÊ Course 3, 4

Using the combined mappings, you can construct the data structures shown in
Figure 13.

Designing a Conceptual Data Structure

28 IMS/ESA V6 Admin Guide: DB

Two conflicts exist in these data structures. First, STUDENT is dependent on both
CUST and CLASS. Second, there is an opposite mapping between COURSE and
INSTR, and INSTR and COURSE. If you implemented these structures with DL/I,
you could use logical relationships to resolve the conflicts. “Analyzing Requirements
for Logical Relationships” on page 30 explains how.

Implementing the Structure with DL/I
When you implement a data structure with DL/I, you implement it as a hierarchy. A
hierarchy is made up of segments. In a hierarchy, a one-to-many relationship is
called a parent/child relationship. In a hierarchy, each segment can have one or
more children, but it can have only one parent.

When you use DL/I, consider how each of the data elements in the structure you
have developed should be grouped into segments. Also, consider how DL/I can
solve any existing data conflicts in the structure. The following 2 sections of this
chapter explains how you assign data elements to segments, and how DL/I can
resolve data conflicts.

Assigning Data Elements to Segments
Once you determine how data elements are related in a hierarchy, associate each
of the data elements with a segment. To do this, construct a list of all the keys and
their associated data elements. If a key and its associated data element appear in
several local views, only record the association once.

List the data elements next to their keys, as shown in the following figure. The key
and its associated data elements become the segment content.

Data Aggregate Key Data Element
COURSE CRSCODE CRSNAME, LENGTH, PRICE
CUSTOMER/LOCATION CUST, LOCTN
CLASS EDCNTR, DATE
STUDENT STUSEQ# STUNAME, ABSENCE, STATUS,

GRADE
INSTRUCTOR INSTR

If a data element is associated with different keys in different local views, then you
must decide which segment will contain the data element. The other thing you can
do is to store duplicate data. To avoid doing this, store the data element with the
key that is highest in the hierarchy. For example, if the keys ALPHA and BETA were

Figure 13. Education Data Structures

Designing a Conceptual Data Structure

Chapter 3. Analyzing Data Requirements 29

both associated with the data element XYZ (one in local view 1 and one in local
view 2), and ALPHA were higher in the hierarchy, store XYZ with ALPHA to avoid
having to repeat it.

Resolving Data Conflicts
The data structure you design can fall short of the application’s processing
requirements. For example, one business process might need to retrieve a
particular segment by a field other than the one you have chosen as the key field.
Another business process might need to associate segments from two or more
different data structures. Once you have identified these kinds of conflicts in a data
structure and are using DL/I, you can look at two DL/I options that can help you
resolve the conflicts: secondary indexing and logical relationships.

Analyzing Requirements for Secondary Indexes
Secondary indexing allows a segment to be identified by a field other than its key
field.

Suppose that you are part of our technical education company and need to
determine (from a terminal) whether a particular student is enrolled in a class. If you
are unsure about the student’s enrollment status, you probably do not know the
student’s sequence number. The key of the STUDENT segment, however, is
STUSEQ#. Let’s say you issue a request for a STUDENT segment, and identify the
segment you need by the student’s name (STUNAME). Instead of the student’s
sequence number (STUSEQ#), IMS searches through all STUDENT segments to
find that one. Assuming the STUDENT segments are stored in order of student
sequence numbers, IMS has no way of knowing where the STUDENT segment is
just by having the STUNAME.

Using a secondary index in this example is like making STUNAME the key field of
the STUDENT segment for this business process. Other business processes can
still process this segment with STUSEQ# as the key.

To do this, you can index the STUDENT segment on STUNAME in the secondary
index. You can index any field in a segment. When you index a field, indicating to
IMS that you are using a secondary index for that segment, IMS processes the
segment as though the indexed field were the key.

Analyzing Requirements for Logical Relationships
When a business process needs to associate segments from different hierarchies,
logical relationships can make that possible.

Defining logical relationships lets you create a hierarchic structure that does not
exist in storage but can be processed as though it does. You can relate segments
in separate hierarchies. The data structure created from these logical relationships
is called a logical structure. To relate segments in separate hierarchies, store the
segment in the path by which it is accessed most frequently. Store a pointer to the
segment in the path where it is accessed less frequently.

In the hierarchy shown in Figure 13 on page 29, two possible parents exist for the
STUDENT segment. If the CUST segment is part of an existing database, you can
define a logical relationship between the CUST segment and the STUDENT
segment. You would then have the hierarchies shown in Figure 14 on page 31. The
CUST/STUDENT hierarchy would be a logical structure.

Implementing the Structure with DL/I

30 IMS/ESA V6 Admin Guide: DB

This kind of logical relationship is called unidirectional, because the relationship is
“one way.”

The other conflict you can see in Figure 13 on page 29, is the one between
COURSE and INSTR. For one course there are several classes, and for one class
there are several instructors (COURSE Í─────ÊÊ CLASS Í─────ÊÊ INSTR), but
each instructor can teach several courses (INSTR Í─────ÊÊ COURSE). You can
resolve this conflict by using a bidirectional logical relationship. You can store the
INSTR segment in a separate hierarchy, and store a pointer to it in the INSTR
segment in the course hierarchy. You can also store the COURSE segment in the
course hierarchy, and store a pointer to it in the COURSE segment in the INSTR
hierarchy. This bidirectional logical relationship would give you the two hierarchies
shown in Figure 15, eliminating the need to carry duplicate data.

Figure 14. Education Hierarchies

Figure 15. Bidirectional Logical Relationships

Implementing the Structure with DL/I

Chapter 3. Analyzing Data Requirements 31

Implementing the Structure with DL/I

32 IMS/ESA V6 Admin Guide: DB

Chapter 4. Designing a Fast Path Database

Choosing a Database Type . 33
Sequential Storage Method 34
Direct Storage Method . 34
Performance Considerations Overview 34
IMS Databases . 35
Databases Supported with DBCTL. 36
Databases Supported with DCCTL 36
HSAM Databases . 36

When to Use HSAM . 37
How an HSAM Record Is Stored 37
DL/I Calls against an HSAM Database 37

HISAM Databases . 40
When to Use HISAM. 40
How a HISAM Record is Stored 41
Accessing Segments. 43
Inserting Root Segments Using VSAM 43
Inserting Dependent Segments 45
Deleting Segments . 47
Replacing Segments . 48
Criteria for Selecting HISAM 48

SHSAM, SHISAM and GSAM Databases 49
Situation 1 - Converting from a non-database system to IMS 49
Situation 2 - Passing data 49
SHSAM Databases . 50
SHISAM Databases . 50
SHISAM IMS Symbolic Checkpoint Call 50
GSAM Databases . 51
GSAM IMS Symbolic Checkpoint Call 51

HDAM and HIDAM Databases 52
When to Use HDAM . 53
When to Use HIDAM. 54
What You Need to Know About HD Databases 54
General Format of HD Databases and Use of Special Fields 62
How HDAM Records Are Stored 65
When Not Enough Root Storage Room Exists 66
How HIDAM Records Are Stored 67
Accessing Segments. 72
Inserting Root Segments 73
Inserting Dependent Segments 76
Deleting Segments . 77
Replacing Segments . 77
How the HD Space Search Algorithm Works 78
Locking Protocols . 79
Registering Databases . 81

Choosing a Database Type
IMS allows you to define nine different database types. Each type has different
organization processing characteristics. Except for DEDB and MSDB, all the
database types are discussed in this chapter. For information on DEDBs and
MSDBs, see “Data Entry Databases (DEDBs)” on page 201 and “Main Storage
Databases (MSDBs)” on page 195.

© Copyright IBM Corp. 1974, 1999 33

Understanding how the database types differ, enables you to pick the type that best
suits your application’s processing requirements.

Each database type has its own access method. The following figure lists each type
and the access method it uses:

Type of Database Access Method

HSAM Hierarchical Sequential Access Method

HISAM Hierarchical Indexed Sequential Access Method

SHSAM Simple Hierarchical Sequential Access Method

SHISAM Simple Hierarchical Indexed Sequential Access
Method

GSAM 1 Generalized Sequential Access Method

HDAM Hierarchical Direct Access Method

HIDAM Hierarchical Indexed Direct Access Method

DEDB Data Entry Database

MSDB Main Storage Database

Based on the access method used, the various databases can be classified into two
groups: sequential storage and direct storage.

Sequential Storage Method
The first four databases in the list use the sequential method of accessing data.
With this method, the hierarchic sequence of segments in the database is
maintained by putting segments in storage locations that are physically adjacent to
each other. GSAM databases also use the sequential method of accessing data,
but for reasons you will see later, no concept of hierarchy, database record, or
segment exists in GSAM databases.

Direct Storage Method
HDAM and HIDAM databases use the direct method of accessing data. With this
method, the hierarchic sequence of segments is maintained by putting
direct-address pointers in each segment’s prefix.

For quick reference, see Table 9 on page 213 for a summary of HSAM, HISAM,
HDAM, HIDAM, DEDB, and MSDB database characteristics.

Performance Considerations Overview
All databases are not created equal. You will want to make an informed decision
regarding the type of database organizations which will best serve your purposes.
The following figure briefly summarizes performance characteristics of the various
database types; highlighting efficiencies and deficiencies of hierarchic sequential,
hierarchic direct and general sequential databases.

For information on DEDBs and MSDBs, see “Data Entry Databases (DEDBs)” on
page 201 and “Main Storage Databases (MSDBs)” on page 195.

1. Not applicable to CICS DBCTL

Choosing a Database Type

34 IMS/ESA V6 Admin Guide: DB

IMS Databases
IMS databases are hierarchic databases that are accessed through Data Language
I (DL/I calls). IMS makes it possible for application programs to retrieve, replace,
delete, and add segments to IMS databases. CICS online programs can access the
same IMS database concurrently, however, an IMS batch program must have
exclusive access to the database (if you are not participating in IMS data sharing).

Figure 16. Performance Considerations for Different Database Types

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 35

If you have batch jobs that currently access IMS databases through IMS data
sharing, you can convert them to run as BMPs directly accessing databases
through DBCTL, thereby improving performance. You can additionally convert
current batch programs to BMPs to access DEDBs.

Related Reading: For more information on converting a batch job to a BMP, see
IMS/ESA Application Programming: Design Guide and IMS/ESA Administration
Guide: System.

Databases Supported with DBCTL
Database Control (DBCTL) supports all IMS full-function databases:

HSAM

HISAM

SHSAM

SHISAM

HDAM

HIDAM

GSAM databases can be accessed only in IMS BMP regions and are not available
to transaction-managers in a DBCTL environment. Databases can be accessed
through DBCTL from IMS BMP regions, as well as, from independent
transaction-management subsystems. Only batch-oriented BMP programs are
supported because DBCTL provides no message or transaction support.

Databases Supported with DCCTL
Data communications control (DCCTL) supports GSAM databases in BMP regions
and DB2 databases through the External Subsystem Attach Facility. DCCTL does
not support full-function databases.

Related Reading: Information on ESAF is contained in IMS/ESA Operations
Guide.

HSAM Databases
Hierarchical sequential access method (HSAM) databases use the sequential
method of accessing data. All database records and all segments within each
database record are physically adjacent in storage. An HSAM database can be
stored on tape or on a direct-access storage device. They are processed using
either batch sequential access method (BSAM) or queued sequential access
method (QSAM) as the operating system access method. Specify your access
method on the PROCOPT= parameter in the PCB. If you specify PROCOPT=GS,
QSAM is always used. If you specify PROCOPT=G, BSAM is used.

HSAM data sets are loaded with root segments in ascending key sequence (if keys
exist for the root) and dependent segments in hierarchic sequence. You do not
need to define a key field in root segments. You must, however, present segments
to the load program in the order in which they must be loaded. HSAM data sets use
a fixed-length, unblocked record format (RECFM=F), which means that the logical
record length is the same as the physical block size.

HSAM databases can only be updated by rewriting them. Delete (DLET) and
replace (REPL) calls are not allowed, and insert (ISRT) calls are only allowed when
the database is being loaded. Although the field-level sensitivity option can be used
with HSAM databases the following options cannot be used with HSAM databases:

Choosing a Database Type

36 IMS/ESA V6 Admin Guide: DB

v Multiple data set groups

v Logical relationships

v Secondary indexing

v Variable-length segments

v Segment edit/compression facility

v Data Capture exit routines

v Asynchronous data capture

v Logging, recovery, or reorganization

Multiple positioning and multiple PCBs cannot be used in HSAM databases.

When to Use HSAM
Although the uses of HSAM are limited because of its processing characteristics, it
is used for applications requiring sequential processing only. Typically, HSAM is
used for low-use files. These are files containing, for example, audit trails, statistical
reports or files containing historical or archive data that has been purged from the
main database.

How an HSAM Record Is Stored
Segments in an HSAM database are loaded in the order in which you present them
to the load program. You should present all segments within a database record in
hierarchic sequence. If a sequence field has been defined for root segments, you
should present database records to the load program in ascending root key
sequence. Figure 17 on page 38 shows one HSAM database record and how it
appears when stored on tape.

In the data set, a database record is stored in one or more consecutive blocks. You
define what the block size will be. Each block is filled with segments of the
database record until there is not enough space left in the block to store the next
segment. When this happens, the remaining space in the block is padded with
zeros and the next segment is stored in the next consecutive block. When the last
segment of a database record has been stored in a block, any unused space, if
sufficient, is filled with segments from the next database record.

In storage, an HSAM segment (see Figure 17 on page 38) consists of a 2-byte
prefix followed by user data. The first byte of the prefix is the segment code, which
identifies the segment type to IMS. This number can be from 1 to 255. The segment
code is assigned to the segment by IMS in ascending sequence, starting with the
root segment and continuing through all dependents in hierarchic sequence. The
second byte of the prefix is the delete byte. Because DLET calls cannot be used
against an HSAM database, the second byte is not used.

DL/I Calls against an HSAM Database
Initial entry to an HSAM database is through GU or GN calls. When the first call is
issued, the search for the desired segment starts at the beginning of the database
and passes sequentially through all segments stored in the database until the
desired segment is reached. After the desired segment is reached, its position is
used as the starting position for any additional calls that process the database in a
forward direction.

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 37

Once position in an HSAM database has been established, the way in which GU
calls are handled depends on whether a sequence field is defined for the root
segment and what processing options are in effect (see Figure 18).

Figure 17. HSAM Database Record Stored on Tape

Choosing a Database Type

38 IMS/ESA V6 Admin Guide: DB

No Sequence Field Defined: If no sequence field has been defined, each GU call
causes the search for the desired segment to start at the beginning of the database
regardless of current position. This allows direct processing of the HSAM database.
The processing, however, is restricted to one volume.

Sequence Field Defined: If a sequence field has been defined and the GU call
retrieves a segment that is forward in the database, the search starts from the
current position and moves forward to the desired segment. If access to the desired
segment requires backward movement in the database, the PROCOPT=
parameters G or GS (specified during PSBGEN) determine how backward
movement is accomplished. If you specify PROCOPT=GS, (that is, the database is
read using QSAM), the search for the desired segment starts at the beginning of
the database and moves forward. If you specify PROCOPY=G, (that is, the
database is read using BSAM), the search moves backward in the database. This is
accomplished by backspacing over the block just read and the block previous to it,
then reading this previous block forward until the desired segment is found.

Because of the way in which segments are accessed in an HSAM database, it is
most practical to access root segments sequentially and dependent segments in

Figure 18. GU Calls against an HSAM Database

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 39

hierarchic sequence within a database record. Other methods of access, involving
backspacing, rewinding of the tape, or scanning the data set from the beginning,
can be time consuming.

As stated previously, DLET and REPL calls cannot be issued against an HSAM
database. ISRT calls are allowed only when the database is being loaded. To
update an HSAM database, you must write a program that merges the current
HSAM database and the update data. The update data can be in one or more files.
The output data set created by this process is the new updated HSAM database.
Figure 19 illustrates this process.

HISAM Databases
In a hierarchical indexed sequential access method (HISAM) database, as with an
HSAM database, segments in each database record are related through physical
adjacency in storage. Unlike HSAM, however, each HISAM database record is
indexed, allowing direct access to a database record. In defining a HISAM
database, you must define a unique sequence field in each root segment. These
sequence fields are then used to construct an index to root segments (and
therefore database records) in the database.

HISAM databases are stored on direct-access devices. They can be processed
using the virtual storage access method (VSAM) utility. Unlike HSAM, all DL/I calls
can be issued against a HISAM database. In addition, the following options are
available for HISAM databases:

v Logical relationships

v Secondary indexing

v Variable-length segments

v Segment edit/compression facility

v Data Capture exit routines

v Field-level sensitivity

v Logging, recovery, and reorganization

Except for logging and recovery, each of these options is discussed in detail in later
parts of this book. Information on logging and recovery is contained in IMS/ESA
DBRC Guide and Reference and IMS/ESA DBRC Guide and Reference.

When to Use HISAM
HISAM is typically used for databases that require direct access to database
records and sequential processing of segments in a database record. It is a good
candidate for databases with the following characteristics:

Figure 19. Updating an HSAM Database

Choosing a Database Type

40 IMS/ESA V6 Admin Guide: DB

v Most database records are about the same size.

v The database does not consist of relatively few root segments and a large
number of dependent segments.

v Applications do not depend on a heavy volume of root segments being inserted
after the database is initially loaded.

v Deletion of database records is minimal.

More detailed information on the uses of HISAM, requiring a working knowledge of
how a HISAM database is organized and processed, is under “Using
Variable-Length Segments” on page 140.

How a HISAM Record is Stored
HISAM database records are stored in two data sets. The first data set, called the
primary data set, contains an index and all segments in a database record that can
fit in one logical record. The index provides direct access to the root segment (and
therefore to database records). The second data set, called the overflow data set,
contains all segments in the database record that cannot fit in the primary data set.
A key-sequenced data set (KSDS) is the primary data set and an entry-sequenced
data set (ESDS) is the overflow data set.

There are several things you need to know about storage of HISAM database
records:

v You define the logical record length of both the primary and overflow data set
(subject to the rules listed later in this chapter). The logical record length can be
different for each data set. This allows you to define the logical record length in
the primary data set as large enough to hold an “average” database record or the
most frequently accessed segments in the database record. Logical record length
in the overflow data set can then be defined (subject to some restrictions) as
whatever is most efficient given the characteristics of your database records.

v Logical records are grouped into control intervals (CIs). A control interval is the
unit of data transferred between an I/O device and storage. You define the size
of CIs.

v Each database record starts at the beginning of a logical record in the primary
data set. A database record can only occupy one logical record in the primary
data set, but overflow segments of the database record can occupy more than
one logical record in the overflow data set.

v Segments in a database record cannot be split and stored across two logical
records. Because of this and because each database record starts a new logical
record, unused space exists at the end of many logical records. When the
database is initially loaded, IMS inserts a root segment with a key of all X'FF's as
the last root segment in the database.

Figure 20 on page 42 shows four HISAM database records as they are initially
stored on the primary and overflow data sets.

In storage, a HISAM segment (see Figure 20) consists of a 2-byte prefix followed by
user data. The first byte of the prefix is the segment code, which identifies the
segment type to IMS. This number can be from 1 to 255. The segment code is
assigned to the segment by IMS in ascending sequence, starting with the root
segment and continuing through all dependents in hierarchic sequence. The second
byte of the prefix is the delete byte.

Each logical record in the primary data set contains the root plus all dependents of
the root (in hierarchic sequence) for which there is enough space. The remaining

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 41

segments of the database record are put in the overflow data set (again in
hierarchic sequence). The two “parts” of the database record are chained together
with a direct-address pointer. When overflow segments in a database record use
more than one logical record in the overflow data set (the case for the first and
second database record in Figure 20), the logical records are also chained together
with a direct-address pointer. Note in the figure that HISAM indexes do not contain
a pointer to each root segment in the database. Rather, they point to the highest
root key in each block or CI.

Figure 20. HISAM Database Records in Storage

Choosing a Database Type

42 IMS/ESA V6 Admin Guide: DB

Diagnosis, Modification or Tuning Information

Figure 21 shows the structure of a logical record in a HISAM database.

End of Diagnosis, Modification or Tuning Information

Diagnosis, Modification or Tuning Information

Logical Record

v In a logical record, the first 4 bytes are a direct-address pointer to the next logical
record in the database record. This pointer maintains all logical records in a
database record in correct sequence. The last logical record in a database record
contains zeros in this field.

v Following the pointer are one or more segments of the database record in
hierarchic sequence.

v Following the segments is a 1-byte segment code of 0. It says that the last
segment in the logical record has been reached.

End of Diagnosis, Modification or Tuning Information

Accessing Segments
In HISAM, when an application program issues a call with a segment search
argument (SSA) qualified on the key of the root segment, the segment is found by:

1. Searching the index for the first pointer with a value greater than or equal to the
specified root key (the index points to the highest root key in each CI)

2. Following the index pointer to the correct CI

3. Searching this CI for the correct logical record (the root key value is compared
with each root key in the CI)

4. When the correct logical record (and therefore database record) is found,
searching sequentially through it for the specified segment

If an application program issues a GU call with an unqualified SSA for a root
segment or with an SSA qualified on other than the root key, the HISAM index
cannot be used. The search for the segment starts at the beginning of the database
and proceeds sequentially until the specified segment is found.

Inserting Root Segments Using VSAM
After an initial load, root segments inserted into a HISAM database are stored in the
primary data set in ascending key sequence. The CI might or might not contain a
free logical record into which the new root can be inserted. Both situations are
described next.

A Free Logical Record Exists: Figure 22 on page 44 shows how insertion takes
place when a free logical record exists. The new root is inserted into the CI in root
key sequence. If there are logical records in the CI containing roots with higher
keys, they are “pushed down” to create space for the new logical record.

Figure 21. Format of a Logical Record in a HISAM Database

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 43

No Free Logical Record Exists: Figure 23 on page 45 shows how insertion takes
place when no free logical record exists in the CI. The CI is split forming two new
CIs, both equal in size to the original one. Where the CI is split depends on what
you have coded in the INSERT=parameter on the OPTIONS statement for the
DFSVSAMP data set. The OPTIONS statement is described in IMS/ESA Installation
Volume 2: System Definition and Tailoring. See also “Choosing An Insert Strategy”
in “Chapter 6. Database Design Considerations for Full Function” on page 165.

The split can occur at the point at which the root is inserted or midpoint in the CI.
After the CI is split, free logical records exist in each new CI and the new root is
inserted into the proper CI in root key sequence. If, as was the case in Figure 22,
logical records in the new CI contained roots with higher keys, those logical records
would be “pushed down” to create space for the new logical record.

When adding new root segments to a HISAM database, performance can be
slightly improved if roots are added in ascending key sequence.

Figure 22. Inserting a Root Segment into a HISAM Database (Free Logical Record Exists in
the Control Interval)

Choosing a Database Type

44 IMS/ESA V6 Admin Guide: DB

Inserting Dependent Segments
Dependent segments inserted into a HISAM database after initial load are inserted
in hierarchic sequence. IMS decides where in the appropriate logical record the new
dependent should be inserted. Two situations are possible. Either there is enough
space in the logical record for the new dependent or there is not.

Figure 24 on page 46 shows how segment insertion takes place when there is
enough space in the logical record. The new dependent is stored in its proper
hierarchic position in the logical record by shifting the segments that hierarchically
follow it to the right in the logical record.

Figure 23. Inserting a Root Segment into a HISAM Database (No Free Logical Record Exists
in the Control Interval)

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 45

Figure 25 on page 47 shows how segment insertion takes place when there is not
enough space in the logical record. As in the previous case, new dependents are
always stored in their proper hierarchic sequence in the logical record. However, all
segments to the right of the new segment are moved to the first empty logical
record in the overflow data set.

Figure 24. Inserting a Dependent Segment into a HISAM Database (Space Exists in the
Logical Record)

Choosing a Database Type

46 IMS/ESA V6 Admin Guide: DB

Deleting Segments
When segments are deleted from a HISAM database, they are marked as deleted
in the delete byte in their prefix. They are not physically removed from the
database; the one exception to this is discussed later. Dependent segments of the
deleted segment are not marked as deleted, but because their parent is, the
dependent segments cannot be accessed. These unmarked segments (as well as
segments marked as deleted) are deleted when the database is reorganized.

One thing you should note is that when a segment is accessed that hierarchically
follows deleted segments in a database record, the deleted segments must still be
“searched through”. This concept is shown in Figure 26 and in Figure 27.

Figure 25. Inserting a Dependent Segment into a HISAM Database (No Space Exists in the
Logical Record)

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 47

Segment B2 is deleted from this database record. This means that segment B2 and
its dependents (C1, C2, and C3) can no longer be accessed, even though they still
exist in the database.

A request to access segment D1 is made. Although segments B2, C1, C2, and C3
cannot be accessed, they still exist in the database so they must still be “searched
through” even though they are inaccessible.

In one situation, deleted segments are physically removed from the database. If the
deleted segment is a root, the logical record containing the root is erased, provided
neither the root nor any of its dependents is involved in a logical relationship. Refer
to the IMS System Definition Reference Guide for information on the erase
parameter of the DBD statement.

After the logical record is removed, its space is available for reuse. However, any
overflow logical record containing dependents of this root is not available for reuse.
Except for this special condition, you must unload and reload a HISAM database to
regain space occupied by deleted segments.

Replacing Segments
Replacing segments in a HISAM database is straightforward as long as fixed length
segments are being used. The data in the segment, once changed, is returned to
its original location in storage. The key field in a segment cannot be changed.

The implications of replacing segments when variable-length segments are used is
discussed under “Using Variable-Length Segments” on page 140.

Criteria for Selecting HISAM
You should use HISAM when you need sequential or direct access to roots and
sequential processing of dependent segments in a database record. HISAM is a
good choice of data organization when your database has most, or all, of the
following characteristics.

Figure 26. The Hierarchic Segment Layout on the Database

Figure 27. Accessing a HISAM segment that hierarchically follows deleted segments

Choosing a Database Type

48 IMS/ESA V6 Admin Guide: DB

v Each root has few dependents.

Root segment access is indexed, and is therefore fast. Dependent segment
access is sequential, and is therefore slower.

v You have a small number of delete operations against the database.

Except for deleting root segments, all delete operations result in the creation of
space that is unusable until the database is reorganized.

v Your applications depend on a small volume of root segments being inserted
within a narrow key range (VSAM).

Root segments inserted after initial load are inserted in root key sequence in the
appropriate CI in the KSDS. If many roots have keys within a narrow key range,
many CI splits can occur. This will degrade performance.

v Most of your database records are about the same size.

This allows you to pick logical record lengths and CI sizes so most database
records fit on the primary data set. You want most database records to fit on the
primary data set, because additional read and seek operations are required to
access those parts of a database record on the overflow data set. Additional
reads and seeks degrade performance. If, however, most of the processing you
do against a database record occurs on segments in the primary data set (in
other words, your high-use segments fit on the primary data set), these
considerations might not be as important.

Having most of your database records the same size also saves space. Each
database record starts at the beginning of a logical record. All space in the
logical records not used by the database record is unusable. This is true of
logical records in both the primary and overflow data set. If the size of your
database records varies tremendously, large gaps of unused space can occur at
the end of many logical records.

The implications of using HISAM with logical relationships or secondary indexes are
discussed in the sections describing those functions later in the chapter.

SHSAM, SHISAM and GSAM Databases
You typically use simple hierarchical sequential access method (SHSAM), simple
hierarchical indexed sequential access method (SHISAM), and generalized
sequential access method (GSAM) databases in two situations.

Situatio n 1 - Converting from a non-database system to IMS
SHSAM, SHISAM, and GSAM databases allow existing programs, using MVS
access methods, to remain usable during the conversion to IMS. This is possible
because the format of the data in these databases is the same as in the MVS data
sets.

Situatio n 2 - Passing data
When a database (or non-database) application program passes data to a database
(or non-database) application program, it first puts the data in a SHSAM, SHISAM,
or GSAM database. The database (or non-database) application program then
accesses the data from these databases.

The following sections describe each of the three database types. Table 3 on
page 52 is a chart comparing SHSAM, SHISAM, and GSAM.

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 49

SHSAM Databases
A simple HSAM (SHSAM) database is an HSAM database containing only one type
of segment, a root segment. The segment has no prefix, because no need exists
for a segment code (there is only one segment type) or for a delete byte (deletes
are not allowed).

SHSAM databases can be accessed by MVS BSAM and QSAM because SHSAM
segments contain user data only (no IMS prefixes). The ISRT, DLET, and REPL
calls cannot be used to update. However, ISRT can be used to load an SHSAM
database. Only GET calls are valid for processing an SHSAM database. These
allow retrieval only of segments from the database. To update an SHSAM database,
it must be reloaded. The situations in which SHSAM is typically used are explained
in the introduction to this section. Before deciding to use SHSAM, read the section
on GSAM databases, because GSAM has many of the same functions as SHSAM.
Unlike SHSAM, however, GSAM files cannot be accessed from a message
processing region. GSAM does allow you to take checkpoints and perform restart,
though.

Although SHSAM databases can use the field-level sensitivity option, they cannot
use any of the following options:

v Logical relationships

v Secondary indexing

v Multiple data set groups

v Variable-length segments

v Segment edit/compression facility

v Data Capture exit routines

v Logging, recovery, or reorganization

SHISAM Databases
A simple HISAM (SHISAM) database is a HISAM database containing only one type
of segment, a root segment. The segment has no prefix, because no need exists
for a segment code (there is only one segment type) or for a delete byte (deletes
are done using a VSAM erase operation). SHISAM databases must be KSDSs;
they are accessed via VSAM. Because SHISAM segments contain user data only
(no IMS prefixes), they can be accessed by VSAM macros and DL/I calls. All the
DL/I calls can be issued against SHISAM databases.

SHISAM IMS Symbolic Checkpoint Call
In addition to those situations described in the introduction to this section, SHISAM
is useful if you need an application program that accesses MVS data sets to use
the IMS symbolic checkpoint call.

The IMS symbolic checkpoint call makes restart easier than the MVS basic
checkpoint call. If the MVS data set the application program is using is converted to
a SHISAM database data set, the symbolic checkpoint call can be used. This allows
application programs to take checkpoints during processing and then restart their
programs from a checkpoint. The primary advantage of this is that, if the system
fails, application programs can recover from a checkpoint rather than lose all
processing that has been done. One exception applies to this: An application
program for initially loading a database that uses VSAM as the operating system
access method cannot be restarted from a checkpoint. Application programs using
GSAM databases can also issue symbolic checkpoint calls. Application programs
using SHSAM databases cannot.

Choosing a Database Type

50 IMS/ESA V6 Admin Guide: DB

Before deciding to use SHISAM, you should read the next section on GSAM
databases. GSAM has many of the same functions as SHISAM. Unlike SHISAM,
however, GSAM files cannot be accessed from a message processing region.

SHISAM databases can use field-level sensitivity and Data Capture exit routines,
but they cannot use any of the following options:

v Logical relationships

v Secondary indexing

v Multiple data set groups

v Variable-length segments

v Segment edit/compression facility

GSAM Databases
GSAM databases are sequentially organized databases designed to be compatible
with MVS data sets. GSAM databases can be on a data set previously created or
one later accessed by the MVS access methods VSAM or QSAM/BSAM. GSAM
data sets can use fixed-length or variable-length records when VSAM is used, or
fixed-length, variable-length or undefined-length records when QSAM/BSAM is
used. If VSAM is used to process a GSAM database, the VSAM data set must be
entry sequenced and on a DASD. If QSAM/BSAM is used, the physical sequential
(DSORG=PS) data set can be placed on a DASD or tape unit. GSAM is designed
to be compatible with MVS data sets. The GSAM database has no hierarchy,
database records, segments or keys.

GSAM IMS Symbolic Checkpoint Call
In addition to those situations described in the introduction to this section, GSAM is
useful if you need an application program that accesses MVS data sets to use the
IMS symbolic checkpoint call. The IMS symbolic checkpoint call makes restart
easier than the MVS basic checkpoint call. This IMS symbolic checkpoint call allows
application programs to take checkpoints during processing, thereby allowing
programs to restart from a checkpoint. A checkpoint call forces any GSAM buffers
with inserted records to be written as short blocks. The primary advantage of taking
checkpoints is that, if the system fails, the application programs can recover from a
checkpoint rather than lose all your processed data. However, any application
program that uses VSAM as an operating system access method and initially loads
the database cannot be restarted from a checkpoint.

In general, always use DISP=OLD for GSAM data sets when restarting from a
checkpoint even if you used DISP=MOD on the original execution of the job step. If
you use DISP=OLD, the data set is positioned at its beginning. If you use
DISP=MOD, the data set is positioned at its end.

Because GSAM databases are supported in a DCCTL environment, you may use
them when you need to process sequential non-IMS data sets using a BMP
program.

GSAM databases are loaded in the order in which you present records to the load
program. You cannot issue DLET and REPL calls against GSAM databases;
however, you can issue ISRT calls after the database is loaded but only to add
records to the end of the data set. Records are not randomly added to a GSAM
data set.

Although random processing of GSAM and SHSAM databases is possible, random
processing of a GSAM database is done using a GU call qualified with a record

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 51

search argument (RSA). This processing is primarily useful for establishing position
in the database before issuing a series of GN calls.

Although SHSAM and SHISAM databases can be processed in any processing
region, GSAM databases can only be processed in a batch or batch message
processing region.

The following IMS options do not apply to GSAM databases:

v Logical relationships

v Secondary indexing

v Segment edit/compression facility

v Field-level sensitivity

v Data Capture exit routines

v Logging or reorganization

v Multiple data set groups

If you have application programs that need access to both IMS and MVS data sets,
you can use SHSAM, SHISAM, or GSAM. Which one you use depends on what
functions you need. Table 3 compares the characteristics and functions available for
each of the three types of databases.

Table 3. Comparison of SHSAM, SHISAM, and GSAM Databases
Characteristics and Functions SHSAM SHISAM GSAM
Hierarchic structure applicable? NO NO NO
Segment prefix exist? NO NO NO
Variable-length records used? NO NO YES
Checkpoint/restart possible? NO YES1 YES1

Compatible with non-IMS data sets? YES YES YES
Can VSAM be used as the operating system
access method?

NO YES YES

Can BSAM be used as the operating system
access method?

YES NO YES

Accessible from a batch region? YES YES YES
Accessible from a batch message processing
region?

YES YES YES

Accessible from a message processing region? YES YES NO
Logging available? NO YES NO
GET calls allowed? YES YES YES
ISRT calls allowed? YES2 YES YES3

Supported for CICS-DBCTL? YES YES NO
Supported for DCCTL? NO NO YES

:
1 Using symbolic checkpoints
2 To load database only
3 Allowed only at the end of the data set

HDAM and HIDAM Databases
Hierarchical direct access method (HDAM) and hierarchical indexed direct access
method (HIDAM) databases have many similarities and are referred to as HD
databases.

Choosing a Database Type

52 IMS/ESA V6 Admin Guide: DB

HD databases differ from sequentially organized databases in two important ways.
First, they use the direct method of storing data, and the hierarchic sequence of
segments in the database is maintained by having segments point to one another.
Except for a few special cases, each segment has one or more direct-address
pointers in its prefix. When direct-address pointers are used, database records and
segments can be stored anywhere in the database. Their position, once stored, is
fixed, and they do not “move around” in the database when subsequent processing
takes place. Instead, pointers are updated to reflect processing changes.

HD databases also differ from sequentially organized ones in that space in HD
databases can be reused. If part or all of a database record is deleted, the deleted
space can be reused when new database records or segments are inserted.

HD databases are stored on direct-access devices in either a VSAM ESDS or an
OSAM data set. See “Appendix C. Using OSAM as the Access Method” on
page 447 for information on OSAM data sets. The storage organization in HDAM
and HIDAM is basically the same. Their primary difference is in the way their root
segments are accessed. In HDAM, each root segment’s storage location is found
using a randomizing module. The randomizing module examines the root’s key and,
through an arithmetic technique, computes the address of a pointer to the root
segment. In HIDAM, each root segment’s storage location is found by searching an
index. This index, unlike the index used with HISAM, requires use of a second
database, an index database. IMS loads and maintains this index database. The
advantage of the HDAM randomizing module is that the I/O operations required to
search an index are eliminated. In addition, no need exists to update an index after
a root segment is inserted or deleted.

All DL/I calls can be issued against HD databases. In addition, the following options
are available:

v Multiple data set groups

v Logical relationships

v Secondary indexing

v Variable-length segments

v Segment edit/compression facility

v Data Capture exit routines

v Field-level sensitivity

v Logging, recovery, and reorganization

Except for logging and recovery, each of these options is discussed in detail in
subsequent sections of this chapter. For information on logging and recovery, see
IMS/ESA Operations Guide and IMS/ESA Sample Operating Procedures.

When to Use HDAM
HDAM databases are typically used when you need primarily direct access to
database records. The randomizing module provides fast access to the root
segment (and therefore the database record). HDAM databases also give you fast
access to paths of segments as specified in the DBD in a database record. For
example, in the following database record, if physical child pointers are used they
can be followed to reach segments B, C, D, or E. A hierarchic search of segments
in the database record is bypassed. Segment B does not need to be accessed to
get to segments C, D, or E. And segment D does not need to be accessed to get to
segment E. Only segment A must be accessed to get to segment B or C. And only
segments A and C must be accessed to get to segments D or E.

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 53

You cannot process HDAM database records in key sequence unless the
randomizing module you use stores root segments in physical key sequence. More
information on HDAM is addressed later in this chapter.

When to Use HIDAM
HIDAM databases are typically used when you need both random and sequential
access to database records and random access to paths of segment in a database
record. Access to root segments (and therefore database records) is not as fast as
with HDAM, because the HIDAM index database has to be searched for a root
segment’s address. However, because the index keeps the address of root
segments stored in key sequence, database records can be processed sequentially.

What You Need to Know About HD Databases
Before looking in detail at how HD databases are stored and processed, you need
to become familiar with:

The various types of pointers you can specify for a HD database

The general format of the database

The use of special fields in the database

Types of Pointers You Can Specify: The hierarchic sequence of segments in a
database record using the sequential access methods is maintained by keeping
segments physically adjacent to each other in storage. In the HD access methods,
segments in a database record are kept in hierarchic sequence using direct-address
pointers. Except for a few special cases, each prefix in an HD segment contains
one or more pointers. Each pointer is 4 bytes long and consists of the relative byte
address of the segment to which it points. Relative, in this case, means relative to
the beginning of the data set.

Several different types of direct-address pointers exist, and you will see how each
works in the sections that follow. However, there are three basic types:

v Hierarchic pointers, which point from one segment to the next in either forward or
forward and backward hierarchic sequence

v Physical child pointers, which point from a parent to each of its first or first and
last children, for each child segment type

v Physical twin pointers, which point forward or forward and backward from one
segment occurrence of a segment type to the next, under the same parent

When segments in a database record are typically processed in hierarchic
sequence, use hierarchic pointers. When segments in a database record are
typically processed randomly, use a combination of physical child and physical twin
pointers. One thing to keep in mind while reading about pointers is that the different
types, subject to some rules, can be mixed within a database record. However,

Choosing a Database Type

54 IMS/ESA V6 Admin Guide: DB

because pointers are specified by segment type, all occurrences of the same
segment type have the same type of pointer.

Each type of pointer is examined separately in this section. In the section called
“Mixing Pointers,” how pointers can be mixed is discussed. In the following sections,
each type of pointer is illustrated, and the database record on which each
illustration is based is as follows:

Hierarchic Forward Pointers: With hierarchic forward (HF) pointers, each
segment in a database record points to the segment that follows it in the hierarchy.
Figure 28 shows hierarchic forward pointers:

When an application program issues a call for a segment, HF pointers are followed
until the specified segment is found. In this sense, the use of HF pointers in an HD
database is similar to using a sequentially organized database. In both, to reach a
dependent segment all segments that hierarchically precede it in the database
record must be examined. HF pointers should be used when segments in a
database record are typically processed in hierarchic sequence and processing
does not require a significant number of delete operations. If there are a lot of
delete operations, hierarchic forward and backward pointers (explained next) might
be a better choice.

Four bytes are needed in each dependent segment’s prefix for the HF pointer. Eight
bytes are needed in the root segment. More bytes are needed in the root segment

Figure 28. Hierarchic Forward Pointers

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 55

because the root points to both the next root segment and first dependent segment
in the database record. HF pointers are specified by coding PTR=H in the SEGM
statement in the DBD.

Hierarchic Forward and Backward Pointers: With hierarchic forward and
backward pointers (HF and HB), each segment in a database record points to both
the segment that follows and the one that precedes it in the hierarchy (except
dependent segments do not point back to root segments). HF and HB pointers must
be used together, since you cannot use HB pointers alone. Figure 29 shows how
HF and HB pointers work.

HF pointers work in the same way as the HF pointers described in the preceding
section.

HB pointers point from a segment to one immediately preceding it in the hierarchy.
In most cases, HB pointers are not required for delete processing. IMS saves the
location of the previous segment retrieved on the chain and uses this information
for delete processing. The backward pointers are useful for delete processing if the
previous segment on the chain has not been accessed. This happens when the
segment to be deleted is entered by a logical relationship.

The backward pointers are useful only when all of the following are true:

v Direct pointers from logical relationships or secondary indexes point to the
segment being deleted or one of its dependent segments.

v These pointers are used to access the segment.

v The segment is deleted.

Eight bytes are needed in each dependent segment’s prefix to contain HF and HB
pointers. Twelve bytes are needed in the root segment. More bytes are needed in
the root segment because the root points:

v Forward to a dependent segment

v Forward to the next root segment in the database

v Backward to the preceding root segment in the database

HF and HB pointers are specified by coding PTR=HB in the SEGM statement in the
DBD.

Figure 29. Hierarchic Forward and Backward Pointers

Choosing a Database Type

56 IMS/ESA V6 Admin Guide: DB

Physical Child First Pointers: With physical child first (PCF) pointers, each
parent segment in a database record points to the first occurrence of each of its
immediately dependent child segment types. Figure 30 shows PCF pointers:

With PCF pointers, the hierarchy is only partly connected. No pointers exist to
connect occurrences of the same segment type under a parent. Physical twin
pointers (explained later) can be used to form this connection. PCF pointers should
be used when segments in a database record are typically processed randomly and
sequence fields are either defined for the segment type. If not, new segments are
not inserted at the end of all existing segment occurrences. If sequence fields are
not defined and new segments are inserted at the end of existing segment
occurrences, the combination of PCF and physical child last (PCL) pointers
(explained next) can be a better choice.

Four bytes are needed in each parent segment for each PCF pointer. PCF pointers
are specified by coding PARENT=((name,SNGL)) in the SEGM statement in the
DBD. This is the SEGM statement for the child being pointed to, not the SEGM
statement for the parent. Note, however, that the pointer is stored in the parent
segment.

Physical Child First and Last Pointers: With physical child first and last pointers
(PCF and PCL), each parent segment in a database record points to both the first
and last occurrence of its immediately dependent child segment types. PCF and
PCL pointers must be used together, since you cannot use PCL pointers alone.
Figure 31 shows PCF and PCL pointers:

Figure 30. Physical Child First Pointers

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 57

Note that if only one physical child of a particular parent segment exists, the PCF
and PCL pointers both point to the same segment. As with PCF pointers, PCF and
PCL pointers leave the hierarchy only partly connected, and no pointers exist to
connect occurrences of the same segment type under a parent. Physical twin
pointers (explained later) can be used to form this connection.

PCF and PCL pointers (as opposed to just PCF pointers) are typically used when:

v No sequence field is defined for the segment type.

v New segment occurrences of a segment type are inserted at the end of all
existing segment occurrences.

On insert operations, if the ISRT rule of LAST has been specified, segments are
inserted at the end of all existing segment occurrences for that segment type. When
PCL pointers are used, fast access to the place where the segment will be inserted
is possible. This is because there is no need to search forward through all segment
occurrences stored before the last occurrence. PCL pointers also give application
programs fast retrieval of the last segment in a chain of segment occurrences.
Application programs can issue calls to retrieve the last segment by using an
unqualified SSA with the command code L. When a PCL pointer is followed to get
the last segment occurrence, any further movement in the database is forward.

A PCL pointer does not enable you to search from the last to the first occurrence of
a series of dependent child segment occurrences.

Four bytes are needed in each parent segment for each PCF and PCL pointer. PCF
and PCL pointers are specified by coding the PARENT= operand in the SEGM
statement in the DBD as PARENT=((name,DBLE)). This is the SEGM statement for
the child being pointed to, not the SEGM statement for the parent. Note, however,
that the pointers are stored in the parent segment.

A parent segment can have SNGL specified on one immediately dependent child
segment type and DBLE specified on another. Figure 32 on page 59 shows
specifying PCF and PCL pointers.

Coding these pointers in the DBD:
DBD
SEGM A
SEGM B PARENT=((name.SNGL)) (specifies PCF pointer only)
SEGM C PARENT=((name.DBLE)) (specified PCF and PCL pointers)

Figure 31. Physical Child First and Last Pointers

Choosing a Database Type

58 IMS/ESA V6 Admin Guide: DB

Results in these pointers being created:

Physical Twin Forward Pointers: With physical twin forward (PTF) pointers, each
segment occurrence of a given segment type under the same parent points forward
to the next segment occurrence. Figure 33 on page 60 illustrates this.

Note that PTF pointers can be specified for root segments. When this is done in an
HDAM database, the root segment points to the next root in the database chained
off the same root anchor points (RAP). (RAPs are explained in a following section
called “General Format of HD Databases and Use of Special Fields.”) If no more
root segments are chained from this RAP, the PTF pointer is zero.

When PTF pointers are specified for root segments in HIDAM database, the root
segment does not point to the next root in the database. What happens is explained
in a subsequent section called “Use of RAPs in a HIDAM Database.” The important
thing for you to know now is that if you specify PTF pointers on a root segment in a
HIDAM database, the HIDAM index must be used for all sequential processing of
root segments. This increases access time. This problem is eliminated if you specify
PTF and physical twin backward (PTB) pointers (discussed next).

With PTF pointers, the hierarchy is only partly connected. No pointers exist to
connect parent and child segments. Physical child pointers can be used to form this
connection. PTF pointers should be used when segments in a database record are
typically processed randomly, and you do not need sequential processing of
database records.

Four bytes are needed for the PTF pointer in each segment occurrence of a given
segment type. PTF pointers are specified by coding PTR=T in the SEGM statement
in the DBD. This is the SEGM statement for the segment containing the pointer.
The combination of PCF and PTF pointers is used as the default when pointers are
not specified in the DBD. Figure 33 show PTF pointers:

Figure 32. Specifying PCF and PCL Pointers

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 59

Physical Twin Forward and Backward Pointers: With physical twin forward and
backward (PTF and PTB) pointers, each segment occurrence of a given segment
type under the same parent points both forward to the next segment occurrence
and backward to the previous segment occurrence. PTF and PTB pointers must be
used together, since you cannot use PTB pointers alone. Figure 34 illustrates how
PTF and PTB pointers work.

Note that PTF and PTB pointers can be specified for root segments. When this is
done, the root segment points to both the next and the previous root segment in the
database. As with PTF pointers, PTF and PTB pointers leave the hierarchy only
partly connected. No pointers exist to connect parent and child segments. Physical
child pointers (explained previously) can be used to form this connection.

PTF and PTB pointers (as opposed to just PTF pointers) should be used on the
root segment of a HIDAM database when you need fast sequential processing of
database records. By using PTB pointers in root segments, database records can
be sequentially processed without intervening references to the HIDAM index. PTB
pointers improve performance when deleting a segment in a twin chain accessed by
a virtually paired logical relationship. This happens when the delete that causes
DASD space to be released occurs on a delete from the logical access path.

Eight bytes are needed for the PTF and PTB pointers in each segment occurrence
of a given segment type. PTF and PTB pointers are specified by coding PTR=TB in
the SEGM statement in the DBD.

Figure 33. Physical Twin Forward Pointers

Figure 34. Physical Twin Forward and Backward Pointers

Choosing a Database Type

60 IMS/ESA V6 Admin Guide: DB

Mixing Pointers: Because pointers are specified by segment type, the various
types of pointers can be mixed within a database record. However, only hierarchic
or physical, but not both, can be specified for a given segment type. The types of
pointers that can be specified for a segment type are:

HF Hierarchic forward

HF and HB Hierarchic forward and backward

PCF Physical child first

PCF and PCL Physical child first and last

PTF Physical twin forward

PTF and PTB Physical twin forward and backward

Figure 35 on page 62 shows a database record in which pointers have been mixed.
Note that, in some cases, for example, dependent segment B, many pointers exist
even though only one type of pointer is or can be specified. Also note that if a
segment is the last segment in a chain, its last pointer field is set to zero (the case
for segment E1, for instance). One exception is noted in the rules for mixing
pointers. Figure 35 has a legend that explains what specification in the PTR= or
PARENT= operand causes a particular pointer to be generated.

The rules for mixing pointers are:

v If PTR=H is specified for a segment, no PCF pointers can exist from that
segment to its children. For a segment to have PCF pointers to its children, you
must specify PTR=T or TB for the segment.

v If PTR=H or PTR=HB is specified for the root segment, the first child will
determine if an H or HB pointer is used. All other children must be of the same
type.

v If PTR=H is specified for a segment other than the root, PTR=TB and PTR=HB
cannot be specified for any of its children. If PTR=HB is specified for a segment
other than the root, PTR=T and PTR=H cannot be specified for any of its
children.

That is, the child of a segment that uses hierarchic pointers must contain the
same number of pointers (twin or hierarchic) as the parent segment.

v If PTR=T or TB is specified for a segment whose immediate parent used PTR=H
or PTR=HB, the last segment in the chain of twins does not contain a zero.
Instead, it points to the first occurrence of the segment type to its right on the
same level in the hierarchy of the database record. This is true even if no twin
chain yet exists, just a single segment for which PTR=T or TB is specified
(dependent segment B and E2 in the figure illustrate this rule).

v If PTR=H or HB is specified for a segment whose immediate parent used PTR=T
or TB, the last segment in the chain of twins contains a zero (dependent
segment C2 in the figure illustrates this rule).

Sequence of Pointers in a Segment’s Prefix:

Diagnosis, Modification or Tuning Information

When a segment contains more than one type of pointer, pointers are put in the
segment’s prefix in the following sequence:

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 61

End of Diagnosis, Modification or Tuning Information

Diagnosis, Modification or Tuning Information

Figure 35 shows an example of mixing pointers in a database record.

End of Diagnosis, Modification or Tuning Information

General Format of HD Databases and Use of Special Fields
The way in which an HD database is organized is not particularly complex, but
some of the special fields in the database used for things like managing space
make HD databases seem quite different from sequentially organized databases.
This section looks at the general layout of the database special fields.

Figure 35. Mixing Pointers

Choosing a Database Type

62 IMS/ESA V6 Admin Guide: DB

The databases referred to here are the HDAM and the HIDAM database. The
HIDAM contains database records. HIDAM has an additional database, the index
database, that is allocated by you but loaded and maintained by IMS. This section
examines the index database when dealing with the storage of HIDAM records.
Figure 36 shows the general format of an HD database and some of the special
fields used in it.
HD databases use a single data set, that is either a VSAM ESDS or an OSAM data

set. The data set contains one or more CIs (VSAM ESDS) or blocks (OSAM).
Database records in the data set are in unblocked format. Logical record length is
the same as the block size when OSAM is used. When VSAM is used, logical
record length is slightly less than CI size. (VSAM requires some extra control
information in the CI.) You can either specify logical record length yourself or have it
done by the Database Description Generation (DBDGEN) utility. The utility
generates logical record lengths equal to a quarter, third, half, or full track block.

All segments in HD Databases begin on a halfword boundary. If a segment’s total
length is an odd number, the space used in an HD database will be one byte longer
than the segment. The extra byte is called a “slack byte”.

Note that the database in Figure 36 contains areas of free space. This free space
could be the result of delete or replace operations done on segments in the data
set. Remember, space can be reused in HD databases. Or it could be free space
you set aside when loading the database. HD databases allow you to set aside free
space by specifying that periodic blocks or CIs be left free or by specifying that a
percentage of space in each block or CI be left free.

Diagnosis, Modification or Tuning Information

Examine the four fields illustrated in Figure 36. Three of the fields are used to
manage space in the database. The remaining one, the anchor point area, contains
the addresses of root segments. The fields are:

v This list item contains diagnosis, modification, or tuning information.

Bit map. Bit maps contain a string of bits. Each bit describes whether enough
space is available in a particular CI or block to hold an occurrence of the longest

Figure 36. Format of an HD Database and Special Fields in It

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 63

segment defined in the data set group. The first bit says whether the CI or block
the bit map is in has free space. Each consecutive bit says whether the next
consecutive CI or block has free space. When the bit value is one, it means the
CI or block has enough space to store an occurrence of the longest segment
type you have defined in the data set group. When the bit value is zero, not
enough space is available.

The first bit map in an OSAM data set is in the first block of the first extent of the
data set. In VSAM data sets, the second CI is used for the bit map and the first
CI is reserved. The first bit map in a data set contains n bits that describe space
availability in the next n-1 consecutive CIs or blocks in the data set. After the first
bit map, another bit map is stored at every nth CI or block to describe whether
space is available in the next group of CIs or blocks in the data set.

A bit map looks like this:

v This list item contains diagnosis, modification, or tuning information.

Free space element anchor point (FSEAP). FSEAPs are made up of two 2-byte
fields. The first contains the offset, in bytes, to the first free space element (FSE)
in the CI or block. FSEs describe areas of free space in a block or CI. The
second field identifies whether this block or CI contains a bit map. If the block or
CI does not contain a bit map, the field is zeros. One FSEAP exists at the
beginning of every CI or block in the data set. IMS automatically generates and
maintains FSEAPs.

An FSEAP looks like this:

The FSEAP in the first bit map block in an OSAM data set has a special use. It
is used to contain the DBRC usage indicator for the database. The DBRC usage
indicator is used at database open time for update processing to verify usage of
the correct DBRC RECON data set.

v This list item contains diagnosis, modification, or tuning information.

Free space element (FSE). An FSE describes each area of free space in a CI or
block that is 8 or more bytes in length. IMS automatically generates and
maintains FSEs. FSEs occupy the first 8 bytes of the area that is free space.
FSEs consist of three fields:

Choosing a Database Type

64 IMS/ESA V6 Admin Guide: DB

– Free space chain pointer (CP) field. This field contains, in bytes, the offset
from the beginning of this CI or block to the next FSE in the CI or block. This
field is 2 bytes long. The CP field is set to zero if this is the last FSE in the
block or CI.

– Available length (AL) field. This field contains, in bytes, the length of the free
space identified by this FSE. The value in this field includes the length of the
FSE itself. The AL field is 2 bytes long.

– Task ID (ID) field. This field contains the task ID of the program that freed the
space identified by the FSE. The task ID allows a given program to free and
reuse the same space during a given scheduling without contending for that
space with other programs.

An FSE looks like this:

v This list item contains diagnosis, modification, or tuning information.

Anchor point area. The anchor point area is made up of one or more 4-byte (root
anchor points) RAPs. Each RAP contains the address of a root segment. In
HDAM, you specify the number of RAPs you need on the RMNAME= parameter
in the DBD statement. In HIDAM, RAPs only exist if PTR=T or PTR=H is
specified for a root segment type. In addition, only one RAP per block or CI is
generated. The way in which RAPs are used in HDAM and HIDAM differs, so
RAPs will be examined further in the following sections describing how HDAM
and HIDAM records are stored.

An anchor point area in an HDAM database looks like this:

End of Diagnosis, Modification or Tuning Information

How HDAM Records Are Stored
HDAM databases consist of two parts: a root addressable area and an overflow
area. The root addressable area contains root segments and is the primary storage
area for dependent segments in a database record. The overflow area is for storage
of dependent segments that do not fit in the root addressable area. You specify the
size of the root addressable area (in the relative block number (RBN) operand of
the RMNAME= parameter in the DBD statement). You also specify the maximum
number of bytes of a database record to be stored in the root addressable area.

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 65

You do this through a series of uninterrupted ISRT calls to another database record.
(This is done in the BYTES operand on the RMNAME= parameter in the DBD
statement).

When the database is initially loaded, the root and each dependent segment are put
in the root addressable area until the next segment to be stored will cause the total
space used to exceed the amount of space you specified in the BYTES operand. At
this point, all remaining dependent segments in the database record are stored in
the overflow area.

In an HDAM database, the order in which you load database records does not
matter. The user randomizing module determines where each root is stored.
However, as with all types of databases, when the database is loaded, all
dependents of a root must be loaded in hierarchic sequence following the root.

To store an HDAM database record, the user randomizing module takes the root’s
key and, by hashing or some other arithmetic technique, computes an RBN or CI
number and a RAP number within the block or CI. It gives these numbers to IMS,
and IMS determines where in the root addressable area to store the root. The RBN
or CI tells IMS in which CI or block (relative to the beginning of the data set) the
RAP will be stored. The RAP number tells which RAP in the CI or block will contain
the address of the root. IMS stores the root and as many of its dependent
segments that will fit (based on the bytes operand) in the root addressable area.

When the database is initially loaded, it puts the root and segments in the first
available space in the specified CI or block, if this is possible. IMS then puts the
4-byte address of the root in the RAP of the CI or block designated by the
randomizing module. RAPs only exist in the root addressable area. This is because
the randomizing module always chains roots off a RAP in the root addressable
area. If space is not available in the root addressable area for a root, it is put in the
overflow area. The root, however, is chained from a RAP in the root addressable
area.

When Not Enough Root Storage Room Exists
If the CI or block specified by the randomizing module does not contain enough
room to store the root, IMS uses the HD space search algorithm to find space. This
algorithm is explained in “How the HD Space Search Algorithm Works” on page 78.
When insufficient space exists in the specified CI or block to store the root, the
algorithm finds the closest available space to the specified CI or block. When space
is found, the address of the root is still stored in the specified RAP in the original
block or CI generated by the randomizing module.

If the randomizing module generates the same relative block and RAP number for
more than one root, the RAP points to a single root and all additional roots with the
same relative block and RAP number are chained to each other using physical twin
pointers. Roots are always chained in ascending key sequence. If non-unique keys
exist, the ISRT rules of FIRST, LAST, and HERE determine the sequence in which
roots are chained. (These ISRT rules are explained in IMS/ESA Application
Programming: Database Manager.) All roots chained like this from a single anchor
point area are called synonyms.

Figure 37 on page 69 shows two HDAM database records and how they appear in
storage after initial load. In this example, enough space exists in the specified block
or CI to store the roots, and the randomizing module generated unique relative
block and RAP numbers for each root. The bytes parameter specifies enough space
for five segments of the database record to fit in the root addressable area. All

Choosing a Database Type

66 IMS/ESA V6 Admin Guide: DB

remaining segments are put in the overflow area. When HDAM database records
are initially loaded, dependent segments that cannot fit in the root addressable area
are simply put in the first available space in the overflow area.

Note how segments in the database record are chained together. In this case,
hierarchic pointers are used instead of the combination of physical child/physical
twin pointers. Each segment points to the next segment in hierarchic sequence.
Also note that two RAPs were specified per CI or block and each of the roots
loaded is pointed to by a RAP. For simplicity, Figure 37 does not show the various
space management fields.

An HDAM segment in storage (see Figure 37) consists of a prefix followed by user
data. The first byte of the prefix is the segment code, which identifies the segment
type to IMS. This number can be from 1 to 255. The segment code is assigned to
the segment type by IMS in ascending sequence, starting with the root segment
and continuing through all dependents in hierarchic sequence. The second byte of
the prefix is the delete byte. The third field in the prefix contains the one or more
addresses of segments to which this segment is pointing. In this example,
hierarchic forward pointers are used. Therefore, the EXPR4 segment contains only
one address, the address of the NAME3 segment.

How HIDAM Records Are Stored
A HIDAM database is actually composed of two databases. (HIDAM uses an index
to get to a specific root segment rather than the root anchor points used by HDAM.)
The first database contains the database records as the database. The second
database contains the HIDAM index as the index database.

Loading a HIDAM Database: Root segments in a HIDAM database must have a
unique key field, because an index entry exists for each root segment based on the
root’s key. When initially loading a HIDAM database, all root segments should be
presented to the load program in ascending key sequence, and all dependents of a
root should follow the root in hierarchic sequence. Figure 38 on page 70 shows two
HIDAM database records and how they appear in storage after initial load. Note
that HIDAM, unlike HDAM, has no root addressable or overflow area, just a series
of blocks or CIs. When database records are initially loaded, they are simply loaded
one after another in the order in which they are presented to the load program. The
space in Figure 38 at the end of each block or CI is free space specified when the
database was loaded. In this example, 30% free space per block or CI was
specified.

Note how segments in a database record are chained together. In this case,
hierarchic pointers were used instead of the combination of physical child/physical
twin pointers. Each segment points to the next segment in hierarchic sequence. No
RAPs exist in Figure 38. Although HIDAM databases can have RAPs, you probably
do not need to use them. The reason for not using RAPs is explained in the next
section.

In storage, a HIDAM segment (see Figure 38) consists of a prefix followed by user
data. The first byte of the prefix is the segment code, which identifies the segment
type to IMS. This number can be from 1 to 255. The segment code is assigned to
the segment by IMS in ascending sequence, starting with the root segment and
continuing through all dependents in hierarchic sequence. The second byte of the
prefix is the delete byte. The third field in the prefix contains the one or more
addresses of segments to which this segment is pointing. In this example,

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 67

hierarchic forward pointers are used. The EDUC6 segment contains only one
address, the address of the root segment of the next database record (not shown
here) in the database.

Creating an Index Segment: As each root is stored in a HIDAM database, IMS
creates an index segment for the root and stores it in the index database. The
index database consists of a single VSAM KSDS. The KSDS contains an index
segment for each root in the database. When initially loading a HIDAM database,
IMS will insert a root segment with a key of all X'FF's as the last root in the
database.

Choosing a Database Type

68 IMS/ESA V6 Admin Guide: DB

SKILL

SKILL

NAME

NAME

NAME

NAME

EXPR

EXPR

EXPR EDUC

EDUC

EDUC

EDUC

EDUC

EDUC

1

3

3 3

22

2

1

11

4

4

5

6
EXPR

4

Prefix User data

Segment
code

Delete
byte

Hierarchic forward
pointer

VSAM ESDS or OSAM

RAP RAP SKILL2 NAME4 EDUC4 EDUC5 EDUC6 Free space

Free Space

EXPR2 EXPR3 EXPR4 NAME3 EDUC2 EDUC3 Free Space

EXPR4 data

RAP RAP

RAP RAP SKILL1 NAME1 EXPR1 EDUC1 NAME2 Free Space

Root
addressable
area

Overflow
area

The content of
one segment in
the HDAM record

The same two
HDAM data-
base records
in storage

Two HDAM
database
records

2

Figure 37. HDAM Database Records in Storage

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 69

The format of an index segment looks like this:

SKILL

SKILL

NAME

NAME

NAME

NAME

EXPR

EXPR

EXPR EDUC

EDUC

EDUC

EDUC

EDUC

EDUC

1

3

3 3

22

2

1

11

4

4

5

6
EXPR

4

Prefix User data

Segment
code

Delete
byte

SKILL1 NAME1 EXPR1 Free SpaceEDUC1 NAME2

Free Space

Free Space

Free Space

EXPR2 EXPR3 EXPR4 NAME3 EDUC2

EDUC3 SKILL3 NAME4 EDUC4 EDUC5

EDUC6

Hierarchic forward
pointer

EDUC6 data

VSAM ESDS or OSAM

3

The content of
one segment in
the HDAM record

The same two
HDAM data-
base records
in storage

Two HDAM
database
records

Figure 38. HIDAM Database Records in Storage

Choosing a Database Type

70 IMS/ESA V6 Admin Guide: DB

The prefix portion of the index segment contains the delete byte and the root’s
address. The data portion of the index segment contains the key field of the root
being indexed. This key field identifies which root segment the index segment is for
and remains the reason why root segments in a HIDAM database must have
unique sequence fields. Each index segment is a separate logical record. Figure 39
shows the index database IMS would generate when the two database records in
Figure 38 on page 70 were loaded.

Use of RAPs in a HIDAM Database: RAPs are used differently in HIDAM
databases than they are in HDAM. In HDAM, RAPs exist to point to root segments.
When the randomizing module generates roots with the same relative block and
RAP number (synonyms), the RAP points to one root and synonyms are chained
together off that root.

In HIDAM, RAPs are only generated if you have specified PTR=T or PTR=H for a
root segment. When either of these is specified, one RAP is put at the beginning of
each CI or block, and root segments within the CI or block are chained from the
RAP in reverse order based on the time they were inserted. Thus, the RAP points

SKILL1 NAME1 EXPR1 EDUC1 NAME2 Free space

EXPR3

EXPR3EXPR2 EXPR4 NAME3 EDUC2

EDUC4 EDUC5

EDUC6

SKILL3 NAME4

Free space

Free space

Free space

VSAM ESDS or OSAM

KSDS

SKILL3Key KeySKILL1

Index database when VSAM is used

Figure 39. HIDAM Index Databases

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 71

to the last root inserted into the block or CI, and the hierarchic or twin forward
pointer in the first root inserted into the block or CI is made zero. The hierarchic or
twin forward pointer in each of the other root segments in the block points to the
previous root inserted in the block. Figure 40 shows what happens if you specify
PTR=T or PTR=H for root segments in a HIDAM database.

The implication of using PTR=T or PTR=H is that the pointer from one root to the
next cannot be used to process roots sequentially. Instead, the HIDAM index must
be used for all sequential root processing, and this increases access time. Specify
PTR=TB or PTR=HB for root segments in a HIDAM database. Then no RAP is
generated, and GN calls against root segments proceed along the normal physical
twin forward chain. If no pointers are specified for HIDAM root segments, the
default is PTR=T.

Accessing Segments
The way in which a segment in an HD database is accessed depends on whether
the DL/I call for the segment is qualified or unqualified.

Qualified Calls: When a call is issued for a root segment and the call is qualified
on the root segment’s key, the way in which the database record containing the
segment is found depends on whether the database is HDAM or HIDAM. In an
HDAM database, the randomizing module generates the root segment’s (and
therefore the database record’s) location. In a HIDAM database, the HIDAM index
is searched until the index segment containing the root’s key is found.

Once the root segment is found, if the qualified call is for a dependent segment,
IMS searches for the dependent by following the pointers in each dependent
segment’s prefix. The exact way in which the search proceeds depends on the type
of pointers you are using. Figure 41 shows how a dependent segment is found
when PCF and PTF pointers are used.

Figure 40. What Happens If You Specify PTR=T or PTR=H for Root Segments in a HIDAM
Database

Choosing a Database Type

72 IMS/ESA V6 Admin Guide: DB

Unqualified Calls: When an unqualified call is issued for a segment, the way in
which the search proceeds depends on:

v Whether the database is HDAM or HIDAM

v Whether a root or dependent segment is being accessed

v Where position in the database is currently established

v What type of pointers are being used

v Where parentage is set (if the call is a GNP)

Because of the many variables, it is not practical to generalize on how a segment is
accessed.

Inserting Root Segments
The way in which a root segment is inserted into an HD database depends on
whether the database is HDAM or HIDAM.

Inserting Root Segments into an HDAM Database: After initial load, root
segments are inserted into an HDAM database in exactly the same way they are
inserted during initial load. This process is explained in “How HDAM Records Are
Stored” on page 65.

Inserting Root Segments Into a HIDAM Database: After initial load, root
segments are inserted into a HIDAM database as follows (see Figure 42 on
page 74):

1. The HIDAM index is searched for an index segment with a root key greater than
the key of the root to be inserted.

2. The new index segment is inserted in ascending root sequence by either
moving existing index segments “over” to make room for the new one or by
splitting the CI or control area (CA).

3. Once the index segment is created, the root segment is stored in the database
at the location specified by the HD space search algorithm. How this algorithm
works is described in “How the HD Space Search Algorithm Works” on page 78.

Figure 41. How Dependent Segments Are Found Using PCF and PTF Pointers

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 73

Updating the Space Management Fields When a Root Segment Is Inserted:
This section contains diagnosis, modification, or tuning information.

Figure 42. Inserting a Root Segment into a HIDAM Database

Choosing a Database Type

74 IMS/ESA V6 Admin Guide: DB

When a root segment is inserted into an HD database, the space management
fields need to be updated. Figure 43 on page 76 illustrates this process. The figure
makes several assumptions so real values could be put in the space management
fields. These assumptions are:

v The database is HDAM (and therefore has a root addressable area).

v VSAM is the access method, so there are CIs (not blocks) in the database.
Because VSAM is used, each logical record has 7 bytes of control information.

v Logical records are 512 bytes long.

v One RAP exists in each CI.

v The root segment to be inserted (SKILL1) is 32 bytes long.

The “before” picture shows the CI containing the bit map (in VSAM, the bit map is
always in the second CI in the database). The second bit in the bit map is set to 1,
which says there is free space in the next CI. In the next CI (CI #3):

v The FSEAP says there is an FSE (which describes an area of free space) 8
bytes from the beginning of this CI.

v The anchor point area (which has one RAP in this case) contains zeros because
no root segments are currently stored in this CI.

v The FSE AL field says there is 497 bytes of free space available starting at the
beginning of this FSE.

The SKILL1 root segment to be inserted is only 32 bytes long, so CI #3 has plenty
of space to store SKILL1.

The “after” picture shows how the space management fields in CI #3 are updated
when SKILL1 is inserted.

v The FSEAP now says there is an FSE 40 bytes from the beginning of this CI.

v The RAP points to SKILL1. The pointer value in the RAP is derived using the
following formula:
Pointer = CI Size x CI#-1 + Offset within CI
value to root segment

In this case, the pointer value is 1032 (512 x 2 + 8).

v The FSE has been “moved” to the beginning of the remaining area of free space.
The FSE AL field says there is 465 bytes (497 - 32) of free space available,
starting at the beginning of this FSE.

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 75

Inserting Dependent Segments
After initial load, dependent segments are inserted into HD databases using the HD
space search algorithm. How this algorithm works is described in “How the HD
Space Search Algorithm Works” on page 78.

As with the insertion of root segments into an HD database, the various space
management fields in the database need to be updated. (This process was
explained and illustrated in the previous section, “Updating The Space Management
Fields When a Root Segment Is Inserted.”)

Figure 43. Updating the Space Management Fields in an HDAM Database

Choosing a Database Type

76 IMS/ESA V6 Admin Guide: DB

Deleting Segments

Diagnosis, Modification or Tuning Information

When a segment is deleted in an HD database, it is physically removed from the
database. The space it occupied can be reused when new segments are inserted.
As with the insertion of segments into an HD database, the various space
management fields need to be updated. (This process was explained and illustrated
in a previous section called “Updating The Space Management Fields When a Root
Segment Is Inserted.”)

v The bit map needs to be updated if the block or CI from which the segment is
deleted now contains enough space for a segment to be inserted. (Remember,
the bit map says whether enough space exists in the block or CI to hold a
segment of the longest type defined. So, if the deleted segment did not free up
enough space for the longest segment type defined, the bit map is not changed.)

v The FSEAP needs to be updated to show where the first FSE in the block or CI
is now located.

v When a segment is deleted, a new FSE might be created or the AL field value in
the FSE that immediately precedes the deleted segment might need to be
updated.

v If the deleted segment is a root segment in an HDAM database, the value in its
PTF pointer is put in the RAP or in the PTF pointer that pointed to it. This
maintains the chain off the RAP and removes the deleted segment from the
chain.

End of Diagnosis, Modification or Tuning Information

Diagnosis, Modification or Tuning Information

If a deleted segment is next to an already available area of space, the two areas
are combined into one unless they are created by an online task that has not yet
reached a sync point.

End of Diagnosis, Modification or Tuning Information

Replacing Segments
This section contains diagnosis, modification, or tuning information.

Replacing segments in HD databases is straightforward as long as fixed-length
segments are used. The segment data, once changed, is simply returned to its
original location in storage. The key field in a segment cannot be replaced.

Provided sufficient adjacent space is available, the segment data is returned to its
original location when a variable-length segment is replaced with a longer segment.
If adjacent space is unavailable, space is obtained from the overflow area for the
lengthened data portion of the segment. This segment is referred to as a “separated
data segment”. It has a 2-byte prefix consisting of a 1-byte segment code and a
1-byte delete flag, followed by the segment data. The delete byte of the separated
data segment is set to X'FF', indicating that this is a separated data segment. A
pointer is built immediately following the original segment to point to the separated
data. Bit 4 of the delete byte of the original segment is set ON to indicate that the
data for this segment is separated. The unused remaining space in the original
segment is available for reuse.

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 77

How the HD Space Search Algorithm Works
This section contains diagnosis, modification, or tuning information.

The general rule for inserting a segment into an HD database is to store the
segment (whether root or dependent) in the most desirable block or CI.

Root Segment: The most desirable block depends on the access method. For
HDAM roots, the most desirable block is the one containing either the RAP or root
segment that will point to the root being inserted. For HIDAM roots, if the root does
not have a twin backward pointer, the most desirable block is the one containing the
root with the next highest key. If the root has a twin backward pointer, the most
desirable block is the root with the next lower key.

Dependent Segment: The most desirable block is the one containing the segment
that points to the inserted segment. If both physical child and physical twin pointers
are used, the most desirable block is the one containing either the parent or the
immediately-preceding twin. If hierarchic pointers are used, the most desirable block
is the one containing the immediately-preceding segment in the hierarchy.

Second-Most Desirable Block: When it is not possible to store one or more
segments in the most desirable block (space is not available), the HD space search
algorithm searches for the second-most desirable block or CI. (This search is done
only if the block is in the buffer pool or contains free space according to the bit
map). The second-most desirable block or CI is a block or CI that was left free
when the database was loaded or reorganized. Every nth block or CI can be left
free by specifying the FRSPC= keyword in the DATASET macro of the DBDGEN
utility. If you do not specify in the FRSPC= keyword that every nth block or CI be
left free, the HD space search algorithm will not search for the second-most
desirable block or CI.

For more information on the FRSPC= and SEARCHA= keywords, see “Database
Description (DBD) Generation” in IMS/ESA Utilities Reference: System.

All search ranges defined in the HD space search algorithm, excluding steps 9
through 11, are limited to the physical extent that includes the most desirable block.
When the most desirable block is in the overflow area, the search ranges, excluding
steps 9 through 11, are restricted to the overflow area.

The steps in the HD space search algorithm follow. They are arranged in the
sequence in which they are performed. The first time any one of the steps in the list
results in available space, the search is ended and the segment is stored.

Look for space:

1. In the most desirable block (this block or CI is in the buffer pool).

2. In the second-most desirable block or CI.

3. In any block or CI in the buffer pool on the same cylinder.

4. In any block or CI on the same track, as determined by consulting the bit map.
(The bit map says whether space is available for the longest segment type
defined.)

5. In any block or CI on the same cylinder, as determined by consulting the bit
map.

6. In any block or CI in the buffer pool within plus or minus n cylinders. Specify n
in the SCAN= keyword in the DATASET statement in the DBD.

Choosing a Database Type

78 IMS/ESA V6 Admin Guide: DB

7. In any block or CI plus or minus n cylinders, as determined by consulting the
bit map.

8. In any block or CI in the buffer pool at the end of the data set.

9. In any block or CI at the end of the data set, as determined by consulting the
bit map. The data sets will be extended as far as possible before going to the
next step.

10. In any block or CI in the data set where space exists, as determined by
consulting the bit map. (This step is not used when a HIDAM database is
loaded.)

Notes :

If in load mode processing, step 2 and steps 5 through 8 are skipped.

If the dependent segment being inserted is at the highest level in a secondary data
set group, the place and the way in which space is found differ:

v First, if the segment has no twins, steps 1 through 8 in the HD space search
algorithm are skipped.

v Second, if the segment has a twin that precedes it in the twin chain, the most
desirable block is the one containing that twin.

v Third, if the segment has only twins that follow it in the twin chain, the most
desirable block is the one containing the twin to which the new segment is
chained.

Locking Protocols
IMS uses locks to isolate the database changes made by concurrently executing
programs. Locking is accomplished by using either the Program Isolation (PI) lock
manager or the IRLM. While the PI lock manager provides four locking levels, the
IRLM supports eleven lock states.

The IRLM also provides support for “feedback only” and “test” locking required, and
it supplies feedback on lock requests compatible with feedback supplied by the PI
lock manager.

Locking to Provide Program Isolation: For all database organizations, the basic
item locked is the database record. The database record is locked when position is
first obtained in it. The item locked is the root segment, or for HDAM, the anchor
point. Therefore, for HDAM, all database records chained from the anchor are
locked. The processing option of the PCB determines whether or not two programs
can concurrently access the same database record. If the processing option permits
updates, then no other program can concurrently access the database record. The
database record is locked until position is changed to a different database record or
until the program reaches a commit point.

When a program updates a segment with an INSERT, DELETE, or REPLACE call,
the segment, not the database record, is locked. On an INSERT or DELETE call, at
least one other segment is altered and locked.

Because data is always accessed hierarchically, when a lock on a root (or anchor)
is obtained, IMS determines if any programs hold locks on dependent segments. If
no program holds locks on dependent segments, it is not necessary to lock
dependent segments when they are accessed.

The following locking protocol allows IMS to make this determination. If a root
segment is updated, the root lock is held at update level until commit. If a

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 79

dependent segment is updated, it is locked at update level. When exiting the
database record, the root segment is demoted to read level. When a program
enters the database record and obtains the lock at either read or update level, the
lock manager provides feedback indicating whether or not another program has the
lock at read level. This determines if dependent segments will be locked when they
are accessed. For HISAM, the primary logical record is treated as the root, and the
overflow logical records are treated as dependent segments.

These lock protocols apply when the PI lock manager is used, however, if the IRLM
is used, no lock is obtained when a dependent segment is updated. Instead, the
root lock is held at single update level when exiting the database record. Therefore,
no additional locks are required if a dependent segment is inserted, deleted, or
replaced.

Locking for Q Command Codes: When a Q command code is issued for a root
or dependent segment, a Q command code lock at share level is obtained for the
segment. This lock is not released until a DEQ call with the same class is issued, or
until commit time.

If a root segment is returned in hold status, the root lock obtained when entering
the database record prevents another user with update capability from entering the
database record. If a dependent segment is returned in hold status, a Q command
code test lock is required. An indicator is turned on whenever a Q command code
lock is issued for a database. This indicator is reset whenever the only application
scheduled against the database terminates. If the indicator is not set, then no Q
command code locks are outstanding and no test lock is required to return a
dependent segment in hold status.

Data Sharing Impact on Locking: When you use block-level data sharing, the
IRLM must obtain the concurrence of the sharing system before granting global
locks. Root locks are global locks, and dependent segment locks are not. When you
use block-level data sharing, locks prevent the sharing systems from concurrently
updating the same buffer. The buffer is locked before making the update, and the
lock is held until after the buffer is written during commit processing. No buffer locks
are obtained when a buffer is read.

If a Q command code is issued on any segment, the buffer is locked. This prevents
the sharing system from updating the buffer until the Q command code lock is
released.

Locking in HIDAM and HDAM Databases: If you access a HIDAM root via the
index, a lock is obtained on the index, using the RBA of the root segment as the
resource name. Consequently, a single lock request locks both the index and the
root.

When you access an HDAM database, the anchor of the desired root segment is
locked as long as position exists on any root chained from that anchor. Therefore, if
an update PCB has position on an HDAM root, no other user can access that
anchor. When a segment has been updated and the IRLM is used, no other user
can access the anchor until the updater commits. If the PI lock manager is used,
locks are needed to access all root and dependent segments chained from the
anchor until the updater commits.

Locking for Secondary Indexes: When a secondary index is inserted, deleted or
replaced, it is locked with a root segment lock. When the secondary index is used

Choosing a Database Type

80 IMS/ESA V6 Admin Guide: DB

to access the target of the secondary index, depending on what the index points to,
it might be necessary to lock the secondary index.

Registering Databases
When a database I/O error occurs, IMS copies the buffer contents of the error
block/control interval (CI) to a virtual buffer. A subsequent DL/I request causes the
error block/CI to be read back into the buffer pool. The write error information and
buffers are maintained across restarts, deferring recovery to a convenient time. I/O
error retry is automatically performed at database close time. If the retry is
successful, the error condition no longer exists and recovery is not needed.

Although databases need not be registered in DBRC in order for the error handling
to work, it is highly recommended. If an error occurs on a non-registered database
and the system terminates, the database could be damaged if the system is
restarted and a /DBR command is not issued prior to accessing the database. The
reason for this is that restart causes the error buffers to be restored as they were
when the system terminated. If the same block had been updated during the batch
run, the batch update would be overlaid.

Choosing a Database Type

Chapter 4. Designing a Fast Path Database 81

Choosing a Database Type

82 IMS/ESA V6 Admin Guide: DB

Chapter 5. Choosing Additional Database Functions

About This Chapter . 84
Using Logical Relationships . 84
Defining a Logical Relationship 85
Unidirectional Logical Relationships 86
Bidirectional Physically Paired Logical Relationship 88
Bidirectional Virtually Paired Logical Relationship 88
Pointing and Pointers in Logical Relationships 89

Logical Parent Pointer . 90
Logical Child Pointer . 91
Physical Parent Pointer . 92
Logical Twin Pointer . 93

Sequence of Pointers in a Segment’s Prefix 94
Counter Used in Logical Relationships 94
Intersection Data . 95

Fixed Intersection Data . 95
Variable Intersection Data . 95
FID, VID, and Physical Pairing 96

Establishing Logical Relationships Between Segments in the Same Database
(Recursive Structures) . 97

Paths Used in Logical Relationships 101
The Logical Child Segment . 102
Defining Sequence Fields for Databases Using Logical Relationships 103
Defining Sequence Fields for Real Logical Children 103
Defining Sequence Fields for Virtual Logical Children 104
Relationship of Control Blocks When a Logical Relationship Is Used. 104
How to Specify Use of Logical Relationships in the Physical DBD. 105
Specifying Bidirectional Logical Relationships 107
Checklist of Rules for Defining Logical Relationships in Physical Databases 107

Logical Child Rules . 107
Logical Parent Rules . 108
Physical Parent Rules . 108

How to Specify Use of Logical Relationships in the Logical DBD 108
Checklist of Rules for Defining Logical Databases 110

Definition of Crossing a Logical Relationship 110
Definition of First and Additional Logical Relationships Crossed. 111
Rules for Defining Logical Databases 113

Choosing Replace, Insert, and Delete Rules for Logical Relationships 114
Performance Considerations for Logical Relationships 116

Logical Parent Pointers . 116
KEY/DATA Considerations 117
Sequencing Logical Twin Chains 118
Placement of the Real Logical Child in a Virtually Paired Relationship . . . 118
Using Secondary Indexes 118

Why Secondary Indexes? 118
Characteristics of Secondary Indexes 119
Segments Used for Secondary Indexes 120
How the Hierarchy Is Restructured 123
How a Secondary Index Is Stored 124
Format and Use of Fields in a Pointer Segment 125
Making Keys Unique Using System Related Fields 128
Suppressing Index Entries (Sparse Indexing) 129
How the Secondary Index Is Maintained 130
Processing a Secondary Index as a Separate Database 131

© Copyright IBM Corp. 1974, 1999 83

Sharing Secondary Index Databases 132
Using the INDICES= Parameter 133
Using Secondary Indexes with Logical Relationships 134
Using Secondary Indexes with Variable-Length Segments 135
Considerations When Using Secondary Indexing 135
How to Specify Use of Secondary Indexing in the DBD 136

Choosing Secondary Indexes Versus Logical Relationships 139
When to Use a Secondary Index 139
When to Use a Logical Relationship 139

Using Variable-Length Segments 140
How to Specify Variable-Length Segments 140
How Variable-Length Segments Are Stored and Processed 140
When to Use Variable-Length Segments 142
What Application Programmers Need to Know about Variable-Length

Segments . 142
Adding or Converting to Variable-Length Segments 142
Using the Segment Edit/Compression Facility 142
Using Data Capture Exit Routines 145
Using Field-Level Sensitivity 149
Using Multiple Data Set Groups 158

About This Chapter
After you have determined the type of database that best suits your application’s
processing requirements, you are ready to determine which additional IMS functions
you need to use.

This chapter explains the following functions and describes when and how to use
them:

v Logical relationships

v Secondary indexes

v Variable-length segments

v Segment edit/compression facility

v Data Capture exit routines

v Field-level sensitivity

v Multiple data set groups

Notes:

1. These functions do not apply to GSAM, MSDB, HSAM, and SHSAM databases.

2. Only the variable-length segment function, the segment edit/compression facility,
and the Data Capture exit routine apply to DEDBs.

Using Logical Relationships
Logical relationships is a function you can use to resolve conflicts in the way
application programs need to view segments in the database. With logical
relationships, you can:

v Give an application program access to segment types in an order other than the
one defined by the hierarchy

v Give an application program access to a data structure that contains segments
from more than one physical database.

84 IMS/ESA V6 Admin Guide: DB

An alternative to using logical relationships to resolve the different needs of
applications is to create separate databases or carry duplicate data in a single
database. However, in both cases this creates duplicate data. Avoid duplicate data
because:

v Extra maintenance is required when duplicate data exists. because both sets of
data must be kept up to date. In addition, updates must be done simultaneously
to maintain data consistency.

v Extra space is required on DASD to hold duplicate data.

By establishing a path between two segment types, logical relationships eliminate
the need to store duplicate data. To establish a logical relationship, three segment
types are always defined:

A physical parent

A logical parent

A logical child

For example, suppose two databases exist, one for orders that a customer has
placed and one for items that can be ordered. The first database is called the
ORDER database; the second is called the ITEM database.

The ORDER database contains data such as:

Order number

Customer’s name and address

Type of items ordered

Quantity of each item ordered

Delivery data

The ITEM database contains data such as:

v Type of items that can be ordered

v Quantity of each item in stock

v Quantity of each item in stock that has been ordered but not yet delivered

Defining a Logical Relationship
If an application program needs data from both databases, this can be done by
defining a logical relationship between the two databases. As shown in Figure 44 on
page 86, a path can be established between the ORDER and ITEM databases
using a segment type, called a logical child segment, that points into the ITEM
database. Figure 44 on page 86 is a simple implementation of a logical relationship.
In this case, ORDER is the physical parent of ORDITEM. ORDITEM is the physical
child of ORDER but the logical child of ITEM.

In a logical relationship, there is a logical parent segment type and it is the segment
type pointed to by the logical child. In this example, ITEM is the logical parent of
ORDITEM. ORDITEM establishes the path or connection between the two segment
types. If an application program now enters the ORDER database, it can access
data in the ITEM database by following the pointer in the logical child segment from
the ORDER to the ITEM database.

Using Logical Relationships

Chapter 5. Choosing Additional Database Functions 85

The physical parent and logical parent are the two segment types between which
the path is established. The logical child is the segment type that establishes the
path. The path established by the logical child is created using pointers.

There are three ways in which a logical relationship can be established or
implemented. These methods of implementation are as follows:

Unidirectional logical relationship

Bidirectional physically paired logical relationship

Bidirectional virtually paired logical relationship

Unidirectional Logical Relationships
A unidirectional relationship links two segment types, a logical child and its logical
parent, in one direction. A one-way path is established using a pointer in the logical
child. Figure 45 on page 87 shows a unidirectional relationship that has been
established between the ORDER and ITEM databases. A unidirectional relationship
can be established between two segment types in the same or different databases.
Typically, however, a unidirectional relationship is created between two segment
types in different databases. In the figure, the logical relationship can be used to
cross from the ORDER to the ITEM database. It cannot be used to cross from the
ITEM to the ORDER database, because the ITEM segment does not point to the
ORDER database.

Figure 44. A Simple Logical Relationship

Defining a Logical Relationship

86 IMS/ESA V6 Admin Guide: DB

It is possible to establish two unidirectional relationships, as shown in Figure 46 .
Then either physical database can be entered and the logical child in either can be
used to cross to the other physical database. However, IMS treats each
unidirectional relationship as a one-way path. It does not maintain data on both
paths. If data in one database is inserted, deleted, or replaced, the corresponding
data in the other database is not updated. If, for example, DL/I replaces
ORDITEM-SCREWS under ORDER-578, ITEMORD-578 under ITEM-SCREWS is
not replaced. This maintenance problem does not exist in both bidirectional
physically paired-logical and bidirectional virtually paired-logical relationships. Both
relationship types are discussed next. IMS allows either physical database to be
entered and updated and automatically updates the corresponding data in the other
database.

Figure 45. Unidirectional Logical Relationship

Figure 46. Two Unidirectional Logical Relationships

Unidirectional Logical Relationships

Chapter 5. Choosing Additional Database Functions 87

Bidirectional Physically Paired Logical Relationship
A bidirectional physically paired relationship links two segment types, a logical child
and its logical parent, in two directions. A two-way path is established using pointers
in the logical child segments. Figure 47 shows a bidirectional physically paired
logical relationship that has been established between the ORDER and ITEM
databases.

Like the other types of logical relationships, a physically paired relationship can be
established between two segment types in the same or different databases. The
relationship shown in Figure 47 allows either the ORDER or the ITEM database to
be entered. When either database is entered, a path exists using the logical child to
cross from one database to the other.

In a physically paired relationship, a logical child is stored in both databases.
However, if the logical child has dependents, they are only stored in one database.
For example, IMS maintains data in both paths in physically paired relationships. In
Figure 47 if ORDER 123 is deleted from the ORDER database, IMS deletes from
the ITEM database all ITEMORD segments that point to the ORDER 123 segment.
If data is changed in a logical child segment, IMS changes the data in its paired
logical child segment. Or if a logical child segment is inserted into one database,
IMS inserts a paired logical child segment into the other database.

With physical pairing, the logical child is duplicate data, so there is some increase
in storage requirements. In addition, there is some extra maintenance required
because IMS maintains data on two paths. In the next type of logical relationship
examined, this extra space and maintenance do not exist, however, IMS still allows
you to enter either database. IMS also performs the maintenance for you.

Bidirectional Virtually Paired Logical Relationship
A bidirectional virtually paired relationship is like a bidirectional physically paired
relationship in that:

v It links two segment types, a logical child and its logical parent, in two directions,
establishing a two-way path.

v It can be established between two segment types in the same or different
databases.

Figure 48 on page 89 shows a bidirectional virtually paired relationship between the
ORDER and ITEM databases. Note that although there is a two-way path, a logical

Figure 47. Bidirectional Physically Paired Logical Relationship

Bidirectional Physically Paired Logical Relationship

88 IMS/ESA V6 Admin Guide: DB

child segment exists only in the ORDER database. Going from the ORDER to the
ITEM database, IMS uses the pointer in the logical child segment. Going from the
ITEM to the ORDER database, IMS uses the pointer in the logical parent, as well
as the pointer in the logical child segment.

To define a virtually paired relationship, two logical child segment types are defined
in the physical databases involved in the logical relationship. Only one logical child
is actually placed in storage. The logical child defined and put in storage is called
the real logical child. The logical child defined but not put in storage is called the
virtual logical child.

IMS maintains data in both paths in a virtually paired relationship. However,
because there is only one logical child segment, maintenance is simpler than it is in
a physically paired relationship. When, for instance, a new ORDER segment is
inserted, only one logical child segment has to be inserted. For a replace, the data
only has to be changed in one segment. For a delete, the logical child segment is
deleted from both paths.

Note the trade-off between physical and virtual pairing. With virtual pairing, there is
no duplicate logical child and maintenance of paired logical children. However,
virtual pairing requires the use and maintenance of additional pointers, called logical
twin pointers.

Pointing and Pointers in Logical Relationships
In all logical relationships the logical child establishes a path between two segment
types. The path is established by use of pointers. The following sections look at
pointing in logical relationships and the various types of pointers that can be used.
Four types of pointers can be specified for logical relationships:

Logical parent pointer

Logical child pointer

Physical parent pointer

Logical twin pointer

Figure 48. Bidirectionally Virtually Paired Logical Relationship

Bidirectional Virtually Paired Logical Relationship

Chapter 5. Choosing Additional Database Functions 89

Logical Parent Pointer
The pointer from the logical child to its logical parent is called a logical parent (LP)
pointer. This pointer must be a symbolic pointer when it is pointing into a HISAM
database. It can be either a direct or a symbolic pointer when it is pointing into an
HDAM or HIDAM database.

A direct pointer consists of the direct address of the segment being pointed to, and
it can only be used to point into a database where a segment, once stored, is not
moved. This means the logical parent segment must be in an HD (HDAM and
HIDAM) database, since the logical child points to the logical parent segment. The
logical child segment, which contains the pointer, can be in a HISAM or an HD
database. A direct LP pointer is stored in the logical child’s prefix, along with any
other pointers, and is four bytes long. Figure 49 shows the use of a direct LP
pointer. In a HISAM database, pointers are not required between segments
because they are stored physically adjacent to each other in hierarchic sequence.
Therefore, the only time direct pointers will exist in a HISAM database is when
there is a logical relationship using direct pointers pointing into an HD database.

In Figure 49, the direct LP pointer points from the logical child ORDITEM to the
logical parent ITEM. Because it is direct, the LP pointer can only point to an HD
database. However, the LP pointer can “exist” in a HISAM or an HD database. The
LP pointer is in the prefix of the logical child and consists of the 4-byte direct
address of the logical parent.

A symbolic LP pointer, which consists of the logical parent’s concatenated key
(LPCK), can be used to point into a HISAM or HD database. Figure 50 on page 91
illustrates how to use a symbolic LP pointer. The logical child ORDITEM points to
the ITEM segment for BOLT. BOLT is therefore stored in ORDITEM in the LPCK. A
symbolic LP pointer is stored in the first part of the data portion in the logical child
segment.

Note: The LPCK part of the logical child segment is considered non-replaceable
and is not checked to see whether the I/O area is changed. When the LPCK
is virtual, checking for a change in the I/O area causes a performance
problem. Changing the LPCK in the I/O area does not cause the REPL call
to fail. However, the LPCK is not changed in the logical child segment.

With symbolic pointers, if the database the logical parent is in is HISAM or HIDAM,
IMS uses the symbolic pointer to access the index to find the correct logical parent
segment. If the database the logical parent is in is HDAM, the symbolic pointer

Figure 49. Direct Logical Parent (LP) Pointer

Pointing and Pointers in Logical Relationships

90 IMS/ESA V6 Admin Guide: DB

must be changed by the randomizing module into a block and RAP address to find
the logical parent segment. IMS accesses a logical parent faster when direct
pointing is used.

Although the figures show the LP pointer in a unidirectional relationship, it works
exactly the same way in all three types of logical relationships.

In Figure 50, the symbolic LP pointer points from the logical child ORDITEM to the
logical parent ITEM. With symbolic pointing, the ORDER and ITEM databases can
be either HISAM or HD. The LPCK, which is in the first part of the data portion of
the logical child, functions as a pointer from the logical child to the logical parent,
and is the pointer used in the logical child.

Note: The LPCK part of the logical child segment is considered non-replaceable
and is not checked to see whether the I/O area is changed.

Logical Child Pointer
Logical child pointers are only used in logical relationships with virtual pairing. When
virtual pairing is used, there is only one logical child on DASD, called the real
logical child. This logical child has an LP pointer. The LP pointer can be symbolic or
direct. In the ORDER and ITEM databases you have seen, the LP pointer allows
you to go from the database containing the logical child to the database containing
the logical parent. To enter either database and cross to the other with virtual
pairing, you use a logical child pointer in the logical parent. Two types of logical
child pointers can be used:

v Logical child first (LCF) pointers, or

v The combination of logical child first (LCF) and logical child last (LCL) pointers

The LCF pointer points from a logical parent to the first occurrence of each of its
logical child types. The LCL pointer points to the last occurrence of the logical child
segment type for which it is specified. A LCL pointer can only be specified in
conjunction with a LCF pointer. Figure 51 on page 92 shows the use of the LCF
pointer. These pointers allow you to cross from the ITEM database to the logical
child ORDITEM in the ORDER database. However, although you are able to cross
databases using the logical child pointer, you have only gone from ITEM to the
logical child ORDITEM. To go to the ORDER segment, use the physical parent
pointer explained in the next section.

LCF and LCL pointers are direct pointers. They contain the 4-byte direct address of
the segment to which they point. This means the logical child segment, the segment

Figure 50. Symbolic Logical Parent (LP) Pointer

Pointing and Pointers in Logical Relationships

Chapter 5. Choosing Additional Database Functions 91

being pointed to, must be in an HD database. The logical parent can be in a HISAM
or HD database. If the logical parent is in a HISAM database, the logical child
segment must point to it using a symbolic pointer. LCF and LCL pointers are stored
in the logical parent’s prefix, along with any other pointers. Figure 51 shows a LCF
pointer.

In Figure 51, the LCF pointer points from the logical parent ITEM to the logical child
ORDITEM. Because it is a direct pointer, it can only point to an HD database,
although, it can exist in a HISAM or an HD database. The LCF pointer is in the
prefix of the logical parent and consists of the 4-byte RBA of the logical child.

Physical Parent Pointer
Physical parent (PP) pointers point from a segment to its physical parent. They are
generated automatically by IMS for all HD databases involved in logical
relationships. PP pointers are put in the prefix of all logical child and logical parent
segments. They are also put in the prefix of all segments on which a logical child or
logical parent segment is dependent in its physical database. This creates a path
from a logical child or its logical parent back up to the root segment on which it is
dependent. Because all segments on which a logical child or logical parent is
dependent are chained together with PP pointers to a root, access to these
segments is possible in reverse of the usual order.

In Figure 51, you saw that you could cross from the ITEM to the ORDER database
when virtual pairing was used, and this was done using logical child pointers.
However, the logical child pointer only got you from ITEM to the logical child
ORDITEM. Figure 52 on page 93 shows how to get to ORDER. The PP pointer in
ORDITEM points to its physical parent ORDER. If ORDER and ITEM are in an HD
database but are not root segments, they (and all other segments in the path of the
root) would also contain PP pointers to their physical parents.

PP pointers are direct pointers. They contain the 4-byte direct address of the
segment to which they point. PP pointers are stored in a logical child or logical
parent’s prefix, along with any other pointers.

Figure 51. Logical Child First (LCF) Pointer (Used in Virtual Pairing Only)

Pointing and Pointers in Logical Relationships

92 IMS/ESA V6 Admin Guide: DB

In Figure 52, the PP pointer points from the logical child ORDITEM to its physical
parent ORDER. It is generated automatically by IMS for all logical child and logical
parent segments in HD databases. In addition, it is in the prefix of the segment that
contains it and consists of the 4-byte direct address of its physical parent. PP
pointers are generated in all segments from the logical child or logical parent back
up to the root.

