
 1

DLFM: A Transactional Resource Manager
Hui-I Hsiao

Inderpal Narang
IBM Almaden Research Center

San Jose, CA 95120

Email: hhsiao@almaden.ibm.com; narang@almaden.ibm.com

Abstract
The DataLinks technology developed at IBM Almaden
Research Center and now available in DB2 UDB 5.2
introduces a new data type called DATALINK for a database
to reference and manage files stored external to the database.
An external file is put under a database control by “linking”
the file to the database. Control to a file can also be removed
by “unlinking” it. The technology provides transactional
semantics with respect to linking or unlinking the file when
DATALINK value is stored or updated. Further more, it
provides the following set of properties: (1) managing access
control to linked files, (2) enforcing referential integrity, such
as referenced file cannot be deleted or renamed as long as it is
referenced from the RDBMS, and (3) providing coordinated
backup and recovery of RDBMS data with the file data.
DataLinks File Manager (DLFM) is a key component of the
DataLinks technology. DLFM is a sophisticated SQL
application with a set of daemon processes residing at a file
server node that work cooperatively with the host database
server(s) to manage external files. To reduce the number of
messages between database server and DLFM, DLFM
maintains a set of meta data on the file system and the files
that are under database control. One of the major decisions
we made was to build DLFM on top of an existing database
manager, such as DB2, instead of implementing a proprietary
persistent data store. We have mixed feelings about using the
RDBMS to build such a resource manager. One of the major
challenges is to support transactional semantics for DLFM
operations. To do this, we implemented the two-phase
commit protocol in DLFM and designed an innovative
scheme to enable rolling back transaction update after local
database commit. Also a major gotchas is that the RDBMS’
cost based optimizer generates the access plan, which does
not take into account the locking costs of a concurrent
workload. Using the RDBMS as a black box can cause
“havoc” in terms of causing the lock timeouts and deadlocks
and reducing the throughput of a concurrent workload. To
solve the problem, we came up with a simple but effective

way of influencing the optimizer to generate access plans
matching the needs of DLFM implementation. Also several
precautions had to be taken to ensure that lock escalation did
not take place; next key locking was disabled to avoid
deadlocks on heavily used indexes and SQL tables; and
timeout mechanism was applied to break global deadlocks.
We were able to run 100-client workload for 24 hours without
much deadlock/timeout problem in system test. This paper
describes the motivation for building the DLFM and the
lessons that we have learned from this experience.

1. Introduction
IBM has focused on extensible database research for
more than a decade. The results of many of these efforts
have already appeared in IBM’s DB2 family of
relational database management systems (RDBMSs)
[1]. To extend the reach of RDBMS functions even
farther, IBM Almaden Research has now developed a
new technology called DataLinks [2], which enables
DBMS to manage data stored in external operating
system files. DataLinks gives DBMS comprehensive
control over external data and provides the following
properties: referential integrity, access control,
coordinated backup and recovery, and transaction
consistency. DataLinks technology has now been
deployed by several corporations and institutes, such as
Boeing, Dassault, and automotive manufacturers, to
provide database management of distributed scientific
and engineering data stored in operating system files [2,
3].
The DataLinks technology comprises of the following
major components: the DLFM, DLFF (DataLinks File
System Filter), and an extension to the RDBMS engine
(termed datalink engine hereafter). It also introduces a
new DATALINK data type [4] to facilitate RDBMS to
reference and manage externally stored data. The
datalink engine is responsible for processing DDL
requests to create datalink column(s) and for processing
DML requests against the datalink column(s). On the
other hand, the DLFM and DLFF components reside at
file servers where the database managed external data
are stored. The value of the datalink column in an SQL
table is URL, which may reference files on the same or

LEAVE BLANK THE LAST 3.81 cm (1.5”)
 OF THE LEFT COLUMN ON THE FIRST PAGE

 FOR THE COPYRIGHT NOTICE

mailto:Hhsiao@almaden.ibm.com
mailto:inderpal@almaden.ibm.com

 2

remote file server. A datalink column can be populated
by an SQL insert statement or by a database load utility.
Similarly, a record with datalink attribute can be deleted
or updated through a standard SQL statement.
Whenever a datalink value is selected or updated (or
inserted or deleted), the datalink engine is invoked by
the database engine to process the part of request
specific to datalink. As part of the processing, a request
to the DLFM residing on the file server as specified by
the URL is sent to apply certain constraints in order to
start (or stop) managing the file on that file server.
DLFF helps to enforce these constraints when file
system commands are executed against the linked files.
Database systems, in general, provide transactional
semantics and ACID [5] property. To maintain the
transactional semantics for SQL requests, operations
performed at DLFM would have to be in the same
transaction context as the one in the host database
system (where the SQL requests of the application are
processed). To satisfy this requirement, operations
performed at the DLFM are treated as a sub-transaction1
[6] of the transaction in host RDBMS and the two-
phase commit protocol [7, 8] is used to atomically
commit or rollback the operations done at both sides.
Also to recover from a system failure, changes to
DLFM data and state have to be both persistent and
recoverable. One approach is to implement a
proprietary persistent store as part of the DLFM. While
this is not difficult to do technically, it is less portable
and unnecessarily reinvents the technology available in
all commercial database systems. As such, our design
relies on a database server (DB2) for providing
persistency and recoverability for DLFM data/state.
Figure 1 shows an example of the storage model of the
DataLinks technology. In Figure 1, a DB2 database is
used as a host RDBMS to store user’s data and
references to external objects via an URL in the
datalink column. A DLFM residing with each file
server is responsible for managing files stored in that
server. System generated metadata for managing files
and enforcing access control and integrity is stored in
each DLFM. As previously mentioned, DLFM uses
DB2 as a persistent store for all of its data. DLFM treats
the DB2 as a black box and all requests to retrieve,
insert, or update DLFM data/state are via standard SQL.

