
Exploiting database technologies for Digital Libraries

Joshua W. Hui Ajay Sood Mahadevan Subramanian Parag V. Tijare

IBM Almaden Research Center, San Jose, CA 95120
{jhui, ajay, maha, parag}@almaden.ibm.com

ABSTRACT
Management of content within a Digital Library system should
address the issues of access control, integrity and recovery among
other things, for both structured and semi-structured data. Most
vendors either address the above issues in a custom fashion or do
not address them at all. Our approach is to provide a Relational
Database Management System (RDBMS) solution to the above
issues. We take full advantage of the RDBMS capabilities of
access control, integrity and recovery for structured data and
extend the RDBMS to support the same for semi-structured data
through a technology called DataLinks [7]. DataLinks extends
Database technology to data residing outside of the database.
Administrative tasks become simpler in a Digital Library System
using the DataLinks technology. This paper describes how
DataLinks feature within an RDBMS would benefit a Digital
Library System in managing its content.

Keywords
RDBMS, access control, integrity, recovery and replication

1. INTRODUCTION
Digital Libraries manage wide variety of digital information like
text, video, audio, images and so on. The major usage is in the
management of semi-structured data which forms about eighty-
five percent of the world�s data [1]. The other fifteen percent is
the structured data which is traditionally managed by a Relational
Database Management System (RDBMS). The digital libraries,
for example, can help you store, search, disseminate and protect
all the scanned insurance policies in the premises of an insurance
agency. A RDBMS will be more typically used by a retailer to
maintain the catalog numbers and their price information.

In a typical digital library architecture, the module helping with
the storage and management of the actual data could be termed as
the Content Management System (CMS). One of the common
architectures representing a CMS is the Triangle Architecture in
Figure 1.

Typically, it consists of metadata server and resource manager(s).

The metadata server contains all the index information for all the
objects in the resource manager. This meta information helps in
management issues like protection, authentication, easier search
and storage management of the digital resources. Resource
manager contains the actual objects like the images, documents or
the video clips and serves the content to the client. The metadata
server is typically an RDBMS. The resource manager in a number
of scenarios is a file system with the resources in file formats.

The flow of information in Figure 1 is as follows
��Client submits a query to the metadata server. The metadata
server serves the request if the client provides the necessary
authentication information.
��Now there are two possibilities for retrieving the objects
from the resource manager
 1. metadata server tells the resource manager to push the
object to the client
 2. Client gets the object locator information from the
metadata server and extracts the object from the resource manager
For example in IBM�s digital library product, Content Manager,
option 1 is being followed.

This paper will focus on the following functions of Content
Management Systems:

��Update Support - This involves updating the objects in the
resource manager, like creating, updating or deleting documents,

Blank section for copyright

Client

Metadata
Server

Resource
Manager

Figure 1:The Triangle Architecture

and be able to maintain consistency with respect to the metadata
server. This brings in the questions of integrity, distributed
transaction management and coordinated recovery between the
resource manager and the metadata server. For example, creating
and deleting a document and the corresponding metadata should
happen as a single unit of work to avoid problem of dangling
references. Similarly, update to the resource and metadata should
be synchronized. The question of synchronized backup and
recovery becomes important if we want to recover the versions of
resources pointed to by the snapshot of the metadata server.
��Access control - Access control refers to the level of access
to the resources in the resource manager. Client could be granted
access to the resources based on rules built into the metadata
rather than relying entirely on the security provided by a resource
manager. This issue becomes particularly relevant when a client is
pulling objects from the resource manager rather than resource
manager pushing objects to the client. For example, in a web
environment, digital libraries could adapt so that clients are able
to request for objects from the resource managers.
�
Till date, many Content Management Systems have either not
addressed the above requirements or have built custom solutions
which handle the issues to a varying degree. For example in IBM
Content Manager, synchronized backup and recovery are not
supported in the current release.

