
© 2012 IBM CorporationAugust 14, 2012

DB2 pureScale: Best
Practices for

Performance and
Monitoring

Steve Rees, DB2 pureScale Performance, IBM Toronto Lab
Steven Xue, DB2 Performance, IBM CDL

© 2012 IBM Corporation2

Agenda

Introduction & concepts
Configuration

Cluster geometry–

Cluster components–

Scaling up–

Monitoring & tuning
Bufferpools–

Locking–

Cluster caching facility (CF)–

Interconnect–

Disk performance–

Summary
Mbr

Database

Log

CS

2nd

Log Log Log Pri
CS CS

Mbr

CS

Mbr

CS

Mbr

CS

© 2012 IBM Corporation3

Helpful high-level stuff to remember about pureScale

The CF is the 'hub' of the pureScale cluster
Center of communication & coordination between members–

CF performance is a main factor in overall cluster performance–

All significant communication is between members & the CF–

Low-latency interconnect like Infiniband makes this perform!–

pureScale is shared data technology
Different members share (and sometimes contend for) access to different rows on the same page–

Hello, page locks!–

Inserts/Updates/Deletes drive more cluster activity than Selects
So "read/write ratio" often comes up as an important workload characteristic in configuring and tuning pureScale–

pureScale introduces a two-tier bufferpool at the members & CF
Like DB2 ESE, bufferpool size(s) have a big impact on performance–

Local (member) bufferpools are similar to ESE–

Group (CF) bufferpool contains modified pages cached for all members–

© 2012 IBM Corporation4

A cluster of a particular capacity can come in many shapes &
sizes

Cluster geometry to provide a given Tx throughput is often
chosen based on other factors

Type of member (based on corporate IT policy, available boxes, available skills, etc.)–

Desire for a particular cluster size to suit manageability, availability goals, etc.–

Whatever the cluster size, the balance of CPU, memory, disk &
interconnect is key
(Best Practice) include a secondary CF for greater cluster
availability

Configuring pureScale for 'pureFormance' :-)

Member Member
Member

MemberCF CF CF CF

Member Member Member

Member Member Member

CF

CF

BP

Member

© 2012 IBM Corporation5

Typically the sum of cores across all pureScale members is 6x-12x
more than the CF

6x for relatively write-heavy workloads (e.g. 2 each for the CFs, 12 total for the members)–

12x for very read-heavy workloads (e.g. 2 each for the CFs, 24 total for the members)–

NB – you don't pay to license the CF functionality, only the members
The CF can get extremely busy!

Responses in 10s of microseconds only possible if CF –

worker threads have exclusive use of their CPUs

vmstat showing 100% cpu utilization on the CF is normal

We strongly advise dedicated cores for the CF

Shared processor LPARs are fine for members if needed•

We advise at least one physical core for the CF–

Performance may suffer on if run on just processor logical threads•

Collocating the CF & a member only reasonable if each

one is 'pinned' to their own cores

taskset on Linux (automatically configured during install)•

rset on AIX (much better done by LPARs though!)•

How many cores does the CF need?

CF

BP

Tip

BP

© 2012 IBM Corporation6

General GBP size RoT for clusters with 3+ members
GBP size = 35-40% of (sum of Local Bufferpool (LBP) sizes across members)

e.g. 4 member cluster, LBP size = 1M 4k pages •

→ CF_GBP_SZ = ~1.5M pages

For higher read workloads (e.g. 85-95% SELECT), the required size decreases since there are fewer modified pages in –

the system

Should consider 25% a minimum, even for very read-heavy workloads

What about 2 members? About 40-50%, depending on R/W ratio•

CF memory is dominated by the Group Bufferpool (GBP)
CF_DB_MEM_SZ (CF memory for one active database) should be about 25% bigger than CF_GBP_SZ to allow for

other consumers

The GBP only stores modified pages, so the higher the read ratio, the less memory required by the CF–

NB – the GBP is always allocated in 4K pages, regardless of the bufferpool page size(s) at the members–

Impact of multiple databases on CF memory discussed
later

How much memory does the CF need?

