

IBM Cloudscape 5.1:
A Technical Overview

March 2003

Contents
Introduction ___ 3
General Architecture __ 4
RDBMS Capabilities ___ 11
Security Features __ 12
Java Extensions ___ 14
Summary___ 20

Copyright 2003, INTERNATIONAL BUSINESS MACHINES 3

Introduction

This paper describes some of the technical features of IBM Cloudscape, the embeddable SQL
database engine for Java. Because of its lightweight, pure-Java, embeddable architecture,
Cloudscape is the ideal database engine for deploying database-driven Java applications. The
database engine becomes part of the application, and the user never has to install or manage it – the
database becomes invisible.

Cloudscape is a lightweight, embeddable object-relational database engine in the form of a Java
class library. Its native interface is JDBC, with "Java-relational" object extensions. It implements
the SQL92E standard as well as many SQL99 features, plus object extensions. The object
extensions include the ability to create columns whose type is any Java class or interface, access to
the public fields and methods of those objects, some additional Java-SQL syntax (new, instanceof,
etc.), Java stored procedures, and the ability load Java classes from the database. The engine
provides transactions and crash recovery, and allows multiple connections and multiple threads to
use a connection. Because it is an entirely Java class library, Cloudscape can be easily embedded
into any Java application program or server framework without compromising the "Java-ness" of
the application. Cloudscape’s support of complex SQL transactions and JDBC allows your
applications to migrate to DB2 UDB when they need to grow.

The Cloudscape Network Server provides multi-user connectivity to Cloudscape databases within a
single system or over a network. The Network Server receives and replies to queries from clients
using standard Distributed Database Architecture (DRDA) protocol. Databases are accessed
through the Cloudscape Network Server using IBM's JDBC driver, the DB2 JDBC Universal
Driver. (Some Cloudscape functionality is not supported when using the Network Server. See the
Cloudscape Server and Administration Guide for details.)

The technical aspects of Cloudscape which most differentiate it from other database systems are:

�� It is easy to administer: when embedded in a client application, a Cloudscape system requires

no administrative intervention.

�� Cloudscape is embeddable: applications can embed the DBMS engine in the application

process, eliminating the need to manage a separate database process or service. Cloudscape can
also run as a separate process, using the Network Server framework or a server framework of
your choice.

�� It is itself a pure Java class library. This is important to Java developers who are trying to

maintain the advantages of Java, such as platform independence, ease of configuration, and ease
of installation.

�� It needs no proprietary Java Virtual Machine (JVM). Being written entirely in Java, it runs with

any certified JVM.

Copyright 2003, INTERNATIONAL BUSINESS MACHINES 4

�� The Database Management System (DBMS) engine is lightweight: about 2MB of class files,
and it uses as little as 4MB of Java heap.

�� Cloudscape provides the ability to write stored procedures in Java that can run in any tier of the

application. Cloudscape does not have a proprietary stored procedure language.

�� Cloudscape can store and manage Java objects in the database, and access their fields and

methods from SQL queries. Any Java class can serve as a SQL datatype and be used to create a
column. It is not necessary to preprocess the classes, nor is it necessary for them to derive from
a proprietary base class. Cloudscape can also store and load the classes associated with Java
data types and stored procedures from the database.

In other respects, Cloudscape is very much like other relational database systems:

�� It implements the SQL92E language standard and the JDBC API standard.

�� It has transactions (commit and rollback), supports multiple connections with transactional

isolation, and provides crash recovery. It allows multiple threads to share the same connection.

Cloudscape also implements many SQL99 features, with extensions for Java.

This unique combination of technical capabilities allows application developers to build data-
driven applications that are pervasive (run anywhere), deployable (downloadable), manageable,
extensible, and connectable. It is these technical features that are the subject of the remainder of the
paper, which describes:

• General Architecture

• Database engine as an embeddable class library
• Programmer’s API
• JDBC Drivers
• Relational Capabilities

• Security Features
• Java Extensions

• Java Stored Procedures
• Using Java methods in constraints
• Loading Classes from the Database
• External Virtual Tables
• Storing applications in the database

General Architecture

Cloudscape is an object-relational database management engine implemented as a Java class
library. Applications access data managed by the Cloudscape engine via the JDBC (Java database
connectivity) API.

