Secure and Audit
Oracle 10g and 11g

Chapter 6

Authentication

Authentication comes from the Greek word orv0evTikdg, which means real or genuine and
“from the author” (authentes). Authentication is the process in which Oracle attempts to identify
your identity when you logon to the database and decides whether to allow it. Authentication is
the first step in any access to the database—it is the front gate to your castle. If you have no way to
identify a party making the connection or there is a way to attack the authentication scheme and
fake an identity, then nothing else matters.

In this chapter you'll review the various methods Oracle employs to authenticate users. Start-
ing with the basic/standard authentication method using usernames and passwords, through pass-
word stores and password files, and all the way to advanced authentication options, you’'ll learn
that you have many options for authenticating your users. You'll learn about methods in which
the authenticating entity is the database as well as schemes in which the database delegates authen-
tication to an external server. All of these options allow you to choose the most appropriate
authentication scheme for your database environments or for different users.

6.1 HOWTO Understand and Use O3/05
LOGON and OS Authentication

There are two main forms of basic authentication in Oracle—one in which authentication is
done by the database and one in which Oracle trusts the operating system (OS) to perform the
authentication of a user. In Chapter 4 you saw the basic working of the O3LOGON authentica-
tion scheme; instead of repeating it here you'll see what the equivalent method for Oracle 11g looks
like. The authentication scheme in Oracle 11g is called OSLOGON.

O5LOGON

The changes in OSLOGON include the use of secure hash algorithm-1 (SHA-1), the use of salt
and a longer session key. OSLOGON looks like this (these are segments from the network packets
sent between the client and the server in a OSLOGON authentication process):

100 ® HOWTO Secure and Audit Oracle 10g and 11g

1. Logon to the database using one of the service names defined within your tnsnames.ora:

[oraclell@ollg ~]$ sglplus scott/tiger@ollg

SQL*Plus: Release 11.1.0.6.0 - Production on Fri Nov 16 16:25:55 2007
Copyright (c) 1982, 2007, Oracle. All rights reserved.

Connected to:

Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - Production
With the Partitioning, Oracle Label Security, OLAP, Data Mining,
Oracle Database Vault, and Real Application Testing options

SQL>

2. The client communicates with the server and sends it the username (scott in this case):

0x0000: 4500 0128 95cf 4000 4006 6684 c0a8 dels
0x0010: cOaB8 del5 802a 05f1 8082 8a04 806c 8dad
0x0020: 8018 0100 3e97 0000 0101 080a 003d 1399 ... >
0x0030: 003d 1394 00f4 0000 0600 0000 0000 0376 .=
0x0040: 02fe f£fff ££05 0000 0001 0000 00fe ffff
0x0050: ££f05 0000 O00fe f£ffff fffe £ffff ££05 7363
0x0060: 6£74 7404 0000 0004 4155 5448 5f54 4552
0x0070: 4d49 4e41 4c05 0000 0005 7074 732f 3100
0x0080: 0000 O000f 0000 O0O0Of 4155 5448 5£50 524f
0x0090: 4752 414d 5f4e 4d25 0000 0025 7371 6c70 GRAM_NM%.....: %sqlp
0x00a0: 6¢75 7340 6£31 3167 2e67 7561 7264 6975 lus@ollg.dbasecu
0x00b0: 6d2e 636f 6d20 2854 4e53 2056 312d 5633 r.com.(TNS.V1-V3..
0x00c0O: 2900 0000 000c 0000 000c 4155 5448 5f4d
0x00d0: 4143 4849 4e45 1100 0000 116f 3131 672e
0x00e0: 6775 6172 6469 756d 2e63 6f6d 0000 0000
0x00£0: 0800 0000 0841 5554 485f 5049 4404 0000
0x0100: 0004 3430 3432 0000 0000 0800 0000 0841
0x0110: 5554 485f 5349 4408 0000 0008 6£72 6163
0x0120: 6c65 3131 0000 0000

3. The server responds with the AUTH_SESSKEY and the AUTH_VFR_DATA. The AUTH_
SESSKEY has been extended to 48 bytes in OSLOGON. The AUTH_VFR_DATA is the
password hash salt value of length 10 bytes:

0x0000: 4500 0192 9ea7 4000 4006 5d42 cOa8 del5 E @.@.]B

0x0010: c0O0a8 del5 05f1 802a 806c 8dad 8082 8afs8 *.1

0x0020: 8018 0100 3£f01 0000 0101 080a 003d 13a@6 ..o = eereenenennnenes
0x0030: 003d 1399 015e 0000 0600 0000 0000 0803 =
0x0040: 000c 0000 000c 4155 5448 5£f53 4553 534b AUTH_SESSK
0x0050: 4559 6000 0000 6039 3443 3439 3735 3938 e’ 94C4 97598
0x0060: 3445 4537 3441 3345 3739 4339 4538 3546 ..4EE74A3E79CO9E85F
0x0070: 4446 3038 3542 3430 4236 3444 3234 4333 ..DF085B40B64D24C3
0x0080: 4138 4234 4239 4533 3741 4138 4546 3434 ..A8B4BOE37AA8EF44
0x0090: 3832 4544 4139 3636 4234 3446 3136 3843 ..82EDA966B44F168C
0x00a0: 4338 4534 4534 3133 4242 4138 4337 3438 ..C8E4E413BBA8C748
0x00b0O: 3932 3130 3233 3600 0000 000d 0000 000d 9210236.ccencencanes
0x00cO: 4155 5448 5f56 4652 5f44 4154 4114 0000 AUTH_VFR_DATA.....
0x00d0: 0014 3242 3233 3445 3434 3437 3832 3541 ... 2B234E4447825A

0x00e0: 3537 3046 3144 251b 0000 1a00 0000 1a4l 570F1D%ucnciennns A
0x00£f0: 5554 485f 474c 4f42 4l4c 4ch9 5f55 4e49 UTH_GLOBALLY UNI
0x0100: 5155 455f 4442 4944 0020 0000 0020 3434 QUE DBID.....ue 44

0x0110: 3336 3339 3935 3432 4142 3630 3539 4645 ..36399542AB6059FE
0x0120: 3134 3432 3832 3743 3834 3144 4433 0000 1442827C841DD3.........

Authentication ® 101

0x0130: 0000 0401 0000 0002 0001 0000 0000 0000
0x0140: 0000 0000 0000 0000 0000 0000 0000 0000
0x0150: 0000 0000 0000 0000 0000 0000 0000 0000
0x0160: 0000 0002 0000 0000 0000 3601 0000 0000 6
0x0170: 0000 0055 550f 0000 0000 0000 0000 0000 Uu
0x0180: 0000 0000 0000 0000 0000 0000 0000 0000
0x0190: 0000

The 10 byte salt value is sent to the client because in Oracle 11g the password hashing scheme
is based on SHA-1 with a salt component added (some random bits used to strengthen the
password in the face of brute-force attack). The client will need to use the same salt value
that the server uses in order for the match to occur. In Oracle 11g the password hash is cre-
ated by concatenating the salt component to the password. SHA-1 is then applied to the
salted password. The first 20 bytes are converted to printable hex—and this is the password
hash that is stored in SPARE4 of SYS.USERS. The salt is also stored in SPARE4:

SQL> select name,spare4 from user$ where name='SCOTT';
NAME

SCOTT
S:D520818940AE5CA8F426B1C3EC408AB446C203AA2B234E4447825A570F1D

As you can see, there are 30 bytes stored in SPARE4 just after “S:”. They are stored as
rintable hex so there are 60 hex characters. The first 40 characters are the 20 bytes

If)rom the SHA-1 result and the last 20 characters come from the ten salt bytes. The salt

(2B234E4447825A570F1D) is sent in the packet shown above as the AUTH_VFR_DATA.

