
Global distributed development
White paper
July 2009

Systems and software product line
engineering with SysML, UML and
the IBM Rational Rhapsody BigLever
Gears Bridge.

Integrating MDD and SPL to effectively manage product

line diversity

Charles W. Krueger, Ph.D, BigLever Software

Martin Bakal, IBM Rational Software

SysML, UML and the IBM Rational
Rhapsody BigLever Gears Bridge
Page 2

Contents

2	 Introduction

3	 MDD and SPL

5	 Background on SPLs and BigLever

Software Gears

5	 Product-centric thinking impedes

portfolio production

7	 Shift in perspective to an efficient

means of production

9	 Background on MDD and Rational

Rhapsody

11	 Rhapsody/Gears Bridge—

integrating MDD and SPL

12	 A handset product line example

19	 Conclusions

Introduction

The key to business success depends on the infusion of new ideas for how

products are brought to market. To achieve this goal, today’s software-based

product development organizations must deliver a product line—a portfolio of

similar products with variations in features and functions—rather than just an

individual product. A new approach referred to as software product lines (SPL),

or more precisely systems and software product line engineering and delivery,

has emerged to enable organizations to develop, deliver and evolve an entire

product line portfolio, through each stage of the development lifecycle, with

much higher degrees of efficiency than has been possible before.

IBM® Rational® and BigLever Software have joined forces to help provide

an innovative and pragmatic new SPL solution, offering organizations the

infrastructure, tools, best practices and methods needed to create the industry’s

most advanced and efficient means of production for their software-based

product lines. Similar to what is seen in manufacturing, companies that invest

in a more efficient means of production for SPL engineering and delivery can

get the help they need to make a discontinuous jump in productivity, quality,

time-to-market and product line scalability.

The IBM Rational and BigLever SPL Solution is comprised of the following key

elements:

•	 BigLever’s Gears SPL Lifecycle Framework, for the SPL integration of
existing or new tools, assets and processes across the full system and
software development lifecycle.

•	 IBM Rational Toolset integrations into the Gears SPL lifecycle
framework, extend the full systems and software development lifecycle
capabilities for the delivery of software-based product lines. The
integrations include the IBM Rational DOORS®, IBM Rational
Rhapsody®, IBM Rational ClearCase, IBM Rational Synergy, Team
Center and Quality Manager solutions.

SysML, UML and the IBM Rational
Rhapsody BigLever Gears Bridge
Page 3

Highlights

SPL engineering helps provide the

ability to efficiently and effectively

create, maintain and evolve a portfolio

of similar products with the simplicity

of a single system rather than the

complexity of deploying a multitude of

products.

This report focuses on one of these integrations, the Rational Rhapsody/

BigLever Software Gears Bridge. The Rational Rhapsody/Gears Bridge

extends the abstraction, comprehension and communication benefits provided

by model-driven development (MDD) with SPL capabilities to capitalize on

product line commonality and variation. The Rhapsody/Gears Bridge provides

SPL extensions for both SysML systems modeling and UML software modeling.

MDD and SPL

The motivation for integrating Rational Rhapsody and BigLever Gears via the

Rational Rhapsody/Gears Bridge is to capitalize on a strong synergy that results

by combining MDD and Software Product Line engineering. MDD is known

for its ability to accelerate system and software development by leveraging the

higher level of abstraction provided by the Unified Modeling Language (UML)

and the Systems Modeling Language (SysML). These two modeling languages,

UML and SysML, are the Object Management Group’s (OMG) domain-specific

languages for software development and embedded systems engineering.

SPL engineering helps provide the ability to efficiently and effectively create,

maintain and evolve a portfolio of similar products with the simplicity of a

single system rather than the complexity of deploying a multitude of products.

Combined, an entire product line can be expressedand engineered from a

single, configurable SPL/MDD model.

With MDD, creating software for a portfolio of similar products has traditionally

relied on one of two different approaches, clone-and-own or one-size-fits-all.