Copyright 2003, INTERNATIONAL BUSINESS MACHINES 5

The database engine is embeddable. This means that rather than running as a separate process, the
database engine software can be part of the application so that the application and the database
engine run in the same Java virtual machine (JVM). Even when embedded, the application uses the
JDBC API to access the database, but the embedded JDBC driver simply transfers data to and from
the database engine without the need for network communication. Whether or not it is embedded,
the database engine supports multiple simultaneous connections and access from multiple
application threads.

Figure 1. Cloudscape Embedded in an Application

JVM

Cloudscape

JDBC API

Application

Embedding in the
application removes
the need for a
separately managed
DBMS

User sees a single
Java application – the
DBMS is invisible.

Copyright 2003, INTERNATIONAL BUSINESS MACHINES 6

It is also possible to deploy Cloudscape as a traditional client/server database server. To accomplish
this, Cloudscape is embedded in a server framework. A server framework is simply a piece of
software that can accept and process network communication. The Cloudscape Network Server is
available in the Cloudscape Server edition. You can also run Cloudscape in a server framework of
your choice.

Figure 2. Using a Server Framework, Cloudscape Acts as a Client/Server DBMS

JVM

Cloudscape

JDBC API

Server Framework

JVM

JDBC Driver

JDBC API

Application

JDBC Network Transport Protocol

The application can’t tell
whether the DBMS is
embedded or running in a
remote server.

Running as a network
DBMS server allows
multiple client processes
to access the database
over the network.

Copyright 2003, INTERNATIONAL BUSINESS MACHINES 7

It is just as easy to embed Cloudscape inside a Java web server, such as IBM WebSphere. Figure 3
shows Cloudscape embedded in a Java web server, with clients accessing the database via HTTP
(Hypertext Transmission Protocol) requests to servlets.

Figure 3. Cloudscape Embedded in Web Server

JVM

Cloudscape

JDBC API

Servlets/JSPs/EJBs

Java Web Server

Web Browser

HTTP Network Transport Protocol

Copyright 2003, INTERNATIONAL BUSINESS MACHINES 8

Cloudscape provides persistence of data by storing data in disk files. A Cloudscape engine can
manage one or more database files, but each database file can only be accessed by a single
Cloudscape engine. In a client/server configuration, the engine provides multi-user access to the
databases under its control. All threads that access the database do so via the database engine.

.

Figure 4. Thread Access to Cloudscape

JVM

Cloudscape

JDBC API

Server
Framework

Database File

Client threads running in
remote processes.

Client threads running in the
same process as Cloudscape

Copyright 2003, INTERNATIONAL BUSINESS MACHINES 9

The data in the database disk files is stored in a portable format so that databases can be easily transported
from machine to machine regardless of the CPU architecture of the machines. Cloudscape can also handle
data files on read-only media. These characteristics make it easy to download Cloudscape applications
together with their database, or run them from a CD-ROM. The combination of portable database formats
and the pure Java DBMS engine makes it possible to send a data-centric application anywhere, either on
media or over a network.

Cloudscape provides a great deal of flexibility for system designers. Each Cloudscape instance can manage
multiple databases, the databases can live on various media, and there’s nothing to stop the application from
connecting to other DBMS systems.

Figure 5. Flexible Application Architecture

Programmer's API

Applications access the database with the industry standard JDBC API. When a client application wishes to
store or retrieve data from the database, it submits a request via the JDBC API to the Cloudscape engine
(either over a network or directly to the embedded engine). The client program is not required to use any
Cloudscape-specific APIs; clients use only JDBC. The Cloudscape driver is selected by supplying a
Cloudscape JDBC connection URL (universal resource locator). For example:

Connection conn = DriverManager.getConnection("jdbc:db2j:greetdb");
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT message FROM greetings");
while (rs.next())
{

String greeting = rs.getString(1);
System.out.println(greeting);

}
rs.close();
stmt.close();
conn.close();

 JVM

Cloudscape

JDBC API

Database
on Disk

Application

Database
on CD-
ROM

Other DBMS

Database

Applications can connect
to multiple databases, on
various media, as well as
to remote DBMSs.

Copyright 2003, INTERNATIONAL BUSINESS MACHINES 10

Since the application is only using JDBC APIs, it is portable, and will run against JDBC compliant
databases from other vendors. This standards compliance enables a developer to write an
application against Cloudscape and deploy it against another DBMS.