1 By sub-transaction it is implied that the host DB2 always
resolves the outcome of the transaction on the DLFM side.
Standard 2-phase commit protocol is used between the host
DB2 and the DLFM. Note that the host DB2 may or may not
be the coordinator of the user initiated transaction. For
example, the host DB2 can be a participant in an XA
transaction that is initiated by a TP monitor, such as, CICS.

While this provides great flexibility and portability2, it
also poses significant challenge in enforcing
transactional semantics and providing good system
performance.
The rest of the paper is organized as follows. Section 2
gives an overview of the DataLinks technology and
DataLinks application flow. Section 3 describes the
functions and services provided by the DLFM
component. Section 4 presents the experience and
lessons we learned in building the DLFM and finally
section 5 summarizes the paper.

Figure 1: Datalink storage model

2. DataLinks Technology
DataLinks is a software technology that enables DBMS
to manage data stored in external operating system files
as if the data were stored directly in the database. By
extending the reach of the DBMS to operating system
files, DataLinks gives users flexibility to store data
inside or outside the database as appropriate. To store
and reference data outside of DBMS, a database
application developer declares a column of
DATALINK data type when creating an SQL table.
The value stored in the datalink column is then used to
represent and reference data in an external file. Figure
2 illustrates the architecture of the DataLinks
technology. As shown in the figure, DataLinks
comprises two components: datalink engine and Data
Link Manager (ref. Figure 2). Datalink engine resides

2 The DLFM can easily be ported to any RDBMS systems
and/or any operating systems.

DATALINK
Host DB

 3

in the host database server and is implemented as a part
of the database (DB2) engine code. It is responsible for
processing SQL requests involving datalink column(s)
such as table creation and select, insert, delete, and
update of records with datalink column. Data Link
Manager consists of 2 components, DataLinks File
Manager (DLFM) and DataLinks File System Filter
(DLFF).

Figure 2: Datalink architecture
At high level, DLFM applies constraints on the files
that are referenced by the host database and DLFF
enforces the constraints when file system commands or
operations affect these files. For example, a file rename
or delete would be rejected if that file were referenced
by the database. DLFF is a topic on its own and will not
be described further in this paper. DLFM resides with
the file server that can be local or remote to the host
database server. DLFM provides a set of API’s that the
datalink engine uses to make requests for linking a file,
unlinking a file, carrying out two-phase commit
protocol, etc. Invoking the API’s is through remote
procedure call mechanism.

2.1 DataLinks Application
A datalink application is an application that manipulates
datalink attribute (column) in an SQL tables and it is no
different from a regular database application as far as
the database is concerned. Before a datalink application
can issue any requests, it must establish a database
connection first. As part of the database connect
request, a DB2 agent (process or thread) is identified to
serve the application. After connection has been
established, the application can start submitting SQL
requests to the database engine. If an SQL request
requires manipulating a datalink column, the datalink
engine is invoked to process part of the request specific

to the datalink column. In turn, the datalink engine
sends one or more requests to the DLFM to manipulate
files and metadata stored at file server, if necessary.
Figure 3 illustrates how DataLinks works from an
application perspective. In a DataLinks environment, a
host database (e.g., DB2 UDB) provides the metadata
repository for external data. Attributes and subsets of
the data stored in external files are maintained in the
host database tables along with the logical references to
the location of the files (e.g., a server name and a file
name). The application searches the host database via
the SQL API to identify external files of interest.
Examples would be finding the following: 50-day-
moving-average chart of stocks that are tripled in price
during the last 12 months; a video clip used in TV
commercials within the last year that contains images of
Michael Jordan; all of the email attachments received
within the last six months that concern customer
profiles; or employee who is older than 40 and has blue
eyes and red hair. DB2 processes the request and
returns the references (URL’s) for selected files to the
application. The application then accesses the file data
directly using standard file-system API calls (file-open,
etc.) Using standard file API’s is very important for
supporting existing applications without having to
modify either the applications or the file systems.

Figure 3: Managing external data with Datalinks

3. Datalink File Manager
The Data Links File Manager (DLFM) component of
DB2 Data Links Manager plays a key role in managing
external files. It is responsible for executing the
link/unlink operations in the same transaction are linked
to (referenced in) the database. When a file is initially
linked to the database, the DLFM applies the
constraints for referential integrity, access control, and

DataLinks For Managing External Data

Employee Table

name dept
=

type (URL)

in External

picture Data Links
Filter

(DLFF)

Data Links File Manager (DLFM)

