
IBM Content
Manager VideoCharger for
Multiplatforms

Programmer’s Reference
Version 8 Release 2

SC27-1352-01

���

IBM Content
Manager VideoCharger for
Multiplatforms

Programmer’s Reference
Version 8 Release 2

SC27-1352-01

���

Note
Before using this information and the product it supports, be sure to read the information in “Notices” on page 149.

Second Edition (March 2003)

This edition applies to Version 8 Release 2 of IBM Content Manager VideoCharger for Multiplatforms (product
number 5724-B19) and to all subsequent releases and modifications until otherwise indicated in new editions. This
edition replaces SC27-1352-00.

Notice to U.S. Government Users - Documentation Related to Restricted Rights - Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract.

(c) Copyright 1993-1994 The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following

disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgment:

This product includes software developed by the University of California, Berkeley and the Network
Research Group at Lawrence Berkeley Laboratory.

4. Neither the name of the University nor of the Laboratory can be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

© Copyright International Business Machines Corporation 1997, 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Reference v
Who Should Use This Reference v
Highlighting v
Product Publications. v
Related Publications v
Ordering Publications vi
How to Send Comments vi

Chapter 1. Introduction to the
VideoCharger Server 1
What’s New in Version 8.1. 1

Chapter 2. Presentation Formatters . . . 3
Overview 3

Understanding the Application Server Interface
Layer 4

Modifying the Presentation Formatter 6
Operating Presentation Formatters on AIX 7

VideoCharger Application Development
Environment on AIX. 7
Video Selection Presentation Formatter on AIX . . 7
Video-on-Demand Presentation Formatter on AIX 7
Multicast Video Guide on AIX 9
Invoking the Presentation Formatters on AIX . . 9
Developing HTML Pages Using iscpfsel on AIX 10
Streaming through HTTP Protocol on AIX Using
the Generic Stream Player 12
Video On-Demand and IP Multicast Examples for
AIX 16
Changing the Logo on the Video-on-Demand
Home Page on AIX 16

Operating Presentation Formatters for Windows . . 17
VideoCharger Application Development
Environment on Windows 17
Video Selection Presentation Formatter on
Windows 17
Video-on-Demand Presentation Formatter on
Windows 17
Multicast Video Guide on Windows 18
Invoking the Presentation Formatters on
Windows 18
Developing HTML Pages Using iscpfsel on
Windows 18
Streaming through HTTP Protocol on Windows
Using the Generic Stream Player 20
Video On-Demand and IP Multicast Examples for
Windows 24
Changing the Logo on the Video-on-Demand
Home Page on Windows 24

Chapter 3. Application Server Interface
Layer Application Programming
Interfaces 25
UNIX STDIN Command Syntax 26

Metadata File 27
Session Data Parameters 27
Stream Data Parameters 28
File Format 29

ASIL API Calls Required for all C Language Calling
Sequences 30
ASIL API Calls for Video Data Retrieval 30
ASIL API Calls for Video Selection 30
Processing User Data 31
asVideoInit 31
asVideoExit 32
asVideoGetResponse 33
asVideoSetServer 35
asVideoSetUserData (AIX only) 38
asVideoSetVideoName. 40
asVideoSetParms 42
asVideoSetRestriction 44
asVideoBuildResponse 47
asVideoStreamHTTP 50
asProcessUserData (AIX only) 51

Chapter 4. Control Server Application
Programming Interfaces 53
VideoCharger Application Development
Environment 53
API Invocation 54
Notes about the Control Server API Programming
Model 55
Return Code Definition 56
Trace Services 56
Session Management 56

Session Management States 57
Session Takeover (AIX only) 57
Authenticating session functions with the Secure
msAPI plug-in 59

msInit 61
msOpenSession 62
msCloseSession 63
msSetSessionAttr (AIX only) 63
msGetSessionAttr 64
msRegisterCallBack. 65
msUnregisterCallBack 70
msEnableTakeover (AIX only) 71
msTakeover (AIX only) 72
msGetSessionHandles (AIX only) 73
msTakeoverComplete (AIX only) 74
Example: New Application Server (AIX only) . . . 75
Example: Original Application Server Terminates
(AIX only) 75
msStrError. 76
msAuthenticate 76
Stream Connection Management 77
msListPortGroups 78
msListPorts 79
msOpenPort 80

© Copyright IBM Corp. 1997, 2003 iii

msClosePort 87
msSetPortAttr 87
msGetPortAttr 89
Stream Operations 90
msOpenPlayStream. 91
msRecord 94
msOpenRecordStream (Windows only) 94
msOpenPipeStream. 96
msCloseStream 97
msPlay 98
msPause 99
msJump 100
msGetPlayStreamAttr. 101
msGetPlayStatus 102
Control Server API Asset Management 103
msListAssetGroups 104
msListAssets 105
msOpenAsset 107
msCloseAsset 109
msDeleteAsset 110
msSetAssetAttr 111
msGetAssetAttr. 114
msSetAssetInfo 115
msGetAssetInfo. 116
msGetAssetStatus 117
msGetAssetGrpStatus. 119
msStage 120
msExport 122
msLoad 124
msRead 126
msWrite 127
msSeek 128

msRawAdd 130

Chapter 5. Real-Time Transport
Protocol (RTP) 133

Chapter 6. IBM VideoCharger
Extender for DB2 Universal
Database™ 135
UDTs for the VideoCharger Extender 135
UDFs for the VideoCharger Extender 136

vcGetObjMetaData 136
vcGetObjSize 137
vcGetObjStatus 137
vcInsertObjRef 138

Messages issued by the VideoCharger Extender 139

Chapter 7. Programming with the new
RTSP daemon and plug-in 143
Overview of the RTSP daemon 143
Overview of the RTSP plug-in 144

Sample code. 144

Notices 149
Trademarks 151

Glossary 153

Index 163

iv Programmer’s Reference

About This Reference

VideoCharger™ is a product that enables you to integrate multimedia into your
products and services. Programmer’s Reference provides application programmers
with the information needed to write their own interface to the VideoCharger
Server. The control server application program interface (API) of VideoCharger
allows you to deliver real-time (streamed) video and audio to Internet or
Intranet-connected clients through an API. Programming information for the
Internet Protocols (IP) supported by VideoCharger including Real-Time Transport
Protocol (RTP), ReSerVation Protocol (RSVP), and IP Multicast can also be found in
this book. Also included are the API calls used by the presentation formatter,
which is the component of VideoCharger that controls how clients view
information on available assets and select specific assets for viewing.

Who Should Use This Reference
This reference is intended for application programmers who want to write their
own interface to the VideoCharger Server.

Highlighting
The following highlighting conventions are used in this reference:

bold Identifies commands, flags, keywords, files, directories, and other items
whose names are predefined by the system.

italics Identifies parameters whose actual names or values are to be supplied by
the user.

monospace Identifies examples of specific data values, examples of text similar to
what you might see displayed, examples of portions of program code
similar to what you might write as a programmer, messages from the
system, or information you should actually type.

New information and significant changes are marked with vertical revision bars (|)
in the margin.

Product Publications
Programmer’s Reference can be viewed from the VideoCharger welcome page. In
addition, the following product-related documentation is available:
v Planning and Installing VideoCharger, which describes how to plan, install, and

initially configure VideoCharger.
v Administrator’s Guide and Reference, which describes how to administer the

VideoCharger Server.

Related Publications
The following publications contain information related to this reference:

For AIX®:

v AIX Installation Guide

v AIX System Management Guide: Operating Systems and Devices

© Copyright IBM Corp. 1997, 2003 v

v AIX Commands Reference

v IBM Internet Connection Secure Server for AIX: Up and Running

v Netview for AIX Administrator’s Guide to monitor the performance of the
VideoCharger

v AIX Performance Tuning Guide for information on AIX general performance
guidelines and commands

For Windows®:

v Windows Server Networking Guide

v Windows Server Internet Guide

v Windows Server Resources Guide

Ordering Publications
You can order publications from your sales representative or from your point of
sale. You can also view online versions of the VideoCharger documentation from
your VideoCharger home page.

How to Send Comments
Your feedback helps IBM® to provide quality information. Please send any
comments that you have about this reference or other VideoCharger
documentation. You can use either of the following methods to provide comments:
v Send your comments from the Web. Visit the Online RCF for IBM Data

Management page at:
http://www.software.ibm.com/data/rcf
You can use the page to enter and send comments.

v Send your comments by e-mail to comments@vnet.ibm.com. Be sure to include
the name of the product, the version number of the product, and the name and
part number of the book (if applicable). If you are commenting on specific text,
please include the location of the text (for example, a chapter and section title, a
table number, a page number, or a help topic title).

vi Programmer’s Reference

Chapter 1. Introduction to the VideoCharger Server

The technology provided by the VideoCharger Server allows you to integrate
multimedia into your products and services. You can deliver real-time (streamed)
video and audio to Internet or Intranet-connected clients. The VideoCharger Server
is available for AIX and Windows.

For example, using a Web browser such as Netscape Navigator or Microsoft®

Internet Explorer, a client selects a video for viewing. Because the video is
delivered real-time, there is no need for the end user to download or save the file
before playing it. The files, often called assets, can range from short clips (such as
advertising spots) to full-length films.

A variety of encoding formats are supported. For delivery of the video stream,
Real-Time Transport Protocol (RTP), Transmission Control Protocol (TCP),
Hypertext Transfer Protocol (HTTP), or IP multicast can be used. RTP, TCP, and
HTTP are used to send individual streams to the respective clients, while IP
multicast can be used to broadcast a single stream to multiple recipients. On AIX,
for Quality of Service issues, ReSerVation Protocol (RSVP) and Path maximum
transmission unit (MTU) are provided to better support streaming audio and video
over IP networks.

Table 1 summarizes key Internet Protocol (IP) support and the corresponding RFC.

Table 1. Internet protocol support

IP Protocol RFC

Real-Time Transport Protocol 1889

ReSerVation Protocol (AIX only) 2205

IP Multicast 1112

Path maximum transmission unit 1191

TCP Extensions for High Bandwidth Content
Loading

1323

The system also provides admission control, which prevents the bandwidth needs of
applications currently running from being compromised as new requests arrive.
Admission control means that the system keeps track of bandwidth used, and
prevents system resources from being overextended.

On AIX, VideoCharger is scalable from a single system to multiple systems
supporting hundreds of streams.

For more information about VideoCharger Server, including a discussion of the
product’s software components, see the Administrator’s Guide and Reference.

What’s New in Version 8.1
VideoCharger Version 8.1 adds the following functionality to Version 7.1:

Asset sub-types for audio only, video only, and encryption. Version 8.1 provides
sub-types for audio only streams, video only streams, and encrypted streams. For
details, see “msSetAssetAttr” on page 111.

© Copyright IBM Corp. 1997, 2003 1

Authentication for msAPIs (msAuthenticate). A new Secure msAPI plug-in for
Version 8.1 enables authentication for sensitive session functions. For details, see
“Authenticating session functions with the Secure msAPI plug-in” on page 59. In
addition, all msAPIs except msInit and msOpenSession have a new return code:
MS_ALLOW_ERROR (allowance plug-in rejected authentication).

Export asset API (msExport). Version 8.1 now has an API to export assets from the
VideoCharger Server to any machine with an FTP daemon (see “msExport” on
page 122). In addition, msRegisterCallBack has two new event types:
MS_EV_EXPORT_ERROR and MS_EV_EXPORT_COMPLETE (see
“msRegisterCallBack” on page 65).

iscpfmet.exe no longer supported. Version 8.1 no longer supports iscpfmel.exe.
Any custom Web pages that call the program should instead call iscpfsel.exe. All
the parameters are the same.

MPEG-4 support. Version 8.1 now supports MPEG-4 media types.

New RTSP daemon and plug-in. Version 8.1 has a new RTSP daemon and plug-in.
For details, see Chapter 7, “Programming with the new RTSP daemon and plug-in”
, on page 143.

Unicode support. Version 8.1 now supports Unicode. Windows only: To view
assets which contain characters that your command line interface does not support,
you can use hexadecimal UTF-8 format and the new &enc parameter in iscpfsel.
See “Developing HTML Pages Using iscpfsel on Windows” on page 18.

2 Programmer’s Reference

Chapter 2. Presentation Formatters

VideoCharger presentation formatters offer the following functions:
v Displaying playable assets in HTML selection menus and response screens.
v Processing client video selection requests.
v Allowing end users to dynamically list available assets.
v Outputting application server search results in an HTML page.
v Analyzing selection input and setting Play parameters for the application server.
v Allowing Multicast Video Guide users to list currently scheduled broadcasts, join

a multicast session, or leave a multicast whenever they choose.

Presentation formatter programs use content management commands, and reside
in the Common Gateway Interface-Binary (CGI-BIN) subdirectory of the
HyperTextTransfer Protocol (HTTP) Server. You can also write your own
presentation formatter programs and place them in the CGI-BIN.

For AIX: You can access C language source code for the presentation formatters in
avs.applsrv.client.sample.code under /usr/samples/avs/cgi-bin.

The AIX presentation formatter offers these additional functions:
v Providing a query HTML page
v Analyzing search data
v Preparing application server search parameters

For Windows: You can access C language source code for the presentation
formatters in install_dir\Data\Public\Samples\cgi-bin directory where install_dir
represents the directory where VideoCharger is installed.

Overview
The VideoCharger Server’s presentation formatter interacts with the client through
the Web server’s standard input/output and environmental variable functions, and
with the application server through the application server interface layer (ASIL).
Figure 1 on page 4 shows an overview of the flow of these interactions.

© Copyright IBM Corp. 1997, 2003 3

1. In Figure 1, the client initiates the processing flow by sending the Web server a
request, using either the HTML GET or POST method. The general steps that
follow are: The Web server invokes the requested presentation formatter
program in the Common Gateway Interface (CGI-BIN) directory.

2. The presentation formatter interprets the commands sent, based on the method
used. Generally, GET commands append material to the Universal Resource
Locator (Web address) address, and POST commands transmit the data via the
standard input file.

3. The presentation formatter validates the arguments for syntax and logic.
4. If the command requests video title data, the application server interface layer

prepares the required calling sequences, and transmits them to the application
server.

5. The presentation formatter prepares the HTML document (including
description data retrieved from the application server, if requested), and sends
the document to the standard output function.

6. If a video was selected, the application server sends the metadata file, which
contains required information for streaming the video, to the standard output
function.

7. The CGI program exits, returning the standard output data to the Web server.

Understanding the Application Server Interface Layer
The application server interface layer (ASIL) is a set of programming library
functions that simplifies both providing and retrieving information between the
presentation formatter and the application server. For example, SetServer is a
function that enables the presentation formatter to specify the VideoCharger Server
to which a video is delivered.

ASIL functions are written in the C programming language. These functions
support invocation in C language routines. On AIX, some functions also support
invocation in PERL scripts and shell script command-line input. ASIL establishes a

Figure 1. Interactions of the presentation formatter with other VideoCharger components

4 Programmer’s Reference

Distributed Communications Environment (DCE) link to the application server
using Remote Procedure Calls (RPCs). Figure 2 shows the general flow within the
application server interface layer.

The presentation formatter enables the end user to obtain descriptive information
on all assets in the system library by using application program interface calls to
the application server. The presentation formatter communicates with the
application server through the application server interface layer, which resides with
the presentation formatter on the Web server. The application server performs the
search. Figure 3 on page 6 shows the major components of the application server
and their relationship to the other major components of the Internet video
application server, including the presentation formatter. See the Administrator’s
Guide and Reference for more information on the application server.

Figure 2. Application Server Interface Layer (ASIL)

Chapter 2. Presentation Formatters 5

Modifying the Presentation Formatter
The presentation formatter is a flexible set of programs that you can use ″as is″ or
modify in varying degrees. The degree to which you modify these programs
depends on the needs of your organization.

There are two main ways you can modify the presentation formatter:
v Change the C-language source code for the presentation formatter routines, and

recompile the routines
v Develop new HTML pages that link to the existing presentation formatter

routines as required.

In general, changing and recompiling the C-language source code is the more
difficult of the two options. One routine, the Video Selection routine (iscpfsel),
should be modified only to include additional function such as a security
verification. iscpfsel executes an exact sequence of events to initiate streaming of
the video, and, unlike the other routines, does not generate any HTML pages.

Table 2 shows the general degree of difficulty in changing the C-language code for
each of the presentation formatter routines.

Table 2. Difficulty of modifying each presentation formatter

Name of Routine Platform Function Degree of Modification Difficulty

iscpfhom AIX, Windows Creates the home page Relatively easy

Figure 3. Components of the application server

6 Programmer’s Reference

Table 2. Difficulty of modifying each presentation formatter (continued)

Name of Routine Platform Function Degree of Modification Difficulty

iscpffrm AIX Generates search form Relatively easy

iscpfpst AIX Processes POST data More difficult

iscpfmet (deprecated) Windows Same as iscpfsel Should not be modified, except to add
additional function such as a security
verification routine

iscpfsel AIX, Windows Selects video Should not be modified, except to add
additional function such as a security
verification routine

iscpfevt Windows Generates a list of
available multicast jobs

Relatively easy

iscpfmct AIX Generates a list of
available multicast jobs

Relatively easy

iscpfcat Windows Generates a list of
available videos

Relatively easy

“Video-on-Demand Presentation Formatter on AIX” and “Operating Presentation
Formatters for Windows” on page 17 contain basic examples of both types of
modifications. If you are changing the C-language source code for any of the
routines (for example, iscpfhom), copy and rename the provided source and
executable code before attempting the modifications.

Operating Presentation Formatters on AIX

VideoCharger Application Development Environment on AIX
The VideoCharger application development environment requires an RS/6000®

system with AIX Version 5.1 or higher, and the IBM VisualAge® for C++ compiler.
To add the VideoCharger application development environment to this system, use
the VideoCharger installation media to install the avs.applsrv.client.adt fileset.