To our knowledge, none of the problems have been addressed
using the RDBMS. All the capabilities like recovery, integrity and
access control are essentially available in a RDBMS and seems
logical that RDBMS be enhanced to extend this functionality to
manage the semi-structured data so that the user feels that semi-
structured data is part of the RDBMS although it is actually
residing outside the RDBMS. This way administrative control
becomes easier and the metadata server and the resource manager
need not be managed through separate solutions. By using the
capabilities and advances in RDBMS technology, CMS vendors
do not have to rely on closed solutions.

DataLinks is one such technology which helps extend the reach of
a RDBMS to the outside data as if they were one single entity.
DataLinks is an SQL standard [4] and could potentially be made
available by any RDBMS vendor. This helps build a standard
platform for the above mentioned requirements.

Section 2 describes the basics of the DataLinks Technology
available in IBM DB2 UDB Universal DataBase (DB2 UDB).
Section 3 describes how content management systems benefit
from using the DataLinks technology. The subsequent section
talks about future directions and we conclude in Section 5.

2. DATALINKS TECHNOLOGY IN THE
IBM DB2 UNIVERSAL DATABASE

DataLinks is a technology invented at IBM Almaden Research
Center. It is available in IBM DB2 Universal DataBase (DB2
UDB) and was first introduced in it's Version 5.2. It extends
RDBMS to manage semi-structured or unstructured data residing
outside the RDBMS. Traditional RDBMSs deal with structured
data and provide integrity, recovery and access control for such
data. DataLinks technology enables RDBMS to provide these

capabilities for semi-structured data without needing to import it
into the RDBMS. By storing references to semi-structured data in
SQL tables in RDBMS, the above capabilities can be extended to
the referenced data.

Semi-structured or unstructured data, such as, documents, images,
video clips, e-mail messages, engineering drawings, presentations
and other business formats, typically resides in file systems.
Access performance, streaming requirements, proximity to client
and popularity of file system API are some reasons why such data
will continue to reside in file systems rather than being moved to
databases [2]. However, these files are often related in some way
to structured data stored in RDBMS. A typical example is
photograph of a product stored in a file and its inventory
information stored in the database. Since the data is managed by
two distinct systems (RDBMS and file system), there is a need to
synchronize updates and backup and recovery to avoid
inconsistencies. For example, the file data may get updated
without updating the corresponding database data, a file may be
deleted without deleting the database data or the database data
may be restored to an older point in time, while the file data
continues to reflect the current point in time. Thus it is necessary
to coordinate various functions between RDBMS and file system.

DataLinks uses distributed transaction management and recovery
techniques to provide this coordination. It does not require
applications to change the way they access files, that is,
applications still continue to use the standard file system interface.

DataLinks consists of two main components: extensions to the
DB2 UDB engine (hereafter called datalink engine) and DB2
UDB Data Links Manager (DLM). The datalink engine resides
where the database is located. The Data Links Manager resides

where the file system is located. Figure 2 shows the architecture
of DataLinks in DB2 UDB.

The datalink engine provides a new SQL data type called
DATALINK. A DATALINK value is a reference (in the form of a
URL) to a file residing in a file system. A variety of options can
be specified in the definition of a DATALINK column. These
options determine the level of control exercised by the RDBMS
over the files referenced by URLs stored in the column. Using
these options it is possible to specify whether referential integrity

Control
Path
for DML
and
Utilities

 SQL Access Path
Archive Server

DB2 Application

Data Links Manager
on File server

DB2 UDB engine
with

datalink engine
on database

server

 Standard File
Access Protocol

Native File System:
JFS, NTFS, Solaris,

DFS-DCE/AIX

DLFF (Data Link
Filesystem Filter)

Storage

DLFM_DB
(metadata)

DLFM (Data Links File Manager)

 Control
Path for
DataLinks
Integrity

Figure 2: DataLinks Architecture

must be guaranteed for file references; whether read and write
access to the referenced files should be controlled by the database
or the file system; whether coordinated recovery of the database
and the referenced files is to be supported by the system.

