
Deep Dive Into Storage Optimization
When And How To Use Adaptive Compression

Thomas Fanghaenel
IBM

Session Code: H06
May 16, 2012 9:15am - 10:15am | Platform: LUW

Click to edit Master title style

Agenda

• Recap: Compression in DB2 9 for Linux, Unix and Windows

• New in DB2 10 for Linux, Unix and Windows
• Adaptive row compression

• Simplified row compression estimation
• Log archive compression

• Best Practices

• Performance

Click to edit Master title style

Recap: Deep Compression in DB2 9

Click to edit Master title style

Value Compression

• Uses alternative internal row format

• Slightly different storage space requirements than default row format
• Less overhead for variable-length columns
• More overhead for fixed-length columns
• No storage overhead for NULL values and empty character strings

• Allows for storing system defaults with minimal overhead
• For data types other than DATE, TIME, TIMESTAMP
• Columns must have COMPRESS SYSTEM DEFAULT enabled

CREATE TABLE … VALUE COMPRESSION
ALTER TABLE … ACTIVATE VALUE COMPRESSION

Click to edit Master title style

Row Compression

• Uses a dictionary-based compression algorithm
• One compression dictionary per (data or range) partition
• Dictionary contains recurring patterns found across entire partition

• Dictionary is created automatically (starting in DB2 v9.5) when row
compression is enabled and partition grows beyond a threshold

• Dictionary can be refreshed via Classic Table Reorganization
• Improve compression ratio when data patterns change over time

CREATE TABLE … COMPRESS YES
ALTER TABLE … COMPRESS YES

New options in
DB2 10

(more later)

Click to edit Master title style

XML Compression (DB2 LUW v9.7)

• XML data is compressed when table is enabled for compression
• No longer need to inline documents for compression purposes

• Uses similar technology as row compression, applied to the XML
storage object

• Enabled automatically, whenever row compression is enabled
• Requires XML storage object in DB2 LUW v9.7 storage format

Click to edit Master title style

Index Compression (DB2 LUW v9.7)

• Indexes on tables with row compression are compressed automatically
• But: ALTER TABLE … COMPRESS YESdoesn’t apply this to existing indexes

• Uses three different compression techniques on leaf pages
• Meta-data compression

• RID-list compression
• Key prefix compression

• Once enabled, index compression is dynamic and on-the-fly
• No need to reorganize indexes to retain high compression ratios

CREATE INDEX … COMPRESS YES
ALTER INDEX … COMPRESS YES

Click to edit Master title style

Compression for Temporary Tables
(DB2 LUW v9.7)

• Temporary tables and their indexes are automatically
compressed
• For declared global and system temporary tables
• Uses automatic dictionary creation (ADC) with high threshold
• Reqires license for Storage Optimization feature

Click to edit Master title style

Backup Compression

• Using row, index and XML compression reduces the size of the database
• Backup images automatically get smaller
• Backup time reduced

• Backup compression shrinks backup images to smallest possible size
• Compresses metadata and LONG/LOB data, too
• Can be a CPU-intensive operation

• Consider separation of data/index/XML/LOB into different tablespaces
• Use tablespace-level backup to exercise finer control over compression settings

BACKUP DATABASE … COMPRESS

New in DB2 10:
Log Archive

Compression
(more later)

Click to edit Master title style

New in DB2 10: Adaptive Row Compression

Click to edit Master title style

Row Compression in DB2 10 – Terminology
Row compressionRow compression means compressing each data row individually

In DB2 10 there are two different flavors of row compression:

Classic row compressionClassic row compression

• Compress rows by means of a static partition-level compression dictionary
• Same row compression mechanism as in DB2 9

Adaptive row compressionAdaptive row compression

• Compress rows by means of two compression dictionaries
• Static partition-level dictionary
• Dynamic page-level dictionaries

• New row compression mechanism in DB2 10

Click to edit Master title style

Adaptive Row Compression – Why?

• Classic row compression works very well in many cases
• Very fast and robust
• Not sensitive to data clustering and ordering

• Classic row compression has limitations
• Dictionary requires classic table reorganization to refresh
• Not sensitive to data clustering and ordering
• Dictionary capacity limits compression ratios for some large tables
• Theoretical maximum: 10x compression (90% savings)

• Different characteristics than competitors’ compression

Click to edit Master title style

Adaptive Row Compression – Value Proposition

• Better compression
• Classic row compression: Typically saves ~40%-75%
• Adaptive row compression: Typically saves ~75%-85%
• Adaptive typically saves 30% over classic row compression