Tip

BP

Tip

© 2012 IBM Corporation7

Low-latency RDMA between members and CF is key to great
pureScale performance
Typical configurations use one Infiniband host channel adapter
card (HCA) per CF and per member

Can be in separate physical machines, or assigned to LPARs by Hypervisor on AIX–

The CF HCA handles the combined message traffic from all
members

The CF supports multiple HCAs for added capacity / redundancy

In very round figures: 1 CF HCA supports up to about 8 CF cores for a typical workload–

Note – using both ports on one HCA hasn't shown much performance benefit in the lab–

Can an HCA be shared between member & CF partitions residing
on one machine?

Yes – but be wary of overloading the HCA (see the section on monitoring)

Very roughly: # of CF cores + (# of local member cores / 4) should be less than 8–

What about the cluster interconnect?

© 2012 IBM Corporation8

0
10
20
30
40
50
60
70
80
90

100
110

%
 o

f R
oC

E
av

er
ag

e
TP

S

tps

Normalized Average Throughput (Linux)

RoCE
QDR IB

Infiniband vs. Ethernet?
pureScale supports Infiniband and RoCE Ethernet
RoCE on AIX new in DB2 10
For raw bandwidth, current IB beats
current RoCE hands down

… but for pureScale, small message

response time is more important

Even so, in-cluster performance
of the two is fairly similar

Throughput with RoCE –

in our tests is generally

within 5-15% of Infiniband

(your mileage may vary)

Adapter Bandwidth
Mellanox QDR Infiniband 40 Gb/s
IBM DDR Infiniband 20 Gb/s
Mellanox RoCE Ethernet 10 Gb/s

0

25

50

75

100

%
 o

f R
oC

E
M

es
sa

ge

re
sp

 ti
m

e

Read Write Lock

Normalized Median
 CF Message Response time

RoCE
QDR IB

Lower is
better

Higher is
better

© 2012 IBM Corporation9

Like EE, pureScale needs adequate IO bandwidth to keep
response times low when the system is under heavy load

pureScale members may need to flush their logs more often than EE, so log performance is important–

Solid-state disks (SSDs) can be very useful in minimizing IO times

A relatively small SSD investment can make a big difference in a log-bound system where the storage write cache can't keep up•

Also makes a huge difference in random tablespace read times•

Optimal member recovery times require the SAN to support SCSI-
3 Persistent Reserve

Quickly isolates shared storage from failing member so recovery can begin–

E.g. IBM DS3000, DS5000, DS8000, etc.–

GPFS configuration
We recommend separate filesystems for logs & tablespaces

db2cluster command automatically performs core GPFS tuning at install–

Enabling Direct IO, setting 1 MB block size•

What about disk storage?

Tip

BP

© 2012 IBM Corporation10

Potential tuning for cluster scale-out

pureScale is designed to scale out with ease
Adding another member adds capacity without requiring data redistribution or application changes–

Don't forget – cluster resource balance is important
Ensure cluster-wide resources aren't over-stretched by growth–

Can disk storage keep up with greater demands?–

Is the extra traffic creating a bottleneck in the interconnect?–

Does the CF have enough cores & memory to handle the extra work?–

See the monitoring & tuning
section for information on how
to answer these questions…

Tip

© 2012 IBM Corporation11

Sizing up the initial DB2 configuration
Larger extent sizes tend to perform better than small ones

Some operations require CF communication & other processing each time a new extent is created–

Larger extents mean fewer CF messages–

Default of 32-page extent size usually works well–

Smaller DB2 page sizes tend to perform better than large ones
Typical pureScale workloads drive random rather than sequential access–

Smaller pages mean–

Less data flow between member and CF, member and disk, etc.•

Use the smallest page size that accommodates the rows you'll keep there–

Smaller 'footprint' in both the local and group bufferpools•

SEQUENCEs and IDENTITY columns should use a large cache
and avoid the ORDER keyword

Obtaining new batches of numbers requires CF communication and a log flush in pureScale–

Larger cache size (100 or more – best to tune) means fewer refills & better performance–

BP

BP

BP

© 2012 IBM Corporation12

Sizing up the initial DB2 configuration

pureScale can have a greater LOCKLIST requirement than EE
LOCKLIST may fill more quickly in pureScale during long transactions due to physical locks, resulting in SQL0912N rc 1–

Lock escalation and/or LOCKSIZE TABLE can reduce row lock requirements and reduce overall lock list consumption–

In more extreme cases, setting LOCKLIST to 6% or more of LBP size should provide sufficient space for physical locks

pureScale in DB2 10 supports range partitioned tables
Natural fit for inflow / processing / outflow of data in 'chunks' of time – weeks, months, years–

Also useful for breaking up data over key ranges in heavy concurrent insert cases–

Multiple table partitions with local indexes tend to experience less contention & may achieve better performance. Also check out

CURRENT MEMBER, below.

