

IBM Software Group - Information Management

IBM Chat with Lab for Greater China Group

Executive introduction (audio)

Sal Vella, Vice President, Development, Distributed Data Servers and Data Warehousing

Presentation: Monitoring and Tuning DB2 System Performance

Guiyun Cao, IBM DB2 performance analyst

•Host: Frank Ning, Manager, DB2 LUW Install and Up/Running Development

© 2010 IBM Corporation

Executive Introduction

Sal Vella

Vice President, Development, Distributed Data Servers and Data Warehousing

IBM Software Group

IBM Software Group - Information Management

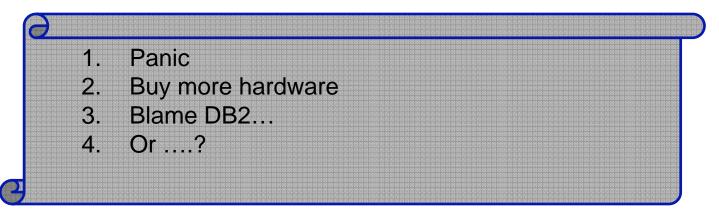
Monitoring and Tuning DB2 System Performance

- Chat with the Toronto Lab for the Greater China Group

Guiyun Cao, IBM DB2 performance analyst and the DB2 Toronto Lab team

© 2010 IBM Corporation

Agenda

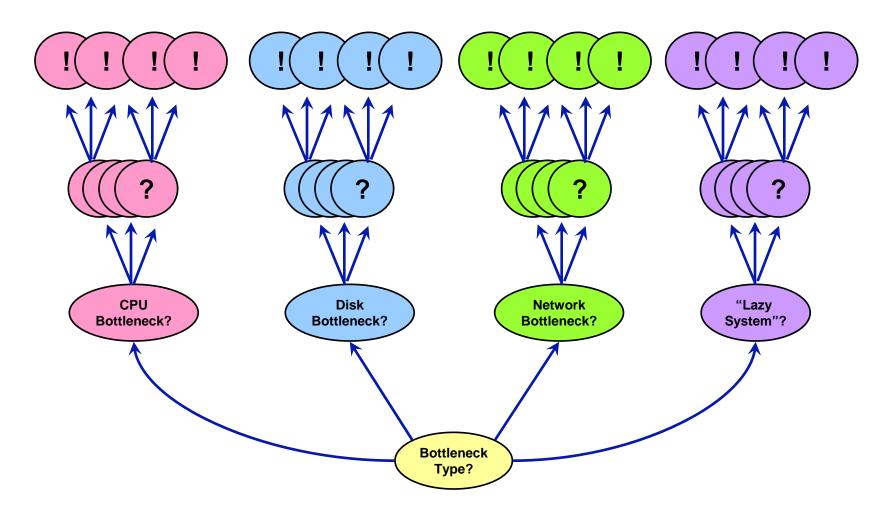

- Determining the system bottleneck
- Addressing the bottleneck
 - Types of bottlenecks
 - Refining the diagnosis
 - Responding to the problem
- Some best practices for DB2 performance

Why have this chat on DB2 Performance?

- Performance issue can occur almost anywhere in a system.
- What to do?

What Data Might You Need?

- Configuration data
 - DB & DBM configuration parameters
 - DB2 registry variables (db2set –all)
 - Schema definition with db2look
- Runtime data
 - Db2 get snapshot for all on <dbname>
 - Event monitor for statements and deadlocks
 - Statement plans (explain tables or db2expln)
 - Operating system data
 - vmstat, iostat, sar, perfmon, truss, strace, ...
 - Application throughput / response time



				_
		_		
				_
		_	_	_
	_	_		
_	_	_		_
_		_		_

What Bottleneck in the system?