• More automatic
• Automatic compression in DB2 9 can produce up to 2x the data size of

best compression (after REORG)
• In DB2 10, storage requirements for automatic and best compression

typically differ by less than 20%

• Reduced TCO

• Industry-leading compression technology for row stores

Click to edit Master title style

Adaptive Row Compression – Overview

• Combination of two compression algorithms

• Both algorithms detect different kinds of patterns
• Globally recurring byte sequences
• Locally recurring byte sequences

• Compression is applied for each row individually
• Compression via table-level dictionary is applied first
• When records are placed in a page, compression via page-level

dictionary is applied
• Rows are compressed during DML operations and admin tasks

• INSERT, UPDATE, IMPORT, LOAD
• REORG, REDISTRIBUTE

Click to edit Master title style

Page Compression
Dictionary

Example: Creation of Page-Level Dictionaries

• Rows are inserted into a page
• When page is almost full, page

gets compressed

1. Detect common recurring patterns
in original records & build
dictionary structure

2. Build compressed page by
compressing all existing records

3. Insert page compression dictionary
(special record)

4. Insert more compressed records in
additional free space

Original Page

Compressed Page

Page Compression
Dictionary

Click to edit Master title style

Page Dictionary Management
• Management of page-level dictionaries is fully automatic

• Creation happens when page is almost full
• Recreation may be triggered when page becomes full again

• Recreation is only triggered if actual compression ratio is significantly less
than projected compression ratio (based on last dictionary build)

• Deletion happens if record is placed in a committed empty page

• Database manager can decide to skip (re-)building page-level
dictionaries
• Decision is based on runtime stats (generated savings)
• For dictionary recreation, age of existing dictionary is also considered

• Goal: No noticeable CPU overhead if adaptive compression
generates little savings

Click to edit Master title style

Adaptive Row Compression – DDL Syntax

• Default for new tables in DB2 10 is adaptive compression

• Compressed tables keep classic row compression mode
during upgrade to DB2 10

.-COMPRESS NO---------------.
>------+---------------------------+------>

| .-ADAPTIVE-. |
'-COMPRESS YES-+----------+-'

'--STATIC--'

Click to edit Master title style

Simplified in DB2 10: Compression Estimation

Click to edit Master title style

Compression Estimation Functions in DB2 10

• One-stop-shop for estimation of compression
savings

• “What could I save if I ALTER my table, and
REORG now?”

• Displays all information compression savings
for:

• Current savings (accurate w/o Runstats)
• Potential savings if table was

• COMPRESS YES STATIC

• COMPRESS YES ADAPTIVE

• Only one invocation necessary

• Replaces ‘REPORT’ mode
• Result set matches the one of

ADMIN_GET_TAB_COMPRESS_INFO in
v9.7

ADMIN_GET_TAB_COMPRESS_INFO_V97

ADMIN_GET_TAB_COMPRESS_INFO ADMIN_GET_TAB_DICTIONARY_INFO

Two execution modes in v9.7: Two execution modes in v9.7:
‘‘REPORTREPORT’’ and and ‘‘ESTIMATEESTIMATE’’..

Deprecated in Galileo, will be Deprecated in Galileo, will be
succeeded by two separate succeeded by two separate

functions.functions.

Click to edit Master title style

Compression Estimation Functions in DB2 10
Example

• Invoke admin function:

db2 => SELECT TABSCHEMA, TABNAME, DBPARTITIONNUM, R OWCOMPMODE, DATAPARTITIONID, OBJECT_TYPE

PCTPAGESSAVED_CURRENT, AVGROWSIZE_CURRENT,

PCTPAGESSAVED_STATIC, AVGROWSIZE_STATIC,

PCTPAGESSAVED_ADAPTIVE, AVGROWSIZE_ADAPTIVE

FROM TABLE(SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO('PAGECOMP', 'TAB_EXAMPLE'))

WHERE OBJECT_TYPE = 'DATA';

• Result:

TABSCHEMA TABNAME ROWCOMPMODE ...

-------------- --------------- -----------

PAGECOMP TAB_EXAMPLE ...

... PCTPAGESSAVED_CURRENT AVGROWSIZE_CURRENT ...

--------------------- ------------------

... 0 805 ...

... PCTPAGESSAVED_STATIC AVGROWSIZE_STATIC PCTPAGESSAVED_ADAPTIVE AVGROWSIZE_ADAPTIVE

-------------------- ----------------- -------------- -------- -------------------

... 78 171 92 47

MetadataMetadata

Current StateCurrent State

Projected Projected
SavingsSavings

Click to edit Master title style

Catalog Changes – SYSCAT.TABLES

• Compression-related columns in SYSCAT.TABLES:

db2 => SELECT TABSCHEMA, TABNAME,

COMPRESSION, ROWCOMPMODE,

AVGCOMPRESSEDROWSIZE, AVGROWCOMPRESSIONRATIO,

PCTROWSCOMPRESSED, PCTPAGESSAVED

FROM SYSCAT.TABLES

WHERE TABSCHEMA = 'PAGECOMP' AND TABNAME = 'TAB_EXAMPLE';

• Result:

TABSCHEMA TABNAME COMPRESSION ROWCOMPMODE...