Logical Twin Pointer
Logical twin pointers are used only in logical relationships with virtual pairing.
Logical twins are multiple logical child segments that point to the same occurrence
of a logical parent. Two types of logical twin pointers can be used:

v Logical twin forward (LTF) pointers, or

v The combination of logical twin forward (LTF) and logical twin backward (LTB)
pointers

An LTF pointer points from a specific logical twin to the logical twin stored after it.
An LTB pointer can only be specified in conjunction with an LTF pointer. When
specified, an LTB points from a given logical twin to the logical twin stored before it.
Logical twin pointers work in a similar way to the physical twin pointers used in HD
databases. As with physical twin backward pointers, LTB pointers improve
performance on delete operations. They do this when the delete that causes DASD
space release is a delete from the physical access path. Similarly, PTB pointers
improve performance when the delete that causes DASD space release is a delete
from the logical access path.

Figure 53 on page 94 shows use of the LTF pointer. In this example, ORDER 123
has two items: bolt and washer. The ITEMORD segments beneath the two ITEM
segments use LTF pointers. If the ORDER database is entered, it can be crossed to
the ITEMORD segment for bolts in the ITEM database. Then, to retrieve all items
for ORDER 123, the LTF pointers in the ITEMORD segment can be followed. In
Figure 53 only one other ITEMORD segment exists, and it is for washers. The LTF
pointer in this segment, because it is the last twin in the chain, contains zeros.

LTB pointers on dependent segments improve performance when deleting a real
logical child in a virtually paired logical relationship. This improvement occurs when
the delete is along the physical path.

LTF and LTB pointers are direct pointers. They contain the 4-byte direct address of
the segment to which they point. This means LTF and LTB pointers can only exist in
HD databases. Figure 53 on page 94 shows a LTF pointer.

Figure 52. Physical Parent (PP) Pointer

Pointing and Pointers in Logical Relationships

Chapter 5. Choosing Additional Database Functions 93

In Figure 53, the LTF pointer points from a specific logical twin to the logical twin
stored after it. In this example, it points from the ITEMORD segment for bolts to the
ITEMORD segment for washers. Because it is a direct pointer, the LTF pointer can
only point to an HD database. The LTF pointer is in the prefix of a logical child
pointer and consists of the 4-byte RBA of the logical twin stored after it.

Sequence of Pointers in a Segment’s Prefix
This section contains diagnosis, modification, or tuning information.

When a segment contains more than one type of pointer and is involved in a logical
relationship, pointers are put in the segment’s prefix in the following sequence:

Multiple PCF and PCL pointers can exist in a segment type, however, more than
one of the other types of pointers can not.

Counter Used in Logical Relationships
IMS puts a 4-byte counter in all logical parents that do not have logical child
pointers. The counter is stored in the logical parent’s prefix and contains a count of
the number of logical children pointing to this logical parent. The counter is
maintained by IMS and is used to handle delete operations properly. If the count is
greater than zero, the logical parent cannot be deleted from the database because
there are still logical children pointing to it.

Figure 53. Logical Twin Forward (LTF) Pointer (Used in Virtual Pairing Only)

Pointing and Pointers in Logical Relationships

94 IMS/ESA V6 Admin Guide: DB

Intersection Data
When two segments are logically related, data can exist that is unique to only that
relationship. In Figure 54, for example, one of the items ordered in ORDER 123 is
5000 bolts. The quantity 5000 is specific to this order (ORDER 123) and this item
(bolts). It does not belong to either the order or item on its own. Similarly, in
ORDER 123, 6000 washers are ordered. Again, this data is concerned only with
that particular order and item combination.

This type of data is called intersection data, since it has meaning only for the
specific logical relationship. The quantity of an item could not be stored in the
ORDER 123 segment, because different quantities are ordered for each item in
ORDER 123. Nor could it be stored in the ITEM segment, because for each item
there can be several orders, each requesting a different quantity. Because the
logical child segment links the ORDER and ITEM segments together, data that is
unique to the relationship between the two segments can be stored in the logical
child.

The two types of intersection data are: fixed intersection data (FID) and variable
intersection data (VID).

Fixed Intersection Data
Data stored in the logical child is called fixed intersection data (FID). When
symbolic pointing is used, it is stored in the data part of the logical child after the
LPCK. When direct pointing is used, it is the only data in the logical child segment.
Because symbolic pointing is used in Figure 54, BOLT and WASHER are the LPCK,
and the 5000 and 6000 are the FID. The FID can consist of several fields, all of
them residing in the logical child segment.

Variable Intersection Data
VID is used when you have data that is unique to a relationship, but several
occurrences of it exist. For example, suppose you cannot supply in one shipment
the total quantity of an item required for an order. You need to store delivery data
showing the quantity delivered on a specified date. The delivery date is not
dependent on either the order or item alone. It is dependent on a specific order-item
combination. Therefore, it is stored as a dependent of the logical child segment.
The data in this dependent of the logical child is called variable intersection data.

Figure 54. Fixed Intersection Data

Intersection Data

Chapter 5. Choosing Additional Database Functions 95

For each logical child occurrence, there can be as many occurrences of dependent
segments containing intersection data as you need.

Figure 55 shows variable intersection data. In the ORDER 123 segment for the item
BOLT, 3000 were delivered on March 2 and 1000 were delivered on April 3.
Because of this, two occurrences of the DELIVERY segment exist. Multiple segment
types can contain intersection data for a single logical child segment. In addition to
the DELIVERY segment shown in the figure, note the SCHEDULE segment type.
This segment type shows the planned shipping date and the number of items to be
shipped. Segment types containing VID can all exist at the same level in the
hierarchy as shown in the figure, or they can be dependents of each other.

FID, VID, and Physical Pairing
In the previous figures, intersection data has been stored in a unidirectional logical
relationship. It works exactly the same way in the two bidirectional logical
relationships. However, when physical pairing is used, VID can only be stored on
one side of the relationship. It does not matter on which side it is stored. An
application program can access it using either the ORDER or ITEM database. FID,
on the other hand, must be stored on both sides of the relationship when physical
pairing is used. IMS automatically maintains the FID on both sides of the
relationship when it is changed on one side. However, extra time is required for
maintenance, and extra space is required on DASD for FID in a physically paired
relationship.

Figure 55. Variable Intersection Data

Intersection Data

96 IMS/ESA V6 Admin Guide: DB

Establishing Logical Relationships Between Segments in the Same
Database (Recursive Structures)

Logical relationships can be established between segments in two or more physical
databases. Logical relationships can also be established between segments in the
same database. The logical data structure that results is called a recursive
structure.

Most often, recursive structures are defined in manufacturing for bill-of-materials
type applications. Suppose, for example, a company manufactures bicycles. The
first model the manufacturer makes is Model 1, which is a boy’s bicycle. Figure 56
shows the list of parts needed to manufacture this bicycle. The number next to each
part is the quantity of that part needed to make one Model 1 bicycle. In
manufacturing, it is necessary to know the steps that must be executed to
manufacture the end product.

For each step, the parts needed must be available and any subassemblies used in
a step must have been assembled in previous steps. Figure 57 on page 98 shows
the steps required to manufacture the Model 1 bicycle. A housing, brake, and rear
sprocket are needed to make the rear hub assembly in step 2. Only then can the
part of step 3 that involves building the rear wheel assembly be executed. This part
of step 3 also requires availability of a 26-inch tire, a rim, and 36 spokes.

Figure 56. Model 1 Parts List

Establishing Logical Relationships Bewteen Segments

Chapter 5. Choosing Additional Database Functions 97

The same company manufactures a Model 2 bicycle, which is for girls. The parts
and assembly steps for this bicycle are exactly the same, except that the bicycle
frame is a girl’s frame.

If the manufacturer stored all parts and subassemblies for both models as separate
segments in the database, a great deal of duplicate data would exist. Figure 58 on
page 99 shows the segments that must be stored just for the Model 1 bicycle. A
similar set of segments must be stored for the Model 2 bicycle, except that it has a
girl’s bicycle frame. As you can see, this leads to duplicate data and the associated
maintenance problems. The solution to this problem is to create a recursive
structure. Figure 59 on page 100 shows how this is done using the data for the
Model 1 bicycle.

Figure 57. Assembly Steps to Make a Model 1 Bicycle

Establishing Logical Relationships Bewteen Segments

98 IMS/ESA V6 Admin Guide: DB

Figure 58. Model 1 Components and Subassemblies

Establishing Logical Relationships Bewteen Segments

Chapter 5. Choosing Additional Database Functions 99

In Figure 59, two types of segments exist: PART and COMPONENT segments. A
unidirectional logical relationship has been established between them. The PART
segment for Model 1 is a root segment. Beneath it are nine occurrences of
COMPONENT segments. Each of these is a logical child that points to another
PART root segment. (Only two of the pointers are actually shown to keep the figure
simple.) However, the other PART root segments show the parts required to build
the component.

For example, the pedal assembly component points to the PART root segment for
assembling the pedal. Stored beneath this segment are the following parts that
must be assembled: one front sprocket, one crank, and two pedals. With this
structure, much of the duplicate data otherwise stored for the Model 2 bicycle can
be eliminated.

Figure 60 on page 101 shows the segments, in addition to those in Figure 59, that
must be stored in the database record for the Model 2 bicycle. The logical children
in the figure, except the one for the unique component, a 21″ girl’s frame, can point
to the same PART segments as are shown in Figure 59. A separate PART segment
for the pedal assembly, for example, need not exist. The database record for both
Model 1 and 2 have the same pedal assembly, and by using the logical child, it can
point to the same PART segment for the pedal assembly.

Figure 59. Database Records for the Model 1 Bicycle

Establishing Logical Relationships Bewteen Segments

100 IMS/ESA V6 Admin Guide: DB

One thing to note about recursive structures is that the physical parent and the
logical parent of the logical child are the same segment type. For example, in
Figure 59 on page 100, the PART segment for Model 1 is the physical parent of the
COMPONENT segment for pedal assembly. The PART segment for pedal assembly
is the logical parent of the COMPONENT segment for pedal assembly.

Paths Used in Logical Relationships
The relationship between physical parent and logical child in a physical database
and the LP pointer in each logical child creates a physical parent to logical parent
path. To define use of the path, the logical child and logical parent are defined as a
concatenated segment type, as shown in Figure 61. Definition of the path and the
concatenated segment type is done in what is called a logical database. The logical
database is examined later in this chapter.

Figure 60. Extra Database Records Required for the Model 2 Bicycle

Figure 61. Defining a Physical Parent to Logical Parent Path in a Logical Database

Establishing Logical Relationships Bewteen Segments

Chapter 5. Choosing Additional Database Functions 101

In addition, when LC pointers are used in the logical parent and logical twin and PP
pointers are used in the logical child, a logical parent to physical parent path is
created. To define use of the path, the logical child and physical parent are defined
as one concatenated segment type that is a physical child of the logical parent, as
shown in Figure 62. Again, definition of the path is done in a logical database.

When use of a physical parent to logical parent path is defined, the physical parent
is the parent of the concatenated segment type. When an application program
retrieves an occurrence of the concatenated segment type from a physical parent,
the logical child and its logical parent are concatenated and presented to the
application program as one segment. When use of a logical parent to physical
parent path is defined, the logical parent is the parent of the concatenated segment
type. When an application program retrieves an occurrence of the concatenated
segment type from a logical parent, an occurrence of the logical child and its
physical parent are concatenated and presented to the application program as one
segment.

In both cases, the physical parent or logical parent segment included in the
concatenated segment is called the destination parent. For a physical parent to
logical parent path, the logical parent is the destination parent in the concatenated
segment. For a logical parent to physical parent path, the physical parent is the
destination parent in the concatenated segment.

The Logical Child Segment
When defining a logical child in its physical database, the length specified for it
must be large enough to contain the concatenated key of the logical parent. Any
length greater than that can be used for intersection data.

To identify which logical parent is pointed to by a logical child, the concatenated key
of the logical parent must be present. Each logical child segment must be present
in the application program’s I/O area when the logical child is initially presented for
loading into the database. However, if the logical parent is in an HD database, its
concatenated key might not be written to storage when the logical child is loaded. If
the logical parent is in a HISAM database, a logical child in storage must contain
the concatenated key of its logical parent.

For logical child segments, you can define a special operand on the PARENT=
parameter of the SEGM statement. This operand determines whether a symbolic
pointer to the logical parent is stored as part of the logical child segment on the

Figure 62. Defining a Logical Parent to Physical Parent Path in a Logical Database

Paths Used in Logical Relationships

102 IMS/ESA V6 Admin Guide: DB

storage device. If PHYSICAL is specified, the concatenated key of the logical parent
is stored with each logical child segment. If VIRTUAL is specified, only the
intersection data portion of each logical child segment is stored.

When a concatenated segment is retrieved through a logical database, it contains
the logical child segment, which consists of the concatenated key of the destination
parent, followed by any intersection data. In turn, this is followed by data in the
destination parent. Figure 63 shows the format of a retrieved concatenated segment
in the I/O area. The concatenated key of the destination parent is returned with
each concatenated segment to identify which destination parent was retrieved. IMS
gets the concatenated key from the logical child in the concatenated segment or by
constructing the concatenated key. If the destination parent is the logical parent and
its concatenated key has not been stored with the logical child, IMS constructs the
concatenated key and presents it to the application program. If the destination
parent is the physical parent, IMS must always construct its concatenated key.

Defining Sequence Fields for Databases Using Logical Relationships
To avoid potential problems in processing databases using logical relationships,
unique sequence fields should be defined in all logical parent segments. In all
segments a logical parent is dependent on in its physical database. When unique
sequence fields are not defined in all segments on the path to and including a
logical parent, multiple logical parents in a database can have the same
concatenated key. When this happens, problems can arise during and after initial
database load when symbolic logical parent pointers in logical child segments are
used to establish position on a logical parent segment.

At initial database load time, if logical parents with non-unique concatenated keys
exist in a database, the resolution utilities (described in “Chapter 14. Tuning Your
Database” on page 323) attach all logical children with the same concatenated key
to the first logical parent in the database with that concatenated key.

When inserting or deleting a concatenated segment and position for the logical
parent, part of the concatenated segment is determined by the logical parent’s
concatenated key. Positioning for the logical parent starts at the root and stops on
the first segment at each level of the logical parent’s database that satisfies the key
equal condition for that level. If a segment is missing on the path to the logical
parent being inserted, a GE status code is returned to the application program
when using this method to establish position in the logical parent’s database.

Defining Sequence Fields for Real Logical Children
If the sequence field of a real logical child consists of any part of the logical parent’s
concatenated key, PHYSICAL must be specified on the PARENT= parameter in the
SEGM statement for the logical child. This will cause the concatenated key of the
logical parent to be stored with the logical child segment.

Figure 63. Format of a Concatenated Segment Returned to User I/O Area

The Logical Child Segment

Chapter 5. Choosing Additional Database Functions 103

Defining Sequence Fields for Virtual Logical Children
As a general rule, a segment can have only one sequence field. However, in the
case of virtual pairing, multiple FIELD statements can be used to define a logical
sequence field for the virtual logical child.

A sequence field must be specified for a virtual logical child if, when accessing it
from its logical parent, you need real logical child segments retrieved in an order
determined by data in a field of the virtual logical child as it could be seen in the
application program I/O area. This sequence field can include any part of the
segment as it appears when viewed from the logical parent (that is, the
concatenated key of the real logical child’s physical parent followed by any
intersection data). Because it can be necessary to describe the sequence field of a
logical child as accessed from its logical parent in non-contiguous pieces, multiple
FIELD statements with the SEQ parameter present are permitted. Each statement
must contain a unique fldname1 parameter.

Relationship of Control Blocks When a Logical Relationship Is Used
When a logical relationship is used, you must define the physical databases
involved in the relationship to IMS. This is done using a physical DBD. In addition,
many times you must define the logical structure of IMS since this is the structure
the application program perceives. This is done using a logical DBD. A logical DBD
is needed because the application program’s PCB references a DBD, and the
physical DBD does not reflect the logical data structure the application program
needs to access. Finally, the application program needs a PSB, consisting of one or
more PCBs. The PCB that is used when processing with a logical relationship
points to the logical DBD when one has been defined. This PCB indicates which
segments in the logical database the application program can process. It also
indicates what type of processing the application program can perform on each
segment.

Figure 64 shows the relationship between these three control blocks. It assumes
that the logical relationship is established between two physical databases. The
following sections explain how the physical and logical DBD are coded when a
logical relationship is defined.

Figure 64. Relationship of Control Blocks When a Logical Relationship is Used

Defining Sequence Fields for Children

104 IMS/ESA V6 Admin Guide: DB

How to Specify Use of Logical Relationships in the Physical DBD
For each of the databases involved in a logical relationship, you must code a
physical DBD. All statements in the physical DBD are coded with the same format
used when a logical relationship is not defined, except for the SEGM and LCHILD
statements. The SEGM statement, which describes a segment and its length and
position in the database hierarchy, is expanded to include the new types of pointers.
The LCHILD statement is added to define the logical relationship between the two
segment types. Figure 66 on page 106 shows an example of how the physical DBD
is coded.

In the SEGM statements of the following examples, only the pointers required with
logical relationships are shown. No pointers required for use with HD databases are
shown. When actually coding a DBD, you must ask for these pointers in the PTR=
parameter. Otherwise, IMS will not generate them once another type of pointer is
specified.

Figure 65 shows the layout of segments. Figure 66 on page 106 shows physical
DBDs for unidirectional relationships.

This is the hierarchic structure of the two databases involved in the logical
relationship. In this example, we are defining a unidirectional relationship using

Figure 65. Layouts of Segments Used in the Examples

How to Specify Use of Logical Relationships

Chapter 5. Choosing Additional Database Functions 105

symbolic pointing. ORDITEM has an LPCK and FID, and DELIVERY and
SCHEDULE are VID.

This is the DBD for the ORDER database:
DBD NAME=ORDDB
SEGM NAME=ORDER,BYTES=50,FREQ=28000,PARENT=0
FIELD NAME=(ORDKEY,SEQ),BYTES=10,START=1,TYPE=C
FIELD NAME=ORDATE,BYTES=6,START=41,TYPE=C
SEGM NAME=ORDITEM,BYTES=17,PARENT=((ORDER),(ITEM,P,ITEMDB))
FIELD NAME=(ITEMNO,SEQ),BYTES=8,START=1,TYPE=C
FIELD NAME=ORDITQTY,BYTES=9,START=9,TYPE=C,
SEGM NAME=DELIVERY,BYTES=50,PARENT=ORDITEM
FIELD NAME=(DELDAT,SEQ),BYTES=6,START=1,TYPE=C
SEGM NAME=SCHEDULE,BYTES=50,PARENT=ORDITEM
FIELD NAME=(SCHEDAT,SEQ),BYTES=6,START=1,TYPE=C
DBDGEN
FINISH
END

This is the DBD for the ITEM database:
DBD NAME=ITEMDB
SEGM NAME=ITEM,BYTES=60,FREQ=50000,PARENT=0
FIELD NAME=(ITEMKEY,SEQ),BYTES=8,START=1,TYPE=C
LCHILD NAME=(ORDITEM,ORDDB)
DBDGEN
FINISH
END

Notes to Figure 66:

In the ORDER database, the DBD coding that differs from normal DBD coding is
that for the logical child ORDITEM.

In the SEGM statement for ORDITEM:

1. The BYTES= parameter is 17. The length specified is the length of the LPCK,
plus the length of the FID. The LPCK is the key of the ITEM segment, which is
8 bytes long. The length of the FID is 9 bytes.

2. The PARENT= parameter has two parents specified. Two parents are specified
because ORDITEM is a logical child and therefore has both a physical and
logical parent. The physical parent is ORDER. The logical parent is ITEM,
specified after ORDER. Because ITEM exists in a different physical database

Figure 66. Physical DBDs for Unidirectional Relationship Using Symbolic Pointing

How to Specify Use of Logical Relationships

106 IMS/ESA V6 Admin Guide: DB

from ORDITEM, the name of its physical database, ITEMDB, must be specified.
Between the segment name ITEM and the database name ITEMDB is the letter
P. The letter P stands for physical. The letter P specifies that the LPCK is to be
stored on DASD as part of the logical child segment.

In the FIELD statements for ORDITEM:

1. ITEMNO is the sequence field of the ORDITEM segment and is 8 bytes long.
ITEMNO is the LPCK. The logical parent is ITEM, and if you look at the FIELD
statement for ITEM in the ITEM database, you will see ITEM’s sequence field is
ITEMKEY, which is 8 bytes long. Because ITEM is a root segment, the LPCK is
8 bytes long.

2. ORDITQTY is the FID and is coded normally.

In the ITEM database, the DBD coding that differs from normal DBD coding is that
an LCHILD statement has been added. This statement names the logical child
ORDITEM. Because the ORDITEM segment exists in a different physical database
from ITEM, the name of its physical database, ORDDB, must be specified.

Specifying Bidirectional Logical Relationships
Figure 66 on page 106 shows the coding for a unidirectional relationship. When
defining a bidirectional relationship with physical pairing, you need to include an
LCHILD statement under both logical parents. In addition to other pointers, you
need to include the PAIRED operand on the POINTER= parameter of the SEGM
statements for both logical children.

When defining a bidirectional relationship with virtual pairing, you need to code an
LCHILD statement only for the real logical child. On the LCHILD statement, you
code POINTER=SNGL or DBLE to get logical child pointers. You code the PAIR=
operand to indicate the virtual logical child that is paired with the real logical child.
When you define the SEGM statement for the real logical child, the PARENT=
parameter identifies both the physical and logical parents. You should specify logical
twin pointers (in addition to any other pointers) on the POINTER= parameter. Also,
you should define a SEGM statement for the virtual logical child even though it
does not exist. On this SEGM statement, you specify PAIRED on the POINTER=
parameter. In addition, you specify a SOURCE= parameter. On the SOURCE=
parameter, you specify the SEGM name and DBD name of the real logical child.
DATA must always be specified when defining SOURCE= on a virtual logical child
SEGM statement.

For more information on coding logical relationships, see IMS/ESA Utilities
Reference: Database Manager.

Checklist of Rules for Defining Logical Relationships in Physical
Databases

This section provides the list of rules that must be followed when defining logical
relationships in physical databases. In all cases, references are to segment types,
not occurrences.

Logical Child Rules
v A logical child must have a physical and a logical parent.

v A logical child can have only one physical and one logical parent.

How to Specify Use of Logical Relationships

Chapter 5. Choosing Additional Database Functions 107

v A logical child is defined as a physical child in the physical database of its
physical parent.

v A logical child is always a dependent segment in a physical database, and can,
therefore, be defined at any level except the first level of a database.

v A logical child in its physical database cannot have a physical child defined at the
next lower level in the database that is also a logical child.

v A logical child can have a physical child. However, if a logical child is physically
paired with another logical child, only one of the paired segments can have
physical children.

Logical Parent Rules
v A logical parent can be defined at any level in a physical database, including the

root level.

v A logical parent can have one or more logical children. Each logical child related
to the same logical parent defines a logical relationship.

v A segment in a physical database cannot be defined as both a logical parent and
a logical child.

v A logical parent can be defined in the same physical database as its logical child,
or in a different physical database.

Physical Parent Rules
A physical parent of a logical child cannot also be a logical child.

How to Specify Use of Logical Relationships in the Logical DBD
To identify which segment types are used in a logical data structure, you must code
a logical DBD. Figure 67 on page 109 shows an example of how the logical DBD is
coded. The example is a logical DBD for the same physical databases defined in
the previous section.

When defining a segment in a logical database, you can specify whether the
segment is returned to the program’s I/O area by using the KEY or DATA operand
on the SOURCE= parameter of the SEGM statement. DATA returns both the key
and data portions of the segment to the I/O area. KEY returns only the key portion,
and not the data portion of the segment to the I/O area.

When the SOURCE= parameter is used on the SEGM statement of a concatenated
segment, the KEY and DATA parameters control which of the two segments, or
both, is put in the I/O area on retrieval calls. In other words, you define the
SOURCE= parameter twice for a concatenated segment type, once for the logical
child portion and once for the destination parent portion.

Figure 67 on page 109 illustrates the logical data structure you need to create in the
application program. It is implemented with a unidirectional logical relationship using
symbolic pointing. The root segment is ORDER from the ORDER database.
Dependent on ORDER is ORDITEM, the logical child, concatenated with its logical
parent ITEM. The application program receives both segments in its I/O area when
a single call is issued for ORDIT. DELIVERY and SCHEDULE are VID.

Rules for Defining Logical Relationships

108 IMS/ESA V6 Admin Guide: DB

The following information is the logical DBD for the logical data structure shown
above:
DBD NAME=ORDLOG,ACCESS=LOGICAL
DATASET LOGICAL
SEGM NAME=ORDER,SOURCE=((ORDER,DATA,ORDDB))
SEGM NAME=ORDIT,PARENT=ORDER, X

SOURCE=((ORDITEM,DATA,ORDDB),(ITEM,DATA,ITEMDB))
SEGM NAME=DELIVERY,PARENT=ORDIT,SOURCE=((DELIVERY,DATA,ORDDB))
SEGM NAME=SCHEDULE,PARENT=ORDIT,SOURCE=((SCHEDULE,DATA,ORDDB))
DBDGEN
FINISH
END

Notes to Figure 67:

1. The DBD statement has the name of the logical DBD, in this example
ORDLOG. As with physical DBDs, this name must be unique and must be the
same name as specified in the MBR operand of the DBDGEN procedure.
ACCESS=LOGICAL simply says this is a logical DBD.

2. The DATASET statement always says LOGICAL, meaning a logical DBD. No
other parameters can be specified on this statement, however, ddnames for
data sets are all specified in the DATASET statements in the physical DBDs.

3. The SEGM statements show which segments are to be included in the logical
database. The only operands allowed on the SEGM statements for a logical
DBD are NAME=, PARENT=, and SOURCE=. All other information about the
segment is defined in the physical DBD.

v The first SEGM statement defines the root segment ORDER.

The NAME= operand specifies the name used in the PCB to refer to this
segment. This name is used by application programmers when coding SSAs.
In this example, the segment name is the same as the name used in the
physical DBD - ORDER. However, the segment could have a different name
from that specified in its physical DBD.

The SOURCE= operand tells IMS where the data for this segment is to come
from. First the name of the segment type appears in its physical database,
which is ORDER. DATA says that the data in this segment needs to be put in
the application program’s I/O area. ORDDB is the name of the physical
database in which the ORDER segment exists.

No FIELD statements are coded in the logical DBD. IMS picks the statements
up from the physical DBD, so when accessing the ORDER segment in this
logical data structure, the application program could have SSAs referring to

Figure 67. Logical DBD for a Unidirectional Relationship Using Symbolic Pointing

Use of Logical Relationships in the Logical DBD

Chapter 5. Choosing Additional Database Functions 109

ORDKEY or ORDATE. These fields were defined for the ORDER segments in
its physical DBD, as shown in Figure 66 on page 106.

v The second SEGM statement is for the ORDIT segment. The ORDIT
segment is made up of the logical child ORDITEM, concatenated with its
logical parent ITEM. As you can see, the SOURCE= operand identifies both
the ORDITEM and ITEM segments in their different physical databases.

v The third and fourth SEGM statements are for the VID DELIVERY and
SCHEDULE. These SEGM statements must be placed in the logical DBD in
the same relative order they appear in the physical DBD. In the physical
DBD, DELIVERY is to the left of SCHEDULE.

Checklist of Rules for Defining Logical Databases
Before the rules for defining logical databases can be described, you need to know
the following definitions:

v Crossing a logical relationship

v The first and additional logical relationships crossed

Also, a logical DBD is needed only when an application program needs access to a
concatenated segment or needs to cross a logical relationship.

Definition of Crossing a Logical Relationship
A logical relationship is considered crossed when it is used in a logical database to
access a segment that is:

v A physical parent of a destination parent in the destination parent’s database

v A physical dependent of a destination parent in the destination parent’s physical
database

If a logical relationship is used in a logical database to access a destination parent
only, the logical relationship is not considered crossed.

In Figure 68 on page 111, DBD1 and DBD2 are two physical databases with a
logical relationship defined between them. DBD3 through DBD6 are four logical
databases that can be defined from the logical relationship between DBD1 and
DBD2. With DBD3, no logical relationship is crossed, because no physical parent or
physical dependent of a destination parent is included in DB3. With DBD4 through
DBD6, a logical relationship is crossed in each case, because each contains a
physical parent or physical dependent of the destination parent.

Use of Logical Relationships in the Logical DBD

110 IMS/ESA V6 Admin Guide: DB

Definition of First and Additional Logical Relationships Crossed
More than one logical relationship can be crossed in a hierarchic path in a logical
database. Figure 69 on page 112 shows three physical databases (DBD1, DBD2
and DBD3) in which logical relationships have been defined. Also in the figure are
two (of many) logical databases (DBD4 and DBD5) that can be defined from the
logical relationships in the physical databases. In DBD4, the two concatenated
segments BF and DI allow access to all segments in the hierarchic paths of their
destination parents. If either logical relationship or both is crossed, each is
considered the first logical relationship crossed. This is because each concatenated
segment type is reached by following the physical hierarchy of segment types in
DBD1.

Figure 68. Definition of Crossing a Logical Relationship

Rules for Defining Logical Databases

Chapter 5. Choosing Additional Database Functions 111

In DBD5 in Figure 69, an additional concatenated segment type GI, is defined that
was not included in DBD4. GI allows access to segments in the hierarchic path of
the destination parent if crossed. When the logical relationship made possible by
concatenated segment GI is crossed, this is an additional logical relationship
crossed. This is because, from the root of the logical database, the logical
relationship made possible by concatenated segment type BF must be crossed to
allow access to concatenated segment GI.

When the first logical relationship is crossed in a hierarchic path of a logical
database, access to all segments in the hierarchic path of the destination parent is
made possible as follows:

v Parent segments of the destination parent are included in the logical database as
dependents of the destination parent in reverse order, as shown in Figure 70 on
page 113.

v Dependent segments of the destination parent are included in the logical
database as dependents of the destination parent without their order changed, as
shown in Figure 70.

When an additional logical relationship is crossed in a logical database, access to
all segments in the hierarchic path of the destination parent is made possible, just
as in the first crossing.

Figure 69. The First Logical Relationship Crossed in a Hierarchic Path of a Logical Database

Rules for Defining Logical Databases

112 IMS/ESA V6 Admin Guide: DB

Rules for Defining Logical Databases
v The root segment in a logical database must be the root segment in a physical

database.

v A logical database must use only those segments and physical and/or logical
relationship paths defined in the physical DBD referenced by the logical DBD.

v The path used to connect a parent and child in a logical database must be
defined as a physical relationship path or a logical relationship path in the
physical DBD referenced by the logical DBD.

v Physical and logical relationship paths can be mixed in a hierarchic segment path
in a logical database.

v Additional physical relationship paths, logical relationship paths, or both paths
can be included after a logical relationship is crossed in a hierarchic path in a
logical database. These paths are included by going in upward directions,
downward directions, or both directions, from the destination parent. When
proceeding downward along a physical relationship path from the destination
parent, direction cannot be changed except by crossing a logical relationship.
When proceeding upward along a physical relationship path from the destination
parent, direction can be changed.

v Dependents in a logical database must be in the same relative order as they are
under their parent in the physical database. If a segment in a logical database is

Figure 70. Logical Database Hierarchy Enabled by Crossing the First Logical Relationship

Rules for Defining Logical Databases

Chapter 5. Choosing Additional Database Functions 113

a concatenated segment, the physical children of the logical child and children of
the destination parent can be in any order. The relative order of the children or
the logical child and the relative order of the children of the destination parent
must remain unchanged.

v The same concatenated segment type can be defined multiple times with
different combinations of key and data sensitivity. Each must have a distinct
name for that view of the concatenated segment. Only one of the views can have
dependent segments. Figure 71 shows the four views of the same concatenated
segment that can be defined in a logical database. A PCB for the logical
database can be sensitive to only one of the views of the concatenated segment
type.

Choosing Replace, Insert, and Delete Rules for Logical Relationships
You need to establish insert, delete, and replace rules when a segment is involved
in a logical relationship, because such segments can be updated from two paths: a
physical path and a logical path.

Figure 72 on page 115 shows example insert, delete, and replace rules. Think a
minute about the following questions:

1. Should the CUSTOMER segment in Figure 72 on page 115 be insertable by
both its physical and logical paths?

2. Should the BORROW segment be replaceable using only the physical path, or
using both the physical and logical paths?

3. If the LOANS segment is deleted using its physical path, should it be erased
from the database? Or should it be marked as physically deleted but remain
accessible using its logical path?

4. If the logical child segment BORROW or the concatenated segment
BORROW/LOANS is deleted from the physical path, should the logical path
CUST/CUSTOMER also be automatically deleted? Or should the logical path
remain?

Figure 71. Single Concatenated Segment Type Defined Multiple Times with Different
Combinations of Key and Data Sensitivity

Rules for Defining Logical Databases

114 IMS/ESA V6 Admin Guide: DB

The answer to these questions depends on the application. The enforcement of the
answer depends on your choosing the correct insert, delete, and replace rules for
the logical child, logical parent, and physical parent segments. You must first
determine your application processing requirements and then the rules that support
those requirements.

For example, the answer to question 1 depends on whether the application requires
that a CUSTOMER segment be inserted into the database before accepting the
loan. An insert rule of physical (P) on the CUSTOMER segment prohibits insertion
of the CUSTOMER segment except by the physical path. An insert rule of virtual (V)
allows insertion of the CUSTOMER segment by either the physical or logical path. It
probably makes sense for a customer to be checked (past credit, time on current
job, etc.) and the CUSTOMER segment inserted before approving the loan and
inserting the BORROW segment. Thus, the insert rule for the CUSTOMER segment
should be P to prevent the segment from being inserted logically. (Using the insert
rule in this example provides better control of the application.)

Or consider question 3. If it is possible for this loan institution to terminate a type of
loan (cancel 10% car loans, for instance, and create 12% car loans) before
everyone with a 10% loan has fully paid it, then it is possible for the LOANS
segment to be physically deleted and still be accessible from the logical path. This
can be done by specifying the delete rule for LOANS as either logical (L) or V, but
not as P.

Figure 72. Example of the Replace, Insert, and Delete Rules

Rules for Logical Relationships

Chapter 5. Choosing Additional Database Functions 115

The P delete rule prohibits physically deleting a logical parent segment before all its
logical children have been physically deleted. This means the logical path to the
logical parent is deleted first.

You need to examine all your application requirements and decide who can insert,
delete, and replace segments involved in logical relationships and how those
updates should be made (physical path only, or physical and logical path). The
insert, delete, and replace rules in the physical DBD and the PROCOPT=
parameter in the PCB are the means of control. These rules are explained in detail
in “Appendix B. Replace, Insert, and Delete Rules for Logical Relationships” on
page 409.

Performance Considerations for Logical Relationships
If you are implementing a logical relationship, you make several choices that affect
the resources needed to process logically related segments. These choices are
explained in this section.

Logical Parent Pointers
The logical child segment on DASD has a pointer to its logical parent. You choose
how this pointer is physically stored on external storage. Your choices are:

v Direct pointing (specified by coding POINTER=LPARNT in the SEGM statement
for the logical child)

v Symbolic pointing (specified by coding the PHYSICAL operand for the PARENT=
keyword in the SEGM statement for the logical child)

v Both direct and symbolic pointing

The advantages of direct pointers are:

v Because direct pointers are only 4 bytes long, they are usually shorter than
symbolic pointers. Therefore, less DASD space is generally required to store
direct pointers.

v Direct pointers usually give faster access to logical parent segments, except
possibly HDAM logical parent segments, which are roots. Symbolic pointers
require extra resources to search an index for a HIDAM database. Also, with
symbolic pointers, DL/I has to navigate from the root to the logical parent if the
logical parent is not a root segment.

The advantages of symbolic pointers are:

v Symbolic pointers are stored as part of the logical child segment on DASD.
Having the symbolic key stored on DASD can save the resources required to
format a logical child segment in the user’s I/O area. Remember, the symbolic
key always appears in the I/O area as part of the logical child. When retrieving a
logical child, IMS has to construct the symbolic key if it is not stored on DASD.

v Logical parent databases can be reorganized without the logical child database
having to be reorganized. This applies to unidirectional and bidirectional
physically paired relationships (when symbolic pointing is used).

Symbolic pointing must be used:

v When pointing to a HISAM logical parent database

v If you need to sequence logical child segments (except virtual logical children) on
any part of the symbolic key

Rules for Logical Relationships

116 IMS/ESA V6 Admin Guide: DB

KEY/DATA Considerations
When you include a concatenated segment as part of a logical DBD, you control
how the concatenated segment appears in the user’s I/O area. You do this by
specifying either KEY or DATA on the SOURCE= keyword of the SEGM statement
for the concatenated segment. A concatenated segment consists of a logical child
followed by a logical (or destination) parent. You specify KEY or DATA for both
parts. For example, you can access a concatenated segment and ask to see the
following segment parts in the I/O area:

v The logical child part only

v The logical (or destination) parent part only

v Both parts

By carefully choosing KEY or DATA, you can retrieve a concatenated segment with
fewer processing and I/O resources. For example:

v Assume you have the following unidirectional logical relationship:

v Assume you have the following logical structure:

v Finally, assume you only need to see the data for the LINEITEM part of the
concatenated segment.

You can avoid the extra processing and I/O required to access the MODEL part of
the concatenated segment if you:

v Code the SOURCE keyword of the concatenated segment’s SEGM statement as:
SOURCE=(lcsegname,DATA,lcdbname),(lpsegname,KEY,lpdbname)

v Store a symbolic logical parent pointer in LINEITEM. If you do not store the
symbolic pointer, DL/I must access MODEL and PRODUCT to construct it.

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 117

To summarize, do not automatically choose DATA sensitivity for both the logical
child and logical parent parts of a concatenated segment. If you do not need to see
the logical parent part, code KEY sensitivity for the logical parent and store the
symbolic logical parent pointer on DASD.

Sequencing Logical Twin Chains
With virtual pairing, it is possible to sequence the real logical child on physical twin
chains and the virtual logical child on logical twin chains. If possible, avoid
operations requiring that you sequence logical twins. When a logical twin chain is
followed, DL/I usually has to access multiple database records. Accessing multiple
database records increases the resources required to process the call.

This problem of increased resource requirements to process calls is especially
severe when you sequence the logical twin chain on all or part of the symbolic
logical parent pointer. Because a virtual logical child is not stored, it is necessary to
construct the symbolic logical parent pointer to determine if a virtual logical child
satisfies the sequencing operation. DL/I must follow physical parent pointers to
construct the symbolic pointers. This process takes place for each virtual logical
child in the logical twin chain until the correct position is found for the sequencing
operation.

Placement of the Real Logical Child in a Virtually Paired Relationship
In placing the real logical child in a virtually paired relationship, here are some
considerations:

v If you need the logical child sequenced in only one of the logically related
databases, put the real logical child in that database.

v If you must sequence the logical child in both logically related databases, put the
real logical child in the database from which it is most often retrieved.

v Try to place the real logical child so logical twin chains are as short as possible.
This placement decreases the number of database records that must be
examined to follow a logical twin chain.

Note: You cannot store a real logical child in a HISAM database, because you
cannot have logical child pointers (which are direct pointers) in a HISAM
database.

Using Secondary Indexes
Secondary indexes are indexes that allow you to process a segment type in a
sequence other than the one defined by the segment’s key. A secondary index can
also be used to process a segment type based on a qualification in a dependent
segment.

Why Secondary Indexes?
When you design your database records, you design them to meet the processing
requirements of many applications. You decide what segments will be in a database
record and what fields will be in a segment. You decide the order of segments in a
database record and fields within a segment. You also decide which field in the root
segment will be the key field, and whether the key field will be unique. All these
decisions are based on what works best for all your application’s processing
requirements.

Performance Considerations for Logical Relationships

118 IMS/ESA V6 Admin Guide: DB

However, the choices you make might suit the processing requirements of some
applications better than others. For example, suppose you have an educational
database, and a database record in it looks like this:

Suppose the root segment, COURSE, has the following fields in it, and the course
number field is a unique key field:

You chose COURSE as the root and course number as a unique key field partly
because most applications requested information based on course numbers. For
these applications, access to the information needed from the database record is
fast. For a few of your applications, however, the organization of the database
record does not provide such fast access. One application, for example, would be
to access the database by student name and then get a list of courses a student is
taking. Given the order in which the database record is now organized, access to
the courses a student is taking requires a sequential scan of the entire database.
Each database record has to be checked for an occurrence of the STUDENT
segment. When a database record for the specific student is found, then the
COURSE segment has to be referenced to get the name of the course the student
is taking. This type of access is relatively slow. In this situation, you can use a
secondary index that has a set of pointer segments for each student to all COURSE
segments for that student.

Another application would be to access COURSE segments by course name. In this
situation, you can use a secondary index that allows access to the database in
course name sequence (rather than by course number, which is the key field).

Secondary indexing is a solution to the different processing requirements of various
applications. It allows you to have an index based on any field in the database, and
not just the key field in the root segment.

Characteristics of Secondary Indexes
Secondary indexes can be used with HISAM, HDAM, and HIDAM databases. A
secondary index is in its own separate database and must use VSAM as its access
method. Because a secondary index is in its own database, it can be processed as
a separate database.

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 119

Secondary indexes are invisible to the application program. When an application
program needs to do processing using the secondary index, this fact is
communicated to IMS by coding the PROCSEQ= parameter in the PCB. If an
application program needs to do processing using the regular processing sequence,
PROCSEQ= is simply not coded. If the application program needs to do processing
using both the regular processing sequence and the secondary index, the
application program’s PSB must contain two PCBs, one with PROCSEQ= coded
and one without.

When two PCBs are used, it enables an application program to use two paths into
the database and two sequence fields. One path and sequence field is provided by
the regular processing sequence, and one is provided by the secondary index. The
secondary index gives an application program both an alternative way to enter the
database and an alternative way to sequentially process database records.

A final characteristic of secondary indexes is that there can be 32 secondary
indexes for a segment type and a total of 1000 secondary indexes for a single
database.

Segments Used for Secondary Indexes
Now that the concept and general characteristics of secondary indexes have been
explored, the next section looks at how a secondary index works. As shown in
Figure 73 on page 121, to set up a secondary index, three types of segments must
be defined to IMS. The three types of segments are pointer, target, and source
segments.

v Pointer Segment. The pointer segment is contained in the secondary index
database and is the only type of segment in the secondary index database. Its
format looks like this:
The first field in the prefix is the delete byte. The second field is the address of

the segment the application program retrieves from the regular database. (This
field is not present if the secondary index uses symbolic pointing. Symbolic
pointing is pointing to a segment using its concatenated key. HIDAM and HDAM
can use symbolic pointing; however, HISAM must use symbolic pointing.)

Performance Considerations for Logical Relationships

120 IMS/ESA V6 Admin Guide: DB

The data portion of the segment contains the key field and other optional fields.
(The optional fields are discussed later.) The key field contains the key. The key
gets the application program to the correct pointer segment in the secondary
index. The application program uses the address in the prefix of the pointer
segment to retrieve the necessary segment from the database. If symbolic
pointing is used, the key will get the application program to the correct pointer
segment in the secondary index. The application program uses the symbolic
pointer in the pointer segment to retrieve the necessary segment from the
database.

v Target Segment. The target segment is in the regular database, and it is the
segment the application program needs to retrieve. A target segment is the
segment to which the pointer segment points. The target segment can be at any
one of the 15 levels in the database, and it is accessed directly using the RBA or
symbolic pointer stored in the pointer segment. Physical parents of the target
segment are not examined to retrieve the target segment (except in one special
case discussed later).

v Source Segment. The source segment is also in the regular database. The
source segment contains the field (or fields) that the pointer segment has as its
key field. Data is copied from the source segment and put in the pointer
segment’s key field. The source and the target segment can be the same
segment, or the source segment can be a dependent of the target segment. The
optional fields are also copied from the source segment with one exception,
which is discussed later.

Using the education database in Figure 74 on page 122, you can see how three
segments work together. In this example, the education database is a HIDAM
database that uses RBAs rather than symbolic pointers. Suppose an application
program needs to access the education database by student name and then list all
courses the student is taking:

v The segment the application is trying to retrieve is the COURSE segment,
because the segment contains the names of courses (COURSENM field).
Therefore, COURSE is the target segment, and needs retrieval.

v In this example, the application program is going to use the student’s name in its
DL/I call to retrieve the COURSE segment. The DL/I call is qualified using
student name as its qualifier. The source segment contains the fields used to
sequence the pointer segments in the secondary index. In this example, the

Figure 73. Segments Used for Secondary Indexes

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 121

pointer segments must be sequenced by student name. The STUDENT segment
becomes the source segment. It is the fields in this segment that are copied into
the data portion of the pointer segment as the key field.

v The call from the application program invokes a search for a pointer segment
with a key field that matches the student name. Once the correct pointer
segment in the index is found, it contains the address of the COURSE segment
the application program is trying to retrieve.

Figure 75 on page 123 shows how the pointer, target, and source segments work
together.

Figure 74. Education Database Record and the Fields in It

Performance Considerations for Logical Relationships

122 IMS/ESA V6 Admin Guide: DB

COURSE is the target segment that the application program is trying to retrieve.

STUDENT is the source segment containing the one or more fields that the
application program uses as a qualifier in its call and that the data portion of a
pointer segment contains as a key.

The BAKER segment in the secondary index is the pointer segment, whose prefix
contains the address of the segment to be retrieved and whose data fields contain
the key the application program uses as a qualifier in its call.

How the Hierarchy Is Restructured
When the PROCSEQ= parameter in the PCB is coded (specifying that the
application program needs to do processing using the secondary index), the way in
which the application program perceives the database record changes.

If the target segment is the root segment in the database record, the structure the
application program perceives does not differ from the one it can access using the
regular processing sequence. However, if the target segment is not the root
segment, the hierarchy in the database record is conceptually restructured.
Figure 76 on page 124 illustrates this concept.

The target segment (as shown in the figure) is segment G. Target segment G
becomes the root segment in the restructured hierarchy. All dependents of the
target segment (segments H, J, and I) remain dependents of the target segment.
However, all segments on which the target is dependent (segments D and A) and
their subordinates become dependents of the target and are put in the leftmost
positions of the restructured hierarchy. Their position in the restructured hierarchy is
the order of immediate dependency. D becomes an immediate dependent of G, and
A becomes an immediate dependent of D.

Secondary Data Structure: This new structure is called a secondary data
structure. A processing restriction exists when using a secondary data structure,
and the target segment and the segments on which it was dependent (its physical
parents, segments D and A) cannot be inserted or deleted.

Figure 75. How a Segment Is Accessed Using a Secondary Index

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 123

Secondary Processing Sequence: The restructuring of the hierarchy in the
database record changes the way in which the application program accesses
segments. The new sequence in which segments are accessed is called the
secondary processing sequence. Figure 76 shows how the application program
perceives the database record.

If the same segment is referenced more than once as shown in Figure 76, you must
use the DBDGEN utility to generate a logical DBD that assigns alternate names to
the additional segment references. If you do not generate the logical DBD, the
PSBGEN utility will issue the message “SEG150” for the duplicate SENSEG names.

How a Secondary Index Is Stored
Secondary index databases contain root segments only. They are stored in a single
VSAM KSDS if the key in the pointer segment is unique. If keys are not unique, an
additional data set must be used (an ESDS) to store segments containing duplicate
keys. (KSDS data sets do not allow duplicate keys.) Duplicate keys exist when, for

Figure 76. How the Hierarchy in a Database Record Is Restructured When Secondary
Indexing Is Used

Performance Considerations for Logical Relationships

124 IMS/ESA V6 Admin Guide: DB

example, a secondary index is used to retrieve courses based on student name. As
shown in the following figure, several source segments could exist for each student:

Each pointer segment in a secondary index is stored in one logical record. A logical
record containing a pointer segment looks like this:

The format of the logical record is the same in both a KSDS and ESDS data set.
The pointer field at the beginning of the logical record exists only when the key in
the data portion of the segment is not unique. If keys are not unique, some pointer
segments will contain duplicate keys. These pointer segments must be chained
together, and this is done using the pointer field at the beginning of the logical
record.

Pointer segments containing duplicate keys are stored in the ESDS in LIFO (last in,
first out) sequence. When the first duplicate key segment is inserted, it is written to
the ESDS, and the KSDS logical record containing the segment it is a duplicate of
points to it. When the second duplicate is inserted, it is inserted into the ESDS in
the next available location. The KSDS logical record is updated to point to the
second duplicate. The effect of inserting duplicate pointer segments into the ESDS
in LIFO sequence is that the original pointer segment (the one in the KSDS) is
retrieved last. This retrieval sequence should not be a problem, because duplicates,
by definition, have no special sequence.

Format and Use of Fields in a Pointer Segment
This section contains diagnosis, modification, or tuning information.

Figure 77 on page 126 shows the fields in a pointer segment. Like all segments, the
pointer segment has a prefix and data portion. The prefix portion has a delete byte,
and when direct rather than symbolic pointing is used, it has the address of the
target segment. The data portion has a series of fields, and some of them are
optional. All fields in the data portion of a pointer segment contain data taken from
the source segment (with the exception of user data).

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 125

Delete Byte: The delete byte is used by IMS to determine whether a segment has
been deleted from the database.

Pointer Field: This field, when present, contains the RBA of the target segment.
The pointer field exists when direct pointing is specified for an index pointing to an
HD database. Direct pointing is simply pointing to a segment using its actual
address. The other type of pointing that can be specified is symbolic pointing.
Symbolic pointing, which is explained under “Concatenated Key Field,” can be used
to point to HD databases and must be used to point to HISAM databases. If
symbolic pointing is used, this field does not exist.

Constant Field: This field, when present, contains a 1-byte constant. The
constant is used when more than one index is put in an index database. (This topic
is discussed under “Sharing Secondary Index Databases” on page 132.) The
constant identifies all pointer segments for a specific index in the shared index
database. The value in the constant field becomes part of the key.

Search Field: The data in the search field is the key of the pointer segment. All
data in the search field comes from data in the source segment. As many as five
fields from the source segment can be put in the search field. These fields do not
need to be contiguous fields in the source segment. When the fields are stored in
the pointer segment, they can be stored in any order. When stored, the fields are
concatenated. The data in the search field (the key) can be unique or non-unique.

IMS automatically maintains the search field in the pointer segment whenever a
source segment is modified.

Subsequence Field: The subsequence field, like the search field, contains from
one to five fields of data from the source segment. Subsequence fields are optional,
and can be used if you have non-unique keys. The subsequence field can make
non-unique keys unique. Making non-unique keys unique is desirable because of
the many disadvantages of non-unique keys. For example, non-unique keys require
you to use an additional data set, an ESDS, to store all index segments with
duplicate keys. An ESDS requires additional space. More important, the search for
specific occurrences of duplicates requires additional I/O operations that can
decrease performance.

When a subsequence field is used, the subsequence data is concatenated with the
data in the search field. These concatenated fields become the key of the pointer
segment. If properly chosen, the concatenated fields form a unique key. (It is not
always be possible to form a unique key using source data in the subsequence
field. Therefore, you can use system related fields, explained later in the chapter, to
form unique keys.)

Figure 77. Fields in an Index Pointer Segment

Performance Considerations for Logical Relationships

126 IMS/ESA V6 Admin Guide: DB

One important thing to note about using subsequence fields is that if you use them,
the way in which an SSA is coded does not need to change. The SSA can still
specify what is in the search field, but it cannot specify what is in the search plus
the subsequence field. Subsequence fields are not seen by the application program
unless it is processing the secondary index as a separate database.

Up to five fields from the source segment can be put in the subsequence field.
These fields do not need to be contiguous fields in the source segment. When the
fields are stored in the pointer segment, they can be stored in any order. When
stored, they are concatenated.

IMS automatically maintains the subsequence field in the pointer segment whenever
a source segment is modified.

Duplicate Data Field: The duplicate data field, like the search field, contains from
one to five fields of data from the source segment. Duplicate data fields are
optional. Use duplicate data fields when you have applications that process the
secondary index as a separate database. (This topic is discussed under
“Processing a Secondary Index as a Separate Database” on page 131.) Like the
subsequence field, the duplicate data field is not seen by an application program
unless it is processing the secondary index as a separate database.

As many as five fields from the source segment can be put in the duplicate data
field. These fields do not need to be contiguous fields in the source segment. When
the fields are stored in the pointer segment, they can be stored in any order. When
stored, they are concatenated.

IMS automatically maintains the duplicate data field in the pointer segment
whenever a source segment is modified.

Concatenated Key Field: This field, when present, contains the concatenated key
of the target segment. This field exists when the pointer segment points to the
target segment symbolically, rather than directly. Direct pointing is simply pointing to
a segment using its actual address. Symbolic pointing is pointing to a segment by a
means other than its actual address. In a secondary index, the concatenated key of
the target segment is used as a symbolic pointer.

Segments in an HDAM or HIDAM database being accessed using a secondary
index can be accessed using a symbolic pointer. Segments in a HISAM database
must be accessed using a symbolic pointer. This is because segments in a HISAM
database can “move around,” and the maintenance of direct-address pointers could
be a large task. One of the implications of using symbolic pointers is that the
physical parents of the target segment must be accessed to get to the target
segment. Because of this, retrieval of target segments using symbolic pointing is
not as fast as retrieval using direct pointing. Also, symbolic pointers generally
require more space in the pointer segment. When symbolic pointers are used, the
pointer field (4 bytes long) in the prefix is not present, but the fully concatenated
key of the target segment is generally more than 4 bytes long.

IMS automatically generates the concatenated key field when symbolic pointing is
specified.

One situation exists in which symbolic pointing is specified and IMS does not
automatically generate the concatenated key field. This situation is caused by
specifying the system-related field /CK as a subsequence or duplicate data field in

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 127

such a way that the concatenated key is fully contained. In this situation, the
symbolic pointer portion of either the subsequence field or the duplicate data field is
used.

User Data in Pointer Segments: You can include any user data in the data
portion of a pointer segment by specifying a segment length long enough to hold it.
You need user data when applications process the secondary index as a separate
database. (This topic is discussed under “Processing a Secondary Index as a
Separate Database” on page 131.) Like data in the subsequence and duplicate data
fields, user data is never seen by an application program unless it is processing the
secondary index as a separate database.

You must initially load user data. You must also maintain it. During reorganization of
a database that uses secondary indexes, the secondary index database is rebuilt by
IMS. During this process, all user data in the pointer segment is lost.

Making Keys Unique Using System Related Fields
You have already seen why it is desirable to have unique keys in the secondary
index. You have also seen one way to force unique keys using the subsequence
field in the pointer segment. If use of the subsequence field to contain additional
information from the source segment does not work for you, there are two other
ways to force unique keys. Both are done using an operand in the FIELD statement
of the source segment in the DBD. The FIELD statement defines fields within a
segment type.

Using the /SX Operand: For HD databases, you can code a FIELD statement
with a NAME field that starts with /SX. The /SX can be followed by any additional
characters (up to five) that you need. When this is coded, the system generates
(during segment insertion) the RBA of the source segment, which is always unique,
and puts it in the subsequence field in the pointer segment. This makes the key
unique. The FIELD statement in which /SX is coded is the FIELD statement defining
fields in the source segment. The /SX value is not, however, put in the source
segment. It is put in the pointer segment.

When you use the /SX operand, the XDFLD statement in the DBD must also
specify /SX (plus any of the additional characters added to the /SX operand). The
XDFLD statement, among other things, identifies fields from the source segment
that are to be put in the pointer segment. The /SX operand is specified in the
SUBSEQ= operand in the XDFLD statement.

Using the /CK Operand: The other way to force unique keys is to code a FIELD
statement with a NAME parameter that starts with /CK. When used as a
subsequence field, /CK ensures unique keys for pointer segments. This can be
done for HISAM, HDAM, or HIDAM databases. The /CK can be followed by up to
five additional characters. The /CK operand works like the /SX operand except that
the concatenated key, rather than the RBA, of the source segment is used. Another
difference is that the concatenated key is put in the subsequence or duplicate data
field in the pointer segment. Where the concatenated key is put depends on where
you specify the /CK.

When using /CK, you can use a portion of the concatenated key of the source
segment (if some portion will make the key unique) or all of the concatenated key.
You use the BYTES= and START= operands in the FIELD statement to specify
what you need.

Performance Considerations for Logical Relationships

128 IMS/ESA V6 Admin Guide: DB

For example, suppose you are using the following database record:

And the concatenated key of the STUDENT segment is as follows:

If you specify on the FIELD statement whose name begins with /CK BYTES=21,
START=1, the entire concatenated key of the source segment will be put in the
pointer segment. If you specify BYTES=6, START=16, only the last six bytes of the
concatenated key (CLASSNO and SEQ) will be put in the pointer segment. The
BYTES= operand tells the system how many bytes are to be taken from the
concatenated key of the source segment in the PCB key feedback area. The
START= operand tells the system the beginning position (relative to the beginning
of the concatenated key) of the information that needs to be taken. As with the /SX
operand, the XDFLD statement in the DBD must also specify /CK.

To summarize: /SX and /CK fields can be included on the SUBSEQ= parameter of
the XDFLD statement to make key fields unique. Making key fields unique avoids
the overhead of using an ESDS to hold duplicate keys. The /CK field can also be
specified on the DDATA= parameter of the XDFLD statement but the field will not
become part of the key field.

When making keys unique, unique sequence fields must be defined in the target
segment type, if symbolic pointing is used Also, unique sequence fields must be
defined in all segment types on which the target segment type is dependent (in the
physical rather than restructured hierarchy in the database).

Suppressing Index Entries (Sparse Indexing)
When a source segment is loaded, inserted, or replaced in the database, DL/I
automatically creates or maintains the pointer segment in the index. This happens
automatically unless you have specified you do not need certain pointer segments
built. An example of why you would not need a pointer segment built is addressed
in the following scenario.

Suppose you have a secondary index for the education database at which you have
been previously looking. STUDENT is the source segment, and COURSE is the
target segment. You might need to create pointer segments for students only if they
are associated with a certain customer number. This could be done using sparse
indexing, a performance enhancement of secondary indexing.

Advantages of Sparse Indexing: Sparse indexing allows you to specify the
conditions under which a pointer segment is suppressed, not generated, and put in
the index database. Sparse indexing has two advantages. The primary one is that it

┌──────────┐
│ COURSE │ Í──────────────── This is the
└─────┬────┘ target segment

│
│

┌─────┴────┐
│ CLASS │
└─────┬────┘

┌───────────┴──────────┐
┌─────┴────┐ ┌─────┴────┐
│ INSTR │ │ STUDENT │ Í──── This is the
└──────────┘ └──────────┘ source segment

┌───────────┬───────────┬─────┐
│ COURSECD │ CLASSNO │ SEQ │
└───────────┴───────────┴─────┘

Bytes 15 3 3

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 129

reduces the size of the index, saving space and decreasing maintenance of the
index. By decreasing the size of the index, performance is improved. The second
advantage is that you do not need to . generate unnecessary index entries.

How to Specify a Sparse Index: Sparse indexing can be specified in two ways:

v You can code a value in the NULLVAL= operand on the XDFLD statement in the
DBD that equals the condition under which you do not need a pointer segment
put in the index. You can put BLANK, ZERO, or any 1-byte value (for example,
X'10', C'Z', 5, or B'00101101') in the NULLVAL= operand.

– BLANK is the same as C ' ' or X'40'

– ZERO is the same as X'00' but not C'0'

When using the NULLVAL= operand, a pointer segment is suppressed if every
byte of the source field has the value you used in the operand.

v If the values you are allowed to code in the NULLVAL= operand do not work for
you, you can create an index maintenance exit routine that determines the
condition under which you do not need a pointer segment put in the index. If you
create your own index maintenance exit routine, you code its name in the
EXTRTN= operand on the XDFLD statement in the DBD. You can only have one
index maintenance exit routine for each secondary index. This exit routine,
however, can be a general purpose one that is used by more than one
secondary index.

The exit routine must be consistent in determining whether a particular pointer
segment needs to be put in the index. The exit routine cannot examine the same
pointer segment at two different times but only mark it for suppression once. Also,
user data cannot be used by your exit routine to determine whether a pointer
segment is to be put in the index. When a pointer segment needs to be inserted
into the index, your exit routine only sees the actual pointer segment just before
insertion. When a pointer segment is being replaced or deleted, only a prototype of
the pointer segment is seen by your exit routine. The prototype contains the
contents of the constant, search, subsequence, and duplicate data fields, plus the
symbolic pointer if there is one.

The information needed to code a secondary index maintenance exit routine is in
IMS/ESA Customization Guide.

How the Secondary Index Is Maintained
When a source segment is inserted, deleted, or replaced in the database, IMS
keeps the index current. IMS does this whether or not the application program
performing the update uses the secondary index.

The way in which IMS maintains the index depends on the operation being
performed. Regardless of the operation, IMS always begins index maintenance by
building a pointer segment from information in the source segment that is being
inserted, deleted, or replaced. (This pointer segment is built but not yet put in the
secondary index database.)

Inserting a Source Segment: When a source segment is inserted, DL/I
determines whether the pointer segment needs to be suppressed. If the pointer
segment needs to be suppressed, it is not put in the secondary index. If the pointer
segment does not need to be suppressed, it is put in the secondary index.

Deleting a Source Segment: When a source segment is deleted, IMS determines
whether the pointer segment is one that was suppressed. If so, IMS does not do

Performance Considerations for Logical Relationships

130 IMS/ESA V6 Admin Guide: DB

any index maintenance. If the segment is one that was suppressed, there should
not be a corresponding pointer segment in the index to delete. If the pointer
segment is not one that was suppressed, IMS finds the matching pointer segment
in the index and deletes it. Unless the segment contains a pointer to the ESDS data
set, which can occur with a non-unique secondary index, the logical record
containing the deleted pointer segment in a KSDS data set is erased.

Replacing a Source Segment: When a source segment is replaced, the pointer
segment in the index might or might not be affected. The pointer segment in the
index might need to be replaced, or it might need to be deleted. After replacement
or deletion, a new pointer segment is inserted. On the other hand, the pointer
segment might need no changes. IMS determines what needs to be done by
comparing the pointer segment it built (the new one) with the matching pointer
segment in the secondary index (the old one).

v If both the new and the old pointer segments need to be suppressed, IMS does
not do anything (no pointer segment exists in the index).

v If the new pointer segment needs to be suppressed but the old one does not,
then the old pointer segment is deleted from the index.

v If the new pointer segment does not need to be suppressed but the old pointer
segment is suppressed, then the new pointer segment is inserted into the
secondary index.

v If neither the new or the old segment needs to be suppressed and:

– If there is no change to the old pointer segment, IMS does not do anything.

– If the non-key data portion in the new pointer segment is different from the old
one, the old pointer segment is replaced. User data in the index pointer
segment is preserved when the pointer segment is replaced.

– If the key portion in the new pointer segment is different from the old one, the
old pointer segment is deleted and the new pointer segment is inserted. User
data is not preserved when the index pointer segment is deleted and a new
one inserted.

If you reorganize your secondary index and it contains non-unique keys, the
resulting pointer segment order can be unpredictable.

Processing a Secondary Index as a Separate Database
Because they are actual databases, secondary indexes can be processed
independently. A number of reasons exist why an application program might
process a secondary index as an independent database. For example, an
application program can use the secondary index to retrieve a small piece of data
from the database. If you put this piece of data in the pointer segment, the
application program can retrieve it without an I/O operation to the regular database.
You could put the piece of data in the duplicate data field in the pointer segment if
the data was in the source segment. Otherwise, you must carry the data as user
data in the pointer segment. (If you carry the data as user data, it is lost when the
primary database is reorganized and the secondary index is recreated.)

Another reason for processing a secondary index as a separate database is to
maintain it. You could, for example, scan the subsequence or duplicate data fields
to do logical comparisons or data reduction between two or more indexes. Or you
can add to or change the user data portion of the pointer segment. The only way an
application program can see user data or the contents of the duplicate data field is
by processing the secondary index as a separate database.

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 131

In processing a secondary index as a separate database, several processing
restrictions designed primarily to protect the secondary index database exist. The
restrictions are as follows:

v Segments cannot be inserted.

v Segments can be deleted. Note, however, that deleted segments can make your
secondary index invalid for use as an index.

v The key field in the pointer segment (which consists of the search field, and if
they exist, the constant and subsequence fields) cannot be replaced.

In addition to the restrictions imposed by the system to protect the secondary index
database, you can further protect it using the PROT operand in the DBD statement.
When PROT is specified, an application program can only replace user data in a
pointer segment. However, pointer segments can still be deleted when PROT is
specified. When a pointer segment is deleted, the source segment that caused the
pointer segment to be created is not deleted. Note the implication of this: IMS might
try to do maintenance on a pointer segment that has been deleted. When it finds no
pointer segment for an existing source segment, it will return an NE status code.
When NOPROT is specified, an application program can replace all fields in a
pointer segment except the constant, search, and subsequence fields. PROT is the
default for this parameter.

For an application program to process a secondary index as a separate database,
you merely code a PCB for the application program. This PCB must reference the
DBD for the secondary index. When an application program uses qualified SSAs to
process a secondary index database, the SSAs must use the complete key of the
pointer segment as the qualifier. The complete key consists of the search field and
the subsequence and constant fields (if these last two fields exist). The PCB key
feedback area in the application program will contain the entire key field.

If you are using a shared secondary index, calls issued by an application program
(for example, a series of GN calls) will not violate the boundaries of the secondary
index they are against. Each secondary index in a shared database has a unique
DBD name and root segment name.

Sharing Secondary Index Databases
As many as 16 secondary indexes can be put in a single index database. When
more than one secondary index is in the same database, the database is called a
shared index database.

Although using a shared index database can save some main storage, the
disadvantages of using a shared index database generally outweigh the small
amount of space that is saved by its use. For example, performance can decrease
when more than one application program simultaneously uses the shared index
database. (Search time is increased because the arm must move back and forth
between more than one secondary index.) In addition, maintenance, recovery, and
reorganization of the shared index database can decrease performance because all
secondary indexes are, to some extent, affected if one is. For example, when a
database that is accessed using a secondary index is reorganized, IMS
automatically builds a new secondary index. This means all other indexes in the
shared database must be copied to the new shared index.

If you are using a shared index database, you need to know the following
information: A shared index database is created, accessed, and maintained just like
an index database with a single secondary index. The various secondary indexes in
the shared index database do not need to index the same database. One shared

Performance Considerations for Logical Relationships

132 IMS/ESA V6 Admin Guide: DB

index database could contain all secondary indexes for your installation (as long as
the number of secondary indexes does not exceed 16).

In a shared index database:

v All index segments must be the same length.

v All keys must be the same length.

v The offset from the beginning of all segments to the search field must be the
same. This means all keys must be either unique or non-unique. With non-unique
keys, a pointer field exists in the target segment. With unique keys, it does not.
So the offset to the key field, if unique and non-unique keys were mixed, would
differ by 4 bytes.

If the search fields in your secondary indexes are not the same length, you might
be able to force key fields of equal length by using the subsequence field. You
can put the number of bytes you need to make each key field an equal length in
the subsequence field.

v Each shared secondary index requires a constant specified for it, a constant that
uniquely identifies it from other indexes in the secondary index database. IMS
puts this identifier in the constant field of each pointer segment in the secondary
index database. For shared indexes, the key is the constant, search, and (if
used) the subsequence field.

Using the INDICES= Parameter
In the PCB on a SENSEG statement, you can specify an INDICES= parameter.
This parameter is used to specify a secondary index that contains search fields
used to qualify SSAs for an indexed segment type. Figure 78 illustrates use of the
INDICES=parameter.

The use of INDICES= does not alter the processing sequence selected for the PCB
by the presence or absence of the PROCSEQ= parameter.

When the call shown in Figure 78 is used, IMS gets the COURSE segment with a
number 12345. Then IMS gets a secondary index entry, one in which XSTUNM is
equal to JONES. IMS checks to see if the pointer in the secondary index points to
the COURSE segment with course number 12345. If it does, IMS returns the
COURSE segment to the application program’s I/O area. If the secondary index
pointer does not point to the COURSE segment with course number equal to
12345, IMS checks for other secondary index entries with XSTUNM equal to
JONES and repeats the compare.

Figure 78. Use of the INDICES= Parameter (Example 1)

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 133

If all secondary index entries with XSTUNM equal to JONES result in invalid
compares, no segment is returned to the application program. By doing this, IMS
need not search the STUDENT segments for a student with NAME equal to
JONES. This technique involving use of the INDICES= parameter is useful when
source and target segments are different.

Compare Process and Performance: Excluding COURSENM=12345 (in
Figure 78 on page 133) from a GU call, impacts performance. IMS retrieves the first
COURSE segment in the COURSE database, and then a secondary index entry in
which XSTUNM is equal to JONES. IMS checks to see if the pointer in the
secondary index points to the COURSE segment just retrieved. If it does, IMS
returns the COURSE segment to the application program’s I/O area. If the
secondary index pointer does not point to this COURSE segment, IMS checks for
other secondary index entries with XSTUNM equal to JONES and repeats the
compare. If all secondary index entries with XSTUNM equal to JONES result in
invalid compares, IMS retrieves the next COURSE segment and the secondary
index entries as before, then repeats the compare. If all the COURSE segments
result in invalid compares, no segment is returned to the application program.

The INDICES= parameter can also be used to reference more than one secondary
index in the source call. Figure 79 on page 135 shows the use of
INDICES=parameter.

In the figure, IMS uses the SIDBD2 secondary index to get the COURSE segment
for MATH. IMS then gets a COURSE segment using the SIDBD1. IMS can then
compare to see if the two course segments are the same. If they are, IMS returns
the COURSE segment to the application program’s I/O area. If the compare is not
equal, IMS looks for other SIDBD1 pointers to COURSE segments and repeats the
compare operations. If there are still no equal compares, IMS checks for other
SIDBD2 pointers to COURSE segments and looks for equal compares to SIDBD1
pointers. If all possible compares result in unequal compares, no segment is
returned to the application program.

Note: This compare process can severely degrade performance.

Using Secondary Indexes with Logical Relationships
When creating or using a secondary index for a database that has logical
relationships, the following restrictions exist:

v A logical child segment or a dependent of a logical child cannot be a target
segment.

v A logical child cannot be used as a source segment, however, a dependent of a
logical child can.

v A concatenated segment or a dependent of a concatenated segment in a logical
database cannot be a target segment.

v When using logical relationships, no qualification on indexed fields is allowed in
the SSA for a concatenated segment. However, an SSA for any dependent of a
concatenated segment can be qualified on an indexed field.

Performance Considerations for Logical Relationships

134 IMS/ESA V6 Admin Guide: DB

Using Secondary Indexes with Variable-Length Segments
If a variable-length segment is a source segment, when an occurrence of it is
inserted that does not have fields specified for use in the search, subsequence, or
duplicate data fields of the pointer segment, the following occurs.

v If the missing source segment data is used in the search field of the pointer
segment, no pointer segment is put in the index.

v If the missing source segment data is used in the subsequence or duplicate data
fields of the pointer segment, the pointer segment is put in the index. However,
the subsequence or duplicate data field will contain one of the three following
representations of zero.

P = X'0F'

X = X'00'

C = C'0'

Which of these is used is determined by what is specified on the FIELD
statements in the DBD that defined the source segment field.

Considerations When Using Secondary Indexing
v When a source segment is inserted into or deleted from a database, an index

pointer segment is inserted into or deleted from the secondary index. This
maintenance always occurs regardless of whether the application program doing
the updating is using the secondary index.

v When an index pointer segment is deleted by a REPL or DLET call, position is
lost for all calls within the database record for which a PCB position was
established using the deleted index pointer segment.

Figure 79. Use of the INDICES= Parameter (Example 2)

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 135

v When replacing data in a source segment, if the data is used in the search,
subsequence, or duplicate data fields of a secondary index, the index is updated
to reflect the change as follows:

– If data used in the duplicate data field of the pointer segment is replaced in
the source segment, the pointer segment is updated with the new data.

– If data used in the search or subsequence fields of the pointer segment is
replaced in the source segment, the pointer segment is updated with the new
data. In addition, the position of the pointer segment in the index is changed,
because a change to the search or subsequence field of a pointer segment
changes the key of the pointer segment. The index is updated by deleting the
pointer segment from the position that was determined by the old key. The
pointer segment is then inserted in the position determined by the new key.

v The use of secondary indexes increases storage requirements for all steps within
a specific PCB when the processing option allows the source segment to be
updated. Additional storage requirements for each secondary index database
range from 6K to 10K bytes. Part of this additional storage is fixed in real storage
by VSAM.

v You should always compare use of secondary indexing with other ways of
achieving the same result. For example, to produce a report from an HDAM
database in root key sequence, you can use a secondary index. However, in
many cases, access to each root sequentially will be a random operation. It
would be very time-consuming to fully scan a large database when access to
each root is random. It might be more efficient to scan the database in physical
sequence (using GN calls and no secondary index) and then sort the results by
root key to produce a final report in root key sequence.

v When calls for a target segment are qualified on the search field of a secondary
index, and the indexed database is not being processed using the secondary
index, additional I/O operations are required. Additional I/O operations are
required because the index must be accessed each time an occurrence of the
target segment is inspected. Because the data in the search field of a secondary
index is a duplication of data in a source segment, you should decide whether an
inspection of source segments might yield the same result faster.

v When using a secondary data structure, the target segment and the segments on
which it was dependent (its physical parents) cannot be inserted or deleted.

How to Specify Use of Secondary Indexing in the DBD
Figure 80 on page 138 shows the EDUC database, its secondary index, and the two
DBDs required for the databases. The secondary index in this example is used to
retrieve COURSE segments based on student names. The example uses direct,
rather than symbolic, pointers. The pointer segment in the secondary index contains
a student name in the search field and a system related field in the subsequence
field. Both of these fields are defined in the STUDENT segment. The STUDENT
segment is the source segment. The COURSE segment is the target segment.

The DBDs at the bottom of the figure highlight the statements and parameters
coded when a secondary index is used. (Wherever statements or parameters are
omitted the parameter in the DBD is coded the same regardless of whether
secondary indexing is used.) The following information provides a summary of how
statements and parameters in the DBD in the figure are used.

DBD for the EDUC Database: An LCHILD and XDFLD statement are used to
define the secondary index. These statements are coded after the SEGM statement
for the target segment.

Performance Considerations for Logical Relationships

136 IMS/ESA V6 Admin Guide: DB

v LCHILD statement. The LCHILD statement specifies the name of the secondary
index SEGM statement and the name of the secondary index database in the
NAME= parameter. The PTR= parameter is always PTR=INDX when a
secondary index is used.

v XDFLD statement. The XDFLD statement defines the contents of the pointer
segment and the options used in the secondary index. It must appear in the DBD
input deck after the LCHILD statement that references the pointer segment. The
meaning of the parameters in the XDFLD statement are as follows:

NAME= parameter.
This parameter specifies the name that can be used in the SSA to qualify a
DL/I call on the secondary processing sequence.

SEGMENT= parameter.
This parameter identifies the source segment, which in this example is
STUDENT. If this operand is omitted, the target segment is assumed to be
the same segment as the source segment. The remaining parameters in the
XDFLD statement describe information related to the source segment.

CONSTANT= parameter.
This parameter (not used in the example) specifies the unique constant
required when a secondary index is part of a shared database.

SRCH= parameter.
This parameter specifies the one to five fields from the source segment that
are to be copied into the pointer segment’s search field. In this case, only
one field is being copied, the STUDNM field, which contains student names.

SUBSEQ= parameter.
This parameter specifies the one to five fields from the source segment that
are to be copied into the pointer segment’s subsequence field. These extra
fields can be used to make the key in the index unique. In this case, one
field is being copied, the /SX1 field, which contains a system-related field.
This parameter is optional.

DDATA= parameter.
This parameter (not used in the example) specifies the one to five fields from
the source segment that are to be copied into the pointer segment’s duplicate
data field. These fields can only be accessed when the secondary index is
processed as a separate database. This parameter is optional.

NULLVAL= parameter.
This parameter (not used in the example) contains a 1-byte value used to
suppress entries in the secondary index database. This parameter is
optional.

EXTRTN= parameter.
This parameter (not used in the example) specifies a user-exit routine. The
user routine gets control after a source segment is built. The routine is used
to suppress entries in the secondary index database when you cannot use
the values that can be specified in the NULLVAL= parameter. This parameter
is optional.

In the example, a system-related field (/SX1) is used on the SUBSEQ parameter.
System-related fields must also be coded on FIELD statements after the SEGM for
the source segment. For more details, refer to “Making Keys Unique Using
System-Related Fields”.

Figure 80 on page 138 shows DBDs for secondary indexing.

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 137

DBD for the SINDX Database:
v DBD statement. The DBD statement specifies the name of the secondary index

database in the NAME= parameter. The ACCESS= parameter is always
ACCESS=INDEX for the secondary index DBD.

v SEGM statement. You choose what is used in the NAME= parameter. This value
is used when processing the secondary index as a separate database.

v FIELD statement. The NAME= parameter specifies the sequence field of the
secondary index. In this case, the sequence field is composed of both the search
and subsequence field data, the student name, and the system-related field
/SX1. You specify what is chosen by NAME=parameter.

v LCHILD statement. The LCHILD statement specifies the name of the target,
SEGM, and the name of the target database in the NAME= parameter. The
INDEX= parameter has the name on the XDFLD statement in the target
database. If the pointer segment contains a direct-address pointer to the target
segment, the PTR= parameter is PTR=SNGL. The PTR= parameter is
PTR=SYMB if the pointer segment contains a symbolic pointer to the target
segment.

Figure 80. DBDs for Secondary Indexing

Performance Considerations for Logical Relationships

138 IMS/ESA V6 Admin Guide: DB

Choosing Secondary Indexes Versus Logical Relationships
While learning about secondary indexes and logical relationships, you might have
noted that both options give you logical data structures. A logical data structure is a
hierarchic data structure different from the data structure represented by the
physical DBD. How, then, do you decide when to use a logical relationship and
when to use a secondary index? This decision is based primarily on how your
applications need to process the data.

When to Use a Secondary Index
In analyzing application requirements, if more than one candidate exists for the
sequence field of a segment, use a secondary index. Choose one sequence field to
be defined in the physical DBD. Then set up a secondary index to allow processing
of the same segment in another sequence. For example, access the customer
segment that follows in both customer number (CUSTNO) and customer name
(CUSTNAME) sequence. To do this, define CUSTNO as the sequence field in the
physical DBD and then define a secondary index that processes CUSTOMER
segments in CUSTNAME sequence.

When to Use a Logical Relationship
If you have applications such as a bill-of-materials using a recursive structure, use a
logical relationship. A recursive structure exists when there is a many-to-many
association between two segments in the same physical hierarchy. For example, in
the segments that follow, the assembly “car” is composed of many parts, one of
which is an engine. However, the engine is itself an assembly composed of many
parts.

The concept of a recursive structure was explained in “Establishing Logical
Relationships Between Segments in the Same Database (Recursive Structures)” on
page 97.

Finally, you can have application requirements that result in a segment that appears
to have two parents. In the following example, the customer database keeps track
of orders (CUSTORDN). Each order can have one or more line items (ORDLINE),
with each line item specifying one product (PROD) and model (MODEL). In the
product database, many outstanding line item requests can exist for a given model.
This type of relationship is called a many-to-many relationship and is handled in
IMS through a logical relationship.

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 139

Using Variable-Length Segments
Variable-length segments are simply segments whose length can vary in occurrence
of some segment types. A database can contain both variable-length segment and
fixed-length segment types. Variable-length segments can be used for HISAM,
HDAM, and HIDAM databases.

How to Specify Variable-Length Segments
It is the data portion of a variable-length segment whose length varies. The data
portion varies between a minimum and a maximum number of bytes. As shown in
Figure 81, you specify minimum and maximum size in the BYTES= keyword in the
SEGM statement in the DBD. Because IMS needs to know the length of the data
portion of a variable-length segment, you include a 2-byte size field in each
segment when loading it. The size field is in the data portion of the segment. The
length of the data portion you specify must include the two bytes used for the size
field. If the segment type has a sequence field, the minimum length specified in the
size field must equal at least the size field and all data to the end of the sequence
field.

How Variable-Length Segments Are Stored and Processed
When a variable-length segment is initially loaded, the space used to store its data
portion is the length specified in the MINBYTES operand or the length specified in
the size field, whichever is larger. If the space in the MINBYTES operand is larger,
more space is allocated for the segment than is required. The additional space can
be used when existing data in the segment is replaced with data that is longer.

Figure 82 shows the format of variable-length segments. The prefix and data portion
of HDAM and HIDAM variable-length segments can be separated in storage when
updates occur. When this happens, the first four bytes following the prefix point to
the separated data portion of the segment.

Figure 81. How Variable-Length Segments Are Specified

Performance Considerations for Logical Relationships

140 IMS/ESA V6 Admin Guide: DB

This is the format of a HISAM variable-length segment. It is also the format of an
HDAM or HIDAM variable-length segment when the prefix and data portion of the
segment have not been separated in storage.

This is the format of an HDAM or HIDAM variable-length segment when the prefix
and data portion of the segment have been separated in storage.

After a variable-length segment is loaded, replace operations can cause the size of
data in it to be either increased or decreased. When the length of data in an
existing HISAM segment is increased, the logical record containing the segment is
rewritten to acquire the additional space. Any segments displaced by the rewrite are
put in overflow storage. Displacement of segments to overflow storage can affect
performance. When the length of data in an existing HISAM segment is decreased,
the logical record is rewritten so all segments in it are physically adjacent.

When a replace operation causes the length of data in an existing HDAM or HIDAM
segment to be increased, one of two things can happen:

v If the space allocated for the existing segment is long enough for the new data,
the new data is simply placed in the segment. This is true regardless of whether
the prefix and data portions of the segment were previously separated in the data
set.

v If the space allocated for the existing segment is not long enough for the new
data, the prefix and data portions of the segment are separated in storage. IMS
puts the data portion of the segment as close to the prefix as possible. Once the
segment is separated, a pointer is placed in the first four bytes following the
prefix to point to the data portion of the segment. This separation increases the
amount of space needed for the segment, because, in addition to the pointer
kept with the prefix, a 1-byte segment code and 1-byte delete code are added to
the data portion of the segment (see Figure 82). In addition, if separation of the
segment causes its two parts to be stored in different blocks, two read operations
will be required to access the segment.

When a replace operation causes the length of data in an existing HDAM or HIDAM
segment to be decreased, one of three things can happen:

v If prefix and data are not separated, the data in the existing segment is replaced
with the new, shorter data followed by free space.

Figure 82. Format of HISAM Variable-Length Segments

Figure 83. Format of HDAM OR HIDAM Variable-Length Segments

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 141

v If prefix and data are separated but sufficient space is not available immediately
following the original prefix to recombine the segment, the data in the separated
data portion of the segment is replaced with the new, shorter data followed by
free space.

v If prefix and data are separated and sufficient space is available immediately
following the original prefix to recombine the segment, the new data is placed in
the original space, overlaying the data pointer. The old separated data portion of
the segment is then available as free space in HD databases.

When to Use Variable-Length Segments
Use variable-length segments when the length of data in your segment varies, for
example, with descriptive data. By using variable-length segments, you do not need
to make the data portion of your segment type as long as the longest piece of
descriptive data you have. This saves storage space. Note, however, that if you are
using HDAM or HIDAM databases and your segment data characteristically grows
in size over time, segments will split. If a segment split causes the two parts of a
segment to be put in different blocks, two read operations will be required to access
the segment until the database is reorganized. So variable-length segments work
well if segment size varies but is stable (as in an address segment). Variable-length
segments might not work well if segment size typically grows (as in a segment type
containing a cumulative list of sales commissions).

What Application Programmers Need to Know about
Variable-Length Segments
If you are using variable-length segments in your database, you need to let
application programmers who will be using the database know this. They need to
know which of the segment types they have access to are variable in length and
the maximum size of each of these variable-length segment types. In calculating the
size of their I/O area, application programmers must use the maximum size of a
variable-length segment. In addition, they need to know that the first two bytes of
the data portion of a variable-length segment contain the length of the data portion
including the size field.

Working with the application programmer, you should devise a scheme for
accessing data in variable-length segments. You should devise a scheme because
if variable-length fields and fixed-length fields in a segment are mixed, the
application program has no way of knowing where specific fields begin. One way to
solve this problem is to put the size of a variable-length field at the beginning of the
variable-length field. If a segment has only one variable-length field, it can be made
the last field in the segment. If it is at all possible, the simplest scheme is to have
only one field in a variable-length segment.

Adding or Converting to Variable-Length Segments
Information on how to add variable-length segments to an existing database and
convert an entire database to variable-length segments is in “Chapter 15. Modifying
Your Database” on page 365.

Using the Segment Edit/Compression Facility
Detailed information on how the segment edit/compression facility works and how
you use it is in IMS/ESA Customization Guide. This section introduces you to the
facility.

The segment edit/compression facility allows you to encode, edit, or compress the
data portion of a segment. You can use this facility on segment data in full function
databases and Fast Path DEDBs. You write the routine (your edit routine) that
actually manipulates the data in the segment. The IMS code gives your edit routine

Performance Considerations for Logical Relationships

142 IMS/ESA V6 Admin Guide: DB

information about the segment’s location and assists in moving the segment back
and forth between the buffer pool and the application program’s I/O area.

The segment edit/compression facility lets you:

v Encode data for security purposes. Encoding data consists of “scrambling”
segment data when it is on the device so only programs with access to the edit
routine can see it in decoded form.

v Edit data. Editing data allows application programs to receive data in a format
other than the one in which it is stored. For example, an application program
might receive segment fields in an order other than the one in which they are
stored; an application program might require all blank space be removed from
descriptive data.

v Compress data. This allows better use of DASD storage because segments can
be compressed when written to the device and then expanded when passed
back to the application program. Segment data might be compressed, for
example, by removing all blanks and zeros.

Two types of segment manipulation are possible using the segment
edit/compression facility:

v Data compression — movement or compression of data within a segment in a
manner that does not alter the content or position of the key field. Typically, this
involves compression of data from the end of the key field to the end of the
segment. When a fixed-length segment is compressed, a 2-byte field must be
added to the beginning of the data portion of the segment by the user data
compression routine. This field is used by IMS to determine secondary storage
requirements and is the only time that the location of the key field can be altered.
The segment size field of a variable-length segment cannot be compressed but
must be updated to reflect the length of the compressed segment.

v Key compression — movement or compression of any data within a segment in a
manner that can change the relative position, value, or length of the key field and
any other fields except the size field. The segment size field of a variable-length
segment must be updated by the compression routine to reflect the length of the
compressed segment.

Use of the segment edit/compression facility is specified by segment type. Any
segment type can be edited or compressed (using either data or key compression)
as long as the segment is:

v Variable length in the database (however, it can be defined to the application
program as either fixed or variable length)

v Not a logical child or in a logical database

v Not in an HSAM, SHISAM, or index database

Data compression is allowed but key compression is not allowed when the segment
is:

v A root segment in a HISAM database

v A segment in a DEDB database

Things to Consider Before Using the Segment Edit/Compression Facility:
v You must provide storage for your edit routine for both batch and online systems.

IMS adds 10 bytes to the maximum segment length when compression is
specified.

v Because your edit routine is executed as part of a DL/I call, if it abnormally
terminates so does the entire IMS region.

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 143

v Your routine cannot use the operating system macros LOAD, GETMAIN, SPIE or
STAE. See IMS/ESA Customization Guidefor additional detail.

v Editing and compressing of each segment on its way to or from an application
program requires additional processor time.

Depending on the options you select, search time to locate a specific segment can
increase. If you are fully compressing the segment using key compression, every
segment type that is a candidate to satisfy either a fully qualified key or data field
request must be expanded or divided. IMS then examines the appropriate field. For
key field qualification, only those fields from the start of the segment through the
sequence field are expanded during the search. For data field qualification, the total
segment is expanded. In the case of data compression and a key field request, little
more processing is required to locate the segment than that of non-compressed
segments. Only the segment sequence field is used to determine if this segment
occurrence satisfies the qualification.

Other considerations can affect total system performance, especially in an online
environment. For example, being able to load an algorithm table into storage gives
the compression routine a large amount of flexibility. However, this can place the
entire IMS control region into a wait state until the requested member is present in
storage. It is suggested that all alternatives be explored to lessen the impact of
situations such as this.

How to Specify the Segment Edit/Compression Facility: Use of the segment
edit/compression facility is specified by segment type on the SEGM statement in the
DBD:
SEGM NAME=SEGNAME[,COMPRTN=(ROUTINE NAME[,DATA][,INIT])]

where:

v The routine name is the name of your edit routine.

v DATA specifies data compression. DATA is the default.

v KEY specifies key compression. Specifying KEY on segments in a DEDB is not
allowed and causes DBDGEN to fail.

v INIT specifies that your edit routine gets control when the database is opened
and closed. When specified on DEDB segments, INIT causes your edit routine to
get control after the first area in the database is opened and before the last area
in the database is closed. If INIT is not coded, your edit routine gets control when
a DL/I call processes a segment for which segment edit / compression is
specified. To do other edit processing, such as processing on the table appended
to the DBD, use the edit routine to get control when the database is opened.

Note:

1. The COMPRTN= keyword is prohibited on DEDB segments containing a
unique key field located at the end of the segment. If COMPRTN= is
attempted against these types of segments, DBDGEN fails and message
DGEN440 is issued. See IMS/ESA Messages and Codes for a
description of this message.

2. Your routine must not modify or alter the relative position of a key field in
a DEDB segment. If the key field in a DEDB segment changes or moves
during a compress or expand call, abend 799, subcode 1 is issued. See
IMS/ESA Messages and Codes for a description of this abend.

3. The Database Scan utility returns only compressed segments when run
on SDEPs (sequential dependents) with the segment edit/compression
facility applied.

Performance Considerations for Logical Relationships

144 IMS/ESA V6 Admin Guide: DB

Converting to the Segment Edit/Compression Facility: Information on how to
convert an existing database so it can use the segment edit / compression facility is
discussed in “Chapter 15. Modifying Your Database” on page 365.

Using Data Capture Exit Routines
This section contains general-use programming interface information.

The Data Capture exit routine is an installation-written exit routine. Data Capture
exit routines promote and enhance database coexistence. Data Capture exit
routines capture segment-level data from a DL/I database for propagation to DB2
databases. Installations running IMS and DB2 databases can use Data Capture exit
routines to exchange data across the two database types.

Data Capture exit routines can be written in assembler language, C, VS COBOL II,
or PL/I. IMS/ESA Customization Guide describes Data Capture exit routines in
detail.

Data Capture exit routines are supported by IMS Transaction Manager and
Database Manager. DBCTL support is for BMPs only.

Data Capture exit routines are compatible with the following physical database
structures:

HDAM

HIDAM

HISAM

SHISAM

DEDB

Data Capture exit routines do not support segments in secondary indexes.

A Data Capture exit routine is called based on segment-level specifications in the
DBD. When a Data Capture exit routine is specified on a database segment, it is
invoked by all application program activity on that segment, regardless of which
PSB is active. Therefore, Data Capture exit routines are global. Using a Data
Capture exit routine can have a performance impact across the entire database
system.

DBD Parameters for Data Capture Exit Routines: This section contains
programming interface information.

Using Data Capture exit routines requires specification of one or two DBD
parameters and subsequent DBDGEN. The EXIT= parameter identifies which Data
Capture exit routines will run against segments in a database. The VERSION=
parameter records important information about the DBD for use by Data Capture
exit routines.

The EXIT= Parameter: To use a Data Capture exit routine, you must use the
optional EXIT= parameter. You specify EXIT= on either the DBD or SEGM
statements of physical database definitions.

Specifying EXIT= on the DBD statement applies a Data Capture exit routine to all
segments within a database structure. Specifying EXIT= on the SEGM statement
applies a Data Capture exit routine to only that segment type.

You can override Data Capture exit routines specified on the DBD statement by
specifying EXIT= on a SEGM statement. EXIT=NONE on a SEGM statement

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 145

cancels all Data Capture exit routines specified on the DBD statement for that
segment type. A physical child does not inherit an EXIT= parameter specified on the
SEGM statement of its physical parent.

You can specify multiple Data Capture exit routines on a single DBD or SEGM
statement. For example, you might code a DBD statement as:
DBD EXIT=((EXIT1A),(EXIT1B))

exit-name is the only required operand for EXIT=. The Data Capture exit routine,
exit-name, allows you to run against segments in a database. The routine,
exit-name, can have a maximum of eight alphanumeric characters. For example, if
you specify a Data Capture exit routine with the name EXITA on a SEGM statement
in a database, the EXIT= parameter might be coded:
SEGM EXIT=(EXITA,KEY,DATA,NOPATH,(CASCADE,KEY,DATA,NOPATH))

KEY, NOPATH, DATA, CASCADE, KEY, DATA, and NOPATH are default operands.
These defaults define what data is captured by the exit routine when a segment is
updated by an application program. For a full description of the default operands
and other optional operands, see IMS/ESA Utilities Reference: Database Manager·

The VERSION= Parameter: VERSION= is an optional parameter that supports
Data Capture exit routines. VERSION= is specified on the DBD statement as:
VERSION='character string'

The maximum length of the character string is 255 bytes. You can use VERSION=
to create a naming convention that denotes the database characteristics that affect
the proper functioning of Data Capture exit routines. You might use VERSION= to
flag DBDs containing logical relationships, or to indicate which data capture exit
routines are defined on the DBD or SEGM statements. VERSION= might be coded
as:
DBD VERSION='DAL-&SYSDATE-&SYSTIME'

DAL, in this statement, tells you that Data Capture exit routine A is specified on the
DBD statement (D), and that the database contains logical relationships (L).
&SYSDATE and &SYSTIME tell you the date and time the DBD was generated.

If you do not specify a VERSION= parameter, DBDGEN generates a default
13-character date-time stamp. The default consists of an 8-byte date stamp and a
5-byte time stamp with the following format:
MM/DD/YYHH.MM

The default date-time stamp on VERSION= is identical to the DBDGEN date-time
stamp.

VERSION= is passed as a variable length character string with a 2-byte length of
the VERSION=, which does not include the length of the LL.

Call Sequence of Data Capture Exit Routines: This section contains
programming interface information.

Performance Considerations for Logical Relationships

146 IMS/ESA V6 Admin Guide: DB

A Data Capture exit routine is invoked once per segment update for each segment
with that Data Capture exit routine specified. Data Capture exit routines are invoked
multiple times for a single call under certain conditions. These conditions include:

v Path updates.

v Cascade deletes when multiple segment types or multiple segment occurrences
are deleted.

v Updates on logical children.

v Updates on logical parents.

v Updates on a single segment when multiple Data Capture exit routines are
specified against that segment. Each exit is invoked once, in the order it is listed
on the DBD or SEGM statements.

When multiple segments are updated in a single application program call, Data
Capture exit routines are invoked in the same order in which IMS physically
updates the segments:

1. Path inserts are executed “top-down” in DL/I. Therefore, a Data Capture exit
routine for a parent segment is called before a Data Capture exit routine for that
parent’s dependent.

2. Cascade deletes are executed “bottom-up”. All dependent segments’ exits are
called before their respective parents’ exits on cascade deletes. IMS physically
deletes dependent segments on cascade deletes only after it has validated the
delete rules by following the hierarchy to the lowest level segment. After delete
rules are validated, IMS deletes segments starting with the lowest level segment
in a dependent chain and continuing up the chain, deleting the highest level
parent segment in the hierarchy last. Data Capture exit routines specified for
segments in a cascade delete are called in reverse hierarchical order.

3. Path replaces are performed “top-down” in IMS. In Data Capture exit routines
defined against segments in path replaces, parent segments are replaced first.
All of their descendents are then replaced in descending hierarchical order.

When an application program does a cascade delete on logically related segments,
Data Capture exit routines defined on the logical child are always called before
Data Capture exit routines defined on the logical parent. Data Capture exit routines
are called even if the logical child is higher in the physical hierarchy, except in
recursive structures where the delete results in the deletion of a parent of the
deleted segment.

Data Capture Exit Routine: This section contains programming interface
information.

Data is passed to Data Capture exit routines when an application program updates
IMS with a DL/I insert, delete, or replace call. Segment data passed to Data
Capture exit routines is always physical data. When the update involves logical
children, the data passed is physical data and the concatenated key of the logical
parent segment. For segments with compression/edit routines, the data passed is
expanded data.

When an application replaces a segment, both before and after physical data is
captured. In general, segment data is captured even if the application call does not
change the data. However, for full function databases, IMS compares the before
and after data. If the data has not changed, IMS does not update the database or
log the replace data. Because data is not replaced, Data Capture exit routines
specified for that segment are not called and the data is not captured.

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 147

Data might be captured during replaces even if segment data does not change
when:

1. The application inserts a logical child/logical parent, IMS replaces the logical
parent, and the parent data does not change.

2. The application issues a replace for a segment in a DEDB database.

In each case, IMS updates the database without comparing the before and after
data, and therefore the data is captured even though it does not change.

The entire segment, before and after, is passed to Data Capture exit routines when
the application replaces a segment. When the exit routine is interested in only a few
fields, it is recommended that the SQL update request not be issued until after the
before and after replace data for those fields is compared to see if the fields were
changed.

Data Capture Call Functions: This section contains programming interface
information.

Data capture exit routines are called when segment data is updated by an
application program insert, replace, or delete call. Optionally, Data Capture exit
routines are called when DL/I deletes a dependent segment because the application
program deleted its parent segment, a process known as cascade delete. Data
Capture exit routines are passed to two functions to identify the following:

1. The action performed by the application program and

2. The action performed by IMS:

v Call function. The DL/I call function issued by the application program for
the segment: ISRT, REPL, or DLET.

v Physical function. The physical action, ISRT, REPL, or DLET, performed by
IMS as a result of the call. The physical function is used to determine the
type of SQL request to issue when doing data propagation.

The call and physical functions passed to the exit routine are always the same for
replace calls. However, the functions passed might differ for delete or insert calls:

v For delete calls resulting in cascade deletes, the call function passed is CASC (to
indicate the cascade delete) and the physical function passed is DLET.

v For insert calls resulting in the insert of a logical child and the replace of a logical
parent (because the logical parent already exists), the call function passed is
ISRT and the physical function passed is REPL. IMS physically replaces the
logical parent with data inserted by the application program even if the parent
data does not change. Both call and physical functions are then used, based on
the data propagation requirements, to determine the SQL request to issue in the
Data Capture exit routine.