The avs.applsrv.client.adt fileset includes the header files and shared libraries that
are required by your application’s use of the VideoCharger API.

Video Selection Presentation Formatter on AIX
The Video Selection presentation formatter iscfpsel is used when there are either
few assets, or when the exact asset required is predetermined, as in a video clip
that is part of a course.

The Video Selection presentation formatter is oriented toward starting a video from
within an application, such as a multimedia course. As such, it can be invoked as a
link from within an HTML page (or within a database field). The Video Selection
presentation formatter selects a specific video and begins streaming it.

Video-on-Demand Presentation Formatter on AIX
The Video-on-Demand (VOD) presentation formatter is used when there are many
assets, or they change frequently. Using it avoids having to update a static list of
assets in an HTML page each time one is added or deleted. The formatter performs
the following functions:
v Provides a main page in HTML for the end user

Chapter 2. Presentation Formatters 7

v Provides a query window in HTML for the end user
v Analyzes search data provided by the end user
v Prepares the search parameters passed to the content management commands
v Based on results from the commands, prepares an output window in HTML

showing the search results
v Analyzes selection input from the end user, and, if the selection is valid,

prepares the play parameters for the application server

In general, the Video-on-Demand presentation formatter is used when the end user
wants to browse the video library before selecting a particular video for viewing.
To invoke this formatter, start your browser and go to the following Web address:
http://hostname/vs_public/cgi-bin/iscpfhom

where hostname is the host name of your VideoCharger Server.

Figure 4 shows the Video-on-Demand home page:

Click Search to search the entire library of videos.

Figure 5 on page 9 shows the search window that displays when you select the
Search option from the Video-on-Demand home page. The page is generated by
the iscpffrm routine of the presentation formatter using the HTML FORM element.

Figure 4. Video-on-Demand home page on AIX

8 Programmer’s Reference

The search window contains the following options:

Display asset details with search results
Selecting this checkbox and specifying an asset in the Asset Name field
displays that asset’s type, bit rate, duration, and frame rate.

Maximum number of titles to display
Specifies the number of assets to display a list of.

Asset Name
Specifies the asset name to search for. To list all the assets (up to the
maximum number), leave this field blank.

Multicast Video Guide on AIX
IP Multicasting enables transmission of an IP datagram to a set of hosts that form a
single multicast group. Use it when you want to diffuse new information to a
group of people inside or outside of your company, for example, for a presentation
on health benefit changes or a new strategy. Users can view a list of scheduled
broadcasts, and can join or leave the multicast session whenever they choose.

Invoking the Presentation Formatters on AIX
Start a presentation formatter by calling one of several component routines. The
routines provided, and their function, are shown in Table 3 for AIX.

Table 3. Component routines for starting a presentation formatter on AIX

Name of Routine Function

iscpfhom Creates the home page for the Video-on-Demand home page.
Contains links to invoke other presentation formatter routines.

iscpffrm Displays an HTML search form. If your VideoCharger Server is
configured to support a Multimedia Archive, the search form
allows you to search either the server or the archive.

Figure 5. Video-on-Demand searching option

Chapter 2. Presentation Formatters 9

Table 3. Component routines for starting a presentation formatter on AIX (continued)

Name of Routine Function

iscpfpst Processes the POST data from the search form (or from any other
form accessing this routine). iscpfpst receives search parameters
via the standard input file, runs the catalog query, and presents the
titles retrieved in dynamically created HTML pages. The end user
then selects the video desired from that page.

iscpfsel Selects the desired video for playback. In essence, iscpfsel used
alone is the Video Selection presentation formatter. Conceptually,
within the Video-on-Demand Presentation Formatter process,
iscpfsel runs as the final step after the title search process yields
the desired video. iscpfsel validates that the video is ready, and
then initiates its playback.

iscpfmct Dynamically generates an HTML page listing currently available
multicast jobs.

Developing HTML Pages Using iscpfsel on AIX
You can use the Video Selection presentation formatter iscpfsel routine in
conjunction with a standard HTML document to provide video as one of the
several media types available for display. iscpfsel is a CGI program that allows
video to be selected and streamed based on several parameters that can be
specified on the invocation statement. As with CGI-bin invocation convention, the
parameters are specified following a question mark (?) character following the
CGI-bin name, such as iscpfsel. Each parameter has a corresponding value. The
parameter-value pairs are separated from each other with an ampersand (&)
character.

The syntax of iscpfsel is:
http://your-video-server/home-directory/cgi-bin/iscpfsel?videoid=your-video

[&Title=your-video-title]
[&StreamMode=HTTP]
[&MimeType=video-mimetype]
[&Plugin=1]
[&StartPos=hh:mm:ss:ff]
[&StopPos=hh:mm:ss:ff]
[&ClientPortLow=nnnnn]
[&ClientPortHigh=nnnnnn]
[&ServerPortLow=nnnnn]
[&ServerPortHigh=nnnnn]
[&Offline=1]
[&videoag=asset-group]
[&videosrvr=control-server]

where your-video-server is the host name of the machine on which VideoCharger is
installed and home-directory is: vs_public.

The parameters (all case-insensitive) for iscpfsel are:

videoid
The asset name that identifies the video to be streamed. This name is the same
as the name provided when the asset was initially loaded onto the video
server. This parameter is required.

Title
For information purposes. Also displayed to the end user when the metadata
file is sent to the client (non-HTTP streaming). This parameter is optional.

10 Programmer’s Reference

StreamMode
Only HTTP is accepted as the value. When StreamMode=HTTP is specified, the
video server sends the video in HTTP format, allowing any generic stream
player to be launched that can understand the MIME type of the content. This
parameter is optional. For details on generic stream players and playing via
HTTP streaming, see “Streaming through HTTP Protocol on AIX Using the
Generic Stream Player” on page 12.

MimeType
Used to override the default MIME type of the video to be streamed via
StreamMode=HTTP. For example, to invoke the VideoCharger Player for your
HTTP-downloaded asset, you can specify Mimetype=video/x-ibm-ivs, in the
iscpfsel command. The specified value is the MIME type of the video data to
be sent to the Player. This parameter is optional and is only applicable when
streaming via HTTP protocol (when StreamMode=HTTP is specified).

Plugin
When a value of 1 is specified, the video is sent to the VideoCharger client and
the client launches the plug-in. Other values are ignored. This parameter is
optional and is ignored when specified with StreamMode=HTTP.

StartPos
Indicates the position relative to beginning of video, in units of time, where the
video is to start streaming. hh, mm, ss, and ff represent hours, minutes,
seconds, and frames, respectively. Currently, the value of frames is ignored.
This parameter is optional. If not specified, the video starts streaming from the
beginning.

StopPos
Indicates the position relative to the beginning of the video, in units of time,
where the video is to stop streaming. hh, mm, ss, and ff represent hours,
minutes, seconds, and frames, respectively. Currently, the value of frames is
ignored. This parameter is optional. If not specified, the video streams to the
end.

ClientPortLow
Not used in the current release of the product. This parameter is optional.

ClientPortHigh
Not used in the current release of the product. This parameter is optional.

ServerPortLow
Indicates the lower number of the port range at which the server will listen for
requests. For non-HTTP cases, this number is part of the port range at which
the application server listens for requests from the client. For the HTTP case,
this port range specifies the port range where data pump listens for requests. If
specified, the server determines if it can listen at the port number specified,
and, if unsuccessful, it tries the next higher port number until it reaches the
value specified as ServerPortHigh. The value specified must be greater than
1024, because port numbers 1024 and below are reserved. This parameter is
optional.

Use ServerPortLow and ServerPortHigh values in the context of a firewall
setup, so that the appropriate server can be addressed.

ServerPortHigh
Indicates the upper number of the port range up to which the server listens for
requests. The range and server information is the same as for the
ServerPortLow parameter. This parameter is optional.

Chapter 2. Presentation Formatters 11

Offline
Applicable only when a Multimedia Archive has been configured and the asset
to be streamed is available on the Archive. When a value of 1 is specified and
iscpfsel is invoked, the video gets staged from the Multimedia Archive to the
VideoCharger Server and the asset streams. If the selected asset already exists
on the VideoCharger Server, it will not get staged again, but will stream
directly from the VideoCharger Server. This parameter is optional.

Videoag
Indicates the asset group into which the asset represented by the videoid
parameter was loaded. This parameter is optional.

Videosrvr
Indicates the control server host name where the asset was loaded. This
parameter is optional.

Streaming asset names with special characters using iscpfsel
For asset names that contain spaces, you must replace the space with either %20 or
a plus sign (+).

Examples for an asset named video charger_mpg:
http://srvr/lantv/cgi-bin/iscpfsel.exe?videoid=video%20charger_mpg

http://srvr/lantv/cgi-bin/iscpfsel.exe?videoid=video+charger_mpg

For Microsoft Internet Explorer only, you must append an additional parameter:
DECODE=TWOPASS for any asset names that contain pound signs (+). For
example, for an asset called clip#1:
http://srvr/lantv/cgi-bin/iscpfsel.exe?videoid=clip#1&DECODE=TWOPASS

Streaming through HTTP Protocol on AIX Using the Generic
Stream Player

Generic stream players are available as plug-ins or as standalone applications for
supported browsers. Such players are launched when video data is sent from a
Server in HTTP format with a specific MIME type that the player can recognize
and start streaming.

In general, the sequence of events for launching a generic stream player is as
follows:
1. End user clicks on an HTML page that has a link that invokes iscpfsel, where

the StreamMode=HTTP parameter has been specified.
2. The server determines the media type of the video name.
3. The server then starts streaming the video to the client (where the end user

clicked) with default MIME type.
4. If the end user has a standalone application or a plug-in that can recognize the

MIME type, it launches itself and streams the video (or audio) data.

A true generic stream player launches itself and starts streaming the video as soon
as initial data is received. Some players might not start playing at the initial receipt
of data, but might wait for some percentage of the file to download or until the
entire file is complete.

As pointed out earlier, generic stream players are launched on the basis of the
MIME type associated with the data being sent from the server. Also, in some cases
there could be many different MIME types characterizing a particular type of data.
For example, AVI (audio video interleaved) is common format for coding and

12 Programmer’s Reference

|
|
|

|

|

|

|
|
|

|

|

compression of video data. Several different MIME types are used to represent this
data format, such as video/avi, video/msvideo, video/x-msvideo. A player might
only support a specific MIME type and only be launched when data with that
MIME type is sent. This might not be the default MIME type generated by the
video server. To override the default MIME type, use the MimeType parameter of
iscpfsel. For example, to invoke the VideoCharger Player for your
HTTP-downloaded asset, you can specify Mimetype=video/x-ibm-ivs, in the
iscpfsel command.

Table 4 shows the default MIME types for the media types supported by
VideoCharger Server.

Table 4. Default MIME types

Media Type Default MIME Type

MPEG1 video/mpeg

MPEG2 video/x-mpeg2

MPEG4 video/mp4

AVI video/msvideo

QuickTime video/quicktime

WAV audio/x-wav

MJPEG video/x-motion-jpeg

H263 video/x-ibm-ivs

G723 video/x-ibm-ivs

LBR video/x-ibm-ivs

Handling Asset Names that Contain Special Characters
If an asset name contains any of the characters " # % & + < >, you need to encode
the characters in their HEX or symbolic equivalents:

" %22 or "

%23

% %25

& %26 or &

+ %2B

< %3C or <

> %3E or >

For example, when translating a # and a &:

pound#and&video

should be:

pound#and&video

For EMBED tags, Microsoft Internet Explorer requires that the (%) sign be encoded
as well. For Microsoft Internet Explorer only, phrase the EMBED tag as follows:
<EMBED SRC="/vs_public/cgi-bin/iscpfsel?videoid=pound%2523and%2526video">
pound#and&video</EMBED>

Chapter 2. Presentation Formatters 13

To phrase the EMBED tag to detect for a Microsoft Internet Explorer browser, see
“Example 5: Streaming an Asset with Special Characters” on page 15.

“Example 3: Streaming an Asset Using HTTP From a Given Start Position” and
“Example 4: Streaming an Asset Using HTTP by Specifying Overriding MIME
Type” on page 15 illustrate the use of StreamMode and MimeType parameters.

Example 1: Streaming an Asset
You can use the iscpfsel routine in conjunction with a standard HTML document
to provide video as one of several media types available for display.

For example, the following section from a home page HTML code provides a link
to the emma asset from a home page concerning Jane Austen.
<HTML>
<HEAD>
<TITLE>Jane Austen</TITLE>
</HEAD>
<BODY>

<h2>Recent Jane Austen Adaptations</h2>
<A href="http://cbox60.obexample.com/vs_public/cgi-bin/
iscpfsel?videoid=emma">
Emma<DT>
<blockquote>Play the video</DD></blockquote>

Note the third line from the bottom, which uses iscpfsel as part of the link.

Example 2: Streaming an Offline Asset Using Plug-in
The following section from a home page HTML code provides a link to an asset
that is available on a Multimedia Archive (offline), and is to be streamed via a
plug-in provided as part of VideoCharger client.
<HTML>
<HEAD>
<TITLE>Company Videos<TITLE>
</HEAD>
<BODY>
<H1 ALIGN=CENTER>CEO’s Speech</H1>
<CENTER>
<A href="http://vcharger.stl.ibm.com/vs_public/cgi-bin/
iscpfsel?videoid=executiv.iba&Plugin=1&Offline=1">
</CENTER>
</BODY>
</HTML>

Example 3: Streaming an Asset Using HTTP From a Given Start
Position
In this example, parameters videoid, StreamMode, and StartPos are specified on
the call to iscpfsel. The value of letterman_show is specified for videoid as the
video to be streamed. The value of the StreamMode parameter is set to HTTP, so it
can be streamed by a generic stream player. The StartPos parameter is set to
00:30:00:00, specifying that the video is to start streaming 30 minutes into the
video (skipping the first 30 minutes). Streaming might start after a commercial
break. This example illustrates how an HTML author can create separate links for
different segments of the same video.
<HTML>
<HEAD>
<TITLE>Great Videos</TITLE>
</HEAD>
<BODY>
<H1 ALIGN=CENTER>Great Videos</H1>
<CENTER>

14 Programmer’s Reference

<P>

<EMBED src="http://vcharger.stl.ibm.com/vs_public/cgi-bin/
iscpfsel?videoid=letterman_show&StreamMode=HTTP&StartPos=00:30:00:00"
width=300 height=225>

</EMBED>
</P>
</CENTER>
</BODY>
</HTML>

Example 4: Streaming an Asset Using HTTP by Specifying
Overriding MIME Type
In this example, the MimeType parameter and a value of video/x-ibm-ivsplugin
have been specified. When the server starts streaming data, the MIME type
associated with data is video/x-ibm-ivsplugin. This launches the VideoCharger
client’s plug-in to play the video in streaming mode.
<HTML>
<HEAD>
<TITLE>Great Videos</TITLE>
</HEAD>
<BODY>
<H1 ALIGN=CENTER>Great Videos</H1>
<CENTER>

<P>

<EMBED src="http://vcharger.stl.ibm.com/vs_public/cgi-bin/
iscpfsel?videoid=ocean300.iba&StreamMode=HTTP&MimeType=video/x-ibm-ivsplugin"
width=300 height=225 >
</EMBED>
</P>
</CENTER>
</BODY>
</HTML>

Example 5: Streaming an Asset with Special Characters
This example uses JavaScript™ to incorporate the correct EMBED tag based on
whether the Web browser type is Microsoft Internet Explorer.
<HTML>
<HEAD>
<TITLE>Special Handling of Microsoft IE Browsers</TITLE>
</HEAD>
<BODY>
<H1 ALIGN=CENTER>Special Handling of Microsoft IE Browsers</H1>
<CENTER>

<P>
<SCRIPT>
<!--
var Video=
"http://dreamwks.stl.ibm.com/vs_public/cgi-bin/iscpfsel?VIDEOID=
C#D9OZSK.RMHKITTW.FRN$NULL.P1.V0&Plugin=1

if (navigator.appName == "Microsoft Internet Explorer") {
Video=Video.replace(/#/g,"%2523"); <===
document.write("<EMBED SRC=\""+Video+"\" WIDTH=200 HEIGHT=200></EMBED>");
}
else
{
Video=Video.replace(/#/g,"%23");
document.write("<EMBED SRC=\""+Video+"\" WIDTH=200 HEIGHT=200></EMBED>");
}
//-->
</SCRIPT>

Chapter 2. Presentation Formatters 15

</P>
</CENTER>
</BODY>
</HTML>

Video On-Demand and IP Multicast Examples for AIX
Sample code for creating links to the Video On-Demand (VOD) and Multicast
Video Guide presentation formatters are provided in the following sections.

VOD Example for AIX
The following example shows how to have the presentation formatter create and
display the search form. sample.pf.server is the name of the presentation
formatter server containing the presentation formatters.

<IMG src="/icons/iscpffla.gif"
alt="Search">Searching?</DT>
<blockquote>Search the entire list of available video
titles.</DD></blockquote>

IP Multicast Example for AIX
The following example shows how to create a link to the Multicast Video Guide
presentation formatter. sample.pf.server is the name of the presentation formatter
server containing the presentation formatters.

<IMG src="/icons/iscpfboo.gif"
alt="Schedule">Scheduled Broadcasts</DT>
<blockquote>Take a look at currently scheduled
broadcasts.</DD></blockquote>

Changing the Logo on the Video-on-Demand Home Page on
AIX

You can customize the Video-on-Demand home page for your AIX server by
replacing the logo with your own company or group logo. To do so, you can
either: a) modify the image filename in the code, or b) rename your custom logo
filename to match the original one.