When reference to a file is stored in a DATALINK column (e.g.
using SQL INSERT), the file is said to be �linked�. The act of
committing the transaction which creates a link to a file
establishes control of the RDBMS over the file. As long as the file
remains linked, the system enforces RDBMS control over the file
as specified by the options in the DATALINK column definition.
In order to enforce these controls, some actions are needed to be
done on the file server. For example, the read and write access
permissions or the owner of the file may need to be changed; the
DLFM metadata may need to be updated to indicate that the file is
linked. The datalink engine requests the DLM to perform these
actions when linking a file. All these actions must be done in the
context of the RDBMS transaction which created the link to
ensure consistency. Therefore, transactions which manipulate
DATALINK columns involve updating data on multiple file
servers in addition to updating data in the database itself -
essentially they are distributed transactions. DataLinks uses a two-
phase commit protocol for these transactions. The datalink engine
acts as a coordinator and the DLMs acts as participants in this
protocol. Likewise, deleting the reference (e.g. using SQL
DELETE) will cause the RDBMS to relinquish control over that
file. The file is then said to be �unlinked�. The action of unlinking
is also done in the context of a distributed transaction.

The Data Links Manager itself comprises of two sub-components:
Data Links File Manager (DLFM) and Data Links Filesystem
Filter (DLFF). The DLFM executes various requests from datalink
engine. It maintains the metadata like which files are linked to the
database and what level of control is desired for each of these.
The DLFF is a control layer on the top of the native file system. It
intercepts some file system operations (for example, delete,
rename, open) to help enforce desired controls by the RDBMS.
However, it does not interfere with read/write path so that
performance of these operations is not affected. The DLFM and
the DLFF together enforce the level of control specified when
defining the DATALINK column. For example, if a column
definition specifies that referential integrity is required for linked
files, the DLFF will disallow rename or delete operations on files
linked to that column; if it specifies that read/write access to
linked files is to be controlled by the database, the DLFF
disallows read/write access unless a valid token obtained from the
RDBMS (using an SQL SELECT) is used when accessing the file.
The DLFF itself is stateless, it consults the DLFM to find whether
a file is linked and the level of control to be enforced.

Recovery utilities are an important part of RDBMS products. DB2
UDB�s backup utility takes �snapshot� of a database. The
database can be restored to that snpashot state using the restore
utility. DataLinks extends the ability of these utilities so that
backup and restore of referenced files is also done along with the
database data in a coordinated way. If the DATALINK column
definition specifies that coordinated recovery is desired, the DLM
initiates archival of a file when it is linked. The archiving
operation is asynchronous with respect to the transaction that
creates the link. The DLM thus keeps archive copies of files.
When restore utility is used to reinstate a particular snapshot of

the database, the corresponding versions of the referenced files
will be reinstated too. This ensures that the file data is always
consistent with the database data. The datalink engine and the
DLMs coordinate with each other to achieve this functionality.

Files residing on multiple file servers can be referenced from a
single database. Conversely, multiple databases can reference files
on one file server. Additional details on DataLinks technology
can be found in [3].

DataLinks technology extends SQL language definition. These
extensions have been standardized in ISO as a part of SQL99. The
standard is presently in the Final Draft International Standard
(FDIS) state [4]. The final International Standard (IS) is expected
to be published in early 2001.

DataLinks thus enables management of file data through standard
SQL interface. It enhances recovery utilities in DB2 UDB to
extend their reach to file data. Thus recovery of both database data
and file data is coordinated through a single, common interface.

3. BENEFITS OF DATALINKS TO
CONTENT MANAGEMENT SYSTEMS

In a Content Management System, maintaining consistency
between metadata server and resource manager is difficult because
of two problems:

1. Updates, such as creation, deletion of objects and
modification of their content, must be done in a coordinated
fashion in the context of a single distributed transaction
2. Recovery operations must be coordinated

Achieving (1) requires distributed transaction management and
crash recovery techniques. Achieving (2) requires complex
recovery techniques.

Commercially available Content Management Systems have either
simply not addressed these problems or have built custom
software on their own. However, with advances in database
technology, it is possible to exploit RDBMS capabilities to
address these problems.