Basic Bottlenecks

Resource Bottleneck	Basic Symptoms
Disk	 I/O wait seen in vmstat (wa)/ iostat / perfmon / top Disk > 80% busy seen in iostat or perfmon Long device queues seen in perfmon
CPU	 Total CPU utilization near 100% seen in vmstat / perfmon One process/thread steadily consuming one CPU/core
Memory	 Low free memory seen in vmstat (fre) / perfmon Swapping reported in vmstat (pi/po) / perfmon
Network	 See following pages

vmstat sample

r b avm fre re pi po fr sr cy in sy cs us sy id wa 2 0 1459870 35479 0 0 0 0 0 0 1587 16040 4106 24 7 15 54 1 0 1461205 34141 0 0 0 0 0 0 1670 12105 3964 20 3 22 55

Basic Bottlenecks

Non-Resource Bottleneck	Basic Symptoms
Locking	 High total lock wait time seen in DB2 snapshot Many processes in lock wait state seen in DB2 snapshot Low CPU consumption seen in vmstat
External Factors	 E.g. copy large files to different systems, batch jobs, etc

		_	
		_	
	-	_	-
	_	_	

Disk Bottleneck - Mapping Hot Devices to DB2 Entities

Mapping DB2 entities to filesystems (or devices)

\$ db2 get	c db cfg	for <d< th=""><th>oname> grep "Path to log files"</th></d<>	oname> grep "Path to log files"
Container	s?		
¢ dh2nd	d dhna	ma > -ta	blespaces
ş ubzpu -		me> -ca.	DIESPACES
ontainers:			
	ontainNum Type	TotalPas Usea	ablePos StripeSet Container
			ablePgs StripeSet Container C:\DB2\NODE0000\SAMPLE\T0000000\C0000000.CAT
Address Tspld Co	File 1638	~	
Address Tspld Co 0x03107BE0 0 0	File 1638 Path 1	34 16380 0 1 0	C:\DB2\NODE0000\SAMPLE\T0000000\C0000000.CAT

- Utility files?
 - Load input data, load message file, backup image
- Mapping devices to filesystems

```
AIX example - suppose iostat shows hdisk43 is busy
/usr/sbin/lspv -l hdisk43
# ... shows physical volume hdisk43 is part of logical volume homelv
# mounted on /home
```


Disk Bottleneck #1 – a Data Tablespace

What dynamic SQL statement(s) are most active from the snapshot (then find out which tables)?

```
$ db2 select * from
table(snapshot_dyn_sql('<dbname>',-1)) as t
where translate(cast(substr(stmt_text,1,1024) as varchar(1024)))
like '%<tbname>%' order by ...
```

- Use ORDER BY clause to pick up hot statements, for example - rows_read, total_sys_cpu_time, total_usr_cpu_time, total_exec_time
- Expensive statements -> Hot table(s) -> Hot tablespace(s)

Disk Bottleneck #1 – a Data Tablespace

What static SQL statement(s) are most active on the hot table?

Db2expIn –d <dbName> -c schemaname –p P5125365

Disk Bottleneck #1 – a Data Tablespace

From tablespace snapshot

Read_time=Total buffer pool read time / (Buffer pool temporary index physical reads+ Buffer pool temporary data physical reads+ Buffer pool index physical reads+ Buffer pool data physical reads) Write_time=Total buffer pool write time/ (Buffer pool data writes+ Buffer pool index writes)

- Ligh Dood Time
- High Read Time
 - Snapshot rows_read >> # of executions
 - Are you getting bad plan?
 - Tablescan ? Confirm plan with db2expln
 - Are statistics out of date?
 - Better indexes ? Use DB2 Design Advisor
 - time waited for prefetch? increase NUM_IOSERVERS
- High Write Time
 - Are long varchars or LOBs present in the "write-hot" statement or table?
 - SMS or DMS File containers with filesystem cache for LOB
 - Need more disks?

_	_	
	_	_
	-	

Disk Bottleneck #2 – an Index Tablespace

- Iarge number of index physical reads?
 - Increase index bufferpool size
- Iarge index scans
 - large logical reads on indexes from sql snapshot
 Buffer pool index logical reads = 9050799
 - Better index ?
 - Fine tune the input parameters?

