IMS/ESA

Administration Guide:
Database Manager

Version 6

<|lI!

SC26-8725-04

IMS/ESA

Administration Guide:
Database Manager

Version 6

<|lI!

SC26-8725-04

Note

Before using this information and the product it supports, be sure to read the general information under

Fifth Edition (October 1999) (Softcopy Only)

This edition replaces and makes obsolete the previous edition, SC26-8725-03. This edition is available in softcopy
only. The technical changes for this edition are summarized underLSum.ma.QLof_Cha.nges_on_page_xM and are
indicated by a vertical bar to the left of a change.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, BWE/H3
P.O. Box 49023

San Jose, CA, 95161-9023
U.S.A.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1974, 1999. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices . . . C e e i
Programming Interface Informat|on (|
Trademarks L L L L LoV
Product Names. LxV
Preface . . . e Y
Summary of Contents L
Prerequisite Knowledge . Xvi
Change Indicators L ... Xxvii
Summary of Changes .o D (D4
Changes to the Current Ed|t|on of thls Book D ()4
Changes to This Book forvéXiX
Library Changes for Version6XXx
Chapter 1. Introduction .1
About This Chapter. . .1
Database Administration Overvrew . .1
Database Administration Tasks .2
Concepts and Terminology . . .4

How Data Is Stored in a Database . .5

The Hierarchy. . 6

The Database. . 9

The Database Record . 10

The Segment .11
Optional Functions 14
How To Define Your Database to IMS 15
How Application Programs View the Database 16
Chapter 2. Participating in Reviews T 4
About This Chapter17
The Design Review . . . I

Role of the Database Admrnrstrator e I 4

General Information About Reviews17
DesignReview1 .18
DesignReview?2 .18
Design Review 3 .. .19
Design Review 4 .. .19
Code Inspection 1. . . 21
Who Attends Code Inspectron 1 2]
Code Inspection2.20
Security Inspection . . . 2
Post-Implementation Revrew e
Chapter 3. Analyzing Data Requirements e e . .28
About This Chapter .23
Local View . . . 2

Local View 1. Current Roster e e e e e .25

Local View 2. Scheduleof Classes26

Local View 3. Instructor Skills Report.26

Local View 4. Instructor Schedules27
Designing a Conceptual Data Structure.28
Implementing the Structure withDL/.29

© Copyright IBM Corp. 1974, 1999 iii

Assigning Data Elements to Segments29

Resolving Data Conflicts .30
Chapter 4. Designing a Fast Path Database R i
Choosing a Database Type .33

Sequential Storage Method34

Direct Storage Method G 7

Performance Considerations Overwew N 7

IMS Databases. . . . N 1)

Databases Supported Wlth DBCTL e e e e e36

Databases Supported withbccTL36

HSAM Databases. .36

HISAM Databases . . . T 1o

SHSAM, SHISAM and GSAM Databases e 1)

HDAM and HIDAM Databases52
Chapter 5. Choosing Additional Database Functions83
About This Chapter .. .84
Using Logical Relationships .84
Defining a Logical Relationship85
Unidirectional Logical Relationships86
Bidirectional Physically Paired Logical Relatlonshlp P < 1
Bidirectional Virtually Paired Logical Relationship 88
Pointing and Pointers in Logical Relationships89

Logical Parent Pointer .9

Logical Child Pointer.9

Physical Parent Pointer. .92

Logical Twin Pointer T
Sequence of Pointers in a Segments Pref|x I
Counter Used in Logical Relationships9%
IntersectonData .. .9

Fixed IntersectionData. .9

Variable IntersectonData.9

FID, VID, and Physical Pairing 96
Establishing Logical Relationships Between Segments in the Same Database

(Recursive Structures) . . . e 1 4
Paths Used in Logical Relatlonsh|ps e Kok
The Logical Child Segment 102
Defining Sequence Fields for Databases Usmg Loglcal Relatlonshlps 103
Defining Sequence Fields for Real Logical Children. 103
Defining Sequence Fields for Virtual Logical Children 104
Relationship of Control Blocks When a Logical Relationship Is Used104
How to Specify Use of Logical Relationships in the Physical DBD. 105
Specifying Bidirectional Logical Relationships 107
Checklist of Rules for Defining Logical Relationships in PhyS|caI Databases 107

Logical Child Rules. .107

Logical ParentRules .108

Physical Parent Rules.108
How to Specify Use of Logical Relatlonshlps in the Log|cal DBD108
Checklist of Rules for Defining Logical Databases 110

Definition of Crossing a Logical Relationship10

Definition of First and Additional Logical Relat|0nsh|ps Crossed I I

Rules for Defining Logical Databases 113
Choosing Replace, Insert, and Delete Rules for Loglcal Relat|onsh|ps I
Performance Considerations for Logical Relationships 116

Logical Parent Pointers .116

iV IMS/ESA V6 Admin Guide: DB

KEY/DATA Considerations

Sequencing Logical Twin Chains . .
Placement of the Real Logical Child in a V|rtually Palred Relatlonsh|p .
Using Secondary Indexes :

Choosing Secondary Indexes Versus Loglcal Relatlonsh|ps .

Using Variable-Length Segments.

Chapter 6. Database Design Considerations for Full Function
About This Chapter.
Specifying Free Space (HDAM and HIDAM OnIy) .
Estimating the Size of the Root Addressable Area (HDAM Only)
Determining Which Randomizing Module To Use (HDAM Only).
Write Your Own Randomizing Module . S
Assess the Effectiveness of the Randomizing Module .
Choosing HDAM Options.
Minimizing I/O Operations
Maximizing Packing Density
Choosing a Logical Record Length for a HISAM Database
Logical Record Length Considerations.
Rules to Observe

Calculating How Many Loglcal Records Are Needed to HoId a Database

Record
Specifying Loglcal Record Length . .
Choosing a Logical Record Length for HD Databases .
Determining the Size of Cls and Blocks
Choosing Buffering Options .
Multiple Buffers in Virtual Storage
“Use” Chain
The Buffer Handler .
Background Write Option.
Shared Resource Pools .
Using Separate Subpools
Hiperspace Buffering .
Buffer Size .
Buffer Numbers .
VSAM Buffer Sizes .
OSAM Buffer Sizes.
Specifying Buffers
Using OSAM Sequential Bufferrng
About SB Coe
Benefits of Using SB
Flexibility of SB Use
How SB Buffers Data .
Virtual Storage Considerations for SB
How to Request the Use of SB
Determining Which VSAM Options to Use
Optional Functions Specified in the OPTIONS Control Statement
Optional Functions Specified in the POOLID, DBD, and VSRBF Control
Statements . . .
Optional Functions Specn‘red in the Access Method Servrces DEFINE
CLUSTER Command . .
Determining Which OSAM Options to Use
Determining Which Dump Option to Use (DUMP Parameter)
Deciding Which FIELD Statements to Code in the DBD
Planning for Maintenance .
Using Design Aids for Your Database .

Contents

. 117
. 118
. 118
. 118
. 139
. 140

. 165
. 166
. 166
. 167
. 168
. 168
. 168
. 169
. 169
. 170
. 170
. 170
. 172

. 173
. 173
. 173
. 173
. 174
. 174
. 174
. 174
. 174
. 175
. 175
. 175
. 175
. 176
. 176
. 177
. A77
. 178
. 178
. 179
. 179
. 180
. 181
. 181
. 184
. 185

. 187

. 188
. 190
. 191
. 191
. 191
. 191

\Y

DB/DC Data Dictionary .. 191

Chapter 7. Designing a Fast Path Database193
Choosing a Database Type e
Databases Supported With DBCTL e £ 5]
Databases Supported WithDCCTL195
Main Storage Databases (MSDBs)19
Data Entry Databases (DEDBs)21
Converting MSDBs to DEDBs i
Using Fixed-Length Segments in DEDBs e e 215
Examples of Defining Segments215
Fast Path Synchronization Points.215
Phase 1 - Build Log Record. . . 2)
Phase 2 - Write Record to System Log 2 1
Monitoring and Tuning Fast Path Systems 216
Using the Fast Path Log Analysis Utility 217
Interpreting Fast Path Analysis Reports 218
Tuning Fast Path Systems . . . 2 e |
Factors Influencing Fast Path Performance e e e e ... 220
Registering Databases . . . e e e e oo oo ..225
Fast Path Virtual Storage Optron C e e e oo L2206
Enhancements to DEDBs . . . C e ... 226
Restrictions Using VSO DEDB Areas 22
Defining a VSO DEDB Area. . . . e e oo 228
Defining a VSO Cache Structure Name e e e 229
Block-Level Sharing of VSO DEDB Areas 232
How IMS Fast Path (VSO) Uses Data Spaces. 233
Resource Control and Locking. . . Y
Preopen Areas and VSO Areas in a Data Sharmg Envrronment 235
Input / Output Processing236
Checkpoint Processing . . . 2 <
VSO Options Across IMS Restart 2 <
Emergency Restart Processing238
VSO Options with XRF .23
Chapter 8. Database Design Considerations for Fast Path e ... 24
About This Chapter. . . . 2)
MSDB Design Con5|derat|ons . .)
Calculating Virtual Storage Requrrements for an MSDB Coe e ... 242
Understanding Resource Allocation, a Key to Performance 243
Designing to Minimize Resource Contention. 245
Choosing MSDBs to Load and Page-Fix246
Auxiliary Storage Requirements foranMSDB 248
DEDB Design Considerations248
DEDB Design Guidelines.249
Considering the DEDBArea249
Determining the Size of theCIl.251
Determining the Size of theUOwW251
Processing Option P (PROCOPT=P)2b2
DEDB Randomizing Routine Design252
Multiple Copies of an AreaDataSet 253
Record Deactivaton .253
Physical Child Last Pointers254
Subset Pointers . . . e e e e 254
High-Speed Sequential Processrng (HSSP) . e25
Why HSSP? S254

Vi IMS/ESA V6 Admin Guide: DB

Limitations and Restrictions When Using HSSP
Using HSSP .
HSSP Processing Optron H (PROCOPT H)
Image-Copy Option. .
UOW Locking .

Private Buffer Pools

Designing a DEDB or MSDB Buffer Pool
Buffer Requirements
Normal Buffer Allocation (NBA)

Overflow Buffer Allocation (OBA) .

Fast Path Buffer Allocation Algorithm

System Buffer Allocation (DBFX) .

Determining the Fast Path Buffer Pool S|ze
Fast Path Buffer Performance Considerations .
The NBA Limit and Sync Point.

The DBFX Value and the Low Activity Enwronment
Designing a DEDB Buffer Pool in the DBCTL Environment .
Buffer Requirements e

Normal Buffer Allocation for BMPS .
Normal Buffer Allocation for CCTL Regions and Threads .

Overflow Buffer Allocation for BMPs.

Overflow Buffer Allocation for CCTL Threads

Fast Path Buffer Allocation Algorithm for BMPs

Fast Path Buffer Allocation Algorithm for CCTL Threads
System Buffer Allocation (SBA) .

Determining the Size of the Fast Path Buffer PooI

Fast Path Buffer Performance Considerations .

The NBA/FPB Limit and Sync Point.

The DBFX Value and the Low Activity EnV|ronment

A Note on Fast Path Buffer Allocation in IMS Regions .

Chapter 9. Developing Your Test Database
About This Chapter .
Understanding Test Requlrements
What Kind of Database? .
What Kind of Sample Data?
What Kind of Application Program? .
Ways to Design, Create, and Load a Test Database
Using Testing Standards .
Using IBM Programs to Develop a Test Database

Chapter 10. Establishing Standards and Procedures

About This Chapter .

Standards and Procedures .

Establishing Naming Conventions

Using the Dictionary to Enforce and Control Standards and Procedures

Chapter 11. Implementing Your Database Design

About This Chapter .

Coding Database Descrlptlons as Input for DBDGEN the Ut|||ty
The DBD Statement e e e
The DATASET Statement
The SEGM Statement .

The FIELD Statement .
The LCHILD Statement .
The XDFLD Statement

. 255
. 255
. 256
. 256
. 256
. 257
. 257
. 257
. 257
. 258
. 258
. 258
. 258
. 259
. 259
. 259
. 260
. 260
. 260
. 261
. 261
. 261
. 261
. 262
. 262
. 262
. 263
. 263
. 263
. 264

. 265
. 265
. 265
. 266
. 266
. 266
. 267
. 267
. 267

. 271
. 271
. 271

Contents

. 273
. 274

. 277
. 277
. 277
. 278
. 278
. 279
. 279
. 279
. 279

Vii

The DBDGEN and END Statements280

Using the DB/DC Data Dictionary280
Coding Program Specification Blocks as Input to the PSBGEN Utrlrty280
The Alternate PCB 22 < X
The Database PCB Statement 2 X !
The SENSEG Statement.281
The SENFLD Statement .282
The PSBGEN Statement.282
The END Statement . . . C e e e .. 282
Using the DB/DC Data Drctlonary .o C e e e ... 282
Building the Application Control Blocks (ACBGEN) Ce e e ... 282
Generated Program Specification Blocks 284
Chapter 12. Loading Your Database 285
About This Chapter. . . . e28
Estimating the Minimum Size of the Database .o 286
Step 1. Calculate the Size of an Average Database Record 286
Step 2. Determine Overhead Needed for DEDB Cl resources 288
Step 3. Determine the Number of Cls or Blocks Needed 289
Step 4. Determine the Number of Blocks or Cls Needed for Free Space 292
Step 5. Determine the Amount of Space Needed for Bit Maps 292
Allocating Data Sets . . . 24 K
Allocating OSAM Data Sets S 24 K
Example of Allocating an OSAM Data Set 24 V
Cautions When Allocating OSAM Data Sets.29%
Writing a Load Program .29%
The Load Process . . . e e ... 295
Status Codes for Load Programs e e e e29
Using SSAs in a Load Program 296
Loading a Sequence of Segments with the D Command Code S .. 297
Loading a HISAM Database304
Loading a SHISAM Database305
Loading a GSAM Database.305
Loading an HDAM Database 305
Loading a HIDAM Database 305
Loading a Database with Logical Relatronshrps or Secondary Indexes 305
Loading Fast Path Databases305
LoadinganMSDB .305
Loading a DEDB. . . . e e305
Loading Sequential Dependent Segments < (01 4
Chapter 13. Monitoring Your Database 309
About This Chapter. .309
Using the Database Monitor310
Using Database Monitoring Aids G ¥ 24
Access Method Services (LISTCAT Command) G ¥ 24
HIDAM ESDS LISTCATReport313
HDAM ESDS LISTCAT Report. . . . N I 4
HISAM or Index KSDS LISTCAT Report I ¥ 4
IEHLIST Utility (LISTVTOC Command)319
HD Reorganization Unload Utility. 319
HISAM Reorganization Unload Utrlrty G N K
DL/l Test Program R A
Database Surveyor Utility319
Fast Path Log Analysis Utility320
IMS System Utilities/Database Tools 320

Viii IMS/ESA V6 Admin Guide: DB

Batch Terminal Simulator.
IMS Monitor Summary and System AnaIyS|s Program II
The DL/l System Service STAT Call.

Chapter 14. Tuning Your Database
About This Chapter .
Reorganizing the Database .
When Should You Reorganize?
Steps in Reorganizing .
Protecting Your Database
Using the Reorganization Utilities.
Changing DL/l Access Methods
Procedure for Changing from HISAM to HIDAM
Procedure for Changing from HISAM to HDAM
Procedure for Changing from HIDAM to HISAM
Procedure for Changing from HIDAM to HDAM
Procedure for Changing from HDAM to HISAM
Procedure for Changing from HDAM to HIDAM
Procedure for Changing to DEDBs .
Changing the Hierarchic Structure
Changing the Sequence of Segment Types
Combining Segments . .
Procedure for Changing the H|erarch|c Structure .
Changing Direct-Access Storage Devices.
Tuning OSAM Sequential Buffering .
Well-Organized Database
Badly-Organized Database . .
Ensuring a Well-Organized Database .
Adjusting HDAM Options.
Adjusting Buffers.
VSAM Buffers.
OSAM Buffers.
Procedure for Adjustlng VSAM and OSAM Database Buffers
OSAM Sequential Buffering . e
Procedure for Adjusting Sequential Buffers .
Adjusting VSAM Options .
Procedure for Adjusting VSAM Optlons Specrfred in the OPTIONS Control
Statement .
Procedures for Adjustrng VSAM Optrons Specrfred in the Access Method
Service DEFINE CLUSTER Command . .
Adjusting OSAM Options.
Changing the Amount of Space AIIocated
Changing Operating System Access Methods .
Changing the Number of Data Set Groups .

Chapter 15. Modifying Your Database
About This Chapter. .
Adding Segment Types
Unloading and Reloading Usrng the Reorganlzatron Utllltles
Without Unloading or Reloading . .
Using Your Own Unload and Reload Program .
Deleting Segment Types .
Moving Segment Types .
Changing Segment Size . .
Changing Data in a Segment (Except for Data at the End of a Segment)
Changing the Position of Data in a Segment G

Contents

. 321
. 321
. 322

. 323
. 324
. 325
. 325
. 325
. 325
. 326
. 341
. 341
. 342
. 344
. 345
. 346
. 347
. 349
. 349
. 349
. 350
. 350
. 351
. 351
. 351
. 352
. 352
. 352
. 353
. 353
. 354
. 355
. 355
. 356
. 356

. 356

. 357
. 358
. 358
. 359
. 359

. 365
. 366
. 367
. 367
. 368
. 369
. 369
. 369
. 370

370

. 371

iX

X

Adding Logical Relationships .

Example 1. DBX Exists, DBY Is to Be Added

Example 2. DBX and DBY Exist, DBZ Is to Be Added .
Example 3. DBX and DBY Exist, DBZ Is to Be Added .
Example 4. DBX and DBY Exist, DBZ Is to Be Added .
Example 5. DBX Exists, DBY Is to Be Added .
Example 6. DBX and DBY Exist, DBZ Is to Be Added .
Example 7. DBX and DBY Exist, DBZ Is to Be Added .
Example 8. DBX and DBY Exist, DBZ Is to Be Added .
Example 9. DBY Exists, DBZ Is to Be Added

Example 10. DBY Exists, DBZ Is to Be Added .
Example 11. DBX and DBY Exist, DBZ Is to Be Added.
Example 12. DBX and DBY Exist, DBZ Is to Be Added.

Example 13. DBX and DBY Exist, Segment Y and DBZ Are to Be Added

Steps in Reorganizing a Database to Add a Logical Relationship .
Some Restrictions on Modifying Existing Logical Relationships .
Summary on Use of Utilities When Adding Logical Relationships .
Adding a Secondary Index . .
Adding or Converting to Variable- Length Segments .
Method 1. Converting Segments or a Database
Method 2. Converting Segments or a Database
Converting to the Segment Edit/Compression Facility .

Converting Databases for Data Capture Exit Routines and Asynchronous Data

Capture .

Converting a Log|cal Parent Concatenated Key From Vlrtual to PhyS|caI or

Physical to Virtual .
Using the Online Change Funct|on .
Maintaining Continuous Availability of IFP and MPP Reg|ons
Changing Randomizer and Exit Routines . .o
Making Online Changes at the DEDB and Area LeveI .
Extending DEDB Independent Overflow Online

Chapter 16. Establishing Security

Restricting the Scope of Data Access .

Restricting Processing Authority . .

Restricting Access by Non-IMS Programs
Protecting Data with VSAM Passwords
Encrypting Your Database

Using the Dictionary to Help Establish Securlty

Appendix A. Meaning of Bits in the Delete Byte
Bits in the Delete Byte. S .
Bits in the Prefix Descriptor Byte

Appendix B. Replace, Insert, and Delete Rules for Logical Relationships
How to Specify Rules in the Physical DBD .

The Replace Rules . Coe

The Insert Rules .

Introduction to Delete Rules

Delete Rules .

Appendix C. Using OSAM as the Access Method
OSAM Information for Database Access .

Appendix D. Correcting Bad Pointers

IMS/ESA V6 Admin Guide: DB

. 371
. 371
. 372
. 373
. 374
. 374
. 375
. 377
. 379
. 379
. 380
. 380
. 381

381

. 382
. 385
. 386
. 386
. 387
. 387
. 388

. 388

. 389

. 389
. 390
. 391
. 392
. 397
. 400

. 403
. 403
. 403
. 405
. 405
. 405
. 405

. 407
. 407
. 407

409

. 409
. 410
. 414
. 419
. 421

. 447
. 447

. 449

Bibliography
IMS/ESA Version 6 Library .

Index .

Readers’ Comments — We'd Like to Hear from You

. 451
. 451

. 453

. 471

Contents

Xi

Xii IMS/ESA V6 Admin Guide: DB

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Subject to IBM’s valid
intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, are the responsibility of the
user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling (1) the exchange of information between independently created programs
and other programs (including this one) and (2) the mutual use of the information
that has been exchanged, should contact:

IBM Corporation

555 Bailey Avenue, W92/H3
P.O. Box 49023

San Jose, CA 95161-9023

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Programming Interface Information

This book is intended to help the database administrator manage IMS databases.

This book also documents General-use Programming Interface and Associated
Guidance Information, Product-sensitive Programming Interface and Associated
Guidance Information, and Diagnosis, Modification or Tuning Information provided
by IMS.

General-use programming interfaces allow the customer to write programs that
obtain the services of IMS.

General-use Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

© Copyright IBM Corp. 1974, 1999 Xiii

l_ General-Use Programming Interface

General-use Programming Interface and Associated Guidance Information...

|_ End of General-Use Programming Interface

Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of
IMS. Use of such interfaces creates dependencies on the detailed design or
implementation of the IBM software product. Product-sensitive programming
interfaces should be used only for these specialized purposes. Because of their
dependencies on detailed design and implementation, it is to be expected that
programs written to such interfaces may need to be changed in order to run with
new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

l_ Product-Sensitive Programming Interface

Product-sensitive Programming Interface and Associated Guidance Information...

I_ End of Product-Sensitive Programming Interface

Diagnosis, Modification or Tuning Information is provided to help the customer
diagnose, modify, or tune IMS.

Attention : Do not use this Diagnosis, Modification or Tuning Information as a
programming interface.

Diagnosis, Modification or Tuning information is identified where it occurs, either by
an introductory statement to a chapter or section or by the following marking:

l_ Diagnosis, Modification or Tuning Information

Diagnosis, Modification or Tuning Information...

|_ End of Diagnosis, Madification or Tuning Information

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

ACF/NTAM IMS/ESA

Advanced Function Printing IMS Client Server/2
AFP MVS

BookManager MVS/DFP

CICs MVS/ESA
DATABASE 2 0S/390
DataPropagator Nonrelational PSF

DPropNR RACF

DB2 Resource Measurement Facility
ES/9000 RMF

IBM SP

IMS VTAM

XiV IMS/ESA V6 Admin Guide: DB

Product Names
In this book, the licensed program “DB2 for MVS/ESA” is referred to as “DB2”".

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

Notices XV

XVi IMS/ESA V6 Admin Guide: DB

Preface

This book helps you administer your IMS/ESA databases. It describes how to
design, implement, and maintain different types of databases.

Summary of Contents
The IMS/ESA Administration Guide: Database Managet contains 16 chapters and

appendixes as follows:

[Chapter 1. Introduction” on page 1, describes concepts and technology, optional

functions, how to define your database to IMS, and how application programs
view the database.

Ty 2Participating in Reviews” on page 17, describes how to participate in

reviews from database design to post-implementation.

EChapter 3_Analyzing Data Requirements” an page 23, describes how to

analyze data requirements, design conceptual data structures, and implement
the structure with DL/I.

EChapter 4_Designing a Fast Path Database” on page 33, describes how to

choose full function database types and lock protocols.

{Chapter 5_Chaasing Additional Database Functions” on page 83, describes how
to choose additional database functions, secondary indexes, and multiple data
set groups.

describes how to consider database design, choose logical record length, and
use high-speed sequential processing for full function systems.

IChapter 7 Designing a East Path Datahase” on page 193, describes how to

choose, monitor, and tune, a fast path systems.

describes how to consider database design, choose logical record length, and
use high-speed sequential processing for fast path systems.

IChapter 9 Developing Your Test Datahase” on page 265, describes how to

understand test requirements, and design, create, and load a test database.

[Chapter 10 FEstahlishing Standards and Procedures” on page 271|, describes

how to establish naming conventions, and use the dictionary to inform and
control standards and procedures.

