
IBM Software
Information Management
White Paper

Contents

1Executive Summary..1

2Business value of HADR...2

3Introduction to multiple standby...2

4Planning for multiple standbys..4

5Configuring multiple standby...4

6Setting up a multiple standby system..9

7Adding and dropping standby targets..11

8Takeover...14

9Automation..21

10Log archiving considerations...23

11Reads on standby...25

12Rolling upgrade...26

13Log spooling..27

14Delayed log replay on standby..29

15NAT - Network Address Translation..32

16Monitoring...33

17Multiple standby performance...37

18Conclusion..37

19Acknowledgement...38

20References..39

21For more information...39

DB2 HADR
Multiple Standby

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 1 of 43

IBM Software
Information Management
White Paper

1 Executive Summary
The DB2® High Availability Disaster Recovery (HADR)
feature is a database replication method that provides a
high availability solution for both partial and complete site
failures. HADR protects against data loss by replicating
data changes from a source database, called the primary,
to one or more target databases, called the standbys.

The multiple standby HADR feature provides database
administrators (DBAs) with a single technology to provide
both high availability (HA) as well as disaster recovery
(DR). This paper shows how HADR multiple standbys can
be set up, configured, and monitored. In addition, various
examples demonstrate how HADR multiple standby
behaves in different failure scenarios.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 2 of 43

IBM Software
Information Management
White Paper

2 Business value of HADR
With the introduction of HADR multiple standby support, you can now use a single technology to address both your high
availability and disaster recovery needs. Using a single technology to address both critical needs can make the setup,
configuration, and maintenance of your DB2 system much easier.

There are a number of other ways in which the HADR standbys can be used beyond their HA or DR purpose:
• Active use of standby resources by using reads on standby

The reads on standby feature can be used to direct a read-only workload to one or more standby databases without
affecting the HA or DR responsibility of the standby. This feature can help reduce the workload on the primary without
affecting the main responsibility of the standby. Only the primary database is accessible unless the reads on standby
feature is enabled on the standby. An application that connects to the standby database does not affect the availability
of the standby in the case of a failover.

• Flexible recovery strategies by using delayed replay
Delayed replay can be used to specify that a standby database is to remain a specified number of seconds behind the
primary, in terms of log replay. If data is lost or corrupted on the primary, it can be recovered on the time delayed
standby.

• Rolling updates and upgrades
Using an HADR setup, you can make various types of upgrades and DB2® fix pack updates to your databases with
only a momentary outage during the switchover. With multiple standby mode enabled, you can perform an upgrade
while maintaining the protection provided by HADR.

DB2 HADR technology is a flexible architecture that you can use to address several key availability needs in most of your
environments.

3 Introduction to multiple standby
You can use DB2 High Availability and Disaster Recovery (HADR) to create a warm copy of a database on a separate site by
using the database transaction log shipping method. Beginning in DB2 Version 10.1, the feature is enhanced to support up to
three standby databases. Having multiple standbys enables the combination of high availability (HA) and disaster recovery (DR)
scenarios for a single database multisite data replication. Additionally, when a multiple standby setup is coupled with the other
HADR enhancements for Version 10.1, log spooling and delayed replay, it allows quick recovery from a user error or an errant
transaction.

To enable HADR multiple-standby mode, use of the new hadr_target_list database configuration parameter. The number
of entries specified by this parameter on the primary determines the number of standbys a primary database has. Details
about multiple standby configurations follow in subsequent sections.

Traditional HADR features and functionalities work with multiple standbys as well. For example, reads on standby is supported
on any standby. Any standby can perform forced or graceful takeover operation. There are important considerations including
recovery point objective and automatic reconfiguration regarding the takeover operation for multiple standby. Details follow later.
Furthermore, cluster manager automation using IBM Tivoli System Automation for Multiplatforms (SA MP) is supported for
multiple standby configurations with a primary database and one of the standby databases. Rolling upgrade is also supported by
the multiple standby feature.

You can easily convert a single standby configuration to a multiple standby configuration. Details on conversion are presented in
“Setting up a multiple standby system”.

3.1 Principal standby versus auxiliary standby
When you deploy the HADR feature in multiple standby mode, you can have up to three standby databases in your setup. You
designate one of these databases as the principal HADR standby database; any other standby database is an auxiliary HADR
standby database. Both types of HADR standbys are synchronized with the HADR primary database through a direct TCP/IP
connection; both types support reads on standby; and you can configure both types for time-delayed log replay. In addition, you
can issue a forced or graceful takeover on any standby.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 3 of 43

IBM Software
Information Management
White Paper

There are some important distinctions between the principal and auxiliary standbys. IBM Tivoli System Automation for Multi-
platforms (SA MP) automated failover is supported only for the principal standby. You must manually issue a takeover on one of
the auxiliary standbys to make them the primary.

HADR supports a variety of log shipping synchronization modes to balance performance and data protection:
• SYNC: Log write on primary requires replication to the persistent storage on the standby.
• NEARSYNC: Log write on primary requires replication to the memory on the standby.
• ASYNC: Log write on primary requires a successful send to standby (receive is not guaranteed).
• SUPERASYNC: Log write on primary has no dependency on replication to standby

All of the HADR sync modes are supported on the principal standby, but the auxiliary standbys synchronization mode is always
SUPERASYNC mode.

3.2 Multiple standby example
Figure 1 depicts a representative, fully configured (to the three standby maximum) multiple standby setup for a company that
has offices in the United States and Canada. The company has its HADR primary database called hadrdb at a site in Building A
in Beaverton, Oregon, USA. The principal standby is in Building B of the Beaverton campus and it is configured with a
synchronization mode of SYNC. SYNC mode was chosen because of a business requirement mandating zero data loss in case
of a single outage. To sustain high performance with SYNC synchronization mode, a LAN backbone to support fast round-trip
time between the buildings is set up. With SYNC mode and the ability to quickly failover to the principal standby, this
setup provides high availability capability in case of any outage on the primary site, such as a storage system failure or a power
outage in Building A.

Figure 1 Multiple standby configuration

The company has also deployed an auxiliary standby in Portland, Oregon, USA, around 10 km away from the Beaverton
buildings to provide a protection against a regional outage on the Beaverton campus, such as fire destroying both the primary
and its principal standby. The auxiliary standby uses SUPERASYNC synchronization mode.

In order to enhance disaster recovery capability in case of a wider scope disaster affecting both Beaverton and Portland, the
company has deployed another auxiliary standby at a company site in Toronto, Canada. In addition to this disaster recovery
role, the company has enabled the reads on standby feature on the auxiliary standby at the Toronto campus to service a
reporting workload. Later sections on SA MP automation and delayed replay illustrate how this company might further enhance
this type of HADR environment using those features.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 4 of 43

IBM Software
Information Management
White Paper

4 Planning for multiple standbys
There are several aspects you should consider when planning for multiple standbys. The planning steps help ensure a smooth
multiple standby rollout, including a continued level of performance and possibly avoiding any downtime. There are two ways
that you can create a multiple standby system:

• Set up a brand new multiple standby system on an existing database.
• Convert an existing HADR single standby system into a multiple standby system.

The following sections discuss how to set up multiple standbys in both scenarios.

4.1 How many standbys?
The first question to answer is how many standby databases you need. Having more than one standby provides both high
availability (HA) and disaster recovery (DR). With one standby either HA or DR is possible, but not both. Any additional standby
can be used for extra DR protection, reads on standby, or delayed replay. On the other hand, each standby needs its own
dedicated hosting environment containing processors, memory, disks, and networking equipment; however, the different
standbys do not have to be of equal capacity. In addition, there are maintenance and administrative costs associated with
managing each database site.

4.2 Performance impact on primary
There is a marginal processor utilization increase on the primary site when going from no HADR to a single standby setup.
Furthermore, there is an additional increase for additional auxiliary standbys. With the increasing number of standbys, network
bandwidth requirements on the primary site increase proportionally by a factor of the number of standbys. There is little increase
in memory consumption with the increasing number of standbys. Details about performance and scaling are presented in
subsequent "Multiple Standby Performance" section.

4.3 Network bandwidth requirement
Ensuring that there is sufficient network bandwidth in an HADR environment is crucial to performance. The general rule is that
the maximum network shipping rate between the systems should always be greater that the logging rate. You can use tools
such as the HADR simulator (http://www.ibm.com/developerworks/wikis/display/data/HADR_sim) to determine
the maximum network shipping rate between systems.

When moving from single to multiple standbys, in addition to log data being shipped from the primary to the principal standby,
log data is also shipped from the primary to the auxiliary standbys. As a result, the logging rate is doubled with two standbys and
tripled with three standbys. The network must be able to support simultaneous log shipping from the primary to all standbys and
the combined maximum network shipping rate should be greater than the combined logging rate to achieve desired
performance.

To estimate the maximum network shipping rate in a multiple standby environment, multiple HADR simulator primary-standby
pairs should be run simultaneously to simulate multiple log shipping paths. To avoid one pair consuming too many resources, it
might be necessary to throttle the pair to an expected logging rate by using the simulator -target option. Because auxiliary
standbys must run in SUPERASYNC synchronization mode, use the HADR simulator -rcu option (SUPERASYNC mode is
limited to remote catchup state log shipping) to simulate the shipping rate for each primary-auxiliary standby pair.

5 Configuring multiple standby
Configuring a database for multiple standbys is similar to configuring a database for single standby. Some HADR-related
database configuration parameters (such as hadr_syncmode) have different behavior in multiple standby mode, but the main
difference is the use of a new database configuration parameter, hadr_target_list, to define a list of standby databases.

5.1 hadr_target_list
All databases that participate in an HADR multiple standby environment must set the hadr_target_list parameter. This
parameter defines the list of standby databases. The first entry specifies the principal standby. If the database is currently a
standby, it defines the databases that it will accept as standbys when it becomes a primary. A primary and a standby must
include each other in their hadr_target_list parameter value. This setting guarantees that when they switch roles, the old
primary remains in the system as a standby of the new primary.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 5 of 43

IBM Software
Information Management
White Paper

The hadr_target_list parameter value on a standby does not have to match the hadr_target_list parameter value on
the primary, but if the hadr_target_list parameter value is set on the primary then it must also be set on the standby. This
ensures that if the primary is configured in multiple standby mode, then so is the standby. If the hadr_target_list parameter
value is set only on the standby or the primary but not on both, then the primary rejects a connection request from the standby
database, and the standby shuts down with an invalid configuration error.

If a standby database is not listed in the hadr_target_list parameter value on the primary, or the primary is not listed in the
hadr_target_list parameter value on the standby, the connection is rejected. Include all would-be standbys on
hadr_target_list parameter value on a standby. This configuration ensures that when the standby becomes a primary it is
ready to communicate with all the applicable standbys. In a symmetrical setup, the hadr_target_list parameter value on
each database lists all other databases. This setup has the advantage of simplicity. But you should configure your system
according to your business requirements.

