

Query Patroller Setup

A customer example

IBM Corporation, 2005

The Problem

In this article, we will present an example of setting up Query Patroller at a customer environment.
The customer has a 3TB data warehouse and before configuring Query Patroller, there was a
serious problem with query concurrency. The queries are running at the same time ETL and Load
jobs are running. Although this is something we will correct in the future, by separating the CPUs
that run ETL and the CPUs that run the queries, at this time, all jobs and queries are running on
the same SMP AIX server, and this concurrency of users and ETL work is an issue.

Below, we present the way we are setting up the environment, in order to configure Query Patroller
based on the queries and the features of this particular customer example.

Configuration

 - AIX Regatta p690 server with 16 CPUs, and 64GB of RAM.
 - DB2 UDB V8.2 with fixpack 9A and DPF
 - DB2 has 16 data partitions and one catalog partition
 - Data Stage and Meta Stage products from Ascential for ETL processing
 - Query Patroller

Workload Characteristics

The system is running ETL load scripts during the night, starting from 5PM up to 11AM in the
morning. In the morning hours, from 8 to 10 AM, there is peak query activity for end users, with ad
hoc queries primarily. The number of concurrent queries is usually 4 to 5.

Steps for Query Patroller configuration

In order to setup the Query Patroller we followed the following steps :

1. Gather historical analysis for all queries for 3 days
2. From the historical analysis window, Select all rows and export them to a Delimited file
3. Import the delimited file to Excel spreadsheet and use the ”text to column” function to
 convert the data into columns in the spreadsheet.
4. Check and sort the cost of all queries and create a distribution, using the number of
 queries and their cost range
5. Then start to create the query classes based on the findings above. Preferably leave the
 small queries not intercepted.

Here is the extract from the historical analysis, which is imported into the spreadsheet. The total
number of queries is 57113. Below we just copy a small portion of the query extract for the
purpose of demonstration. The output spreadsheet is the result of step 3 described above.

Query number Cost Priority Query Start Time Query Finish Time

161541 EDA Ran successfully 29.889 500 11/12/2005 10:26 11/12/2005 10:26
161542 EDA Ran successfully 29.889 500 11/12/2005 10:27 11/12/2005 10:27
161447 EDA Ran successfully 29.889 500 11/12/2005 9:57 11/12/2005 9:57
161448 EDA Ran successfully 29.889 500 11/12/2005 9:57 11/12/2005 9:57
161577 EDA Ran successfully 29.889 500 11/12/2005 10:28 11/12/2005 10:28
161646 EDA Ran successfully 29.889 500 11/12/2005 10:29 11/12/2005 10:29

161647 EDA Ran successfully 29.889 500 11/12/2005 10:30 11/12/2005 10:30
161658 EDA Ran successfully 29.889 500 11/12/2005 10:31 11/12/2005 10:31
161704 EDA Ran successfully 29.889 500 11/12/2005 10:32 11/12/2005 10:32
161717 EDA Ran successfully 29.889 500 11/12/2005 10:36 11/12/2005 10:36
161718 EDA Ran successfully 29.889 500 11/12/2005 10:37 11/12/2005 10:37

After we import the historical analysis to a spreadsheet as above, we start the filtering and
classification of queries. In this example, we identify that the first 50343 queries have a cost of less
than 30 timerons. These queries are mostly INSERTs to metadata tables of Webfocus which is an
end user application, as well as other small operations of INSERT / DELETE / UPDATEs. In
general 88% of activity in the system is INSERT / DELETE / UPDATE activity. QP should not
intercept these queries and we will exclude them from the Query Patroller interception.

This is an example where with Query Patroller we were able to identify a problematic behavior in
the system. Discovering that 88% of system activity is heavy transactional workload, we performed
further analysis and we were able to tune the end user application and eliminate the large amount
of this workload by changing the application code and setup.