[Chapter 11_Implementing Your Datahase Design” on page 277, describes how

to code database descriptions (DBDs), program specification blocks (PSBs), and
application control blocks (ACBSs).

[Chapter 12 1 oading Your Database” on page 285, describes how to load data,

estimate the minimum size of the database, allocate data sets, and write a load
program.

IChapter 13 Monitoring Your Database” on page 309, describes how to use the

database monitor and database monitoring aids.

LChapter 14 Tuning Your Database” on page 323, describes how to reorganize

the database, and change DL/l access methods, hierarchic structures, and direct
access storage devices (DASDSs).

tChapter 15 Modifying Your Database” on page 369, describes how to add,
delete, and move segment types, change segment size, and add logical
relationships.

EChapter 16 _Establishing Security” on page 403, describes how to restrict the

scope of data access, processing authority, and access by non-IMS programs.

© Copyright IBM Corp. 1974, 1999 XVii

[Appendix A. Meaning of Bits in the Delete Byte” on page 407, describes the
meaning of bits in the delete and prefix descriptor bytes.

hage 409, describes how to specify rules in a physical DBD and a rules
summary.

tAppendix C_Using QSAM as the Access Method” on page 447, describes how

to use overflow sequential access method (OSAM) as an access method.

Appendix D_Correcting Bad Pointers” an page 44d, describes how to use

reorganization to correct bad pointers.

Summary of Library Changes for V5 describes the IMS library changes for
Version 5.

Appendixes are followed by a bibliography and an index.

Prerequisite Knowledge

Before using this book, you should understand basic IMS/ESA concepts and your
installation’s IMS/ESA system. IMS/ESA can run in the following environments: DB
Batch, DCCTL, TM Batch, DB/DC, DBCTL. You should understand the
environments that apply to your installation. The IMS/ESA concepts explained here
pertain only to administering the IMS/ESA database. You should also know the
COBOL, PL/I, or assembler language, and how to use DL/I calls.

For an introduction to IMS, see IMS/ESA General Information on the web at:
http://www.software.ibm.com/data/ims

IMS/ESA Application Programming- Design Guidd describes how to design and

code an application program.

For definitions of terms used in this manual and references to related information in

other IMS manuals, see IMS/FSA Master Index and Glossary.

Change Indicators

XViii

Technical changes are indicated in this publication by a vertical bar (]) to the left of
the changed text. If a figure has changed, a vertical bar appears to the left of the
figure caption.

IMS/ESA V6 Admin Guide: DB

Summary of Changes

Changes to the Current Edition of this Book

This edition, which is in softcopy only, includes technical and editorial changes.

Changes to This Book for V6

This book contains new and changed information about the following subjects:

Fast Path Online Change

DEDB Online Change

Database Image Copy 2 Support

OSAM Database Coupling Facility Caching
Shared SDEPs

Shared VSO

It also contains additional information on performance and HSSP considerations.

Changes have been made to the following chapters:

Chapter 1 Introduction

Chapter 6 Database Design Considerations for Full Function
Chapter 7 Designing a Fast Path Database

Chapter 9 Developing Your Test Database

Chapter 11 Implementing Your Database Design

Chapter 13 Monitoring Your Database

This edition incorporates new technical information for Version 6 as well as editorial
changes and technical corrections made to previously published information.

Library Changes for Version 6

The IMS/ESA Version 6 library differs from the IMS/ESA Version 5 library in these
major respects:

© Copyright IBM Corp. 1974,

IMS/ESA Common Queue Server Guide and Referenca

This new book describes the IMS Common Queue Server (CQS).

IMS/ESA DBRC Guide and Reference

This new book describes all the functions of IMS Database Recovery Control
(DBRC).

The IMS Application Programming summary books (IMS/ESA Application
Programming. Database Manager Summary, IMS/ESA Application Programming:
Transaction Manager Summary, and IMS/ESA Application Programming: EXEC
DLI Commands for CICS and IMS Summary) are no longer included with the IMS
library.

The Softcopy Master Index is not included.

All information about IRLM 1.5 and data sharing using IRLM 1.5 has been
removed from the IMS V6 books. If you use IRLM 1.5, and want to migrate to

using IRLM 2.1 and Sysplex data sharing, see IMS/ESA Release Planning Guide.

1999 XiX

* The chapter that was titled "Database Control (DBCTL) Interface” in the
"IMS/ESA" Customization Guide has been revised for Open Database Access
(ODBA) and moved to "Appendix A, Using the Database Resource Adapter
(DRA)" in the "IMS/ESA" Application Programming: Database Manager.

XX IMS/ESA V6 Admin Guide: DB

Chapter 1. Introduction

About This Chapter. .
Database Administration Overwew .
Database Administration Tasks
Concepts and Terminology . .
How Data Is Stored in a Database .
Root Segment .
Parent and Child Segment
Segment Type and Occurrence
Relationship Between Segments .
The Hierarchy.

Numbering Sequence in a H|erarchy Top to Bottom .
Numbering Sequence in a Hierarchy: Movement and Position .
Numbering Sequence in a Hierarchy: Level .

The Database.
The Database Record
The Segment
Segment Code .
Delete Byte . .
Pointer and Counter Area
The Data Portion . .
The Three Data Portion F|eld Types .
Optional Functions .
How To Define Your Database to IMS
How Application Programs View the Database

OO ~NOOOOOUIOTOTADNRE PR

About This Chapter

This chapter describes the tasks of database administration and discusses the key

concepts and terms used in this book.

Database Administration Overview

The task of database administration is to design, implement, and maintain a

database. The IMS/ESA Administration Guide:- Datahase Managert describes the

tasks involved in administering the Information Management Systems/Enterprise

Systems Architecture (IMS/ESA) database manager. IMS/ESA (hereafter referred to
as IMS) is composed of two parts: a database manager and a transaction managetr.
The database manager manages physical storage of records in the database. The

transaction manager manages the terminal network, the input and output of
messages, and online system resources. The administration of the IMS/ESA

transaction manager is covered in the IMS/ESA Administration Guide: Transactior]

Whenever possible, this book presents the various database administration tasks in

the order in which you normally perform the tasks. You perform some tasks in a

specific sequence in the database development process. Other tasks, however, are

ongoing, and you do not perform them in any special sequence. It is important for
ou to grasp not only what the tasks are (see IDatabase Administration Tasks” on

) in the overall

), but also how they interrelate (see
process of developing a database system.

© Copyright IBM Corp. 1974, 1999

Database Administration Overview

This book addresses each major task in a separate chapter. This chapter provides
the following information:

» Database administration tasks

» Concepts and technology

* Optional functions

* How to define your database to IMS

* How application programs view the database

The database administrator should consider the advantages of using Command
level Data Language | (DL/I). For detailed information, see

and MASLESA.A,a,aucaLmn_Emgrammmg_EXEd

Whenever tasks differ for Customer Information Control System (CICS) users, a
brief description about the differences is included.

CICS accesses IMS databases via the database resource adapter (DRA). CICS or
other transaction management subsystems (excluding IMS/ESA Transaction
Manager) can access IMS full-function databases and data entry databases
(DEDBS) in a DB/DC or DBCTL environment via the DRA.

DBCTL supports non-message-driven batch message processors (BMPs).

DBCTL has its own log and participates in database recovery. Locking is provided
by IMS program isolation or Internal Resource Lock Manager (IRLM).

Data Communications Control (DCCTL) is a transaction management subsystem
that does not support full-function DEDBs or MSDBs (main storage databases), but
does support GSAM databases in BMP regions. To access databases in a DCCTL
environment, DCCTL must connect to an external subsystem that provides
database support.

Database Administration Tasks

2

Participating in design reviews. Design reviews are a series of formal meetings
you attend in which the design and implementation of the database are
examined. Design reviews are an ongoing task during the design and
implementation of a database system. They are also held when new
applications are added to an existing system.

Analyzing data requirements. After the users at your installation identify their
data processing requirements, you will construct data structures. These
structures show what data will be in your database and how it will be organized.
This task precedes the actual design of the database.

Designing your database. After data structures are identified, the next step is to
design your database. Database design involves:

— Choosing how to physically organize your data
— Deciding which IMS processing options you need to use

— Making a series of decisions about design that determine how well your
database performs and utilizes available space

Developing a test database. Before the applications that will use your database
are cut over to production status, they should be tested. Depending on the form
of your existing data, you can use one or more of the IMS Database Design
Aids to design, create, load, and test your test database.

IMS/ESA V6 Admin Guide: DB

Database Administration Tasks

Implementing your database design. After your database is designed, implement
the design by describing the database’s characteristics and how application
programs will use it to IMS. This task consists of coding database descriptions
(DBDs) and program specification blocks (PSBs), both of which are a series of
macro statements. Another part of implementing the database design is
determining whether to have the application control blocks (ACBs) of the
database prebuilt or built dynamically.

Loading your database. After database characteristics are defined, write an
initial load program to put your data into the database. After you load the
database, application programs can be run against it.

Monitoring your database. When the database is running, routinely monitor its
performance. A variety of tools for monitoring the IMS system are available.

Tuning your database. Tune your database when performance degrades or
utilization of external storage is not optimum. The routine monitoring you do
helps you determine when the system needs to be tuned and what type of
tuning needs to be done. Like monitoring, the task of tuning the database is
ongoing.

Modifying your database. As new applications are developed or the needs of
your users change, you might need to make changes to your database.
Examples of these changes include database organization, database hierarchies
(or the segments and fields within them), and addition (or deletion) of IMS
functions. Like monitoring and tuning, the task of modifying the database is
ongoing.

Recovering your database. Database recovery involves restoring a database to
its original condition after it is rendered invalid by some failure. The task of
developing recovery procedures and performing recovery is an important one.
However, because it is difficult to separate data recovery from system recovery,
the task of recovery is treated separately in

You can use Database Recovery Control (DBRC) in recovering your databases.
If your databases are registered in RECON, DBRC gains control during
execution of these IMS utilities:

— Database Image Copy

— Online Database Image Copy

— Database Image Copy 2

— Change Accumulation

— Database Recovery

— Log Recovery

— Log Archive

— DEDB area data set create

— HD and HISAM Reorganization Unload and Reload

You must ensure that all database recoveries use the IMS/ESA Version 6
utilities, as opposed to Version 4 or Version 5.

Related Reading : For more information on using these utilities, see the

IMS/ESA Utilities Reference: System, the W@w
anagel, and the MASAESA_uuhues_Refezenﬁe_ﬂacwsacUQn_Ma.uagel

Establishing security. You can keep unauthorized persons from accessing the
data in your database by using program communication blocks (PCBs). With
PCBs, you can control how much of the database a given user can see, and
what can be done with that data. In addition, you can take steps to keep
non-IMS programs from accessing your database.

Chapter 1. Introduction 3

Database Administration Tasks

Setting up standards and procedures. It is important to set standards and
procedures for application and database development. This is especially true in
an environment with multiple applications. If you have guidelines and standards,
you will save time in application development and avoid problems later on such
as inconsistent naming conventions or programming standards.

m depicts tasks in the database development process and shows how the

chapters of IMS/ESA Administration Guide: Database Managel fit into this process.

Begin developing Your database system
your database sytem. is now running.
v
Participating in reviews An ongoing task throughout the
(Chapter 2) database development process

Analyzing data requirements
(Chapter 3)

Designing your database
(Chapters 4, 5, and 6)
or for fast path

(Chapters 7 and 8) Tasks performed in chronological
order

Developing a test database

(Chapter 9)

Implementing your database

(Chapter 11)

Loading your database
(Chapter 12)

Monitoring your database

(Chapter 13) Tasks performed when your database

system is up and running. These
tasks are ongoing and are not
done in any special sequence.

Tuning your database
(Chapter 14)

Modifying your database
(Chapter 15)

Setting up standards and procedures

Tasks that can be performed at

(Chapter 10) any one of several points in the
Establishing security database development process and
(Chapter 16) can be ongoing

Figure 1. Tasks in the Database Development Process

Concepts and Terminology

This section discusses the terms and concepts you need to understand to perform
the administration tasks just outlined.

You must know the following to understand this section:
* What a database is and why you store your data in it rather than in several files
(explained in IMS/ESA General Information on the web at:
http://www.software.ibm.com/data/ims

* What a DL/l call is and how to code it. You must understand function codes and
Segment Search Arguments (SSAs) in DL/I calls and know what is meant when a

call is referred to as qualified or unqualified (explained in IAMS/ESA Application
\Pragramming: Database Managef)

4 IMS/ESA V6 Admin Guide: DB

Concepts and Terminology

How Data Is Stored in a Database

The data in a database is grouped into a series of database records. Each
database record is composed of smaller groups of data called segments. A segment
is the smallest piece of data IMS can store. Segments, in turn, are made up of one
or more fields.

m shows a record in a school database. Each of the boxes is a segment or
separate group of data in the database record. The segments in the database
record contain the following information:

COURSE The name of the course

INSTR The name of the teacher of the course

REPORT A report the teacher needs at the end of the course
STUDENT The names of students in the course

GRADE The grade a student received in the course

PLACE The room in which the course is taught

The segments within a database record exist in a hierarchy. A hierarchy is the order

Parent of the INSTR Root segment
segment ——»| COURSE |« inthis database
record

| |
Child of the One of the five
COURSE > INSTR STUDENT PLACE ¢dependent
segment and segments in this
parent of the ‘ database record
REPORT
segment REPORT GRADE

Figure 2. A Database Record in a School Database

in which segments are arranged. The order implies something. The school database
is storing data about courses that are taught. The COURSE segment is at the top
of the hierarchy. The other types of data in segments in the database record would
be meaningless if there was no COURSE.

Root Segment
The COURSE segment is called the root segment. Only one root segment exists

within a database record. All other segments in the database record (such as:
INSTR, REPORT, STUDENT, GRADE, and PLACE) are called dependent
segments. The existence of dependent segments hinges on the existence of a root
segment. For example, without the root segment COURSE, there would be no
reason for having a PLACE segment stating in which room the course was held.

One other thing to note about dependency in the database record, is that the third
level of dependent segments REPORT and GRADE is subject to the existence of
second level segments INSTR and STUDENT. For example, without the second
level segment STUDENT, there would be no reason for having a GRADE segment
indicating the grade the student received in the course.

Parent and Child Segment

Another set of words used to refer to how segments relate to each other in a
hierarchy is parent segment and child segment. A parent segment is any segment

Chapter 1. Introduction 5

Concepts and Terminology

The Hierarchy

that has a dependent segment beneath it in the hierarchy. COURSE is the parent of
INSTR, and INSTR is the parent of REPORT. A child segment is any segment that
is a dependent of another segment above it in the hierarchy. REPORT is the child
of INSTR, and INSTR is the child of COURSE. Note that INSTR is both a parent
segment in its relationship to REPORT and a child segment in its relationship to
COURSE.

Segment Type and Occurrence

The terms used to describe segments so far (root, dependent, parent, and child)
describe the relationship between segments. The terms segment type and segment
occurrence, however, distinguish between a type of segment in the database (the
COURSE segment or the INSTR segment) and a specific segment (the course
segment for a math course). The database record looked at so far is really the
design you might come up with for a database record. The database record shows
the segment types that are going to be in the database. w shows an actual
database record, based on this design.

A segment occurrence is a single specific segment. MATH is a single occurrence of
the COURSE segment type. BAKER and COE are multiple occurrences of the
STUDENT segment type.

Relationship Between Segments

One final term for describing segments is twin segment. Twin (like root, dependent,
parent, and child) describes a relationship between segments. Twin segments are
multiple occurrences of the same segment type under a single parent. In m
BAKER and COE are twins. They have the same parent (MATH), and are of the
same segment type (STUDENT). PASS and INC are not twins. Although PASS and
INC are the same segment type, they do not have the same parent.

MATH < An occurrence of the

COURSE segment type

‘ COE ROOM 2

JAMES BAKER
‘ INC Two occurrences of the
TUDENT segment type
REPORTA PASS COE and BAKER are also

twins

Figure 3. The School Database Record in Storage

The following section discusses the hierarchy in more detail. Subsequent sections
describe the objects in a database, what they consist of and the rules governing
their existence and use. These objects are:

The database record
The segments in a database record
The fields within a segment

A database is composed of a series of database records, records contain
segments, and segments are arranged in a hierarchy in the database record.

6 IMS/ESA V6 Admin Guide: DB

Concepts and Terminology

Numbering Sequence in a Hierarchy: Top to Bottom
When a database record is stored in the database, the hierarchic arrangement of

segments in the database record is the order in which segments are stored.
Starting at the top of a database record (at the root segment), segments are stored
in the database in the sequence shown by the numbers in

The sequence goes from the top of the hierarchy to the bottom in the first (leftmost)
path or leg of the hierarchy. When the bottom of the database is reached, the
sequence is from left to right. When all segments have been stored in that path of
the hierarchy, the sequencing begins in the next path to the right, again proceeding
from top to bottom and then left to right. (In the second leg of the hierarchy there is
nothing to go to at the right.) The sequence in which segments are stored is loosely
called “top to bottom, left to right.”

m shows sequencing of segment types. Observe the segment occurrences
and note the sequence in which segments are stored.

m shows the same database record, but this time it is an actual record rather
than an abstract design.

bottom 1

E— INSTR 5 STUDENT5 PLACE -

Left to lp
right % REPORT TOPIC GRADE
3 4 6

Figure 4. Sequence in a Hierarchy (Showing Segment Types Only)

MATH
COE ROOM 2
JAMES BAKER
[
REPORTB |* INC
REPORTA |4 TOPIC PASS

Front to back———

Figure 5. Sequence in a Hierarchy (Showing Segment Types and Occurrences)

Chapter 1. Introduction 7

Concepts and Terminology

8

Note that the numbering sequence is still initially from top to bottom. At the bottom
of the hierarchy, however, observe that there are two occurrences of the REPORT
segment.

Because you are at the bottom of the hierarchy, both segment occurrences are
picked up before you move to the right in this path of the hierarchy. Both reports
relate to the instructor segment JAMES; so it makes sense to keep them stored
together in the database. In the second path of the hierarchy, there are also two
segment occurrences in the student segment. You are not at the bottom of the
hierarchic path until you reach the grade segment PASS. So, sequencing is not
“interrupted” by the two occurrences of the student segment BAKER and COE. This
makes sense because you are keeping student and grade BAKER and PASS
together.

Note that the grade INC under student COE is not considered another occurrence
under BAKER. COE and INC become a separate path in the hierarchy. Only when
you reach the bottom of a hierarchic path is the “top to bottom, left to right”
sequencing interrupted to pick up multiple segment occurrences. You can refer to
sequencing in the hierarchy as “top to bottom, front to back, left to right”, but “front
to back” only occurs at the bottom of the hierarchy. Multiple occurrences of a
segment at any other level are sequenced as separate paths in the hierarchy.

As noted before, this numbering of segments represents the sequence in which
segments are stored in the database. If an application program requests all
segments in a database record in hierarchic sequence or issues Get-Next (GN)
calls, this is the order in which segments would be presented to the application
program.

Numbering Sequence in a Hierarchy: Movement and Position

Other terms that show the numbering sequence in a hierarchy are: movement and
position. When talking about movement through the hierarchy, it always means
moving in the sequence implied by the numbering scheme. Movement can be
forward or backward. When talking about position in the hierarchy, it means being
located (positioned) at a specific segment. The terms movement and position are
used when talking about how segments are accessed when an application program
issues a call.

A segment is the smallest piece of data IMS can store. If an application program
issues a Get-Unique (GU) call for the student segment BAKER (see

hage 7), the current position is immediately after the BAKER segment occurrence. If
an application program then issues an unqualified GN call, IMS moves forward in
the database and returns the PASS segment occurrence.

Numbering Sequence in a Hierarchy: Level

A final term you need to know about hierarchies is: level. Level is the position of a
segment in the hierarchy in relation to the root segment. The root segment is
always on level one. [Eigure 6 an page d illustrates levels.

IMS/ESA V6 Admin Guide: DB

The Database

Concepts and Terminology

MATH
‘ COE ROOM 2
JAMES BAKER
REPORTB INC
REPORTA PASS

Figure 6. Levels in the Database

IMS allows you to define nine different database types. You define the database
type that best suits your application’s processing requirements. You need to know
that each IMS database has its own access method, because IMS runs under
control of the MVS operating system. The operating system does not know what a
segment is because it processes logical records, not segments. IMS access
methods therefore manipulate segments in a database record. When a logical
record needs to be read, operating system access methods (or IMS) are used.

[Canle 1l lists the IMS database types you can define, the IMS access methods they
use and the operating system access methods you can use with them. Although
each type of database varies slightly in its access method, they all use database
records.

Table 1. Types of IMS Databases and the MVS Access Methods They Can Use

Type of IMS Access Method Used IMS or Operating System
Database Access Methods that Can Be
Used
HSAM Hierarchical Sequential Access Method BSAM or QSAM
SHSAM Simple Hierarchical Sequential Access BSAM or QSAM
Method
HISAM Hierarchical Indexed Sequential Access VSAM
Method
SHISAM Simple Hierarchical Indexed Sequential VSAM
Access Method
GSAM! Generalized Sequential Access Method BSAM
HDAM Hierarchical Direct Access Method VSAM or OSAM
HIDAM Hierarchical Indexed Direct Access VSAM or OSAM
Method
MSDB? Main Storage Database N/A
DEDB! Data Entry Database Media Manager
Notes:

1. Only available to BMPs through DBCTL.
2. Not applicable to DBCTL.

Chapter 1. Introduction

Concepts and Terminology

The Database Record

10

A database consists of a series of database records, and a database record
consists of a series of segments. Another thing to understand is that a specific
database can only contain one kind of database record. In the school database, for
example, you can place as many school records as desired. You could not,
however, create a different type of database record, such as the following medical
database record, and put it in the school database.

PATIENT

SYMPTOM DOCTOR BILLING

PRESCRIPT

The only other thing to understand is that a specific database record, when stored
in the database, does not need to contain all the segment types you originally
designed. To exist in a database, a database record need only contain an

occurrence of the root segment. In the school database, all four of the records
shown in Eigure 4 can be stored.

Database Record #1 Database Record #2
COURSE COURSE
| -
\ | |
INSTR STUDENT PLACE PLACE PLACE
REPORT GRADE
Database Record #3 Database Record #4
COURSE COURSE
‘ STUDENT
INSTR STUDENT
REPORT

Figure 7. Example of Records That Can Be Stored in the School Database

However, no segment can be stored unless its parent is also stored. For example,
you could not store:

IMS/ESA V6 Admin Guide: DB

The Segment

Concepts and Terminology

COURSE COURSE

or

GRADE REPORT

Occurrences of any of the segment types can later be added to or deleted from the
database.

A database record consists of one or more segments, and the segment is the
smallest piece of data IMS can store. Here are some additional facts you need to
know about segments:

* A database record can contain a maximum of 255 segment types. The space you
allocate for the database limits the number of segment occurrences.

* You determine the length of a segment; however, a segment cannot be larger
than the physical record length of the device on which it is stored.

* The length of segments is specified by segment type. A segment type can be
either variable or fixed in length.

Eigure 8 on page 14 shows the format of both a fixed-length and a variable-length
segment. Segments consist of two parts (a prefix and the data), except when using
a SHSAM or SHISAM database. In SHSAM and SHISAM databases, the segment
consists of only the data. In a GSAM database, segments do not exist for reasons
explained later.

IMS uses the prefix portion of the segment to “manage” the segment. The prefix
portion of a segment consists of: segment code, delete byte, and in some
databases, a pointer and counter area. Application programs do not “see” the prefix
portion of a segment. The data portion of a segment contains your data, arranged
in one or more fields.

For information on MSDB and DEDB segments, see [Main Starage Databased
(MSDBs)” on page 199 and EData Entry Databases (DEDBs)” on page 201,

Chapter 1. Introduction 11

Concepts and Terminology

Format of a fixed-length segment

Prefix | Data
[
Segment| Delete Pointer and counter area | Seq. Fixed-length
code byte field data

Bytes

1

Format of a variable-length segment

Prefix

Length is whatever
you specify for the
segment type

Data

Segment
code

Bytes

Delete
byte

Pointer and counter area

Size
field

Seq.
field

Variable-

Ier‘lgtl‘w data

1

[
varies

Figure 8. Formats of Segments

Segment Code

[

5 Length varies based
on a minimum and
maximum size you
specify for the
segment type

IMS needs a way to identify each segment type stored in a database. It uses the
segment code field for this purpose. When loading a segment type, IMS assigns it a
unigue identifier (an integer from 1 to 255). IMS assigns numbers in ascending
sequence, starting with the root segment type (number 1) and continuing through all
dependent segment types in hierarchic sequence.