5.2 Syntax and IP version compatibility
The hadr_target_list parameter value is a pipe (‘|’ character) delimited list of remote HADR addresses. The first entry in
this list is the principal standby. Each address is in the form of host:port. Host can be either a host name or an IP address,
and port can be either a service name or a numeric TCP port number. The address is used to match the hadr_local_host
and hadr_local_svc parameter values on the remote database. For matching purposes, host names are converted to IP
address and service names converted to port number before the actual comparison is done. Therefore the original form does not
need to be the same For example, host names can be specified in the hadr_target_list parameter while an IP address is
used in the hadr_local_host parameter. The following sample command updates the hadr_target_list parameter with a
value that has mixed IP/port and hostname/service name values:

 UPDATE DB CFG FOR DB hadrdb USING hadr_target_list \
 "host-1:port1|192.168.10.2:2222|host-3:3333"

IPv6 is supported. An IPv6 address can be expressed as a host name where the name resolves to an IPv6 address. It can also
be expressed in numerical format. If the numerical IPv6 format is used, the IP address must be enclosed in square brackets
([]). This is same convention that is used in URLs. The following example command updates the hadr_target_list value
with a hexadecimal IPv6 address and two host names that resolve to IPv6 addresses:

 UPDATE DB CFG FOR DB hadrdb USING hadr_target_list \
 "[FEDC:BA98:7654:3210:FEDC:BA98:7654:3210]:2222|host2:3333|host3:4444"

HADR requires that all addresses in the hadr_local_host, hadr_remote_host, and hadr_target_list values for a
database be resolved to the same format (either all are IPv4 or all are IPv6). Numerical IP addresses have explicit IPv4/IPv6
designations. Host names are checked against DNS. A hostname could be resolved to both IPv4 and IPv6. If all addresses can
be resolved to both IPv6 and IPv4, IPv6 is chosen as the database HADR IP version.

Best Practice: When two HADR databases connect, they must have the same HADR IP version, otherwise the connection
fails. In the case of ambiguous host names, use a numeric address to force a database onto a specific IP version.

5.3 Configuration example
The following example illustrates how to configure the HADR system shown in figure 1 above. The following hosts and ports are
dedicated for each of the databases in figure 1.

HADR configuration
HADR hostname HADR service

port
DB2
Instance Notes

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 6 of 43

IBM Software
Information Management
White Paper

beaverton-a 2222 dbinst1 Primary HADR host located in building A on the Beaverton campus

beaverton-b 3333 dbinst2 Principal HADR standby host located in building B on the Beaverton campus

portland 4444 dbinst3 Auxiliary HADR standby host located 10 km away, on the Portland campus

toronto 5555 dbinst4 Auxiliary HADR standby host located 3400 km away, on the Toronto campus

Configuring the primary database on host beaverton-a:
The following commands configure HADR on the primary database:

 UPDATE DB CFG FOR DB hadrdb USING hadr_target_list \
 "beaverton-b:3333|portland:4444|toronto:5555"

 UPDATE DB CFG FOR DB hadrdb USING hadr_local_host "beaverton-a"
 UPDATE DB CFG FOR DB hadrdb USING hadr_local_svc "2222"

 UPDATE DB CFG FOR DB hadrdb USING hadr_syncmode "SYNC"
 UPDATE DB CFG FOR DB hadrdb USING hadr_peer_window "300"

 UPDATE DB CFG FOR DB hadrdb USING hadr_remote_host "beaverton-b"
 UPDATE DB CFG FOR DB hadrdb USING hadr_remote_svc "3333"
 UPDATE DB CFG FOR DB hadrdb USING hadr_remote_inst "dbinst2"

The principal standby here is beaverton-b. The synchronization mode and peer window configured on the primary apply
only to the connection between the principal standby and the primary. The remote host, service, and instance on the primary
database must point to the principal standby (beaverton-b:3333 in this case) which is always the first element in the
hadr_target_list value. If not, HADR automatically reconfigures the hadr_remote_host,
hadr_remote_svc, and hadr_remote_inst values accordingly.

Configuring the principal standby database on host beaverton-b:

 UPDATE DB CFG FOR DB hadrdb USING hadr_target_list \
 "beaverton-a:2222|portland:4444|toronto:5555"

 UPDATE DB CFG FOR DB hadrdb USING hadr_local_host "beaverton-b"
 UPDATE DB CFG FOR DB hadrdb USING hadr_local_svc "3333"

 UPDATE DB CFG FOR DB hadrdb USING hadr_syncmode "NEARSYNC"
 UPDATE DB CFG FOR DB hadrdb USING hadr_peer_window "100"

 UPDATE DB CFG FOR DB hadrdb USING hadr_remote_host "beaverton-a"
 UPDATE DB CFG FOR DB hadrdb USING hadr_remote_svc "2222"
 UPDATE DB CFG FOR DB hadrdb USING hadr_remote_inst "dbinst1"

The synchronization mode (NEARSYNC) and peer window (100) configured on the principal standby apply only when it
becomes the primary. The connection mode between the primary (beaverton-a) and principal (beaverton-b) is SYNC with a peer
window of 300, but once a takeover is issued on beaverton-b, the synchronization mode between beaverton-b and beaverton-a

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 7 of 43

IBM Software
Information Management
White Paper

would become NEARSYNC, with a peer window of 100 seconds. NEARSYNC has been chosen to illustrate that a primary and a
standby can have different synchronization modes defined in the hadr_syncmode configuration parameter.

Configuring the first auxiliary standby database on host portland:

 UPDATE DB CFG FOR DB hadrdb USING hadr_target_list \
 "beaverton-a:2222|beaverton-b:3333|toronto:5555"

 UPDATE DB CFG FOR DB hadrdb USING hadr_local_host "portland"
 UPDATE DB CFG FOR DB hadrdb USING hadr_local_svc "4444"

 UPDATE DB CFG FOR DB hadrdb USING hadr_syncmode "ASYNC"

 UPDATE DB CFG FOR DB hadrdb USING hadr_remote_host "beaverton-a"
 UPDATE DB CFG FOR DB hadrdb USING hadr_remote_svc "2222"
 UPDATE DB CFG FOR DB hadrdb USING hadr_remote_inst "dbinst1"

The hadr_target_list and hadr_syncmode are defined on standby, but are only applicable when host portland becomes
the primary. In that case, the principal standby is host beaverton-a (first element in the hadr_target_list value defined
earlier), and the HADR connection between portland and beaverton-a would be in ASYNC mode.

Configuring a secondary auxiliary standby database on host toronto:

 UPDATE DB CFG FOR DB hadrdb USING hadr_target_list \
 "beaverton-a:2222|beaverton-b:3333|portland:4444"

 UPDATE DB CFG FOR DB hadrdb USING hadr_local_host "toronto"
 UPDATE DB CFG FOR DB hadrdb USING hadr_local_svc "5555"

 UPDATE DB CFG FOR DB hadrdb USING hadr_syncmode "SUPERASYNC"

 UPDATE DB CFG FOR DB hadrdb USING hadr_remote_host "beaverton-a"
 UPDATE DB CFG FOR DB hadrdb USING hadr_remote_svc "2222"
 UPDATE DB CFG FOR DB hadrdb USING hadr_remote_inst "dbinst1"

The hadr_target_list and hadr_syncmode are defined on the standby, but are only applicable when host toronto
becomes the primary. In that case, the principal standby would be host beaverton-a, and the HADR connection between toronto
and beaverton-a would be in SUPERASYNC mode.

5.4 Effect of configuration change
In previous releases, a database had to be deactivated, and then reactivated in order to apply updated HADR configuration
parameters. Starting in Version 10.1, the following HADR configuration parameters are applied whenever HADR is activated,
whether by database activation, or by START HADR command. These configuration parameters are semidynamic:

• hadr_target_list
• hadr_replay_delay
• hadr_spool_limit
• hadr_local_host

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 8 of 43

IBM Software
Information Management
White Paper

• hadr_local_svc
• hadr_peer_window
• hadr_remote_host
• hadr_remote_inst
• hadr_remote_svc
• hadr_syncmode
• hadr_timeout

These semidynamic parameters enable a primary database to remain online and available during initial HADR setup and
subsequent reconfiguration. For example, issuing a STOP HADR command, followed by a START HADR command on the
primary picks up changes made while the database is online. The STOP HADR and START HADR commands cannot be
issued dynamically on a standby database, so database deactivation and reactivation is still required to pick up HADR
configuration changes on a standby.

The hadr_target_list parameter is fully dynamic. See the "Adding and Dropping Standby Targets" section for details.

5.5 Effective versus configured synchronization mode
HADR supports a variety of log shipping synchronization modes to balance performance and data protection. The supported
modes are:

• SYNC: Log write on primary requires replication to the persistent storage on the standby.
• NEARSYNC: Log write on primary requires replication to the memory on the standby.
• ASYNC: Log write on primary requires a successful send to standby (receive is not guaranteed).
• SUPERASYNC: Log write on primary has no dependency on replication to standby

In an HADR single standby configuration, the primary and standby must have the same hadr_syncmode configuration
parameter value. However, in multiple standby mode this parameter behaves differently. In multiple standby mode, the
hadr_syncmode parameter on the primary defines the synchronization mode for the connection between the primary and its
principle standby. Auxiliary standbys always use SUPERASYNC mode. On the standbys, the defined hadr_syncmode value is
the synchronization mode that the database uses for its principal standby when it becomes the primary through a takeover
operation.

The primary and standby can have different values configured for the hadr_syncmode parameter. In multiple standby mode,
this configuration does not result in a configuration error rejection when a standby connects to a primary. Upon connection, the
primary instructs the standby what synchronization mode to use. For the principal standby, the primary tells it to use the
synchronization mode defined by the hadr_syncmode parameter on the primary. For any auxiliary standby, the primary always
tells it to use SUPERASYNC. Thus on the standby, its effective synchronization mode can be different from its hadr_syncmode
configuration parameter.

The configured hadr_syncmode, the mode that is used for its principal standby when the database operates as the primary,
can be viewed through the following command or any configuration-oriented interface:

 GET DB CFG FOR hadrdb

The effective HADR synchronization mode, that is the mode that is currently being used for an HADR log shipping channel, can
be viewed through the following command, or any HADR-oriented interface such as the MON_GET_HADR table function:

 db2pd -db hadrdb -hadr

5.6 Effective versus configured peer window
The hadr_peer_window parameter behaves similar to the hadr_syncmode parameter. It defines the peer window for the
connection between the primary and its principal standby. Auxiliary standbys are always in SUPERASYNC mode, so peer

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 9 of 43

IBM Software
Information Management
White Paper

window does not apply. The configured hadr_peer_window parameter on a standby database is not used until it becomes a
primary, and the effective peer window for a principal standby is dictated to it by the primary during the HADR connection.

5.7 Automatic reconfiguration for hadr_remote_host, hadr_remote_svc and
hadr_remote_inst

In multiple standby mode, on the primary, the hadr_remote_host, hadr_remote_svc, and hadr_remote_inst
parameters point to the principal standby. On a standby, these point to the primary database. For ease of use, HADR
automatically updates these parameters in the following scenarios:

• Automatic redirection
When a primary is not connected to a standby listed in its hadr_target_list value, it periodically tries to reach that
standby through the address listed in the hadr_target_list value. Both primary and standby databases listen on
their localhost and local services address (defined by their hadr_local_host and hadr_local_svc parameter
values) for incoming TCP connections. If the primary is able to reach the misconfigured standby, it sends the standby its
hadr_local_host value, hadr_local_svc value, and instance name. When a standby receives this redirection
message, it first authenticates the primary and then automatically updates its hadr_remote_host,
hadr_remote_svc, and hadr_remote_inst parameter values to point to the primary, and then connects to the
primary using the updated address.

• During takeover
During takeover (forced and not forced), hadr_remote_host, hadr_remote_svc, and hadr_remote_inst on all
databases are automatically updated to reflect the new topology and their roles. This greatly simplifies DBA work. A
simple takeover command executed on any standby is all that is needed to complete a takeover and have all standbys
find and reconnect to the new primary. Automatic redirection is the method used to redirect standbys to the new
primary. If a standby is offline at the time of takeover, it is automatically redirected to the new primary when it comes
back online. This automatic redirection also applies to primary reintegration, where the old primary is started as standby
after a failover. Some concrete examples of automatic reconfiguration are given in the "Multiple Standby Operation"
section.