4. The client takes the salt that was sent by the server and computes the hash for the salted
password using SHA-1. It then uses this value to decrypt the session key. The session key was
encrypted by the server using AES192 using the hash—so the client performs the inverse
operation. The decryption key is derived by taking the first 20 bytes of the SHA-1 (i.e., 160
bits) and adding four zeros (to make 192 bits). The client then creates its own session key. The
two AUTH_SESSKEY values are combined by the client to form the key that is then used
for password encryption. Then, the client sends both its encrypted session key (AUTH_
SESSKEY below) and the encrypted password (AUTH_PASSWORD) to the server:

0x0000: 4500 03bf 95d1 4000 4006 63eb cOa8 dels
0x0010: c0a8 del5 802a 05f1 8082 8af8 806¢C 8f0b
0x0020: 8018 0100 412e 0000 0101 080a 003d 13ad
0x0030: 003d 13a6 038b 0000 0600 0000 0000 0373
0x0040: 03fe ffff ££05 0000 0001 0100 O00Ofe fEff
0x0050: ff12 0000 00fe ffff fffe ffff ££f05 7363
0x0060: 6£74 740c 0000 000c 4155 5448 ©5f53 4553 5 .
0x0070: 534b 4559 6000 0000 fe40 4231 3338 4639 SKEY...........@B138F9
0x0080: 4246 4635 4632 3333 4437 3534 4632 3130 BFF5F233D754F210

0x0090: 3230 3143 4631 3637 3645 3433 4238 3435 201CF1676E43B845

0x00a0: 4139 4146 4242 4445 3646 3845 4245 4545 A9AFBBDEGFSEBEEE
0x00bO0: 4643 3645 3842 4544 4443 2041 3841 4234 FC6ESBEDDC.A8AB4
0x00cO0: 3746 3145 3132 3230 4141 3333 3335 3946 7F1E1220AA33359F
0x00d0: 3032 3844 4645 3633 3345 3400 0100 0000 028DFE633EA4......cuueee.
0x00e0: 0doo 0000 0d41 5554 485f 5041 5353 574f . AUTH_PASSWO

102 m HOWTO Secure and Audit Oracle 10g and 11g

0x00£0: 5244 4000 0000 4046 3043 3845 4543 3039 RDa@....... @FOC8EECO09
0x0100: 3843 3644 3335 3836 3946 3830 4346 3738 8C6D35869F80CF78
0x0110: 4432 3144 3246 3736 3146 3244 3446 3743 D21D2F761F2D4F7C
0x0120: 4543 3838 3144 4632 4446 4131 3033 4544 EC881DF2DFA103ED
0x0130: 3430 3534 4536 4300 0000 0008 0000 0008 4054E6C..ciirennnns

5. The server receives both values. It decrypts the session key sent from the client using AES192
and the password hash in the same way that the client decrypted the server’s session key.
Now the server has both the server session key and the client session key so it can go ahead
and decrypt the password and check whether or not to authenticate the user.

O5LOGON improves on O3LOGON but it also uses a username and a password, password
hashes, etc. In all these authentication methods, the usernames and passwords are kept within the
data dictionary and it is the Oracle server that does the authentication. Although these are by far
the most common ways that you might be authenticated to an Oracle server, you can also config-
ure Oracle to trust the OS to authenticate you on its behalf.

Operating System Authentication

In OS authentication, the user authenticates at the OS level and then connects to the database.
When connecting to the database the user does not have to supply a password and Oracle maps
the database user to the OS user based on its name. Privilege management is still done by the
database—only the authentication is delegated to the OS.

Oracle distinguishes between two cases—when the user is logged onto the local OS and when the
user is connecting over Oracle*Net. When a user is already logged onto the local OS, Oracle only needs
to know how to map the OS credentials to its credentials and it will trust the OS. Trusting a remote OS
is one of the worst things you can do in terms of security and in fact, this has been deprecated in Oracle
11g. The risk is that someone can just put up a node on the network, configure a user that maps to a
database administrator (DBA), and gain entry with no authentication being done on the server.

To enable remote OS authentication on versions prior to 11g you need to set the initialization
parameter REMOTE_OS_AUTHENT:

SQL> show parameter remote_os_authent;

remote_os_authent boolean FALSE
SQL> alter system set remote os_authent=true scope=spfile;
System altered.

SQL> shutdown

Database closed.

Database dismounted.

ORACLE instance shut down.

SQL> startup

ORACLE instance started.

Total System Global Area 418484224 bytes
Fixed Size 1300324 bytes
Variable Size 268437660 bytes
Database Buffers 142606336 bytes
Redo Buffers 6139904 bytes

Database mounted.
Database opened.

Authentication ® 103

SQL>show parameter remote_ os_authent;

remote_os_authent boolean TRUE

At this point, Oracle is able to accept also remote users authenticated by the client OS. You do not
need to set that to have users logged onto the local OS to gain access—for that you just need to
define a user as IDENTIFIED EXTERNALLY.

This does not mean you can’t authenticate to Oracle using a username and a password. For

users not defined as IDENTIFIED EXTERNALLY, Oracle still performs the authentication:

SQL> connect scott
Enter password:
Connected.

When using OS authentication you need to decide how to map OS usernames to Oracle
usernames. The initialization parameter OS_AUTHENT_PREFIX controls that mapping. The
database username that will be used within the database is the concatenation of this value along
with the OS username. Before Oracle 11g the default for this parameter was ops$. In 11g it is set
to be null and this is a more secure setting which you should adopt for pre-11g servers. It is also
the value that is set once you install Oracle Database Vault as part of general hardening that Data-
base Vault performs. If this value is set to ops$ and you are logged onto the OS as jane then your
logon to the database will be as user ops$jane. If this value is set to null then you will log onto the
database as user jane.

If you enable remote OS authentication and have (as an example) the prefix set to ops$, you
can allow access from OS users by creating a user IDENTIFIED EXTERNALLY:

SQL> create user opsS$Sjane identified externally;
User created.

SQL> grant create session to opsS$jane;

Grant succeeded.

Now logon to the OS as jane:

o

% su - jane

You don’t need to specify a username or a password to logon to Oracle:

saturn:oraclel0% sqglplus /

SQL*Plus: Release 10.2.0.1.0 - Production on Fri Jan 25 11:09:05 2008
Copyright (c) 1982, 2005, Oracle. All rights reserved.

Connected to:

Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 - 64bit Production
With the Partitioning, OLAP, and Data Mining options

SQL> show user

USER is "OPSSJANE"

Why did the default for this parameter change from ops$ to a null value? The reason has to do with
confusion that can happen when you have a nontrivial mapping. The ops$ default was originally created
so it would be clear which users were authenticated by Oracle and which users were authenticated by

104 m HOWTO Secure and Audit Oracle 10g and 11g

the OS. However, it allowed a situation in which you have both a user called OPS$JANE within
the database and a user called JANE within the database. Both are valid and different—but you
can see that it can be very confusing. Once you change the parameter value to none, you avoid this
confusion—but also lose the indication within the username of the authentication. If you are going
to use ops$ (or any non-null mapping value) you should adopt a practice by which you create a user
with an impossible password (see Section 4.7) for each user with the ops$ prefix—e.g.,

SQL> create user jane identified by impossible;
User created.

Administrator Authentication

One question that you may be asking is whether you already use OS authentication when you
connect “/ as sysdba”? The answer is that this is indeed a form of Oracle trusting a user that has
been authenticated with the OS but this mode is called administrator authentication and is quite
different. You have special handling for administrator authentication to solve the chicken-and-egg
problem of starting a database. If the normal authentication method is O3/05 LOGON and the
database does the authentication using usernames and passwords stored in the database, how do
you authenticate the person who needs to start the database? If the database is down, how is it
going to authenticate this administrator and check their password? To solve this, Oracle authen-
ticates administrators (users who have the sysdba or sysoper system privileges) using the OS sepa-
rately from IDENTIFIED EXTERNALLY.

In almost all installations of Oracle, if you are logged onto the OS as the Oracle instance
account you can connect as the SYS user using sysdba or sysoper privileges without supplying a
password:

oraclel0% sglplus "/ as sysdba"

SQL*Plus: Release 10.2.0.1.0 - Production on Fri Jan 25 11:59:41 2008
Copyright (c) 1982, 2005, Oracle. All rights reserved.

Connected to:

Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 - 64bit Production
With the Partitioning, OLAP, and Data Mining options

SQL> show user

USER 1is "SyYS"

To understand how this works, let’s look at Oracle on Unix. When you install Oracle on Unix there
are two OS groups, OSDBA and OSOPER, that map into two Unix user groups—dba and oper.
When an OS user tries to log onto Oracle as /, Oracle checks the Unix user group for which the
user belongs to. If the user belongs to the Unix user group dba and the connection is being done as
sysdba then Oracle will allow the connection and log the user on as SYS with the sysdba privileges.
If the user belongs to the Unix user group oper and the connection is being done as sysoper, then
Oracle will allow the connection and log the user on as PUBLIC with the sysoper privileges:

oraclel0% sqglplus "/ as sysoper"

SQL*Plus: Release 10.2.0.1.0 - Production on Fri Jan 25 12:04:39 2008
Copyright (c) 1982, 2005, Oracle. All rights reserved.

Connected to:

Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 - 64bit Production
With the Partitioning, OLAP, and Data Mining options

SQL> show user

USER 1s "PUBLIC"

Authentication ®m 105

In both these cases there is no explicit username or password. This is a form of OS authentication—
but it requires you to be logged in locally to the host where the database is installed and it relies
on Unix user groups. It is not a general-purpose authentication scheme that you can use for any
user. Also, it cannot be used for connecting as sysdba or sysoper over the network—for that you
need to set up password files.

Two Things to Remember about OS Authentication

1. Prefer to use a null REMOTE_AUTHENT_ PREFIX.

2. If you are using OPS$ (due to historical reasons) make sure that for every externally
identified account by the name OPS$ < USER > you create a regular account < USER >
with an impossible password.

6.2 HOWTO Use Password Files

Asyou saw in the previous HOWTO, one way to logon using sysdba and sysoper privileges is by signing
onto the OS as the instance owner in which case you can logon with no password. But what happens
if you want to sign on with sysdba or sysoper privileges over the network or from another account that
pethaps is not the one that belongs to the special Unix user groups? Then—you can use password files.