Delete Byte
When an application program deletes a segment from a database, the space it

occupies might or might not be immediately available to reuse. Deletion of a
segment is described in the discussions of the individual database types. For now,
know that IMS uses this prefix byte to track the status of a deleted segment.

For information on the meaning of each bit in the delete byte, see m

Pointer and Counter Area
The pointer and counter area exists in HDAM and HIDAM databases, and in some

special circumstances, HISAM databases. The pointer and counter area can contain
two types of information:
» Pointer information consists of one or more addresses of segments to which a
segment points. (These addresses only exist in HDAM, HIDAM, and in some
special cases, HISAM databases.)
» Counter information is used when logical relationships, an optional function of
IMS, are defined. (Counter information can exist in HISAM, HDAM, and HIDAM
databases.)

The length of the pointer and counter area depends on how many addresses a
segment contains and whether logical relationships are used. These topics are
covered later in this book.

The Data Portion
The data portion of a segment contains one or more data elements. The data is
processed and unlike the prefix portion of the segment, seen by an application

program.

12 IMS/ESA V6 Admin Guide: DB

Concepts and Terminology

The application program accesses segments in a database using the name of the
segment type. If an application program needs to reference part of a segment, a
field name can be defined to IMS for that part of the segment. Field names are
used in segment search arguments (SSAs) to qualify calls. An application program
can see data even if you do not define it as a field. But an application program
cannot qualify an SSA on the data unless it is defined as a field.

The maximum number of fields that you can define for a segment type is 255. The
maximum number of fields that can be defined for a database is 1000. Note that
1000 refers to types of fields in a database, not occurrences. The number of
occurrences of fields in a database is limited only by the amount of storage you
have defined for your database.

The Three Data Portion Field Types

You can define three field types in the data portion of a segment: a sequence field,
data fields, and for variable-length segments, a size field stating the length of the
segment. The first two field types contain your data, and an application program
can use both to qualify its calls. However, the sequence field has some other uses
besides that of containing your data.

You can use a sequence field, often referred to as a key, to keep occurrences of a
segment type in key sequence under a given parent. For example, in the following
database record, there are three segment occurrences of the STUDENT segment,
and the STUDENT segment has three data elements:

COURSE database record Data elements in the
STUDENT segment
COURSE
STUDENT NAME |ADDRESS ID
STUDENT
STUDENT

Suppose you need the STUDENT segment, when stored in the database, to be in
alphabetic order by student name. If you define a field on the NAME data as a
unique sequence field, IMS stores STUDENT segment occurrences in alphabetic
sequence as follows:

MATH

JAMES

COE

BAKER

When defined in a root segment of a HISAM, HDAM, or HIDAM database, a
sequence field gives an application program access to a specific root segment.
Because each database record has only one root segment, this means that an
application program has access to a specific database record. When a sequence
field is defined, a database does not need to be searched sequentially to find a

Chapter 1. Introduction 13

Concepts and Terminology

specific database record. Also, database records can be retrieved sequentially in
HISAM and HIDAM databases when a sequence field is defined in the root
segment.

You can also use a sequence field in other ways when using the IMS optional
functions of logical relationships or secondary indexing. These other uses are
discussed in detail later in this book.

The important things to know now about sequence fields are that:

* You do not always need to define a sequence field. This book describes cases
where a sequence field is necessary.

* The sequence field value can be defined as unique or non-unique.
* The data or value in the sequence field is called the “key” of the segment.

The next section of this chapter deals with the optional database function which you
might need to use. Once the option functions are explored, the last two sections of
this chapter briefly describe how to define a database to IMS, and how an
application program views a database.

Optional Functions

14

IMS has several optional functions you can use for your database. These are

discussed briefly below and described in detail in EChapter 5_Choasing Additional
Database Functions” an page 83. You need a cursory understanding of these

functions before reading the rest of the book because they may be referred to
before they are actually described.

The functions are as follows:

Logical relationships is a function you can use to let an application program
access a logical database record. A logical database record can consist of
segments from one or more physical database records. Physical database
records can be stored in one or more databases. So a logical database record
lets an application program view a database structure that is different from the
physical database structure.

For example, if a logical data structure contains segments from two different
physical databases, a segment can be accessed from two different paths:

— A segment can be physically stored in the path where it is most frequently
used and where the most urgent response time is required.

— A pointer containing the location of the segment can be physically stored in
the alternate path needed by another application program.

Secondary indexing is a function you can use to access segments in a database
in a sequence other than the one defined in the sequence field.

Variable-length segments is a function you can use to make the data portion of
a segment type variable in length. Use variable-length segments when the size
of the data portion of a segment type varies greatly from one segment
occurrence to the next. With variable-length segments, you define the minimum
and maximum length of a segment type. Defining both minimum and maximum
length saves space in the database whenever a segment is shorter than the
maximum length.

Field-level sensitivity is a function you can use to:

— Deny an application program access to selected fields in a segment for
security purposes.

IMS/ESA V6 Admin Guide: DB

Optional Functions

— Allow an application program to use a subset of the fields that make up a
segment (so it does not need to process fields it does not use) or use fields
in a segment in a different order. Use field-level sensitivity in this way to
accommodate the differing needs of your application programs.

Segment edit/compression is a function you can use with segments to:

— Encode or “scramble” segment data when it is on the device so only
application programs with access to the segment receive the data in decoded
form.

— Edit data so application programs can receive data in a format other than the
one in which it is stored.

— Compress data when writing a segment to the device, so the Direct Access
Storage Device (DASD) is better utilized.

A Data Capture exit routine is used to capture segment data when an
application program updates IMS databases with an insert, replace, or delete
call. This is a synchronous activity that happens within the unit of work or
application update. Captured data is used for data propagation to DB2
databases. You can also use Data Capture exit routines to perform tasks other
than data propagation.

Asynchronous Data Capture is a function you use to capture segment data
when an application program updates IMS databases with an insert, replace, or
delete call. This is an asynchronous activity that happens outside of the unit of
work or application update. Captured data is used for data propagation to DB2
databases asynchronously. You can also use Asynchronous Data Capture to
perform tasks other than data propagation.

DPROPNR (DataPropagator NonRelational) allows you to propagate the
changed data to or from IMS and DB2 both synchronously and asychronously.

Related Reading : for more information on DPROPNR see Data Propagator
NonRelational MVS/ESA An Introduction.

Multiple data set groups is a function you can use to put some segments in a
database record in data sets other than the primary data set. This can be done
without destroying the hierarchic sequence of segments in a database record.

One reason to use multiple data set groups is to accommodate the differing
needs of your applications. By using multiple data set groups, you can give an
application program fast access to the segments in which it is interested. The
application program simply bypasses the data sets containing unnecessary
segments. Another reason for using multiple data set groups is to improve
performance by, for example, separating high-use segments from low-use
segments. You might also use multiple data set groups to save space by putting
segment types whose size varies greatly from the average in a separate data
set group.

How To Define Your Database to IMS

Define the characteristics of your database to IMS by coding and generating a DBD
(database description). A DBD is a series of macro instructions that describes a
database’s organization and access method, the segments and fields in a database
record, and the relationship between types of segments.

If you have the IBM DB/DC (database/data communication) Data Dictionary, you

can use it to define your database (except for DEDBs and MSDBs). The DB/DC
Data Dictionary may contain all the information you need to produce a DBD.

Chapter 1. Introduction 15

How Application Programs View the Database

How Application Programs View the Database

You control how an application program views your database. An application
program might not need use of all the segments or fields in a database record. And
an application program may not need access to specific segments for security or
integrity purposes. An application program may not need to perform certain types of
operations on some segments or fields. For example, an application program needs
read access to a SALARY segment but not update access. You control which
segments and fields an application can view and which operations it can perform on
a segment by coding and generating a PSB (program specification block).

A PSB is a series of macro instructions that describe an application program’s
access to segments in the database. A PSB consists of one or more program
communication blocks (PCB), and each PCB describes the application program’s
ability to read and use the database. For example, an application program can have
different views and uses of the same database. An application program can access
several different databases and can have several PCBs in its PSB.

If you have the IBM DB/DC Data Dictionary, you can use it to define an application

program'’s access to the database. It can contain all the information needed to
produce a PSB.

16 IMS/ESA V6 Admin Guide: DB

Chapter 2. Participating in Reviews

About This Chapter .. .17
The Design Review . . . e 4

Role of the Database Adm|n|strator e I 4

General Information About Reviews17
DesignReview1 .18
Design Review?2 .18
Design Review 3 .. .19
Design Review4 ...
Code Inspection 1. . . 21
Who Attends Code Inspectlon 1 L 0|
Code Inspection2.20
Security Inspection . . . 2
Post-Implementation Rewew e

About This Chapter

One of the best ways to make sure a good database design is developed and
effectively implemented is to review the design at various stages in its development.
The sections of this chapter describe the reviews typically conducted during
development of a database system. The types of reviews are:

Design reviews 1, 2, 3, and 4
Code inspections 1 and 2
Security inspection
Post-implementation review

The Design Review

Design Reviews ensure that the functions being developed are adequate, the
performance is acceptable, the installation standards met, and the project is
understood and under control. Hold reviews during development of the initial
database system and, afterward, whenever a program or set of programs is being
developed to run against it.

Role of the Database Administrator

The role of database administration in the review process is an important one.
Typically, a member of the database administration staff, someone not associated
with the specific system being developed, moderates the reviews. The moderator
does more than just conduct the meeting. The moderator also looks to see what
impact development of this system has on existing or future systems. You, the
database administrator responsible for developing the system, need to participate in
all reviews.

Your role in the review process is to ensure that a good database design is
developed and then effectively implemented. The role is ongoing and provides a
supporting framework for the other database administration tasks described in this
book.

General Information About Reviews

The sections of this chapter describe reviews typically held during system
development. (For purposes of simplicity, “system” describes the object under

© Copyright IBM Corp. 1974, 1999 17

The Design Review

review. In actuality, the “system” could be a program, set of programs, or an entire
database system.) The number of reviews, who attends them, and their specific role
in the review will differ slightly from one installation to the next. What you need to
understand is the importance of the reviews and the tasks performed at them. Here
is some general information about reviews:

* People attending all reviews (in addition to database administrators) include a
review team and the system designer. The review team generally has no
responsibility for developing the system. The review team consists of a small
group of people whose purpose is to ensure continuity and objectivity from one
review to the next. The system designer writes the initial functional specifications.

* At the end of each review, make a list of issues raised during the review. These
issues are generally change requirements. Assign each issue to a specific
persons for resolution, and set a target date for resolution. If certain issues
require major changes to the system, schedule other reviews until you resolve all
major issues.

» If you have a data dictionary, update it at the end of each review to reflect any
decisions that you made. The dictionary is an important aid in keeping
information current and available especially during the first four reviews when you
make design decisions.

Design Review 1

The first design review takes place after initial functional specifications for the
system are complete. Its purpose is to ensure that all user requirements have been
identified and that design assumptions are consistent with objectives. No detailed
design for the system is or should be available at this point. The review of the
specifications will determine whether the project is ready to proceed to a more
detailed design. When design review 1 concludes successfully, its output is an
approved set of initial functional specifications.

People who attend design review 1, in addition to the regular attendees, include
someone from the organization that developed the requirement and anyone
participating in the development of detailed design. You are at the review primarily
for information. You also look at:

The relationship between data elements
Whether any of the needed data already exists

Design Review 2

The second design review takes place after final functional specifications for the
system are complete. This means the overall logic for each program in the system
is defined, as well as the interface and interactions between programs. Audit and
security requirements are defined at this point, along with most data requirements.
When design review 2 is successfully concluded, its output is an approved set of
final functional specifications.

Everyone who attended design review 1 should attend design review 2. People
from test and maintenance groups attend as observers to begin getting information
for test case design and maintenance. Those concerned with auditing and security
can also attend.

Your role in this review is still primarily to gather information. You also look at:
* Whether the specifications meet user requirements
* Whether the relationship between data items is correct

18 IMS/ESA V6 Admin Guide: DB

Design Review 2

* Whether any of the required data already exists
* Whether audit and security requirements are consistent with user requirements
* Whether audit and security requirements can be implemented

Design Review 3

The third design review takes place after initial logic specifications for the system
are complete. At this point, high level pseudo code or flowcharts are complete.
These can only be considered complete when major decision points in the logic are
defined, calls or references to external data and modules are defined, and the
general logic flow is known. All modules and external interfaces are defined at this
point, definition of data requirements is complete, and database and data files are
designed. Initial test and recovery plans are available, however, no code has been
written. When design review 3 concludes successfully, its output is an approved set
of initial logic specifications.

Everyone who attended design review 2 should attend design review 3. If the
project is large, those developing detailed design need only be present during the
review of their portion of the project.

It is possible now that logic specifications are available.

Your role in this review is to ensure that the flow of transactions is consistent with
the database design you are creating.

At this point in the design review process, you are designing hierarchies and
starting to design the database. These tasks are described in Chapter 3_Analyzing
Data Requirements” on page 23, [Chapter 4_Designing a Fast Path Database” on
page 33, [Chapter 5 Chaoosing Additional Database Functions” on page 83, and
‘Chapter 6 Databhase Design Considerations for Full Function” on page 165.

Design Review 4

The fourth design review takes place after design review 3 is completed and all
interested parties are satisfied that system design is essentially complete. No
special document is examined at this review, although final functional specifications
and either initial or final logic specifications are available. The primary objective of
this review is to make sure that system performance will be acceptable.

At this point in the development process, sufficient flexibility exists to make
necessary adjustments to the design, since no code exists but detailed design is
complete. Although some design changes undoubtedly occur once coding is begun;
these changes should not impact the entire system. Although no code exists at this
point, you can and should run tests to check that the database you have designed
will produce the results you expect.

When design review 4 concludes successfully, database design is considered
complete.

The people who attend all design reviews (moderator, review team, database
administrator, and system designer) should attend design review 4. Others attend
only as specific detail is required.

At this point in the review process, you are almost finished with the database
administration tasks along with designing and testing your database. These tasks

Chapter 2. Participating in Reviews 19

Design Review 4

are described in Chapter 3. Analyzing Data Requirements” on page 23, IChapter 4]
Designing a Fast Path Database” on page 33, and [Chapter 9. Developing Your Tesi
Database” on page 264.

Code Inspection 1

The first code inspection takes place after final logic specifications for the system
are complete.

At this point, no code is written but the final functional specifications have been
interpreted. Both pseudo code and flowcharts have a statement or logic box for
every 5 to 25 lines of assembler language code, 5 to 15 lines of COBOL code, or 5
to 15 lines of PL/I code that needs writing. In addition, module prologues are
written, and entry and exit logic along with all data areas are defined.

The objective of this review is to ensure that the correctly developed logic interprets
the functional specification. Code inspection 1 also provides an opportunity to
review the logic flow for any performance implications or problems. When code
inspection 1 successfully concludes, its output is an approved set of final logic
specifications.

Who Attends Code Inspection 1

Code inspection 1 is attended primarily by those doing the coding. People who
attend all design reviews (moderator, review team, database administrator, and
system designer) also attend the code inspection 1. Testing people present the test
cases that will be used to validate the code, while maintenance people are there to
learn and evaluate maintainability of the database.

Your role in this review is now a less active one than it has been. You are there to
ensure that everyone adheres to the use of data and access sequences defined in
the previous reviews.

At this point in the review process, you are starting the database administration

tasks defined in EChapter 9 Developing Your Test Datahase” an page 265,
[Chapter 11 Implementing Your Database Design” an page 274, and tChapter 121

Code Inspection 2

The code inspection 2 takes place after coding is complete and before testing by
the test organization begins. The objective of the second code inspection is to make
sure module logic matches pseudo code or flowcharts. Interface and register
conventions along with the general quality of the code are checked. Documentation
and maintainability of the code are evaluated.

Everyone who attended code inspection 1 should attend code inspection 2.
Your role in this review is the same as your role in code inspection 1.
At this point in the review process, you are almost finished with the database

administration tasks of developing a test database, implementing the database
design, and loading the database.

20 IMS/ESA V6 Admin Guide: DB

Code Inspection 2

During your testing of the database, you should run the DB monitor (described in

[Chapter 13. Monitoring Your Database” on page 309) to make sure your database

still meets the performance expectations you have established.

Security Inspection

The security inspection is optional but highly recommended if security is a
significant concern. Security inspections can take place at any appropriate point in
the system development process. Define security strategy early, and check its
implementation during design reviews. This particular security inspection takes
place after all unit and integration testing is complete. The purpose of the review is
to look for any code that violates the security of system interfaces, secured
databases, tables, or other high-risk items.

People who attend the security inspection review include the moderator, system
designer, designated security officer, and database administrator. Because the
database administrator is responsible for implementing and monitoring the security
of the database, you might, in fact, be the designated security officer. If security is a
significant concern, you might prefer that the review team not attend this inspection.

During this and other security inspection, you are involved in the database

administration task of establishing security defined in tChapter 16 Estahlishing
Em.mn—pagﬂ.oj" .

Post-Implementation Review

It is highly recommended that you conduct a post-implementation review. The
post-implementation review is typically held about six months after the database
system is running. Its objective is to make sure the system is meeting user
requirements.

Everyone who has been involved in design and implementation of the database
system should attend the post-implementation review. If the system is not meeting
user requirements, the output of this review should be a plan to correct design or
performance problems to meet user requirements.

Chapter 2. Participating in Reviews 21

Post-Implementation Review

22 IMS/ESA V6 Admin Guide: DB

Chapter 3. Analyzing Data Requirements

About This Chapter .. .23
Local View . . . e e 24
Local View 1. Current Roster Co e e25
List of Current Roster Data Elements e e 25
Current Roster Mappings25
Local View 2. Schedule of Classes . . . e e26
List of Schedule of Classes Data Elements e26
Schedule of Classes Mappings.26
Local View 3. Instructor Skills Report.26
List of Instructor Skills Report Data Elements.26
Instructor Skills Report Mappings27
Local View 4. Instructor Schedules . . . e e e e 2
List of Instructor Schedules Data EIements - 4
Instructor Schedules Mappings27
Designing a Conceptual Data Structure.28
Implementing the Structure with DL/,29
Assigning Data Elements to Segments29
Resolving Data Conflicts30
Analyzing Requirements for Secondary Indexes G 10)
Analyzing Requirements for Logical Relationships30

About This Chapter

One of the early steps of database design is developing a conceptual data structure
that satisfies your end user’s processing requirements. So, before you can develop
a conceptual data structure, familiarize yourself with your end user’s processing and
data requirements.

Developing a data structure is a process of combining the data requirements of
each of the tasks to be performed, into one or more data structures that satisfy
those requirements. The method explained here describes how to use the local
views developed for each business process to develop a data structure.

A business process, in an application, is one of the tasks your end user needs
done. For example, in an education application, printing a class roster is a business
process.

A local view describes a conceptual data structure and the relationships between
the pieces of data in the structure for one business process.

To understand the method explained in this chapter, you need to be familiar with the
terminology and examples explained in the introductory chapter on application
design in IMS/ESA Application Programming: Design Guida. That chapter of the
design guide explains how to develop local views for the business processes in an
application.

Included in this chapter are the following topics:

Local View
Introduces you to the local view examples and explains the information that
makes up a local view.

© Copyright IBM Corp. 1974, 1999 23

Designing a Conceptual Data Structure
Explains how you can develop a conceptual data structure based on the
local views for the business processes in an application.

Implementing the Structure with data language 1 (DL/I)
Explains how you implement the structure you have developed with DL/I.
The considerations explained are: assigning data elements to segments
and resolving data conflicts with DL/I.

Local View

Designing a structure that satisfies the data requirements of the business processes
in an application requires an understanding of the requirements for each of those
business processes. A local view of the business process describes these
requirements because the local view provides:

» Alist of all the data elements the process requires and their controlling keys

* The conceptual data structure developed for each process, showing how the data
elements are grouped into data aggregates

* The mappings between the data aggregates in each process

This chapter uses a company that provides technical education to its customers as
an example. The education company has one headquarters, called HQ, and several
local education centers, called Ed Centers. HQ develops the courses offered at
each of the Ed Centers. Each Ed Center is responsible for scheduling classes it will
offer and for enrolling students for those classes.

A class is a single offering of a course on a specific date at an Ed Center. There
might be several offerings of one course at different Ed Centers, and each of these
offerings is a separate class.

The local views used in this chapter are for the following business processes in an
education application:

Current Roster
Schedule of Classes
Instructor Skills Report
Instructor Schedules

The following information summarizes the local views developed in the introductory

chapter on application design in IMS/ESA Application Programming: Design Guida.

Notes for local views

* The asterisks (*) in the data structures for each of the local views indicate the
data elements that identify the data aggregate. This is the data aggregate’s key;
some data aggregates require more than one data element to uniquely identify
them.

* The mappings between the data aggregates in each process are given in
mapping notation. A one-to-many mapping means for each A aggregate there are
one or more B aggregates; shown like this: «———»»

A many-to-many relationship means that for each A aggregate there are many B
aggregates, and for each B aggregate, there are many A aggregates; shown as
follows: «¢———»

24 IMS/ESA V6 Admin Guide: DB

Local View 1. Current Roster

Local View

List of Current Roster Data Elements
The following is a list of the data elements and their descriptions for our technical

education provider example.

Data Element

Description

CRSNAME Course name
CRSCODE Course code
LENGTH Length of class
EDCNTR Ed Center offering class
DATE Date class is offered
CUST Customer that sent student
LOCTN Location of customer
STUSEQ# Student’s sequence number
STUNAME Student’s name
STATUS Student’s enrollment status
ABSENCE Student’s absences
GRADE Student’s grade for class
INSTRS Instructors for class
COURSE
«CRSCODE
CRSNAME
LENGTH
CUSTOMER/
LOCATION CLASSy
*CUST *EDCNTR
*LOCTN *DATE
JSTUDENT JNSTRUCTOR
~STUSEQ# .
STUNAME INSTRS
STATUS
ABSENCE
GRADE

Figure 9. Current Roster Conceptual Data Structure

Current Roster Mappings
The mappings for the current roster are:

Course «—» Class

Class «—» Student

Class «—» Instructor
Customer/locatione«——» Student

Chapter 3. Analyzing Data Requirements 25

Local View

Local View 2. Schedule of Classes

List of Schedule of Classes Data Elements
The following is a list of the schedule of classes and their descriptions for our

example.
Data Element Description
CRSCODE Course code
CRSNAME Course name
LENGTH Length of course
PRICE Price of course
EDCNTR Ed Center where class is offered
DATE Dates when class is offered at a particular Ed
Center
COURSE
~ CRSCODE
CRSNAME
LENGTH
PRICE
CLASSy
*EDCNTR
*DATE

Figure 10. Schedule of Classes Conceptual Data Structure

Schedule of Classes Mappings
The only mapping for this local view is:

Course «—— » Class

Local View 3. Instructor Skills Report

26

List of Instructor Skills Report Data Elements
The following is a list of the instructor skills report data elements and their

descriptions for our technical education provider example.

Data Element Description
INSTR Instructor
CRSCODE Course code
CRSNAME Course name

IMS/ESA V6 Admin Guide: DB

INSTRUCTOR

*INSTR

COUR§E

~CRSCODE
CRSNAME

Figure 11. Instructor Skills Report Conceptual Data Structure

Instructor Skills Report Mappings
The only mapping for this local view is:

Instructor «—» Course

Local View 4. Instructor Schedules

List of Instructor Schedules Data Elements

Local View

The following is a list of the instructor schedules data elements and their

descriptions for our example.

Data Element Description
INSTR Instructor
CRSNAME Course name
CRSCODE Course code
EDCNTR Ed Center

DATE Date when class is offered

INSTRUCTOR

*INSTR

COUR§E

*CRSCODE
CRSNAME

CLAS%

*EDCNTR
*DATE

Figure 12. Instructor Schedules Conceptual Data Structure

Instructor Schedules Mappings
The mappings for this local view are:

Instructor «—» Course
Course «— > Class

Chapter 3. Analyzing Data Requirements 27

Designing a Conceptual Data Structure

Designing a Conceptual Data Structure

Analyzing the mappings from all the local views is one of the first steps in designing
a conceptual data structure. Two kinds of mappings affect the segments:
one-to-many and many-to-many.