-------------- --------------- ----------- -----------

PAGECOMP TAB_EXAMPLE R A ...

... AVGCOMPRESSEDROWSIZE AVGROWCOMPRESSIONRATIO ...

-------------------- ----------------------

... 48 +1.67708E+001 ...

... PCTROWSCOMPRESSED PCTPAGESSAVED

----------------- -------------

... +1.00000E+002 92

Columns maintained by Columns maintained by
RunstatsRunstats, reflect overall , reflect overall

compression ratiocompression ratio

92% pages saved, 92% pages saved,
corresponds to overall corresponds to overall

compression ratio of 12.5xcompression ratio of 12.5x

New column, indicates New column, indicates
row compression mode:row compression mode:

S S –– StaticStatic
A A –– AdaptiveAdaptive

Blank Blank –– No CompressionNo Compression

Click to edit Master title style

New in DB2 10: Log Archive Compression

Click to edit Master title style

Log Archive Compression

• Automatically compresses log extents on-the-fly when they are moved to the archive
• Requires log archiving to be enabled (archiving methods: DISK, TSM, or VENDOR)
• Automatic, on-the-fly expansion when log extents are retrieved by DB2 during ROLLBACK

processing and ROLLFORWARD recovery

• Can be enabled independently for primary and secondary archiving methods
• Controlled via dynamic database configuration parameters
• Current settings shown via GET DB CFG command

• Compression algorithm is the same as for (default) backup compression

UPDATE DB CFG … USING LOGARCHCOMPR1 ON
UPDATE DB CFG … USING LOGARCHCOMPR2 ON

Click to edit Master title style

Best Practices

Click to edit Master title style

10 Best Practices for DB2 10
1. Use standard row format

• Row format for compressed tables has little impact on the storage consumption

2. Use estimation capabilities to gauge compression savings
• Focus on largest tables first
• Use new ADMIN_GET_TAB_COMPRESS_INFO

3. During first adoption, choose REORG or ADMIN_MOVE_TABLE to compress

4. When you REORG:
• Start with the smallest tables, work your way up
• Use a temporary table space for the REORG, and specify the RESETDICTIONARY option

5. When you use ADMIN_MOVE_TABLE:
• Put your tables into new-style DMS table spaces to facilitate file system space reclamation
• Use ADMIN_MOVE_TABLE to compress and move your tables

6. Reclaim disk space via ALTER TABLESPACE REDUCE MAX

Click to edit Master title style

10 Best Practices for DB2 10
7. Use large table spaces over regular ones

8. Use separate table spaces for tables with different compression settings
• Perform table space backups
• Apply backup compression for table spaces that contain uncompressed tables

9. Group correlated columns
• Adaptive compression can very effectively compress long sequences of similar

column values
• Compression ratio improves

10. Cluster your data
• Sort before load, so that row order respects similarity
• Compression ratio improves when similar rows are stored in the same page

Click to edit Master title style

Verifying Compression

• Perform RUNSTATS, and check compression-related
columns in SYSCAT.TABLES

• PCTPAGESSAVED
• Should be at or near the projected savings

• PCTROWSCOMPRESSED
• Should be at or near 100%

• AVGCOMPRESSEDROWSIZE
• Should be longer than minimum row size for table space

Click to edit Master title style

Common Pitfalls
• Compressed rows are shorter than minimum row length

• Happens in REGULAR table spaces
• Minimum row length is (roughly) pagesize divided by 255
• Solution: Convert your table space to LARGE, or move table

• Automatic dictionary creation leaves uncompressed rows in table
• When dictionary is created, existing rows are not compressed
• Solution: Perform a table reorganization

• Table contains pre-compressed data
• Most prominently, check for CHAR or VARCHAR FOR BIT DATA columns

• Compression may impact cell size calculations for MDC tables
• Compressed rows are shorter, cells size will be reduced accordingly
• This may result in a larger number of partial blocks
• Solution: Reduce extent size, or modify dimensions (e.g. reduce or coarsify)

Click to edit Master title style

Performance

Click to edit Master title style

Storage Consumption (SAP-LRP)

148 137 133

1677

417
278

0

500

1000

1500

2000

Uncompressed Classic Row Compression Adaptive Row Compression

Row Compression Mode

S
iz

e
(G

B
)

 .