DataLinks technology incorporates these capabilities in the DB2
UDB RDBMS product. It also provides the capability to
implement uniform access control for metadata as well as files.
Standard SQL mechanisms can thus be used to achieve access
control using rules based on metadata. Architecture of DataLinks
in DB2 UDB makes it particularly suitable as a basis for
implementing the storage model required in Content Management
Systems. The DB2 UDB engine will manage the metadata server.
The Data Links Manager(s) residing on the resource manager(s)
will cooperate with the DB2 UDB engine to provide integrity,
recovery and access control. Figure 3 shows how DataLinks
components fit in the triangle architecture. By using DataLinks in
DB2 UDB, Content Management Systems can rely on DB2
UDB�s robust capabilities for integrity, recovery and access
control, rather than reinventing the wheel. The specific advantages
achieved by using DataLinks are explained in detail in the

subsequent sections.

3.1 Integrity
Existence of metadata server and resource manager as two

independent components poses the difficult problem of
maintaining integrity between these two. For example, without a
distributed transaction management mechanism, files in the
resource manager can be deleted or renamed, leaving dangling
references from the metadata server; the data in these files can be
modified making the index information in the metadata server
invalid. Thus there is a need to coordinate updates to these
independent entities.

DataLinks in DB2 UDB addresses these problems by providing
both referential integrity and data integrity. Using SQL in DB2
UDB, the metadata information and the reference can be created
in a single transaction. The action of creating file references in the
metadata server also ensures the existence of these files and all
this is done atomically in the context of a single transaction.
Existence of the file in the resource manager is guaranteed as long
as it is linked to the metadata server. The DLFF, in conjunction
with the DLFM, disallows any file rename or delete operations
which will violate referential integrity constraints. The deletion of
the data in metadata server and deletion of the referenced file can
also be done atomically, in a single transaction. DataLinks thus
guarantees referential integrity between metadata server and
resource manager.

Data integrity is achieved by allowing only controlled updates to
linked files. An update operation of the file is not considered
complete unless an SQL update is done to the reference in the
metadata server. This provides a mechanism to atomically perform
the two actions - (i) completing the update of the file and (ii)
updating the index information in the metadata server. For
example, a DATALINK column definition can specify that
integrity is required for all references, read and write access is to
be controlled by the database and that point-in-time recovery is
required. The steps involved in updating a file linked to this
column will be:

1. Use SQL SELECT to search and obtain a particular file
reference from the database. This reference will have a �write
token� embedded in it.

2. Use the file reference with the embedded token to open the
file for writing. DataLinks can optionally block any readers on
that file after the file is opened for write.
3. Use the file system API to update the file content.
4. Perform an SQL UPDATE to update the file reference with
itself to declare the operation to be complete. The file is
considered to be in �update-in-progress� state until this SQL
UPDATE is done. Any meta information that needs to be updated
in the database can also be updated in the same transaction. Thus
a new version of the file and the corresponding meta information
can both be created atomically in the same transaction.

Since the column definition specifies point-in-time recovery, the
previous version of the file is maintained by the DLM. Therefore,
changes to the content can instead be rolled back using slightly
different SQL in Step 4 above.

Using DataLinks in DB2 UDB, Content Management Systems are
relieved of implementing complex distributed transaction
management techniques themselves. They can rely on DB2
UDB�s robust transactional capabilities to achieve integrity.

3.2 Backup and Recovery
In response to any damage or corruption, the recovery of both
metadata server and resource manager should be synchronized.
Recovery of the metadata server data should automatically lead to
the recovery of the referenced files at the various resource
managers. This involves coordination of backup of metadata
server database with the backup of the reference files at the
resource managers. This also involves rebuilding of these data
should they be damaged or corrupted in some way.

Current implementations of Content Management Systems either
do not support coordinated backup and recovery of the metadata
and data at the various resource managers or they support it in
their own proprietary way without the feature being provided
through a RDBMS. Our solution is to exploit coordinated backup
and recovery feature built within an RDBMS so as to take full
advantages of single point of administration.

