
Quality management
White paper
September 2009

Deliver robust products at reduced
cost by linking model-driven software
testing to quality management.

Contents

2	 Closing the productivity gap

between development and

testing

3	 The benefits of model-driving

software testing

4	 The role of model-based testing

in early detection of defects

6	 Creating model-driven tests	

9	 The missing link: making tests

available to QA

9	 Store and rerun tests from

almost any source

11	 Integrating testing into the

design process

Closing the productivity gap between development and testing

With embedded product designs becoming more complex and product lifecycles
shrinking, development efficiencies are essential. Fortunately, emergence of the
Unified Modeling Language (UML) and Systems Modeling Language (SysML)
standards has provided the opportunity for breakthrough gains in streamlin-
ing the development process. These standards enable engineers and software
designers to significantly improve their productivity by transitioning from a
code-based development process to model-driven development (MDD).

Using models, software engineers can more clearly understand and analyze
requirements, define design specifications, test systems concepts using simulation
and automatically generate code for direct deployment on the target hardware.
Development teams can standardize processes and automate repetitive tasks to
boost productivity and enhance regulatory compliance through self-documenting
data and workflows. As a result, engineers and developers are able to deliver more
complex and intelligent designs in much less time.

These benefits of model-based development are well documented. But software
testing is another story altogether. The testing process is still largely code based—
creating a serious productivity gap in the development process. Designs can be
produced much faster than they can be tested.

It’s not that model-based testing tools don’t exist. They do and have been proven
to save time by enabling developers to test in the same language in which they
design—UML. Another advantage is that when developers start with scenarios
as requirements, they are testing against what customers and marketing staff
have agreed too.

Deliver robust products at reduced cost by linking
model-driven software testing to quality management.
Page 2

Deliver robust products at reduced cost by linking
model-driven software testing to quality management.
Page 3

Highlights

A major roadblock to adopting

model-driven testing is lack of

integration to quality assurance.

So why are developers continuing to code their own test scripts? A major road-
block of model-based testing is the lack of integration to quality assurance (QA).
Why aren’t model-based tests available to the QA team? The main reason is
because QA professionals don’t understand UML and have little reason to learn it.

This white paper explains how organizations can overcome this obstacle. It high-
lights the benefits of model-based testing and describes a model-driven approach
designed to create tests that can be executed from external sources such as QA. No
matter who executes the tests, results are available to all affected practitioners—
closing the loop from requirements to verification and validation of use cases.

The benefits of model-driven software testing

Year-over-year studies by the Embedded Market Forecasters organization show
that model-based testing helps companies deliver complex designs on time
while meeting predesign expectations for performance, systems functionality
and features. These studies compare actual data gathered from surveys of
practitioners in three types of development and testing projects: legacy, transi-
tional and enhanced. The legacy projects used no model-based practices at all,
either in development or testing. The transitional projects used model-based
development, but code-level testing. And the enhanced projects used models to
drive both development and testing.

Deliver robust products at reduced cost by linking
model-driven software testing to quality management.
Page 4

Highlights

When models are used to drive both

development and testing, project

teams are able to deliver better

outcomes in a shorter period of

time—a key reason being early

detection of defects.

The most recent comparative data shows that enhanced projects produce designs
that cost, on average, tens of thousands of dollars less than those produced in
legacy and transitional environments. Enhanced designs also were completed
more quickly—requiring up to six weeks less time from start to shipment. And
MDD and model-driven testing (MDT) together resulted in better design outcomes
(see figure 1).1

Code-based with no

MDD (legacy)

Code-based with MDD

(transitional)

MDT with MDD

(enhanced)

Performance 76.4% 80.0% 88.8%

Systems

functionality

76.7% 80.0% 81.5%

Features and

schedule

72.0% 74.0% 70.3%

Figure 1: Projects using both model-driven development and testing completed significantly more
designs with outcomes that met predesign expectations.

Early detection of defects was one of the key reasons that enhanced projects
were able to deliver better outcomes in a shorter period of time.

The role of model-based testing in early detection of defects

According to the National Institute of Standards and Technology, 80 percent of
development costs are spent on identifying and fixing defects.2 The majority of
defects are most likely introduced during the early stages of design and develop-
ment when errors can be fixed more easily and at a fairly low cost. Unfortunately,
most defects tend to be found late in the process, sometimes after product release.

Deliver robust products at reduced cost by linking
model-driven software testing to quality management.
Page 5

Highlights

If the development environment uses

models but the test environment

relies on code, there is no effective

way of navigating from test cases

to use cases to validate features

against requirements.

Figure 2: The costs of correcting defects increases geometrically throughout the development process.

The obvious response is to perform tests as early as possible in the develop-
ment process. That way, errors can be found and fixed before they propagate.