When a client requests data from the DBMS, the JDBC driver copies the data from the database
into the application. Modifications of that data in the application, intentional or unintentional, do
not affect the data in the database until JDBC calls are used to send the changes back to the DBMS.
Similarly, when a client stores data in the DBMS, it is copied out of the client and into the DBMS.
Because Cloudscape is transactional, complex data manipulations can be grouped together into
transactions. Cloudscape guarantees data consistency by ensuring that even after system failure,
either all or none of the transaction will commit to the database file.

Figure 6. Objects Copied from DBMS to Application

More information about JDBC can be found at http://java.sun.com/jdbc.

JDBC Drivers

IBM supplies two drivers for accessing Cloudscape from Java client programs. These are Type 4
drivers: pure Java on the client and connect directly to the database engine without any
intermediate translation. The embedded driver is used to communicate with Cloudscape when it is
running in the same JVM as the application program. The driver included with the Network Server
is IBM's JDBC driver, the DB2 JDBC Universal Driver.

JDBC connection URLs to Cloudscape databases all start with the prefix jdbc:db2j:. The
connection URL for an embedded database on drive e: might look like this:
 jdbc:db2j:e:/db. The connection URL to a Cloudscape server might look like this:
jdbc:db2j:net://localhost:1527/db.

Cloudscape JDBC drivers support JDBC2.0 and 3.0; they work with JVM 1.2 and beyond. The
standard extensions for JNDI data sources, connection pooling, and XA are also provided. These
features enable Cloudscape to be a resource manager in a distributed J2EE system.

Cloudscape

JDBC API

Application

Copy of Object in the
Application

Copy of Object in
Stored Form in the
Database

http://java.sun.com/jdbc

Copyright 2003, INTERNATIONAL BUSINESS MACHINES 11

RDBMS Capabilities

Cloudscape implements most of core SQL99 any many other features of SQL99, with extensions
for Java. SQL language support includes the following:

�� Basic types: CHAR, DECIMAL, DOUBLE PRECISION, FLOAT, INTEGER, NUMERIC,
REAL, SMALLINT.

�� Datetime data types (from SQL92T): DATE, TIME, TIMESTAMP (with JDBC date/time
escape syntax).

�� Other types: BIT and BIT VARYING (from SQL92F), BOOLEAN, BIGINT and TINYINT
(from JDBC), VARCHAR (from SQL92T), NCHAR and NVARCHAR (from SQL92F),
LONG VARCHAR, LONG VARBINARY, and LONG NVARCHAR (from JDBC).

�� Basic math operations: +,*,-,/,unary +,unary -.
�� Basic comparisons: <,>,<=,>=,<>,=.
�� Datetime literals
�� Built-in functions: BIT_LENGTH, CAST, CHAR_LENGTH, concatenation (||),

CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, EXTRACT,
OCTET_LENGTH, LOWER, SUBSTRING, SUBSTR, LTRIM, RTRIM, UPPER,
CURRENT_USER, USER, SESSION_USER, SQRT, and others.

�� Basic predicates: BETWEEN, LIKE, NULL
�� Quantified predicates: IN, ALL/SOME, EXISTS
�� CREATE and DROP SCHEMA
�� CREATE and DROP TABLE
�� Check constraints
�� ALTER TABLE: ADD COLUMN and ADD/DROP CONSTRAINT
�� CREATE and DROP VIEW
�� Constraints: NOT NULL, UNIQUE, PRIMARY KEY, CHECK, FOREIGN KEY
�� Cascade delete
�� Column defaults
�� Delimited identifiers
�� Updatable cursors (via JDBC)
�� Dynamic SQL (via JDBC)
�� INSERT, UPDATE, and DELETE statements
�� Positioned updates and deletes
�� WHERE qualifications
�� GROUP BY
�� HAVING
�� ORDER BY
�� UNION and UNION ALL
�� Subqueries as expressions (from SQL92F)
�� Joins in the WHERE clause
�� Joins (SQL92T): INNER, RIGHT OUTER, LEFT OUTER, CROSS, named column join,

condition join
�� Aggregate functions (with DISTINCT): AVG, COUNT, MAX, MIN, SUM
�� Select expressions
�� SELECT *, SELECT table.* (SQL92T), SELECT DISTINCT, select expressions