Disk Bottleneck #3 – a Temp Tablespace

Are many sort overflows to disk?

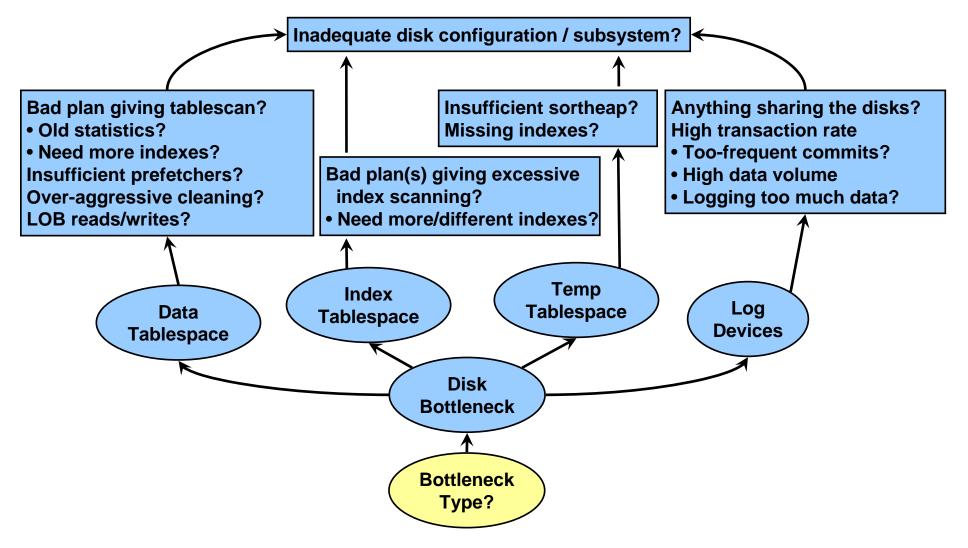
Total sorts	= 61533388
Total sort time (ms)	= 22291323
Sort overflows	= 41946
Buffer pool data logical reads	= 61169040778
Buffer pool data physical read	ls = 1818914045
Buffer pool temporary data log	gical reads = 636557325
Buffer pool temporary data ph	nysical reads = 10556130

- Tune SORTHEAP or SHEAPTHRES
- Sorts and intermediate result sets may be caused by bad plans
 - e.g. index ordering, group by (without the proper order in the index)

Disk Bottleneck on a Tablespace - Configuration?

- No utility is running, no hot statements
- If current disk storage is evenly / optimally configured
 - Additional capacity (more disks, etc.) may be required
- Basic rule of thumb for disk configuration
 - 16 to 20 disks per CPU (e.g. p595 16 disks/core)

Disk Bottleneck #4 – Transaction Logs


High Logger Write Time

Log pages written	= 110227630
Log write time (sec.ns)	= 16498.00000004
Number write log IOs	= 18846794
average logger write time = Lo	og write time / Number write log IOs
Average logger size = Log pa	ges written / Number write log IOs

- High transaction rate?
 - iostat shows high tps with small (e.g. 4k) avg size
 - Reduce commit frequency?
- High data volume?
 - iostat shows huge Kbps
 - Reduce amount logged?
 - Possibly use 'not logged' LOBS
 - Batch job use NOT LOGGED INITIALLY
- Best Practice for Log disk configuration
 - Consider RAID-10 striping multiple disks with 8k stripe size
 - Fast disks with write caching on for controller
 - Dedicated disks for OLTP
 - Avg. log write time < 1.5 ms

Disk Bottleneck Diagnosis – 10,000 feet

	-	-
_		

CPU Bottleneck – High User Time

- Is a utility saturating the system?
 - db2 list utilities to show what utilities are running
 - Are DB2 utility support processes consuming lots of CPU?