To change the logo filename on the iscpffrm page, you must rename iscpfivs.gif in
iscpffrm.c (stored in /usr/samples/avs/cgi-bin) to the filename of your custom
logo:
/*HTML header*/
printf("Content-type: text/html\n");
printf("\n");
printf("<HTML>\n");
printf("<HEAD>\n");
printf("<TITLE>%s</TITLE>\n"),pfmsg40);
printf("</HEAD>\n");
printf("<BODY BGCOLOR=\"FFFFFF\">\n")
printf("img src=\"/icons/iscpfivs.gif\" alt=\"%\"><p>\n", pfmsg65;
printf("<CENTER><H1>%s</H1></CENTER>\n"),pfmsg41);
printf("\n");
printf("<P>%s\n",pfmsg42);
printf("%s\n",pfmsg43);
printf("%s\n",pfmsg44);
printf("%s
\n<P>\n",pfmsg45);

Recompile the presentation formatter, iscpffrm.c, and place the new logo in the
/icons subdirectory on the Web server.

Alternatively, to rename your custom logo filename to match the original one:

16 Programmer’s Reference

1. Save the original iscpfivs.gif (in case you need it later).
2. Copy your custom logo to the /usr/lpp/avs/public/images directory on the

presentation formatter server.
3. Rename it to iscpfivs.gif.

Operating Presentation Formatters for Windows

VideoCharger Application Development Environment on
Windows

The VideoCharger application development environment requires:
v Windows NT® 4.0 with Service Pack 5 and higher, or Windows 2000
v IBM VisualAge for C++ for Windows or Microsoft Visual C++ compiler

To add the VideoCharger application development environment to this system, use
the VideoCharger installation media to install the Software Development Toolkit.

The Software Development Toolkit includes the header files and shared libraries
that are required by your application’s use of the VideoCharger API.

Video Selection Presentation Formatter on Windows
The Video Selection presentation formatter iscfpsel is used when there are either
few assets, or when the exact asset required is predetermined, as in a video clip
that is part of a course.

The Video Selection presentation formatter is oriented toward starting a video from
within an application, such as a multimedia course. As such, it can be invoked as a
link from within an HTML page (or within a database field). The Video Selection
presentation formatter selects a specific video and begins streaming it.

Video-on-Demand Presentation Formatter on Windows
The Video-on-Demand (VOD) presentation formatter is used when there are many
assets, or they change frequently. Using it avoids having to update a static list of
assets in an HTML page each time one is added or deleted. The formatter performs
the following functions:
v Provides a main page in HTML for the end user.
v Provides a query window in HTML for the end user.
v Prepares an output window in HTML showing the video list.
v Analyzes selection input from the end user, and, if the selection is valid,

prepares the play parameters.

In general, the Video-on-Demand presentation formatter is used when the end user
wants to browse the video library before selecting a particular video for viewing.
To invoke this formatter, start your browser and go to the following Web address:
http://hostname/lantv/cgi-bin/iscpfhom.exe

where hostname is the host name of your VideoCharger Server.

Click List Available Assets to display the entire library of assets.

Chapter 2. Presentation Formatters 17

Multicast Video Guide on Windows
IP Multicasting enables transmission of an IP datagram to a set of hosts that form a
single multicast group. Use it when you want to diffuse new information to a
group of people inside or outside of your company, for example, for a presentation
on health benefit changes or a new strategy. Users can view a list of scheduled
broadcasts, and can join or leave the multicast session whenever they choose.

For information about scheduling a job, read about event scheduling in the
Administrator’s Guide and Reference.

Invoking the Presentation Formatters on Windows
Start a presentation formatter by calling one of several component routines. The
routines provided, and their function, are shown in Table 5 for Windows.

Table 5. Component routines for starting a presentation formatter on Windows

Name of Routine Function

iscpfhom.exe Creates the home page for the Video-on-Demand home page.
Contains links to invoke other presentation formatter routines.

iscpfcat.exe Displays a list of existing assets that can be selected for use.

iscpfsel.exe Selects the desired video for playback. In essence, iscpfsel.exe used
alone is the Video Selection presentation formatter. Conceptually,
after iscpfcat.exe displays a list of assets, the link for each asset
references iscpfsel.exe. When the video is selected, iscpfsel.exe
validates that the video is ready, and then initiates its playback.

iscpfevt.exe Dynamically generates an HTML page listing the multicast jobs
that are currently available.

Developing HTML Pages Using iscpfsel on Windows
You can use the Video Selection presentation formatter iscpfsel routine in
conjunction with a standard HTML document to provide video as one of the
several media types available for display. iscpfsel is a CGI program that allows
video to be selected and streamed based on several parameters that can be
specified on the invocation statement. As with CGI-bin invocation convention, the
parameters are specified following a question mark (?) character following the
CGI-bin name, such as iscpfsel. Each parameter has a corresponding value. The
parameter-value pairs are separated from each other with an ampersand (&)
character.

The syntax of iscpfsel is:
http://your-video-server/home-directory/cgi-bin/iscpfsel?videoid=your-video

[&Title=your-video-title]
[&StreamMode=HTTP]
[&MimeType=video-mimetype]
[&Plugin=1]
[&StartPos=hh:mm:ss:ff]
[&StopPos=hh:mm:ss:ff]
[&ClientPortLow=nnnnn]
[&ClientPortHigh=nnnnnn]
[&ServerPortLow=nnnnn]
[&ServerPortHigh=nnnnn
[&enc=utf8]

where your-video-server is the host name of the machine on which VideoCharger is
installed and home-directory is lantv.

18 Programmer’s Reference

The parameters for iscpfsel are:

videoid
The asset name that identifies the video to be streamed. This name is the same
as the name provided when the asset was initially loaded onto the video
server. This parameter is required.

Title
For information purposes. Also displayed to the end user when
Stream/Session metadata file is sent to the client (non-HTTP streaming). This
parameter is optional.

StreamMode
Only HTTP is accepted as the value. When StreamMode=HTTP is specified, the
video server sends the video in HTTP format, allowing any generic stream
player to be launched that can understand the MIME type of the content. This
parameter is optional. For details on generic stream players and playing via
HTTP streaming, see “Streaming through HTTP Protocol on Windows Using
the Generic Stream Player” on page 20.

MimeType
Used to override the default MIME type of the video to be streamed via
StreamMode=HTTP. For example, to invoke the VideoCharger Player for your
HTTP-downloaded asset, you can specify Mimetype=video/x-ibm-ivs, in the
iscpfsel command. The specified value is the MIME type of the video data to
be sent to the player. This parameter is optional and is only applicable when
streaming via HTTP protocol (when StreamMode=HTTP is specified).

Plugin
When a value of 1 is specified, the video is sent to the VideoCharger client and
the client launches the plug-in. Other values are ignored. This parameter is
optional and is ignored when specified with StreamMode=HTTP.

StartPos
Indicates the position relative to beginning of video, in units of time, where the
video is to start streaming. hh, mm, ss, and ff represent hours, minutes,
seconds, and frames, respectively. Currently, the value of frames is ignored.
This parameter is optional. If not specified, the video starts streaming from the
beginning.

StopPos
Indicates the position relative to the beginning of the video, in units of time,
where the video is to stop streaming. hh, mm, ss, and ff represent hours,
minutes, seconds, and frames, respectively. Currently, the value of frames is
ignored. This parameter is optional. If not specified, the video streams to the
end.

ClientPortLow
Not used in the current release of the product. This parameter is optional.

ClientPortHigh
Not used in the current release of the product. This parameter is optional.

ServerPortLow
Indicates the lower number of the port range at which the server will listen for
requests. For non-HTTP cases, this number is part of the port range at which
the application server listens for requests from the client. For the HTTP case,
this port range specifies the port range where data pump listens for requests. If
specified, the server determines if it can listen at the port number specified,
and, if unsuccessful, it tries the next higher port number until it reaches the

Chapter 2. Presentation Formatters 19

value specified as serverPortHigh. The value specified must be greater than
1024, because port numbers 1024 and below are reserved. This parameter is
optional.

Use serverPortLow and serverPortHigh values in the context of a firewall
setup, so that the appropriate server can be addressed.

ServerPortHigh
Indicates the upper number of the port range up to which the server listens for
requests. The range and server information is the same as for the
ServerPortLow parameter. This parameter is optional.

enc
Indicates what encoding that the videoid parameter is encoded in. Currently,
only the UTF-8 encoding system (utf8) is valid. This parameter is only
required when the videoid contains characters that are not within the current
O/S code page. Meaning, if you cannot type in the complete videoid on your
system in the command line interface, then you need enc.

For example, to stream the asset with the Greek letters chi, psi, and omega,
you would use the hexadecimal UTF-8 character equivalents:

Chi CF87

Psi CF88

Omega
CF89

Example:

http://vc_server/lantv/cgi-
bin/iscpfsel.exe?asset=%cf%87%cf%88%cf%89&enc=utf8

To verify that this asset link works, view the page source in your VideoCharger
Server asset listing page (iscpfcat.exe) page.

Typically, you only need to convert the characters to hexadecimal UTF-8 if you
cannot type them in your language’s command line interface.

Streaming through HTTP Protocol on Windows Using the
Generic Stream Player

Generic stream players are available as plug-ins or as standalone applications for
supported browsers. Such players are launched when video data is sent from a
server in HTTP format with a specific MIME type that the player can recognize
and start streaming.

In general, the sequence of events for launching a generic stream player is as
follows:
1. End user clicks on an HTML page that has a link that invokes iscpfsel, where

the StreamMode=HTTP parameter has been specified.
2. The server determines the media type of the video name.
3. The server then starts streaming the video to the client (where the end user

clicked) with default MIME type.
4. If the end user has a standalone application or a plug-in that can recognize the

MIME type, it launches itself and streams the video (or audio) data.

20 Programmer’s Reference

A true generic stream player launches itself and starts streaming the video as soon
as initial data is received. Some players might not start playing at the initial receipt
of data, but might wait for some percentage of the file to download or until the
entire file is complete.

As pointed out earlier, generic stream players are launched on the basis of the
MIME type associated with the data being sent from the server. Also, in some cases
there could be many different MIME types characterizing a particular type of data.
For example, AVI (audio video interleaved) is common format for coding and
compression of video data. Several different MIME types are used to represent this
data format, such as video/avi, video/msvideo, video/x-msvideo. A player might
only support a specific MIME type and only be launched when data with that
MIME type is sent. This might not be the default MIME type generated by the
video server. To override the default MIME type, use the MimeType parameter of
iscpfsel. For example, to invoke the VideoCharger Player for your
HTTP-downloaded asset, you can specify Mimetype=video/x-ibm-ivs, in the
iscpfsel command.

Table 6 shows the default MIME types for the media types supported by
VideoCharger Server.

Table 6. Default MIME types

Media Type Default MIME Type

MPEG1 video/mpeg

MPEG2 video/x-mpeg2

MPEG4 video/mp4

AVI video/msvideo

QuickTime video/quicktime

WAV audio/x-wav

MJPEG video/x-motion-jpeg

H263 video/x-ibm-ivs

G723 video/x-ibm-ivs

LBR video/x-ibm-ivs

Handling Asset Names that Contain Special Characters
If an asset name contains any of the characters " # % & + < >, you need to encode
the characters in their HEX or symbolic equivalents:

" %22 or "

%23

% %25

& %26 or &

+ %2B

< %3C or <

> %3E or >

For example, when translating a # and a &:

test#name&date

Chapter 2. Presentation Formatters 21

should be:

test#name&date

For EMBED tags, Microsoft Internet Explorer requires that the (%) sign be encoded
as well. For Microsoft Internet Explorer only, phrase the EMBED tag as follows:
<EMBED SRC="/lantv/cgi-bin/iscpfsel.exe?asset=test%2523name%2526date">
test#name&date</EMBED>

To phrase the EMBED tag to detect for a Microsoft Internet Explorer browser, see
“Example 4: Streaming an Asset with Special Characters” on page 23.

“Example 2: Streaming an Asset Using HTTP From a Given Start Position” and
“Example 3: Streaming an Asset Using HTTP by Specifying Overriding MIME
Type” on page 23 illustrate the use of StreamMode and MimeType parameters.

Example 1: Streaming an Asset
You can use the iscpfsel routine in conjunction with a standard HTML document
to provide video as one of several media types available for display.

For example, the following section from a home page HTML code provides a link
to the emma asset from a home page concerning Jane Austen.
<HTML>
<HEAD>
<TITLE>Jane Austen</TITLE>
</HEAD>
<BODY>

<h2>Recent Jane Austen Adaptations</h2>
<A href="http://cbox60.obexample.com/lantv/cgi-bin/
iscpfsel.exe?videoid=emma&videoag=AG&videosrvr=cbox60">
Emma<DT>
<blockquote>Play the video</DD></blockquote>

Note the third line from the bottom, which uses iscpfsel as part of the link.

Example 2: Streaming an Asset Using HTTP From a Given Start
Position
In this example, parameters videoid, StreamMode, and StartPos are specified on
the call to iscpfsel. The value of letterman_show is specified for videoid as the
video to be streamed. The value of the StreamMode parameter is set to HTTP, so it
can be streamed by a generic stream player. The StartPos parameter is set to
00:30:00:00, specifying that the video is to start streaming 30 minutes into the
video (skipping the first 30 minutes). Streaming might start after a commercial
break. This example illustrates how an HTML author can create separate links for
different segments of the same video.
<HTML>
<HEAD>
<TITLE>Great Videos</TITLE>
</HEAD>
<BODY>
<H1 ALIGN=CENTER>Great Videos</H1>
<CENTER>

<P>

<EMBED src="http://vcharger.stl.ibm.com/lantv/cgi-bin/
iscpfsel.exe?videoid=letterman_show&StreamMode=HTTP&StartPos=00:30:00:00"
width=300 height=225 >

</EMBED>

22 Programmer’s Reference

</P>
</CENTER>
</BODY>
</HTML>

Example 3: Streaming an Asset Using HTTP by Specifying
Overriding MIME Type
In this example, the MimeType parameter and a value of video/x-ibm-ivsplugin
have been specified. When the server starts streaming data, the MIME type
associated with data is video/x-ibm-ivsplugin. This launches the VideoCharger
client’s plug-in to play the video in streaming mode.
<HTML>
<HEAD>
<TITLE>Great Videos</TITLE>
</HEAD>
<BODY>
<H1 ALIGN=CENTER>Great Videos</H1>
<CENTER>

<P>

<EMBED src="http://vcharger.stl.ibm.com/lantv/cgi-bin/
iscpfsel.exe?videoid=ocean300.iba&StreamMode=HTTP&MimeType=video/x-ibm-ivsplugin"
width=300 height=22>
</EMBED>
</P>
</CENTER>
</BODY>
</HTML>

Example 4: Streaming an Asset with Special Characters
This example uses JavaScript to incorporate the correct EMBED tag based on
whether the Web browser type is Microsoft Internet Explorer.
<HTML>
<HEAD>
<TITLE>Special Handling of Microsoft IE Browsers</TITLE>
</HEAD>
<BODY>
<H1 ALIGN=CENTER>Special Handling of Microsoft IE Browsers</H1>
<CENTER>

<P>
<SCRIPT>
<!--
var Video=
"http://dreamwks.stl.ibm.com/vs_public/cgi-bin/iscpfsel?VIDEOID=
C#D9OZSK.RMHKITTW.FRN$NULL.P1.V0&Plugin=1

if (navigator.appName == "Microsoft Internet Explorer") {
Video=Video.replace(/#/g,"%2523"); <===
document.write("<EMBED SRC=\""+Video+"\" WIDTH=200 HEIGHT=200></EMBED>");
}
else
{
Video=Video.replace(/#/g,"%23");
document.write("<EMBED SRC=\""+Video+"\" WIDTH=200 HEIGHT=200></EMBED>");
}
//-->
</SCRIPT>
</P>
</CENTER>
</BODY>
</HTML>

Chapter 2. Presentation Formatters 23

Video On-Demand and IP Multicast Examples for Windows
Sample code for creating links to the Video On-Demand (VOD) and Multicast
Video Guide presentation formatters are provided in the following sections.

VOD Example for Windows
The following example shows how to have the presentation formatter create and
display the list of video titles. server-name is the name of the VideoCharger Server.

<IMG src="/lantv/images/iscpffla.gif"
alt="Search">Searching?</DT>
<blockquote>Display the list of available video
titles.</DD></blockquote>

IP Multicast Example for Windows
The following example shows how to create a link to the Multicast Video Guide
presentation formatter. server-name is the name of the VideoCharger Server.

<IMG src="/lantv/images/iscpfboo.gif"
alt="Schedule">Scheduled Broadcasts</DT>
<blockquote>Take a look at currently scheduled
broadcasts.</DD></blockquote>

Changing the Logo on the Video-on-Demand Home Page on
Windows

You can customize the Video-on-Demand home page for your Windows server by
replacing the logo with your own company or group logo. To do so, you can
either: a) modify the image filename in the code, or b) rename your custom logo
filename to match the original one.

To change the logo filename on the iscpfhom page, you must rename iscpfivs.gif
in iscpfhom.c (stored in the sdk\samples directory) to the filename of your custom
logo:
/* HTML header */
printf("Content-type: text/html\n");
printf("\n");
printf("<HTML>\n");
printf("<HEAD>\n");
printf("<TITLE>%s</TITLE>\n",pfmsg23);
printf("</HEAD>\n");
printf("<BODY BGCOLOR=\"FFFFFF\">\n");
printf(img src=\"/images/iscpfivs.gif\" alt=\"%s\"><p>\n",pfmsg65);
printf("<P>%\n",pfmsg23);
printf("%\n",pfmsg24);

Recompile the presentation formatter, iscpfhom.c, and place the new logo in the
\images subdirectory on the Web server.

Alternatively, to rename your custom logo filename to match the original one:
1. Save the original iscpfivs.gif (in case you need it later).
2. Copy your custom logo to the /usr/lpp/avs/public/images (AIX) or

\data\public\images (Windows) directory on the presentation formatter server.
3. Rename it to iscpfivs.gif.

24 Programmer’s Reference

Chapter 3. Application Server Interface Layer Application
Programming Interfaces

This section describes the Application Program Interface (API) function calls
available in the Application Server Interface Layer (ASIL) for obtaining information
on, gaining access to, and obtaining utilization data on videos on a VideoCharger
Server. These functions are used by the presentation formatter routines provided
with the VideoCharger Server. However, you can use these functions in modified
or new routines that you create yourself, or dynamically using your system’s
standard input capability.