Tip

Tip

© 2012 IBM Corporation13

Agenda
Introduction & concepts
Configuration

Cluster geometry–

Cluster components–

Scaling up–

Monitoring & tuning
Bufferpools–

Locking–

Cluster caching facility (CF)–

Interconnect–

Disk performance–

Summary

© 2012 IBM Corporation14

A primer on two-level page buffering in pureScale
The local bufferpool (LBP) at each member caches both read-only and •
updated pages for that member

The shared group bufferpool (GBP) at the CF contains references to every •
page in all LBPs across the cluster

References ensure consistency across members – who’s interested in which pages, in case the pages are updated–

The GBP also contains copies of all updated pages from the LBPs•
Sent from the member at transaction commit time, etc.–

Stored in the GBP & available to other members on demand–

Saves going to disk!–

30 µs page read request over Infiniband from the GBP can be more than 100x faster than reading from disk–

Statistics are kept for tuning•
Found in LBP vs. found in GBP vs. read from disk–

Useful in tuning GBP / LBP sizes–

© 2012 IBM Corporation15

New LBP / GBP bufferpool metrics in pureScale
pool_data_lbp_pages_found = page reference resolved to the LBP•

i.e., we needed a page, and it was present (valid or invalid) in the LBP–

pool_data_gbp_l_reads = logical data reads attempted at the GBP•
i.e., either not present or not valid in the LBP, so we needed to go to the GBP. Includes GPB->LBP prefetching, so may –

need to make adjustments.

pool_data_gbp_p_reads = physical data reads by the member due to •
page not present in either the LBP or GBP

Essentially the same as non-pureScale pool_data_p_reads–

Bit of a misnomer – there is no physical disk IO into the GBP–

pool_data_gbp_invalid_pages = number of GBP data page read •
attempts due to an LBP page being present but marked invalid
(i.e. stale – updated in the GBP by another member)

An indicator of the rate of GBP updates & their impact on the LBP–

pool_async_data_gbp_l_reads = pages prefetched from GBP to LBP•
pureScale prefetches from GBP to LBP if needed, as well as –

from disk to LBP, like DB2 ESE

© 2012 IBM Corporation16

Accounting for pureScale bufferpool operations

CF

Member

X

CF

Member

GBP GBP

LBP LBP

CF

Member

GBP

LBP

CF

Member

GBP

LBP

Pool_data_l_reads

Pool_data_lbp_pages_found

Pool_data_gbp_l_reads

Pool_data_gbp_invalid_pages

Pool_data_gbp_p_reads

Pool_data_p_reads

Agent Agent Agent Agent

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

Found in
LBP

Invalid in
LBP, found

in GBP

Not in LBP,
found in GBP

Not in LBP or GBP,
found on disk

Page
Found
Where?

Metrics
affected

© 2012 IBM Corporation17

pureScale bufferpool monitoring
Overall (and non-pureScale) hit ratio•

Great values: 95% for index, 90% for data–

Good values: 80-90% for index, 75-85% for data–

LBP hit ratio•

Generally lower than the overall hit ratio, since it excludes GBP hits

Note that invalid pages are still counted as a 'hit'•

If invalids were a 'miss' – we might be tempted to increase LBP to compensate•

… but a larger LBP won't decrease the number of invalidated pages!

(pool_data_l_reads – (pool_data_p_reads – pool_async_data_reads))
/ pool_data_l_reads

(pool_data_lbp_pages_found - pool_async_data_lbp_pages_found) /
pool_data_l_reads * 100%

© 2012 IBM Corporation18

GBP hit ratio•

A hit here is a read of a previously modified page, so hit ratios are typically quite low–

An overall (LBP+GBP) H/R in the high 90's can correspond to a GBP H/R in the low 80's•

Decreases with greater portion of read activity

Why? Less dependency on the GBP•

pureScale bufferpool monitoring

(pool_data_gbp_l_reads – pool_data_gbp_p_reads) /
pool_data_gbp_l_reads

© 2012 IBM Corporation19

pureScale bufferpool monitoring

"Group bufferpool full" conditions•

Occur when there are no free locations in the GBP to host incoming pages from the members•

Causes a 'stall' condition where dirty pages are written synchronously to create more space•