A one-to-many mapping means that for each segment A there are one or more
segment Bs; shown like this: A «———» B. For example, in the Current Roster
(Eigure 9 on page 25), there is a one-to-many relationship between course and
class. For each course, there can be several classes scheduled, but a class is
associated with only one course. A one-to-many relationship can be represented as
a dependent relationship: In the course/class example, the classes are dependent
on a particular course.

A many-to-many mapping means that for each segment A there are many segment
Bs, and for each segment B there are many segment As. This is shown like this: A
<««—» B. A many-to-many relationship is not a dependent relationship, since
it usually occurs between data aggregates in two separate data structures and
indicates a conflict in the way two business processes need to process that data.

When you implement a data structure with DL/I, there are three strategies you can
apply to solve data conflicts:

Defining logical relationships
Establishing secondary indexes
Storing the data in two places (also know as, carrying duplicate data).

Related Reading : [Resalving Data Caonflicts” on page 30 explains the kinds of

data conflicts that secondary indexes and logical relationships can resolve.

The first step in designing a conceptual data structure is to combine the mappings
of all the local views. To do this, go through the mappings for each local view and
make a consolidated list of mappings (see [ahle). As you review the mappings:

» Do not record duplicate mappings. At this stage you need to cover each
variation, not each occurrence.

» If two data aggregates in different local views have opposite mappings, use the
more complex mapping. This will include both mappings when they are
combined. For example, if local view #1 has the mapping A «——» B, and
local view #2 has the mapping A ««———> B, use a mapping that includes
both these mappings. In this case, this is A «<¢«——» B.

Table 2. Combined Mappings for Local Views

Mapping Local View
Course «— > Class 1,2, 4
Class «———» Student 1

Class «———» Instructor 1
Customer/location «———» Student 1
Instructor «————» Course 3,4

Using the combined mappings, you can construct the data structures shown in

28 IMS/ESA V6 Admin Guide: DB

Designing a Conceptual Data Structure

CusT COURSE INSTR

v v v

STUDENT CLASS COURSE

STUDENT INSTR

Figure 13. Education Data Structures

Two conflicts exist in these data structures. First, STUDENT is dependent on both
CUST and CLASS. Second, there is an opposite mapping between COURSE and
INSTR, and INSTR and COURSE. If you implemented these structures with DL/I,

you could use logical relationships to resolve the conflicts. LAnaI;Lung_Re.q.Lute_me_n.td
for L agical Relationships” on page 30d explains how.

Implementing the Structure with DL/I

When you implement a data structure with DL/I, you implement it as a hierarchy. A
hierarchy is made up of segments. In a hierarchy, a one-to-many relationship is
called a parent/child relationship. In a hierarchy, each segment can have one or
more children, but it can have only one parent.

When you use DL/I, consider how each of the data elements in the structure you
have developed should be grouped into segments. Also, consider how DL/I can
solve any existing data conflicts in the structure. The following 2 sections of this
chapter explains how you assign data elements to segments, and how DL/l can
resolve data conflicts.

Assigning Data Elements to Segments

Once you determine how data elements are related in a hierarchy, associate each
of the data elements with a segment. To do this, construct a list of all the keys and
their associated data elements. If a key and its associated data element appear in
several local views, only record the association once.

List the data elements next to their keys, as shown in the following figure. The key
and its associated data elements become the segment content.

Data Aggregate Key Data Element

COURSE CRSCODE CRSNAME, LENGTH, PRICE

CUSTOMER/LOCATION CUST, LOCTN

CLASS EDCNTR, DATE

STUDENT STUSEQ# STUNAME, ABSENCE, STATUS,
GRADE

INSTRUCTOR INSTR

If a data element is associated with different keys in different local views, then you
must decide which segment will contain the data element. The other thing you can
do is to store duplicate data. To avoid doing this, store the data element with the
key that is highest in the hierarchy. For example, if the keys ALPHA and BETA were

Chapter 3. Analyzing Data Requirements 29

Implementing the Structure with DL/I

both associated with the data element XYZ (one in local view 1 and one in local
view 2), and ALPHA were higher in the hierarchy, store XYZ with ALPHA to avoid
having to repeat it.

Resolving Data Conflicts

30

The data structure you design can fall short of the application’s processing
requirements. For example, one business process might need to retrieve a
particular segment by a field other than the one you have chosen as the key field.
Another business process might need to associate segments from two or more
different data structures. Once you have identified these kinds of conflicts in a data
structure and are using DL/I, you can look at two DL/I options that can help you
resolve the conflicts: secondary indexing and logical relationships.

Analyzing Requirements for Secondary Indexes
Secondary indexing allows a segment to be identified by a field other than its key
field.

Suppose that you are part of our technical education company and need to
determine (from a terminal) whether a particular student is enrolled in a class. If you
are unsure about the student’s enrollment status, you probably do not know the
student’s sequence number. The key of the STUDENT segment, however, is
STUSEQ#. Let's say you issue a request for a STUDENT segment, and identify the
segment you need by the student’s name (STUNAME). Instead of the student’s
sequence number (STUSEQ#), IMS searches through all STUDENT segments to
find that one. Assuming the STUDENT segments are stored in order of student
sequence numbers, IMS has no way of knowing where the STUDENT segment is
just by having the STUNAME.

Using a secondary index in this example is like making STUNAME the key field of
the STUDENT segment for this business process. Other business processes can
still process this segment with STUSEQ# as the key.

To do this, you can index the STUDENT segment on STUNAME in the secondary
index. You can index any field in a segment. When you index a field, indicating to
IMS that you are using a secondary index for that segment, IMS processes the
segment as though the indexed field were the key.

Analyzing Requirements for Logical Relationships
When a business process needs to associate segments from different hierarchies,
logical relationships can make that possible.

Defining logical relationships lets you create a hierarchic structure that does not
exist in storage but can be processed as though it does. You can relate segments
in separate hierarchies. The data structure created from these logical relationships
is called a logical structure. To relate segments in separate hierarchies, store the
segment in the path by which it is accessed most frequently. Store a pointer to the
segment in the path where it is accessed less frequently.

In the hierarchy shown in Eigure 13 on page 29, two possible parents exist for the
STUDENT segment. If the CUST segment is part of an existing database, you can
define a logical relationship between the CUST segment and the STUDENT
segment. You would then have the hierarchies shown in Eigure 14 on page 31. The
CUST/STUDENT hierarchy would be a logical structure.

IMS/ESA V6 Admin Guide: DB

Implementing the Structure with DL/I

COURSE

CusT CLASS

TSTUDENT | STUDENT INSTR

Figure 14. Education Hierarchies

This kind of logical relationship is called unidirectional, because the relationship is
“‘one way.”

The other conflict you can see in Eigure 13 an page 29, is the one between

COURSE and INSTR. For one course there are several classes, and for one class
there are several instructors (COURSE «——» CLASS «—»» INSTR), but
each instructor can teach several courses (INSTR «——» COURSE). You can
resolve this conflict by using a bidirectional logical relationship. You can store the
INSTR segment in a separate hierarchy, and store a pointer to it in the INSTR
segment in the course hierarchy. You can also store the COURSE segment in the
course hierarchy, and store a pointer to it in the COURSE segment in the INSTR
hierarchy. This bidirectional logical relationship would give you the two hierarchies
shown in Eigure 19, eliminating the need to carry duplicate data.

Course Hierarchy Instructor Hierarchy
COURSE INSTR
CLASS 4COURSE
STUDENT + INSTR

Figure 15. Bidirectional Logical Relationships

Chapter 3. Analyzing Data Requirements 31

Implementing the Structure with DL/I

32 IMS/ESA V6 Admin Guide: DB

Chapter 4. Designing a Fast Path Database

Choosing a Database Type

Sequential Storage Method
Direct Storage Method . .
Performance Considerations Overvrew .
IMS Databases. .
Databases Supported wrth DBCTL
Databases Supported with DCCTL
HSAM Databases . .
When to Use HSAM .
How an HSAM Record Is Stored
DL/I Calls against an HSAM Database .
HISAM Databases
When to Use HISAM.
How a HISAM Record is Stored
Accessing Segments. .
Inserting Root Segments Usmg VSAM .
Inserting Dependent Segments .
Deleting Segments
Replacing Segments.
Criteria for Selecting HISAM . .
SHSAM, SHISAM and GSAM Databases .

Situation 1 - Converting from a non-database system to IMS .

Situation 2 - Passing data .
SHSAM Databases
SHISAM Databases . . .
SHISAM IMS Symbolic Checkpomt CaII
GSAM Databases .
GSAM IMS Symbolic Checkpornt CaII
HDAM and HIDAM Databases .
When to Use HDAM .
When to Use HIDAM. .
What You Need to Know About HD Databases .

General Format of HD Databases and Use of Special Flelds .

How HDAM Records Are Stored .
When Not Enough Root Storage Room EX|sts
How HIDAM Records Are Stored .
Accessing Segments.

Inserting Root Segments .

Inserting Dependent Segments .

Deleting Segments

Replacing Segments.

How the HD Space Search Algorrthm Works
Locking Protocols .

Registering Databases .

. 33
.34
.34
. 34
. 35
. 36
. 36
. 36
. 37
. 37
. 37
. 40
. 40
.41
. 43
. 43
. 45
. 47
. 48
. 48
. 49
. 49
. 49
. 50
. 50
. 50
. 51
. 51
. 52
. 53
. 54
. 54
. 62
. 65
. 66
. 67
.72
. 73
. 76
.77
.77
. 78
. 79
. 81

Choosing a Database Type

IMS allows you to define nine different database types. Each type has different
organization processing characteristics. Except for DEDB and MSDB, all the
database types are discussed in this chapter. For information on DEDBs and
MSDBs, see tData Entry Databases (DEDBs)” an page 201 and L

© Copyright IBM Corp. 1974, 1999

Choosing a Database Type

Understanding how the database types differ, enables you to pick the type that best
suits your application’s processing requirements.

Each database type has its own access method. The following figure lists each type
and the access method it uses:

Type of Database Access Method

HSAM Hierarchical Sequential Access Method

HISAM Hierarchical Indexed Sequential Access Method

SHSAM Simple Hierarchical Sequential Access Method

SHISAM Simple Hierarchical Indexed Sequential Access
Method

GSAM 1t Generalized Sequential Access Method

HDAM Hierarchical Direct Access Method

HIDAM Hierarchical Indexed Direct Access Method

DEDB Data Entry Database

MSDB Main Storage Database

Based on the access method used, the various databases can be classified into two
groups: sequential storage and direct storage.

Sequential Storage Method

The first four databases in the list use the sequential method of accessing data.
With this method, the hierarchic sequence of segments in the database is
maintained by putting segments in storage locations that are physically adjacent to
each other. GSAM databases also use the sequential method of accessing data,
but for reasons you will see later, no concept of hierarchy, database record, or
segment exists in GSAM databases.

Direct Storage Method

HDAM and HIDAM databases use the direct method of accessing data. With this
method, the hierarchic sequence of segments is maintained by putting
direct-address pointers in each segment’s prefix.

For quick reference, see [[able 9 on page 213 for a summary of HSAM, HISAM,
HDAM, HIDAM, DEDB, and MSDB database characteristics.

Performance Considerations Overview

All databases are not created equal. You will want to make an informed decision

regarding the type of database organizations which will best serve your purposes.
The following figure briefly summarizes performance characteristics of the various
database types; highlighting efficiencies and deficiencies of hierarchic sequential,
hierarchic direct and general sequential databases.

For information on DEDBs and MSDBs, see tData Entry Databases (DEDRs)” od
page 201 and Main Storage Databases (MSDRBs)” on page 195,

1. Not applicable to CICS DBCTL

34

IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

Database Types: Performance Considerations

_H§
Hierarchic Sequential

General Sequential

GS

‘segments linked by physical contiguity|

Supported by DBCTL Supported by DBCTL

Physical sequential Hierarchic indexed
access to roots & access to roots
dependents stored on sequential access to
tape or DASD dependents stored on

DASD
ISRT on DB load only

GU/GN/GNP allowed VSAM accessible all

DL/I calls allowed
DB update done by

merging DBs & writing Index is on root

anew one segment sequence
field; sequential &

QSAM or BSAM direct access available

accessible on the basis of the

Good for low-use files index

Good when direct
access to roots &
sequential processing
of segments is needed
in low-update DBs

Space efficient but non-
sequential access is

time inefficient
Less space efficient the
more updates occur -
Supported by DBCTL access time is efficient
with SSA qualified calls
Simple hierarchic

HD

Hierarchic Direct

segments Iink%—:nd by pointers

sequential access to

root segments only ‘ SHISAM ‘

‘ GSAM ‘ ‘ HDAM ‘
Supported by DBCTL Supported by DBCTL
Hashing access to Indexed access to
roots; sequential access roots; pointer access to
by secondary index to dependents
segments .
Stored on DASD in
Stored on DASD in VSAM ESDS or OSAM
VSAM ESDS or OSAM DS
DS
All DL/I calls allowed
All DL/I calls allowed
Good for random &
Good for direct access sequential access to
to records records & random
access to segment
paths in DB records
hierarchic pointers \ \ child/twin pointers
Hierarchic sequential Direct access to ptrs_’
access to dependents better direct access
better per‘formance than performance but more
child/twin p_OinterS less disk space required by
space required additional index VSAM
ESDS DB
| GSAM |

ISRT on DB load onl
GU/GN/GNP aIIowedy Supported by DBCTL
BSAM/QSAM

accessible Simple indexed

hierarchic sequential
Updated via DB reload @CCess to root
segments only

VSAM accessible all
DL/I calls allowed

Existing DB restricts:

- checkpoints

- restarts

- DLET/ISRT/REPL)
Allows IMS symbolic

Good for conversion to checkpoint calls &
IMS from non-DB restart from checkpts
system & for passing (not VSAM loaded
data DBs)

Space efficient Accessible from a
Non-sequential access message processing
time inefficient region

Good for conversion to
IMS for non-DB system
& for passing data

Less space efficient
Non-sequential access
is time efficient.

Figure 16. Performance Considerations for Different Database Types

IMS Databases

Supported by
DCCTL

- no hierarchy
- no database

records
- no segments or

keys

No DLET or REPL
but ISRT adds
records at end of DS
on existing DB
GN/GU processed in
batch or BMP region
only

Good for conversion
to IMS from non-DB

|
| BSAM/QSAM

Fixed or variable
length records

Fixed, variable, or
undefined length

usable records usable
VSAM ESDS DASD BSAM/QSAM DS
stored tape or DASD stored
IMS symbolic IMS symbolic

checkpoint call but
no restart from
checkpoints

checkpoint calls &
restart from
checkpoints allowed

IMS databases are hierarchic databases that are accessed through Data Language
| (DL/I calls). IMS makes it possible for application programs to retrieve, replace,
delete, and add segments to IMS databases. CICS online programs can access the
same IMS database concurrently, however, an IMS batch program must have
exclusive access to the database (if you are not participating in IMS data sharing).

Chapter 4. Designing a Fast Path Database 35

Choosing a Database Type

If you have batch jobs that currently access IMS databases through IMS data
sharing, you can convert them to run as BMPs directly accessing databases
through DBCTL, thereby improving performance. You can additionally convert
current batch programs to BMPs to access DEDBs.

Databases Supported with DBCTL
Database Control (DBCTL) supports all IMS full-function databases:
HSAM
HISAM
SHSAM
SHISAM
HDAM
HIDAM

GSAM databases can be accessed only in IMS BMP regions and are not available
to transaction-managers in a DBCTL environment. Databases can be accessed
through DBCTL from IMS BMP regions, as well as, from independent
transaction-management subsystems. Only batch-oriented BMP programs are
supported because DBCTL provides no message or transaction support.

Databases Supported with DCCTL

Data communications control (DCCTL) supports GSAM databases in BMP regions
and DB2 databases through the External Subsystem Attach Facility. DCCTL does
not support full-function databases.

Related Reading: Information on ESAF is contained in IMS/ESA Qperationd
Guidd.

HSAM Databases

Hierarchical sequential access method (HSAM) databases use the sequential
method of accessing data. All database records and all segments within each
database record are physically adjacent in storage. An HSAM database can be
stored on tape or on a direct-access storage device. They are processed using
either batch sequential access method (BSAM) or queued sequential access
method (QSAM) as the operating system access method. Specify your access
method on the PROCOPT= parameter in the PCB. If you specify PROCOPT=GS,
QSAM is always used. If you specify PROCOPT=G, BSAM is used.

HSAM data sets are loaded with root segments in ascending key sequence (if keys
exist for the root) and dependent segments in hierarchic sequence. You do not
need to define a key field in root segments. You must, however, present segments
to the load program in the order in which they must be loaded. HSAM data sets use
a fixed-length, unblocked record format (RECFM=F), which means that the logical
record length is the same as the physical block size.

HSAM databases can only be updated by rewriting them. Delete (DLET) and

replace (REPL) calls are not allowed, and insert (ISRT) calls are only allowed when
the database is being loaded. Although the field-level sensitivity option can be used
with HSAM databases the following options cannot be used with HSAM databases:

36 IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

* Multiple data set groups

» Logical relationships

» Secondary indexing

* Variable-length segments

* Segment edit/compression facility

» Data Capture exit routines

* Asynchronous data capture

* Logging, recovery, or reorganization

Multiple positioning and multiple PCBs cannot be used in HSAM databases.

When to Use HSAM

Although the uses of HSAM are limited because of its processing characteristics, it
is used for applications requiring sequential processing only. Typically, HSAM is
used for low-use files. These are files containing, for example, audit trails, statistical
reports or files containing historical or archive data that has been purged from the
main database.

How an HSAM Record Is Stored

Segments in an HSAM database are loaded in the order in which you present them
to the load program. You should present all segments within a database record in
hierarchic sequence. If a sequence field has been defined for root segments, you
should present database records to the load program in ascending root key
sequence. Eigure 17 on page 38 shows one HSAM database record and how it
appears when stored on tape.

In the data set, a database record is stored in one or more consecutive blocks. You
define what the block size will be. Each block is filled with segments of the
database record until there is not enough space left in the block to store the next
segment. When this happens, the remaining space in the block is padded with
zeros and the next segment is stored in the next consecutive block. When the last
segment of a database record has been stored in a block, any unused space, if
sufficient, is filled with segments from the next database record.

In storage, an HSAM segment (see [Eigure 17 on page 3d) consists of a 2-byte

prefix followed by user data. The first byte of the prefix is the segment code, which
identifies the segment type to IMS. This number can be from 1 to 255. The segment
code is assigned to the segment by IMS in ascending sequence, starting with the
root segment and continuing through all dependents in hierarchic sequence. The
second byte of the prefix is the delete byte. Because DLET calls cannot be used
against an HSAM database, the second byte is not used.

DL/l Calls against an HSAM Database

Initial entry to an HSAM database is through GU or GN calls. When the first call is
issued, the search for the desired segment starts at the beginning of the database
and passes sequentially through all segments stored in the database until the
desired segment is reached. After the desired segment is reached, its position is
used as the starting position for any additional calls that process the database in a
forward direction.

Chapter 4. Designing a Fast Path Database 37

Choosing a Database Type

SKILL

NAME
OneHSAMdata-
NAME baserecord
A 3

NAME 2

EDUC

EDUC 3

EXPR 2 g EDUC 2

The same HSAM
database record
storedontape

SKILL1 NAME1 EXPR1 | EDUCH NAME2 | EXPR2 | EXPR3 | EXPR4 NAME3 | EDUC2 | EDUC3

Block #1 Block #2 Block #3

Beginning of next T
database record

Prefix Userdata
Lo The contentof
Del
fjé):em beteete NAMET data onesegmentin
Y)) the HSAMrecord

Q¢

Figure 17. HSAM Database Record Stored on Tape

Once position in an HSAM database has been established, the way in which GU
calls are handled depends on whether a sequence field is defined for the root
segment and what processing options are in effect (see M).

38 IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

GUcall
Issued

l

Root
segment No
sequence field
defined?

Searchforward
fromcurrent
positionin
database

SSA
Key<

SSAKeyon
lastcall?

PSB No
PROCOPT

Backspace 2 Searchforward
blocks frombeginning
Readforwardone ofdatabase

v
® ®

End

Figure 18. GU Calls against an HSAM Database

No Sequence Field Defined: If no sequence field has been defined, each GU call
causes the search for the desired segment to start at the beginning of the database
regardless of current position. This allows direct processing of the HSAM database.
The processing, however, is restricted to one volume.

Sequence Field Defined: If a sequence field has been defined and the GU call
retrieves a segment that is forward in the database, the search starts from the
current position and moves forward to the desired segment. If access to the desired
segment requires backward movement in the database, the PROCOPT=
parameters G or GS (specified during PSBGEN) determine how backward
movement is accomplished. If you specify PROCOPT=GS, (that is, the database is
read using QSAM), the search for the desired segment starts at the beginning of
the database and moves forward. If you specify PROCOPY=G, (that is, the
database is read using BSAM), the search moves backward in the database. This is
accomplished by backspacing over the block just read and the block previous to it,
then reading this previous block forward until the desired segment is found.

Because of the way in which segments are accessed in an HSAM database, it is
most practical to access root segments sequentially and dependent segments in

Chapter 4. Designing a Fast Path Database 39

Choosing a Database Type

hierarchic sequence within a database record. Other methods of access, involving
backspacing, rewinding of the tape, or scanning the data set from the beginning,
can be time consuming.

As stated previously, DLET and REPL calls cannot be issued against an HSAM
database. ISRT calls are allowed only when the database is being loaded. To
update an HSAM database, you must write a program that merges the current
HSAM database and the update data. The update data can be in one or more files.
The output data set created by this process is the new updated HSAM database.
m% illustrates this process.

ExistingHSAM database

New (updated)
Q HSAMdatabase
ﬁ

Your
program

Updatefile L »
!H i

Figure 19. Updating an HSAM Database

HISAM Databases

40

In a hierarchical indexed sequential access method (HISAM) database, as with an
HSAM database, segments in each database record are related through physical
adjacency in storage. Unlike HSAM, however, each HISAM database record is
indexed, allowing direct access to a database record. In defining a HISAM
database, you must define a unique sequence field in each root segment. These
sequence fields are then used to construct an index to root segments (and
therefore database records) in the database.

HISAM databases are stored on direct-access devices. They can be processed
using the virtual storage access method (VSAM) utility. Unlike HSAM, all DL/I calls
can be issued against a HISAM database. In addition, the following options are
available for HISAM databases:

» Logical relationships

* Secondary indexing

» Variable-length segments

* Segment edit/compression facility

» Data Capture exit routines

* Field-level sensitivity

» Logging, recovery, and reorganization

Except for logging and recovery, each of these options is discussed in detail in Iater
parts of this book. Information on logging and recovery is contained in

DBRC Guide and Referenca and IMS/ESA DRRC Guide and Referenca.

When to Use HISAM

HISAM is typically used for databases that require direct access to database
records and sequential processing of segments in a database record. It is a good
candidate for databases with the following characteristics:

IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

* Most database records are about the same size.

* The database does not consist of relatively few root segments and a large
number of dependent segments.

» Applications do not depend on a heavy volume of root segments being inserted
after the database is initially loaded.

¢ Deletion of database records is minimal.

More detailed information on the uses of HISAM, requiring a working knowledge of
how a HISAM database is organized and processed, is under Iﬁg

How a HISAM Record is Stored

HISAM database records are stored in two data sets. The first data set, called the
primary data set, contains an index and all segments in a database record that can
fit in one logical record. The index provides direct access to the root segment (and
therefore to database records). The second data set, called the overflow data set,
contains all segments in the database record that cannot fit in the primary data set.
A key-sequenced data set (KSDS) is the primary data set and an entry-sequenced
data set (ESDS) is the overflow data set.

There are several things you need to know about storage of HISAM database
records:

* You define the logical record length of both the primary and overflow data set
(subject to the rules listed later in this chapter). The logical record length can be
different for each data set. This allows you to define the logical record length in
the primary data set as large enough to hold an “average” database record or the
most frequently accessed segments in the database record. Logical record length
in the overflow data set can then be defined (subject to some restrictions) as
whatever is most efficient given the characteristics of your database records.

» Logical records are grouped into control intervals (CIs). A control interval is the
unit of data transferred between an 1/O device and storage. You define the size
of Cls.

« Each database record starts at the beginning of a logical record in the primary
data set. A database record can only occupy one logical record in the primary
data set, but overflow segments of the database record can occupy more than
one logical record in the overflow data set.