DBMS/
DLFM

API

DataLinks

DB2
Database

DataLinks

SQL

Applicatio

Data
including
URLs

Standard file
Direct data delivery
Standard file access

Hierarchic
storage

Files

Data

Control path
for external
files

AIX, HP-UX,
Solaris,
Windows NTDB2

Data
Manage

Applications

File

Files
Images

DATALINK

File API RequestsSQL API Requests

 4

backup and recovery as specified in the DATALINK
column definition. If the DBMS controls read access,
for example, the DLFM changes the owner of the file to
the DBMS and marks the file “read only”. All of these
changes to the DLFM repository and to the file system
are applied as part of the same DBMS transaction as the
initiating SQL statement. If the SQL transaction is
rolled back, the changes made by the DLFM are undone
as well.
In order to support certain SQL operations, such as
Drop SQL table, the concept of File Group was
introduced. A File Group corresponds to all files that
are referenced by a particular datalink column of an
SQL table. This is so that it is possible to efficiently
unlink all files associated with a column of an SQL
table when it is dropped. The DLFM is also responsible
for coordinating backup and recovery of external files
with the database. When the DBMS transaction that
includes a Link File operation commits, the DLFM
initiates a backup of the newly linked file if DLFM is
responsible for recovery of the file. This file backup is
done asynchronously and is not part of the database
transaction for performance reasons. In addition, by
doing it this way, the database backup itself is not
slowed down because the referenced file would
typically have been backed up. This is particularly
important in the case of very large files. Coordinated
backup and recovery of external files with DB2 data
can be done directly to disk or to an archive server
supported by DLFM, such as IBM’s ADSTAR
Distributed Storage Manager (ADSM).
The DLFM tracks different versions of a referenced file
and maintains the backup status of each in order to
support point-in-time recovery. The DBMS also
provides the DLFM with a “Recovery id” for a file
whenever it is linked or unlinked to help synchronize
recovery of files with data. This is important because a
file with the same name but different content may be
linked and unlinked several times. Without a separate
“Recovery id” for each link operation, DLFM would
not be able to restore the file to match the database
state.
When the DBMS does a backup of its database, it
communicates with the DLFM’s to ensure that all of the
necessary asynchronous copy operations for referenced
files have completed before declaring that the database
backup has been successfully completed. The DBMS
backup utility has been extended to handle this level of
communication and to keep additional information in
the backup image about which file servers and file
groups are involved in the backup. Backup copies of
unlinked files may be kept for a specific number of
database backup cycles, in case the database is restored
to a point in the past in which the file was still linked to

the database. The DLFM is also responsible for
“garbage collection” of backup copies of unlinked files
that are no longer required by the DBMS.

3.1 Persistent Data Structure
The DLFM uses a local database to keep its metadata
and state information. This information is stored in the
following SQL tables.
1. Dbid Table: This table consists of registered entries
for each host database that can connect to this DLFM.
The dbid field in this table represents the unique
combination of the host database name, instance name,
and host machine name.
2. Group Table: This table consists of file group entries.
Each group entry corresponds to a datalink column in
an SQL table on the host database side.
3. File Table: This is the most accessed table that
consists of the information of linked and unlinked files
on the file server. Whenever a file is linked, a new entry
is inserted into the file table. During the unlink
operation existing file entry in linked state is marked as
unlinked. This table retains the unlinked file entries if
files need to be restored in the future via the host
database restore utility. The columns of interest defined
in this table are dbid, filename, transaction_id,
Recovery_id, file_status, entry_state. Their usage will
be described with the functional processing later.
4. Transaction Table: This table keeps track the
transaction state of all the active DLFM transactions.
Transaction state is maintained for each transaction as
long as it is active. The transaction state information is
first kept in an in-memory table when the transaction
starts. The entry is inserted into the SQL table when the
transaction begins the first phase of the commit
processing. Once the transaction is completed, its entry
is removed from the transaction table.
5. Archive Table: This table contains file and group
entries that need to be archived to the archive server.
When the load utility is used to insert a large number of
files into a datalink column on the host database side,
instead of replicating each file entry in the Archive
table, only a group entry is inserted into the Archive
table. The entry from the Archive table is processed to
make copy of a set of files or just one file. After copy
has completed, corresponding entry is removed from the
Archive table.

3.2 Link and Unlink Operations
LinkFile and UnlinkFile are two most frequent
operations that corresponds to insert and delete of the
datalink value respectively from the host database.
Whenever an application inserts a file entry into a
datalink column the corresponding file on the server is

 5

linked by the DLFM. Linking involves applying certain
constraints on the file such that subsequent rename and
deletion of the referenced file, via normal file system
API’s (or commands), are prevented to preserve
referential integrity from the host database.
Furthermore, the access control mode of the datalink
column determines the partial or full takeover of the
file. In full access control file ownership is changed to
“DB” (to the DLFM admin user) and the file is marked
read-only. Also an access token assigned by the host
database is needed to access such a file. All the files
linked to the host database are guarded against
unauthorized move / delete / rename operations by the
DLFM and DLFF. During the LinkFile operation
DLFM puts a new entry in the File table. This entry
consists of dbid, transaction id, filename, and Recovery
id among other things. Recovery id generated at the
host database consists of dbid and a timestamp. It is
guaranteed to be globally unique and monotonically
increasing. For every LinkFile operation the DLFM
makes the following two checks,
1. If a link entry already exists for the same file in the
DLFM metadata table then it rejects the LinkFile
operation as the file is already in the linked state.
2. If an unlink entry exists for the same file in the
DLFM table whose unlink transaction has not
committed (i.e. in in-flight or in-doubt state) then it
rejects the LinkFile operation as the outcome of the
unlink transaction is still unknown.
During an Unlinkfile operation, the table entry for the
file is marked as unlinked. It also updates the unlink
transaction id and unlink timestamp in the entry. At any
given time the DLFM File table can have at most one
linked entry for a given file while there can be multiple
unlinked entries for a file because many successive link
and unlink operations can take place for the same file.
The unlinked entry is used in the coordinated backup-
and-restore operation to identify the correct version of
the file from the archive server, if needed. In this case,
the unlinked file entry is later removed by the Garbage
Collector daemon (described in Section 3.5) when it is
no longer needed. If file recovery is not needed, the
unlinked entry is deleted in the second phase of the
commit processing. Note that we could not delete the
entry earlier than the second phase of commit since we
would not be able to undo the action if the transaction’s
outcome is abort after phase 1 (see Section 3.3).
During the link file operation, file entry checking and
insertion must be an atomic operation (otherwise there
is a small window where two DLFM agents can both
check for and not find the linked entry for a file and
then insert the two linked entries for the same file). To
close the window for the race condition, a unique index