When files on a resource manager are linked, they are scheduled
for copying asynchronously to the transaction that links (inserts)
them. The files are copied to an archive server (disk, IBM TSM
etc).

Backup of the metadata database is coordinated with its resource
managers to ensure that by the time a metadata server backup
(online or off-line) is successfully completed, the corresponding
files at all the resource managers have also been backed up.

Rebuilding of data is done through restoring from a previous
database backup and reapplying changes as indicated in the
database log. This also ensures that the files at the active resource
managers are also restored to the proper versions as referred to by
the metadata. Thus the metadata is synchronized with the files at
resource managers.

3.3 Access Control

Figure 3:The Triangle Architecture with DataLinks
components

Client

Metadata
Server

Resource
Manager

DB2
engine

DB2
DLM

Different Content Management Systems have different
mechanisms to provide access control to files residing in the
resource manager. One example, as given in Section 1, is IBM
Content Manager, in which all data requests are sent to a central
metadata server where the access control is performed. The
request is then forwarded to the resource manager and finally the
data is delivered to the clients on a given port. This provides a
centralized solution to simplify administration. However, this
model may not be suitable in other situations, where users want to
control when and how the data is delivered. Each access to the
resource manager requires sending a request to the metadata
server. Sometimes, due to the network condition, users may want
to avoid multiple trips to the metadata server for any repeat access
to files in the resource manager.

Another approach is to allow direct access to the resource
manager. This model provides the flexibility of when and how
users access files in the resource manager. However, this usually
requires building another layer on top of the native system to
check against the access model in the metadata server because the
access model provided by the native system cannot be directly
mapped to the one in the metadata server. For example, the access
model used in RDBMS can be defined through the use of SQL
View. The definition of SQL View can contain arbitrary
predicate. This provides more flexibility. On the other hand, the
access model used in the file system is typically based on an
Access Control List (ACL) associated with a file. It is less flexible
because the access model is changed only when the ACL is
altered.

With DataLinks technology, the access model that is defined in
the RDBMS can be extended and applied to files residing in the
resource manager. This is achieved through the token mechanism.
Unless a user has authority to fetch the DATALINK value from
the table, no token will be generated. The token becomes a ticket
to carry the authority for accessing a file that is referenced by a
DATALINK value. Access to the file (either read or write) is
granted only when a valid token is provided. The token is
generated at runtime when querying a DATALINK column from
an SQL table. It is embedded inside the returned name of the
DATALINK value.

Suppose the file name without a token is

HTTP://XYZ.COM/image/image001.gif

the DATALINK value returned from the table will be (including
the token)

HTTP://XYZ.COM/image/8QXzDf2fDSQHsU;image001
.gif

Instead of providing the filename in the file open call, a user
supplies the whole name including the token. The DLFF
(described in section 2) will intercept the open call and validate
the token. If the token is valid, the DLFF will let the open call
proceed.

Therefore, the access model defined in the RDBMS for
controlling access to the metadata can be used to control access to
files in the resource manager as well. No extra access control

mechanism is required in the resource manager. Files can be
accessed through any native file system interface or protocol. New
features provided by the native system can be easily exploited by
the applications. Moreover, assuming the communication channel
is secure, by passing the token, the authorized user can designate
another user to access the file. This user does not need to be
registered to the system. It is useful in the Web environment
where connection is ad hoc and session-less.

Apart from using the RDBMS control via the token mechanism,
while defining a DATALINK column, other levels of access
control are also available, such as retaining the access model
defined in the file system. In this case, a plain filename will be
returned in a query against the DATALINK column. The access
model will follow what is defined for the file in the file system.

3.4 Replication
Access performance may be a concern when dealing with
metadata and files in the content management system. This can
happen when files are big and the number of users is large. By
incrementally replicating both metadata and files in the content
management system to multiple instances, load balancing is
achieved.