Not generally member specific, so we SUM() across all to get a cluster-wide average•

Similar to "dirty steal" in DB2 ESE …

10000.0 * sum(mggb.num_gbp_full) / sum(commit_sql_stmts)
from table(mon_get_group_bufferpool(-2)) as mggb, sysibmadm.snapdb

New in
DB2 10

© 2012 IBM Corporation20

pureScale bufferpool tuning

Step 1: monitor the overall BP hit ratio as usual
Meets your goals? If yes, then done!•

Step 2: check LBP hit ratio
Great values: 90% for index, 85% for data•

Good values: 70-80% for index, 65-80% for data•

Increasing LBP size can help increase LBP hit ratio•

But - for each 16 extra LBP pages, the GBP needs 1 extra page for registrations•

Without appropriate GBP increase, big LBP increases can hurt GBP hit ratio•

 ReadsLogical
) Found Pages LBPAsync Found PagesLBP(

 ReadsLogical
) Reads PhysicalsSynchronou ReadsLogical(

© 2012 IBM Corporation21

Step 3: check GBP hit ratio
Great values: 90% for index, 80% for data•

Good values: 65-80% for index, 60-75% for data•

Is pool_data_l_reads > 10 x pool_data_gbp_l_reads?•

This indicates low GBP dependence, and may mean tuning GBP size in this case is less valuable•

Is pool_data_gbp_invalid_pages > 25% of pool_data_gbp_l_reads ?•

This means the GBP is really helping out, •

and could benefit from extra pages

i.e. less than 10% of page reads
go to GBP?

i.e. more than 25% of GBP reads
are due to invalidated LBP pages

pureScale bufferpool tuning

 ReadsLogical GBP
 Reads) PhysicalGBP Reads LogicalGBP(

© 2012 IBM Corporation22

Step 4: check for GBP full
Great value: 0•

Good values: < 5 per 10k transactions•

Higher value than this?•

The GBP may be too small

The castout engines might not be keeping up

Enough castout engines configured?•

SOFTMAX set too high?•

pureScale bufferpool tuning

)_SQL_STMTSsum(COMMIT
LL)NUM_GBP_FU(sum000,10

© 2012 IBM Corporation23

Or, Psst! Hey buddy, can you pass me that page?•
pureScale page locks are physical locks, indicating which member currently ‘owns’ the page. Picture the •

following:

Member A : acquires a page P and modifies a row on it, and continues with its transaction. ‘A’ holds an exclusive page •

lock on page P until ‘A’ commits

Member B : wants to modify a different row on the same page P. What now?•

‘B’ doesn’t have to wait until ‘A’ commits & frees the page lock•

The CF will negotiate the page back from ‘A’ in the middle of ‘A’s transaction, on ‘B’s behalf•

Provides far better concurrency & performance than needing to wait for a page lock until the holder commits.•

Log P P

pureScale page negotiation (or 'reclaims')

P P

Member A
Member B

Log
P ?P !

CF

GLM

Px : A : B

© 2012 IBM Corporation24

Monitoring page reclaims

Page reclaims help eliminate page lock waits, but they're not cheap
Excessive reclaims can cause contention – low CPU usage, reduced throughput, etc.

mon_get_page_access_info gives very useful reclaim stats

Schema name

Is 12,641 excessive? Maybe – it depends
how long these accumulated. RoT: more
than 1 reclaim per 10 Tx is worth looking
into

© 2012 IBM Corporation25

Reducing page reclaims

Smaller page sizes reduce 'false sharing' conflicts and
help reduce reclaims on tables & indexes

"Tiny but hot" tables with frequent updates may benefit
from increased PCTFREE

Spreads rows over more pages–

Increases overall space consumption – "tiny" to "semi-tiny" ?–

Note - PCTFREE only takes effect on LOAD and REORG–

Tip

BP

© 2012 IBM Corporation26

CURRENT MEMBER default column reduces contention

Case 1: frequent inserts of increasing numeric values, timestamps,
etc.