• During start up of primary
When an HADR primary starts up, if the hadr_remote_host or hadr_remote_svc values do not match the principal
standby address defined by the first entry in the hadr_target_list value, then the hadr_remote_host value,
hadr_remote_svc value, or both values are automatically updated to match be the principal standby. This automatic
update is not applicable to a standby. During standby startup, HADR checks only whether the
hadr_remote_host:hadr_remote_svc value pair is contained in hadr_target_list. If the primary is not
included in the hadr_target_list value then an error is returned.

• On connection
During an HADR connection, the primary and standby databases exchange instance names. If the
hadr_remote_inst value (on either primary or standby) does not match the actual instance name of the remote
database, it is automatically updated. You should still configure the correct instance name during HADR setup because
some objects such as Tivoli System Automation for Multiplatforms (SA MP) cluster manager resource names are
constructed using remote instance names. Since automatic update of the database configuration parameter does not
happen until the primary and standby make a connection, SA MP might use the wrong name and SA MP can behave
unexpectedly.

6 Setting up a multiple standby system
This procedure covers two cases:

• A database does not have HADR set up
• A single standby HADR system is already set up

The difference between the two cases is small. For the single standby case, you just need to configure the hadr_target_list
value for it to become a multiple standbys system.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 10 of 43

IBM Software
Information Management
White Paper

Before you begin:
• Determine the host name or host IP address (to be used for the hadr_local_host setting), service name or port

number (to be used for the hadr_local_svc setting) of all participating databases.
• Determine the target list for each database.
• Determine the synchronization mode and peer window for the principal standby for each database in the event that the

database becomes the primary.
• Determine the setting for the hadr_timeout configuration parameter; this parameter must have the same value on all

databases.
• Determine if the network path between the primary and each standby can support the log shipping rate. Upgrade if

necessary.
• Determine if the network interface on the primary database host can support the aggregated log shipping flow for all

standbys. Upgrade if needed.

The main difference between a single standby system and a multiple standby system is that the hadr_target_list value is
set on all participating databases on a multiple standby system. On a single standby system, it is not set on either the primary or
standby. It is "all or nothing". If only one database has its hadr_target_list value set during a primary-standby connection,
the standby database is shut down because it is incompatible with the primary. The primary is kept online to minimize outages.
As a special case, a multiple standby system can have only one standby. But the system still behaves differently from a single
standby system. Multiple standby features such as automated configuration will be functional. HADR behavior is determined by
whether the hadr_target_list parameter is set, not the number of standbys. A multiple standby system with one standby
can prove useful because it allows you to easily add and drop standbys.

When converting a single standby system, create and configure the additional standbys. Then reconfigure the existing primary
and standby to multiple standby mode. Finally start HADR on all databases to complete the multiple standby setup. By keeping
the single standby system functioning until the final steps, you minimize the window where the primary is not under HADR
protection.

The procedure consists of the following steps. The primary database is assumed to be online at the start of the procedure and
stays online throughout the procedure. There is no service downtime.

1. Create new standby databases from a backup image taken on the primary database or a split mirror of the primary
database. This step is identical to creating a standby for single standby systems.

2. Configure each of the new standby databases as follows:
a. Set the hadr_local_host and hadr_local_svc configuration parameters to the local HADR address.
b. Set the hadr_remote_host, hadr_remote_svc, and hadr_remote_inst configuration parameters to

point to the primary database.
c. Set the hadr_timeout configuration parameter, with the same setting on all of the databases.
d. Set the hadr_target_list configuration parameter, as previously planned.
e. Set the hadr_syncmode and hadr_peer_window configuration parameters for the intended principal

standby of the database.
f. Set any other HADR-specific parameters such as hadr_spool_limit or hadr_replay_delay, depending

on your desired setup.
3. If converting a single standby system, reconfigure the original standby using instructions from step 2. Keep the

database online during this step. The new configuration does not take effect until deactivation and reactivation.
4. Configure the primary as follows. Keep the database online during this step. If you are converting a single standby

system, update a parameter only if it actually needs to change. The new configuration does not take effect until HADR
is stopped then restarted.

a. Set the hadr_local_host and hadr_local_svc to the local HADR address.
b. Set the hadr_remote_host, hadr_remote_svc, and hadr_remote_inst configuration parameters to

point to the principal standby database.
c. Set the hadr_timeout configuration, with the same setting as on all of the databases.
d. Set the hadr_target_list configuration parameter, as previously planned.
e. Set the hadr_syncmode and hadr_peer_window configuration parameters for the principal standby.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 11 of 43

IBM Software
Information Management
White Paper

f. Set any other HADR-specific parameters such as hadr_spool_limit or hadr_replay_delay, depending
on your desired setup.

5. If converting a single standby system, stop HADR on the primary using the STOP HADR ON DB dbname command.
The primary that is still running in single standby mode must be stopped before any standby is started. Otherwise the
standby is found to be incompatible and shut down when the standby attempts to connect to the primary.

6. If you are converting a single standby system, deactivate the original standby using the DEACTIVATE DB dbname
command.

7. Start all standbys, including the original standby by using the START HADR ON DB dbname AS STANDBY command.
The standbys should be started before the primary because when the primary starts, it connects to the standbys
to make sure that no standby has become a new primary. A situation with two active primaries is sometimes called "split
brain" or "dual primary".

8. Start HADR on the primary by using the START HADR ON DB dbname AS PRIMARY command.

All the standbys should connect to the primary within seconds. On the primary database, issue the db2pd command with the
-hadr option or query the MON_GET_HADR table function to monitor status of all standbys. On a standby, only the standby itself
and the primary are shown in monitoring information. Other standbys are not visible.

All standbys should show "connected" status. Each standby goes through HADR state transition independently. They first
scan through locally available logs (local catchup state), then request more logs to be shipped from the primary through the
HADR connection (remote catchup and peer state).

In step 8, if the principal standby cannot connect to the primary, the START HADR command fails after trying for the number of
seconds specified in the hadr_timeout parameter. Should this happen, check the configuration on the primary and standby,
check network status, correct any problems, and then retry. The primary database stays online all through the procedure, even if
the START HADR command fails. Starting in DB2 Version 10.1, the primary database applies the latest HADR configuration
each time the START HADR command is issued. There is no need to deactivate the database and then reactivate it to pick up
HADR configuration change.

7 Adding and dropping standby targets
If HADR is set up with multiple standby enabled, then you can add or drop standby targets dynamically. An HADR system is
defined as multiple standby enabled when the hadr_target_list configuration parameter is set and has at least one standby
target defined. For a dynamic update to take place, the database has to be active and must have at least one connection to it.
On a standby database, reads on standby must be enabled to allow connections. If the update is not dynamic, it takes effect the
next time HADR is activated.

7.1 Adding a standby target dynamically
To add a standby target, simply update the hadr_target_list parameter to include the new standby target.

For example, assume that you are starting with a primary located in building A on the Beaverton campus (beaverton-a) and two
standby targets in building B at Beaverton and at the Portland campus (beaverton-b and portland) as shown in Figure 2.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 12 of 43

IBM Software
Information Management
White Paper

 Figure 2 Before adding an additional auxiliary standby server

Now suppose that you want to add a third standby at the Toronto campus (toronto). To add the new standby target, create,
configure, and activate the new standby target. Then add it to the hadr_target_list parameter on the primary by issuing the
following command on the primary database (beaverton-a):

 UPDATE DB CFG FOR hadrdb USING hadr_target_list beaverton-b:3333|portland:4444|toronto:5555

Once the update completes, toronto becomes a valid standby, as shown in figure 3.

Figure 3 After adding an additional auxiliary standby server

Dynamically updating the hadr_target_list parameter cannot change the principal standby target. Thus when adding
additional standbys, you should keep the original principal standby (the first entry in the list) as the principal (by keeping it as the

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 13 of 43

IBM Software
Information Management
White Paper

first entry). During dynamic update, if the principal standby is changed, you get the following messages informing you that the
on-disk configuration file was updated successfully, but the change is not taking effect immediately. The change takes effect on
the next activation of HADR (through the START HADR command or ACTIVATE DB command).

DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
SQL1363W Database must be deactivated and reactivated before the changes to
one or more of the configuration parameters will be effective.

7.2 Dropping a standby target dynamically
To remove a standby target, simply remove the standby from the hadr_target_list parameter value on the primary.

For example, assume that you have the HADR configuration shown in figure 3, with a primary (beaverton-a) and three standby
targets (beaverton-b, portland, and toronto), where toronto is currently not connected to the primary. This configuration is shown
in figure 4.

Figure 4 Before dropping an auxiliary standby.

To drop the toronto standby, remove the toronto:5555 entry from the hadr_target_list parameter on the primary.

 UPDATE DB CFG FOR hadrdb USING hadr_target_list beaverton-b:3333|portland:4444

As a result of the UPDATE statement, the HADR system changes as shown in figure 5.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 14 of 43

IBM Software
Information Management
White Paper

 Figure 5 After dropping an auxiliary standby.

You cannot not remove the principal standby, which is defined as the first entry in the hadr_target_list parameter. If you
remove the principal standby target, you receive a warning SQL1363W saying the update is not being performed dynamically.
Upon the next activation of HADR or the database, the new hadr_target_list parameter values are implemented.

You cannot dynamically remove a standby target that is still connected to the primary. If you try to remove such a standby target,
you receive a warning SQL1363W stating that the update was not performed dynamically and only the on-disk configuration file
was changed. To remove a connected standby target dynamically, deactivate the standby first.

8 Takeover
A standby can become the primary through an HADR takeover operation. A takeover can be issued on a principal or an auxiliary
standby. After a takeover, the new primary automatically redirects standby targets that are in the target list on the new primary.
The hadr_remote_host, hadr_remote_svc, and hadr_remote_inst configuration parameters on the standby are
automatically updated to point to the new primary. If a standby is not included in the hadr_target_list parameter on the new
primary, then that standby is considered to be orphaned and cannot connect to the new primary.

8.1 Automatic redirection of standby targets after takeover
After a takeover (forced or not forced) is completed successfully, the new primary redirects any standby target that is not already
connected to it. This redirection is done by the primary sending a redirection message to each standby that is not connected to
it. When a standby receives a redirection message, if it is not already connected to another primary, it confirms that the message
is coming from a valid primary listed in its hadr_target_list. It update its hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst configuration parameters to point to the primary, and then connect to the primary.

For example, assume you have an HADR system with a primary beaverton-a and standby targets beaverton-b, portland, and
toronto.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 15 of 43

IBM Software
Information Management
White Paper

Figure 6 Initial state before takeover.

Takeover is issued on principal standby host beaverton-b, resulting in beaverton-b becoming the primary, and beaverton-a,
portland, and toronto becoming the standby targets.

At the end of the takeover, beaverton-a is connected to beaverton-b, but portland and toronto must be informed of the change in
primary. This notification is done by beaverton-b sending redirection requests to portland and toronto, as shown in figure 7.