In the processing of these function calls, the presentation formatter sends the calls
to the Application Server Interface Layer, which converts them to the proper
structure for execution by the application server.

For AIX: You can access C language source code for ASIL APIs in
avs.applsrv.client.sample.code under /usr/samples/avs/cgi-bin.

Each ASIL API function call described in this section includes the syntax in two
formats:
v C language syntax
v UNIX® STDIN input syntax

If you are using the UNIX STDIN input syntax, you must direct all video
command data to the ASIL ISCAIUXV Line-mode Interface program. Figure 5 on
page 9 shows the flow of input in both the C language and UNIX STDIN formats
to the ASIL API functions.

The following is an example of a UNIX shell script to send command data to
ISCAIUXV.
#! /usr/bin/ksh
echo ’setserver -nTESTSERVER
setvideoname -atopgun_english -mAUTOPLAY -p1’ | ISCAIUXV

Within a UNIX shell script, you must include commands as a complete set. For
example, if you executed one script with just the setserver command, and a second
script with just the setvideoname command, the effect would be to ignore the
setserver command, and simply use the default server in conjunction with the
setvideoname command.

You can use the UNIX STDIN format dynamically, as shown above, or as a
predefined file. The following shows the steps for executing the above example as
a predefined video command file:

Step 1 - Create a Video Play File

Create a file, such as /play/video/topgun, containing the following:
setserver -nTESTSERVER
setvideoname -atopgun_english -mAUTOPLAY -p1

Step 2 - Create the Shell Script, and Direct the Play File to ISCAIUXV

© Copyright IBM Corp. 1997, 2003 25

#! /usr/bin/ksh
ISCAIUXV < /play/video/topgun

Because the basic process for creating a predefined file is the same for all functions,
the ASIL API descriptions in this section contain examples only for dynamically
providing UNIX STDIN input. Each description also includes a summary of what
the call accomplishes, a syntax diagram for both C language and UNIX STDIN
syntax, information on individual parameters, and an example of the C language
syntax.

UNIX STDIN Command Syntax
This chapter contains lists of UNIX commands available on your AIX system. You
can use commands to tell the operating system what tasks you want it to perform.
When commands are entered, they are deciphered by a command interpreter (also
known as a shell), and that task is performed.

Attention: All parameters and flags in this chapter are required, unless otherwise
specified.

Although some commands can be entered by simply typing one word, other
commands use flags and parameters. Each command has a syntax that designates
the required and optional flags and parameters. The general format for a command
is:
CommandName flag(s) parameter(s)

Some general rules about commands are:
v Spaces between commands, flags, and parameters are important.
v Two commands can be entered on the same line by separating the commands

with a semicolon (;). For example:
$ CommandOne;CommandTwo

The shell runs the commands sequentially.
v Commands are case sensitive. The shell distinguishes between upper-case and

lower-case letters. To the shell, mkvssg is not the same as MKVSSG or Mkvssg.
v A very long command can be entered on more than one line by using the

backlash (\) character. A backslash signifies line continuation to the shell. The
following example is one command that spans two lines:
$ setserver -n ServerName \
> -t BOTH_SERVR

The > character is your secondary prompt ($ is the non-root user’s default primary
prompt), indicating that the current line is the continuation of the previous line.

To run a command, type the command name at the prompt, and press the Enter
key.

Command Flags

After the command name, there can be a number of flags. Flags are sometimes
called options. A flag is set off by spaces or tabs and usually starts with a dash (-).
For example, in the following command:
setserver -n ServerName

setserver is the command name and -n is the flag.

26 Programmer’s Reference

Command Parameters

After the command name, there can be a number of flags, followed by parameters.
Parameters are sometimes called arguments or operands. Parameters specify
information the command needs in order to run. If you don’t specify a parameter,
the command might assume a default value. For example, in the following
command:
lsvspg -n ServerName

lsvspg is the command name and -n is the flag.

Whenever a parameter or operand-argument is, or contains, a numeric value, the
number is interpreted as a decimal integer, unless otherwise specified.

Reading UNIX STDIN Syntax Statements

Syntax statements tell you how to enter commands from the command line. The
statements consist of symbols such as [] (brackets), { } (braces), and | (vertical
bars).

The following conventions are used in the command syntax statements:
v Items that must be entered literally on the command line are in bold font. These

include the command name, flags, and literal characters.
v Items representing variables that must be replaced by a name are in italics.
v Parameters enclosed in brackets are optional.
v Parameters not enclosed in brackets are required.
v A vertical bar signifies that you choose only one parameter. For example, [a | b

] indicates that you can choose a, b, or nothing.
v Ellipses (...) signify the parameter can be repeated on the command line.
v The dash (-) represents standard input.

The following is a sample of a syntax statement for the rmvsag command:
rmvsag -l agname... ([-d] | [-q])

In this example, the -l flag (and its parameter agname) are required. Because the
ellipses are indicated after the parameter, more than one agname can be listed.
Either the -d or the -q flag can be used, but neither one is required.

Metadata File
The metadata file is a collection of information about an asset. The information is
created by the application server and returned to the Web browser. The metadata
file servers two purposes:
v Contains information about the session and the video stream.
v Used by the Web browser to start the Viewer.

Session Data Parameters
The following parameters apply to the session that is established between the
VideoCharger client and the application server:

version
Identifies the version and the data format of the metadata file.

Chapter 3. Application Server Interface Layer Application Programming Interfaces 27

passticket
Correlates a video selection to the request to play the video. A passticket of
1000 allows the metadata file to be reused multiple times.

protocol
Identifies the protocol used to communicate between the VideoCharger client
and the application server. A value of 1 indicates that the sockets protocol is
used.

serveraddr
Network address of the application server to which the client should connect.
When using sockets, the address includes the port number. For example,
9.67.123.456:1234 where 9.26.123.456 is the IP address and 1234 is the port
number.

codepage
For future use. Set to 0.

numberstreams
For future use. Set to 1.

sessiontype
Type of session. Set to 1 for unicast or video-on-demand, 2 for multicast.

dataprotocol
For future use. Set to 1.

sourceaddr
Multicast target address. For unicast or video-on-demand, set to 0.0.0.0:0.

Stream Data Parameters
The following parameters apply to the streams to be viewed. The metadata file
must include an entry for each stream.

title
Title of the selected video. This will be displayed on the title bar of the
VideoCharger Player. It does not have to be the same as the longname.

longname
The asset name at the control server.

length
Length of the video in seconds.

mediatype
Decimal value of the type of media (MPEG1, MPEG2, LBR):

0 = 0x00000000 unknown encoding
16777216 = 0x01000000 MPEG I
33554432 = 0x02000000 MPEG II
50331648 = 0x03000000 AVI
67108864 = 0x04000000 MJPEG - video only
83886080 = 0x05000000 H.263 - video only
100663296 = 0x06000000 G.723 - audio only
117440512 = 0x07000000 H.263 + G.723 interleaved
134217728 = 0x08000000 Quicktime movie
150994944 = 0x09000000 WAV - audio only
167772160 = 0x0A000000 HotMedia
184549376 = 0x0B000000 MPEG IV

bitrate
Bits per second of the data to be played.

28 Programmer’s Reference

autoplay
Controls how the video is started. Set to 1 to have the viewer automatically
issue the play command.

inv_cmds
Decimal value of the commands restricted from use by the client. You can use
the bit-wise OR operation to indicate a set of invalid commands. For example,
setting inv_cmds to 3 indicates that the user cannot seek forward and
backwards. The restrictions are:

1 = 0x0001 seek forward
2 = 0x0002 seek backward
4 = 0x0004 play from
8 = 0x0008 play to
16 = 0x0010 play rate
32 = 0x0020 stop
64 = 0x0040 pause
128 = 0x0080 resume
256 = 0x0100 volume
512 = 0x0200 balance
1024 = 0x0400 treble
2048 = 0x0800 bass
4096 = 0x1000 cannot jump past stream

filesize64
File size as a long decimal (64 bit) value. Data is returned in two long values,
separated by a comma.

startposition
The relative SMPTE timecode (HH:MM:SS:FF) to initially start playing the
video. The user can change this value at anytime. This parameter is optional.

stopposition
The relative SMPTE timecode (HH:MM:SS:FF) to initially stop playing the
video. The user can change this value at anytime. This parameter is optional.

File Format
The file format is a collection of stanzas. Each stanza is delimited by a starting
keyword and an ending keyword. Each keyword is enclosed in brackets. Between
the keywords in brackets are the parameters. The session stanza and stream stanza
can be preceded or followed by other data, for example, data included by a
customized presentation formatter.

All parameters are character strings. serveraddr, title, and longname should be left as
character strings, all other parameters should be converted to unsigned long
(ulong) values when received by the client.

The metadata file must not go through a codepage conversion when passing from
one component to another in your VideoCharger system.

Example of a metadata file:
Content_type: video/x-ibm-ivs

customized data, if any, here

[ivs_session_begin]
version=
passticket=
protocol=
serveraddr=
codepage=
numberstreams=

Chapter 3. Application Server Interface Layer Application Programming Interfaces 29

sessiontype=
dataprotocol=
sourceaddr=
[ivs_session_end]
[ivs_stream_begin]
title=
longname=
length=
mediatype=
bitrate=
autoplay=
invalidcommands=
filesize64=
startposition=
stopposition=
[ivs_stream_end]

customized data, if any, here

ASIL API Calls Required for all C Language Calling Sequences
Two calls, asVideoInit and asVideoExit, must begin and end all C language calling
sequences. These calls are not required for the UNIX STDIN format.

The API calls required for all C language calling sequences are:

Init Initializes the video request handle.

Exit Releases the resources used for video request.

ASIL API Calls for Video Data Retrieval
The API calls for video data retrieval are:

GetResponse
Gets a copy of the metadata file.

ASIL API Calls for Video Selection
The API calls for video selection are:

SetServer
Specifies the server to receive the video request.

SetUserData
Saves individual utilization data (AIX only).

SetVideoName
Specifies the name of the video requested.

SetVideoParms
Specifies the parameters related to playing a video.

SetRestriction
Specifies use restrictions for a particular video.

BuildResponse
Builds the metadata file.

StreamHTTP
Sets up to stream video using HTTP protocol.

30 Programmer’s Reference

Processing User Data
ProcessUserData

Interface to a user-supplied routine (AIX only).

asVideoInit
Purpose

Initialize video request handle.

Description

This ASIL API function call initializes a handle for subsequent video request
statements in the C Language format. A handle is a binary value facilitating access
to internal data storage (in this case, to be used by a series of asVideo calls). If a
SetServer call (see “asVideoSetServer” on page 35) is included in the C Language
program, it must immediately follow the Init call. Note that the UNIX STDIN
format does not require explicit calling of the Init function.

C Syntax
asRc asVideoInit (

asVideoReqHdl,
ai_current_version
);

Parameters

This call is not required for the UNIX STDIN format.

asVideoReqHdl
The address of a VHNDL type pointer in which a video handle can be stored.
This video handle is used for subsequent ASIL API video calls.

ai_current_version
A pointer to a static version structure defined in asVideo.h header file
provided with the Video Network Server program. This structure contains the
version number under which the program invoking asVideoInit was compiled.

Example - C Language Format
.
.
.

#include <asVideo.h>
.
.
.

main(){
.
.
.
VHNDL localHndl; /* returned handle */
.
.
.
asRc localRc /* return code */
.
.
.
/* get handle for subsequent call invocations */

Chapter 3. Application Server Interface Layer Application Programming Interfaces 31

/* this call must immediately precede the asVideoSetServer call */
localRc = asVideoInit(&localHndl, AI_CURRENT_VERSION);
if (localRc != 0)
{

exitMsg(localRc,"Unable to initialize video interface");
}

.

.

.
}

In this example, VHNDL is the Video Request Handle TYPEDEF; localHndl is the
local variable. asVideoInit requests initialization of a video handle. &localHndl is
the address of the storage location for the handle. ai_current_version contains the
version number under which the program invoking asVideoInit was compiled. If
the return code (localRc) is not zero, the program issues the message, ″Unable to
initialize video interface.″

asVideoExit
Purpose

Release resources used for a video request.

Description

This ASIL API function call releases the resources used for servicing a video
request. The call normally follows a BuildResponse call (see
“asVideoBuildResponse” on page 47), which builds the Session/Stream Metadata
file and sends it to the client Web browser. The resources used for the request can
now be ″cleaned up.″

This function call is required only if C language is used. The UNIX STDIN format
causes issuing of an implicit BuildResponse and Exit upon reaching end-of-input.

C Syntax
asRc asVideoExit (

asVideoReqHdl
);

Parameters

This call is not required for the UNIX STDIN format.

asVideoReqHdl
A pointer to a location for the video handle.

Example - C Language Format
.
.
.

#include <asVideo.h>
.
.
.

main(){
.
.
.

32 Programmer’s Reference

VHNDL localHndl; /* returned handle */
.
.
.
asRc localRc /* return code */
.
.
.
/* get handle for subsequent call invocations */
/* this call must immediately precede the asVideoSetServer call */
localRc = asVideoInit(&localHndl, AI_CURRENT_VERSION);
if (localRc != 0)
{

exitMsg(localRc,"Unable to initialize video interface");
}
.
.
.
/* clean up storage related to the video calls */
localRc = asVideoExit(localHndl);
if (localRc != 0)
{

exitMsg(localRc, "Unable to exit cleanly");
}
.
.
.

}

In this example, VHNDL is the Video Request Handle TYPEDEF; localHndl is the
local variable. asVideoInit requests initialization of a video handle. &localHndl is
the address of the storage location for the handle. asRc is the return code
TYPEDEF; localRc is the local variable.

asVideoExit causes cleaning up of the resources used for the video request, using
the localHndl Video Request Handle. If the return code (localRc) is not zero, the
program issues the message, ″Unable to exit cleanly.″

asVideoGetResponse
Purpose

Get a copy of the metadata file (see “Metadata File” on page 27).

Description

This ASIL API function call enables you to obtain a copy of the metadata file. The
metadata file contains key video-stream and session information, and is normally
sent from the application server to the client to initiate the VideoCharger Player
when an asVideoBuildResponse call (see “asVideoBuildResponse” on page 47) is
made.

The asVideoGetResponse call enables an application to capture the metadata
response and change it according to specific needs. This can include changing
values or delivering the metadata via an alternate method to the end user.
asVideoGetResponse can be used for functions like obtaining accounting
information or to provide input to a rights management routine.

Chapter 3. Application Server Interface Layer Application Programming Interfaces 33

When using this function call, you must specify the name of a buffer to contain the
file, and the size of that buffer. If the buffer size specified is insufficient for the file,
the asVideoGetResponse routine sends back a return code indicating an
insufficient-size buffer.

You can call asVideoGetResponse only once between asVideoInit (see
“asVideoInit” on page 31) and asVideoExit (see “asVideoExit” on page 32) calls.
Therefore, it is important that you specify a buffer size large enough to
accommodate any metadata file.

C Syntax
asRc asVideoGetResponse (

asVideoReqHdl
asBufferAddress,
asBufferSize
);

This call cannot be invoked in the UNIX STDIN format.

Parameters

asVideoReqHdl
A video request handle. This handle is allocated and initialized through an
asVideoInit call.

asBufferAddress
A pointer to the buffer to which the metadata file should be copied.

asBufferSize
The address of an integer containing the size of the buffer allocated. If this call
is successful, this size is changed to the actual buffer size.

Example
#include <asVideo.h>

.

.main(){

.

.
VHNDL localHndl;/* returned handle */
char localAssetName[100]="emma_1996";

/* video asset name */
ulong localPos=1; /* required parameter*/
char localTitle[100]="Emma" /* title of video*/
char *buffaddr; /* address of buffer */
int buffsize=4000; /* size of buffer*/
asRc localRc; /* return code */
.
.
.
/* get storage for storing the metadata file*/
buffaddr = (char *)malloc(buffsize);
/* get handle for subsequent call invocations */
localRc = asVideoInit(&localHndl, AI_CURRENT_VERSION);
if (localRc != 0)
{

exitMsg(localRc,"Unable to initialize video interface");
}

/* set the name of the video to be played */
localRc =

asVideoSetVideoName(localHndl,localAssetName,localPos,
localTitle);

if (localRc != 0)

34 Programmer’s Reference

{
exitMsg(localRc,"Unable to find video requested");

}

/* get the metadata file */
localRc = asVideoGetResponse(localHndl,buffaddr,&buffsize);
if (localRc != 0)
{

exitMsg(localRc,"Unable to copy metadata file");
}

/* clean up storage related to video calls */
localRc = asVideoExit(localHndl);
if localRc != 0)
{

exitMsg(localRc,"Unable to exit cleanly");
.
.
.
/* free storage obtained earlier*/
free(buffaddr};

}

In this example, VHNDL is the Video Request Handle TYPEDEF; localHndl is the
local variable. localAssetName is a variable in this case defined as emma_1996.
localPos is a playlist-oriented variable that must be set to 1 in VideoCharger Server
Version 1.

buffaddr is the address of the buffer into which the metadata should be stored.
buffsize is an integer indicating the size of the buffer; in this case, the buffer size is
set to 4000 bytes. asRc is the return code TYPEDEF; localRC is the local variable.

After executing asVideoInit to get the video request handle, and executing other
functions like asVideoSetVideoName, the sample program executes the
asVideoGetResponse function to get a copy of the metadata file. localHndl is the
video request handle, buffaddr is the buffer address, and &buffsize is the address of
the integer containing the buffer size. If the call is successful, asVideoGetResponse
places a copy of the metadata file in the buffaddr buffer. buffsize then shows the
actual size of the file. If the call is not successful, the return code (localRC) is not
zero, and the metadata file is not copied. One reason for an unsuccessful call could
be specification of a buffer size that is too small for the actual metadata file.

asVideoExit then cleans up the resources used for the video calls.

asVideoSetServer
Purpose

Specify the server to receive the video request.