Regardless of the kind of optimization and tuning that has to be done for the INSERT / UPDATE /
DELETE operations, we need to eliminate them from out Query Patroller analysis at this point, and
focus on just the more expensive activities. Therefore, we create a smaller version of the
spreadsheet with only 6770 rows in our spreadsheet with activities of higher cost and response
time. The rows we eliminated represent transactions that have a cost of a maximum of 30 timerons.

Based on the analysis we did over a 3-day period, here is the statistical numbers we have with the
remaining 6770 transactions: (the numbers below are in timerons)

Number of queries Range of Cost in timerons
106 30-113
2254 100-300
1486 300-2K
2579 2K-10K
165 10K-100K
173 100K-1M
17 1M-10M

At this point we need to further formulate this classification and limit the number of query classes
to no more than three or four. If the query classes are more than four, we may end up create
additional overhead to the Query Patroller tool which is not necessary.

So we created only 4 classes by combining the classes above that have a similar amount of
queries. For example, the number of queries with cost between 100-300 timerons is about 2,2K
and the number of queries with cost between 300-2K timerons is about 1,4K which is close. So we
combined the two to one single class because these two classes of queries have the same
frequency. We did the same for queries with cost between 10-100K timerons which are 165, a
number similar to 173 for 100K-1M timeron cost queries, so we combined them both in a single
class.

We also decided that all queries below 100 timerons will not be intercepted.

We made the assumption that the maximum number of queries the system should handle
concurrently at this point is 10. Normally a system should be able to run 20-30 queries

concurrently. In this system we will only try 10 because of the ETL running together with queries in
the same SMP server, sharing the same CPU cycles.

Based on this number we aligned the percentage of number of queries to the allocated number of
queries allowed to run in this class. Nevertheless, because the smaller running queries finish faster,
we did not allocate as many for the first class of smaller queries, as it would proportionally be
logical. This is because of the shorter runtime of these queries.

All the assumptions and class configuration always needs monitoring and further tuning maybe
required.

Here are the classes we created :

Proposed Query Classes
Number

of queries
Percentage of queries

in this range
Range of Cost in

Timerons
Max number of queries

allowed in QP class
3740 56% 100-2K
2579 38% 2K-10K
338 5% 10K-1M
17 0.2% 1M-10M

In our next step, we choose from within Query Patroller historical analysis, five queries from
different classes in order to test them run with and without Query Patroller intercepting them.

We looked at the history of queries and we picked some of the most frequently run queries during
the workloads. We picked samples from all 4 classes of queries we defined. Here is the mix. This
is just a sample mix, and we can do additional samples for further testing.

1 query with cost less than 130K timerons
5 qeuries with cost less than 2K timerons
2 queries with cost between 2K-10K timerons
1 query with cost between 10K-1M timerons
1 query with cost between 1M-10M timerons

We run this list of queries using the db2batch command in order to capture the details of the
elapsed time and performance for each. We run them with Query Patroller intercepting and with
out Query Patroller intercepting any query. Here are the results.

Query cost
in timerons

Class of query Elapsed time
with QP

Elapsed time
without QP

130 No intercept 8.154 4.218
225 Class 100-2K 0.002 0.002
833 Class 100-2K 0.723 0.346
1269 Class 100-2K 6.523 4.965
1648 Class 100-2K 0.976 0.078
1783 Class 100-2K 8.537 16.093
2333 Class 2K-10K 0.660 0.319
2649 Class 2K-10K 309.914 318.256
2963 Class 2K-10K 285.594 281.508
1M Class 10K-1M 115.920 110.960
2M Class 1M-10M 0.003 0.002

We notice that for most of the large and medium queries Query Patroller provided some
improvement.

References

 DB2 manuals: http://www-306.ibm.com/software/data/db2/udb/support/manualsv8.html
 QP manual: ftp://ftp.software.ibm.com/ps/products/db2/info/vr82/pdf/en_US/db2dwe81.pdf