Cascade Delete When Crossing Logical Relationships: This section contains
programming interface information.

If the EXIT= options specify NOCASCADE, data is not captured for cascade
deletes. However, when a cascade delete crosses a logical relationship into another
physical database to delete dependent segments, a Data Capture exit routine
needs to be called in order to issue the SQL delete for the parent of the physical
structure in DB2. Rather than requiring the EXIT= CASCADE option, IMS always
calls the exit routine for a segment when deleting the parent segment in a physical
database record with an exit routine defined, regardless of the
CASCADE/NOCASCADE option specified on the segment. IMS bypasses the

Performance Considerations for Logical Relationships

148 IMS/ESA V6 Admin Guide: DB

NOCASCADE option only when crossing logical relationships into another physical
database. As with all cascade deletes, the call function passed is CASC and the
physical function passed is DLET.

Data Capture Exit Routines and Logically Related Databases: This section
contains programming interface information.

Segment data passed to Data Capture exit routines is always physical data.
Consequently, you must place restrictions on delete rules in logically related
databases supporting Data Capture exit routines. Table 4 summarizes which delete
rules you can and cannot use in logically related databases with Data Capture exit
routines specified on their segments.

Table 4. Delete Rule Restrictions for Logically Related Databases Using Data Capture Exit
Routines

Segment Type Virtual Delete Rule
Logical Delete
Rule

Physical Delete
Rule

Logical Children Yes No No

Logical Parents No Yes Yes

When a logically related database has a delete rule violation on a logical child:

v The logical child cannot have a Data Capture exit routine specified.

v No ancestor of the logical child can have a Data Capture exit routine specified.

When a logically related database has a delete rule violation on a logical parent, the
logical parent cannot have a Data Capture exit routine specified. ACBGEN validates
logical delete rule restrictions and will not allow a PSB that refers to a database that
violates these restrictions to proceed.

Converting to Data Capture Exit Routines: This section contains programming
interface information.

Information on how to convert an existing database for Data Capture exit routines is
discussed in “Converting Databases for Data Capture Exit Routines and
Asynchronous Data Capture” on page 389. See IMS/ESA Utilities Reference:
Database Managerfor detailed information on coding the EXIT= and VERSION=
parameters.

Using Field-Level Sensitivity
Field-level sensitivity gives you an increased level of data independence by isolating
application programs from:

v Changes in the arrangement of fields within a segment

v Addition or deletion of data within a segment

In addition, field-level sensitivity enhances data security by limiting an application
program to a subset of fields within a segment, and controlling replace operations at
the field level.

Field-level sensitivity allows you to reformat a segment type. Reformatting a
segment type can be done without changing the application program’s view of the
segment data, provided fields have not been removed or altered in length or data
type. Fields can be added to or shifted within a segment in a manner transparent to
the application program. Field-level sensitivity gives applications a segment
organization that always conforms to what is specified in the SENFLD statements.

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 149

(SENFLD statements are described later, but basically they determine the order of
fields in a segment as seen by an application program.)

Using Field-Level Sensitivity as a Mapping Interface: Field-level sensitivity acts
as a mapping interface by letting PSBGEN field locations differ from DBDGEN field
locations. Mapping is invoked after the segment edit routine on input and before the
segment edit routine on output. When creating a sequential data set from database
information (or creating database information from a sequential data set), field-level
sensitivity can reduce or eliminate the amount of formatting an application program
must do.

Using Field-Level Sensitivity with Variable-Length Segments: If field-level
sensitivity is used with variable-length segments, you can add new fields to a
segment without reorganizing the database. FIELD definitions in a DBDGEN allow
you to enlarge segment types without affecting any previous users of the segment.
The DBDGEN FIELD statement lets you specify a field that doesn’t yet exist in the
physical segment but that will be dynamically created when the segment is
retrieved.

Field-level sensitivity can help in the transition of an application program from a
non-database environment to a database environment. Application programs that
formerly accessed MVS files might be able to receive the same information in the
same format if the database was designed with conversion in mind.

Field-level sensitivity is not supported for DEDBs and MSDBs.

How to Specify Use of Field-Level Sensitivity in the DBD and PSB: An
application program’s view of data is defined through the PSBGEN utility using
SENFLD statements following the SENSEG statement. In the SENFLD statement,
the NAME= parameter identifies a field that has been defined in the segment
through the DBDGEN utility.

The START= parameter defines the starting location of the field in the application
program’s I/O area. In the I/O area, fields do not need to be located in any
particular order, nor must they be contiguous. The end of the segment in the I/O
area is defined by the end of the rightmost field. All segments using field-level
sensitivity appear fixed in length in the I/O area. The length is determined by the
sum of the lengths of fields on SENFLD statements associated with a SENSEG
statement.

Figure 84 is an example of field-level sensitivity. Following the figure is information
about coding field-level sensitivity.

Field-level sensitivity is used below to reposition three fields from a physical
segment in the application program’s I/O area.

Figure 84. DBD and PSB Coding for Field-Level Sensitivity

Performance Considerations for Logical Relationships

150 IMS/ESA V6 Admin Guide: DB

This is the DBD for the figure shown above:
SEGM NAME=EMPREC,BYTES=100
FIELD NAME=(EMPNO,SEQ),BYTES=5,START=1,TYPE=C
FIELD NAME=EMPNAME,BYTES=20,START=6,TYPE=C
FIELD NAME=BIRTHD,BYTES=6,START=26,TYPE=C
FIELD NAME=SAL,BYTES=3,START=32,TYPE=P
FIELD NAME=ADDRESS,BYTES=60,START=41,TYPE=C

This is the PSB for the figure shown above:
SENSEG NAME=EMPREC,PROCOPT=A
SENFLD NAME=EMPNAME,START=1,REPL=N
SENFLD NAME=EMPNO,START=25
SENFLD NAME=ADDRESS,START=35,REPL=Y

v A SENFLD statement is coded for each field that can appear in the I/O area. A
maximum of 255 SENFLD statements can be coded for each SENSEG
statement, with a limit of 10000 SENFLD statements for a single PSB.

v The optional REPL= parameter on the SENFLD statement indicates whether
replace operations are allowed on the field. In the figure, replace is not allowed
for EMPNAME but is allowed for EMPNO and ADDRESS. If REPL= is not coded
on a SENFLD statement, the default is REPL=Y.

v The TYPE= parameter on FIELD statements in the DBD is used to determine fill
values on insert operations.

Retrieving Segments Using Field-Level Sensitivity: When you retrieve
segments using field-level sensitivity, you should be aware of the following
information:

v Gaps between fields in the I/O area are set to blanks on a retrieve call.

v If an application program uses a field in an SSA, that field must be coded on a
SENFLD statement. This rule does not apply to sequence fields used in an SSA
on retrieve operations.

Figure 85 shows an example of a retrieve call based on the DBD and PSB in
Figure 84.

Replacing Segments Using Field-Level Sensitivity: The SENFLD statement
must allow replace operations (REPL=Y) if the application program is going to
replace data in a segment. In Figure 84 on page 150, the SENFLD statement for
EMPNAME specifies REPL=N. A “DA” status code would be returned if the
application program tried to replace the EMPNAME field. Figure 86 on page 152
shows an example of a REPL call based on the DBD and PSB in Figure 84.

Figure 85. Example of a Retrieve Call

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 151

Inserting Segments Using Field-Level Sensitivity: The TYPE= parameter on
the SEGM statement of the DBD determines the fill value in the physical segment
when an application program is not sensitive to a field on insert calls.

TYPE= Fill Value

X Binary Zeros

P Packed Decimal Zero

C Blanks

The fill value in the physical segment is binary zeros when:

v Space in a segment is not defined by a FIELD macro in the DBD

v A defined DBD field is not referenced on the insert operation

Figure 87 shows an example of an insert operation based on the DBD and PCB in
Figure 84 on page 150.

Blanks are inserted in the BIRTHD field because its FIELD statement in the DBD
specifies TYPE=C. Packed decimal zero is inserted in the SAL field because its

Figure 86. Example of a REPL Call

Figure 87. Example of an ISRT Call

Performance Considerations for Logical Relationships

152 IMS/ESA V6 Admin Guide: DB

FIELD statement in the DBD specifies TYPE=P. Binary zeros are inserted in
positions 35 to 40 because no FIELD statement was coded for this space in the
DBD.

Using Field-Level Sensitivity When Fields Overlap: On the SENFLD statement,
you code the starting position of fields as they will appear in the I/O area. If fields
overlap in the I/O area, here are the rules you must follow:

v Two different bytes of data cannot be moved to the same position in the I/O area
on input.

v The same data can be moved to different positions in the I/O area on retrieve
operations.

v Two bytes from different positions in the I/O area cannot be moved to the same
DBD field on output.

Using Field-Level Sensitivity When Path Calls Are Issued: If an application
program issues path calls while using field level sensitivity, here are the rules you
must follow:

v You should not code SENFLD statements so that two fields from different
physical segments are in the same segment in the I/O area.

v PROCOPT=P is required on the PCB statement.

Using Field-Level Sensitivity with Logical Relationships: Here are the rules
you must follow when using field-level sensitivity with segments involved in a logical
relationship:

v Application programs can not be insert sensitive to a logical child.

v The same field can be referenced in more than one SENFLD statement within a
SENSEG. If the duplicate field names are part of a concatenated segment and
the same field name appears in both parts of the concatenation, the first part
references the logical child. The second and all subsequent parts reference the
logical parent. This referencing sequence determines the order in which fields are
moved to the I/O area.

v When using field-level sensitivity with a virtual logical child, the field list of the
paired segment is searched after the field list of the virtual segment and before
the field list of the logical parent.

Using Field-Level Sensitivity with Variable-Length Segments: When field-level
sensitivity is used with a variable-length segment, an application program’s view of
the segment is fixed in length and does not include the 2-byte length field. The
following section addresses special situations when field level sensitivity is used
with variable-length segments. First, however, here is some general information
about using field-level sensitivity with variable-length segments:

v When inserting a variable-length segment, the length used is the minimum length
needed to hold all sensitive fields.

v When replacing a variable-length segment, if the length has to be increased to
contain data an application program has modified, the length used is the
minimum length needed to hold the modified data.

v An application program cannot be sensitive to overlapping fields in a
variable-length segment with get or update sensitivity if the data type of any of
those fields is not character.

v Existing programs processing variable-length segments that use the length field
to determine the presence or absence of a field might need to be modified if
segments are inserted or updated by programs using field-level sensitivity.

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 153

When field-level sensitivity is used with variable-length segments, two situations
exist that you should know about. The first is when fields are missing. The second
is when fields are partially present. This section examines the following information:

v Retrieving Missing Fields

v Replacing Missing Fields

v Inserting Missing Fields

v Retrieving Partially Present Fields

v Replacing Partially Present Fields

Retrieving Missing Fields: If a field does not exist in the physical variable-length
segment at retrieval time, the corresponding field in the application program’s I/O
area is filled with a value based on the data type specified in the DBD. Figure 88 is
an example of a missing field on a retrieve call based on the DBD and PSB in
Figure 89.

The length field is not present in the I/O area. Also, the address field is filled with
blanks, because TYPE=C is specified on the FIELD statement in the DBD.

Replacing Missing Fields: A missing field that is not replaced does not affect the
physical variable-length segment. Figure 90 is an example of a missing field on a
replace call based on the DBD and PSB in Figure 89.

Figure 88. Example of a Missing Field on a Retrieve Call

DBD

SEGM NAME=EMPREC,BYTES=(102,7)
FIELD NAME=(EMPNO,SEQ),BYTES=5,START=3,TYPE=C
FIELD NAME=EMPNAME,BYTES=20,START=8,TYPE=C
FIELD NAME=BIRTHD,BYTES=6,START=28,TYPE=C
FIELD NAME=ADDRESS,BYTES=60,START=43,TYPE=C

PSB

SENSEG NAME=EMPREC,PROCOPT=A
SENFLD NAME=EMPNAME,START=1,REPL=N
SENFLD NAME=EMPNO,START=25
SENFLD NAME=ADDRESS,START=35,REPLY=Y

Figure 89. DBD and PSB When Using Field-Level Sensitivity with Variable-Length Segments

Performance Considerations for Logical Relationships

154 IMS/ESA V6 Admin Guide: DB

The length field, maintained by IMS, does not include room for the address field,
because the field was missing and not replaced.

On a replace call, if a field returned to the application program with a fill value is
changed to a non-fill value, the segment length is increased to the minimum size
needed to hold the modified field.

v The 'LL' field is updated to include the full length of the added field and all fields
up to the added field.

v The TYPE= parameter in the DBD (see Figure 89 on page 154) determines the
fill value for non-sensitive DBD fields up to the added field.

v Binary zero is the fill value for space up to the added field that is not defined by
a FIELD statement in the DBD.

Figure 91 is an example of a missing field on a replace call based on the DBD and
PSB in Figure 89 on page 154.

Figure 90. First Example of a Missing Field on a Replace Call

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 155

The 'LL' field is maintained by IMS to include the full length of the ADDRESS field
and all fields up to the ADDRESS field. BIRTHD is filled with blanks, because
TYPE=C is specified on the FIELD statement in the DBD. Positions 34 to 42 are set
to binary zeros, because the space was not defined by a FIELD statement in the
DBD.

Inserting Missing Fields: When a variable-length segment is inserted into the
database, the length field is set to the value of the minimum size needed to hold all
sensitive fields.

v The 'LL' field is updated to include all sensitive fields.

v The TYPE= parameter on the DBD (see Figure 89 on page 154) determines the
fill value for non-sensitive DBD fields.

v Binary zero is the fill value for space not defined by a FIELD statement in the
DBD.

Figure 92 is an example of a missing field on an insert call using the DBD and PSB
in Figure 89 on page 154.

The 'LL' field is maintained by IMS to include the full length of all sensitive fields up
to and including the ADDRESS field. BIRTHD is filled with blanks, because

Figure 91. Second Example of a Missing Field on a Replace Call

Figure 92. Example of a Missing Field on an Insert Call

Performance Considerations for Logical Relationships

156 IMS/ESA V6 Admin Guide: DB

TYPE=C was specified on the FIELD statement in the DBD. Positions 34 to 42 are
set to binary zeros, because the space was not defined in a FIELD statement in the
DBD.

Retrieving Partially Present Fields: If the last field in the physical variable-length
segment at retrieval time is only partially present and if the data type is character
(TYPE=C), data is returned to the application program padded with blanks on the
right. Otherwise, the field is returned with a fill value based on the data type.
Figure 93 is an example of a partially present field on a retrieval call based on the
DBD and PSB in Figure 89 on page 154.

The ADDRESS field in the I/O area is padded with blanks to correspond to the
length defined on the SEGM statement in the DBD.

Replacing Partially Present Fields: You should know the following information
about replacing partially present fields:

v If segment length is increased on a REPL call, the field returned to the
application program is written to the database if it has not been changed.

v If the data type of the field is character and the field is changed on a REPL call,
the segment length is increased if necessary to include all non-blank characters
in the changed data.

v If the data type is not character and the field is changed on a REPL call, the
segment length is increased to contain the entire field.

Figure 94 on page 158 is an example of a partially present field on a REPL call
based on the DBD and PSB in Figure 89 on page 154.

Figure 93. Example of a Partially Present Field on a Retrieval Call

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 157

The 'LL' field is changed from 50 to 52 by DL/I to accommodate the change in the
field length of ADDRESS.

General Considerations for Using Field-Level Sensitivity:
v Field-level sensitivity is not supported for GSAM, MSDB, or DEDB databases.

v Fields referenced in PSBGEN with SENFLD statements must be defined in
DBDGEN with FIELD statements.

v The same DBD field can be referenced in more than one SENFLD statement.

v When using field-level sensitivity, the application program always sees a fixed
length segment for a given PCB, regardless of whether the segment is fixed or
variable.

v Application programs must be sensitive to any field referenced in an SSA, except
the sequence field.

v Application programs must be sensitive to the sequence field, if present, for
insert or load.

v Field-level sensitivity and segment level sensitivity can be mixed in the same
PCB.

v Non-referenced, non-defined fields are set to binary zeros as fill characters, when
required, during insert or replace operations.

v Using call/trace with the compare option increases the amount of storage
required in the PSB work pool.

Using Multiple Data Set Groups
Although this book has explored storing a database on a single or a single pair of
data sets, HD databases can be stored on more than the one or two data sets
required for database storage. You have seen that an HD database is stored on an
ESDS, if VSAM is being used, or an OSAM data set, if OSAM is being used.

HD databases can be stored on multiple data sets. When storing a database on
multiple data sets, the terms primary and secondary data set group are used to
distinguish between the one or more data sets that must be specified for the
database (called the primary data set group) and the one or more data sets you are
allowed to specify for the database (called secondary data set groups).

Figure 94. Example of a Partially Present Field on a REPL Call

Performance Considerations for Logical Relationships

158 IMS/ESA V6 Admin Guide: DB

In HD databases, a single data set is used for storage rather than a pair of data
sets. The primary data set group therefore consists of the ESDS (if VSAM is being
used) or OSAM data set (if OSAM is being used) on which you must specify
storage for your database. The secondary data set group is an additional ESDS or
OSAM data set on which you are allowed to store your database.

As many as ten data set groups can be used in HISAM and HD databases, that is,
one primary data set group and a maximum of nine secondary data set groups.

Why Use Multiple Data Set Groups?: When you design database records, you
design them to meet the processing requirements of many applications. You decide
what segments will be in a database record and their hierarchic sequence within a
database record. These decisions are based on what works best for all of your
application program’s requirements. However, the way in which you arranged
segments in a database record no doubt suits the processing requirements of some
applications better than others. For example, look at the two following database
records. Both of them contain the same segments, but the hierarchic sequence of
segments is different.

The hierarchy on the left favors applications that need to access INSTR and LOC
segments. The hierarchy on the right favors applications that need to access
STUDENT and GRADE segments. (Favor, in this context, means that access to the
segments is faster.) If the applications that access the INSTR and LOC segments
are more important than the ones that access the STUDENT and GRADE
segments, you can use the database record on the left. But if both applications are
equally important, you can split the database record into different data set groups.
This will give both types of applications good access to the segments each needs.

To do this, you would use two data set groups. As shown in the following figure, the
first data set group contains the COURSE, INSTR, and LOC segments. The second
data set group contains the STUDENT and GRADE segments.

Other uses of multiple data set groups include:

v Separating infrequently-used segments from high-use segments.

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 159

v Separating segments that frequently have information added to them from those
that do not. For the former segments, you might specify additional free space so
conditions are optimum for additions.

v Separating segments that are added or deleted frequently from those that are
not. This can keep space from being fragmented in the main database.

v Separating segments whose size varies greatly from the average segment size.
This can improve use of space in the database. Remember, the bit map in an HD
database indicates whether space is available for the longest segment type
defined in the data set group. It does not keep track of smaller amounts of
space. If you have one or more segment types that are large, available space for
smaller segments will not be utilized, because the bit map does not track it.

HD Databases Using Multiple Data Set Groups: The following rules must be
followed when using a multiple data set group in an HD database:

v As many as ten data set groups can be defined.

v The root segment in a database record must be in the primary data set group.

In the database record shown below, segments 1, 2, 4, and 5 could go in one data
set group, while segments 3 and 6 could go in a second data set group. Other
examples of how this HD database record could be divided are as follows (list not
exhaustive):

Primary Data Set Groups Secondary Data Set #1
Groups

Secondary Data Set #2
Groups

Segment 1 Segments 2, 5, and 6 Segments 3 and 4
Segments 1, 3, and 6 Segments 2 and 5 Segment 3
Segments 1, 3, and 6 Segments 2 and 5 Segment 4

v Segments separated into different data set groups must be connected by
physical child first pointers. For example, in Figure 95 on page 161 the INSTR
segment in the primary data set group must point to the first occurrence of its
physical child REPORT in the secondary data set group, and STUDENT must
point to GRADE.

Performance Considerations for Logical Relationships

160 IMS/ESA V6 Admin Guide: DB

How HD Records Are Stored in Multiple Data Set Groups: Now that you have
seen what segments can be stored in a single data set group in an HD database,
this section looks at how segments are stored. Figure 96 on page 162 shows one
database record:

v Stored in an HDAM database using two data set groups

v Stored in a HIDAM database using two data set groups

Specify in the DBD which segment types need to be put in a data set group. Based
on that information, IMS automatically loads segments into the correct data set
group. In this example, the user specified that four segment types in the database
record were put in the primary data set group (COURSE, INSTR, LOC, STUDENT)
and two segment types were put in the secondary data set group (REPORT,
GRADE).

In the HDAM database, note that only the primary data set group has a root
addressable area. The secondary data set group is additional overflow storage.

Figure 95. Connecting Segments in Multiple Data Set Groups Using Physical Child First
Pointers

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 161

Specifying Use of Multiple Data Set Groups in HD Databases: Use of multiple data
set groups is specified to IMS in the DBD. Figure 97 shows how the DBD is coded
for the database record at which you have been looking. In this example, the DBD
is for an HDAM database.

Figure 96. HD Database Record in Storage When Multiple Data Set Groups Are Used

Performance Considerations for Logical Relationships

162 IMS/ESA V6 Admin Guide: DB

This database record needs to be put in two data set groups, one containing
segments 1 and 2; the other containing segments 3, 4, 5, and 6.

Here is how these two data set groups are specified in the DBD. Segments are
arranged in correct hierarchic sequence. Data set labels (DS1 and DS2) are used
to keep segment types in the correct data set group.

Note in Figure 97 that the DBD has two DATASET statements. The DATASET
statements are followed by the appropriate SEGM statements arranged with
segments in correct hierarchic sequence. In each DATASET statement, the DD1=
parameter names the VSAM ESDS or OSAM data set that will be used. Also note
that each data set group can have its own characteristics, such as device type
(DEVICE= parameter).

When multiple data set groups are specified, segment types must be arranged in
the DBD in correct hierarchic sequence. Figure 98 shows this concept. Segments 1
through 6 are put in the DBD in correct hierarchic sequence. The DATASET
statement is used to keep segments in the correct data set group. In the figure, the
third DATASET statement says put segment 6 in the same data set group as
segments 1, 2, and 3.

This database record needs to be put in two data set groups, one containing
segments 1, 2, 3, and 6; the other containing segments 4 and 5.

Figure 97. DBD For Multiple Data Set Groups in HDAM

DBD NAME=HDMDSG,ACCESS=HDAM,RMNAME=(ROUT001)
DS1 DATASET DD1=DS1DD,DEVICE=3330
SEGM NAME=COURSE,BYTES=50,PTR=T
FIELD NAME=(CODCOURSE,SEQ),BYTES=10,START=1
SEGM NAME=INSTR,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))
DS2 DATASET DD1DS2DD,DEVICE=2314
SEGM NAME=REPORT,BYTES=50,PTR=T,PARENT=((INSTR,SNGL))
SEGM NAME=LOC,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))
SEGM NAME=STUDENT,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))
SEGM NAME=GRADE,BYTES=50,PTR=T,PARENT=((STUDENT,SNGL))
DBDGEN

Performance Considerations for Logical Relationships

Chapter 5. Choosing Additional Database Functions 163

Here is how these two data set groups are specified in the DBD. Segments are
arranged in correct hierarchic sequence. Data set labels (DS1 and DS2) are used
to keep segment types in the correct data set group.

Figure 98. Use of the Data Set Label in the DBD When Specifying Multiple Data Set Groups

Performance Considerations for Logical Relationships

164 IMS/ESA V6 Admin Guide: DB

Chapter 6. Database Design Considerations for Full Function

About This Chapter . 166
Specifying Free Space (HDAM and HIDAM Only). 166
Estimating the Size of the Root Addressable Area (HDAM Only) 167
Determining Which Randomizing Module To Use (HDAM Only). 168

Write Your Own Randomizing Module 168
Assess the Effectiveness of the Randomizing Module 168

Choosing HDAM Options. 169
Minimizing I/O Operations 169
Maximizing Packing Density 170

Choosing a Logical Record Length for a HISAM Database 170
Logical Record Length Considerations 170
Rules to Observe . 172
Calculating How Many Logical Records Are Needed to Hold a Database

Record . 173
Specifying Logical Record Length 173

Choosing a Logical Record Length for HD Databases 173
Determining the Size of CIs and Blocks 173
Choosing Buffering Options . 174

Multiple Buffers in Virtual Storage 174
“Use” Chain . 174
The Buffer Handler . 174
Background Write Option. 174
Shared Resource Pools . 175
Using Separate Subpools 175
Hiperspace Buffering . 175
Buffer Size . 175
Buffer Numbers . 176
VSAM Buffer Sizes . 176
OSAM Buffer Sizes . 177
Specifying Buffers . 177

Using OSAM Sequential Buffering 178
About SB . 178
Benefits of Using SB . 179

Programs That Can Benefit from SB 179
Typical Productivity Benefits of SB 179

Flexibility of SB Use . 179
How SB Buffers Data . 180

What SB Buffers . 180
Conditional Activation and Periodical Evaluation of SB 180
Role of the SB Buffer Handler 181

Virtual Storage Considerations for SB 181
How to Request the Use of SB 181

Requesting SB During PSBGEN 182
Requesting SB With SB Control Statements. 182
Requesting SB with an SB Initialization Exit Routine. 183
SB Options or Parameters Provided by Several Sources 183
Using SB in an Online System. 184
Disallowing the Use of SB 184

Determining Which VSAM Options to Use 184
Optional Functions Specified in the OPTIONS Control Statement 185

Using Background Write (BGWRT Parameter) 185
Choosing an Insert Strategy (INSERT Parameter) 186
Using the IMS Trace Parameters 186

© Copyright IBM Corp. 1974, 1999 165

Determining Which Dump Option to Use (DUMP Parameter) 186
Deciding Whether to Fix VSAM Database Buffers and IOBs in Storage

(VSAMFIX Parameter) 186
Using Local Shared Resources (VSAMPLS Parameter) 187

Optional Functions Specified in the POOLID, DBD, and VSRBF Control
Statements . 187

Optional Functions Specified in the Access Method Services DEFINE
CLUSTER Command . 188
Specifying that ’Fuzzy’ Image Copies Can be Taken with the Database

Image Copy 2 (DFSUDMT0) 188
Specifying Free Space for a KSDS (FREESPACE Parameter) 188
Specifying Whether Data Set Space Is Pre-formatted for Initial Load

(SPEED | RECOVERY Parameter) 188
Specifying Whether Sequence Set Records Are Embedded and Index Set

Records Are Replicated 189
Determining Which OSAM Options to Use 190
Determining Which Dump Option to Use (DUMP Parameter) 191
Deciding Which FIELD Statements to Code in the DBD 191
Planning for Maintenance . 191
Using Design Aids for Your Database 191
DB/DC Data Dictionary . 191

About This Chapter
After you determine the type of database and optional functions that best suit your
application’s processing requirements, you need to make a series of decisions
about database design and use of options. This set of decisions primarily
determines how well your database performs and how well it uses available space.
This series of decisions is made based on:

The type of database and optional functions you have already chosen

The performance requirements of your applications

How much storage you have available for use online

This chapter examines the following database design considerations:

v Specifying free space

v Estimating the size of root addressable areas

v Determining which randomizing modules to use

v Choosing HDAM options

v Choosing logical record length for HISAM and HD databases

v Determining size of CIs and blocks

v Determining which VSAM and OSAM options to use

v Deciding which FIELD statements to code into the DBD

v Planning for maintenance

v Using aids to help design your database

Specifying Free Space (HDAM and HIDAM Only)
As you have seen, dependent segments inserted after an HD database is loaded
are put as close as possible to the segments to which they are related. (When
segments are close to the segments that point to them, the I/O time needed to
retrieve a dependent segment is shorter. The I/O time is shorter because the seek
time and rotational delay time are shorter.) However, as the database grows and
available space decreases, dependent segments are increasingly put further from

166 IMS/ESA V6 Admin Guide: DB

their related segments. When this happens, performance decreases, a problem that
can only be eliminated by reorganizing the database.

To minimize the effect of insert operations after the database is loaded, allocate free
space in the database when it is initially loaded. Free space allocation in the
database will reduce the performance impact caused by insert operations, and
therefore, decrease the frequency with which HD databases must be reorganized.

For OSAM data sets and VSAM ESDS, free space is specified in the FRSPC=
keyword of the DATASET statement in the DBD. In the keyword, one or both of the
following operands can be specified:

v Free block frequency factor (fbff). The fbff specifies that every nth block or CI in a
data set group be left as free space when the database is loaded (where fbff=n).
The range of fbff includes all integer values from 0 to 100, except 1. Avoid
specifying fbff for HDAM databases. If you specify fbff for HDAM databases and
if at load time the randomizing module generates the relative block or CI number
of a block or CI marked as free space, the randomizer must store the root
segment in another block.

If you specify fbff, every nth block or CI will be considered a second-most
desirable block or CI by the HD Space Search Algorithm. This is true unless you
specify SEARCHA=1 in the DATASET macro of the DBDGEN utility. By
specifying SEARCHA=1, you are telling IMS not to search for space in the
second-most desirable block or CI.

For details on the HD Space Search Algorithm, see “How the HD Space Search
Algorithm Works” on page 78. For more information on the SEARCHA keyword,
see “Database Description (DBD) Generation” in IMS/ESA Utilities Reference:
Database Manager.

v Free space percentage factor (fspf). The fspf specifies the minimum percentage
of each block or CI in a data set group to be left as free space when the
database is loaded. The range of fspf is from 0 to 99.

Note: This free space applies to VSAM ESDS and OSAM data sets. It does not
apply to HIDAM index databases or to DEDBs.

For VSAM KSDS, free space is specified in the FREESPACE parameter of the
DEFINE CLUSTER command. This VSAM parameter is disregarded for a VSAM ESDS
data set used for HIDAM or HDAM. (This command is explained in detail in
MVS/DFP Access Method Services for VSAM Catalog·)

Estimating the Size of the Root Addressable Area (HDAM Only)
To estimate the size of the root addressable area, use the following formula:
A x B = D

C

where:

A = the number of bytes of a database record to be stored in the root
addressable area

B = the expected number of database records

C = the number of bytes available for data in each CI or block CI or block size,
minus overhead)

D = the size you will need, in blocks or CIs, for the root addressable area.

Specifying Free Space (HDAM and HIDAM Only)

Chapter 6. Database Design Considerations for Full Function 167

If you have specified free space for the database, include it in your calculations for
determining the size of the root addressable area. Use the following formula to
accomplish this step:
D x E x G = H

F

where:

D = the size you calculated in the first formula (the necessary size of the root
addressable area in block or CIs)

E = how often you are leaving a block or CI in the database empty for free
space (what you specified in the fbff operand in the DBD)

F = (E-1) (fbff-1)

G = 100 100 - fspf The fspf is the minimum percentage of each block or
CI you are leaving as free space (what you specified in the fspf operand in
the DBD)

H = the total size you will need, in blocks or CIs

Specify the number of blocks or CIs you need in the root addressable area in the
RMNAME=rbn keyword in the DBD statement in the DBD.

Determining Which Randomizing Module To Use (HDAM Only)
As you have seen, a randomizing module is required to store and access HDAM
database records. This module converts the key of a root segment to a relative
block number and RAP number. These numbers are then used to store or access
HDAM root segments. An HDAM database uses only one randomizing module, but
several databases can share the same module. Four randomizing modules are
supplied with IMS.

Normally, one of the four randomizing modules supplied with the system will work
for your database. These modules, and the arithmetic techniques they use, are
described in detail in IMS/ESA Customization Guide.

Write Your Own Randomizing Module
If, given your root key distribution, none of these randomizing modules works well
for you, write your own randomizing module. If you write your own randomizing
module, one of your goals is to have it distribute root segments so that, when
subsequently accessing them, only one read and one seek operation is required.
When a root key is given to the randomizing module, if the relative block number
the randomizer produces is the block actually containing the root, only one read and
seek operation is required (access is fast). The randomizing module you write
should allow you to vary the number of blocks and RAPs you specify, so blocks and
RAPs can be used for tuning the system. The randomizing module should also
distribute roots randomly, not randomize to bit map locations, and keep packing
density high. IMS/ESA Customization Guide tells you what the interface to your
randomizing module should be.

Assess the Effectiveness of the Randomizing Module
One way to determine the effectiveness of a given randomizing module for your
database is to run the IMS System Utilities/Database Tools (DBT) HD tuning aid
utility. This utility produces a report in the form of a map showing how root
segments are stored in the database. It shows you root segment storage based on

Sizing the Root Addressable Area

168 IMS/ESA V6 Admin Guide: DB

the number of blocks or CIs you specified for the root addressable area and the
number of RAPs you specified for each block or CI. By running the DBT HD tuning
aid utility against the various randomizing modules, you can see which module
gives you the best distribution of root keys in your database. In addition, by
changing the number of RAPs and blocks or CIs you specify, you can see (given a
specific randomizing module) which combination of RAPs and blocks or CIs
produces the best root segment distribution.

“Adjusting HDAM Options” in “Chapter 14. Tuning Your Database” on page 323
discusses how you can adjust HDAM options to tune your database once it is
running. One of these options is the randomizing module. Read that section before
choosing a randomizing module.

The name of your randomizing module is specified in the RMNAME=mod operand
in the DBD statement in the DBD.

Choosing HDAM Options
In an HDAM database, the options you choose can greatly affect performance. The
options discussed here are those you specify in the RMNAME= keyword in the DBD
statement:

Minimizing I/O Operations
In choosing these HDAM options, your primary goal is to minimize the number of
I/O operations it takes to access a database record or segment. The fewer I/O
operations, the faster the access time. Performance is best when:

v The number of RAPs in a block or CI is equal to the number of roots in the block
or CI (block or CI space is not wasted on unused RAPs).

v Unique block and RAP numbers are generated for most root segments (thereby
eliminating long synonym chains).

v Root segments are stored in key sequence.

v All frequently-used dependent segments are in the root addressable area (access
to the root addressable area is faster than access to the overflow area) and in
the same block or CI as the root.

Your choice of a randomizing module (discussed in the preceding section)
determines how many addresses are unique for each root and whether roots are
stored in key sequence. In general, a randomizing module is considered efficient if
roots are distributed evenly in the root addressable area. You can experiment with

Figure 99. Specifying the RNAME keyword

Determining Which Randomizing Module To Use

Chapter 6. Database Design Considerations for Full Function 169

different randomizing modules. Try various combinations of the anch, rbn, and bytes
operands to see what effect they have on distribution of root segments.

Maximizing Packing Density
A secondary goal in choosing HDAM options is to maximize packing density without
adversely affecting performance. Packing density is the percentage of space in the
root addressable area being used for root segments and the dependent segments
associated with them. Packing density is determined as follows:

Number of roots x root bytes
Packing density = ___

Number of CI or Usable space
blocks in the root x in the CI or block
addressable area

where:

v Root bytes = the average number of bytes per root in the root addressable area

v Usable space in the CI or block = the CI or block size minus (as applicable)
space for the FSEAP, RAPs, VSAM CIDF, VSAM RDF, and free space

Packing density should be high, but, as the percentage of packing density
increases, the number of dependent segments put into overflow storage can
increase. In addition, performance for processing of dependent segments decreases
when they are in overflow storage. All of the operands you can specify in the
RMNAME= keyword affect packing density. So, to optimize packing density, try
different randomizing modules and various combinations of the anch, rbn, and bytes
operands.

IMS System Utilities/Database Tools (DBT) has a tuning aid utility that helps you
choose HDAM options. This utility uses a file of your root keys as input. One of the
reports it produces shows the number of roots (synonyms) chained from a single
RAP. This report is based on your randomizing module, the number of blocks or CIs
in the root addressable area, the number of RAPs in a block or CI, and the access
method you are using (VSAM or OSAM). Another report produced by the utility uses
the same input file of root keys to show how many RAPs in the root addressable
area are not used.

Choosing a Logical Record Length for a HISAM Database
In a HISAM database, your choice of a logical record length is important because it
can affect both the access time and the use of space in the database. The relative
importance of each depends on your individual situation. To get the best possible
performance and an optimum balance between access time and the use of space,
plot several trial logical record lengths and test them before making a final choice.

Logical Record Length Considerations
The following should be considered:

v Only complete segments can be stored in a logical record. Therefore, the space
between the last segment that fit in the logical record and the end of the logical
record is unused.

v Each database record starts at the beginning of a logical record. The space
between the end of the database record and the end of the last logical record
containing it is unused. This unused space is relative to the average size of your
database records.

Choosing HDAM Options

170 IMS/ESA V6 Admin Guide: DB

v Very short or very long logical records tend to increase wasted space. If logical
records are short, the number of areas of unused space increases. If logical
records are long, the size of areas of unused space increases. Figure 100 shows
why short or long logical records increase wasted space.

Choose a logical record length that minimizes the amount of unused space at the
end of logical records.

The database record shown above is stored on three short logical records. Note the
three areas of unused space.

The same database record is stored on two longer logical records. Now there are
only two areas of unused space, rather than three, but the total size of the areas is
larger.

Segments in a database record that do not fit in the logical record in the primary
data set are put in one or more logical records in the overflow data set. More read
and seek operations, and therefore longer access time, are required to access
logical records in the overflow data set than in the primary data set. This is
especially true as the database grows in size and chains of overflow records
develop. Therefore, you should try to put the most-used segments in your database
record in the primary data set. When choosing a logical record length the primary
data set should be as close to average database record length as possible. This
results in a minimum of overflow logical records and thereby minimizes performance
problems. When you calculate the average record length, beware of unusually long
or short records that can skew the results.

A read operation reads one CI into the buffer pool. CIs contain one or more logical
records in a database record. Because of this, it takes as many read and seek
operations to access an entire database record as it takes CIs to contain it. In

Figure 100. Why Short or Long Logical Records Increase Wasted Space #1

Figure 101. Why Short or Long Logical Records Increase Wasted Space #2

Figure 102. Why Short or Long Logical Records Increase Wasted Space #3

Choosing a Logical Record Length for a HISAM Database

Chapter 6. Database Design Considerations for Full Function 171

Figure 103, each CI contains two logical records, and two CIs are required to
contain the database record. Consequently, it takes two read operations to get
these four logical records into the buffer.

The number of read and seek operations required to access a database record
increases as the size of the logical record decreases. The question to consider is:
Do you often need access to the entire database record? If so, you should try to
choose a logical record size that will usually contain an entire database record. If,
however, you typically access only one or a few segments in a database record,
choice of a logical record size large enough to contain the average database record
is not as important.

Consider what will happen in the following setup example in which you need to read
database records, one after another:

v Your CI or block size is 2048 bytes.

v Your Logical record size is 512 bytes.

v Your Average database record size is 500 bytes.

v The range of your database record sizes is 300 to 700 bytes.

Because your logical and average database record sizes are about equal (512 and
500), approximately one of every two database records will be read into the buffer
pool with one read operation. (This assumption is based on the average size of
database records.) If, however, your logical record size were 650, you would access
most database records with a single read operation. An obvious trade-off exists
here, one you must consider in picking a logical record length for HISAM data sets.
If your logical record size were 650, much unused space would exist between the
end of an average database record and the last logical record containing it.

Rules to Observe
The following rules must be observed when choosing a logical record length for
HISAM data sets:

v Logical record size in the primary data set must be at least equal to the size of
the root segment, plus its prefix, plus overhead. If variable-length segments are

Figure 103. Two Read Operations to Get Four Logical Records

Choosing a Logical Record Length for a HISAM Database

172 IMS/ESA V6 Admin Guide: DB

used, logical record size must be at least equal to the size of the longest root
segment, plus its prefix, plus overhead. Five bytes of overhead is required for
VSAM.

v Logical record size in the overflow data set must be at least equal to the size of
the longest segment in the overflow data set, plus its prefix, plus overhead. Five
bytes of overhead is required for VSAM.

v Logical record lengths in the overflow data set must be equal to or greater than
logical record length in the primary data set.

v The maximum logical record size is 30720 bytes.

v Except for SHISAM databases, logical record lengths must be an even number.

Calculating How Many Logical Records Are Needed to Hold a
Database Record

Calculate the average size of a database record before plotting various logical
record sizes. By calculating the average size of a database record, given a specific
logical record size, you can see how many logical records it takes to hold a
database record (of average size). To determine the average size of your database
records, see “Estimating the Minimum Size of the Database” on page 286 in
“Chapter 12. Loading Your Database” on page 285.

Specifying Logical Record Length
Specify the length of the logical records in the RECORD= operand of the DATASET
statement in the DBD.

Choosing a Logical Record Length for HD Databases
In HD databases, the important choice is not logical record length but CI or block
size. Logical record length is the same as block size when VSAM is used. Logical
record size is equal to CI size, minus 7 bytes of overhead (4 bytes for a CIDF, 3
bytes for an RDF). See the next section (“Determining the Size of CIs and Blocks”)
for information on determining CI or block size.

As with HISAM databases, specify the length of the logical records in the
RECORD= operand of the DATASET statement in the DBD.

Determining the Size of CIs and Blocks
You can specify the DEDB CI resource size for your database. (If you do not
specify it, the DBDGEN utility will calculate it for you.) Based on CI size, VSAM
determines the size of physical blocks on a DASD track. VSAM always uses the
largest possible physical block size, because the largest block size best utilizes
space on the track. So your choice of a CI size is an important one. Your goal in
picking it is to keep a high percentage of space on the track for your data, rather
than for device overhead.

Track sizes vary from one device to another, and many different CI sizes you can
specify exist. Because you can specify different CI sizes, the physical block size
that VSAM picks varies and is based on device overhead factors. For information
about using VSAM data sets, refer to MVS/DFP Access Method Services for VSAM
Catalog·

Choosing a Logical Record Length for a HISAM Database

Chapter 6. Database Design Considerations for Full Function 173

Choosing Buffering Options
Database buffers are defined areas in virtual storage. When an application program
processes a segment in the database, the entire block or CI containing the segment
is read from the database into a buffer. The application program processes the
segment while it is in the buffer. If the processing involves modifying any segments
in the buffer, the contents of the buffer must eventually be written back to the
database so the database is current.

You need to choose the size and number of buffers that give you the maximum
performance benefit. If your database uses OSAM, you might also decide to use
OSAM sequential buffering. The following sections can help you with these
decisions.

Multiple Buffers in Virtual Storage
You can specify both the number of buffers needed in virtual storage and their size.
You can specify multiple buffers with different sizes. Because a complete block or
CI is read into a buffer, the buffer must be at least as large as the block or CI that is
read into it. For best performance, use multiple buffers in virtual storage. To
understand why, you need to understand the concept of buffers and how they are
used in virtual storage.

When the data an application program needs is already in a buffer, the data can be
used immediately. The application program is not forced to wait for the data to be
read from the database to the buffer. Because the application program does not
wait, performance is better. By having multiple buffers in virtual storage and by
making a buffer large enough to contain all the segments of a CI or block, you
increase the chance that the data needed by application programs is already in
virtual storage. Thus, the reason for having multiple buffers in virtual storage is to
eliminate some of an application program’s wait time.

In virtual storage, all buffers are put in a buffer pool. Separate buffer pools exist for
VSAM and OSAM. A buffer pool is divided into subpools. Each subpool is defined
with a subpool definition statement. Each subpool consists of a specified number of
buffers of the same size. With OSAM and VSAM you can specify multiple subpools
with buffers of the same size.

“Use” Chain
In the subpool, buffers are chained together in the order in which they have been
used. This organization is called a “use chain.” The most recently used buffers are
at the top of the use chain and the least recently used buffers are at the bottom.

The Buffer Handler
When a buffer is needed, an internal component called the buffer handler selects
the buffer at the bottom of the use chain, because buffers that are least recently
used are less likely to contain data an application program needs to use again. If a
selected buffer contains data an application program has modified, the contents of
the buffer are written back to the database before the buffer is used. This causes
the application program “wait time” discussed earlier.

Background Write Option
If you use VSAM, you can reduce or eliminate wait time by using the background
write option. This option is discussed under “Determining Which VSAM Options to

Choosing Buffering Options

174 IMS/ESA V6 Admin Guide: DB

Use” on page 184. Otherwise, you control and reduce wait time by carefully
choosing of the number and size of buffers.

Shared Resource Pools
You can define multiple VSAM local shared resource pools. Multiple local shared
resource pools allow you to specify multiple VSAM subpools of the same size. You
create multiple shared resource pools and then place in each one a VSAM subpool
that is the same size as other VSAM subpools in other local shared resource pools.
You can then assign a specific database data set to a specific subpool by assigning
the data set to a shared resource pool. The data set is directed to a specific
subpool within the assigned shared resource pool based on the data set’s control
interval size.

Using Separate Subpools
If you have many VSAM data sets with similar or equal control interval sizes, you
might get a performance advantage by replacing a single large subpool with
separate subpools of identically sized buffers. Creating separate subpools of the
same size for VSAM data sets offers benefits similar to OSAM multiple subpool
support.

You can also create separate subpools for VSAM KSDS index and data
components within a VSAM local shared resource pool. Creating separate subpools
can be advantageous because index and data components do not need to share
buffers or compete for buffers in the same subpool.

Hiperspace Buffering
Multiple VSAM local shared resource pools enhance the benefits provided by
Hiperspace buffering. Hiperspace buffering allows you to extend the buffering of 4K
and multiples of 4K buffers to include buffers allocated in expanded storage in
addition to the buffers allocated in virtual storage. Using multiple local shared
resource pools and Hiperspace buffering allows data sets with certain reference
patterns (for example, a primary index data set) to be isolated to a subpool backed
by Hiperspace, which reduces the VSAM read I/O activity needed for database
processing.

Hiperspace buffering is activated at IMS initialization. In batch systems, you place
the necessary control statements in the DFSVSAMP data set. In online systems,
you place the control statements in the IMS.PROCLIB data set with the member
name DFSVSMnn. Hiperspace buffering is specified for VSAM buffers through one
or two optional parameters applied to the VSRBF subpool definition statement. For
a brief explanation of how to specify hiperspace buffering, see “Hiperspace
Buffering Parameters” on page 354.

Buffer Size
Pick buffer sizes that are equal to or larger than the size of the CIs and blocks that
are read into the buffer. A variety of valid buffer sizes exist. If you pick buffers larger
than your CI or block sizes, virtual storage is wasted.

For example, suppose your CI size is 1536 bytes. The smallest valid buffer size that
can hold your CI is 2048 bytes. This wastes 512 bytes (2048 - 1536) and is not a
good choice of CI and buffer size.

Choosing Buffering Options

Chapter 6. Database Design Considerations for Full Function 175

Buffer Numbers
Pick an appropriate number of buffers of each size so buffers are available for use
when they are needed, an optimum amount of data is kept in virtual storage during
application program processing, and application program wait time is minimized.
The trade-off in picking a number of buffers is that each buffer uses up virtual
storage.

When you initially choose buffer sizes and the number of buffers, you are making a
scientific guess based on what you know about the design of your database and
the processing requirements of your applications. After you choose and implement
buffer size and numbers, various monitoring tools are available to help you
determine how well your scientific guess worked. Monitoring is discussed in
“Chapter 13. Monitoring Your Database” on page 309.

Buffer size and number of buffers are specified when the system is initialized. Both
can be changed (tuned) for optimum performance at any time. Tuning is discussed
in “Chapter 14. Tuning Your Database” on page 323.

VSAM Buffer Sizes
The buffer sizes (in bytes) that you can choose when using VSAM as the access
method are:

512

1024

2048

4096

8192

12288

16384

20480

24576

28672

32768

In order not to waste buffer space, choose a buffer size that is the same as a valid
CI size. Valid CI sizes for VSAM data clusters are:

v For data components up to 8192 bytes (or 8K bytes), the CI size must be a
multiple of 512.

v For data components over 8192 bytes (or 8K bytes), the CI size must be a
multiple of 2048 (up to a maximum of 32768 bytes).

Valid CI sizes (in bytes) for VSAM index clusters using VSAM catalogs are:

512

1024

2048

4096

Valid CI sizes for VSAM index clusters using integrated catalog facility catalogs are:

v For index components up to 8192 bytes (or 8K bytes), the CI size must be a
multiple of 512.

Choosing Buffering Options

176 IMS/ESA V6 Admin Guide: DB

v For index components over 8192 bytes (or 8K bytes), the CI size must be a
multiple of 2048 (up to a maximum of 32768 bytes).

OSAM Buffer Sizes
The buffer sizes (in bytes) that you can choose when using OSAM as the access
method are:

512

1024

2048

Any multiple of 2048 up to a maximum of 32768

For OSAM data sets, choose a buffer size that is the same as a valid block size so
that buffer space is not wasted. Valid block sizes for OSAM data sets are any size
from 18 to 32768 bytes.

Specifying Buffers
Specify the number of buffers and their size when the system is initialized. Your
specifications, which are given to the system in the form of control statements, are
put in the:

v DFSVSAMP data set in batch, utility.

v IMS.PROCLIB data set with the member name DFSVSMnn in IMS DC and
DBCTL environments.

The following example shows the necessary control statements specifications:

v Four 2048-byte buffers for OSAM

v Four 2048-byte buffers and fifteen 1024-byte buffers for VSAM
//DFSVSAMP DD *

...

VSRBF=2048,4
VSRBF=1024,15
IOBF=(2048,4)
/*

Detailed information on how to code these control statements is located in the
IMS/ESA Installation Volume 2: System Definition and Tailoring.

OSAM buffers can be fixed in storage using the IOBF= parameter. In VSAM, buffers
are fixed using the VSAMFIX= parameter in the OPTIONS statement. This
parameter is described under “Determining Which VSAM Options to Use” on
page 184. Performance is generally improved if buffers are fixed in storage, then
page faults do not occur. A page fault occurs when an instruction needs a page (a
specific piece of storage) and the page is not in storage.

With OSAM, you can fix the buffers and their buffer prefixes, or the buffer prefixes
and the subpool header, in storage. In addition, you can selectively fix buffer
subpools, that is, you can choose to fix some buffer subpools and not others. Buffer
subpools are fixed using the IOBF= parameter. The format of this parameter is:
IOBF= (length,number,fix1,fix2,id)

where:

v length is the size of buffers in a subpool.

Choosing Buffering Options

Chapter 6. Database Design Considerations for Full Function 177

v number is the number of buffers in a subpool. If three or fewer are specified, IMS
gives you three; otherwise, it gives you the number specified. If you do not
specify a sufficient number of buffers, your application program calls could waste
time waiting for buffer space.

v fix1 is whether the buffers and buffer prefixes in this subpool need to be fixed
and is specified as Y or N (yes or no).

v fix2 is whether the buffer prefixes in this subpool and the subpool header need to
be fixed and is specified as Y or N (yes or no).

The default for the fix1 parameter is that buffers and their prefixes are not fixed.
The default for the fix2 parameter is that buffer prefixes and the subpool header
are not fixed.

v id is a parameter that specifies an identifier to be assigned to the subpool. It is
used in conjunction with the DBD statement to assign a specific subpool to a
given data set. (This DBD statement is not the DBD statement used in a DBD
generation but one specified during execution, as described in IMS/ESA
Installation Volume 1: Installation and Verification.) The id parameter allows you
to have more than one subpool with the same buffer size. You can use it to:

– Get better distribution of activity among subpools

– Direct new database applications to “private” subpools

– Control the contention between a BMP and MPPs for subpools

Using OSAM Sequential Buffering
Sequential Buffering (SB) is an extension of the normal buffering technique used for
OSAM database data sets. When SB is active, multiple consecutive blocks can be
read from your database with a single I/O operation. (SB does not enhance OSAM
write operations.) This technique can help reduce the elapsed time of many
programs and utilities that sequentially process your databases.

About SB
As you learned in the previous section, the normal OSAM buffering method reads
only one block with each I/O operation. This is known as a random read. Without
SB, IMS must issue a random read each time your program processes a block that
is not already in the OSAM buffer pool. For programs that process your databases
sequentially, random reads can be time-consuming because the DASD device must
rotate one revolution or more between each read.

SB reduces the time needed for I/O read operations in three ways:

v By reading 10 consecutive blocks with a single I/O operation. This is called a
sequential read. Sequential reads reduce the number of I/O operations necessary
to sequentially process a database data set.

When a sequential read is issued, the block containing the segment your
program requested plus nine adjacent blocks are read from the database into an
SB buffer pool in virtual storage. When your program processes segments in any
of the other nine blocks, no I/O operations are required because the blocks are
already in the SB buffer pool.

Example: If your program sequentially processes an OSAM data set containing
100,000 consecutive blocks, 100,000 I/O operations are required using the
normal OSAM buffering method. SB can take as few as 10,000 I/O operations to
process the same data set.

v By monitoring the database I/O reference pattern and deciding if it is more
efficient to satisfy a particular I/O request with a sequential read or a random
read. This decision is made for each I/O request processed by SB.

Choosing Buffering Options

178 IMS/ESA V6 Admin Guide: DB

v By overlapping sequential read I/O operations with CPC processing and other I/O
operations of the same application. When overlapped sequential reads are used,
SB anticipates future requests for blocks and reads those blocks into SB buffers
before they are actually needed by your application. (Overlapped I/O is supported
only for batch and BMP regions.)

Benefits of Using SB
By using SB, any application program or utility that sequentially processes OSAM
data sets can run faster. Because many other factors affect the elapsed time of a
job, the time savings is difficult to predict. You need to experiment with SB to
determine actual time savings.

Programs That Can Benefit from SB
Some of the programs and utilities that might benefit from the use of SB are:

v IMS batch programs that sequentially process your databases.

v BMPs that sequentially process your databases.

v Generalized software packages that sequentially process your databases, for
example, Data Extract Facility (DXT)

v IMS utilities, including:

– Online Database Image Copy

– HD Reorganization Unload

– Partial Database Reorganization

– Surveyor

– Database Scan

– Database Prefix Update

– Batch Backout

v Those few long-running MPP, Fast Path, and CICS programs that sequentially
process your databases.

Note: SB is possible but not recommended for short-running MPP, IFP, and
CICS programs. SB is not recommended for the short-running programs,
because SB has a high initialization overhead each time such online
programs are run.

Typical Productivity Benefits of SB
By using SB for programs and utilities that sequentially process your databases,
you might be able to:

v Run existing sequential application programs within decreasing “batch window
times.” For example, if the time you set aside to run batch application programs
is reduced by one hour, you might still be able to run all the programs you
normally run within this reduced time period.

v Run additional sequential application programs within the same time period.

v Run some sequential application programs more often.

v Make online image copies much faster.

v Reduce the time needed to reorganize your databases.

Flexibility of SB Use
IMS provides several methods for requesting SB. You can request the use of SB for
specific programs and utilities during PSBGEN or by using SB control statements.
You can also request the use of SB for all or some batch and BMP programs by
using an SB Initialization Exit Routine.

Using OSAM Sequential Buffering

Chapter 6. Database Design Considerations for Full Function 179

IMS also allows a system programmer or master terminal operator (MTO) to
override requests for the use of SB by disallowing its use. This is done by issuing
an SB MTO command or using an SB Initialization Exit Routine. The use of SB can
be disallowed during certain times of the day to avoid virtual or real storage
constraint problems.

These methods of controlling the use of SB are discussed in the section “How to
Request the Use of SB” on page 181.

How SB Buffers Data
The next few sections describe what happens when you request SB. You will learn
what SB buffers, how and when SB is activated, and what happens to the data that
SB buffers.

What SB Buffers
As discussed in “Chapter 5. Choosing Additional Database Functions” on page 83,
HD databases can consist of multiple data set groups. A database PCB can
therefore refer to several data set groups. A database PCB can also refer to several
data set groups when the database referenced by the PCB is involved in logical
relationships. A particular database, and therefore a particular data set group, can
be referenced by multiple database PCBs. A specific data set group referenced by a
specific database PCB is referred to in the following discussion as a DB-PCB/DSG
pair.

When SB is activated, it buffers data from the OSAM data set associated with a
specific DB-PCB/DSG pair. SB can be active for several DB-PCB/DSG pairs at the
same time, but each pair requires a separate activation.

Conditional Activation and Periodical Evaluation of SB
IMS does not immediately activate SB when you request it. Instead, when SB is
requested for a program, IMS begins monitoring the I/O reference pattern and
activity rate for each DB-PCB/DSG pair used by the program. After awhile, IMS
performs the first of a series of periodical evaluations of the buffering process. IMS
performs these periodic evaluation for each DB-PCB/DSB pair. This periodical
evaluation determines if the use of SB would be beneficial for the DB-PCB/DSG
pair. If the use of SB would be beneficial, IMS activates SB for the DB-PCB/DSG
pair. This activation of SB is known as conditional activation.

After SB is activated, IMS continues to periodically evaluate the I/O reference
pattern and activity rate. Based on these evaluations, IMS can:

v Temporarily deactivate SB and continue to monitor the I/O reference pattern and
activity rate. Temporary deactivation is implemented to unfix and page-release
the SB buffers.

v Temporarily deactivate monitoring of the I/O reference pattern and activity rate.
This form of temporary deactivation is implemented only if SB has been
deactivated and IMS concludes from subsequent evaluations that use of SB
would still not be beneficial.

When SB is temporarily deactivated, it can be reactivated later based on the results
of subsequent evaluations.

Individual periodical evaluations are performed for each DB-PCB/DSG pair.
Therefore, IMS can deactivate SB for one DB-PCB/DSG pair while SB remains
active for other DB-PCB/DSG pairs.

Using OSAM Sequential Buffering

180 IMS/ESA V6 Admin Guide: DB

Role of the SB Buffer Handler
When SB is activated for a DB-PCB/DSG pair, a pool of SB buffers is allocated to
the pair. (SB buffers are also discussed in the section “Virtual Storage
Considerations for SB”.) Each SB buffer pool consists of n buffer sets (the default is
four) and each buffer set contains 10 buffers. These buffers are used by an internal
component called the SB buffer handler to hold the sets of 10 consecutive blocks
read with sequential reads.

While SB is active, all requests for database blocks not found in the OSAM buffer
pool are sent to the SB buffer handler. The SB buffer handler responds to these
requests in the following way:

v If the requested block is already in an SB buffer, a copy of the block is put into
an OSAM buffer.

v If the requested block is not in an SB buffer, the SB buffer handler analyzes a
record of previous I/O requests and decides whether to issue a sequential read
or a random read. If it decides to issue a random read, the requested block is
read directly into an OSAM buffer. If it decides to issue a sequential read, the
requested block and nine adjacent blocks are read into an SB buffer set. When
the sequential read is complete, a copy of the requested block is put into an
OSAM buffer.

v The SB buffer handler also decides when to initiate overlapped sequential reads.

Note: When processing a request from an online program, the SB buffer handler
only searches the SB buffer pools allocated to that online program.

Virtual Storage Considerations for SB
Each DB-PCB/DSG pair buffered by SB has its own SB buffer pool. By default,
each SB buffer pool contains four buffer sets (although IMS lets you change this
value). Ten buffers exist in each buffer set. Each buffer is large enough to hold one
OSAM data set block.

The total size of each SB buffer pool is:
4 * 10 * block size

The SB buffers are page-fixed in storage to eliminate page faults, reduce the path
length of I/O operations, and increase performance. SB buffers are page-unfixed
and page-released when a periodical evaluation temporarily deactivates SB.

You must ensure that the batch, online or DBCTL region has enough virtual storage
to accommodate the SB buffer pools. This storage requirement can be
considerable, depending upon the block size and the number of programs using
SB.

SB is not recommended in real storage-constrained environments such as batch
and DB/TM.

Some systems are storage-constrained only during certain periods of time, such as
during online peak times. You can use an SB Initialization Exit Routine to control
the use of SB according to specific criteria (the time) of day. For details on the SB
Initialization User Exit Routine see IMS/ESA Customization Guide.

How to Request the Use of SB
IMS provides two methods for specifying which of your programs and databases
should use SB.

Using OSAM Sequential Buffering

Chapter 6. Database Design Considerations for Full Function 181

1. You can explicitly specify which programs and utilities should use SB. During
PSBGEN or by using SB control statements.

2. You can specify that by default all or a subset of your batch and BMP programs
and utilities should use SB by coding an SB exit routine or by using a sample
SB exit routine provided with IMS.

Determine which method you will use. Using the second method is easier because
you do not need to know which BMP and batch programs use sequential
processing. However, using SB by default can lead to an uncontrolled increase in
real and virtual storage use, which can impact system performance. Generally, if
you are running IMS in a storage-constrained MVS/ESA environment, use the first
method. If you are running IMS in a non storage-constrained MVS/ESA
environment, use the second method.

Requesting SB During PSBGEN
You can code the SB= keyword in the PCB macro instruction of your application’s
PSB. (This is not possible for IMS utilities that do not use a PSB during execution.)
You code this keyword for each database PCB buffered with SB.

The format of the SB= keyword is:
PCB TYPE=DB,...,SB={COND/NO}

where:

COND This option specifies that SB should be conditionally activated for this PCB.

NO This option specifies that SB should not be used for this PCB.

If you do not include the SB= keyword in your PCB, IMS defaults to NO
unless specified otherwise in the SB exit routine.

The SB= keyword value can be overridden by SB control statements. This option is
discussed in the next section.

The following example shows a PCB statement coded to request conditional
activation of SB:
SKILLA PCB TYPE=DB,DBDNAME=SKILLDB,KEYLEN=100,

PROCOPT=GR,SB=COND

Detailed instructions for coding PSB statements are contained in IMS/ESA Utilities
Reference: System.

Requesting SB With SB Control Statements
You can put SBPARM control statements in the optional //DFSCTL file. This file is
defined by a //DFSCTL DD statement in the JCL of your batch, dependent, or online
region. You can use the SBPARM control statement to:

v Specify which database PCBs (and which data sets referenced by the database
PCB) should use SB

v Override the default number of buffer sets

This control statement allows you to override PSB specifications without requiring
you to regenerate the PSB.

You can specify keywords that request use of SB for all or specific DBD names, DD
names, PSB names, and PCB labels. You can also combine these keywords to
further restrict when SB is used.

Using OSAM Sequential Buffering

182 IMS/ESA V6 Admin Guide: DB

By using the BUFSETS keyword of the SBPARM control statement, you can
change the number of buffer sets allocated to SB buffer pools. (For details on the
SB buffer pools see “Virtual Storage Considerations for SB” on page 181.) The
default number of buffer sets is four. Badly organized databases can require six or
more buffer sets for efficient sequential processing. Well-organized databases
require as few as two buffer sets. An indicator of how well-organized your database
is can be found in the optional //DFSSTAT reports. For details on these reports, see
IMS/ESA Utilities Reference: System. For information on tuning the number of
buffer sets, see “Chapter 14. Tuning Your Database” on page 323.

The example below shows the SBPARM control statement necessary to request
conditional activation of SB for all DBD names, DD names, PSB names, and PCBs.
SBPARM ACTIV=COND

The next example shows the parameters necessary to:

v Request conditional activation of SB for all PCBs that were coded with
'DBDNAME=SKILLDB' during PSB generation

v Set the number of buffer sets to 6
SBPARM ACTIV=COND,DB=SKILLDB,BUFSETS=6

Detailed instructions for coding the SBPARM control statement are contained in
IMS/ESA Installation Volume 2: System Definition and Tailoring.

Requesting SB with an SB Initialization Exit Routine
You can use an SB Initialization Exit Routine to:

v Request conditional activation of SB for all or some batch and BMP programs

v Allow or disallow the use of SB

v Change the default number of buffer sets

You can do this by writing your own SB exit routine or by selecting a sample SB
exit routine and copying it under the name DFSSBUX0 into IMS.RESLIB. An SB
exit routine allows you to dynamically control the use of SB at application
scheduling time.

IMS supplies five sample SB exit routines in IMS.DBSOURCE and IMS.RESLIB.
Three of the sample routines request SB for various subsets of application
programs and utilities. One sample routine requests SB during certain times of the
day and another routine disallows use of SB. You can use these sample routines as
written or modify them to fit your needs.

Detailed instructions for the SB Initialization Exit Routine are in the IMS/ESA
Customization Guide .

SB Options or Parameters Provided by Several Sources
If you provide the same SB option or parameter in more than one place, the
following priority list applies (item 1 having the highest priority):

1. SB control statement specifications (the nth control statement overrides the mth
control statement, where n>m)

2. PSB specifications

3. Defaults changed by the SB Initialization Exit Routine

4. IMS defaults

Using OSAM Sequential Buffering

Chapter 6. Database Design Considerations for Full Function 183

Using SB in an Online System
To allow the use of SB in an online IMS or DBCTL environment, an IMS system
programmer must explicitly request that IMS load the SB modules. This is done by
putting an SBONLINE control statement in the DFSVSMxx member. By default, IMS
does not load SB modules in an online environment. This helps avoid a noticeable
increase in virtual storage requirements.

The two forms of the SBONLINE control statement are:
SBONLINE

or

SBONLINE,MAXSB=nnnnn

where nnnnn is the maximum storage (in kilobytes) that can be used for SB buffers.

When the MAXSB limit is reached, IMS stops allocating SB buffers to online
applications until terminating online programs release SB buffer space. By default, if
you do not specify the MAXSB= keyword, the maximum storage for SB buffers is
unlimited.

Detailed instructions for coding the SBONLINE control statement are contained in
IMS/ESA Installation Volume 2: System Definition and Tailoring.

Disallowing the Use of SB
This section describes how an IMS system programmer or MTO can disallow the
use of SB. When the use of SB has been disallowed, a request for conditional
activation of SB is ignored.

There are three ways to disallow the use of SB. The following list describes the
three methods.

1. An SB Initialization Exit Routine can be written (or a sample exit routine
adapted) that can dynamically disallow and allow use of SB. This method can
be used if you are using SB in an IMS batch, online, or DBCTL environment.

2. The MTO commands /STOP SB and /START SB can be issued to dynamically
disallow and allow use of SB within an IMS online subsystem. For details on
these commands see IMS/ESA Operator’s Reference.

3. The SBONLINE control statement can be omitted from the DFSVSMxx member.
This will keep IMS from loading the SB modules into the online subsystem. No
program in the online subsystem will be able to use SB.

Determining Which VSAM Options to Use
Several types of options can be chosen for databases using VSAM. Specifying
options such as free space for the ESDS data set, logical record size, and CI size
are discussed in preceding sections of this chapter. This section describes these
optional functions:

1. Functions specified in the OPTIONS control statement when IMS is initialized.

2. Functions specified in the POOLID, VSRBF, and DBD control statements when
IMS is initialized.

3. Functions specified in the Access Method Services DEFINE CLUSTER
command when a data set is defined.

Using OSAM Sequential Buffering

184 IMS/ESA V6 Admin Guide: DB

Optional Functions Specified in the OPTIONS Control Statement
Several options exist that can be chosen during IMS system initialization for
databases using VSAM. These options are specified in the OPTIONS control
statement. In a batch system, the options you specify are put in the data set with
the ddname DFSVSAMP. In an online system, they are put in the IMS.PROCLIB
data set with the member name DFSVSMnn. Your choice of VSAM options can
affect performance, use of space in the database, and recovery. This section
describes each option and the implications of using it.

The OPTIONS statement is described in detail in the IMS/ESA Installation
Volume 2: System Definition and Tailoring. The OPTIONS statement and all its
parameters are optional.

Using Background Write (BGWRT Parameter)
When an application program issues a call requiring that data be read from the
database, the data is read into a buffer. If the buffer the data is to be read into
contains altered data, the altered data must be written back to the database before
the buffer can be used. If the data was not written back to the database, the data
would be lost (overlaid) when new data was read into the buffer. Then there would
be no way to update the database.

For these reasons, when an application program needs data read into a buffer and
the buffer contains altered data, the application program waits while the buffer is
written to the database. This waiting time decreases performance. The application
program is ready to do processing, but the buffer is not available for use.
Background write is a function you can choose in the OPTIONS statement that
reduces the amount of wait time lost for this reason.

To understand how background write works, you need to know something about
how buffers are used in a subpool. You specify the number of buffers and their size.
All buffers of the same size are in the same subpool. Buffers in a subpool are on a
use chain, that is, they are chained together in the order in which they have been
most or least recently used. The most recently used buffers are at the top of the
use chain; least recently used buffers are at the bottom.

When a buffer is needed, the VSAM buffer manager selects the buffer at the bottom
of the use chain. The buffer at the bottom of the use chain is selected, because
buffers that have not been used recently are less likely to contain data that will be
used again. If the buffer the VSAM buffer handler picks contains altered data, the
data is written to the database before the buffer is used. It is during this step that
the application program is waiting. Background write solves the following problem:

When the VSAM buffer manager gets a buffer in any subpool, it looks (when
background write is used) at the next buffer on the use chain. The next buffer on
the use chain will be used next. If the buffer contains altered data, IMS is notified
so background write will be invoked. Background write has VSAM write data to the
database from some percentage of the buffers at the bottom of the use chain.
VSAM does this for all subpools. The data that is written to the database still
remains in the buffers so the application program can still use any data in the
buffers.

Background write is a very useful function when processing is done sequentially,
but it is not as important to use in online systems as in batch. This is because, in
online environments, IMS automatically writes buffers to the database at sync
points.

Determining Which VSAM Options to Use

Chapter 6. Database Design Considerations for Full Function 185

To use background write, specify BGWRT=YES,n on the OPTIONS statement,
where n is the percentage of buffers in each subpool to be written to the database.
If you do not code the BGWRT= parameter, the default is BGWRT=YES and the
default percentage is 34%. If an application program continually uses buffers but
does not reexamine the data in them, you can make n 99%. Then, a buffer will
normally be available when it is needed.

CICS does not support this function.

Choosing an Insert Strategy (INSERT Parameter)
Get free space in a CI in a KSDS is by specifying it in the DEFINE CLUSTER
command. (The DEFINE CLUSTER command is explained in the following section,
“Specifying Free Space for a KSDS (FREESPACE Parameter)” on page 188. Free
space for a KSDS cannot be specified using the FRSPC= keyword in the DBD.

To specify free space in the DEFINE CLUSTER command, you must decide:

v Whether free space you have specified is preserved or used when more than
one root segment is inserted at the same time into the KSDS.

v Whether to split the CI at the point where the root is inserted, or midway in the
CI, when a root that causes a CI split is inserted.

These choices are specified in the INSERT= parameter in the OPTIONS statement.
INSERT=SEQ preserves the free space and splits the CI at the point where the root
is inserted. INSERT=SKP does not preserve the free space and splits the CI
midway in the CI. In most cases, specify INSERT=SEQ so free space will be
available in the future when you insert root segments. Your application determines
which choice gives the best performance.

If you do not specify the INSERT= parameter, the default is INSERT=SKP.

Using the IMS Trace Parameters
The IMS trace parameters trace information that has proven valuable in solving
problems in the specific area of the trace. All traces share sequencing numbers so
that a general picture of the IMS environment can be obtained by looking at all the
traces.

OFF is the default for all the traces. The traces can be turned on at IMS
initialization time. They can also be started or stopped by the /TRACE command
during IMS execution. Output from long-running traces can be saved on the system
log if requested. For documentation on the trace parameters, see IMS/ESA
Installation Volume 2: System Definition and Tailoring.

Determining Which Dump Option to Use (DUMP Parameter)
The dump option is a serviceability aid that has no impact on performance. It
merely describes the type of abend to take place if an abend occurs in the buffer
handler (an internal component). If DUMP=YES is specified, the control region will
abend when there is an abend in the buffer handler.

Deciding Whether to Fix VSAM Database Buffers and IOBs in
Storage (VSAMFIX Parameter)
Each VSAM subpool contains buffers and input/output control blocks (IOBs).
Performance is generally improved if these buffers and IOBs are fixed in storage.
Then, page faults do not occur. A page fault occurs when an instruction references
a page (a specific piece of storage) that is not in real storage.

Determining Which VSAM Options to Use

186 IMS/ESA V6 Admin Guide: DB

You can specify whether buffers and/or IOBs are fixed in storage in the VSAMFIX=
parameter of the OPTIONS statement. If you have buffers or IOBs fixed, they are
fixed in all subpools. If you do not code the VSAMFIX= parameter, the default is
that buffers and IOBs are not fixed.

This parameter can be used in a CICS environment if the buffers were specified by
IMS.

Using Local Shared Resources (VSAMPLS Parameter)
Specifying VSAMPLS=LOCL in the OPTIONS statement is for local shared
resources (LSR). When you specify VSAMPLS=LOCL, VSAM control blocks and
subpools are put in the IMS control region. VSAMPLS=LOCL is the only valid
operand and the default.

Optional Functions Specified in the POOLID, DBD, and VSRBF Control
Statements

Options chosen during IMS initialization determine the size and structure of VSAM
local shared resource pools. In a batch environment, you specify these options in a
data set with the ddname DFSVSAMP. In online systems, you specify these options
in the IMS.PROCLIB data set with the member name DFSVSMnn.

With these options, you can enhance IMS performance by:

v Defining multiple local shared resource pools

v Dedicating subpools to a specific data set

v Defining separate subpools for index and data components of VSAM data sets

POOLID is the required control statement for defining multiple VSAM shared
resource pools. Each POOLID statement defines one shared resource pool. The
format of the POOLID control statement is:
POOLID=id,FIXDATA=YES | NO,FIXINDEX=YES | NO,FIXBLOCK=YES | NO,STRINGNM=n

The only required parameter for POOLID is id. The id parameter is coded as a
user-defined, one-to-four character alphanumeric field, and is used in conjunction
with the DBD subpool definition statement to assign a given data set to a specific
shared resource pool. The id parameter assigned to a POOLID must match the id
parameter on the DBD subpool definition statement. The format of the DBD
statement is:
DBD=dbdname(data-set-number,id,ERASE=YES | NO,FREESPACE=NO | YES)

The dbdname is a name specified on the DBDGEN DBD macro statement NAME=.
The data-set-number is an IMS-assigned number that identifies a specific data set
of a data set group within a database. The data-set-number is the link that assigns
a specific shared pool and its subpools to a specific data set.

POOLID is followed by one or more VSRBF subpool definition statements. Each
VSRBF statement defines a subpool within that shared pool. The format of the
VSRBF statement is:
VSRBF=buffer-size,number-of-buffers,type,HSO | HSR,HSn

In the VSRBF statement, type specifies the type of shared resource subpool to
create, data subpool (D) or index subpool (I). You can create data subpools without
creating index subpools, but you cannot create index subpools without
corresponding data subpools. If the parameter is invalid or not coded, data (D) is
the default.

Determining Which VSAM Options to Use

Chapter 6. Database Design Considerations for Full Function 187

You can use VSRBF statements without the POOLID shared pool definition
statement to define subpools within a single default shared pool. If VSRBF is used
without the POOLID statement, you can still define separate data and index
subpools. Implementing the POOLID, VSRBF, and DBD control statements and
their corresponding parameters is described in detail in IMS/ESA Installation
Volume 2: System Definition and Tailoring.

Optional Functions Specified in the Access Method Services DEFINE
CLUSTER Command

There are several optional functions that affect performance that can be chosen
when you define your VSAM data sets. These functions are specified in the Access
Method Services DEFINE CLUSTER command. This command and all its parameters
are described in detail in MVS/DFP Access Method Services for VSAM Catalog·

Specifying that ’Fuzzy’ Image Copies Can be Taken with the
Database Image Copy 2 (DFSUDMT0)
To establish that ’fuzzy’ image copies of KSDSs can be taken with the Database
Image Copy 2 (DFSUDMT0), specify the BWO(TYPEIMS) parameter. For this
option to take effect the following conditions must exist:

v The KSDS must be SMS-managed.

v All access to the KSDS, once this option is specified, is done under DFSMS 1.3
or later version (once the KSDS has been opened under DFSMS 1.3, attempts to
open it under an earlier version will fail).

Specifying Free Space for a KSDS (FREESPACE Parameter)
Get free space in a CI in a KSDS is by specifying it in the FREESPACE parameter
in the DEFINE CLUSTER command. Free space for a KSDS can not be specified using
the FRSPC= keyword in the DBD.

You specify free space in the FREESPACE parameter as a percentage. The format
of the parameter is FREESPACE(x,y) where:

x is the percentage of space in a CI left free when the database is loaded or
when a CI split occurs after initial load

y is the percentage of space in a control area (CA) left free when the
database is loaded or when a CA split occurs after initial load.

Free space is preserved when a CI or CA is split by coding INSERT=SEQ in the
OPTIONS control statement. INSERT=SEQ is explained in a previous section called
“Choosing an Insert Strategy (INSERT Parameter)”.

If you do not specify the FREESPACE parameter, the default is that no free space
is reserved in the KSDS data set when the database is loaded.

Specifying Whether Data Set Space Is Pre-formatted for Initial
Load (SPEED | RECOVERY Parameter)
When initially loading a VSAM data set, you can specify whether you need the data
set pre-formatted in the SPEED | RECOVERY parameter. When SPEED is
specified, it says the data set should not be pre-formatted. An advantage of
pre-formatting a data set is; if initial load fails, you can recover and continue loading
database records after the last correctly-written record. However, IMS does not
support the RECOVERY option (except by use of the Utility Control Facility). So,
although you can specify it, you cannot perform recovery. Because you cannot take
advantage of recovery when you specify the RECOVERY parameter, you should
specify SPEED to improve performance during initial load.

Determining Which VSAM Options to Use

188 IMS/ESA V6 Admin Guide: DB

To be able to recover your data set during load, you should load it under control of
the Utility Control Facility. This utility is described in IMS/ESA Utilities Reference:
Database Manager.

RECOVERY is the default for this parameter.

Specifying Whether Sequence Set Records Are Embedded and
Index Set Records Are Replicated
A VSAM KSDS cluster has a data component (where segments are stored in
HISAM and HIDAM databases) and an index component (called the VSAM index in
this discussion.) The VSAM index contains pointers to CIs in the KSDS data
component. When a specific key in a KSDS is requested, the VSAM index is used
to limit the search for the CI that contains the correct root segment. Without the
VSAM index, the entire KSDS data component could be searched to find the
correct CI. The VSAM index can be on either the same volume as the data
component or on another volume. It is the VSAM index whose options are of
concern here. You need to know some things about the VSAM index before the
options are described.

The VSAM index consists of one or more levels, as shown in Figure 104. The first
(lowest) level is called the sequence set level. All other levels are called index set
levels. The sequence set level has a sequence set record for each CA in the
database. Each sequence set record contains a pointer to each CI in a specific CA
and the highest root segment’s key in that CI.
Index set records on the first index set level contain pointers to sequence set

records. Each pointer on the first index set level contains the address of a
sequence set record and the highest root segment key in the sequence set record
pointed to.

If no more room exists for new pointers in an index set record, a new index set
record is started on the same level. As soon as there are two index set records on
a level, a new index set record is started on the next higher level.

At the second and higher levels of the index set, the pointers are to index set
records at the next lowest level. Each pointer contains the address of an index set
record at the next lower level along with the highest key in the index set record
pointed to.

Two options exist that can be specified for the VSAM index that especially affect
performance. The first option is specified in the IMBED | NOIMBED parameter in
the DEFINE CLUSTER command. If you specify IMBED, the sequence set level of the

Figure 104. Levels in a VSAM Index

Determining Which VSAM Options to Use

Chapter 6. Database Design Considerations for Full Function 189

VSAM index is stored in the data cluster. This improves performance, because,
when index and data are close, fewer seek operations are needed to process the
data.

If IMBED is specified with the REPLICATE parameter (discussed in the following
paragraph), the sequence set level is stored in the data cluster. Each sequence set
record for each CA is written as many times as will fit on the first track of the
appropriate CA. The reason a sequence set record is repeated is to reduce the
delay caused when the disk rotates.

The repetition of sequence set records means the read/write head will almost
always be close to or over a sequence set record so very little disk rotation is
necessary. Repeating records also improves performance. The track sequence set
records are put on is the first track allocated for the CA. Although specification of
IMBED improves performance, available space for data in a CA decreases by one
track for each CA. Also, track recovery cannot be performed if IMBED is specified.

If you specify NOIMBED, the sequence set level is not stored with the database.
NOIMBED is the default for this parameter.

The other option you can specify for the VSAM index that especially affects
performance is the REPLICATE | NOREPLICATE parameter in the DEFINE CLUSTER
command. If you specify REPLICATE, each record in the sequence set and the
index set is written as many times as it will fit on the track. Repeat records to
reduce the delay caused when the disk rotates. The repetition of records means the
arm is almost always close or over a record so very little disk rotation is necessary.
Repeating records also improves performance. Note, however, that the VSAM
index, because of the repetition, will probably require more direct-access space.

If you specify NOREPLICATE, records in the VSAM index are not repeated.
NOREPLICATE is the default for this parameter.

There is a new option that you must specify for KSDSs in order to take ’fuzzy’
image copies using the Database Image Copy 2 utility. BWO(TYPEIMS) is the
specification. The KSDS must be SMS-managed for BWO(TYPEIMS) to mean
anything. And, you should ensure that all access to the KSDS (once the
BWO(TYPEIMS) option has been specified) is under DFSMS 1.3 or higher.

Determining Which OSAM Options to Use
Two types of options are available for databases using OSAM:

1. Options specified in the DBD (free space, logical record size, CI size).

These options are covered in preceding sections of this chapter.

2. Options specified in the OPTIONS control statement when IMS is initialized.

In a batch system, the options are put in the data set with the ddname
DFSVSAMP. In an online system, they are put in the IMS.PROCLIB data set
with the member name DFSVSMnn. Your choice of OSAM options can affect
performance, recovery, and the use of space in the database.

The OPTIONS statement is described in detail in IMS/ESA Installation
Volume 2: System Definition and Tailoring. The statement and all its parameters
are optional.

Determining Which VSAM Options to Use

190 IMS/ESA V6 Admin Guide: DB

Determining Which Dump Option to Use (DUMP Parameter)
The dump option is a serviceability aid that has no impact on performance. It
merely describes the type of abnormal termination to take place when abnormal
termination occurs in the buffer handler (an internal component).

Deciding Which FIELD Statements to Code in the DBD
“Chapter 10. Establishing Standards and Procedures” on page 271 describes the
statements that are coded in the DBD. One of those statements is the FIELD
statement, which defines a field within a segment type. An important thing to note
about the FIELD statement is that it has to be coded for sequence fields and for
fields an application program can refer to in the SSA of a call. A FIELD statement
also has to be coded if it is referenced by a SENFLD statement in any PSB.
Because each FIELD statement takes up storage in the DMB control block, do not
generate FIELD statements that are unnecessary.

Planning for Maintenance
In designing your database, remember to plan for maintenance. If your applications
require, for instance, that the database be available 16 hours a day, you do not
design a database that takes 10 hours to unload and reload. No guideline we can
give you for planning for maintenance exists, because all such plans are application
dependent. However, remember to plan for it.

A possible solution to the problem just described is to make three separate
databases and put them on different volumes. If the separate databases have
different key ranges, then application programs could include logic to determine
which database to process against. This solution would allow you to reorganize the
three databases at separate times, eliminating the need for a single 10-hour
reorganization. Another solution to the problem if your database uses HDAM or
HIDAM might be to do a partial reorganization using the Partial Database
Reorganization utility (described in “Chapter 15. Modifying Your Database” on
page 365).

In the online environment, the Image Copy utilities and Online Recovery allow you
to do some maintenance without taking the database offline. These utilities let you
take image copies of databases while they are allocated to and being used by an
online IMS system.

Using Design Aids for Your Database
The DB/DC Data Dictionary is discussed in this section.

DB/DC Data Dictionary
If you have the DB/DC Data Dictionary, it can be an accessible collection of the
definitions of your installation’s data resources. Therefore, it can be useful as a
starting point for designing a database. These definitions can be much more than
descriptions of database elements. They can include information about the use of
data in the system, the relationships among data elements, and the relationships
between data elements and business processes. These might include business
entities such as personnel, departments, data processing devices, and projects.

Determining Which Dump Option to Use

Chapter 6. Database Design Considerations for Full Function 191

Specifically, to benefit most from a data dictionary during development of any
system, the attributes and relationships of the following entities should be entered
as they become known:

Database elements

Segments

Fields

PCBs and PSBs

Transactions

Programs

Modules

Report structures

MFS control blocks

DB/DC Data Dictionary

192 IMS/ESA V6 Admin Guide: DB

Chapter 7. Designing a Fast Path Database

Choosing a Database Type . 194
Databases Supported With DBCTL 195
Databases Supported With DCCTL 195
Main Storage Databases (MSDBs) 195

When to Use an MSDB 196
How MSDBs Are Stored 196
How an MSDB Record Is Stored 197
How MSDBs Are Saved 197
DL/I Calls against an MSDB 198
Rules for Using an SSA 198
Insertion and Deletion of Segments 198
Combination of Binary and Direct Access Methods 198
Position in an MSDB . 199
The Field Call . 200
Things to Know about Call Sequence Results 200

Data Entry Databases (DEDBs) 201
When to Use a DEDB . 201
Area Format . 202
Area Data Set Replication 202
Record Deactivation . 203
Parts of a DEDB Area . 203
How Root Segments Are Stored 207
How Direct Dependent Segments Are Stored 208
How Sequential Dependent Segments Are Stored 208
Enqueue Level of Segment CIs 209
How the DEDB Space Search Algorithm Works 210
DEDB Insert Algorithm. 211
DEDB Free Space Algorithm 212
Considerations Related to Unusable Space 213
DL/I Calls against a DEDB 213
DEDB Areas in Data Sharing 214
Mixed Mode Processing 214

Converting MSDBs to DEDBs 214
Using Fixed-Length Segments in DEDBs 215
Examples of Defining Segments 215

Fast Path Synchronization Points. 215
Phase 1 - Build Log Record. 215
Phase 2 - Write Record to System Log 216

Monitoring and Tuning Fast Path Systems 216
Using the Fast Path Log Analysis Utility 217

Fast Path Log Reduction 217
Fast Path Transaction Timings. 217
Monitored Events for Fast Path 217
Selecting Transactions 218

Interpreting Fast Path Analysis Reports 218
Tuning Fast Path Systems 219
Factors Influencing Fast Path Performance 220

Transaction Volume to a Particular Fast Path Application Program . . . 220
DEDB Structure Considerations 220
Usage of Buffers from a Buffer Pool. 221
Contention for DEDB Control Interval (CI) Resources 222
Exhaustion of DEDB DASD Space 223
Utilization of Available Real Storage. 223

© Copyright IBM Corp. 1974, 1999 193

Synchronization Point Processing and Physical Logging 223
Contention for Output Threads. 223
Overhead Resulting from Reprocessing 223
Dispatching Priority of Processor-Dominant and I/O-Dominant Tasks 224
DASD Contention Due to I/O on DEDBs 224
Resource Locking Considerations with Block Level Sharing 224
Resource Name Hash Routine 225

Registering Databases . 225
Fast Path Virtual Storage Option 226

Enhancements to DEDBs 226
Restrictions Using VSO DEDB Areas 227
Defining a VSO DEDB Area. 228
Defining a VSO Cache Structure Name 229

Coupling Facility Structure Naming Convention 229
Examples of Defining Coupling Facility Structures 230
Registering a Cache Structure Name with DBRC 230
Defining a Private Buffer Pool Using the DFSVSMxx VSPEC Member 230

Block-Level Sharing of VSO DEDB Areas 232
The Coupling Facility and Shared Storage 232
Duplexing Structures . 233
Private Buffer Pools . 233

How IMS Fast Path (VSO) Uses Data Spaces 233
Acquiring a Data Space 233
Accessing a Data Space 234

Resource Control and Locking. 234
Preopen Areas and VSO Areas in a Data Sharing Environment 235
Input / Output Processing 236

Input Processing . 236
Output Processing . 236
The PRELOAD Option 237
I/O Error Processing . 237

Checkpoint Processing . 238
VSO Options Across IMS Restart. 238
Emergency Restart Processing 238
VSO Options with XRF . 239

Choosing a Database Type
IMS allows you to define nine different types of databases. Each type has a
different organization or different processing characteristics. Only the two Fast Path
database types, MSDB and DEDB, are discussed in this chapter.

Understanding the differences between the two databases types allows you to pick
the type of database that best suits your application’s processing requirements.

Each IMS database type has its own access method, and each database type is
named after the access method it uses. Here are the two Fast Path database types
and the access methods they use:

Type of Database Access Method

MSDB Main Storage Database

DEDB Data Entry Database

Note: MSDB not supported for DBCTL.

194 IMS/ESA V6 Admin Guide: DB

Both database types use the direct method of storing data. With this method, the
hierarchic sequence of segments is maintained by putting direct-address pointers in
each segment’s prefix.

For quick reference, see Table 9 on page 213 for a summary of DEDB and MSDB
database characteristics.

Databases Supported With DBCTL
DBCTL supports data entry databases (DEDBs), but does not support main storage
databases (MSDBs).

Databases Supported With DCCTL
DCCTL does not support MSDBs and DEDBs.

Main Storage Databases (MSDBs)
The MSDB structure consists of fixed-length root segments only, although the root
segment length can vary between MSDBs. The maximum length of any segment is
32000 bytes with a maximum key length of 240 bytes. Additional prefix data
extends the maximum total record size to 32258 bytes.

The following options are not available for MSDBs:

v Multiple data set groups

v Logical relationships

v Secondary indexing

v Variable-length segments

v Field-level sensitivity

The MSDB family of databases consists of four types:

v Terminal-related fixed database

v Terminal-related dynamic database

v Non-terminal-related database with terminal keys

v Non-terminal-related database without terminal keys

An MSDB is defined in the DBD in the same way as any other IMS database, by
coding ACCESS=MSDB in the DBD statement. The REL keyword in the DATASET
statement selects one of the four MSDB types.

Both dynamic and fixed terminal-related MSDBs have the following characteristics:

v The record can be updated only through processing of messages issued from the
LTERM that owns the record. However, the record can be read using messages
from any LTERM.

v The name of the LTERM that owns a segment is the key of the segment. An
LTERM cannot own more than one segment in any one MSDB.

v The key does not reside in the stored segment.

v Each segment in a fixed terminal-related MSDB is assigned to and owned by a
different LTERM.

Non-terminal-related MSDBs have the following characteristics:

v No ownership of segments exists.

v No insert or delete calls are allowed.

Choosing a Database Type

Chapter 7. Designing a Fast Path Database 195

v The key of segments can be an LTERM name or a field in the segment. As with
a terminal-related MSDB, if the key is an LTERM name, it does not reside in the
segment. If the key is not an LTERM name, it resides in the sequence field of the
segment. If the key resides in the segment, the segments must be loaded in key
sequence because, when a qualified SSA is issued on the key field, a binary
search is initiated.

When to Use an MSDB
MSDBs store and provide access to an installation’s most frequently used data. The
data in an MSDB is stored in segments, and each segment available to one or all
terminals.

MSDBs provide a high degree of parallelism and are suitable for applications in the
banking industry (such as general ledger). To provide fast access and allow
frequent update to this data, MSDBs reside in virtual storage during execution.

One use for a terminal-related fixed MSDB is in an application in which each
segment contains data associated with a logical terminal. In this type of application,
the application program can read the data (possibly for general reporting purposes)
but cannot update it.

Non-terminal-related MSDBs (without terminal-related keys) are typically used in
applications in which a large number of people need to update data at a high
transaction rate. An example of this is a real-time inventory control application, in
which reduction of inventory is noted from many cash registers.

How MSDBs Are Stored
The MSDB Maintenance utility (DBFDBMA0) creates the MSDBINIT sequential data
set in physical ascending sequence (see Figure 106 on page 197). During a cold
start, or by operator request during a normal warm start, the sequential data set
MSDBINIT is read and the MSDBs are created in virtual storage (see Figure 105).

During a warm start, the control program uses the current checkpoint data set for
initialization. The MSDB Maintenance utility can also modify the contents of an old
MSDBINIT data set. For warm start, the master terminal operator can request use
of the IMS.MSDBINIT, rather than a checkpoint data set.

Figure 105. MSDB Pointers

Choosing a Database Type

196 IMS/ESA V6 Admin Guide: DB

Diagnosis, Modification or Tuning Information

Figure 106 shows the MSDBINIT record format.

End of Diagnosis, Modification or Tuning Information

How an MSDB Record Is Stored
This section contains diagnosis, modification, or tuning information.

MSDB records contain no pointers except the forward chain pointer (FCP)
connecting free segment records in the terminal-related dynamic database.

Figure 107 shows a high-level view of how MSDBs are arranged in priority
sequence.

How MSDBs Are Saved
At system checkpoint, a copy of all MSDBs is written alternately to one of the
MSDB checkpoint data sets—MSDBCP1 or MSDBCP2. During restart, the MSDBs

Figure 106. MSDBINIT Record Format

Figure 107. Sequence of the Four MSDB Organizations

Choosing a Database Type

Chapter 7. Designing a Fast Path Database 197

are reloaded from the most recent copy on MSDBCP1 or MSDBCP2. During an
emergency restart, the log is used to update the MSDB. During a normal restart,
the operator can reload from MSDBINIT using the MSDBLOAD parameter on the
restart command.

On a cold start (including /ERE CHKPT 0), MSDBs are loaded from the MSDBINIT
data set.

DL/I Calls against an MSDB
All DL/I database calls, except those that specify “within parent”, are valid with
MSDBs. Because an MSDB is a root-only database, a “within parent” call is
meaningless. Additionally, the DL/I call, FLD, exists that is applicable to all MSDBs.
The FLD call allows an application program to check and modify a single field in an
MSDB segment.

Rules for Using an SSA
MSDB processing imposes the following restrictions on the use of an SSA (segment
search argument):

v No boolean operator

v No command code

Even with the above restrictions, the result of a call to the database with no SSA,
an unqualified SSA, or a qualified SSA remains the same as a call to the
full-function database. For example, a retrieval call without an SSA returns the first
record of the MSDB or the full-function database, depending on the environment in
which you are working. The following table shows the type of compare or search
technique used for a qualified SSA.

Insertion and Deletion of Segments
The terminal-related dynamic database accepts ISRT and DLET calls, and the other

MSDB databases do not. Actual physical insertion and deletion of segments do not
occur in the dynamic database. Rather, a segment is assigned to an LTERM from a
pool of free segments by an ISRT call. The DLET call releases the segment back to
the free segment pool.

Figure 109 on page 199 shows a layout of the four MSDBs and the control blocks
and tables necessary to access them. The Extended Communications Node Table
(ECNT) is located by a pointer from the Extended System Contents Directory
(ESCD), which in turn is located by a pointer from the System Contents Directory
(SCD). The ESCD contains first and last header pointers to the MSDB header
queue. Each of the MSDB headers contains a pointer to the start of its respective
database Area.

Combination of Binary and Direct Access Methods
A combination access technique works against the MSDB on a DL/I call. The
access technique combines a binary search and the direct access method. A binary

Figure 108. Sequence and Nonsequence Types of Compares and Searches

Choosing a Database Type

198 IMS/ESA V6 Admin Guide: DB

search of the ECNT table attempts to match the table LTERM names to the LTERM
name of the requesting terminal. When a match occurs, the application program
accesses the segment of the desired database using a direct pointer in the ECNT
table. Access to the non-terminal-related database segments without terminal keys
is accomplished by a binary search technique only, without using the ECNT.

Position in an MSDB
Issuing a DL/I call causes a position pointer to fix on the current segment. The
meaning of “next segment” depends on the key of the MSDB. The current segment
in a non-terminal-related database without LTERM keys is the physical segment
against which a call was issued. The next segment is the following physically
adjacent segment after the current segment. The other three databases, using
LTERM names as keys, have a current pointer fixed on a position in the ECNT
table. Each entry in the table represents one LTERM name and segment pointers to
every MSDB with which LTERM works. A zero entry indicates no association

Figure 109. ECNT and MSDB Storage Layout

Choosing a Database Type

Chapter 7. Designing a Fast Path Database 199

between an LTERM and an MSDB segment. If nonzero, the next segment is the
next entry in the table. The zero entries are skipped until a nonzero entry is found.
Figure 110 shows the relationship between the ECNT contents and the MSDBs.

Assume the current position for MSDB3 has been established for LTERM3. The
table entry refers to segment 4 as the current segment. An unqualified GN retrieves
segment 2. An additional GN call results in a “GB” status, indicating end of data.

The Field Call
The DL/I FLD call is available to MSDBs and DEDB. It allows for the operation on a
field, rather than on an entire segment. Additionally, it allows conditional operation
on a field.

Modification is done with the CHANGE form of the FLD call. The value of a field
can be tested with the VERIFY form of the FLD call. These forms of the call allow
an application program to test a field value before applying the change. If a VERIFY
fails, all CHANGE requests in the same FLD call are denied. This call is described
in “Processing Fast Path Databases” in IMS/ESA Application Programming:
Database Manager.

Things to Know about Call Sequence Results
The same call sequence against MSDBs and other IMS databases might bring
different results. For parallel access to MSDB data, updates to MSDB records take
place during sync point processing. Changes are not reflected in those records until
the sync point is completed. For example, the sequence of calls GHU

Figure 110. Position in an MSDB

Choosing a Database Type

200 IMS/ESA V6 Admin Guide: DB

(Get-Hold-Unique), REPL (Replace), and GU (Get-Unique) for the same database
record results in the same information in the I/O area for the GU call as that
returned for the GHU.

The postponement of an updated database record to the point of commitment is
also true of FLD/CHANGE calls, and affects FLD/VERIFY calls. You should watch
for multiple FLD/VERIFY and FLD/CHANGE calls on the same field of the same
segment. Such sequences can decrease performance because reprocessing
results.

For terminal-related dynamic MSDBs, the following examples of call sequences do
not have the same results as with other IMS databases or DEDBs:

v A GHU following an ISRT receives a 'segment not found' status code.

v An ISRT after a DLET receives a 'segment already exists' status code.

v No more than one ISRT or DLET is allowed for each MSDB in processing a
transaction.

The above differences become more critical when transactions update or refer to
both full function DL/I and MSDB data. Updates to full function DL/I and DEDB
databases are immediately available while MSDB changes are not. For example, if
you issue a GHU and a REPL for a segment in an MSDB, then you issue another
get call for the same segment in the same commit interval, the segment IMS
returns to you is the “old” value, not the updated one.

If processing is not single mode, this difference can increase. In the case of multiple
mode processing, the sync point processing is not invoked for every transaction.
Your solution might be to ask for single mode processing when MSDB data is to be
updated.