In the clone-and-own approach, the model for every new product is created by

making a copy—or clone—of the model for a similar existing product and then

modify that model so that it implements the unique features and characteristics

of the new product. There is 100% reuse at the time of the cloning, but similar

to clone-and-own of conventional source code, the duplication can lead to

divergence over time and require merging or replicated development among the

different models, adding to thetime and cost of maintenance and evolution.

SysML, UML and the IBM Rational
Rhapsody BigLever Gears Bridge
Page 4

Highlights

In response to customer demand to

combine the latest generation of SPL

engineering technology with modern

MDD tool support, BigLever Software

and IBM Rational teamed up to create a

bidirectional integration between the

Rational Rhapsody MDD tool and the

BigLever Gears SPL framework.

Some organizations adopt the one-size-fits-all approach to avoid the overhead

of clone-and-own. With the one-size-fits-all approach, the product features

and product diversity for an entire product line portfolio are implemented in a

single model, using meta-logic and configuration files to allow decisions about

which product feature alternatives to include in any particular product to be

made at runtime. This eliminates the need for cloned models. Similar to one-

size-fits-all in conventional source code, this approach can lead to models that

continue to grow larger and more complex over time as more and more products

and features are added to the portfolio.

With SPL engineering, specialized tools and methods are provided for

efficiently creating, maintaining and evolving software assets for a product

line portfolio of similar products. Early generation SPL tools and methods

primarily focused on conventional source code, requirements and test cases.

SPL support was not commercially available for variation points that captured

product diversity in UML and SysML model elements in MDD. SPL support was

not commercially available to allow MDD models to serve as reusable SPL core

assets that could be automatically configured by an SPL product configurator.

In response to customer demand to combine the latest generation of SPL

engineering technology with modern MDD tool support, BigLever Software

and IBM Rational teamed up to create a bidirectional integration between the

Rational Rhapsody MDD tool and the BigLever Gears SPL framework. The result

of this collaborative effort is the Rational Rhapsody/Gears Bridge, which helps to

combine the strengths of the MDD and SPL approaches in one work area.

With the Rational Rhapsody/Gears Bridge, Rational Rhapsody models can now

be first-class SPL core assets in a Gears software production line. These model

core assets can be integrated with other types of SPL core assets across the

full development lifecycle, including requirements, conventional source code,

documentation, test cases and so forth.

SysML, UML and the IBM Rational
Rhapsody BigLever Gears Bridge
Page 5

Highlights

The characteristic that distinguishes

the SPL approach from previous

efforts is when an organization invests

in a means of production that enables

them to efficiently create a product line

of similar software systems from a

shared set of software assets.

With the Rhapsody/Gears Bridge solution, UML and SysML models explicitly

show both the common and varying parts of the product line design. The design

of each SPL variation point—including the options, alternatives and the logical

specification that differentiates them—is directly visible in the model.

The Rhapsody/Gears Bridge solution provides the combined simplicity and

benefits offered by MDD and SPL approaches—including significant gains

in productivity, reduction in defect density and faster time-to-market with

new products—as well as synergistic benefits that dramatically increase the

scalability of a product line portfolio.

Background on SPLs and BigLever Software Gears

The characteristic that distinguishes the SPL approach from previous efforts

is when an organization invests in a means of production that enables them to

efficiently create a product line of similar software systems from a shared set

of software assets. Manufacturers have long employed analogous engineering

methods to create a product line of similar products using a common factory that

assembles and configures parts designed to be reused across the product line.

Product-centric thinking impedes portfolio production

Throughout the first five decades of the software engineering field, the

methods and tools of the trade have predominately promoted a product-centric

perspective. The state of the industry today is a bevy of sophisticated product-

centric development tools and processes that can be effectively applied to the

software development lifecycle of an individual product, from early inception

through design, implementation, testing, deployment and maintenance.

However, these product-centric tools do not independently or collectively

offer an effective means to engineer and deliver a software-based product line.

With product-centric tools, it is left as an exercise for the tool user to craft the

homegrown techniques for managing the “commonalities and variabilities”

among products during the development of their product line portfolios.