Utility	UNIX Processes
LOAD	db21mr, db21frm, db21rid, db21bm
BACKUP	db2bm, db2med
RUNSTATS	db2agent
All	db2agent, db2agntp (SMP only)

There are mechanisms available to throttle DB2 utilities & free up resources for applications

- UTIL_IMPACT_PRIORTY keyword on RUNSTATS, BACKUP
- CPU_PARALLELISM keyword on LOAD

CPU Bottleneck – High User Time

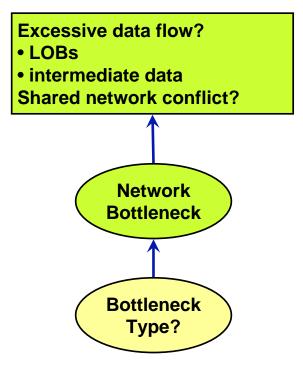
- Are dynamic SQL statements being re-prepared unnecessarily?
 - dynamic SQL snapshot shows many compilations for some statements
 - Are there package cache inserts occurring?
 - Consider increasing package cache size
 - Prepared once, save the statement handle, and re-execute with new data.
- Tracking down the expensive sqls as in tablespace section

CPU Bottleneck – High System Time

- High activity in OS due to memory management
 - swap activity shown in vmstat / performance monitor?
 - Reduce memory consumption, e.g. bufferpools, sort heap
 - High Kernel time for large memory systems
 - Large page support can cut this dramatically
- Does the system have a high number of context switches?
 - CS column in vmstat > 75k or 100k / second
 - Short transactions, very frequent commits?
- Are DB2 connections coming & going frequently?
 - Possibly increase NUM_POOL_AGENTS closer to MAX_AGENTS
 - Connection pools

IEM				
= = ===	_	_		-
		-	_	
	_	_	_	 -

CPU Bottleneck Diagnosis – 10,000 feet


_	_	

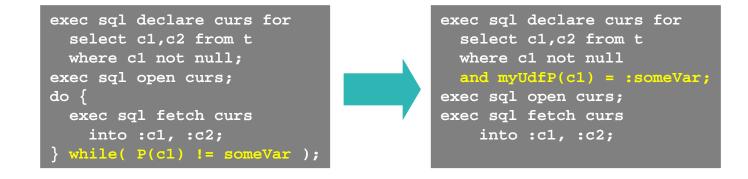
Network Bottleneck

- Not very common, but occasionally due to -
 - Very high client-server network traffic
 - Client Load utility, bulk data extraction, LOB manipulation, very high rate OLTP, ...
 - Configuration issues, e.g. mismatched Ethernet transmission rates
 - External factors such as other activity on shared LAN
- High Network time?
 - Predicates to filter result set at the server

_			
-	-	-	
	_	_	
		-	

Network Bottleneck Diagnosis – 10,000 ft

 _	
_	
 _	


"Lazy System" Bottlenecks

- "Lazy system" slow, but no obvious external symptoms
 - None of disk, CPU or network seems to be saturated
- Common culprit #1 lock contention
 - Is there significant lock contention activity shown in snapshots?
 - Lock wait time?
 - Number of escalations?
 - Number of agents waiting on locks?
 - Inadequate LOCKLIST / MAXLOCKS can cause escalations

_		
	_	
	_	
	_	
	_	_
_		

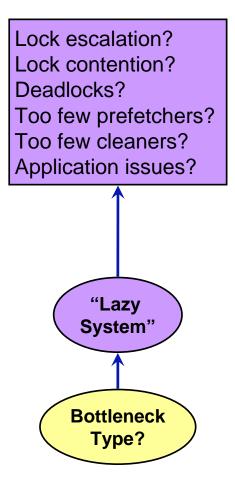
"Lazy System" Bottlenecks - Locks

- Having a convention on order of data access can help reduce deadlocks / lock waits
 - e.g., all apps access customer table first, then stock, then ...
- Push selection criteria down into DB2 to minimize the number of 'excess' rows locked/fetched/returned ?