Figure 7 Following takeover by principal standby

After portland and toronto accept and process the redirection requests, their hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst configuration parameters are automatically updated to reflect beaverton-b as the primary, and they then
connect to the new primary. This configuration is shown in figure 8.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 16 of 43

IBM Software
Information Management
White Paper

Figure 8 Following automatic redirection of the other standbys

The synchronization mode between beaverton-a and beaverton-b changed from SYNC to NEARSYNC. The mode changes
because the primary determines that the synchronization mode of the standby targets, and the hadr_syncmode setting on
beaverton-b is NEARSYNC. At connection time, the auxiliary standbys are directed by beaverton-b to use SUPERASYNC, and
the principal standby is told to use NEARSYNC. Details about automatic reconfigurations are in the next section.

8.2 Automatic reconfiguration after takeover
In multiple standby mode, the hadr_remote_host, hadr_remote_svc, and hadr_remote_inst configuration parameters
on a primary refer to the principal standby. On a standby, the hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst refer to the primary.

As a result of a takeover, a new primary is established and the hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst configuration parameters are automatically changed on both the standby targets and the new primary. On
the new primary, the three parameters change to refer to the new principal standby, as defined by the first entry in the new
primary's hadr_target_list. On the different standby targets (including the old primary once it is converted into a standby)
the parameters change to refer to the new primary.

For example, assume that you have the following setup with a primary database (beaverton-a) and three standby targets
(beaverton-b, portland, and toronto).

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 17 of 43

IBM Software
Information Management
White Paper

Figure 9 Initial state before takeover

HADR configuration before takeover
configuration
parameter

host1
(beaverton-a)

host2
(beaverton-b)

host3
(portland)

host4
(toronto)

hadr_target_list beaverton-b:3333 | portland:4444 |
toronto:5555

beaverton-a:2222 | portland:4444
| toronto:5555

toronto:5555 |
beaverton-a:2222 | beaverton-b:3333

portland:4444 |
beaverton-a:2222 | beaverton-
b:3333

hadr_remote_host beaverton-b beaverton-a beaverton-a beaverton-a
hadr_remote_svc 3333 2222 2222 2222
hadr_remote_inst dbinst2 dbinst1 dbinst1 dbinst1

Effective sync mode N/A SYNC SUPERASYNC SUPERASYNC

Figure 10 shows the configuration after beaverton-b takes over.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 18 of 43

IBM Software
Information Management
White Paper

Figure 10 After principal standby takeover and automatic redirection and reconfiguration

Reconfiguration after takeover by beaverton-b
configuration
parameter

host1
(beaverton-a)

host2
(beaverton-a)

host3
(portland)

host4
(toronto)

hadr_target_list beaverton-b:3333 |
portland:4444 | toronto:5555 beaverton-a:2222 | portland:4444 | toronto:5555 toronto:5555 | beaverton-a:2222 | Beaverton-

b:3333
portland:4444 | beaverton-a:2222 | beaverton-
b:3333

hadr_remote_host beaverton-b beaverton-a beaverton-b beaverton-b
hadr_remote_svc 3333 2222 3333 3333
hadr_remote_inst dbinst2 dbinst1 dbinst2 dbinst2
effective sync mode NEARSYNC N/A SUPERASYNC SUPERASYNC

Imagine that after beaverton-b takes over, both buildings on the Beaverton campus burn down. This is a true disaster recovery
scenario. A forced takeover is issued from the standby host portland at the Portland site. The effective synchronization mode of
the principal standby toronto is determined by the hadr_syncmode configuration parameter defined on the primary host,
portland. The resulting setup is as follows.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 19 of 43

IBM Software
Information Management
White Paper

Figure 11 Loss of primary site

Reconfiguration after takeover by Portland
(host1 and host2 are down)
configuration
parameter

host1
(beaverton-a)

host2
(beaverton-b)

host3
(portland)

host4
(toronto)

hadr_target_list beaverton-b:3333 |
portland:4444 | toronto:5555 beaverton-a:2222 | portland:4444 | toronto:5555 toronto:5555 | beaverton-a:2222 | beaverton-

b:3333
portland:4444 | beaverton-a:2222 | beaverton-
b:3333

hadr_remote_host N/A N/A Toronto portland
hadr_remote_svc N/A N/A 5555 4444
hadr_remote_inst N/A N/A dbinst4 dbinst3
effective sync mode N/A N/A N/A ASYNC

Beaverton-A and Beaverton-B come back online as shown in figure 12.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 20 of 43

IBM Software
Information Management
White Paper

Figure 12 Beaverton site comes back online

Reconfiguration after host1 and host2 come back online
configuration
parameter

host1
(beaverton-a)

host2
(beaverton-b)

host3
(portland)

host4
(toronto)

hadr_target_list beaverton-b:3333 |
portland:4444 | toronto:5555 beaverton-a:2222 | portland:4444 | toronto:5555 toronto:5555 | beaverton-a:2222 | beaverton-

b:3333
portland:4444 | beaverton-a:2222 | beaverton-
b:3333

hadr_remote_host portland Portland Toronto portland
hadr_remote_svc 4444 4444 5555 4444
hadr_remote_inst dbinst3 dbinst3 dbinst4 dbinst3
effective sync mode SUPERASYNC SUPERASYNC N/A ASYNC

After takeover, the new primary determines the synchronization mode of all primary-standby pairs. That is, the hadr_syncmode
setting of the new primary specifies the synchronization mode used for its principal standby, and SUPERASYNC is used for the
auxiliary standbys.

If a standby is not online at the time of the takeover, the automated configuration change on that standby is still carried out, once
the standby is started. The automatic reconfiguration logic updates the configuration on the standby to redirect it to the new
primary. Upon startup, the standby might initially attempt to connect to the old primary using its old configuration. The connection
should fail, unless you have a dual primary (or "split brain") scenario, where the old primary is also online. In a dual primary
scenario, if a standby is listed in the hadr_target_list of old and new primaries, it can get redirected to either of the two
primary databases. A split brain confuses database clients and HADR standbys. To avoid having dual primaries, securely shut
down the old primary before failing over to a standby. See the Dual primary detection section to see how DB2 can automatically
detect a dual primary.

Automatic reconfiguration is only done on a standby that is listed in the hadr_target_list value on the new primary. If the
new primary does not list a standby, the configuration of the standby is left unchanged (still pointing to the old primary). This
standby cannot connect to new primary without a manually adding it to the hadr_target_list value of the new primary. If the
old primary becomes a primary again at a later time, the orphaned standby can still rejoin the old primary as a standby.

8.3 Dual primary detection
Having more than one primary is known as a dual primary. A dual primary can happen if a takeover by force is used to create a
new primary while the old primary continues operating. To reduce the likelihood of a dual primary, in single standby mode, the
primary does not start unless it can establish a connection to the standby (as positive confirmation that the standby has not

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 21 of 43

IBM Software
Information Management
White Paper

become a primary) or it is started using the START HADR AS PRIMARY BY FORCE command. In multiple standby mode, this
behavior still applies and a primary does not activate unless it manages to communicate with the principal standby or is started
by force.

Additionally, on startup in multiple standby mode, a primary contacts the auxiliary standbys to check if any of them has become
a primary. If the starting primary finds another primary database, it fails to activate with SQL1768N reason code 19. Dual primary
detection on auxiliary standbys is done only as best effort. If a standby cannot be reached within a short time, the primary starts.

9 Automation
9.1 Client reroute after takeover
There are multiple methods of rerouting client connections to a new primary after an HADR takeover. The method you choose
depends upon your business requirements and your specific HADR configuration. One method is to use automatic client reroute
(ACR) feature of DB2 databases. Another is to use the db2dsdriver.cfg file on the DB2 client to define client affinities (CA).
Finally, you can use a virtual IP address for the primary HADR address.

Automatic client reroute
With the automatic client reroute (ACR) feature, a DB2 client application can recover from a loss of communication to a
database. To configure client reroute, specify an alternate server location on the HADR primary database. This alternate
database information is cached by the client during the connection process. In the event of a failure, the client can use this
information to connect to the alternate location. Because only a single alternate location can be specified, only one standby
target may be configured as the alternate database.

For example, if applications are connected to the primary instance beaverton-a you might configure ACR on beaverton-a so that
in the event of a failover to beaverton-b clients would transparently re-connect to beaverton-b. To configure ACR for such a
scenario, issue the following on host beaverton-a:

 UPDATE ALTERNATE SERVER FOR DB hadrdb USING HOSTNAME beaverton-b PORT 7777

The port here is the DB2 port for host beaverton-b, not the HADR port for beaverton-b.

Best Practice: In a multiple standby environment, configure the primary and the principal standby as the alternate location of
each other, because the primary role is more likely to alternate between the two than to move to an auxiliary standby.

Client affinity and db2dsdriver.cfg
Rerouting can also be accomplished by configuring client rerouting and affinity information in the db2dsdriver.cfg file on the
DB2 client host. To enable client affinities, edit the db2dsdriver.cfg configuration file to define client affinities and to specify
primary and alternate servers. A list of alternate servers and affinity lists may be defined. Because client affinity supports
multiple alternate servers, all standbys in a multiple standby system can be listed as alternate servers of the primary. If any
standby takes over, clients can be rerouted to the new primary. For more details, see the following DB2 Information Center topic
for CA information: Client affinities for clients that connect to DB2 Database for Linux, UNIX, and Windows.

Using a virtual IP address for client reroute
A virtual IP address is an IP address that can be dynamically moved from one physical machine to another. It is common to use
a virtual IP address to make client applications transparent to the physical machine a server runs on. When the service a client
connects to fails, the virtual IP address is moved to a different physical machine and the service is restarted on that new
machine. The client then reconnects to the service through the virtual IP address. Since both the virtual IP address and the
service are moved as part of failover, cluster manager software typically manages the movement of both the service and virtual
IP address to the new machine. Virtual IP address configuration is supported as part of the setup and configuration of HADR
with an integrated cluster manager using the db2haicu tool. Using a virtual IP address to implement client reroute is possible
only when the primary and standby are on the same subnet.

9.2Integrated cluster manager

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 22 of 43

IBM Software
Information Management
White Paper

Integration of HADR with IBM Tivoli System Automation for Multiplatforms (SA MP) cluster manager has been supported since
DB2 Version 9.5. SA MP can be used to automatically detect primary database failures and to automate failover by issuing the
TAKEOVER BY FORCE PEER WINDOW ONLY command on the standby. Integration with SA MP is supported only in SYNC
and NEARSYNC modes, because these modes support "PEER WINDOW ONLY" takeover.

In multiple standby mode, SA MP is supported only between the primary and the principal standby. For example, suppose that
you are running in the configuration shown in figure 1 above and want to add SA MP automation between the HADR primary
and principal standby running on hosts beaverton-a and beaverton-b. The resulting configuration is shown in figure 13:

Figure 13 Automation in a multiple standby environment

If the HADR primary fails and SA MP is configured, SA MP automatically performs takeover on the principal standby. After
beaverton-b becomes the primary, beaverton-a becomes its principal standby. When the principal standby defines the primary
as its own principal standby, no reconfiguration is required after takeover. If however the old primary is not the principal standby
for the new primary (for example, if beaverton-b defines portland as its principal standby), then you must manually reconfigure
SA MP automation. For example, if you want automatic failure detection between a new primary beaverton-b, and its new
principal standby portland, then you need to reconfigure SA MP after beaverton-b perform takeover.

In the event that there is a failure of the principal standby, there is no action from SA MP. This behavior is the same as in single
standby mode which takes no action on standby failure. For principal standby failures you must manually start the machine (if it
went down), start DB2, and issue the START HADR AS STANDBY or ACTIVATE DATABASE command to start the principal
standby.
In the event that SA MP executes a failover to the principal standby, the other standbys are redirected to the new primary
through automatic reconfiguration, which is described in the earlier Multiple standby operations section.