SysML, UML and the IBM Rational
Rhapsody BigLever Gears Bridge
Page 6

The repercussions of taking a product-centric perspective in a product line

setting are shown in Figure 1. The vertical blue bars highlight the product-

centric focus on the development lifecycle of the individual products (A, B,

through N) in a product line. The red lines illustrate the complex, tangled and

labor-intensive interactions, dependencies and coordination activities required

to take advantage of what is common and manage all the variations among the

similar products in the product line portfolio.

Figure 1: Complex interdependencies from the product-centric perspective

The crux of the problem lies in the fact that the number of red interdependency

lines grows by the square of the number of products in the product line,

explaining why complexity and effort increase exponentially faster than the

growth of the product line. Making matters even worse, the conventional

product-centric traceability relationships between the different stages

of the lifecycle for an individual product interact with the red product

interdependency relationships, multiplying the complexity and introducing

dissonance across the stages of the lifecycle.

These tactical development challenges are so large that they impede a

company’s ability to achieve strategic business objectives, such as hitting

market windows, offering competitive pricing while maximizing profitability,

SysML, UML and the IBM Rational
Rhapsody BigLever Gears Bridge
Page 7

Highlights

The powerful, though subtle, essence

of the SPL epiphany is the focus on

that singular means of production

rather than a focus on the multitude of

products.

meeting product quality demands, and expanding the scale and scope of their

portfolio. Comparing the ad hoc, complex and labor-intensive nature of the

product-centric perspective to the sophisticated means of production found in

semiconductor fabrication or in automotive manufacturing makes clear that

there is an extraordinary need and opportunity for dramatic improvements in

software-based product line engineering and delivery.

Shift in perspective to an efficient means of production

“We can’t solve problems by using the same thinking we used when we created
them.” —Albert Einstein

Organizations mired in the complexity, inefficiency and pain of product line

engineering from a product-centric perspective, experience an SPL epiphany

when a shift in perspective reveals a simpler solution to the problem. Analogous

to engineering a product line of hard goods, it is much more effective to take

the perspective that views product line engineering as creating a means of

production—a single system capable of automatically producing all of the

products in a product line—rather than viewing product line engineering as

creating a multitude of interrelated products. The powerful, though subtle,

essence of the SPL epiphany is the focus on that singular means of production

rather than a focus on the multitude of products.

Figure 2: Simple and efficient means of production from the single-system perspective

SysML, UML and the IBM Rational
Rhapsody BigLever Gears Bridge
Page 8

Highlights

With the single-system perspective,

focused on the automated means of

production, the scale of a product line

and the scope of diversity within the

product line can be based on business

opportunities and profitability rather

than being constrained by the

complexity limitations imposed by the

product-centric perspective.

Figure 2 shows the single-system perspective for producing the same product

line as in Figure 1, where now the focus is on the means of production inside of

the red box. The same products, A through N (on the right side of the diagram),

are automatically produced by a singular means of production consisting of:

•	 Reusable SPL Assets (left) such as requirements, architectures, models
and designs, source code components, test cases, documentation, and so
forth, that can be configured and composed in different ways to create
all instances of assets and products in a product line.

•	 Feature Profiles (top) that describe optional and variable features for
the products in the product line, where each product in the product line
is uniquely defined by its own feature profile—choices for each of the
optional and variable features.

•	 SPL Product Configurator (center) that automatically composes and
configuresproducts from the reusable SPL assets, using the feature
profiles to determine which reusable software assets to use and how to
configure variation points within the assets.

As highlighted by the blue bars in Figures 1 and 2, tilting your head 90-degrees

provides the critical shift in perspective, from the vertical product-centric focus

of Figure 1 to the horizontal single-system focus in Figure 2.

By shifting perspective to focus on the singular means of production rather

than the multitude of products, products are relegated from the primary

focus to a consequential corollary of the automated means of production. The

complexity of managing product interdependencies is eliminated and replaced

by automated production, resulting in dramatic increases in the number of

products that can be effectively created, deployed and maintained.