Password files allow you to set passwords that are stored outside the database and that are used
for authenticating administrators. These passwords are stored in an external file that is encrypted
by Oracle. They can be used even if the database is down—so even if you logon and need to start
the database you can do so and have Oracle authenticate you with a password.

To create a password file use the ORAPWD utility:

$ orapwd file=./11g pwd entries=100 ignorecase=n
Enter password for SYS:

When you run orapwd Oracle asks you for the SYS password. It creates a file based on the file
name you provide for the parameter. Provide a full path name or a relative path to your current
working directory. You can define the maximal number of entries that the file may contain. You
can also specify whether you want passwords in the password file to be case sensitive or case insen-
sitive (this feature is new in 11g).

Creating the password file is not enough. You also have to set the REMOTE_LOGIN_PASS-
WORDFILE initialization parameter to an appropriate value (by default, the value allows you to
use password files). Available values for this parameter are

B NONE—causing Oracle to behave as though a password file does not exist.

B EXCLUSIVE—which is the default, causes Oracle to use the password files if connections
with sysdba or sysoper are attempted other than from the local server. EXCLUSIVE means
that the password file is being used only by your database and that you can modify it from
within the database (whenever, e.g., you grant such privileges to an administrator).

B SHARED-—allows you to use a single password file for multiple databases, but none of
them can update the password file. If you need to update the password file then you need to
switch this parameter to EXCLUSIVE in one of the databases, change the password file and
then change it back to be used as SHARED.

106 m HOWTO Secure and Audit Oracle 10g and 11g

Now you can connect with sysdba or sysoper privileges even beyond the security of the
instance account. For example, you can be logged onto another machine and connect as

sysdba:

$ sglplus sys@ollg as sysdba

SQL*Plus: Release 10.2.0.1.0 - Production on Fri Nov 16 02:52:10 2007
Copyright (c) 1982, 2005, Oracle. All rights reserved.

Enter password:

Connected to:

Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - Production
With the Partitioning, Oracle Label Security, OLAP, Data Mining,
Oracle Database Vault, and Real Application Testing options

SQL>

Passwords are added as needed to the password file. A password needs to be added whenever you
grant such a privilege to a user. For example, if you GRANT SYDBA to a user, Oracle must write
the new password to the file so that this user can logon using the password file. As an example, the
password file will be updated when you perform the following grant:

SQL> grant sysdba to ronb;
Grant succeeded.

If you have to re-create your password file you have to write all passwords for users with these
privileges out to the password file. For each user it is enough to regrant the privilege. To know to
which users you need to regrant the privilege, use the VSPWFILE_USERS view. As an example,

if you see the following in the view:

SQL> select * from vs$pwfile users;

USERNAME SYSDB SYSOP SYSAS
SYS TRUE TRUE FALSE
JANE TRUE FALSE FALSE
RONB TRUE FALSE FALSE

then you can re-create the passwords in the password file by performing

SQL> grant sysdba to sys;
Grant succeeded.

SQL> grant sysdba to jane;
Grant succeeded.

SQL> grant sysdba to ronb;
Grant succeeded.

Two Things to Remember about Password Files

1. Prefer password files for sysdba and sysoper connections.

2. Use shared password files only after you review the process you will need to perform to
change a password and ensuring that you can perform this without bringing any of your
production databases down.

Authentication ® 107

6.3 HOWTO Configure Clients to Use External Password Stores

In Chapter 5 you learned about the Oracle wallet. In addition to storing keys, certificates, and
certificate requests, the wallet can be used as an external password store for allowing you to authenti-
cate with an Oracle server without supplying a password at logon time. The wallet serves as a “central
container of secrets” for Oracle environments and as such it is a natural place to put passwords. When
you put a password in a wallet you can be authenticated to an Oracle database without manually
supplying a password—the password is taken from the wallet where it is stored. This is a very conve-
nient and secure option that allows you, among other things, to have batches and scripts connect to
the database without having to embed passwords inside these batches, a dangerous security hole.
To enable connections through an external password store (in a wallet) follow these steps:

Step 1: Create an auto-login wallet:

$ mkstore -wrl./oracle/product/10.2.0/db_1/wallets/ -create
Enter password:
Enter password again:

You need to enter a password that protects the wallet but the wallet you create is an auto-login
wallet so that you can use it without embedding a password in the script. The password is needed
to create, change, or delete credentials but is not needed to make the connection. The wallet used
is the .sso wallet (an auto-login wallet):

$ 1ls -1./oracle/product/10.2.0/db_1/wallets/

total 24
“rW------- 1 oraclel0 dba 7940 Jan 25 03:52 cwallet.sso
S RWEE e 1 oraclel0 dba 7912 Jan 25 03:52 ewallet.pl2

Step 2: Once you have the sso wallet in place, you can create a secure credential within the wallet.
You need to give mkstore the username you will be using to log on and the service name that
you use. For example, suppose you want to connect to the database onOrh4 that appears in your
tnsnames.ora as follows:

onOrh4 =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = 192.168.222.128)(PORT = 1521))
(CONNECT DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = on0Or4231.guardium.com)

If you want to be able to connect as the user system in this database without supplying a password,
insert the password into the wallet by running:

$ mkstore -wrl./oracle/product/10.2.0/db_1/wallets -createCredential '
onOrh4' 'system' <your password here>

Enter password:

Create credential oracle.security.client.connect_stringl

You must see the message Create credential oracle.security.client.connect_stringl in
the output—that means that your credentials were created. The password that you enter is the

108 m HOWTO Secure and Audit Oracle 10g and 11g

wallet password—not the account password to the database you want to connect to. The account
password is passed on the command line (which is a bit of a problem from a security perspective).
If you don’t supply the password on the command line the credentials will not be created and you
will get an error message:

$ mkstore -wrl ./oracle/product/10.2.0/db_1/wallets/ -createCredential
onOrh4 system

Enter password:

Argument needed for command: -createCredential

You can check the size of your files to make sure new credentials were created:

$ 1ls -1 ./oracle/product/10.2.0/db_ 1/wallets/

total 32
“TW------- 1 oraclel0 dba 8308 Jan 25 19:46 cwallet.sso
“YW--===== 1 oraclel0 dba 8280 Jan 25 19:46 ewallet.pl2

You can also list the credentials to make sure they are within the wallet:

$ mkst\ore -wrl ./oracle/product/10.2.0/db_1/wallets -
listCredential
Enter password:

List credential (index: connect_ string username)
1: ollg system
2: onOrh4 system

Step 3: Edit sqlnet.ora to tell SQL*NET that it should use the wallet as an external password
store, and that it should not be using Secure Sockets Layer (SSL) authentication (which we’ll
cover later). You need to tell Oracle where to look for the wallet from which credentials should
be taken:

SQLNET.WALLET OVERRIDE = TRUE
SSL_CLIENT_AUTHENTICATION = FALSE

WALLET LOCATION =
(SOURCE =
(METHOD = FILE)
(METHOD_DATA =
(DIRECTORY = /home/oraclelO/oracle/product/10.2.0/db_1/wallets/)
)

The first line tells SQL*NET that any connection of the form /@connection_string should cause
a lookup for the credentials in the wallet.

Step 4: Bounce the listener:

$ lsnrctl stop

LSNRCTL for Linux: Version 10.2.0.1.0 - Production on 25-JAN-2008 20:13:49
Copyright (c) 1991, 2005, Oracle. All rights reserved.

Connecting to (DESCRIPTION= (ADDRESS= (PROTOCOL=IPC)(KEY=ORCL)))

Authentication

The command completed successfully

$ lsnrctl start

LSNRCTL for Linux: Version 10.2.0.1.0 - Production on 25-JAN-2008 20:13:59
Copyright (c) 1991, 2005, Oracle. All rights reserved.

Starting /home/oraclel0O/oracle/product/10.2.0/db_1/bin/tnslsnr: please wait..

The command completed successfully

At this point you can connect to the remote database without supplying a password:

$ sglplus /@onOrh4

SQL*Plus: Release 10.2.0.1.0 - Production on Fri Jan 25 20:20:31 2008
Copyright (c) 1982, 2005, Oracle. All rights reserved.

Connected to:

Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 - Production
With the Partitioning, OLAP, and Data Mining options

SQL>

If you need to change the password stored within the wallet:

$ mkstore -wrl ./oracle/product/10.2.0/db_1/wallets -
modifyCredential ollg system <your password herex>
Enter password:

Modify credential

Modify 1

If you need to delete a credential from the wallet:

$ mkstore -wrl ./oracle/product/10.2.0/db_1/wallets -deleteCredential ollg
Enter password:

Delete credential

Delete 1

$ mkstore -wrl ./oracle/product/10.2.0/db_1/wallets -listCredential

Enter password:

List credential (index: connect_ string username)

2: onOrh4 system

= 109

As Listing 6.1 shows, using an external store only affects the fact that you do not supply a password
on the connection—the authentication scheme is unchanged (in this case still using O3LOGON)
and the logon is not encrypted. In the next HOWTO, you'll see another scheme that makes

a more fundamental change.