Configuring a clustered environment with multiple standby
Configuring cluster controlled automation of HADR with SA MP in a multiple standby environment is similar to a single standby
environment. For multiple standbys, use the principal standby as the 'standby' database when configuring a clustered
environment with the db2haicu command. The following resources describe configuring a single standby environment:

“Configuring a clustered environment using DB2 High Availability Instance Configuration Utility (db2haicu)”
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.ha.doc/doc/t0052800.html

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 23 of 43

IBM Software
Information Management
White Paper

“Automated Cluster Controlled HADR (High Availability Disaster Recovery) Configuration Setup using the IBM DB2 High
Availability Instance Configuration Utility (db2haicu)”
http://download.boulder.ibm.com/ibmdl/pub/software/dw/data/dm-0908hadrdb2haicu/HADR_db2haicu.pdf

Manual takeover when SA MP is configured
Before issuing a manual forced or graceful takeover on an auxiliary standby in an SA MP controlled environment, you should
disable SA MP on the primary and the principal standby. This can be done using the db2haicu -disable command on both the
primary and the principal standby hosts. This command prevents SA MP from issuing an automatic failover to the principal
standby, causing a dual primary situation. After a new primary-principal standby pair is formed, you can choose to create or re-
enable SA MP on the new pair.

To verify that you have disabled SA MP monitoring, issue the lssam command on both the principal standby and the primary.
The state of the resource group that contains the HADR database should be "Control=SuspendedPropagated" when SA MP is
disabled.

Disabling SA MP on the old primary alone is not enough to prevent automatic failover to the old principal standby. However, in
certain situations it is not possible to disable SA MP on the principal standby host. For example, if the principal standby has had
a power failure SA MP cannot be disabled. In this scenario, the old principal standby host must be kept offline or be isolated
from database clients (by means such as disabling the client-server network), until SA MP can be disabled or the database is
dropped.

In forced takeover to an auxiliary standby, the old primary host should be kept offline or fenced off because if SA MP remains
enabled, it automatically attempts to start the old primary database when the machine restarts. Even if SA MP is disabled, the
old primary can still attempt to start upon client connection. In such a scenario dual primary detection might recognize that there
are two primary databases, and deactivate the old primary. See the Dual primary detection section for details.

10 Log archiving considerations
10.1 Configuring log archiving on all databases
To use log archiving with DB2 HADR, configure both the primary database and all the standby databases for automatic log
retrieval capability from all log archive locations.

10.2 Log file management on standby
The standby database automatically manages log files in its local log path. It writes the logs received from primary to its log path.
The standby does not delete a log file from its local log path unless it has been notified by the primary database that the primary
database has archived it. This behavior provides added protection against the loss of log files. If the primary database fails
before the log file is safely stored in the archive, the standby database would ensure the log file is archived. If both the
logarchmeth1 and logarchmeth2 configuration parameters are in use, the standby database does not recycle a log file until
the primary database has archived it using both methods.

10.3 Shared versus separate log archive
Only a primary database can archive log files. When the primary and standby databases have different archive locations, logs
are archived only to the archive location of the primary database. In the event of a takeover, the archive location changes from
the old primary to the archive on the new primary. This situation can result in logs being scattered among different archive
locations; with the exception that the new primary database might archive a few log files following a takeover that the original
primary database had already archived. A shared archive, which means that one database can access log files archived by
another database, is preferred because all the log files are archived to a single location.

Several operations need to retrieve archived log files. These operations include:
• ROLLFORWARD command;
• HADR primary database retrieving log files to send to the standby database in remote catch up;
• HADR standby database for local catch-up;
• Replication programs (such as Q Replication) reading logs.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 24 of 43

IBM Software
Information Management
White Paper

The advantage of using a shared archive is that these operations can to retrieve any log file, no matter which machine
generated or archived that log file. Not using a shared archive means that there is a chance that these operations might fail to
locate a log file it needs. These operations can only continue after manually copying over of the required log files from one log
archive location to another (or to the overflow log path if it is configured).

When using multiple standbys with a shared archive, another standby might be far behind during a takeover causing the new
primary to not have the log files needed by the other standby. In this case, you must locate the needed files and copy them to
the requesting database.

In addition to the benefits previously listed, a shared log archive device improves the catch-up process by allowing the standby
database to directly retrieve older log files from the archive in local catch-up state, instead of retrieving those files indirectly
through the primary in remote catch-up state. However, avoid using a serial archive device, such as a tape drive, for HADR
databases. With serial devices, you might experience performance degradation on both the primary and standby databases
because of mixed read and write operations. The primary writes to the device when it archives log files and the standby reads
from the device to replay logs. This performance impact can occur even if the device is not configured as shared.

10.4 How to recognize primary is not able to find log file needed by standby
In the event that the primary cannot locate a log file (for example, S0000100.LOG) needed by a standby database, the following
message can be found in the db2diag.log of the primary database.

2012-03-08-04.50.49.654736-300 I2952993E395 LEVEL: Warning
PID : 7690 TID : 46914795989312 PROC : db2sysc
INSTANCE: db2inst1 NODE : 000
HOSTNAME: beaverton-a
EDUID : 457 EDUNAME: db2lfr.0 (HADRDB)
FUNCTION: DB2 UDB, recovery manager, sqlplfrFMReadLog, probe:5120
MESSAGE : Return code for LFR opening file S0000100.LOG was -2146434659

2012-03-08-04.50.49.655067-300 I2953389E600 LEVEL: Error
PID : 7690 TID : 46912841443648 PROC : db2sysc
INSTANCE: db2inst1 NODE : 000
HOSTNAME: beaverton-a
EDUID : 469 EDUNAME: db2hadrp.0.1 (HADRDB)
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrEdu::hdrEduP, probe:20591
MESSAGE : ZRC=0x860F000A=-2045837302=SQLO_FNEX "File not found."
 DIA8411C A file "" could not be found.
DATA #1 : <preformatted>
HADR primary database failed to read log pages for remote catchup. sqlplfrScanNext scanPages = 0, scanFlagsOut = 0x2

2012-03-08-04.50.49.655699-300 E2953990E433 LEVEL: Event
PID : 7690 TID : 46912841443648 PROC : db2sysc
INSTANCE: db2inst1 NODE : 000
HOSTNAME: beaverton-a
EDUID : 469 EDUNAME: db2hadrp.0.1 (HADRDB)
FUNCTION: DB2 UDB, High Availability Disaster Recovery, hdrSetHdrState, probe:10000
CHANGE : HADR state set to HDR_P_REM_CATCHUP_PENDING (was HDR_P_REM_CATCHUP), connId=151

Upon encountering this condition, the standby database cannot proceed and is deactivated. The log file (in this case
S0000100.LOG and possibly subsequent log files) must be made available, either in the log archive or the overflow log path or
the active log path of either the primary or the standby database. DB2 does not automatically delete user copied files in the
overflow and active log path. Manually remove the files when they are no longer needed by any HADR standby or any other
application.

10.5 Setting up shared log archive on Tivoli Storage Manager
Proxy node function provides capability so that several IBM Tivoli Storage Manager client nodes can perform data protection
operations against a centralized name space on the Tivoli Storage Manager server, as opposed to node-specific namespace.
The target client node owns the data and agent nodes act on behalf of the target nodes to manage the back-up data.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 25 of 43

IBM Software
Information Management
White Paper

The proxy node target is the node name defined on the Tivoli Storage Manager server to which back-up versions of distributed
data are associated. The data is managed in a single namespace on the Tivoli Storage Manager server as if it is entirely the
data for this node. The proxy node target is also referred to as the multi-node as it denotes a node that owns the data of several
proxy node agents.

The other production and back-up hosts are designated as the agent node for the proxy node on Tivoli Storage Manager Server,
allowing each node to perform tasks on behalf of the target node.

The proxy node target name can be a real node (for example, one of the application hosts) or a virtual node name (that is, with
no corresponding physical node). Use a virtual node as the target node.

For example, if HADR is used for a database on machines called beaverton-a and beaverton-b, you can create a virtual proxy
node name such as beaverton-v on TSM server with the following commands:

Grant proxynode target=beaverton-v agent=beaverton-a
Grant proxynode target=beaverton-v agent=beaverton-b

And set the following database configuration parameters on the primary and standby database:
vendoropts to “-asnode=beaverton-v”
logarchopts to “-asnode=beaverton-v”

For multiple standbys, just grant proxynode access to all machines on the Tivoli Storage Manager server and configure
VENDOROPTS and LOGARCHOPTS database configuration parameters on all standbys.

11 Reads on standby
Use the reads on standby feature to execute read-only workloads on the standby database while it continues to provide
protection against data loss by replicating data changes from the primary database. In a multiple standby environment, reads on
standby is supported on all standbys. Read-only workloads running on standby database do not compromise data loss
protection or the ability to takeover in an event of a failover. Since read-enabled standby supports only UR isolation, queries
might see transaction changes even if the transaction did not commit.

Multiple standbys offer greater value and flexibility in leveraging reads on standby in a HADR environment. Read-only workloads
can be off-loaded to auxiliary standbys, to ensure zero impact to replication performance. In the event of a takeover, all user
connections to the standby taking over as the new primary are terminated. Takeover on one standby does not impact read
connections to other standbys, thus providing continuous data availability for both read/write and read-only workloads. The client
configuration file db2dsdriver.cfg can be used to configure the target servers for the read/write and read-only clients. See
the earlier section called Client Affinity and Db2dsdriver.cfg. Figure14 shows a multiple standby setup, where the principal
standby is dedicated for high availability and the two auxiliary standbys servicing read-only clients in addition to providing
disaster recovery.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 26 of 43

IBM Software
Information Management
White Paper

Figure 14 Multiple standby with read enabled standbys

Best Practice: Enable read-only workloads on auxiliary standbys to ensure zero impact on the principal standby.

12 Rolling upgrade
DB2 HADR provides high availability while updating software, hardware, database system, and database configurations without
any impact to business applications. Business applications experience only a momentary service interruption when they are
switched from one database server to the other. Having multiple standbys offers high availability and disaster recovery
throughout the rolling upgrade process. The procedure for rolling upgrade is similar to single standby. Figure 15 shows the
sequence of steps for upgrading the HADR servers.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 27 of 43

IBM Software
Information Management
White Paper

Figure 15 Rolling upgrade support

For example, assume that you have a two standby HADR environment where A is primary, B is principal standby, and C is an
auxiliary standby. The steps for rolling upgrade are:

T1. Upgrade the auxiliary standby C and then activate C.
T2. Upgrade principal standby B, then activate B.
T3. Initiate a graceful takeover on principal standby B. The database B is the new primary. The new standby A is disconnected
because it is still on older release. Standby C is automatically reconfigured to connect to new primary B.
T4. Upgrade A, then activate A. database A connects to the current primary B as a standby. All databases are now upgraded.
T5. Optionally issue a graceful takeover on standby database A to restore A role as primary. Standby C is automatically
redirected to new primary A.

See "Performing rolling updates and upgrades in a DB2 High Availability Disaster Recovery (HADR) environment” section in the
DB2 info center for more detail.

13 Log spooling
A buffer is used on the standby database to receive log data sent by the primary. The log data is kept in the buffer to facilitate
log replay. If log replay on standby is slow, this buffer can become full. Unless SUPERASYNC is used, new transactions on the
primary can be blocked because it is not able to send log data to the standby if there is no room in the buffer to receive the data.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 28 of 43

IBM Software
Information Management
White Paper

Log spooling is a new feature in DB2 Version 10.1. Use this feature to have transactions on the primary to make progress
without waiting for the log replay on the standby. Log data that is sent by the primary is written, or spooled, to disk on the
standby if it falls behind in log replay. The standby can later on read the log data from disk. This configuration allows the system
to better tolerate either a spike in transaction volume on the primary, or a slowdown of log replay (due to the replay of particular
type of log records) on the standby. This feature can be used in both single and multiple standby environments.