on the filename column and a new check-flag is
defined.3 During link file operation, the check-flag
attribute is set to zero and during unlink file operation,
the check-flag is set to Recovery id provided by the host
database. This unique index prevents two linked entries
but allows multiple unlinked entries for the same file.
During the forward progress of a transaction DLFM
manipulates the entries in the File table as per
link/unlink file operations. If the transaction needs to
rollback, DLFM uses the recovery mechanism provided
by the local database to undo the actions. The file
server, on the other hand, does not support transactional
semantics in general. Thus, actual takeover or release of
the file from the file system is done during the second
phase of the commit processing and is done by Chown
daemon (described in Section 3.5). DLFM also supports
unlinking of a file from one datalink column and re-
linking of the same file to another datalink column
within the same transaction. This is an important
customer requirement where current and old versions of
the file are maintained in separate SQL tables.
When an error occurs during regular link or unlink
processing, DLFM reports the error status to the host
database that will result in either statement level
(savepoint) or transaction level rollback at the host
database. If a link or unlink file request is initiated by a
savepoint rollback at the host database, then any error
reported by the DLFM local database will result in
rolling back the full transaction at the host database.
This is because DLFM treats local database as a black
box and it is not possible to rollback a rollback. In
addition, if a severe error such as deadlock occurs in the
local database, the host database will rollback the full
transaction. This is because the current transaction has
already been rolled back in the local database. Also
since DLFM does not write recovery log records for its
own link and unlink file operations, it is not possible to
do a database-style rollback. In our design, undoing link
(or unlink) file operation is done by sending DLFM
another link (or unlink) file request but with a special
in_backout flag set to true. For a link file request with
in_backout set, DLFM deletes the linked file entry that
was inserted by current transaction. For an unlink
request with the flag set, the unlinked file entry is
restored back to linked state.

3.2.1 Performance Consideration
The File table has at least one entry for each file under
database control. In a production environment, it would

3 Note that for a given file name, there can be multiple entries
in the File table and yet DLFM has to ensure that at most one
entry is in the linked state. So a unique index on the filename
alone is not sufficient.

 6

be common to have hundreds of thousand or millions of
entries in the File table. Since each link or unlink file
operation needs to access the File table, efficiency in
finding and retrieving entries from the File table is
essential to provide good overall performance. The
first thing we did was to avoid table scan by building
several indexes, one for each access path. A side benefit
of avoiding table scan is that the probability of
triggering lock escalation is also reduced. When the
table size (cardinality) is small, the optimizer could still
pick table scan even when an index is available. To
ensure that the optimizer always picks the access plan
we want, the statistics in the database catalog are
manually set before DLFM’s SQL programs are
compiled and bound. In a multi-user test, a different
problem surfaced that was partially due to use of
multiple indexes. When multiple insert and/or delete
entry operations are being done concurrently, different
DLFM processes may use different indexes to access
the File table. This results in frequent deadlocks
because of the next key locking [9] feature supported in
the local database server. Since repeatable read is not
really needed by the DLFM processes, that feature is
turned off. With these enhancements, we were able to
run 100-client workload for 24 hours without much
deadlock/timeout problem in the system test. Also, the
system achieved rates of 300 inserts per minute and 150
updates per minute.

3.3 Transaction Support
When a new transaction is started by the application,
the host database assigns a new transaction id. In the
case of an XA transaction, the host database also
generates a local transaction id that is different from the
global XA transaction id. A transaction id is associated
with a particular database so that there is no problem
with transaction id being the same from different
databases. The transaction id generated at a specific
database is guaranteed to be monotonically increasing,
which is absolutely essential.4 This id is passed to the
DLFM in each of the API invocation. The DLFM
associates the transaction id with each operation that
changes DLFM metadata and state. The reason is that
DLFM does not have logging services of its own, but
uses a local database for persistence and logging. By
associating the transaction id along with the operation,
and storing them in the database tables, it can relate the
actions performed by a particular transaction. This is
important because a) the actions done by a DLFM for a
particular sub-transaction may need to be undone if the

4 DLFM records the transaction id as persistent information
along with other information in the File table. Entries
associated with a transaction are identified by this id during
the commit processing.