Pre-Compressed Data Compressible Data

• SAP-LRP workload
• Size ~1.8TB uncompressed

• Considered 1425 largest tables
(~99.5% total data)

• Best compression with classic
row compression:
4x (75% savings)4x (75% savings)

• Best compression with
adaptive row compression:
6x (83% savings)6x (83% savings)

• Improvement: 33%33%

• Note: Size of pre-compressed
data does not change

Storage Space Savings

Click to edit Master title style

• SAP-LRP system with ~450GB
of data in uncompressed form

• ~24,000 tables, 99.7% of the
data in 1,500 tables

• Comparison between database
build (ADC) and full Classic
Table Reorg

• Classic Row Compression with
ADC yields 71% larger71% larger data
size than after Reorg

• Adaptive Compression with
ADC is only 16% larger16% larger than
after Reorg

• Adaptive Compression with
ADC is 14% smaller14% smaller than
Classic Row Compression after
Reorg (i.e. best possible
compression)

Storage Consumption (SAP-LRP)

463

245

125

463

143
108

0

100

200

300

400

500

No Compression Classic Row Compression Adaptive Row Compression

Compression Mode

S
iz

e
(G

B
)

.

Automatic Compression Best Compression (REORG)

Reorg Avoidance – ADC vs. Classic Table Reorg

Click to edit Master title style

Reorg Avoidance –
More Stable Compression Ratio Over Time

• History table for ORDERS table (TPC-H)
• 20 million update operations

• Partial row updates, random content

• History table has ADC table-level
dictionary

• Classic Row Compression
• Initially 42% storage space savings

• Drops to <10% savings over time

• Adaptive Row Compression
• Initially 52% storage space savings

• Levels out at around 30% savings

• Adaptive Row Compression gets more efficient as
Classic Row Compression degrades

Compression Savings Over Time

0%

10%

20%

30%

40%

50%

60%

0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000 14,000,000 16,000,000 18,000,000 20,000,000

History Rows Inserted

S
av

in
gs

x

0

0.5

1

1.5

2

2.5

3

E
ffi
ci
en

cy

 x

DB2 v9.7 (w/ Classic Row Compression) DB2 Galileo (w/ Adaptive Row Compression) Adaptive vs. Classic Row Compression

Click to edit Master title style

Query and DML Performance

• Compression means additional CPU consumption for compression & expansion
operations

• Row compression design paradigm: Compression under logical I/O
• Rule of thumb: Compression is beneficial in I/O-bound situations

• Performance measurements done from two angles:
1. Focus on additional CPU cost (to minimize overhead)
2. Elapsed time studies in benchmark scenarios

• CPU consumption almost always increases:
• Fully buffered table scan: 20% to 25% overhead
• Fully buffered single-row index lookup: 5% overhead
• Complex queries: Between 60% improvement and 12% overhead
• Insert: 5% to 15% overhead
• Deletes: Up to 20% improvement
• Updates: 15% overhead for few-row updates, higher for bulk operations

•• In many practical scenarios this translates into pe rformance impIn many practical scenarios this translates into pe rformance imp rovementsrovements

Click to edit Master title style

• SAP Business Warehouse
benchmark (1TB database)

• Most long-running queries
experience dramatic speed-
up

• Overall runtime reduced by
62%

• Median query speedup of
43%

SAP-BW Elapsed Time Per Query

0 100 200 300 400 500 600 700 800 900

q00.sql_sapbw8

q01.sql_sapbw8

q02.sql_sapbw8

q03.sql_sapbw8

q04.sql._10P_sapbw8

q04.sql.basic_sapbw8

q05.sql._10P_sapbw8

q05.sql.basic_sapbw8

q06.sql_sapbw8

q07.sql._10P_sapbw8

q07.sql.basic_sapbw8

q08.sql._10P_sapbw8

q08.sql.basic_sapbw8

q09.sql._10P_sapbw8

q09.sql.basic_sapbw8

q10.sql_sapbw8

q11.sql_sapbw8

q12.sql._10P_sapbw8

q12.sql.basic_sapbw8

q13.sql._10P_sapbw8

q13.sql.basic_sapbw8

q14.sql_sapbw8

q15.sql_sapbw8

q16.sql_sapbw8

q17.sql_sapbw8

q17_og.sql_sapbw8

q18.sql_sapbw8

q19.sql_sapbw8

q20.sql_sapbw8

Q
ue

ry

.

Elapsed time (seconds)

Classic Row Compression

Adaptive Row Compression

SAP-BW Overall Runtime

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

1

Elapsed time (seconds)

Classic Row Compression

Adaptive Row Compression

Query Performance
SAP-BW Benchmark

Thomas Fanghaenel
IBM
fanghaen@us.ibm.com
H06
Deep Dive Into Storage Optimization