Another consideration for MSDB processing is that terminal-related MSDB
segments can be updated only by transactions originating from the owners of the
segment, the LTERMs. Programs that are non-transaction-driven BMPs can only
update MSDBs that

Data Entry Databases (DEDBs)
A data entry database (DEDB) is a hierarchic database containing up to 127
segment types (a root segment, an optional sequential dependent segment, and 0
to 126 direct dependent segments). If the optional sequential dependent segment
type is defined, 125 direct dependent segment types can be defined. A DEDB
structure can have as many as 15 hierarchic levels. Sequential dependent segment
occurrences for an area are stored in chronological order, regardless of the root on
which they are dependent. Direct dependent segments are stored in hierarchic
fashion, allowing for rapid retrieval.

When to Use a DEDB
DEDBs are designed to provide efficient storage for and access to large volumes of
data, as well as, a high level of availability for that data. Three characteristics that
improve DEDB’s availability are:

area format

area data set replication

Record deactivation

These characteristics are useful when you must gather detailed and summary
information.

Choosing a Database Type

Chapter 7. Designing a Fast Path Database 201

Area Format
The physical format of this type of database makes the data more readily available.
In a traditional hierarchic IMS database, the logical data structure is spread across
the entire database. If multiple data sets are used, the data structure is broken up
on a segment basis. A DEDB can use multiple data sets, called areas, with each
area containing the entire data structure (see Figure 118 on page 210). A DEDB
record (a root and its dependent segments) does not span Areas. A DEDB can be
divided into as many as 240 such Areas. This organization is transparent to the
application program.

The randomizing module is used to determine which records are placed in each
Area. Because of the area concept, larger databases can exceed the limitation of
232 bytes for a single VSAM data set. Each area can have its own space
management parameters. You can choose these parameters according to the
message volume, which can vary from area to area. Areas of a DEDB can be
allocated on different volume types.

Initialization, reorganization, and recovery are done on an area basis. Resource
allocation is done at the CI level. Multiple programs, optionally together with one
online utility, can concurrently access an area within a database, providing they are
using different CIs. CI sizes of 512, 1K, 2K, 4K, up to 28K in 4K increments are
allowed. The media manager and Integrated Catalog Facility catalog of Data Facility
Product (DFP) are required.

Areas must be pre-formatted. See “Parts of a DEDB Area” on page 203 for a
description of the independent overflow part of an Area.

Each area in a DEDB is a VSAM data set. An area is opened by the first call to it
from a program that is eligible to access it. A single area in a DEDB can be stopped
by the operator with the /STOP AREA command. A DEDB can be stopped with the
/STOP DATABASE command. These commands do not affect programs currently
scheduled against the DEDB. The /STOP DATABASE command prevents scheduling of
any new programs needing access to the stopped database.

Read Error: When a read error is detected in an Area, the application program
receives an AO status code. An Error Queue Element (EQE) is created, but not
written to the second CI nor sent to the sharing system in a data sharing
environment. Application programs can continue to access that Area; they are
prevented only from accessing the CI in error. After read errors on four different CIs,
the ADS is stopped. The read errors must be consecutive; that is, if there is an
intervening write error, the read EQE count is cleared. This read error processing
only applies to a multiple area data set (MADS) environment.

Write Error: When a write error is detected in an Area, an EQE is created and
application programs are allowed access to the area until the EQE count reaches
11. Even though part of a database might not be available (one or more Areas are
stopped), the database is still logically available and transactions using that
database are still scheduled. If multiple data sets make up the Area, chances are
that one copy of the data will always be available.

Area Data Set Replication
A data set can be copied, or replicated, up to seven times, increasing the
availability of the data to application programs. The DEDB area data set create
utility produces one or more copies of a data set representing the Area without
stopping the Area. All copies of an area data set must have identical CI sizes and
spaces but can reside on different devices. The utility uses all the current copies to

Choosing a Database Type

202 IMS/ESA V6 Admin Guide: DB

complete its new data set, proceeding to another copy if it detects an I/O error for a
particular record. In this way, a clean copy is constructed from the aggregate of the
available data. Current updates to the new data set take effect immediately.

The Create utility can create its new copy on a different device, as specified in its
job control language (JCL). If your installation was migrating data to other storage
devices, then this process could be carried out while the online system was still
executing, and the data would remain current.

To ensure all copies of a DEDB database remain identical, IMS updates all copies
when a change is made to only one copy.

If an area data set (ADS) fails open during normal open processing of a DEDB with
multiple data sets (MADS), none of the copies of the ADS can be allocated, and the
area is stopped. However, when open failure occurs during emergency restart, only
the failed ADS is unallocated and stopped. The other copies of the ADS remain
available for use.

Record Deactivation
If an error occurs while an application program is updating a DEDB, it is not
necessary to stop the database or even the Area. IMS continues to allow
application programs to access that Area. It only prevents them from accessing the
control interval in error by creating an EQE for the error CI. If there are multiple
copies of the Area, chances are that one copy of the data will always be available.
It is unlikely that the same control interval will be in error in all copies of the Area.
IMS automatically makes an area data set unavailable when a count of 11 errors
has been reached for that data set.

Record deactivation minimizes the effect of database failure and errors to the data
in these ways:

v If multiple copies of an area data set are used, and an error occurs while an
application program is trying to update that Area, the error does not need to be
corrected immediately. Other application programs can continue to access the
data in that area through other available copies of that Area.

v If a copy of an area has a number of I/O errors, you can create a new copy from
existing copies of the area using the DEDB area data set Create utility. The copy
with the errors can then be destroyed.

Parts of a DEDB Area
A DEDB area consists of three parts:

v Root addressable part

v Independent overflow part

v Sequential dependent part

Figure 111 shows DEDB area division.

Figure 111. DEDB Area Division

Choosing a Database Type

Chapter 7. Designing a Fast Path Database 203

Root Addressable Part: The root addressable part is divided into units-of-work
(UOW), which are the basic elements of space allocation. A UOW consists of a
user-specified number of CIs located physically contiguous.

Each UOW in the root addressable part is further divided into a base section and
an overflow section. The base section contains CIs of a UOW that are addressed
by the randomizing module, whereas the overflow section of the UOW is used as a
logical extension of a CI within that UOW.

Figure 112 shows the root addressable part of a DEDB.

Root and direct dependent segments are stored in the base section. Both can be
stored in the overflow section if the base section is full.

Independent Overflow Part: The independent overflow part contains empty CIs
that can be used by any UOW in the Area. Once a UOW gets a CI from the
independent overflow part, the CI can be used only by that UOW. A CI in the
independent overflow part can be considered an extension of the overflow section
in the root addressable part as soon as it is allocated to a UOW. The independent
overflow CI remains allocated to a specific UOW unless, after a reorganization, it is
no longer required, at which time it is freed. Figure 113 on page 205 shows a more
detailed view of the independent overflow part in relation to the other parts in the
DEDB. It shows how a CI fits into a DEDB Area.

Figure 112. Root Addressable Part of a DEDB

Choosing a Database Type

204 IMS/ESA V6 Admin Guide: DB

Sequential Dependent Part: The sequential dependent part holds sequential
dependent segments from roots in all UOWs in the area (see Figure 118 on
page 210). Sequential dependent segments are stored in chronological order
without regard to the root or UOW that contains the root. When the sequential
dependent part is full, it is reused from the beginning. However, before the
sequential dependent part can be reused, you must use the Delete utility
DBFUMDLO to delete a contiguous portion, or all the sequential dependent
segments in that part.

CI and Segment Formats: This section contains diagnosis, modification, or tuning
information.

The following four diagrams show:

v CI format

v Root segment format

v Sequential dependent segment format

v Direct dependent segment format

Table 5. CI Format

FSE AP 2 bytes Offset to the first free space element. These 2 bytes are
unused if the CI is in the sequential dependent part.

CI TYP 2 bytes Describes the use of this CI and the meaning of the next 4
bytes.

Figure 113. DEDB Composite Storage View

Figure 114. CI Format

Choosing a Database Type

Chapter 7. Designing a Fast Path Database 205

Table 5. CI Format (continued)

RAP 4 bytes Root anchor point if this CI belongs to the base section of the
root addressable Area. All root segments randomizing to this CI
are chained off this RAP in ascending key sequence. Only one
RAP exists per CI.

Attention: In the dependent and independent overflow parts,
these 4 bytes are used by Fast Path control information. No
RAP exists in sequential dependent CIs.

CUSN 2 bytes CI Update Sequence Number (CUSN). A sequence number
maintained in each CI. It is increased with each update of the
particular CI during the synchronization process.

RBA 4 bytes Relative byte address of this CI.

RDF 3 bytes Record definition field (contains VSAM control information).

CIDF 4 bytes CI definition field (contains VSAM control information).

Table 6. Root Segment Format

SC 1 byte Segment code.

PD 1 byte Prefix descriptor.

PTF 4 bytes Physical twin forward pointer. Contains the RBA of the next
root in key sequence.

SPCF 8 bytes Sequential physical child first pointer. Contains the cycle count
and RBA of the last inserted sequential dependent under this
root. This pointer will not exist if the sequential dependent
segment is not defined.

PCF 4 bytes Physical child first pointer. PCF points to the first occurrence of
a direct dependent segment type. There can be up to 126 PCF
pointers or 125 PCF pointers if there is a sequential dependent
segment. PCF pointers will not exist if direct dependent
segments are not defined.

PCL 4 bytes Physical child last pointer. PCL is an optional pointer that
points to the last physical child of a segment type. This pointer
will not exist if direct dependent segments are not defined.

SSP 4 bytes Subset pointer. For each child type of the parent, up to eight
optional subset pointers can exist.

LL 2 bytes Variable length of this segment.

Figure 115. Root Segment Format (with Sequential and Direct Dependent Segments with
Subset Pointers)

Choosing a Database Type

206 IMS/ESA V6 Admin Guide: DB

Table 7. Sequential Dependent Segment Format

SC 1 byte Segment code.

UN 1 byte Prefix descriptor.

SPTF 8 bytes Sequential physical twin forward pointer. Contains the cycle
count and the RBA of the immediately preceding sequential
dependent segment under the same root.

LL 2 bytes Variable length of this segment.

Table 8. Direct Dependent Segment Format

SC 1 byte Segment code.

UN 1 byte Unused.

PTF 4 bytes Physical twin forward pointer. Contains the RBA of the next
occurrence of this direct dependent segment type.

PCF 4 bytes Physical child first pointer. PCF points to the first occurrence of a
direct dependent segment type. In a direct dependent segment
there can be up to 125 PCF pointers or 124 PCF pointers if
there is a sequential dependent segment. PCF pointers will not
exist if direct dependent segments are not defined.

PCL 4 bytes Physical child last pointer. PCL is an optional pointer that points
to the last physical child of a segment type. This pointer will not
exist if direct dependent segments are not defined.

SSP 4 bytes Subset pointer. For each child type of the parent, up to eight
optional subset pointers can exist.

LL 2 bytes Variable length of this segment.

How Root Segments Are Stored
DEDB root segments are stored as prescribed by the randomizing routine, and are
chained in ascending key sequence from each anchor point. For information on the
system-supplied or user-supplied randomizing module for DEDBs, see IMS/ESA
Customization Guide . Each CI in the base section of a UOW in an area has a
single anchor point. Sequential processing using GN calls processes the roots in
the following order:

1. Ascending area number

Figure 116. Sequential Dependent Segment Format

Figure 117. Direct Dependent Segment Format

Choosing a Database Type

Chapter 7. Designing a Fast Path Database 207

2. Ascending UOW

3. Ascending key in each anchor point chain

Each root segment contains, in ascending key sequence, a PTF pointer containing
the RBA of the next root.

How Direct Dependent Segments Are Stored
The DEDB maintains processing efficiency while supporting a hierarchic physical
structure with direct dependent segment types. A maximum of 127 segment types
are supported (up to 126 direct dependent segment types, or 125 if a sequential
dependent segment is present).

Direct dependent (DDEP) segment types can be efficiently retrieved hierarchically,
and the user has complete online processing control over the segments. Supported
processing options are insert, get, delete, and replace. With the replace function,
users can alter the length of the segment. DEDB space management logic attempts
to store an inserted direct dependent in the same CI that contains its root segment.
If insufficient space is available in that CI, the root addressable overflow and then
the independent overflow portion of the area are searched.

DDEP segments can be defined with or without a unique sequence field, and are
stored in ascending key sequence.

Physical chaining of direct dependent segments consists of a physical child first
(PCF) pointer in the parent for each defined dependent segment type and a
physical twin forward (PTF) pointer in each dependent segment.

DEDBs allow a PCL pointer to be used. This pointer makes it possible to access
the last physical child of a segment type directly from the physical parent. The
INSERT rule LAST avoids the need to follow a potentially long physical child pointer
chain.

Subset pointers are a means of dividing a chain of segment occurrences under the
same parent into two or more groups, of subsets. You can define as many as eight
subset pointers for any segment type, dividing the chain into as many as nine
subsets. Each subset pointer points to the start of a new subset. For more
information on defining and using subset pointers, see IMS/ESA Application
Programming: Database Manager.

How Sequential Dependent Segments Are Stored
DEDB sequential dependent (SDEP) segments are stored in the sequential
dependent part of an area in the order of entry. SDEP segments chained from
different roots in an area are intermixed in the sequential part of an area without
regard to which roots are their parents. SDEP segments are specifically designed
for fast insert capability. However, online retrieval is not as efficient because
increased input operations can result.

If all SDEP dependents were chained from a single root segment, processing with
get next within parent calls would result in a backward sequential order. (Some
applications are able to use this method.) Normally, SDEP segments are retrieved
sequentially only by using the sequential dependent (SDEP) scan utility, described
in IMS/ESA Utilities Reference: Database Manager. SDEP segments are then
processed by offline jobs.

SDEP segments are used for data collection, journaling, and auditing applications.

Choosing a Database Type

208 IMS/ESA V6 Admin Guide: DB

Enqueue Level of Segment CIs
This section contains diagnosis, modification, or tuning information.

Allocation of CIs involves three different enqueue levels.

v A NO ENQ level, which is typical of any SDEP CI. SDEP segments can never be
updated, so they can be accessed and shared by all regions at the same time.

v A SHARED level, which means that the CI can be shared between non-update
transactions. A CI at the SHARED level delays requests from any update
transactions.

v An EXCLUSIVE level, which prevents contenders from acquiring the same
resource.

The level of enqueue at which ROOT and SDEP segment CIs are originally
acquired depends on the intent of the transaction. If the intent is update, all
acquired CIs (with the exception of SDEP CIs) are held at the EXCLUSIVE level. If
the intent is not update, they’re held at the SHARED level. Of course, there is the
potential for deadlock.

The level of enqueue, just described, is reexamined each time the buffer stealing
facility is invoked. (Refer to the section “Fast Path Buffer Allocation Algorithm” in
“Chapter 6. Database Design Considerations for Full Function” on page 165for
information about this facility.) The buffer stealing facility examines each buffer (and
CI) that is already allocated and updates its level of enqueue.

All other enqueued CIs are released and therefore can be allocated by other
regions.

Figure 118 on page 210 shows an example of DEDB structure.

Choosing a Database Type

Chapter 7. Designing a Fast Path Database 209

How the DEDB Space Search Algorithm Works
This section contains diagnosis, modification, or tuning information.

The general rule for inserting a segment into a DEDB is the same as it is for an HD
database. The rule is to store the segment (root and direct dependents) into the
most desirable block.

For root segments, the most desirable block is the RAP CI. For direct dependents,
the most desirable block is the root CI. When space for storing either roots or direct
dependents is not available in the most desirable block, the DEDB insert algorithm
(described next) searches for additional space. Space to store a segment could
exist:

v In the dependent overflow

v In an independent overflow CI currently owned by this UOW

Figure 118. DEDB Structure Example

Choosing a Database Type

210 IMS/ESA V6 Admin Guide: DB

Additional independent overflow CIs would be allocated if required.

This algorithm attempts to store the data in the minimum amount of CIs rather than
scatter database record segments across a greater number of RAP and overflow
CIs. The trade-off is improved performance for future database record access
versus optimum space utilization.

DEDB Insert Algorithm
This section contains diagnosis, modification or tuning information.

The DEDB insert algorithm searches for additional space when space is not
available in the most desirable block. For root segments, if the RAP CI does not
have sufficient space to hold the entire record, it contains the root and as many
direct dependents as possible. Base CIs that are not randomizer targets go unused.
The algorithm next searches for space in the first dependent overflow CI for this
UOW. From the header of the first dependent overflow CI, a determination is made
whether space exists in that CI. For information on DEDB CI format and allocation,
see IMS/ESA Diagnosis Guide and Reference.

If the CI pointed to by the current overflow pointer does not have enough space, the
next dependent overflow CI (if one exists) is searched for space. The current
overflow pointer is updated to point to this dependent overflow CI. If no more
dependent overflow CIs are available, then the algorithm searches for space in the
independent overflow part.

Once an independent overflow CI has been selected for storing data, it can be
considered a logical extension of the overflow part for the UOW that requested it.

The following example describes how a UOW is extended into independent
overflow. This UOW, defined as 10 CIs, includes 8 Base CIs and 2 dependent
overflow CIs. Additional space is needed to store the database records that
randomize to this UOW. Two independent overflow CIs have been acquired,
extending the size of this UOW to 12 CIs. The first dependent overflow CI has a
pointer to the second independent overflow CI indicating that CI is the next place to
look for space.

Figure 119 on page 212 shows extending a UOW into independent overflow.

Choosing a Database Type

Chapter 7. Designing a Fast Path Database 211

DEDB Free Space Algorithm
This section contains diagnosis, modification, or tuning information.

The DEDB free space algorithm is used to free dependent overflow and
independent overflow CIs. When a dependent overflow CI becomes entirely empty,
it becomes the CI pointed to by the Current Overflow Pointer in the first dependent
overflow CI, indicating that this is the first overflow CI to use for overflow space if
the most desirable block is full. An independent overflow CI is owned by the UOW
to which it was allocated until every segment stored in it has been removed. When
the last segment in an independent overflow CI is deleted, the empty CI is made
available for reuse. When the last segment in a dependent overflow CI is deleted, it
can be reused as described at the beginning of this section.

A dependent overflow or an independent overflow CI can be freed in two ways:

v Reorganization

v Segment deletion

Reorganization: During online reorganization, the segments within a UOW are
read in GN order and written to the reorganization UOW. This process inserts
segments into the reorganization UOW, eliminating embedded free space. If all the
segments do not fit into the reorganization UOW (RAP CI plus dependent overflow
CIs), then new independent overflow CIs are allocated as needed. When the data in
the reorganization UOW is copied back to the correct location, then:

v The newly acquired independent overflow CIs are retained

v The old segments are deleted

v Previously allocated independent overflow CIs are freed

Segment Deletion: A segment is deleted either by an application DLET call or
because a segment is REPLaced with a different length. Segment REPLace can
cause a segment to move. Full Function handles segment length increases
differently from DEDBs. In Full Function, an increased segment length that does not
fit into the available free space is split, and the data is inserted away from the
prefix. For DEDBs, if the replaced segment is changed, it is first deleted and then
reinserted. The insertion process follows the normal space allocation rules.

Figure 119. Extending a UOW to Use Independent Overflow

Choosing a Database Type

212 IMS/ESA V6 Admin Guide: DB

The REPL call can cause a dependent overflow or an independent overflow CI to
be freed if the last segment is deleted from the CI.

Considerations Related to Unusable Space
This section contains diagnosis, modification, or tuning information.

Space in a DEDB should be closely monitored to avoid out-of-space conditions for
an Area. Products such as Database Tools (5685-093) DEDB Tuning Aid and
Database Analyzer (5665-349) can identify the different percentages of free space
in the RAP, dependent overflow and independent overflow CIs. If a large amount of
space exists in the RAP CIs or dependent overflow CIs, and independent overflow
has a high use percentage, a reorganization can allow the data to be stored in the
root addressable part, freeing up independent overflow CIs for use by other UOWs.
The Database Tools DEDB Tuning Aid and the Database Analyzer can assist in
determining if the data distribution is reasonable.

DL/I Calls against a DEDB
This section contains diagnosis, modification, or tuning information.

DEDB processing uses the same call interface as DL/I processing. Therefore, any
DL/I call or calling sequence executed against a DEDB has the same logical result
as if executed against an HDAM database.

The SSA rules for DEDBs have the following restrictions:

v You cannot use the Q command code with DEDBs.

v IMS ignores command codes used with sequential dependent segments.

v If you use the D command code in a call to a DEDB, the P processing option
need not be specified in the PCB for the program. The P processing option has a
different meaning for DEDBs than for DL/I databases. (See “Processing DEDBs
with Subset Pointers” in IMS/ESA Application Programming: Database Manager.)

Table 9 compares the database types.

Table 9. Summary of Database Types
HSAM HISAM HDAM HIDAM DEDB MSDB

Hierarchical Structures yes yes yes yes yes no
Direct Access Storage yes yes yes yes yes no
Multiple Data Set Groups no no yes yes no no
Logical Relationships no yes yes yes no no
Variable-Length Segments no yes yes yes yes no
Segment Edit/Compression no yes yes yes yes no
Data Capture exit routines no yes yes yes yes no
Field-Level Sensitivity yes yes yes yes no no
Primary Index no yes no yes no no
Secondary Index no yes yes yes no no
Logging, Recovery, Reorg no yes yes yes yes yes
VSAM no yes yes yes yes N/A
OSAM no no yes yes no N/A
QSAM/BSAM yes no no no no N/A
Boolean Operators yes yes yes yes yes no
Command Codes yes yes yes yes yes no
Subset Pointers no no no no yes no
Use Main Storage no no no no no yes
High Parallelism (field call) no no no no no yes
Compaction yes yes yes yes yes no
DBRC Support yes yes yes yes yes N/A

Choosing a Database Type

Chapter 7. Designing a Fast Path Database 213

Table 9. Summary of Database Types (continued)
HSAM HISAM HDAM HIDAM DEDB MSDB

Partitioning Support no no no no yes no
Data Sharing yes yes yes yes yes no
Partition Sharing no no no no yes no
Block Level Sharing yes yes yes yes yes no
Area Sharing N/A N/A N/A N/A yes N/A
Record Deactivation no no no no yes N/A
Database Size med med med med large small
Online Utilities no no no no yes no
Batch yes yes yes yes no no

DEDB Areas in Data Sharing
The concept of working with Areas has special meaning for the data sharing
environment. Each area can be individually shared across multiple DB/DC
environments. Data sharing considerations for Fast Path are discussed in IMS/ESA
Administration Guide: System.

Additionally, using the SHARELVL parameter, you can specify the level of data
sharing for which subsystems can share a database. If any subsystem has already
authorized the database, changing the SHARELVL does not modify the database
record. The SHARELVL parameter applies to all Areas in DEDB.

For more information on the SHARELVL parameter and data sharing, refer to
IMS/ESA Utilities Reference: System.

Mixed Mode Processing
IMS application programs can run as message processing programs (MPPs), batch
message processing programs (BMPs), and Fast Path programs (IFPs). IFPs can
access full function databases. Similarly, MPPs and BMPs can access DEDBs and
MSDBs.

Because of differences in sync point processing, there are differences in the way
database updates are committed. IFPs that request full function resources, or MPPs
(or BMPs) that request DEDB (or MSDB) resources operate in “mixed mode”. The
performance and resource use implications are discussed in “Fast Path
Synchronization Points” on page 215.

Converting MSDBs to DEDBs
You can convert your MSDBs to DEDBs using the MSDB-to-DEDB Conversion
utility; see IMS/ESA Utilities Reference: Database Manager. Once you have
converted your MSDBs to DEDBs (a DEDB with one area), you can choose
whether to use the area as Virtual Storage Option (VSO) or not. To help you
convert your MSDB applications to DEDB applications, DEDBs can have the
following MSDB characteristics:

v The field (FLD) call

For more information on this, see IMS/ESA Application Programming: Database
Manager.

v Fixed-length segments

For more information on this, see “Using Fixed-Length Segments in DEDBs” on
page 215.

v MSDB or DEDB commit view

Choosing a Database Type

214 IMS/ESA V6 Admin Guide: DB

For more information on this, see IMS/ESA Application Programming: Database
Manager .

Using Fixed-Length Segments in DEDBs
DEDBs support fixed-length segments. Thus you can define fixed-length or variable
length segments for your DEDBs. This support allows you to use existing MSDB
applications for your DEDBs.

You define fixed-length segments during DBDGEN in the SEGM macro by
specifying a single value for the BYTES= parameter. To define variable-length
segments, specify two values for the BYTES= parameter.

Application programs for MSDBs do not see the length (LL) field at the beginning of
each segment. Likewise, application programs for fixed-length-segment DEDBs do
not see the length (LL) field at the beginning of each segment. Application programs
for variable-length-segment DEDBs do see the length (LL) field at the beginning of
each segment, and must use it to process the segment properly.

Fixed-length-segment application programs using REPL and ISRT calls can omit the
length (LL) field.

Examples of Defining Segments
Figure 120 and Figure 121 show examples of how to use the BYTES= parameter to
define variable-length or fixed-length segments.

Fast Path Synchronization Points
This section contains diagnosis, modification, or tuning information.

MSDBs and DEDBs are not updated during application program processing, but the
updates are kept in buffers until a sync point. Output messages are not sent until
the message response is logged. The Fast Path sync point is defined as the next
GU call for a message-driven program, or a SYNC or CHKP call for a BMP using
Fast Path facilities. Sync point processing occurs in two phases.

Phase 1 - Build Log Record
This section contains diagnosis, modification, or tuning information.

ROOTSEG SEGM NAME=ROOTSEG1, C
PARENT=0, C
BYTES=(390,20)

Figure 120. Defining a Variable-Length Segment

ROOTSEG SEGM NAME=ROOTSEG1, C
PARENT=0, C
BYTES=(320)

Figure 121. Defining a Fixed-Length Segment

Choosing a Database Type

Chapter 7. Designing a Fast Path Database 215

DEDB updates and verified MSDB records are written in system log records. All
DEDB updates for the current sync point are chained together as a series of log
records. Resource contentions, deadlocks, out-of-space conditions, and MSDB
verify failures are discovered here.

Phase 2 - Write Record to System Log
This section contains diagnosis, modification, or tuning information.

Database and message records are written to the IMS system log. After logging,
MSDB records are updated, the DEDB updates begin, and messages are sent to
the terminals. DEDB updates are applied with a type of asynchronous processing
called an output thread. Until the DEDB changes are made, any program that tries
to access unwritten segments is put in a wait state.

If, during application processing, a Fast Path program issues a call to a database
other than MSDB or DEDB, or to an alternate I/O PCB, the processing is serialized
with full function events. This can affect the performance of the Fast Path program.
In the case of a BMP or MPP making a call to a Fast Path database, the Fast Path
resources are held, and the throughput for Fast Path programs needing these
resources can be affected.

Monitoring and Tuning Fast Path Systems
The major emphasis for monitoring IMS online systems that include message-driven
Fast Path applications is the balance between rapid response and high transaction
rates. With Fast Path, performance data is made part of the system log information.
Because the bulk of the online traffic is expected to be handled by expedited
message handling and not be present on the message queues, the IMS Monitor is
not the prime tool for monitoring Fast Path applications.

Instead, you should use the Fast Path Log Analysis utility (DBFULTA0) to prepare
statistical reports for Fast Path based on data recorded on the IMS system log. This
utility is offline and produces five reports useful for system installation, tuning, and
troubleshooting:

1. A detailed listing of exception transactions

2. A summary of exception detail by transaction code for MPP
(message-processing program) regions

3. A summary by transaction code for MPP regions

4. A summary of IFP, BMP, and CCTL transactions by PSB name or transaction
code

5. A summary of the log analysis

Do not confuse this utility with the IMS Monitor or the IMS Log Transaction Analysis
utility.

For more information on CCTL transactions, refer to IMS/ESA Customization Guide.
This chapter introduces the Fast Path Log Analysis utility. For more detailed
information on the utility, see IMS/ESA Utilities Reference: System.

As an administrator in the Fast Path environment, you should perform tasks, like
establishing monitoring strategies, performance profiles, and analysis procedures.
This section highlights how to use the Analysis utility to do these tasks, and
suggests some Areas where tuning activities might be valuable.

Fast Path Synchronization Points

216 IMS/ESA V6 Admin Guide: DB

Using the Fast Path Log Analysis Utility
The Fast Path Log Analysis utility gathers statistics of Fast Path exclusive and
potential transactions that are passed to Fast Path dependent regions. It reports
information for other PSBs (including Fast Path PCBs and the programs that enter
the sync point processing) and produces three types of output:

v Formatted summary and detail reports

v A data set of fixed format records for the total traffic of Fast Path transactions
extracted from the system logs that form the input to the utility

v A data set of records, in the same format, that are selected based on exception
conditions (such as those transactions that exceed a certain fixed response time)

The latter data sets can be analyzed in more detail by your installation’s programs.
They can also be sorted to group critical transactions or events. The details of the
record format and meaning of the fields are given in IMS/ESA Utilities Reference:
System .

Fast Path Log Reduction
To reduce log volume you can use the LGNR parameter, which is specified during
IMS startup. LGNR indicates the maximum number of DEDB buffer alterations that
are held before the entire CI is logged. For more information on log reduction and
the LGNR parameter, see IMS/ESA Utilities Reference: System.

Fast Path Transaction Timings
For each Fast Path transaction, four time intervals are separately calculated.
Figure 122 shows the boundary events and intervals.

v The first interval reflects the transaction input queuing within the balancing group
to distribute the work.

v The second interval records the actual elapsed processing time for the individual
transaction.

v The third interval shows the effect of sync point in delaying the output message
release until after logging.

v The last interval shows the line and device availability for receiving the output
message. If the transaction originated from a programmable controller, the output
time could reflect a delay in dequeue caused by the output not being
acknowledged until the next input.

The sum of the first three intervals is termed the transit time. This time is slightly
different from a response time, because it excludes the line activity for the
message, message formatting, and the input edit processing up to the time the
message segment leaves the exit routine.

Monitored Events for Fast Path
The control program automatically collects Fast Path event data during system
operation. Table 10 shows the information that is made part of the system log

Figure 122. Fast Path Transaction Event Timings

Monitoring and Tuning Fast Path Systems

Chapter 7. Designing a Fast Path Database 217

records for each Fast Path transaction.

Table 10. Monitor Data for Fast Path Transactions

Monitored Data
Message-Driven
Region Other Region

Transit and Output-msg times x

LTERM name x

Routing Code x

Balancing group queue count x

Number of DEDB calls x x

Number of I/O to DEDB x x

Number of MSDB Calls x x

Number of CI contentions x x

Number of buffers allocated x x

Number of waits for buffer x x

Sync point failure reason code x x

Selecting Transactions
The analysis utility lets you select transactions to be reported in detail. You give the
transaction code and a transit time that each transaction is to exceed, up to a
maximum of 65.5 seconds. Several codes can be selected for each utility run.
There is also a way to ask for all transactions that exceed the given transit time. In
this case, the individual exception specification overrides the general one.

When you do not need to print all such occurrences of the exceptions, you can give
a maximum number of detail records to be printed. The default is 1000 individual
records, though you can specify up to 9999999 as the maximum number. When you
cut off the number of printed records, the data set for the exception records
contains all transactions that meet the selection criteria.

You can also specify a start time and end time for the transaction reporting interval.
The start time corresponds to the earliest transaction that satisfies the clock time
(format HH:MM:SS) specified by a utility input control statement. End time is set by
the latest transaction that enters the sync point processing before the ending clock
time that is specified on an input control statement.

Another selection technique that is available is to select only non-message-driven
transactions for reporting. Use this to look at the activity (occurring against MSDBs
or DEDBs) caused by calls from IMS programs or BMPs.

Interpreting Fast Path Analysis Reports
The analysis reports show the origin, database activity, and processing events for
each transaction code, although most reported items show average and maximum
values. The reports produced are:

v Overall summary by transaction

Summarized by transaction code, the transit times and input/output message
lengths are given. The database calls and buffer usage are also included.

v Exception detail

Monitoring and Tuning Fast Path Systems

218 IMS/ESA V6 Admin Guide: DB

For those transactions selected, the terminal origin and routing code are given for
each individual occurrence of the transaction. The detail also includes the data
appearing in the overall summary.

v Summary of exception detail by transaction code

This report is based on the transactions in the exception report. The items
reported are the same as for the overall summary.

v Summary of transactions by PSB

All programs that are in non-message-driven regions, MPP regions, and BMP
regions that enter the sync point processing are reported. The items reported are
the same as the summary of exception detail.

v Recapitulation of the analysis

This is a documentation aid that gives the grand totals of transactions input to
the analysis, and the I/O for online utilities.

The combination of the interval covered by the system log input to the utility and the
exception criteria you define in the input control statements determines the content
of these reports.

Examples of the reports format and the definition of the items reported can be
found in IMS/ESA Utilities Reference: System, within the description of the Fast
Path Log Analysis utility.

Following are some suggestions for interpreting the reported events:

v Examine the summary reports and investigate the reasons for sync point failure.

v Examine the summary report to see if buffer usage was consistently under the
NBA values. Check all negative differences that indicate the need for overflow
buffers to see that they were unusual occurrences.

v Compare the database call counts to those of the expected profile. Select those
transactions that show unusual patterns for a run to produce a detailed exception
report.

v Examine the balancing group queue counts to see if they are conforming with the
scheduling algorithm expectations.

Tuning Fast Path Systems
Your objective in tuning the IMS online system when Fast Path applications are
present depends upon the importance of the message-driven programs and their
criteria for acceptable response time. The performance analysis studies that you
should undertake are:

v Examining the availability of sufficient real storage

v Checking the effectiveness of the balancing groups

v Investigating the number of Fast Path dependent regions and the possibility of
parallel processing

v Monitoring of the required frequency of DEDB reorganization to reduce
fragmented units of work

v Monitoring of the use of DEDB overflow buffers

v Monitoring the forced serialization of programs that concurrently need to use
overflow buffers specified by the EXEC statement DBFX parameter

v Examining the area key ranges and whether the randomizing algorithm can be
refined

v Reducing the amount of mixed mode processing

Monitoring and Tuning Fast Path Systems

Chapter 7. Designing a Fast Path Database 219

Factors Influencing Fast Path Performance
Fast Path performance can also be improved by eliminating unnecessary delays
caused by the following:

v Transaction volume to a particular Fast Path application program

v DEDB structure considerations

v Contention for DEDB Control Interval (CI) resources

v Exhaustion of DEDB DASD space

v Utilization of available real storage

v Sync point processing and physical logging

v Contention for output threads (OTHR)

v Overhead resulting from reprocessing

v Dispatching priority of processor-dominant and I/O-dominant tasks

v DASD contention caused by I/O on DEDBs

v Resource locking considerations with block level sharing

v Buffer pool usage and not grouping Fast Path application programs with similar
buffer use characteristics together into one or more message classes

Statistics on transaction processing and contention for CIs can be obtained from the
output of the Fast Path Log Analysis utility (DBFULTA0), which retrieves (from
system log input) data relating to the usage of Fast Path resources. For information
on this program, see IMS/ESA Utilities Reference: System.

The remainder of this chapter consists of sections that discuss each of the above
factors.

Transaction Volume to a Particular Fast Path Application
Program
If a disproportionately high number of transactions are queued to a particular
balancing group, consider increasing the number of regions associated with that
particular balancing group. The Fast Path Log Analysis report provides information
about balancing group queuing.

DEDB Structure Considerations
Several characteristics of DEDB usage affect an application’s response time:

v Data replication

v Subset pointers

v Complexity of hierarchic structure

v Complexity of DL/I calls

v Use of sharing across IMS

v Last child pointers

The first two characteristics are unique to DEDBs; the last four apply generally to
databases. Data replication allows up to seven data sets for an individual Area.
When reading from an area represented by multiple data sets, performance is not
impacted, unless the CI is defective. When updating, up to seven additional writes
could be required. Although the physical write is performed asynchronous to
transaction processing, there could be delays caused by access paths to a variety
of DASD devices.

Up to eight subset pointers allow an application program to separate the children of
a parent into groups in a DEDB, with the subset pointer pointing to the start of each

Monitoring and Tuning Fast Path Systems

220 IMS/ESA V6 Admin Guide: DB

group. Use of such pointers can help improve performance by reducing the time
needed to access segments whose position is significantly displaced in a chain of
sequential dependent segments.

Usage of Buffers from a Buffer Pool
The Fast Path buffer pool is used by all Fast Path programs except the DEDB
online utilities, which have their own buffer pool. The Fast Path buffer pool is used
to support the processing of MSDBs and DEDBs. The Fast Path buffer pool
comprises buffers of a size defined at system startup by the BSIZ parameter. The
buffer size selected must be capable of holding the largest CI from any DEDB area
that is to be opened. The number of buffers page-fixed is based upon the value of
supplied parameters:

v The normal buffer allocation (NBA) value causes the defined number of buffers to
be fixed in the buffer pool at startup of the dependent region. (This number can
be specified for the dependent region startup procedure using the NBA
parameter.) The application program in this dependent region is eligible to
receive up to this number of buffers within a given sync interval before one of the
following occurs:

– The buffer manager acquires unmodified buffers from the requesting
application program.

– No more buffers can be acquired on behalf of the requesting application
program (a number of buffers equal to NBA have been requested, received,
and modified). In this case, the buffer manager must acquire access to the
overflow buffer allocation (OBA) if this value was specified for this program. If
no OBA was specified, then all resources acquired for this program during
sync interval processing to date are released.

v The OBA value is the number of buffers that a program can serially acquire when
NBA is exceeded. (This number can be specified for the dependent region
startup procedure using the OBA parameter.) The overflow interlock function
serializes the overflow buffer access, and only one application program at a time
can gain access to the overflow buffer allocation. Therefore, the overflow buffer
can be involved in deadlocks.

v The DBFX value, which is a system startup parameter, defines a reserve of
buffers that are page-fixed upon start of the first Fast Path application program.
These buffers are used when asynchronous OTHREAD processing is not
releasing buffers quickly enough to support the requests made in sync interval
processing.

It follows that:

v BSIZ should be set equal to the largest DEDB CI that will be online. Because the
buffer manager does not split buffers to accommodate multiple control intervals,
making all DEDB CIs of a same size will provide more optimum use of storage.
Even though large block sizes (up to 28K) can be used, this would cause only
partial use of the buffer pool if there were many smaller CI sizes.

v The NBA value should be set approximately equal to the normal number of buffer
updates made during a sync interval. The NBA value for inquiry-only programs
should be small, because the buffers that are never modified can be reused and
will all be released at sync time.

v The OBA should be used only in relation to a limited proportion of sync intervals.
OBA is not required for inquiry-only programs. In general, the user should be
careful to use the OBA value as intended. It should be used to support sync
intervals where application program logic demands a variation in total modified
buffer needs, thereby requiring access to OBA on an exceptional basis. With
BMPs, OBA values greater than 1 should be unnecessary because the 'FW'

Monitoring and Tuning Fast Path Systems

Chapter 7. Designing a Fast Path Database 221

status code that is returned when the NBA allocation is exceeded can be used to
invoke a SYNC call. Invoking a SYNC call would then release all resources.
Such application design reduces the serialization and possible deadlocks
inherent in using the overflow interlock function.

v The DBFX value should be set, taking into account the total number of buffers
that are likely to be in OTHREAD processing at peak load time. If this value is
too low, an excessive number of wait-for-buffer conditions are reflected in the
IMS Fast Path Log Analysis report.

To optimize the buffer usage, group message processing application programs with
similar buffer use characteristics and assign them to a particular message class, so
that the applications share the region’s buffers. See IMS/ESA Installation Volume 2:
System Definition and Tailoringfor details of APPLCTN and TRANSACT class
specifications.

Contention for DEDB Control Interval (CI) Resources
Queuing takes place on the DEDB CI resource to maintain serialized access on
DEDB data. When two independent application programs concurrently request
access to a particular CI, one requestor is required to wait. When such a wait would
cause a deadlock, one of the application programs is selected to have its resources
released and its processing returned to the previous sync point. (It should be noted
that the overflow buffer interlock can also be involved in a deadlock). The rules for
selection of the program to be interrupted because of a deadlock are:

v If the deadlock involves one or more message-driven programs, one of the
programs is abnormally terminated, reinstated to its previous sync point, and
rescheduled.

v If a BMP deadlocks with another BMP, the BMP that went through sync point last
is abnormally terminated, has its resources released, is sent back to its previous
sync point, and is given a return code.

v If a deadlock involves a DEDB utility, the other program is terminated and
rescheduled. Two utilities cannot be involved in a deadlock, because two utilities
cannot concurrently access the same DEDB Area.

The number of contention and deadlock situations can be decreased by taking the
following steps:

v Ensure that CIs contain no more segments than necessary. (CI size is specified
in the DBD.)

v Limit the use of the overflow buffer interlock, which, in conjunction with CI usage,
can be involved in a deadlock.

v Limit the value of NBA to the value necessary to cope with the majority of cases
and use OBA to deal with the exceptional conditions. When the full buffer
allocation (NBA or NBA and OBA) for a program has been exceeded, the buffer
manager can begin stealing unmodified buffers from this program. When all
buffers associated with a CI have been stolen, the CI can be released, providing
it is not currently in use by a PCB. The buffer stealing and associated CI
releasing is triggered by exceeding the full buffer allocation. Minimizing NBA and
OBA will assist the timely release of CIs, thereby reducing CI contention.

v Ensure that BMPs accessing DEDBs issue SYNC calls at frequent intervals.
(BMPs could be designed to issue many calls between sync points and so gain
exclusive control over a significant number of CIs.)

v BMPs that do physical-sequential processing through a DEDB should issue a
SYNC call when crossing a CI boundary (provided it is possible to calculate this
point). This ensures that the application program never holds more than a single
CI.

Monitoring and Tuning Fast Path Systems

222 IMS/ESA V6 Admin Guide: DB

Reports produced by the Fast Path Log Analysis utility give statistics about CI
contention.

Exhaustion of DEDB DASD Space
An out-of-space condition (with consequent stoppage of the DEDB Area) can occur
in the root addressable and sequential dependent portions of an Area. Such
situations will affect the operation of the system as a whole and can necessitate
lengthy recovery procedures. The number of out-of-space conditions can be
decreased by:

v Attempting to restrict the number of uses of independent overflow CIs through
randomizing algorithm design or regular reorganization

v Deleting sequential dependent CIs on a regular basis

v Using display commands or DEDB POS calls to track space usage

An out-of-space condition can be relieved without bringing IMS down by following
the procedures in “Extending DEDB Independent Overflow Online” on page 400.

Utilization of Available Real Storage
The amount of page-fixed storage defined will be a significant consideration in
limited storage systems. The factors influencing real storage utilization are
summarized in “Appendix B. Replace, Insert, and Delete Rules for Logical
Relationships” on page 409.

Synchronization Point Processing and Physical Logging
Some 'clustering' of output and release of updated CIs and buffers occurs because
DEDB updates are deferred until after physical logging is complete. In BMPs, it
helps to minimize the number of updates performed in any one sync interval,
particularly if the program is to be run concurrent with the main bulk of message
processing.

It is likely that, for performance reasons, the physical log record will be large, so
that the log record might not be written for some time during low logging activity.
However, IMS varies the interval between the periodic invoking of physical logging.
This interval is directly related to the total logging activity in the IMS system. (Low
activity causes a smaller interval to be set.)

The physical logging process can be relatively slow because of small physical log
buffers or channel and/or control unit contention for the WADS/OLDS data sets.

The Fast Path environment can have high transaction rates and logging activity.
Therefore, the physical configuration supporting the logging process must also be
analyzed and altered for optimum performance.

Contention for Output Threads
Each OTHR defined provides for the possibility of scheduling a separate service
request block (SRB) to control the writing of the modified buffers associated with a
particular sync interval. If the OTHR value is low, then queuing of write buffers
waiting for an output thread can occur. In general, it is probably best to have one
OTHR for each started dependent region that will cause modification of a DEDB.

Overhead Resulting from Reprocessing
Overhead will result from the necessity to perform reprocessing in either the
message-driven or non-message-driven environments. The following conditions will
necessitate reprocessing:

v Deadlocks involving CIs and (possibly) overflow interlock

v Verify failures at sync point time

Monitoring and Tuning Fast Path Systems

Chapter 7. Designing a Fast Path Database 223

v User-initiated rollback caused by such conditions as verify failure at call time

In the case of deadlocks, the application program is pseudo abended for dynamic
backout. The program controller subtask is detached, and subsequently, reattached.
For verify failures or rollback calls, rescheduling involves only the release of
resources held and returned to the application program.

Excessive incidence of the above conditions will add to response time and total
overhead. Conditions resulting in abend interception followed by dump and
application program reinstatement will add to overhead.

Dispatching Priority of Processor-Dominant and I/O-Dominant
Tasks
Because MSDB processing within a sync interval is processor-dominant, application
programs processing solely or mainly MSDBs should be dispatched at a lower
priority than those programs processing solely or mainly DEDBs (I/O dominant).

DASD Contention Due to I/O on DEDBs
As always, I/O contention for DEDB Areas will act as a limitation upon performance.
To minimize this impact:

v Limit the number of heavily-used Areas per device.

v Limit the number of application programs accessing any one DEDB Area. One
possibility here is to design the transaction, input edit/routing exit, and
randomizing algorithm combination so that the access to any one area is limited
to a particular application program or programs.

v Limit the incidence and effect of stealing unmodified buffers by appropriate
application program design. Buffer stealing can necessitate a second I/O to
recover the stolen buffer/control interval. This can happen if the logic of the
application program requires processing of a buffer when a significant number of
calls have been made following the first retrieval.

Resource Locking Considerations with Block Level Sharing
Resource locking can occur either locally in a non-Sysplex environment or globally
in a Sysplex environment.

In a non-Sysplex environment, local locks can be granted in one of three ways:

v Immediately because:

Either IMS was able to get the required IRLM latches, and there is no other
interest on this resource.

Or the request is compatible with other holders and/or waiters.

v Asynchronously because the request could not get the required IRLM latches
and was suspended. The lock is granted when latches become available due to
one of two conditions:

Either no other holders exist.

Or the request is compatible with other holders and/or waiters.

v Asynchronously because the request is not compatible with the holders and/or
waiters and was granted after their interest was released.

In a Sysplex environment, global locks can be granted in one of three ways:

v Locally by the IRLM because:

Either there is no other interest for this resource.

Or this IRLM has the only interest, this request is compatible with the holders
and/or waiters on this system, and XES already knows about the resource.

Monitoring and Tuning Fast Path Systems

224 IMS/ESA V6 Admin Guide: DB

v Synchronously on the XES CALL because:

Either XES shows no other interest for this resource.

Or XES shows only SHARE interest for the hash class.

v Asynchronously on the XES CALL because of one of three conditions:

Either XES shows EXCLUSIVE interest on the hash class by an IRLM, but
the resource names do not match (FALSE CONTENTION by RMF).

Or XES shows EXCLUSIVE interest on the hash class by an IRLM and the
resource names match, but the IRLM CONTENTION EXIT grants it anyway
because the STATES are compatible (IRLM FALSE CONTENTION).

Or the request is incompatible with the other HOLDERs and is granted by the
CONTENTION Exit after their interest is released (IRLM REAL
CONTENTION).

Resource Name Hash Routine
The Fast Path Resource Name Hash routine generates the hash value used by the
IRLM. You may specify the name of such a routine with the USRHASH parameter
on the FPCTRL macro, but it is ignored. Using the UHASH parameter in the IMS
procedure, you can override this name.

Because this routine can be user supplied, it is possible to provide your own
hashing logic to satisfy any special requirements. However, from the performance
viewpoint, it is highly desirable that a resource name be hashed to be distributed
over a potentially wide number of GHT entries.

One technique used by the IMS-supplied Fast Path Resource Name Hash routine
(DBFLHSH0) increases the range of values implicit with the relative CI numbers by
combining parts of the 31-bit CI number with values derived from a database’s
DMCB number and its area number as follows: Bits 11 through 15 of DMCB
number are XOR’d with bits 7, 6, 5, 4, 3 of the area number to give a combination
5-bit position number. (Using the area number’s bits in reverse order helps make
both DMCB number and area number vary the combination value.)

For the relative CI number (bits 0 through 15 are not used):

v Bits 16 through 20 are XOR’d with the combination value.

v Bits 21 through 25 are XOR’d with the combination value.

v Bits 26 through 29 are used unchanged.

v Bits 30 and 31 are not used—thus a hashed CI number used as a GHT entry
represents four CIs.

For the hashed resource name:

v Bits 16 through 29 of the hashed relative CI become bits 18 through 31 of the
hash value that is passed to the IRLM.

v Bits 18 through 26 of the hash value are used as the displacement into the
resource hash table (RHT).

v Bits 18 through 31 are used as the displacement into the GHT.

Registering Databases
When a database I/O error occurs, IMS copies the buffer contents of the error
block/control interval (CI) to a virtual buffer. A subsequent DL/I request causes the
error block/CI to be read back into the buffer pool. The write error information and
buffers are maintained across restarts, allowing recovery to be deferred to a

Monitoring and Tuning Fast Path Systems

Chapter 7. Designing a Fast Path Database 225

convenient time. I/O error retry is automatically performed at database close time. If
the retry is successful, the error condition no longer exists and recovery is not
needed.

Although databases need not be registered in DBRC in order for the error handling
to work, it is highly recommended. If an error occurs on a non-registered database
and the system terminates, the database could be damaged if the system is
restarted and a /DBR command is not issued prior to accessing the database. The
reason for this is that restart causes the error buffers to be restored as they were
when the system terminated. If the same block had been updated during the batch
run, the batch update would be overlaid.

Fast Path Virtual Storage Option
The Fast Path Virtual Storage Option (VSO) allows you to map data into virtual
storage (into an MVS data space). You can map one or more data entry database
(DEDB) Areas into virtual storage by defining them as VSO Areas.

For high-end performance applications with DEDBs, using DEDBs with VSO Areas
instead allows you to realize the following performance improvements:

v Reduced read I/O

Once a VSAM control interval (CI) has been brought into virtual storage, all
subsequent I/O read requests read the data that is in virtual storage rather than
on DASD.

v Decreased locking contention

For VSO DEDBs, locks are released after both of the following:

– Logging is complete for the second phase of an application synchronization
(commit) point

– The data has been moved into virtual storage

For non-VSO DEDBs, locks are held at the VSAM CI-level and are released only
after the updated data has been written to DASD.

v Fewer writes to the area data set

Updated data buffers are not immediately written to DASD; instead they are kept
in the data space and written to DASD at system checkpoint or when a threshold
is reached.

In all other respects, VSO DEDBs are the same as non-VSO DEDBs. Therefore,
VSO DEDB Areas are available for IMS DBCTL and LU 6.2 applications, as well as
other IMS DB or IMS TM applications. You use DBRC commands to specify that you
want to use a DEDB as a VSO DEDB.

Important: Terminal-related MSDBs and non-terminal-related MSDBs with
terminal-related keys are not supported in IMS Version 5 and later
releases. Non-terminal-related MSDBs without terminal-related keys are
still supported in IMS Version 6. Therefore, you should consider
converting all your existing MSDBs to VSO DEDBs or non-VSO
DEDBs.

Enhancements to DEDBs
In order to help make the conversion from MSDBs to DEDBs as painless as
possible, DEDBs have been given many of the functions of MSDBs. These include:

v Putting DEDB Areas into virtual storage (VSO)

Registering Databases

226 IMS/ESA V6 Admin Guide: DB

v The field (FLD) call

v Fixed length segments

v MSDB or DEDB commit view

In addition, DEDBs have the following:

v Full DBRC support

v Block level sharing of Areas

DEDB Areas are available to DBCTL and LU 6.2 applications, as well as DB/DC
applications.

v DEDBs can be tracked in an RSR environment

v HSSP support for DEDBs

v Availability of DEDB utilities

v Online database maintenance

v Support for the full hierarchical model

Calls which were not available to MSDBs, such as Insert and Delete, are
available to DEDBs

v Improved search techniques

MSDBs used the binary search technique; DEDBs use the randomizer search
technique.

v MSDB checkpoint data sets are not required for DEDBs

In addition, the Fast Path Log Analysis utility (DBFULTA0) has been enhanced to
provide more log information and VSO activity for SHARELVLs 0-3 option settings
information; see IMS/ESA Utilities Reference: System.

Restrictions Using VSO DEDB Areas
VSO DEDB Areas have the following restrictions in their use:

v VSO Areas must be registered with DBRC

v The maximum allowable size for an MVS data space is two gigabytes (2 147 483
648 bytes)

The actual size available for a VSO area is the maximum size (2 GB) minus an
amount reserved by MVS (from 0 to 4 KB) minus an amount used by IMS Fast
Path (approximately 100 KB). You can use the /DISPLAY FPVIRTUAL command to
determine the actual storage available for a particular Area.

The/DISPLAY FPVIRTUAL command report displays the following VSO information
for SHARELVLs 0/1; dataspace, maxsize, areaname, areasize, option (such as
PREO and PREL). Then it shows coupling facility name, pool (private pool size),
LKASID (Indicates if buffer lookaside is active for this pool), areaname, areasize,
and option (such as PREO and PREL). The /DISPLAY FPVIRTUAL command
report displays the following VSO information for SHARELVLs 2/3; areaname,
structure, entries, changed, poolname, and options.

v You cannot use the DEDB Multiple area data set Compare utility (DBFUMMH0)
for a VSO DEDB

Related Reading:

v See “Accessing a Data Space” on page 234 for more information on data space.

v See IMS/ESA Operator’s Reference for more information on the /DISPLAY
commands.

Fast Path Virtual Storage Option

Chapter 7. Designing a Fast Path Database 227

Defining a VSO DEDB Area
All of the information which defines a DEDB as a DEDB using the Virtual Storage
Option (VSO) is recorded in the RECON data set. You use the INIT.DBDS and
CHANGE.DBDS commands to define your VSO DEDB Areas, using the following
keywords:

VSO This defines the area as a VSO Area.

To define an area as a VSO Area implies that when a CI is read for the first
time, it will be copied into an MVS data space. Data is read into a common
buffer and is then copied into the data space. Once the data is in the data
space, subsequent access to the data retrieves it from the data space
rather than from DASD. Those CIs that are not accessed are not brought
into the data space. All updates to the data are copied back to the data
space and any locks held are released. Updated CIs are periodically written
back to DASD.

NOVSO
This defines the area as a non-VSO area. This is the default.

You can use NOVSO to define a DEDB as non-VSO or to turn off the VSO
option for a given Area. If the area is in virtual storage when it is redefined
as NOVSO, the area must be stopped (/STOP AREA or /DBR AREA) or
removed from virtual storage (/VUNLOAD) for the change to take effect.

PRELOAD
For VSO areas, this preloads the Area into the data space when it is
opened. This keyword implies the PREOPEN keyword, thus if PRELOAD is
specified, then PREOPEN does not have to be specified.

Using PRELOAD implies that the root addressable portion and the
independent overflow portion of an area are loaded into the data space at
control region initialization or during /START AREA processing. Once the area
is loaded into the data space, data is read from the data space to a
common buffer. Updates are copied back to the data space, any locks are
released, and updated CIs are periodically written back to DASD.

NOPREL
This defines the area as load-on-demand. For VSO DEDBs, as CIs are
read from the data set, they are copied to the data space. This is the
default.

To define an area with NOPREL gives you the ability to deactivate the preload
processing, so that the area will not be preloaded into the data space next
time it is opened.

If you specify NOPREL, and you want the area to be preopened, you must
separately specify PREOPEN for the Area.

CFSTR1|2
These define the coupling facility cache structure names. These must follow
MVS coupling facility naming conventions. These parameters are valid only
for VSO Areas of DEDBs defined with SHARELVL(2|3). For detailed
information see “Coupling Facility Structure Naming Convention” on
page 229.

The following two keywords for the INIT.DBDS and CHANGE.DBDS commands apply
both to VSO DEDB Areas and non-VSO DEDB Areas.

PREOPEN This opens the area after the first checkpoint following control

Fast Path Virtual Storage Option

228 IMS/ESA V6 Admin Guide: DB

region initialization. Using this keyword, application programs do not
incur the overhead of open processing.

PREOPEN can be specified for both VSO and non-VSO Areas. It
removes the burden of Area-open processing from the application.
At control region startup, all DEDB Areas defined with PREOPEN are
opened. /START AREA processing preopens an area defined with
PREOPEN, and starts it.

NOPREO This opens the area during the first call to the area. This is the
default.

To define an area with NOPREO gives you the ability to deactivate the
preopen processing, so that the area will not be preopened at the
next startup or /START AREA command.

You can use the DBRC commands to define your VSO DEDB Areas at any time; it
is not necessary that IMS be active. The keywords specified on these DBRC
commands go into effect at two different points in Fast Path processing:

v Control region startup

After the initial checkpoint following control region initialization, DBRC provides a
list of Areas with any of the VSO options (VSO, NOVSO, PRELOAD, and NOPREL) or
either of the PREOPEN or NOPREO options. The options are then maintained by IMS
Fast Path.

v Command processing

When you use a /START AREA command, DBRC provides the VSO options or
PREOPEN|NOPREO options for the Area. When you use a /STOP AREA command, any
necessary VSO processing is performed. See IMS/ESA Operator’s Reference for
details on start and stop processing.

If the area needs to be preopened or preloaded, it will be done at this time.

Defining a VSO Cache Structure Name
The system programmer defines all coupling facility structures, including VSO cache
structures, in the XES policy definition. In this policy definition, VSO structures are
defined as cache structures, as opposed to list structures (used by shared queues)
or lock structures (used by IRLM).

Coupling Facility Structure Naming Convention
The structure name is 16 characters long, padded on the right with blanks if
necessary. It can contain any of the following, but must begin with an uppercase,
alphabetic character:

Uppercase alphabetic characters

Numeric characters

Special characters ($, @, and #)

Underscore (_)

IBM names begin with:

’SYS’

Letters ’A’ through ’I’ (uppercase)

An IBM component prefix

Fast Path Virtual Storage Option

Chapter 7. Designing a Fast Path Database 229

Examples of Defining Coupling Facility Structures
The following example shows how to define two structures in separate coupling
facilities:

In the example, the programmer defined one list structure (LIST01) and one cache
structure (CACHE01)

Restriction: When defining this cache structure to DBRC, ensure that the name is
identical (see “Registering a Cache Structure Name with DBRC”).

Registering a Cache Structure Name with DBRC
Structure names are maintained in the DBRC RECON data set. Register structure
names on the INIT.DBDS or CHANGE.DBDS statement. The keywords for
specifying structure names are CFSTR1 and CFSTR2. The following example
registers structure name TSTDEDBAR1:

Defining a Private Buffer Pool Using the DFSVSMxx VSPEC
Member
Define a private buffer pool using the following format:

//UPDATE EXEC PGM=IXCL2FDA
//SYSPRINT DD SYSOUT=A
//*
//* THE FOLLOWING SYSIN WILL UPDATE THE POLICY DATA IN THE COUPLE
//* DATASET FOR CFRM (COUPLING FACILITY RESOURCE MANAGEMENT)
//*
//SYSIN DD *
UPDATE DSN(IMS.DSHR.PRIME.FUNC) VOLSER(DSHR03)

DEFINE POLICY(POLICY1)

DEFINE CF(FACIL01)
ND(123456)
SIDE(0)
ID(01)
DUMPSPACE(2000)

DEFINE CF(FACIL02)
ND(123456)
SIDE(1)
ID(02)
DUMPSPACE(2000)

DEFINE STR(LIST01)
SIZE(1000)
PREFLIST(FACIL01,FACIL02)
EXCLLIST(CACHE01)

DEFINE STR(CACHE01)
SIZE(1000)
PREFLIST(FACIL02,FACIL01)
EXCLLIST(LIST01)

/*

Figure 123. Example of Updating a Policy with New Structures

INIT.DBDS DBD(DEDBFR01) AREA(DEDBAR1) VSO PRELOAD CFSTR1(TSTDEDBAR1)

Figure 124. Defining a VSO area Coupling Facility Structure Name in DBRC

Fast Path Virtual Storage Option

230 IMS/ESA V6 Admin Guide: DB

Defining a Private Buffer Pool
DEDB=(poolname,size,pbuf,sbuf,maxbuf,lkasid,dbname)

where:

POOLNAME 8 character name of the pool. Used in displays and reports.

SIZE The buffer size of the pool. All the standard DEDB-supported buffer
sizes are supported.

PBUF The primary buffer allocation. The first allocation will get this
number of buffers. Maximum value is 99999.

SBUF The secondary buffer allocation. When the primary allocation starts
to run low, another allocation of buffers is made. This amount
indicates the secondary allocation amount. Maximum value is
99999.

MAXBUF The maximum number of buffers allowed for this pool. It is a
combination of PBUF plus some iteration of SBUF. Maximum value
is 99999.

LKASID Indicates whether this pool is to be used as a local cache with
buffer lookaside capability. This value is cross-checked with the
DBRC specification of LKASID to determine which pool the area will
utilize. If there is an inconsistency between the DEDB statement
and DBRC, the DBRC value takes precedence.

DBNAME Association of the pool to a specific area or DBD. If the DBNAME is
an area name, then the pool will be used only by that Area. If the
DBNAME specifies a DBD name, the pool will be used by all areas
in that DBD. The DBNAME is first checked for an area name then
for a DBD name.

The following example defines a private buffer pool:

In this example, 2 private buffer pools are defined:

1. The first pool has a buffer size of 512, with an initial allocation of 400 buffers,
increasing by 50, as needed, to a maximum of 800. This pool will be used as a
local cache, and buffer lookaside will be performed for Areas that share this
pool.

2. The second pool has a buffer size of 8K, with an initial allocation of 100 buffers,
increasing by 20, as needed, to a maximum of 400. This pool will be used in the
same fashion as the common buffer pool. There will be no lookaside performed.

If the customer does not define a private buffer pool, the default parameter values
are used:

DEDB=(POOL1,512,400,50,800,LKASID)
DEDB=(POOL2,8196,100,20,400,NOLKASID)

Figure 125. Examples of Defining Private Buffer Pools

Fast Path Virtual Storage Option

Chapter 7. Designing a Fast Path Database 231

Default Private Buffer Pool Statement
DEDB=(poolname,XXX,64,16,512)

where:

v XXX is the CI size of the area to be opened.

v The initial buffer allocation is 64.

v The secondary allocation is 16.

v The maximum number of buffers for the pool is 512.

v The LKASID option is specified if it is specified in DBRC for the Area.

Block-Level Sharing of VSO DEDB Areas
Block-Level Sharing of VSO DEDB Areas allows multiple IMS subsystems to
concurrently read and update VSO DEDB data. The three main participants are the
coupling facility hardware, the coupling facility policy software, and the XES and
MVS services:

v The coupling facility hardware provides high-performance, random-access shared
storage in which IMS subsystems can share data in a sysplex environment. The
shared storage area in the coupling facility is divided into sections, called
structures. For VSO DEDB data, the structure type used is called a cache
structure, as opposed to a list structure or a lock structure. The cache structure is
designed for high-performance read reference reuse and deferred write of
modified data. The coupling facility and structures are defined in a common MVS
data set, the couple data set (COUPLExx).

v The coupling facility policy software and its cache structure services provide
interfaces and services to MVS that allow sharing of VSO DEDB data in shared
storage. Shared storage controls VSO DEDB reads and writes:

– A read of a VSO CI brings the CI into the coupling facility from DASD.

– A write of an updated VSO CI copies the CI to the coupling facility from main
storage, and marks it as changed.

– Changed CI data is periodically written back to DASD.

v The XES and MVS services provide a way of manipulating the data within the
cache structures. They provide high performance, data integrity, and data
coherency for multiple IMS subsystems sharing data.

The Coupling Facility and Shared Storage
Each VSO DEDB area is represented in the coupling facility shared storage by one
cache structure. These cache structures are not persistent . That is, they are
deleted after the last IMS subsystem disconnects from the coupling facility.

Imagine one VSO DEDB area holding data that two or more IMS subsystems in a
sysplex will share. Figure 126 on page 233 represents the coupling facility shared
storage that provides structure storage of varying sizes (S1 through S9). The cache
structure will be used for VSO DEDB data. The structure name A1$0XXX111222333
represents our VSO Area.

Fast Path Virtual Storage Option

232 IMS/ESA V6 Admin Guide: DB

Each cache structure in the coupling facility is composed of a directory portion and
a data portion.

The basic unit of interaction with the coupling facility is the directory portion . It
contains a name consisting of the characters “VSO,” the area name, and the
relative byte address (RBA). For example, a directory entry name might be
vsoArea1rba1. Only one directory can exist in a particular CI, so each CI within the
area and within the cache structure is uniquely identified.

The detail of CACHE STRUCTURE A10$XXX111222333 is represented in Figure 127.

Duplexing Structures
Duplexing structures are duplicate structures for the same Area.

Private Buffer Pools
IMS now provides special private buffer pools for Shared VSO Areas. Each pool
can be associated with an Area, a DBD, or a specific group of Areas. These private
buffer pools are only used for Shared VSO data. Using these private buffer pools,
the customer can request buffer lookaside for the data. The new keywords LKASID
or NOLKASID, when specified on the DBRC commands INIT.DBDS or
CHANGE.DBDS, indicate whether to use this lookaside capability or not.

How IMS Fast Path (VSO) Uses Data Spaces

Acquiring a Data Space
During control region initialization, IMS acquires two MVS data spaces, each of the
maximum size of two gigabytes (2 147 483 648 bytes). One of the data spaces thus
acquired is defined with the MVS DREF (disabled reference) option and the other
data space is defined without the MVS DREF option. The difference between the two

Figure 126. Coupling Facility Shared Storage

Figure 127. Detailed View of CACHE STRUCTURE A10$XXX111222333

Fast Path Virtual Storage Option

Chapter 7. Designing a Fast Path Database 233

data spaces is that with the MVS DREF option a combination of central storage and
expanded storage is used while auxiliary storage is not used, whereas without the
DREF option a combination of central storage, expanded storage (if available) and
auxiliary storage is used.

Those VSO Areas that have been defined with the PRELOAD option are loaded into
the data space which uses the DREF option. Those VSO Areas that have been
defined with the NOPREL option are loaded into the data space which does not use
the DREF option.

IMS acquires additional data spaces, both with DREF and without, as needed.

Accessing a Data Space
During IMS control region initialization, IMS calls DBRC to request a list of all the
Areas that are defined as VSO (and those which need to be preopened [PREO] or
preloaded [PREL]). All Areas defined with either PREOPEN or PRELOAD are opened at
this time. Additionally, VSO Areas defined with PRELOAD are loaded into the data
space.

IMS assigns Areas to data spaces using a “first fit” algorithm. The entire root
addressable portion of an area (including independent overflow) resides in the data
space. The sequential dependent portion does not reside in the data space.

The amount of space needed for an area in a data space is:
(CI size) × (number of CIs per UOW) ×
((number of UOWs in root addressable portion) +
(number of UOWs in independent overflow portion))

rounded to the next 4KB.

Expressed in terms of the parameters of the DBDGEN AREA statement (see IMS/ESA
Utilities Reference: Database Manager), this is:

(the value of the SIZE= parameter) ×
(the value of the UOW=number1 parameter) ×
(the value of the ROOT=number2 parameter)

rounded to the next 4KB.

The actual amount of space in a data space available for an area (or Areas) is 2
gigabytes (524,288 blocks, 4 KB each) minus an amount reserved by MVS (from 0
to 4 KB) minus an amount used by IMS Fast Path (approximately 100 KB). You can
use the /DISPLAY FPVIRTUAL command to determine the actual storage usage of a
particular Area. See IMS/ESA Operator’s Reference for sample output from this
command.

Resource Control and Locking
Using VSO can reduce the number and duration of DEDB resource locking
contentions by managing DEDB resource requests on a segment level and holding
locks only until updated segments are returned to the data space. Segment-level
resource control and locking applies only to Get and Replace calls.

Without VSO, the VSAM CI (physical block) is the smallest available resource for
DEDB resource request management and locking. If there is an update to any part
of the CI, the lock is held until the whole CI is rewritten to DASD. No other
requester is allowed access to any part of the CI until the first requester’s lock is
released.

Fast Path Virtual Storage Option

234 IMS/ESA V6 Admin Guide: DB

With VSO, the database segment is the smallest available resource for DEDB
resource request management and locking. Segment-level locking is available only
for the root segment of a DEDB with a root-only structure, and when that root
segment is a fixed-length segment. If processing options R or G are specified in the
calling PCB, IMS can manage and control DEDB resource requests and serialize
change at the segment level; for other processing options, IMS maintains VSAM CI
locks. Segment locks are held only until the segment updates are applied to the CI
in the data space. Other requesters for different segments in the same CI are
allowed concurrent access.

A VSO DEDB resource request for a segment causes the entire CI to be copied
into a common buffer. VSO manages the segment request at a level of control
consistent with the request and its access intent. VSO also manages access to the
CI that contains the segment but at the share level in all cases. A different user’s
subsequent request for a segment in the same CI accesses the image of the CI
already in the buffer.

Updates to the data are applied directly to the CI in the buffer at the time of the
update. Segment-level resource control and serialization provide integrity among
multiple requesters. After an updated segment is committed and applied to the copy
of the CI in the data space, other requesters are allowed access to the updated
segment from the copy of the CI in the buffer.

If after a segment change the requester’s updates are not committed for any
reason, VSO copies the unchanged image of the segment from the data space to
the CI in the buffer. VSO does not allow other requesters to access the segment
until VSO completes the process of removing the uncommitted and aborted
updates. Locking at the segment level is not supported for shared VSO areas. Only
C1 locking is supported.

Preopen Areas and VSO Areas in a Data Sharing Environment
A VSO can be registered with any SHARELVL: SHARELVL(0) (exclusive access),
SHARELVL(1) (one updater, many readers), SHARELVL(2), or SHARELVL(3) (block-level
sharing).

SHARELVL(0)
In a data sharing environment, any SHARELVL(0) area with the PREOPEN
option (including VSO PREOPEN and VSO PRELOAD) will be opened by the first
IMS subsystem to complete its control region initialization. IMS will not
attempt to preopen the area for any other IMS subsystem.

SHARELVL(1)
In a data sharing environment, a SHARELVL(1) area with the PREOPEN option
will be preopened by all sharing IMS subsystems. The first IMS subsystem
to complete its control region initialization will have update authorization; all
others will have read authorization.

If the SHARELVL(1) area is a VSO area, it will be allocated to a data space
by any IMS subsystem that opens the Area. If the area is defined as VSO
PREOPEN or VSO PRELOAD, it will be allocated to a data space by all sharing
IMS subsystems.

If the area is defined as VSO NOPREO NOPREL, it will be allocated to a data
space by all IMS subsystems, as each opens the Area. The first IMS
subsystem to access the area will have update authorization; all others will
have read authorization.

Fast Path Virtual Storage Option

Chapter 7. Designing a Fast Path Database 235

SHARELVL(2)
A SHARELVL(2) area with at least one coupling facility structure name
(CFSTR1) defined will be shared at the block or control interval (CI) level
within the scope of a single IRLM. Multiple IMS systems can be authorized
for update or read processing if they are using the same IRLM.

SHARELVL(3)
A SHARELVL(3) area with at least one coupling facility structure name
(CFSTR1) defined will be shared at the block or control interval (CI) level
within the scope of multiple IRLMs. Multiple IMS systems can be authorized
for nonexclusive access.

You must take care when registering a VSO area as SHARELVL(1). Those
subsystems that receive read-only authorization will never see the updates made by
the read/write subsystem because all reads will come from the data space (not from
DASD, where updates are eventually written).

Input / Output Processing

Input Processing
When an application program issues a read request to a VSO Area, IMS checks to
see if the data is in the data space. If the data is in the data space, it will be copied
from the data space into a common buffer and passed back to the application. If the
data is not in the data space, IMS reads the CI from the area data set on DASD
into a common buffer, copies the data into the data space, and passes the data
back to the application.

For SHARELVL(2/3) VSO Areas, Fast Path utilizes private buffer pools. Buffer
lookaside is an option for these buffer pools. When a read request is issued against
a SHARELVL(2/3) VSO Area using a lookaside pool, a check is made to see if the
requested data is in the pool. If the data is in the pool, a validity check to XES is
made. If the data is valid, it is passed back to the application from the local buffer. If
the data is not found in the local buffer pool or XES indicates that the data in the
pool is not valid, the data is read from the coupling facility structure and passed to
the application. When the buffer pool specifies the no-lookaside option, every
request for data will go to the coupling facility.

For those Areas that are defined as load-on-demand (using the VSO and NOPREL
options), the first access to the CI will be from DASD. The data is copied to the
data space and then subsequent reads for this CI retrieve the data from the data
space rather than from DASD. For those Areas that are defined using the VSO and
PRELOAD options, all access to CIs comes from the data space.

Whether the data comes from DASD or from the data space is transparent to the
processing done by application programs.

Output Processing
During phase 1 of synchronization point processing VSO data is treated the same
as non-VSO data. The use of VSO is transparent to logging.

During phase 2 of the synchronization point processing VSO and non-VSO data are
treated differently. For VSO data, the updated data is copied to the data space, the
lock is released and the buffer is returned to the available queue. The relative byte
address (RBA) of the updated CI is maintained in a bitmap. If the RBA is already in
the bitmap from a previous update, only one copy of the RBA is kept. At interval
timer, the updated CIs are written to DASD. This batching of updates reduces the
amount of output processing for CIs that are frequently updated. While the updates

Fast Path Virtual Storage Option

236 IMS/ESA V6 Admin Guide: DB

are being written to DASD, they are still available for application programs to read
or update because copies of the data are made within the data space just before it
is written.

For SHARELVL(2/3) VSO Areas, the output thread process is used to write updated
CIs to the coupling facility structures. When the write is complete, the lock is
released. XES maintains the updated status of the data in the directory entry for the
CI.

The PRELOAD Option
The loading of one area takes place asynchronously with the loading of any others.
The loading of an area is (or can be) concurrent with an application program’s
accesses to that Area. If the CI requested by the application program has been
loaded into the data space, it is retrieved from the data space. If the requested CI
has not yet been loaded into the data space, it is obtained from DASD and UOW
locking is used to maintain data integrity.

The preload process for SHARELVL(2/3) VSO Areas is similar to that of
SHARELVL(0/1). Multiple preloads can be run concurrently, and also concurrent
with application processing. The locking, however, is different. SHARELVL(2/3)
Areas that are loaded into coupling facility structures use CI locking instead of UOW
locking. The load process into the coupling facility is done one CI at a time.

If a read error occurs during preloading, an error message flags the error, but the
preload process continues. If a subsequent application program call accesses a CI
that was not loaded into the data space due to a read error, the CI request goes out
to DASD. If the read error occurs again, the application program receives an “A0”
status code, just as with non-VSO applications. If instead the access to DASD is
successful this time, the CI is loaded into the data space.

I/O Error Processing
Using VSO increases the availability of data when write errors occur. Once a CI for
a VSO area has been put into a data space, the CI is available from that data
space as long as IMS is active, even if a write error occurs when an update to the
CI is being written to DASD.

Write Errors: When a write error occurs, IMS create an error queue element
(EQE) for the CI in error. For VSO Areas, all read requests are satisfied by reading
the data from the data space. Therefore, as long as the area continues to reside in
the data space the CI that had the write error continues to be available. When the
area is removed from the data space, the CI is no longer available and any request
for the CI will receive an “AO” status code.

Read Errors: For VSO Areas, the first access to a CI causes it to be read from
DASD and copied into the data space. From then on, all read requests are satisfied
from the data space. If there is a read error from the data space, MVS abends.

For VSO Areas that have been defined with the PRELOAD options, the data is
preloaded into the data space, so all read requests are satisfied from the data
space. See “The PRELOAD Option” for a discussion of read error handling during
the preload process.

To provide for additional availability, SHARELVL(2/3) VSO Areas support multiple
structures per Area. If a read error occurs from one of the structures, the read is
attempted from the second structure. If there is only one structure defined and a
read error occurs, an ’AO’ status code is returned to the application.

Fast Path Virtual Storage Option

Chapter 7. Designing a Fast Path Database 237

There is a maximum of three read errors allowed from a structure. When the
maximum is reached and there is only one structure defined, the Area is stopped
and the structure is disconnected.

When the maximum is reached and there are two structures defined, the structure
in error is disconnected. The one remaining structure will be used. When a write
error to a structure occurs, the CI in error will be deleted from the structure and
written to DASD. The delete of the CI is done from the sharing partners. If none of
the sharers can delete the CI from the structure, an EQE is generated and the CI is
deactivated. A maximum of three write errors are allowed to a structure. If there are
two structures defined and one of them reaches the maximum allowed, it is
disconnected. If there is one structure defined and it reaches the maximum allowed,
the Area is stopped and the structure is disconnected.

Checkpoint Processing
During a system checkpoint, all of the VSO area updates that are in the data space
are written to DASD. All of the updated CIs in the CF structures are also written to
DASD. Only CIs that have been updated are written. Also, all updates that are in
progress are allowed to complete before checkpoint processing continues.

VSO Options Across IMS Restart
For all types of IMS restart except XRF takeover (cold start, warm start, emergency
restart, COLDBASE, COLDCOMM and COLDSYS emergency restart), the VSO
options in effect after restart are those defined to DBRC. In the case of the XRF
takeover, the VSO options in effect after the takeover are the same as those in
effect for the active subsystem prior to the failure that caused the XRF takeover.

Emergency Restart Processing
Recovery of VSO Areas across IMS or MVS failures is similar to recovery of
existing non-VSO Areas. IMS examines the log records, from a previous system
checkpoint to the end of the log, to determine if there are any committed updates
that were not written to DASD before the failure. If any such committed updates are
found, IMS will REDO them (apply the update to the CI and write the updated CI to
DASD). Because VSO updates are batched together during normal processing,
VSO Areas are likely to require more REDO processing than non-VSO Areas.

During emergency restart log processing, IMS uses data spaces to track VSO area
updates: in addition to the data space resources used for VSO Areas, IMS obtains
a single non-DREF data space which it releases at the end of restart. If restart log
processing is unable to get the data space or main storage resources it needs to
perform VSO REDO processing, the area is stopped and marked “recovery
needed”.

At the end of emergency restart, IMS opens any Areas defined with the PREOPEN or
PRELOAD options are opened, and Areas with the PRELOAD option are loaded into a
data space. Preopening is done before dependent regions are enabled. Preloading
is begun before dependent regions are enabled, but may run concurrently with the
dependent regions. VSO Areas without the PREOPEN or PRELOAD options are assigned
to a data space during the first access following emergency restart.

After an emergency restart, the VSO options and PREOPEN|NOPREO options in effect
for an area are those that are defined to DBRC, which may not match those in

Fast Path Virtual Storage Option

238 IMS/ESA V6 Admin Guide: DB

effect at the time of the failure. For example, a VSO area removed from virtual
storage by the /VUNLOAD command before the failure will be restored to the data
space after the emergency restart.

VSO Options with XRF
During the tracking and takeover phases on the alternate subsystem, log records
are processed in the same manner as during active subsystem emergency restart
(from a previous active system checkpoint to the end of the log). The alternate
subsystem uses the log records to determine which Areas have committed updates
that were not written to DASD before the failure of the active subsystem. If any
such committed updates are found, the alternate will REDO them, following the
same process as for active subsystem emergency restart. See “Emergency Restart
Processing” on page 238.

During tracking, the alternate uses data spaces to track VSO area updates: in
addition to the data space resources used for VSO Areas, the alternate obtains a
single non-DREF data space which it releases at the end of takeover. If XRF
tracking or takeover is unable to get the data space or main storage resources it
needs to perform VSO REDO processing, the area is stopped and marked
“recovery needed”.

Following an XRF takeover, Areas that were open or in the data space remain open
or in the data space. The VSO options and PREOPEN|NOPREO options that were in
effect for the active subsystem before the takeover remain in effect on the alternate
(the new active) after the takeover. Note that these options may not match those
defined to DBRC. For example, a VSO area removed from virtual storage by the
/VUNLOAD command before the takeover will not be restored to the data space after
the takeover.

VSO Areas defined with the preload option are preloaded at the end of the XRF
takeover. In most cases, dependent regions will be able to access the area before
preloading begins, but until preloading completes, some area read requests may
have to be retrieved from DASD.

Fast Path Virtual Storage Option

Chapter 7. Designing a Fast Path Database 239

Fast Path Virtual Storage Option

240 IMS/ESA V6 Admin Guide: DB

Chapter 8. Database Design Considerations for Fast Path

About This Chapter . 242
MSDB Design Considerations 242

Calculating Virtual Storage Requirements for an MSDB 242
Calculating Buffer Requirements 243
Calculating the Storage for an Application I/O Area 243

Understanding Resource Allocation, a Key to Performance 243
Designing to Minimize Resource Contention. 245
Choosing MSDBs to Load and Page-Fix 246
Auxiliary Storage Requirements for an MSDB 248

DEDB Design Considerations 248
DEDB Design Guidelines. 249
Considering the DEDB Area 249
Determining the Size of the CI. 251
Determining the Size of the UOW 251
Processing Option P (PROCOPT=P) 252
DEDB Randomizing Routine Design 252
Multiple Copies of an Area Data Set 253
Record Deactivation . 253
Physical Child Last Pointers 254
Subset Pointers . 254

High-Speed Sequential Processing (HSSP) 254
Why HSSP? . 254
Limitations and Restrictions When Using HSSP 255
Using HSSP . 255
HSSP Processing Option H (PROCOPT=H) 256
Image-Copy Option . 256
UOW Locking . 256
Private Buffer Pools . 257

Designing a DEDB or MSDB Buffer Pool 257
Buffer Requirements . 257
Normal Buffer Allocation (NBA) 257
Overflow Buffer Allocation (OBA) 258
Fast Path Buffer Allocation Algorithm 258
System Buffer Allocation (DBFX) 258
Determining the Fast Path Buffer Pool Size 258
Fast Path Buffer Performance Considerations 259
The NBA Limit and Sync Point. 259
The DBFX Value and the Low Activity Environment 259

Designing a DEDB Buffer Pool in the DBCTL Environment 260
Buffer Requirements . 260
Normal Buffer Allocation for BMPs 260
Normal Buffer Allocation for CCTL Regions and Threads 261
Overflow Buffer Allocation for BMPs. 261
Overflow Buffer Allocation for CCTL Threads 261
Fast Path Buffer Allocation Algorithm for BMPs 261
Fast Path Buffer Allocation Algorithm for CCTL Threads 262
System Buffer Allocation (SBA) 262
Determining the Size of the Fast Path Buffer Pool 262
Fast Path Buffer Performance Considerations 263
The NBA/FPB Limit and Sync Point 263
The DBFX Value and the Low Activity Environment 263

© Copyright IBM Corp. 1974, 1999 241

A Note on Fast Path Buffer Allocation in IMS Regions 264

About This Chapter
After you determine the type of database and optional functions that best suit your
application’s processing requirements, you need to make a series of decisions
about database design and the use of options. This set of decisions primarily
determines how well your database performs and how well it uses available space.
These decisions are based on:

The type of database and optional functions you have already chosen

The performance requirements of your applications

How much storage you have available for use online

This chapter examines the following design considerations:

v MSDB design considerations

v DEDB design considerations

v Using high-speed sequential processing

v Designing DEDB or MSDB buffer pools

v Designing a DEDB buffer pool in a DBCTL environment

MSDB Design Considerations
This section describes the choices you might need to make in designing an MSDB
and proposes guidelines to help you make these choices.

You should consider the following list of questions when designing an MSDB
database:

v How are virtual storage requirements for the database calculated?

v How are virtual storage requirements for the Fast Path buffer pool calculated?

v What are the storage requirements for the I/O area?

v Should FLD calls or other DL/I calls be used for improved MSDB and DEDB
performance?

v How can the difference in resource allocation between an MSDB and a DL/I
database be a key to good performance?

v What are the requirements in designing for minimum resource contention in a
mixed-mode environment?

v How is the number of MSDB segments loaded into virtual storage controlled?

v What are the auxiliary storage requirements for an MSDB?

v How can an MSDB be checkpointed?

Calculating Virtual Storage Requirements for an MSDB
You can calculate the storage requirements for an MSDB as follows:
(S * (L + 4)) + H + X

where:

S = the number of segments in the MSDB as specified by the
member DBFMSDBx in the IMS.PROCLIB

242 IMS/ESA V6 Admin Guide: DB

L = the segment length as specified in the DBD member

H = C + (14 * F)

where:

C = 80 for non-related MSDBs without a terminal-related key
= 94 for the other types of MSDB

F = the number of fields defined in the DBD member

X = 2 if H is not a multiple of 4
= 0 if H is a multiple of 4

You need additional storage if the MSDB uses an LTERM name as a key:
4 * T * D

where:

T = the total number of LTERM names in the total online IMS
system

D = the number of MSDBs using an LTERM name as a key
(the sum of MSDBs that are terminal related and those
that are non-terminal-related with terminal-related keys)

MSDBs reside in the MVS/ESA extended common storage area (ECSA).

Calculating Buffer Requirements
Details about calculating buffer requirements are in “Designing a DEDB or MSDB
Buffer Pool” on page 257, along with other Fast Path buffer requirements. The
following considerations apply during execution:

v Fast Path buffer requirements vary with the type of call to the MSDB.

v With a GHx/REPL call sequence, an entire segment is kept in the Fast Path
buffer until a sync point is reached. If the total size of a series of segments
exceeds the NBA (normal buffer allocation), the NBA parameter needs to be
adjusted rather than using the OBA (overflow buffer) on a regular basis. You
should accommodate the total number of segments used between sync points.

v When using a FLD call, the VERIFY and CHANGE logic reside in the Fast Path
buffer.

Calculating the Storage for an Application I/O Area
A GHx/REPL call requires an I/O area large enough to accommodate the largest
segment to be processed. The FLD call requires storage to accommodate the total
field search argument (FSA) requirements.

Understanding Resource Allocation, a Key to Performance
The MSDB resource allocation scheme is different from that of DL/I. Since the
MSDB is a key to good performance, it is important to understand it.

1. An MSDB record can be shared (S) by multiple users or be owned exclusively
(E) by one user.

MSDB Design Considerations

Chapter 8. Database Design Considerations for Fast Path 243

2. The same record can have both statuses (shared and exclusive) at the same
time.

3. Updates to MSDBs are applied during sync point processing. The resource is
always owned in exclusive mode for the duration of sync point processing.

The different enqueue levels of an MSDB record are summarized in the following
two tables.

Level When Duration

READ GH with no update intent VERIFY/get calls

From call time until sync point
(phase 1)¹

Call processing

HOLD GH with no update intent At sync point, to reapply
VERIFYs

From call time until sync point
(phase 1)¹

Phase 1 of sync point
processing, then released

UPDATE² At sync point, to apply the
results of CHANGE, REPL,
DLET, or ISRT calls

Sync point processing, then
released

Note:

1. If there was no FLD/VERIFY call against this resource or if this resource is not
going to be updated, it is released. Otherwise, if only FLD/VERIFY logic has to be
reapplied, the MSDB record is enqueued at the HOLD level. If the same record is
involved in an update operation, it is enqueued at the UPDATE level as shown in
the table above.

2. At DLET/REPL call time, no enqueue activity takes place because it is the prior GH
call that set up the enqueue level.

MSDB record status of shared (S) or owned exclusively (E):

The above table shows that the status of an MSDB record depends on the enqueue
level of each program involved. Therefore, it is possible for an MSDB record to be
enqueued with the shared and exclusive statuses at the same time. For example,
such a record can be shared between program A (GH call for update) and program
B (GU call), but cannot be shared at the same time with a third program, C, which
is entering sync point with update on the record.

The FLD/CHANGE call does not participate in any allocation; therefore,
FLD/CHANGE calls can be executed even though the same database record is
being updated during sync point processing.

MSDB Design Considerations

244 IMS/ESA V6 Admin Guide: DB

If FLD/CHANGE and FLD/VERIFY calls are mixed in the same FLD call, when the
first FLD/VERIFY call is encountered, the level of enqueue is set to READ for the
remainder of the FLD call.

Designing to Minimize Resource Contention
One reason for an MSDB is its fast access to data and high availability for
processing. To maintain high availability, you should design to avoid the contention
for resources that is likely to happen in a high transaction rate environment.

The following is a list of performance-related considerations. Some of the
considerations do not apply exclusively to MSDBs, but they are listed to give a
better understanding of the operational environment.

v Access by Fast Path transactions to DL/I databases and use of the alternate
PCB should be kept to a minimum. Use of the alternate PCB should be kept to a
minimum because FP transactions must contend for resources with IMS
transactions (some of which could be long running). Also, common sync point
processing is invoked and will be entirely serialized in the IMS control region.

v To avoid resource contention when sharing MSDBs between Fast Path and DL/I
transactions, You should try to make commit processing often and to avoid
long-running scans.

v GH for read/update delays any sync point processing that intends to update the
same MSDB resource. Therefore, GH logic should be used only when you
assume the referenced segments will not be altered until completion of the
transaction. If the resource is being updated, release is at the completion of sync
point. Otherwise, the release is at entry to sync point.

v The following consideration deals with deadlock prevention. Deadlock can occur
if transactions attempt to acquire (GH calls) multiple MSDB resources.

Whenever a request for an MSDB resource exists that is already allocated and
the levels involved are HOLD or UPDATE, control is passed to IMS to detect a
potential deadlock situation. Increase in path length and response time results.
The latter can be significant if a deadlock occurs, thus requiring the pseudo
abend of the transaction.

In order to reduce the likelihood of deadlocks caused by resource contention,
sync point processing enqueues (UPDATE level) MSDB resources in a defined
sequence. This sequence is in ascending order of segment addresses. MSDB
segments are acquired in ascending order of keys within ascending order of
MSDB names, first the page-fixed ones then the pageable MSDBs.

The application programmer can eliminate potential deadlock situations at call
time by also acquiring (GH calls) MSDB resources using the same sequence.

v From the resource allocation scheme discussed earlier, you probably realize that
FLD logic should be used whenever possible instead of GH/REPL logic.

– The FLD/VERIFY call results in an enqueue at the READ level, and if no
other levels are involved, then control is not passed to IMS. This occurrence
results in a shorter path length.

– The FLD/CHANGE call, when not issued in connection with VERIFY logic
does not result in any enqueue within either Fast Path or IMS.

– FLD logic has a shorter path length through the Program Request Handler,
since only one call to process exists instead of two needed for GH/REPL
logic.

– The FLD/CHANGE call never waits for any resource, even if that same
resource is being updated in sync point processing.

MSDB Design Considerations

Chapter 8. Database Design Considerations for Fast Path 245

– The FLD/VERIFY call waits only for sync point processing during which the
same resource is being updated.

– With FLD logic, the resource is held in exclusive mode only during sync point
processing.

In summary, programming with FLD logic can contribute to higher transaction rates
and shorter response times.

The following examples show how the MSDB record is held in exclusive mode:

1. MSDB record R1 is held in exclusive mode against:

v Any MSDB calls except CHANGE calls

v Any other sync point processing that intends to update the same record

2. MSDB record R1 is held in exclusive mode against:

v Any other GH for update

v Any other sync point processing that intends to update the same record

1. MSDB record R1 is held in exclusive mode against:

v Any MSDB calls except CHANGE calls

v Any other sync point processing that intends to update the same record

2. MSDB record is held in exclusive mode for the duration of the FLD call against
any other sync point processing that intends to update the same resource

Choosing MSDBs to Load and Page-Fix
Deciding which MSDBs to load and page-fix involves a trade-off between desired
application performance and the amount of real storage available. This decision is
made with total Fast Path application requirements in mind. IMS system initialization
requires additional information before MSDBs can be loaded and page fixed. This
information is specified in member DBFMSDBx of IMS.PROCLIB. This member is
called by executing the control region startup procedure IMS. The suffix 'x' matches
the parameter supplied in the MSDB keyword of the EXEC statement in procedure
IMS.

The control information that loads and page fixes MSDBs is in 80-character record
format in member DBFMSDBx. Either you supply this information or it can be
supplied by the output of the MSDB maintenance utility. When the /NRE command
requests MSDBLOAD, the definition of the databases to be loaded is found in the
DBFMSDBx procedure.

MSDB Design Considerations

246 IMS/ESA V6 Admin Guide: DB

It can represent a subset of the MSDBs currently on the MVS sequential data set
identified by DD statement MSDBINIT. The opposite is not allowed and will result in
an abend. The format is as follows:
DBD=dbname,NBRSEGS=xxxxxxxx[,F]

where:

dbdname = the DBD name as specified during DBDGEN.

xxxxxxxx = The number you specify of expected database
segments for this MSDB. This number must be
equal to or great than the number of MSDB
segments loaded during restart.

The NBRSEGS parameter is also used to reserve
space for terminal-related dynamic MSDBs for
which no data has to be initially loaded.

F = the optional page-fix indicator for this MSDB.

If the MSDBs are so critical to your Fast Path applications that IMS should not run
without them, place a first card image at the beginning of the DBFMSDBx member.
For each card image, the characters “MSDBABND=n” must be typed without
blanks, and all characters must be within columns 1 and 72 of the card image. Four
possible card images exist, and each contains one of the following sets of
characters:

MSDBABND=Y
This card image causes the IMS control region to abend if an error occurs while
loading the MSDBs during system initialization. Errors include:

v Open failure on the MSDBINIT data set

v Error in the MSDB definition

v I/O error on the MSDBINIT data set.

MSDBABND=C
This card image causes the IMS control region to abend if an error occurs while
writing the MSDBs to the MSDBCP1 or MSDBCP2 data set in the initial
checkpoint after IMS startup.

MSDBABND=I
This card image causes the IMS control region to abend if an error occurs
during the initial load of the MSDBs from the MSDBINIT data set, making one
or more of the MSDBs unusable. These errors include data errors in the
MSDBINIT data set, no segments in the MSDBINIT data set for a defined
MSDB, and those errors described under “MSDBABND=Y.”

MSDBABND=A
This card image causes the IMS control region to abend if an error occurs
during the writing of the MSDBs to the MSDBCPn data set (described in
“MSDBABND=C”), or during the initial load of the MSDBs from the MSDBINIT
data set (described in “MSDBABND=I”).

MSDBABND=B
This card image causes the IMS control region to abend if an error occurs
during the writing of the MSDBs to the MSDBCPn data set (described in
“MSDBABND=C”), or during the loading of the MSDBs in system initialization
(described in “MSDBABND=Y”).

MSDB Design Considerations

Chapter 8. Database Design Considerations for Fast Path 247

Auxiliary Storage Requirements for an MSDB
DASD space is needed to keep image copies of MSDBs when they are dumped at
system and shutdown checkpoints. The data sets involved are the MSDBCP1 and
MSDBCP2 data sets. The same calculations apply to the MSDBDUMP data set,
which contains a copy of the MSDBs following a /DBDUMP DATABASE MSDB command.

The data sets just discussed are written in 2K-byte blocks. Because only the first
extent is used, the allocation of space must be on cylinder boundaries and be
contiguous.

Space allocation is calculated like this:
SPACE=(2048,(R),,CONTIG,ROUND)

The calculation of the number of records (R) to be allocated can be derived from
the formula:
(E + P + 2047)/2048

where:

E = the main storage required for the Fast Path extension of the
CNTs (ECNTs).

This is derived from the following formula:

E = (20 + D * 4) * T bytes

where:

D = the number of MSDBs using logical terminal names as keys

T = the total number of logical terminal names defined
in the system

P = the main storage required for all MSDBs as defined by
the PROCLIB member DBFMSDBx.

DEDB Design Considerations
This section describes the choices you might need to make in designing a DEDB
and proposes guidelines to help you make these choices.

Before designing the DEDB, you should understand several factors:

v How the application fits the limitations imposed by the DEDB itself

v How the application can make optimum use of the area concept of a DEDB

v Determining the size of the CI

v Determining the size of the UOW

v The DEDB randomizing routine

v Record deactivation

v Multiple copies of an area data set

v PCL (physical child last pointer)

v Subset pointers

In addition, DEDBs can be shared. For information on DEDB data sharing, see
IMS/ESA Administration Guide: System and IMS/ESA Utilities Reference: System.

MSDB Design Considerations

248 IMS/ESA V6 Admin Guide: DB

DEDB Design Guidelines
v Except for the relationship between a parent and its children, the logical structure

(defined by the PCB) does not need to follow the hierarchic order of segment
types defined by the DBD.

For example, SENSEG statements for DDEP segments can precede the
SENSEG statement for the SDEP segment. This implementation prevents
unqualified GN processing from retrieving all SDEP segments before accessing
the first DDEP segments.

v Most of the time, SDEP segments are retrieved all at once, using the DEDB
sequential dependent scan utility. If a need later exists to relate SDEP segments
to their roots, it is necessary to plan for root identification as part of the SDEP
segment data.

v A journal can be implemented by collecting data across transactions using a
DEDB. To minimize contention, you should plan for an area with more than one
root segment. For example, a root segment can be dedicated to a
transaction/region or to each terminal. To further control resource contention, you
should assign different CIs to these root segments, because the CI is the basic
unit of DEDB allocation.

v Following is a condition you might be confronted with and a way you might
resolve it. Assume that transactions against a DEDB record are recorded in a
journal using SDEP segments and that a requirement exists to interrogate the
last 20 or so of them.

SDEP segments have a fast insert capability, but on the average, one I/O
operation is needed for each retrieved segment. The additional I/O operations
could be avoided by inserting the journal data as both a SDEP segment and a
DDEP segment and by limiting the twin chain of DDEP segments to 20
occurrences. The replace or insert calls for DDEP segments will not necessarily
cause additional I/O, since they can fit in the root CI. The root CI is always
accessed even if the only call to the database is an insert of an SDEP segment.
The online retrieve requests for the journal items can then be responded to by
the DDEP segments instead of the SDEP segments.

v As physical DDEP twin chains build up, I/O activity increases. The SDEP
segment type can be of some help if the application allows it.

The design calls for DDEP segments of one type to be batched and inserted as
a single segment whenever their number reaches a certain limit. An identifier will
help differentiate them from the regular journal segments. This design prevents
updates after the data has been converted into SDEP segments.

Considering the DEDB Area
The following are some reasons why DEDBs are divided into areas along with
related design considerations:

v Database partitioning is required by the nature of the applications.

For example, a service bureau organization makes a set of applications available
to its customers. The design calls for a common database to be used by all
users of this set of applications. The area concept fits this design because the
randomizing routine and record keys can be set so that data requests are
directed to the user’s area only. Furthermore, on the operational side, users
could be given specific time slots. Their areas would then be allocated and
deallocated dynamically without interrupting other services currently using the
same DEDB.

DEDB Design Considerations

Chapter 8. Database Design Considerations for Fast Path 249

National or international companies with business locations spanning multiple
time zones might take advantage of the partitioned database concept. Because
not all areas must be online all the time, data can be spread across areas by
time zone.