* Segments in a database record cannot be split and stored across two logical
records. Because of this and because each database record starts a new logical
record, unused space exists at the end of many logical records. When the
database is initially loaded, IMS inserts a root segment with a key of all X'FF's as
the last root segment in the database.

Eigure 20 an page 42 shows four HISAM database records as they are initially
stored on the primary and overflow data sets.

In storage, a HISAM segment (see m) consists of a 2-byte prefix followed by
user data. The first byte of the prefix is the segment code, which identifies the
segment type to IMS. This number can be from 1 to 255. The segment code is
assigned to the segment by IMS in ascending sequence, starting with the root
segment and continuing through all dependents in hierarchic sequence. The second
byte of the prefix is the delete byte.

Each logical record in the primary data set contains the root plus all dependents of
the root (in hierarchic sequence) for which there is enough space. The remaining

Chapter 4. Designing a Fast Path Database 41

Choosing a Database Type

42

segments of the database record are put in the overflow data set (again in
hierarchic sequence). The two “parts” of the database record are chained together
with a direct-address pointer. When overflow segments in a database record use
more than one logical record in the overflow data set (the case for the first and
second database record in W), the logical records are also chained together
with a direct-address pointer. Note in the figure that HISAM indexes do not contain
a pointer to each root segment in the database. Rather, they point to the highest
root key in each block or CI.

SALARY

SALARY

FourHISAM
database
records

PRIMARY DATA SET

9 SKILL1 | NAME1 | EDUC1 — |
SKILL2 | NAME3 | EXPR3 —— |
\\ SKILL3
SKILL4
| Prefix | Userdata |
Segment Delete .
code byte SKILL4 data

T ¢

|
l

OVERFLOW DATA SET

EDUC2

EDUC3

NAME2

EXPR1

EXPR2

SALARY
1

SALARY
2

NAME4

EDUC4

EDUCS5

v

EDUC6 ‘

Figure 20. HISAM Database Records in Storage

IMS/ESA V6 Admin Guide: DB

N

Thesame
HISAM data-
base records
instorage

The content of
one segment
inthe HISAM
record

Choosing a Database Type

l_ Diagnosis, Modification or Tuning Information

Eigure 21 shows the structure of a logical record in a HISAM database.

|_ End of Diagnosis, Modification or Tuning Information
|

RBA I
(relative Segment Segment | Segment |Unused
byte code of 0 [space
address) |
[
Bytes | 4 Varies 1 Varies

Figure 21. Format of a Logical Record in a HISAM Database

l_ Diagnosis, Modification or Tuning Information

Logical Record

* In a logical record, the first 4 bytes are a direct-address pointer to the next logical
record in the database record. This pointer maintains all logical records in a
database record in correct sequence. The last logical record in a database record
contains zeros in this field.

* Following the pointer are one or more segments of the database record in
hierarchic sequence.

* Following the segments is a 1-byte segment code of 0. It says that the last
segment in the logical record has been reached.

|_ End of Diagnosis, Modification or Tuning Information

Accessing Segments
In HISAM, when an application program issues a call with a segment search
argument (SSA) qualified on the key of the root segment, the segment is found by:

1. Searching the index for the first pointer with a value greater than or equal to the
specified root key (the index points to the highest root key in each CI)

2. Following the index pointer to the correct ClI

3. Searching this CI for the correct logical record (the root key value is compared
with each root key in the CI)

4. When the correct logical record (and therefore database record) is found,
searching sequentially through it for the specified segment

If an application program issues a GU call with an unqualified SSA for a root
segment or with an SSA qualified on other than the root key, the HISAM index
cannot be used. The search for the segment starts at the beginning of the database
and proceeds sequentially until the specified segment is found.

Inserting Root Segments Using VSAM

After an initial load, root segments inserted into a HISAM database are stored in the
primary data set in ascending key sequence. The Cl might or might not contain a
free logical record into which the new root can be inserted. Both situations are
described next.

A Free Logical Record EXxists: Eigure 22 on page 44 shows how insertion takes
place when a free logical record exists. The new root is inserted into the Cl in root
key sequence. If there are logical records in the Cl containing roots with higher
keys, they are “pushed down” to create space for the new logical record.

Chapter 4. Designing a Fast Path Database 43

Choosing a Database Type

44

No Free Logical Record Exists: Eigure 23 on page 45 shows how insertion takes
place when no free logical record exists in the Cl. The ClI is split forming two new
Cls, both equal in size to the original one. Where the Cl is split depends on what
you have coded in the INSERT=parameter on the OPTIONS statement for the
DFSVSAMP data set. The OPTIONS statement is described in IMS/ESA Installatior

Maﬂzme_z_s;&em_aeﬁmm.a_andjadamd See also “Choosing An Insert Strategy”
LChapLELﬁ_Dalahas&D@gn_Cansndemnns_taLEuuLuncnan_mLpageJﬁﬂ

The split can occur at the point at which the root is inserted or midpoint in the CI.
After the Cl is split, free logical records exist in each new Cl and the new root is
inserted into the proper Cl in root key sequence. If, as was the case in

logical records in the new CI contained roots with higher keys, those logical records
would be “pushed down” to create space for the new logical record.

When adding new root segments to a HISAM database, performance can be
slightly improved if roots are added in ascending key sequence.

BEFORE
[
Index 1 R00t21

| Dep Dep Dep
[Dep Dep

cl ¢ |Root14 Dep Dep

containing |« |Root21 Dep Dep

threelogical (

records
> ‘ Dep ‘ Dep ‘

¥/¥/

Insert
Root

AFTER {%

Root o7
>A Dep Dep Dep
N [Dep Dep
» Root14 | Dep Dep
Root16 | Dep | Dep
Fﬂ Root21 | Dep | Dep
» Dep Dep ‘
» Dep

wv

Figure 22. Inserting a Root Segment into a HISAM Database (Free Logical Record EXxists in
the Control Interval)

IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

BEFORE

Index

e
o
o
<}
N
| r

»
Lad
—> | [Root14 | Dep | Dep Eﬂ Dep Dep Dep
cl — | Root16 | Dep Dep Dep Dep
containing (! Root21 | Dep Dep
threelogical | »
records v Dep Dep ‘
—» Dep

Insert
Root
15

AFTER
KSDS ESDS
‘ > To D D
> e ep ep ep
l Root14 | Dep Dep
Dep Dep
Root15 | Dep
1 Root16 | Dep Dep
| ‘ >
» l‘ Dep Dep ‘
» Root21 ‘ De ‘ De|
‘ P P - Dep

vp/

Figure 23. Inserting a Root Segment into a HISAM Database (No Free Logical Record Exists
in the Control Interval)

Inserting Dependent Segments

Dependent segments inserted into a HISAM database after initial load are inserted
in hierarchic sequence. IMS decides where in the appropriate logical record the new
dependent should be inserted. Two situations are possible. Either there is enough
space in the logical record for the new dependent or there is not.

Eigure 24 on page 4d shows how segment insertion takes place when there is
enough space in the logical record. The new dependent is stored in its proper
hierarchic position in the logical record by shifting the segments that hierarchically
follow it to the right in the logical record.

Chapter 4. Designing a Fast Path Database 45

Choosing a Database Type

46

Primary or Overflow

Root14 | DepA | DepD

~

Primary or Overflow

Insertsegment B

Root14 | DepA | DepB | DepD

~

Figure 24. Inserting a Dependent Segment into a HISAM Database (Space EXxists in the
Logical Record)

Eigure 25 on page 47 shows how segment insertion takes place when there is not
enough space in the logical record. As in the previous case, new dependents are

always stored in their proper hierarchic sequence in the logical record. However, all
segments to the right of the new segment are moved to the first empty logical
record in the overflow data set.

IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

BEFORE

Clorblock
containing Root14 | DepA | DepB | DepD

v

DepF DepH Depl
DepJ DepK DepM T

|-
N~ N

Insert dependent

two logical
records

Root16 | DepA DepB DepD

A4

segment G
for Root 14
AFTER
PRIMARY OVERFLOW
Root14 | DepA | DepB | DepD |e » DepF DepG o

Root16 | DepA | DepB | DepD DepJ DepK DepM

A4

e

[* DepX

t»| DepH Depl ‘

~_ N

Figure 25. Inserting a Dependent Segment into a HISAM Database (No Space EXxists in the
Logical Record)

Deleting Segments
When segments are deleted from a HISAM database, they are marked as deleted

in the delete byte in their prefix. They are not physically removed from the
database; the one exception to this is discussed later. Dependent segments of the
deleted segment are not marked as deleted, but because their parent is, the
dependent segments cannot be accessed. These unmarked segments (as well as
segments marked as deleted) are deleted when the database is reorganized.

One thing you should note is that when a segment is accessed that hierarchically
follows deleted segments in a database record, the deleted segments must still be
“searched through”. This concept is shown in Eigure 26 and in Eigure 27.

Chapter 4. Designing a Fast Path Database 47

Choosing a Database Type

48

Segment B2 is deleted from this database record. This means that segment B2 and
its dependents (C1, C2, and C3) can no longer be accessed, even though they still
exist in the database.

B2 D1

a

Cc2

B1

C1

Figure 26. The Hierarchic Segment Layout on the Database

A request to access segment D1 is made. Although segments B2, C1, C2, and C3
cannot be accessed, they still exist in the database so they must still be “searched
through” even though they are inaccessible.

Figure 27. Accessing a HISAM segment that hierarchically follows deleted segments

In one situation, deleted segments are physically removed from the database. If the
deleted segment is a root, the logical record containing the root is erased, provided
neither the root nor any of its dependents is involved in a logical relationship. Refer
to the IMS System Definition Reference Guide for information on the erase
parameter of the DBD statement.

After the logical record is removed, its space is available for reuse. However, any
overflow logical record containing dependents of this root is not available for reuse.
Except for this special condition, you must unload and reload a HISAM database to
regain space occupied by deleted segments.

Replacing Segments
Replacing segments in a HISAM database is straightforward as long as fixed length

segments are being used. The data in the segment, once changed, is returned to
its original location in storage. The key field in a segment cannot be changed.

The implications of replacing segments when variable-length segments are used is

discussed under L -

Criteria for Selecting HISAM

You should use HISAM when you need sequential or direct access to roots and
sequential processing of dependent segments in a database record. HISAM is a
good choice of data organization when your database has most, or all, of the
following characteristics.

IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

Each root has few dependents.

Root segment access is indexed, and is therefore fast. Dependent segment
access is sequential, and is therefore slower.

* You have a small number of delete operations against the database.

Except for deleting root segments, all delete operations result in the creation of
space that is unusable until the database is reorganized.

* Your applications depend on a small volume of root segments being inserted
within a narrow key range (VSAM).

Root segments inserted after initial load are inserted in root key sequence in the
appropriate Cl in the KSDS. If many roots have keys within a narrow key range,
many CI splits can occur. This will degrade performance.

* Most of your database records are about the same size.

This allows you to pick logical record lengths and Cl sizes so most database
records fit on the primary data set. You want most database records to fit on the
primary data set, because additional read and seek operations are required to
access those parts of a database record on the overflow data set. Additional
reads and seeks degrade performance. If, however, most of the processing you
do against a database record occurs on segments in the primary data set (in
other words, your high-use segments fit on the primary data set), these
considerations might not be as important.

Having most of your database records the same size also saves space. Each
database record starts at the beginning of a logical record. All space in the
logical records not used by the database record is unusable. This is true of
logical records in both the primary and overflow data set. If the size of your
database records varies tremendously, large gaps of unused space can occur at
the end of many logical records.

The implications of using HISAM with logical relationships or secondary indexes are
discussed in the sections describing those functions later in the chapter.

SHSAM, SHISAM and GSAM Databases

You typically use simple hierarchical sequential access method (SHSAM), simple
hierarchical indexed sequential access method (SHISAM), and generalized
sequential access method (GSAM) databases in two situations.

Situatio n 1 - Converting from a non-database system to IMS
SHSAM, SHISAM, and GSAM databases allow existing programs, using MVS

access methods, to remain usable during the conversion to IMS. This is possible
because the format of the data in these databases is the same as in the MVS data
sets.

Situatio n 2 - Passing data
When a database (or non-database) application program passes data to a database

(or non-database) application program, it first puts the data in a SHSAM, SHISAM,
or GSAM database. The database (or non-database) application program then
accesses the data from these databases.

The following sections describe each of the three database types. frable 3 od
is a chart comparing SHSAM, SHISAM, and GSAM.

Chapter 4. Designing a Fast Path Database 49

Choosing a Database Type

50

SHSAM Databases

A simple HSAM (SHSAM) database is an HSAM database containing only one type
of segment, a root segment. The segment has no prefix, because no need exists
for a segment code (there is only one segment type) or for a delete byte (deletes
are not allowed).

SHSAM databases can be accessed by MVS BSAM and QSAM because SHSAM
segments contain user data only (no IMS prefixes). The ISRT, DLET, and REPL
calls cannot be used to update. However, ISRT can be used to load an SHSAM
database. Only GET calls are valid for processing an SHSAM database. These
allow retrieval only of segments from the database. To update an SHSAM database,
it must be reloaded. The situations in which SHSAM is typically used are explained
in the introduction to this section. Before deciding to use SHSAM, read the section
on GSAM databases, because GSAM has many of the same functions as SHSAM.
Unlike SHSAM, however, GSAM files cannot be accessed from a message
processing region. GSAM does allow you to take checkpoints and perform restart,
though.

Although SHSAM databases can use the field-level sensitivity option, they cannot
use any of the following options:

* Logical relationships

» Secondary indexing

* Multiple data set groups

* Variable-length segments

* Segment edit/compression facility

» Data Capture exit routines

» Logging, recovery, or reorganization

SHISAM Databases

A simple HISAM (SHISAM) database is a HISAM database containing only one type
of segment, a root segment. The segment has no prefix, because no need exists
for a segment code (there is only one segment type) or for a delete byte (deletes
are done using a VSAM erase operation). SHISAM databases must be KSDSs;
they are accessed via VSAM. Because SHISAM segments contain user data only
(no IMS prefixes), they can be accessed by VSAM macros and DL/I calls. All the
DL/l calls can be issued against SHISAM databases.

SHISAM IMS Symbolic Checkpoint Call
In addition to those situations described in the introduction to this section, SHISAM

is useful if you need an application program that accesses MVS data sets to use
the IMS symbolic checkpoint call.

The IMS symbolic checkpoint call makes restart easier than the MVS basic
checkpoint call. If the MVS data set the application program is using is converted to
a SHISAM database data set, the symbolic checkpoint call can be used. This allows
application programs to take checkpoints during processing and then restart their
programs from a checkpoint. The primary advantage of this is that, if the system
fails, application programs can recover from a checkpoint rather than lose all
processing that has been done. One exception applies to this: An application
program for initially loading a database that uses VSAM as the operating system
access method cannot be restarted from a checkpoint. Application programs using
GSAM databases can also issue symbolic checkpoint calls. Application programs
using SHSAM databases cannot.

IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

Before deciding to use SHISAM, you should read the next section on GSAM
databases. GSAM has many of the same functions as SHISAM. Unlike SHISAM,
however, GSAM files cannot be accessed from a message processing region.

SHISAM databases can use field-level sensitivity and Data Capture exit routines,
but they cannot use any of the following options:

* Logical relationships

» Secondary indexing

* Multiple data set groups

» Variable-length segments

* Segment edit/compression facility

GSAM Databases

GSAM databases are sequentially organized databases designed to be compatible
with MVS data sets. GSAM databases can be on a data set previously created or
one later accessed by the MVS access methods VSAM or QSAM/BSAM. GSAM
data sets can use fixed-length or variable-length records when VSAM is used, or
fixed-length, variable-length or undefined-length records when QSAM/BSAM is
used. If VSAM is used to process a GSAM database, the VSAM data set must be
entry sequenced and on a DASD. If QSAM/BSAM is used, the physical sequential
(DSORG=PS) data set can be placed on a DASD or tape unit. GSAM is designed
to be compatible with MVS data sets. The GSAM database has no hierarchy,
database records, segments or keys.

GSAM IMS Symbolic Checkpoint Call

In addition to those situations described in the introduction to this section, GSAM is
useful if you need an application program that accesses MVS data sets to use the
IMS symbolic checkpoint call. The IMS symbolic checkpoint call makes restart
easier than the MVS basic checkpoint call. This IMS symbolic checkpoint call allows
application programs to take checkpoints during processing, thereby allowing
programs to restart from a checkpoint. A checkpoint call forces any GSAM buffers
with inserted records to be written as short blocks. The primary advantage of taking
checkpoints is that, if the system fails, the application programs can recover from a
checkpoint rather than lose all your processed data. However, any application
program that uses VSAM as an operating system access method and initially loads
the database cannot be restarted from a checkpoint.

In general, always use DISP=0OLD for GSAM data sets when restarting from a
checkpoint even if you used DISP=MOD on the original execution of the job step. If
you use DISP=0OLD, the data set is positioned at its beginning. If you use
DISP=MOD, the data set is positioned at its end.

Because GSAM databases are supported in a DCCTL environment, you may use
them when you need to process sequential non-IMS data sets using a BMP
program.

GSAM databases are loaded in the order in which you present records to the load
program. You cannot issue DLET and REPL calls against GSAM databases;
however, you can issue ISRT calls after the database is loaded but only to add
records to the end of the data set. Records are not randomly added to a GSAM
data set.

Although random processing of GSAM and SHSAM databases is possible, random
processing of a GSAM database is done using a GU call qualified with a record

Chapter 4. Designing a Fast Path Database 51

Choosing a Database Type

search argument (RSA). This processing is primarily useful for establishing position
in the database before issuing a series of GN calls.

Although SHSAM and SHISAM databases can be processed in any processing
region, GSAM databases can only be processed in a batch or batch message
processing region.

The following IMS options do not apply to GSAM databases:
* Logical relationships

» Secondary indexing

* Segment edit/compression facility

* Field-level sensitivity

» Data Capture exit routines

* Logging or reorganization

* Multiple data set groups

If you have application programs that need access to both IMS and MVS data sets,
you can use SHSAM, SHISAM, or GSAM. Which one you use depends on what
functions you need. frable 3 compares the characteristics and functions available for
each of the three types of databases.

Table 3. Comparison of SHSAM, SHISAM, and GSAM Databases

Characteristics and Functions S|—ISAM SHISAM GSAM
Hierarchic structure applicable? NO NO NO
Segment prefix exist? NO NO NO
Variable-length records used? NO NO YES
Checkpoint/restart possible? NO YES?! YES?
Compatible with non-IMS data sets? YES YES YES
Can VSAM be used as the operating system NO YES YES
access method?

Can BSAM be used as the operating system YES NO YES
access method?

Accessible from a batch region? YES YES YES
Accessible from a batch message processing YES YES YES
region?

Accessible from a message processing region? YES YES NO
Logging available? NO YES NO
GET calls allowed? YES YES YES
ISRT calls allowed? YES? YES YES®
Supported for CICS-DBCTL? YES YES NO
Supported for DCCTL? NO NO YES

1 Using symbolic checkpoints
2 To load database only
3 Allowed only at the end of the data set

HDAM and HIDAM Databases

Hierarchical direct access method (HDAM) and hierarchical indexed direct access
method (HIDAM) databases have many similarities and are referred to as HD
databases.

52 IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

HD databases differ from sequentially organized databases in two important ways.
First, they use the direct method of storing data, and the hierarchic sequence of
segments in the database is maintained by having segments point to one another.
Except for a few special cases, each segment has one or more direct-address
pointers in its prefix. When direct-address pointers are used, database records and
segments can be stored anywhere in the database. Their position, once stored, is
fixed, and they do not “move around” in the database when subsequent processing
takes place. Instead, pointers are updated to reflect processing changes.

HD databases also differ from sequentially organized ones in that space in HD
databases can be reused. If part or all of a database record is deleted, the deleted
space can be reused when new database records or segments are inserted.

HD databases are stored on direct-access devices in either a VSAM ESDS or an
OSAM data set. See tAppendix C_lsing QSAM as the Access Methad” on

for information on OSAM data sets. The storage organization in HDAM
and HIDAM is basically the same. Their primary difference is in the way their root
segments are accessed. In HDAM, each root segment’s storage location is found
using a randomizing module. The randomizing module examines the root’s key and,
through an arithmetic technique, computes the address of a pointer to the root
segment. In HIDAM, each root segment’s storage location is found by searching an
index. This index, unlike the index used with HISAM, requires use of a second
database, an index database. IMS loads and maintains this index database. The
advantage of the HDAM randomizing module is that the 1/0O operations required to
search an index are eliminated. In addition, no need exists to update an index after
a root segment is inserted or deleted.

All DL/I calls can be issued against HD databases. In addition, the following options
are available:

* Multiple data set groups

* Logical relationships

* Secondary indexing

» Variable-length segments

* Segment edit/compression facility

» Data Capture exit routines

» Field-level sensitivity

» Logging, recovery, and reorganization

Except for logging and recovery, each of these options is discussed in detail in
subsequent sections of this chapter. For information on logging and recovery, see

IMS/ESA Qperations Guidd and

When to Use HDAM

HDAM databases are typically used when you need primarily direct access to
database records. The randomizing module provides fast access to the root
segment (and therefore the database record). HDAM databases also give you fast
access to paths of segments as specified in the DBD in a database record. For
example, in the following database record, if physical child pointers are used they
can be followed to reach segments B, C, D, or E. A hierarchic search of segments
in the database record is bypassed. Segment B does not need to be accessed to
get to segments C, D, or E. And segment D does not need to be accessed to get to
segment E. Only segment A must be accessed to get to segment B or C. And only
segments A and C must be accessed to get to segments D or E.

Chapter 4. Designing a Fast Path Database 53

Choosing a Database Type

54

RootA

DepB DepC

DepD DepE

You cannot process HDAM database records in key sequence unless the
randomizing module you use stores root segments in physical key sequence. More
information on HDAM is addressed later in this chapter.

When to Use HIDAM

HIDAM databases are typically used when you need both random and sequential
access to database records and random access to paths of segment in a database
record. Access to root segments (and therefore database records) is not as fast as
with HDAM, because the HIDAM index database has to be searched for a root
segment’s address. However, because the index keeps the address of root
segments stored in key sequence, database records can be processed sequentially.

What You Need to Know About HD Databases
Before looking in detail at how HD databases are stored and processed, you need
to become familiar with:

The various types of pointers you can specify for a HD database
The general format of the database
The use of special fields in the database

Types of Pointers You Can Specify: The hierarchic sequence of segments in a
database record using the sequential access methods is maintained by keeping
segments physically adjacent to each other in storage. In the HD access methods,
segments in a database record are kept in hierarchic sequence using direct-address
pointers. Except for a few special cases, each prefix in an HD segment contains
one or more pointers. Each pointer is 4 bytes long and consists of the relative byte
address of the segment to which it points. Relative, in this case, means relative to
the beginning of the data set.

Several different types of direct-address pointers exist, and you will see how each
works in the sections that follow. However, there are three basic types:

» Hierarchic pointers, which point from one segment to the next in either forward or
forward and backward hierarchic sequence

» Physical child pointers, which point from a parent to each of its first or first and
last children, for each child segment type

* Physical twin pointers, which point forward or forward and backward from one
segment occurrence of a segment type to the next, under the same parent

When segments in a database record are typically processed in hierarchic
sequence, use hierarchic pointers. When segments in a database record are
typically processed randomly, use a combination of physical child and physical twin
pointers. One thing to keep in mind while reading about pointers is that the different
types, subject to some rules, can be mixed within a database record. However,

IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

because pointers are specified by segment type, all occurrences of the same
segment type have the same type of pointer.

Each type of pointer is examined separately in this section. In the section called
“Mixing Pointers,” how pointers can be mixed is discussed. In the following sections,
each type of pointer is illustrated, and the database record on which each
illustration is based is as follows:

COURSE

STUDENT

INSTR LOC STUDENT

LoC STUDENT

EDUC EXPR

Hierarchic Forward Pointers: With hierarchic forward (HF) pointers, each
segment in a database record points to the segment that follows it in the hierarchy.
shows hierarchic forward pointers:

COURSE COURSE

: ; ; / STUDENT
INSTR / LOC / STUDENT

LOC STUDENT

EDUC / EXPR

Figure 28. Hierarchic Forward Pointers

When an application program issues a call for a segment, HF pointers are followed
until the specified segment is found. In this sense, the use of HF pointers in an HD
database is similar to using a sequentially organized database. In both, to reach a
dependent segment all segments that hierarchically precede it in the database
record must be examined. HF pointers should be used when segments in a
database record are typically processed in hierarchic sequence and processing
does not require a significant number of delete operations. If there are a lot of
delete operations, hierarchic forward and backward pointers (explained next) might
be a better choice.