Two Things to Remember about External Password Stores

a wallet to store a password.

will often search through scripts.

1. Wallets are used to store all secrets—not only certificates. An example is the use of

2. Use an auto-login wallet to store passwords so that your scripts don’t have to include
database passwords in cleartext. Embedding passwords is a serious risk because attackers

110 ®m HOWTO Secure and Audit Oracle 10g and 11g

0x0000: 4500 013d 2eab 4000 4006 ccbd c0a8 de80 E..=..@.@.......
0x0010: cOa8 deB80 8de5 05f1 4937 ee2e 49a2 176d I7..I..m
0x0020: 8018 1000 3f82 0000 0101 080a 01b9 co08d e P
0x0030: 01b9 c08c 0109 0000 0100 0000 0139 012C ... vuvnunnn.. 9.,
0x0040: 0cOl1 0800 7fff 7£08 0000 0100 00cf 003a P <
0x0050: 0000 0200 4141 0000 0000 0000 0000 O0OOQO oL AAL L
0x0060: 0000 0000 0000 0000 0000 0000 0000 2844 c.c... (D

0x0070: 4553 4352 4950 5449 4f4e 3d28 4144 4452 ESCRIPTION= (ADDR
0x0080: 4553 533d 2850 524f 544f 434f 4c3d 5443 ESS= (PROTOCOL=TC
0x0090: 5029 2848 4f53 543d 3139 322e 3136 382e P) (HOST=192.168.
0x00a0: 3232 322e 3132 3829 2850 4f52 543d 3135 222.128) (PORT=15
0x00b0: 3231 2929 2843 4f4e 4ed45 4354 5f44 4154 21)) (CONNECT_DAT
0x00cO: 413d 2853 4552 5645 523d 4445 4449 4341 A= (SERVER=DEDICA
0x00d0: 5445 4429 2853 4552 5649 4345 5f4e 414d TED) (SERVICE NAM
0x00e0: 453d 6f6e 3072 3432 3331 2e67 7561 7264 E=on0r4231.dbase
0x00f0: 6975 6d2e 636f 6d29 2843 4944 3d28 5052 cur.com) (CID= (PR
0x0100: 4f47 5241 4d3d 7371 6c70 6c75 7329 2848 OGRAM=sqglplus) (H
0x0110: 4f53 543d 7268 3475 3278 3332 702e 6775 0ST=rh4u2x32p.db
0x0120: 6172 6469 756d 2e63 6f6d 2928 5553 4552 asecur.com) (USER
0x0130: 3def 7261 636c 6531 3029 2929 29 =oraclel0))))

0x0000: 4500 0134 2eb7 4000 4006 ccba c0a8 de80 E..4..@.@.......

0x0010: cOa8 de80 8de5 05f1 4937 £150 49a2 18e7 A57/ 51 FA0 5 e G
0x0020: 8018 1000 3£79 0000 0101 080a 01b9 cl17 5000300000000 00
0x0030: 01b9 c115 0100 0000 0600 0000 0000 0376 v
0x0040: 02d0 al08 0806 0000 0001 0000 00d8 bcff
0x0050: bf05 0000 0080 b9ff bfa8 beff bfO6 7379 sy
0x0060: 7374 656d 0400 0000 0d41 5554 485f 5445 stem..... AUTH_TE
0x0070: 524d 494e 41l4c 0500 0000 0570 7473 2£32 RMINAL. pts/2
0x0080: 0000 0000 0f00 0000 0f41 5554 485f 5052 AUTH_PR

0x0090: 4f47 5241 4d5f 4e4d 2a00 0000 2a73 716c OGRAM_NM*..."sqgl
0x00a0: 706c 7573 4072 6834 7532 7833 3270 2e67 plus@rh4u2x32p.d
0x00b0: 7561 7264 6975 6d2e 636f 6d20 2854 4eb53 dbasecu.com. (TNS
0x00c0O0: 2056 312d 5633 2900 0000 000c 0000 0OOC LV1-V3) .o
0x00d0: 4155 5448 5f4d 4143 4849 4e45 1600 0000 AUTH_MACHINE. ...
0x00e0: 1672 6834 7532 7833 3270 2e67 7561 7264 .rh4u2x32p.dbase
0x00f0: 6975 6d2e 636f 6d00 0000 0008 0000 0008 CUr.COM.

0x0100: 4155 5448 5f50 4944 0500 0000 0531 3735 AUTH_PID..... 175
0x0110: 3233 0000 0000 0800 0000 0841 5554 485f 23, AUTH
0x0120: 5349 4408 0000 0008 6£f£72 6163 6c65 3130 SRS P oraclelO

0x0130: 0000 0000

0x0000: 4500 0115 d7ef 4000 4006 23al cOa8 de80 155666 0 @.@.#.....
0x0010: cOa8 de80 05f1 8de5 49a2 18e7 4937 £250 1555 odb7 ol
0x0020: 8018 1000 3f5a 0000 0101 080a 01b9 cl20 5600 Ba 000000600
0x0030: 01b9 cll1l7 00el 0000 0600 0000 0000 0802
0x0040: 000c 0000 000c 4155 5448 5f53 4553 534b AUTH_SESSK

0x0050: 4559 4000 0000 4030 3234 3245 3030 4431 EY@...@0242E00D1
0x0060: 4645 4432 4641 3332 3139 3039 3941 3938 FED2FA3219099A98
0x0070: 3443 3641 3842 4446 3233 4234 3142 3941 4C6A8BDF23B41B9A
0x0080: 3531 4130 3934 3433 4146 3646 3038 3442 51A09443AF6F084B
0x0090: 3233 3444 3043 4200 0000 000d 0000 00Od 234DOCB.........
0x00a0: 4155 5448 5f56 4652 5f44 4154 4100 0000 AUTH_VFR_DATA. ..
0x00b0O: 0039 0900 0004 0100 0000 0200 0100 0000 5&)a 000000000000
0x00cO: 0000 0000 0000 0OOO 0000 0000 0000 0000
0x00d0: 0000 0000 0000 0000 0000 0000 0000 0000

Listing 6.1 Authentication sequence does not change when using an external password store.

Authentication ® 111

0x00e0: 0000 0000 0000 0200 0000 0000 0036 0100 Gy
0x00£0: 0000 0000 0020 13bd 0c00 0000 0000 0000
0x0100: 0000 0000 0000 0000 0000 0000 0000 0000 iinnn.
0x0110: 0000 0000 0O

0x0000: 4500 02e4 2eb9 4000 4006 cb08 cO0a8 de80 15600 @.@.......
0x0010: cOa8 de80 8de5 05f1 4937 £250 49a2 19c8 ST/ E T
0x0020: 8018 1000 4129 0000 0101 080a 01b9 c123 060 62 06006006000 #
0x0030: 01b9 c120 02b0 0000 0600 0000 0000 0373 n.. s
0x0040: 03d0 al08 0806 0000 0001 0100 00fc e8ff
0x0050: bf0od 0000 00a4 e5ff bfo0o f5ff bf06 7379 sy
0x0060: 7374 656d 0c00 0000 Oc4l 5554 485f 5345 stem..... AUTH_SE

0x0070: 5353 4b45 5940 0000 0040 4642 3931 4334 SSKEY@. . .@FB91C4
0x0080: 3239 4346 3639 3742 3242 3739 4532 3142 29CF697B2B79E21B
0x0090: 3243 3841 3643 3733 3038 4543 4537 3442 2C8A6C7308ECE74B
0x00a0: 3146 4539 3546 4637 4438 4130 4545 3734 1FE95FF7D8A0EE74
0x00bO0: 4236 3330 3436 3743 3043 0100 0000 0doOO B630467C0C......
0x00cO: 0000 0d41 5554 485f 5041 5353 574f 5244 .. .AUTH PASSWORD
0x00d0: 4000 0000 4039 4539 3345 4135 4430 4644 @...@9E93EA5DOFD
0x00e0: 4531 4435 4443 4637 4539 4137 4338 3938 E1DSDCF7ESA7C898
0x00f0: 4446 3933 3444 4130 4342 3137 3139 3035 DF934DA0CB171905
0x0100: 4338 3438 4642 4632 4446 3746 3941 3736 C848FBF2DF7F9A76

0x0110: 3744 3744 4600 0000 0008 0000 0008 4155 (/DD ER g AU
0x0120: 5448 5f52 5454 0500 0000 0531 3639 3630 FEE R R-TrT R 16960
0x0130: 0000 0000 0400 0000 0d41 5554 485f 434c AUTH_CL
0x0140: 4e54 5f4d 454d 0400 0000 0434 3039 3600 NT_MEM..... 4096.
0x0150: 0000 000d 0000 000d 4155 5448 5f54 4552 AUTH_TER
0x0160: 4d49 4e4l 4c05 0000 0005 7074 732f 3200 MINAL..... pts/2.
0x0170: 0000 000f 0000 00Of 4155 5448 5f50 524f AUTH_PRO