Copyright 2003, INTERNATIONAL BUSINESS MACHINES 12

�� Named select columns
�� SQLSTATE
�� UNION in views (SQL92T)
�� Implicit numeric casting (SQL92T) and implicit character string casting
�� CAST (SQL92T)
�� INSERT expressions (SQL92T): insert into T2 (COL) select col from T1
�� VALUES expressions: select * from (values (1, 2)) as foo(x, y), etc.
�� Triggers

Other traditional database features include:

�� Cost-based query optimizer: join order, index selection, bulk fetching, join strategies (nested
loop or hash), sort avoidance, lock escalation, subquery flattening, transitive closure, and
many other query transformations. It uses a unique sampling technique that requires no
intervention for statistical gathering, and also provides query plan overrides and statistics on
actual query results.

�� Multicolumn B-Tree indexes
�� Unlimited length rows, and the capability of “streaming” column values to the client
�� Data import/export with fast load and fast create index
�� Transaction commit and rollback
�� Transactional isolation (serializable, repeatable read, read committed, and read uncommitted)
�� Crash recovery
�� Multiple concurrent connections
�� Multithreaded connections
�� Row locking with escalation to table locks
�� User and connection authentication: built-in SH3, application-defined, or via external user

authentication systems (LDAP, NIS+, JNDI)
�� Diagnostics and consistency checks
�� Online database backup
�� Locales
�� Database encryption
�� Static SQL – precompiled statements
�� GUI for schema management, Cview
�� Script tool, ij
�� Modify column to change its length or nullability
�� Compress table to recover unused disk space for a table
�� Autoincrement default for automatic sequence numbers for data

Security Features

Cloudscape includes security features for deploying databases to remote sites and for integrating
them into existing user authentication schemes.

Encrypted Databases

Copyright 2003, INTERNATIONAL BUSINESS MACHINES 13

When a database is deployed to a remote or mobile location, it is not possible to use physical
security to prevent unauthorized access to data. If the data files can be read, a sophisticated user
could decode the information they contain. The only way to secure data in this environment is to
encrypt it on disk. That way, simply being able to read the database files does not reveal the data.

Cloudscape supports secure remote data database encryption. All data in such a database is
decrypted by the database engine when read and re-encrypted when written back to disk. No data
exists in clear-text form in the database files. Since the entire database is encrypted, the structure of
the database schema is also hidden.

For an encrypted database to be usable, a “boot password” must be provided when the database is
first started. This is a separate password from the usual database connection username and
password (which must also be supplied to access the database). Without the boot password, the
database will not start.

Database encryption is useful for applications that distribute databases to locations where physical
security of the files cannot be guaranteed. For example, mobile databases on notebook computers
can be stolen if the notebook computer is stolen. Applications that are installed on remote multi-
user machines are subject to unauthorized access if the remote administrator does not appropriately
protect the files.

Database encryption adds less than 10% performance overhead, and takes no additional disk space.
It is based on the 1.2.1 version of the Java Cryptographic Extension (JCE). DES is used as a default
encryption method, or the user can configure which algorithm to use.

External User Authentication

Cloudscape also provides support for integrating into external user authentication schemes. Rather
than maintaining an internal list of authorized users, Cloudscape can be configured to check with an
external authentication service. LDAP and NIS+ support is provided, and custom schemes are
supported via user-defined JNDI classes.

Not having the user names and passwords maintained in the database means less administrative
overhead (to transfer names into the database). This is especially important in deployed server
applications, which must be deployed with as little administrative overhead as possible.

LDAP (Lightweight Directory Access Protocol) is an Internet standard which provides an open
directory access protocol running over TCP/IP. Windows NT domain user authentication can be
provided through LDAP by using the Netscape NT Synchronization Service. NIS+ (Network
Information Services Plus) is an enhanced version of the NIS name service used on the Sun Solaris
operating system.

Because Cloudscape is an embedded system, it provides simple user authorization controls. Users
can be restricted to read-only access or restricted from any access on a per-system or per-database
level. This ensures only permitted, authenticated users access or modify a database.