host transaction aborts after the sub-transaction
completing the prepare phase (i.e., completed phase 1
of the 2 phase commit protocol) in the DLFM and b)
certain actions on the file system have to be performed
during phase 2 of the commit processing of the
transaction.
DLFM uses the 2-phase-commit protocol to enforce the
transactional semantics. Four API’s are provided by the
DLFM for this purpose: BeginTransaction, Prepare,
Commit, and Abort. A sub-transaction starts when the
host database makes BeginTransaction API call to a
DLFM.5 The transaction id generated at the host
database is passed along with the BeginTransaction
call. All subsequent API calls by the host database
within the same transaction for linking and unlinking
files are tagged with the same transaction id and are
processed within the same transaction context by the
DLFM. Once all operations are done under the present
transaction, as a part of the commit processing on the
host database, it sends a Prepare request to the DLFM.
Prepare request processing on the DLFM makes sure
that all the operations on the file server are made
persistent by issuing an SQL commit to the local
database. A separate transaction table is used for
keeping the transaction id, its state, and other related
information. The transaction entry for the current
transaction is not made into the transaction table until
the prepare request for the transaction has arrived. After
the prepare transaction request is done successfully on
all DLFM’s, the host database sends a Commit
transaction request to the DLFM’s. On the other hand,
if the prepare request fails, an Abort request will be sent
to the DLFM’s. It is important to note that, when
multiple DLFM’s are involved in a transaction, if one of
the DLFM’s fails to prepare the transaction, the host
database sends Abort request to all the remaining
DLFM’s, even though they may have prepared
successfully. Normally, prepare and commit/abort
API’s are invoked by the host database as part of an
application’s SQL commit. If the transaction is a branch
of a global (distributed) transaction, the prepare request
to the DLFM is invoked as part of global prepare
processing and the commit/abort request is invoked
when the outcome of the global transaction is known.
It is assumed that the commit transaction processing
should not fail on the DLFM side if the prepare
transaction processing has been successful. But that is
not always true because there is a major difference

5 It is possible that files may be linked or unlinked to multiple
DLFM’s in a given host database transaction. This implies
that a host DB2 transaction may involve sub-transactions on
multiple DLFM’s. In order to improve the readability of the
paper we discuss the transaction management with respect to
only one DLFM.

 7

between database’s SQL commit processing and
DLFM’s commit processing [ref. Fig 4]. The SQL
commit processing does not acquire any new locks. It,
in fact, releases all the locks acquired by the present
transaction. On the other hand the DLFM uses the SQL
interface to update the metadata and its state stored in
its local database during commit processing. For a
commit request, for example, DLFM retrieves entries
from the File table and deletes an entry from the
Transaction table. This, in turn, requires additional
locks to be acquired by the DLFM. Since deadlocks are
always possible when new locks are acquired, retry
logic is included in the commit processing and it keeps
retrying until it succeeds. However, if a deadlock forms
among committing and/or aborting transactions, retry
will not solve the deadlock. In our case, deadlocks have
been found to form between a committing transaction
and one of the DLFM daemons but not between two or
more committing and/or aborting transactions. This is
because table entries inserted or updated by two
concurrent transactions are always disjoint6. Thus, our
retry logic can solve deadlocks formed in the DLFM
commit/abort processing.
SQL Transaction (Txn)
 Update R1 Update R2 Prepare Txn. Commit/Abort Txn.

 Write R1 log Write R2 log Force logs Release locks

DLFM Transaction
 link file1 link file2 Prepare Txn. Commit/Abort Txn.

DLFM: sql insert sql insert insert/commit del/upt/commit

 DB: Write log Write log force logs log/rel. locks

Figure 4: Commit processing

During a prepare transaction processing, DLFM inserts
an entry into the transaction table and marks the
transaction as prepared. If DLFM fails after the
transaction has been prepared, then that transaction
remains in an in-doubt state. It is the host database’s
responsibility for resolving the in-doubt transactions
with the DLFM. Either host database restart processing
does it, or if DLFM is unavailable at the restart, host
database spawns a daemon whose sole purpose is to
poll the DLFM periodically and resolve the in-doubts
when the DLFM is up. In-doubt transactions are
resolved based on the outcome of the parent
transactions in the host database.

6 This is enforced by the corresponding locking of the host
database.

3.4 Coordinated Backup and Restore
The DLFM plays an important role in the coordinated
backup and recovery of DBMS data along with the file
data. When the transaction linking a file commits and
the file group has recovery option7 equals yes, DLFM
starts archiving that file to the archive server such as
ADSM.8 The DLFM child agent (described in Section
3.5) puts an entry for the file into the Archive table and
the Copy daemon picks up the entry from the Archive
table and writes the file to the archive server. The main
purpose behind the Archive table is to avoid contention
in the main metadata table, the File table, and also to
efficiently restart copying after recovering from any
DLFM failure. Because multiple indexes are defined on
the Archive table and size of the Archive table is small
(entry gets deleted as soon as it is archived), deadlocks
were encountered between child agent and the Copy
Daemon while accessing the Archive table. Disabling
the next key locking feature in DLFM’s local database
eliminated those deadlocks. Notice that phantoms may
arise when the next key locking is not enforced.
However, repeatable read property is not required for
the DLFM to function correctly.
Note that the archiving of files is asynchronous when a
transaction commits. DLFM does not hold any database
locks while backup copy is being made. The
asynchronous backup is possible because DLFM takes
away the “write” permission of the file during commit
operation. The Backup utility on the host database side
makes sure that all the files linked since the last backup
are archived to the archive server before declaring that
backup is successful. In case archiving of some files is
pending then it asks the Copy daemon to archive this set
of files with high priority.
Restore utility restores the database from a backup
image on the host database side. Whenever the host
database is restored, DLFM may need to retrieve files
from the archive server to match the database state if
the linked files are not present in the file system. The
database Recovery id at the time of backup is preserved
in the backup image that is sent to the DLFM during
restore to reconcile its metadata. Based on this
Recovery id, all the files that are linked before the
backup and unlinked after the backup are restored to the
linked state. Similarly, files that are linked after the
backup are removed from the linked state. All these
actions (entry manipulation) are done via SQL calls to
the local database in the DLFM side and we did not find
it to be an issue.