When making use of log spooling, ensure that adequate disk space is provided to the active log path of the standby database to
hold the spooled log data, in addition to the disk space required for active logs (which is determined by the logprimary,
logsecond, and logfilsiz configuration parameters).

You enable log spooling by setting the hadr_spool_limit database configuration parameter. It specifies an upper limit on
how much data is written, or spooled, to disk if the log receive buffer fills up. The default value of 0 means no spooling. The
special value of -1 means unlimited spooling. Data can be spooled up to the amount of disk space available in the active log
path.

When configuring log spooling, in addition to the extra disk space requirement on standby, you should also consideration that
there could be a large gap between the received and replayed log positions on the standby. This large gap can lead to a longer
takeover (forced and graceful) time because the standby must finish replaying all spooled logs (logs in the gap) before it
changes into primary role.

Using log spooling does not compromise the data protection provided by the HADR feature. Data from the primary is still
replicated in the form of logs to the standby using the specified synchronization mode; it just takes time to apply (through log
replay) the data to the table spaces.

13.1 Why enable log spooling?
Log spooling allows larger variations in primary logging rate. In SYNC, NEARSYNC, and ASYNC modes, it can absorb large
load spikes in primary workload. SUPERASYNC mode allows large spikes even without spooling since it uses the primary as a
spool. Figure 16 shows an example. During the spike, primary logging rate is much higher than standby replay rate. Standby
receives the logs and spools the extra logs for later replay. A larger standby received/replay log gap is expected during the
spike. The spooled logs are replayed when primary logging rate slows down. Without spooling, received logs are buffered only in
memory and received/replay log gap is limited to the receive buffer size (controlled by registry variable DB2_HADR_BUF_SIZE),
which is generally much smaller than spooling device size.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 29 of 43

IBM Software
Information Management
White Paper

Figure 16 Effect of log spooling on logging and replay rate

13.2 Estimating amount of time to replay through the spool
The average log replay speed on standby can be estimated by doing the following things:

• Shutting down standby for a while.
• Running workload while standby is down.
• Activating the standby database and immediately collect the value of primary log position (value A) as well as standby

log replay position (value B)
• Measuring the time it takes for standby replay position to reach value A
• Determining the average log replay speed. Average log replay speed = (A – B) / (time for standby replay to reach A).

After you know the replay speed and maximum toleration for takeover time, you can use the following calculation to determine
the value to use for hadr_spool_limit configuration parameter:

replay speed (in bytes/sec) * max toleration for longest takeover time (in secs) / 4096 (bytes/page)

If a takeover is required, use the db2pd -hadr command just before the takeover command to determine how much log data is
currently spooled. This determination helps you predict of how much time the takeover will take. During the takeover execution,
use the db2pd -hadr command to monitor its progress in replaying the spool.

13.3 SUPERASYNC versus log spooling
Using the SUPERASYNC synchronization mode can also avoid the pressure on the primary that can be caused by slow standby
log replay. The advantages of using SUPERAYNC are as follows:

• SUPERASYNC can avoid back-pressure on the primary caused by slow or unreliable network.
• SUPERASYNC can be viewed as unlimited spooling. There is no back-pressure regardless of availability of disk space

on standby, or other limit imposed by user by using the hadr_spool_limit configuration parameter.

The disadvantages of SUPERASYNC are as follows:
• SUPERASYNC provides weaker data protection than other synchronization modes, while log spooling can be used with

SYNC, NEARSYNC, and ASYNC modes to provide stronger protection.
• A SUPERASYNC standby can fall far behind the primary because there is no limit at all. This situation can result in very

long graceful takeover time.

These two features are not mutually exclusive. In fact, enabling log spooling on standby using SUPERASYNC might provide the
best combination of minimal impact to primary performance as well as minimize the data lost in the event of primary outage.

14 Delayed log replay on standby
Normally, in HADR, logs on primary are shipped to the standbys as soon as possible, and logs are replayed on the standbys as
soon as possible. An errant transaction on the primary can be shipped and replayed on the standbys within seconds. An
example of an errant transaction is "DELETE FROM current_sales", where valuable data is accidentally deleted. Recovering
from an errant transaction can be costly. You might have to restore an earlier backup image and roll forward to a point in time
right before the errant transaction and experience a large outage.

The delayed log replay feature of HADR was added in DB2 Version 10.1 and was designed to make recovering from errant
transactions easy. When delayed log replay is configured, the standby does not commit a transaction until the configured replay
delay time has passed since the transaction commit time on the primary. For example, if a transaction is committed on the
primary at 5:00, and delayed replay is configured to be 1 hour, the transaction is guaranteed not to be committed on the standby
before 6:00. In other words, standby replay is intentionally kept behind the primary. The standby still receives as much log data
as possible when delayed replay is enabled to prevent back pressure on the primary. Log receive is blocked only when the log
receive buffer and log spool are filled.

Figure 17 shows a hypothetical multiple standby environment with one standby configured on host beaverton-b for high
availability. This is the principal standby and it runs in SYNC mode with no delayed replay. An additional standby
is configured at the Portland campus. This standby has delayed replay configured to maintain a window of recoverability from

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 30 of 43

IBM Software
Information Management
White Paper

errant transactions on the primary, and has also enabled log spooling to accommodate the additional log data that accumulates
in the replay delay period.

Figure 17 HADR delayed replay

As shown in figure 17, a two hour delayed replay window is defined for the auxiliary standby at the Portland campus. The
standby is currently receiving logs generated at 3:30. An errant transaction was issued on the primary at time 3:16 (the lightning
bolt) which has been shipped to the standby, but not replayed. Logs generated at time 1:25 are currently being replayed, and the
standby can currently replay only logs older than current_time minus the hadr_replay_delay value, which is 3:30 - 2 hours
(all logs older than 1:30). The logs with commit times in the time delay window (red zone), including the errant transaction, are
currently protected by delayed replay. HADR can be stopped on this system and the database can be manually rolled forward to
point in time 3:15 to avoid replaying the errant transaction.

The PRIMARY_LOG_TIME, STANDBY_LOG_TIME, and STANDBY_REPLAY_LOG_TIME fields in db2pd -hadr command and
MON_GET_HADR table function report transaction time. They can be used to monitor delayed replay operation.

Only transaction commit is held back on the standby. The data changes of a transaction are not held back. This is OK because
the transaction can be rolled back during the errant transaction recovery process. Because reads on standby sees uncommitted
transactions, data returned from reads on standby might not reflect the delay effect. It may see the errant transaction before it is
rolled back if the recovery process was invoked to avoid the errant transaction.

Configuring delayed log replay
To configure a standby system for delayed log replay you must set the hadr_replay_delay database configuration parameter
and restart HADR for the value to take effect. The hadr_replay_delay configuration parameter can be set only on a standby
that is in SUPERASYNC synchronization mode. You cannot set the parameter on a primary database. The parameter is
specified in units of seconds, so for the two hour replay delay shown in figure 17, hadr_replay_delay would be set to 7200
seconds as follows:

 UPDATE DB CFG FOR DB hadrdb USING hadr_replay_delay 7200
 DEACTIVATE DB hadrdb
 ACTIVATE DB hadrdb

You can disable delayed log replay by setting the delayed replay time to 0.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 31 of 43

IBM Software
Information Management
White Paper

 UPDATE DB CFG FOR DB hadrdb USING hadr_replay_delay 0
 DEACTIVATE DB hadrdb
 ACTIVATE DB hadrdb

Clock Synchronization
Delayed replay works by comparing timestamps in the log records (shipped from the primary, so based on primary clock) and
the current system time of the standby. As a result, it is very important to synchronize the clocks of the primary and standby
databases. Transaction commit is replayed on the standby according to the following equation:

 (current time on the standby - hadr_replay_delay time) >= timestamp of the committed log record)

14.1 Log spooling consideration for delayed replay
If you enable delayed replay, also enable log spooling by setting the hadr_spool_limit database configuration parameter.
Because of the intentional delay of replay, the replay position can be far behind log receive position on the standby. Without log
spooling, log receive is bottlenecked by the size of the receive buffer. With spooling enabled the standby can receive many more
logs beyond the replay position, providing greater protection against data loss in case of primary failure. Because of the
mandatory SUPERASYNC mode, the primary is not blocked by enabling delayed replay.

14.2 Takeover and delayed log replay
Takeover is not allowed on a standby with delayed replay enabled. In order to initiate a takeover, you must first disable delayed
log replay as described in the configuration section above. If you attempt to issue a takeover before disabling delayed log replay,
you will get a SQL1770N error code with reason code 11.

In addition, a takeover operation must replay through all received logs. Since delayed log replay, by nature, accumulates logs,
there can be a large amount of log data to replay during the takeover operation. The time to replay these logs increases with the
delay amount, log spool size, and log generation rate on the primary. There is therefore a tradeoff between takeover
performance and the added protection of delayed replay.

14.3 Errant transaction recovery process
In the earlier example, an errant transaction is received by the standby at time 3:16 but is not committed on the standby until
5:16. If you catch the error on the primary before 5:16, you can recover using the following process:

• You notice errant transaction on the primary.
• You check that the errant transaction has made it to the standby, but has not yet been replayed. This can be done by

looking at the STANDBY_REPLAY_LOG_TIME and making sure it has not reached the errant transaction commit time,
and looking at the standby STANDBY_LOG_TIME (logs received) to ensure that the errant transaction has been
received. The times are reported by table function and db2pd (see the earlier monitoring section). If the standby has not
received enough log files, you can wait for more logs to be shipped over, but run the risk of replay time reaching errant
transaction time. For example, if the delay is 1 hour, you should stop HADR no later than 50 minutes after the errant
transaction (10 minutes safety margin), even if log shipping has not reached the desired point in time (PIT). You can
stop HADR early and manually copy additional primary log files over if they have not made it to the standby before the
errant transaction commit time falls outside the replay window. In a typical scenario, you have the following times listed
from most recent to earliest:

o PRIMARY_LOG_TIME
o STANDBY_LOG_TIME (logs received)
o Errant transaction commit time
o Desired rollforward point in time
o STANDBY_REPLAY_LOG_TIME

• When you are certain that logs for the desired rollforward point in time have been received by the standby, but not
replayed, deactivate the standby and issue the STOP HADR command. The database is then in standard role.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 32 of 43

IBM Software
Information Management
White Paper

• Roll forward the standby to the desired point in time and stop. The database is then a normal database that can be
activated and used. It is in the exact same state that the primary database was in at time PIT (prior to the
errant transaction).

• At this point there are 2 options for re-establishing HADR:
o You can use this database as the new primary database. Direct clients to this database and reinitialize the old

primary (and other standbys) as a standby by restoring from a backup image taken on this new primary.
o Copy the affected data from this database back to primary (for example, by exporting and importing the table

current_sales in the example). After the data is manually restored on the primary, reinitialize this standby by
restoring from a backup image taken on the primary. This standby must be reinitialized because it is no longer
in rollforward mode and might have generated its own log records (undo records) during rollforward stop. It has
diverged from the primary log stream. If other standbys exist, the missing data is reapplied to them when it is
updated on the primary through the import, so no re-initialization is required on the other standbys.