Description

This ASIL API function call enables you to specify the name of the server to handle
the video request. If this call is omitted, ASIL sets the previously defined default
server as the server to handle the request.

If included in a C language routine, the SetServer function call must appear
immediately after the Init Video Request Handle initialization call (see
“asVideoInit” on page 31). Any attempt to perform the SetServer function after

Chapter 3. Application Server Interface Layer Application Programming Interfaces 35

other selection operations results in an Invalid Operation return code. Note that
the Init Video Request Handle initialization call is not required for the SetServer
function when you use the UNIX STDIN format; however, if the UNIX STDIN
format is used, you must include setserver as the first call.

C Syntax
asRc asVideoSetServer (

asVideoReqHdl,
asServerName,
asLocalServerFlag
);

Parameters

asVideoReqHdl
A video request handle. The TYPEDEF name for this handle is VHNDL. This
handle is allocated and initialized through an asVideoInit call.

asServerName
A pointer to the name of the Server.

asLocalServerFlag
An enumerator indicating whether to set the application server, Content
Manager, or both. The TYPEDEF name for this enumerator is
VIDEO_SERVER_FLAG.

Values include:

BOTH_SERVR
Sets both the application server and the Content Manager. This
is the default.

APPSERVER Sets only the application server.

CONTENT Sets only the Content Manager.

Example
.
.
.

#include <asVideo.h>
.
.
.

main(){
.
.
.
VHNDL localHndl; /* returned handle */
char localServer[] = "TESTSERVER"; /* server name */
VIDEO_SERVER_FLAG localServerFlag; /* shows server type */

localServerFlag = BOTH_SERVR; /* sets default */
asRc localRc /* return code */
.
.
.
/* get handle for subsequent call invocations */
/* this call must immediately precede the asVideoSetServer call */
localRc = asVideoInit(&localHndl, AI_CURRENT_VERSION);
if (localRc != 0)
{

exitMsg(localRc,"Unable to initialize video interface");
}

36 Programmer’s Reference

/* override default server by specifying a name */
localRc = asVideoSetServer(localHndl,localServer,localServerFlag);
if (localRc != 0)
{

exitMsg(localRc,"Unable to define my test server");
}
.
.
.

}

In this example, VHNDL is the Video Request Handle TYPEDEF; localHndl is the
local variable. TESTSERVER is assigned as the name for the local variable
localServer. VIDEO_SERVER_FLAG is the TYPEDEF for the flag that indicates
which type of server is to be set (application server, Content Manager, or both).
localServerFlag is the local variable. Both servers are set as the default.

Note that the call to asVideoInit to get the Video Request Handle must
immediately precede the asVideoSetServer call. The asVideoSetServer call
specifies localHndl as the Video Request Handle, the contents of localServer
(TESTSERVER) as the server name, and the default value for localServerFlag (both
the application server and the Content Manager) as the server type. If the return
code (localRC) is not zero, the program issues the message, ″Unable to define my
test server.″

UNIX STDIN Syntax
setserver -nasServerName [-t BOTH_SERVR | APPSERVER | CONTENT]

UNIX STDIN Flags

-nasServerName
Indicates the actual name of the server.

-t Indicates whether to set the application server, Content Manager, or both.

Values include:

BOTH_SERVR
Sets both the application server and the Content Manager. This
is the default.

APPSERVER Sets only the application server.

CONTENT Sets only the Content Manager.

Example: Dynamically Specifying the Server Name
#! /usr/bin/ksh
echo ’setserver -nTESTSERVER
setvideoname -atopgun_english’ | ISCAIUXV

In this example, #! usr/bin/ksh initiates the UNIX shell script, and echo
’setserver -nTESTSERVER’ establishes the server named TESTSERVER as the video
server. A setvideoname command is required for the setserver command to be
meaningful (see “asVideoSetVideoName” on page 40). The vertical bar (|) directs
the entire string to the ISCAIUXV Line-Mode Interface program, which converts
the string to the input formats required for the asVideoSetServer and
asVideoSetVideoName functions.

Chapter 3. Application Server Interface Layer Application Programming Interfaces 37

asVideoSetUserData (AIX only)
Purpose

Save individual user data.

Description

This ASIL API function call enables you to capture unique user data; the captured
data can subsequently be sent to the ProcessUserData routine (see
“asProcessUserData (AIX only)” on page 51) for processing. The SetUserData
function is particularly useful for capturing user data for tracking and/or billing
purposes.

C Syntax
asRc asVideoSetUserData (

asVideoReqHdl,
asUserDataSize,
asUserDataValue
);

Parameters

asVideoReqHdl
A video request handle. The TYPEDEF name for this handle is VHNDL. This
handle is allocated and initialized through an asVideoInit call (see
“asVideoInit” on page 31).

asUserDataSize
The size of the user data saved. In the C language format, this value is an
unsigned long integer.

asUserDataValue
This is an opaque pointer (represented by a CHAR*) to a data value of
asUserDataSize size; a user-written routine must provide this utilization data.

Example
.
.
.

#include <asVideo.h>
.
.
.

main(){
.
.
.
VHNDL localHndl; /* returned handle */
ulong_t localDataSize; /* size of user data */
char* localUserDataValue; /* pointer to user data */
asRc localRc /* return code */
.
.
.
/* get handle for subsequent call invocations */
/* this call must immediately precede the asVideoSetServer call */
localRc = asVideoInit(&localHndl, AI_CURRENT_VERSION);
if (localRc != 0)
{

exitMsg(localRc,"Unable to initialize video interface");
}

38 Programmer’s Reference

.

.

.
/* Create local data in char* localUserDataValue */
.
.
.
/* set up storage area for utilization data */
localRc = asVideoSetUserData(localHndl,localDataSize,

localUserDataValue);
if (localRc != 0)
{

exitMsg(localRc,"Unable to save utilization data");
}
.
.
.

}

In this example, VHNDL is the Video Request Handle TYPEDEF; localHndl is the
local variable. localDataSize is the unsigned long integer indicating the size of the
storage area for user utilization data. localDataValue is the opaque pointer to the
user-supplied utilization data.

After executing asVideoInit to get the video request handle, and executing other
functions like asVideoSetServer, the sample program sets up the storage area for
the utilization data. asVideoSetUserData saves the video utilization data pointed
to by localUserDataValue. localDataSize provides the size of the data, and localHndl
provides information about the video. If the return code (localRC) is not zero, the
program issues the message, ″Unable to save utilization data.″

UNIX STDIN Syntax
setuserdata -sasUserDataSize -dasUserDataString

UNIX STDIN Flags

-sasUserDataSize
Indicates the size of the user data. In the UNIX STDIN format, this is string
data.

-dasUserDataString
Is the user data.

Example: Dynamically Saving Individual User Data
#! /usr/bin/ksh
echo ’setuserdata -s43 -dstart=1996-04-04-16.26.56611543 user=429872
setvideoname -atopgun_english’ | ISCAIUXV

In this example, #! usr/bin/ksh initiates the UNIX shell script, and setuserdata
indicates that the following data is the size of the user data, and the data itself.
There are 43 bytes of user data. The user started viewing the video on April 4,
1996, at 16.26.55611543 hours. The user’s account number is 429872. The
setvideoname command is required for the setuserdata command to be
meaningful. The vertical bar (|) directs the entire string to the ISCAIUXV
Line-Mode Interface program, which converts the string to the input format
required for the asVideoSetUserData and asVideoSetVideoName API functions.

Chapter 3. Application Server Interface Layer Application Programming Interfaces 39

asVideoSetVideoName
Purpose

Specify the name of the video requested.

Description

This ASIL API function call enables you to specify the name of the video to be
played. Within a given video setup, or playlist, you can specify only one video to
be played.

C Syntax
asRc asVideoSetVideoName (

asVideoReqHdl,
asAssetName,
asVideoPosition,
asPlaymode,
asVideoTitle
);

Parameters

asVideoReqHdl
A video request handle. The TYPEDEF name for this handle is VHNDL. This
handle is allocated and initialized through an asVideoInit call (see
“asVideoInit” on page 31)

asAssetName
A pointer to the unique name of the video to be played. The asset name can
include information in addition to the title, such as quality-of-service and
language data. This parameter is required.

asVideoPosition
A playlist-oriented value reserved for future use. This value must be 1 for this
release.

asPlayMode
An enumerator indicating whether play should begin when the end-user
viewer starts, or whether play should be delayed until the end user presses a
PLAY button. This is an optional parameter.

AUTOPLAY Indicates that play begins automatically. This is the default.

PAUSED Indicates a delay until pressing of the PLAY button.

asVideoTitle
A pointer to the title of the video to be played. The title is for information
purposes, and is sent in the metadata file for display to the end user.

Example
.
.
.

#include <asVideo.h>
.
.
.

main(){
.
.
.

40 Programmer’s Reference

VHNDL localHndl; /* returned handle */
char localVideoTitle[] = "TOP GUN"; /* video title */
PLAYMODE localPlayMode; /* AUTOPLAY or PAUSED */
char localAssetName[] = "topgun_english";/* video asset name */
ulong_t localPos /* play list */
asRc localRc; /* return code */
localPlayMode = AUTOPLAY; /*AUTOPLAY is default */
.
.
/* get handle for subsequent call invocations */
/* this call must immediately precede the asVideoSetServer call */
localRc = asVideoInit(&localHndl, AI_CURRENT_VERSION);
if (localRc != 0)
{

exitMsg(localRc,"Unable to initialize video interface");
}
.
.
.
/* set the name of the video to be played */
localRc = asVideoSetVideoName(localHndl,localAssetName,localPos,

localPlayMode,localVideoTitle
);

if (localRc != 0)
{

exitMsg(localRc,"Unable to find video requested");
}
.
.
.

}

In this example, VHNDL is the Video Request Handle TYPEDEF; localHndl is the
local variable. localVideoTitle is a character array providing informational
identification of the video for the end user. localVideoTitle is defined in this example
as TOP GUN. PLAYMODE is the video playing mode TYPEDEF; this can be either
AUTOPLAY or PAUSED. localPlayMode is the local variable. localAssetName is a character
array that is the unique name assigned to each video, and can contain data in
addition to the title. In this case, localAssetName is defined as topgun_english.
localPos

After executing asVideoInit to get the video request handle, and executing other
functions like asVideoSetServer, the sample program executes
asVideoSetVideoName to identify the particular video desired. localHndl is the
video request handle, localAssetName is the asset name (in this case,
topgun_english), localPos is the playlist-oriented variable set to 1, localPlayMode is
the default (AUTOPLAY), and localVideoTitle is the title as seen by the end user (in
this case, TOP GUN

). If the return code (localRC) is not zero, the program issues the message, ″Unable
to find video requested.″

UNIX STDIN Syntax (AIX only)
setvideoname -aasAssetName {-p1} {-m AUTOPLAY | PAUSED} [-nasVideoTitle]

UNIX STDIN Flags

-aasAssetName
Indicates the unique asset name of the video. The asset name can include
information in addition to the title, such as quality-of-service and language
data.

Chapter 3. Application Server Interface Layer Application Programming Interfaces 41

-p1
Indicates the playlist information. The character must be a 1 for this release.

-m Indicates the play mode. This is an optional flag.

AUTOPLAY A character string indicating that playing of the video should
start automatically when the viewer starts. This option is the
default.

PAUSED A character string indicating that playing of the video should
be paused until the end user presses the PLAY button.

-nasVideoTitle
Indicates the video title. The title is for information purposes, and is sent in the
metadata file for display to the end user. If this parameter is omitted, the title
is set as the value defined for asAssetName. This is an optional parameter.

Example: Dynamically Specifying the Video Name (AIX only)
#! /usr/bin/ksh
echo ’setvideoname -atopgun_english -p1 -mAUTOPLAY -nTOP GUN’ | ISCAIUXV

In this example, #! usr/bin/ksh initiates the UNIX shell script, and setvideoname
indicates that the following data contains specifics on the video requested. The -a
flag indicates that the immediately-following data is the unique asset name of the
video (topgun_english). The -p flag indicates that the following data contains
playlist information. This data must be a 1 for this release. The -m flag indicates
that the immediately-following data is the playmode (in this case, AUTOPLAY,
signifying that playing should begin as soon as the end user’s viewer becomes
active. The -n < flag indicates that the immediately-following data is the video title
that the end user will view (TOP GUN, in this example). The vertical bar (|)
directs the character string to the ISCAIUXV Line-Mode Interface program, which
converts the string to the input format required for the asVideoSetVideoName API
function.

asVideoSetParms
Purpose

Set parameters that affect playing of the video.

Description

This ASIL API function allows setting of parameters using a single ASIL API call.
The parameters that can be set using this API are:
v Start and stop video positions
v Client and server port ranges
v Stream Mode
v Player type
v MIME type

This call cannot be invoked in the UNIX STDIN format.

C Syntax
asVideoSetParms (

asVideoReqHdl,
asVideoParms,
);

42 Programmer’s Reference

Parameters

asVideoReqHdl
A video request handle. The TYPEDEF name for this handle is VHNDL. This
handle is allocated and initialized through an asVideoInit call.

asVideoParms
A pointer to the structure that contains various fields that can be set and
passed to the application server. The structure is defined in asVideo.h.

Example
.
.
.

#include asVideo.h>
.
.
.

main() {
.
.
.
asVideoParms_t localVideoParms /* structure that will hold parameters*/
VHNDL localHndl /* returned handle */
asRc localRc /* return code */
char localMimeType[] = "video/x-ibm-ivsplugin"; /* Mime type to launch plugin */
uchar start_hours = 0; /* start video at this position in hours */
uchar start_minutes = 10; /* start video at this position in minutes */
uchar start_seconds = 0; /* start video at this position in seconds */
uchar start_frames = 0; /* reserved for future */
uchar stop_hours = 0; /* stop video at this position in hours */
uchar stop_minutes = 20; /* stop video at this position in minutes */
uchar stop_seconds = 30; /* stop video at this position in seconds */
uchar stop_frames = 0; /* reserved for future */
.
.
.
/* get handle for subsequent call invocations */
localRC = asVideoInit(&localHndl, AI_CURRENT_VERSION);
if (localRc != 0)
{
exitMsg(localRc,"Unable to initialize video interface.");
}
.
.
.
memset ((void *)&localVideoParms,’\0’,sizeof(asVideoParms_t)); /* init as binary zeroes */

localVideoParms.serverPorts.low_port = 9500; /* Lower limit port number */

localVideoParms.serverPorts.high_port = 9600; /* Upper limit of port number */

localVideoParms.startPos.hours = start_hours; /* Starting position in hours */
localVideoParms.startPos.minutes = start_minutes /* Starting position in minutes */
localVideoParms.startPos.seconds = start_seconds; /* Starting position in seconds */
localVideoParms.startPos.frames = start_frames; /* Reserved */
localVideoParms.stopPos.hours = stop_hours; /* Stopping position in hours */
localVideoParms.stopPos.minutes = stop_minutes; /* Stopping position in minutes */
localVideoParms.stopPos.seconds = stop_seconds; /* Stopping position in seconds */
localVideoParms.stopPos.frames = stop_frames; /* Reserved */
localVideoParms.streamMode = HTTP; /* Set up to stream video via HTTP */
localVideoParms.mimeType = localMimeType; /* Set up to stream with MIME type */
.
.
.
/* set video related parameters */
localRC = asVideoSetParms(localHndl, &localVideoParms);
if (localRc != 0)
{

exitMsg(localRc,"Unable to set video parameters");
}
.
.

Chapter 3. Application Server Interface Layer Application Programming Interfaces 43

.
/* setup to actually play via HTTP protocol */
localRc = asVideoStreamHTTP(localHndl);
if (localRc != 0)
{

exitMsg(localRc,"Unable to setup to stream via HTTP");
}
.
.
.
}

In this example, the localVideoParms structure is declared. Other variables to set the
start and stop position in units of hours, minutes and seconds and frames
(reserved) are declared and initialized. localMimeType is declared and set to the
MIME type to be used in context with HTTP streaming for VideoCharger client’s
plug-in. The localVideoParms structure should be initialized to binary zeroes. Then,
all the values including server port range are copied into localVideoParms.
asVideoSetParms is then called so the application server is aware of all
parameters. For completeness sake of the example, asVideoStreamHTTP is called
to set up for streaming via HTTP.

If you don’t want to use a particular parameter, you can omit setting it. For
example, if you don’t want to stream via HTTP, omit setting
localVideoParms.streamMode as well as localVideoParms.mimeType. Streaming via
HTTP is described in ″Using iscpfsel to stream via HTTP protocol″.

One value that is not shown in example above is playerType. When not streaming
via HTTP, you could have set up localVideoParms.playerType to PLUGIN, allowing
the VideoCharger client’s plug-in to be invoked when server sends the
Session/Stream metadata file.

asVideoSetRestriction
Purpose

Specify use restrictions for a particular video.

Description

This ASIL API function call enables you to specify client use restrictions associated
with the playing of a particular video. An example is inhibiting the use of forward
and backward seeks. Common implementation of this function is for reduction of
network traffic, or to inhibit a function that a client application can support, but is
not supported in the server. Other uses could include not rewinding or pausing
during an exam or test, or not fast-forwarding during a safety video.

C Syntax
asRc asVideoSetRestriction (

asVideoReqHdl,
asAssetName,
asRestrictionType
);

Parameters

asAssetName
A pointer to the unique asset name of the video.

asRestrictionType
An enumerator indicating the type(s) of restriction. The TYPEDEF name is

44 Programmer’s Reference

RESTRICTION. These enumerated values are those you can specify to inhibit
the end user for using these functions for the specified video.

Possible values are:

SEEKF No seeking forward.

SEEKB No seeking backward.

PLAYF No playing from a certain address.

PLAYT No playing to a certain address.

PLAYR No specifying a play rate.