With the single-system perspective, focused on the automated means of

production, the scale of a product line and the scope of diversity within the

product line can be based on business opportunities and profitability rather

than being constrained by the complexity limitations imposed by the product-

centric perspective.

SysML, UML and the IBM Rational
Rhapsody BigLever Gears Bridge
Page 9

Highlights

By focusing both your business and

engineering teams on the operation of

your software production line, your

organization can plan, develop, deploy

and evolve your product line portfolio,

seamlessly and efficiently, across the

full development and delivery lifecycle.

BigLever’s Gears SPL Lifecycle Framework provides the automated means

of production for your software-based product line. By focusing both your

business and engineering teams on the operation of your software production
line, your organization can help plan, develop, deploy and evolve your product

line portfolio, seamlessly and efficiently, across the full development and

delivery lifecycle—from business case and analysis, to requirements, design,

implementation, testing, delivery, maintenance and evolution.

The Gears SPL framework enables the SPL integration of existing or new tools,

assets and processes across the full system and software development lifecycle.

With the award-winning Gears SPL lifecycle framework, you have a common

set of industry standard SPL concepts and constructs for all tools and assets,

including:

•	 A feature model that can uniformly express the full product line
feature diversity for all assets in all stages of the system and software
development lifecycle.

•	 A single variation point mechanism that can be uniformly applied
to all tools and their associated assets in all stages of the system and
software development lifecycle.

•	 An automated product configurator that can automatically assemble
and configure assets from each stage of the lifecycle to produce all
products in a product line with the push of a single button.

Background on MDD and IBM Rational Rhapsody

MDD technology assists professionals to achieve unparalleled productivity

gains over traditional document driven approaches by enabling users to specify

the system design and architecture graphically, simulate and automatically

validate the system as it is being built. This helps engineers and developers

to ultimately produce a quality systems specification that is correct, non-

ambiguous and satisfies original requirements.

SysML, UML and the IBM Rational
Rhapsody BigLever Gears Bridge
Page 10

Highlights

Having your engineers work in on

unified environment helps provide

another advantage, in that your team

can work in a single platform—the

Rational Rhapsody environment aids

your workflow by helping enable a UML

and SysML design space contained

under a single tool family.

UML and SysML are the same language, just aimed at different disciplines. This

allows systems and software engineers to collaborate better than ever before. In

addition, SPL is made more effective because of the collaboration amongst all

the team members. These two languages are founded on the same metamodel,

yet having them in different areas of the design enables specific teams to design

with tools that help them do their work yet also clearly communicate their design

to a larger audience. Having your engineers work in on unified environment

helps provide another advantage, in that your team can work in a single

platform—the Rational Rhapsody environment aids your workflow by helping

enable a UML and SysML design space contained under a single tool family.

As illustrated in Figure 3, the Rational Rhapsody solution helps provide

systems engineers and software developers with UML/SysML compliant

products that can be extended for domain-specific modeling, aiding in creating

a collaborative development environment that assists both large and small

teams to communicate effectively and productively. Integrated requirements

management and traceability features help ensure that the design always

meets the requirements. Design for Testability (DFT) capabilities help reduce

defects early in the process and always validate against the requirements. The

Rational Rhapsody solution helps accelerate development by generating full

applications, rather than just code frames. These technologies, packaged in an

easy-to-use format, help make the Rational Rhapsody environment a powerful

solution for software and systems engineers.

Figure 3: Model-driven development with Rational Rhapsody

SysML, UML and the IBM Rational
Rhapsody BigLever Gears Bridge
Page 11

Highlights

Through the Rational Rhapsody tool’s

Model Driven Architecture (MDA)

support, development teams can

target the Platform Independent

Model (PIM) to a realtime embedded

operating system in seconds.

The Rational Rhapsody/Gears Bridge

is a dual plugin between Rational

Rhapsody and Gears, shown in

Figure 4. The bridge provides SPL

capabilities in MDD and extends the

set of supported SPL core assets to

include MDD models.