7 Recovery option is one of the properties of the datalink
column.
8 The DLFM also supports the option of backing up the files
to a local disk.

 8

The Reconcile utility is a new database utility
introduced by DataLinks for synchronizing the host
database state with the DLFM metadata information.
After a database is restored to a point in the past,
database state and DLFM state may be out of
synchronization.9 To bring the two sides back to a
consistent state, the reconcile utility is invoked. When
invoked, this utility goes through each datalink column,
scans all entries for the column on the host database
side, and then compares the information with the
corresponding file status and metadata information on
the DLFM side. It updates the information on either or
both sides if necessary to bring the system back to a
consistent state. Since the number of entries/records
processed could potentially be very large, they are first
stored in a temp table in the local database to reduce the
number of file scans and the number of messages
between the host database and DLFM. The processing
on the DLFM side involves complex joins, sub-queries,
and EXCEPT (difference) operation between the temp
table and the File table, thus picking the right access
plans is absolutely essential. To further optimize the
performance, we handcrafted the table statistics to
ensure that the database optimizer generates the best
access plans.

3.5 DLFM Process Model
The DLFM is a concurrent server, i.e., it has a main
daemon which spawns a child agent (or a process) when
a connect request from a DB2 agent is received. The
child agent then establishes a connection with the
requesting DB2 agent. This child agent will serve all
subsequent requests from the same connection. DLFM’s
main daemon then waits for another connect request
from same or different host DB2. Applications on the
host DB2 side will establish separate connections with
DLFM, thus they are served by separate child agents on
the DLFM side. Besides the child agent, DLFM
provides several other services implemented as
daemons and they are also spawned by the main DLFM
daemon [ref. Figure 5]. This section describes the
functionality and service provided by each of the
daemons.

Delete Group Daemon
Whenever an SQL table is dropped on the host DB2
side then the corresponding file groups on the DLFM
side, if any, will also need to be deleted. There can be
lots of files referenced by the datalink column(s) in the
dropped table and all those files need to be unlinked. So

9 Restoring a database to the end-of-log (i.e. current state)
does not require any reconciliation.

during the forward progress of the transaction, the file
groups are marked deleted by the current transaction in
the Group table. During prepare processing the child
agent notes the number of groups deleted by this
transaction and records it with the transaction entry in
the transaction table. The commit processing checks if
any group is deleted, by checking the deleted group
count in the transaction entry, in the current transaction
and if it is, it sends the transaction id to the Delete
Group daemon. Using the transaction id the Delete
Group daemon finds all the groups deleted in this
transaction and then unlinks all the files in each group.

The
async
does
entry
been u
comm
linked
daemo
delete
group
entrie
Garb
The G
proce
There

 SQL
APPL.

 Host
DBM
Figure 5:

unlinking of
hronous and the
not wait for it
is not deleted u
nlinked. And a
it, the same fil
. Thus if DLF
n has comple

d groups, then
 daemon can sti
s from the transa
age Collector D
arbage Collecto

ss, which does
 are two types

Upcalld

Chow
DB agent
 Gcd
Copyd

nd

DelGrpd

 DLFMD

DLFF
Child
agent
 DLFM Local DB

 METADATA
 A
SERV
 DLFM proce

the files b
 commit proc
to complete.
ntil all the fil
s long as this
e name is no
M fails befo
ted unlinking
 after DLFM
ll pickup all c
ction table an
aemon
r daemon is a
the cleanup
of cleanups;
RCHIVE
ER
 Retrieved
ss model

y this daemon is
essing for drop table
Note that the group

es in that group have
 transaction does not
t allowed to be re-

re the Delete group
 all files from the
 restarts the Delete
ommitted transaction
d resume its work.

nother asynchronous
of DLFM metadata.
 one is triggered by

 9

database backup while the other is to cleanup the
deleted group whose lifetime has expired. The one by
backup consists of cleaning up old backup entries
according to the policy of keeping last N backups. So
the last N+1 onwards backup entries and the
corresponding unlink file entries from the File table are
removed by the garbage collector daemon. It also
removes the copies of those files from the archive
server. The other one to cleanup deleted groups is based
on their lifetime expiry. Each deleted file group is
assigned a life span. Once the lifetime expires, the
Garbage Collector daemon removes those deleted file
group entries as well as associated unlink file entries
from the DLFM metadata tables. If archive copies
associated with the unlinked file entries exist, they are
also deleted from the archive server.
Upcall Daemon
The Upcall daemon services requests from DLFF to
determine if a file is in the linked state. If it is, user’s
request to delete, rename, or move the file via file
system API’s will be rejected by the DLFF. Its main
purpose is to enforce referential integrity for the linked
files.
Chown Daemon
The Chown daemon is a special process whose effective
user id is root. The Chown daemon needs super user
privilege as it manipulates attributes (such as
ownership, permissions etc) of the files belonging to
different users. A child agent communicates with the
Chown daemon whenever it needs to get the file
information, such as, file system id, inode, last
modification time, owner, group etc. During commit
processing, the child agent sends a request with a file
name to the Chown daemon to take over the file, i.e.
change owner and access permissions, or to release the
file to the file system to restore original owner and
access permissions. Since Chown daemon runs as super
user, it is important to safeguard unauthorized requests.
Thus, Child agent communicates with chown daemon
with proper authentication.10
Copy Daemon
The Copy daemon is responsible for copying linked
files from file system to an archive server or disk. When
a file is linked, it will be copied asynchronously by the
Copy daemon if DLFM is responsible for restoring the
file after a database restore.