Copyright 2003, INTERNATIONAL BUSINESS MACHINES 14

Java Extensions

Java extensions include the following (these features are described in more detail below):

�� The ability to use any Java class or interface as a column type, and to order and index such
types.

�� Access to public methods and fields in queries.
�� Java stored procedures, constraints, and triggers.
�� Java virtual tables: the ability to provide and manipulate table data from an arbitrary data

source.
�� The ability to store application classes in the database.
�� SQL language extensions for Java: CLASS, INSTANCEOF, NEW, conditional operator (?:),

IS NULL for objects.
�� Class and method aliases.

Cloudscape's Java extensions are based upon Part 13 of the SQL standard, " SQL Routines and
Types Using the Java Programming Language." However, they differ from both the standard and
DB2 in the way routines and types are defined to the database system. In Cloudscape, any public
Java type, method, or field can be used at runtime without any data definition language (for
example, CREATE PROCEDURE). If an application will be run against DB2 as well as
Cloudscape, keep these differences in mind when taking advantage of Cloudscape’s Java
extensions. A future version of Cloudscape will implement Java stored procedure support that is
compliant with DB2 and the SQL standard.

For more information about these features, see the online documentation at our web site:
http://www.ibm.com/software/data/cloudscape/pubs/collateral.html

Storing Java Objects in Tables

In Cloudscape, Java objects are stored in tables as column values. Any Java class can serve as a
column data type. An important aspect of the way Cloudscape does this is that it does not require
the class to derive from any base class. The only requirement is that the instances stored in the
database implement the java.io.Serializable interface. For example, to create a table with a single
column to hold a value of class URL:

CREATE TABLE websites (url java.net.URL)

To insert a value into the table:

INSERT INTO websites (url)
VALUES (NEW java.net.URL('http://www.ibm.com/support'))

It’s possible to use public fields and methods in queries. For example, to find all the sites under
www.ibm.com:

http://www.ibm.com/software/data/cloudscape/pubs/collateral.html

Copyright 2003, INTERNATIONAL BUSINESS MACHINES 15

SELECT url FROM websites
WHERE url.getHost() = 'www.ibm.com'

Field and method access is allowed in the from list as well as in qualifications. To get an
alphabetical list of protocols used by the web sites:

SELECT DISTINCT url.getProtocol() protocol
FROM websites
ORDER BY protocol

Fields and methods can be used in UPDATE and DELETE statements as well, of course:

UPDATE websites SET url = NULL
WHERE LOWER(url.getHost()) LIKE '%oracle%'

It’s possible to call static methods, too. For example, to find out the current CLASSPATH, which is
where Cloudscape is loading all the object classes from:

VALUES java.lang.System::getProperty('java.class.path')

When a Java program wishes to retrieve or change an object stored in a column, it uses the JDBC
getObject() and setObject() calls on ResultSet and PreparedStatement. For example, here is a
snippet to get the URLs under www.ibm.com from the websites table:

Connection conn = DriverManager.getConnection("jdbc:db2j:webdb");
PreparedStatement ps = conn.prepareStatement(

"SELECT url FROM websites WHERE url.getHost() = ?");
ps.setString(1, "www.ibm.com");
ResultSet rs = ps.executeQuery();
while (rs.next())
{

URL url = (URL) rs.getObject(1);
System.out.println(url);

}
rs.close();
ps.close();
conn.close();

Similarly, when inserting values, PreparedStatement.setObject() is used to pass objects into the
Prepared Statement.

Java User-Defined Datatypes

As shown by the preceding examples (which all use existing classes from the Java Developer’s Kit
API), Cloudscape’s approach to providing object storage makes it easy to store any existing Java
object in the database. However, the typical use for this capability is to add useful application-
specific types to SQL. These are often referred to as user defined types, or UDTs. For example, the
following class is a simple UDT that maintains address information:

import java.io.Serializable;

public class Address implements Serializable, Comparable
{

public int number;

Copyright 2003, INTERNATIONAL BUSINESS MACHINES 16

public String street;
public int zipcode;

public Address(int number, String street, String city, String state)
{

this.number = number;
this.street = street;
this.zipcode = ZipMap.zipFromCity(city, state);

}

public String city()
{

return ZipMap.cityFromZip(zipcode);
}

public int compareTo(Object o)
{

// returns <0, 0, or >0 for LT, EQ, GT
return zipcode - ((Address) o).zipcode;

}

public String toString()
{

return number + " " + street + ", " + city() + " " + zipcode;
}

}

This class keeps track of postal address information by storing the street, number, and zip code, and
computes the name of the city from the zip code. Cloudscape understands the following things
about this class:

�� Since it implements the java.io.Serializable interface, Cloudscape can store instances of this

class in a column. Note that no explicit coding is required for this; Java provides a default
mechanism for serializing the object.