STOP No specifying a stop.

PAUSE No specifying a pause.

RESUME No specifying resume playing.

VOLUME No changing the audio volume.

BALANCE No changing the bass/treble balance.

TREBLE No changing the TREBLE level.

BASS No changing the BASS level.

STREAM No jumping past the current stream.

Example
.

#include <asVideo.h>
.
main(){

.
VHNDL localHndl; /* returned handle */
char localAssetName[]= "topgun_english"; /* video asset name */
ulong_t localPos = 1; /* playlist */
PLAYMODE localPlayMode; /* autoplay or paused */
char localVideoTitle[]="TOP GUN"; /* video title */
RESTRICTION localRlist[]={SEEKF,SEEKB,STREAM}; /* restrictions */
asRc localRc; /* return code */
int count /* count for loop */
.
.
.
/* get handle for subsequent call invocations */
/* this call must immediately precede the asVideoSetServer call */
localRc = asVideoInit(&localHndl, AI_CURRENT_VERSION);
if (localRc != 0)
{

exitMsg(localRc,"Unable to initialize video interface");
}
.
.
.
/* set the name of the video to be played */
/* note that this function MUST be executed */
/* before asVideoSetRestriction */
localRc = asVideoSetVideoName(localHndl, localAssetName, localPos,

localPlayMode, localVideoTitle);

if (localRc != 0)
{

exitMsg(localRc, "Unable to find video requested");
}

Chapter 3. Application Server Interface Layer Application Programming Interfaces 45

/* set any restrictions for the video to be played */
/* need one call for each restriction */

for (count=0; count<3; count++)
{
localRc = asVideoSetRestriction (localHndl,localAssetName,

localRlist[count]);
if (localRc != 0)

{
exitMsg(localRc,"Unable to set restrictions");
}

}
.
.
.

}

In this example, the programmer wishes to inhibit forward seeks, backward seeks,
and jumping past the current stream during the playing of the video TOP GUN.
VHNDL is the video request handle TYPEDEF; localHndl is the local variable.
localAssetName is the unique name for the video, defined in this example as
topgun_english. localPos is the playlist indicator, lodalPlayMode is the video playing
mode, and localVideoTitle is the name that the user sees (in this case, TOP GUN).
RESTRICTION defines restrictions (SEEKF, SEEKB, and STREAM, respectively).
count is an integer used in the loop to set the restrictions.

After executing asVideoInit to get the video request handle, and other desired
functions, the program executes asVideoSetVideoName. This function must be
executed prior to asVideoSetRestriction.

asVideoSetRestriction must be executed once for each restriction, in this case a
total of three times. The for statement sets up the loop. localHndl is the video
request handle, localAssetName is the video asset name (in this case,
topgun_english), and localRlist[count] points to a restriction each time through the
loop. If the return code (localRC) is not zero, the program issues the message,
″Unable to set restrictions.″

UNIX STDIN Syntax (AIX only)
setrestriction -aasAssetName [-r SEEKF | SEEKB | PLAYF | PLAYT | PLAYR |
STOP | PAUSE | RESUME | VOLUME | BALANCE | TREBLE | BASS | STREAM]

UNIX STDIN Flags

-aasAssetName
Indicates the unique asset name of the video to which the restrictions apply.

-r Indicates a restriction for this video.

Restriction values include:

SEEKF No seeking forward

SEEKB No seeking backward

PLAYF No playing from a certain address

PLAYT No playing to a certain address

PLAYR No specifying a play rate

STOP No specifying a stop

PAUSE No specifying a pause

46 Programmer’s Reference

RESUME No specifying resume playing

VOLUME No changing the audio volume

BALANCE No changing the bass/treble balance

TREBLE No changing the TREBLE level

BASS No changing the BASS level

STREAM No jumping past the current stream

Example: Dynamically Setting Restrictions
#! /usr/bin/ksh
echo ’setvideoname -atopgun_english
setrestriction -atopgun_english -rSEEKF
setrestriction -atopgun_english -rSEEKB
setrestriction -atopgun_english -rSTREAM’ | ISCAIUXV

In this example, #! usr/bin/ksh initiates the UNIX shell script. setvideoname is
included in this sequence because it must precede the setrestriction function.
setrestriction indicates that the following data contains the title of the video and a
restriction to be imposed. The -a flag indicates that the immediately-following data
is the asset name of the video (topgun_english). The -r flag indicates that the
immediately-following data is a specific restriction to be imposed. The code in this
example inhibits seek forwards (SEEKF), seek backwards (SEEKB), and jumps past
the current stream (STREAM). Because there are three restrictions in this example,
there must be three setrestriction sequences. The vertical bar (|) directs the
character string to the ISCAIUXV Line-Mode Interface program, which converts
the string to the input format required for the asVideoSetRestriction API function.

asVideoBuildResponse
Purpose

Build the metadata file.

Description

This ASIL API function call builds an HTML file containing key session and video
stream data, and sends the file to the client’s Web browser. The browser uses the
Session/Stream metadata file to start the Viewer.

BuildResponse creates the Session/Stream metadata file automatically. The file
includes session data such as:
v Passticket

For AIX: Verifies that the end user has access to the VideoCharger Server.
For Windows: Reserved.

v Type of protocol being used for transmission of the video
v ID of the system on which the application server resides
v Port number used
v Total allowable session access time
v Amount of time the Viewer can be paused or in a stopped state before the

session is dropped.

The file also includes stream data such as:
v Title of the video to be played

Chapter 3. Application Server Interface Layer Application Programming Interfaces 47

v Playing time
v Type of media used
v Transmission bit rate to be used
v Automatic or command-required playing when the Viewer starts (AUTOPLAY

versus PAUSED).
v Restrictions on playing the video

This function call is required only if C language is used. The UNIX STDIN format
causes issuing of an implicit BuildResponse upon reaching end-of-input.

C Syntax
asRc asVideoBuildResponse (

asVideoReqHdl
);

Parameters

This call is not required for the UNIX STDIN format.

asVideoReqHdl
A video request handle. The TYPEDEF name for this handle is VHNDL. This
handle is allocated and initialized through an asVideoInit call.

Example
.

#include <asVideo.h>
.
.
.

main(){
.
.
.
VHNDL localHndl; /* returned handle */
.
.
.
asRc localRc /* return code */
.
.
.
/* get handle for subsequent call invocations */
/* this call must immediately precede the asVideoSetServer call */
localRc = asVideoInit(&localHndl, AI_CURRENT_VERSION);
if (localRc != 0)
{

exitMsg(localRc,"Unable to initialize video interface");
}
.
.
.
/* build the Session/Stream Metadata file and send it to the */
/* client Web browser */
localRc = asVideoBuildResponse(localHndl);
if (localRc != 0)
{

exitMsg(localRc, "Unable to build Session/Stream Metadata file");
}
.
.
.

}

48 Programmer’s Reference

In this example, VHNDL is the Video Request Handle TYPEDEF; localHndl is the
local variable. asVideoInit requests initialization of a video handle. &localHndl is
the address of the storage location for the handle.

asVideoBuildResponse causes building of the Session/Stream metadata file, using
the localHndl Video Request Handle. The program then sends the metadata file to
the HTML Web browser.

If the return code (localRc) is not zero, the program issues the message, ″Unable to
build Session/Stream Metadata file.″

Cumulative Example - C Language Calls for Video Selection
.
.
.

#include <asVideo.h>
.
.
.

main(){
.
.
.
VHNDL localHndl; /* returned handle */
char localServer[] = "TESTSERVER"; /* server name */
char localVideoTitle[] = "TOP GUN"; /* video to play */
char localAssetName[] = "topgun_english"; /* video asset name*/
ulong_t localPos = 1; /* play list */
RESTRICTION localRlist[]={SEEKF,SEEKB,STREAM}; /* restrictions */
asRc localRC; /* return code */
VIDEO_SERVER_FLAG localServerFlag; /* shows server type */
int count /* count for loop */

localServerFlag = BOTH_SERVR; /*sets default */
.
.
.
/* get handle for subsequent call invocations */
/* this call must immediately precede the asVideoSetServer call */
localRc = asVideoInit(&localHndl, AI_CURRENT_VERSION);
if (localRc != 0)
{

exitMsg(localRc,"Unable to initialize video interface");
}

/* override default server by specifying a name */
localRC = asVideoSetServer(localHndl,localServer,localServerFlag);
if (localRc != 0)
{

exitMsg(localRc,"Unable to define my test server");

/* set the name of the video to be played */
/* note that this function MUST be executed */
/* before asVideoSetRestriction */
localRc = asVideoSetVideoName(localHndl,localAssetName,localPos,

AUTOPLAY,localVideoTitle);
if (localRc != 0)
{

exitMsg(localRc, "Unable to find video requested");
}

/* set any restrictions for the video to be played */
/* need one call for each restriction */

Chapter 3. Application Server Interface Layer Application Programming Interfaces 49

for (count=0; count<3; count++)
{
localRc = asVideoSetRestriction (localHndl,localAssetName,

localRlist[count]);
if (localRc != 0)

{
exitMsg(localRc,"Unable to set restrictions");
}

}

/* build the metadata file and output it so the end user viewer is invoked */
localRc = asVideoBuildResponse(localHndl);
if (localRc != 0)
{

exitMsg(localRc,"Unable to build video response");

}

/* clean up storage related to video calls */
localRc = asVideoExit(localHndl);
if (localRc != 0)
{

exitMsg(localRc,"Unable to exit cleanly");
}

}

Cumulative Example - UNIX Standard Input for Video Selection (AIX only)
#! /usr/bin/ksh
echo ’setserver -nTESTSERVER
setvideoname -atopgun_english -p1 -mAUTOPLAY nTOP GUN
setrestriction -atopgun_english -rSEEKF
setrestriction -atopgun_english -rSEEKB
setrestriction -atopgun_english -rSTREAM’ | ISCAIUXV

asVideoStreamHTTP
Purpose

Set up the server for streaming via HTTP protocol.

Description

This ASIL API function allows sets up the server to start streaming video using
HTTP protocol. This routine is to be used in lieu of asVideoBuildResponse. When
used, no Session/Stream metadata file is built or launched. Once this API is run, it
sets up the data pump so the requested video can be streamed, and sends a HTTP
redirect response to the browser containing data pump IP address and port
number, where it is ready to stream out the video. The browser will send the
redirected response to the data pump, which will start streaming the video. Section
″Using iscpfsel to stream video via HTTP protocol″ further describes how HTTP
streaming can be used.

This call cannot be invoked in the UNIX STDIN format.

C Syntax
asVideoStreamHTTP (

asVideoReqHdl,
);

Parameters

50 Programmer’s Reference

asVideoReqHdl
A video request handle. The TYPEDEF name for this handle is VHNDL. This
handle is allocated and initialized through an asVideoInit call.

Example

The example given in ASIL API asVideoSetParms, describes how
asVideoStreamHTTP can be used to stream via HTTP.

asProcessUserData (AIX only)
Purpose

Interface to a user-supplied routine.

Description

This function is a user-provided routine for processing session information and
user data saved by the SetUserData function (see “asVideoSetUserData (AIX
only)” on page 38). You can use this interface for any pre- or post-session
processing functions, such as billing or video-use tracking.

The VideoCharger Server invokes ProcessUserData as a Distributed Computing
Environment (DCE) remote procedure call. This allows the user-provided routine
to exist on a separate system and under any operating system that supports DCE.
Having the ProcessUserData routine on a separate system has the advantage of
uncorrupted tracking should an error occur on a VideoCharger Server system. The
VideoCharger Server does provide a sample routine and associated files to show
how this interface could be implemented.

If you enable the ProcessUserData interface, the routine is invoked at both the
start of the end user session and the completion of the session. Setting the
asSessionFlag to 0 (invoke at start of session only) or 1-3 (invoke at close of
session only) enables you to limit the invocation to the start or the finish of the
session. Calling the routine at the start of the session is advantageous for
customers who wish to invoke a billing function before video viewing begins, or
who wish to track end user selections versus complete viewing of selections.
Calling the routine at the end of a session is advantageous for customers who wish
to process billing on a viewing time basis, or who wish want to track total session
and viewing time. The routine receives log data from the session along with user
data passed to the application server from the SetUserData ASIL API function (see
“asVideoSetUserData (AIX only)” on page 38).

Note that the parameters described below are passed to the user-supplied routine
from the VideoCharger Server.

C Syntax
asRc asProcessUserData (

asSessionFlag,
asSessionTime,
asUserDataSize,
asUserDataValue,
asVideoCount,
asVideoList
);

Parameters

Chapter 3. Application Server Interface Layer Application Programming Interfaces 51

asSessionFlag
An enumerator indicating whether the ProcessUserData routine was invoked
at session start (value 0) or at session close (values 1 - 3). The session close
values are:
1. Normal Close
2. Abnormal Close
3. Close due to timeout.

asSessionTime
An unsigned long integer indicating the time, in seconds, that the session was
active. If asSessionFlag is 0 (indicating invocation of the ProcessUserData
routine at session start), asSessionTime is set to 0.

asUserDataSize
An unsigned long integer indicating the size of the user-provided data value,
as provided in the SetUserData ASIL API call. If SetUserData was not issued,
the value of asUserDataSize is 0.

asUserDataValue
A pointer to the user-specified data value of asUserDataSize, as set by the
SetUserData ASIL API call. If SetUserData was not issued, the value of
asUserDataValue is NULL.

asVideoCount
A long integer indicating the number of videos in asVideoList (this value is
always 1 for Release 1).

asVideoList
A pointer to an array of structures for each video in the playlist. This array
contains the following fields:

asVideoName
The video title.

asAssetName
The unique name of the video.

asVideoPlayTime
The actual video playing time in seconds. If asSessionFlag is 0
(indicating that the ProcessUserData is invoked at session start),
asVideoPlayTime is 0.

Example

For an example of using ProcessUserData, refer to the sample billing code shipped
with the VideoCharger Server (iscblmgr.c). Samples are installed in directory
/usr/samples/avs/billing.

52 Programmer’s Reference

Chapter 4. Control Server Application Programming Interfaces

This chapter describes the external application programming interfaces (APIs)
provided by the control server (also known as the controller) of the VideoCharger
Server product. This API is designed to provide:
v Digital media streaming with VCR control functions, including PLAY, PAUSE,

JUMP.
v Real-time and best-effort content loading to the server from remote systems,

including:
– Another VideoCharger product (stage).
– Remote file via FTP protocol (load).
– Analog-to-digital video encoding application.

v Static and dynamic connections to support multiple concurrent media streams
access on multiple network types. The networks and devices supported include:
– Internet using TCP or RTP over UDP protocols.
– Extendible API to support new networks and devices in the future. In

addition, network-specific options can be accessed in a network transparent
manner.

v Support for multiple concurrent stream connections for play operations over a
single session with the server.

v Client library to enable remote access to one or more server products
concurrently from AIX Version 5.1 based multi-threaded applications.

For more information about VideoCharger Server’s software components, see the
Administrator’s Guide and Reference.

For AIX: You can access C language source code for control server APIs in
avs.cs.client.sample under /usr/samples/avs/msapi.

VideoCharger Application Development Environment
For AIX: The VideoCharger application development environment requires an
RS/6000 system with AIX Version 5.1 or higher, and the IBM VisualAge for C++
compiler. To add the VideoCharger application development environment to this
system, use the VideoCharger installation media to install the avs.cs.client.adt
fileset.

For Windows: The VideoCharger application development environment requires:
v Windows NT 4.0 with Service Pack 5 and higher, or Windows 2000
v IBM VisualAge for C++ for Windows or Microsoft Visual C++ compiler

To add the VideoCharger application development environment to this system, use
the VideoCharger installation media to install the Software Development Toolkit.

The avs.cs.client.adt fileset (AIX) and the Software Development Toolkit
(Windows) include the header files and shared libraries that are required by your
application’s use of the VideoCharger API.

© Copyright IBM Corp. 1997, 2003 53

You must install the application development environment on the system before
you install your application. On AIX, you must also install the avs.cs.client.rte
fileset before installing your application to ensure that the correct shared library is
installed on the system.

API Invocation
For AIX: The control server API is defined using header files located in the
/usr/include/avs directory.

For Windows: The control server API is contained in the Software Development
Toolkit located in the \sdk directory.

To access the control server APIs, include the following header files with your
program:

ms.h Base definitions.

msnet.h
Network data structure definitions.

msapi.h
Data structure definitions and function prototypes.

mserror.h
Function return codes.

Restriction: These header files contain more API calls than are actually supported
by VideoCharger. The only API calls supported by VideoCharger are those
described in this book.

For AIX: Compile your programs using either the xlc_r4 or xlC_r4 compilers from
IBM C Set ++® version 3.6.4 or later. Link your programs to the VideoCharger
client shared library, libms.a, located in the /usr/lib directory.

For Windows: Compile your programs using either the IBM VisualAge C++ or
Microsoft Visual C++ compiler. Link your programs to the VideoCharger client
shared library, libms.lib, located in the \lib subdirectory of the directory where
VideoCharger is installed.

Important: Specify the following compile-time pre-processor directives (/d) in the
make file:
v _WIN32_WINNT=0x0400

v WINVER=0x0400

v MS_ENABLE_INET

To do this, append the following text to your pre-processor definitions:

/D _WIN32_WINNT=0x400 /D WINVER=0x400 /D "MS_ENABLE_INET"

The client library provides application interfaces for:
v Session management
v Stream connection management
v Stream operations
v Content management

54 Programmer’s Reference

The client library routes requests to the control server, receives replies, and returns
messages to the application. The communication of messages between the client
libraries and the control server is transparent to the application. Therefore, the
VideoCharger API presents a single-system programming model to the
applications. Figure 6 describes the API calling sequences.

Notes about the Control Server API Programming Model
The control server APIs use Distributed Computing Environment (DCE) Remote
Procedure Calls (RPC) as the underlying communication mechanism to pass
requests and responses between applications and the control server Applications
that need to set up signal handlers should do so after calling msOpenSession and
msRegisterCallBack. If signal handling is set before calling these APIs, signals will
be intercepted by the DCE and will not be properly conveyed to the application.