Verification and validation are the two fundamental strategies for software testing.
Verification answers the question, “Is the feature developed in the right way?”
Validation answers the question, “Is it the right feature?” When the development
and test environments are separate—because the first is model-centric and the
second is code-centric—no one can navigate from the test cases all the way back
to the use cases to validate requirements.

$80/defect
$240/defect

$960/defect

$7,600/defect

During the
requirements phase

During the design
and construction phase

During the
QA/testing phase

Once released
as a product

Induced
errors

Costs of
design change

Time

Requirements Design TestImplementation

Deliver robust products at reduced cost by linking
model-driven software testing to quality management.
Page 6

Highlights

Using the design model to create

more efficient and higher-quality

test cases can result in better

coverage of requirements.

If testing can be extended forward in the process to include the design model,
quality managers and software engineers can check that each feature meets
requirements as soon as it is implemented in the model. And, if the testing pro-
cess uses model-based validation activities to automate test code, developers are
able to be more accurate and save significant time verifying code coverage,
detecting any memory problems or finding other run-time issues.3

In short, extending traditional code-centric test case development into modeling
test architectures and test case behaviors, and using the design model to create
more efficient and higher quality test cases, can result in better coverage of the
requirements and ultimately higher-quality deliverables.

Creating model-driven tests	

The IBM Rational® solution is based on the UML 2.0 testing profile, which inte-
grates testing into UML, enhancing it with concepts such as test architectures
and test behaviors. Test architectures extend the exiting UML 2.0 structural
concepts to describe the elements involved in a test and their relationships.
Similarly, the test behavior extends the existing UML 2.0 behavioral concepts to
encompass all observations and activities during the test.4

Deliver robust products at reduced cost by linking
model-driven software testing to quality management.
Page 7

Highlights

The IBM Rational solution offers a

single model-driven environment

where both design and testing

can coexist.

The testing profile offers a taxonomy for testing artifacts that integrates well
with UML, offering a single environment where both design and testing can
coexist. All design artifacts, test artifacts and test reports can be integrated
within the same browser. Design and test artifacts are always in sync and navi-
gation between design and test artifacts is easy. Requirements can be linked to
design components, which can then be linked to test cases and to test execution
reports for comprehensive traceability (see figure 3).

Figure 3: The UML testing profile enables model-driven testing where the design process and test pro-
cess are fully integrated—providing an efficient approach to software validation and verification.

Deliver robust products at reduced cost by linking
model-driven software testing to quality management.
Page 8

Highlights

Developers are able to design and

test their models using the same

diagrams.

In UML you design your applications through diagrams. The diagrams include
sequence diagrams and activity diagrams. MDT with IBM Rational Rhapsody®
software allows tests to be drawn as these diagram types, which means that the
developer doesn’t need to create a new language in order to build tests. The
software can execute these tests against the design and provide comprehensive test
results. The tests execute on the desktop and on the target. This can work quite
well for developers. It may not, however, work as well for QA.

Figure 4: Model-driven testing with IBM Rational Rhapsody software enables you to test your models
the same way you design them—using diagrams.

In a traditional MDT environment, these tests need to be executed and the
results reported inside the UML tool. This means QA teams have been left out
of the loop for executing and getting results from tests.

Deliver robust products at reduced cost by linking
model-driven software testing to quality management.
Page 9

Highlights

With the IBM solution, the model

tests created by developers can be

stored in a central repository and

executed by QA managers who are

unfamiliar with UML.

The missing link: making tests available to QA

In view of the benefits, the primary reason organizations fail to adopt model-
driven tests is because these tests are hard to reuse. Other people in the product
development process don’t know UML and they don’t have access to the machines
being tested. There is little incentive to spend time developing tests unless they
can be used throughout the development process and product lifecycle.

IBM Rational Quality Manager software links with IBM Rational Rhapsody
TestConductor Add On software to make tests available to QA. The integration
between these tools allows tests created in Rhapsody TestConductor Add
On software to be executed by people unfamiliar with UML. The integra-
tion provides a central repository to run tests from almost any source, store the
results and enable access to those results.

Store and rerun tests from almost any source

QA teams have to test whether or not the product or system meets requirements
from all sorts of different perspectives, not just software. Multiple teams are
developing multiple components at any given time and creating tests. QA man-
agers also write their own tests.

To realize the full benefit of MDT, QA managers should be able to reuse tests
to make sure that completed system components work together as designed and
meet business objectives. With the Rational MDT solution, both model-based
and code-based tests can be stored in a central repository. They are always avail-
able for the QA manager to execute at any point in the development process and
product lifecycle when it is necessary to validate that any functional additions and
changes operate as expected and don’t cause other parts of the system to break.

Deliver robust products at reduced cost by linking
model-driven software testing to quality management.
Page 10

Highlights

The QA manager can view

automatically generated test reports

on the Rational Quality Manager

dashboard and click on a failed test

to navigate to exactly where the

problem lies in the design model.