Through the Rational Rhapsody tool’s Model Driven Architecture (MDA)

support, development teams can target the Platform Independent Model

(PIM) to a realtime embedded operating system in seconds. The Rational

Rhapsody solution helps provide a design approach where the software can

be constantly executed and validated on the host environment, then brought

down to the embedded target for target based testing. By fully integrating

the specific demands of the systems engineer and the software developer, the

Rational Rhapsody tool places a powerful, feature-loaded tool in the user’s

hands assisting them in creating high quality systems and software in a shorter

timeframe.

Rhapsody/Gears Bridge—integrating MDD and SPL

The Rational Rhapsody/Gears Bridge is a dual plugin between Rational

Rhapsody and Gears, shown in Figure 4. The bridge provides SPL capabilities in

MDD and extends the set of supported SPL core assets to include MDD models.

Figure 4: Rational Rhapsody/Gears Bridge

On the Gears side of the plug-in bridge, Rational Rhapsody MDD models can be

included as Gears SPL modules, or core assets. The Gears product configurator

can automatically instantiate Rational Rhapsody models based on the feature

selections in Gears feature profiles, along with the consistent configuration of

other Gears core assets such as requirements, documentation, conventional

source code and test cases.

SysML, UML and the IBM Rational
Rhapsody BigLever Gears Bridge
Page 12

On the Rational Rhapsody side of the plugin bridge, Rhapsody model elements

can be converted into first-class Gears variation points. This helps allow

optional and variant elements and alternative behaviors to be specified for

model elements, where the options and alternatives reflect the feature diversity

that needs to be supported at the model level. Gears SPL operations, editors

and power tools are available directly from the Rational Rhapsody menus,

providing seamless interoperation.

A handset product line example

The simple handset product line shown in Figure 5 illustrates by example the

integration of MDD and SPL via the Rational Rhapsody/Gears Bridge. This

product line comprises three products and four features. Each feature column

has an enumerated set of choices:

•	 Call Connectivity models the types of phone calls that are support on the
handset, Voice only or both Video & Voice.

•	 Memory models three levels of flash RAM that can be configured on the
handset, Low, Medium or High.

•	 Call Recording models the which types of calls can be recorded for
replay, None, Voice or Voice & Video.

•	 LED Flashlight models a boolean choice of whether or not the handset
contains a built-in LED flashlight.

The three different product “flavors” have feature profiles that can been seen

across the rows:

•	 Low end handsets are oriented towards developing regions around the
world, where low cost is important and intermittent power grids make
the flashlight feature valuable.

•	 Mid range handsets provide full call connectivity functionality, but the
moderate amount of flash RAM makes video call recording impractical.

•	 High end handsets with the highest configuration of flash RAM can
support voice and video call recording.

SysML, UML and the IBM Rational
Rhapsody BigLever Gears Bridge
Page 13

Highlights

Rather than using conventional hand-

coded source level development to

create the software for the handsets,

Rational Rhapsody allows the system

structures and behaviors to be

expressed using the higher level and

visually rich abstractions of SysML

and UML.

Figure 5: Example handset product line portfolio.

Rather than using conventional hand-coded source level development to

create the software for the handsets, Rational Rhapsody allows the system

structures and behaviors to be expressed using the higher level and visually

rich abstractions of SysML and UML. The firmware source code can then be

automatically generated and compiled directly from the Rational Rhapsody

models.

As described earlier, the traditional approaches for creating MDD models for

the three handsets in this product line are:

•	 Clone-and-own. The MDD model for one device would be initially
created. A Cloned copy of this model would then be made and modified
for the next device. Similarly for the third clone. While there is 100%
reuse at the time a cloned copy is made, there is 0% subsequent reuse
since enhancements and bug fixes must be made repeatedly to each of
the three copies.