Preferential treatment for specific records (specific accounts, specific clients, etc.)
can be implemented without using a new database, for example, by keeping
more sequential dependent segments online for certain records. By putting
together those records in one area, you can define a larger sequential dependent
segment part and control the retention period accordingly.

v The impact of permanent I/O errors and severe errors can be reduced using a
DEDB. DL/I requires that all database data sets be available all the time. With a
DEDB, the data not available is limited only to the area affected by the failure.
Because the DEDB utilities run at the level of the area, the recovery of the failing
area can be done while the rest of the database is accessible to online
processing. The currently allocated log volume must be freed by a /DBR AREA
command and used in the recovery operation. Track recovery is also supported.
The recovered area can then be dynamically allocated back to the operational
environment.

Multiple copies of DEDB area data sets can be made to make data all the more
available to application programs. See “Multiple Copies of an Area Data Set” on
page 253.

v Space management parameters can vary from one area to another. This
includes: CI size, UOW size, root addressable part, overflow part, and sequential
dependent part. Also, the device type can vary from one area to the other.

v It is feasible to define an area on more than one volume and have one volume
dedicated to the sequential dependent part. This implementation might save
some seek time as sequential dependent segments are continuously added at
the end of the sequential dependent part. The savings depends on the current
size of the sequential dependent part and the blocking factor used for sequential
dependent segments. If an area spans more than one volume, volumes must be
of the same type.

v Only the independent overflow part of a DEDB is extendable. Sufficient space
should be provided for all parts when DEDBs are designed. To extend the
independent overflow part of a DEDB, you must follow the procedures in
“Extending DEDB Independent Overflow Online” on page 400.

The /DISPLAY command and the POS call can help monitor the usage of auxiliary
space. Unused space in the root addressable and independent overflow parts
can be reclaimed through reorganization. It should be noted that, in the overflow
area, space is not automatically reused by ISRT calls. To be reused at call time,
the space must amount to an entire CI, which is then made available to the ISRT
space management algorithm. Local out-of-space conditions can occur, although
some available space exists in the database.

v Adding or removing an area from a DEDB requires a DBDGEN and an ACBGEN.
Database reload is required if areas are added or deleted in the middle of
existing areas. Areas added other than at the end will change the area sequence
number assigned to the areas. The subsequent log records written will reflect this
number which is then used for recovery purposes. If areas are added between
existing areas, prior log records will be invalid. Therefore, an image copy must be
done following the unload/reload. Be aware that the sequence of the AREA
statements in the DBD determines the sequence of the MRMB entries passed on
entry to the randomizing routine. An area does not need to be mounted if the
processing does not require it, so a DBDGEN/ACBGEN is not necessary to
logically remove an area from processing.

DEDB Design Considerations

250 IMS/ESA V6 Admin Guide: DB

v Because the area concept makes it possible to make an image copy of one area
at a time, careful monitoring of the retention period of each log is necessary.
Also, because the DEDB Direct Reorganization utility logs changes, no need
exists to follow a reorganization run by an image copy run.

v The area concept allows randomizing at the area level, instead of randomizing
throughout the entire DEDB. This means the key might need to carry some
information to direct the randomizing routine to a specific area.

Determining the Size of the CI
The choice of a CI size depends on the following factors:

v CI sizes of 512, 1K, 2K, 4K, and up to 28K bytes in 4K-byte increments are
supported.

v Only one RAP exists per CI. The average record length has to be considered. In
the base section of the root addressable part, a CI can be shared only by the
roots, which randomize to its RAP and their DDEP segments.

v Track utilization according to the device type.

v SDEP segment writes. A larger CI requires a fewer number of I/Os to write the
same amount of SDEP segments.

v The maximum segment size, which is 28,552 bytes if using a 28K-byte CI size.

Determining the Size of the UOW
The UOW is the unit of space allocation in which you specify the size of the root
addressable and independent overflow parts.

Three factors might affect the size of the UOW:

1. The DEDB Direct Reorganization utility (DBFUMDR0) runs on a UOW basis.
Therefore, while the UOW is being reorganized, none of the CIs and data they
contain are available to other processing.

A large UOW can cause resource contention, resulting in increased response
time if the utility is run during the online period. A minor side effect of a large
UOW is the space reserved on DASD for the “reorganization UOW,” which is
used only by the utility.

A UOW that is too small can cause some overhead during reorganization as the
utility switches from one UOW to the next with very little useful work each time.
However, this might not matter so much if reorganization time is not critical.

2. The use of processing option P, (explained later in this section). This
consideration pertains to sequential processing using BMP regions. If the
application program is coded to take advantage of the 'GC' status code, this
status code must be returned frequently enough to fit in the planned sync
interval.

Assume every root CI needs to be modified and that, for resource control
reasons, each sync interval is allowed to process sequentially no more than 20
CIs of data. The size of the UOW should not be set to more than 20 CIs.
Otherwise, the expected 'GC' status code would not be returned in time for the
application program to trigger a sync point, release the resources, and not lose
position in the database.

A UOW that is too small, such as the minimum of two CIs, can cause too many
‘unsuccessful database call’ conditions each time a UOW is crossed. On a 'GC'
status code, no segment is returned and the call must be reissued after an
optional SYNC or CHKP call.

3. The dependent overflow (DASD space) usage is more efficient with a large
UOW than a small UOW.

DEDB Design Considerations

Chapter 8. Database Design Considerations for Fast Path 251

Although the following section pertains to programming, it is given here because it
affects DEDB design, namely the size of the UOW.

Processing Option P (PROCOPT=P)
The PROCOPT=P option is specified during the PCB generation in the PCB
statement or in the SENSEG statement for the root segment.

The option takes effect only if the region type is a BMP. If specified, it offers the
following advantage:

Whenever an attempt is made to retrieve or insert a DEDB segment that causes a
UOW boundary to be crossed, a 'GC' status code is set in the PCB but no segment
is returned or inserted. The only calls for which this takes place are: G(H)U, G(H)N,
POS, and ISRT.

While crossing the UOW boundary has no particular significance for most
applications, the 'GC' status code that is returned indicates this could be a
convenient time to invoke sync point processing. This is because a UOW boundary
is also a CI boundary. As explained later for sequential processing, a CI boundary is
a convenient place to request a sync point.

The sync point is invoked by either a SYNC or a CHKP call, but this normally
causes position on all currently accessed databases to be lost. The application
program then has to resume processing by reestablishing position first. This
situation is not always easy to solve, particularly for unqualified G(H)N processing.

An additional advantage with this processing option is, if a SYNC or CHKP call is
issued after a 'GC' status code, database position is kept. Database position is such
that an unqualified G(H)N call issued after a 'GC' status code returns the first root
segment of the next UOW. When a 'GC' status code is returned, no data is
presented or inserted. Therefore, the application program should, optionally, request
a sync point, reissue the database call that caused the 'GC' status code, and
proceed. The application program can ignore the 'GC' status code, and the next
database call will work as usual.

Database recovery and change accumulation processing must buffer all log records
written between sync points. Sync points must be taken at frequent intervals to
avoid exhausting available storage. If not, database recovery might not be possible.

DEDB Randomizing Routine Design
A DEDB randomizing module is required for placing root segments in a DEDB. The
randomizing module is also required for retrieving root segments from a DEDB. One
or more such modules can be used with an IMS system. Only one randomizing
module can be associated with each DEDB.

Refer to IMS/ESA Customization Guide for register usage and a sample
randomizing program exit (DBFHDC40).

The purpose of the randomizing module is the same as in HDAM processing. A root
search argument key field value is supplied by the application program and
converted into a relative root anchor point number. Because the entry and exit
interfaces are different, DEDB and HDAM randomizing routines are not object code
compatible. The main line randomizing logic of HDAM should not need modification
if randomizing through the whole DEDB.

DEDB Design Considerations

252 IMS/ESA V6 Admin Guide: DB

Some additional differences between DEDB and HDAM randomizing routines are as
follows:

v The ISRT algorithm attempts to put the entire database record close to the root
segment (with the exception of SDEP segments). No BYTES parameter exists to
limit the size of the record portion to be inserted in the root addressable part.

v With the DEDB, only one RAP can be defined in each root addressable CI.

v CIs that are not randomized to are left empty.

Because of the area concept, some applications might decide to randomize in a
particular area rather than through all the DEDB as in HDAM processing. Therefore,
the expected output of such a randomizing module is made up of a relative root
anchor point number in an area and the address of the control block (DMAC)
representing the area selected.

Keys that randomize to the same RAP are chained in ascending key sequence.

DEDB logic runs in parallel, so DEDB randomizing routines must be reentrant. The
randomizing routines operate out of the common storage area (CSA). If they use
operating system services like LOAD, DELETE, GETMAIN, and FREEMAIN, the
routines must abide by the same rules as described in IMS/ESA Customization
Guide.

Multiple Copies of an Area Data Set
The data in an area is in a VSAM data set called the area data set (ADS).
Installations can create as many as seven copies (multiple area data sets, MADS)
of each ADS, making the data more available to application programs.

Each copy of an ADS contains exactly the same user data. Fast Path maintains
data integrity by keeping identical data in the copies during application processing.
When an application program updates data in an area, Fast Path updates that data
in each copy of the ADS. When an application program reads data from an area,
Fast Path retrieves the requested data from any one of the available copies of the
ADS. All copies of an ADS must have the same definition but can reside on
different devices and on different device types. Using copies of ADS is also helpful
in direct access device migration; for example, from a 3350 device to a 3380
device.

If an ADS fails to open during normal open processing of a DEDB, none of the
copies of the ADS can be allocated, and the area is stopped. However, when open
failure occurs during emergency restart, only the failed ADS is deallocated and
stopped. The other copies of the ADS remain available for use.

Record Deactivation
If an error occurs while an application program is updating a DEDB, it is not
necessary to stop the database or the area. IMS continues to allow application
programs to access that area, and it only prevents them from accessing the control
interval in error. If multiple copies of the ADS exist, one copy of the data will always
be available. (It is unlikely that the same control interval is in error in seven copies
of the ADS.) IMS automatically deactivates a record when a count of 10 errors is
reached.

Record deactivation minimizes the effect of database failures and errors to the data
in these ways:

DEDB Design Considerations

Chapter 8. Database Design Considerations for Fast Path 253

v If multiple copies of an area data set are used, and an error occurs while an
application program is trying to update that area, the error does not need
immediate correction. Other application programs can continue to access the
data in that area through other available copies of that area.

v If a copy of an area has errors, you can create a new copy from existing copies
of the ADS using the DEDB Data Set Create utility. The copy with the errors can
then be destroyed.

Physical Child Last Pointers
The PCL pointer makes it possible to access the last physical child of a segment
type directly from the physical parent. Using the INSERT rule LAST avoids the need
to follow a potentially long physical child pointer chain.

Subset Pointers
Subset pointers help you avoid unproductive get calls when you need to access the
last part of a long segment chain. These pointers divide a chain of segment
occurrences under the same parent into two or more groups, or subsets. You can
define as many as eight subset pointers for any segment type, dividing the chain
into as many as nine subsets. Each subset pointer points to the start of a new
subset. For more information on defining and using subset pointers, see the section
about Processing DEDBs with Subset Pointers in IMS/ESA Application
Programming: Database Manager.

Restrictions : When you unload and reload a DEDB containing subset pointers,
IMS does not automatically retain the position of the subset pointers. When
unloading the DEDB, you must note the position of the subset pointers, storing the
information in a permanent place. (For example, you could append a field to each
segment, indicating which subset pointer, if any, points to that segment.) Or, if a
segment in a twin chain can be uniquely identified, identify the segment(s) a subset
pointer is pointing to, and add a temporary indication to the segment for reload.
When reloading the DEDB, you must redefine the subset pointers, setting them to
the segments to which they were previously set.

High-Speed Sequential Processing (HSSP)
High-Speed Sequential Processing (HSSP) is a function of Fast Path that handles
sequential processing of DEDBs.

Why HSSP?
Some reasons you may choose to use it are that, HSSP:

v Generally has a faster response time than regular batch processing.

v Optimizes sequential processing of DEDBs.

v Reduces program execution time.

v Typically produces less output than regular batch processing.

v Reduces DEDB updates and image copy operation times.

v Image copies can assist in database recovery.

v Locks at UOW level to ease ″bottle-necking″ of cross IRLM communication.

v Uses private buffer pools reducing impact on NBA/OBA buffers.

v Allows for execution in both a mixed mode environment, concurrently with other
programs, and in an IRLM-using global sharing environment.

v Optimizes database maintenance by allowing the use of the image-copy option
for an updated database.

DEDB Design Considerations

254 IMS/ESA V6 Admin Guide: DB

More detailed information is included in the following subsections on HSSP.

Limitations and Restrictions When Using HSSP
Though HSSP can execute in a mixed-mode environment as well as concurrently
with other programs, and in an environment with global sharing using IRLM; a
program using HSSP can only execute as a non-message-driven BMP.

Other restrictions and limitations of HSSP include:

v Only one HSSP process can be active on an area at any given time.

v HSSP processing and online utilities cannot process on the same area
concurrently.

v Backward referencing while using HSSP is not allowed.

v Programs using HSSP must properly process the 'GC' status code by following it
with a commit process.

Restrictions and limitations involving image copies include:

v The image copy option is available only for HSSP processing.

v HSSP image copying is allowed only if PROCOPT = H.

v The image copy process can only be done if a database is registered with
DBRC. In addition, image copy data sets must be initialized in DBRC.

The following restrictions and limitations apply for PROCOPT=H:

v PROCOPT=H is allowed only for DEDBs.

v PROCOPT=H is not allowed on the segment level, only on the PCB level.

v Backward referencing while using HSSP is not allowed. You cannot use an
HSSP PCB to refer to a prior UOW in a DEDB.

v Only one PROCOPT=H PCB per database per PSB is allowed.

v A maximum of four PROCOPTS can be specified, including H.

v PROCOPT=H must be used with other Fast Path processing options such as,
GH and IH.

v When a GC status code is returned, the program must cause a commit process
before any other call can be made to that PCB.

v HSSP image copying is not allowed if PROCOPT ¬ =H.

v An ACBGEN must be done to activate the PROCOPT=H.

v H is compatible with all other PROCOPTs except for PROCOPT=O

Using HSSP
To use HSSP, you must specify a new PROCOPT option during PSBGEN, option
'H' see “HSSP Processing Option H (PROCOPT=H)” on page 256. Additionally, you
need to make sure that the programs using HSSP properly process the 'GC' status
code by following it with a commit process.

HSSP includes the image-copy option and the ability to set area ranges. To use
these functions, you need one or more of the following:

v The SETR statement

v The SETO statement

v A DFSCTL data set for the dependent regions

v DBRC

v PROCOPT=H

High-Speed Sequential Processing (HSSP)

Chapter 8. Database Design Considerations for Fast Path 255

Related Reading : For more information about the SETR and SETO control
statements, refer to IMS/ESA Installation Volume 2: System Definition and Tailoring.

HSSP Processing Option H (PROCOPT=H)
PROCOPT=H is a PSBGEN OPTION. It allows you to define whether processing,
with respect to a PCB, should be treated as an HSSP process. Its use provides
HSSP capability for the application program using this PSB. Following is an
example of macros and keywords for a PSBGEN using PROCOPT=H:
<Label> PCB TYPE = DB

,DBDNAME = name
,PROCOPT = AH

Label is an optional parameter of the PCB macro. It can be up to 8 characters long
and is identical to the label on the associated SETO and/or SETR statements. H is
compatible with any other Fast Path PROCOPT and PROCOPT=H can be used in
one or more PCBs.

Related Reading : For information on PROCOPT=H rules see “Limitations and
Restrictions When Using HSSP” on page 255.

H is compatible with any other Fast Path PROCOPT except for PROCOPT O. For
more information on H processing, refer to IMS/ESA Installation Volume 2: System
Definition and Tailoring.

Image-Copy Option
Selecting the image-copy option with HSSP reduces the total elapsed times of
DEDB updates and subsequent image-copy operations.

As database administrator, you will decide whether to make an image copy of a
database using HSSP. If you specify image copying, HSSP creates an
asynchronous copy that is similar to a concurrent image copy.

The image copy process can only be done if a database is registered with DBRC.
In addition, image copy data sets must be initialized in DBRC.

HSSP image copies can also be used for database recovery. However, the
Database Recovery Utility must know that an HSSP image copy is supplied.

Related Reading : For information on DBRC databases and HSSP, and on created
image copies, refer to the IMS/ESA Operations Guide and the IMS/ESA DBRC
Guide and Reference.

For information on image copies and recovery, refer to IMS/ESA Utilities Reference:
System.

UOW Locking
In a globally shared environment, data is shared not only between IMS subsystems,
but also across central processor complexes (CPC). In such an environment,
communication between two IRLMs could potentially “bottleneck” and become
impeded. To ease this problem, HSSP locks at a UOW level in update mode,
reducing the locking overhead. Non-HSSP or DEDB online processing locks at a
UOW level in a shared mode. Otherwise, the locking for DEDB online processing is
at the CI level. For information on UOW locking, refer to IMS/ESA Administration
Guide: System.

High-Speed Sequential Processing (HSSP)

256 IMS/ESA V6 Admin Guide: DB

|
|
|

Private Buffer Pools
Private buffer pools for the HSSP area are used for HSSP updates and image
copies. HSSP does not impact NBA/OBA buffers. HSSP dynamically allocates up to
three times the number of CIs per area in one UOW. Each buffer is a CI in size.
The private buffer pools are located in ECSA/CSA.

Designing a DEDB or MSDB Buffer Pool
Buffers needed to fulfill requests resulting from database calls are obtained from a
global pool called the Fast Path buffer pool. The characteristics of the pool are
defined at IMS definition time and can be overridden at IMS start-up time.

Three parameters characterize the Fast Path buffer pool:

v DBBF: Total number of buffers.

The buffer pool is allocated at IMS start-up time in the common storage area
(CSA) for System/390 environments and extended common storage area (ECSA)
for MVS/ESA environments. During emergency restart processing, the entire
buffer pool can be briefly page-fixed. You should consider the amount of
available real storage when setting the DBBF value.

v DBFX: System buffer allocation.

This is a set of buffers in the Fast Path buffer pool that is page fixed at start-up
of the first region with access to Fast Path resources.

v BSIZ: Buffer size.

The size must be larger than or equal to the size of the largest CI of any DEDB
to be processed. The buffer size can be up to 28K bytes.

Buffer Requirements
Fast Path buffers are used to hold:

v Update information such as:

– MSDB FLD/VERIFY call logic

– MSDB FLD/CHANGE call logic

– MSDB updates (results of REPL, ISRT, and DLET calls)

– Inserted SDEP segments

v Referenced DEDB CIs from the root addressable part and the sequential
dependent part.

v Updated DEDB CIs from the root addressable part.

v SDEP segments that have gone through sync point. The SDEP segments are
collected in the current SDEP segment buffer. One such buffer allocated for each
area defined with the SDEP segment type exists. This allocation takes place at
area open time.

The number of buffers a transaction or a sync interval is allowed to use must be
specified for each region if Fast Path resources are likely to be accessed.

Normal Buffer Allocation (NBA)
Fast path regions and IMS regions accessing Fast Path resources require this
allocation to be specified in the region startup procedure. This allocation of buffers
is used first and should be calculated to accommodate most of the transaction
requirements. At the start of the region, the number of NBA buffers is page fixed in
the Fast Path buffer pool.

High-Speed Sequential Processing (HSSP)

Chapter 8. Database Design Considerations for Fast Path 257

Overflow Buffer Allocation (OBA)
This buffer allocation is optional and is used for exceptional buffer requirements
when the normal buffer allocation (NBA) has been exhausted. Its use is dependent
on obtaining a latch that serializes all regions currently in an overflow buffer state. If
the latch is not available, the region has to wait until it is available. After the latch
has been obtained, the NBA value is increased by the OBA value and normal
processing resumes. The overflow buffer latch is released during sync point
processing. At any point in time, only the largest OBA request among all the active
regions is page fixed in the Fast Path buffer pool.

Fast Path Buffer Allocation Algorithm
Fast Path buffers are allocated on demand up to a limit specified at the start of the
region. Buffers so specified are called NBA to be used by one sync point interval.

Before satisfying any request from the NBA allocation, an attempt is made to reuse
any already allocated buffer containing an SDEP CI. This process goes on until the
NBA limit is reached. From that point on, a warning in the form of an 'FW' status
code returned to Fast Path database calls is sent to BMP regions. MD and MPP
regions do not get this warning.

The next request for an additional buffer causes the buffer stealing facility to be
invoked and then the algorithm examines each buffer and CI already allocated. As a
result, buffers containing CIs being released are sent to a local queue (SDEP buffer
chain) to be reused by this sync interval.

If, after invoking the buffer stealing facility, no available buffer is found, a request for
the overflow buffer latch is issued. The overflow buffer latch governs the use of an
additional buffer allocation called overflow buffer allocation (OBA). This allocation is
also specified as a parameter at region start time. From that point on, any time a
request cannot be satisfied locally, a buffer is acquired from the OBA allocation until
the OBA limit is reached. At that time, MD and BMP regions have their 'FW' status
code replaced by an 'FR' status code after an internal ROLB call is performed. In
MD and MPP regions, the transaction is abended and stopped.

System Buffer Allocation (DBFX)
The system buffer allocation (DBFX) is needed, because DEDB writes are deferred
until after sync point processing. The result of one transaction or sync interval is
written back by one output thread. These output threads run from the control region
in SRB mode. Buffers allocated to an output thread are therefore not available to
dependent regions until after the CI they contain is written back. If the Fast Path
buffer pool is defined exactly as the sum of all NBAs, dependent regions must wait
for the buffers to come back to the global pool. Fast Path regions can process the
next transaction as soon as the sync point completes. Sync point processing does
not wait for the output thread to complete. The DBFX allocation of buffers is page
fixed at the start of the first region specifying an NBA request.

Determining the Fast Path Buffer Pool Size
The number of fast path buffers (DBBFs) required is calculated using the following
formula:
DBBF ≥ A + N + OBA + DBFX

where:

v DBBF: Fast Path buffer pool size as specified

Designing a DEDB or MSDB Buffer Pool

258 IMS/ESA V6 Admin Guide: DB

v A: Number of active areas that have SDEP segments

v NBA: Normal buffer allocation of each active region

v N: Total of all NBAs

v OBA: Largest overflow buffer allocation

v DBFX: System buffer allocation

Fast Path Buffer Performance Considerations
An incorrect specification of DBBF (too small) can result in the rejection of an area
open or a region initialization. The system calculates the size of the buffer pool in
accordance with the formula given in the above section and rejects the open or
initialization if the actual DBBF value is smaller.

A DBFX value that is too small is likely to cause region waits and increase
response time.

An NBA value that is too small might cause the region processing to be serialized
through the overflow buffer latch and again cause delays.

An NBA value that is too large can increase the probability of contention (and
delays) for other transactions. All CIs can be acquired at the exclusive level and be
kept at that level until the buffer stealing facility is invoked. This occurrence
happens after the NBA limit is reached. Therefore, an NBA that is too large can
increase resource contention.

A (NBA + OBA) value that is too small might result in more frequent unsuccessful
processing. This means an 'FR' status code condition for BMP regions, or
transaction abend for MD and MPP regions.

Inquiry-only programs do not make use of an OBA specification, as buffers already
allocated are reused when the NBA limit is reached.

The NBA Limit and Sync Point
In BMP regions, when the NBA limit is reached, an 'FW' status code is returned.
This status code is presented to every subsequent Fast Path database call until the
OBA limit condition is reached.

The first occurrence of the 'FW' status code indicates no more NBA buffers exist.
This occurrence is a convenient point at which to request a sync point. Fast Path
resources (and others) would be released and the next sync point interval would be
authorized to use a new set of NBA buffers. The overflow buffer latch serializes all
the regions in an overflow buffer state and therefore causes delays in their
processing.

If processing is primarily sequential, the sync point should be invoked on a UOW
boundary crossing. See “Processing Option P (PROCOPT=P)” on page 252 for a
discussion of this subject.

The DBFX Value and the Low Activity Environment
If the IMS or Fast Path activity in the system is relatively low, log buffers are written
less often, and therefore output threads are scheduled or dispatched less
frequently. This situation is likely to result in many buffers waiting to be written and
therefore could cause wait-for-buffer conditions. Wait-for-buffer conditions could be
alleviated by specifying a larger DBFX value.

Designing a DEDB or MSDB Buffer Pool

Chapter 8. Database Design Considerations for Fast Path 259

A special case to be considered is the BMP region loading or processing a DEDB
and being the only activity in the system. For example, assume an NBA of 20
buffers exists. To avoid a wait-for-buffer condition, the DBFX value must be
specified as between one or two times the NBA value. This can result in a DBBF
specification of three times the NBA number, which gives 60 buffers to the Fast
Path buffer pool.

Except for the following case, there is no buffer look-aside capability across
transactions or sync intervals (global buffer look-aside).

Assume that a region requests a DEDB CI resource that is currently being written
or is owned by another region that ends up being written (output thread
processing). Then, this CI and the buffer are passed to the requestor after the write
(no read required) completes successfully. Any other regions must read it from disk.

Designing a DEDB Buffer Pool in the DBCTL Environment
Buffers needed to fulfill requests from database calls are obtained from a global
pool called the Fast Path buffer pool. The characteristics of the pool are defined at
IMS definition time and can be overridden at IMS start-up time.

Three parameters characterize the Fast Path buffer pool:

1. DBBF: Total number of buffers.

The buffer pool is allocated at IMS startup time in the common storage area
(CSA) for System/390 environments and extended common storage area
(ECSA) for MVS/ESA environments.

2. DBFX: System buffer allocation.

This is a set of buffers in the Fast Path buffer pool that is page fixed at startup
of the first region with access to Fast Path resources.

3. BSIZ: Buffer size.

The size must be larger than or equal to the size of the largest CI of any DEDB
to be processed. The buffer size can be up to 28K bytes.

Buffer Requirements
Fast Path buffers are used to hold:

v Update information such as inserted SDEP segments.

v Referenced DEDB CIs from the root addressable part and the sequential
dependent part.

v Updated DEDB CIs from the root addressable part.

v SDEP segments that have gone through sync point. The segments are collected
in the current SDEP segment buffer. One buffer allocated for each area defined
with the SDEP segment type exists. This allocation takes place at area open
time.

The number of buffers a transaction or a sync interval is allowed to use must be
specified for each region if Fast Path resources are likely to be accessed.

Normal Buffer Allocation for BMPs
BMP regions accessing Fast Path resources require this allocation to be specified
in the region start-up procedure. The start-up parameter is already specified as
NBA. This allocation of buffers is used first and should be calculated to

Designing a DEDB or MSDB Buffer Pool

260 IMS/ESA V6 Admin Guide: DB

accommodate most of the transaction requirements. At the start of the region, the
number of NBA buffers is page fixed in the Fast Path buffer pool.

Normal Buffer Allocation for CCTL Regions and Threads
CCTL (coordinator control) regions, requiring fast path resources, need the following
parameters specified in the DRA start-up table:

v CNBA

v FPB

CNBA is the normal buffer allocation of each active CCTL region. FPB is the normal
buffer allocation for CCTL threads.

When the CCTL connects to DBCTL, the number of CNBA buffers is page fixed in
the fast path buffer pool. However, if CNBA buffers are not available, the connect
fails.

Each CCTL thread that requires DEDB buffers is assigned its fast path buffers
(FPB) out of the total number of CNBA buffers.

For more information about the CCTLNBA parameter, refer to IMS/ESA
Administration Guide: System.

Overflow Buffer Allocation for BMPs
This buffer allocation is optional and is used for exceptional buffer requirements
when the NBA has been exhausted. Its use is dependent on obtaining a latch that
serializes all BMPs and CCTL threads currently in an overflow buffer state. If the
latch is not available, the region has to wait until it is available. After the latch has
been obtained, the NBA value is increased by the OBA value and normal
processing resumes. The overflow buffer latch is released during sync point
processing. At any point in time, only the largest OBA request among all the active
BMPs and CCTL threads is page fixed in the Fast Path buffer pool.

Overflow Buffer Allocation for CCTL Threads
OBA for CCTL threads is similar to that for BMPs. The OBA value used for each
thread is set with the FPOB parameter in the start-up table. This buffer allocation is
optional and is used for exceptional buffer requirements when the FPB has been
exhausted. Its use is dependent on obtaining a latch that serializes all BMPs and
CCTL threads currently in an overflow buffer state. If the latch is not obtained, the
FPB value is increased by the FPOB value, and normal processing resumes. The
overflow buffer latch is released during sync point processing. At any point in time,
only the largest OBA/FPOB request among all the active BMPs and CCTL threads
is page fixed in the fast path buffer pool.

Fast Path Buffer Allocation Algorithm for BMPs
FPBs are allocated on demand up to a limit specified at the start of the region.
Buffers specified as NBAs are used by one sync point interval.

Before satisfying any request from the NBA allocation, an attempt is made to reuse
any already allocated buffer containing an SDEP CI. This process goes on until the
NBA limit is reached. From that point on, a warning in the form of an 'FW' status
code returned to Fast Path database calls is sent to BMP regions.

Designing a DEDB Buffer Pool in the DBCTL Environment

Chapter 8. Database Design Considerations for Fast Path 261

The next request for an additional buffer causes the buffer stealing facility to be
invoked and then the algorithm examines each buffer and CI already allocated. As a
result, buffers containing CIs being released are sent to a local queue (SDEP buffer
chain) to be reused by this sync interval.

If, after invoking the buffer stealing facility, no available buffer is found, a request for
the overflow buffer latch is issued. The overflow buffer latch governs the use of an
additional buffer allocation, OBA. This allocation is also specified as a parameter at
region start time. From that point on, any time a request cannot be satisfied locally,
a buffer is acquired from the OBA allocation until the OBA limit is reached. At that
time, BMP regions have their 'FW' status code replaced by an 'FR' status code after
an internal ROLB call is performed.

Fast Path Buffer Allocation Algorithm for CCTL Threads
When a CCTL thread issues a schedule request using FPB, buffers are allocated
out of the CNBA total. If FPB cannot be satisfied out of CNBA, the schedule request
fails.

Before satisfying any request from the FPB allocation, an attempt is made to reuse
any already allocated buffer containing an SDEP CI. This process goes on until the
FPB limit is reached. From that point on, a warning in the form of an 'FW' status
code returned to Fast Path database calls is sent to the CCTL threads.

The next request for an additional buffer causes the buffer stealing facility to be
invoked, and then the algorithm examines each buffer and CI already allocated. As
a result, buffers containing CIs being released are sent to a local queue (SDEP
buffer chain) to be reused by this sync interval.

If, after invoking the buffer stealing facility, no available buffer is found, a request for
the overflow buffer latch is issued. The overflow buffer latch governs the use of an
additional buffer allocation, OBA (FPOB). From that point on, any time a request
cannot be satisfied locally, a buffer is acquired from the FPOB allocation until the
FPOB limit is reached. At that time, CCTL threads have their 'FW' status code
replaced by an 'FR' status code after an internal ROLB call is performed.

System Buffer Allocation (SBA)
This allocation is needed because DEDB writes are deferred until after sync point
processing. The result of one sync interval is written back by one output thread.
These output threads run from the control region in SRB mode. Buffers allocated to
an output thread are therefore not available to BMPs and CCTL threads until after
the CI they contain is written back. If the Fast Path buffer pool is defined exactly as
the sum of all NBAs, BMPs and CCTL threads must wait for the buffers to come
back to the global pool. BMPs and CCTL threads can process the next transaction
as soon as the sync point completes. Sync point processing does not wait for the
output thread to complete. The DBFX allocation of buffers is page fixed at the start
of the first region specifying an NBA or FPB request.

Determining the Size of the Fast Path Buffer Pool
The number of buffers required is calculated using the following formula:
DBBF ≥ A + N + LO + DBFX + CN

where:

v DBBF: Fast Path buffer pool size as specified

Designing a DEDB Buffer Pool in the DBCTL Environment

262 IMS/ESA V6 Admin Guide: DB

v A: Number of active areas that have SDEP segments

v N: Total of all NBAs

v LO: Largest overflow buffer allocation among active BMPs and CCTL threads

v DBFX: System buffer allocation

v CN: Total of all CNBAs

Fast Path Buffer Performance Considerations
An incorrect specification of DBBF (too small) can result in the rejection of an area
open or a region initialization. The system calculates the size of the buffer pool in
accordance with the formula given in the above section and rejects the open or
initialization if the actual DBBF value is smaller.

A DBFX value that is too small is likely to cause region waits and increase
response time.

An NBA/FPB value that is too small might cause the region processing to be
serialized through the overflow buffer latch and again cause delays.

An NBA/FPB value that is too large can increase the probability of contention (and
delays) for other BMPs and CCTL threads. All CIs can be acquired at the exclusive
level and be kept at that level until the buffer stealing facility is invoked. This
happens after the NBA limit is reached. Therefore, an NBA/FPB that is too large
can increase resource contention. Also, an FPB value that is too large indicates that
fewer CCTL threads can concurrently schedule fast path PSBs.

A (NBA + OBA) value that is too small might result in more frequent unsuccessful
processing. This means an 'FR' status code condition for BMP regions and CCTL
threads.

Inquiry-only BMP or CCTL programs do not make use of the overflow buffer
specification logic, as buffers already allocated are reused when the NBA/FPB limit
is reached.

The NBA/FPB Limit and Sync Point
In BMP regions and CCTL threads, when the NBA/FPB limit is reached, an 'FW'
status code is returned. This status code is presented to every subsequent Fast
Path database call until the OBA/FPOB limit condition is reached.

The first occurrence of the 'FW' status code indicates no more NBA/FPB buffers
exist. This occurrence is a convenient point at which to request a sync point. Fast
Path resources (and others) would be released and the next sync point interval
would be authorized to use a new set of NBA/FPB buffers. The overflow buffer latch
serializes all the regions in an overflow buffer state and therefore causes delays in
their processing. See “Processing Option P (PROCOPT=P)” on page 252 for a
discussion of this subject.

The DBFX Value and the Low Activity Environment
If the IMS or Fast Path activity in the system is relatively low, log buffers are written
less often and therefore output threads are scheduled or dispatched less frequently.
This situation is likely to result in many buffers waiting to be written and therefore
could cause wait-for-buffer conditions. This could be alleviated by specifying a
larger DBFX value.

Designing a DEDB Buffer Pool in the DBCTL Environment

Chapter 8. Database Design Considerations for Fast Path 263

Consider the special case: The BMP region loads or processes a DEDB and is the
only activity in the system. For example, assume that an NBA of 20 buffers exists.
To avoid a wait-for-buffer condition, the DBFX value must be between once or twice
the NBA value. This can result in a DBBF specification of three times the NBA
number, giving 60 buffers to the Fast Path buffer pool.

Except for the following case, there is no buffer look-aside capability across BMP
regions and CCTL threads or sync intervals (global buffer look-aside).

Assume that a region requests a DEDB CI resource that is currently being written
or is owned by another region that ends up being written (output thread
processing). Then, this CI and the buffer are passed to the requestor after the
successful completion of the write (no read required). Any other BMP regions and
CCTL threads must read it from disk.

A Note on Fast Path Buffer Allocation in IMS Regions
IMS regions that access Fast Path resources must have the NBA and OBA
parameters specified in their start-up procedures.

With MODE=MULT, these allocations must be large enough to accommodate all
buffer requirements for transactions processed between sync points.

With MODE=SNGL, transaction classes should be set up so transactions with
similar buffer requirements are run in the same region.

Designing a DEDB Buffer Pool in the DBCTL Environment

264 IMS/ESA V6 Admin Guide: DB

Chapter 9. Developing Your Test Database

About This Chapter . 265
Understanding Test Requirements 265

What Kind of Database? . 266
What Kind of Sample Data? 266
What Kind of Application Program? 266

Ways to Design, Create, and Load a Test Database 267
Using Testing Standards . 267
Using IBM Programs to Develop a Test Database 267

Using the Data Extraction, Processing, and Restructuring System. . . . 267
Using the IMS Application Development Facility II 267
Using the DL/I Test Program, DFSDDLT0. 268
Using IMS System Utilities/Database Tools 268
Using the DB/DC Data Dictionary 268
Using the DataAtlas for OS/2 Data Dictionary 268

About This Chapter
Before the application programs accessing your database are transferred to
production status, they must be tested. To avoid damaging a production database,
you need a test database The following six IBM programs can help you develop
your test database:

Data Extraction, Processing, and Restructuring System

Cross System Product/370 Application Development (CSP/370AD)

DL/I Test Program, DFSDDLT0

IMS System Utilities/Database Tools (DBT)

DB/DC Data Dictionary

You can find guidance information about application program testing in IMS/ESA
Application Programming: Design Guide . For information about testing an online
system, see IMS/ESA Administration Guide: System.

This chapter examines two areas of test development:

Understanding test requirements

Designing, creating, and loading a test database

Understanding Test Requirements
Depending on your system configuration, user requirements, and the design
characteristics of your database and data communication systems, test for the
following:

v That DL/I call sequences execute and the results are correct.

– This kind of test often requires only a few records, and you can use the DL/I
Test Program, DFSDDLT0, to produce these records.

– If this is part of a unit test, consider extracting records from your existing
database. To extract the necessary records, you can use programs such as
the Data Extraction, Processing, and Restructuring System.

v That calls execute through all possible application decision paths.

© Copyright IBM Corp. 1974, 1999 265

– You might need to approximate your production database. To do this, you can
use programs such as the Data Extraction, Processing, and Restructuring
System or DBT.

v How performance compares with that of a model, for system test or regression
tests, for example.

– For this kind of test, you might need a copy of a subset of the production
database. You can use DBT to help you.

To test for these capabilities, you need a test database that approximates, as
closely as possible, the production database. To design such a test database, you
should understand the requirements of the database, the sample data, and the
application programs.

To protect your production databases, consider providing the test JCL procedures to
those who test application programs. Providing the test JCL helps ensure that the
correct libraries are used.

What Kind of Database?
Often, the test database can be a copy of a subset of the production database, or
in some other way, a replica of it. If you have designed the production database,
you should have firsthand knowledge of this requirement. Your DBDs for the
production database can provide the details. If you have your production database
defined in a data dictionary, that definition gives you much of the information you
need. The following sections of this chapter describe some aids available to help
you design and generate your test database.

What Kind of Sample Data?
It is important for the sample data to approximate the real data, because you must
test that the system processes data with the same characteristics, such as the
range of field values. The kind of sample data needed depends on whether you are
testing calls or program logic.

v To test calls, you need values in only those fields that are sequence fields or
which are referenced in SSAs.

v To test program logic, you need data in all fields accessed in the program logic
such as adds or compares.

Again, you might use a copy of a subset of the real database. However, first
determine which fields contain sensitive data and therefore must use fictitious data
in the test database.

What Kind of Application Program?
In order to design a test database that effectively tests the operational application
programs being developed, you should know certain things about those programs.
Much of the information you need is in the application program design
documentation, the descriptors such as the PSBs, your project test plan, and in the
Data Dictionary.

Understanding Test Requirements

266 IMS/ESA V6 Admin Guide: DB

Ways to Design, Create, and Load a Test Database
You can develop a test database just as you would develop a production database.
With that approach, you perform the tasks described throughout the other chapters
of this manual, keeping in mind the special requirements for test databases. If your
installation has testing standards and procedures, you should follow them in
developing a test database.

Using Testing Standards
Testing standards and procedures help you avoid the same kinds of problems for
test database development as your IMS development standards do for production
databases. Some of the subjects that might be included in your test system
standards and that affect test database design are:

v Objectives of your test system

– What you test for and at what development stages do you test for it

– The kinds of testing—offline, online, integrated DB/DC or isolated

v Description of the test organization and definition of responsibilities of each group

v Relationship of test and production modes of operation

v How your test system development process deals with:

– DB/TM structures

– Development tools

– DB/TM features

– Backup and recovery

The IMS test system is discussed in IMS/ESA Administration Guide: System .

Using IBM Programs to Develop a Test Database
If you use the same development aids to develop the test database that you use to
develop your production databases, you will benefit from using familiar tools. Also,
you will avoid problems caused by differences between test and production
databases.

Using the Data Extraction, Processing, and Restructuring System
You can use this system (Program Number: 5796-PLH) to access a wide variety of
data and restructure it into a test database. By means of control statements, you
define the source and target files and specify the structure of the target files.

The data restructuring phase of the system allows you to:

v Combine components of different files to form new files

v Restructure a file to form different files

v Rearrange data within a file

v Alter values according to your needs

v Form hierarchies

v Decrease or increase the number of levels in a hierarchy

Details about using this system are in Data Extraction, Processing, and
Restructuring System, Program Description/Operations Manual·

Using the IMS Application Development Facility II
If your installation uses CSP/370AD to develop application programs, you can use it
to create a simple test database. The interactive nature of ADF enables you to

Ways to Design, Create, and Load a Test Database

Chapter 9. Developing Your Test Database 267

dynamically add segments to a database. By means of SEGM and FIELD
statements, you can define a test database and update it as needed. For
information on how to use CSP/370AD, see the Cross System Product/370
Application Development Guide·

CSP/370AD supports both IMS and CICS.

Using the DL/I Test Program, DFSDDLT0
If you need a test database with relatively few database records, for example, you
can use DFSDDLTO to test DL/I call sequences. If you have no machine-readable
database to begin with, you can define a PCB, then use DFSDDLT0 to insert
segments. This step eliminates the need for a load program to generate your test
database. Information about this test program is in “Testing an Application
Program,” in IMS/ESA Application Programming: Design Guide.

The DL/I Test Program cannot be used by CICS, but can be used for stand-alone
batch programs. If used for stand-alone batch programs, it is useful to interpret the
database performance as it might be implemented for online or shared database
programs.

Using IMS System Utilities/Database Tools
The IMS System Utilities/Database Tools (DBT) is a collection of utility programs
designed to help you manage and monitor your IMS databases. DBT supports both
full-function and Fast Path databases.

In addition to aids that help you analyze the design of your production database,
DBT includes an aid to help you create a test database. You can use the DB
Segment Restructure utility to create a test database by structuring segments and
hierarchies based on a subset of the actual database. You do this by supplying a
beginning SSA (or it will begin at the first segment) and a key feedback compare
string as an ending comparative value (or it will continue to the end of the
database).

Information on the DB Segment Restructure utility is in DBT DB Segment
Restructure User’s Guide· For information on all of the utilities provided with DBT,
see IMS System Utilities/Database Tools (DBT) General Information Manual·

Using the DB/DC Data Dictionary
The IBM DB/DC Data Dictionary is a development and administrative tool used to
manage information about an installation’s data processing resources. If you have
your production database defined in the Data Dictionary, you have the means
available to define your test database. You can search the definitions in the
dictionary to determine which elements to include in your test database. Then, you
can copy selected parts of the Data Dictionary definitions and assign the copy a
test status. This step can become the definition of your test database.

You can also use the DBD and PSB generation facility of the Data Dictionary to
provide DBDs and PSBs for the test database. You cannot use the Data Dictionary
to define DEDBs or MSDBs, or PSBs naming either of these types of databases.

The DB/DC Data Dictionary (Program Number: 5740-XXF) is described in DB/DC
Data Dictionary General Information Manual·

Using the DataAtlas for OS/2 Data Dictionary
DataAtlas for OS/2 is a development and administrative tool that manages your
data processing information in a LAN-based environment. DataAtlas is a component

Ways to Design, Create, and Load a Test Database

268 IMS/ESA V6 Admin Guide: DB

of the IBM VisualGen Team Suite set of products. It provides facilities for versioning,
model extensibility, constraint checking, and an SQL query capability. DataAtlas also
provides the following:

v Object-oriented architecture provides for efficient navigation of
repository-controlled information and positions DataAtlas to take full advantage of
emerging object-oriented methodologies.

v Easy-to-use GUI design optimizes productivity for data analysts, database
administrators, and application programmers.

v Data and database modeling helps you optimize and tune your enterprise data
and database designs.

v Application system documentation support facilitates a better understanding of
your organization’s application portfolio.

For managing your data definitions, DataAtlas allows you to do the following:

v Work from a central point of control and standardization on data definitions for
the IBM family of hierarchical databases (IMS DB), relational databases (DB2 for
MVS/ESA, DB2/2), and high-level languages (COBOL, PL/I). Oracle and Sybase
databases are also supported.

v Populate data definitions into a centralized repository.

v Migrate definitions from the OS/VS DB/DC Data Dictionary.

v Create new data definitions and update existing data definitions.

v Easily identify and eliminate redundant data definitions.

v Optimize the reuse of existing data definitions to facilitate the development of
new applications.

v Perform impact analysis to track change activities and to understand the impact
of the changes.

v Validate data definitions prior to placing them into your production environment.

v Generate data definitions for your production environment.

Ways to Design, Create, and Load a Test Database

Chapter 9. Developing Your Test Database 269

Ways to Design, Create, and Load a Test Database

270 IMS/ESA V6 Admin Guide: DB

Chapter 10. Establishing Standards and Procedures

About This Chapter . 271
Standards and Procedures . 271
Establishing Naming Conventions 273
Using the Dictionary to Enforce and Control Standards and Procedures . . . 274

About This Chapter
This chapter examines the following areas:

v Standards and procedures

v Establishing naming conventions

v Using the dictionary to enforce and control standards and procedures

Standards and Procedures
You should give careful thought to developing standards and procedures for your
database system. Providing standards and procedures results in:

v Improved quality of application systems (because setting up and following
standards and procedures gives you greater control over your entire application
development process)

v Improved productivity in application and database design (because guidelines for
design decisions exist)

v Improved productivity of application coding (because coding standards and
procedures exist)

v Better communication between you and application developers (because both of
you have clearly defined responsibilities)

v Improved reliability and recoverability in operations (because you have clear and
well-understood operating procedures)

You must set up and test procedures and standards for database design,
application development, application programs’ use of the database, application
design, and for batch operation. These standards are guidelines that change when
installation requirements change.

In the area of database design, for example, you can establish standard practices
for handling the following items:

v Database structure and segmentation

Number of segments within a database

Placement of segments

Size of segments

Use of variable-length segments

When to use segment edit/compression

When to use secondary data set groups

Number of databases within an application

When and how to use field-level sensitivity

Database size

v Access methods

When to use HISAM

© Copyright IBM Corp. 1974, 1999 271

Choice of record size for HISAM

HISAM organization using VSAM

When to use GSAM

Use of physical child/physical twin pointers

Use of twin backward pointers

Use of child last pointers

HIDAM index organization using VSAM

HIDAM pointer options at the root level

Sequencing twin chains

Use of HD free space

When to use HDAM

Processing an HDAM database sequentially

Use of the “byte limit count” for HDAM

Use of twin backward pointer for HDAM roots

Use of free space with HDAM

When to use DEDBs

Processing DEDBs sequentially

Use of DEDB parameters

Use of subset pointers

Use of multiple area data sets

v Secondary indexing

For sequential processing

On volatile segments

In HISAM databases

Use of unique secondary indexes

Use of sparse indexing

Processing of the secondary index as a separate database

v Logical relationships

Use of direct pointers versus symbolic pointers

Avoidance of long logical twin chains

Sequencing of the logical twin chain

Placement of the real logical child segment

In the area of application programs’ use of the database, establish standards for the
following:

v Putting update and read functions in separate programs

v How many transaction types to allow per application program

v When applications are to issue a deliberate abnormal termination and the range
of abend codes permitted applications

v Whether application programs are permitted to issue messages to the master
terminal

v The method of referencing data in the IOAREA, and referencing IMS variables
(such as PCBs and SSAs)

v Use of predefined structures (PCB masks, SSAs, or database segment formats)
by applications

v Use of GU calls to the message queue

Establishing Standards and Procedures

272 IMS/ESA V6 Admin Guide: DB

v Re-usability of MPP and BMP programs

v Use of qualified calls and SSAs

v Use of path calls

v Use of the CHANGE call

v Use of the “system” calls (PURG, LOG, STAT, SNAP, GCMD, and CMD)

In the area of application design, establish procedures to govern the following:

v The interaction between you and the application designer

v Use of the dictionary or COPY or STRUCTURE libraries for data elements and
structures

v The holding of design reviews and inspections

In the area of batch operations, you can consider developing:

v Procedures to limit access to computer facilities

v A control point to ensure that:

– Jobs contain complete and proper submittal documentation

– Jobs are executed successfully on schedule

– Correct input/output volumes are used, and output is properly distributed

– Test programs are executed only in accordance with a defined test plan

– An incident report is maintained to ensure all problems are recorded and
reported to the responsible parties

v Normal operating procedures. These operating procedures include operations
schedules, cold start, warm start, shutdown procedures, and scheduling and
execution of batch programs.

v Procedures for emergency situations. During an emergency, the environment is
one of stress. Documented procedures provide step-by-step guidance to resolve
such situations. These procedures should include emergency restart, database
backout, database recovery, log recovery, and batch program restart. For a more
complete treatment of recovery procedures, see IMS/ESA Operations Guide and
IMS/ESA Sample Operating Procedures .

v A master terminal operator’s guide for the installation. This guide should be
supplemented by IMS/ESA Operator’s Reference .

v A master operations log. This log could contain a record of system availability,
time and type of failure, and cause of the failure, recovery steps taken, and type
of system termination if normal.

v A system maintenance log. This log could contain a record of all release and
modification levels, release dependencies, program temporary fixes (PTFs)
applied, status of APARs and date submitted, and bypass solutions.

Establishing Naming Conventions
Good naming conventions are mandatory in a data processing project, especially in
an environment with multiple applications. Some general rules to follow in setting up
naming conventions are:

v Each name should be unique.

v Each name should be meaningful and identifiable. You should be able to identify
the type of thing being referred to by its name.

Table 11 on page 274 is an example of minimal naming conventions that are also
compatible with naming conventions and requirements of the DB/DC Data
Dictionary. They are presented only as an example, and you can establish your own

Establishing Standards and Procedures

Chapter 10. Establishing Standards and Procedures 273

naming conventions.

Table 11. Example of Naming Conventions

CATEGORY CONVENTION

SYSTEM S as first letter

JOB J as first letter

PROGRAM P as first letter if IMS program (to match PSB)
G as first letter otherwise

MODULE M as first letter

COPY C as first letter for member containing the segment structure
A as first letter for member containing all the SSAs for the segment
Remainder must be the same as the segment name

TRANSACTION T as first letter

PSB P as first letter

PCB Same name as PSB
Note: Occurrence number indicates position in PSB

DATABASE Dtaaann

Where Indicates

t Database type. The database can be one of the following
types:
P Physical
L Logical
X Primary index
Y Secondary index

aaa A unique database identifier common to all logical and
index databases based on the same physical database

nn Makes the name unique if there are multiple logical or
secondary index databases

SEGMENT
Saaabbbb

aaa The same as the physical database in which the
segment occurs
Note: Concatenated segments should have an
aaa value corresponding to the aaa of the logical
child segment.

bbbb The user name

R First letter for 'segments' that are non-DL/I file record
definitions

O First letter for any other data areas, for example, terminal
I/O areas, control blocks, report lines etc.)

ELEMENT E as first letter

Using the Dictionary to Enforce and Control Standards and
Procedures

Making the dictionary an integral part of your application development process
automatically helps you enforce standards and procedures. The dictionary acts as a
control mechanism in the following ways:

Establishing Naming Conventions

274 IMS/ESA V6 Admin Guide: DB

v You require all data element names to be entered in the dictionary, and you can
easily enforce naming conventions.

v You can use dictionary reports to tell whether certain database practices (such as
program-to-database standards) are being followed.

v You ensure that standards relating to such things as PCB masks and segment
structure declarations are followed by requiring that programmers get their data
structures from the dictionary.

Setting up procedures involving use of the dictionary makes the entire application
development process more disciplined, controlled, and efficient.

Enforce and Control Standards and Procedures

Chapter 10. Establishing Standards and Procedures 275

276 IMS/ESA V6 Admin Guide: DB

Chapter 11. Implementing Your Database Design

About This Chapter . 277
Coding Database Descriptions as Input for DBDGEN the Utility 277

The DBD Statement . 278
The DATASET Statement 278
The SEGM Statement . 279
The FIELD Statement . 279
The LCHILD Statement . 279
The XDFLD Statement . 279
The DBDGEN and END Statements 280
Using the DB/DC Data Dictionary 280

Coding Program Specification Blocks as Input to the PSBGEN Utility 280
The Alternate PCB . 281
The Database PCB Statement. 281
The SENSEG Statement . 281
The SENFLD Statement . 282
The PSBGEN Statement . 282
The END Statement . 282
Using the DB/DC Data Dictionary 282

Building the Application Control Blocks (ACBGEN) 282
Generated Program Specification Blocks 284

About This Chapter
After you have designed your databases and before application programs can use
them, you must tell IMS their physical and logical characteristics by coding and
generating a DBD (database description) for each database.

Before an application program can use the database, you must tell IMS the
application program’s characteristics and use of data and terminals. You tell IMS the
application program characteristics by coding and generating a PSB (program
specification block).

Finally, before an application program can be scheduled for execution, IMS needs
the PSB and DBD information for the application program available in a special
internal format called an ACB (application control block).

This chapter examines the following areas of implementing your database design:

v Coding database descriptions

v Coding program specification blocks

v Building application control blocks

Coding Database Descriptions as Input for DBDGEN the Utility
A DBD is a series of macro instructions that describes such things as a database’s
organization and access method, the segments and fields in a database record, and
the relationships between types of segments. After you have coded the DBD macro
instructions, they are used as input to the DBDGEN utility. This utility is a macro
assembler that generates a DBD control block and stores it in the IMS.DBDLIB
library for subsequent use during database processing.

© Copyright IBM Corp. 1974, 1999 277

Figure 128 illustrates the DBD generation process. Figure 129 shows the input to
the DBDGEN utility. Separate input is required for each database being defined.

The DBD Statement
In the input, the DBD statement names the database being described and specifies
its organization. Only one DBD statement exists in the input deck.

The DATASET Statement
This statement defines the physical characteristics of the data sets to be used for
the database. At least one DATASET statement is required for each data set group
in the database. Depending on the type of database, up to 10 DATASET groups
can be defined. Each DATASET statement is followed by the SEGM statements for
all segments to be placed in that data set group.

If the database is a DEDB, the AREA statement is used instead of the DATASET
statement. The AREA statement defines an area in the DEDB. Up to 240 AREA

Figure 128. The DBD Generation Process

//DBDGEN JOB MSGLEVEL=1
// EXEC DBDGEN,MBR=APPLPGM1
//C.SYSIN DD *

DBD required for each DBD generation
DATASET(or AREA) required for each data set group

(or AREA in a Fast Path DEDB)
SEGM required for each segment type
FIELD required for each DBD generation
LCHILD required for each secondary index or

logical relationship
XDFIELD required for each secondary index relationship

.

.

.
DBDGEN required for each DBD generation
END required for each DBD generation

/*

Figure 129. Structure of DBD Generation Input

Implementing Your Database Design

278 IMS/ESA V6 Admin Guide: DB

statements can be used to define multiple areas in the database. All AREA
statements must be put between the DBD statement and the first SEGM statement.

The SEGM Statement
This statement defines a segment type in the database, its position in the hierarchy,
its physical characteristics, and its relationship to other segments. SEGM
statements are put in the input deck in hierarchic sequence, and a maximum of 15
hierarchic levels can be defined. The number of database statements allowed
depends on the type of database. SEGM statements must immediately follow the
DATASET or AREA statements to which they are related.

The FIELD Statement
This statement defines a field within a segment type. FIELD statements must
immediately follow the SEGM statement to which they are related. A FIELD
statement is required for all sequence fields in a segment and all fields the
application program can refer to in the SSA of a DL/I call. A FIELD statement is also
required for any fields referenced by a SENFLD statement in any PSB. To save
space, do not generate FIELD statements except in these circumstances. FIELD
statements can be put in the input deck in any order except that the sequence field,
if one is defined, must always be first. Up to 255 fields can be defined for each
segment type, and a maximum of 1000 fields can be defined for each database.
The definition of fields within a segment can overlap. For example, a date “field”
within a segment can be defined as three 2-byte fields and also as one 6-byte field.

This technique allows application programs to access the same piece of data in a
variety of ways. To access the same piece of data in a variety of ways, you code a
separate FIELD statement for each field. For the example shown, you would code
four FIELD statements, one for the total 6-byte date and three for each 2-byte field
in the date.

The LCHILD Statement
The LCHILD statement defines a secondary index or logical relationship between
two segment types, or the relationship between a HIDAM index database and the
root segment type in the HIDAM database. LCHILD statements immediately follow
the SEGM, FIELD, or XDFLD statement of the segment involved in the relationship.
Up to 255 LCHILD statements can be defined for each database.

The XDFLD Statement
The XDFLD statement is used only when a secondary index exists. It is associated
with the target segment and specifies:

v The name of an indexed field

v The name of the source segment

v The field used to create the secondary index from the source segment

Implementing Your Database Design

Chapter 11. Implementing Your Database Design 279

Up to 32 XDFLD statements can be defined per segment. However, the number of
XDFLD and FIELD statements combined cannot exceed 255 per segment or 1000
per database.

The DBDGEN and END Statements
One DBDGEN statement and one END statement is put at the end of each DBD
generation input deck. These specify:

v The end of the statements used to define the DBD (DBDGEN)

v The end of input statements to the assembler (END)

Detailed instructions for coding DBD statements and examples of DBDs are
contained in IMS/ESA Utilities Reference: System·

Using the DB/DC Data Dictionary
If you have the DB/DC Data Dictionary and have defined your databases in it, you
can use the dictionary DBD_OUT command to produce the statements needed for
DBD generation in card image format. Detailed information on how to do this is
contained in DB/DC Data Dictionary Terminal User’s Guide and Command
Reference·

Coding Program Specification Blocks as Input to the PSBGEN Utility
A PSB is a series of macro instructions that describes an application program’s
characteristics, its use of segments and fields within a database, and its use of
logical terminals. A PSB consists of one or more PCBs (program communication
blocks). Of the two types of PCBs, one is used for alternate message destinations,
the other, for application access and operation definitions.

After you code the PSB macro instructions, they are used as input to the PSBGEN
utility. This utility is a macro assembler that generates a PSB control block then
stores it in the IMS.PSBLIB library for subsequent use during database processing.

Figure 130 shows the PSB generation process. Figure 131 on page 281 shows the
structure of the deck used as input to the PSBGEN utility.

Figure 130. The PSB Generation Process

Implementing Your Database Design

280 IMS/ESA V6 Admin Guide: DB

The Alternate PCB
Two types of PCB statements can be placed in the input deck. The first type, called
the alternate PCB, describes where a message can be sent when the message’s
destination differs from the place where it was entered. Alternate PCB statements
must be put at the beginning of the input deck. More information on alternate PCBs
is contained in IMS/ESA Administration Guide: System.

The Database PCB Statement
The second type of PCB statement is called the database PCB statement.
Database PCB statements define the DBD of the database the application program
will access. The statements also define types of operations (such as get, insert, and
replace) that the application program can perform on segments in the database.
The database can be either physical or logical. A separate database PCB statement
is required for each database the application program accesses. In each PSB
generation, up to 255 database PCBs can be defined, minus the number of
alternate PCBs defined in the input deck. The other forms of statements that apply
to PSBs are SENSEG, SENFLD, PSBGEN, and END.

The SENSEG Statement
This statement defines a segment type in the database to which the application
program is sensitive. A separate SENSEG statement must exist for each segment
type. The segments can physically exist in one database or be derived from several
physical databases. If an application program is sensitive to a segment beneath the
root segment, it must also be sensitive to all segments in the path from the root
segment to the sensitive segment. For example, in Figure 132 on page 282 if D is
defined as a sensitive segment for an application program, B and A must also be
defined as sensitive segments.

//PSBGEN JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM1
//C.SYSIN DD *

PCB TYPE=TP required for output message destinations
PCB TYPE=DB required for each database the application program

can access
SENSEG required for each segment in the database the

application program can access
SENFLD required for each field in a segment that

the application program can access,
when field-level sensitivity is specified

PCB TYPE=GSAM

...

PSBGEN required for each PSB generation
END required for each PSB generation

/*

Figure 131. Structure of PSB Generation Input

Coding Program Specification Blocks as Input to the PSBGEN Utility

Chapter 11. Implementing Your Database Design 281

To keep an application program from becoming sensitive to a specific segment in
the path to a lower level segment, code a K in the PROCOPT = keyword. Coding a
K in the PROCOPT = keyword in the SENSEG key statement of the segment you
do not need the application program to see, gives application program sensitivity to
only that segment key. In the previous example, the application program would be
sensitive to the key of segment A and B but not sensitive to A and B’s data.

SENSEG statements must immediately follow the PCB statement to which they are
related. Up to 3000 SENSEG statements can be defined for each PSB generation.

The SENFLD Statement
This statement is used only in parallel with field-level sensitivity. It defines the fields
in a segment type to which the application program is sensitive. This statement, in
conjunction with the SENSEG statement, helps you secure your data. Each
SENFLD statement must follow the SENSEG statement to which it is related. Up to
255 sensitive fields can be defined for a given segment type, and a maximum of
10000 can be defined for each PSB generation.

The PSBGEN Statement
This statement names the PSB and specifies various characteristics of the
application program, such as the language it is written in and the size of the largest
I/O area it can use. The input deck can contain only one PSBGEN statement.

The END Statement
One END statement is placed at the end of each PSB generation input deck. The
END statement specifies the end of input statements to the assembler.

Detailed instructions for coding PSB statements and examples of PSBs are
contained in of IMS/ESA Utilities Reference: System .

Using the DB/DC Data Dictionary
If you have the DB/DC Dictionary and have put PSB information in it, you can use
the dictionary PSB_OUT command to produce the statements needed for PSB
generation in card image format. Detailed information on how to do this is contained
in DB/DC Data Dictionary Terminal User’s Guide and Command Reference·

Building the Application Control Blocks (ACBGEN)
IMS builds the ACB with the ACBGEN utility by merging information from the PSB
and DBD. For execution in a batch environment, IMS can build ACBs either
dynamically (PARM=DLI), or it can prebuild them using the ACB maintenance utility
(PARM=DBB). ACBs must be prebuilt for use by online application programs. The
ACB generation process is shown in Figure 133.

Figure 132. Example of a SENSEG Relationship

Coding Program Specification Blocks as Input to the PSBGEN Utility

282 IMS/ESA V6 Admin Guide: DB

ACBs cannot be prebuilt for GSAM DBDs. However, ACBs can be prebuilt for PSBs
that reference GSAM databases.

The ACB maintenance utility (ACBGEN), shown in Figure 133, gets the PSB and
DBD information it needs from IMS.PSBLIB and IMS.DBDLIB.

You can have the utility prebuild ACBs for all PSBs in IMS.PSBLIB, for a specific
PSB, or for all PSBs that reference a particular DBD. Prebuilt ACBs are kept in the
IMS.ACBLIB library. (IMS.ACBLIB is not used if ACBs are not prebuilt.) When ACBs
are prebuilt and an application program is scheduled, the application program’s
ACB is read from IMS.ACBLIB directly into storage. This means that less time is
required to schedule an application program. In addition, less storage is used if
prebuilt ACBs are used. Another advantage of using the ACB maintenance utility is
the initial error checking it performs. It checks for errors in the names used in the
PSB and the DBDs associated with the PSB and, if erroneous cross-references are
found, prints appropriate error messages.

IMS.ACBLIB has to be used exclusively. Because of this, the ACB maintenance
utility can only be executed using an IMS.ACBLIB that is not currently allocated to
an active IMS system. Also, because IMS.ACBLIB is modified, it cannot be used for
any other purpose during execution of the ACB maintenance utility.

You can change ACBs or add ACBs in an “inactive” copy of ACBLIB and then make
the changed or new members available to an active IMS online system by using the
online change function. “Using the Online Change Function” in “Chapter 15.
Modifying Your Database” on page 365 describes how you effectively change
ACBLIB for an online system.

Detailed instructions for running the ACB maintenance utility and examples of its
use are contained in the IMS/ESA Utilities Reference: System .

Figure 133. The ACB Generation Process

Coding Program Specification Blocks as Input to the PSBGEN Utility

Chapter 11. Implementing Your Database Design 283

Generated Program Specification Blocks
Generated PSBs (GPSB) are a type of PSB that do not require a PSBGEN or
ACBGEN. A GPSB contains an I/O PCB and a single modifiable alternate PCB.
GPSBs are not defined through a PSBGEN. Instead, they are defined by the
system definition process through the APPLCTN macro. The GPSB parameter
indicates the use of a generated PSB and specifies the name to be associated with
it. The LANG parameter specifies the language format of the GPSB. For more
information on defining GPSBs refer to the APPLCTN macro section of the
IMS/ESA Installation Volume 2: System Definition and Tailoring .

The I/O PCB can be used by the application program to obtain input messages and
send output to the inputting terminal. The alternate PCB can be used by the
application program to send output to other terminals or programs.

Other than the I/O PCB, an application that makes only Structured Query Language
(SQL) calls does not require any PCBs. It does, however, need to define the
application program name and language type to IMS. A GPSB can be used for this
purpose.

Generated Program Specification Blocks

284 IMS/ESA V6 Admin Guide: DB

Chapter 12. Loading Your Database

About This Chapter . 285
Estimating the Minimum Size of the Database 286

Step 1. Calculate the Size of an Average Database Record 286
Determining Segment Size 286
Determining Segment Frequency 287
Determining Average Database Record Size 288

Step 2. Determine Overhead Needed for DEDB CI resources 288
Step 3. Determine the Number of CIs or Blocks Needed 289

HISAM: Determining the Number of CIs or Blocks Needed 289
HIDAM: Determining the Number of CIs or Blocks Needed 290
HIDAM Index: Calculating the Space Needed 290
HDAM: Determining the Amount of Space Needed 290
Secondary Index: Determining the Amount of Space Needed 292

Step 4. Determine the Number of Blocks or CIs Needed for Free Space 292
Step 5. Determine the Amount of Space Needed for Bit Maps 292

Allocating Data Sets . 293
Allocating OSAM Data Sets. 293
Example of Allocating an OSAM Data Set 294
Cautions When Allocating OSAM Data Sets 294

Writing a Load Program . 295
The Load Process . 295
Status Codes for Load Programs. 296
Using SSAs in a Load Program 296
Loading a Sequence of Segments with the D Command Code 297

Two Types of Initial Load Program 297
Basic Initial Load Program 298
Restartable Initial Load Program 300
JCL for the Initial Load Program 304

Loading a HISAM Database 304
Loading a SHISAM Database 305
Loading a GSAM Database 305
Loading an HDAM Database 305
Loading a HIDAM Database 305
Loading a Database with Logical Relationships or Secondary Indexes 305

Loading Fast Path Databases 305
Loading an MSDB . 305
Loading a DEDB . 305
Loading Sequential Dependent Segments 307

About This Chapter
Once you implement your database design, you are ready to write and load your
database. However, before writing a load program, you must estimate the minimum
size of the database and allocate data sets. This chapter examines the following
areas of loading a database:

v Estimating the minimum size of the database

v Allocating data sets

v Writing the load program

© Copyright IBM Corp. 1974, 1999 285

Estimating the Minimum Size of the Database
When you estimate the size of your database, you estimate how much space you
need to initially load your data. Unless you do not plan to insert segments into your
database after it is loaded, allocate more space for your database than you actually
estimate for the initial load.

This section contains the step-by-step procedure for estimating minimum database
space. To estimate the minimum size needed for your database, you must already
have made certain design decisions about the physical implementation of your
database. Because these decisions are different for each DL/I access method, they
are discussed under the appropriate access method in step 3 of the procedure.

Step 1. Calculate the Size of an Average Database Record
First, determine the size, then the average number of occurrences of each segment
type in a database record. By multiplying these two numbers together, you get the
size of an average database record.

Determining Segment Size
Segment size here is physical segment size, and it includes both the prefix and
data portion of the segment. You define the size of the data portion. It can include
unused space for future use. The size of the data portion of the segment is the
number you specified in the BYTES= operand in the SEGM statement in the DBD.

The prefix portion of the segment depends on the segment type and on the options
you are using. Table 12 helps you determine, by segment type, the size of the
prefix. Using the chart, add up the number of bytes required for necessary prefix
information and for extra fields and pointers generated in the prefix for the options
you have chosen. Segments can have more than one 4-byte pointer in their prefix.
You need to factor all extra pointers of this type into your calculations. (“Chapter 4.
Designing a Fast Path Database” on page 33 under “Mixing Pointers” contains an
illustration of a segment’s prefix.)

Table 12. Required Fields and Pointers in a Segment’s Prefix

Type of segment Fields and pointers required in the
segment’s prefix

Size of the field or
pointer (in bytes)

All types Segment code (not present in a SHSAM,
SHISAM, GSAM, or secondary index pointer
segment).

Delete byte (not present in a SHSAM,
SHISAM, or GSAM segment).

1

1

HDAM and HIDAM PCF pointer

PCL pointer

PP pointer

PTF pointer

PTB pointer

HF pointer

HB pointer

4

4

4

4

4

4

4

Estimating the Minimum Size of the Database

286 IMS/ESA V6 Admin Guide: DB

Table 12. Required Fields and Pointers in a Segment’s Prefix (continued)

Type of segment Fields and pointers required in the
segment’s prefix

Size of the field or
pointer (in bytes)

DEDB PCF pointer

PCL pointer

Subset pointer

4

4

4

Logical parent LCF pointer

LCL pointer

Logical child counter

4

4

4

Logical child LTF pointer

LTB pointer

LP pointer

4

4

4

Secondary index Direct-address pointer to the target segment 4

The following information shows an example of calculating prefix size:

If you have an HDAM database and the segment type whose prefix size you are
calculating uses PCF and PCL pointers, then you need to add:

One byte for the segment code

One byte for the delete byte

Four bytes for each PCF pointer

Four bytes for each PCL pointer

After you calculate these numbers together, add the result to the size of the data
portion of the segment type. This step gives you the total size of the segment type.

Determining Segment Frequency
After you have determined the total size of a segment type, you need to determine
segment frequency. Segment frequency is the average number of occurrences of a
particular segment type in the database record. To determine segment frequency,
first determine the average number of times a segment occurs under its immediate
physical parent.

For example, in the database record in Figure 134 on page 288, the ITEMS
segment occurs an average of 10 times for each DEPOSITS segment. The
DEPOSITS segment occurs an average of four times for each CUSTOMER root
segment. The frequency of a root segment is always one.

Estimating the Minimum Size of the Database

Chapter 12. Loading Your Database 287

To determine the average number of occurrences of a particular segment type in
the database record, multiply together the segment frequencies of each segment in
the path from the given segment back up to the root. For the ITEMS segment type,
the path includes the ITEMS segment and the DEPOSITS segment. The segment
frequency of ITEMS is 10, and the segment frequency of DEPOSITS is 4.
Therefore, the average number of occurrences of the ITEMS segment in the
database record is 40 (10 x 4). Another way of expressing this idea is that each
customer has an average of 4 DEPOSITS, and each DEPOSIT has an average of
10 ITEMS. Therefore, for each customer, an average of 40 (10 x 4) ITEMS exist in
the database record.

Determining Average Database Record Size
Now that you have determined segment size and segment frequency, you can
determine the average size of a database record. To determine average database
record size, multiply segment size and segment frequency together for each
segment type in the database record, then add the results. For example, in the
database record you have been looking at, average database record size is
calculated as follows:

Segment Type
Segment
Size Average Occurrences Result

CUSTOMER 120 x 1 = 120
ADDRESS 30 x 4 = 120
CHECKS 30 x 8 = 240
DEPOSITS 10 x 4 = 40
ITEMS 20 x 40 (10x4) = 800
MISC 10 x 1 = 10
REL ACCT 12 x .5 = 6
Note: Average database record size = 1336

Step 2. Determine Overhead Needed for DEDB CI resources
If you are not using VSAM, you can skip this step. If you are using VSAM, you
need to determine how much overhead is needed for a CI before you can do the
remaining space calculations.

Overhead is space used in a CI for two control fields. VSAM uses the control fields
to manage space in the CI. The control fields are as follows:

Figure 134. Segment Sizes and Average Segment Occurrences

Estimating the Minimum Size of the Database

288 IMS/ESA V6 Admin Guide: DB

Fields Size of field (in
bytes)

CIDF (Control interval definition field) 4
RDF (record definition field) 3

If one logical record exists for each CI, CI overhead consists of one CIDF and one
RDF (for a total of 7 bytes). HDAM and HIDAM databases use one logical record
for each CI.

If more than one logical record exists for each CI, CI overhead consists of one
CIDF and two RDFs (for a total of 10 bytes). HISAM (KSDS and ESDS), HIDAM
index, and secondary index databases can all use more than one logical record for
each CI.

Step 3 tells you when to factor CI overhead into your space calculations.

Step 3. Determine the Number of CIs or Blocks Needed
The calculations in this step are done by database type. To determine how many
CIs or blocks are needed to hold your database records, go to the section in this
step that applies to the database type you are using. If you are using VSAM, the
first CI in the database is reserved for VSAM.

HISAM: Determining the Number of CIs or Blocks Needed
A CI in HISAM can contain one or more logical records. In the primary data set a
logical record can only contain one database record (or part of one database
record). In the overflow data set a logical record can only contain segments of the
same database record, but more than one logical record can be used for the
overflow segments of a single database record.

In HISAM, you should remember how logical records work, because you need to
factor logical record overhead into your calculations before you can determine how
many CIs (control intervals) are needed to hold your database records. Logical
record overhead is a combination of the overhead that is always required for a
logical record and the overhead that exists because of the way in which database
records are stored in logical records (that is, storage of segments almost always
results in residual or unused space).

Because some overhead is associated with each logical record, you need to
calculate the amount of space that is available after factoring in logical record
overhead. Once you know the amount of space in a logical record available for
data, you can determine how many logical records are needed to hold your
database records. If you know how many logical records are required, you can
determine how many CIs or blocks are needed.

For example, assume you need to load 500 database records using VSAM, and to
use a CI size of 2048 bytes for both the KSDS and ESDS. Also, assume you need
to store four logical records in each KSDS CI and two logical records in each ESDS
CI.

1. First factor in CI overhead by subtracting the overhead from the CI size: 2048 -
10 = 2038 bytes for both the KSDS and the ESDS. The 10 bytes of overhead
consists of a 4-byte CIDF and two 3-byte RDFs.

2. Then, calculate logical record size by dividing the available CI space by the
number of logical records per CI: 2038/4 = 509 bytes for the KSDS and 2038/2

Estimating the Minimum Size of the Database

Chapter 12. Loading Your Database 289

= 1019 bytes for the ESDS. Because logical record size in HISAM must be an
even value, use 508 bytes for the KSDS and 1018 bytes for the ESDS.

3. Finally, factor in logical record overhead by subtracting the overhead from
logical record size: 508 - 5 = 503 bytes for the KSDS and 1018 - 5 bytes for the
ESDS. HISAM logical record overhead consists of 5 bytes for VSAM (a 4-byte
RBA pointer for chaining logical records and a 1-byte end-of-data indicator).

This means if you specify a logical record size of 508 bytes for the KSDS, you
have 503 bytes available in it for storing data. If you specify a logical record size
of 1018 bytes for the ESDS, you have 1013 bytes available in it for storing data.

Refer to the previous example. Because the average size of a database record is
1336 bytes, the space available for data in the KSDS is not large enough to contain
it. It takes the available space in one KSDS logical record plus one ESDS logical
record to hold the average database record (503 + 1013 = 1516 bytes of available
space). This record size is greater than an average database record of 1336 bytes.
Because you need to load 500 database records, you need 500 logical records in
both the KSDS and ESDS.

v To store four logical records per CI in the KSDS, you need a minimum of 500/4 =
125 CIs of 2048 bytes each for the KSDS.

v To store two logical records per CI in the ESDS, you need a minimum of 500/2 =
250 CIs of 2048 bytes each for the ESDS.

HIDAM: Determining the Number of CIs or Blocks Needed
With HIDAM, one VSAM logical record exists per CI or block. In this context, logical
record is the unit of transfer when invoking an access method (such as VSAM), to
get or put records. Logical record overhead consists of an FSEAP (4 bytes). If you
are using RAPS, the logical record overhead consists of one RAP (4 bytes). For
example, assume you need to load 500 database records using VSAM and to use a
CI size of 2048 bytes and no RAP. (Specify PTR=TB on the root to suppress the
RAP in HIDAM.)

1. First, determine the size of a logical record by subtracting CI overhead from CI
size: 2048 - 7 = 2041 bytes for the ESDS logical record size. The 7 bytes of
overhead consists of a 4-byte CIDF and a 3-byte RDF.

2. Then, determine the amount of logical record space available for data by
factoring in logical record overhead. In this example, logical record overhead
consists of an FSEAP: 2041 - 4 = 2037 bytes. This means you have 2037 bytes
available to store data in each logical record.

3. Continuing our example, because the average size of a database record is 1336
bytes, you need 668000 bytes (500 x 1336) to store data. To determine the
number of logical records needed to hold the database, divide the available
logical record space into the total data space needed: 668000/2037 = 328
logical records.

Because one logical record exists per CI in HIDAM, you need a minimum of 328
CIs of 2048 bytes each for the ESDS.

HIDAM Index: Calculating the Space Needed
Calculating space for a HIDAM index is similar to calculating space for a HISAM
KSDS. The difference is that no logical record overhead exists. One index record is
stored in one logical record, and multiple logical records can be stored in one CI or
block.

HDAM: Determining the Amount of Space Needed
Because of the many variables in HDAM, no exact formula exists for estimating
database space requirements. Therefore, you should use a space calculation aid to
help determine the amount of space needed for HDAM databases.

Estimating the Minimum Size of the Database

290 IMS/ESA V6 Admin Guide: DB

If you are using VSAM, and you decide to estimate, without use of an aid, the
amount of space to allocate for the database, the first CI in the database is
reserved for VSAM. Because of this, the bit map is in the second CI.

With HDAM, logical record overhead depends on the database design options you
have selected. You must choose the number of CIs or blocks in the root
addressable area and the number of RAPS for each CI or block. These choices are
based on your knowledge of the database.

A perfect randomizer requires as many RAPs as there are database records.
Because a perfect randomizer does not exist, plan for approximately 20% more
RAPs than you have database records. The extra RAPs reduces the likelihood of
synonym chains. For example, assume you need to store 500 database records.
Then, for the root addressable area, if you use:

v One RAP per CI or block, you need 600 CIs or blocks

v Two RAPs per CI or block, you need 300 CIs or blocks

v Three RAPs per CI or block, you need 200 CIs or blocks

Because of the way your randomizer works, you decide 300 CIs or blocks with two
RAPs each works best. Assume you need to store 500 database records using
VSAM, and you have chosen to use 300 CIs in the root addressable area and two
RAPs for each CI. This decision influences your choice of CI size. Because you are
using two RAPs per CI, you expect two database records to be stored in each CI.
You know that a 2048-byte CI is not large enough to hold two database records (2 x
1336 = 2672 bytes). And you know that a 3072-byte CI is too large for two
database records of average size. Therefore, you would probably use 2048-byte
CIs and the byte limit count to ensure that on average you would store two
database records in the CI.

To determine the byte limit count:

1. First, determine the size of a logical record by subtracting CI overhead from CI
size: 2048 - 7 = 2041 bytes for the ESDS logical record size.

2. Then, determine the amount of logical record space available for data by
factoring in logical record overhead. (Remember only one logical record exists
per CI in HDAM.) In this example, logical record overhead consists of a 4-byte
FSEAP and two 4-byte RAPs: 2041 - 4 - (2 x 4) = 2029 bytes. This means you
have 2029 bytes available for storing data in each logical record in the root
addressable area.

3. Finally, determine the available space per RAP by dividing the available logical
record space by the number of RAPs per CI: 2029/2 = 1014 bytes. Therefore,
you must use a byte limit count of about 1000 bytes.

Continuing our example, you know you need 300 CIs of 2048 bytes each in the root
addressable area. Now you need to calculate how many CIs you need in the
overflow area. To do this:

v Determine the average number of bytes that will not fit in the root addressable
area. Assume a byte limit count of 1000 bytes. Subtract the byte limit count from
the average database record size: 1336 - 1000 = 336 bytes. Multiply the average
number of overflow bytes by the number of database records: 500 x 336 =
168000 bytes needed in the non-root addressable area.

v Determine the number of CIs needed in the non-root addressable area by
dividing the number of overflow bytes by the bytes in a CI available for data.
Determine the bytes in a CI available for data by subtracting CI and logical

Estimating the Minimum Size of the Database

Chapter 12. Loading Your Database 291

record overhead from CI size: 2048 - 7 - 4 = 2037 (7 bytes of CI overhead and 4
bytes for the FSEAP). Overflow bytes divided by CI data bytes is 168000/2037 =
83 CIs for the overflow area.

You have estimated you need a minimum of 300 CIs in the root addressable area
and a minimum of 83 CIs in the non-root addressable area.

Secondary Index: Determining the Amount of Space Needed
Calculating space for a secondary index is similar to calculating space for a HISAM
KSDS. The difference is that no logical record overhead exists in which factor. One
index record is stored in one logical record, and multiple logical records can be
stored in one CI or block.

Step 4. Determine the Number of Blocks or CIs Needed for Free Space
In HDAM and HIDAM databases, you can allocate free space when your database
is initially loaded. Free space is explained in “Chapter 4. Designing a Fast Path
Database” on page 33, “Specifying Free Space”. Free space can only be allocated
for an HD VSAM ESDS or OSAM data set. Do not confuse the free space
discussed here with the free space you can allocate for a VSAM KSDS using the
DEFINE CLUSTER command.

To calculate the total number of CIs or blocks you need to allocate in the database,
you can use the following formula:
A = B x fbff x 100

fbff-1 100 - fspf

where:

A = The total number of CIs or blocks needed including free space

B = The number of blocks or CIs in your database

fbff = How often you are leaving a block or CI in the database
empty for free space (what you specified in
fbff operand in the DBD)

fspf = the minimum percentage of each block or CI you are leaving
as free space (what you specified in the fspf
operand in the DBD)

Step 5. Determine the Amount of Space Needed for Bit Maps
In HDAM and HIDAM databases, you need to add the amount of space required for
bit maps to your calculations. Bit maps are explained in “Chapter 4. Designing a
Fast Path Database” on page 33 under “General Format of HD Databases and Use
of Special Fields”. To calculate the number of bytes needed for bit maps in your
database, you can use the following formula:
A = D

(B-C) x 8

where:

A = The number of bit map blocks or CIs you need for the database.

B = The CI or block size you have specified, in bytes, minus 4.
Four is subtracted from the CI or block size because each CI

Estimating the Minimum Size of the Database

292 IMS/ESA V6 Admin Guide: DB

or block has a 4-byte FSEAP.

C = The number of RAPs you specified for a CI or block, times 4.
The number of RAPs is multiplied by 4 because each RAP is
bytes long.

(B - C) is multiplied by 8 in the formula to arrive at the total
number of bits that will be available in the CI or block for
the bit map.

D = The number of CIs or blocks in your database.

You need to add the number of CIs or blocks needed for bit maps to your space
calculations.

Allocating Data Sets
Once you have determined how much space you will need for your database, you
can allocate data sets and then load your database. VSAM data sets can be
allocated using the DEFINE CLUSTER command. Use of this command is described in
MVS/DFP Access Method Services for VSAM Catalog.·

Attention: If you plan to use the Database Image Copy 2 utility to take image
copies of your database, the data sets must be allocated on hardware that supports
the DFSMS concurrent copy function.

When loading databases that contain logical relationships and/or secondary
indexes, DL/I writes a control record to a work file (DFSURWF1). This work file
must also be allocated and in the JCL.

All other data sets are allocated using normal MVS JCL. You can use the MVS
program IEFBR14 to preallocate data sets, except when the database is an MSDB.
For MSDBs, you should use the MVS program IEHPROGM.

Allocating OSAM Data Sets
At the time the data set is loaded, you should use JCL to allocate OSAM data sets.
This mode of allocation can be for single or multiple volumes, using the SPACE
parameter.

If the installation control of direct-access storage space and volumes require that
the OSAM data sets be pre-allocated, or if a message queue data set requires
more than one volume, the OSAM data sets might be pre-allocated.

Observe the following restrictions when you preallocate with any of the accepted
methods:

v DCB parameters should not be specified.

v Secondary allocation must be specified for all volumes if the data set will be
extended beyond the primary allocation.

v Secondary allocation must be specified for all volumes in order to write to
volumes pre-allocated but not written to by initial load or reload processing.

v Secondary allocation is not allowed for queue data sets because queue data sets
are not extended beyond their initial or pre-allocated space quantity. However,
queue data sets can have multivolume allocation.

Estimating the Minimum Size of the Database

Chapter 12. Loading Your Database 293

v If the OSAM data set will be cataloged, use IEHPROGM or Access Method
Services to ensure that all volumes are included in the catalog entry.

When a multiple-volume data set is pre-allocated, you should allocate extents on all
the volumes to be used. The suggested method of allocation is to have one
IEFBR14 utility step for each volume on which space is desired. Do not use
IEFBR14 and specify a DD card with a multivolume data set, because this allocates
an extent on only the first volume.

Restriction: Do not use this technique to allocate multi-volume OSAM databases
on which you intend to use the Image Copy 2 utility (DFSUDMT0). All multi-volume
databases on which the Image Copy 2 utility is used must be allocated using the
standard DFP techniques.

Example of Allocating an OSAM Data Set

Cautions When Allocating OSAM Data Sets
1. Pre-allocating more volumes for OSAM data set extents than are used during

initial load or reload processing might cause the following condition to occur:

If the initial load or reload step did not result in the data being written to the
last volume of the pre-allocated data set, and secondary allocation was not
specified during data set pre-allocation, then any attempt to extend the data
set beyond the last volume written to at initial load or reload time causes an
abend.

2. It is recommended that you not reuse multivolume OSAM data sets without first
scratching the data set and then reallocating the space. Failure to do this might
cause an invalid EOF mark to be left in the DSCB of the last volume of the data
set when the data set is:

a. First reused by an IMS utility (such as the Unload/Reload utility used in
database reorganization).

b. Then opened by OSAM for normal processing.

For example, a data set might initially be allocated on three volumes, with the
EOF mark on the third volume. However, after the reorganization utility is run,
the data set might need only the first two volumes. Therefore, the new EOF
mark is placed on the second volume. After reorganization, when the data set is
opened by OSAM for normal processing, OSAM checks the last volume’s DSCB
for an EOF mark. When OSAM finds the EOF in the third volume, it inserts new
data after the old EOF mark in the third volume instead of inserting data after
the EOF mark created by the reorganization utility in the second volume.

//OSAMALLO JOB A,OSAMEXAMPLE
//S1 EXEC PGM=IEFBR14
//SYSPRINT DD SYSOUT=A
//EXTENT1 DD VOL=SER=AAAAAA,SPACE=(CYL,(20,5)),UNIT=3390,
// DSN=OSAM.SPACE,DISP=(,KEEP)
//S2 EXEC PGM=IEFBR14
//SYSPRINT DD SYSOUT=A
//EXTENT2 DD VOL=SER=BBBBBB,SPACE=(CYL,(30,5)),UNIT=3390,
// DSN=OSAM.SPACE,DISP=(,KEEP)

.

.

.
//LAST EXEC PGM=IEFBR14
//SYSPRINT DD SYSOUT=A
//EXTENTL DD VOL=SER=LLLLLL,SPACE=(CYL,(30,5)),UNIT=3390,
// DSN=OSAM.SPACE,DISP=(,KEEP)

Allocating Data Sets

294 IMS/ESA V6 Admin Guide: DB

|
|
|
|

Subsequent processing by another utility such as the Image Copy utility uses
the EOF mark set by the reorganization utility on the second volume and
ignores new data inserted by OSAM on volume three.

3. When loading this database, the order of the DD cards determines the order in
which the data is loaded

4. If you intend to use the Image Copy 2 utility (DFSUDMT0) to back up and
restore multi-volume databases, they must be allocated using the standard DFP
techniques and not with the method recommended in “Allocating OSAM Data
Sets” on page 293.

Writing a Load Program
After you have determined how much space your database requires and allocated
data sets for it, you can load the database.

The Load Process
Loading the database is done using an initial load program. Initial load programs
must be batch programs, since you cannot load a database with an online
application program. It is your responsibility to write this program.

Basically, an initial load program reads an existing file containing your database
records. Using the DBD, which defines the physical characteristics of the database,
and the load PSBs (see Figure 135 on page 297), the load program builds
segments for a database record and inserts them into the database in hierarchic
order. If the data to be loaded into the database already exists in one or more files
(see Figure 136 on page 298), merge and sort the data, if necessary, so that it is
presented to the load program in correct sequence. Also, if you plan to merge
existing files containing redundant data into one database, delete the redundant
data, if necessary, and correct any data that is wrong.

After you have defined the database, you load it by writing an application program
that uses the ISRT call. An initial load program builds each segment in the
program’s I/O area, then loads it into the database by issuing an ISRT call for it.
ISRT calls are the only DL/I requests allowed when you specify PROCOPT=L in the
PCB. The only time you use the “L” option is when you initially load a database.
This option is valid only for batch programs.

Recommendation: If a user load program using PROCOPT=L|LS is running in a
DLI or DBB region, DBRC authorization is required for all databases logically
related to the one being loaded.

The FIRST, LAST, and HERE insert rules do not apply when you are loading a
database, unless you are loading an HDAM database. When you are loading a
HDAM database, the rules determine how root segments with non-unique sequence
fields are ordered. If you are loading a database using HSAM, the same rules
apply.

Recommendation: Load programs do not need to issue checkpoints.

Most comprehensive databases are loaded in stages by segment type or by groups
of segment types. Because there are usually too many segments to load using only
one application program, you need several programs to do the loading. Each load
program after the first load program is technically an “add” program, not a load
program. Do not specify “L” as the processing option in the PCB for add programs.
You should review any add type of load program written to load a database to

Allocating Data Sets

Chapter 12. Loading Your Database 295

|
|
|
|

ensure that the program’s performance will be acceptable; it usually takes longer to
add a group of segments than to load them.

For HSAM, HISAM, and HIDAM, the root segments that the application program
inserts must be pre-sorted by the key fields of the root segments. The dependents
of each root segment must follow the root segment in hierarchic sequence, and
must follow key values within segment types. In other words, you insert the
segments in the same sequence in which your program would retrieve them if it
retrieved in hierarchic sequence (children after their parents, database records in
order of their key fields).

If you are loading an HDAM database, you do not need to pre-sort root segments
by their key fields.

When you load a database:

v If a loaded segment has a key, the key value must be in the correct location in
the I/O area.

v When you load a logical child segment, the I/O area must contain the logical
parent’s concatenated key, followed by the logical child segment to be inserted.

v After issuing an ISRT call, the current position is just before the next available
space following the last segment successfully loaded. The next segment you load
will be placed in that space.

Status Codes for Load Programs
If the ISRT call is successful, DL/I returns a blank status code for the program. If
not, DL/I returns one of these status codes:

LB The segment you are trying to load already exists in the database. DL/I only
returns this status code for segments with key fields.

In a call-level program, you should transfer control to an error routine.

LC The segment you are trying to load is out of key sequence.

LD No parent exists for this segment. This status code usually means that the
segment types you are loading are out of sequence.

LE In an ISRT call with multiple SSAs, the segments named in the SSAs are
not in their correct hierarchic sequence.

V1 You have supplied a variable-length segment whose length is invalid.

Using SSAs in a Load Program
When you are loading segments into the database, you do not need to worry about
position, because DL/I inserts one segment after another. The most important part
of loading a database is the order in which you build and insert the segments.

The only SSA you must supply is the unqualified SSA giving the name of the
segment type you are inserting.

Because you do not need to worry about position, you need not use SSAs for the
parents of the segment you are inserting. If you do use them, be sure they contain
only the equal (EQ, =b, or b=) relational operator. You must also use the key field of
the segment as the comparative value.

For HISAM and HIDAM, the key X'FFFF' is reserved for IMS. IMS returns a status
code of LB if you try to insert a segment with this key.

Writing a Load Program

296 IMS/ESA V6 Admin Guide: DB

Loading a Sequence of Segments with the D Command Code
You can load a sequence of segments in one call by concatenating the segments in
the I/O area and supplying DL/I with a list of unqualified SSAs. You must include
the D command code with the first SSA. The sequence that the SSAs define must
lead down the hierarchy, with each segment in the I/O area being the child of the
previous segment.

Two Types of Initial Load Program
Two types of initial load programs exist: basic and restartable. The basic program
must be restarted from the beginning if problems occur during execution. The
restartable program can be restarted at the last checkpoint taken before problems
occurred. Restartable load programs must be run under control of the Utility Control
Facility (UCF) and require VSAM as the access method. The following sections
describe both types of load programs.

Figure 135 on page 297 shows the load process.

Figure 136 on page 298 illustrates loading a database using existing files.

Figure 135. The Load Process

Writing a Load Program

Chapter 12. Loading Your Database 297

Basic Initial Load Program
You should write a basic initial load program (one that is not restartable) when the
volume of data you need to load is not so great that you would be seriously set
back if problems occurred during program execution. If problems do occur, the
basic initial load program must be rerun from the beginning.

Figure 137 on page 299 shows the logic for developing a basic initial load program.
Following Figure 137 is a sample load program (Figure 138) that satisfies the basic
IMS database loading requirements. A sample program showing how this can be
done with the Utility Control Facility is also provided.

Fast Path Data Entry Databases (DEDBs) cannot be loaded in a batch job as can
DL/I databases. DEDBs are first initialized by the DEDB Initialization Utility and then
loaded by a user-written Fast Path application program that executes typically in a
BMP region. See IMS/ESA Utilities Reference: Database Managerfor a description
of how DEDBs are loaded.

Fast Path Main Storage Databases (MSDBs) are not loaded until the IMS control
region is initialized. These databases are then loaded by the IMS start-up procedure
when the following requirements are met:

v The MSDB= parameter on the EXEC Statement of Member Name IMS specifies
a one-character suffix to DBFMSDB in IMS.PROCLIB.

v The member contains a record for each MSDB to be loaded.

The record contains a record for each MSDB, the number of segments to be
loaded, and an optional “F” which indicates that the MSDB is to be fixed in
storage. An example is
DBD=MSDB0001,NBRSEGS=200[,F]

Figure 136. Loading a Database Using Existing Files

Writing a Load Program

298 IMS/ESA V6 Admin Guide: DB

If the “F” is omitted, the MSDB can be paged.

For a description of the record format and the DBD keyword parameters, see the
section “Member Name IMS” in IMS/ESA Installation Volume 2: System
Definition and Tailoring.

v A sequential data set, part of a generation data group (GDG) with dsname
IMS.MSDBINIT(0), is generated.

This data set can be created by a user-written program or by using the INSERT
function of the MSDB Maintenance Utility. Records in the data set are sequenced
by MSDB name, and within MSDBs by key. (For a description of the record
format and information on how to use this utility, see IMS/ESA Utilities Reference:
Database Manager.)

Figure 137. Basic Initial Load Program Logic

Writing a Load Program

Chapter 12. Loading Your Database 299

Restartable Initial Load Program
You should write a restartable initial load program (one that can be restarted from
the last checkpoint taken) when the volume of data you need to load is great
enough that you would be seriously set back if problems occurred during program
execution. If problems occur and your program is not restartable, the entire load
program has to be rerun from the beginning.

DLITCBL START
PRINT NOGEN
SAVE (14,12),,LOAD1.PROGRAM SAVE REGISTERS
USING DLITCBL,10 DEFINE BASE REGISTER
LR 10,15 LOAD BASE REGISTER
LA 11,SAVEAREA PERFORM
ST 13,4(11) SAVE
ST 11,8(13) AREA
LR 13,11 MAINT
L 4,0(1) LOAD PCB BASE REGISTER
STCM 4,7,PCBADDR+1 STORE PCB ADDRESS IN CALL LIST
USING DLIPCB,4 DEFINE PCB BASE REGISTER
OPEN (LOAD,(INPUT)) OPEN LOAD DATA SOURCE FILE

LOOP GET LOAD,CARDAREA GET SEGMENT TO BE INSERTED
INSERT CALL CBLTDLI,MF=(E,DLILINK) INSERT THE SEGMENT

AP SEGCOUNT,=P'1' INCREMENT SEGMENT COUNT
CLC DLISTAT,=CL2' ' WAS COMPLETION NORMAL?
BE LOOP YES - KEEP GOING

ABEND ABEND 8,DUMP INVALID STATUS
EOF WTO 'DATABASE 1 LOAD COMPLETED NORMALLY'

UNPK COUNTMSG,SEGCOUNT UNPACK SEGMENT COUNT FOR WTO
OI COUNTMSG+4,X'F0' MAKE SIGN PRINTABLE
WTO MF=(E,WTOLIST) WRITE SEGMENT COUNT
CLOSE (LOAD) CLOSE INPUT FILE
L 13,4(13) UNCHAIN SAVE AREA
RETURN (14,12),RC=0 RETURN NORMALLY
LTORG

SEGCOUNT DC PL3'0'
DS 0F

WTOLIST DC AL2(LSTLENGT)
DC AL2(0)

COUNTMSG DS CL5
DC C' SEGMENTS PROCESSED'

LSTLENGT EQU (*-WTOLIST)
DLIFUNC DC CL4'ISRT' FUNCTION CODE
DLILINK DC A(DLIFUNC) DL/I CALL LIST
PCBADDR DC A(0)

DC A(DATAAREA)
DC X'80',AL3(SEGNAME)

CARDAREA DS 0CL80 I/O AREA
SEGNAME DS CL9
SEGKEY DS 0CL4
DATAAREA DS CL71
SAVEAREA DC 18F'0'
LOAD DCB DDNAME=LOAD1,DSORG=PS,EODAD=EOF,MACRF=(GM),RECFM=FB
DLIPCB DSECT , DATABASE PCB
DLIDBNAM DS CL8
DLISGLEV DS CL2
DLISTAT DS CL2
DLIPROC DS CL4
DLIRESV DS F
DLISEGFB DS CL8
DLIKEYLN DS CL4
DLINUMSG DS CL4
DLIKEYFB DS CL12

END

Figure 138. Sample Load Program

Writing a Load Program

300 IMS/ESA V6 Admin Guide: DB

Restartable load programs differ from basic load programs in their logic. Figure 139
on page 302 shows the logic for developing a restartable initial load program. If you

already have a basic load program, usually only minor changes are required to
make it restartable. The basic program must be modified to recognize when restart
is taking place, when WTOR requests to stop processing have been made, and
when checkpoints have been taken.