For example, a new component is ready to be added to a system under develop-
ment. As part of the requirements validation process, the QA manager executes a
range of tests from Rational Quality Manager software, which includes technology
that is designed to identify and select the minimum number of tests required for a
given level of coverage. Via the Rational Quality Manager dashboard, the QA
manager can view automatically generated test reports that indicate what portions
of the system pass and what parts fail. By clicking on a failed test, the QA manager
can navigate to exactly where the problem lies in the design model and the associ-
ated code.

In this scenario, the test that failed is for a software component. Though executed
from Rational Quality Manager software, the test is actually run in the Rational
Rhapsody TestConductor Add On software. The appropriate developer is alerted
automatically. The defect tracking functionality enables him to see all the ways
the test failed and the context in which it failed (what the QA manager did that
caused the failure.) And when the QA manager is notified that the defect is fixed,
she can rerun the initial tests to see whether or not the system fails again.

Essentially, model-centric validation activities are used to drive code-centric,
automated verification activities. The result is an integrated validation and
verification testing process that leverages the model information and automates
much of the code-centric verification activities.

Deliver robust products at reduced cost by linking
model-driven software testing to quality management.
Page 11

Highlights

The IBM approach to model-driven

testing can help your QA managers

and testers realize productivity gains

similar to those developers enjoy

with model-driven development.

Integrating testing into the design process

Developers who have migrated from a code-centric approach to a MDD approach
have been able to significantly increase their productivity. By leveraging the IBM
approach to MDT, the QA and testing organization can realize similar productiv-
ity increases with the ability to:

Trace and easily navigate between requirements, design artifacts, test archi-•	
tectures, test cases and test execution reports, all from within a single browser.
Link test cases, regardless of how they are captured, to their test architecture.•	
Execute the same test cases on the host development platform and on the •	
target without modifying them.
Graphically monitor the progress of executed tests and graphically identify •	
causes of failures.

For most companies that depend on software to differentiate their products
and services, it’s really not a question of whether to transition to MDT. It’s a
question of when. With IBM, you can transition in steps and at a pace that
makes the most sense for your business.

For more information

To learn more about how IBM can help you transition to model-driven testing,
contact your IBM representative or IBM Business Partner, or visit:

IBM Rational Test Conductor

ibm.com/software/rational/products/rhapsody/developer/features

(Click on the “Validation and Testing” tab.)

Rational Quality Manager

ibm.com/software/awdtools/rqm/index.html

© Copyright IBM Corporation 2009

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
September 2009
All Rights Reserved

IBM, the IBM logo, ibm.com, Rational, and
Rhapsody are trademarks or registered trademarks
of International Business Machines Corporation in the
United States, other countries, or both. If these and
other IBM trademarked terms are marked on their first
occurrence in this information with a trademark sym-
bol (® or ™), these symbols indicate U.S. registered
or common law trademarks owned by IBM at the time
this information was published. Such trademarks
may also be registered or common law trademarks
in other countries. A current list of IBM trademarks is
available on the Web at “Copyright and trademark
information” at ibm.com/legal/copytrade.shtml

Other company, product, or service names may be
trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

The information contained in this documentation is
provided for informational purposes only. While efforts
were made to verify the completeness and accuracy
of the information contained in this documentation, it is
provided “as is” without warranty of any kind, express
or implied. In addition, this information is based on
IBM’s current product plans and strategy, which are
subject to change by IBM without notice. IBM shall
not be responsible for any damages arising out of the
use of, or otherwise related to, this documentation or
any other documentation. Nothing contained in this
documentation is intended to, nor shall have the effect
of, creating any warranties or representations from IBM
(or its suppliers or licensors), or altering the terms and
conditions of the applicable license agreement gov-
erning the use of IBM software.

IBM customers are responsible for ensuring their
own compliance with legal requirements. It is the
customer’s sole responsibility to obtain advice of
competent legal counsel as to the identification and
interpretation of any relevant laws and regulatory
requirements that may affect the customer’s busi-
ness and any actions the customer may need to take
to comply with such laws.

1 Jerry Krasner, The Economics of Defective Software,
 Embedded Market Forecasters, July 2008.
2 National Institute of Standards and Technology 	
 (NIST), “Software Errors Cost U.S. Economy $59.5
 Billion Annually,” NIST news release, June 2002.
3 Martin Stockl, Validation vs. Verification: When 	
 Resources Are Limited, Which One First?, IBM
 Rational, March 2009.
4 Moshe Cohen, “Transitioning from Code-Based to
 Model-Driven Software Testing—Part 1: The Basics 	
 of the UML 2.0 Software Testing Profile,” Embedded.com, 	
 November 2007.

RAW14161-USEN-00

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/software/rational/products/rhapsody/developer/features
http://www.ibm.com/software/awdtools/rqm/index.html