SysML, UML and the IBM Rational
Rhapsody BigLever Gears Bridge
Page 14

•	 One-size-fits-all. One MDD model would be created for all three
handsets. Feature and behavioral variations among the three devices
would be managed through runtime variations in the model and
controlled by different static configuration settings installed on each
device. While this eliminates the need for duplicate model copies,
the resulting model can become large and complex to maintain.
Furthermore, the large footprint executable needed for the high end
device must also fit on the low end device, driving up hardware
requirements and cost for the low end device.

The integrated MDD/SPL approach offered by the Rational Rhapsody/Gears

Bridge provides the benefits of consolidation offered by the one-size-fits-all

approach and the benefits of precise customization offered by the clone-and-

own approach, without the associated drawbacks. Referring to Figure 2, the

reusable Design Model for the handset product line contains all the feature

variations required for the three handsets encapsulated in Gears variation

points. These variation points are automatically configured by the Gears

product configurator, based on a Gears feature profile, to produce the precisely

customized SysML and UML models needed for each of the three handsets.

A Gears variation point in a Rational Rhapsody UML model is illustrated

in Figure 6. The two model elements in the diagram—In Call and

ToggleCallRecording—are part of a UML activity diagram for managing the

handset call recording feature. In Call is a common model element that is the

same in each of the three handset devices. Toggle-CallRecording is a variation

point model element, as indicated by the gear annotation, that implements

the alternate behaviors needed for the Call Recording feature on the different

handsets (see the fourth column in Figure 5).

Comparing Figure 6 and Figure 7 shows the result of running the Gears

product configurator for the high end versus the low end handset configuration.

For the low end handset in Figure 7, where no Call Recording capability is

needed, the Toggle-CallRecording activity and the ToggleRecording transition

are grayed out in the model, indicating that they are not part of the model for

the low end handset.

SysML, UML and the IBM Rational
Rhapsody BigLever Gears Bridge
Page 15

Figure 6: Gears variation point in Rational Rhapsody UML—high end handset with
ToggleCallRecording enabled

Figure 7: Gears variation point in Rational Rhapsody UML—low end handset with
ToggleCallRecording disabled

SysML, UML and the IBM Rational
Rhapsody BigLever Gears Bridge
Page 16

In addition to variations in the model diagrams, the Rational Rhapsody/Gears

Bridge helps support variations in the source code that is generated from a

Rhapsody UML model. The variability in the executable implementation of

the ToggleCallRecording variation point is illustrated by the two white boxes

in Figure 8, the Gears Variants and the Gears Logic. There are three Gears

variants, indicated with “V” icons in the Variants section. These are the three

alternate code generation fragments needed by The Rational Rhapsody tool to

help generate the different call recording variants in the handsets:

•	 ActionNoRecording. Empty code variant for when no call recording
is supported in handset. This will also result in the disabled state of the
activity, as in Figure 7.

•	 ActionRecordVoice. Model element code fragment for voice-only call
Recording in handset. This will also result in the enabled state of the
activity, as in Figure 6.

•	 ActionRecordVoiceVideo. Model element code fragment for voice and
video call recording in handset. This will also result in the enabled state
of the activity, as in Figure 6.

The Gears Logic is executed by the Gears SPL Product Configurator (see

Figure 2) to instantiate the ToggleCallRecording variation point, differently for

each handset. The When clauses refer to the values in the feature profile for a

handset, in order to Select the appropriate Variant based on the feature settings.

When Gears configures all of the variation points in a Rational Rhapsody

model to instantiate the firmware for a particular handset, the result is the

precise firmware footprint needed for that device—nothing more, nothing less.

SysML, UML and the IBM Rational
Rhapsody BigLever Gears Bridge
Page 17

Figure 8: Code generation variants for a variation point in Rational Rhapsody

The Rational Rhapsody/Gears Bridge also supports SysML variation points. A

SysML variation point for the handset call recording example is illustrated in

Figure 9. The Recording variation point in the diagram, as indicated by the gear

annotation, is for a subsystem Block that is part of a SysML Block Definition

Diagram.