�� Since the fields are all public, they can be accessed from SQL queries. (Cloudscape does not
allow access to protected or private fields.)

�� Since the methods are all public, they can be accessed from SQL queries. (Cloudscape does not
allow access to protected or private methods.)

�� Since the class implements the compareTo() method from interface java.lang.Comparable, class
Address can be indexed and ordered.

�� Since the class overrides the toString() method from java.lang.Object, Cloudscape tools know
how to display the value of this class’s instances.

Applications would use this UDT when defining tables, for example:

CREATE TABLE CUSTOMER (name VARCHAR(255), addr Address);
CREATE TABLE SUPPLIER (company VARCHAR(255), addr Address);

This capability allows applications to define schemas with meaningful application-level column
types, without resorting to a complex and nonstandard database extension language.

Copyright 2003, INTERNATIONAL BUSINESS MACHINES 17

Java UDTs can be used in indexes, SELECT DISTINCT, GROUP BY, and ORDER BY if they
implement the Java 2 compareTo() method from interface java.lang.Comparable. In this simple
example, the compareTo() method performs ordering by zip code. The query:

SELECT * FROM customer ORDER BY addr

would return the contents of the customer table in zip code order of addresses.

Java Stored Procedures

Cloudscape also supports Java stored procedures. A Java stored procedure consists of Java code,
which is callable from SQL, runs in the database server, and accesses the database.

For the sake of example, presume that the following table exists in a database to map zip codes to
cities:

CREATE TABLE zipmap (zipcode INT, city VARCHAR(255))

Then a Java stored procedure that looks up the name of a city given a zip code might look like this:

public class ZipMap
{

public static String cityFromZip(int zipcode)throws SQLException
{

Connection conn= DriverManager.getConnection(
“jdbc:default:connection”);
PreparedStatement ps = conn.prepareStatement(

"SELECT city FROM zipmap WHERE zipcode = ?");
ps.setInt(1, zipcode);
ResultSet rs = ps.executeQuery();
if (!rs.next())

return "Unknown City";
String city = rs.getString(1);
rs.close();
ps.close();
conn.close();
return city;

}
}

This method would be called from SQL as follows:

VALUES ZipMap::cityFromZip (94612)

Cloudscape supports the CALL statement for invoking any Java static method, including those
specified as void. Cloudscape supplies JDBC OUT parameters so that values can be returned in
parameters; this is done by, having the Java parameter be an array of the type desired. For
example, and int parameter would be declared as int[] so that a value could be returned in it.

Using Java Methods in Constraints

Copyright 2003, INTERNATIONAL BUSINESS MACHINES 18

Java methods can be used in constraints. This provides a powerful way to validate data using
arbitrary Java methods. For example, the ZipMap class (above) could contain a static boolean
method called zipInRegion, which verifies that the zipcode is in a given geographical region (NE,
SW, etc.). The following table definition could include a constraint that calls it:

CREATE TABLE territory (
region CHAR(2),
zipcode INT
CONSTRAINT zipValid

CHECK (zipcode > 0 AND zipcode < 99999)
CONSTRAINT zipInRegion

CHECK (ZipMap::zipInRegion(zipcode, region))
)

In a “real” application, it is likely that the zip code would be maintained in a CHAR(5) or a
CHAR(9). In such a case it might be easier to perform the zipValid check constraint with a Java
method call, too.

Java method calls in constraints can be combined with Java stored procedures. For example, the
zipInRegion method could query a lookup table in the database to validate whether the region
contained the zip code.

Using Java Methods in Triggers

Similarly, Java methods can be used in triggers. Java methods in triggers can be used to provide e-
mail notification about updates, perform updates in other databases via JDBC, or literally anything
that can be done in Java. Here’s an example of a trigger that calls a Java method for each insert into
the customer table.