This can cause a 'hot spot' at the high end of the index, as the page getting all the new keys gets reclaimed between members–

We can add a hidden CURRENT MEMBER leading column to separate ranges of keys – so each member tends to insert into –

a different page

Case 2: low-cardinality indexes – e.g. GENDER, STATE, etc.
Here, the 'hot spots' are the (relatively few) unique keys where new RIDs are added–

We can transparently increase the cardinality (and separate new key values by member) by adding a trailing CURRENT –

MEMBER column to the index

alter table orders add column curmem smallint
 default current member implicitly hidden;
create index seqindex on ordernumber (curmem, seqnumber);

New in
DB2 10

alter table customer add column curmem smallint
 default current member implicitly hidden;
create index stateidx on customer (state, curmem);

Note: DB2 10 Jump Scan makes this
unconventional index work…

© 2012 IBM Corporation27

vmstat & other CPU monitoring tools
typically show the CF at 100% busy –
even when the cluster is idle
env_cf_sys_resources gives more
accurate memory and CPU utilization
Response time to requests from
members may degrade as sustained
CF CPU utilization climbs above
80-90%

Allocating additional CPU cores–

to the CF may be required

NB – for very small CF configurations,
recovery time performance can be
helped by having 2 free hardware
threads on the CF instead of 1

i.e. CF_NUM_WORKERS = –

 (#logical CPUs – 2)

Monitoring CF CPU utilization
SELECT VARCHAR(NAME,20) AS ATTRIBUTE,
 VARCHAR(VALUE,25) AS VALUE,
 VARCHAR(UNIT,8) AS UNIT
FROM SYSIBMADM.ENV_CF_SYS_RESOURCES

ATTRIBUTE VALUE UNIT
-------------------- ----------- ------
HOST_NAME coralm215 -
MEMORY_TOTAL 64435 MB
MEMORY_FREE 31425 MB
MEMORY_SWAP_TOTAL 4102 MB
MEMORY_SWAP_FREE 4102 MB
VIRTUAL_MEM_TOTAL 68538 MB
VIRTUAL_MEM_FREE 35528 MB
CPU_USAGE_TOTAL 93 PERCENT

HOST_NAME coralm216 -
MEMORY_TOTAL 64435 MB
MEMORY_FREE 31424 MB
MEMORY_SWAP_TOTAL 4102 MB
MEMORY_SWAP_FREE 4102 MB
VIRTUAL_MEM_TOTAL 68538 MB
VIRTUAL_MEM_FREE 35527 MB
CPU_USAGE_TOTAL 93 PERCENT

 16 record(s) selected.

Primary CF

Secondary CF

Tip

© 2012 IBM Corporation28

AUTOMATIC CF memory: simple case – 1 active database

Total CF memory allocation is controlled by
DBM config parameter CF_MEM_SZ
Default AUTOMATIC settings provide
reasonable initial calculations (but no self
tuning)

CF_MEM_SZ set to 70-90% of physical memory–

CF_DB_MEM_SZ defaults to CF_MEM_SZ –

(for single DB)

CF_SCA_SZ = 5-20% of CF_DB_MEM_SZ–

Metadata space for table control blocks, etc.•

CF_LOCK_SZ = 15% of CF_DB_MEM_SZ–

CF_GBP_SZ = remainder of CF_DB_MEM_SZ–

CF_MEM_SZ (Instance)
CF_DB_MEM_SZ (DB 1)

CF_GBP_SZ

CF_SCA_SZ

CF_LOCK_SZ

© 2012 IBM Corporation29

AUTOMATIC CF memory & multiple active databases

Important: when using multiple databases and
AUTOMATIC CF memory parameters, set the
registry variable
DB2_DATABASE_CF_MEMORY

Ensures first database to activate doesn't consume all CF memory–

If set to -1
cf_db_mem_sz = cf_mem_sz / numdb–

If set to a percentage P (e.g. 33)
cf_db_mem_sz = (P/100) * cf_mem_sz–

Defaults support a single active DB
DB2_DATABASE_CF_MEMORY = 100–

NUMDB = 32–

CF_MEM_SZ (Instance)

CF_DB_MEM_SZ (DB 2)

CF_GBP_SZ

CF_LOCK_SZ
CF_SCA_SZ

Tip

CF_DB_MEM_SZ (DB 3)

CF_GBP_SZ

CF_LOCK_SZ
CF_SCA_SZ

CF_DB_MEM_SZ (DB 1)

CF_GBP_SZ

CF_LOCK_SZ
CF_SCA_SZ

© 2012 IBM Corporation30

Infiniband is not infinite…
Typical ratio is 1 CF HCA per 6-8 CF cores
Main symptoms of interconnect bottleneck