10 The child agent encodes each message to the chown
daemon with the specific signature. The chown daemon
validates each message with the signature before doing any
operation. The signature is a shared secret between the child
agent and the chown daemon.

Retrieve Daemon
The Retrieve daemon is responsible for restoring files
from archive server or disk. When the host database is
restored to a point in the past, the file system state may
be out of sync with the new database state. As part of
re-synchronization, files are restored by the Retrieve
daemon from the archive server, if necessary.

4. Lessons Learned in Building DLFM
As mentioned previously, we decided to use a DBMS
(DB2) as a persistent store for storing DLFM metadata
information. All changes to the DLFM metadata are
written to the DB2 tables. Since standard SQL does not
support two-phase commit between application and
database, changes to metadata are hardened11 during the
prepare phase of the 2PC protocol. When something
goes wrong in the host DB2 or in other DLFM’s, the
transaction will be aborted. In such cases, an abort
request is sent to the DLFM in the second phase of the
2PC protocol and DLFM has to undo the changes even
after they have already been committed in the local
DB2. While schemes based on compensation
application technique have been proposed for undoing
committed transactions, it is extremely complicated to
implement one in production systems. Consequently,
our design takes a delayed update approach. With this
approach, delete of any metadata information is marked
as “deleted” while update creates a new entry in the
database table with the old entry marked “deleted”.
When the transaction commits (second phase of
commit), entries marked “deleted” in the current
transaction are then deleted from the database. If the
transaction aborts DLFM then changes these entries
back to the normal state from the deleted state. This
however, incurs a different problem. During both
commit and abort processing, for example, locks will be
acquired in the local database since these are normal
SQL update/delete calls. This, in turn, may result in
deadlocks or lock timeouts in both commit and abort
processing. Since it is a sub-transaction and is not
possible to change the outcome of a transaction in phase
2, DLFM will retry the commit/abort operation until it
succeeds. Our experience has been that this was not a
problem.
A set of indices is defined on the DLFM tables to
improve search performance. We found that deleting a
record from a table having index results in the next key
locking. Since we have multiple indexes on some of the
frequently accessed tables, the next key locking feature

11 DLFM issues a commit to local DB2 to harden the changes
before replying “yes” to a prepare request from the host DB2.

 10

results in deadlocks frequently when multiple datalink
applications are running concurrently. To maintain high
performance and avoid such deadlocks, we turned off
the next key locking in the DLFM database.
Load and Reconcile utilities tend to run for a long time
and involve large number of link/unlink operations.
Like any other long running transaction, there is a
potential for running out of system resources such as
log file or lock table entry. Since very long running
transactions are always resulted from the database
utilities that can be broken into pieces (i.e., undo of
completed piece is not needed in case of a utility
failure), we put intelligence in DLFM to recognize such
transactions and to do local commit after finishing
processing of each piece. A transaction entry is inserted
into the transaction table in DLFM database when a
local commit is issued for the first time for a given
transaction but keep the entry marked as in-flight. The
same mechanism is also applied to deleting entries in
batch. For example, in the delete group daemon we
unlink all the files under a deleted group. If a large
number of files are linked under one group then
unlinking them in a single DB2 transaction can cause
the DB2 log full error condition. So we issue commits
to local DB2 periodically after processing every N
records (where N is implementation dependent).
We found that commit transaction API must be
synchronous with respect to host database. Desire was
to release the database locks on the host DB2 side while
DLFM is doing the commit processing. However, this
could lead to a distributed deadlock between the host
database and DLFM as shown in the following scenario.

Transaction T1 is going through commit processing
on DLFM side asynchronously. The host DB2 agent
for T1 commits and starts a new transaction T11. T11
acquires an X lock on record x and then makes a
LinkFile request to the DLFM. T11 is blocked on
message send as the DLFM child is still doing the
commit processing for T112 (and has not issued
message receive). Assume that the commit processing
of T1 on DLFM side is blocked waiting for lock y
held by transaction T2. If the host DB2 agent for T2
happens to need to access record x, it will also be
blocked. Now a deadlock cycle forms and it cannot
be broken unless one of the transaction aborts. Since
T11 and T2 are not involved in any local deadlock in
the host DB2, they will not be aborted by the host
DB2. On the DLFM side, T2 is not waiting for any
locks and T1’s request for lock y will eventually get
timeout. But since it is in the phase two of the commit

12 Recall that the same DLFM child is used to serve all
requests for the same application on the host database.

processing, T1 will retry commit and later gets
timeout again. This process will repeat forever as the
deadlock cycle persists. By making commit request
synchronous, distributed deadlock like the one above
was avoided.