The control server API does not use any other DCE services, such as DCE Security.
Host name binding is currently used to locate the VideoCharger.

Figure 6. API calling sequences

Chapter 4. Control Server Application Programming Interfaces 55

The control server API calls are processed using the calling application’s thread.
Additional threads are created by the control server API to handle asynchronous
control server API events. Hence, applications that use the control server API are
multi-threaded by default and the following notes apply:
v All control server API calls are thread safe and can be accessed from multiple

application threads.
v Access to common application resources might need to be synchronized between

the main application thread and the application event handling thread.
v When there is a choice, always use thread-safe operating system subroutines.
v On AIX, when executing the posix fork subroutine, the child process has only

one thread; the one that called the fork subroutine.

Return Code Definition
When the VideoCharger detects an error during an API request, the return code
indicates the type of error. The VideoCharger API return code definitions (msRC_t)
are included in the mserror.h file in the /usr/include/avs/ (AIX) and /sdk
(Windows) directory. The four-byte error code consists of a category prefix in the
high-order two bytes and a specific error code in the low-order two bytes.

The return codes are divided into categories indicating the specific error types. AIX
system errors detected by the VideoCharger at the control server or the data pump
are defined in /usr/include/errno.h.

Trace Services
For AIX: The control server API trace can be turned on and off using the AIX trace
facility to assist in application program debugging. Script commands in the
/usr/lpp/avs/ras directory can be used to start, end, and generate trace reports for
the control server API trace. The following example shows how to get an control
server API trace:
1. To start default external control server API trace, enter: csstrc
2. Run the control server API application.
3. To end tracing, enter: csetrc
4. To generate an API trace report and store in /tmp/trace.txt, enter: csgtrc

For Windows: The VideoCharger trace can be turned on and off using the
vsconfig –t 4 command (trace output goes to %LANTV_DIR%\log\cs.log) or the
VideoCharger Configuration and Administration Web interface. Trace output is
written to the Windows event log. To access the event log:
1. Click Start on the Windows taskbar.
2. Select Programs —8 Administrative Tools —8 Event Viewer

3. From the Log menu, select the log that you want to display. By default, fatal
errors from VideoCharger are written to the application event log.

Session Management
The application uses session management calls to establish a communication
session with the VideoCharger in order to access its services. The first call to the
MS client library, msInit, initializes the local data area of the application process.
This should only be called once to initialize the environment. After initialization,
the application process can issue the msOpenSession call to establish a session.

56 Programmer’s Reference

An application can optionally register a call-back routine when it wants to be
notified of asynchronous events using the msRegisterCallBack call. The
msUnregisterCallBack call is used to remove the registration.

The application process issues the msCloseSession call to terminate the session.

The msGetSessionAttr and msSetSessionAttr calls are used to get and set
session-related parameters.

Session Management States
The session and resource management states include:

UN_INIT
The control server API client library is not initialized.

INIT The control server API client library is initialized and ready to
communicate with the VideoCharger.

SESSION
The application has established a session with the VideoCharger and the
VideoCharger is ready to accept requests from the application.

All other session management calls are valid when in SESSION state.

Session Takeover (AIX only)
Session takeover is a facility that allows a control server session to be transferred
from one client to another without losing the existing resources. This function
addresses the high availability requirement for application servers.

Characteristics:
v A session can be taken over after an application server unexpectedly terminates

(crashed or exited) without having closed the session.
v A session can be handed off from one process to another in a cooperative

manner (i.e. the original process does not have to terminate before transferring
the session).

v A session can be moved from one process to another. The receiving process does
not have to be in the same machine.

v An application can indicate whether the session can be taken over or not.
v An application that has taken over a session can enable that session to be taken

over again.
v Existing API calls are unchanged.

When the application that owns a session wishes to enable that session for
takeover, it uses the msEnableTakeover API call. Upon return the application
server has a structure filled in that must be passed to the application server that
will take over the session. The method for passing this information is undefined
leaving it up to the application to pass this information in whatever way is
suitable. For example, the two application servers could use a TCP socket to pass
the takeover structure. By keeping the socket open the new application server can
determine if the original application terminated cleanly or not.

The new application server is responsible for determining when a session is to be
taken over. If it is a cooperative session takeover then the two application servers

Chapter 4. Control Server Application Programming Interfaces 57

would communicate when to start the takeover. If the original process terminates
then the new application server is responsible for determining that the original
process terminated unexpectedly.

The session must be registered for callback before msEnableTakeover is called.

When a process terminates that has session takeover enabled, the control server
queues all callbacks until another process completes the session takeover. For
cooperative session takeover, callbacks will be queued from the msTakeover call
until the takeover is completed.

Once the takeover of a session has started, most of the API calls will not be
allowed until session takeover is complete. Calls issued during this transition will
receive a new return code, MS_TAKEOVER_PENDING.

Takeover Flow - End of the Original Process

The following shows an example of the flows for session takeover when the
owning process terminates. See the respective APIs for the parameter definitions.
Original application server New application server

1. msInit() msInit()
msOpenSession(...)
msAuthenticate(...)
msRegisterCallBack(...)

2. msEnableTakeover(...)
3. [Pass data returned from the enable

to the New application server]
4. [Ports and streams are opened

PlayLists are running ...]
5. [Sometime later the process ends]
6. [Termination of the Original

application server is detected.]
7. msTakeover(...)
8. sesshandles = malloc(....)
9. msGetSessionHandles(...)
10. msTakeoverComplete(...)

1. The original application server issues the standard calls.
2. The original application server uses msEnableTakeover to allow another

process to be able to take over the session.
3. The output of the msEnableTakeover returns a structure that must be passed

to New application server.
4. The original application server continues playing streams, and so forth.
5. Later the original application server dies. Because the session has been

enabled for take over, the control server will now queue all callbacks. The
amount of time that the new application server has to complete the callback
was specified in msEnableTakeover . If not completed in that amount of time
the session will time out and be terminated.

6. The new application server detects the death of the original application server
and begins the takeover procedure.

7. The msTakeover notifies the control server that the session is being taken
over. One of the parameters has the structure that was passed from the
original application server. The returned structure indicates the number of
handles that are active in the session.

8. Space is allocated to receive the list of handles.

58 Programmer’s Reference

9. The list of handles active in that session is returned to the new application
server. The new application server uses these handle to build its own
information about the session. These handles can be used for get status and
get attribute calls. They can not be used for anything else until the takeover
procedure is completed.

10. The msTakeoverComplete indicates to the control server that the session has
completed the takeover. All queued and new callbacks will now be returned
to the New application server.

Takeover Flow - Cooperative Transfer

The following shows an example of the flows for a cooperative session transfer.
The flows are the same except the Original application server is still running so it
will get callbacks when the takeover is started and completed. See the respective
APIs for the parameter definitions.
Original application server New application server
msInit() msInit()
msOpenSession(...)
msAuthenticate(...)
msRegisterCallBack(...)
msEnableTakeover(...)
[Pass data returned from the enable

to the New application server]
msTakeover(...)

1. [Callback indicates that the
session takeover has started.]

sesshandles = malloc(....)
msGetSessionHandles(...)
msTakeoverComplete(...)

2. [Callback indicates that the
session takeover has completed.]

1. The original application server receives a callback to indicate that the session
takeover has started.

2. The original application server receives a callback to indicate that the session
takeover has completed.

Notes about the Takeover Programming Model

When taking over operations that involve msRead or msSeek , the new
application server might need to re-establish the current position within the asset
before continuing operations. To do this, call msSeek using the MS_SEEK_SET
option and the offset within the asset at which to set the current position of the
asset.

The current position problem described above does not apply to msWrite
operations because msWrite can only write to the end of an asset.

Authenticating session functions with the Secure msAPI
plug-in

Basically, the Secure msAPI plug-in enables sensitive msAPI functions if and only
if the caller has correctly authenticated itself. The caller can either be a
VideoCharger application (for example, the RTSP daemon) or a third-party
application. A VideoCharger application must be able to automatically and securely
authenticates itself, while a third-party application must go through a pre-defined
authentication procedure.

The Secure plug-in is a dynamically loadable DLL (msallow.dll for Windows and
/usr/lib/msallow.so for AIX). If the DLL is present inside the system (preferably

Chapter 4. Control Server Application Programming Interfaces 59

in a restricted access directory), a new instance of the plug-in is created within
msOpenSession. This instance is held inside the Session Manager until it is
automatically deleted by msCloseSession. Also, msAllow::init must be called in
order to store the corresponding session handle and caller IP address.

The Secure plug-in interface involves a series of virtual methods (for example,
INmsOpenAsset and OUTmsOpenAsset). The header file is msallow.h (included in
VideoCharger SDK), and contains definition for the base class. You can write
customized plug-ins by extending this base class, overwriting some of its methods,
and defining a macro to get an entry point for the new plug-in. Note that the
corresponding DLL must be stored in a directory with restricted access.

The authentication flow is as follows:
ErrOpen=msOpenSession(..., &SessionH) // an instance of plug-in is instantiated and initialized
ErrAuth=msAuthenticate(SessionH, credentials, authentication)
ErrAPI=msXXX(SessionH, ..)
ErrClose=msCloseSession(
ErrClose=msCloseSession(&SessionH) // the plug-in instance is deleted.

Sensitive msAPI functions must first check the state of the corresponding plug-in
(msAllow::IsLocked) before going any further in the code. If IsLocked returns
false, the function returns an MS_AUTHENTICATE error.

You can authenticate in three ways:

VideoCharger application
It is assumed that every VideoCharger application has a key (for example,
RTSPd_key) that the control server knows. Assume the session handle
(SessionH) returned by msOpenSession is a random number. It can
therefore constitute a valid challenge for a challenge-and-response
identification protocol. That is, the VideoCharger application creates a
challenge as:
Challenge=IP_Address + ":" + SessionH.

The VideoCharger application then encrypts the challenge with its key to
obtain the authentication parameter: authentication=eK{Challenge}. The
credentials parameter is the keyword by which the control server
recognizes the VideoCharger in order to retrieve the corresponding key.

msAuthenticate completes the following tasks:
1. Decrypts the challenge using the key corresponding to the keyword

passed as credentials.
2. Validates the session handle by comparing SessionH from the challenge

with the session handle from the plug-in (instantiated and initialized
within msOpenSession).

3. Validates the ClientID by retrieving the IP address from the plug-in,
retrieving the IP address specified in the challenge, and comparing
them both.

4. Passes the parameters to the plug-in (Authenticate method) which may
reject that particular Client IP address (plug-in implementation
specific).

If everything goes right (the caller has correctly authenticated itself and
Authenticate returned XOK), the corresponding instance of the plug-in
changes from ″locked″ to ″unlocked″ (msAllow::Unlock) and
msAuthenticate returns XOK. Otherwise, the function closes the session
and returns an error.

60 Programmer’s Reference

Third-party application
A third-party application might not unlock the plug-in before calling an
msAPI function. If this occurs, an msAPI function could return a new error
code (for example, MS_AUTHENTICATE). The application must capture it,
obtain a username and password (for example, HTTP ’www-authenticate’),
and call msAuthenticate with a third-party credentials (must differ from
system credentials such as RTSPd).

msAuthenticate does not recognize the credentials and therefore simply
passes these parameters to the plug-in. The plug-in might validate the
credentials with a central authorization component, and return an error
code which triggers the unlock of the plug-in (or not).

Plug-in authenticate method
The Authenticate method might validate credentials with a central
authorization component and unlock of the plug-in (or not). Special
consideration is given to VideoCharger applications, whose credentials are
validated by the VideoCharger server before invoking the Authenticate
method. If the VideoCharger application credentials are valid, the
msAuthenticateFlag is set with the ″ms_auth_VideoCharger_APP″ value,
and no credentials are passed to the plug-in. It is the responsibility of the
plug-in to validate that the client (IP-address) has authority to proceed
with future operations.
Typedef enum {
MS_AUTH_VIDEOCHARGERAPP 1 // credentials approved
} msAuthenticateFlags;

Authenticate(msSessionHandle_t sessionH
msAuthenticateFlags authFlags,
char* authentication,
char* credentials); // credentials

For further details, see “msAuthenticate” on page 76.

msInit
Initializes the VideoCharger client library.

msInit must be the first API call the application issues before requesting other ms
calls. The msInit call should only be called once to initialize the environment. The
client library supports multi-threaded applications.

The client library maintains version level information. The server supports back
levels of the client library API.

Syntax
msRC_t msInit (

unsigned long startAddr, // in
long size, // in
msVersionStr_t *version // in
);

Parameters

startAddr
Reserved; must be 0.

size
Reserved; must be 0.

Chapter 4. Control Server Application Programming Interfaces 61

version
The caller should set this parameter to MS_CURRENT_VERSION prior to
calling msInit MS_CURRENT_VERSION is defined as the address of a static,
pre-initialized msVersionStr_t structure).

Return Codes

MS_SUCCESS Successful

MS_NULL_PARM Version parameter is NULL

MS_NO_RESOURCES No more resources available

Example
msRC_t rc;

rc = msInit(0, 0, MS_CURRENT_VERSION);

msOpenSession
Opens a session from an application to the VideoCharger Server.

With a VideoCharger session, the application can make a request to set up
connections to a client system, play media streams, or perform asset management.
Typically, one session to the server per client is used by the application to control
the operation with each client.

The application specifies the server by host name. The host name of the
VideoCharger can be specified in two ways. The serverHostname parameter is the
hostname of the VideoCharger. If the serverHostname parameter is an empty string,
then the MS_HOSTNAME environment variable (if present) identifies the host name of
the VideoCharger. If the server’s host name is not specified (that is, the
serverHostname is an empty string and the MS_HOSTNAME environment variable is not
present), then the application must run on the same machine as the server.

Syntax
msRC_t msOpenSession (

msServerName_t serverHostname, // in
msServerInstance_t serverInstance, // in
msAssetGroup_t assetGroup, // in
msAppSignature_t signature, // in and out
msSessionHandle_t *sessionHandle // out
);

Parameters

serverHostname
The Internet host name of the VideoCharger with which to establish a session.
If serverHostname is an empty string, then the MS_HOSTNAME environment
variable is used.

serverInstance
Reserved; must be set to an empty string.

assetGroup
The null-delimited name of an asset group. Set this parameter to
MS_DEFAULT_ASSET_GROUP to specify the default asset group.

signature
Reserved; must be set to an empty string.

62 Programmer’s Reference

sessionHandle
Context of the session.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_SESS_FULL Client session limit exceeded

MS_BAD_SIGNATURE Invalid application signature

MS_BAD_ASSET_GRP Invalid asset group

MS_BAD_OPTION Invalid session option

MS_BAD_UUID Invalid server instance identifier

MS_FIND_SERVER_ERR Cannot locate the server

MS_BINDING_ERROR Failed to bind to the server

MS_BAD_UUID Invalid Server Instance ID

MS_AUTH_ERROR Authentication failed

msCloseSession
Closes an existing session.

All resources allocated under this session are released. Any outstanding I/O
operations under this session are aborted. All open resources belonging to this
session (assets, ports, and streams) will be closed.

Syntax
msRC_t msCloseSession (

msSessionHandle_t sessionHandle // in
);

Parameters

sessionHandle
Context of the session.

Return Codes

MS_SUCCESS Successful

MS_SYS_INTERR Internal system error

MS_RPC_ERROR RPC system error

MS_BAD_HANDLE Invalid session handle

MS_ALLOW_ERROR Allowance plug-in rejected authentication

msSetSessionAttr (AIX only)
Sets or changes the parameters of the current session.

Chapter 4. Control Server Application Programming Interfaces 63

Session parameters can only be changed when no VideoCharger port, asset or
stream resources have been reserved using the open calls under this session.

Syntax
msRC_t msSetSessionAttr (

msSessionHandle_t sessionHandle, // in
msAssetGroup_t assetGroup, // in
msAppSignature_t signature // in
);

Parameters

sessionHandle
Context of the session.

assetGroup
The new asset group name. An empty string indicates no change to this
parameter.

signature
Reserved; must be set to an empty string.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_ASSET_GRP Invalid asset group

MS_BAD_OPTION Invalid session option

MS_BAD_STATE Invalid state, session parameter cannot be changed.

MS_BAD_HANDLE Invalid session handle

MS_ALLOW_ERROR Allowance plug-in rejected authentication

msGetSessionAttr
Returns current session parameters.

Syntax
msRC_t msGetSessionAttr (

msSessionHandle_t sessionHandle, // in
msAssetGroup_t *assetGroup, // out
msAppSignature_t *signature, // out
msVersion_t *version // out
);

Parameters

sessionHandle
Context of the session.

assetGroup
The asset group name of the session.

signature
Reserved; must be set to NULL.

version
A structure containing the current version numbers of the MS header files used

64 Programmer’s Reference

to compile the MS client library and the MS server. The version major code is
used to determine compatibility of the .h file and client library and server.
VideoCharger maintains backward compatibility with the older version of the
API.
typedef struct _msVersion_t {

long major; // version number
long minor; // release number

} msVersionStr_t;

typedef struct _msVersion_t {
msVersionStr_t client; // client library version number
msVersionStr_t server; // server version number

} msVersion_t

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid session handle

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example
msRC_t rc;
msSessionHandle_t session;
msAssetGroup_t group;
msSessionOptions options;
msVersion_t version;

rc = msInit(0, 0, MS_CURRENT_VERSION);
rc = msOpenSession(MS_DEFAULT_SERVER, MS_DEFAULT_ASSET_GROUP, 0, 0, &session
);

rc = msGetSessionAttr(session, &group, NULL, &options, &version);
if (rc == MS_SUCCESS)
{

if (MS_CURRENT_MAJOR < version.client.major)
printf("client library might have MS features not used by this application");

else if (MS_CURRENT_MAJOR > version.client.major)
printf("application might have MS features not supported by this client library");
else

printf("application and client library are at the same level of MS functionality");
}

msRegisterCallBack
Used by the application to register the local address of a callback function.