Poor cluster throughput with CPU capacity remaining on CF–

High CF response time–

Increased member CPU time–

How to measure CF response time?
CF_WAITS – approximately the number of CF calls (mostly dependent on the workload rather than the tuning)–

CF_WAIT_TIME – time accumulated when communicating with the CF –

note – CF_WAIT_TIME does NOT include reclaim time or lock wait time•

RECLAIM_WAIT_TIME – time spent waiting on reclaims–

These metrics are available at the statement level in
mon_get_pkg_cache_stmt, or at the agent level in
mon_get_workload, etc. (more useful for overall tuning)

Detecting an interconnect bottleneck

Tip

© 2012 IBM Corporation31

TRECV

TCMD

TSEND

CF_WAITS & CF_WAIT_TIME include totals for all
message types
CF_WAIT_TIME includes both network time and CF
processing time
Good overall metrics of average flow & time

MON_GET_CF_WAIT_TIME gives round-trip counts &
times by message type

MON_GET_CF_CMD gives command processing time
on the CF, without network time

MemberCF

C
F_W

A
IT_TIM

E

LOCKs,
WRITEs,
READs,…

LOCKs

WRITEs

READs

CF_CMD_NAME REQUESTS WAIT_TIME
SetLockState 107787498 6223065328

WriteAndRegisterMultiple 4137160 2363217374

ReadAndRegister 57732390 4227970323

CF_CMD_NAME REQUESTS CMD_TIME

SetLockState 107787498 3552982001

WriteAndRegisterMultiple 4137160 994550123

ReadAndRegister 57732390 2799436932

New in
DB2 10

Drilling down on interconnect traffic

© 2012 IBM Corporation32

Finding interconnect bottlenecks with MON_GET_CF_CMD

Average CF_WAIT_TIME works well in general for finding
interconnect bottlenecks,
Potential to confuse a delay at the CF with an interconnect
bottleneck
MON_GET_CF_CMD includes timings for the CrossInvalidate
message

CrossInvalidate (XI) processing has the least CF overhead,
and so XI timings are least sensitive to CF load
Average XI times should be less than 10 µs. More than 20 µs
indicates a bottleneck.

CF_CMD_NAME REQUESTS CMD_TIME

CrossInvalidate 200498328 336449517

Tip

New in
DB2 10

© 2012 IBM Corporation33

Situation: very busy pureScale cluster running SAP workload
CF with two Infiniband HCAs
CF_WAIT_TIME / CF_WAITS gives us a rough idea of average
interconnect network time per CF call

Important – this is an average over all CF calls–

Best way to judge good or bad numbers – look for a change from what's normal for your system

Average per call CF_WAIT_TIME with 2 CF HCAs – 630 µs
This is very high – even a very busy system should be less than 200 µs –

CF CPU utilization about 75% - high, but not so high to cause this major slowdown –

RECLAIM_WAIT_TIME very high as well–

Interconnect bottleneck example

Tip

© 2012 IBM Corporation34

And good things happened!

Large & widespread benefit indicates how much of a
bottleneck the interconnect was

Individual activities improved–

Reclaim wait time improved almost 10x!–

CF
sec

CF
pri

Add another CF HCA

Metric 2 CF HCAs 3 CF HCAs

Average CF_WAIT_TIME 630 µs 145 µs
Activity time of key INSERT statement 15.6 ms 4.2 ms
Activity wait time of key INSERT 8 ms 1.5 ms

Mbr
1

Mbr
3

Mbr
2

Mbr
4

CF
sec

CF
pri

Mbr
1

Mbr
3

Mbr
2

Mbr
4

© 2012 IBM Corporation35

Bad news – netstat does not provide useful information on IB throughput

Good news – there are other ways of finding out how busy the IB
network is

perfquery on Linux reports flow

of packets & data (32bit words)

Primarily interested in packets •

per second

 perfquery –r; sleep 10; perfquery resets, and collects the count after only 10s to avoid the count overflowing•

300-400,000 packets/s in- or out-bound is a good upper limit for these •

For AIX or Linux, you can also get packet counts directly from the IB switch management port

ismportcounters on QLogic•

show fabric pm on Mellanox•

Need to know which IB port is connected to the CF…•

NB – packet counts on QLogic appear higher than on Mellanox for same amount of pureScale work•

~ 1.4M packets/s in or output as useful limit–

Low-level interconnect diagnostics

Port counters: Lid 19 port 1
:
XmtData:..................1230543
RcvData:..................3879575
XmtPkts:..................20055
RcvPkts:..................23721