"Lazy System" Bottlenecks – Agent I/O

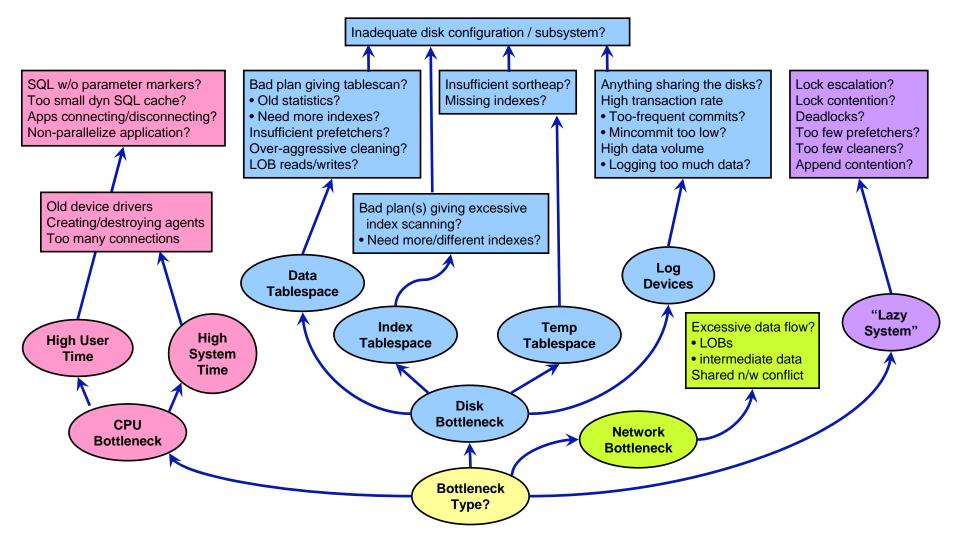
- Consider increasing NUM_IOCLEANERS
 - IF the system getting large number of
 - ...dirty page steal triggers?
 - …synchronous writes?
- Consider increasing NUM_IOSERVERS
 - IF there significant time waited for prefetch in database snapshot
 - IF buffer pool data physical reads in bufferpool snapshot noticeably larger than asynchronous pool data reads

Prefetchers and pagecleaners are much more efficient for I/O than DB2 agents



"Lazy System" Bottlenecks - Application Issues

- Is the application driving the database 'hard enough'?
 - Does the application snapshot show that many/most DB2 agents are waiting for work (status 'UOW waiting')?
 - Does the event monitor show that more time is being spent on the application side than when the system was 'healthy'?
- Examine application & client side for bottlenecks
 - Possibly increase application parallelism
 - more connections, more work in parallel


IRM	 _	
	_	
	=	

"Lazy System" Bottleneck Diagnosis – 10,000 ft

_	

And the Whole Thing ...

Best Practices

- Monitoring
 - Collect basic operational monitoring data regularly, so that background information is available in case of a problem
 - Monitor non-DB2 metrics, such as CPU utilization (nmon on AIX, iostat and vmstat, perfmon on windows) and application-level response time
 - Keep track of changes in configuration and environment settings.

TTPLE	IEM		_	
		_		
			_	

Best Practices

- Troubleshooting
 - Start with the highest-level symptoms—such as a CPU, disk, or memory bottleneck— vmstat
 - Then track down hot statements from snapshot
 - Drill down into possible causes, refining with each step; for example, inefficient statement S -> table T -> Tablespace container C
 - Tune the system step by step —change only one thing at a time, and observe the result carefully

_		
-		
	_	
_		

Questions?

Appendix

DB2 Information

Best Practices: Tuning and Monitoring Database System Performance http://www.ibm.com/developerworks/data/bestpractices/systemperformance/

Best Practices: Writing and Tuning Queries for Optimal Performance http://www.ibm.com/developerworks/data/bestpractices/querytuning/

Feedback

- Presentation format and contents
- Additional DB2 topics you are interested
- Follow on questions for the presentation
- Contact: fning@ca.ibm.com (Frank Ning)