Detailed guidance information on what must be done to run a restartable load
program under the control of UCF is contained in IMS/ESA Utilities Reference:
Database Manager.

To make your initial database load program restartable under UCF, consider the
following points when it is being planned and written.

v If a program is being restarted, the PCB status code will contain a UR prior to
the issuance of the first DL/I call. The key feedback area will contain the fully
concatenated key of the last segment inserted prior to the last UCF checkpoint
taken. (If no checkpoints were taken prior to the failure, this area will contain
binary zeros.)

v The UCF does not checkpoint or reposition user files. When restarting, it is the
user’s responsibility to reposition all such files.

v When restarting, the first DL/I call issued must be an insert of a root segment.

For HISAM and HIDAM Index databases, the restart will begin with a GN and a
VSAM ERASE sequence to reinsert the higher keys. The resume operation then
takes place. Space in the KSDS is reused (recovered) but not in the ESDS.

For HDAM, the data will be compared if the root sequence field is unique and a
root segment insert is done for a segment that already exists in the database
because of segments inserted after the checkpoint. If the segment data is the
same, the old segment will be overlaid and the dependent segments will be
dropped since they will be reinserted by a subsequent user/reload insert. This
occurs only until a non-duplicate root is found. Once a segment with a new key
or with different data is encountered, LB status codes will be returned for any
subsequent duplicates. Therefore, space is reused for the roots, but lost for the
dependent segments.

For HDAM with non-unique keys, any root segments that were inserted after the
checkpoint at which the restart was made will remain in the database. This is
also true for their dependent segments.

v When the stop request is received, UCF will take a checkpoint just prior to
inserting the next root. If the application program fails to terminate, it will be
presented the same status code at each of the following root inserts until normal
termination of the program.

v For HISAM databases, the RECOVERY option must be specified. For HD
organizations, either RECOVERY or SPEED can be defined to Access Method
Services.

v UCF checkpoints are taken when the checkpoint count (CKPNT=) has expired
and a root insert has been requested. The count refers to the number of root
segments inserted and the checkpoint is taken immediately prior to the insertion
of the root.

Writing a Load Program

Chapter 12. Loading Your Database 301

Figure 139. Restartable Initial Load Program Logic

Writing a Load Program

302 IMS/ESA V6 Admin Guide: DB

DLITCBL START
PRINT NOGEN
SAVE (14,12),,LOAD1.PROGRAM SAVE REGISTERS
USING DLITCBL,10 DEFINE BASE REGISTER
LR 10,15 LOAD BASE REGISTER
LA 11,SAVEAREA PERFORM
ST 13,4(11) SAVE
ST 11,8(13) AREA
LR 13,11 MAINT
L 4,0(1) LOAD PCB BASE REGISTER
STCM 4,7,PCBADDR+1 STORE PCB ADDRESS IN CALL LIST
USING DLIPCB,4 DEFINE PCB BASE REGISTER
OPEN (LOAD,(INPUT)) OPEN LOAD DATA SOURCE FILE
CLC DLISTAT,=C'UR' IS THIS A RESTART?
BNE NORMAL NO - BRANCH
CLC DLIKEYFB(4),=X'00000000' IS KEY FEEDBACK AREA ZERO?
BE NORMAL YES - BRANCH

RESTART WTO 'RESTART LOAD PROCESSING FOR DATABASE 1 IS IN PROCESS'
RLOOP GET LOAD,CARDAREA GET A LOAD RECORD

CLC SEGNAME(8),=CL8'SEGMA' IS THIS A ROOT SEGMENT RECORD?
BNE RLOOP NO - KEEP LOOKING
CLC DLIKEYFB(4),SEGKEY IS THIS THE LAST ROOT INSERTED?
BNE RLOOP NO - KEEP LOOKING
B INSERT GO DO IT

NORMAL WTO 'INITIAL LOAD PROCESSING FOR DATABASE 1 IS IN PROCESS'
LOOP GET LOAD,CARDAREA GET SEGMENT TO BE INSERTED
INSERT CALL CBLTDLI,MF=(E,DLILINK) INSERT THE SEGMENT

AP SEGCOUNT,=P'1' INCREMENT SEGMENT COUNT
CLC DLISTAT,=CL2' ' WAS COMPLETION NORMAL?
BE LOOP YES - KEEP GOING
CLC DLISTAT,=CL2'UC' HAS CHECKPOINT BEEN TAKEN?
BNE POINT1 NO - KEEP CHECKING

POINT0 WTO 'UCF CHECKPOINT TAKEN FOR LOAD 1 PROGRAM'
UNPK COUNTMSG,SEGCOUNT UNPACK SEGMENT COUNT FOR WTO
OI COUNTMSG+4,X'F0' MAKE SIGN PRINTABLE
WTO MF=(E,WTOLIST) WRITE SEGMENT COUNT
B LOOP NO - KEEP GOING

POINT1 CLC DLISTAT,=CL2'US' HAS OPERATOR REQUESTED STOP?
BNE POINT2 NO - KEEP CHECKING
B LOOP KEEP GOING

POINT2 CLC DLISTAT,=CL2'UX' COMBINED CHECKPOINT AND STOP?
BNE ABEND NO - GIVE UP
WTO 'LOAD1 PROGRAM STOPPING PER OPERATOR REQUEST'
B RETURN8

ABEND ABEND 8,DUMP INVALID STATUS
EOF WTO 'DATABASE 1 LOAD COMPLETED NORMALLY'

UNPK COUNTMSG,SEGCOUNT UNPACK SEGMENT COUNT FOR WTO
OI COUNTMSG+4,X'F0' BLAST SIGN
WTO MF=(E,WTOLIST) WRITE SEGMENT COUNT
CLOSE (LOAD) CLOSE INPUT FILE
L 13,4(13) UNCHAIN SAVE AREA
RETURN (14,12),RC=0 RETURN NORMALLY

RETURN8 WTO 'DATABASE 1 LOAD STOPPING FOR RESTART'
UNPK COUNTMSG,SEGCOUNT UNPACK SEGMENT COUNT FOR WTO
OI COUNTMSG+4,X'F0' BLAST SIGN
WTO MF=(E,WTOLIST) WRITE SEGMENT COUNT
CLOSE (LOAD) CLOSE INPUT FILE
L 13,4(13) UNCHAIN SAVE AREA
RETURN (14,12),RC=8 RETURN AS RESTARTABLE
LTORG

Figure 140. Sample Restartable Initial Load Program (Part 1 of 2)

Writing a Load Program

Chapter 12. Loading Your Database 303

JCL for the Initial Load Program
Following is the JCL you will need to initially load your database. The //DFSURWF1
DD statement is present only if a logical relationship or secondary index exists.

Loading a HISAM Database
Segments in a HISAM database are stored in the order in which you present them
to the load program. You must present all occurrences of the root segment in
ascending key sequence and all dependent segments of each root in hierarchic
sequence. PROCOPT=L (for load) must be specified in the PCB.

SEGCOUNT DC PL3'0'
DS 0F

WTOLIST DC AL2(LSTLENGT)
DC AL2(0)

COUNTMSG DS CL5
DC C' SEGMENTS PROCESSED'

LSTLENGT EQU (*-WTOLIST)
DLIFUNC DC CL4'ISRT' FUNCTION CODE
DLILINK DC A(DLIFUNC) DL/I CALL LIST
PCBADDR DC A(0)

DC A(DATAAREA)
DC X'80',A13(SEGNAME)

CARDAREA DS 0CL80 I/O AREA
SEGNAME DS CL9
SEGKEY DS 0CL4
DATAAREA DS CL71
SAVEAREA DC 18F'0'
STOPNDG DC X'00'
LOAD DCB DDNAME=LOAD1,DSORG=PS,EODAD=EOF,MACRF=(GM),RECFM=FB
DLIPCB DSECT DATABASE PCB
DLIDBNAM DS CL8
DLISGLEV DS CL2
DLISTAT DS CL2
DLIPROC DS CL4
DLIRESV DS F
DLISEGFB DS CL8
DLIKEYLN DS CL4
DLINUMSG DS CL4
DLIKEYFB DS CL12

END

Figure 140. Sample Restartable Initial Load Program (Part 2 of 2)

// EXEC PGM=DFSRRC00,PARM='DLI,your initial load program name,
// your PSB name'
//DFSRESLB DD references an authorized library that contains IMS

SVC modules
//STEPLIB DD references library that contains your load program
// DD DSN=IMS.RESLIB
//IMS DD DSN=IMS.PSBLIB,DISP=SHR
// DD DSN=IMS.DBDLIB,DISP=SHR
//DFSURWF1 DD DCB=(RECFM=VB,LRECL=300,
// BLKSIZE=(you must specify),
// DSN=WF1,DISP=(MOD,PASS)
//DBNAME DD references the database data set to be

initially loaded or referenced by
the initial load program

//INPUT DD input to your initial load program
//DFSVSAMP DD input for VSAM and OSAM buffers and options...

//*

Writing a Load Program

304 IMS/ESA V6 Admin Guide: DB

Loading a SHISAM Database
Segments in a SHISAM database are stored in the order in which you present them
to the load program. You must present all occurrences of the root segment in
ascending key sequence. PROCOPT=L (for load) must be specified in the PCB.

Loading a GSAM Database
GSAM databases use logical records, not segments or database records. GSAM
logical records are stored in the order in which you present them to the load
program.

Loading an HDAM Database
In an HDAM database, the user randomizing module determines where a database
record is stored, so the sequence in which root segments are presented to the load
program does not matter. All dependents of a root should follow the root in
hierarchic sequence. PROCOPT=L (for load) or PROCOPT=LS (for load segments
in ascending sequence) must be specified in the PCB.

Loading a HIDAM Database
To load a HIDAM database, you must present root segments in ascending key
sequence and all dependents of a root should follow the root in hierarchic
sequence. PROCOPT=LS (for load segments in ascending sequence) must be
specified in the PCB.

Loading a Database with Logical Relationships or Secondary Indexes
If you are loading a database with logical relationships or secondary indexes, you
will need to run, in addition to your load program, some combination of the
reorganization utilities. You need to run them to put the correct pointer information
in each segment’s prefix. These reorganization utilities are described in
“Chapter 14. Tuning Your Database” on page 323.

Loading Fast Path Databases
This section describes how to load MSDBs, DEDBs, and sequential dependent
segments.

Loading an MSDB
Because MSDBs reside in main storage, you do not load them as you do other IMS
databases, that is, by means of a load program that you provide. Rather, they are
loaded during system initialization, when they are read from a data set. You first
build this data set either by using a program you provide or by running the MSDB
maintenance utility. See IMS/ESA Utilities Reference: Database Manager for
information on how to use this utility. See Figure 106 on page 197 for the record
format of the MSDBINIT data set.

Loading a DEDB
You load data into a DEDB database with a load program similar to that used for
loading other IMS databases. Unlike other load programs, this program runs as a
batch message program. The following five steps are necessary to load a DEDB.

1. Calculate space requirements.

The following example assures that root and sequential dependent segment
types are loaded in one area.

Writing a Load Program

Chapter 12. Loading Your Database 305

Assume all root segments are 200 bytes long (198 bytes of data plus 2 bytes
for the length field) and that there are 850 root segments in the area. On the
average, there are 30 SDEP segments per record. Each is 150 bytes long (148
bytes of data and a 2-byte length field). The CI size is 1024 bytes.

A. Calculate the minimum space required to hold root segments:

1024 CI length minus
21 CI control fields

____ equals amount of space for root segments
1003 and their prefixes.

1003 / 214 = 4.6 Amount of root and root prefix space
divided by length of one root with its
prefix equals the number of segments
that will fit in one CI.
DEDB segments do not span CIs.
Therefore, only four
roots will fit in a CI.

850 / 4 = 212.5 The minimum amount of space to hold
the defined number of roots to be
inserted in this area (850)
requires 213 CIs.

After choosing a UOW size, you can determine the DBD specifications for the
root addressable and independent overflow parts using the result of the above
calculation as a base.

B. Calculate the minimum space required to hold the sequential dependent
segments:

1024 CI length minus
17 CI control fields

____ equals amount of space for sequential
1007 dependents and their prefixes.

1007 / 160 = 6.2 Amount of sequential dependent and
prefix space divided by length of one
sequential dependent plus its prefix
equals the number of segments that
will fit in one CI.
Six SDEP segments will fit in a
CI.

30 / 6 = 5 CIs Minimum amount of space required to
hold 30 sequential dependent
segments from one root. For 850
roots, the minimum amount of space
required is 850 * 5 = 4250 CIs.

C. Factor into your calculations additional space to take into account:

v The “reorganization UOW”, which is the same size as a regular UOW

v Two control data CIs allocated at the beginning of the root addressable part

v One control data CI for each 120 CIs in the independent overflow part

Assuming a UOW size of 20 CIs, the minimum amount of space to be
allocated is: 213 + 4250 + 20 + 2 + 1 = 4486 CIs.

2. Set up the DBD specifications according to the above results, and execute the
DBD generation.

Loading Fast Path Databases

306 IMS/ESA V6 Admin Guide: DB

3. Allocate the VSAM cluster using VSAM Access Method Services.

The following example shows how to allocate an area that would later be
referred to as AREA1 in a DBDGEN.
DEFINE -

CLUSTER -
(NAME (AREA1) -
VOLUMES (SER123) -
NONINDEXED -
CYLINDERS (22) -
CONTROLINTERVALSIZE (1024) -
RECORDSIZE (1017) -
SPEED) -

DATA -
(NAME(DATA1) -
CATALOG (USERCATLG)

The following keywords have special significance when defining an area:

NAME The name supplied for the cluster is the name
subsequently referred to as the area name. The
name for the data component is optional.

NONINDEXED DEDB areas are non-indexed clusters.

CONTROLINTERVALSIZE The value supplied, because of a VSAM ICIP
requirement, must be 512, 1024, 2048, or 4096.

RECORDSIZE The record size is 7 less than the CI size.
These 7 bytes are used for VSAM control
information at the end of each CI.

SPEED This keyword is recommended for performance
reasons.

CATALOG This optional parameter can be used to specify
a user catalog.

4. Run the DEDB initialization utility (DBFUMIN0).

This offline utility must be run to format each area to DBD specifications. Root
addressable and independent overflow parts are allocated accordingly. The
space left in the VSAM cluster is reserved for the sequential dependent part. Up
to 240 areas can be specified in one utility run, however, the area initializations
are serialized. After the run, check the statistical information report against the
space calculation results.

5. Run the user DEDB load program.

A BMP program is used to load the DEDB. The randomizing routine used during
the loading of the DEDB might have been tailored to direct specific ranges of
data to specific areas of the DEDB.

If the load operation fails, the area must be scratched, reallocated, and
initialized.

Loading Sequential Dependent Segments
If the order of sequential dependent segments is important, you must consider the
way sequential dependents might be loaded in a DEDB. The two alternatives are:

v Add a root and its sequential dependents.

All the sequential dependents of a root are physically written together, but their
physical order does not reflect the original data entry sequence. This reflection is
not necessarily the way the application needs to view the dependent segments if
they are being used primarily as a journal of transactions.

Loading Fast Path Databases

Chapter 12. Loading Your Database 307

v Add all roots and then the sequential dependents.

This technique restores the SDEP segments to their original entry sequence
order. However, it requires a longer process, because the addition of each SDEP
segment causes the root to be accessed.

Loading Fast Path Databases

308 IMS/ESA V6 Admin Guide: DB

Chapter 13. Monitoring Your Database

About This Chapter . 309
Using the Database Monitor 310
Using Database Monitoring Aids 312

Access Method Services (LISTCAT Command) 312
HIDAM ESDS LISTCAT Report 313

Attributes Information in the LISTCAT Report 313
Statistics Information in the LISTCAT Report 315
Allocation Parameters in the LISTCAT Report 316
Volume Information in the LISTCAT Report 316
Extents Information in the LISTCAT Report 316

HDAM ESDS LISTCAT Report. 317
Statistics Information in the LISTCAT Report 317
All Other Information in the LISTCAT Report 317

HISAM or Index KSDS LISTCAT Report 317
Data Portion of Cluster Information in the LISTCAT Report 317
Attributes Information in the LISTCAT Report 317
Index Portion of Cluster Information in the LISTCAT Report 318
Attributes Information in the LISTCAT Report 318
Statistics Information in the LISTCAT Report 318
Volume Information in the LISTCAT Report 318

IEHLIST Utility (LISTVTOC Command) 319
HD Reorganization Unload Utility 319
HISAM Reorganization Unload Utility 319
DL/I Test Program . 319
Database Surveyor Utility 319
Fast Path Log Analysis Utility 320
IMS System Utilities/Database Tools 320

HD Pointer Checker Utility 320
HD Tuning Aid . 321
HDAM Physical Sequence Sort/Reload Utility 321
DEDB Pointer Checker 321

Batch Terminal Simulator. 321
IMS Monitor Summary and System Analysis Program II 321
The DL/I System Service STAT Call 322

About This Chapter
This chapter describes a number of tools and aids you can use to monitor
performance and use of space in your database:

v DB Monitor

v //DFSSTAT Reports

v AMS LISTCAT command 2

v IEHLIST 2

v HD Reorganization Unload utility (DFSURGU0)

v HISAM Reorganization Unload utility (DFSURRL0)

v DL/I Test Program (DFSDDLT0) call

v Database Surveyor utility (DFSPRSUR)

v IMS/VS System Utilities/Database Tools (DBT)

v Batch Terminal Simulator

v IMS Monitor Summary and System Analysis Program II (IMSASAP II)

© Copyright IBM Corp. 1974, 1999 309

v STAT call

Information on using the IMS Monitor is found in IMS/ESA Administration Guide:
System. (If you are sharing data, additional information about monitoring is found in
IMS/ESA Administration Guide: System under “Administration of Systems That
Share Data”.)

This chapter examines the following areas of monitoring a database:

v Using the database monitor

v Using database monitor aids.

Using the Database Monitor
The database (DB) monitor is a tool that records data about the performance of
your DL/I databases in a batch environment. The recorded data is produced in a
variety of reports. The monitor’s usefulness is twofold. First, when you run the
monitor routinely, it gives you performance data over time. By comparing this data,
you can determine whether the performance trend is acceptable. This helps you
make decisions about tuning your database and determining when it needs to be
reorganized.

The second use of the monitor is to assess how the changes you make effect
performance. Once you have accumulated reports describing normal database
processing, you can use them as a profile against which to compare the effect of
your changes. Examples of changes you might make (then test for performance)
include:

v Changes in the structure of your databases

v A change from one DL/I access method to another

v A change in database buffer pool number and size

v Changes in application program logic

In all these cases, your primary goal is probably to minimize the number of I/Os
required to perform an operation. The monitor helps you determine whether you
have met your objective.

The following example shows how to use the DB monitor:

Suppose you are performing a final test on a new or revised application. The
monitor reports show that some DL/I calls in the program, which should have
required a single I/O retrieval, actually required a large database scan involving
many I/Os. You might be able to correct this problem by making changes in the
application program logic.

The monitor itself is actually two programs, as shown in Figure 141 on page 312.

v The DB Monitor program

v The DB Monitor Report print program (program name is DFSUTR30) (A similar
set of reports describing online use can be generated by running the IMS Monitor
Report print program, whose program name is DFSUTR20.)

The DB Monitor program collects data from IMS control blocks (when DL/I is
operating) and records the data either on an independent data set or in the IMS log.

2. These two functions are supported by Fast Path but the others are not.

310 IMS/ESA V6 Admin Guide: DB

It collects data with minimum interference to the system. The monitor runs in the
same address space as the IMS job, and it can be turned on or off with the MON=
parameter in the execution JCL.

The DB Monitor Report print program is an offline program that produces reports
summarizing information collected by the DB Monitor program. It produces the
following reports:

v VSAM Buffer Pool report

v VSAM Statistics report

v Database Buffer Pool report

v Program I/O report

v DL/I Call Summary report

v Distribution Appendix report

v Monitor Overhead report

Example output of each of these reports are in the IMS/ESA Utilities Reference:
System. Each field in the reports is explained, followed by a summary of how you
can use the report. Many of these reports are also provided by the IMS Monitor,
which is described in IMS/ESA Administration Guide: System. Where the same
report is produced by both the DB and IMS Monitor, the description of the report in
the IMS/ESA Utilities Reference: System is applicable for both.

Information on operating the DB Monitor is contained in IMS/ESA Operations Guide.

When the DB Monitor is on, it remains on until the batch execution ends, requiring
some overhead. It cannot be turned on and off from the system console. To
minimize the monitor’s impact, use the DB Monitor in a single-thread test
environment rather than multi-thread application environments.

This ensures that the data gathered by the DB Monitor can be related to a
particular program.

Using the Database Monitor

Chapter 13. Monitoring Your Database 311

Using Database Monitoring Aids
You can use IBM productivity aids to help monitor your database. Except for Batch
Terminal Simulator (BTS), which cannot be used in the DBCTL environment, the
productivity aids discussed in this section can be used in the batch, DBCTL, and
DB/DC environments. For the Access Method Services LISTCAT command,
explanations of the report fields are given. For other productivity aids, brief
descriptions are given, and you are referred to sources of more detailed information
on how to use them.

Access Method Services (LISTCAT Command)
For databases using VSAM, you can use the LISTCAT command to get VSAM
cluster statistics from the VSAM catalog. This command produces an extensive
report showing much information not pertinent to DL/I database monitoring.
Therefore, unlike the information in this chapter for other monitoring aids, the
following information includes interpretive details about some of the fields of the
report. It describes the fields showing VSAM cluster attributes that affect DL/I
database performance. Refer to Figure 142 on page 314 for a sample LISTCAT ALL
report.

Figure 141. How the DB Monitor Works

Using Database Monitoring Aids

312 IMS/ESA V6 Admin Guide: DB

The first section of the LISTCAT ALL report is entitled CLUSTER. The first line of
this section lists the cluster name, which is the DSNAME that will be used in a DD
statement referencing the cluster. The components of the cluster can be defined or
allowed to default to a VSAM internal name.

In general, it is preferable to define the name of the components with a name
created by adding a suffix to the cluster name. Adding a suffix to the cluster name
will result in the catalog record for it being maintained near the cluster record. By
appending DATA or INDEX to the cluster name, it becomes more convenient for
referencing in a PRINT command, and it is easier to identify in a LISTC VOLUME.
These names are referenced in the ASSOCIATIONS section. The other fields of the
cluster section do not have a direct influence on DL/I and are not discussed here.

The following information addresses the printouts concerned with the components
of the cluster, first looking at the ESDS component of a HIDAM database. This is
followed by the differences in the ESDS of an HDAM database. The ESDS for the
HIDAM index and for secondary indexes is then discussed. The approach, in each
case, is to describe those fields of each type that are different from those described
for previous types.

HIDAM ESDS LISTCAT Report
Regarding the DATA section of the report for the ESDS (entry sequenced data set),
the HISTORY or PROTECTION PSWD fields are not addressed. The
ASSOCIATIONS field merely refers back to the cluster level.

Attributes Information in the LISTCAT Report
This section lists the attributes that have been either explicitly defined or have
defaulted values. The first of these, KEYLEN and REP, have no meaning for a DL/I
ESDS.

AVGLRECL and MAXLRECL are the defined average and maximum record lengths.
For a DL/I database component, these are always identical, indicating fixed-length
records. For an ESDS, this record length must be the CI length, less 4 bytes for the
CIDF and less 3 more for the RDF.

The defined CISIZE is found at the end of this first line. As a general practice, it is
advisable to have the DBD specifications for these values match the ones used in
the definition.

Using Database Monitoring Aids

Chapter 13. Monitoring Your Database 313

The BUFSPACE field is not used because DL/I dynamically calls for buffer creation
under shared resources and, based upon user control, input statements. The
EXCPEXIT field is not currently used by DL/I.

Figure 142. An Example of LISTCAT ALL Output

Using Database Monitoring Aids

314 IMS/ESA V6 Admin Guide: DB

CI/CA is of little importance with an ESDS except as an indicator of the frequency
of DEB or for end-of-extent checking done while sequentially processing a VSAM
data set.

Binary decision attributes are listed on the following lines. SHROPTNS are not used
by DL/I and the only concern should be that they do not degrade performance.
Option 4 is not allowed with shared resources and is therefore not valid for a DL/I
database.

The SPEED option is usually the one to use instead of RECOVERY, because DL/I
does not provide any facility for restarting a load operation.

UNIQUE or SUBALLOC specifies whether this component will stand alone or share
VSAM space with others. The UNIQUE value results in the component having an
entry in the VTOC, and it can increase the system overhead to open and close the
database. It also results in a full cylinder CA being assigned, which can be
inappropriate. SUBALLOC can also often ensure that secondary allocations are
nearby in cases where VSAM space is small relative to volume space.

ERASE/NOERASE is an installation security decision. NONINDEXED instead of
INDEXED says this cluster is an ESDS. WRITECHK/NOWRITECHK is an integrity
decision, but WRITECHK results in one additional rotation for each write.

The IMBED and REPLICATE options have no meaning with NONINDEXED. The
remaining attributes of NOREUSE and NONSPANNED must be specified for DL/I.

Statistics Information in the LISTCAT Report
This section of the report is potentially the most valuable in determining
performance values. The numbers must be used with care, since they are much
less complete than they imply, especially in the case of DL/I activity.

The first column under statistics lists record activity. Remember these are VSAM
records, not DL/I records. The REC-TOTAL value is the number of VSAM records in
the component which, in the case of a DL/I ESDS, always equals the number of CIs
used in the database. For a HIDAM database, this provides the amount of storage
required to hold the data.

An increase in this number over a period of time indicates additions to overflow in
terms of VSAM records. This information can be used as an indication of the need
to reorganize and as an indication of the effectiveness of free space.

The REC-DELETED statistics are not updated because records cannot be deleted
from an ESDS. DL/I deletes are not VSAM deletes in a HIDAM ESDS.

The REC-INSERTED value is updated only when a VSAM record is inserted in a
data set and does not include additions to the end. In an ESDS, additions are
allowed only at the end, therefore, this field is never incremented.

The REC-UPDATED value does not reflect DL/I updating activity, because DL/I
uses the shared resources macros rather than the usual VSAM macros.

REC-RETRIEVED is the number of times DL/I requested VSAM to locate a record.
This number has little to do with DL/I retrievals, but it can indicate insert positioning,
reacquiring a record during complex maintenance, or several other circumstances. It
should not be confused with physical reads or DL/I calls. In general, it has little
relevance for DL/I.

Using Database Monitoring Aids

Chapter 13. Monitoring Your Database 315

The second column of statistics is not used for ESDS except for the
FREESPC-BYTES value at the bottom of the column, which is an indication of the
space remaining in the allocation. It is the space between the end of the last VSAM
record and the end of the current allocation. It should not be confused with DL/I free
space, which is unknown to VSAM.

The third column of statistics starts off with the number of EXCPs issued against
this component. This number reflects the number of actual I/Os issued for the
component. This number can also be very helpful in determining adequacy of
buffers and causes of performance problems.

The number of EXTENTS provides information about the degree of separation of
data in the component and the amount of insert activity. More than one extent per
volume means some performance impact can exist, caused by longer than
necessary seeks. An increasing number of extents indicates the growth of the
database and warns of the need for reorganization.

Remember all counts are maintained from the creation of the cluster (through DL/I
load or reorganization, or by the Access Method Services REPRO or
EXPORT/IMPORT function) and that to determine the effect of any one run against
the database requires a before and after picture of the catalog statistics.

Allocation Parameters in the LISTCAT Report
This section describes the allocation parameters specified in the definition of the
component and the current state of the space.

The first column shows the original allocation parameters of SPACE-PRI (primary
allocation) and SPACE-SEC (secondary allocation). The second column shows the
current state of the allocation in terms of the highest byte allocated and the highest
byte used. Again, these are in terms of VSAM, not DL/I. For an ESDS, the
HI-USED-RBA is the furthest point forward in the data set used by VSAM.

Volume Information in the LISTCAT Report
This section describes the physical information about the component as it resides
on each volume. The first column contains volume device type information and is of
little use in DL/I monitoring.

The second column displays the track information. The PHYREC-SIZE is the
physical block size that underlies the CI size. Generally, the larger this value, the
better track utilization is for the component. VSAM assigns the largest allowable
value for the device that is an even smaller multiple of the CI size. A small value in
this field probably means poor disk utilization. For instance, on a 3330-1, a 512-byte
block stores 10240 bytes for each track, and a 2048-byte or 4096-byte block uses
12288 bytes for each track. The second line of the column shows the number of
these blocks that fit on a track and the third line (TRACKS/CA) shows the number
of tracks in a CA. Like the CI/CA field, this has little use in an ESDS.

The third column shows the allocation on this volume in terms of bytes and how
much of it has been used for VSAM records.

The last column shows the number of extents on this volume. Usually, for an ESDS,
this number should be 1 to ensure that seeks are minimum. This number can be
used as an indication of the need for a reorganization as secondary extents are
allocated. The EXTENT-TYPE field indicates whether this extent is data or index.

Extents Information in the LISTCAT Report
This subsection describes each of the extents on the volume for this component.

Using Database Monitoring Aids

316 IMS/ESA V6 Admin Guide: DB

The first column of each of these subsections provides the physical cylinder and
head of the allocation. With multiple extent components, it is possible to use this to
determine how badly multiple allocations have impacted seek time.

The second column shows the VSAM relative bytes assigned to this extent. The
information in this column is of little use for DL/I except for extreme debugging.

The third column, TRACKS, provides a convenient translation of cylinder and head
information into tracks.

HDAM ESDS LISTCAT Report

Statistics Information in the LISTCAT Report
The REC_TOTAL figure for HDAM is the number of CIs used (as in HIDAM), but
the interpretation is different. The number in HDAM is the sum of CIs in the root
addressable area, plus the overflow CIs, plus one for record zero. Changes in this
number will therefore reflect additions of data that could not be put into the root
addressable area. At load time, the figure reflects data excluded from the root
addressable area by the BYTES or the SCAN parameters of the DBD (or by a
packing density greater than 100%).

Other fields in the statistics, allocation, and volume areas record the same type of
information as for HIDAM ESDS data sets.

All Other Information in the LISTCAT Report
Except for the STATISTICS section, the interpretation of the LISTCAT output for an
HDAM ESDS is the same as for a HIDAM ESDS.

HISAM or Index KSDS LISTCAT Report
Information recorded for a KSDS has a much different significance than for the
HIDAM and HDAM ESDSs. In DL/I, a KSDS is used in three cases: the HISAM
database, the primary index, and the secondary index. For primary or unique
secondary index databases, the statistics listed in the data portion of the LISTCAT
are accurate. For non-unique secondary index databases, however, use LISTCAT
for the VSAM ESDS to get all the statistics for the database.

Data Portion of Cluster Information in the LISTCAT Report
For HISAM databases, the data portion of the cluster is the primary data portion of
the database. In the case of the primary and secondary indexes, the data portion of
the cluster is the index to the data of the database. This distinction must be kept in
mind.

Attributes Information in the LISTCAT Report
The attributes fields are important in the KSDS. The KEYLEN attribute is the length
of the root key for both the HISAM database and the primary index. In the case of
the secondary index, it is the sum of the lengths of the SRCH and SUBSEQ fields
(and CONST field, if used) specified in the XDFLD statement. It is the length of the
key field for this database or index as VSAM will see it.

RKP is the relative position of this key within the VSAM record, not within the DL/I
segment. Thus, for an index, the relative key position is usually 6, allowing for the
segment code, delete byte, and target pointer (if PTR=SYMB has been specified,
the RKP will be 2). For the HIDAM database, the RKP will be 6, plus the offset into
the root of the key field. An additional prefix can exist if the root is a logical parent.

Using Database Monitoring Aids

Chapter 13. Monitoring Your Database 317

AVGLRECL and MAXLRECL are always equal, because DL/I uses fixed-length
VSAM logical records. Unlike the ESDS, in the KSDS blocking usually exists.
Ideally, the logical record length is a submultiple of the CI size, minus 10 for VSAM
control information.

CISIZE is what you specify in the defines.

REPLICATE and IMBED options are reflected as specified.

Index Portion of Cluster Information in the LISTCAT Report
The catalog for the index portion of the KSDS contains information that should be
checked. Particularly, fields exist that should be checked to ensure that the data set
has the characteristics defined for it. Some performance characteristics can also be
implied from some of the values.

Attributes Information in the LISTCAT Report
The KEYLEN and REP fields are the same as for the data portion. The AVGLRECL
and MAXLRECL fields, however, do not relate to those of the data portion and,
henceforth, are not important for database monitoring.

CISIZE, however, is important. Because allocation to a VSAM subpool is done
based on CI size, the CISIZE value determines the contention with other data sets
for pool space. The value can be different from the value specified. If the size
specified is smaller than what Access Method Services considers adequate, the
size is increased with no message to the user. Failure to check this value after
allocation can result in contention between data and indexes when you had planned
to isolate the two. The problem occurs when the index and data have been
assigned small CI sizes and the CA is large. To get a small index CI, the data CI
must be enlarged, the CA reduced, or both.

The attribute NOIMBED is always present in the index list. It is irrelevant in the
index and its specification is reflected in the data portion. REPLICAT is present if
specified.

Statistics Information in the LISTCAT Report
Statistics reflects activity at the index level only. EXCPs provide an indication of
whether the index that was anticipated to be resident is resident. LEVELS provides
an indication of buffering requirements in a storage constrained system. The pool
should have at least enough buffers to hold one CI at each level.

Volume Information in the LISTCAT Report
By examining the EXTENT information, it is possible to determine the distance that
the index set has been located from the data. VSAM makes no attempt to locate
index and data adjacent to each other. Where the two coexist on the same pack, it
is usually desirable to have them adjacent or have the index centered in the data.
Centering the index in the data or getting the two adjacent to each other can only
be done in VSAM by manipulating the available space at allocation time to force the
space to occur where it is desired.

If IMBED has been specified, an extent for each CA exists in the data set in the
index.

For information about how to use the LISTCAT command, see MVS/DFP Access
Method Services for VSAM Catalog manual.

Using Database Monitoring Aids

318 IMS/ESA V6 Admin Guide: DB

IEHLIST Utility (LISTVTOC Command)
For HDAM databases using OSAM, one way to assess the need for reorganization
is to monitor the DASD volume table of contents (VTOC). The LISTVTOC command
of the IEHLIST utility prints a report showing the VTOC of the DASD (direct access
storage device) volume on which the OSAM database resides. For this purpose, the
NO EXT field in the report helps you monitor the increase in the extent number.

For information about this MVS utility, see IMS/ESA Utilities Reference: Transaction
Manager.

HD Reorganization Unload Utility
This utility unloads a specific database into a QSAM data set. You can also use it to
gather statistics that will enable you to determine whether or not to reorganize.

For information about running this utility and to see a sample of the report, see
IMS/ESA Utilities Reference: System.

HISAM Reorganization Unload Utility
This utility is designed primarily to unload a HISAM database and to create a
reorganized output usable as input to either the Database Recovery utility or the
HISAM Reload Resolution utility. In addition, you can use the printed Data Set
Group Statistics and Segment Level Statistics to monitor the need for reorganization
of the database.

For information about how to run this utility and to see a sample of the report, see
IMS/ESA Utilities Reference: System.

DL/I Test Program
This program (DFSDDLT0) is designed primarily for testing DL/I call sequences. As
a test program, it provides reports showing call execution statistics. To use it as a
monitoring aid, you can provide control statements to specify a database, establish
print options, get a log data set, and cause the programs to compare the actual
results with anticipated results.

You can use the timing function, which you can turn on and off, to get performance
information when various call sequences are run against your database. A
DFSDDLT0 report shows the elapsed time taken to perform a DL/I task and the
time-of-day of the completion of each DL/I call.

You can find more information about the DL/I Test Program (DFSDDLT0) in
IMS/ESA Application Programming: Database Manager .

The DL/I Test Program cannot be used by CICS for online or shared batch
applications but can be used for stand-alone batch programs. If used for
stand-alone batch programs, it can be useful to interpret the database performance
since it might be implemented for online or shared database programs.

Database Surveyor Utility
You can use the output of this utility to determine the need to partially reorganize
your database. You can specify the database to be surveyed and the range of keys
or blocks to be analyzed. DB Surveyor produces statistics about the blocks and
records accessed for each partition of the specified range.

Using Database Monitoring Aids

Chapter 13. Monitoring Your Database 319

To see sample reports and get information about how to run this utility
(DFSPRSUR), see IMS/ESA Utilities Reference: Database Manager.

Fast Path Log Analysis Utility
The Fast Path Log Analysis utility (DBFULTA0) prepares statistical reports for Fast
Path based on data recorded on the IMS system log. This is an offline utility and
produces five reports useful for system installation, tuning, and troubleshooting:

v A detailed listing of exception transactions

v A summary of exception detail by transaction code for MPP (message-processing
program) regions

v A summary by transaction code for MPP regions

v A summary of IFP, BMP, and CCTL transactions by PSB name or transaction
code

v A summary of the log analysis

Do not confuse this utility with the IMS Monitor or the IMS Log Transaction Analysis
utility.

For more information on CCTL transactions, refer to IMS/ESA Customization Guide.
For more information of the Fast Path Log Analysis utility, refer to IMS/ESA Utilities
Reference: System.

IMS System Utilities/Database Tools
The IMS System Utilities/Database Tools (DBT) can help you:

v Detect and repair broken databases

v Analyze detailed statistics about databases

v Model potential DBD changes without creating new databases

v Restructure databases

v Decrease reorganization time for some HDAM databases

v Reduce processor time and elapsed time required for sequential retrieval from
HDAM, HIDAM, and HISAM databases

v Perform high-speed database unloading

v Tune buffer handlers

v Produce pictorial layouts of physical and logical databases

v Produce detailed reports about DBDs and PSBs

v Verify contents in a VSAM data set against data that you supply

v Replace contents in a VSAM data set with data you supply

v Detect and report broken DEDB areas

v Analyze detailed statistics about DEDB areas

v Model potential DEDB changes without creating new databases

v Perform high-speed unloading and reloading of DEDB areas

You can use four of the utilities to help monitor your database.

HD Pointer Checker Utility
In addition to validating pointers, the pointer checker programs produce detailed
statistics about the segments and pointers in the database. This utility analyzes disk
space used and gives you reports showing free space and pointer statistics. Also,
output from this utility is used by the HD tuning aid utility to enable you to determine
the effects of changing parameters, randomizing routines, or both.

Using Database Monitoring Aids

320 IMS/ESA V6 Admin Guide: DB

HD Tuning Aid
This utility produces a map of how the HD data is actually stored throughout the
database. You can use this information and the segment and pointer statistics from
the pointer checker to optimize distribution of the data.

HDAM Physical Sequence Sort/Reload Utility
This utility sorts the sequential file that contains the unloaded database during the
reorganization of an HDAM database. This sorted file is used to make the reload
step in the reorganization process run faster. This utility can also print reports
showing statistics about database record sizes and HD randomization.

DEDB Pointer Checker
This program detects DEDB database errors and produces reports that pinpoint the
errors and locations within the database. It also creates numerous reports that aid
in the tuning of databases.

You can find information about DBT (Program Number 5685-093) in IMS System
Utilities/Database Tools (DBT) General Information Manual·

Batch Terminal Simulator
The primary purpose of the batch terminal simulator (BTS) program is to enable
testing of IMS DB Batch, TM Batch, and online application programs in an IMS
batch environment without use of teleprocessing hardware.

You can use BTS to monitor your database, because it tracks the interaction
between the database and the application program. BTS has access to every IMS
call made by the application program; therefore, it provides you detailed information
about the PCBs, SSAs, SPAs, and key feedback areas.

For details about BTS (Program Number 5668-948), see IMS/VS Batch Terminal
Simulator Program Reference and Operations Manual·

This program does not support CICS.

IMS Monitor Summary and System Analysis Program II
The IMS Monitor Summary and System Analysis Program II (IMSASAP II), a field
developed program, is a performance analysis and tuning aid for IMS database and
data communication systems.

IMSASAP II executes under the system for Generalized Performance Analysis
Reporting (GPAR). IMSASAP II processes IMS DB and IMS monitor data to provide
summary, system analysis, and program analysis level reports that assist in the
analysis of an IMS system environment.

With IMSASAP II, you can select reports and reporting options to satisfy your
requirements for database analysis, without running the DB Monitor Report print
program (DFSUTR30).

IMSASAP II (Program Number 5798-CHJ) requires GPAR (Program Number
5798-CPR). For a complete description of IMSASAP II, see IMSASAP II Program
Description/Operations Manual·

Using Database Monitoring Aids

Chapter 13. Monitoring Your Database 321

The DL/I System Service STAT Call
This DL/I system service call retrieves statistical information about the database
buffer pools. Using this call, you can get the full OSAM buffer pool information, the
full VSAM buffer subpool information, or a summary of either.

For more information about the STAT call, see IMS/ESA Application Programming:
Database Manager.

Using Database Monitoring Aids

322 IMS/ESA V6 Admin Guide: DB

Chapter 14. Tuning Your Database

About This Chapter . 324
Reorganizing the Database . 325

When Should You Reorganize? 325
Steps in Reorganizing . 325
Protecting Your Database 325
Using the Reorganization Utilities. 326

Partial Reorganization . 326
Reorganization Using UCF 326
Reorganization Without UCF 326
HISAM Reorganization Unload Utility (DFSURUL0) 329
HISAM Reorganization Reload Utility (DFSURRL0) 329
HD Reorganization Unload Utility (DFSURGU0) 330
HD Reorganization Reload Utility (DFSURGL0) 330
Database Prereorganization Utility (DFSURPR0) 331
Database Scan Utility (DFSURGS0) 332
Database Prefix Resolution Utility (DFSURG10) 333
Database Prefix Update Utility (DFSURGP0) 334
Using HISAM Unload and Reload Utilities for Secondary Indexing

Operations . 335
Utility Control Facility (DFSUCF00) 337
Database Surveyor Utility (DFSPRSUR) 337
Partial Database Reorganization Utility (DFSPRCT1) 338
Procedure for Reorganizing a HISAM Database (No Logical Relationships

or Secondary Indexes) 340
Procedure for Reorganizing an HD (HIDAM or HDAM) Database (No

Logical Relationships or Secondary Indexes) 340
Procedure for Reorganizing a Primary or Secondary Index 340
Procedure for Reorganizing a HISAM or HD Database (with Logical

Relationships or Secondary Indexes) 340
Changing DL/I Access Methods 341

Procedure for Changing from HISAM to HIDAM 341
Procedure for Changing from HISAM to HDAM 342
Procedure for Changing from HIDAM to HISAM 344
Procedure for Changing from HIDAM to HDAM 345
Procedure for Changing from HDAM to HISAM 346
Procedure for Changing from HDAM to HIDAM 347
Procedure for Changing to DEDBs 349

Changing the Hierarchic Structure 349
Changing the Sequence of Segment Types 349
Combining Segments . 350
Procedure for Changing the Hierarchic Structure 350

Changing Direct-Access Storage Devices. 351
Tuning OSAM Sequential Buffering 351

Well-Organized Database 351
Badly-Organized Database 352
Ensuring a Well-Organized Database 352

Adjusting HDAM Options . 352
Adjusting Buffers. 353

VSAM Buffers . 353
Monitoring VSAM Buffers 353
When to Adjust VSAM Buffers 353
VSAM Buffer Adjustment Options. 353

OSAM Buffers. 354

© Copyright IBM Corp. 1974, 1999 323

Procedure for Adjusting VSAM and OSAM Database Buffers 355
OSAM Sequential Buffering . 355
Procedure for Adjusting Sequential Buffers 356
Adjusting VSAM Options . 356

Procedure for Adjusting VSAM Options Specified in the OPTIONS Control
Statement . 356

Procedures for Adjusting VSAM Options Specified in the Access Method
Service DEFINE CLUSTER Command 357
Changing the FREESPACE Parameter 357
Changing the SPEED / RECOVERY Parameter 357
Changing the IMBED / NOIMBED or REPLICATE / NOREPLICATE

Parameter . 357
Adjusting OSAM Options . 358
Changing the Amount of Space Allocated. 358
Changing Operating System Access Methods 359
Changing the Number of Data Set Groups 359

About This Chapter
Tune your database either to improve performance or to better utilize database
space. This chapter introduces the reorganization utilities, which you can use tune
your database. The chapter also describes the various types of tuning changes you
can make with the reorganization utilities, as well as, when and how to make them.

This chapter examines the following aspects of database tuning:

v Reorganizing the database

v Changing DL/I access methods

v Changing the hierarchic structure

v Changing direct-access storage devices

v Tuning OSAM Sequential Buffering

v Adjusting HDAM options

v Adjusting buffers

v Adjusting VSAM options

v Adjusting OSAM options

v Changing the amount of space allocated

v Changing operating system access methods

v Changing the number of data set groups

Note the following information: First, when you tune your database, you are often
making more than a simple change to it. For example, you might need to
reorganize your database and at the same time change operating system access
methods. This chapter has procedures to guide you through making each type of
change. If you are making more than one change at a time, you should look at the
flowchart on the last page of this chapter. When used in conjunction with the
individual procedures in this chapter, the flowchart guides you in making some
types of multiple changes to the database.

Second, some of the tuning changes you make can affect the logic in application
programs. You can often use the dictionary to analyze the affect before making
changes. In addition, some changes require that you code new DBDs and PSBs. If
you initialize your changes in the dictionary, you can then use the dictionary to help
create new DBDs and PSBs.

324 IMS/ESA V6 Admin Guide: DB

If you are using data sharing, additional information about tuning is in IMS/ESA
Administration Guide: System .

Reorganizing the Database
Reorganizing a database is changing either its storage or structure.

Change storage in a database when use of storage space becomes inefficient.
Storage becomes inefficient as a database grows and parts of a database record
get widely scattered or available space for adding new records is used up. This
section emphasizes reorganizing storage in a database.

You need to change the structure of a database when changing user requirements
necessitate changes in the database design. You also need to change a database
structure when you need to use new or different options or when you have found a
more efficient way to structure the database. Structural changes to a database can
often be made using the reorganization utilities in this chapter. See “Chapter 15.
Modifying Your Database” on page 365, for information on the structural changes.

When Should You Reorganize?
You should reorganize your database when performance is becoming unacceptable.
This can happen either because segments in a database record are stored across
too many CIs or blocks, or because you are running out of free space in your
database.

The various aids that exist for monitoring a database help you determine when it is
time to reorganize your database. These aids are discussed in “Chapter 13.
Monitoring Your Database” on page 309.

Steps in Reorganizing
Three basic steps are required in reorganizing a database (when you are not
making structural changes to the database):

1. Unloading the existing database.

2. Deleting the old database space and defining new database space. (This
practice is always good, but it is only necessary if you have multiple extents or
volumes, or are using VSAM.) For VSAM, database space refers to the clusters
defined to VSAM for database data sets.

3. Reloading the database.

Protecting Your Database
When you reorganize your database, you delete it. Therefore, you should protect it
from system or reorganization failure. You can protect your existing database by
renaming the space it occupies and then defining new database space. You should
make a copy of your database as soon as it is reloaded and before any application
programs are run against it. You need a backup copy in case of system failure. You
can copy your database using the Database Image Copy utility or the Database
Image Copy 2 utility, which are described in detail in IMS/ESA Utilities Reference:
Database Manager.

Chapter 14. Tuning Your Database 325

Using the Reorganization Utilities
Utilities are supplied with the system to help you reorganize your database. These
utilities are documented in IMS/ESA Utilities Reference: Database Manager. This
section is designed to introduce you to the utilities, tell you what they do, and how
they work together.

You should know the following information about the utilities:

v The utilities cannot be used to reorganize HSAM, SHSAM, or GSAM databases.
To reorganize these databases, you must write a program to read the old
database and then create a new database.

v You are not required to use these reorganization utilities to reorganize your
database. You can write your own programs to unload and reload data. You need
to write your own programs only if you are making structural changes to your
database that cannot be done using these utilities. Information about when these
utilities can be used to make structural changes to a database is contained in
“Chapter 15. Modifying Your Database” on page 365.

v Several of the reorganization utilities can be used when initially loading a
database. They are not used to load the database but to collect and sort the
pointer information needed in a segment’s prefix. Therefore, as you read through
the utilities you will find some described as “used for initial load or
reorganization”.

The utilities can be classified into three groups, based on the type of reorganization
you plan to do:

v Partial reorganization

v Reorganization using UCF

v Reorganization without UCF

Partial Reorganization
If you are reorganizing an HD database, you can reorganize parts of it, rather than
the whole database. You would need to reorganize parts, rather than all of it, for
two reasons:

v Only parts of it need to be reorganized.

v By reorganizing only parts of it, you can break the amount of time it takes to do a
total reorganization into smaller pieces.

The utilities you use to do a partial reorganization are:

v The Database Surveyor utility, which helps you determine which parts of your
database to reorganize

v The Partial Database Reorganization utility, which does the actual reorganization

Reorganization Using UCF
Reorganization can be done using a single program, called the Utility Control
Facility (UCF), or by using various combinations of utilities. When UCF is used, it
acts as a controller, determining which of the various reorganization utilities need to
be executed and then getting them executed. Using UCF reduces the number of
JCL statements you must create and eliminates the need to sequence the various
utilities for execution. It also reduces the number of decisions operations people
must make.

Reorganization Without UCF
When you do not use UCF, reorganization of the database is done using a
combination of utilities. Which utilities you need to use, and how many, depends on
the type of database and whether it uses logical relationships or secondary indexes.

Reorganizing the Database

326 IMS/ESA V6 Admin Guide: DB

If your database does not use logical relationships or secondary indexes, you
simply run the appropriate unload and reload utilities, which are as follows:

v For HISAM databases, the HISAM Reorganization Unload utility and the HISAM
Reorganization Reload utility

v For HIDAM index databases (if reorganized separately from the HIDAM
database), the HISAM Reorganization Unload utility and the HISAM
Reorganization Reload utility

v For SHISAM, HDAM, and HIDAM databases, the HD Reorganization Unload
utility and the HD Reorganization Reload utility

If your database does use logical relationships or secondary indexes, you need to
run the HD Reorganization Unload and Reload utilities (even if it is a HISAM
database). In addition, you must run a variety of other utilities to collect, sort, and
restore pointer information from a segment’s prefix. Remember, when a database is
reorganized, the location of segments changes. If logical relationships or secondary
indexes are used, update prefixes to reflect new segment locations. The various
utilities involved in updating segment prefixes are:

v Database Prereorganization utility

v Database Scan utility

v Database Prefix Resolution utility

v Database Prefix Update utility

These utilities can also be used to resolve prefix information during initial load of
the database.

In the following discussion of the utilities, the four unload and reload utilities are
discussed first. The four utilities used to resolve prefix information are then
discussed. When reading through the utilities for the first time, you need to
understand that, if logical relationships or secondary indexes exist (requiring use of
the latter four utilities), the sequence in which operations occur looks similar to this:

You will find, for instance, that the HD Reorganization Reload utility does not just
reload the database if a secondary index or logical relationship exists. It reloads the

Reorganizing the Database

Chapter 14. Tuning Your Database 327

database using one input as a data set containing some of the prefix information
that has been collected. It then produces a data set containing more prefix
information as output from the reload. When the various utilities do their processing,
they use data sets produced by previously executed utilities and produce data sets
for use by subsequently executed utilities. When reading through the utilities, watch
the input and output data set names, to understand what is happening.

Figure 143 shows you the sequence in which utilities are executed if logical
relationships or secondary indexes exist.

Figure 143. Steps in Reorganizing When Logical Relationships or Secondary Indexes Exist

Reorganizing the Database

328 IMS/ESA V6 Admin Guide: DB

HISAM Reorganization Unload Utility (DFSURUL0)
Figure 144 shows the input to and output from the HISAM Reorganization Unload
utility.

You use the HISAM Unload utility to unload a HISAM database or HIDAM index
database. (SHISAM databases are unloaded using the HD Reorganization Unload
utility.) If your database uses secondary indexes, you also use the HISAM unload
utility (later in the reorganization process) to perform a variety of other operations
associated with secondary indexes.

HISAM Reorganization Reload Utility (DFSURRL0)
Figure 145 shows the input to and output from the HISAM Reorganization Reload
utility.

Figure 144. HISAM Reorganization Unload Utility (DFSURUL0)

Figure 145. HISAM Reorganization Reload Utility (DFSURRL0)

Reorganizing the Database

Chapter 14. Tuning Your Database 329

You use the HISAM reload utility to reload a HISAM database. (SHISAM databases
are reloaded using the HD Reorganization Reload utility.) You also use the HISAM
reload utility to reload the primary index of a HIDAM database. If your databases
use secondary indexes, you use the HISAM reload utility (later in the reorganization
process) to perform a variety of other operations associated with secondary
indexes.

HD Reorganization Unload Utility (DFSURGU0)
Figure 146 shows the input to and output from the HD Reorganization Unload utility.

You use the HD Unload utility to unload:

HDAM, HIDAM, or SHISAM databases

HISAM databases that use secondary indexes

HISAM databases that use symbolic pointers in a logical relationship

HISAM databases without segment/edit compression that are being converted to
HISAM databases with segment/edit compression.

HD Reorganization Reload Utility (DFSURGL0)
Figure 147 shows the input to and output from the HD Reorganization Reload utility.

Figure 146. HD Reorganization Unload Utility (DFSURGU0)

Reorganizing the Database

330 IMS/ESA V6 Admin Guide: DB

You use the HD Reload utility to reload:

v HDAM, HIDAM, or SHISAM databases

v HISAM databases that use logical relationships or secondary indexes

v HISAM databases without segment/edit compression that are being converted to
HISAM databases with segment/edit compression

If logical relationships or secondary indexes exist in the database being reloaded,
the DFSURCDS control data set created by the Prereorganization utility is used as
one input to the HD Reload utility. The DFSURCDS control data set contains
information needed to resolve secondary index or logical relationship pointers.

When logical relationships or secondary indexes exist, the HD Reload utility
produces as output the DFSURWF1 work data set. DFSURCDS identifies the
information that will be collected on DFSURWF1.

The DFSURWF1 work data set will become input to the Database Prefix Resolution
utility. Note in Figure 147 that, if the database being reloaded has a primary index, it
is reloaded automatically when the main database is reloaded. A HIDAM index
database can also be reorganized as a separate operation using the HISAM unload
and reload utilities.

Database Prereorganization Utility (DFSURPR0)
Figure 148 shows the input to and output from the Database Prereorganization
utility.

Figure 147. HD Reorganization Reload Utility (DFSURGL0)

Reorganizing the Database

Chapter 14. Tuning Your Database 331

You use the Database Prereorganization utility when:

v A database to be initially loaded or reorganized has secondary indexes or logical
relationships

v A database not being initially loaded or reorganized contains segments involved
in logical relationships with databases that are being loaded or reorganized

The Database Prereorganization utility produces the DFSURCDS control data set,
which contains information about what pointers need to be resolved later if
secondary indexing or logical relationships exist. The DFSURCDS control data set
produced by the Prereorganization utility is used as input to the following:

v The Database Scan utility, if that utility needs to be run

v The HD Reload utility, if secondary indexing or logical relationships exist

v The Database Prefix Resolution utility, after the database is loaded or reloaded

The Prereorganization utility also produces a list of which databases not being
initially loaded or reorganized contain segments involved in logical relationships with
the database that is being initially loaded or reorganized.

This utility is always run before the database is loaded (for initial load) or reloaded
(for reorganization).

Database Scan Utility (DFSURGS0)
Figure 149 shows the input to and output from the Database Scan utility.

Figure 148. Database Prereorganization Utility (DFSURPR0)

Reorganizing the Database

332 IMS/ESA V6 Admin Guide: DB

You use the Database Scan utility to scan databases that are not being initially
loaded or reorganized but contain segments involved in logical relationships with
databases that are being initially loaded or reorganized. For input, the utility uses
the DFSURCDS control data set created by the Prereorganization utility. For output,
the utility produces the DFSURWF1 work data set, which contains prefix information
needed to resolve logical relationships. The DFSURWF1 work data set is used as
input to the Database Prefix Resolution utility.

This utility is always run before the database is loaded (for initial load) or reloaded
(for reorganization).

Database Prefix Resolution Utility (DFSURG10)
Figure 150 shows the input to and output from the Database Prefix Resolution
utility.

Figure 149. Database Scan Utility (DFSURGS0)

Reorganizing the Database

Chapter 14. Tuning Your Database 333

You use the Prefix Resolution utility to accumulate and sort the information that has
been put on DFSURWF1 work data sets up to this point in the load or reload
process. The various work data sets that could be input to this utility are:

v The DFSURCDS control data set produced by the Prereorganization utility

v The DFSURWF1 work data set produced by the scan utility

v The DFSURWF1 work data set produced by the HD Reload utility

The DFSURWF1 work data sets must be concatenated to form an input data set for
the Prefix Resolution utility. The name of the input data set is SORTIN.

The Prefix Resolution utility uses the MVS sort/merge programs to sort the
information that has been accumulated. For output, the utility produces the
DFSURWF3 work data set, which contains the sorted prefix information needed to
resolve logical relationships. The DFSURWF3 data set will become input to the
Database Prefix Update utility.

If secondary indexes exist, the utility produces the DFSURIDX work data set, which
contains the information needed to create a new secondary index or update a
shared secondary index database. The DFSURIDX work data set is used as input
to the HISAM unload utility. The HISAM unload utility formats the secondary index
information before the HISAM reload utility creates a secondary index or updates a
shared secondary index database.

This utility is always run after the database is loaded (for initial load) or reloaded
(for reorganization).

Database Prefix Update Utility (DFSURGP0)
Figure 151 shows the input to and output from the Database Prefix Update utility.

Figure 150. Database Prefix Resolution Utility (DFSURG10)

Reorganizing the Database

334 IMS/ESA V6 Admin Guide: DB

You use the Prefix Update utility to update the prefix of each segment whose prefix
was affected by the initial loading or reorganization of the database. The prefix
fields that are updated include the logical parent, logical twin, and logical child
pointer fields, and the counter fields for logical parents. The Prefix Update utility
uses as input the DFSURWF3 data set created by the Prefix Resolution utility.

This utility is always run after the database is loaded (for initial load) or reloaded
(for reorganization) and after the Prefix Resolution utility has been run.

Using HISAM Unload and Reload Utilities for Secondary Indexing
Operations
In addition to using the HISAM unload and reload utilities to unload and reload a
database, you can also use them to:

v Build a secondary index database

v Merge a secondary index into a shared secondary index database

v Replace a secondary index in a shared secondary index database

v Extract a secondary index from a shared secondary index database

Each of these operations is done separately. That is, none of them can be done in
conjunction with running the HISAM unload and reload utilities to unload or reload a
regular database.

Figure 152 on page 336 shows the input to and output from the HISAM unload and
reload utilities when performing the first three operations. The DFSURIDX work data
set used as input to the HISAM unload utility was created by the Prefix Resolution
utility. It contains the information needed to create or update a shared secondary
index database. The HISAM unload utility formats the secondary index information
for use by the HISAM reload utility. Note that the input control statement to the
HISAM unload utility has an X in position 1 when the utility is used for secondary
indexing operations rather than for unloading a regular database. Position 3
contains one of the following characters:

v M: means the operation is either to build a new secondary index database or
merge a secondary index into a shared secondary index database

v R: means the operation is to replace a secondary index into a shared secondary
index database

Figure 151. Database Prefix Update Utility (DFSURGP0)

Reorganizing the Database

Chapter 14. Tuning Your Database 335

The HISAM reload utility uses the output from the HISAM unload utility to create the
new secondary index or merge or replace the secondary index in a shared
secondary index database.

Figure 153 on page 337 shows the input to and output from the HISAM unload
utility when an index is being extracted from a set of shared indexes. Note that the
input can be one of the following:

v The DFSURIDX work data set created by the Prefix Resolution utility

v The shared secondary index database

Again, position 1 in the input control statement contains an X. Position 3 contains
an E, which means the operation is to extract a secondary index.

Figure 152. HISAM Reorganization Unload and Reload Utilities Used for Create, Merge, or
Replace Secondary Indexing Operations

Reorganizing the Database

336 IMS/ESA V6 Admin Guide: DB

Utility Control Facility (DFSUCF00)
The Utility Control Facility is a program that controls the execution of reorganization
and recovery utilities. Control here means that it generates many of the JCL
statements you must create and eliminates the need to sequence the various
utilities for execution. The only reorganization utilities that cannot be run under the
control of UCF are the Database Surveyor utility and the Partial Database
Reorganization utility. In addition to controlling the execution of other utilities, UCF
allows you to stop and then later restart a job.

Database Surveyor Utility (DFSPRSUR)
Figure 154 on page 338 shows the input to and output from the Database Surveyor
utility.

Figure 153. HISAM Reorganization Unload and Reload Utilities Used for Extract Secondary
Indexing Operations

Reorganizing the Database

Chapter 14. Tuning Your Database 337

You would need to use the Surveyor utility to scan all or part of an HDAM or
HIDAM database to determine whether a reorganization is needed. The Surveyor
utility produces a report describing the physical organization of the database. The
report includes the size and location of areas of free space. When you do a partial
reorganization, you will know where free space exists into which you can put your
reorganized database records.

Partial Database Reorganization Utility (DFSPRCT1)
Figure 155 on page 339 shows the input to and output from the Partial Database
Reorganization utility.

You would use the Partial Database Reorganization utility to reorganize parts of
your HD database. It can be used when HD databases use secondary indexes or
logical relationships. You tell the utility what range of records you need reorganized.

v In an HDAM database, a range is a group of database records with continuous
relative block numbers.

v In a HIDAM database, a range is a group of database records with continuous
key values.

Generally, before using the Partial Database Reorganization utility, you would run
the Database Surveyor utility (described in the preceding section). The Surveyor
utility helps you determine whether a reorganization is needed and find the location
and size of areas of free space. You need to know the location and size of areas of
free space so you will know where to put reorganized database records.

The Partial Database Reorganization utility reorganizes the database in two steps:

Figure 154. Database Surveyor Utility (DFSPRSUR)

Reorganizing the Database

338 IMS/ESA V6 Admin Guide: DB

1. In the first step, the utility produces control tables for use in Step 2, which is
when the actual reorganization is done. As an option, the utility can produce
PSB source statements for creating a PSB for use in Step 2. The utility also
generates reports that show which logically related segments in logically related
databases must be scanned in Step 2, and which can be optionally scanned in
Step 2. (Some GSAM databases are involved in Step 2 for which a PSB is
needed.)

2. In the second step, the utility does the actual reorganization. The database
records you have specified are unloaded to a data set. The space they
occupied in the database is freed. Then database records are reloaded into the
database in the range of free space you specified. Finally, all pointers to
database records with new locations are changed to point to the new location. A
report is produced at the end of Step 2 to tell you what was done.

Figure 155. Partial Database Reorganization Utility (DFSPRCT1)

Reorganizing the Database

Chapter 14. Tuning Your Database 339

Procedure for Reorganizing a HISAM Database (No Logical
Relationships or Secondary Indexes)
To reorganize a HISAM database when it does not use logical relationships or
secondary indexes:

1. Unload the database, using the HISAM Reorganization Unload utility.

2. Any time you unload a data set, you should delete and reallocate the data set
before reloading.

3. Reload the index database, using the HISAM Reorganization Reload utility.
Make an image copy of your database once it is reloaded.

Procedure for Reorganizing an HD (HIDAM or HDAM) Database
(No Logical Relationships or Secondary Indexes)
To reorganize an HD database when it does not use logical relationships or
secondary indexes:

1. Unload the database, using the HD Reorganization Unload utility.

2. Any time you unload a data set, you should delete and reallocate the data set
before reloading.

3. Reload the index database, using the HD Reorganization Reload utility. Make
an image copy of your database once it is reloaded.

Procedure for Reorganizing a Primary or Secondary Index
HIDAM has a primary index. HISAM, HDAM, and HIDAM have separate secondary
index databases when secondary indexing is being used. Both index types are
reorganized in the same way:

1. Unload the index database, using the HISAM Reorganization Unload utility.

2. Any time you unload a data set, you should delete and reallocate the data set
before reloading.

3. Reload the index database, using the HISAM Reorganization Reload utility.
Make an image copy of your database as soon as it is reloaded.

Procedure for Reorganizing a HISAM or HD Database (with
Logical Relationships or Secondary Indexes)
Figure 143 on page 328 shows you the steps you must perform to reorganize a
HISAM or HD database that uses logical relationships or secondary indexes:

1. Run the HD Unload utility to unload the database.

2. Run the Prereorganization utility to get information needed later to resolve
secondary index or logical relationships.

3. If databases not being reorganized contain segments involved in a logical
relationship with the database being reorganized, run the scan utility. This
utility is run against the database that is not being reorganized. The scan utility
gathers information needed later to resolve logical relationships.

4. Any time you unload a data set, you should delete and redefine space before
reloading.

5. Run the HD Reload utility to reload the database.

6. Run the Prefix Resolution utility to accumulate and sort the prefix information
collected in steps 3 and 5.

7. If the reloaded database uses secondary indexes, run the HISAM unload utility
to format the secondary index information produced by the Prefix Resolution
utility.

8. If Step 7 was run, then run the HISAM reload utility against the reloaded
database to do one of the following:

v Create the secondary index for the database being reorganized

Reorganizing the Database

340 IMS/ESA V6 Admin Guide: DB

v Merge the secondary index into the shared index database if a shared index
database is being used

9. If the reloaded database uses logical relationships, run the Prefix Update utility
against the reloaded and logically related databases. It updates the prefixes of
all segments involved in logical relationships.

10. Remember to make an image copy of your database.

Changing DL/I Access Methods
When you originally chose a DL/I access method (or type of database), you chose it
based on such things as:

v The type of processing you needed to do (sequential, direct, or both)

v The volatility of your data

If the characteristics of your applications have changed over a period of time,
performance might be improved by changing to another DL/I access method.
“Chapter 4. Designing a Fast Path Database” on page 33 describes which type of
DL/I access method to choose given your application’s characteristics. Assuming
that you have decided to change access methods, this section tells you:

v Given your existing DL/I access method, what things you need to change to
convert to a different DL/I access method

v How to do the conversion

The reorganization utilities described earlier in this chapter can be used to change
DL/I access methods among the HISAM, HDAM, and HIDAM access methods. One
exception to this is that HDAM cannot be changed to HISAM or HIDAM unless
HDAM database physical records are in root key sequence. This exception exists
because HISAM and HIDAM databases must be loaded with database records in
root key sequence. When the HD Unload utility unloads an HDAM database, it
unloads it using GN calls. GN calls against an HDAM database unload the
database records in the physical sequence in which they were stored by the
randomizing module. This will not be root key sequence unless you used a
sequential randomizing module (one that put the database records into the
database in physical root key sequence).

Procedure for Changing from HISAM to HIDAM
You need the following before changing your DL/I access method from HISAM to
HIDAM:

v Determine whether you are going to set aside free space in the HIDAM
database. (Free space is space into which database records are not loaded
when the database is initially loaded.)

Unlike HISAM, in a HIDAM database you can set aside periodic blocks or CIs of
free space or a percentage of free space in each block or CI (in the ESDS or
OSAM data set). This free space can then be used for inserting database
records or segments into the database after initial load. See “Chapter 6.
Database Design Considerations for Full Function” on page 165, “Specifying Free
Space (HDAM and HIDAM Only),” for a description of free space and how it is
specified.

v Determine what type of pointers you are going to use in the database. Unlike
HISAM, HIDAM uses direct-address pointers to point from one segment in the
database to the next. See “Chapter 4. Designing a Fast Path Database” on
page 33, “Types of Pointers You Can Specify,” for a description of types of
pointers and how to specify them.

Reorganizing the Database

Chapter 14. Tuning Your Database 341

v Reassess your choice of logical record size. A logical record in HISAM can only
contain segments from the same database record. In HIDAM, a logical record
can contain segments from more than one database record. See “Chapter 6.
Database Design Considerations for Full Function” on page 165, “Choosing a
Logical Record Length for HD Databases,” for a discussion of what things to
consider in choosing a logical record length and how logical record lengths are
specified.

v Reassess your choice of CI or block size. In HISAM, your choice of CI or block
size should have been some multiple of the average size of a database record.
In HIDAM, the size should be chosen because of the characteristics of the device
and the type of processing you plan to do. See “Chapter 6. Database Design
Considerations for Full Function” on page 165, “Determining the Size of CIs and
Blocks,” for a discussion of what things to consider in choosing a CI or block size
and how CI and block size are specified.

v Reassess your choice of database buffer sizes and the number of buffers you
have allocated. If you have changed your CI or block size, you need to allocate
buffers for the new size. See “Chapter 6. Database Design Considerations for
Full Function” on page 165, for a discussion of what to consider in choosing
buffer number and size and how they are specified.

v Recalculate database space. You need to do this because the changes you are
making will result in different requirements for database space. See “Chapter 12.
Loading Your Database” on page 285 under “Estimating the Minimum Size of the
Database” for a description of how to calculate database size.

Once you have determined what changes you need to make, you are ready to
change your DL/I access method from HISAM to HIDAM. To do this:

1. Unload your database using the existing DBD and the HD Unload utility.

2. Code a new DBD that reflects the changes you need to make. You must also
code a DBD for the HIDAM index.

3. If you need to make change that are not specified in the DBD (such as
changing database buffer sizes or the amount of space allocated for the
database), make these changes.

4. Rebuild the ACB if you are pre-building ACBs, rather than built them
dynamically.

5. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

6. Reload the database using the new DBD and the HD Reload utility. Remember
to make an image copy of your database as soon as it is reloaded.

If you are using logical relationships or secondary indexes, you will need to run
additional utilities immediately before and after reloading your database. The
flowchart in Figure 143 on page 328 tells you which utilities to use and the order
in which they must be run.

Procedure for Changing from HISAM to HDAM
You need to do the following before changing your DL/I access method from HISAM
to HDAM:

v Determine what type of pointers you are going to use in the database. Unlike
HISAM, HDAM uses direct-address pointers to point from one segment in the
database to the next. See “Chapter 4. Designing a Fast Path Database” on
page 33, “Types of Pointers You Can Specify,” for a description of types of
pointers and how to specify them.

Changing DL/I Access Methods

342 IMS/ESA V6 Admin Guide: DB

v Determine which randomizing module you are going to use. Unlike HISAM,
HDAM uses a randomizing module. The randomizing module generates
information that determines where a database record will be stored. See
“Chapter 4. Designing a Fast Path Database” on page 33 under “Determining
Which Randomizing Module You Will Use (HDAM Only),” for information on
choosing a randomizing module and how use of one is specified.

v Determine which HDAM options you are going to use. Unlike HISAM, an HDAM
database is divided into two parts: a root addressable area and an overflow area.
The root addressable area contains all root segments and is the primary storage
area for dependent segments in a database record. The overflow area is for
storage of dependent segments that do not fit in the root addressable area. The
HDAM options here are the ones that pertain to choices you make about the root
addressable area. These are:

– The maximum number of bytes of a database record to be put in the root
addressable area when segments in the database record are inserted
consecutively (without intervening processing operations).

– The number of blocks or CIs in the root addressable area.

– The number of RAPS (root anchor points) in a block or CI in the root
addressable area. (A RAP is a field that points to a root segment.)

See “Chapter 4. Designing a Fast Path Database” on page 33 under “Choosing
HDAM Options” for information on choosing the options and how they are
specified.

v Reassess your choice of logical record sizes. A logical record in HISAM can only
contain segments from the same database record. In HDAM, a logical record can
contain segments from more than one database record. In addition, HDAM
logical records contain RAPs and two space management fields (FSEs and
FSEAPs). See “Chapter 6. Database Design Considerations for Full Function” on
page 165, “Choosing a Logical Record Length for HD Databases,” for a
discussion of what things to consider in choosing a logical record length and
what logical record lengths are allowed.

v Reassess your choice of CI or block size. In HISAM, your choice of CI or block
size should have been some multiple of the average size of a database record.
In HDAM, the size should be chosen because of the characteristics of the device
and the type of processing you plan to do. See “Chapter 4. Designing a Fast
Path Database” on page 33 under “Determining the Size of CIs and Blocks” for a
discussion of what things to consider in choosing a CI or block size and how CI
and block size are specified.

v Reassess your choice of database buffer sizes and the number of buffers you
have allocated. If you have changed your CI or block size, you need to allocate
buffers for the new size. See “Chapter 6. Database Design Considerations for
Full Function” on page 165 for a discussion of what things to consider in
choosing buffer number and size and how they are specified.

v Recalculate database space. You need to do this because the changes you are
making will result in different requirements for database space. See “Chapter 12.
Loading Your Database” on page 285 under “Estimating the Minimum Size of the
Database” for a description of how to calculate database space.

Once you have determined what changes you need to make, you are ready to
change your DL/I access method from HISAM to HDAM. To do this:

1. Unload your database, using the existing DBD and the HD Unload utility.

2. Code a new DBD that reflects the changes you need to make.

Changing DL/I Access Methods

Chapter 14. Tuning Your Database 343

3. If you need to make changes that are not specified in the DBD (such as
changing database buffer sizes or the amount of space allocated for the
database), make these changes. HDAM only requires one data set, whereas
HISAM requires two.

4. Rebuild the ACB if you are having ACBs pre-built rather than built dynamically.

5. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

6. Reload the database using the new DBD and the HD Reload utility. Make an
image copy of your database as soon as it is reloaded.

If you are using logical relationships or secondary indexes, you will need to run
additional utilities before reloading your database. The flowchart in Figure 143
on page 328 tells you which utilities to use and the order in which they must be

run.

Procedure for Changing from HIDAM to HISAM
You need to do the following before changing your DL/I access method from HIDAM
to HISAM:

v Reassess your choice of logical record size. A logical record in HISAM can only
contain segments from the same database record. In HIDAM, a logical record
can contain segments from more than one database record. See “Chapter 6.
Database Design Considerations for Full Function” on page 165, “Choosing a
Logical Record Length for HD Databases,” for a discussion of what things to
consider in choosing a logical record length and what logical record lengths are
allowed.

v Reassess your choice of CI or block size. In HIDAM, your choice of CI or block
size should be based on the characteristics of the device and the type of
processing you plan to do. In HISAM, the size should be some multiple of the
average size of a database record. See “Chapter 4. Designing a Fast Path
Database” on page 33 under “Determining the Size of CIs and Blocks” for a
discussion of what things to consider in choosing a CI or block size and how CI
and block size are specified.

v Reassess your choice of database buffer sizes and the number of buffers you
have allocated. If you have changed your CI or block size, you need to allocate
buffers for the new size. See “Chapter 6. Database Design Considerations for
Full Function” on page 165 for a discussion of what things to consider in
choosing buffer number and size and how they are specified.

v Recalculate database space. You need to do this because the changes you are
making will result in different requirements for database space. See “Chapter 12.
Loading Your Database” on page 285 under “Estimating the Minimum Size of the
Database” for a description of how to calculate database size.

Once you have determined what changes you need to make, you are ready to
change your DL/I access method from HIDAM to HISAM. To do this:

1. Unload your database using the existing DBD and the HD Unload utility.

2. Code a new DBD that reflects the changes you need to make. You will not be
specifying direct-address pointers or free space in the DBD, because HISAM,
unlike HIDAM, does not allow use of these. Also, HISAM has only one DBD
whereas HIDAM had two.

3. If you need to make changes that are not specified in the DBD (such as
changing database buffer sizes or the amount of space allocated for the
database), make these changes.

Changing DL/I Access Methods

344 IMS/ESA V6 Admin Guide: DB

4. Rebuild the ACB if you are having ACBs pre-built rather than built dynamically.

5. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

6. Reload the database using the new DBD and the HD Reload utility. Remember
to make an image copy of your database as soon as it is reloaded.

If you are using logical relationships or secondary indexes, run additional utilities
right before and after reloading your database. The flowchart in Figure 143 on
page 328 tells you which utilities to use and the order in which they must be
run.

Procedure for Changing from HIDAM to HDAM
You need to do the following before changing your DL/I access method from HIDAM
to HDAM:

v Reassess your choice of direct-address pointers. Although both HIDAM and
HDAM use direct-address pointers, you might need to change the type of
direct-address pointer used:

– Because of the changing needs of your applications.

– Because pointers are partly chosen based on the type of database you are
using. For example, if you used physical twin backward pointers on root
segments in your HIDAM database to get fast sequential processing of roots,
they will not have any use in an HDAM database. See “Chapter 4. Designing
a Fast Path Database” on page 33 under “Types of Pointers You Can Specify”
for a description of types of pointers, their uses, and how to specify them.

v Determine which randomizing module you are going to use. Unlike HIDAM,
HDAM uses a randomizing module. The randomizing module generates
information that determines where a database record is to be stored. See
“Chapter 4. Designing a Fast Path Database” on page 33 under “Determining
Which Randomizing Module You Will Use (HDAM Only)” for information on
choosing a randomizing module and how use of one is specified.

v Determine which HDAM options you are going to use. Unlike HIDAM, an HDAM
database does not have a separate index database. Instead the database is
divided into two parts: a root addressable area and an overflow area. The root
addressable area contains all root segments and is the primary storage area for
dependent segments in a database record. The overflow area is for storage of
dependent segments that do not fit in the root addressable area. The HDAM
options here are the ones that pertain to choices you make about the root
addressable area. These are:

– The maximum number of bytes of a database record to be put in the root
addressable area when segments in the database record are inserted
consecutively (without intervening processing operations).

– The number of blocks or CIs in the root addressable area.

– The number of RAPs in a block or CI in the root addressable area.

See “Chapter 6. Database Design Considerations for Full Function” on
page 165 under “Choosing HDAM Options” for information on choosing the
options and how they are specified.

v Reassess your choice of logical record size.

v Reassess your choice of CI or block size.

v Reassess your choice of database buffer sizes and the number of buffers you
have allocated. If you have changed your CI or block size, you need to allocate
buffers for the new size. See “Chapter 6. Database Design Considerations for

Changing DL/I Access Methods

Chapter 14. Tuning Your Database 345

Full Function” on page 165 for a discussion of what things to consider in
choosing buffer number and size and how they are specified.

v Recalculate database space. You need to do this because the changes you are
making will result in different requirements for database space. See “Chapter 12.
Loading Your Database” on page 285 under “Estimating the Minimum Size of the
Database” for a description of how to calculate database size.

Once you have determined what changes you need to make, you are ready to
change your DL/I access method from HIDAM to HDAM. To do this:

1. Unload your database using the existing DBD and the HD Unload utility.

2. Code a new DBD that reflects the changes you need to make. You probably will
not be specifying free space, but you will be specifying HDAM options. Note
also that you’ll need only one DBD for HDAM, whereas HIDAM required two
DBDs.

3. If you need to make changes that are not specified in the DBD (such as
changing database buffer sizes or the amount of space allocated for the
database), make these changes. HDAM only requires one data set, whereas
HIDAM requires two.

4. Rebuild the ACB if you are having ACBs pre-built rather than built dynamically.

5. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

6. Reload the database using the new DBD and the HD Reload utility. Remember
to make an image copy of your database as soon as it is reloaded.

If you are using logical relationships or secondary indexes, you will need to run
additional utilities right before and after reloading your database. The flowchart
in Figure 143 on page 328 tells you which utilities to use and the order in which
they must be run.

Procedure for Changing from HDAM to HISAM
You need to do the following before changing your DL/I access method from HDAM
to HISAM:

v Reassess your choice of logical record size. A logical record in HISAM can only
contain segments from the same database record. In HISAM, a logical record
can contain segments from more than one database record. See “Chapter 6.
Database Design Considerations for Full Function” on page 165 under “Choosing
a Logical Record Length for HD Databases” for a discussion of what things to
consider in choosing a logical record length and what logical record lengths are
allowed.

v Reassess your choice of CI or block size. In HDAM, your choice of CI or block
size should be based on the characteristics of the device and the type of
processing you plan to do. In HISAM, the size should be some multiple of the
average size of a database record. See “Chapter 6. Database Design
Considerations for Full Function” on page 165 under “Determining the Size of CIs
and Blocks” for a discussion of what things to consider in choosing a CI or block
size and how CI and block size are specified.

v Reassess your choice of database buffer sizes and the number of buffers you
have allocated. If you have changed your CI or block size, you need to allocate
buffers for the new size. See “Chapter 6. Database Design Considerations for
Full Function” on page 165 for a discussion of what things to consider in
choosing buffer number and size and how they are specified.

Changing DL/I Access Methods

346 IMS/ESA V6 Admin Guide: DB

v Recalculate database space. You need to recalculate database space because
the changes you are making will result in different requirements for database
space. See “Chapter 12. Loading Your Database” on page 285 under “Estimating
the Minimum Size of the Database” for a description of how to calculate
database size.

Once you have determined what changes you need to make, you are ready to
change your DL/I access method from HDAM to HISAM. Remember you must write
your own unload and reload programs unless database records in the HDAM
database are in physical root key sequence. In writing your own load program, if
your HDAM database uses logical relationships, you must preserve information in
the delete byte (for example, a segment that is logically deleted in the database
might not be physically deleted).

To change from HDAM to HISAM:

1. Unload your database using the existing DBD and one of the following:

v Your unload program

v The HD Unload utility if database records are in physical root key sequence

2. Code a new DBD that reflects the changes you need to make. You will not be
specifying direct-address pointers or HDAM options.

3. If you need to make changes that are not specified in the DBD (such as
changing database buffer sizes or the amount of space allocated for the
database), make these changes. HDAM only requires one data set, whereas
HISAM requires two.

4. Rebuild the ACB if you are having ACBs pre-built rather than built dynamically.

5. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

6. Reload the database using the new DBD and:

v Your load program, or

v The HD Reload utility if database records are in physical root key sequences

v Remember to make an image copy of your database as soon as it is
reloaded

If you are using logical relationships or secondary indexes, you will need to run
additional utilities right before and after reloading your database. The flowchart
in Figure 143 on page 328 tells you which utilities to use and the order in which
they must be run.

Procedure for Changing from HDAM to HIDAM
You need to make the following changes before changing your DL/I access method
from HDAM to HIDAM:

v Determine whether you are going to set aside free space in the HIDAM
database. (Free space is space into which database records are not loaded
when the database is initially loaded.) In a HIDAM database, you can set aside
periodic blocks or CIs of free space or a percentage of free space in each block
or CI (in the ESDS or OSAM data set). This free space can then be used for
inserting database records or segments into the database after initial load. In an
HDAM database, you generally get the free space you need by careful choice of
HDAM options. See “Chapter 6. Database Design Considerations for Full
Function” on page 165 under “Specifying Free Space (HDAM and HIDAM Only)”
for a description of free space and how it is specified.

Changing DL/I Access Methods

Chapter 14. Tuning Your Database 347

v Reassess your choice of direct-address pointers. Although both HIDAM and
HDAM use direct-address pointers, you might need to change the type of
direct-address pointer used:

– Because of the changing needs of your applications.

– Because pointers are partly chosen based on the type of database you are
using. For example, you can chose to use physical twin forward and backward
pointers on root segments in your HIDAM database to get fast sequential
processing of roots. See “Chapter 4. Designing a Fast Path Database” on
page 33 under “Types of Pointers You Can Specify” for a description of types
of pointers, their uses, and how to specify them.

v Reassess your choice of logical record size.

v Reassess your choice of CI or block size.

v Reassess your choice of database buffer sizes and the number of buffers you
have allocated. If you have changed your CI or block size, you need to allocate
buffers for the new size. See “Chapter 6. Database Design Considerations for
Full Function” on page 165 for a discussion of what things to consider in
choosing buffer number and size and how they are specified.

v Recalculate database space. You need to recalculate database space because
the changes you are making will result in different requirements for database
space. See “Chapter 12. Loading Your Database” on page 285 under “Estimating
the Minimum Size of the Database” for a description of how to calculate
database size.

Once you have determined what changes you need to make, you are ready to
change your DL/I access method from HDAM to HIDAM. Remember you must write
your own unload and reload programs unless database records in the HDAM
database are in physical root key sequence. In writing your own load program, if
your HDAM database uses logical relationships, you must preserve information in
the delete byte (for example, a segment that is logically deleted in the database
might not be physically deleted).

To change from HDAM to HIDAM:

1. Unload your database using the existing DBD and one of the following:

v Your unload program

v The HD Unload utility if database records are in physical root key sequence

2. Code a new DBD that reflects the changes you need to make. You must also
code a DBD for the HIDAM index. You will not be specifying HDAM options but
you probably will be specifying free space.

3. If you need to make changes that are not specified in the DBD (such as
changing database buffer sizes or the amount of space allocated for the
database), make these changes. HDAM only requires one data set, whereas
HIDAM requires two.

4. Rebuild the ACB if you are having ACBs pre-built rather than built dynamically.

5. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

6. Reload the database using the new DBD and one of the following:

v Your load program

v The HD Reload utility if database records are in physical root key sequence.

Remember to make an image copy of your database as soon as it is reloaded.

Changing DL/I Access Methods

348 IMS/ESA V6 Admin Guide: DB

If you are using logical relationships or secondary indexes, you will need to run
additional utilities before reloading your database. The flowchart in Figure 143
on page 328 tells you which utilities to use and the order in which they must be

run.

Procedure for Changing to DEDBs
If your database requires logical relationships, a secondary index, or fixed-length
segments, DEDBs cannot be used.

You need to do the following before changing your database to DEDBs:

v Determine whether or not your application programs can tolerate the FH (data
unavailable) status code.

v Determine whether or not your database can tolerate a randomizing routine
(might not be a problem when changing from HDAM).

v Recalculate database space, particularly when using DEDB features such as
partitioning and data set replication.

v Determine which pointers are available to use.

To change to DEDBs:

1. Unload your database using the existing DBD and one of the following:

v Your unload program

v The HD Unload utility if database records are in physical root key sequence

2. Code a new DBD for the DEDBs.

3. Execute the DBD generation.

4. Rebuild the ACB if you are having ACBs pre-built rather than built dynamically.

5. For non-VSAM data sets, delete the old database space and define the new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

6. Run the DEDB initialization utility (DBFUMIN0).

7. Run the user DEDB load program.

Changing the Hierarchic Structure
There are two types of tuning changes you might need to make that involve
changes to the structure of your database record. The first is changing the
hierarchic sequence of segment types in your database record to improve
performance. The second is combining segments to maximize the use of space.

Changes involving adding and deleting segments in the hierarchy are covered in
“Chapter 15. Modifying Your Database” on page 365.

Changing the Sequence of Segment Types
In general, performance is best if frequently used dependent segments are close to
the root segment and infrequently used dependent segments are toward the end of
the database record. This arrangement maximizes performance because all types
of databases (except HSAM) have direct (therefore, fast) access to root segments.
But, after the root is located, dependent segments are found by one of the
following:

v Searching sequentially through the database record (HSAM and HISAM)

Changing DL/I Access Methods

Chapter 14. Tuning Your Database 349

v Following pointers from the root segments to a dependent path and then
searching through twin chains until the correct segment is reached (HDAM and
HIDAM)

One way to determine whether the order of dependent segment types in your
hierarchy is an efficient one is to examine the IWAITS/CALL field on the DL/I Call
Summary report. For detailed information on this report, see IMS/ESA Utilities
Reference: Database Manager.

The IWAITS/CALL field tells you, by DL/I call against a specific segment, the
average number of times a segment had to wait for I/O operations to finish before
the segment could be processed. A high number (and high, of course, is relative to
the application) indicates that multiple I/O operations were required to process the
segment.

If the database does not need to be reorganized, the high number can mean this is
a frequently used segment type placed too far from the beginning of the database
record. If you determine this is the situation, you can change placement of the
segment type. The change can increase the value in the IWAITS/CALL field for
other segments.

To change the placement of a segment type, you must write a program to unload
segments from the database in the new hierarchic sequence. (The reorganization
utilities cannot be used to make such a change.) Then you need to load the
segments into a new database. Again, you must write a program to reload.

Combining Segments
The second type of change you might need to make in the structure of your
database record is combining segment types to maximize use of space. For
example, having two segment types, a dependent segment for college classes with
a dependent segment for instructors who teach the classes, is an inefficient use of
space if typically only one or two instructors teach a class. Rather than having a
separate instructor segment, you can combine the two segment types, thereby
saving space.

Combining segments also requires that you write an unload and reload program.
(The reorganization utilities cannot be used to make such a change.)

Procedure for Changing the Hierarchic Structure
To change the hierarchic structure, you need to:

1. Determine whether the change you are making will affect the code in any
application programs. If so, make sure the code gets changed.

2. Unload your database using your unload program and the existing DBD.

3. Code a new DBD.

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for those application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs pre-built rather then built dynamically.

6. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

Changing the Hierarchic Structure

350 IMS/ESA V6 Admin Guide: DB

7. Reload your database using your load program and the new DBD. Remember
to make an image copy of your database as soon as it is reloaded.

8. If your database uses logical relationships or secondary indexes, you must run
some of the reorganization utilities before and after reloading to resolve prefix
information. The flowchart in Figure 143 on page 328 tells you which utilities to
use and the order in which they must be run.

Changing Direct-Access Storage Devices
Several situations might warrant tuning your database by changing DASDs
(direct-access storage devices). First, when application requirements change, you
might require a faster or slower device. Second, you might want to take advantage
of new devices offering better performance. Finally, you might need to change
devices to get database data sets on two different devices, so as to minimize
contention for device use. For example, in a HIDAM database, only one data set
containing data and another containing an index exists. When both are on the same
device, extra time is required for seek operations as the arm moves between the
index and database data sets. By putting one of the data sets on a different device,
the amount of arm movement is decreased, thereby improving performance.

You can change your database (or part of it) from one device to another using the
reorganization utilities. To change direct-access storage devices:

1. Unload your database using the existing DBD and the appropriate unload utility.

2. Recalculate CI or block size to maximize use of track space on the new device.
Information on calculating CI or block size is contained in “Chapter 6. Database
Design Considerations for Full Function” on page 165 under “Determining the
Size of CIs and Blocks”.

3. Code a new DBD.

4. Rebuild the ACB if you have ACBs pre-built rather than built dynamically.

5. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

6. Reload your database, using the new DBD and the appropriate reload utility.
Remember to make an image copy of your database as soon as it is reloaded.

7. If your database uses logical relationships or secondary indexes, you must run
some of the reorganization utilities before and after reloading to resolve prefix
information. The flowchart in Figure 143 on page 328 tells you which utilities to
use and the order in which they must be run.

Tuning OSAM Sequential Buffering
If you are using OSAM Sequential Buffering, you can do two things to help ensure
that it processes your databases efficiently:

v Keep your databases well organized; that is, the logical (database record)
sequence is nearly the same as the physical (DASD block) sequence.

v Select the right number of SB buffer sets. (Tuning of SB buffers is discussed in
the section “OSAM Sequential Buffering” on page 355.)

Well-Organized Database
Well-organized databases are by far the most important of these two factors. When
the databases SB processes are well organized, you note larger elapsed time
improvements. This is because your programs process IMS database segments
and records, and they do not process DASD blocks directly. Processing a

Changing the Hierarchic Structure

Chapter 14. Tuning Your Database 351

well-organized database in logical-record sequence results in an I/O reference
pattern that accesses most DASD blocks in physical sequence. SB can take
advantage of these sequential I/O patterns by issuing many sequential reads.
Extensive use of sequential reads considerably reduces the elapsed time for your
job.

Badly-Organized Database
Processing a badly-organized database in logical-record sequence typically results
in an I/O reference pattern that accesses many DASD blocks in a random
sequence. This happens because many segments were stored in randomly
scattered blocks after the database was loaded or reorganized. When your
database is accessed in a predominantly random pattern, most I/O operations
issued by the SB buffer handler are random reads. SB is not able to issue many
sequential reads, and the elapsed time for your job is not considerably reduced.

You can use the SB buffering statistics in the optional //DFSSTAT reports to see if
your database is well-organized. (For details on //DFSSTAT reports, see IMS/ESA
Utilities Reference: System.) Your database is likely to be badly organized if a large
percentage of the blocks were read with random reads during sequential
processing. You can monitor this percentage over a period of time to see if it
increases as the database ages.

Ensuring a Well-Organized Database
You can ensure your databases are reasonably well-organized by:

v Providing enough embedded free space at database load or reorganization time.
IMS can then use this free space to insert new segments near their related
segments (segments in the same database record). For details on how to do this,
see “Specifying Free Space (HDAM and HIDAM Only)” on page 166.

v Selecting an appropriate database reorganization frequency. For more
information on when and how to reorganize your databases, see “Reorganizing
the Database” on page 325.

v Using efficient HDAM randomizing modules and randomizing parameters.
Information on this can be found in the section “Determining Which Randomizing
Module To Use (HDAM Only)” on page 168.

Adjusting HDAM Options
The HDAM options you can choose are described in “Chapter 6. Database Design
Considerations for Full Function” on page 165 under “Choosing HDAM Options”.
The performance implications of HDAM options are also discussed. To improve
performance, reread that section and reassess the original choices you made.

You can adjust HDAM options using the reorganization utilities:

1. Determine whether the change you are making will affect the code in any
application programs. It should only do so if you are changing to a sequential
randomizing module.

2. Unload your database, using the existing DBD and the appropriate unload utility.

3. Code a new DBD. If you changed your CI or block size, you need to allocate
buffers for the new size. See “Chapter 6. Database Design Considerations for
Full Function” on page 165 for a discussion of what things to consider in
choosing buffer number and size and how they are specified.

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for those application programs. If you have

Tuning OSAM Sequential Buffering

352 IMS/ESA V6 Admin Guide: DB

the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs pre-built rather than built dynamically.

6. Determine whether you need to recalculate database space. See “Chapter 12.
Loading Your Database” on page 285 under “Estimating the Minimum Size of
the Database” for a description of how to calculate space.

7. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Reload your database using the new DBD and the appropriate reload utility.
Make an image copy of your database as soon as it is reloaded.

9. If your database uses logical relationships or secondary indexes, you must run
some of the reorganization utilities before and after reloading to resolve prefix
information. The flowchart in Figure 143 on page 328 tells you which utilities to
use and the order in which they must be run.

Adjusting Buffers
The size and number of buffers you can choose are described in “Multiple Buffers in
Virtual Storage” on page 174. This section also discusses the performance
implications of choosing a buffer size and number. To improve performance, reread
that section and reassess the original choices you made before you adjust your
buffers.

VSAM Buffers

Monitoring VSAM Buffers
If you are using VSAM, you can monitor buffers using the DB monitor reports
described in “Chapter 13. Monitoring Your Database” on page 309. For each buffer
size you define, a VSAM subpool report is produced. The VSAM Buffer Pool report
tells the number of buffers in the subpool and their size (in the SUBPOOL BUFFER
SIZE and TOTAL BUFFERS IN SUBPOOL fields).

When to Adjust VSAM Buffers
Adjust VSAM buffers when you see buffer performance begin to degrade, or if you
wish to add options to boost performance in anticipation of increased buffer activity.

VSAM Buffer Adjustment Options
1. If background write is turned on and the number in the NUMBER OF VSAM

WRITES TO MAKE SPACE IN THE POOL field is not zero, you probably do not
have enough buffers allocated in the subpool. Try allocating more buffers to
decrease the number or reduce it to zero.

2. If you need to improve performance for a specific application, you can reserve
subpools for certain data sets by:

v Defining multiple local shared resource pools.

v Dedicating subpools to a specific data set.

v Defining separate subpools for index and data components of VSAM data
sets. IMS/ESA Installation Volume 2: System Definition and Tailoring tells you
how to specify these options.

3. If sequential mode processing is not used, the number of VSAM buffers
specified in the DFSVSAMP DD statement can dramatically affect performance.
This problem occurs when the number of VSAM KSDS indexes that must be
read, plus one for the data portion, is equal to or greater than the number of
VSAM buffers allocated. This problem can be alleviated either by increasing the

Adjusting HDAM Options

Chapter 14. Tuning Your Database 353

number of buffers or by using sequential mode. With sequential mode, the need
to read indexes above the sequence set is reduced. However, sequential mode
can only be obtained in a batch environment with a DBD referenced by a single
PCB and with a processing option of LOAD or RETRIEVE only. Sequential
mode is not available in data sharing.

4. VSAM buffers can take advantage of MVS/ESA Hiperspace buffering.

Hiperspace Buffering Parameters: To use Hiperspace buffering, you must
specify one or two optional parameters on the VSRBF subpool definition statement:

HSO|HSR
specifies the action IMS takes if Hiperspace buffering requested for a subpool is
unavailable.

HSO Hiperspace buffering is optional. IMS continues to run.

HSR Hiperspace buffering is required. IMS terminates.

HSn
specifies the number of Hiperspace buffers to build for a subpool. The number
n is a 1- to 8-digit number.

Hiperspace parameters are valid only for buffer sizes of 4K or multiples of 4K.
Specifying Hiperspace parameters on buffers smaller than 4K causes an error. To
use Hiperspace buffering you might need to unload your database and then reload
it into 4K or multiples of 4K CI sizes to accommodate Hiperspace requirements.

If you decide to leave intact databases with CI sizes of less than 4K, do not allocate
any buffers less than 4K. The CIs that are less than 4K are placed in 4K or larger
buffer pools. However, the CIs compete with VSAM data sets already there. This
method might be expedient in the short term.

Coding the HSO|HSR and HSn parameters to activate Hiperspace buffering on
VSAM buffers is described in IMS/ESA Installation Volume 2: System Definition and
Tailoring. See MVS/ESA System Programming Library: Initialization and Tuning for
more information about Hiperspace.

OSAM Buffers
If you are using OSAM, individual subpool buffer reports do exist. However, you can
monitor the number of buffers you are using by using the Enhanced OSAM Buffer
Subpool statistics function which supports the following values:

DBESF
provides the full OSAM Subpool statistics in a formatted form.

DBESU
provides the full OSAM Subpool statistics in an unformatted form.

DBESS
provides a summary of the OSAM database buffer pool statistics in a
formatted form.

DBESO
provides a the full OSAM database buffer pool statistics in a formatted form
for online statistics returned as a result of a /DIS POOL command.

Related Reading: For detailed information on these formats see the IMS/ESA
Application Programming: Design Guide.

Adjusting Buffers

354 IMS/ESA V6 Admin Guide: DB

Another way to improve performance, this time for a specific application, is to
reserve subpools for use by certain data sets. For example, if you have an index
data set with a block size of 512 bytes, reserve a subpool for it that contains
512-byte buffers. You can do this by not defining 512-byte block sizes for any other
data sets in the database. (Remember, block sizes are specified by data set in the
BLOCK= operand in the DATASET statement in the DBD.) If you then allocate
enough 512-byte buffers to hold all the blocks in your index, all blocks read into the
buffer pool will remain in the buffer pool.