Four bytes are needed in each dependent segment’s prefix for the HF pointer. Eight
bytes are needed in the root segment. More bytes are needed in the root segment

Chapter 4. Designing a Fast Path Database 55

Choosing a Database Type

56

because the root points to both the next root segment and first dependent segment
in the database record. HF pointers are specified by coding PTR=H in the SEGM
statement in the DBD.

Hierarchic Forward and Backward Pointers: With hierarchic forward and
backward pointers (HF and HB), each segment in a database record points to both
the segment that follows and the one that precedes it in the hierarchy (except
dependent segments do not point back to root segments). HF and HB pointers must
be used together, since you cannot use HB pointers alone. m shows how
HF and HB pointers work.

&

COURSE COURSE COURSE

N ; STUDENT

INSTR ‘ LOC ‘ STUDENT

LOC STUDENT

EDUC EXPR

Figure 29. Hierarchic Forward and Backward Pointers

HF pointers work in the same way as the HF pointers described in the preceding
section.

HB pointers point from a segment to one immediately preceding it in the hierarchy.
In most cases, HB pointers are not required for delete processing. IMS saves the
location of the previous segment retrieved on the chain and uses this information
for delete processing. The backward pointers are useful for delete processing if the
previous segment on the chain has not been accessed. This happens when the
segment to be deleted is entered by a logical relationship.

The backward pointers are useful only when all of the following are true:

» Direct pointers from logical relationships or secondary indexes point to the
segment being deleted or one of its dependent segments.

* These pointers are used to access the segment.
* The segment is deleted.

Eight bytes are needed in each dependent segment’s prefix to contain HF and HB
pointers. Twelve bytes are needed in the root segment. More bytes are needed in
the root segment because the root points:

» Forward to a dependent segment
* Forward to the next root segment in the database
» Backward to the preceding root segment in the database

HF and HB pointers are specified by coding PTR=HB in the SEGM statement in the
DBD.

IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

Physical Child First Pointers: With physical child first (PCF) pointers, each
parent segment in a database record points to the first occurrence of each of its
immediately dependent child segment types. Eigure 3d shows PCF pointers:

COURSE

STUDENT

INSTR I LOC ™, . | STUDENT

\\\\\\‘ LOC STUDENT

EDUC EXPR

Figure 30. Physical Child First Pointers

With PCF pointers, the hierarchy is only partly connected. No pointers exist to
connect occurrences of the same segment type under a parent. Physical twin
pointers (explained later) can be used to form this connection. PCF pointers should
be used when segments in a database record are typically processed randomly and
sequence fields are either defined for the segment type. If not, new segments are
not inserted at the end of all existing segment occurrences. If sequence fields are
not defined and new segments are inserted at the end of existing segment
occurrences, the combination of PCF and physical child last (PCL) pointers
(explained next) can be a better choice.

Four bytes are needed in each parent segment for each PCF pointer. PCF pointers
are specified by coding PARENT=((name,SNGL)) in the SEGM statement in the
DBD. This is the SEGM statement for the child being pointed to, not the SEGM
statement for the parent. Note, however, that the pointer is stored in the parent
segment.

Physical Child First and Last Pointers: With physical child first and last pointers
(PCF and PCL), each parent segment in a database record points to both the first
and last occurrence of its immediately dependent child segment types. PCF and
PCL pointers must be used together, since you cannot use PCL pointers alone.
@h shows PCF and PCL pointers:

Chapter 4. Designing a Fast Path Database 57

Choosing a Database Type

COURSE

STUDENT

INSTR : LOC 1 STUDENT

LOC STUDENT

EDUC EXPR

Figure 31. Physical Child First and Last Pointers

Note that if only one physical child of a particular parent segment exists, the PCF
and PCL pointers both point to the same segment. As with PCF pointers, PCF and
PCL pointers leave the hierarchy only partly connected, and no pointers exist to
connect occurrences of the same segment type under a parent. Physical twin
pointers (explained later) can be used to form this connection.

PCF and PCL pointers (as opposed to just PCF pointers) are typically used when:
* No sequence field is defined for the segment type.

* New segment occurrences of a segment type are inserted at the end of all
existing segment occurrences.

On insert operations, if the ISRT rule of LAST has been specified, segments are
inserted at the end of all existing segment occurrences for that segment type. When
PCL pointers are used, fast access to the place where the segment will be inserted
is possible. This is because there is no need to search forward through all segment
occurrences stored before the last occurrence. PCL pointers also give application
programs fast retrieval of the last segment in a chain of segment occurrences.
Application programs can issue calls to retrieve the last segment by using an
unqualified SSA with the command code L. When a PCL pointer is followed to get
the last segment occurrence, any further movement in the database is forward.

A PCL pointer does not enable you to search from the last to the first occurrence of
a series of dependent child segment occurrences.

Four bytes are needed in each parent segment for each PCF and PCL pointer. PCF
and PCL pointers are specified by coding the PARENT= operand in the SEGM
statement in the DBD as PARENT=((name,DBLE)). This is the SEGM statement for
the child being pointed to, not the SEGM statement for the parent. Note, however,
that the pointers are stored in the parent segment.

A parent segment can have SNGL specified on one immediately dependent child

segment type and DBLE specified on another. Eigure 32 on page 59 shows

specifying PCF and PCL pointers.

Coding these pointers in the DBD:

DBD

SEGM A

SEGM B PARENT=((name.SNGL)) (specifies PCF pointer only)
SEGM C PARENT=((name.DBLE)) (specified PCF and PCL pointers)

58 IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

Results in these pointers being created:

[SegA [3
{PCF PCF PCL!
v
Seg C3
v Seg B2 v Seg C2

Seg B1 Seg C1

Figure 32. Specifying PCF and PCL Pointers

Physical Twin Forward Pointers: With physical twin forward (PTF) pointers, each
segment occurrence of a given segment type under the same parent points forward

to the next segment occurrence. Eigure 33 an page 6d illustrates this.

Note that PTF pointers can be specified for root segments. When this is done in an
HDAM database, the root segment points to the next root in the database chained
off the same root anchor points (RAP). (RAPs are explained in a following section
called “General Format of HD Databases and Use of Special Fields.”) If no more
root segments are chained from this RAP, the PTF pointer is zero.

When PTF pointers are specified for root segments in HIDAM database, the root
segment does not point to the next root in the database. What happens is explained
in a subsequent section called “Use of RAPs in a HIDAM Database.” The important
thing for you to know now is that if you specify PTF pointers on a root segment in a
HIDAM database, the HIDAM index must be used for all sequential processing of
root segments. This increases access time. This problem is eliminated if you specify
PTF and physical twin backward (PTB) pointers (discussed next).

With PTF pointers, the hierarchy is only partly connected. No pointers exist to
connect parent and child segments. Physical child pointers can be used to form this
connection. PTF pointers should be used when segments in a database record are
typically processed randomly, and you do not need sequential processing of
database records.

Four bytes are needed for the PTF pointer in each segment occurrence of a given
segment type. PTF pointers are specified by coding PTR=T in the SEGM statement
in the DBD. This is the SEGM statement for the segment containing the pointer.
The combination of PCF and PTF pointers is used as the default when pointers are
not specified in the DBD. mpshow PTF pointers:

Chapter 4. Designing a Fast Path Database 59

Choosing a Database Type

60

COURSE COURSE

/ STUDENT

INSTR ‘ LOC j STUDENT

LOC STUDENT

EDUC EXPR

Figure 33. Physical Twin Forward Pointers

Physical Twin Forward and Backward Pointers: With physical twin forward and
backward (PTF and PTB) pointers, each segment occurrence of a given segment
type under the same parent points both forward to the next segment occurrence
and backward to the previous segment occurrence. PTF and PTB pointers must be
used together, since you cannot use PTB pointers alone. |Mpillustrates how
PTF and PTB pointers work.

COURSE COURSE COURSE

j / STUDENT

INSTR . LOC / STUDENT

LOC STUDENT

A

EDUC EXPR

Figure 34. Physical Twin Forward and Backward Pointers

Note that PTF and PTB pointers can be specified for root segments. When this is
done, the root segment points to both the next and the previous root segment in the
database. As with PTF pointers, PTF and PTB pointers leave the hierarchy only
partly connected. No pointers exist to connect parent and child segments. Physical
child pointers (explained previously) can be used to form this connection.

PTF and PTB pointers (as opposed to just PTF pointers) should be used on the
root segment of a HIDAM database when you need fast sequential processing of
database records. By using PTB pointers in root segments, database records can
be sequentially processed without intervening references to the HIDAM index. PTB
pointers improve performance when deleting a segment in a twin chain accessed by
a virtually paired logical relationship. This happens when the delete that causes
DASD space to be released occurs on a delete from the logical access path.

Eight bytes are needed for the PTF and PTB pointers in each segment occurrence
of a given segment type. PTF and PTB pointers are specified by coding PTR=TB in
the SEGM statement in the DBD.

IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

Mixing Pointers: Because pointers are specified by segment type, the various
types of pointers can be mixed within a database record. However, only hierarchic
or physical, but not both, can be specified for a given segment type. The types of
pointers that can be specified for a segment type are:

HF Hierarchic forward

HF and HB Hierarchic forward and backward
PCF Physical child first

PCF and PCL Physical child first and last

PTF Physical twin forward

PTF and PTB Physical twin forward and backward

Eigure 35 an page 62 shows a database record in which pointers have been mixed.
Note that, in some cases, for example, dependent segment B, many pointers exist
even though only one type of pointer is or can be specified. Also note that if a
segment is the last segment in a chain, its last pointer field is set to zero (the case
for segment E1, for instance). One exception is noted in the rules for mixing
pointers. m has a legend that explains what specification in the PTR= or
PARENT= operand causes a particular pointer to be generated.

The rules for mixing pointers are:

» If PTR=H is specified for a segment, no PCF pointers can exist from that
segment to its children. For a segment to have PCF pointers to its children, you
must specify PTR=T or TB for the segment.

* If PTR=H or PTR=HB is specified for the root segment, the first child will
determine if an H or HB pointer is used. All other children must be of the same
type.

* If PTR=H is specified for a segment other than the root, PTR=TB and PTR=HB
cannot be specified for any of its children. If PTR=HB is specified for a segment
other than the root, PTR=T and PTR=H cannot be specified for any of its
children.

That is, the child of a segment that uses hierarchic pointers must contain the
same number of pointers (twin or hierarchic) as the parent segment.

* If PTR=T or TB is specified for a segment whose immediate parent used PTR=H
or PTR=HB, the last segment in the chain of twins does not contain a zero.
Instead, it points to the first occurrence of the segment type to its right on the
same level in the hierarchy of the database record. This is true even if no twin
chain yet exists, just a single segment for which PTR=T or TB is specified
(dependent segment B and E2 in the figure illustrate this rule).

» If PTR=H or HB is specified for a segment whose immediate parent used PTR=T
or TB, the last segment in the chain of twins contains a zero (dependent
segment C2 in the figure illustrates this rule).

Sequence of Pointers in a Segment’s Prefix:

l_ Diagnosis, Modification or Tuning Information

When a segment contains more than one type of pointer, pointers are put in the
segment’s prefix in the following sequence:

Chapter 4. Designing a Fast Path Database 61

Choosing a Database Type

‘HF‘HB‘ or ‘TF‘TB‘PCF‘PCL‘

|_ End of Diagnosis, Modification or Tuning Information

l_ Diagnosis, Madification or Tuning Information

m shows an example of mixing pointers in a database record.

|_ End of Diagnosis, Modification or Tuning Information

Usage of the twin forward DEP A1 ROOT A2
pointer position —————»| T | H

Segments pointed to ——»| A2| B1
Notes below ——»| 1 | 1

PTR=H DEP B1 PTR=T DEP G1
H DEP B2 H |PCF
c1 H 0 | H1
5 B2 2|5

[[2

PTR=T DEP H1
T |PCF DEP H2
PTR=T DEP C1 PTR=H DEP F1 H2| 11
H |PCFlPCFPcL| DEPC2 H DEP F2 2| 5 0
c2|D1|E1|E2 |H F2 H \\2
213 |4]|4|F 2 B2
[2 | 2
PTR=H DEP H
PTR=H PTR=T H
Parent=SNGL Parent=DBLE
DEP D1 DEP E1
H DEP D2 H | DEPE2
D2 H E2 H
o 0 5 0
| 2 [2
Notes:

1 Caused by specifying PTR=H on the root segment

2 If PTR=H, usage is hierarchical (H); otherwise, usage is twin (_P

3 Caused by specifying PTR=T on segment type C and PARENT=SNGL on segment type D
4 Caused by specifying PTR=T on segment type C and PARENT=DBLE on segment type E
5 Caused by specifying PTR=T on this segment type

Figure 35. Mixing Pointers

General Format of HD Databases and Use of Special Fields

The way in which an HD database is organized is not particularly complex, but
some of the special fields in the database used for things like managing space
make HD databases seem quite different from sequentially organized databases.
This section looks at the general layout of the database special fields.

62 IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

The databases referred to here are the HDAM and the HIDAM database. The
HIDAM contains database records. HIDAM has an additional database, the index
database, that is allocated by you but loaded and maintained by IMS. This section
examines the index database when dealing with the storage of HIDAM records.
m shows the general format of an HD database and some of the special
fields used in it.

HD databases use a single data set, that is either a VSAM ESDS or an OSAM data

VSAM/ESDS or OSAM

Blocks

orCls
—> ‘FSEAP ‘Anchorpointarea ‘ Bitmap ‘
> ‘FSEAP Anchorpointarea ‘ Segments ‘ FSE ‘ Free space ‘
> ‘ FSEAP | Anchorpointarea ‘ FSE ‘ Free space ‘ Segments ‘ FSE |Freespace ‘
L» | FSEAP | Anchorpointarea Segments FSE Free space Segments

\//

Figure 36. Format of an HD Database and Special Fields in It

set. The data set contains one or more Cls (VSAM ESDS) or blocks (OSAM).
Database records in the data set are in unblocked format. Logical record length is
the same as the block size when OSAM is used. When VSAM is used, logical
record length is slightly less than CI size. (VSAM requires some extra control
information in the Cl.) You can either specify logical record length yourself or have it
done by the Database Description Generation (DBDGEN) utility. The utility
generates logical record lengths equal to a quarter, third, half, or full track block.

All segments in HD Databases begin on a halfword boundary. If a segment’s total
length is an odd number, the space used in an HD database will be one byte longer
than the segment. The extra byte is called a “slack byte”.

Note that the database in m contains areas of free space. This free space
could be the result of delete or replace operations done on segments in the data
set. Remember, space can be reused in HD databases. Or it could be free space
you set aside when loading the database. HD databases allow you to set aside free
space by specifying that periodic blocks or Cls be left free or by specifying that a
percentage of space in each block or CI be left free.

l_ Diagnosis, Modification or Tuning Information

Examine the four fields illustrated in m Three of the fields are used to
manage space in the database. The remaining one, the anchor point area, contains
the addresses of root segments. The fields are:

* This list item contains diagnosis, modification, or tuning information.

Bit map. Bit maps contain a string of bits. Each bit describes whether enough
space is available in a particular CI or block to hold an occurrence of the longest

Chapter 4. Designing a Fast Path Database 63

Choosing a Database Type

64

segment defined in the data set group. The first bit says whether the CI or block
the bit map is in has free space. Each consecutive bit says whether the next
consecutive Cl or block has free space. When the bit value is one, it means the
ClI or block has enough space to store an occurrence of the longest segment
type you have defined in the data set group. When the bit value is zero, not
enough space is available.

The first bit map in an OSAM data set is in the first block of the first extent of the
data set. In VSAM data sets, the second Cl is used for the bit map and the first
Cl is reserved. The first bit map in a data set contains n bits that describe space
availability in the next n-1 consecutive Cls or blocks in the data set. After the first
bit map, another bit map is stored at every nth Cl or block to describe whether
space is available in the next group of Cls or blocks in the data set.

A bit map looks like this:

0 indicates that there is insufficient free space in the bit map block

1 indicates that there is free space in the third Cl or block

iﬁ 0 indicates that there is insufficient free space in the fifth C1 or block

Bytes Varies

* This list item contains diagnosis, modification, or tuning information.

Free space element anchor point (FSEAP). FSEAPs are made up of two 2-byte
fields. The first contains the offset, in bytes, to the first free space element (FSE)
in the CI or block. FSEs describe areas of free space in a block or CI. The
second field identifies whether this block or CI contains a bit map. If the block or
Cl does not contain a bit map, the field is zeros. One FSEAP exists at the
beginning of every CI or block in the data set. IMS automatically generates and
maintains FSEAPs.

An FSEAP looks like this:

Offset to the first FSE in this CI or block

Flag indicating whether this Cl or block contains a bit map (0 = no bit map)

Bytes‘2‘2‘

The FSEAP in the first bit map block in an OSAM data set has a special use. It

is used to contain the DBRC usage indicator for the database. The DBRC usage
indicator is used at database open time for update processing to verify usage of
the correct DBRC RECON data set.

This list item contains diagnosis, modification, or tuning information.
Free space element (FSE). An FSE describes each area of free space in a Cl or
block that is 8 or more bytes in length. IMS automatically generates and

maintains FSEs. FSEs occupy the first 8 bytes of the area that is free space.
FSEs consist of three fields:

IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

— Free space chain pointer (CP) field. This field contains, in bytes, the offset
from the beginning of this CI or block to the next FSE in the CI or block. This
field is 2 bytes long. The CP field is set to zero if this is the last FSE in the
block or CI.

— Available length (AL) field. This field contains, in bytes, the length of the free
space identified by this FSE. The value in this field includes the length of the
FSE itself. The AL field is 2 bytes long.

— Task ID (ID) field. This field contains the task ID of the program that freed the
space identified by the FSE. The task ID allows a given program to free and
reuse the same space during a given scheduling without contending for that
space with other programs.

An FSE looks like this:

Offset to the first FSE in this Cl or block

Length of the free space following this FSE,
including the length of this FSE

rTask ID of the program that freed the space

CP| AL| ID

oyes | 2 2| 4 |

» This list item contains diagnosis, modification, or tuning information.

Anchor point area. The anchor point area is made up of one or more 4-byte (root
anchor points) RAPs. Each RAP contains the address of a root segment. In
HDAM, you specify the number of RAPs you need on the RMNAME= parameter
in the DBD statement. In HIDAM, RAPs only exist if PTR=T or PTR=H is
specified for a root segment type. In addition, only one RAP per block or Cl is
generated. The way in which RAPs are used in HDAM and HIDAM differs, so
RAPs will be examined further in the following sections describing how HDAM
and HIDAM records are stored.

An anchor point area in an HDAM database looks like this:

Anchor point area containing, in this case, two RAPS

RAP |RAP

Bytes‘4‘4‘

|_ End of Diagnosis, Modification or Tuning Information

How HDAM Records Are Stored

HDAM databases consist of two parts: a root addressable area and an overflow
area. The root addressable area contains root segments and is the primary storage
area for dependent segments in a database record. The overflow area is for storage
of dependent segments that do not fit in the root addressable area. You specify the
size of the root addressable area (in the relative block number (RBN) operand of
the RMNAME= parameter in the DBD statement). You also specify the maximum
number of bytes of a database record to be stored in the root addressable area.

Chapter 4. Designing a Fast Path Database 65

Choosing a Database Type

66

You do this through a series of uninterrupted ISRT calls to another database record.
(This is done in the BYTES operand on the RMNAME= parameter in the DBD
statement).

When the database is initially loaded, the root and each dependent segment are put
in the root addressable area until the next segment to be stored will cause the total
space used to exceed the amount of space you specified in the BYTES operand. At
this point, all remaining dependent segments in the database record are stored in
the overflow area.

In an HDAM database, the order in which you load database records does not
matter. The user randomizing module determines where each root is stored.
However, as with all types of databases, when the database is loaded, all
dependents of a root must be loaded in hierarchic sequence following the root.

To store an HDAM database record, the user randomizing module takes the root’s
key and, by hashing or some other arithmetic technique, computes an RBN or ClI
number and a RAP number within the block or CI. It gives these numbers to IMS,
and IMS determines where in the root addressable area to store the root. The RBN
or Cl tells IMS in which CI or block (relative to the beginning of the data set) the
RAP will be stored. The RAP number tells which RAP in the CI or block will contain
the address of the root. IMS stores the root and as many of its dependent
segments that will fit (based on the bytes operand) in the root addressable area.

When the database is initially loaded, it puts the root and segments in the first
available space in the specified ClI or block, if this is possible. IMS then puts the
4-byte address of the root in the RAP of the CI or block designated by the
randomizing module. RAPs only exist in the root addressable area. This is because
the randomizing module always chains roots off a RAP in the root addressable
area. If space is not available in the root addressable area for a root, it is put in the
overflow area. The root, however, is chained from a RAP in the root addressable
area.

When Not Enough Root Storage Room EXxists

If the CI or block specified by the randomizing module does not contain enough
room to store the root, IMS uses the HD space search algorithm to find space. This
algorithm is explained in [How the HD Space Search Algarithm Works” on page 78.
When insufficient space exists in the specified Cl or block to store the root, the
algorithm finds the closest available space to the specified ClI or block. When space
is found, the address of the root is still stored in the specified RAP in the original
block or CI generated by the randomizing module.

If the randomizing module generates the same relative block and RAP number for
more than one root, the RAP points to a single root and all additional roots with the
same relative block and RAP number are chained to each other using physical twin
pointers. Roots are always chained in ascending key sequence. If non-unique keys
exist, the ISRT rules of FIRST, LAST, and HERE determine the sequence in which

roots are chained. (These ISRT rules are explained in IMS/ESA Applicatiod
Programming: Database Managet.) All roots chained like this from a single anchor

point area are called synonyms.

Eigure 37 on page 69 shows two HDAM database records and how they appear in
storage after initial load. In this example, enough space exists in the specified block

or Cl to store the roots, and the randomizing module generated unique relative
block and RAP numbers for each root. The bytes parameter specifies enough space
for five segments of the database record to fit in the root addressable area. All

IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

remaining segments are put in the overflow area. When HDAM database records
are initially loaded, dependent segments that cannot fit in the root addressable area
are simply put in the first available space in the overflow area.

Note how segments in the database record are chained together. In this case,
hierarchic pointers are used instead of the combination of physical child/physical
twin pointers. Each segment points to the next segment in hierarchic sequence.
Also note that two RAPs were specified per Cl or block and each of the roots
loaded is pointed to by a RAP. For simplicity, m does not show the various
space management fields.

An HDAM segment in storage (see m) consists of a prefix followed by user
data. The first byte of the prefix is the segment code, which identifies the segment
type to IMS. This number can be from 1 to 255. The segment code is assigned to
the segment type by IMS in ascending sequence, starting with the root segment
and continuing through all dependents in hierarchic sequence. The second byte of
the prefix is the delete byte. The third field in the prefix contains the one or more
addresses of segments to which this segment is pointing. In this example,
hierarchic forward pointers are used. Therefore, the EXPR4 segment contains only
one address, the address of the NAME3 segment.

How HIDAM Records Are Stored

A HIDAM database is actually composed of two databases. (HIDAM uses an index
to get to a specific root segment rather than the root anchor points used by HDAM.)
The first database contains the database records as the database. The second
database contains the HIDAM index as the index database.

Loading a HIDAM Database: Root segments in a HIDAM database must have a
unique key field, because an index entry exists for each root segment based on the
root’s key. When initially loading a HIDAM database, all root segments should be
presented to the load program in ascending key sequence, and all dependents of a
root should follow the root in hierarchic sequence. [Eigure 38 an page 70 shows two
HIDAM database records and how they appear in storage after initial load. Note
that HIDAM, unlike HDAM, has no root addressable or overflow area, just a series
of blocks or Cls. When database records are initially loaded, they are simply loaded
one after another in the order in which they are presented to the load program. The
space in Eigure 34 at the end of each block or Cl is free space specified when the
database was loaded. In this example, 30% free space per block or Cl was
specified.

Note how segments in a database record are chained together. In this case,
hierarchic pointers were used instead of the combination of physical child/physical
twin pointers. Each segment points to the next segment in hierarchic sequence. No
RAPs exist in m Although HIDAM databases can have RAPs, you probably
do not need to use them. The reason for not using RAPs is explained in the next
section.