As in most distributed systems, identifying and breaking
distributed deadlock is an important issue. While a
distributed deadlock detector can be built in theory, it
will add significant complexity and overhead to the
system as host DB2 and DLFM database do not
communicate directly. Instead, we take a simple
approach and rely on the timeout mechanism to resolve
potential distributed deadlock. The problem with the
timeout mechanism is that it is difficult to come up with
a perfect timeout period and some transactions may get
rollback unnecessarily. In our case, we set the timeout
to 60 seconds and it has performed reasonably well.
Another problem related to locking is lock escalation.
When a DLFM process holds lots of row level locks in
a metadata table then it may result in a lock escalation
to table level lock. The lock escalation for a high traffic
table will result in timeouts for other applications. The
rollback operations as a result of timeouts in turn add
additional workload to the system. We observed that
lock escalation in any of the metadata tables usually
brings the system to its knees. Within our daemons, we
are careful that they commit frequently enough so as to
avoid any lock escalation. Also, applications should
issue commit frequently to avoid holding a large
number of locks and lock list size should be set
sufficiently large to avoid forced lock escalation.
Cost based optimizer is the most advanced database
optimizer and it has been used in most commercial
database systems. We observed that Cost based
Optimizer does not take locking cost (concurrent
accesses) into account when choosing an index for
access. In certain cases it also chose an index that was
not only sub-optimal but also caused table scan, instead
of index scan, to evaluate predicates. To get the desired
access plan, we wrote a utility to set the statistics in the
database catalog to force optimizer to select the plan we
want. While this works in the lab, issuing a Runstat
operation by any user will overwrite the handcrafted
statistics and potentially result in sub-optimal plan
being generated again. To prevent this from happening,
additional logic is put into DLFM to check for changes
in metadata statistics and re-invoke the utility to reset
statistics and rebind access plans, if necessary.

5. Summary
In summary, DataLinks meets a very challenging
application requirement that has existed for many years.
DataLinks enables organizations to continue storing

 11

data (particularly large files of unstructured or semi-
structured data such as documents, images, and video
clips) in the file system to take advantage of file-system
capabilities, while at the same time coordinating the
management of these files and their contents with
associated data stored in an RDBMS.
DLFM is a key component of the DataLinks technology
developed at the IBM Almaden Research Center. It
plays a key role in enforcing access control, providing
referential integrity, and supporting coordinated backup
and restore. DLFM uses a DBMS as a persistent store
for storing its data (metadata) and state change
information that takes the advantage of existing
database technology and at the same time offers
excellent portability. Doing this, however, has its
drawbacks too. Because the DBMS used is treated as a
block box, one of the major challenges is to support
transactional semantics for DLFM operations. To do
this, we implemented the two-phase commit protocol in
DLFM and designed an innovative scheme to enable
rolling back transaction update after a commit to the
local database. Also, a major gotchas is that the
RDBMS’ cost based optimizer generates the access
plan, which does not take into account the locking costs
of a concurrent workload. Using the RDBMS as a black
box can cause “havoc” in terms of causing the lock
timeouts and reducing the throughput of a concurrent
workload. To solve the problem, we came up with a
simple but effective way of influencing the optimizer to
generate access plans matching the needs of the DLFM
implementation. Also, several precautions had to be
taken to ensure that lock escalation did not take place,
that the next key locking was disabled to avoid
deadlocks on heavily used SQL tables with multiple
indexes, and that the timeout mechanism was applied to
break deadlocks. In the system test, we were able to run
100-client workload for 24 hours, with a reasonably
heavy update activity, without much deadlock/timeout
problem.

Acknowledgement
Many people contributed to building DataLinks
technology over the last few years. Major contributors
include Suparna Bhattacharya, Karen Brannon, Kiran
Mehta, Suhas Gogate, Mahadevan Subramanian, Ajay
Sood, Parag Tijare, Dale McInnis, Lindsay Hemms,
Jason Gartner, Nelson Mattos, Robin Williams, and last
but not least Ashok Chandra. The authors would like to
thank them for their dedication and contribution that
made this paper possible.

References
[1] E. F. Codd, “A Relational Model of Data for Large

Shared Data Banks”, CACM 13, p 377-387, 1970.

[2] IBM, “DataLinks: Managing External Data With DB2
Universal Database”, white paper prepared by Judith
R. Davis, IBM corporation, February 1999.

[3] M. Papiani, J. Wason, A. Dunlop, and D. Nicole, “A
Distributed Scientific Archive Using the Web, XML
and SQL/MED”, ACM SIGMOD Record, Vol. 28,
No. 3, Sept. 1999.

[4] N. Mattos, J. Melton, and J. Richey, “Database
Language SQL – Part 9: Management of External
Data (SQL/MED)”, ISO working draft, June 1997.

[5] T. Hearder and A. Reuter, “Principal of Transaction
Oriented Database Recovery”, ACM Computing
Surveys. 15(4), p287-317, 1983.

[6] J. Moss, “Nested Transactions: An Approach to
Reliable Computing.” MIT, LCS-TR-260, 1981.

[7] B. Lindsay, et al., “Notes on Distributed Databases”,
IBM San Jose Research Laboratory, RJ 2571, 1979.

[8] G. Samaras, K. Britton, A. Citron, C. Mohan, “Two
Phase Commit Optimization in a Commercial
Distributed Environment”, Distributed and Parallel
Databases Journal, 3(4), 1995.

[9] C. Mohan, “ARIES/KVL: A Key-Value Locking
Method for Concurrency Control of Multiaction
Transactions on B-Tree Indexes”, 16th VLDB. P392-
405, 1990.

	Introduction
	DataLinks Technology
	DataLinks Application

	Datalink File Manager
	Persistent Data Structure
	Link and Unlink Operations
	Performance Consideration

	Transaction Support
	Coordinated Backup and Restore
	DLFM Process Model

	Lessons Learned in Building DLFM
	Summary