Comparing Figure 9 and Figure 10 shows the result of running the Gears

product configurator for the high end versus the low end handset configuration.

For the low end handset in Figure 10, where there is no call recording capability

is needed, the Recording block is grayed out in the model, indicating that it is

not part of the model for the low end handset.

SysML, UML and the IBM Rational
Rhapsody BigLever Gears Bridge
Page 18

Figure 9: Gears Variation Point in Rational Rhapsody SysML—high end handset with call Recording
enabled

Figure 10: Gears Variation Point in Rhapsody SysML—low end handset with call Recording disabled

SysML, UML and the IBM Rational
Rhapsody BigLever Gears Bridge
Page 19

Highlights

Compared to conventional hand

coding approaches, SysML and UML

provides a powerful enabler for the

rapid development of individual

products within a product line, as well

as better abstraction and visualization

for the maintenance and evolution of

those products over time.

Conclusions

Companies face complex challenges in creating and maintaining the embedded

software needed to support a rapidly expanding product line portfolio. To better

address this challenge, the Rational Rhapsody/BigLever Gears Bridge solution

is a convergence of the synergistic MDD and SPL technologies. Compared to

conventional hand coding approaches, SysML and UML provides a powerful

enabler for the rapid development of individual products within a product

line, as well as better abstraction and visualization for the maintenance and

evolution of those products over time. SPL engineering methods and tools

are specifically designed to provide the essential capabilities of expressing,

encapsulating and managing the feature diversity within a product line

portfolio.

The integration of MDD and SPL technologies helps provide a simple, elegant

approach that enables companies to effectively incorporate the management

of product diversity into their MDD processes. The integration of these highly

complementary technologies allows development organizations to more

effectively deal with software product line diversity across the entire portfolio

development lifecycle.

With this integration, development organizations can get the help they need to

achieve productivity gains and improved efficiency by:

•	 Developing with Rational Rhapsody MDD models rather than
conventional source code.

•	 Using Gears to create consolidated MDD core assets and automated
production capabilities rather than creating cloned or one-size-fits-all
MDD models.

This reduced level of complexity enables companies to quickly and efficiency

deliver more new products and features, while reducing the development effort

and optimizing product quality.

For more information

To learn more about IBM Rational Rhapsody software from IBM,

contact your IBM representative or IBM Business Partner, or visit:

ibm.com/software/rational

©	 Copyright IBM Corporation 2009

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
June 2009
All Rights Reserved

IBM, the IBM logo, ibm.com, DOORS, Rational and
Rhapsody are trademarks or registered trademarks
of International Business Machines Corporation in the
United States, other countries, or both. If these and
other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol
(® or ™), these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time
this information was published. Such trademarks may
also be registered or common law trademarks in other
countries. A current list of IBM trademarks is available
on the Web at “Copyright and trademark information” at:
ibm.com/legal/copytrade.shtml

Other company, product, or service names may be
trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

The information contained in this document is provided
for informational purposes only and provided “as is”
without warranty of any kind, express or implied. In
addition, this information is based on IBM’s current
product plans and strategy, which are subject to
change by IBM without notice. Without limiting the
foregoing, all statements regarding IBM future direction
or intent are subject to change or withdrawal without
notice and represent goals and objectives only. Nothing
contained in this documentation is intended to, nor
shall have the effect of, creating any warranties or
representations from IBM (or its suppliers or licensors),
or altering the terms and conditions of the applicable
license agreement governing the use of IBM software.

RAW14147-USEN-01

What if the innovation, economy of scale, competitive advantage and

profitability of your product line was limited only by your imagination

rather than limited by the capacity of your engineering team?

http://www.ibm.com/
http://www.ibm.com/software/rational

	Introduction
	MDD and SPL
	Background on SPLs and BigLever Software Gears
	Product-centric thinking impedes portfolio production
	Shift in perspective to an efficient means of production
	Background on MDD and Rational Rhapsody
	Rhapsody/Gears Bridge—integrating MDD and SPL
	A handset product line example
	Conclusions