0x0180: 4752 414d 5f4e 4d2a 0000 002a 7371 6c70 GRAM_NM*. . .*sqglp
0x0190: 6c75 7340 7268 3475 3278 3332 702e 6775 lus@rh4u2x32p.db
0x0la0: 6172 6469 756d 2e63 6f6d 2028 544e 5320 asecur.com. (TNS.
0x01b0: 5631 2d56 3329 0000 0000 0c00 0000 Oc4l LA S 55 600 6 6 6 A
0x01cO: 5554 485f 4d41 4348 494e 4516 0000 0016 UTH_MACHINE.....
0x01d0: 7268 3475 3278 3332 702e 6775 6172 6469 rh4u2x32p.dbasec

0x01le0: 756d 2e63 6f6d 0000 0000 0800 0000 0841 Bhag(elelils 5 06660 06 A
0x01f0: 5554 485f 5049 4405 0000 0005 3137 3532 UTH_PID..... 1752
0x0200: 3300 0000 0008 0000 0008 4155 5448 5f53 Elaoo0aooo00a AUTH_S
0x0210: 4944 0800 0000 086f 7261 636c 6531 3000 19B)5 55550 oraclelO.
0x0220: 0000 0008 0000 0008 4155 5448 5f41 434c AUTH_ACL
0x0230: 0400 0000 0434 3430 3000 0000 0012 00OO 4400.......
0x0240: 0012 4155 5448 5f41 4c54 4552 5f53 4553 . .AUTH_ALTER_SES

0x0250: 5349 4f4e 2500 0000 2541 4c54 4552 2053 SION%...%ALTER.S
0x0260: 4553 5349 4f4e 2053 4554 2054 494d 455f ESSION.SET.TIME
0x0270: 5a4f 4e45 3d27 2d30 353a 3030 2700 0100 ZONE="'-05:00"...

0x0280: 0000 1700 0000 1741 5554 485f 4c4f 4749 AUTH_LOGI
0x0290: 4341 4c5f 5345 5353 494f 4e5f 4944 2000 CAL_SESSION_ID..
0x02a0: 0000 2034 3439 3545 3741 3835 3637 3744 ...4495E7A85677D
0x02b0: 3935 4445 3034 3041 3843 3038 3044 4534 95DE040A8C080DE4
0x02c0: 3437 3300 0000 0010 0000 0010 4155 5448 710 P AUTH
0x02d0: 5f46 4149 4c4f 5645 525f 4944 0000 0000 _FAILOVER ID....

0x02e0: 0000 0000

Listing 6.1 (continued)

112 ®m HOWTO Secure and Audit Oracle 10g and 11g

6.4 HOWTO Configure SSL-Based Authentication Using ASO

Another authentication method supported by Oracle that uses the wallet is SSL authentication.
This authentication method requires you to have Oracle Advanced Security Options (ASO)
installed. This authentication method is more complex to set up than external password stores but
is far more comprehensive and functional. SSL authentication makes use of certificates rather than
passwords. The certificates are stored within the wallet and used when you make the connection.
Like in the external password store HOWTO, this allows you to connect without supplying a
password. However, unlike the previous HOWTO, SSL authentication buys you much more—
authentication can happen from anywhere on the network, the communications is encrypted, and
certificates are used for mutual authentication. This can come in handy when you want to ensure
that only your application server makes a connection to the database—in which case you will
place the certificate in the application server’s wallet and thus guarantee that connections can only
be made locally on the database server or from the application server.

Figure 6.1 shows what the handshake between the client and the server looks like when you
use SSL authentication:

1. The client initiates an SSL connection using a TCPS entry in tnsnames. It does not need to
logon with a password.

2. 'The client and the server negotiate a cipher suite, which they will use during the
communications.

3. The server gets its certificate from the wallet and sends it to the client.

4. The client checks whether it can trust the server’s certificate. It checks within the wallet
whether this certificate is a trusted certificate or is signed by a trusted certificate authority
(CA) (see Chapter 5).

5. If client authentication is required then the client gets its certificate from its wallet and sends
it to the server.

6. The server goes through the same process to check whether it can trust the client’s certificate.

7. The client and server use the public keys within the certificates to exchange random session
keys that will be used as a symmetric key for network encryption.

8. At this point communication can begin—ecach side has authenticated and approved the
other party and they have an encryption key and a cipher suite with which they can set up
encrypted communication.

(2
3)
(5)
(7) Database
(8)

Figure 6.1 Initiating a connection using certificates for authentication.

Authentication ® 113

Next, let’s go through a complete setup process and see how to set up SSL authentication. This sequence
includes the minimum setup requirements. In addition to this sequence you can control many things
such as the available cipher suites, the prioritization of the cipher suites, etc. The basic steps are:

Step 1: First you need to create an auto-login wallet to store your certificates and in order for Oracle
to be able to check whether certificates can be trusted. In Chapter 5 you learned how to use orapki
to set up wallets and certificates; let’s set things up using the Oracle Wallet Manager (OWM) this
time. On the server, you already created an auto-login wallet in the previous HOWTO—so we'll
use that wallet on the server. Start up the OWM:

S owm

Click on Wallet = Open and browse your wallet location. Enter the password to the wallet to
open it. At this point the wallet is empty—there are no certificates that you can use as shown in
Figure 6.2. Verify that the wallet is indeed an auto-login wallet by clicking on the Wallet menu
option—the second to last entry should have Auto Login checked. If it is not, check it.

Step 2: Edit sqlnet.ora and listener.ora on the server and add an entry to include the wallet loca-
tion. The entry should look like the following and include a full path name:

WALLET LOCATION =
(SOURCE =
(METHOD = FILE)
(METHOD_DATA =
(DIRECTORY = /home/oraclelO/oracle/product/10.2.0/db_1/wallets/)
)

Oracle Wallet Manager 2
Wallet O ons Help ORACLE

Cenrtificate:[Empty]
Hecret Store
Trusted Centificates

Entrust.net Secure Server Certification Autharity
T8, Entrust.net Cerification Autharity (2048)
Entrust.net Secure Server Centification Authority
GTE CyberTrust Global Root
Secure Server Certification Authority
Class 1 Public Primary Certification Authority
Class 2 Public Primary Certification Authority
& Class 3 Public Primary Certification Authority
GTE CyberTrust Root

Manager(TM)
n 1 1.0 Production

Copyright (c) , Oracle
Allri

Wallet opened successfully

Figure 6.2 Viewing the wallet using OWM.

114 m HOWTO Secure and Audit Oracle 10g and 11g

Step 3: Edit sglnet.ora to define that the server should also authenticate the client (i.c., the
default). You want the server to use the client certificate rather than require you to logon with
a password:

SSL_CLIENT_AUTHENTICATION = TRUE

Step 4: Edit sqlnet.ora to add the SSL authentication service (TCPS) as one of the possible options

the server can use:

SQLNET.AUTHENTICATION SERVICES = (TCPS)

Step 5: Edit listener.ora to create a default TCPS listening port and set the wallet location.
The default port number is 2484:

LISTENER =
(DESCRIPTION LIST =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = IPC)(KEY = ORCL))
(ADDRESS = (PROTOCOL = TCP)(HOST = 192.168.222.128)(PORT = 1521))
(ADDRESS = (PROTOCOL = TCPS)(HOST = 192.168.222.128) (PORT = 2484))

)
WALLET LOCATION =
(SOURCE =
(METHOD = FILE)
(METHOD DATA =
(DIRECTORY = /home/oraclelO/oracle/product/10.2.0/db_1/wallets/)
)
)

You've completed the setup for the server—it’s time to move on to the client.

Step 6: Create an auto-login wallet on the client. Open owm and select Wallet— New. Enter a
password. At this point the wallet is created and is empty. You will create the certificates later. By
default the wallet is not created as an auto-login wallet so click on the Wallet, pull down, and click
the Auto Login check box. Save the wallet.