Performance can also be improved through the use of the co (caching option)
parameter of the IOBF control statement specified either in the DFSVSMxxx
member of IMS.PROCLIB or in DFSVSAMP.

Related Reading:

v For detailed information about the DB Monitor Database Buffer Pool report, see
the IMS/ESA Utilities Reference: System.

v For more information on the co (caching option) parameter of the IOBF control
statement, OSAM buffer pools and the use of the coupling facility for OSAM data
caching see the IMS/ESA Installation Volume 2: System Definition and Tailoring.

Procedure for Adjusting VSAM and OSAM Database Buffers
To adjust VSAM and OSAM database buffers, change the control statements that
specify buffer size and number. Then put the new control statements in the:

v DFSVSAMP data set in batch and utility environments

v IMS.PROCLIB data set with the member name DFSVSMnn in IMS TM and
DBCTL environments

Detailed information on how to code these control statements is in IMS/ESA
Installation Volume 2: System Definition and Tailoring .

OSAM Sequential Buffering
If you are using OSAM Sequential Buffering, you can use the Sequential Buffering
Summary report and the Sequential Buffering Detail report to see how the SB
buffers were used during a your program’s execution.

By default, four buffer sets exist in each SB buffer pool. If the reports indicate that a
large percentage of random read I/O operations were used, and you know that the
program was processing your database sequentially, increasing the number of
buffer sets to six or more can improve performance. By increasing the number of
buffer sets, it is more likely that a block is still in an SB buffer when requested, and
a read I/O operation is not necessary.

If only a few random reads were used during your program’s execution, it indicates
that the database is very well organized and most requests were satisfied from the
SB buffer pool or with sequential reads. If this happens, you can save virtual
storage space by decreasing the number of buffer sets in each SB buffer pool to
two or three.

OSAM Buffers

Chapter 14. Tuning Your Database 355

Procedure for Adjusting Sequential Buffers
You can change the number of buffer sets allocated to each SB buffer pool in two
ways:

v Coding an SBPARM control statement with the BUFSETS keyword.

v Using an SB Initialization Exit Routine.

Once you have changed the number of buffer sets, you can use the SB Test Utility
to reprocess the SB buffer handler call sequence that was issued during your
program’s execution. Then you can study the resulting //DFSSTAT reports to see
the impact of the change.

Related Reading:

v The Sequential Buffering Summary report and the Sequential Buffering Detail
reports are described and instructions on how to use the SB Test Utility are in the
IMS/ESA Utilities Reference: Database Manager.

v Detailed instructions on how to code an SBPARM control statement are in the
IMS/ESA Installation Volume 2: System Definition and Tailoring.

v Details on the SB Initialization Exit Routine are in the IMS/ESA Customization
Guide.

Adjusting VSAM Options
The VSAM options you can choose are described in “Determining Which VSAM
Options to Use” on page 184. In “Chapter 4. Designing a Fast Path Database” on
page 33, the performance implications of each VSAM option are also discussed. To
improve performance, reread that section and reassess the original choices you
made.

The only VSAM option you can specifically monitor for is background write. If you
are not using background write, you can look at the VSAM Buffer Pool report
described in IMS/ESA Utilities Reference: System. The report, in the Number of
VSAM Writes To Make Space in the Pool field, documents the number of times data
in a buffer had to be written to the database before the buffer could be used. If you
use background write, you may find that you are able to reduce this number and
therefore the size of the buffer pool.

If you are already using background write, the VSAM Buffer Pool report tells you
how many times background write is invoked in the Number of Times Background
Write Function Invoked field. The VSAM Statistics report (another report produced
by the DB monitor) tells you in the BKG WTS field if background write was invoked.
It also tells you, in the USR WRTS field, among other things, how many times
background write was invoked.

Two types of adjustable VSAM options exist:

v Options specified in the OPTIONS control statement

v Options specified in the Access Method Services DEFINE CLUSTER command

Procedure for Adjusting VSAM Options Specified in the OPTIONS
Control Statement

To adjust these VSAM options, change the appropriate parameters in the OPTIONS
control statement. Then put the new control statement in the:

v DFSVSAMP data set in a batch system

Procedure for Adjusting Sequential Buffers

356 IMS/ESA V6 Admin Guide: DB

v IMS.PROCLIB data set with the member name DFSVSMnn in an online system

Detailed information on how to code these control statements is in IMS/ESA
Installation Volume 2: System Definition and Tailoring .

Procedures for Adjusting VSAM Options Specified in the Access
Method Service DEFINE CLUSTER Command

To adjust these VSAM options, change the appropriate parameters in the DEFINE
CLUSTER command. What additional things you must do depends on which VSAM
parameter you are changing, as described in the following sections.

Changing the FREESPACE Parameter
You can use the reorganization utilities to change the use of free space or to
change the percent of free space you have specified. To make this change:

1. Unload your database using the existing DBD and the appropriate unload utility.

2. Recalculate database space. You need to do this because the change you are
making will result in different requirements for database space. See
“Chapter 12. Loading Your Database” on page 285, “Estimating the Minimum
Size of the Database” on page 286 for a description of how to calculate
database space.

3. Delete the old database cluster and define the new database cluster with a
change to the FREESPACE parameter.

4. If you are changing the space in the root addressable area of an HDAM
database, you might need to adjust other HDAM parameters. In this case, you
must code a new DBD before reloading.

5. If you changed the DBD, rebuild the ACB if you have ACBs prebuilt rather than
built dynamically.

6. Reload your database, using either the existing DBD (if no changes were made
to the DBD) or the new DBD. Use the appropriate reload utility.

7. If your database uses logical relationships or secondary indexes, you must run
some of the reorganization utilities before and after reloading to resolve prefix
information. The flowchart in Figure 143 on page 328 tells you which utilities to
use and the order in which they must be run.

Changing the SPEED / RECOVERY Parameter
Do not unload and reload your database merely to change the SPEED/RECOVERY
parameter. Rather, if you have RECOVERY specified, change the parameter to
SPEED to improve performance when the database is reloaded and restart of the
load program is not used. IMS does not support the RECOVERY parameter.
Recovery can only be done when the database load program is run under control of
UCF.

Because it is assumed you would only change the parameter when making other
database changes that require you to unload and reload your database, no
procedure for changing it is provided here.

Changing the IMBED / NOIMBED or REPLICATE / NOREPLICATE
Parameter
You can use the reorganization utilities to change whatever you’ve specified in the
IMBED|NOIMBED and REPLICATE|NOREPLICATE parameters. To change either
or both:

1. Unload your database, using the existing DBD and the appropriate unload utility.

2. Recalculate database space. You need to do this because the change you are
making will result in different requirements for database space. See

Adjusting VSAM Options

Chapter 14. Tuning Your Database 357

“Chapter 12. Loading Your Database” on page 285, “Estimating the Minimum
Size of the Database” on page 286 for a description of how to calculate
database space.

3. Delete the old database cluster and define the new database cluster.

4. Reload your database using the existing DBD and the appropriate reload utility.

5. If your database uses logical relationships or secondary indexes, you must run
some of the reorganization utilities before and after reloading to resolve prefix
information. The flowchart in Figure 143 on page 328 tells you which utilities to
use and the order in which they must be run.

Adjusting OSAM Options
The OSAM options you can choose are described in “Determining Which OSAM
Options to Use” on page 190. Performance implications of each OSAM option are
also discussed there. To improve performance, reread that section and reassess the
original choices you made.

You cannot specifically monitor any OSAM options. To adjust OSAM options,
change the appropriate parameters in the OPTIONS control statement. Then put
the new control statement in the:

v DFSVSAMP data set in a batch system

v IMS.PROCLIB data set with the member name DFSVSMnn in an online system

Detailed information on how to code these control statements is in IMS/ESA
Installation Volume 1: Installation and Verification .

Changing the Amount of Space Allocated
Change the amount of space allocated for your database in two situations. The first
is when you are running out of primary space. Do not use your secondary space
allocation because this can greatly decrease performance. Also change the amount
of space allocated for your database when the number of I/O operations required to
process a DL/I call is large enough to make performance unacceptable.
Performance can be unacceptable if data in the database is spread across too
much DASD space.

One way to routinely monitor use of space is by watching the IWAITS/CALL field in
the DL/I Call Summary report. The DL/I Call Summary report is described in
IMS/ESA Utilities Reference: System. If the IWAITS/CALL field has a relatively high
number in it, the high number can be caused by space problems. If you suspect
space is the problem, you can verify such problems in two specific ways:

v For VSAM data sets, you can get a report from the VSAM catalog using the
LISTCAT command. In the report, check CI/CA splits, EXCPs, and EXTENTS.
(LISTCAT ALL report is described in “Chapter 13. Monitoring Your Database” on
page 309.)

v For non-VSAM data sets, you can get a report on the VTOC using the LISTVTOC
command. In the report, check the NOEXT field. (LISTCAT ALL report is
described in “Chapter 13. Monitoring Your Database” on page 309.)

If you decide to change the amount of space allocated for your database, do it with
JCL or with MVS utilities. The reorganization utilities must be run to put the
database in its new space. The procedure for putting the database in its new space
is as follows:

1. Unload your database, using the existing DBD and the appropriate unload utility.

Adjusting VSAM Options

358 IMS/ESA V6 Admin Guide: DB

2. Recalculate database space. See “Chapter 12. Loading Your Database” on
page 285 , “Estimating the Minimum Size of the Database” on page 286 for a
description of how to calculate database space.

3. Delete the old database space for non-VSAM data sets and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

4. If you are changing the space in the root addressable area of an HDAM
database, you might need to adjust other HDAM parameters. In this case, you
must code a new DBD before reloading.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically if you
changed the DBD.

6. Reload your database, using either the existing DBD (if no changes were made
to the DBD) or the new DBD. Use the appropriate reload utility.

7. You must run some of the reorganization utilities before and after reloading to
resolve prefix information if your database uses logical relationships or
secondary indexes. The flowchart in Figure 143 on page 328 tells you which
utilities to use and the order in which they must be run.

Changing Operating System Access Methods
You can use the reorganization utilities to change access methods from OSAM to
VSAM, or from VSAM to OSAM. To change access methods, you:

1. Code a new DBD (unless you have already done this as described in Step 1).

2. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

3. Delete the old data sets and define the new clusters when changing from
non-VSAM to VSAM. Delete the old clusters and define new database data sets
when changing from VSAM to non-VSAM.

4. You need to change from OSAM options and buffers to VSAM options and
buffers or vice versa. These topics are covered in preceding sections of this
chapter:

“Adjusting Buffers” on page 353

“Adjusting VSAM Options” on page 356

“Adjusting OSAM Options” on page 358

5. Reload your database, using the new DBD. Remember to make an image copy
of your database as soon as it is reloaded.

6. If your database uses logical relationships or secondary indexes, you must run
some of the reorganization utilities before and after loading to resolve prefix
information. The flowchart in Figure 143 on page 328 tells you which utilities to
use and the order in which they must be run.

Changing the Number of Data Set Groups
Normally, a database is physically stored on one data set or, as in HISAM, on a pair
of data sets. However, databases can be physically stored on more than one data
set or pair of data sets. If so, each data set or pair of data sets is called a data set
group. “Using Multiple Data Set Groups” on page 158 tells you:

v What data set groups are

v When they can be used

v What situations might prompt you to use them

v How they are specified in the DBD

Changing the Amount of Space Allocated

Chapter 14. Tuning Your Database 359

You should be familiar with these topics. You should also have decided to change to
multiple data set groups to tune your database. It is not possible for you to
specifically monitor your database to determine whether multiple data set groups
will improve performance or better utilize space. Rather, knowledge of your
application’s requirements along with many types of statistics about database use
might help you make this decision.

To change the number of data set groups in your database, (see Figure 156 on
page 361) you:

1. Unload your database using the existing DBD.

2. Code a new DBD.

3. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

4. Recalculate database space. You need to recalculate database space because
the change you are making will result in different requirements for database
space. See “Chapter 12. Loading Your Database” on page 285, “Estimating the
Minimum Size of the Database” on page 286 for a description of how to
calculate database space.

5. Reallocate data sets because the number and size of data sets you are using
will change. See “Chapter 12. Loading Your Database” on page 285, “Allocating
Data Sets” on page 293 for information on allocating data sets.

6. Delete the old database space and define new database space for non-VSAM
data sets. Delete the space allocated for the old clusters and define space for
the new clusters for VSAM data sets.

7. Reload your database using the new DBD. Remember to make an image copy
of your database as soon as it’s reloaded.

8. Run some of the reorganization utilities before and after reloading to resolve
prefix information if your database uses logical relationships or secondary
indexes. The flowchart in Figure 143 on page 328 shows you which utilities to
use and the order in which they must be run.

Changing the Number of Data Set Groups

360 IMS/ESA V6 Admin Guide: DB

Notes to Figure 156 :

1. You can use the database reorganization/load processing utilities (that is, the
HISAM Unload/Reload, HD Unload/Reload, Prefix Resolution and Prefix

Figure 156. Utility Sequence of Execution When Making Database Changes during Reorganization

Changing the Number of Data Set Groups

Chapter 14. Tuning Your Database 361

Update utilities) to operate on one or more databases concurrently. For
example, you can reorganize one or more existing databases at the same time
that other databases are being initially loaded. Any or all of the databases
being operated on can be logically interrelated. A database operation is defined
as an initial database load, a database unload/reload (reorganization), or a
database scan.

2. If one or more segments in any or all of the databases being operated upon is
involved in either a logical relationship or a secondary index relationship, the
YES branch must be taken. You can also use the Pre-reorganization utility to
determine which database operations must be performed.

3. Based upon the information given to it on control statements, the database
Pre-reorganization utility provides a list of databases that must be initially
loaded, reorganized, or scanned. You must not change the number and
sequence of databases specified on the pre-reorganization control statement
between reload and prefix resolution.

4. This area of the flowchart must be followed once for each database to be
operated upon, whether the operation consists of an initial load, reorganization,
or scan. The operations can be done for all databases concurrently, or one
database at a time. If the various database operations are performed
sequentially, work data set storage space can be saved and processing
efficiency increased if DISP=(MOD,KEEP) is specified for the DFSURWF1 DD
statement associated with each database operation. The attributes of the work
data set for the database initial load, reorganization, and scan programs must
be identical.

When using the HD Reload utility, first do all unloads and scans of logically
related databases if logical parent concatenated keys are defined as virtual in
the logical child.

5. You must ensure that all operations indicated by the Prereorganization utility (if
it was executed) are completed prior to taking the YES branch.

6. If any work data sets were generated during any of the database operations
that were executed by you, the YES branch must be taken. The presence of a
logical relationship in a database does not guarantee that work data sets will
be generated during a database operation. The reorganization/load processing
utilities determine the need for work data sets dynamically, based upon the
actual segments presented during a database operation. If any segments that
participate in a logical relationship are loaded, work data sets will be generated
and the YES branch must be taken.

If for any specific database operation no work data set was generated for the
database, processing of that database is complete and ready to use.

When a HIDAM database is initially loaded or reorganized, its primary index
will be generated at database load time.

7. You must run the DB Scan utility before a database is unloaded when logical
parent concatenated keys are defined as virtual in the logical child database to
be unloaded.

This program should be executed against each database listed in the output of
the Pre-reorganization utility. A work data set can be generated for each
database scanned by this utility. Databases for scanning are listed after the
characters “DBS=” in one or more output messages of the Pre-reorganization
utility.

8. The HD Reorganization Reload utility can cause the generation of a work data
set to be later used by the Prefix Resolution utility. Databases to be
reorganized using the HD Unload/Reload utilities are listed after the character
“DBR=” in one or more output messages of the Pre-reorganization utility.

Changing the Number of Data Set Groups

362 IMS/ESA V6 Admin Guide: DB

9. The user-provided initial database load program can automatically cause the
generation of a work data set to be later used by the Prefix Resolution utility.
You do not need to add code to the initial load program for work data set
generation. Code is added automatically by IMS through the user program
issuing ISRT requests. You must, however, provide a DD statement for this
data set along with the other JCL statements necessary to execute the initial
load program. Databases for initial loading are listed after the characters
DBIL= in one or more output messages of the Pre-reorganization utility.

10. The database Prefix Resolution utility combines the workfile output from the
Database Scan utility, the HD Reorganization Reload utility, and the user’s
initial database load execution to create an output data set for use by the
Prefix Update utility. The Prefix Update utility then completes all logical
relationships defined for the databases that were operated upon.

11. This path must be taken for HISAM databases with logical relationships. This
path must also be taken if structural changes are required (for example,
HISAM to HDAM, pointer changes, additional segments, or adding a secondary
index).

12. If a secondary index needs to be created or if two secondary indexes need to
be combined, you must run the HISAM Unload/Reload utilities. After the
HISAM Unload/Reload utilities are run, if logical relationships exist in the
database, you must execute the Prefix Update utility before the reorganization
or load process is considered to be complete.

13. For information on scratching and allocating OSAM data sets, see “Allocation
for OSAM Data Sets Using IEFBR14” under “Designing the IMS Online
System” in IMS/ESA Administration Guide: System.

Changing the Number of Data Set Groups

Chapter 14. Tuning Your Database 363

Changing the Number of Data Set Groups

364 IMS/ESA V6 Admin Guide: DB

Chapter 15. Modifying Your Database

About This Chapter . 366
Adding Segment Types . 367

Unloading and Reloading Using the Reorganization Utilities 367
Without Unloading or Reloading 368
Using Your Own Unload and Reload Program 369

Deleting Segment Types . 369
Moving Segment Types . 369
Changing Segment Size . 370
Changing Data in a Segment (Except for Data at the End of a Segment) 370
Changing the Position of Data in a Segment 371
Adding Logical Relationships 371

Example 1. DBX Exists, DBY Is to Be Added 371
Procedure . 372

Example 2. DBX and DBY Exist, DBZ Is to Be Added 372
Procedure . 373

Example 3. DBX and DBY Exist, DBZ Is to Be Added 373
Example 4. DBX and DBY Exist, DBZ Is to Be Added 374
Example 5. DBX Exists, DBY Is to Be Added 374

Procedure . 374
Example 6. DBX and DBY Exist, DBZ Is to Be Added 375

Procedure When Reorganizing DBY (Segment B Contains a Symbolic
Pointer) . 375

Procedure When Reorganizing DBY and Scanning DBX (Segment B
Contains a Direct Pointer) 376

Procedure When Reorganizing DBX and DBY 376
Example 7. DBX and DBY Exist, DBZ Is to Be Added 377

Procedure Using Scan 377
Procedure When Reorganizing DBX and DBY 378

Example 8. DBX and DBY Exist, DBZ Is to Be Added 379
Example 9. DBY Exists, DBZ Is to Be Added 379

Procedure . 379
Example 10. DBY Exists, DBZ Is to Be Added 380
Example 11. DBX and DBY Exist, DBZ Is to Be Added. 380
Example 12. DBX and DBY Exist, DBZ Is to Be Added. 381
Example 13. DBX and DBY Exist, Segment Y and DBZ Are to Be Added 381

Procedure . 381
Steps in Reorganizing a Database to Add a Logical Relationship 382
Some Restrictions on Modifying Existing Logical Relationships 385

Example 1: Changing from Bidirectional Virtual to Bidirectional Physical
Pairing . 385

Example 2: Changing the Location of the Real Logical Child in a
Bidirectional Logical Relationship 386

Summary on Use of Utilities When Adding Logical Relationships 386
Adding a Secondary Index . 386
Adding or Converting to Variable-Length Segments 387

Method 1. Converting Segments or a Database 387
Method 2. Converting Segments or a Database 388

Converting to the Segment Edit/Compression Facility 388
Converting Databases for Data Capture Exit Routines and Asynchronous Data

Capture . 389
Converting a Logical Parent Concatenated Key From Virtual to Physical or

Physical to Virtual . 389
Using the Online Change Function 390

© Copyright IBM Corp. 1974, 1999 365

Maintaining Continuous Availability of IFP and MPP Regions 391
Changing Randomizer and Exit Routines 392

New Randomizer Routine 393
Changed Randomizer Routine 393
Deleted Randomizer Routine 394
Adding, Changing or Deleting Segment Compression Routines. 394
Adding, Changing or Deleting Data Capture Exit Routines 394
Changing Root Addressable Space with Two Stage Randomizer 395
Changing the DEDB AREA UOW Structural Definition 396

Making Online Changes at the DEDB and Area Level 397
Adding or Deleting DEDBs 397
Changing DEDBs by Adding or Deleting Segments 398
Adding or Deleting DEDB AREAs 399
Changing Root Addressable Space Allocation 399
Changing Dependent and Independent Overflow Space Allocation . . . 399
Changing CI Size . 399

Extending DEDB Independent Overflow Online 400

About This Chapter
Under several circumstances, you must modify your database. Over time, user
requirements can change, necessitating changes in the database design. Or you
might chose to use new or different options or features. Or perhaps you have
simply found a more efficient way to structure the database. This chapter describes
the various types of structural changes you can make to your database and tells
you when and how you can make the changes using the reorganization utilities.

This chapter examines the following areas of modifying a database:

v Adding segment types

v Deleting segment types

v Moving segment types

v Changing segment size

v Changing data in a segment

v Changing the position of data in a segment

v Adding logical relationships

v Adding a secondary index

v Adding or converting to variable-length segments

v Converting to the segment edit/compression facility

v Converting databases for Data Capture exit routines and Asynchronous Data
Capture

v Converting to multiple data set groups 3

v Converting a logical parent concatenated key from virtual to physical or physical
to virtual

v Using the online example function

v Extending DEDB independent overflow online

When you modify your database, you often make more than a simple change to it.
For example, you might need to add a segment type and a secondary index. This
section has procedures to guide you through making each type of change. If you

3. Conversion to multiple data set groups is a type of change you might also make to tune your database. Therefore, information on
this topic is discussed in “Changing the Number of Data Set Groups” on page 359.

366 IMS/ESA V6 Admin Guide: DB

make more than one change at a time, you should look at Figure 156 on page 361.
The flowchart, when used with the individual procedures in this chapter, will guide
you in making some types of multiple changes to the database.

If you share data, additional information about modifications is in IMS/ESA
Administration Guide: System .

Attention : If the DBD for an existing MSDB is changed, the header information
(BHDR) might change, even though the database segments do not. In this case,
the headers in the MSDBCPx data sets are invalid or the wrong length. A change in
the MSDB headers causes message DFS2593I. If ABND=Y is specified in the
MSDB PROCLIB member, ABENDU1012 is also issued. Correct this problem by
using the MSDBLOAD option on a warm start or cold start to load the MSDBs from
an MSDBINIT data set.

Adding Segment Types
There are three ways to add a segment type to a database:

v Unloading and reloading using the reorganization utilities

v Without unloading or reloading

v Using your own unload and reload program

Unloading and Reloading Using the Reorganization Utilities
You can add segment types to a database record using the reorganization utilities if:

v The segment type to be added is at the bottom level of a path in the hierarchy.
Figure 157 shows an existing database record (indicated by solid lines) and the
places where a new segment type can be added (indicated by dashed lines).

v The existing relative order of segments in the database record does not change.
In other words, the existing parent to child relationships cannot change.

v The existing segment names do not change.

To use the reorganization utilities to add a segment type to the database:

1. Determine if the change you are making affects the code in any application
programs. If the code is affected, make the necessary changes to the
application program.

2. Unload your database, using the existing DBD.

Figure 157. Where Segment Types Can Be Added in a Database Record

Chapter 15. Modifying Your Database 367

3. Code a new DBD. You need to add SEGM= statements to the DBD for the
new segment type. No database updates are allowed between unload and
reload.

4. If the change you are making affects the code in application programs, make
any necessary changes to the PSBs for those application programs. If you
have the DB/DC Data Dictionary, it can help you determine the application
programs and PCBs that are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

6. Recalculate database space. You need to do this because the change you are
making will result in different requirements for database space. See
“Chapter 12. Loading Your Database” on page 285 under “Estimating the
Minimum Size of the Database” for a description of how to calculate database
space.

7. For non-VSAM data sets, delete the old database space and define the new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Reload your database, using the new DBD. Make an image copy of your
database as soon as it is reloaded.

9. If your database uses logical relationships or secondary indexes, run some of
the reorganization utilities before and after reloading to resolve prefix
information. The flowchart in Figure 143 on page 328 tells you which utilities to
use and the order in which they must be run.

10. Code and execute an application program to insert the new segment types into
the database.

Without Unloading or Reloading
You can add segment types to a database record without unloading the database
under the following circumstances:

v In a HISAM database, the segment type to be added must be the last segment in
the hierarchy. In addition, the segment type to be added must fit in the existing
logical record.

v In an HD database, the segment type to be added must also be the last segment
in the hierarchy. The parent of the new segment type must use hierarchic
pointers. Also, the segment type cannot be the largest segment type in the data
set group.

To add a segment type to the database without unloading and reloading:

1. Determine whether the change you are making affects the code in any
application programs. If the code is affected, make sure it gets changed.

2. Code a new DBD. You need to add a SEGM= statement to the DBD for the new
segment type.

3. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for those application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

4. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

5. Code and execute an application program to insert the new segment type.

Adding Segment Types

368 IMS/ESA V6 Admin Guide: DB

Using Your Own Unload and Reload Program
You must write your own unload and reload program to add a segment type to the
database, if the segment type does not meet the qualifications described in the two
preceding sections.

Deleting Segment Types
You can delete a segment type from a database by:

v Using the reorganization utilities

v Using your own unload and reload program

You can delete a segment type from a database, using the reorganization utilities, if:

v The existing relative order of segments in the database record does not change.
In other words, the existing parent to child relationships cannot change.

v The existing segment names do not change.

To use the reorganization utilities to delete a segment type from the database:

1. Code and execute an application program to delete all occurrences of the
segment type being deleted. You must code and execute the application
program before the database is unloaded.

2. Determine whether the change you are making affects the code in any
application programs. If the code is affected, make sure it gets changed.

3. Unload your database, using the existing DBD.

4. Code a new DBD. You need to remove SEGM= statements from the DBD for:

v The segment type being deleted

v The children of the deleted segment.

5. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for those application programs. If you
have the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

6. Recalculate database space. You need to do this because the change you are
making will result in different requirements for database space. See
“Chapter 12. Loading Your Database” on page 285 under “Estimating the
Minimum Size of the Database” for a description of how to calculate database
space.

7. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

8. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

9. Reload your database using the new DBD. Remember to make an image copy
of your database as soon as it is reloaded.

10. If your database uses logical relationships or secondary indexes, you must run
some of the reorganization utilities before and after reloading to resolve prefix
information. The flowchart in Figure 143 on page 328 tells you which utilities to
use and the order in which they must be run.

Moving Segment Types
Because segment types cannot be moved using the reorganization utilities, you
must write your own unload and reload program to move them.

Adding Segment Types

Chapter 15. Modifying Your Database 369

Changing Segment Size
Using the reorganization utilities, you can increase or decrease segment size at the
end of a segment type. When increasing segment size, you are adding data to the
end of a segment. When decreasing segment size, IMS truncates data at the end of
a segment.

If you are increasing the size of a segment, you cannot predict what is at the end of
the segment when it is reloaded. Also, new data must be added to the end of a
segment using your own program after the database is reloaded.

To increase or decrease segment size:

1. Determine whether the change you are making affects the code in any
application programs. If the code is affected, make sure it gets changed.

2. Unload your database, using the existing DBD. If you are changing a HISAM
database, you must use the HD UNLOAD/RELOAD utility since the HISAM
utilities cannot be used to make structural changes.

3. Code a new DBD. You need to change the BYTES= operand on the SEGM
statement in the DBD to reflect the new segment size. If you are eliminating
data from a segment for which FIELD statements are coded in the DBD, you
need to eliminate the FIELD statements. If you are adding data to a segment
and the data is referenced in the SSA in application programs, you need to
code FIELD statements. No database updates are allowed between unload and
reload.

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for those application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than build dynamically.

6. Recalculate database space. You need to do this because the change you are
making results in different requirements for database space. See “Chapter 12.
Loading Your Database” on page 285 under “Estimating the Minimum Size of
the Database” for a description of how to calculate database space.

7. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Reload your database, using the new DBD. Make an image copy of your
database as soon as it is reloaded.

9. If your database uses logical relationships or secondary indexes, you must run
some of the reorganization utilities before and after reloading to resolve prefix
information. The flowchart in Figure 143 on page 328 tells you which utilities to
use and the order in which they must be run.

Changing Data in a Segment (Except for Data at the End of a Segment)
Data in a segment cannot be increased or decreased in size using the
reorganization utilities. To increase or decrease the size of fields, you must write
your own unload and reload programs.

Changing Segment Size

370 IMS/ESA V6 Admin Guide: DB

Changing the Position of Data in a Segment
You cannot change the position of data in a segment using the reorganization
utilities. To make this kind of change, you must write your own unload and reload
program, use field-level sensitivity, or use the IMS System Utilities/Database Tools
(DBT) DB Segment Restructure Utility. See “Using Field-Level Sensitivity” for a
description of how this function works.

Adding Logical Relationships
Logical relationships are explained in detail in “Chapter 4. Designing a Fast Path
Database” on page 33 under “Using Logical Relationships”. This section contains
examples and procedures for adding a logically-related database to an existing
database. Not all situations in which you might need to add a logical relationship
are described in this section. However, if the examples do not fit your specific
requirements, you should be able to gather enough information from them to
decide:

v If adding a logical relationship to your existing database is possible

v How to add the relationship

The examples in this section are followed by Table 13 on page 383 which tells you
what to do when reorganizing a database to add a logical relationship. Following
the figure are some restrictions on modifying existing logical relationships.

The examples in this section show the logical parent as a root segment, although
this is not a requirement. The examples are still valid when the logical parent is at a
lower level in the hierarchy.

When adding logical relationships to existing databases, you should always make
the change on a test database. Thoroughly test the change before implementing it
using production databases.

In the following examples, these conventions are used:

v Existing databases are shown using solid lines.

v The database being added is shown using dashed lines.

v The logical parent and logical child relationship is labeled for the database being
added. They are labeled LP and LC.

v The terms DBX, DBY, and DBZ refer to database 1, database 2, and database 3.

Example 1. DBX Exists, DBY Is to Be Added

DBX must be reorganized to add the counter field to the segment prefix for A. DBIL
must be specified in the control statement for DBX. In the following procedure, the
counter field for segment A is updated to show the number of C segments because
segment C is loaded with a user load program.

Figure 158. DBX Exists, DBY Is to Be Added

Changing the Position of Data in a Segment

Chapter 15. Modifying Your Database 371

Procedure
1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

2. Unload DBX, using the existing DBD and the HD Unload utility.

3. Code a new DBD for DBX and DBY. “How to Specify Use of Logical
Relationships in the Logical DBD” in “Chapter 5. Choosing Additional Database
Functions” on page 83, explains how the DBD is coded for logical
relationships.

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for these application programs. If you
have the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

6. Recalculate database space for DBX and calculate space for DBY. See
“Chapter 12. Loading Your Database” on page 285 under “Estimating the
Minimum Size of the Database” for a description of how to calculate database
space.

7. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Pre-reorganization utility, specifying DBIL in the control statements for
DBX and DBY.

9. Reload DBX, using the new DBD and the HD Reload utility.

10. Load DBY, using an initial load program. See “Chapter 12. Loading Your
Database” on page 285 under “Writing a Load Program” for a description of
how to write an initial load program.

11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are
output from Steps 9 and 10 as input.

12. Run the Prefix Update utility, using the DFSURWF3 work file that is output
from Step 11 as input.

13. Remember to make an image copy of both databases as soon as they are
loaded.

Example 2. DBX and DBY Exist, DBZ Is to Be Added

In this example, the counter exists in the segment C prefix. DBX and DBY must be
reorganized to calculate the new value for the counter in the segment C prefix.
DBIL must be specified in the control statement for DBX and DBY. In the following
procedure, the segment A counter field is updated to show the number of C
segments because segment C is loaded with a user load program.

Figure 159. DBX and DBY Exist, DBZ Is to Be Added

Adding Logical Relationships

372 IMS/ESA V6 Admin Guide: DB

Procedure
1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

2. Unload DBX and DBY, using the existing DBDs and HD Unload utility.

3. Code a new DBD for DBY and DBZ. “How to Specify Use of Logical
Relationships in the Logical DBD” in “Chapter 5. Choosing Additional Database
Functions” on page 83 explains how the DBD is coded for logical relationships.

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for these application programs. If you
have the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

6. Recalculate database space for DBX and DBY, and calculate space for DBZ.
See “Chapter 12. Loading Your Database” on page 285 under “Estimating the
Minimum Size of the Database” for a description of how to calculate database
space.

7. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Pre-reorganization utility, specifying DBIL in the control statements for
DBX, DBY and DBZ.

9. Reload DBX and DBY, using the new DBDs and the HD Reload utility.

10. Load DBZ, using an initial load program. See “Chapter 12. Loading Your
Database” on page 285 under “Writing a Load Program” for a description of
how to write an initial load program.

11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are
output from Steps 9 and 10 as input.

12. Run the Prefix Update utility, using the DFSURWF3 work file that is output
from Step 11 as input.

13. Remember to make an image copy of all three databases as soon as they are
loaded.

Example 3. DBX and DBY Exist, DBZ Is to Be Added

DBY must be reorganized to add the counter field to the segment C prefix. DBIL
must be specified in the control statement for DBY. DBX must be reorganized
because an initial load (DBIL) of the logical parent (segment C) assumes an initial
load (DBIL of the logical child). The procedure for this example (and all conditions
and considerations) is exactly the same as example 2.

Figure 160. DBX and DBY Exist, DBZ Is to Be Added

Adding Logical Relationships

Chapter 15. Modifying Your Database 373

Example 4. DBX and DBY Exist, DBZ Is to Be Added

The procedure for this example (and all conditions and considerations) is exactly
the same as for example 2.

Example 5. DBX Exists, DBY Is to Be Added

DBX must be reorganized to add the logical child pointers in the segment A prefix.

Procedure
1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

2. Unload DBX, using the existing DBD and the HD Unload utility.

3. Code a new DBD for DBX and DBY. “How to Specify Use of Logical
Relationships in the Logical DBD” in “Chapter 5. Choosing Additional Database
Functions” on page 83 explains how the DBD is coded for logical relationships.

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for these application programs. If you
have the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

6. Recalculate database space for DBX, and calculate space for DBY. See
“Chapter 12. Loading Your Database” on page 285 under “Estimating the
Minimum Size of the Database” for a description of how to calculate database
space.

7. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Pre-reorganization utility, specifying DBR in the control statement for
DBX, and DBIL in the control statement for DBY.

9. Reload DBX, using the new DBD and the HD Reload utility.

10. Load DBY, using an initial load program. See “Chapter 12. Loading Your
Database” on page 285 under “Writing a Load Program” for a description of
how to write an initial load program.

11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are
output from Steps 9 and 10 as input.

Adding Logical Relationships

374 IMS/ESA V6 Admin Guide: DB

12. Run the Prefix Update utility, using the DFSURWF3 work file that is output
from Step 11 as input.

13. Remember to make an image copy of both databases as soon as they are
loaded.

Example 6. DBX and DBY Exist, DBZ Is to Be Added

DBY must be reorganized to add the logical child pointers to the segment C prefix.
One of the following three options should be used.

Procedure When Reorganizing DBY (Segment B Contains a
Symbolic Pointer)

1. Determine whether the change you are making affects the code in any
application programs. If the code is affected, make sure it gets changed.

2. Unload DBY, using the existing DBD and HD Unload utility.

3. Code a new DBD for DBY and DBZ. “How to Specify Use of Logical
Relationships in the Logical DBD” in “Chapter 5. Choosing Additional Database
Functions” on page 83 explains how the DBD is coded for logical relationships.

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for these application programs. If you
have the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

6. Recalculate database space for DBY, and calculate space for DBZ. See
“Chapter 12. Loading Your Database” on page 285 under “Estimating the
Minimum Size of the Database” for a description of how to calculate database
space.

7. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Pre-reorganization utility, specifying DBR in the control statement for
DBY, and DBIL in the control statement for DBZ. (The output from the
Pre-reorganization utility indicates that a scan of DBX is required.)

9. Reload DBY, using the new DBD and the HD Reload utility.

10. Load DBZ, using an initial load program. See “Chapter 12. Loading Your
Database” on page 285 under “Writing a Load Program” for a description of
how to write an initial load program.

11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are
output from Steps 9 and 10 as input.

12. Run the Prefix Update utility, using the DFSURWF3 work file that is output
from Step 11 as input.

13. Remember to make an image copy of both databases as soon as they are
loaded.

Figure 161. DBX and DBY Exist, DBZ Is to Be Added

Adding Logical Relationships

Chapter 15. Modifying Your Database 375

When DBY is reloaded, two type 00 records are produced for each occurrence of
segment C. One contains a logical child database named DBZ and matches the
type 10 record produced for segment E. The other contains a logical child database
named DBX. Because a scan or reorganization of DBX was not done, a matching
10 record was not produced for segment B. The Prefix Resolution utility produces
message DFS878 when this occurs. The message can be ignored as long as the
printed 00 record refers to DBY and DBX. Any messages for DBY and DBZ should
be investigated.

Procedure When Reorganizing DBY and Scanning DBX (Segment
B Contains a Direct Pointer)
1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

2. Unload DBY, using the existing DBD and HD Unload utility.

3. Code a new DBD for DBY and DBZ. “How to Specify Use of Logical
Relationships in the Logical DBD” in “Chapter 5. Choosing Additional Database
Functions” on page 83 explains how the DBD is coded for logical relationships.

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for these application programs. If you
have the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

6. Recalculate database space for DBY, and calculate space for DBZ. See
“Chapter 12. Loading Your Database” on page 285 under “Estimating the
Minimum Size of the Database” for a description of how to calculate database
space.

7. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Pre-reorganization utility, specifying DBR in the control statement for
DBY, and DBIL in the control statement for DBZ. (The output from the
Pre-reorganization utility says that a scan of DBX is required.)

9. Run the scan utility against DBX.

10. Reload DBY, using the new DBD and the HD Reload utility.

11. Load DBZ, using an initial load program. See “Chapter 12. Loading Your
Database” on page 285 under “Writing a Load Program” for a description of
how to write an initial load program.

12. Run the Prefix Resolution utility, using the DFSURWF1 work files that are
output from Steps 9, 10, and 11 as input.

13. Run the Prefix Update utility, using the DFSURWF3 work file that is output
from Step 12 as input.

14. Remember to make an image copy of both databases as soon as they are
loaded.

Procedure When Reorganizing DBX and DBY
1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

2. Unload DBX and DBY, using the existing DBDs and HD Unload utility.

3. Code a new DBD for DBY and DBZ. “How to Specify Use of Logical
Relationships in the Logical DBD” in “Chapter 5. Choosing Additional Database
Functions” on page 83 explains how the DBD is coded for logical relationships.

Adding Logical Relationships

376 IMS/ESA V6 Admin Guide: DB

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for these application programs. If you
have the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

6. Recalculate database space for DBX and DBY, and calculate space for DBZ.
See “Chapter 12. Loading Your Database” on page 285 under “Estimating the
Minimum Size of the Database” for a description of how to calculate database
space.

7. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Pre-reorganization utility, specifying DBR in the control statements for
DBX and DBY, and DBIL in the control statement for DBZ. (The output from
the Pre-reorganization utility says that a scan of DBX is required.)

9. Reload DBX and DBY, using the new DBDs and the HD Reload utility.

10. Load DBZ, using an initial load program. See “Chapter 12. Loading Your
Database” on page 285 under “Writing a Load Program” for a description of
how to write an initial load program.

11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are
output from Steps 9 and 10 as input.

12. Run the Prefix Update utility, using the DFSURWF3 work file that is output
from Step 11 as input.

13. Remember to make an image copy of all three databases as soon as they are
loaded.

Example 7. DBX and DBY Exist, DBZ Is to Be Added

DBY must be reorganized to add the logical child pointers to the segment C prefix.
Logical child pointers from segment C to segment B are not unloaded, therefore,
DBX must be reorganized or scanned. DBX must be reorganized to add the logical
child pointers in the segment A prefix.

Procedure Using Scan
1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

2. Unload DBY, using the existing DBD and HD Unload utility.

3. Code a new DBD for DBY and DBZ. “How to Specify Use of Logical
Relationships in the Logical DBD” in “Chapter 5. Choosing Additional Database
Functions” on page 83 explains how the DBD is coded for logical relationships.

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for these application programs. If you

Figure 162. DBX and DBY Exist, DBZ Is to Be Added

Adding Logical Relationships

Chapter 15. Modifying Your Database 377

have the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

6. Recalculate database space for DBY and calculate space for DBZ. See
“Chapter 12. Loading Your Database” on page 285 under “Estimating the
Minimum Size of the Database” for a description of how to calculate database
space.

7. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Pre-reorganization utility, specifying DBR in the control statements for
DBY, and DBIL in the control statement for DBZ. (The output from the
Pre-reorganization utility indicates that a scan of DBX is required.)

9. Run the scan utility against DBX.

10. Reload DBY, using the new DBDs and the HD Reload utility.

11. Load DBZ, using an initial load program. See “Chapter 12. Loading Your
Database” on page 285 under “Writing a Load Program” for a description of
how to write an initial load program.

12. Run the Prefix Resolution utility, using the DFSURWF1 work files that are
output from Steps 9, 10, and 11 as input.

13. Run the Prefix Update utility, using the DFSURWF3 work file that is output
from Step 12 as input.

14. Remember to make an image copy of both databases as soon as they are
loaded.

Procedure When Reorganizing DBX and DBY
1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

2. Unload DBY and DBY using the existing DBDs and the HD Unload utility.

3. Code a new DBD for DBY and DBZ. “How to Specify Use of Logical
Relationships in the Logical DBD” in “Chapter 5. Choosing Additional Database
Functions” on page 83 explains how the DBD is coded for logical relationships.

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for these application programs. If you
have the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

6. Recalculate database space for DBX and DBY and calculate space for DBZ.
See “Chapter 12. Loading Your Database” on page 285 under “Estimating the
Minimum Size of the Database” for a description of how to calculate database
space.

7. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Pre-reorganization utility, specifying DBR in the control statements for
DBX and DBY, and DBIL in the control statement for DBZ. (The output from
the Pre-reorganization utility indicates that a scan of DBX is required.)

9. Reload DBX and DBY, using the new DBDs and the HD Reload utility.

10. Load DBZ, using an initial load program. See “Chapter 12. Loading Your
Database” on page 285 under “Writing a Load Program” for a description of
how to write an initial load program.

Adding Logical Relationships

378 IMS/ESA V6 Admin Guide: DB

11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are
output from Steps 9 and 10 input.

12. Run the Prefix Update utility, using the DFSURWF3 work file that is output
from Step 11 as input.

13. Remember to make an image copy of both databases as soon as they are
loaded.

Example 8. DBX and DBY Exist, DBZ Is to Be Added

DBY must be reorganized to add the logical child pointers in the segment C prefix.
The procedure for this example (and all conditions and considerations) is exactly
the same as the procedures for example 6.

Example 9. DBY Exists, DBZ Is to Be Added

DBY must be reorganized. DBZ must be loaded using an initial load program. DBIL
must be specified in the control statement for DBY. Do not specify DBR in the
control statement for DBY.

Procedure
1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

2. Unload DBY, using the existing DBD and HD Unload utility.

3. Code a new DBD for DBY and DBZ. “How to Specify Use of Logical
Relationships in the Logical DBD” in “Chapter 5. Choosing Additional Database
Functions” on page 83 explains how the DBD is coded for logical relationships.

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for these application programs. If you
have the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

6. Recalculate database space for DBY and calculate space for DBZ. See
“Chapter 12. Loading Your Database” on page 285 under “Estimating the
Minimum Size of the Database” for a description of how to calculate database
space.

Figure 163. DBX and DBY Exist, DBZ Is to Be Added

Figure 164. DBY Exists, DBZ Is to Be Added

Adding Logical Relationships

Chapter 15. Modifying Your Database 379

7. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Pre-reorganization utility, specifying DBIL in the control statements for
DBY and DBZ.

9. Reload DBY, using the new DBDs and the HD Reload utility.

10. Load DBZ, using an initial load program. See “Chapter 12. Loading Your
Database” on page 285 under “Writing a Load Program” for a description of
how to write an initial load program.

11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are
output from Steps 9 and 10 as input.

12. Run the Prefix Update utility, using the DFSURWF3 work file that is output
from Step 11 as input.

13. Remember to make an image copy of both databases as soon as they are
loaded.

Example 10. DBY Exists, DBZ Is to Be Added

Segment X might be considered a logical child if the key of segment D is at the
correct location in segment X. DBY must be reorganized, because an initial load
(DBIL) of the logical parent (segment D) assumes an initial load (DBIL) of the
logical child.

In this example, you could use symbolic or direct pointers for segment X. Do not
under any circumstances specify DBR in the control statement for DBY. If you do,
the reload utility will not generate work records for segment D; the logical child
pointer in segment D would never be resolved. The procedure for this example (and
all conditions and considerations) is exactly the same as the procedures for
example 9.

Example 11. DBX and DBY Exist, DBZ Is to Be Added

DBX and DBY must be reorganized. DBZ must be loaded using an initial load
program. Because you must specify DBIL in the control statement for DBZ (a logical
parent database), you must also specify DBIL for DBY (a logical child database).

Figure 165. DBY Exists, DBZ Is to Be Added

Figure 166. DBX and DBY Exist, DBZ Is to Be Added

Adding Logical Relationships

380 IMS/ESA V6 Admin Guide: DB

DBY is also a logical parent database. Therefore, you must specify DBIL in the
control statement for DBX (a logical child database). The procedure for this
example (and all conditions and considerations) is exactly the same as for Example
2.

Example 12. DBX and DBY Exist, DBZ Is to Be Added

In this example, segment B has a symbolic pointer. The procedure for this example
(and all conditions and considerations) is exactly the same as for example 2.

Example 13. DBX and DBY Exist, Segment Y and DBZ Are to Be Added

Procedure
1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

2. Unload DBX, using the existing DBD and HD Unload utility.

3. Code a new DBD for DBY and DBZ. “How to Specify Use of Logical
Relationships in the Logical DBD” in “Chapter 5. Choosing Additional Database
Functions” on page 83 explains how the DBD is coded for logical relationships.

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for these application programs. If you
have the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

Figure 167. DBX and DBY Exist, DBZ Is to Be Added

Figure 168. DBX and DBY Exist, Segment Y and DBZ Are to Be Added

Adding Logical Relationships

Chapter 15. Modifying Your Database 381

6. Recalculate database space for DBX and DBY, and calculate space for DBZ.
See “Chapter 12. Loading Your Database” on page 285 under “Estimating the
Minimum Size of the Database” for a description of how to calculate database
space.

7. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Pre-reorganization utility, specifying DBIL in the control statements for
DBX, DBY and DBZ.

9. Reload DBX, using the new DBD and the HD Reload utility.

10. Load DBY and DBZ, using an initial load program. See “Chapter 12. Loading
Your Database” on page 285 under “Writing a Load Program” for a description
of how to write an initial load program.

11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are
output from Steps 9 and 10 as input.

12. Run the Prefix Update utility, using the DFSURWF3 work file that is output
from Step 11 as input.

13. Remember to make an image copy of both databases as soon as they are
loaded.

Steps in Reorganizing a Database to Add a Logical Relationship
Table 13 on page 383 shows you:

v When a logically related database must be scanned

v When both sides of a logical relationship must be reorganized

v When the Prefix Resolution and Prefix Update utilities must be run

The figure applies to reorganizations only. When initially loading databases, you
must run the Prefix Resolution and Update utilities whenever work data sets are
generated.

Table 13 covers all reorganization situations, whether or not database pointers are
being changed. In using the figure, a bidirectional physically paired relationship
should be treated as two unidirectional relationships. Unless otherwise specified,
DBR should be specified for the reorganized databases when the
Pre-reorganization utility is run.

The following two examples guide you in use of the figure:

Example 1. How to use Table 13

Assume your database has unidirectional symbolic pointers and you are not
changing pointers. On the left side of Table 13, in the FROM column, find
unidirectional symbolic pointers. The follow across to the right in the TO row and
find unidirectional symbolic pointers. The figure tells you what you must do to
reorganize with one of the following:

v The database containing the logical parent

v The database containing the logical child

v Both databases, if necessary

In all three situations, it is not necessary to run the Prefix Resolution or Update
utilities (this is what is meant by “finished”).

Adding Logical Relationships

382 IMS/ESA V6 Admin Guide: DB

Example 2. How to use Table 13

Assume your database has bidirectional symbolic pointers and you need to change
to bidirectional direct pointers. Table 13 shows that:

v Reorganizing only the logical parent database cannot be done, because a logical
parent pointer must be created in the logical child segment in the logical child
database.

v Reorganizing the logical child database can be done. To scan the logical child
database, you must scan the logical parent database. The control statements for
the Pre-reorganization utility must specify DBIL for the logical child database.
Also, the Prefix Resolution and Update utilities must be run.

v Reorganizing both databases can also be done. In this case, the control
statements for the Pre-reorganization utility must specify DBIL for the logical child
database and DBR for the logical parent database. Again, the Prefix Resolution
and Update utilities must be run.

Table 13. Steps in Reorganizing a Database to Add a Logical Relationship

Type of Database
Type of
Reorganization

What You Must Do to Reorganize When You Need:

Unidirectional
Symbolic
Pointers

Unidirectional
Direct Pointers

Bidirectional
Symbolic
Pointers

Bidirectional
Direct Pointers

Unidirectional with
symbolic pointers

Logical parent
database only

Finished* Not valid,
because symbolic
LP pointers exist
now and direct LP
pointers must be
added to the
logical child
database.

1. Scan logical
child data base.

2. Run prefix
resolution and
update.

Note: Logical
child segment will
not contain LT
pointers unless it
is reorganized.

Not valid,
because direct LP
and LT pointers
must be put in the
logical child
database.

Logical child
database only

Finished 1. Scan logical
parent data base.

2. Run prefix
resolution and
update.

Specify DBIL for
the logical child
database.

Not valid,
because a
counter exists
now and LCF/LCL
pointers must be
put into the logical
parent database.

Not valid,
because a
counter exists
now and LCF/LCL
pointers must be
put into the logical
parent database.

Both databases Finished** Run prefix
resolution and
update.

Specify DBIL for
the logical child
database and
DBR for the
logical parent
database.

Run prefix
resolution and
update.

Specify DBR for
both databases.

Run prefix
resolution and
update.

Specify DBIL for
the logical child
database and
DBR for the
logical parent
database.

Adding Logical Relationships

Chapter 15. Modifying Your Database 383

Table 13. Steps in Reorganizing a Database to Add a Logical Relationship (continued)

Type of Database
Type of
Reorganization

What You Must Do to Reorganize When You Need:

Unidirectional
Symbolic
Pointers

Unidirectional
Direct Pointers

Bidirectional
Symbolic
Pointers

Bidirectional
Direct Pointers

Unidirectional with
direct pointers

Logical parent
database only

Not valid,
because a direct
LP pointer exists
now and symbolic
LP pointers must
be added to the
logical child
database.

1. Scan logical
child data base.

2. Run prefix
resolution and
update.

Not valid,
because a direct
LP pointer exists
now and symbolic
LP pointers must
be added to the
logical child
database. LT
pointers must also
be added to the
logical child
database.

1. Scan logical
child data base.

2. Run prefix
resolution and
update.

Note: Logical
child segment will
not contain LT
pointers unless
database is
reorganized.

Logical child
database only

Finished Finished Not valid,
because LCF/LCL
pointers must be
put in the logical
parent database.

Not valid,
because LCF/LCL
pointers must be
put in the logical
parent database.

Both databases Finished** Run prefix
resolution and
update.

Run prefix
resolution and
update.

Run prefix
resolution and
update.

Bidirectional with
symbolic pointers

Logical parent
database only

Not valid,
because the
counter in the
logical parent
database will not
be resolved and
LT pointers exist
now in the logical
child database.

Not valid,
because symbolic
LP and LT
pointers exist now
and a direct LP
pointer must be
added to the
logical child
database.

1. Scan logical
child data base.

2. Run prefix
resolution and
update.

Note: LCF/LCL
pointers are not
unloaded and
reloaded.

Not valid,
because a
symbolic LP
pointer exists now
and a direct LP
pointer must be
added to the
logical child
database.

Logical child
database only

Not valid,
because LCF/LCL
pointers exist now
in the logical
parent database
and a counter
must be added to
the logical parent
database.

Not valid,
because LCF/LCL
pointers exist now
in the logical
parent database
and a counter
must be added to
the logical parent
database.

1. Scan logical
parent data base.

2. Run prefix
resolution and
update.

1. Scan logical
parent data base.

2. Run prefix
resolution and
update.

3. Specify DBIL
for the logical
child data base.

Both databases Run prefix
resolution and
update.

Specify DBIL for
the logical child
database and
DBR for the
logical parent
database.

Run prefix
resolution and
update.

Specify DBIL for
the logical child
database and
DBR for the
logical parent
database.

Run prefix
resolution and
update.

Run prefix
resolution and
update.

Specify DBIL for
the logical child
database and
DBR for the
logical parent
database.

Adding Logical Relationships

384 IMS/ESA V6 Admin Guide: DB

Table 13. Steps in Reorganizing a Database to Add a Logical Relationship (continued)

Type of Database
Type of
Reorganization

What You Must Do to Reorganize When You Need:

Unidirectional
Symbolic
Pointers

Unidirectional
Direct Pointers

Bidirectional
Symbolic
Pointers

Bidirectional
Direct Pointers

Bidirectional with
direct pointers

Logical parent
database only

Not valid,
because direct LP
and LT pointers
exist in the logical
child database
and symbolic LP
pointers must be
added.

Not valid,
because the
counter in the
logical parent
database will not
be resolved and
LT pointers will
not be removed
from the logical
child database.

Not valid,
because a direct
LP pointer exists
in the logical child
database and the
change is to
symbolic LP
pointers.

1. Scan logical
child database.

2. Run prefix
resolution and
update.

Note: LCF/LCL
pointers are not
unloaded and
reloaded.

Logical child
database only

Not valid,
because LCF/LCL
pointers exists in
the logical parent
database and a
counter must be
added to the
logical parent
database.

Not valid,
because LCF/LCL
pointers exist now
in the logical
parent database
and a counter
must be added to
the logical parent
database.

1. Scan logical
parent data base.

2. Run prefix
resolution and
update.

1. Scan logical
parent data base.

2. Run prefix
resolution and
update.

Both databases Run prefix
resolution and
update.

Specify DBIL for
the logical child
database and
DBR for the
logical parent
database.

Run prefix
resolution and
update.

Specify DBIL for
the logical child
database and
DBR for the
logical parent
database.

Run prefix
resolution and
update.

Run prefix
resolution and
update.

Note:

* The preorganization utility says to scan the logical child database and the DFSURWF1 records will be produced if
scan is run.

** DFSURWF1 records are produced; however, the prefix resolution and update utilities need not be run.

Some Restrictions on Modifying Existing Logical Relationships
In some cases, the IMS utilities cannot be used to modify an existing logical
relationship. When an existing logical relationship cannot be modified, you must
write your own program. Two examples are as follows:

Example 1: Changing from Bidirectional Virtual to Bidirectional
Physical Pairing
This example shows the change in pairing from virtual to physical:

Adding Logical Relationships

Chapter 15. Modifying Your Database 385

Example 2: Changing the Location of the Real Logical Child in a
Bidirectional Logical Relationship
This example shows the position change of a real logical child from one logically
related database to another:

In both of these “before” examples, occurrences of segment B can exist that are
physically, but not logically, deleted. The logical child can be accessed from the
logical path but not the physical path. When unloading DBX, the HD Unload utility
cannot access occurrences of segment B that are physically, but not logically,
deleted. Therefore, you must write your own program to do this type of
reorganization.

Summary on Use of Utilities When Adding Logical Relationships
v Counters are increased by counting logical children loaded using an initial load

program or, when logically related databases are reorganized, by using DBIL in
the control statement.

v Counter problems can be corrected by reorganizing databases. When correcting
counter problems, DBIL must be specified in the control statement for the
databases involved.

v LCF and LCL pointers are not unloaded and reloaded. They must be recreated
by the Prefix Resolution and Update utilities.

v Unless DBIL is specified for all its logical child databases, never specify DBIL in
the control statement for a logical parent database.

v To change from symbolic to direct pointers, specify DBIL on the control statement
for the logical child database.

Adding a Secondary Index
Secondary indexes are explained in “Chapter 5. Choosing Additional Database
Functions” on page 83. If you need to add a secondary index to your database:

1. Determine whether the change you are making affects the code in any
application programs. If the code is affected, make sure it gets changed.

Figure 169. The Change in Pairing from Virtual to Physical

Figure 170. The Position Change of a Real Logical Child From One Logically Related
Database to Another

Adding Logical Relationships

386 IMS/ESA V6 Admin Guide: DB

2. Unload your database, using the existing DBD and the HD Unload utility.

3. Code new DBDs. “How to Specify Use of Secondary Indexing in the DBD” in
“Chapter 4. Designing a Fast Path Database” on page 33 explains how the
DBD is coded for secondary indexes. You need two new DBDs, one for the
existing database and one for the new secondary index database.

4. If the change you are making affects the code in application programs, make
any necessary changes to the PSBs for those application programs. If you
have the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

6. Delete the old database space and define new database space (non-VSAM),
or delete the space allocated for the cluster and define space for the new
cluster. In addition, define space for the secondary index.

7. Reload the database, using the new DBD and the HD Reload utility.

8. Run the Prefix Resolution utility, using the DFSURWF1 work file that is output
from Step 7 as input.

9. Run the HISAM unload utility, using the DFSURIDX work file that is output
from Step 8 as input. Be sure to indicate in the utility control statement that
HISAM unload is being used to build a secondary index.

10. Run the HISAM reload utility using as input the output from HISAM unload.

11. When you add a secondary index, remember to change your JCL. You need a
DD statement for the secondary index data set even when you are not using
the secondary index to process the main database. You also need to change
your reorganization procedures when adding a secondary index. Whenever
you reorganize the data set the secondary index points to, you must execute
the reorganization utilities to rebuild the secondary index.

Adding or Converting to Variable-Length Segments
Variable-length segments are explained in “Chapter 5. Choosing Additional
Database Functions” on page 83. If you need to change selected segments in your
database from fixed to variable length—or convert the entire database to
variable-length segments—two ways exist to do it. Regardless of which way you
use, the object in conversion is to put a size field in the segment you need to make
variable length and then get the segment defined as variable length in the DBD.

Method 1. Converting Segments or a Database
To convert selected segments or the entire database this way, you must:

1. Determine whether the change you are making affects the code in any
application programs. If the code is affected, make sure it gets changed.

2. Code and generate a new DBD that identifies the segment types that will be
variable length, and their size.

3. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for those application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

4. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

5. Write a program that sequentially retrieves from the database all segments that
are to be variable length. Your program must add the 2-byte size field to each
segment retrieved and then insert the segment back into the database.

Adding a Secondary Index

Chapter 15. Modifying Your Database 387

Method 2. Converting Segments or a Database
To convert selected segments or the entire database this way, you must:

1. Determine whether the change you are making affects the code in any
application programs. If the code is affected, make sure it gets changed.

2. Unload your database, using the existing DBD.

3. Code and generate a new (interim) DBD. This DBD should specify fixed-length
segments for all segments being converted to variable length. It should also
specify use of the segment edit/compression facility for each segment to be
converted. (The interim DBD is used, as explained in Step 9, to add a size
field to the existing fixed-length segments.)

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for those application programs. If you
have the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

6. Recalculate database space if necessary. You need to do this when the
change you are making results in different requirements for database space.
See “Chapter 12. Loading Your Database” on page 285 under “Estimating the
Minimum Size of the Database” for a description of how to calculate database
space.

7. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Write an edit routine to which the segment edit/compression facility can exit.
Your edit routine should add a size field to each segment it receives.
(Information on the segment edit/compression facility and the edit routine you
must write is contained in “Chapter 5. Choosing Additional Database
Functions” on page 83 under “Using the Segment Edit/Compression Facility”.)

9. Reload the database, using the interim DBD. As each occurrence of a segment
type that needs to be converted is presented for loading, your edit routine gets
control and adds the size field to the segment. When your edit routine returns
control, the segment is loaded into the database. Remember to make an
image copy of your database as soon as it is loaded.

10. If your database uses logical relationships or secondary indexes, you must run
some of the reorganization utilities before and after reloading to resolve prefix
information. The flowchart in Figure 143 on page 328 tells you which utilities to
use and the order in which they must be run.

11. After the database is loaded, code and generate a new DBD that specifies the
segment types in the database that are variable, and their size.

Converting to the Segment Edit/Compression Facility
The segment edit/compression facility is explained in “Chapter 5. Choosing
Additional Database Functions” on page 83 under “Using the Segment
Edit/Compression Facility”. If you need to convert an existing database so it can
use the facility, you must:

1. Determine whether the change you are making affects the code in any
application programs. If the code is affected, make sure it gets changed.

2. Unload your database, using the existing DBD and the HD Unload utility.

3. Code a new DBD. The new DBD must specify the name of your edit routine for
the segment types you need edited.

Adding or Converting to Variable-Length Segments

388 IMS/ESA V6 Admin Guide: DB

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for those application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

6. Recalculate database space. You need to do this because the change you are
making results in different requirements for database space. See “Chapter 12.
Loading Your Database” on page 285 under “Estimating the Minimum Size of
the Database” for a description of how to calculate database space.

7. Delete the old database space and define new database space. If you are using
VSAM, use the Access Method Services DEFINE CLUSTER command to define
VSAM data sets.

8. Reload the database, using the new DBD. Remember to make an image copy
of your database as soon as it is reloaded.

9. If your database uses logical relationships or secondary indexes, you must run
some of the reorganization utilities before and after reloading to resolve prefix
information. Figure 143 on page 328 tells you which utilities to use and the order
in which they must be run.

Converting Databases for Data Capture Exit Routines and
Asynchronous Data Capture

This section contains general-use programming interface information.

Data Capture exit routines are explained in “Using Data Capture Exit Routines” on
page 145. To convert an existing database for use with Data Capture exit routines
or Asynchronous Data Capture:

1. Determine whether the change requires revisions to the logical delete rules in a
database. If so, change the delete rules, which might require reorganizing your
database.

2. Code a new DBD. On the DBD or SEGM statements, specify the name of each
exit routine you need called against a segment in the database. See IMS/ESA
Utilities Reference: System for details on the DBD parameters required for Data
Capture exit routines or Asynchronous Data Capture. IMS/ESA Customization
Guideexplains the exit routines in detail, how to code them, and how they work.

3. Run DBDGEN.

4. If you use prebuilt ACBs rather than dynamically built ACBs, rebuild the ACB.

Converting a Logical Parent Concatenated Key From Virtual to
Physical or Physical to Virtual

You can convert a logical parent concatenated key from virtual to physical or from
physical to virtual by using DBDGEN and the HD reorganization utilities. To do this
conversion:

1. Unload your database, using the existing DBD.

2. Code a new DBD, changing the concatenated key physical/virtual specification.

3. If you use prebuilt ACBs rather than dynamically built ACBs, rebuild the ACB.

4. Recalculate the database space. You need to do this because the change you
are making changes database space requirements. See “Estimating the
Minimum Size of the Database” on page 286 for a description of how to
calculate database space.

Converting to the Segment Edit/Compression Facility

Chapter 15. Modifying Your Database 389

5. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

6. If your database uses logical relationships or secondary indexes, you must run
some of the reorganization utilities before and after reloading to resolve prefix
information. Figure 143 on page 328 tells you which utilities to use and the order
in which they must be run.

7. Reload your database using the new DBD. Remember to make an image copy
of your database as soon as it is reloaded.

8. If required, run reorganization utilities to resolve prefix information.

Using the Online Change Function
Adding, changing, and deleting databases (except MSDBs) online without stopping
IMS can be done using the online change function. The online change function for
DEDBs allows both database-level and area-level changes. A database-level
change affects the structure of the DEDB and includes such changes as adding or
deleting an area, adding a segment type, or changing the randomizer routines. An
area-level change involves increasing or decreasing the size of an area (IOVF,
DOVF, CI). An area-level change requires the user to stop only that area with the
/DBRECOVERY command; a database-level change requires the user to stop all areas
of the DEDB.

Unlike standard randomizers which distribute database records across the entire
DEDB, two-stage randomizers distribute database records within an area. By using
a two-stage randomizer, changes to an individual area’s root addressable allocation
are area-level changes, and only the areas affected need to be stopped.

To use online change, you must do the following:

1. Allocate the required new data sets (see IMS/ESA Installation Volume 1:
Installation and Verification for planning these data sets).

2. Run a MODBLKS system definition if additions, changes, or deletions to the
system definition DATABASE (and possibly APPLCTN) statements need to be
made (see IMS/ESA Administration Guide: System for more information).

3. Run the necessary DBDGEN (see IMS/ESA Utilities Reference: Database
Manager), PSBGEN, and ACBGEN (see IMS/ESA Utilities Reference: System).

Note: All changes to ACBLIB members resulting from the ACBGEN execution
are available to the online system after the online change (provided that
the changed resources—PSBs and DBDs—are defined in the online
system).

4. Run the Security Maintenance utility if IMS security must be defined for new
databases (see IMS/ESA Installation Volume 1: Installation and Verification for
information on the Security Maintenance utility).

5. Allocate the database data sets for databases to be added.

6. Load your database.

7. For Fast Path, online change must be completed before the database can be
loaded. Also, Fast Path can only load databases online; batch jobs cannot be
used.

8. If dynamic allocation is used in an MVS environment, run the dynamic
allocation utility.

Converting a Logical Parent Concatenated Key

390 IMS/ESA V6 Admin Guide: DB

9. Use the online change utility to copy your updated staging libraries to the
inactive libraries (see IMS/ESA Utilities Reference: System for information on
running this utility).

10. Issue the operator commands to cause your inactive libraries to become your
active libraries (see IMS/ESA Operator’s Reference for the commands used).

If a database in an MVS environment needs to be reorganized because of changes
to the active ACBLIB data set, /DBR must be issued to deallocate the database
prior to the /MODIFY COMMIT command that introduces the ACBGEN changes. The
commands /DBR, /DBD, or /STA DATABASE ACCESS= must be completed to take the
areas of the database to be changed or deleted offline prior to issuing the /MODIFY
COMMIT command.

Maintaining Continuous Availability of IFP and MPP Regions
Changes can be made to DEDBs using online change while maintaining the
availability of IFP and MPP regions that access the DEDBs. If database level
changes are made to the DEDB while an IFP/MPP is running, then the application
will pseudo-abend and the PSB will be rescheduled on the next DL/I call to the
DEDB.

Two level changes can be made to DEDBs. The database level changes allow:

1. Add or Delete DEDBs.

2. Add or Delete segment types.

3. Add, Change, or Delete a segment and its fields.

4. Add, Change, or Delete segment compression routines.

5. Add, Change, or Delete data capture exit routines.

6. Change randomizers.

7. Add or Delete areas.

8. Change area RAP space allocation and the randomizer is not a 2-stage
randomizer.

The area level changes allow:

1. Change area RAP space allocation and the randomizer is a 2-stage randomizer.

2. Change DOVF or IOVF space allocation.

3. Change SDEP space allocation.

4. Change CI size.

Area level changes and items 4 through 8 of the database level change require a
BUILD DBD (not a BUILD PSB). In this case, with exception to items 4 and 5 when
the defined PSB sensegs have reference to exit routines that are added or deleted,
the PSB does not change. Changes can be made to DEDBs using online change
while maintaining the availability of IFP and MPP regions that access the DEDBs
only if there is no change to the scheduled PSB. The application will then
pseudo-abend with abendu0777 and the PSB will be rescheduled on the next DL/I
call to DEDB. The message DFS2834I is issued. Other changes to the PSBs such
as items 1 through 5 of the DEDB database changes, full-function database
changes, or PSB changes using online change require that the IFP and MPP
regions be brought down.

The following procedure describes the steps necessary to make database level
changes to a DEDB with an IFP / MPP running.

Using the Online Change Function

Chapter 15. Modifying Your Database 391

1. Use a specific user-developed application program or OEM utility to unload the
DEDB through existing system definitions.

2. DBDGEN, PSBGEN and ACBGEN to generate the application control blocks to
implement the DEDB structural changes. The changed or new application
control blocks must be built into the active IMS system’s staging copy of
ACBLIB, which is offline.

3. Run the online change utility, DFSUOCU0, to move the changed ACBLIB from
the staging ACBLIB to the inactive (A or B) copy of the ACBLIB that is online
to the active IMS system.

4. Enter the normal /DBR command sequence to remove access to the DEDB
from the active IMS system.

5. Enter and follow the online change command sequence for PREPARE
processing for ACBLIB changes.

6. Enter and follow the online change command sequence for COMMIT/ABORT
processing for ACBLIB changes. The online IMS system will switch from using
the active (A or B) copy of the ACBLIB to the inactive (A or B) copy.

7. Delete, define and initialize all of the DEDB AREA data sets with the new
system definitions.

8. Enter the normal /START DATABASE and /START AREA commands to make
the DEDB and its AREAs accessible to the active IMS system.

9. Use a specific user-developed application program or OEM utility to reload the
DEDB through the change system definitions for the DEDB.

10. On the first access to the newly changed DEDB, the application will
pseudo-abend and the PSB will be rescheduled. Message DFS2834I will be
displayed.

The transaction will be tried again for both IFPs and MPPs when the PSB is
rescheduled. If the application attempts to access the DEDB before commit
processing has completed, an ’FH’ status will be returned to the application.
The DEDB is inaccessible because the randomizer for the DEDB is unloaded
by the /DBR command.

If database level changes are made to DEDBs while a BMP or DBCTL thread is
active, then commit processing fails and the message DFS3452 is issued.

Related Reading: See the IMS/ESA Messages and Codes for more information
on this and other messages.

If area level changes are made to DEDBs while a BMP or DBCTL thread is active,
then on the next access to the newly changed area, the application should continue
processing as usual.

Changing Randomizer and Exit Routines
Randomizer routines determine the location of database records by AREA within the
DEDB and by root anchor point (RAP) within the AREA. A change of the DEDB
randomizer is a database level change. A new randomizing routine affects the
location (AREA and RAP) of every database record within the DEDB. The
randomizer is defined for the DEDB in the DBD parameter: ″RMNAME=″.

A randomizer change can involve introducing a brand new randomizer into the
active IMS system or changing an existing randomizer in use by one or more
DEDBs.

Using the Online Change Function

392 IMS/ESA V6 Admin Guide: DB

New Randomizer Routine
The name of the randomizer is specified in the DBD parameter: ″RMNAME=″. If a
new randomizer is introduced for an existing DEDB, a DBDGEN and ACBGEN of
the database with the new randomizer name is required in addition to the following
procedural steps described below:

1. Use a specific customer-developed application program or original equipment
manufacturer (OEM) utility to unload the DEDB with the current randomizer.

2. Assemble and linkedit the new randomizer into the IMS RESLIB or one of the
libraries in the IMS RESLIB steplib concatenation.

3. Run a DBDGEN for the DEDB with the new randomizer designated in the DBD
parameter: ″RMNAME=″.

4. ACBGEN is also needed to build the application control blocks to implement
the DEDB definition that includes the new randomizer. The changed or new
application control blocks must be built into the active IMS system’s staging
copy of ACBLIB, which is offline.

5. ACBLIB Run the online change utility, DFSUOCU0, to move the changed
ACBLIB from the staging ACBLIB to the inactive (A or B) copy of the ACBLIB
that is online to the active IMS system.

6. Enter the normal /DBR operator command sequence to remove access to the
DEDB from the active IMS system.

7. Enter and follow the online change command sequence for PREPARE
processing for ACBLIB changes.

8. Enter and follow the online change command sequence for COMMIT/ABORT
processing for ACBLIB changes. The online IMS system will switch from using
the active (A or B) copy of the ACBLIB to the inactive (A or B) copy.

9. Delete, define and initialize all of the DEDB AREA data sets with the new
system definitions.

10. Enter the normal /START DATABASE and /START AREA commands to make
the DEDB and its AREAs accessible to the active IMS system.

11. Use a specific customer-developed application program or OEM utility to reload
the DEDB with the new randomizer routine in effect.

Changed Randomizer Routine
If a change is made to a randomizer already in use by one or more DEDBs, then all
of the DEDBs using the subject randomizer must be included in the change
process.

The changed randomizer will not be introduced if an existing version is already
loaded for any DEDB in the active IMS system. THERE IS NO WARNING OR
INDICATION OF THE FOLLOWING:

v The changed randomizer has not been loaded.

v The old version is still being used.

Changing DEDB randomizers requires the procedures described below. Because
the name of the randomizer remains the same, DBDGEN, ACBGEN and the online
change command sequence are not applicable.

1. Use a specific customer-developed application program or OEM utility to unload
the DEDB with the existing randomizer. This should be done for all of the
DEDBs that use the randomizer to be changed.

2. Enter the normal /DBR DATABASE operator command sequence to remove
access to the DEDBs from the active IMS system. The /DBR DATABASE
command unloads the randomizer for the DEDBs designated as operands.

Using the Online Change Function

Chapter 15. Modifying Your Database 393

When all the DEDBs that reference the randomizer are stopped, the randomizer
is removed from the active IMS system. If a DEDB is not stopped and
references a randomizer that has been removed from the IMS system, then a
U1021 abend results on the next DL/I call.

3. Assemble and linkedit the changed randomizer into the IMS RESLIB or one of
the libraries of the IMS RESLIB steplib concatenation.

4. Delete, define and initialize all of the DEDB AREA data sets to prepare for
reloading the DEDB with the changed randomizer.

5. Enter the /START DATABASE command for each of the DEDBs that use the
changed randomizer. For DEDBs, the /START DATABASE command causes the
randomizer to be loaded.

6. Use a specific customer-developed application program or OEM utility to reload
the DEDB with the changed randomizer routine in effect.

Deleted Randomizer Routine
To delete a randomizer from the active IMS system, follow the procedural steps that
are documented under ″New Randomizer Routine″. Once all the DEDBs that were
using the old randomizer have been unloaded and had the /DBR command run
successfully against them, then the randomizer can be deleted. Customers with
data sharing IMS systems that do not share RESLIBs must be careful to delete the
randomizer from both systems. A message (DFS2838) is generated when the
randomizer is deleted.

Adding, Changing or Deleting Segment Compression Routines
Segment compression routines are segment specific and are defined for the DEDB
in the DBD SEGM parameter (″COMPRTN=″). Adding, changing or deleting
segment compression routines is procedurally the same and involves the same
restrictions as DEDB randomizer routines.

Adding, Changing or Deleting Data Capture Exit Routines
Data Capture exit routines are defined for the DEDB on the DBD statement and/or
for a specific segment on the SEGM statement (″EXIT=″). Multiple exit routines can
be specified on a single DBD or SEGM statement.

Adding a New Data Capture Exit Routine: To add a new Data Capture exit
routine, follow the procedure below:

1. Assemble and linkedit the new exit routine into the IMS RESLIB or one of the
libraries in the IMS RESLIB steplib concatenation.

2. Run a DBDGEN for the DEDB with the new exit routine designated in the DBD
or SEGM parameter: ″EXIT=″.

3. ACBGEN is also needed to build the application control blocks to implement the
DEDB definition that includes the new exit routine. The changed or new
application control blocks must be built into the active IMS system’s staging
copy of ACBLIB, which is offline.

4. Run the online change Utility, DFSUOCU0, to move the changed ACBLIB from
the staging ACBLIB to the inactive (A or B) copy of the ACBLIB that is online to
the active IMS system.

5. Enter the normal /DBR command sequence to remove access to the DEDB
from the active IMS system.

6. Enter and follow the online change command sequence for PREPARE
processing for ACBLIB changes.

7. Enter and follow the online change command sequence for COMMIT/ABORT
processing for ACBLIB changes. The online IMS system will switch from using
the active (A or B) copy of the ACBLIB to the inactive (A or B) copy.

Using the Online Change Function

394 IMS/ESA V6 Admin Guide: DB

8. Enter the normal /START DATABASE and /START AREA commands to make
the DEDB and its AREAs accessible to the active IMS system.

Changing an Existing Data Capture Exit Routine: To change an existing Data
Capture exit routine, follow these steps:

1. Allow the dependent regions that are accessing DEDBs with the particular Data
Capture exit to end normally.

2. Assemble and linkedit the changed exit routine into the IMS RESLIB or one of
the libraries of the IMS RESLIB steplib concatenation.

3. Start the dependent regions. Data Capture exits are loaded at dependent region
initialization time, so the new version of the exit will take effect when the region
is started. Data Capture exit routines that were linked as reentrant or re-usable
are unloaded at dependent region termination time. Otherwise, they are
unloaded after every DL/I call.

Deleting a Data Capture Exit Routine: To delete a Data Capture exit routine,
execute the following steps:

1. Run a DBDGEN for the DEDB with the old exit routine omitted from the DBD or
SEGM statement.

2. ACBGEN is also needed to build the application control blocks to implement
the DEDB definition that excludes the old exit routine. The changed or new
application control blocks must be built into the active IMS system’s staging
copy of ACBLIB, which is offline.

3. Run the online change utility, DFSUOCU0, to move the changed ACBLIB from
the staging ACBLIB to the inactive (A or B) copy of the ACBLIB that is online to
the active IMS system.

4. Enter the normal /DBR command sequence to remove access to the DEDB
from the active IMS system.

5. Enter and follow the online change command sequence for PREPARE
processing for ACBLIB changes.

6. Enter and follow the online change command sequence for COMMIT/ABORT
processing for ACBLIB changes. The online IMS system will switch from using
the active (A or B) copy of the ACBLIB to the inactive (A or B) copy.

7. Enter the normal /START DATABASE and /START AREA commands to make
the DEDB and its AREAs accessible to the active IMS system.

Changing Root Addressable Space with Two Stage Randomizer
The UOW structure and root addressable allocation is specific to each AREA within
each DEDB. However, a change to the number of root addressable CIs within one
AREA can affect the number of root anchor points within the whole DEDB. If the
DEDB uses a standard randomizing routine that randomly distributes database
records across the entire database, changes to the root addressable allocation are
Database Level changes and procedurally must be handled as such. This section is
not applicable to such changes.

If, however, a ″Two Stage″ randomizer is used for the DEDB, a change to an
individual AREA UOW root addressable definition is an AREA Level change. A ″Two
Stage″ randomizer does not attempt to evenly distribute database records across all
AREAs based on the total number of root anchor points in the entire DEDB. A ″Two
Stage″ randomizer is designated in the DBDGEN by coding the randomizer name
as follows:

RMNAME=(mmmmmmmm,2)

Using the Online Change Function

Chapter 15. Modifying Your Database 395

In prior releases of IMS, customers would get the following error message if a
DEDB DBD had more than one operand in the RMNAME parameter:

8, DBD130 - RMNAME OPERAND IS OMITTED OR INVALID

The same message will appear for this release of IMS if anything but a two is
specified as the second operand of RMNAME. Customers can still specify
RMNAME=(mmmmmmmm) for standard randomizer routines.

Changing the DEDB AREA UOW Structural Definition
Changing the DEDB AREA UOW structural definition requires the following
procedural steps:

1. Use a specific customer-developed application program or original equipment
manufacturer (OEM) utility to unload the AREA through existing system
definitions.

2. DBDGEN, PSBGEN and ACBGEN to generate the application control blocks to
implement the DEDB structural changes. The ″UOW=(x,y)″ parameter on the
AREA DBDGEN macro statement defines the amount of space allocated to
overflow within a DEDB UOW. The ″ROOT=(nnn,mmm)″ parameter on the
AREA DBDGEN macro statement defines the amount of space allocated to
Independent Overflow.

The changed or new application control blocks must be built into the active IMS
system’s staging copy of ACBLIB, which is offline.

3. Run the online change utility, DFSUOCU0, to move the changed ACBLIB from
the staging ACBLIB to the inactive (A or B) copy of the ACBLIB that is online to
the active IMS system.

4. Enter the /DBR AREA command to remove access to the AREA from the active
IMS system.

5. Enter and follow the online change command sequence for PREPARE
processing for ACBLIB changes.

6. Enter and follow the online change command sequence for COMMIT/ABORT
processing for ACBLIB changes.

7. Delete, define and initialize the AREA with the new system definitions.

8. Enter the /START AREA command to make the AREA accessible to the active
IMS system.

9. Use a specific customer-developed application program or OEM utility to reload
the DEDB through the changed system definitions for the DEDB.

Using the Online Change Function

396 IMS/ESA V6 Admin Guide: DB

Making Online Changes at the DEDB and Area Level

Adding or Deleting DEDBs

Adding or deleting a DEDB and implementing the change by means of the IMS
online change facility requires that you follow the steps described below. See
Figure 171 for an overall picture.

1. MODBLKs Level SYSGEN (Stage 1 and Stage 2) to add or delete the DEDB.
The changed MODBLKs should be generated into the active IMS system’s
staging copy of MODBLKs, which is offline.

2. DBDGEN, PSBGEN and ACBGEN to generate the application control blocks to
add or delete the DEDB and PSBs that access it. The changed or new
application control blocks must be generated into the active IMS system’s
staging copy of ACBLIB, which is offline.

3. Run the online change utility, DFSUOCU0, to move the changed MODBLKs and
ACBLIB changes from the staging libraries to the inactive (A or B) copies of
these libraries that are online to the active IMS system.

4. Enter and follow the online change command sequence for PREPARE
processing. If a DEDB is being added to an IMS system that does not have
Fast Path installed, the DFS2833 error message will appear and the PREPARE
process will be aborted.

If a DEDB is added whose AREAs have CI sizes that exceed the system buffer
size (BSIZ=), then message DFS2832 will appears and the PREPARE process
aborts.

Finally, if a DEDB is added to an IMS system that was initialized without any
DEDBs, then message DFS2837 appears and the PREPARE process aborts.

Othreads are initialized during Fast Path initialization only if DEDBs are
currently generated in the system. In order for the user to be able to add
DEDBs with online change, IMS must be initialized with DEDBs to begin with.

5. If the DEDB is to be deleted, any BMP region or DBCTL thread scheduled for
access to the DEDB must first be stopped. Full function transactions scheduled
for access to the DEDB will be placed in a QSTOP state and as a result, MPP
or IFP dependent regions need not be stopped to implement the online change
to delete the DEDB.

6. If the DEDB is to be deleted, access to it from the active IMS system must be
removed by means of a /DBR DB command. The commit will fail with a
DFS3452 message if the DEDB has not had the /DBR command successfully
run against it beforehand.

Figure 171. Adding a Database Using Online Change

Using the Online Change Function

Chapter 15. Modifying Your Database 397

7. Execute the online change command sequence for COMMIT/ABORT
processing.

8. If the DEDB is newly added, execute the following additional steps at any
appropriate time prior to making the DEDB generally available for normal user
access:

a. Execute the normal procedures for defining the new DEDB and its AREAs
and AREA data sets to DBRC and the RECON data sets.

b. Define and initialize all of the AREA data sets belonging to the new DEDB.

c. Execute the procedures to include the required Dynamic Allocation
definitions that will enable the DEDB and its AREAs to be allocated to the
active IMS system. Or register the DEDB and its AREAs to DBRC, and
DBRC will dynamically allocate them during IMS initialization.

d. Enter the /START DATABASE and /START AREA commands to make the
DEDB and its AREAs accessible to the active IMS system.

e. Run the necessary application load programs.

Related Reading: See the IMS/ESA Messages and Codes for more information
on messages.

Changing DEDBs by Adding or Deleting Segments
Adding or deleting segment types or changing segment formats affects the structure
of a DEDB and constitutes a Database Level change. The addition or deletion of
segment types (including the DEDB Sequential Dependent Segment type) affects
the hierarchical structure and the segment prefix layout to implement this structure.
Similarly, the change of individual segment formats changes the structure of the
entire database and space allocations within each AREA of the DEDB.

To make structural changes to an existing DEDB, execute the procedural steps
described below.

1. Use a specific customer-developed application program or OEM utility to unload
the DEDB through existing system definitions.

2. DBDGEN, PSBGEN and ACBGEN to generate the application control blocks to
implement the DEDB structural changes. The changed or new application
control blocks must be built into the active IMS system staging copy of ACBLIB,
which is offline.

3. Run the online change utility, DFSUOCU0, to move the changed ACBLIB from
the staging ACBLIB to the inactive (A or B) copy of the ACBLIB that is online to
the active IMS system.

4. Enter the normal /DBR command sequence to remove access to the DEDB
from the active IMS system. This command may be issued any time prior to the
/MODIFY COMMIT.

5. Enter and follow the online change command sequence for PREPARE
processing for ACBLIB changes.

6. Enter and follow the online change command sequence for COMMIT/ABORT
processing for ACBLIB changes.

7. Delete, define and initialize all of the AREA data sets belonging to the DEDB
with the new system definitions.

8. Enter the normal /START DATABASE and /START AREA commands to make
the DEDB and its AREAs accessible to the active IMS system.

9. Use a specific customer-developed application program or OEM utility to reload
the DEDB through the changed system definitions for the DEDB.

Using the Online Change Function

398 IMS/ESA V6 Admin Guide: DB

Adding or Deleting DEDB AREAs
Adding or deleting an AREA can affect the location of every database record
throughout the DEDB. Changing the number of AREAs will alter the number of root
anchor points (RAPs) within the DEDB. DEDB randomizing routines attempt to
randomly distribute database records throughout the entire DEDB based first on the
AREA and then on the root anchor point (RAP) within the AREA.

Adding or deleting one or more AREAs to a DEDB constitutes a structural change
such as adding a segment type. The steps described in “Changing DEDBs by
Adding or Deleting Segments” on page 398 should be followed to change the
number of areas defined in the DEDB. If AREAs are newly added, the required
DBRC definitions for AREAs and AREA data sets must be processed and dynamic
allocation blocks must be prepared before the new AREAs can be accessed by the
active IMS system.

Changing Root Addressable Space Allocation

Random Distribution of DB Records Across All AREAs: Changes to the DEDB
unit of work (UOW) structure that affect the number of DEDB Control Intervals
defined to the Root Addressable portion impact the number of root anchor points
within the entire DEDB. This type of change potentially affects the location of every
database record within the DEDB.

Standard Randomizers: Standard DEDB randomizing routines attempt to evenly
distribute database records across all AREAs and within the selected AREA. Such
randomizers determine the record location based on the total number of root anchor
points in the entire DEDB.

A change to the UOW structure that changes the number of CIs defined to the root
addressable area constitutes Database Level change when a standard DEDB
randomizing routine is used. This type of change should be treated the same as a
DEDB structural change in terms of online change procedures.

Changing Dependent and Independent Overflow Space
Allocation
Starting in IMS Version 3, Fast Path has provided limited support for extending
DEDB AREA Independent Overflow space allocation. That support continues
unchanged. Additionally, DEDB online change will allow changes to the overflow
space allocation both within each UOW (Dependent Overflow) and outside the root
addressable portion (Independent Overflow) of the AREA. Both Dependent and
Independent Overflow changes are considered to be Area-level changes. However,
such changes must not alter the number of CIs defined to the root addressable
portion. Changing the number of root addressable CIs will change the number of
root anchor points and could affect the DEDB randomizing routine in locating
database records.

Changing DEDB AREA overflow allocation requires the same procedural steps as
those defined for changing the root addressable area. See “Changing the DEDB
AREA UOW Structural Definition” on page 396 for details.

Changing CI Size
DEDB online change can be used to change DEDB AREA control interval size.
However, CI size changes must not alter the number of CIs allocated to the root
addressable portion of an AREA because this could affect the DEDB randomizer in
locating database records across the DEDB. The ″SIZE=″ parameter on the AREA
statement of DBDGEN defines the CI size of the data set that constitutes the
AREA.

Using the Online Change Function

Chapter 15. Modifying Your Database 399

If the new CI size of an AREA exceeds the Fast Path buffer size of the system,
then the DFS2832 error message will appear during the PREPARE stage and the
process will be aborted.

Extending DEDB Independent Overflow Online
You can extend the independent overflow (IOVF) portion of a DEDB area while IMS
is online by following the procedure described in this section. The first time the area
is opened after this procedure is completed, a message is issued to verify that Fast
Path recognizes and accepts the change to the area and normal open processing
completes. You can also modify the IOVF portion of a DEDB using DEDB online
change.

You cannot decrease the size of the IOVF with this procedure. However, the size of
the sequential dependent part might increase or decrease depending on the total
amount of space allocated to the area. The steps in this procedure also reorganize
the area.

To increase the size of the IOVF portion of a DEDB online you must:

1. Run the DBDGEN utility to obtain an updated DBD. Update only the following
operands on the ROOT= keyword of the AREA statement:

number
specifies the total number of units of work (UOWs) allocated to the root
addressable and the IOVF parts of the area. Increase number to reflect
the number of UOWs you need to add to the IOVF.

overflow
specifies the space reserved for the IOVF, expressed as the number of
UOWs. Increase the number on this operand by the same amount you
increase the number operand. For example, if the original values were
number =x and overflow =y, and if number is changed to x + 2, then
overflow must be changed to y + 2.

All other control statements must remain identical to those on the existing
DBD. Changing other control statements might damage data and create
unpredictable results.

2. Run the ACBGEN utility using the updated DBD. You should run PSB=ALL to
create a new and complete ACBLIB with the new ROOT= parameters. The
output should be a different data set from the one currently used by the control
region. The new ACBLIB is identical to the old ACBLIB, except for the ROOT=
changes. You can use the staging ACBLIB, but do not switch with the online
change function.

3. Ensure that the area is in good condition. The area must not have any
in-doubts, and must not be in a recovery-needed condition. Also, at least one
copy of the area (one area data set) must have no error queue elements
(EQEs). Use the /DIS AREA command to display EQEs and the condition. Use
the /DIS CCTL INDOUBT command to display all in-doubt threads. Eliminate
potential defects before continuing to the next step so that data is not lost or
damaged.

4. Process SDEPs using the SDEP scan and delete utilities. This step is required
because the IOVF extension procedure requires an unload and load of the
area. Some unload and load utilities are unable to process SDEPs.
Unload/load utilities that do process SDEPs might reload them in root order
rather than time order, which can interfere with subsequent SDEP scan and
delete operations.

Using the Online Change Function

400 IMS/ESA V6 Admin Guide: DB

Related Reading:

v For more information on the DBRC definitions for the shared AREAs with
SDEP segments, see the IMS/ESA DBRC Guide and Reference.

v For more information on SDEP scan utility keywords and change
boundaries, see the IMS/ESA Utilities Reference: Database Manager.

v For more information on the SDEP scan utility user-written exit routine
parameter interface, see the IMS/ESA Customization Guide.

5. If multiple copies of the area (MADS) exist, stop all copies of the area except
one using the /STOP ADS command. Ensure that the remaining copy does not
have any EQEs and is not in a recovery-needed condition. Multiple ADSs must
be stopped to ensure that DBRC has accurate information when the area is
brought online after the IOVF is extended.

6. Issue a /DBR or /STO AREA command against the area.

7. Take an image copy of the area.

8. If the area is registered with DBRC, set the recovery-needed flag on for the
area. This flag is required by the DEDB Initialization utility and can be set
using a CHANGE.DBDS RECOV command.

9. Unload the area.

10. Execute the IDCAMS utility to delete and redefine the data set. The amount of
space you allocate for the area in the Define procedure should reflect the
increased size of the IOVF. The number of SDEP CIs in the area might change
because this number represents the difference between the total amount of
space allocated to the area and the amount used by the other parts. These
other parts are the root addressable part, the IOVF, the reorganization UOW,
and two control CIs. See MVS/DFP Access Method Services for the Integrated
Catalog Facility for a description of the IDCAMS Delete and Define functions.

11. Execute the Fast Path initialization utility against the new area using the new
ACBLIB.

12. Issue the /START AREA command to bring the area online.

13. Reload the area.

Note: It is recommended that you reload the area in batch. If you reload the
area using a BMP, the BMP might fail with message DFS3709A and
reason code 5. If this failure occurs, issue the CHANGE.DBDS command to
set ICOFF and restart the BMP.

IMS/ESA Messages and Codes explains message DFS3709A and the reason
for this failure.

14. Take an image copy of the area after the reload.

When the area is next accessed, message DFS3703I is issued. This message
alerts you that discrepancies were found during open processing. However, open
processing continues because the discrepancies indicate to IMS that you used an
accepted procedure to increase the size of the IOVF. DFS3703I is not issued during
subsequent opens of the area as long as IMS remains online. DFS3703I is also
issued by any sharing subsystem the first time the area is opened on that
subsystem after the IOVF is extended.

During emergency restart or extended recovery facility (XRF) takeover, the updated
area information is picked up from the log. Therefore, DFS3703I is not issued.

Use the new ACBLIB for any subsequent normal restarts of the online system.
Ensure that the new ACBLIB reflects only the changes made to the ROOT=

Extending DEDB Independent Overflow Online

Chapter 15. Modifying Your Database 401

keyword. Any other changes you make might cause damage to the area. If you do
not use the new ACBLIB, open logic allows the discrepancy between information
from the old ACBLIB and information from the area data set, but issues message
DFS3703I each time the discrepancy is encountered.

Note: Remember that you cannot use the online change function to update the
ACBLIB with the altered ROOT= parameter.

Extending DEDB Independent Overflow Online

402 IMS/ESA V6 Admin Guide: DB

Chapter 16. Establishing Security

The two aspects of database security are as follows:

v User verification (how you establish that the person using an online database is
in fact the person you have authorized)

v User authority (once you have verified the user’s identity, how you control what is
seen—and what can be done with what is seen)

This chapter deals primarily with how you can control a user’s view of data and the
user’s actions with respect to the data. (For a discussion of user verification, see
“Establishing Security” in IMS/ESA Administration Guide: System).

This chapter examines the following areas:

v Restricting the scope of data access

v Restricting processing authority

v Restricting access of non-IMS programs

v Using the dictionary to help establish security

CICS users should see CICS/ESA Facilities and Planning Guide for information on
establishing security.

Restricting the Scope of Data Access
The PCB defines a program’s (and therefore the user’s) view of the database. The
PCB can be thought of as a “mask” over the data structure defined by the DBD,
hiding certain parts of it. Therefore, it is possible, simply by limiting the scope of the
PCB, to limit the user’s access to (and even knowledge of) elements of the
database you need to restrict.

Figure 172 on page 404 shows an example. The top of the figure shows the data
structure for a PAYROLL database as perceived by you and defined by the DBD.
For certain applications it is not necessary (nor desirable) to access the SALARY
segment. Through SENSEG statements, you can make it seem that this segment
simply does not exist. By doing this, you have denied unauthorized users access to
the segment, and you have denied users knowledge of its very existence. The
bottom of the figure shows this modified data structure as perceived by the
application programmer.

For this method to be successful, the segment being masked off must not be in the
search path of an accessed segment. If it is, then the application is made aware of
at least the segment key to be “hidden.”

With field-level sensitivity, you can achieve the same masking effect at the field
level. If SALARY and NAME were in the same segment, you could still restrict
access to the SALARY field without denying access to other fields in the segment.

Restricting Processing Authority
After you have controlled the scope of data a user has access to, you can also
control authority within that scope. Controlling authority allows you to decide what
processing actions against the data a given user is permitted. For example, you
could give some application programs authority only to read segments in a
database, while you give others authority to update or delete segments. You can do

© Copyright IBM Corp. 1974, 1999 403

this through the PROCOPT parameter of the SENSEG statement and through the
PCB statement. The PROCOPT statement tells IMS what actions you will permit
against the database. A program can do what is declared in the PROCOPT.

In addition to restricting access and authority, the number of sensitive segments
and the processing option specified can have an impact on data availability. To
achieve maximum data availability, the PSB should be sensitive only to the
segments required and the processing option should be as restrictive as possible.
DBD NAME=PAYROLL,...
DATASET ...
SEGM NAME=NAME,PARENT=0...
FIELD NAME=
SEGM NAME=ADDRESS,PARENT=NAME,...
FIELD NAME=
SEGM NAME=POSITION,PARENT=NAME,...
FIELD NAME=
SEGM NAME=SALARY,PARENT=NAME,...
FIELD NAME=...

PCB TYPE=DB.DBDNAME=PAYROLL,...
SENSEG NAME=NAME,PARENT=0,...
SENSEG NAME=ADDRESS,PARENT=NAME,...
SENSEG NAME=POSITION,PARENT=NAME,......

Figure 172. The NAME data structure

Restricting Processing Authority

404 IMS/ESA V6 Admin Guide: DB

Restricting Access by Non-IMS Programs
One potential security exposure is from people attempting to access IMS/ESA data
sets with non-IMS programs. Two methods of protecting against this exposure are
data set password protection and database encryption.

Protecting Data with VSAM Passwords
You can take advantage of VSAM password protection to prevent non-IMS
programs from reading VSAM data sets on which you have your IMS databases. To
protect data with VSAM passwords, specify password protection for your VSAM
data sets and code PASSWD=YES on the DBD statement. IMS then passes the
DBD name as the password. If you specify PASSWD=NO on the DBD statement,
the console operator is prompted to provide a password to VSAM each time the
data set is opened.

This method is only useful in the batch environment, and VSAM password checking
is bypassed entirely in the online system. (If you have RACF installed, you can use
it to protect VSAM data sets.)

Details of the PASSWD parameter of the DBD statement can be found in IMS/ESA
Utilities Reference: System .

Encrypting Your Database
Another precaution you can take against non-IMS programs reading DL/I databases
is to encrypt the databases. You can encrypt DL/I segments using your own
encryption routine, entered at the segment edit/compression exit. Before segments
are written on the database, IMS passes control to your routine, which encrypts
them. Then, each time they are retrieved, they are decrypted by your routine before
presentation to the application program.

Do not change the key or the location of the key field in index databases or in root
segments of HISAM data bases.

You can learn more about segment edit/compression routines in “Using the
Segment Edit/Compression Facility” on page 142.

Using the Dictionary to Help Establish Security
The dictionary monitors relationships among entities in your computing environment
(such as, which programs use which data elements). This ability makes the
dictionary the ideal tool to administer security.