15 NAT - Network Address Translation
Normally, HADR does a cross-check of local and remote addresses on primary and standby at HADR connection time. The
following check is done (the check compares IP address rather than the original string in the hadr_local_host parameter and
the hadr_remote_host parameter):

HADR local address for primary = HADR remote address for standby
 and
HADR local address from standby = HADR remote address for primary

When registry variable DB2_HADR_NO_IP_CHECK is set, this cross-check is skipped. This configuration is usually used only in
NAT (network address translation) scenarios where a host might be seen with different IP addresses locally and remotely. For
example, host A and B might be known as A and B locally, but to connect to each other, they have to use the address A' and B'.

Database on A (primary)
hadr_local_host hadr_remote_host hadr_target_list
A B’ B

Database on B (standby)
hadr_local_host hadr_remote_host hadr_target_list
B A’ A

In NAT scenario, DB2_HADR_NO_IP_CHECK should be set on both primary and standby instances. In multiple-standby set up,
it should be set on all databases that might be making a connection to another database across a NAT boundary. If a database
never crosses a NAT boundary to connect to another database (no such link is configured), then it does not need to have this
parameter set. Setting this parameter bypasses certain checks, making DB2 configuration checking weaker.

The hadr_target_list parameter value in NAT
In a NAT multiple standby setup, each standby hadr_local_host and hadr_local_svc parameter values must be listed in
the hadr_target_list parameter on the primary. In the above example, A lists B in the hadr_target_list parameter, but
use B' for its hadr_remote_host parameter value. When a standby connects, the primary finds the hadr_local_host and
hadr_local_svc values of the standby in its hadr_target_list value and accept the connection.

Normally, On start up in multiple standby mode, a standby checks that its hadr_remote_host and hadr_remote_svc values
are in its hadr_target_list value, to ensure that on role switch, the old primary can become a new standby. In NAT
scenarios, the check fails (A' is different from A). Thus the registry variable DB2_HADR_NO_IP_CHECK must be set to bypass
this check. At connection time, a standby checks that the values of hadr_local_host and hadr_local_svc from the
primary are in its hadr_target_list. The check ensures role switch can still succeed on this pair.

HADR Automatic Reconfiguration in NAT
Automatic reconfiguration is disabled when NAT is enabled. A primary does not automatically set its hadr_remote_host and
hadr_remote_svc values to its principle standby, and a standby cannot be automatically redirected to the primary.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 33 of 43

IBM Software
Information Management
White Paper

16 Monitoring
In DB2 Version 10.1, HADR monitoring has been enhanced to support multiple standby databases, as well as provide better
performance monitoring for single and multiple standby systems.

A new table function, MON_GET_HADR has been added. The db2pd -hadr command content and format has been updated.
The two interfaces return identical information. The table function uses standard SQL interface, so it is very flexible. It can be
queried from any SQL client and the output can be further processed by SQL filter, join, aggregate, and so on. In comparison,
the db2pd command can be issued only on the database host machine. But the db2pd command is lightweight, works on
databases with reads on standby disabled, and can be incorporated into administration scripts. All old interfaces such as the
CLP database snapshot command, SNAPHADR view, SNAP_GET_HADR table function, and snapshot monitor element API
have been deprecated for HADR monitoring.

Best Practice: Unless reads on standby is enabled, the table function cannot be issued to a standby database. Monitor from the
primary, or using the db2pd command.

Best Practice: During takeover, use the db2pd command over table functions for the following reasons:

• Connections are forced off the old primary.
• Connections are forced off the old standby, if reads on standby is enabled.
• The old primary might turn into a standby that does not support reads on standby.
• There might be a short time when both databases are in standby roles.

16.1 Monitoring Multiple Standbys
When the MON_GET_HADR table function or the db2pd -hadr command is issued to the primary database, information about
all standbys is returned. Deprecated interfaces, like snapshot, report only the principal standby.

The MON_GET_HADR table function returns rows, each representing a primary-standby log shipping channel. For the db2pd
command, repeating sections are used to represent multiple channels.

Best Practice: On a standby, monitoring returns only information about the standby and the primary. No information about other
standbys is reported. Use the primary as the central location for HADR monitoring.

16.2 Reporting Remote Information
As part of DB2 Version 10.1 enhancement, the primary and standby exchange monitoring information on each heartbeat
message. Thus information about remote databases is also available locally, with a small delay of no more than the heartbeat
interval. The heartbeat interval is capped at 30 seconds and the heartbeat interval is also reported in the monitoring.

Certain monitoring fields are applicable to either the primary or standby only. For example, PEER_WAIT_LIMIT is applicable
only to primary, STANDBY_RECV_BUF_SIZE, READS_ON_STANDBY_ENABLED are applicable only to standby. When this
kind of role-specific information is reported, it is on data from the database currently in this role (which may be the remote
database), rather than the local database. For example, PEER_WAIT_LIMIT seen on a standby database is the value
configured on the primary database, not the standby local configuration (which is used only when the standby turns into a
primary).

16.3 Unit of Time
According to monitor table function convention, all MON_GET_HADR time duration fields use milliseconds as their unit. For
those fields reflecting a configuration parameter (such as hadr_timeout or hadr_peer_window) whose unit of configuration
is seconds, the number returned by MON_GET_HADR table function is different from the number used in GET DB CFG or
UPDATE DB CFG command, or the number returned by SYSIBMADM.DBCFG admin view, or SYSPROC.DB_GET_CFG()
table function. For example, for a hadr_timeout value configured to 60 seconds, MON_GET_HADR returns 60000, while the
configuration-oriented interfaces return 60.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 34 of 43

IBM Software
Information Management
White Paper

16.4 Sample MON_GET_HADR output

Example 1:

The following query is issued on a primary database with three standbys. Three rows are returned. The HADR_ROLE column
represents the role of the database to which the query is issued. Therefore it is PRIMARY on all rows.

db2 "select HADR_ROLE, STANDBY_ID, HADR_STATE, varchar(PRIMARY_MEMBER_HOST,20) as PRIMARY_MEMBER_HOST,
varchar(STANDBY_MEMBER_HOST,20) as STANDBY_MEMBER_HOST from table (mon_get_hadr(NULL))"

HADR_ROLE STANDBY_ID HADR_STATE PRIMARY_MEMBER_HOST STANDBY_MEMBER_HOST
------------- ---------- ----------------------- -------------------- --------------------
PRIMARY 1 PEER beaverton-a beaverton-b
PRIMARY 2 REMOTE_CATCHUP beaverton-a portland
PRIMARY 3 REMOTE_CATCHUP beaverton-a toronto

3 record(s) selected.

Example 2:

The following query is issued to a standby database (with reads on standby enabled). The standby knows only about its own
primary. Only one row is returned even if the standby is part of a multiple standby system. STANDBY_ID is always zero when a
query is issued to a standby.

db2 "select HADR_ROLE, STANDBY_ID, HADR_STATE, varchar(PRIMARY_MEMBER_HOST,20) as PRIMARY_MEMBER_HOST,
varchar(STANDBY_MEMBER_HOST,20) as STANDBY_MEMBER_HOST from table (mon_get_hadr(NULL))"

HADR_ROLE STANDBY_ID HADR_STATE PRIMARY_MEMBER_HOST STANDBY_MEMBER_HOST
------------- ---------- ----------------------- -------------------- --------------------
STANDBY 0 PEER beaverton-a beaverton-b

1 record(s) selected.

16.5 The db2pd command
The db2pd -hadr command returns the same information as the MON_GET_HADR table function. For ease of use, fields not
relevant to current status might be omitted in db2pd output. For example, standby-replay-only window fields are shown only
when reads on standby is enabled.

Timestamps are printed in the local time zone. The integer in parentheses is the internal representation, typically the number of
seconds since Jan 1,1970. This number is included for easy time arithmetic. Subsecond information is shown only in the
formatted timestamp.

The output format of the db2pd -hadr command has changed in DB2 Version 10.1. It is now using “one field per line” format
(similar to db2 CLP snapshot output) for easy reading and parsing. Sample output from a 2-standby system follows.

 Database Member 0 -- Database HADRDB -- Active -- Up 0 days 00:23:17 -- Date 06/08/2011 13:57:23

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SYNC
 STANDBY_ID = 1
 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 PRIMARY_MEMBER_HOST = beaverton-a
 PRIMARY_INSTANCE = dbinst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = beaverton-b

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 35 of 43

IBM Software
Information Management
White Paper

 STANDBY_INSTANCE = dbinst2
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 06/08/2011 13:38:10.199479 (1307565490)
 HEARTBEAT_INTERVAL(seconds) = 25
 HADR_TIMEOUT(seconds) = 100
 TIME_SINCE_LAST_RECV(seconds) = 3
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516
 LOG_HADR_WAIT_COUNT = 82
 SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 50772
 SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87616
 PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_RECV_BUF_SIZE(pages) = 16
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 PEER_WINDOW(seconds) = 0
 READS_ON_STANDBY_ENABLED = Y
 STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SUPERASYNC
 STANDBY_ID = 2
 LOG_STREAM_ID = 0
 HADR_STATE = REMOTE_CATCHUP
 PRIMARY_MEMBER_HOST = beaverton-a
 PRIMARY_INSTANCE = dbinst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = portland
 STANDBY_INSTANCE = dbinst3
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 06/08/2011 13:35:51.724447 (1307565351)
 HEARTBEAT_INTERVAL(seconds) = 25
 HADR_TIMEOUT(seconds) = 100
 TIME_SINCE_LAST_RECV(seconds) = 16
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516
 LOG_HADR_WAIT_COUNT = 82
 SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 36 of 43

IBM Software
Information Management
White Paper

 SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
 STANDBY_RECV_BUF_SIZE(pages) = 16
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 0
 PEER_WINDOW(seconds) = 0
 READS_ON_STANDBY_ENABLED = N

16.6 Common monitoring questions and answers
For complete description of all fields, see DB2 Information Center.

Is the standby and its replay keeping up with the primary?

Check the primary, standby receive, and standby replay log positions. Both byte offset and transaction time are reported. The
average gap between the primary position and the standby receive position and the average gap between the standby receive
and the replay positions are also reported. The relevant fields are:

• Primary log position and time: PRIMARY_LOG_FILE, PRIMARY_LOG_PAGE, PRIMARY_LOG_POS,
PRIMARY_LOG_TIME

• Standby log receive position and time: STANDBY_LOG_FILE, STANDBY_LOG_PAGE, STANDBY_LOG_POS,
STANDBY_LOG_TIME

• Standby log replay position and time: STANDBY_REPLAY_LOG_FILE, STANDBY_REPLAY_LOG_PAGE,
STANDBY_REPLAY_LOG_POS, STANDBY_REPLAY_LOG_TIME

• Primary position / standby receive position gap: HADR_LOG_GAP
• Standby receive position / standby replay position gap: STANDBY_RECV_REPLAY_GAP

Is primary logging blocked by HADR?
Check the LOG_HADR_WAIT_CUR field. This field shows how long the logger has been waiting on an HADR log shipping
request. Zero or a small number (typically no more than a few milliseconds) is good. If the logger is blocked, this field grows in
real time. For example, it shows 2 seconds in one query, and 12 seconds in a query issued 10 seconds later.

What is the impact of HADR on database logging?
Check LOG_HADR_WAIT_ACCUMULATED and LOG_HADR_WAIT_COUNT. While LOG_HADR_WAIT_CUR shows the
current wait, these two fields show the accumulated wait. Using the accumulated time and the count together, you can compute
average wait per log write for any given interval. For your convenience, the db2pd command also reports the recent average
wait (averaged over the last a few seconds) as LOG_HADR_WAIT_RECENT_AVG. The recent average is not reported by the
table function because the table function is intended as an API to provide raw data for tools to compute their own average in
arbitrary interval.