Step 7: In listener.ora on the client add the TCPS protocol:

LISTENER =
(DESCRIPTION_LIST =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = IPC)(KEY = ORCL))
(ADDRESS = (PROTOCOL = TCP)(HOST = ollg.dbasecur.com)(PORT = 1521))
(ADDRESS = (PROTOCOL = TCPS)(HOST = ollg. dbasecur.com)(PORT = 2484))
(ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1521))

Step 8: Edit sglnet.ora on the client and set the wallet location, TCPS authentication, and the
SSL_CLIENT_AUTHENTICATION setting:

SQLNET.AUTHENTICATION SERVICES = (TCPS)
SSL_CLIENT_ AUTHENTICATION = TRUE
WALLET LOCATION =

Authentication m 115

(SOURCE =

(METHOD = FILE)

(METHOD_DATA =
(DIRECTORY = /home/oraclell/product/11.1/db_1/wallets/)
)

Step 9: Edit the server’s entry in tnsnames.ora on the client to add a security clause for SSL_
SERVER_CERT_DN. This entry tells Oracle to match the server’s DN with its host name and
makes sure that the server certificate matches the host definitions. This client-side validation helps
you ensure that no one is impersonating the server. Edit tnsnames.ora and create an entry that
specifies the security property and the TCPS protocol:

onOrh4 =

(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCPS)(HOST = 192.168.222.128)(PORT = 2484))
(SECURITY = (SSL_SERVER_CERT_DN="cn=rh4u2x32p,o=dbasecur"))

(CONNECT DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = on0Or4231.guardium.com)

Now generate the certificates with which the server and client can authenticate each other (and trust
cach other) using OWM or using orapki as reviewed in Chapter 5. Create the relevant Oracle users
that you will connect as identified externally. At that point you can logon to the database by using

SQL> connect /@ onOrh4

Note that if you chose SSL _ CLIENT _ AUTHENTICATION = FALSE then you will still be connecting
over an SSL session in terms of network encryption but authentication will have to be done using
the password so you should connect using

SQL> connect system@onOrh4

Oracle will require you to enter a password.

Two Things to Remember about SSL Authentication using ASO

1. SSL authentication allows you to connect to the database using a certificate rather than
a password. It is easier to control certificates and keys than it is to control passwords—so
this method is more secure.

2. Setting up SSL also means that the communications will be encrypted—so you get both
stronger authentication and network encryption in one configuration.

6.5 HOWTO Configure Kerberos Authentication Using ASO

Kerberos is perhaps the world’s most popular authentication method. It was created by the
Massachusetts Institute of Technology (MIT) and you can freely download it from MIT at htep://
web.mit.edu/kerberos/dist/index.html. The protocol was named after the Greek mythological

116

B HOWTO Secure and Audit Oracle 10g and 11g

(1) Register key Sy

Figure 6.3 Kerberos authentication scheme.

character Cerberus—the three-headed guard dog of Hades. What made Kerberos so popular is,
surprisingly, Microsoft. Microsoft fully embraced Kerberos rather than invent a complex authen-
tication method and on any modern Windows environment all authentication occurs using
Kerberos as a default.

Figure 6.3 shows how the Kerberos authentication process works (in reality it is more complex
and has more steps but for the purpose of this HOWTO this understanding is enough).

1

. Kerberos requires an initial setup phase where the parties are registered with the Kerberos

server. The Kerberos server is called the Key Distribution Center (KDC) and consists of an
Authentication Server and a Ticket Granting Server (TGS). Kerberos uses symmetric keys
and does not rely on certificates or PKI. It assumes that there is a trusted third parcy—the
Kerberos server. The KDC maintains a database of secret keys—each entity on the network
shares a secret key known only to itself and the KDC. Therefore, in the first step the server
and the client need to register with the Kerberos server. At this point, a key for the client C,
and a key for the server S, are generated. For the client, the secret key is generated by apply-
ing a one-way hash function on the client’s password.

. After the client has authenticated itself to the Kerberos server it wants to connect to the

database. At this point, the client sends a message to the Kerberos server of the form “client
A wants to talk to Server B.” This is passed in cleartext to the Kerberos server.

. The Kerberos server picks a random session key, K.
. Kerberos encrypts the session key and the string “Server B” with the client key—creating

C.(K, Server B).

. Kerberos encrypts the session key and the string “Client A” with the server key—creating

S, (K, Client A). This is called the ticket.

. Both C, (K, Server B) and S (K, Client A) are sent to the client as the response to the request

in phase 2.

Authentication m 117

7. The client knows what the client key is and therefore can decrypt C (K, Server B). It extracts
the session key K. It also validates that it got the string “Server B—the server it asked to
talk to in the first place.

8. The client uses the session key K as an encryption key to generate K(time, S, (K, Client A));
it takes the ticket and the current time and encrypts them with the session key. This is called
the authenticator.

9. 'The client sends the ticket and the authenticator to the server.

10. The server has the server key so it can decrypt the ticket—i.e., it can decrypt S, (K, Client A)
and extract the session key K.

11. The server uses the session key to decrypt the authenticator K(time, S, (K, Client A)). It
checks that the ticket within the authenticator is the same as the ticket it received from the
client and that the time is correct (i.c., there is no large shift in time that might indicate a
replay attack). At this point it knows the client is authenticated and it knows who the client
is—Client A was in the ticket itself.

Let’s go ahead and see how to set up Kerberos authentication for an Oracle server. Kerberos
authentication is an advanced option that is part of Oracle ASO so the first step is to install ASO
on your clients and servers. In the sequence below there are three machines—the KDC, the
database server, and a client machine. In the example, the name of the machine which hosts
the KDC is goose. The database machine runs on saturn and the client connects from a machine
called trex. Before you can configure Kerberos authentication for Oracle you have to download
and install Kerberos and make sure that ASO is installed for your database. Then, follow these
steps to configure Kerberos authentication:

Step 1: Configure a Service Principal (SP) for the Oracle database server.

The format for a SP is kservice/kinstancc@REALM. You can choose to use any name for
your database but a good convention is to map the service name or SID to kservice and
the hostname to kinstance—e.g., orcl/saturn.guardium.com@GUARDIUM.COM. It is very
important that the realm be uppercase—if it is not, nothing will work but the errors will not
be helpful.

To create the SP start the kadmin utility:

[root@goose sbinl# cd /usr/krb5/sbin
[root@goose sbinl# ./kadmin.local

Once in kadmin (you’ll see kadmin.local: as the prompt), add the SP:

kadmin.local: addprinc -randkey orcl/saturn.guardium.com@GUARDIUM.COM

To verify that the SP has been added:

kadmin.local: getprincs
kadmin/admin@GUARDIUM.COM
kadmin/changepw@GUARDIUM.COM
kadmin/history@GUARDIUM.COM
orcl/saturn.guardium.com@GUARDIUM.COM

Exit kadmin:

kadmin.local: exit

118 m HOWTO Secure and Audit Oracle 10g and 11g

If you want to see the activity in the log you can:

tail -f /var/krb5/log/krb5kdc.log

Step 2: Extract the Service Table from Kerberos. Extract the file from the KDC and then
copy the file to the database server (e.g., to /tmp/keytab). On the database server add it using
kadmin:

kadmin.local: ktadd -k /tmp/keytab orcl/saturn.guardium.com

Entry for principal orcl/saturn.guardium.com with kvno 2, encryption
DES-CBC-CRC added to the keytab WRFILE: 'WRFILE:/tmp/keytab
kadmin.local: exit

Run the oklist utility:

oklist -k -t /tmp/keytab

Step 3: Configure Kerberos authentication. Edit sqlnet.ora and add the following entries:

SQLNET.AUTHENTICATION SERVICES= (BEQ,KERBEROS5)
SQLNET.AUTHENTICATION KERBEROS5_ SERVICE=kservice

On the server set the following two initialization parameters:

REMOTE_OS_AUTHENT=FALSE
OS_AUTHENT PREFIX=""

You don’t have to set the OS_AUTHENT_PREFIX to null—but you should. It is generally a
better security practice than leaving OPS$, and more importantly Kerberos names tend to be very
long (because of the qualified name and the realm) and you need to remain within the limit of a
maximum of 30 characters—no point in wasting three of them on the prefix.

Step 4: Create a Kerberos user. On the KDC run:

[roote@egoose sbinl# cd /usr/krb5/sbin

[root@goose sbinl]# ./kadmin.local

kadmin.local: addprinc SCOTTY

Enter password for principal: "SCOTTY@GUARDIUM.COM":
Re-enter password for principal: "SCOTTY@QGUARDIUM.COM":
kadmin.local: exit

Step 5: Create an externally authenticated Oracle database user:

SQL> CONNECT/AS SYSDBA;
SQL> CREATE USER "SCOTTY@GUARDIUM.COM" IDENTIFIED EXTERNALLY;
SQL> GRANT CREATE SESSION TO "SCOTTY@GUARDIUM.COM";

Step 6: Get a ticket for the user and then connect with it to the database. Ask the KDC for an
initial ticket:

trex:oraclel0% okinit -f SCOTTY
Password for SCOTTY@GUARDIUM.COM:password

Authentication ® 119

Now you can connect to the database without supplying a username and a password. The client
will use the Kerberos ticket and the database will authenticate you based on the ticket:

trex:oraclel0% sglplus /@orcl

If chis is the first time you are setting this up, make sure to check that you cannot connect
without the ticket. You need to make sure you did not open up the database completely.
Destroy the ticket cache using the following command and then try to connect (hopefully
unsuccessfully):

trex:oraclel0% okdstry
trex:oraclel0% sglplus /@orcl

Kerberos is one of the most secure authentication schemes. Part of its security stems from the fact
that what passes on the network is not enough for an attacker to be able to discover passwords.
This is in contrast to the examples with the OSLOGON scheme that you saw in HOWTO 6.1.
In OSLOGON, the password hash stored in SPARE4 of the SYS.USER$ table is used. If; for
example, someone can access to this table (through some faulty privilege definitions or role assign-
ment) then, with the hashes in hand and through sniffing of the authentication packets, an attacker
can get all of the cleartext passwords! This is because all the AUTH_SESSKEY values sent over
the wire are encrypted using the hash values. So if you have the password hashes you can decrypt
the session keys and then decrypt the password that is eventually passed from the client to the
server. To protect O3LOGON or O5LOGON authentication from such an attack you should
encrypt the network traffic (see Chapter 7). For example, if you encrypt the communications using
ASO network encryption then as soon as the session is established, the encryption begins and the
sending of the AUTH_SESSKEY is already encrypted as you can see from Listing 6.2.