Figure 173. Using the PCB to Mask Segments

Restricting Access by Non-IMS Programs

Chapter 16. Establishing Security 405

You can use the dictionary to define your authorization matrixes. Through the
extensibility feature, you can define terminals, programs, users, data, and their
relationships to each other. In this way, you can produce reports that show:
dangerous trends, who uses what from which terminal, and which user gets what
data. For each user, the dictionary could be used to list the following information:

v Programs that can be used

v Types of transactions that can be entered

v Data sets that can be read

v Data sets that can be modified

v Categories of data within a data set that can be read

v Categories of data that can be modified

Using the Dictionary to Help Establish Security

406 IMS/ESA V6 Admin Guide: DB

Appendix A. Meaning of Bits in the Delete Byte

Bits in the Delete Byte. 407
Bits in the Prefix Descriptor Byte 407

This appendix examines the meanings of:

v Bits in the delete byte

v Bits in the prefix description byte

Bits in the Delete Byte
This section contain diagnosis, modification or tuning information.

The meaning of each bit in the delete byte, when turned on, is as follows:

Bit Meaning When Delete Byte is Turned On

0 Segment has been marked for deletion. This bit is used for segments in a
HISAM or secondary index database or segments in primary index.

1 Database record has been marked for deletion. This bit is used for
segments in a HISAM or secondary index database or segments in a
primary index.

2 Segment has been processed by the delete routine.

3 This bit is reserved.

4 Prefix and data portion of the segment are separated in storage. (The
delete byte preceding the separated data portion of the segment has all bits
turned on.)

5 Segment has been marked for deletion from a physical path. This bit is
called the PD (physical delete) bit.

6 Segment has been marked for deletion from a logical path. This bit is called
the LD (logical delete) bit.

7 Segment has been marked for removal from its logical twin chain. This bit
should only be set on if bits 5 and 6 are also on).

Bits in the Prefix Descriptor Byte
This section contains diagnosis, modification, or tuning information.

The delete byte is also used for the root segment of a DEDB, only there it is called
a prefix descriptor byte. The meaning of each bit, when turned on, is as follows:

Bit Meaning When Root Segment Prefix Descriptor is Turned On

0 Sequential dependent segment is defined.

1-3 These bits are reserved.

4-7 If the number of defined segments is 8 or less, bits 4 through 7 contain the
highest defined segment code. Otherwise, the bits are set to 000.

This concludes the appendix, “Meaning of Bits in a Delete Byte”. Appendix B deals
with replacing, inserting, and deleting rules for logical relationships, which includes
how to specify rules in a physical DBD and a rules summary.

© Copyright IBM Corp. 1974, 1999 407

408 IMS/ESA V6 Admin Guide: DB

Appendix B. Replace, Insert, and Delete Rules for Logical
Relationships

How to Specify Rules in the Physical DBD 409
The Replace Rules . 410

The Replace Call . 410
Status Codes . 411
Replace Rules Summary 413

The Insert Rules . 414
The Logical Child Insert Call 415
Status Codes . 415
Insert Rules Summary. 418

Introduction to Delete Rules. 419
Physical and Logical Deletion 419
Deleting Concatenated Segments 419
The Third Access Path 419
Use of the Delete Byte 420
The Delete Call . 421
Status Codes . 421
DASD Space Release . 421

Delete Rules . 421
Logical Parent. 421
Physical Parent (Virtual Pairing Only) 422
Logical Child . 422
Examples Using the Delete Rules 422
Accessibility of Deleted Segments 434
Possibility of Abnormal Termination 438
Avoiding Abnormal Termination 438
Detecting Physical Delete Rule Violations 439
Treating the Physical Delete Rule as Logical 440
Inserting Physically and/or Logically Deleted Segments 440
Delete Rules Summary 441
Insert, Delete, and Replace Rules Summary 442

You need to examine all your application requirements and decide who can insert,
delete, and replace segments involved in logical relationships and how those
updates are to be made (physical path only or physical and logical path). The
insert, delete, and replace rules in the physical DBD determine how updates apply
across logical relationships.

This appendix examines the following information on rules:

v How to specify rules in the physical DBD

v Insert, delete, and replace rules summary

How to Specify Rules in the Physical DBD
This appendix contains general-use programming interface information.

Here is how insert, delete, and replace rules are specified in the DBD:

© Copyright IBM Corp. 1974, 1999 409

The operands in the RULES= parameter are positional. Position 1 defines the insert
rule, position 2 defines the delete rule, and position 3 defines the replace rule. For
example, RULES=PLV says the insert rule is physical, the delete rule is logical, and
the replace rule is virtual. The B rule is only applicable for delete. In general, the P
rule is the most restrictive, the V rule is least restrictive, and the L rule is
somewhere in between.

The RULES= parameter is applicable only to segments involved in logical paths,
that is, the logical child, logical parent, and physical parent segments. The RULES=
parameter is not coded for the virtual logical child.

The Replace Rules
The replace rules are applicable to the physical parent, logical parent, and logical
child segments of a logical path. The following is a description of how the replace
rules work:

v When RULES=P is specified, the segment can only be replaced when retrieved
using a physical path. If this rule is violated, no data is replaced and an RX
status code is returned. Figure 175 on page 411 shows an example of the
physical replace rule.

v When RULE=L is specified, the segment can only be replaced when retrieved
using a physical path. If this rule is violated, no data is replaced. However, no RX
status code is returned, and a blank status code is returned. Figure 176 on
page 412 shows an example of the logical replace rule.

v When RULES=V is specified, the segment can be replaced when retrieved by
either a physical or logical path. Figure 177 on page 413 shows an example of
the virtual replace rule.

The Replace Call
A replace operation can be done only on that portion of a concatenated segment to
which an application program is data sensitive. If no data is changed in a segment,
no data is replaced. Therefore, no replace rule is violated. The replace rule is not
checked for a segment that is part of a concatenated segment but is not retrieved.

For all DL/I calls, either an error is detected and an error status code returned (in
which case no data is changed), or the required changes are made to all segments
affected by the call. Therefore, if the required function cannot be performed for both
parts of the concatenated segment, an error status code is returned, and no change
is made to either the logical child or the destination parent.

Figure 174. How Insert, Delete, and Replace Rules are Specified in the DBD

How to Specify Rules in the Physical DBD

410 IMS/ESA V6 Admin Guide: DB

Status Codes
The status code returned to an application program indicates the first violation of
the replace rule that was detected. These status codes are as follows:

v AM—a replace was attempted and PROCOPTR

v DA—the key field of a segment or a non-replaceable field was changed

v RX—the replace rule was violated

The P replace rule prevents replacing the LOANS segment as part of a
concatenated segment. Replacement must be done using the segment’s physical
path.

Figure 175. Physical Replace Rule Example

How to Specify Rules in the Physical DBD

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships 411

As shown in Figure 176, the L replace rule prevents replacing the LOANS segment
as part of a concatenated segment. Replacement must be done using the
segment’s physical path. However, the status code returned is blank. The
BORROW segment, accessed by its physical path, is replaced. Because the logical
child is accessed by its physical path, it does not matter which replace rule is
selected.

The L replace rule allows replacing only the logical child half of the concatenation,
and the return of a blank status code.

Figure 176. Logical Replace Rule Example

How to Specify Rules in the Physical DBD

412 IMS/ESA V6 Admin Guide: DB

As shown in Figure 177, the V replace rule allows replacing the CUSTOMER
segment using its logical path as part of a concatenated segment.

Replace Rules Summary
Specifying the replace rule as P, on any segment in a logical relationship, prevents
replacing that segment except when it is retrieved using its physical path. When the
replace rule for the logical parent is specified as L, IMS returns a blank status code
without replacing any data when the logical parent is accessed concatenated with
the logical child. Because the logical child has been accessed by its physical path,
its replace rule can be any of the three. So, using the replace rule allows the
selective replacement of the logical child half of the concatenation and a blank
status code. Specifying a replace rule of V, on any segment of a logical relationship,
allows replacing that segment by either its physical or logical path.

Figure 178 on page 414 shows all possible combinations of replace rules that can
be specified. It shows what actions take place for each combination when a call is
issued to replace a concatenated segment in a logical database.

Figure 177. Virtual Replace Rule Example

How to Specify Rules in the Physical DBD

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships 413

The Insert Rules
The insert rules apply to the destination parent segments, but not to the logical child
segment. A destination parent can be a logical or physical parent. The insert rule
has no meaning for the logical child segment except to satisfy the RULES= macro’s
coding scheme. Therefore, any insert rule (P, L, V) can be coded for a logical child.
A logical child can be inserted provided:

Figure 178. Replace Rules

How to Specify Rules in the Physical DBD

414 IMS/ESA V6 Admin Guide: DB

v The insert rule of the destination parent is not violated

v The logical child being inserted does not already exist (it cannot be a duplicate)

A description of how the insert rules work for the destination parent is a follows:

v When RULES=P is specified, the destination parent can be inserted only using
the physical path. This means the destination parent must exist before inserting a
logical path. A concatenated segment is not needed, and the logical child is
inserted by itself. Figure 179 on page 416 shows an example of the physical
insert rule.

v When RULES=L is specified, the destination parent can be inserted either using
the physical path or concatenated with the logical child and using the logical
path. When a logical child/destination parent concatenated segment is inserted,
the destination parent is inserted if it does not already exist and the I/O area key
check does not fail. If the destination parent does exist, it will remain unchanged
and the logical child will be connected to it. Figure 180 on page 417 shows an
example of the logical insert rule.

v When RULES=V is specified, the destination parent can be inserted either using
the physical path or concatenated with the logical child and using the logical
path. When a logical child/destination parent concatenated segment is inserted,
the destination parent is replaced if it already exists. If it does not already exist,
the destination parent is inserted. Figure 181 on page 418 shows an example of
the virtual insert rule.

The Logical Child Insert Call
To insert the logical child segment, the I/O area in an application program must
contain one of the following segments in accordance with the destination parent’s
insert rule:

v The logical child

v The logical child/destination parent concatenated segment

For all DL/I calls, either an error is detected and an error status code returned (in
which case no data is changed), or the required changes are made to all segments
effected by the call. Therefore, if the required function cannot be performed for both
parts of the concatenated segment, an error status code is returned, and no change
is made to either the logical child or the destination parent.

The insert operation is not affected by KEY or DATA sensitivity as specified in a
logical DBD or a PCB. This means that if a program is other than DATA sensitive to
both the logical child and destination parent of a concatenated segment, and if the
insert rules is L or V, the program must still supply both of them in the I/O area
when inserting using a logical path. Because of this, maintenance programs that
insert concatenated segments should be DATA sensitive to both segments in the
concatenation.

Status Codes
The nonblank status codes that can be returned to an application program after an
ISRT call are as follows:

v AM—An insert was attempted and PROCOPTI

v GE—The parent of the destination parent or logical child was not found

v II—An attempt was made to insert a duplicate segment

v IX—The rule specified was P, but the destination parent was not found

How to Specify Rules in the Physical DBD

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships 415

One reason for getting an IX status code is that the I/O area key check failed.
Concatenated segments must contain the destination parent’s key twice—once
as part of the logical child’s LPCK and once as a field in the parent. These keys
must be equal.

Figure 179. Physical Insert Rule Example

How to Specify Rules in the Physical DBD

416 IMS/ESA V6 Admin Guide: DB

The IX status code shown in Figure 180 is the result of omitting the concatenated
segment CUST/CUSTOMER in the second call. IMS checked for the key of the
CUSTOMER segment (in the I/O area) and failed to find it. With the L insert rule,
the concatenated segment must be inserted to create a logical path.

Figure 180. Logical Insert Rule Example

How to Specify Rules in the Physical DBD

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships 417

The code shown in Figure 181 will replace the LOANS segment if present, and
insert the LOANS segment if not. The V insert rule is a powerful option.

Insert Rules Summary
Specifying the insert rule as P prevents inserting the destination parent as part of a
concatenated segment. A destination parent can only be inserted using the physical
path. If the insert creates a logical path, only the logical child needs to be inserted.

Specifying the insert rule as L on the logical and physical parent allows insertion
using either the physical path or the logical path as part of a concatenated
segment. When inserting a concatenated segment, if the destination parent already
exists it remains unchanged and the logical child is connected to it. If the
destination parent does not exist, it is inserted. In either case, the logical child is
inserted if it is not a duplicate, and the destination parent’s insert rule is not
violated.

The V insert rule is the most powerful of the three rules. The V insert rule is the
most powerful because it will insert the destination parent (inserted as a

Figure 181. Virtual Insert Rule Example

How to Specify Rules in the Physical DBD

418 IMS/ESA V6 Admin Guide: DB

concatenated segment using the logical path) if the parent did not previously exist,
or otherwise replace the existing destination parent with the inserted destination
parent.

Introduction to Delete Rules
The DLET call is a request to delete a path of segments, not a request to release
the DASD space used by a segment. Delete rules are needed when a segment is
involved in a logical relationship, because that segment belongs to two paths: a
physical and a logical path. The selection of the delete rules for the logical child and
its logical and physical parent (or two logical parents if physical pairing is used)
determines whether one or two DLET calls are necessary to delete the two access
paths.

Physical and Logical Deletion
Physically deleting a segment prevents further access to that segment using its
physical parents. Physically deleting a segment also physically deletes its physical
dependents, however one exception to this exists: If one of the physical parents of
the physically deleted segment is a logical child that has been accessed from its
logical parent, then the physically deleted segment is accessible from that logical
child. The deleted segment is accessible from that logical child because the
physical dependents of a logical child are variable intersection data.

Logically deleting a logical child prevents further access to the logical child using its
logical parent. Unidirectional logical child segments are assumed to be logically
deleted. A logical parent is considered logically deleted when all its logical children
are physically deleted. For physically paired logical relationships, the physical child
paired to the logical child must also be physically deleted before the logical parent
is considered logically deleted.

Deleting Concatenated Segments
The following application program can be sensitive to either the concatenated
segment—SOURCE=(DATA/DATA), (DATA/KEY), (KEY/DATA)—or the logical child,
because it is the logical child that is either physically or logically deleted (depending
on the path accessed) in all cases.

The Third Access Path
In Figure 182 on page 420, three paths to the logical child segment SEG4 exist:

v The physical path from its physical parent SEG3

v The logical path from its logical parent SEG7

v A third path from SEG4’s physical dependents (SEG5 and SEG6) (because
segment SEG6 is a logical parent accessible from its logical child SEG2)

Note: See “Possibility of Abnormal Termination” later in this Appendix for more
information on potential abends.

How to Specify Rules in the Physical DBD

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships 419

These paths are called “full-duplex” paths, which means accessibility to segments in
the paths is in two directions (up and down). Two delete bits that control access
along the paths exist, but they are “half-duplex,” which means they only block half
of each respective path. No bit that blocks the third path exists. If SEG4 were both
physically and logically deleted (in which case the PD and LD bits in SEG4 would
be set), SEG4 would still be accessible from the third path, and so would both of its
parents.

Neither physical nor logical deletion prevents access to a segment from its physical
or logical children. Logically deleting SEG4 prevents access to SEG4 from its
logical parent SEG7, and it does not prevent access from SEG4 to SEG7.
Physically deleting SEG4 prevents access to SEG4 from its physical parent SEG3,
but it does not prevent access from SEG4 to SEG3.

Use of the Delete Byte
The delete byte is used by IMS to maintain the delete status of segments within a
database. The meaning of each bit within the delete byte is given in Appendix A.
The bit is only meaningful for logical child segments and their logical parents. For
segments involved in a logical relationship, the PD and LD bits are set or assumed
set as follows:

v If a segment is physically deleted (thereby preventing further access to it from its
physical parent), then delete processing scans downward from the deleted
segment through its dependents, turns upward, and either releases each
segment’s DASD space or sets the PD bit. HISAM is the one exception to this
process. In HISAM, the delete bit is set in the segment specified by the DLET
call and processing terminates.

v If the PD bit is set in a logical parent, the LD bit is set in all logical children that
can be reached from that logical parent.

v When physical pairing is used, if the PD bit is set in one of a pair of logical
children, the LD bit is set in its paired segment.

v When a virtually paired logical child is logically deleted (thereby preventing
further access to it from its logical parent), the LD bit is set in the logical child.

v The LD bit is assumed set in all logical children in unidirectional logical
relationships.

v If physical pairing is used, the LD bit is assumed set in a parent if all the paired
segments that are physical children of the parent have the PD bit set on.

Figure 182. Third Access Path Example

How to Specify Rules in the Physical DBD

420 IMS/ESA V6 Admin Guide: DB

The Delete Call
A DLET call can be issued against a segment defined in either a physical or logical
DBD. The call can be issued against either a physical segment or a concatenated
segment.

A DLET call issued against a concatenated segment requests deletion of the logical
child in the path that is accessed. If a concatenated segment or a logical child is
accessed from its logical parent, the DLET call requests logical deletion. In all other
cases, a delete call requests physical deletion.

Physical deletion of a segment generates a request for logical deletion of all the
segment’s logical children and generates a request for physical deletion of all the
segment’s physical children. Physical deletion of a segment also generates a
request to delete any index pointer segments for which the physically deleted
segment is the source segment.

Delete sensitivity must be specified in the PCB for each segment against which a
delete call can be issued. The call does not need to be specified for the physical
dependents of those segments. Delete operations are not affected by KEY or DATA
sensitivity as specified in either the PCB or logical DBD.

Status Codes
The nonblank status codes that can be returned to an application program after a
DLET call are as follows:

v DX—A delete rule was violated

v DA—The key was changed in the I/O area

v AM—The call function was not compatible with the processing option or segment
sensitivity

DASD Space Release
The DLET call is not a request for release of DASD space. Depending on the
database organization, DASD space can or cannot be reused when it is released.
DASD space for a segment is released when the following conditions are met:

v Space has been released for all physical dependents of the segment.

v The segment is physically deleted (PD bit is set or being set on).

v If the segment is a logical child or logical parent, then it must be physically and
logically deleted (PD bit is set or being set on and LD bit is set or assumed set).

v If the segment is a dependent of a logical child (and is variable intersection data)
and the DLET call was issued against a physical parent of the logical child, the
logical child must be both physically and logically deleted.

v If the segment is a secondary index pointer segment, the space has been
released for its target segment.

Delete Rules
The following is a description of how the delete values work for the logical parent,
physical parent, and logical child.

Logical Parent
v When RULES=P is specified, the logical parent must be logically deleted before

a DLET call is effective against it or any of its physical parents. Otherwise, the
call results in a DX status code, and no segments are deleted. However, if a
delete request is made against a segment as a result of propagation across a
logical relationship, then the P rule acts like the L rule that follows.

How to Specify Rules in the Physical DBD

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships 421

v When RULES=L is specified, either physical or logical deletion can occur first.
When the logical parent is processed by a DLET call, all logical children are
logically deleted, but the logical parent remains accessible from its logical
children.

v When RULES=V is specified, a logical parent is deleted along its physical path
explicitly when deleted by a DLET call. All of its logical children are logically
deleted, although the logical parent remains accessible from these logical
children.

A logical parent is deleted along its physical path implicitly when it is no longer
involved in a logical relationship. A logical parent is no longer involved in a logical
relationship when:

– It has no logical children pointing to it (its logical child counter is zero, if it has
any)

– It points to no logical children (all of its logical child pointers are zero, if it has
any)

– It has no physical children that are also real logical children

Physical Parent (Virtual Pairing Only)
v PHYSICAL/LOGICAL/VIRTUAL is meaningless.

v BIDIRECTIONAL VIRTUAL means a physical parent is automatically deleted
along its physical path when it is no longer involved in a logical relationship. A
physical parent is no longer involved in a logical relationship when:

– It has no logical children pointing to it (its logical child counter is zero, if it has
one)

– It points to no logical children (all of its logical child pointers are zero, if it has
any)

– It has no physical children that are also real logical children

Logical Child
v When RULES=P is specified, the logical child segment must be logically deleted

first and physically deleted second. If physical deletion is attempted first, the
DLET call issued against the segment or any of its physical parents results in a
DX status code, and no segments are deleted. If a delete request is made
against the segment as a result of propagation across a logical relationship, or if
the segment is one of a physically paired set, then the rule acts like the L rule
that follows.

v When RULES=L is specified, deletion of a logical child is effective for the path for
which the delete was requested. Physical and logical deletion of the logical child
can be performed in any order. The logical child and any physical dependents
remain accessible from the non-deleted path.

v When RULES=V is specified, a logical child is both logically and physically
deleted when it is deleted through either its logical or physical path (setting either
the PD or LD bits sets both bits). If this rule is coded on only one logical child
segment of a physically paired set, it acts like the L rule.

Note: For logical children involved in unidirectional logical relationships, the
meaning of all three rules is the same, so any of the three rules can be
specified.

Examples Using the Delete Rules
Figure 183 through Figure 194 show the use of the delete rules for each of the
segment types for which the delete rule can be coded (logical and physical parents
and their logical children). Only the rule pertinent to the example is shown in each

How to Specify Rules in the Physical DBD

422 IMS/ESA V6 Admin Guide: DB

figure. The explanation accompanying the example applies only to the specific
example.

Figure 183. Logical Parent, Virtual Pairing—Physical Delete Rule Example

How to Specify Rules in the Physical DBD

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships 423

Figure 184. Logical Parent, Physical Pairing—Physical Delete Rule Example

How to Specify Rules in the Physical DBD

424 IMS/ESA V6 Admin Guide: DB

The processing and results shown in Figure 185 would be the same if the logical
parent LOANS delete rule were virtual instead of logical. The example that follows
is an additional one to explain the logical delete rule.

Figure 185. Logical Parent, Virtual Pairing—Logical Delete Rule Example

How to Specify Rules in the Physical DBD

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships 425

The processing and results shown in Figure 186 would be the same if the logical
parent LOANS delete rule were virtual instead of logical. An additional example to
explain the virtual delete rule follows in Figure 187 on page 427.

Figure 186. Logical Parent, Physical Pairing—Logical Delete Rule Example

How to Specify Rules in the Physical DBD

426 IMS/ESA V6 Admin Guide: DB

Figure 187. Logical Parent, Virtual Pairing—Virtual Delete Rule Example

How to Specify Rules in the Physical DBD

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships 427

Figure 188. Logical Parent, Physical Pairing—Virtual Delete Rule Example

How to Specify Rules in the Physical DBD

428 IMS/ESA V6 Admin Guide: DB

Figure 189. Physical Parent, Virtual Pairing—Bidirectional Virtual Example

How to Specify Rules in the Physical DBD

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships 429

Figure 190. Logical Child, Virtual Pairing—Physical Delete Rule Example

How to Specify Rules in the Physical DBD

430 IMS/ESA V6 Admin Guide: DB

Figure 191. Logical Child, Virtual Pairing—Logical Delete Rule Example

How to Specify Rules in the Physical DBD

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships 431

Figure 192. Logical Child, Physical Pairing—Physical or Logical Delete Rule Example

How to Specify Rules in the Physical DBD

432 IMS/ESA V6 Admin Guide: DB

Figure 193. Logical Child, Virtual Pairing—Virtual Delete Rule Example

How to Specify Rules in the Physical DBD

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships 433

Accessibility of Deleted Segments
A physically deleted segment remains accessible under the following circumstances:

v A physical dependent of the deleted segment is a logical parent accessible from
its logical children.

v A physical dependent of the deleted segment is a logical child accessible from its
logical parent.

v A physical parent of the deleted segment is a logical child accessible from its
logical parent. The deleted segment in this case is variable intersection data in a
bidirectional logical relationship.

Figure 194. Logical Child, Physical Pairing—Virtual Delete Rule Example

How to Specify Rules in the Physical DBD

434 IMS/ESA V6 Admin Guide: DB

A logically deleted logical child cannot be accessed from its logical parent.

Neither physical or logical deletion prevents access to a segment from its physical
or logical children. Because logical relationships provide for inversion of the physical
structure, a segment can be physically or logically deleted or both, and still be
accessible from a dependent segment because of an active logical relationship. A
physically deleted root segment can be accessed when it is defined as a dependent
segment in a logical DBD. The logical DBD defines the inversion of the physical
DBD. Figure 195 shows the accessibility of deleted segments:

When the physical dependent of a deleted segment is a logical parent with logical
children that aren’t physically deleted, the logical parent and its physical parents are
accessible from those logical children.

The physical structure above shows that SEG3, SEG4, SEG5, and SEG6 have
been physically deleted, probably by issuing a DLET call for SEG3. This resulted in
all of SEG3’s dependents being physically deleted. (SEG6’s delete rule is not P, or
a ’DX’ status code would be issued.)

SEG3, SEG4, SEG5, and SEG6 remain accessible from SEG2, the logical child of
SEG6. This is because SEG2 is not physically deleted. However, physical
dependents of SEG6 cannot be accessible, and their DASD space is released
unless an active logical relationship prohibits

When the physical dependent of a deleted segment is a logical child whose logical
parent is not physically deleted, the logical child, its physical parents, and its
physical dependents are accessible from the logical parent.

Figure 195. (Part 1 0f 4). Example of Deleted Segments Accessibility

How to Specify Rules in the Physical DBD

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships 435

The physical structure above shows that SEG3, SEG4, SEG5, and SEG6 have
been physically deleted.

The logical child segment SEG4 remains accessible from its logical parent SEG7
(SEG7 is not physically deleted). Also accessible are SEG5 and SEG6, which are
variable intersection data. The physical parent of the logical child (SEG3) is also
accessible from the logical child (SEG4).

A physically and logically deleted logical child can be accessed from its physical
dependents.

The physical structure above shows that logical child SEG4 is both physically and
logically deleted.

Figure 196. (Part 2 0f 4). Example of Deleted Segments Accessibility

Figure 197. (Part 3 0f 4). Example of Deleted Segments Accessibility

How to Specify Rules in the Physical DBD

436 IMS/ESA V6 Admin Guide: DB

From a previous example (part 1 of 4), we know SEG6 (a logical parent) is
accessible from SEG2, if that segment (its logical child) is not physically deleted.
We also know that once we’ve accessed SEG6, its physical parents (SEG5, SEG4,
SEG3) are accessible. It doesn’t matter that the logical child is logically deleted
(which is the only difference between this example and that of part 1 of 4).

The third path cannot be blocked because no delete bit exists for this path.
Therefore, the logical child SEG4 is accessible from its dependents even though it
is been physically and logically deleted.

When a segment accessed by its third path is deleted, it is physically deleted in its
physical data base, but it remains accessible from its third path.

The results are interesting. SEG5 is inaccessible from its physical parent path (from
SEG4) unless SEG4 is accessed by its logical parent SEG7 (SEG5 and SEG6 are
accessible as variable intersection data). SEG5 is still accessible from its third path
(from SEG6) because SEG6 is still accessible from its logical child. Thus, a
segment can be physically deleted by an application program and still be accessible
to that application program, using the same PCB used to delete the segment.

Figure 198. (Part 4 0f 4). Example of Deleted Segments Accessibility

How to Specify Rules in the Physical DBD

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships 437

Possibility of Abnormal Termination
If a logical parent is physically and logically deleted, its DASD space is released.
For this to occur, all of its logical children must be physically and logically deleted.
However, the DASD space for these logical children cannot be released if the
logical children have physical dependents with active logical relationships.
Accessing such a logical child from its physical dependents (both the logical child
and logical parent have been physically and logically deleted) can result in a user
850 through 859 abnormal termination if one of the following occurs:

v The LPCK is not stored in the logical child

v The concatenation definition is data sensitive to the logical parent

Figure 199 shows an example of abnormal termination:

The logical parent SEG7 has been physically and logically deleted (the LD bit is
never really set, but is assumed to be set. It is shown only for the purpose of
illustration.) All of the logical children of the logical parent have also been physically
and logically deleted. However, the logical parent has had its segment space
released, whereas the logical child (SEG4) still exists. The logical child still exists
because it has a physical dependent that has an active logical relationship that
precludes releasing its space.

If an application program accesses SEG4 from its dependents (SEG1 to
SEG2/SEG6 to SEG5), IMS must build the logical parent’s concatenated key if that
key is not stored in the logical child. When IMS attempts to access logical parent
SEG7, abnormal termination will occur. The 850 through 859 abnormal termination
codes are issued when a pointer is followed that doesn’t lead to the expected
segment.

Avoiding Abnormal Termination
You must avoid creating a physically deleted logical child that can be accessed from
below in the physical structure (using its third path). A logical child can be accessed
from below if any of its physical dependents are accessible through logical paths.
Two methods exist in avoiding this situation.

v Method 1

Figure 199. Example of Abnormal Termination

How to Specify Rules in the Physical DBD

438 IMS/ESA V6 Admin Guide: DB

The first method requires that logical paths to dependents be broken before the
logical child is physically deleted. Breaking the logical path with method 1 is done
using a P rule for the dependents as long as no physical deletes are propagated
into the database. Therefore, no V rules on logical children can be allowed at or
above the logical child, because, with the V rule, a propagated logical delete
causes a physical delete without a P rule violation check. (For more information
on this, see the next section, “Detecting Physical Delete Rule Violations”.) The L
rule also causes propagation, if the PD bit is already set on, but the dependent’s
P rule will prevent that case. Similarly, no V rule can be allowed on any logical
parent above the logical child, because the logical delete condition would cause
the physical delete.

v Method 2

The second method requires breaking the logical path whenever the logical child
is physically deleted. Breaking the logical path with this method is done for
subordinate logical child segments using the V delete rule. Subordinate logical
parent segments need to have bidirectional logical children with the V rule (must
be able to reach the logical children) or physically paired logical children with the
V rule. This method will not work with subordinate logical parents pointed to by
unidirectional logical children.

Detecting Physical Delete Rule Violations
When a DLET call is issued, the delete routine scans the physical structure
containing the segment to be deleted. The delete routine scans the physical
structure to determine if any segment in it uses the physical delete rule and whether
that rule is being violated. Figure 200 shows an example of violating the physical
delete rule:

Figure 200. Example of Violation of the Physical Delete Rule

How to Specify Rules in the Physical DBD

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships 439

SEG7 (the logical child of SEG2) uses the physical delete rule and has not been
logically deleted (the LD bit has not been set on). Therefore, the physical delete
rule is violated. A ’DX’ status code is returned to the application program, and no
segments are deleted.

Treating the Physical Delete Rule as Logical
If the delete routine determines that neither the segment specified in the DLET call
nor any physical dependent of that segment in the physical structure uses the
physical delete rule, any physical rule encountered later (logical deletion propagated
to logical child or logical parent causing physical deletion—V rule—in another
database) is treated as a logical delete rule. Figure 201 shows an example of
treating the physical delete rule as logical.

SEG8 and SEG9 are both physically deleted, and SEG9 is logically deleted (V rule).
SEG5 is physically and logically deleted because it is the physical pair to SEG9
(with physical pairing setting the LD bit in one set, the PID bit in the other, and vice
versa). Physically deleting SEG5 causes propagation of the physical delete to
SEG5’s physical dependents; therefore, SEG6 and SEG7 are physically deleted.

Note that the physical deletion of SEG7 is prevented if the physical deletion started
by issuing a DLET call for SEG4. But the physical rule of SEG7 is treated as logical
in this case.

Inserting Physically and/or Logically Deleted Segments
When a segment is inserted, a replace operation is performed (space is reused),
and existing dependents of the inserted segment remain if:

v The segment to be inserted already exists (same segment type and same key
field value for both the physical and logical sequencing)

v The delete bit is set on for that segment along the path of insertion

Figure 201. Example of Treating the Physical Delete Rule as Logical

How to Specify Rules in the Physical DBD

440 IMS/ESA V6 Admin Guide: DB

For HDAM and HIDAM databases, the logical twin chain is established as required,
and existing dependents of the inserted segment remain.

For HISAM databases, if the root segment is physically and logically deleted before
the insert is done, then the first logical record for that root in primary and secondary
data set groups is reused. Remaining logical records on any OSAM chain are
dropped.

Delete Rules Summary
The DLET Call

A DLET call issued against a concatenated segment (SOURCE=DATA/DATA,
DATA/KEY, KEY/DATA) is a DLET call against the logical child only.

A DLET call against a logical child that has been accessed from its logical
parent is a request that the logical child be logically deleted.

In all other cases, a DLET call issued against a segment is a request for that
segment to be physically deleted.

Physical Deletion
A physically deleted segment cannot be accessed from its physical path,
however, one exception exists: If one of the physical parents of the physically
deleted segment is a logical child that can be accessed from its logical parent,
then the physically deleted segment is accessible from that logical child. The
physically deleted segments is accessible because the physical dependents of
the logical child are variable intersection data.

Logical Deletion
By definition, a logically deleted logical child cannot be accessed from its logical
parent. Unidirectional logical child segments are assumed to be logically
deleted.

By definition, a logical parent is considered logically deleted when all its logical
children are physically deleted and all its physical children that are part of a
physically paired set are physically deleted.

Access Paths
Neither physical nor logical deletion of a segment prevents access to the
segment from its physical or logical children, or from the segment to its physical
or logical parents. A physically deleted root segment can be accessed only from
its physical or logical children.

Propagation of Delete
In bidirectional physical pairing, physical deletion of one of the pair of logical
children causes logical deletion of its paired segment. Likewise, logical deletion
of one causes physical deletion of the other.

Physical deletion of a segment propagates logical deletion requests to its
bidirectional logical children. Physical deletion of a segment propagates physical
deletion requests to its physical children and to any index pointer segments for
which it is the source segment.

Delete Rules
Further delete operations are governed by the following delete rules:

Logical Parent
When RULES=P is specified, if the segment is not already logically deleted,
a DLET call against the segment or any of its physical parents results in a

How to Specify Rules in the Physical DBD

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships 441

DX status code. No segments are deleted. If a request is made against the
segment as a result of propagation across a logical relationship, then the P
rule works like the L rule.

When RULES=L is specified, either physical or logical deletion can occur
first, and neither causes the other to occur.

When RULES=V is specified, either physical or logical deletion can occur
first. If the segment is logically deleted as the result of a DLET call, then it
is physically deleted also.

Physical Parent of a Virtually Paired Logical Child
RULES=P, L, or V is meaningless.

When RULES=B is specified and all physical children that are virtually
paired logical children are logically deleted, the physical parent segment is
physically deleted.

Logical Child
When RULES=P is specified, if the segment is not already logically deleted,
then a DLET call requesting physical deletion of the segment or any of its
physical parents results in a DX status code. No segments are deleted. If a
delete request is made against the segment as a result of propagation
across a logical relationship or if the segment is one of a physically paired
set, then the rule works like the L rule.

When RULES=L is specified, either physical or logical deletion can occur
first, and neither causes the other to occur.

When RULES=V is specified, either physical or logical deletion can occur
first and either causes the other to occur. If this rule is used on only one
segment of a physically paired set, it works like the L rule.

Space Release
Depending on the database organization, DASD space can or cannot be
reused when it is released. DASD space for a segment is released when
the following conditions are met:

v Space has been released for all physical dependents of the segment.

v The segment is physically deleted.

v If the segment is a logical child or a logical parent, then it is physically
and logically deleted.

v If the segment is a dependent of a logical child (variable intersection
data) and the DLET call was issued against a physical parent of the
logical child, then the logical child is both physically and logically deleted.

v If the segment is a primary index pointer segment, the space is released
for its target segment.

Insert, Delete, and Replace Rules Summary
Figure 202 summarizes rules by stating a desired result and then indicating the rule
which can be used to obtain that result.

How to Specify Rules in the Physical DBD

442 IMS/ESA V6 Admin Guide: DB

physical insert rule RULES= (P__)
logical insert rule RULES= (L__)
virtual insert rule RULES= (V__)
physical delete rule RULES= (_P_)
logical delete rule RULES= (_L_)
bidirectional virtual delete rule RULES= (_B_)
virtual delete rule RULES= (_V_)
physical replace rule RULES= (__P)
logical replace rule RULES= (__L)
virtual replace rule RULES= (__V)

Insert Rules for Segment A: The insert rules for segment A control the insert of A
using the logical path to A. The rules are as follows:

v To disallow the insert of A on its logical path, use the physical insert rule.

v To allow the insert of A on its logical path (concatenated with virtual segment A↑)
use either the logical or virtual rule.

Where A is already present, a logical connection is established to the existing A
segment. The existing A can either be replaced or remain unchanged:

– If A is to remain unchanged by the insert call, use the logical insert rule.

– If A is to be replaced by the insert call, use the virtual insert rule.

Delete Rules for Segment A: The delete rules for segment A control the deletion
of A using the logical path to A. The rules are as follows:

v To cause segment A to automatically be deleted when the last logical connection
(through B↑ to segment A) is broken, use the bidirectional virtual delete rule.

v The other delete rules for A are not meaningful.

Replace Rules for Segment A: The replace rules for segment A control the
replacement of A using the logical path to A. The rules are as follows:

v To disallow the replacement of A on its logical path and receive an 'RX' status
code if the rule is violated by an attempt to replace A, use the physical replace
rule.

v To disregard the replacement of A on its logical path, use the logical replace rule.

v To allow the replacement of A on its logical path, use the virtual replace rule.

Insert Rules for Segment B:

Figure 202. Insert, Delete, and Replace Rules Summary

How to Specify Rules in the Physical DBD

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships 443

Note: These rules are identical to the insert rules for segment A.

The insert rules for segment B control the insert of B using the logical path to B.
The rules are as follows:

v To disallow the insert of B on its logical path, use the physical insert rule.

v To allow the insert of B on its logical path (concatenated with virtual segment B↑)
use either the logical or virtual rule.

Where B is already present, a logical connection is established to the existing B
segment. The existing B can either be replaced or remain unchanged:

– If B is to remain unchanged by the insert call, use the logical insert rule.

– If B is to be replaced by the insert call, use the virtual insert rule.

Delete Rules for Segment B: The delete rules for segment B control the deletion
of B on its physical path. A delete call for a concatenated segment is interpreted as
a delete of the logical child only. The rules are as follows:

v To ensure that B remains accessible until the last logical relationship path to that
occurrence has been deleted, choose the physical delete rule. If an attempt to
delete B is made while there are occurrences of B↑ pointing to segment B, a 'DX'
status code is returned and no segment is deleted.

v To allow segment B to be deleted on its physical path, choose the logical delete
rule. When B is deleted, it is no longer accessible on its physical path. It is still
possible to access B from A via B↑ as long as B↑ exists.

v Use the virtual delete rule to physically delete segment B when it has been
explicitly deleted by a delete call or implicitly deleted when all B↑s pointing to it
have been physically deleted.

Replace Rules for Segment B:

Note: These rules are identical to the replace rules for segment A.

The replace rules for segment B control the replacement of B using the logical path
to B. The rules are as follows:

v Use the physical replace rule to disallow the replacement of B on its logical path
and receive an 'RX' status code if the rule is violated by an attempt to replace B.

v Use the logical replace rule to disregard the replacement of B on its logical path.

v Use the virtual replace rule to allow the replacement of B on its logical path.

Insert Rules for Segment B ↑: The insert rules do not apply to a logical child.

Delete Rules for Segment B ↑: The delete rules for segment B↑ apply to delete
calls using its logical or physical path. The rules are as follows:

v Use the physical delete rule to control the sequence in which B↑ is deleted on its
logical and physical paths. The physical delete rule requires that it be logically
deleted before it is physically deleted. A violation results in a 'DX' status code.

v Use the logical delete rule to allow either physical or logical deletes to be first.

v Use the virtual delete rule to use a single delete call from either the logical or
physical path to both logically and physically delete B↑.

Replace Rules for Segment B ↑:

Note: These rules are identical to the replace rules for segment A.

How to Specify Rules in the Physical DBD

444 IMS/ESA V6 Admin Guide: DB

The replace rules for segment B control the replacement of B↑ using the logical
path to B↑. The rules are as follows:

v Use the physical replace rule to disallow the replacement of B↑ on its logical path
and receive an 'RX' status code if the rule is violated by an attempt to replace
B↑.

v To disregard an attempt to replace B↑ on its logical path, use the logical replace
rule.

v To allow the replacement of B↑ on its logical path, use the virtual replace rule.

How to Specify Rules in the Physical DBD

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships 445

How to Specify Rules in the Physical DBD

446 IMS/ESA V6 Admin Guide: DB

Appendix C. Using OSAM as the Access Method

OSAM Information for Database Access 447

OSAM Information for Database Access
This appendix contains product-sensitive programming interface information.

You need to know the following information about OSAM if your database is using
OSAM as an access method:

v OSAM is a special access method supplied with IMS.

v IMS communicates with OSAM using OPEN, CLOSE, READ, and WRITE
macros.

v OSAM communicates with the I/O supervisor using the I/O driver interface.

v An OSAM data set can be read using either the BSAM or QSAM access method.

v The number of extents in an OSAM data set is limited by:

– The maximum length of the data extent block (DEB)

– The length of the sector number table that is created for rotational position
sensing (RPS) devices

The length of a DEB is represented in a single byte that is expressed as the
number of doublewords. The sector number table exists only for RPS devices
and consists of a fixed area of eight bytes plus one byte for each block on a
track, rounded up to an even multiple of eight bytes. A minimum-sized sector
table (7 blocks per track) requires two doublewords. A maximum-sized sector
table (255 blocks per track) requires 33 doublewords.

In addition, for each extent area (two doublewords), OSAM requires a similar
area that contains device geometry data. Each extent requires a total of four
doublewords. The format and length (expressed in doublewords) of an OSAM
DEB are as follows:

Appendage sector table 5
Basic DEB 4
Access method dependent section 2
Subroutine name section 1
Standard DEB extents 120 (60 extents)
OSAM extent data 120
Minimum sector table 2

With a minimum-sized sector table, the DEB can reflect a maximum of 60 DASD
extents. With a maximum-sized sector table, the DEB can reflect a maximum of
52 DASD extents.

v An OSAM data set can be opened for update in place and extension to the end
through one data control block (DCB). The phrase “extension to the end” means
that records can be added to the end of the data set and that new direct-access
extents can be obtained.

v An OSAM data set does not need to be formatted before use.

v An OSAM data set can use fixed-length blocked or unblocked records.

v An OSAM data set with an even length blocksize has an 8 gigabyte size limit. An
OSAM data set with an odd length blocksize has a 4 gigabyte size limit.

© Copyright IBM Corp. 1974, 1999 447

v File mark definition is always used to define the current end of the data set.
When new blocks are added to the end of the data set, they replace dummy
pre-formatted (by OSAM) blocks that exist on a logical cylinder basis. A file mark
is written at the beginning of the next cylinder, if one exists, during a format
logical cylinder operation. This technique is used as a reliability aid while the
OSAM data set is open.

v OSAM EXCP counts are accumulated during OSAM End of Volume (EOV) and
close processing.

v Migrating OSAM data sets utilizing the DFDSS Dump Restore Utility
(GC26-3949)—DFDSS will migrate the tracks of a data set up to the last block
written value (DS1LSTAR) as specified by the DSCB for the volume being
migrated. If the OSAM data set spans multiple volumes which have not been
pre-allocated, the DS1LSTAR field for each DSCB will be valid and DFDSS can
correctly migrate the data.

If the OSAM data set spans multiple volumes that have been pre-allocated, the
DS1LSTAR field in the DSCB for each volume (except the last) can be zero. This
condition will occur during the loading operation of a pre-allocated, multivolume
data set. The use of pre-allocated volumes precludes EOV processing when
moving from one volume to another, thereby allowing the DSCBs for these
volumes to be not updated. The DSCB for the last volume loaded is updated
during close processing of the data set.

DFDSS physical DUMP/RESTORE with parameters ALLEXCP or ALLDATA must
be used when migrating OSAM data sets span pre-allocated, multivolumes.
These parameters will allow DFDSS to correctly migrate OSAM data sets.

Other MVS access methods (VSAM and SAM) are used in addition to OSAM for
physical storage of data.

For information about defining OSAM subpools, refer to IMS/ESA Installation
Volume 2: System Definition and Tailoring .

OSAM Information for Database Access

448 IMS/ESA V6 Admin Guide: DB

Appendix D. Correcting Bad Pointers

Ordinarily, bad pointers should not occur in your database. When they do, the
cause is typically:

v Failure to run database backout

v Failure to perform emergency restart

v Omitting a log during backout or recovery

The normal way to correct a bad pointer is to perform recovery. However, some
cases exist in which a bad pointer can be corrected through reorganization. A
description of the circumstances in which this can or cannot be done is as follows:

v PC/PT pointers. The HD Unload utility issues unqualified GN calls to read a
database. If the bad pointer is a PC or PT pointer, DL/I will follow the bad pointer
and the GN call will fail. Therefore, reorganization cannot be used to correct PC
or PT pointers.

v LP/LT pointers. LP and LT pointers are rebuilt during reorganization. However,
DL/I can follow the LP pointer during unload. If the logical child segment contains
a direct LP pointer and the logical parent’s concatenated key is not physically
stored in the logical child segment, DL/I follows the bad LP pointer to construct
the logical parent’s concatenated key. This causes an ABEND.

v LP pointer. When DBR= is specified for pre-reorganization and the database has
direct LP pointers, the HD Unload utility saves the old LP pointer. Bad LP
pointers produce an error message (DFS879) saying a logical child that has no
logical parent exists.

v LP pointer. When DBIL= is specified for pre-reorganization of a logical child or
parent database, the utilities that resolve LP pointers use concatenated keys to
match logical parent and logical child segments. New LP pointers are created.

© Copyright IBM Corp. 1974, 1999 449

450 IMS/ESA V6 Admin Guide: DB

Bibliography

This bibliography includes all the publications cited
in this book, including the publications in the IMS
library.

Batch Terminal Simulator Program Reference
and Operations Manual, SH20-5523

CICS/ESA Facilities and Planning Guide,
SC33-0504

Cross System Product/370 Application
Development Guide, SH23-0514

Data Extraction, Processing, and Restructuring
System Program Description/Operations
Manual, SH20-2177

DataPropagator NonRelational IMS/ESA An
Introduction, GH19-5034

DB/DC Data Dictionary General Information
Manual, GH20-9104

DB/DC Data Dictionary Terminal User’s Guide
and Command Reference, SH20-9189

DBT DB Segment Restructure User’s Guide,
SH20-6582

IMSASAP II Program Description/Operations
Manual, SB21-1793

IMS/ESA System Utilities/Database Tools
(DBT) General Information Manual,
GH20-6579

MVS/DFP Access Method Services for the
Integrated Catalog Facility, SC26-4562

MVS/ESA System Programming Library:
Initialization and Tuning, GC28-1828

MVS/ESA VSAM Administration Guide,
SC26-4518

OS/VS2 Access Method Services, GC26-3841

IMS/ESA Version 6 Library

SC26-8725 ADB Administration Guide: Database
Manager

SC26-8730 AS Administration Guide: System
SC26-8731 ATM Administration Guide:

Transaction Manager
SC26-8727 APDB Application Programming:

Database Manager
SC26-8728 APDG Application Programming:

Design Guide
SC26-8726 APCICS Application Programming:

EXEC DLI Commands for CICS
and IMS

SC26-8729 APTM Application Programming:
Transaction Manager

SC26-8732 CG Customization Guide
SC26-9517 CQS Common Queue Server

Reference
SC26-8733 DBRC Database Recovery Control

Guide and Reference
LY37-3731 DGR Diagnosis Guide and Reference
LY37-3732 FAST Failure Analysis Structure

Tables (FAST) for Dump
Analysis

GC26-8736 IIV Installation Volume 1:
Installation and Verification

GC26-8737 ISDT Installation Volume 2: System
Definition and Tailoring

SC26-8740 MIG Master Index and Glossary
GC26-8739 MC Messages and Codes
SC26-8743 OTMA Open Transaction Manager

Access Guide
SC26-8741 OG Operations Guide
SC26-8742 OR Operator’s Reference
GC26-8744 RPG Release Planning Guide
SC26-8767 SOP Sample Operating Procedures
SC26-8769 URDB Utilities Reference: Database

Manager
SC26-8770 URS Utilities Reference: System
SC26-8771 URTM Utilities Reference: Transaction

Manager

Supplementary Publications
GC26-8738 LPS Licensed Program

Specifications
SC26-8766 SOC Summary of Operator

Commmands

Online Softcopy Publications
LK3T-2326 CDROM IMS/ESA Version 6 Softcopy

Library
SK2T-0730 CDROM IBM Online Library: Transaction

Processing and Data
SK2T-0710 CDROM MVS Collection
SK2T-6700 CDROM OS/390 Collection

© Copyright IBM Corp. 1974, 1999 451

452 IMS/ESA V6 Admin Guide: DB

Index

Special Characters
/CK operand 128
/DBD AREA command 250
/DBR command 393
/DBR command (/DBRECOVERY command)

usage 393
/DBRECOVERY 390

command 390
/NRE command 246
/START AREA

command 393, 395
usage 395, 396

/START DATABASE
command 393, 395
usage 394, 395

/STOP AREA command 202
/STOP DATABASE command 202
/SX operand 128

A
abnormal termination in logical relationships 438, 439
ACB (application control block)

building by IMS 282
maintenance utility (DFSUACB0) 283

ACBGEN (Application Control Block Generation)
utility 393, 394, 395

ACBGEN description 282
ACBLIB

online change procedure 393, 394, 395
ACBLIB library 283
access method services 312
access methods

BSAM (Basic Sequential Access Method) 447
changing 341
IMS access methods 9, 36
introduction 9
MVS access methods 9

used by HD 53
used by HISAM 40
used by HSAM 36

OSAM (Overflow Sequential Access Method) 447
OSAM (overflow sequential access methods)

used by HD 63
QSAM (Queued Sequential Access Method) 447

accessing segments
HDAM (Hierarchical Direct Access Method) 72
HIDAM (Hierarchical Indexed Direct Access

Method) 72
HISAM (Hierarchical Indexed Sequential Access

Method) 43
HSAM (Hierarchical Sequential Access Method) 37

add programs, use in loading a database 295
adding DEDB AREAs 399
adding segments to change DEDBs 398
adjusting HDAM options 169
administration

data communication task description 1

administration (continued)
database task description 1

aids
BTS (Batch Terminal Simulator) 321
Database Surveyor utility (DFSPRSUR) 319
DBT (Database Tools) 320
DEDB Pointer Checker 321
DL/I test program 319
for designing databases 191
for test databases

Cross System Product/370 Application
Development (CSP/370AD) 267

Data Extraction, Processing and Restructuring
System 267

DB/DC Data Dictionary 268
DBT (Database Tools) 268
DL/I test program 268

HD Pointer Checker utility 320
HD Reorganization Unload utility (DFSURGU0) 319
HD tuning aids 321
IEHLIST utility 319
IMSASAP II 321
LISTCAT ALL report 312
STAT call 322

AL (available length) field 65
allocation

IMS data sets 293
OSAM data sets 293

alternate PCB 281
AM status code 411, 421
analyzing requirements for logical relationships 30
anchor point area 65
application control block (ACB) 282
application programs, loading 299
application requirements, analyzing 2, 23, 33
area data set replication 202
AREA statement 278
AREA UOW structural definition 396
AREAs, adding DEDB 399
AREAs, deleting DEDB 399
areas in DEDB 249
Areas in DEDB 202
Asynchronous Data Capture

description 15
procedure for adding 389
using 389

auxiliary storage requirements for MSDBs 248
available length (AL) field 65

B
background write 185
backspacing 39
basic initial load program, writing 298
Basic Sequential Access Method 36, 447
Batch Terminal Simulator (BTS) 321
BGWRT parameter 185
bidirectional physically paired logical relationship 86

© Copyright IBM Corp. 1974, 1999 453

bidirectional virtually paired logical relationship 88
bit maps

calculating space 292
description 63

bits in delete byte 407
block-level data sharing 80
blocks

calculating number needed 289
determining size 37
determining size of 173
HIDAM (Hierarchical Indexed Direct Access

Method) 67
HISAM (Hierarchical Indexed Sequential Access

Method) 41
BMPs

and CCTL threads 261
and DBCTL 36
batch message processing 214
normal buffer allocation 260
OBA values 221
overflow buffer allocation 261
to access DEDBs 222
updates in a sync interval 223

BSAM (Basic Sequential Access Method)
access to GSAM databases 51
access to HSAM databases 36
access to OSAM databases 447
access to SHSAM databases 50

BSIZ parameter 257, 260
BTS (Batch Terminal Simulator) 321
buffer handler 174
buffer pools

description 174
designing a Fast Path 257
Fast Path, use 221
in DBCTL environment 260
size determination for Fast Path 258
size for Fast Path determination 262

buffers
allocation in Fast Path 264
choosing options 174
description 243
description of 178
fast path buffer allocation algorithm

for CCTL threads 262
Fast Path buffer allocation algorithm 258

for BMPs 261
fixing in storage 177, 186
Hiperspace buffering for VSAM 175
OSAM buffer sizes 177
specifying 177
system buffer allocation 258, 262
VSAM buffer sizes 176

BWO(TYPEIMS)
KSDS 188

BWO(TYPEIMS) parameter 188
bytes operand 66
BYTES parameter 106, 128

C
Cache Structure name

defining a VSO 229

Cache Structure name (continued)
registering with DBRC 230

calculating space 286
calls

CHKP
benefits in GSAM databases 51
benefits in SHISAM databases 50
UOW size considerations 251

GU or GN 37
ROLB 258, 262
SYNC 251

CCTL, fast path buffer allocation algorithm 262
CFSTR1|2 naming convention 229
changing

CI size 399
DEDBs by adding/deleting segments 398
exit routines 392
overflow space allocation 399
randomizer routines 392

changing DL/I access methods
HISAM to HIDAM 341

changing the number of data set groups 359, 366
child segment, definition 6
CHKP call

benefits in GSAM databases 51
benefits in SHISAM databases 50
UOW size considerations 251

choosing an insert strategy 186
choosing HDAM options 345
CI (control interval)

calculating number needed 289
contention 222
DEDB (data entry database) 204
determining size of 173
HIDAM (Hierarchical Indexed Direct Access

Method) 67
HISAM (Hierarchical Indexed Sequential Access

Method) 41
number 66
overhead 288
size, changing 399
size determination in DEDB 251
splits 44

CICS (Customer Information Control System)
background write 186
BTS 321
CSP/370AD 268
database types not supported 10, 34, 194
DL/I Test Program 268
security 403
sequential buffering

benefits 179
SB Initialization exit routine 184
using 182, 184
virtual storage 181

tasks not supported 2
VSAM database buffers 187

CICS-DBCTL
GSAM (Generalized Sequential Access Method) 52
SHISAM (Simple Hierarchical Indexed Sequential

Access Method) 52

454 IMS/ESA V6 Admin Guide: DB

CICS-DBCTL (continued)
SHSAM (Simple Hierarchical Sequential Access

Method) 52
CIDF (control interval definition field) 289
CK (/CK) operand 128
code inspections 20
codes 411
commands

/DBR AREA command 250
/NRE command 246
/STA DATABASE command 391
/STOP AREA command 202
/STOP DATABASE command 202
DBD OUT command 280
DEFINE CLUSTER command 188, 190, 293
LISTCAT command 312
LISTVTOC command 319
PSB OUT command 282

common synchronization point process, 223
compressing data 143
compression facility 15
COMPRTN= keyword

DBD SEGM statement 394
COMPRTN parameter 144
concatenated key

converting 389
fields 127
in symbolic pointing 120
logical parent’s 90

concatenated segments 101, 103
constant field 126
CONSTANT parameter 137
control interval 41, 222, 288
control interval definition field (CIDF) 289
control interval update sequence number (CUSN) 205
conversion 366
converting MSDBs to DEDBs 214
counter

in logical relationships 94
introduction 12

coupling facility structures 229
examples of defining 230

CP (free space chain pointer) field 64
Cross System Product/370 Application Development

(CSP/370AD) 267
crossing a logical relationship 110, 112
CUSN (control interval update sequence number) 205
Customer Information Control System (CICS) 2

D
DA status code 411, 421
DASD

contention in Fast Path 220
out-of-space for DEDB 223

DASD space release 421
data capture exit routine 394

adding 394
changing 395
deleting 395

Data Capture exit routine
and logical databases 149

Data Capture exit routine (continued)
call functions 148
call sequence 146
data capture exit routine 147
description 15, 145
function 145
specifying in DBD 145
using 145, 389

data communication administration 1
Data Dictionary 15
data elements in segment 12
data entry database 222
data extraction, processing, and restructuring

system 267
data part of segment 11, 12
data requirements, analyzing 23, 33
data sensitivity 117
data set groups 15
data sets

allocation 293
DFSVSAMP 44
ESDS in HD databases 63
ESDS in secondary indexes 124
HISAM (Hierarchical Indexed Sequential Access

Method) 41
KSDS in secondary indexes 124
MSDBCP1 and MSDBCP2 248
MSDBDUMP data set 248
OSAM in HD databases 63
pre-formatting space 188

data sharing
DEDB (data entry database) 214
VSO DEDB Areas 235

data structures, developing 23, 33
database

application program’s view 16
CICS local-DL/I 36
DBCTL support 36
DEDB (data entry database) 214
DEDB description 201
definition 15
design

aids for testing 267
what it involves 2

design aids 191
design considerations 166, 242
DL/I 35
Fast Path types 214
GSAM description 51

DBCTL restrictions 36
HD description 52
HSAM description 36
implementing 2, 277
introduction to 9
loading 3, 295
Local-DL/I support 36
logical 102
modifying 3, 366
monitoring 3, 309
MSDB, Areas in data sharing 214
MSDB description 195

Index 455

database (continued)
multiple data set groups 165
protecting during reorganization 325
recovery 3
reorganizing 324
security

establishing 403
for application programs 16
introduction 3

SHISAM description 50
SHSAM description 50
standards and procedures 3
testing 2, 265
tuning 3, 324

database administration task description 1
database description 15, 277
database PCB 281
Database Prefix Resolution utility (DFSURG10) 333
Database Prefix Update utility (DFSURGP0) 334
Database Prereorganization utility (DFSURPR0) 331
database record

calculating size 286
definition 5
HDAM (Hierarchical Direct Access Method) 65
HIDAM (Hierarchical Indexed Direct Access

Method) 67
HISAM (Hierarchical Indexed Sequential Access

Method) 41
HSAM (Hierarchical Sequential Access Method) 37
introduction to 10
locking 79
MSDB (main storage database) 197

Database Scan utility (DFSURGS0) 332
Database Surveyor utility (DFSPRSUR) 319, 337
Database Tools (DBT) 268, 320
databases, loading

description 285
Fast Path initial loads 298
JCL 299
restartable load program, using UCF 300

DATASET statement
description 278
example 163
in logical DBD 109

DB/DC Data Dictionary
enforcing standards and procedures 274
establishing security 405
generating DBDs 15, 280
generating PSBs 16, 282
introduction 15
use for test databases 268

DB/DC Data Dictionary, use for designing
databases 191

DBBF parameter
DEDB Buffer Pool in the DBCTL environment 260
DEDB or MSDB Buffer Pools 257

DBCTL
access from transaction management subsystems 2
database recovery 2
DBBF parameter 260
designing DEDB buffer pools 260

DBCTL (continued)
locking 2

DBD (database description)
coding 277
introduction 15
logical relationships 104
specifying use

Data Capture exit routine 145
field-level sensitivity 150
logical relationships 105, 107, 108, 109
multiple data set groups 162
secondary indexes 136
segment edit/compression facility 144
variable-length segments 140

using dictionary to generate 15
DBD OUT command 280
DBD statement 107, 278
DBDGEN (Database Description Generation)

utility 394, 395
DBDGEN (Database Description Generation

statement) 280
DBDGEN (Database Description Generation

utility) 277
DBDLIB library 277
DBFDBMA0 (MSDB Maintenance utility) 196
DBFUMDR0 (DEDB Direct Reorganization utility) 251
DBFX parameter 257, 260
DBFX value 259, 263
DBT (IMS System Utilities/Database Tools) 268, 320
DBT utility 168
DCCTL

GSAM (Generalized Sequential Access Method) 52
SHISAM (Simple Hierarchical Indexed Sequential

Access Method) 52
SHSAM (Simple Hierarchical Sequential Access

Method) 52
DDATA parameter 129, 137
deactivation, record 203
DEDB (data entry database)

adding 397
adding AREAs 399
and DBCTL 2
and segment edit/compression facility 143
area concept 202
buffer pools 260
calls against 213
changing by adding/deleting segments 398
CI resources 222
DBCTL support 36
deleting 397
deleting AREAs 399
description of 201
design considerations 248
extending IOVF online 400
Free space algorithm 212
HSSP processing of 254
Insert algorithm 211
loading the database 305
performance considerations 220
SSA restrictions 213
storage of records 207

456 IMS/ESA V6 Admin Guide: DB

DEDB (data entry database) (continued)
when to use 201

DEDB area data set create utility (DBFUMRI0) 202
DEDB AREA UOW structural definition, changing 396
DEDB AREAs, adding 399
DEDB AREAs, deleting 399
DEDB CI resource

and DBFX value 260, 264
contention 222
determine resource size 173
Fast Path Performance 220
overhead needed 288

DEDB Direct Reorganization utility (DBFUMDRQ) 251
DEDB Pointer Checker 321
DEFINE CLUSTER command

for VSAM index option 190
in access method services 188
VSAM data set allocation 293

delete byte
bits 407
description 12
HIDAM (Hierarchical Indexed Direct Access

Method) 67
HISAM (Hierarchical Indexed Sequential Access

Method) 41
HSAM (Hierarchical Sequential Access Method) 37
in logical relationships 420
in secondary indexes 126

delete rules for logical relationships 114, 116, 419, 447
deleted randomizer routine 394
deleting DEDB AREAs 399
deleting segments

HD databases 77
HISAM databases 47
HSAM databases 40

deleting segments to change DEDBs 398
dependent segment, definition 5
design aids

for databases 191
for test databases 267

design considerations 166, 242
design reviews

description of 17
introduction 2

destination parent 102, 117
determining VSAM options 184
DFSCTL data set control statements

SB control statement 182
SBPARM control statement 182

DFSDDLT0 (DL/I test program) 268, 319
DFSMNTB0 (DB Monitor program) 309
DFSPRCT1 (Partial Database Reorganization

utility) 338
DFSPRSUR (Database Surveyor utility) 319, 337
DFSUOCU0 (Online Change utility) 393, 394, 395
DFSURG10 (Database Prefix Resolution utility) 333
DFSURGL0 (HD Reorganization Reload utility) 330
DFSURGP0 (Database Prefix Update utility) 334
DFSURGS0 (Database Scan utility) 332
DFSURGU0 (HD Reorganization Unload utility) 330
DFSURPR0 (Database Prereorganization utility) 331

DFSURRL0 (HISAM Reorganization Reload utility) 329
DFSURUL0 (HISAM Reorganization Unload utility) 329
DFSVSAMP data set 44
dictionary 15
direct access methods

HDAM (Hierarchical Direct Access Method) 52
HIDAM (Hierarchical Indexed Direct Access

Method) 52
direct address pointers 53, 54
direct dependent segment types (DDEP) 208
direct pointers

logical relationships 90, 91, 93, 116
secondary indexes 126, 127

direct storage method 34
DISP parameter 186
distribution of DB records, random 399
DL/I and ACBs 282
DL/I calls

DEDB databases 213
HD databases 53
HISAM databases 43
HSAM databases 37
in logical relationships

delete call 421
logical child insert call 415
replace call 410

MSDB (main storage database) 198
MSDB databases 200

DL/I Databases 35
DL/I parameter 186
DL/I test program 319
DL/I test program (DFSDDLT0) 268
DLOG parameter 186
dump option 186
DUMP parameter 186, 191
duplex paths 420
duplicate data field 127
duplicate data in logical relationships 85
duplicate keys 124
DX status code 421

E
ECNT (extended communications node table) 198
edit/compression facility 15
editing data 143
encoding data 15
encrypting data 405
END statement 280, 282
Error Queue Element (EQE) 202
ESAF 36
ESCD (extended system contents directory) 198
ESDS (entry-sequenced data set)

HD databases 63
HISAM (Hierarchical Indexed Sequential Access

Method) 41
secondary indexes 124

estimating minimum database size 173
example of initial load program 300
EXIT= parameter

SEGM statement 394
EXIT parameter 145

Index 457

exit routines, changing 392
extended communications node table (ECNT) 198
extended system contents directory (ESCD) 198
external subsystem attach facility 36
EXTRTN parameter 130, 137

F
Fast Path

access to DL/I databases 214
buffers 221
CI contention 217, 222
committing updates 215
common sync point processing 224
control interval 222
databases

DEDB (data entry database) 214
MSDB (main storage database) 214

initial database load 298
interpreting analysis reports 218
loading the database 305
log analysis 217
log reduction 217
mixed mode 214
monitored events 217
monitoring and tuning 216
output thread 216
performance considerations 216
Resource Name Hash routine 225
selecting transactions 218
subset pointers 208, 254
synchronization point processing 215, 223
transaction timings 217
tuning Fast Path systems 219
user hash routine, programming considerations 225
using the Log Analysis utility (DBFULTA0) 217

Fast Path database types 194
Fast Path virtual storage option 226
fbff (free block frequency factor) 167
FCP (forward chain pointer) 197
FH status code 202
FID (fixed intersection data) 95
field-level sensitivity

description of 149
establishing security 403
inserting segments 152
introduction 14
overlapping paths 153
path calls 153
replacing segments 151
retrieving segments 151
specifying in DBD and PSB 150
use with variable-length segments 153
uses 149

FIELD statement
definition 128
in secondary indexing 138
in the DBD 191
position in DBD 279

fields 127
AL 65
constant 126

fields 127 (continued)
CP 64
definition 5
duplicate data 127
FSE 64
FSEAP 64
ID 65
in segment 12
pointer 126
search 126
subsequence 126
system related 128

FINISH statement 280
fixed intersection data (FID) 95
fixed-length segments, definition 11
FLD (Field) call 200
format

CI in DEDB 204
DEDB segments 204
fixed-length segments 11
HD databases 62
HDAM segments 67
HIDAM index segment 70
HIDAM segments 67
HISAM segments 41
HSAM segments 37
pointer segment 125
variable-length segments 11

formulas for
calculating buffers for Fast Path 258, 262
calculating space for MSDBs 248
calculating storage for MSDB 242
size of root addressable area 167

forward chain pointer 197
FR status code

for BMP regions 259
for CCTL threads 263
in fast path buffer allocation 258
in fast path buffer allocation for BMPs 262

free block frequency factor (fbff) 167
free logical record 43
free space

chain pointer (CP) field 64
element (FSE) 64
element anchor point (FSEAP) 64
HD (Hierarchical Direct) 63
HDAM (Hierarchical Direct Access Method) 166
HIDAM 166
HIDAM (Hierarchical Indexed Direct Access

Method) 67
KSDS 188
percentage factor 167
space calculations 292

FREESPACE parameter 188
FRSPC parameter 167
FSE (free space element) 64
FSEAP (free space element anchor point) 64
fspf (free space percentage factor) 167
full-duplex paths 420
FW status code

for CCTL threads 263

458 IMS/ESA V6 Admin Guide: DB

FW status code (continued)
in BMP regions 259
in fast path buffer allocation 258
in fast path buffer allocation for BMPs 262

G
GC status code 251
GC Status Code 255
GE status code 103
general format of HD databases and use of special

fields 292
Generalized Performance Analysis Reporting

(GPAR) 321
Generalized Sequential Access Method (GSAM) 49,

51
GPAR (Generalized Performance Analysis

Reporting) 321
GPSB (Generated PSB)

I/O PCB 284
modifiable alternate response PCB 284

GSAM (Generalized Sequential Access Method) 49,
305

H
half-duplex paths 420
HB (hierarchic backward) pointers 56
HD Pointer Checker utility 320
HD Reorganization Reload utility (DFSURGL0) 330
HD Reorganization Unload utility (DFSURGU0) 319,

330
HD space search algorithm 77
HD tuning aid 321
HDAM (Hierarchical Direct Access Method)

accessing segments 72
calls against 53
database records 66
database records, locking 79
deleting segments 77
description of 52
format of database 62
inserting segments 73
loading the database 305
locking 80
logical record length 173
multiple data set groups 160
MVS access methods used 53
options available 53
OSAM (overflow sequential access methods)

used 63
overflow area 65
pointers in 54
randomizing module 168
root addressable area 65, 67
segment format 67
size of root addressable area 167
space calculations 286
specifying free space 166
storage of records 65
when to use 53

HF (hierarchic forward) pointers 55

HIDAM (Hierarchical Indexed Direct Access Method)
accessing segments 72
deleting segments 77
description of 52
format of database 62
index database 53, 67
inserting segments 73
loading the database 305
locking 80
logical record length 173
multiple data set groups 160
options available 53
pointers in 54
segment format 67
space calculations 79, 286
specifying free space 166
storage of records 67
when to use 54

hierarchic
backward pointers 56
forward pointers 55

Hierarchical Direct Access Method 293
Hierarchical Indexed Direct Access Method 293
Hierarchical Indexed Sequential Access Method 293
Hierarchical Sequential Access Method 293
hierarchy

concept explained 6
definition 5
restructuring of with secondary indexes 123

high-speed sequential processing (HSSP)
description 254

hiperspace buffering 354
HISAM (Hierarchical Indexed Sequential Access

Method)
accessing segments 43
calls against 43
deleting segments 47
description of 40
inserting segments 43
loading the database 304
locking 80
logical record format 43
logical record length 170, 173
MVS access methods used 40
options available 40
performance 44, 48
pointers 42
replacing segments 48
segment format 41
space calculations 286
storage of records 41
when to use 40, 48

HISAM Reorganization Reload utility (DFSURRL0) 329
HISAM Reorganization Unload utility

(DFSURUL0) 319, 329
HSAM (Hierarchical Sequential Access Method)

accessing segments 37
calls against 37
deleting segments 40
description of 36
inserting segments 40

Index 459

HSAM (Hierarchical Sequential Access Method)
(continued)

MVS access methods used 36
options available 36
performance 40
replacing segments 40
segment format 37
space calculations 286
storage of records 37
when to use 37

HSSP (high-speed sequential processing)
description 254
for database recovery 256
image-copy option 256
limits and restrictions 255
private buffer pools 257
processing option H 256
reasons for choosing 254
SETO statement 255
SETR statement 255
UOW locking 256
using 255

I
I/O PCB 284
ID (task ID) field 65
IDP and Fast Path 216, 320
IEFBR14 utility 293
IEHLIST utility 319
IEHPROGM program 293
IFP and MPP regions

maintaining continuous availability of 391
image-copy option 256
IMBED | NOIMBED parameter 189
implementing database design 2, 277
IMS.ACBLIB 283
IMS Data Capture exit 145
IMS.DBDLIB 277
IMS Monitor Summary and System Analysis Program II

(IMSASAPII) 321
IMS.PSBLIB 280
IMS System Utilities/Database Tools (DBT) 268, 320
IMS trace parameters 186
IMSASAP II 321
in physical databases 108
in the physical DBD 107
independent overflow part of area (IOVF)

description 204
extending online 400

index maintenance exit routine 130
index segment 68
index set records 189
indexed databases 53

HIDAM (Hierarchical Indexed Direct Access
Method) 67

HISAM (Hierarchical Indexed Sequential Access
Method) 40

INDICES parameter 133
initial load program

basic 300

initial load program (continued)
Fast Path 298
restartable, using UCF 300
writing 298

input for DBDGEN utility
DBD 277

INSERT parameter
free space for a KSDS 186, 188
using in splitting CIs 44

insert rules for logical relationships 114, 116, 409, 419
inserting segments

HD databases 73
HISAM databases 43
HSAM databases 40
MSDB (main storage database) 198

inspections
code inspections 20
security inspection 20

intersection data 95, 97
IOB (input/output block) 186
IOBF parameter 177
IOVF 204
IRLM (Internal Resource Lock Manager)

block-level data sharing 80
locking protocols 79

ISAM (Indexed Sequential Access Method)
HISAM databases 40
options 191

ISRT (insert), loading a database 295

J
JCL (Job Control Language)

for allocating data sets 293
for initial load program 304

Job Control Language 293

K
KEY sensitivity 117
keys

ascending sequence 36
concatenated 127
duplicate 124
unique in secondary indexes 128

KSDS (key-sequenced data set)
HISAM (Hierarchical Indexed Sequential Access

Method) 41
secondary indexes 124
specifying BWO(TYPEIMS) 188
specifying free space for 188

L
LATC parameter 186
LCF (logical child first) pointer 91
LCHILD statement

description 279
in logical relationships 105, 107
in secondary indexing 136

LCL (logical child last) pointer 91

460 IMS/ESA V6 Admin Guide: DB

level in hierarchy 8
levels in VSAM index 189
LGNR 217
libraries

IMS.ACBLIB 283
IMS.DBDLIB 277
IMS.PSBLIB 280

LISTCAT ALL report 312
LISTCAT command 312
LISTVTOC command 319
LOAD (load), description 295
load program, writing 295
loading databases

description 285
introduction 3
MSDB (main storage database) 246
sample programs 299, 300

local views, developing a data structure 23
LOCK parameter 186
locking protocols 79
log analysis, Fast Path information 217
log facility, Fast Path performance 220
log reduction 217
logic

for initial load program 299
for restartable initial load program 301

logical child first (LCF) pointer 91
logical child in logical relationships 85, 89
logical child last (LCL) pointer 91
logical databases 102
logical DBD 108, 116
logical parent (LP) pointer

and performance considerations 116
correcting bad pointers 449
definition 90

logical parent in logical relationships 85, 89
logical parent’s concatenated key (LPCK) 90
logical records

HD (Hierarchical Direct) 63
HISAM 41, 170, 173
overhead 289
secondary indexes 125

logical relationships 30
analyzing requirements 33
and Data Capture exit routine 149
bidirectional physically paired 86
bidirectional virtually paired 88
comparison with secondary indexes 139
concatenated segments 102
considerations for logical relationships 118
counter 94
crossing 110, 112
delete rule restrictions 149
delete rules 114, 419, 447
description of 84, 116
DLET calls 421
establishing 97
for virtual logical children 104
insert rules 114, 414, 419
intersection data 95, 97
ISRT call 415

logical relationships 30 (continued)
loading databases 305
logical child 85, 89
logical parent 85, 89
paths 101, 102
performance considerations 116, 118
physical parent 85, 89
pointers 94
pointers in 89
procedures for adding to existing databases 371
REPL call 410
replace rules 114, 410, 414
restrictions on modifying 385
rules 447
rules for defining 107, 108, 110, 116
sequence fields 103, 104
specifying in DBD 105, 107, 108, 109
use with secondary indexes 134
uses 84

logical twin backward (LTB) pointer 93
logical twin chains 118
logical twin forward (LTF) pointer 93
logical twin pointer 449
LP (logical parent) pointer 90
LPCK (logical parent’s concatenated key) 90
LTB (logical twin backward) pointer 93
LTERM 195
LTF (logical twin forward) pointer 93

M
macros

PCB 277
PSB 277

main storage database 305
main storage utilization, Fast Path 223
maintenance of databases, planning 191
maintenance of secondary indexes 130
maintenance utility (DFSUACB0) 283
making keys unique using system related fields 128
many-to-many mapping 24
mapping data aggregates 24
MBR parameter 109
mixed mode 214
mixing pointers 61
modifiable alternate response PCB 284
modifying a database

description of 366
introduction 3

MON parameter 311
Monitor Summary and System Analysis Program 321
monitoring

and tuning Fast Path systems 216
description of 309
events for Fast Path 217
introduction 3
reports 309

movement in hierarchy 8
MSDB (main storage database)

calls against 198
deleting segments 198
description of 195

Index 461

MSDB (main storage database) (continued)
design considerations 242, 257
inserting segments 198
loading the database 305, 367
MSDB Maintenance utility (DBFDBMA0) 196
options available 195
page fixing 246
position 199
restrictions on changing DBD 367
storage of records 197
when to use 196, 214

MSDBCP1 data set 248
MSDBCP2 data set 248
MSDBDUMP data set 248
multiple data set groups

description of 158
HD databases 160
introduction 15
specifying in DBD 162
storage of records 161
uses 159

MVS access methods
used by HD 53
used by HISAM 40
used by HSAM 36

N
NAME parameter

in a DBD 109, 137
in the SENFLD statement 150

naming convention 229
examples of defining 230

naming convention, coupling facility structure 229
naming conventions 273
NBA (normal buffer allocation)

for CCTL 261
in DBCTL environment 260
limit 259
use of 257

NBA/FPB limit 263
NBA parameter 243
NBRSEGS parameter 247
NE status code 132
no free logical record 44
non-terminal-related database 195
NOPROT parameter 132
normal buffer allocation (NBA)

for CCTL 261
in DBCTL environment 260
use of 257

NULLVAL parameter 130, 137

O
OBA (overflow buffer allocation)

for CCTL threads 261
in DBCTL environment 261
use of 258

one-to-many mapping 24
online change 390
operands 128

operands 128 (continued)
/CK 128
/SX 128

optional functions
Data Capture exit routines 145
field-level sensitivity 149
GSAM databases 52
HD databases 53
HISAM databases 40
HSAM (Hierarchical Sequential Access Method) 36
logical relationships 84, 116
MSDB databases 195
multiple data set groups 158
secondary indexes 118
segment edit/compression facility 142
SHISAM databases 51
SHSAM databases 50
variable-length segments 140

OPTIONS statement
fixing buffers in VSAM 177
for OSAM 190
for OSAM (Overflow Sequential Access

Method) 191
for VSAM 185, 187
use in splitting CIs 44

OSAM (Overflow Sequential Access Method)
adjusting buffers 354
allocation of data sets 293
description 178, 447
options 190, 191
track space used 173

OSAM (overflow sequential access methods)
used by HD 63

OSAM Sequential Buffering (SB) 178
output thread 216
overflow buffer allocation (OBA)

for CCTL threads 261
in DBCTL environment 261
use of 258

overflow data set 41
Overflow Sequential Access Method (see OSAM) 447
overflow space allocation, changing 399
overhead

DEDB CI resources 288
logical records 289

P
packing density 170
page fixing MSDBs 246
parameters

BGWRT 185
BSIZ

in DB/TM environment 257
in the DBCTL environment 260

BWO(TYPEIMS) 188
BYTES 128
CNBA 261
COMPRTN 144
CONSTANT 137
DB Monitor 311

462 IMS/ESA V6 Admin Guide: DB

parameters (continued)
DBBF

in DB/TM environment 257
in the DBCTL environment 260

DBFX
in DB/TM environment 257
in the DBCTL environment 260

DDATA 129, 137
DISP 186
DL/I 186
DLOG 186
DUMP 186, 191
EXIT 145
EXTRTN 130, 137
FPB 261
FPOB 261
FREESPACE 188
FRSPC 167
IMBED | NOIMBED 189
INDICES 133
INSERT

free space for a KSDS 186, 188
using in splitting CIs 44

IOBF 177
LATC 186
LGNR 217
LOCK 186
MBR 109
MON 311
NAME

in a DBD 109, 137
in the SENFLD statement 150

NBA 243
NBRSEGS 247
NOPROT 132
NULLVAL 130, 137
PARENT 102, 109

in logical relationships 106, 109
to specify PCF and PCL pointers 58
to specify PCF pointers 57

PASSWD 405
POINTER 107
PROCOPT 252, 404
PROCSEQ 120, 123
PROT 132
PTR 56
RECORD 173
REPL 151
REPLICATE | NOREPLICATE 189
RMNAME 65

HDAM options 169
naming the randomizing module 169
specifying number of blocks or CIs 168
specifying number of RAPS 65

RULES 409, 447
SCHD 186
SEGMENT 137
SHARELVL 214
SOURCE 107, 117
SPEED | RECOVERY 188
SRCH 137

parameters (continued)
START 128
SUBS 186
SUBSEQ 128, 137
TYPE 151
VERSION 146
VSAMFIX 177, 186
VSAMPLS 187

PARENT parameter 57, 102, 106, 109
parent segment, definition 5
Partial Database Reorganization utility

(DFSPRCT1) 338
PASSWD parameter 405
password protection 405
paths

full duplex 420
half duplex 420
in hierarchy 7
in logical relationships 101
third access 419

PCB (program communication block)
coding 280
introduction 16

PCF (physical child first) pointers
correcting 449
description 57

PCL (physical child last) pointers
correcting 449
description 57

performance
comparison of databases 52
considerations for logical relationships 116
discussion 166, 242
HISAM (Hierarchical Indexed Sequential Access

Method) 44, 48
HSAM (Hierarchical Sequential Access Method) 40
monitoring 309
tuning a database 324

physical block size 173
physical child first pointers 57, 449
physical child last pointers 57, 449
physical parent in logical relationships 85, 89
physical parent pointer 92
physical twin backward pointers 60, 449
physical twin forward pointers 59, 449
physically adjacent 36, 40
PI (program isolation), lock protocols 79
pointer checker utility

DEDB (data entry database) 321
HD (Hierarchical Direct) 320

pointer field 126
POINTER parameter 107
pointer segment 120, 125
pointers

correcting 449
direct-address 53
FCP (forward chain pointer) 197
HB (hierarchic backward) 56
HD 54
HF (hierarchic forward) 55

Index 463

pointers (continued)
HISAM (Hierarchical Indexed Sequential Access

Method) 42
in logical relationships 94
in secondary indexes 126, 127
introduction 12
LCF (logical child first) 91
LCL (logical child last) 91
logical relationships 89
logical twin 449
LP (logical parent) 90, 449
LTB (logical twin backward) 93
LTF (logical twin forward) 93
mixing types 61
PCF (physical child first) 57
PCL (physical child last) 57
PP (physical parent) 92
PTB (physical twin backward) 60
PTF (physical twin forward) 59
sequence in a segment’s prefix 61, 94
symbolic 120, 126

position
hierarchy 8
MSDB (main storage database) 199

post-implementation review 21
PP (physical parent) pointer 92
pre-formatting data set space 188
prefix descriptor byte 407
prefix part of segment 11
Prefix Resolution utility (DFSURG10) 333
Prefix Update utility (DFSURGP0) 334
Prereorganization utility (DFSURPR0) 331
primary data set, defined 41
primary data set groups 15
procedures

adding a DEDB 397
adding logical relationships 371
adding secondary indexes 386
adding segment edit/compression facility 388
adding segment types 367
adding variable-length segments 387
adjusting HDAM options 352
Asynchronous Data Capture 389
calculating database size 286
changing DASD 351
changing DL/I access methods 341

HDAM to HIDAM 347
HDAM to HISAM 346
HIDAM to HDAM 345
HIDAM to HISAM 344
HISAM to HDAM 342
HISAM to HIDAM 341

changing hierarchic structure
changing sequence of segment types 349
combining segments 350

changing segment size 370
converting concatenated keys 389
deleting a DEDB 397
deleting segment types 369
description of 271
extending DEDB IOVF online 400

procedures (continued)
introduction 3
modifying a database 366
reorganization

HD database 340
HISAM database 340
primary index 340
secondary index 340
SHISAM database 340

processing, mixed mode 214
processing option H 256
processing option P

and NBA/FPB limit 263
and NBA limit 259
in determining the size of the UOW 252

PROCOPT parameter
establishing security 404
in HSSP 256
option H 256
option K 282
option P 252

PROCSEQ parameter 120, 123, 124
program communication block 16
program isolation lock manager 79
program specification block 16
programs

DB Monitor 309
DB Monitor Report print 309
DFSDDLT0 268, 319
DFSMNTB0 309
DFSPRSUR 319
DFSUTR30 309
DL/I test 268, 319
IEFBR14 utility 293
IEHPROGM program 293
IMSASAP II 321
running 301
writing a load program 295, 304

PROT parameter 132
PSB (program specification block)

as mask over data structure 403
coding 280
defined 16
using dictionary to generate 16

PSB OUT command 282
PSBGEN (Program Specification Block

Generation) 282
utilities 280, 396

PSBLIB library 280
PTB (physical twin backward) 449
PTB (physical twin backward) pointers 60
PTF (physical twin forward) 449
PTF (physical twin forward) pointers 59
PTR parameter 56

Q
Q command codes, locking 80
QSAM (Queued Sequential Access Method)

access to GSAM databases 51
and all the database types 213
and HD Reorg Unload utility (DFSURGU0) 319

464 IMS/ESA V6 Admin Guide: DB

QSAM (Queued Sequential Access Method) (continued)
and OSAM data set 447
processing HSAM databases 36
processing SHSAM databases 50

R
random distribution of DB records 399
randomizer

exit routine 392
routine, changed 393
routine, deleted 394
routine, new 393
standard 399
Two Stage 395

randomizer, deleted routine 394
randomizer routines, changing 392
randomizing module

DEDB design 252
in HDAM database records 168
introduction 53

RAP (root anchor point) 392
RAPs (root anchor points)

explained 65
HIDAM (Hierarchical Indexed Direct Access

Method) 71
number 66

RBA (relative byte address) 43
RDF (record definition field) 289
real logical child 89, 91, 118
record deactivation 203
Record Deactivation 203
record definition field (RDF) 289
RECORD parameter 173
record search argument (RSA) 51
recovery 3, 189
recursive structures 97, 101, 139
registering databases 81, 225
relative block number 66
relative byte address (RBA) 43
relative record number 43
reload utility (DFSURGL0) 330
reload utility (DFSURRL0) 329
reorganization utilities

introduction to reorganization utilities 326
reorganizing 325, 449
REPL parameter 151
replace rules for logical relationships

choosing 116
description of 410, 414

replacing segments
HISAM databases 48
HSAM databases 40

REPLICATE | NOREPLICATE parameter 189
replication, area data set 202
reports

AMS (access method services) 312
BTS (Batch Terminal Simulator) 321
Database Surveyor utility (DFSPRSUR) 319
DBT (Database Tools) 320
DEDB Pointer Checker 321

reports (continued)
DL/I test program 319
Fast Path Analysis 218
HD Pointer Checker utility 320
HD Reorganization Unload utility (DFSURGU0) 319
HD tuning aid 321
HISAM Reorganization Unload utility

(DFSURUL0) 319
IMSASAP II 321
LISTCAT ALL 312
LISTVTOC command 319
STAT call 322

RESLIB 395
resolution utility (DFSURG10) 333
resolving data conflicts 30
resource allocation for MSDBs 243
resource contention 245
restart 50, 51
restrictions

HSSP (high-speed sequential processing), of 255
modifying existing logical relationships 385
segments 11
SSA rules for DEDBs 213
using secondary indexes with logical

relationships 134
reviews 17
RMNAME parameter 169

naming the randomizing module 169
specifying number of blocks or CIs 168
specifying number of RAPS 65
usage 392

ROLB call 258, 262
root addressable area 65, 395
root addressable Area 204
root anchor point (RAP) 392
root anchor points 65
root segment, definition 5
RRN (relative record number) 43
RSA (record search argument) 51
rules

defining logical relationships 108
description of 409, 447
in logical databases 110, 116
in physical databases 107

fields in a segment 13
HD with data set groups 160
secondary indexes with logical relationships 134
segments 11
sequence fields 14
using an SSA 198

RULES parameter 409, 447
RX status code 411

S
SB (OSAM Sequential Buffering)

benefits 179
productivity 179
programs 179
utilities 179

buffer handler 181
buffer pools 181

Index 465

SB (OSAM Sequential Buffering) (continued)
buffer set 181
CICS 179
conditional activation 180
data set groups 180
DB-PCP/DSG pair 180
deactivation 180
description 178, 179
disallowing use 184
overlapped I/O 179, 181
periodical evaluation 180
random read 178
requesting use 181, 184
sequential read 178
virtual storage 181

scan utility (DFSURGS0) 332
SCD (system contents directory) 198
SCHD parameter 186
search field 126
secondary data set groups 15
secondary data structure 123
secondary indexing

analyzing requirements 30
comparison with logical relationships 139
description of 118
index maintenance exit routine 130
INDICES parameter 133
introduction 14
loading databases 305
locking 80
maintenance 130
making keys unique 128
pointer segment 125
procedure for adding 386
processing as separate database 131
restructured hierarchy 123
segments 120
sharing 132
sparse indexing 129
specifying in DBD 136
storage 124
suppressing index entries 129
system related fields 128
use

logical relationships 134
variable-length segments 135

uses 118
utility unload 335

secondary processing sequence 124
security

establishing 403
field-level sensitivity 149
introduction 3, 16

security inspection 21
SEGM statement 107

description 279
example 109
in secondary indexing 138
in the physical DBD 105
specifying insert, delete, and replace rules 410
specifying pointers 56

SEGM statement 107 (continued)
specifying segment edit/compression facility 144
specifying variable-length segments 140

segment code
description 12
HDAM (Hierarchical Direct Access Method) 67
HISAM (Hierarchical Indexed Sequential Access

Method) 41
HSAM (Hierarchical Sequential Access Method) 37

Segment compression routine
adding 394
changing 394
deleting 394

segment deletion 212
segment edit/compression facility

description of 142
introduction 15
procedure for adding 388
specifying for DEDBs 144
specifying in DBD 144
uses 143

SEGMENT parameter 137
segment search argument 126
segments

accessing
HDAM databases 72
HIDAM databases 72
HISAM databases 43
HSAM databases 37

calculating frequency 287
calculating size 286
changing position of data 371
changing size 370
child, definition 6
data elements 12
definition 5
deleting

HD databases 77
HISAM databases 47
HSAM databases 40
MSDB (main storage database) 198

dependent, definition 5
fields 12
fixed-length 11
inserting

HD databases 73
HISAM databases 43
HSAM databases 40
MSDB (main storage database) 198

introduction to 11
logical child 102
moving segment types 369
occurrence, definition 6
parent, definition 5
pointer 120
procedure for adding to database 367
procedure for deleting from database 369
replacing

HISAM databases 48
HSAM databases 40

root, definition 5

466 IMS/ESA V6 Admin Guide: DB

segments (continued)
rules 11
source 121
target 121
twin, definition 6
type, definition 6
variable length 11

segments, adding to change DEDBs 398
segments, deleting to change DEDBs 398
SENFLD statement 150, 282
SENSEG statement

description 281
field-level sensitivity 150
restricting data access 403

sequence field
HIDAM (Hierarchical Indexed Direct Access

Method) 67
HISAM (Hierarchical Indexed Sequential Access

Method) 40
HSAM (Hierarchical Sequential Access Method) 36
introduction to 12
logical relationships 103, 104
unique, definition 13

sequence set records 189
sequencing in hierarchy 7
sequencing logical twin chains 118
sequential access methods

HISAM (Hierarchical Indexed Sequential Access
Method) 40

HSAM (Hierarchical Sequential Access Method) 36
sequential buffering (SB) 178
sequential dependent part of Area 205
sequential randomizing module 168
sequential storage method 34
SETO statement 255
SETR statement 255
shared secondary indexes 132
SHARELVL 214
SHISAM (Simple Hierarchical Indexed Sequential

Access Method) 49, 305
SHSAM (Simple Hierarchical Sequential Access

Method) 49, 50
Simple Hierarchical Indexed Sequential Access Method

(SHISAM) 49, 305
Simple Hierarchical Sequential Access Method

(SHSAM) 49, 50
size calculations 286
size field in variable-length segments 140
size of DEDB estimation 251
SOURCE parameter 107, 117
source segment 121
space calculations

CIs or blocks needed for database 289
database size 286
overhead for DEDB CI resources 288

space management fields, updating 74
space management in HD databases 62
space release in logical relationships 421
space search algorithm 77
sparse indexing 129
SPEED | RECOVERY parameter 188

SRCH parameter 137
SSA (segment search argument)

restrictions for DEDBs 213
secondary indexes 126

standards and procedures
description of 271
introduction 3

START parameter 128
STAT call 322
statements

AREA 278
DATASET

description of 278
example of 163
specifying ddnames for data sets 109

DBD 138, 278
DBDGEN 280
END 280, 282
FIELD

definition of 128
in the DBD 191
position in DBD 279

FINISH 280
LCHILD in logical relationships 105, 107, 136, 279
OPTIONS

fixing buffers in VSAM 177
for OSAM 190
for OSAM (Overflow Sequential Access

Method) 191
for VSAM 185, 187
use in splitting CIs 44

PSBGEN 282
SEGM

description of 144, 279
example of 109, 138
in secondary indexing 138
in the physical DBD 105, 107
specifying insert, delete, and replace rules 410
specifying pointers 56
specifying variable-length segments 140

SENFLD 150, 282
SENSEG

description of 281
field-level sensitivity 150
restricting data access 403

XDFLD
description of 128
in secondary indexing 136
restrictions in use 279
specifying sparse indexing 130

status codes
AM

in a delete call 421
in a replace call 411
in an insert call 415

DA 411, 421
DX 421
FH 202
FR

for BMP regions 259
for CCTL threads 263

Index 467

status codes (continued)
in fast path buffer allocation 258
in fast path buffer allocation for BMPs 262

FW
for CCTL threads 263
in BMP regions 259
in fast path buffer allocation 258
in fast path buffer allocation for BMPs 262

GC 251
GE 103, 415
II 415
IX 416
NE 132
RX 411

storage of data
DEDB databases 207
HDAM databases 65
HIDAM databases 67
HISAM databases 41
HSAM databases 37
introduction 5
MSDB (main storage database) 197, 248
multiple data set groups 161
variable-length segments 140

SUBS parameter 186
SUBSEQ parameter 128
subsequence field 126
subset pointers 208, 254
Summary of Contents xvii
suppressing index entries 129
Surveyor utility (DFSPRSUR) 319, 337
SX (/SX) operand 128
symbolic checkpoint call 50, 51
symbolic pointers

logical relationships 90, 116
secondary indexes 120, 127

SYNC (Synchronization Point) call 251
sync point in Fast Path 259, 263
sync point processing 223
sync point processing for Fast Path 215
synchronization point

Fast Path 215
output thread 216
sync point processing 215

synonyms 66
system contents directory (SCD) 198
system related fields 128

T
tape, magnetic 36
target segment 121
task ID field 65
terminal-related database 195
test database 265
test program, DL/I 319
testing, application programs 266
testing a database

description of 265
introduction 2

third access path 419
tools

BTS (Batch Terminal Simulator) 321

tools (continued)
Data Extraction, Processing, and Restructuring

System 267
Database Surveyor utility (DFSPRSUR) 319
DBT (Database Tools) 320
DEDB Pointer Checker 321
DL/I test program 319
for designing databases 191
for test databases 267

Cross System Product/370 Application
Development (CSP/370AD) 267

DB/DC Data Dictionary 268
DBT (Database Tools 268
DL/I test program 268

HD Pointer Checker utility 320
HD Reorganization Unload utility (DFSURGU0) 319
HD tuning aid 321
HISAM Reorganization Unload utility

(DFSURUL0) 319
IEHLIST utility 319
IMSASAP II 321
LISTCAT ALL report 312
STAT call 322

trace parameters 186
track recovery 190
track space used 173
transaction timings, Fast Path 217
tuning, Fast Path systems 216
tuning a database

description of 324
introduction 3

tuning aid, HD 321
two stage randomizer, changing root addressable

space 395
TYPE parameter 151
types of pointers you can specify 342, 345

U
UCF (utility control facility)

described 337
restartable initial database load program 300
running restartable load program under 301

unique sequence fields
HISAM (Hierarchical Indexed Sequential Access

Method) 40
introduction 13

units of work (UOW) 204
unload utility (DFSURGU0) 330
unload utility (DFSURUL0) 329
UOW (unit of work) 204, 251
UOW locking 256
UOW structural definition 396
use chain 174
use of RAPs in a HIDAM database 71
user data field in pointer segment 128
using field-level sensitivity 149
using multiple data set groups 158
using the DB Monitor 350
using variable-length segments 140
utilities

ACB maintenance 283

468 IMS/ESA V6 Admin Guide: DB

utilities (continued)
Database Prefix Resolution utility (DFSURG10) 333
Database Prefix Update utility (DFSURGP0) 334
Database Prereorganization utility

(DFSURPR0) 331
Database Scan utility (DFSURGS0) 332
Database Surveyor utility (DFSPRSUR) 319, 337
DBDGEN 277
DBFDBMA0 196
DBFUMDR0 251
DBT (Database Tools) 268, 320
DEDB Direct Reorganization utility

(DBFUMDRQ) 251
DFSPRCT1 338
DFSPRSUR 337
DFSUCF00 337
DFSURG10 333
DFSURGL0 330
DFSURGP0 334
DFSURGS0 332
DFSURGU0 330
DFSURPR0 331
DFSURRL0 329
DFSURUL0 329
for unload and reloading secondary indexes 335
HD Pointer Checker utility 320
HD Reorganization Reload 330
HD Reorganization Unload 330
HD Reorganization Unload utility (DFSURGU0) 319
HISAM Reorganization Reload 329
HISAM Reorganization Unload 319, 329
IEHLIST utility 319
MSDB Maintenance 196
Partial Database Reorganization 338
PSBGEN 280
reorganization 326
utility control facility (UCF) 337

utility control facility 301

V
variable intersection data (VID) 95
variable-length segments

definition 11
description of 140
introduction 14
procedure for adding 387
replace operations 141
specifying in DBD 140
storage 140
use with secondary indexes 135
uses 142
what application programmers need to know 142

VERSION parameter 146
VID (variable intersection data) 95
virtual logical child 89
virtual storage option

introduction 226
VSAM (Virtual Storage Access Method)

access to GSAM databases 51
adjusting buffers 353
adjusting options 356, 358

VSAM (Virtual Storage Access Method) (continued)
and Hiperspace buffering 175
changing access methods 359
changing space allocation 358
CIDF (control interval definition field) 289
ESDS in HD databases 63
HISAM databases 40
index 189
LISTCAT ALL report 312
LISTCAT command 312
local shared resource pools

assigning data sets 187
defining 187
index and data subpools 187
subpools of same size 175

options 184, 190
passwords 405
RDF (record definition field) 289
storage of secondary indexes 124
track space used 173

VSAMFIX parameter 177, 186
VSAMPLS parameter 187
VSO DEDB (virtual storage option data entry database)

checkpoint processing 238
data sharing 235
defining a VSO Cache Structure Name 229
defining a VSO DEDB Area 228
emergency restart 238
I/O error processing 237
input processing 236
locking 234
options across restart 238
output processing 236
PRELOAD option 237
resource control 234
using data spaces 233
with XRF 239

VSO DEDB Areas
block-level sharing of 232

X
XDFLD statement

description 128
in secondary indexing 136
restrictions in use 279
specifying sparse indexing 130

Index 469

470 IMS/ESA V6 Admin Guide: DB

Readers’ Comments — We’d Like to Hear from You

IMS/ESA
Administration Guide:
Database Manager

Publication No. SC26-8725-04

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC26-8725-04

SC26-8725-04

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department BWE/H3
P.O. Box 49023
San Jose, CA

95161-9945

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5655-158

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-8725-04

Spine information:

IBM IMS/ESA IMS/ESA V6 Admin Guide: DB Version 6