The HADR wait time is more meaningful when compared to disk write time. Disk write time and count is reported by using the
LOG_WRITE_TIME and NUM_LOG_WRITE_IO field from table function MON_GET_TRANSACTION_LOG. For example, the
data might show that each write takes 4 milliseconds for disk write and 1.5 milliseconds for HADR wait, for a total of 5.5
milliseconds.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 37 of 43

IBM Software
Information Management
White Paper

For SUPERASYNC synchronization mode, the logger does not enter peer state, so HADR has no direct impact on the logger.
No HADR wait time is reported. There might be indirect impact such as adding more read load on the logging disk, therefore
slowing down log write.

Why is the primary blocked or slow?
Check STANDBY_RECV_BUF_PERCENT. If it frequently hits 100%, it means that replay is slow and the receive buffer is full.
That is, the replay cannot consume received data fast enough. When the receive buffer is full, the standby cannot receive more
data and the primary is blocked. If it is usually low, then the network is likely to be the culprit. That is, the primary just cannot
push out data fast enough.

When log spooling is enabled, the receive buffer should rarely become full because buffers are released even before they are
replayed. But if the spool limit is reached or the spool device is full, then the receive buffer can still fill up and the primary is still
blocked.

How much spool space is the standby using?
Use this formula to calculate how much spool space is being used:
(STANDBY_LOG_POS - STANDBY_REPLAY_LOG_POS) / 4096 - STANDBY_RECV_BUF_SIZE *
STANDBY_RECV_BUF_PERCENT

The LOG_POS fields are in unit of bytes, while STANDBY_RECV_BUF_SIZE is in unit of pages (4096 bytes per page). The
result shows the number of pages currently used by spooling. Compare it to STANDBY_SPOOL_LIMIT and you will know how
close spooling is to the limit. Because the numbers are not read atomically, it is possible that the formula returns a negative
number, which just means little or no spooling space is used.

17 Multiple standby performance
The addition of a second or third standby to a multiple standby HADR configuration should have negligible impact on
performance on the primary and no impact on performance on the existing standby. To study the effect on performance, an
OLTP workload was executed on the primary, with each synchronization mode, when two and three standbys were configured.
The results were normalized to the performance achieved when one standby was configured with each synchronization mode.
The performance impact on the primary (with each synchronization mode) after the additional of each standby was
approximately 3% as shown in Figure 18. There was also no effect on the existing standby after configuring the additional
standbys.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 38 of 43

IBM Software
Information Management
White Paper

Figure 18 Effect on Primary Performance with Multiple Standbys

18 Conclusion
The HADR multiple standby feature, available from DB2 Version 10.1, allows you to set up to three standby targets, and offers
both a high availability and disaster recovery solution for site failures. Whether you are constructing a brand new multiple
standby configuration or converting from single to multiple standbys, proper planning of resources such as processors, memory,
disks, and network is crucial for good performance. Adding or dropping additional standbys can be done dynamically as well as
automatic client reroute. Reads on standby, delayed replay, and rolling updates are all supported. DB2 Version 10.1 also offers
a new feature called log spooling which can be configured on any standby. DB2 Version 10.1 also provides new monitoring
facilities that can help diagnose performance problems in single and multiple standby HADR environments. However, in a
performance study it was observed that the performance impact on the primary after configuring each additional standby was
approximately 3%.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 39 of 43

IBM Software
Information Management
White Paper

19 Acknowledgement

Bruce Jackson has worked in enterprise
software development with Informix
Software and IBM since 1999. He has
worked on the design and development of
multiple high availability products in IBM,
including clustered SAN file systems, DB2
pureScale, HACMP, and DB2 HADR. He
has also worked on standards based open
systems storage management solutions.

Dale McInnis is a Senior Technical Staff
Member (STSM) at the IBM Toronto
Canada lab. He has a B.Sc.(CS) from the
University of New Brunswick and a Masters
of Engineering from the University of
Toronto. Dale joined IBM in 1988, and has
been working on the DB2 development
team since 1992. Dale's area of expertise
includes DB2 for LUW Kernel development,
where he led teams that designed the
current backup and recovery architecture
and other key high availability and disaster
recovery technologies. Dale is a popular
speaker at the International DB2 Users
Groups (IDUG) conferences worldwide, as
well as DB2 Regional users groups and
IBM's Information On Demand (IOD)
conference. His expertise in the area DB2
availability area is well known in the
information technology industry. Dale
currently fills the role of DB2 Availability
Architect at the IBM Toronto Canada Lab.

Effi Ofer has played key roles in the
development of DB2 in areas such as
transaction management, high availability,
recovery, indexing and concurrency. Most
recently he led the multiple standby team.

Nailah Ogeer Bissoon is currently a
performance technical team lead for the
DB2 performance quality assurance team.
Nailah joined the IBM Toronto Lab in 2004
and has worked on several DB2
performance benchmark publications and
used this skill set to diagnose and fix
performance related problems in the field.
Ensuring that DB2 remains as one of the
top performers among DBMSs is vital to her
role.

Punit Shah has extensive experience in
database architecture, workload
optimization, performance and system
virtualization. He has written extensively on
variety of technology topics. He has been a
member of DB2 recovery development
team and recently contributed to the shared
disk backup and recovery solution in DB2
Version 9.8 and the HADR development for
future releases.

Roger Zheng is a master innovator and a
world authority on the design and
implementation of logging, locking, recovery
and transaction management algorithms.
Roger currently provides leadership to a
number of DB2 Kernel teams, including
HADR.

Vincent Kulandai Samy is a DB2 kernel
developer in IBM Beaverton Lab, working
on DB2 LUW kernel development for the
past 10 years. He came to IBM as part of
the Informix acquisition. Prior to the
Informix acquisition, he was working on
Informix IDS and XPS database kernel. His
areas of expertise are database kernel,
DB2 HADR, Multi-Temperature Warehouse,
Linux kernel internals, and kernel
debugging. For the past three years,
Vincent has also been championing several
DB2 HADR adoptions and new
sale/deployments through on-site customer
visits, consultancy, and customer advocacy.

Yuke Zhuge has been in the database
industry for more than 15 years. He worked
at Informix Software from 1995 to 2000. He
has been working at IBM since 2000. He
was one of the initial creators of DB2 HADR
and has been the HADR component owner
since its initial release. He is now leading
the HADR team to add more exciting
features.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 40 of 43

IBM Software
Information Management
White Paper

We would like to thank Lindsay Hemms, Matthew Huras, Rob Causley, and Steven Pearson for their editorial contributions. We
also thank Shayan Talaiyan for his help setting up the performance test environments.

20 References
Automated Cluster Controlled HADR (High Availability Disaster Recovery) Configuration Setup using the IBM DB2 High
Availability Instance Configuration Utility (db2haicu):
http://download.boulder.ibm.com/ibmdl/pub/software/dw/data/dm-0908hadrdb2haicu/HADR_db2haicu.pdf

Configuring a clustered environment using DB2 High Availability Instance Configuration Utility (db2haicu):
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.ha.doc/doc/t0052800.html

HADR simulator:
http://www.ibm.com/developerworks/wikis/display/data/HADR_sim

21 For more information
To learn more about the value of renewing your
IBM software subscription and support, contact your
IBM sales representative or IBM Business Partner, or visit:
ibm.com/software/

To learn more about the IBM Support Portal, visit:
ibm.com/support/

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 41 of 43

http://www.ibm.com/developerworks/wikis/display/data/HADR_sim
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.ha.doc/doc/t0052800.html
http://download.boulder.ibm.com/ibmdl/pub/software/dw/data/dm-0908hadrdb2haicu/HADR_db2haicu.pdf

IBM Software
Information Management
White Paper

Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your
local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS
IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

Without limiting the above disclaimers, IBM provides no representations or warranties regarding the accuracy,
reliability or serviceability of any information or recommendations provided in this publication, or with respect to
any results that may be obtained by the use of the information or observance of any recommendations
provided herein. The information contained in this document has not been submitted to any formal IBM test
and is distributed AS IS. The use of this information or the implementation of any recommendations or
techniques herein is a customer responsibility and depends on the customer’s ability to evaluate and integrate
them into the customer’s operational environment. While each item may have been reviewed by IBM for
accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained
elsewhere. Anyone attempting to adapt these techniques to their own environment do so at their own risk.

This document and the information contained herein may be used solely in connection with the IBM products
discussed in this document.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an
endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites
is at your own risk.
IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific
environment.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 42 of 43

IBM Software
Information Management
White Paper

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as
completely as possible, the examples include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used by an actual business enterprise
is entirely coincidental.

COPYRIGHT LICENSE: © Copyright IBM Corporation 2011. All Rights Reserved.
This information contains sample application programs in source language, which illustrate programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United
States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information with a
trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is
available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml
Windows is a trademark of Microsoft Corporation in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Other company, product, or service names may be trademarks or service marks of others.

DB2 HADR Multiple Standby
© Copyright IBM Corp. 2012. All rights reserved Page 43 of 43

	1 Executive Summary
	2 Business value of HADR
	3 Introduction to multiple standby
	3.1 Principal standby versus auxiliary standby
	3.2 Multiple standby example

	4 Planning for multiple standbys
	4.1 How many standbys?
	4.2 Performance impact on primary
	4.3 Network bandwidth requirement

	5 Configuring multiple standby
	5.1 hadr_target_list
	5.2 Syntax and IP version compatibility
	5.3 Configuration example
	5.4 Effect of configuration change
	5.5 Effective versus configured synchronization mode
	5.6 Effective versus configured peer window
	5.7 Automatic reconfiguration for hadr_remote_host, hadr_remote_svc and hadr_remote_inst

	6 Setting up a multiple standby system
	7 Adding and dropping standby targets
	7.1 Adding a standby target dynamically
	7.2 Dropping a standby target dynamically

	8 Takeover
	8.1 Automatic redirection of standby targets after takeover
	8.2 Automatic reconfiguration after takeover
	8.3 Dual primary detection

	9 Automation
	9.1 Client reroute after takeover
	9.2 Integrated cluster manager

	10 Log archiving considerations
	10.1 Configuring log archiving on all databases
	10.2 Log file management on standby
	10.3 Shared versus separate log archive
	10.4 How to recognize primary is not able to find log file needed by standby
	10.5 Setting up shared log archive on Tivoli Storage Manager

	11 Reads on standby
	12 Rolling upgrade
	13 Log spooling
	13.1 Why enable log spooling?
	13.2 Estimating amount of time to replay through the spool
	13.3 SUPERASYNC versus log spooling

	14 Delayed log replay on standby
	14.1 Log spooling consideration for delayed replay
	14.2 Takeover and delayed log replay
	14.3 Errant transaction recovery process

	15 NAT - Network Address Translation
	16 Monitoring
	16.1 Monitoring Multiple Standbys
	16.2 Reporting Remote Information
	16.3 Unit of Time
	16.4 Sample MON_GET_HADR output
	16.5 The db2pd command
	16.6 Common monitoring questions and answers
	Is the standby and its replay keeping up with the primary?
	Is primary logging blocked by HADR?
	What is the impact of HADR on database logging?
	Why is the primary blocked or slow?
	How much spool space is the standby using?

	17 Multiple standby performance
	18 Conclusion
	19 Acknowledgement
	20 References
	21 For more information