Two Things to Remember about Oracle Kerberos Authentication

1. If you have Unix systems, use the MIT Kerberos package. If you have a Windows-only
environment, then use the Microsoft domain controller as the KDC.
2. Remember that the realm must be all uppercase.

6.6 HOWTO Configure RADIUS and Two-Factor
Authentication Using ASO

The Remote Authentication Dial-In User Service (RADIUS) is also one of the most widely used
authentication protocols. It is ubiquitously used to control access to network resources through
dialup, Digital Subscriber Line (DSL) providers, or other Internet Service Providers (ISPs). It has also
been adopted for its AAA capabilities (authentication, authorization, and accounting) by many net-
working groups within the enterprise. When you use RADIUS, the client machine requests access
to network resources via a Network Access Server (NAS). The NAS issues a RADIUS access request
message to the RADIUS server requesting authorization to grant access. This request includes creden-
tials that are provided by the user. The RADIUS protocol does not transmit passwords in cleartext
between the NAS and the RADIUS server. A shared secret is used along with the message digests

120 m HOWTO Secure and Audit Oracle 10g and 11g

Without Encryption:

0x0000:
0x0010:
0x0020:
0x0030:
0x0040:
0x0050:
0x0060:
0x0070:
0x0080:
0x0090:
0x00a0:
0x00bO0:
0x00cO0:
0x00dO0:
0x00e0:
0x00£0:
0x0100:
0x0110:
0x0120:

0x0000:
0x0010:
0x0020:
0x0030:
0x0040:
0x0050:
0x0060:
0x0070:
0x0080:
0x0090:
0x00a0:
0x00b0:
0x00cO:
0x00d0:
0x00e0:
0x00£0:
0x0100:
0x0110:
0x0120:
0x0130:
0x0140:
0x0150:
0x0160:
0x0170:
0x0180:
0x0190:

ESCRIPTION= (ADDR
ESS= (PROTOCOL=TC
P) (HOST=0llg.dba
secur.com) (PORT=
1521)) (CONNECT_D
ATA= (SERVER=DEDI
CATED) (SID=onlr4
531) (CID= (PROGRA
M=sqglplus) (HOST=
ollg.dbasecur.co
m) (USER=oraclell
))))

...... AUTH_SESSK
EY™... 94C497598
4EE74A3E79COE85F
DF085B40B64D24C3
A8B4BO9E37AA8EF44
82EDA966B44F168C
C8E4E413BBA8BC748
OZNIL0 25 G uSpe
AUTH_VFR_DATA. ..
. .2B234E4447825A
SYAUEAIND) TPy A
UTH_GLOBALLY_UNI
QUE_DBID...... 44
36399542AB6059FE
1442827C841DD3. .

With Encryption:

0x0000:
0x0010:
0x0020:
0x0030:
0x0040:
0x0050:
0x0060:
0x0070:
0x0080:
0x0090:
0x00a0:
0x00bO0:
0x00c0:
0x00d0:
0x00e0:
0x00£0:
0x0100:
0x0110:
0x0120:

0x0000:
0x0010:
0x0020:
0x0030:
0x0040:
0x0050:
0x0060:
0x0070:
0x0080:
0x0090:
0x00a0:
0x00b0:
0x00c0:
0x00d0:
0x00e0:
0x00£0:
0x0100:
0x0110:
0x0120:
0x0130:
0x0140:
0x0150:
0x0160:
0x0170:
0x0180:

............. Tb%
ollok35 a0 non0n0ds 0
5200600000 a0000 S

BAAL Lo
.............. (D

ESCRIPTION= (ADDR
ESS=(PROTOCOL=TC
P) (HOST=abcd32.d
basecur.com) (POR
T=1522)) (CONNECT
_DATA= (SERVER=DE
DICATED) (SERVICE
_NAME=onlabcd3) (
CID=(PROGRAM=sqgl
plus@abcd32) (HOS
T=abcd32) (USER=0

raclell))))
E..... @.@.......
......... £{.....
..... }.......7b0
7o0.d. ... N
(&.G..0...B Y
a.5..... P>
L..... (o FEPEPIN 9
?Z!'S .5. t!19<-
).2...<}# e

C.t..7.t.~/.}
hu.” HFbnb
-~.)."”..Gr..G

156560000 t6/ “r
aj...... 1#..... A
Ev8..0syfG/_N
(&5 50000 Zm. .rE
L..... C..N5y
D... ...e...’T
P Booo o=
N A,].mw..g
[u..qg{.0..a

Listing 6.2 First packets from O5LOGON authentication process—with and without network

encryption.

Authentication ® 121

5 (MD5) hashing algorithm. Additionally, the traffic is usually encrypted using IPSEC or some
tunneling method to add protection. RADIUS is often used with an Lightweight Directory Access
Protocol (LDAP) directory (e.g., Active Directory) where RADIUS performs the authentication but
information is stored within the LDAP store.

Oracle databases live within the data center. They may be accessible through a virtual private
network (VPN) connection, but this is usually transparent to Oracle—the user logs onto the
network over a VPN and then can connect to various resources on the LAN. It is not common to have
an Oracle database as a network resource available as a network resource managed by RADIUS.
If that is so, why bother learning about RADIUS authentication for Oracle? The reason is that
because RADIUS is so pervasive and because it is a fairly simple protocol to implement, it is
used by many vendors who offer two-factor authentication as an API through which they can be
accessed. If you want to harden your authentication process using two-factor authentication, it is
most likely that you will be using RADIUS authentication for your databases.

Let’s understand what two-factor authentication means. The most common authentication
scheme is the one which is based on a password—i.c., based on “something you know.” This
is considered by many to be a weak scheme—passwords can be guessed, can be seen when you
type them in, and can be shared by multiple users. Two-factor authentication makes the logon
dependent on two things—usually on “something you know” and “something you have.” Almost
all two-factor authentication schemes still use passwords but they augment that with one more
thing—usually some physical device that you must have to logon. This physical device can be a
USB key, can be a card that you carry with you, etc.—the important thing is that it is something
that you have, and only you can have. There is only one device in the world that could be used to
logon to your account.

Many companies make two-factor authentication devices and there are many forms that it can
take. Figure 6.4 shows three such examples. On the left is an RSA SecurelD token. You carry this
lictle token with you (e.g., on your keychain). As you can see the token presents a number with
eight digits. This number changes every 60s. Each such token has a unique internal key so every

Figure 6.4 Example of two-factor authentication devices.

122 m HOWTO Secure and Audit Oracle 10g and 11g

such token will switch numbers in a different sequence that cannot be guessed. Therefore, if you
have 30,000 employees in your organization and everyone has such a token, the number sequences
are all unrelated. However, they are NOT random. In fact, a centralized RSA ACE authentication
server knows at any point of time what number each token is showing. When you log onto a system
that delegates authentication to the ACE/Server, you provide the number on your token in addi-
tion to your password. Because the ACE/Server can compute the number sequences on each device
it can verify that you not only know the password but that you indeed have the physical device.

The two tokens on the right-hand side of Figure 6.4 use a different scheme. In this scheme when
you want to be authenticated, the server will give you a random number. You then key in that random
number on the keypad. The device performs some mathematical transformation on this number using
a key embedded into the device and shows you the output on the liquid-crystal display (LCD). You
then enter this number as part of the authentication process. Because the authentication server knows
the keys per device, it too can compute the transformation and verify that you indeed have the device.

There are two scenarios that can occur when you use two-factor authentication. Figure 6.5
shows the basic scenario. Lets stick with the RSA SecureID token as an example. In this case,
when you log onto Oracle you provide your username, your password, and the number you see
on the token (step 1 in Figure 6.5). Oracle forwards this information to the authentication server
using a RADIUS protocol (step 2). The authentication server responds to the Oracle server (step 3)
and Oracle responds to the client (step 4); you are now logged on to Oracle.

As mentioned, the number on the SecurelD device changes every 60s. What happens if you
type in the value you see on the device 2 seconds before it changes and then try to logon? By the
time you key it in and press enter, 2 seconds may pass and when the authentication server performs
its check, it will have a different number—in which case the numbers will not match. In this scenario,
shown in Figure 6.6, the authentication server will initiate a challenge/response sequence.