Tip

Tip

© 2012 IBM Corporation36

pureScale disk IO

Operations & performance targets are very similar to EE

pureScale is sensitive to log performance
As well as transaction commits, some operations (e.g. reclaim) drive extra log flushes–

Make sure to monitor log write performance during periods of high load

mon_get_workload, mon_get_transaction_log, or sysibmadm.snapdb•

db2cluster sets good initial values for most GPFS parameters
Most v9.8 configurations benefit from worker1threads set to 256 to enable greater concurrency

Operation Target

Random reads 5-10 ms
Async writes via castout 1-5 ms
Log writes 1-3 ms

Tip

Tip

Automatically set
in DB2 10

© 2012 IBM Corporation37

Castout configuration
Where EE does page cleaning, pureScale does 'castout'

Castout behavior is similar to Alternate Page Cleaning in EE–

'Castout engines' on the members write modified pages to disk on
behalf of the CF

Page cleaners write 'GBP independent' modified pages from the member to disk–

Castout activity is influenced by
Soft checkpoint value (SOFTMAX)–

Lower values mean faster group crash recovery (GCR), but more aggressive cleaning•

Migration tip 1: consider setting SOFTMAX higher than an equivalent EE system - member recovery in pureScale can make need to do total cluster

recovery less likely

Migration tip 2: no CHNGPGS_THRESH, so cleaning depends on SOFTMAX

GBP size relative to database size–

As in EE, modified pages may need to be evicted to make room for new pages•

Number of castout engines (NUM_IOCLEANERS)–

Prior to DB2 10 default (AUTOMATIC) is one per logical CPU, on DB2 10, one per physical core.•

On v9.8, for 16 cores and up, use NUM_IOCLEANERS = number of cores

Tip

Tip

Tip

© 2012 IBM Corporation38

Castout monitoring
Easy! The basics are unchanged from monitoring EE page cleaning
Calculate writes per transaction and time per write from metrics in
snapshot (old!) or new table functions (e.g. mon_get_bufferpool)

Also monitor write times from the O/S level via iostat & nmon
'bursty' write activity may be a sign of SOFTMAX being too high

Looking for 'smooth' level of writes, matching overall system activity•

Accompanied by long write times (> 10ms or so) the IO subsystem may not be able to keep up.–

select
 current timestamp as "Time",
 case when sum(w.TOTAL_APP_COMMITS) < 100 then null else
 cast(float(sum(b.POOL_DATA_WRITES+b.POOL_INDEX_WRITES))
 / sum(w.TOTAL_APP_COMMITS) as decimal(6,1)) end
 as "BP wrt / UOW",
 case when sum(b.POOL_DATA_WRITES+b.POOL_INDEX_WRITES) < 1000 then null else
 cast(float(sum(b.POOL_WRITE_TIME))
 / sum(b.POOL_DATA_WRITES+b.POOL_INDEX_WRITES) as decimal(5,1)) end
 as "ms / BP wrt"
 from table(mon_get_workload(null,null)) as w,
 table(mon_get_bufferpool(null,null)) as b;

Tip

© 2012 IBM Corporation39

Summary
Many of the performance principles on pureScale are very
similar to those on EE

configuration parameters

Same or similar monitoring techniques–

desired or problematic metric ranges

Keeping the key architectural differences in mind helps
simplify the differences in performance practice

CF providing the hub of cooperation & consistency between members–

Very low latency communication over RDMA between members and CF–

Two-layer bufferpool with GBP caching modified pages–

Page locks & lock negotiation (reclaim) between members–

© 2012 IBM Corporation40

Summary cont'd
Start with EE-based monitoring & tuning techniques

Core monitoring tools & techniques apply directly to pureScale–

Exploit AUTOMATIC in most cases, and tune from there–

BP tuning based on hit ratio and IO time–

LBP basics, then GBP•

IO tuning based on minimizing IO bottlenecks in logging and BP read/write times–

Progress to key pureScale areas
CF resource allocation–

CF response time & CPU / interconnect saturation–

Page negotiation (reclaim) frequency and impact–

DB2 10 brings great performance and monitoring improvements
CURRENT MEMBER–

More monitoring information–

Jump Scan and other core DB2 engine improvements–

Broader support in Optim Performance Manager 5.1.1–