Replication not only helps in the load balancing situation, but also
in other areas, such as providing a hot standby system and
enabling data sharing among different physical locations and
business partners. Nevertheless, most of the replication
technology is available only to the metadata residing in the
RDBMS. If users want to replicate both data in the metadata
server and files in the resource manager, an external mechanism is
required to be implemented on the top of whatever provided by
the RDBMS. However, with DataLinks Replication technology,
the replication of the metadata and the external referenced files
can be handled by the RDBMS in a transactional fashion. The
technology is built into the DB2 data replication product, called
DB2 DataPropagator.

DB2 DataPropagator uses the database log to capture changes to
any registered SQL table or view in the source RDBMS and then
externalize the changes in a staging table. When the replication
cycle is triggered (either by an event or a timer), the staging table
will be examined to locate the committed changes and then
propagate them to the subscribed table in the target RDBMS. For
DATALINK value, before the metadata is propagated to the table,
the referenced file gets copied first from the source file system to
the target file system. The new file reference is used when
propagating the metadata to the target table. As a result, a
DATALINK reference is established to the file which is just
copied to the target RDBMS.

By using DataLinks, no external mechanism is needed to handle
the replication of external files in the resource manager separately.
Both data in the metadata server and files in the resource manager
can be replicated to the target system in a synchronized and
consistent way.

4. FUTURE WORK
There are many other useful features for the Digital Library which
can be considered for the future release of the DataLinks

Technology. One of them is to support other nontraditional object
storage systems. DataLinks currently supports several popular file
systems, such as AIX JFS, NFS, Solaris UFS, DCE/DFS and
NTFS. The support can be extended to other storage systems,
such as Hierarchical Storage Management (HSM) system and
video streaming server. Moreover, the interface to the DataLinks
File Manager can be externalized to allow other vendors to
integrate their object storage servers with DataLinks. In such case,
the DATALINK value no longer necessarily refers to a physical
location of a file, but rather provides a logical reference to an
object. Another enhancement is to provide object creation support
through SQL. With the existing DataLinks technology, users can
do modification and deletion of the files within the SQL scope.
However, a file still needs to be created before it can be linked to
a DATALINK column. A function can be added to allow creation
of the file during the linking process if the file does not exist.
Therefore, the whole life cycle of files can be totally captured
under the control of the DataLinks.

5. CONCLUSIONS
Access control, integrity and recovery are essential functions for
managing content in Digital Libraries. Due to the lack of these
functions for semi-structured and unstructured data in RDBMS,
Digital Library products had to build custom solutions.

This paper described how DataLinks technology provides each of
these functions inside RDBMS. We believe that Digital Libraries
can greatly benefit from synergistic integration with these
advanced RDBMS functions. This helps avoid building and
maintaining custom solutions for above mentioned features.
Moreover, by relying on standard RDBMS functions, they can
also leverage other DataLinks features like replication.

6. ACKNOWLEDGMENTS
The authors would like to thank Hui-I Hsiao and Inderpal Narang
for their valuable comments during the preparation of this paper.
The authors would also like to thank all the people who have
contributed to DataLinks technology over the last few years.

7. REFERENCES

[1] DB2 Magazine, "Controlling the Digital Deluge: IBM

Content Manager", Blaine Lucyk, summer 2000.
[2] IBM, �DataLinks: Managing External Data With DB2

Universal Database�, White paper prepared by Judith R.
Davis for IBM Corporation, February 1999.

[3] H. Hsiao and I. Narang, �DLFM: A Transactional Resource
Manager�, Proc. ACM SIGMOD Conf., Dallas, Texas, May
14-19, 2000.

[4] ISO/IEC 9075-9:2000, �Information technology - Database
Languages - SQL - Part 9: Management of External Data
(SQL/MED)�

[5] D. M. Choy, C. Dwork, et al, "A Digital Library System
for Periodicals Distribution", Forum on Advances in
Digital Libraries - ADL'96

[6] M. Papiani, J. Weson, A. Dunlop, and D. Nicole, �A
distributed Scientific Archive Using the Web, XML and
SQL/MED�, ACM SIGMOD Record, Vol. 28, No. 3,
September 1999.

[7] IBM, http://www.almaden.ibm.com/cs/datalinks