In storage, a HIDAM segment (see m) consists of a prefix followed by user
data. The first byte of the prefix is the segment code, which identifies the segment
type to IMS. This number can be from 1 to 255. The segment code is assigned to
the segment by IMS in ascending sequence, starting with the root segment and
continuing through all dependents in hierarchic sequence. The second byte of the
prefix is the delete byte. The third field in the prefix contains the one or more
addresses of segments to which this segment is pointing. In this example,

Chapter 4. Designing a Fast Path Database 67

Choosing a Database Type

hierarchic forward pointers are used. The EDUC6 segment contains only one
address, the address of the root segment of the next database record (not shown
here) in the database.

Creating an Index Segment: As each root is stored in a HIDAM database, IMS
creates an index segment for the root and stores it in the index database. The
index database consists of a single VSAM KSDS. The KSDS contains an index
segment for each root in the database. When initially loading a HIDAM database,
IMS will insert a root segment with a key of all X'FF's as the last root in the
database.

68 IMS/ESA V6 Admin Guide: DB

SKILL

SKILL P

Root
addressable
area

Overflow
area

VSAMESDS or OSAM

P’ W’ V' V' VAl |

RAP

RAP

SKILL2 | NAME4 | EDUC4 | EDUCS

EDUCS6| Freespace

RAP

RAP

Free Space

4 4 4

RAP

RAP

SKILL1| NAME1| EXPR1|EDUC1

NAME?2 | Free Space

J

\ S Ve Ve Y V|

EXPR2

EXPR3 | EXPR4| NAME3 | EDUC2

EDUC3 | Free Space

|Prefix

luserdata

Segment Delete
code

byte

Hierarchic forward
pointer

€

EXPR4 data

Figure 37. HDAM Database Records in Storage

€

Choosing a Database Type

Two HDAM
database
records

The same two
HDAM data-
baserecords
instorage

The content of
onesegmentin
the HDAM record

Chapter 4. Designing a Fast Path Database

69

Choosing a Database Type

SKILL

SKILL 3

VSAMESDS or OSAM

S~

SKILL1 | NAME1 EXPR1 | EDUC1 | NAME2 Free Space
J

L P Ve Ve Ve

EXPR2 | EXPR3 | EXPR4 | NAME3 | EDUC2 Free Space
J

v P Ve e |

EDUC3 | SKILL3 |NAME4 | EDUC4 | EDUC5 | FreeSpace

< J

EDUC6 Free Space

|Prefix |Userdata X

Segment Delete Hierarchic forward

code byte pointer EDUCG daia

Figure 38. HIDAM Database Records in Storage

The format of an index segment looks like this:

70 IMS/ESA V6 Admin Guide: DB

)
1 C

Two HDAM
database
records

The same two
HDAM data-
baserecords
instorage

The content of
onesegmentin
the HDAM record

Choosing a Database Type

VSAM

Prefix Data |

Delete | Address of the | Key of the
byte root segment root segment

]
Bytes 1 4 Varies

The prefix portion of the index segment contains the delete byte and the root’s
address. The data portion of the index segment contains the key field of the root
being indexed. This key field identifies which root segment the index segment is for
and remains the reason why root segments in a HIDAM database must have
unigue sequence fields. Each index segment is a separate logical record.

shows the index database IMS would generate when the two database records in

Eigure 38 on page 70 were loaded.

Index database when VSAM is used

T es YN
S

]
M\SKILLI‘ K}e}] M\SKILLB ‘ K:ea
) t

~

VSAMESDS orOSAM

Free space

}‘ SKILL1 ‘ NAME1 ‘ EXPR1 ‘ EDUC1 ‘ NAME2

‘EXPRZ ‘ EXPR3 ‘EXPR4 ‘NAME3 ‘ EDUC2

v

‘EXPR?- ‘SKILLS ‘NAME4 ‘ EDUC4 ‘ EDUCS

Free space

Free space

‘ EDUC6 ‘ Free space ‘

~ S

Figure 39. HIDAM Index Databases

Use of RAPs in a HIDAM Database: RAPs are used differently in HIDAM
databases than they are in HDAM. In HDAM, RAPs exist to point to root segments.
When the randomizing module generates roots with the same relative block and
RAP number (synonyms), the RAP points to one root and synonyms are chained
together off that root.

In HIDAM, RAPs are only generated if you have specified PTR=T or PTR=H for a
root segment. When either of these is specified, one RAP is put at the beginning of
each CI or block, and root segments within the ClI or block are chained from the
RAP in reverse order based on the time they were inserted. Thus, the RAP points

Chapter 4. Designing a Fast Path Database 71

Choosing a Database Type

to the last root inserted into the block or Cl, and the hierarchic or twin forward
pointer in the first root inserted into the block or ClI is made zero. The hierarchic or
twin forward pointer in each of the other root segments in the block points to the
previous root inserted in the block. Eigure 40 shows what happens if you specify
PTR=T or PTR=H for root segments in a HIDAM database.

The implication of using PTR=T or PTR=H is that the pointer from one root to the
next cannot be used to process roots sequentially. Instead, the HIDAM index must
be used for all sequential root processing, and this increases access time. Specify
PTR=TB or PTR=HB for root segments in a HIDAM database. Then no RAP is
generated, and GN calls against root segments proceed along the normal physical
twin forward chain. If no pointers are specified for HIDAM root segments, the
default is PTR=T.

pointed in from second root segment inserted

! | \L ! \l%

FSE | RAP SC DB TForH Data o SC DB TForH | Data |
POINTER=0 L POINTER=0 |
B |~
First root segment inserted in Root Last root segment inserted in Root
block or Cl segment blockor Cl segment

where:
FSE is the free space element
RAP is the root anchor point
SC is the segment code
DB is the delete byte
TF is twin forward
H is hierarchic forward

1 - if you specify PTR=H for a HIDAM root, you get an additional hierarchic pointer to the first
dependent in the hierarchy.

Figure 40. What Happens If You Specify PTR=T or PTR=H for Root Segments in a HIDAM
Database

Accessing Segments
The way in which a segment in an HD database is accessed depends on whether

the DL/I call for the segment is qualified or unqualified.

Qualified Calls: When a call is issued for a root segment and the call is qualified
on the root segment’s key, the way in which the database record containing the
segment is found depends on whether the database is HDAM or HIDAM. In an
HDAM database, the randomizing module generates the root segment’s (and
therefore the database record’s) location. In a HIDAM database, the HIDAM index
is searched until the index segment containing the root’s key is found.

Once the root segment is found, if the qualified call is for a dependent segment,
IMS searches for the dependent by following the pointers in each dependent
segment’s prefix. The exact way in which the search proceeds depends on the type
of pointers you are using. m shows how a dependent segment is found
when PCF and PTF pointers are used.

72 IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

Figure 41. How Dependent Segments Are Found Using PCF and PTF Pointers

Ungqualified Calls: ~ When an unqualified call is issued for a segment, the way in
which the search proceeds depends on:

* Whether the database is HDAM or HIDAM

* Whether a root or dependent segment is being accessed
* Where position in the database is currently established

* What type of pointers are being used

* Where parentage is set (if the call is a GNP)

Because of the many variables, it is not practical to generalize on how a segment is
accessed.

Inserting Root Segments
The way in which a root segment is inserted into an HD database depends on

whether the database is HDAM or HIDAM.

Inserting Root Segments into an HDAM Database: After initial load, root
segments are inserted into an HDAM database in exactly the same way they are

inserted during initial load. This process is explained in tHow HDAM Records Ard

Inserting Root Segments Into a HIDAM Database: After initial load, root
segments are inserted into a HIDAM database as follows (see

1. The HIDAM index is searched for an index segment with a root key greater than
the key of the root to be inserted.

2. The new index segment is inserted in ascending root sequence by either
moving existing index segments “over” to make room for the new one or by
splitting the CI or control area (CA).

3. Once the index segment is created, the root segment is stored in the database
at the location specified by the HD space search algorithm. How this algorithm
works is described in L i 2

Chapter 4. Designing a Fast Path Database 73

74

Choosing a Database Type

BEFORE

Index database when VSAMis used

VSAMKSDS

SKILL1 SKILL3

VSAMESDS or OSAM

ﬁ‘s;fu_u ‘ NAME1‘ EXPR1‘ EDUC1‘ NAMEZ‘ Free space ‘

‘EXPRZ ‘ EXPRS‘ EXPR4{ NAMES‘ EDUC2 ‘ Free space ‘

‘EXPHS ‘ smu.s‘ NAMEA‘ EDUC4‘ EDUCS‘ Freespace‘

‘EDUCG ‘ Free space ‘

¥//

AFTER J\ ‘;

Index database when VSAMisused

VSAMKSDS

|
MSKILU Hl‘smu_z‘ ‘ ‘SKILLS‘
!

VSAMESDS or OSAM

#S'r\ILU ‘ NAME1‘ EXPFH‘ EDUC1‘ NAME2 ‘Freespace ‘

‘EXPRZ ‘EXPRS ‘EXPFM‘ NAMES‘ EDUC2‘ Free space ‘

Free
space

v
‘EXPRS ‘SKII:LS ‘ NAME4 ‘EDUC4 ‘ EDUC5 ‘SKILLZ

‘EDUCG ‘ Free space ‘

w

Figure 42. Inserting a Root Segment into a HIDAM Database

Updating the Space Management Fields When a Root Segment Is Inserted:
This section contains diagnosis, modification, or tuning information.

IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

When a root segment is inserted into an HD database, the space management

fields need to be updated. Eigure 43 on page 76 illustrates this process. The figure
makes several assumptions so real values could be put in the space management

fields. These assumptions are:
* The database is HDAM (and therefore has a root addressable area).

* VSAM is the access method, so there are Cls (not blocks) in the database.
Because VSAM is used, each logical record has 7 bytes of control information.

» Logical records are 512 bytes long.
* One RAP exists in each CI.
* The root segment to be inserted (SKILL1) is 32 bytes long.

The “before” picture shows the CI containing the bit map (in VSAM, the bit map is
always in the second CI in the database). The second bit in the bit map is set to 1,
which says there is free space in the next CI. In the next ClI (CI #3):

* The FSEAP says there is an FSE (which describes an area of free space) 8
bytes from the beginning of this CI.

* The anchor point area (which has one RAP in this case) contains zeros because
no root segments are currently stored in this CI.

* The FSE AL field says there is 497 bytes of free space available starting at the
beginning of this FSE.

The SKILL1 root segment to be inserted is only 32 bytes long, so Cl #3 has plenty
of space to store SKILL1.

The “after” picture shows how the space management fields in Cl #3 are updated
when SKILL1 is inserted.

* The FSEAP now says there is an FSE 40 bytes from the beginning of this CI.

* The RAP points to SKILL1. The pointer value in the RAP is derived using the
following formula:

Pointer = CI Size x CI#-1 + Offset within CI
value to root segment

In this case, the pointer value is 1032 (512 x 2 + 8).

* The FSE has been “moved” to the beginning of the remaining area of free space.
The FSE AL field says there is 465 bytes (497 - 32) of free space available,
starting at the beginning of this FSE.

Chapter 4. Designing a Fast Path Database 75

Choosing a Database Type

BEFORE
Anchor
point
FSEAP |area

ESDS

Bitmap ‘

‘00‘01‘0000‘

)
(S
001101 o« ¢ » o o « ¢10100

Set to 1 means
that this is a bit

) Cl#2
* | (512
1t 1 - bytes)

Bit set to 1 means that there is
free space in the next CI

Set to 8 means that 8
bytes from beginning
of Cl there’s an FSE

map block
Anchor
‘ FSEAP ‘pomt ‘CP\:I:SI\E ID ‘ ‘
area ' \ Cl#3
‘ 08 ‘ 00 ‘ 0000 ‘00‘1F1‘ ‘ Free space * | (612
it { - bytes)

Set to 1F1 means that there’s
497 bytes of free space are
available starting at the
beginning of this FSE

Insertroot
SKILL1
(32bytes)

Anf;hor ESE
point
‘ FSEAP |area ‘ . ‘CP\AL\ID ‘ . :
S U S
‘ 28 ‘ 00 ‘ 208 | SKILL1 ‘ 00 ‘1D1 ‘ Free space ‘
3 N)k
Set to 28 Th t Set to 1D1 means that there
means that 40 segen?:x{ {ﬁ;’t is 465 bytes of free space
bytes from the has been available starting at the
beginning of inserted beginning of this FSE
the Cl there
is an FSE

able

Root
>address-
area

Cl#3
* (512
bytes)

76

w

* =7 bytes of control information in the logical record because VSAM is being used

Figure 43. Updating the Space Management Fields in an HDAM Database

ases usin% the HD

As with the insertion of root segments into an HD database, the various space
management fields in the database need to be updated. (This process was
explained and illustrated in the previous section, “Updating The Space Management

Inserting Dependent Segments
After initial load, dependent segments are inserted into HD datab

space search algorithm. How this algorithm works is described in

Fields When a Root Segment Is Inserted.”)

IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

Deleting Segments

l_ Diagnosis, Modification or Tuning Information

When a segment is deleted in an HD database, it is physically removed from the
database. The space it occupied can be reused when new segments are inserted.
As with the insertion of segments into an HD database, the various space
management fields need to be updated. (This process was explained and illustrated
in a previous section called “Updating The Space Management Fields When a Root
Segment Is Inserted.”)

* The bit map needs to be updated if the block or CI from which the segment is
deleted now contains enough space for a segment to be inserted. (Remember,
the bit map says whether enough space exists in the block or ClI to hold a
segment of the longest type defined. So, if the deleted segment did not free up
enough space for the longest segment type defined, the bit map is not changed.)

* The FSEAP needs to be updated to show where the first FSE in the block or CI
is now located.

* When a segment is deleted, a new FSE might be created or the AL field value in
the FSE that immediately precedes the deleted segment might need to be
updated.

 If the deleted segment is a root segment in an HDAM database, the value in its
PTF pointer is put in the RAP or in the PTF pointer that pointed to it. This
maintains the chain off the RAP and removes the deleted segment from the
chain.

|_ End of Diagnosis, Modification or Tuning Information

l_ Diagnosis, Madification or Tuning Information

If a deleted segment is next to an already available area of space, the two areas
are combined into one unless they are created by an online task that has not yet
reached a sync point.

|_ End of Diagnosis, Modification or Tuning Information

Replacing Segments
This section contains diagnosis, modification, or tuning information.

Replacing segments in HD databases is straightforward as long as fixed-length
segments are used. The segment data, once changed, is simply returned to its
original location in storage. The key field in a segment cannot be replaced.

Provided sufficient adjacent space is available, the segment data is returned to its
original location when a variable-length segment is replaced with a longer segment.
If adjacent space is unavailable, space is obtained from the overflow area for the
lengthened data portion of the segment. This segment is referred to as a “separated
data segment”. It has a 2-byte prefix consisting of a 1-byte segment code and a
1-byte delete flag, followed by the segment data. The delete byte of the separated
data segment is set to X'FF', indicating that this is a separated data segment. A
pointer is built immediately following the original segment to point to the separated
data. Bit 4 of the delete byte of the original segment is set ON to indicate that the
data for this segment is separated. The unused remaining space in the original
segment is available for reuse.

Chapter 4. Designing a Fast Path Database 77

Choosing a Database Type

78

How the HD Space Search Algorithm Works

This section contains diagnosis, modification, or tuning information.

The general rule for inserting a segment into an HD database is to store the
segment (whether root or dependent) in the most desirable block or CI.

Root Segment: The most desirable block depends on the access method. For
HDAM roots, the most desirable block is the one containing either the RAP or root
segment that will point to the root being inserted. For HIDAM roots, if the root does
not have a twin backward pointer, the most desirable block is the one containing the
root with the next highest key. If the root has a twin backward pointer, the most
desirable block is the root with the next lower key.

Dependent Segment: The most desirable block is the one containing the segment
that points to the inserted segment. If both physical child and physical twin pointers
are used, the most desirable block is the one containing either the parent or the
immediately-preceding twin. If hierarchic pointers are used, the most desirable block
is the one containing the immediately-preceding segment in the hierarchy.

Second-Most Desirable Block: ~ When it is not possible to store one or more
segments in the most desirable block (space is not available), the HD space search
algorithm searches for the second-most desirable block or Cl. (This search is done
only if the block is in the buffer pool or contains free space according to the bit
map). The second-most desirable block or Cl is a block or CI that was left free
when the database was loaded or reorganized. Every nth block or CI can be left
free by specifying the FRSPC= keyword in the DATASET macro of the DBDGEN
utility. If you do not specify in the FRSPC= keyword that every nth block or CI be
left free, the HD space search algorithm will not search for the second-most
desirable block or CI.

For more information on the FRSPC= and SEARCHA= keywords, see “Database
Description (DBD) Generation” in IMS/ESA Utilities Reference: System.

All search ranges defined in the HD space search algorithm, excluding steps 9
through 11, are limited to the physical extent that includes the most desirable block.
When the most desirable block is in the overflow area, the search ranges, excluding
steps 9 through 11, are restricted to the overflow area.

The steps in the HD space search algorithm follow. They are arranged in the
sequence in which they are performed. The first time any one of the steps in the list
results in available space, the search is ended and the segment is stored.

Look for space:
1. In the most desirable block (this block or Cl is in the buffer pool).
2. In the second-most desirable block or CI.
3. In any block or Cl in the buffer pool on the same cylinder.
4

In any block or ClI on the same track, as determined by consulting the bit map.
(The bit map says whether space is available for the longest segment type
defined.)

5. In any block or ClI on the same cylinder, as determined by consulting the bit
map.

6. In any block or ClI in the buffer pool within plus or minus n cylinders. Specify n
in the SCAN= keyword in the DATASET statement in the DBD.

IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

7. In any block or CI plus or minus n cylinders, as determined by consulting the
bit map.
8. In any block or CI in the buffer pool at the end of the data set.

9. In any block or CI at the end of the data set, as determined by consulting the
bit map. The data sets will be extended as far as possible before going to the
next step.

10. In any block or Cl in the data set where space exists, as determined by
consulting the bit map. (This step is not used when a HIDAM database is
loaded.)

Notes:
If in load mode processing, step 2 and steps 5 through 8 are skipped.

If the dependent segment being inserted is at the highest level in a secondary data
set group, the place and the way in which space is found differ:

» First, if the segment has no twins, steps 1 through 8 in the HD space search
algorithm are skipped.

* Second, if the segment has a twin that precedes it in the twin chain, the most
desirable block is the one containing that twin.

» Third, if the segment has only twins that follow it in the twin chain, the most
desirable block is the one containing the twin to which the new segment is
chained.

Locking Protocols

IMS uses locks to isolate the database changes made by concurrently executing
programs. Locking is accomplished by using either the Program Isolation (PI) lock
manager or the IRLM. While the PI lock manager provides four locking levels, the
IRLM supports eleven lock states.

The IRLM also provides support for “feedback only” and “test” locking required, and
it supplies feedback on lock requests compatible with feedback supplied by the PI
lock manager.

Locking to Provide Program Isolation: For all database organizations, the basic
item locked is the database record. The database record is locked when position is
first obtained in it. The item locked is the root segment, or for HDAM, the anchor
point. Therefore, for HDAM, all database records chained from the anchor are
locked. The processing option of the PCB determines whether or not two programs
can concurrently access the same database record. If the processing option permits
updates, then no other program can concurrently access the database record. The
database record is locked until position is changed to a different database record or
until the program reaches a commit point.

When a program updates a segment with an INSERT, DELETE, or REPLACE call,
the segment, not the database record, is locked. On an INSERT or DELETE call, at
least one other segment is altered and locked.

Because data is always accessed hierarchically, when a lock on a root (or anchor)
is obtained, IMS determines if any programs hold locks on dependent segments. If
no program holds locks on dependent segments, it is not necessary to lock
dependent segments when they are accessed.

The following locking protocol allows IMS to make this determination. If a root
segment is updated, the root lock is held at update level until commit. If a

Chapter 4. Designing a Fast Path Database 79

Choosing a Database Type

80

dependent segment is updated, it is locked at update level. When exiting the
database record, the root segment is demoted to read level. When a program
enters the database record and obtains the lock at either read or update level, the
lock manager provides feedback indicating whether or not another program has the
lock at read level. This determines if dependent segments will be locked when they
are accessed. For HISAM, the primary logical record is treated as the root, and the
overflow logical records are treated as dependent segments.

These lock protocols apply when the PI lock manager is used, however, if the IRLM
is used, no lock is obtained when a dependent segment is updated. Instead, the
root lock is held at single update level when exiting the database record. Therefore,
no additional locks are required if a dependent segment is inserted, deleted, or
replaced.

Locking for @ Command Codes: When a Q command code is issued for a root
or dependent segment, a Q command code lock at share level is obtained for the
segment. This lock is not released until a DEQ call with the same class is issued, or
until commit time.

If a root segment is returned in hold status, the root lock obtained when entering
the database record prevents another user with update capability from entering the
database record. If a dependent segment is returned in hold status, a Q command
code test lock is required. An indicator is turned on whenever a Q command code
lock is issued for a database. This indicator is reset whenever the only application
scheduled against the database terminates. If the indicator is not set, then no Q
command code locks are outstanding and no test lock is required to return a
dependent segment in hold status.

Data Sharing Impact on Locking: When you use block-level data sharing, the
IRLM must obtain the concurrence of the sharing system before granting global
locks. Root locks are global locks, and dependent segment locks are not. When you
use block-level data sharing, locks prevent the sharing systems from concurrently
updating the same buffer. The buffer is locked before making the update, and the
lock is held until after the buffer is written during commit processing. No buffer locks
are obtained when a buffer is read.

If a Q command code is issued on any segment, the buffer is locked. This prevents
the sharing system from updating the buffer until the Q command code lock is
released.

Locking in HIDAM and HDAM Databases: If you access a HIDAM root via the
index, a lock is obtained on the index, using the RBA of the root segment as the
resource name. Consequently, a single lock request locks both the index and the
root.

When you access an HDAM database, the anchor of the desired root segment is
locked as long as position exists on any root chained from that anchor. Therefore, if
an update PCB has position on an HDAM root, no other user can access that
anchor. When a segment has been updated and the IRLM is used, no other user
can access the anchor until the updater commits. If the PI lock manager is used,
locks are needed to access all root and dependent segments chained from the
anchor until the updater commits.

Locking for Secondary Indexes: When a secondary index is inserted, deleted or
replaced, it is locked with a root segment lock. When the secondary index is used

IMS/ESA V6 Admin Guide: DB

Choosing a Database Type

to access the target of the secondary index, depending on what the index points to,
it might be necessary to lock the secondary index.

Registering Databases

When a database I/O error occurs, IMS copies the buffer contents of the error
block/control interval (CI) to a virtual buffer. A subsequent DL/l request causes the
error block/Cl to be read back into the buffer pool. The write error information and
buffers are maintained across restarts, deferring recovery to a convenient time. 1/O
error retry is automatically performed at database close time. If the retry is
successful, the error condition no longer exists and recovery is not needed.

Although databases need not be registered in DBRC in order for the error handling
to work, it is highly recommended. If an error occurs on a non-registered database
and the system terminates, the database could be damaged if the system is
restarted and a /DBR command is not issued prior to accessing the database. The
reason for this is that restart causes the error buffers to be restored as they were
when the system terminated. If the same block had been updated during the batch
run, the batch update would be overlaid.