CREATE TRIGGER newcustomer AFTER INSERT ON customer
CALL Territory::addCustomer()

The new and old values of the modified rows are available as virtual tables. Java methods that are
called as trigger actions can query the virtual tables via JDBC.

Loading Classes from the Database

Java stored procedures or other application logic can be stored in the database along with the data,
and the database can be told to load the classes from there. This makes the database data and its
logic into a single, self-contained application package. This simplifies application deployment, as it
reduces the potential for problems with a user's class path. It is particularly useful when the classes
stored in the database contain the logic for data types used in columns in the database – the
database will not be dependent on anything outside of it.

Storage and loading of application classes in the database is provided by two mechanisms: the
ability to add, remove, and replace JAR (Java class file archive) files in the database, and the ability
to add these JAR files to the class path.

Copyright 2003, INTERNATIONAL BUSINESS MACHINES 19

Once the application code has been added to the database, moving or copying the database ensures
that the appropriate application logic is moved along with the data. This means that object data will
never be separated from its methods.

External Virtual Tables

An external virtual table (EVT) is a table that gets its data from some external data source rather
than from the database. The results of a query on an EVT are treated exactly the same way as the
results of any other query, and look exactly as if they came from a database table. This allows the
integration of external data such as real-time data feeds, formatted data in operating system files,
other databases (even non-SQL databases), and any other tabular data sources.

Creating an external virtual table is extremely easy. Cloudscape will treat any object that
implements the java.sql.ResultSet and java.sql.ResultSetMetaData interfaces as if it were a read-
only table. An example of using such a class follows. This EVT returns the directory contents of a
zip file.

SELECT name, compressed_size
FROM NEW ZipEVT('c:\jdk1.1.6\lib\classes.zip') AS evt
WHERE compressed_size > 5000
ORDER BY name

In this example, ‘ZipEVT’ is the name of a class on the current class path which implements the
result set interfaces. The “NEW ZipEVT(…)” creates a new instance of the class using a
constructor that takes the provided arguments. In this case the argument passes in the name of an
archive file. The “AS evt” provides a name for the virtual table.

The implementation of the class that performs the above function can be done in approximately 200
lines of Java code. (It is provided as a demo in the released product.)

External virtual table implementations may optionally provide cost information to the query
optimizer. By default, external virtual tables are considered to be very expensive. The implementor
may provide more accurate cost information by implementing the VTICosting interface. This
interface provides methods that the query uses to get the estimated row count and the cost of
instantiating the virtual table and iterating through its rows.

For read-write VTIs, you can insert and delete on virtual tables that implement the
java.sql.PreparedStatement interface.

Since external virtual tables act just like database tables, they can be used in views. This has the
benefit of adding an entry to the system catalogs so that tools can see the external virtual table as if
it were a real table.

CREATE VIEW jdk116 AS
SELECT *
FROM NEW vti('c:\jdk1.1.6\lib\classes.zip') AS zipfile

Copyright 2003, INTERNATIONAL BUSINESS MACHINES 20

Results from external queries can of course be used in all the relational operations (project, select,
join, union, etc.), as well as in ordering and grouping.

Summary
This paper has described the fundamental architecture of Cloudscape, and explained how it can be
embedded inside a client or a server application. It discussed the use of standard JDBC calls to
manipulate the data. It summarized the security mechanisms available in Cloudscape.
It showed how to store Java objects in tables and how to take advantage of Java integration to store
Java objects in tables, create Java stored procedures and Java user-defined datatypes, and store your
Java classes in the database. IBM Cloudscape provides developers with a small footprint,
standards-based Java database that can be tightly embedded into any Java based solution.

For more information about the Cloudscape Enterprise solution, visit http://www-
3.ibm.com/software/data/cloudscape/. Click on Downloads for a free 60-day evaluation version.

COPYRIGHT INTERNATIONAL BUSINESS MACHINES CORPORATION, 2003. All rights reserved.
Cloudscape is a trademark of IBM. Java is a trademark of Sun Microsystems. All other trademarks are the properties of their
respective companies.

http://www-3.ibm.com/software/data/cloudscape/
http://www-3.ibm.com/software/data/cloudscape/

	I
	Introduction
	General Architecture
	RDBMS Capabilities
	Security Features
	Java Extensions
	Summary