1H—>) >
X
0
— @) — < (3) S
N
Oracle database Authentication server

Client

Figure 6.5 Synchronous two-factor authentication sequence.

oy > 2) >
<— (4) Challenge <«— (3) Challenge —
— (5) Response —» —— (6) Response —»
% @ : @ 4

Client Oracle database

Authentication server

Figure 6.6 Challenge/Responses in two-factor authentication sequence.

Authentication ® 123

In this scenario the authentication server will not immediately reject the logon. Instead, it sends
a challenge as shown in steps 3 and 4. You will see the challenge because your logon screen will
have some form of message that tells you to wait a full cycle until the number changes once more
and then logon using the new number. This time you have 60 seconds until the next change and
therefore the response (steps 5 and 6) will likely succeed. To try to avoid this complexity most
devices such as SecurelD show you how long you have left until the next change. In Figure 6.4
the bars on the left of the number show you how much time is left until the next change. When
the number changes (and you have 60 seconds until the next switch) there are six bars. One bar is
dropped every 10 seconds so you can always tell when the number will switch next. If you see that
you have only one bar left, you will usually wait until the number switches again before attempt-
ing a logon. With the devices with the keypad shown on the right of Figure 6.4, there is always a
challenge/response sequence—the authentication server issues a random number that you type in
using the keypad (the challenge) and the resulting number is your response.

Let’s move on to setting up RADIUS authentication using ASO. Setting up RADIUS authen-
tication for Oracle looks the same regardless of which system you are using for authentication.
Sometimes the challenge/response phase requires custom handling—but for the most part, the
fact that the RADIUS protocol is a standard supported by ASO allows you to interface Oracle
with many systems. In this specific example you’ll follow the procedure for integrating Oracle

with the RSA ACE/Server using RADIUS. The sequence for this setup is

Step 1: On your ACE/Server start the RSA Authentication Manager application. Click on Agent
Host— Add Agent Host. You need to register your database server. Put in the host name, address,
and select Net OS Agent as the Agent type as shown in Figure 6.7. Uncheck Requires Name Lock
and all the other default options as shown in Figure 6.7.

Step 2: Click on Secondary Nodes and enter all the hostnames/IP addresses for Oracle.
Step 3: Click on Create Node Secret File to generate the node secret file.

Step 4: Using the import utility, convert the .rec file to a .key file. Save this key on the Oracle server
in $ORACLE_HOME/network/security/radius.key and ensure that the file is protected through

file permissions.

Step 5: On the database server and the clients, edit sqlnet.ora and add the RADIUS authentica-

tion method:

SQLNET.AUTHENTICATION SERVICES= (BEQ, RADIUS)

Step 6: Start up netmgr on the database server. Select Oracle Advanced Security and go to the
Other Params tab. Select RADIUS from the pull down and enter the RADIUS server properties
as shown in Figure 6.8.

Step 7: Set the following two initialization parameters:

REMOTE_OS AUTHENT=FALSE
OS_AUTHENT PREFIX=""

Step 8: Create a database user identified externally:

SQL> create user ronb identified externally;
SQL> grant create session to user ronb;

124 m HOWTO Secure and Audit Oracle 10g and 11g

Add Agent Host x|

Name: Isaturn.dhasecur.com

Network address: |1 92.168.222.46

Site: | Select |

Agent type: LETEFITN B
S NetSP Agent
RADIUS Server EI

Encryption Type: ¢ SDI & DES

I” Node Secret Created

v Open to All Locally Known Users

[~ Search Other Realms for Unknown Users
" Requires Name Lock

" Enable Offline Authentication

I~ Enable Windows Password Integration

[~ Create Verifiable Authentications

Group Activations... User Activations...
Secondary Nodes... Delete Agent Host
Edit Agent Host Extension Data... Configure RADIUS Connection...
Assign Acting Servers... Create Node Secret File...

OK I Cancell Help |

Figure 6.7 Adding the database as a RADIUS client.

When you connect using this user the database will authenticate it through the RSA/ACE server
using a RADIUS protocol.

Two Things to Remember about Oracle RADIUS Authentication

1. Use RADIUS authentication when you want to add two-factor authentication to the
database.

2. Make sure to use a package that has a well-documented setup procedure for the chal-
lenge-response sequence.

6.7 Discussion: Protect Your Password Hashes

As you saw at the end of HOWTO 6.5 you must protect your password hashes in USER$ through
privileges and through auditing. With the password hashes, an attacker can get access to the plain-
text passwords if they can sniff the network and you don’t encrypt the network traflic. This type

Authentication ®m 125

El Oracle Net Manager - home/oracle10/products10.2.0/db_1/network/admin/

File Edit Command Help

Oracle Advanced Security ~ ~

o @Local in | Other Params

ST
gSenice Naming

Listeners
L@ UusTENER

©-%2 Oracle Net Configuration

Authentication Service: | RaDIS v
Host Name: W
Port Number: (s |
Timeout (seconds): I
Number of Retries: z
Secret File: | fhome/oracle 10produc|
Send Accounting: o |

e —

Challenge Response: on
Default Keyword: [challenge]

Interface Class Name: ;DefaullRadluslmenace ‘

Figure 6.8 Setting RADIUS settings using netmgr.

of attack relies on the fact that the session keys are encrypted using the password hashes. With the
password hashes, an attacker can know the session keys and thus the plaintext passwords. Password
hashes can also be used in a password cracking attack. Because the password hashing algorithm is
well known, an attacker can run a program that guesses passwords, computes the hash value, and
compare it with your values. They can do this on their own database or even in a C program opti-
mized for fast iterations. If you choose your passwords randomly, this may take a very long time but
usually passwords are not random and a brute force attack can be effective. For example, one of the
better programs, orabf, calculates over 1 million hashes per second. For passwords of length eight
this can take a few days to complete—that’s pretty scary when you think about it.

These are only two examples in which password hashes can be used to take over a database—and
there are many more. The bottom line is that you need to think of password hashes as highly sensitive
data that must be secured well. Alternatively, you may decide that this is an area that you don’t want to
own and you would prefer to delegate this—i.c., not use the database for authentication, not keep pass-
words within the database, and rely on an external authentication system as described in this chapter.

When you use database authentication you must secure your password hashes as though they
were the passwords themselves. At a minimum you must do the following:

1. Use access control to ensure that access to the hashes (PASSWORD in SYS.USER$ and
DBA_USERS prior to 11g and SPARE4 in SYS.USERS in 11g) is very limited.

2. If you use an advanced solution such as Oracle Database Vault then you can place better
controls on this data (see Chapter 17).

3. Periodic audits to review privileges through which users may access these columns.

4. Continuous auditing and real-time alerting on any access to this data by any user.

Database security

HOWTO Secure and
Audit Oracle 10g and 11g

Ron Ben Natan

Foreword by Pete Finnigan

Oracle is the number one database engine in use today. The fact that it is the choice of military
organizations and agencies around the world is part of the company’s legacy and is evident in the
product. Oracle has more security-related functions, products, and tools than almost any other
database engine. Unfortunately, the fact that these capabilities exist does not mean that they are
used correctly or even used at all. In fact, most users are familiar with less than 20 percent of the
security mechanisms within Oracle.

Written by Ron Ben Natan, one of the most respected and knowledgeable database security
experts in the world, HOWTO Secure and Audit Oracle 10g and 11g shows readers how to
navigate the options, select the right tools and avoid common pitfalls. The text is structured as
HOWTOs — addressing each security function in the context of Oracle 11g and Oracle 10g.

Among a long list of HOWTOs, readers will learn to —

* Choose configuration settings that make it harder to gain unauthorized access

¢ Understand when and how to encrypt data-at-rest and data-in-transit and how to
implement strong authentication

e Use and manage audit trails, and advanced techniques for auditing

* Assess risks that may exist and determine how to address them

* Make use of advanced tools and options such as Advanced Security Options,
Virtual Private Database, Audit Vault, and Database Vault

The text also provides an overview of cryptography, covering encryption and digital signatures
and shows readers how Oracle Wallet Manager and orapki can be used to generate and manage
certificates and other secrets.

While the book’s 17 chapters follow a logical order of implementation, each HOWTO can be
referenced independently to meet a user’s immediate needs. Providing authoritative and succinct
instructions highlighted by examples, this ultimate guide to security best practices for Oracle
bridges the gap between those who install and configure security features and those who secure
and audit them.

AU4L27

CRC P 6000 Broken Sound Parkway, NW
ress Suite 300, Boca Raton, FL 33487 ISBN: 978-1-4200-8412-2
Taylor & Francis Group 270 Madison Avenue 90000
an informa business New York, NY 10016

www.taylorandfrancisgroup.com | 2 Park Square, Milton Park | ||
q%7a81420"084 122

Abingdon, Oxon OX14 4RN, UK
www.auerbach-publications.com

Compliments of: For more information contact:
— e e IBM InfoSphere Guardium

5 Technology Park Drive guardium@us.ibm.com
@ Westford MA 01886 ibm.com/software/data/guardium