Chapter 4. Designing a Fast Path Database 81

Choosing a Database Type

82 IMS/ESA V6 Admin Guide: DB

Chapter 5. Choosing Additional Database Functions

About This Chapter8
Using Logical Relationships .84
Defining a Logical Relationship.85
Unidirectional Logical Relationships e06
Bidirectional Physically Paired Logical Relatlonshlp88
Bidirectional Virtually Paired Logical Relationship 88
Pointing and Pointers in Logical Relationships89
Logical Parent Pointer .9
Logical Child Pointer. .9
Physical Parent Pointer. .9
Logical Twin Pointer T
Sequence of Pointers in a Segments Preflx e 7
Counter Used in Logical Relationships9%
IntersectonData .. .9
Fixed IntersectionData. .9
Variable IntersectionData.9
FID, VID, and Physical Pairing 96
Establishing Logical Relationships Between Segments in the Same Database
(Recursive Structures) . . . e Y
Paths Used in Logical Relatlonshlps e K 0)
The Logical Child Segment 102
Defining Sequence Fields for Databases Usmg Loglcal Relatlonsh|ps 103
Defining Sequence Fields for Real Logical Children. 103
Defining Sequence Fields for Virtual Logical Children 104
Relationship of Control Blocks When a Logical Relationship Is Used 104
How to Specify Use of Logical Relationships in the Physmal DBD. 105
Specifying Bidirectional Logical Relationships 107
Checklist of Rules for Defining Logical Relationships in Phy5|cal Databases 107
Logical Child Rules. .1lo7
Logical ParentRules .108
Physical Parent Rules.108
How to Specify Use of Logical Relatlonshlps in the Log|cal DBD 108
Checklist of Rules for Defining Logical Databases 110
Definition of Crossing a Logical Relationship 110
Definition of First and Additional Logical Relatlonshlps Crossed i I §
Rules for Defining Logical Databases 113
Choosing Replace, Insert, and Delete Rules for Loglcal Relatlonsh|ps ... o114
Performance Considerations for Logical Relationships 116
Logical Parent Pointers .16
KEY/DATA Considerations17
Sequencing Logical Twin Chains 118
Placement of the Real Logical Child in a Vlrtually Palred Relatlonsh|p .. . 118
Using Secondary Indexes18
Why Secondary Indexes? . . . P I <
Characteristics of Secondary Indexes e
Segments Used for Secondary Indexes120
How the Hierarchy Is Restructured 123
How a Secondary Index Is Stored . . . e
Format and Use of Fields in a Pointer Segment . e 125
Making Keys Unique Using System Related Fields 128
Suppressing Index Entries (Sparse Indexing) 129
How the Secondary Index Is Maintained13
Processing a Secondary Index as a Separate Database R)

© Copyright IBM Corp. 1974, 1999 83

Sharing Secondary Index Databases132

Using the INDICES= Parameter133
Using Secondary Indexes with Logical Relat|onsh|ps RO
Using Secondary Indexes with Variable-Length Segments 135
Considerations When Using Secondary Indexing 135
How to Specify Use of Secondary IndexingintheDBD 136
Choosing Secondary Indexes Versus Logical Relationships 139
When to Use a Secondary Index.139
When to Use a Logical Relationship139
Using Variable-Length Segments. . . . Ko
How to Specify Variable-Length Segments .o 140
How Variable-Length Segments Are Stored and Processed 140
When to Use Variable-Length Segments 142
What Application Programmers Need to Know about Vanable Length
Segments . . . Y 922
Adding or Converting to Vanable Length Segments Y 7
Using the Segment Edit/Compression Facility 142
Using Data Capture Exit Routines 145
Using Field-Level Sensitivity 149
Using Multiple Data Set Groups 158

About This Chapter

After you have determined the type of database that best suits your application’s
processing requirements, you are ready to determine which additional IMS functions
you need to use.

This chapter explains the following functions and describes when and how to use
them:

» Logical relationships

* Secondary indexes

* Variable-length segments

* Segment edit/compression facility
» Data Capture exit routines

* Field-level sensitivity

* Multiple data set groups

Notes:
1. These functions do not apply to GSAM, MSDB, HSAM, and SHSAM databases.

2. Only the variable-length segment function, the segment edit/compression facility,
and the Data Capture exit routine apply to DEDBs.

Using Logical Relationships

Logical relationships is a function you can use to resolve conflicts in the way
application programs need to view segments in the database. With logical
relationships, you can:

» Give an application program access to segment types in an order other than the
one defined by the hierarchy

* Give an application program access to a data structure that contains segments
from more than one physical database.

84 IMS/ESA V6 Admin Guide: DB

Using Logical Relationships

An alternative to using logical relationships to resolve the different needs of
applications is to create separate databases or carry duplicate data in a single
database. However, in both cases this creates duplicate data. Avoid duplicate data
because:

» Extra maintenance is required when duplicate data exists. because both sets of
data must be kept up to date. In addition, updates must be done simultaneously
to maintain data consistency.

» Extra space is required on DASD to hold duplicate data.

By establishing a path between two segment types, logical relationships eliminate
the need to store duplicate data. To establish a logical relationship, three segment
types are always defined:

A physical parent
A logical parent
A logical child

For example, suppose two databases exist, one for orders that a customer has
placed and one for items that can be ordered. The first database is called the
ORDER database; the second is called the ITEM database.

The ORDER database contains data such as:
Order number
Customer’s name and address
Type of items ordered
Quantity of each item ordered
Delivery data

The ITEM database contains data such as:

* Type of items that can be ordered

* Quantity of each item in stock

» Quantity of each item in stock that has been ordered but not yet delivered

Defining a Logical Relationship

If an application program needs data from both databases, this can be done by
defining a logical relationship between the two databases. As shown in Eigure 44 od

, a path can be established between the ORDER and ITEM databases
using a segment type, called a logical child segment, that points into the ITEM
database. Eigure 44 on page 88 is a simple implementation of a logical relationship.
In this case, ORDER is the physical parent of ORDITEM. ORDITEM is the physical
child of ORDER but the logical child of ITEM.

In a logical relationship, there is a logical parent segment type and it is the segment
type pointed to by the logical child. In this example, ITEM is the logical parent of
ORDITEM. ORDITEM establishes the path or connection between the two segment
types. If an application program now enters the ORDER database, it can access
data in the ITEM database by following the pointer in the logical child segment from
the ORDER to the ITEM database.

Chapter 5. Choosing Additional Database Functions 85

Defining a Logical Relationship

ORDER
Physical parent——p 123 > «—— Logical parent
of ORDITEM ITEM of ORDITEM
BOLT
Physical child ——»
of ORDER ORDITEM
and logical BOLT

child of v u
ITEM
Figure 44. A Simple Logical Relationship

The physical parent and logical parent are the two segment types between which
the path is established. The logical child is the segment type that establishes the
path. The path established by the logical child is created using pointers.

There are three ways in which a logical relationship can be established or
implemented. These methods of implementation are as follows:

Unidirectional logical relationship
Bidirectional physically paired logical relationship
Bidirectional virtually paired logical relationship

Unidirectional Logical Relationships

86

A unidirectional relationship links two segment types, a logical child and its logical
parent, in one direction. A one-way path is established using a pointer in the logical
child. Eigure 45 on page 87 shows a unidirectional relationship that has been
established between the ORDER and ITEM databases. A unidirectional relationship
can be established between two segment types in the same or different databases.
Typically, however, a unidirectional relationship is created between two segment
types in different databases. In the figure, the logical relationship can be used to
cross from the ORDER to the ITEM database. It cannot be used to cross from the
ITEM to the ORDER database, because the ITEM segment does not point to the
ORDER database.

IMS/ESA V6 Admin Guide: DB

Physical parent
of ORDITEM

and logical P

parent of —p
ITEMORD

Physical child-
ren of ORDER
and logical-p-

Unidirectional Logical Relationships

ORDER Database ITEM Database

Physical —p{ | ORDER
parent of 578
ORDITEM i
ORDITEM y '
SCREWS ITEM ITEM ITEM | l¢— Logical

) ‘ ORDITEM CLIPS NAILS| | SCREWS parents of
Physical —— ORDITEM
children of ORDITEM |NAILS
ORDERand
logical CLPS
children
of ITEM \/ _/

Figure 45. Unidirectional Logical Relationship

It is possible to establish two unidirectional relationships, as shown in m
Then either physical database can be entered and the logical child in either can be
used to cross to the other physical database. However, IMS treats each
unidirectional relationship as a one-way path. It does not maintain data on both
paths. If data in one database is inserted, deleted, or replaced, the corresponding
data in the other database is not updated. If, for example, DL/I replaces
ORDITEM-SCREWS under ORDER-578, ITEMORD-578 under ITEM-SCREWS is
not replaced. This maintenance problem does not exist in both bidirectional
physically paired-logical and bidirectional virtually paired-logical relationships. Both
relationship types are discussed next. IMS allows either physical database to be
entered and updated and automatically updates the corresponding data in the other
database.

children of
ITEM

ORDER Database ITEM Database
v Physical parents
ORDER ORDER | || IEM ITEM of ITEMORD
h and logical
578 NAILS SCREWS parents of
ORDITEM
ORDITEM ITEMORD
578 Physical child-
ORDITEM | ITEMORD ITEMORD ren of ITEM
ORD «-and logical
200 578 children of
\NAILS SCTWS/ \ / ORDER
| \\—/

A\ 4

Figure 46. Two Unidirectional Logical Relationships

87

Chapter 5. Choosing Additional Database Functions

Bidirectional Physically Paired Logical Relationship

Bidirectional Physically Paired Logical Relationship

A bidirectional physically paired relationship links two segment types, a logical child
and its logical parent, in two directions. A two-way path is established using pointers
in the logical child segments. Eigure 47 shows a bidirectional physically paired
logical relationship that has been established between the ORDER and ITEM
databases.

ORDER Database ITEM Database
Physical \/

parent of L4 Physical parents

ORDITEM ITEM ITEM of ITEMORD

and —> . | ORDER <4— and logical

logical » » parents of

parent of 123 BOLT WASHER ORDITEM

ITEMORD

Physical ORDITEM

children of \WASHER .

ITEMORD ITEMORD Physical

oo nd ORDITEM <«— children

children BOLT 123 123 of ITEM and

of ITEM logical children
\—/ \‘\—/‘/ of ORDER

Figure 47. Bidirectional Physically Paired Logical Relationship

Like the other types of logical relationships, a physically paired relationship can be
established between two segment types in the same or different databases. The
relationship shown in m allows either the ORDER or the ITEM database to
be entered. When either database is entered, a path exists using the logical child to
cross from one database to the other.

In a physically paired relationship, a logical child is stored in both databases.
However, if the logical child has dependents, they are only stored in one database.
For example, IMS maintains data in both paths in physically paired relationships. In

if ORDER 123 is deleted from the ORDER database, IMS deletes from
the ITEM database all ITEMORD segments that point to the ORDER 123 segment.
If data is changed in a logical child segment, IMS changes the data in its paired
logical child segment. Or if a logical child segment is inserted into one database,
IMS inserts a paired logical child segment into the other database.

With physical pairing, the logical child is duplicate data, so there is some increase
in storage requirements. In addition, there is some extra maintenance required
because IMS maintains data on two paths. In the next type of logical relationship
examined, this extra space and maintenance do not exist, however, IMS still allows
you to enter either database. IMS also performs the maintenance for you.

Bidirectional Virtually Paired Logical Relationship

88

A bidirectional virtually paired relationship is like a bidirectional physically paired

relationship in that:

» It links two segment types, a logical child and its logical parent, in two directions,
establishing a two-way path.

* It can be established between two segment types in the same or different
databases.

Eigure 48 on page 89 shows a bidirectional virtually paired relationship between the
ORDER and ITEM databases. Note that although there is a two-way path, a logical

IMS/ESA V6 Admin Guide: DB

Bidirectional Virtually Paired Logical Relationship

child segment exists only in the ORDER database. Going from the ORDER to the
ITEM database, IMS uses the pointer in the logical child segment. Going from the
ITEM to the ORDER database, IMS uses the pointer in the logical parent, as well
as the pointer in the logical child segment.

ORDER Database \ﬂ%
| |
Physical parent Logical
of ORDITEM — > ORDER ITEM ‘ ITEM <« POl
123 BOLT| 'WASHER ORDITEM
A
ORDITEM |¢ \\—L
Physical child- WASHER
rerzjcrf O_RIZl)ERH ORDITEM |4
ana logical
children of BOLT

e __

Figure 48. Bidirectionally Virtually Paired Logical Relationship

To define a virtually paired relationship, two logical child segment types are defined
in the physical databases involved in the logical relationship. Only one logical child
is actually placed in storage. The logical child defined and put in storage is called
the real logical child. The logical child defined but not put in storage is called the
virtual logical child.

IMS maintains data in both paths in a virtually paired relationship. However,
because there is only one logical child segment, maintenance is simpler than it is in
a physically paired relationship. When, for instance, a new ORDER segment is
inserted, only one logical child segment has to be inserted. For a replace, the data
only has to be changed in one segment. For a delete, the logical child segment is
deleted from both paths.

Note the trade-off between physical and virtual pairing. With virtual pairing, there is
no duplicate logical child and maintenance of paired logical children. However,
virtual pairing requires the use and maintenance of additional pointers, called logical
twin pointers.

Pointing and Pointers in Logical Relationships

In all logical relationships the logical child establishes a path between two segment
types. The path is established by use of pointers. The following sections look at
pointing in logical relationships and the various types of pointers that can be used.
Four types of pointers can be specified for logical relationships:

Logical parent pointer
Logical child pointer
Physical parent pointer
Logical twin pointer

Chapter 5. Choosing Additional Database Functions 89

Pointing and Pointers in Logical Relationships

Logical Parent Pointer

90

The pointer from the logical child to its logical parent is called a logical parent (LP)
pointer. This pointer must be a symbolic pointer when it is pointing into a HISAM
database. It can be either a direct or a symbolic pointer when it is pointing into an
HDAM or HIDAM database.

A direct pointer consists of the direct address of the segment being pointed to, and
it can only be used to point into a database where a segment, once stored, is not
moved. This means the logical parent segment must be in an HD (HDAM and
HIDAM) database, since the logical child points to the logical parent segment. The
logical child segment, which contains the pointer, can be in a HISAM or an HD
database. A direct LP pointer is stored in the logical child’s prefix, along with any
other pointers, and is four bytes long. mgshows the use of a direct LP
pointer. In a HISAM database, pointers are not required between segments
because they are stored physically adjacent to each other in hierarchic sequence.
Therefore, the only time direct pointers will exist in a HISAM database is when
there is a logical relationship using direct pointers pointing into an HD database.

ORDER Database ITEM Database

Physical
Parent

Logical

ORDER Parent

ITEM

T

Logical
LP | ORDITEM Child

Prefix Data
<4+—ret—>

Figure 49. Direct Logical Parent (LP) Pointer

In Eigure 49, the direct LP pointer points from the logical child ORDITEM to the
logical parent ITEM. Because it is direct, the LP pointer can only point to an HD
database. However, the LP pointer can “exist” in a HISAM or an HD database. The
LP pointer is in the prefix of the logical child and consists of the 4-byte direct
address of the logical parent.

A symbolic LP pointer, which consists of the logical parent’s concatenated key
(LPCK), can be used to point into a HISAM or HD database. Eigure 50 on page 91
illustrates how to use a symbolic LP pointer. The logical child ORDITEM points to
the ITEM segment for BOLT. BOLT is therefore stored in ORDITEM in the LPCK. A
symbolic LP pointer is stored in the first part of the data portion in the logical child
segment.

Note: The LPCK part of the logical child segment is considered non-replaceable
and is not checked to see whether the I/O area is changed. When the LPCK
is virtual, checking for a change in the 1/0O area causes a performance
problem. Changing the LPCK in the I/O area does not cause the REPL call
to fail. However, the LPCK is not changed in the logical child segment.

With symbolic pointers, if the database the logical parent is in is HISAM or HIDAM,
IMS uses the symbolic pointer to access the index to find the correct logical parent
segment. If the database the logical parent is in is HDAM, the symbolic pointer

IMS/ESA V6 Admin Guide: DB

Pointing and Pointers in Logical Relationships

must be changed by the randomizing module into a block and RAP address to find
the logical parent segment. IMS accesses a logical parent faster when direct
pointing is used.

Although the figures show the LP pointer in a unidirectional relationship, it works
exactly the same way in all three types of logical relationships.

ORDER Database ITEM Database
Physical ITEM | Logical
ORDER Parent BOLT Parent

T

Logical
BOLT| ORDITEM Child

LPCK
+“—>

Data
¢ —»

Figure 50. Symbolic Logical Parent (LP) Pointer

In m the symbolic LP pointer points from the logical child ORDITEM to the
logical parent ITEM. With symbolic pointing, the ORDER and ITEM databases can
be either HISAM or HD. The LPCK, which is in the first part of the data portion of
the logical child, functions as a pointer from the logical child to the logical parent,

and is the pointer used in the logical child.

Note: The LPCK part of the logical child segment is considered non-replaceable
and is not checked to see whether the 1/0O area is changed.

Logical Child Pointer

Logical child pointers are only used in logical relationships with virtual pairing. When
virtual pairing is used, there is only one logical child on DASD, called the real
logical child. This logical child has an LP pointer. The LP pointer can be symbolic or
direct. In the ORDER and ITEM databases you have seen, the LP pointer allows
you to go from the database containing the logical child to the database containing
the logical parent. To enter either database and cross to the other with virtual
pairing, you use a logical child pointer in the logical parent. Two types of logical
child pointers can be used:

* Logical child first (LCF) pointers, or
* The combination of logical child first (LCF) and logical child last (LCL) pointers

The LCF pointer points from a logical parent to the first occurrence of each of its
logical child types. The LCL pointer points to the last occurrence of the logical child
segment type for which it is specified. A LCL pointer can only be specified in
conjunction with a LCF pointer. Eigure 51 aon page 92 shows the use of the LCF
pointer. These pointers allow you to cross from the ITEM database to the logical
child ORDITEM in the ORDER database. However, although you are able to cross
databases using the logical child pointer, you have only gone from ITEM to the
logical child ORDITEM. To go to the ORDER segment, use the physical parent
pointer explained in the next section.

LCF and LCL pointers are direct pointers. They contain the 4-byte direct address of
the segment to which they point. This means the logical child segment, the segment

Chapter 5. Choosing Additional Database Functions 91

Pointing and Pointers in Logical Relationships

being pointed to, must be in an HD database. The logical parent can be in a HISAM
or HD database. If the logical parent is in a HISAM database, the logical child
segment must point to it using a symbolic pointer. LCF and LCL pointers are stored
in the logical parent’s prefix, along with any other pointers. m shows a LCF
pointer.

ORDER Database ITEM Database
orper | Physical YILCF | ITEM Logical
Parent Parent
Prefix Data
<4+—rt—>

Real Logical
LP | ORDITEM Child

Prefix Data
<4“——r<4—>

Figure 51. Logical Child First (LCF) Pointer (Used in Virtual Pairing Only)

In Eigure 51, the LCF pointer points from the logical parent ITEM to the logical child
ORDITEM. Because it is a direct pointer, it can only point to an HD database,
although, it can exist in a HISAM or an HD database. The LCF pointer is in the
prefix of the logical parent and consists of the 4-byte RBA of the logical child.

Physical Parent Pointer

92

Physical parent (PP) pointers point from a segment to its physical parent. They are
generated automatically by IMS for all HD databases involved in logical
relationships. PP pointers are put in the prefix of all logical child and logical parent
segments. They are also put in the prefix of all segments on which a logical child or
logical parent segment is dependent in its physical database. This creates a path
from a logical child or its logical parent back up to the root segment on which it is
dependent. Because all segments on which a logical child or logical parent is
dependent are chained together with PP pointers to a root, access to these
segments is possible in reverse of the usual order.

In m you saw that you could cross from the ITEM to the ORDER database
when virtual pairing was used, and this was done using logical child pointers.
However, the logical child pointer only got you from ITEM to the logical child
ORDITEM. Eigure 52 on page 93 shows how to get to ORDER. The PP pointer in
ORDITEM points to its physical parent ORDER. If ORDER and ITEM are in an HD
database but are not root segments, they (and all other segments in the path of the
root) would also contain PP pointers to their physical parents.

PP pointers are direct pointers. They contain the 4-byte direct address of the
segment to which they point. PP pointers are stored in a logical child or logical
parent’s prefix, along with any other pointers.

IMS/ESA V6 Admin Guide: DB

Pointing and Pointers in Logical Relationships

ORDER Database ITEM Database
omper | Physical MLcF | mEM Logical
Parent Parent
A
Prefix Data
4+—r4—>

Real Logical
PP | LP | ORDITEM Child

Prefix Data
4+— P>

Figure 52. Physical Parent (PP) Pointer

In m the PP pointer points from the logical child ORDITEM to its physical
parent ORDER. It is generated automatically by IMS for all logical child and logical
parent segments in HD databases. In addition, it is in the prefix of the segment that
contains it and consists of the 4-byte direct address of its physical parent. PP
pointers are generated in all segments from the logical child or logical parent back
up to the root.

Logical Twin Pointer

Logical twin pointers are used only in logical relationships with virtual pairing.
Logical twins are multiple logical child segments that point to the same occurrence
of a logical parent. Two types of logical twin pointers can be used:

* Logical twin forward (LTF) pointers, or

* The combination of logical twin forward (LTF) and logical twin backward (LTB)
pointers

An LTF pointer points from a specific logical twin to the logical twin stored after it.
An LTB pointer can only be specified in conjunction with an LTF pointer. When
specified, an LTB points from a given logical twin to the logical twin stored before it.
Logical twin pointers work in a similar way to the physical twin pointers used in HD
databases. As with physical twin backward pointers, LTB pointers improve
performance on delete operations. They do this when the delete that causes DASD
space release is a delete from the physical access path. Similarly, PTB pointers
improve performance when the delete that causes DASD space release is a delete
from the logical access path.

Eigure 53 on page 94 shows use of the LTF pointer. In this example, ORDER 123
has two items: bolt and washer. The ITEMORD segments beneath the two ITEM
segments use LTF pointers. If the ORDER database is entered, it can be crossed to
the ITEMORD segment for bolts in the ITEM database. Then, to retrieve all items
for ORDER 123, the LTF pointers in the ITEMORD segment can be followed. In
only one other ITEMORD segment exists, and it is for washers. The LTF
pointer in this segment, because it is the last twin in the chain, contains zeros.

LTB pointers on dependent segments improve performance when deleting a real
logical child in a virtually paired logical relationship. This improvement occurs when
the delete is along the physical path.

LTF and LTB pointers are direct pointers. They contain the 4-byte direct address of
the segment to which they point. This means LTF and LTB pointers can only exist in

HD databases. [Eigure 53 an page 94 shows a LTF pointer.

Chapter 5. Choosing Additional Database Functions 93

Pointing and Pointers in Logical Relationships

ORDER Database ITEM Database
Logical Physical
LCF ORDER123 Parent ITEM Bolt Parent 1
‘ !
Real Logical

PP |LTF| LP | ITEMORD Child 1

Physical
'TEM Washer | Parent2

Real Logical
Child 1

PP |LTF| LP | ITEMORD

00

Figure 53. Logical Twin Forward (LTF) Pointer (Used in Virtual Pairing Only)

In m the LTF pointer points from a specific logical twin to the logical twin
stored after it. In this example, it points from the ITEMORD segment for bolts to the
ITEMORD segment for washers. Because it is a direct pointer, the LTF pointer can
only point to an HD database. The LTF pointer is in the prefix of a logical child
pointer and consists of the 4-byte RBA of the logical twin stored after it.

Sequence of Pointers in a Segment’s Prefix

This section contains diagnosis, modification, or tuning information.

When a segment contains more than one type of pointer and is involved in a logical
relationship, pointers are put in the segment’s prefix in the following sequence:

HF | HB | PP | LTF | LTB | LP

or

TF B PP LTF | LTB LP PCF | PCL

Multiple PCF and PCL pointers can exist in a segment type, however, more than
one of the other types of pointers can not.

Counter Used in Logical Relationships

94

IMS puts a 4-byte counter in all logical parents that do not have logical child
pointers. The counter is stored in the logical parent’s prefix and contains a count of
the number of logical children pointing to this logical parent. The counter is
maintained by IMS and is used to handle delete operations properly. If the count is
greater than zero, the logical parent cannot be deleted from the database because
there are still logical children pointing to it.

IMS/ESA V6 Admin Guide: DB

Intersection Data

Intersection Data

When two segments are logically related, data can exist that is unique to only that
relationship. In Eigure 54, for example, one of the items ordered in ORDER 123 is
5000 bolts. The quantity 5000 is specific to this order (ORDER 123) and this item
(bolts). It does not belong to either the order or item on its own. Similarly, in
ORDER 123, 6000 washers are ordered. Again, this data is concerned only with
that particular order and item combination.

This type of data is called intersection data, since it has meaning only for the
specific logical relationship. The quantity of an item could not be stored in the
ORDER 123 segment, because different quantities are ordered for each item in
ORDER 123. Nor could it be stored in the ITEM segment, because for each item
there can be several orders, each requesting a different quantity. Because the
logical child segment links the ORDER and ITEM segments together, data that is
unigue to the relationship between the two segments can be stored in the logical
child.

The two types of intersection data are: fixed intersection data (FID