This call is used to obtain asynchronous event notification from the server. The
process that issued the msRegisterCallBack can receive asynchronous callbacks
from the server when necessary.

The application can call msRegisterCallBack for each opened session. Each session
can have a different callback address.

Syntax
msRC_t msRegisterCallBack (

msSessionHandle_t sessionHandle, // in
msEventMask eventMask, // in
void (*callBackAddr)(msEvent_t*) // in
);

Chapter 4. Control Server Application Programming Interfaces 65

Parameters

sessionHandle
Context of the existing session.

eventMask
Bit mask used to select which events are to be sent to the user call-back
function. The bit mask is built by putting any number of the following event
masks together using OR operators:

MS_PORT_EVENTS
Changes in the state of a port.

MS_ASSET_EVENTS
Changes in the state of an asset.

MS_STREAM_EVENTS
Changes in the state of a stream.

MS_ERROR_EVENTS
Asynchronous errors that occur.

MS_ALL_EVENTS
All events.

A global event mask can be OR’ed with the above event mask to specify global
event monitoring. Normally, events are only sent to specific sessions. When the
global event mask is specified, then events from all sessions, that pertain to the
selected mask(s), are sent not only to the specific sessions but also to the user
callback function.

MS_GLOBAL_EVENTS
Enables global event reporting

callBackAddr
Call-back function address.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid session handle

MS_BAD_EVENTTYPE Invalid event type

MS_BAD_CALLBACKADDR Invalid client address

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Comments

Events are asynchronous messages sent by the VideoCharger to the application’s
call-back function.

Event Masks are used to specify the class of events that are to be sent to the
call-back function.

Event Types are used to define the types of data structures that events are returned
in.

66 Programmer’s Reference

Table 7 describes the relationships between events and event masks. Event types
are defined in each of event data structures. (Note: There is not necessarily a
one-to-one mapping between event masks and event types.)

In future releases, new events and event classes might be added. When designing a
callback function, you should anticipate that unrecognized events might be
encountered when the application is bound to a future release of the control server
API library.

Do not call msUnregisterCallBack or msCloseStream from within a callback
function.

Table 7. Events and event masks

Event Mask Event Description

MS_SESSION_EVENTS MS_EV_TAKEOVER_START Session takeover has
begun

MS_EV_TAKEOVER_COMPLETE Session takeover is
complete

MS_PORT_EVENTS MS_EV_PORT_CONNECTED The port is connected.

MS_EV_PORT_CONNECTED_ERROR (reserved)

MS_EV_PORT_ATM_ERROR (reserved)

MS_EV_PORT_INDATA_TIMEOUT (reserved)

MS_EV_PORT_INDATA_RESUMED (reserved)

MS_EV_PORT_DISCONNECTED Port is disconnected.

MS_STREAM_EVENTS MS_EV_STREAM_ENTRY_STARTED Start of a stream entry.

MS_EV_STREAM_ENTRY_ENDED End of a stream entry.

MS_EV_STREAM_PAUSED Play stream paused.

MS_EV_STREAM_JUMPED Play stream jumped.

MS_EV_STREAM_ENDED End of stream detected.

MS_EV_READ_ERROR Input device/asset read
error.

MS_EV_WRITE_ERROR Output device write
error.

MS_EV_DATA_ERROR AssetInfo or data error.

MS_EV_STREAM_ABORTED Stream ended abnormally.

MS_ASSET_EVENTS MS_EV_LOAD_ERROR An error has occurred in
loading from one of the
source files.

MS_EV_LOAD_COMPLETE Loading of an asset is
complete.

MS_EV_STAGE_ERROR An error has occurred in
staging the asset to one
of the destinations.

MS_EV_STAGE_COMPLETE Staging of an asset is
complete.

MS_EV_ASSET_ADDED Asset added to catalog.

MS_EV_ASSET_DELETED Asset deleted from
catalog.

Chapter 4. Control Server Application Programming Interfaces 67

Table 7. Events and event masks (continued)

Event Mask Event Description

MS_EV_ASSET_UPDATED Asset attributes have
changed.

MS_EV_EXPORT_ERROR An error has occurred in
exporting the asset to the
destination.

MS_EV_EXPORT_COMPLETE Exporting of an asset is
complete.

MS_ERROR_EVENTS MS_EV_SERVER_DOWN VideoCharger Server
down.

Port Events

MS_EV_PORT_CONNECTED
Always occurs when a connection for a port has been accepted.

MS_EV_PORT_CONNECTED_ERROR
Reserved.

MS_EV_ATM_ERROR
Reserved.

MS_EV_INDATA_TIMEOUT
Reserved.

MS_EV_INDATA_RESUMED
Reserved

MS_EV_PORT_DISCONNECTED
Occurs when the connection between VideoCharger and HTTP client is
terminated.

Stream Events

MS_EV_STREAM_ENTRY_STARTED, MS_EV_STREAM_ENTRY_ENDED,
MS_EV_STREAM_PAUSED, MS_EV_STREAM_JUMPED

Indicate the various state changes of the stream operation.

MS_EV_STREAM_ENDED
Occurs when the stream is at the end of the stream. If it is a play stream,
the stream entry returned specified the last active stream entry.

MS_EV_READ_ERROR
Occurs when an error is detected in reading the data of the asset from the
disk while playing a stream. The stream operation is terminated. The
application should terminate the stream by calling msCloseStream.

MS_EV_WRITE_ERROR
Reserved.

MS_EV_DATA_ERROR
Occurs when an error is detected on the asset content or asset information
while playing a stream. The stream operation is terminated. The
application should terminate the stream by calling msCloseStream.

MS_EV_STREAM_ABORTED
Occurs when the stream is terminated abnormally (for example, when the
connection to the data pump is lost). The application should call
msCloseStream to close the stream.

68 Programmer’s Reference

Asset Events

MS_EV_LOAD_ERROR
Occurs when an error is detected in one of the files being loaded into an
asset. Within the msAssetEvent_t structure, the resultIndex member
specifies the index for the msPathName_t array that was passed to the
VideoCharger by msLoad. Use this index to determine which file had the
error. The result member specifies the error condition that was detected.
Zero or more MS_EV_LOAD_ERROR events might occur while an asset is
being loaded.

MS_EV_LOAD_COMPLETE
Occurs when the loading of an asset has been completed or stopped.
Within the msAssetEvent_t structure, the result member specifies
MS_SUCCESS if the asset was successfully loaded, or it specifies the asset
error condition if the load operation was stopped.

MS_EV_STAGE_ERROR
Occurs when an error is detected in the staging of an asset. Within the
msAssetEvent_t structure, the resultIndex member specifies the index into
the msAssetLocation_t array that was passed to the VideoCharger by
msStage. Use this index to determine which asset location had the error.
The result member specifies the error condition that was detected. Zero or
more MS_EV_STAGE_ERROR events can occur while an asset is being
staged.

MS_EV_STAGE_COMPLETE
Occurs when the staging of an asset has been completed or cancelled.
Within the msAssetEvent_t structure, the result member specifies
MS_SUCCESS if the asset was successfully staged, or it specifies the asset
error condition if the stage operation was stopped.

MS_EV_ASSET_ADDED
Occurs when an asset is added to an asset group catalog.

MS_EV_ASSET_DELETED
Occurs when an asset is deleted from an asset group catalog.

MS_EV_ASSET_UPDATED
Occurs when asset attributes are modified.

Because the msAssetEvent_t structure contain just one asset name, the following
sequence of events occur when the asset name is changed:
1. MS_ASSET_DELETED (because the old name was removed from a catalog)
2. MS_ASSET_ADDED (because the new name was added to a catalog)
3. MS_ASSET_UPDATED (because the asset name is an attribute and it changed)

Error Events

The MS_EV_SERVER_DOWN event indicates the server is not responding to client
requests.

The function receiving callbacks from the control server must be defined as
follows:
void cb_function_name(msEvent_t *event);

Chapter 4. Control Server Application Programming Interfaces 69

where cb_function_name is the function name and event is a pointer to an
msEvent_t structure. This structure is dynamically allocated by the MS library and
is freed by the MS library when the callback returns. The msEvent_t structure is
defined as follows:
typedef struct _msPortEvent_t { // msEventType == MS_EV_PORT

msEvent event; // specific event
msPortHandle_t portHandle; // specific port
msNetworkType netType; // network type
union {

ms_cause_t atm_cause; // atm connection specific error
ms_inetAddr_t inetAddr; // inet local and remote address
char reserved1[32];// reserved

} portData;
} msPortEvent_t;

typedef struct _msStreamEvent_t { // msEventType == MS_EV_STREAM
msEvent event; // specific event
msStreamHandle_t streamHandle; // specific stream
long entry // Playstream entry number

} msStreamEvent_t;

typedef struct _msAssetEvent_t { // msEventType == MS_EV_ASSET
msEvent event; // specific event
msAssetHandle_t assetHandle; // specific asset
msAssetGroup_t assetGroup; // delimited asset group name
msAssetName_t assetName; // delimited asset name
long resultIndex; // index into file or location array
msRC_t result; // result code for file or location

} msAssetEvent_t;

typedef struct _msErrorEvent_t { // msEventType == MS_EV_ERROR
msEvent event; // specific event

} msErrorEvent_t;

typedef struct _msEvent_t {
msSessionHandle_t sessionHandle;
msEventType type;
union {

msSessionEvent_t session;
msPortEvent_t port;
msStreamEvent_t stream;
msAssetEvent_t asset;
msErrorEvent_t error;

} event;
} msEvent_t;

msUnregisterCallBack
Unregisters the callback function.

When the callback function is unregistered for a session, the control server does
not attempt to do a callback when an event occurs.

Syntax
msRC_t msUnregisterCallBack (

msSessionHandle_t sessionHandle // in
);

Parameters

sessionHandle
Context of the existing session.

70 Programmer’s Reference

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid session handle

MS_ALLOW_ERROR Allowance plug-in rejected authentication

msEnableTakeover (AIX only)
Enable a session to be taken over by another process. Upon return from this call,
the msSessTakeover_t structure contains the information required for another
process to take over this session. The application must convey this information to
another process for it be able to take the session over.

This call will be rejected if the session has not been registered to receive callbacks
for session events.

Syntax
msRC_t msEnableTakeover (

msSessionHandle_t sessionHandle, // in
long takeoverTimeout, // in
msSessTakeover_t *sessionTakeover // out
);

Parameters

sessionHandle
Context of the session.

takeoverTimeout
This parameter specifies in seconds the time out for a session. The valid range
is from 30 to 10,800 seconds (3 hours). When an application terminates without
closing the session, this is the amount of time another process has to take over
the session. If the session is not taken over in this amount of time the
controller will close the session.

sessionTakeover
This is a pointer to a structure to be filled in by the call. This structure must be
passed to another process to allow that process to take over the session. That
process will pass this as one of the parameters to msTakeover to start the take
over procedure.
typedef struct _msSessTakeover_t {

msSessionHandle_t sessionHandle;
msServerName_t serverLocation;
msServerInstance_t serverInstance;
msAssetGroup_t assetGroup;
msAppSignature_t signature;
msTimeStamp_t; timestamp;
char reserved[48];

} msSessTakeover_t;

Return Codes

MS_SUCCESS Successful

MS_SYS_INTERR Internal system error

Chapter 4. Control Server Application Programming Interfaces 71

MS_RPC_ERROR RPC system error

MS_BAD_HANDLE Invalid session handle

MS_NOT_REGISTERED Session not registered for session events

MS_BAD_STATE Session not in valid state for session take over

MS_BAD_RANGE Invalid range for timeout

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example

See “Example: Original Application Server Terminates (AIX only)” on page 75.

msTakeover (AIX only)
This call starts the take over procedure. The sessionTakeover structure was passed
from the application that previously owned the session. The output is the new
session handle and the session takeover info structure. Once the New application
server starts the take over, API calls to the session are limited to calls that do not
change the state of the session, streams or assets (such as get status/attribute) until
the msTakeoverComplete is completed.

After this call, the original process will no longer be able to use this session.

Syntax
msRC_t msTakeover (

msSessTakeover_t sessionTakeover, // in
msAppSignature_t signature, // in
msSessionHandle_t *sessionHandle, // out
msSessTakeoverInfo_t *sessTakeoverInfo // out
);

Parameters

sessionTakeover
The structure that was returned on the msEnableTakeover call. This is
required to locate the server and to identify which session is to be taken over.

signature
Reserved.

sessionHandle
Pointer to context of the session returned by this call.

sessTakeoverInfo
Pointer to a structure filled in by this call.
typedef struct _msSessTakeoverInfo_t {

msEventMask eventMask;
long handleCount;
char reserved[48];

} msSessTakeoverInfo_t;

The eventMask indicates the callback settings the session is using. This is for
the application’s information.

The handleCount can be used to allocate memory before the
msGetSessionHandles call. For example:

72 Programmer’s Reference

sesshandles = malloc(sessTakeoverInfo.handleCount *
sizeof(struct _msSessTakeoverHandle_t));

Return Codes

MS_SUCCESS Successful

MS_SYS_INTERR Internal system error

MS_RPC_ERROR RPC system error

MS_BAD_HANDLE Invalid session handle

MS_BAD_STATE Session is not enabled for take over

MS_BAD_VALIDATION The session take over structure did not validate
correctly

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example

See “Example: New Application Server (AIX only)” on page 75.

msGetSessionHandles (AIX only)
This call returns the list of active handles held by the original process.

Syntax
msRC_t msGetSessionHandles (

msSessionHandle_t sessionHandle, // in
long count, // in
msSessTakeoverHandle_t *buffer // out
);

Parameters

sessionHandle
Context of the session.

count
Number of handles to receive. It must match the returned handle count from
the msSessTakeoverInfo_t structure.

buffer
Pointer to area to receive the handle information.
typedef struct _msSessTakeoverHandle_t {

msHandleType handleType;
msHandle_t oldHandle;
msHandle_t currentHandle;
char reserved[48];

} msSessTakeoverHandle_t;

where the msHandleType is defined to be one of the following:

MS_SESSION_HANDLE
Session handle.

MS_PORT_HANDLE
Port handle.

MS_ASSET_HANDLE
Asset handle.

Chapter 4. Control Server Application Programming Interfaces 73

MS_STREAM_HANDLE
Stream handle

Return Codes

MS_SUCCESS Successful

MS_SYS_INTERR Internal system error

MS_RPC_ERROR RPC system error

MS_BAD_HANDLE Invalid session handle

MS_BAD_STATE msTakeover must be called before this call

MS_BAD_SIZE Buffer is not large enough for all the handles

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example

See “Example: New Application Server (AIX only)” on page 75.

msTakeoverComplete (AIX only)
This call completes the session take over procedure. This session is now available
for all API calls. All the callbacks that have been queued will now be sent to this
application.

If the original process is still running it will receive a callback indicating that the
session take over is complete.

Syntax
msRC_t msTakeoverComplete (

msSessionHandle_t sessionHandle // in
void (*callBackAddr)(msEvent_t *), // in
);

Parameters

sessionHandle
Context of the session.

callBackAddr
Callback function address. When msTakeoverComplete returns, all the queued
callbacks will be sent to this routine.

Return Codes

MS_SUCCESS Successful

MS_SYS_INTERR Internal system error

MS_RPC_ERROR RPC system error

MS_BAD_HANDLE Invalid session handle

MS_BAD_STATE msTakeover must be called before this call

MS_BAD_CALLBACKADDR The callback address was not valid

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example

74 Programmer’s Reference

See “Example: New Application Server (AIX only)”.

Example: New Application Server (AIX only)
/* get sessTakeover structure from original application */
/* wait until the original application terminates */
...
msRC = msInit(0, 0, MS_CURRENT_VERSION);
if (msRC != MS_SUCCESS)
{

printf("msInit failed w/ rc = %d \n", msRC);
return(msRC);

}
msRC = msTakeover(sessTakeover, NULL, &hSession, &sessTakeoverInfo);
if (msRC != MS_SUCCESS)
{

printf("Takeover failed w/ rc = %x \n", msRC);
return(msRC);

}
sessHandles = (msSessTakeoverHandle_t *)malloc(sessTakeoverInfo.handleCount *

sizeof(msSessTakeoverHandle_t));
msRC = msGetSessionHandles(hSession, sessTakeoverInfo.handleCount, sessHandles);
if (msRC != MS_SUCCESS)
{

printf("Takeover Handles failed w/ rc = %x \n", msRC);
return(msRC);

}
tmpSessHandles = sessHandles;
for (i = 0; i < sessTakeoverInfo.handleCount; i++)
{

/* save information about handles as required by application */
sessHandles++;

}
msRC = msTakeoverComplete(hSession, &myCallBack);
if (msRC != MS_SUCCESS)
{

printf("Takeover Complete failed w/ rc = %x \n", msRC);
return(msRC);

}
/* take over is complete, queued call backs will occur immediately */

Example: Original Application Server Terminates (AIX only)
msRC = msInit(0, 0, MS_CURRENT_VERSION);
if (msRC != MS_SUCCESS)
{

printf("msInit failed w/ rc = %d \n", msRC);
return(msRC);

}
strcpy((char *)serverLocation, "rugrat");
msRC = msOpenSession(serverLocation, NULL,
MS_DEFAULT_ASSET_GROUP, NULL,

&hSession);
if (msRC != MS_SUCCESS)
{

printf("msOpenSession failed w/ rc = %x \n", msRC);
return(msRC);

}
eventMask = (msEventMask)MS_SESSION_EVENTS;
msRC = msRegisterCallBack(hSession, eventMask, &myCallBack);
if (msRC != MS_SUCCESS)
{

printf("=== msRegisterCallBack failed\n");
return(msRC);

}
timeout = 50;

Chapter 4. Control Server Application Programming Interfaces 75

msRC = msEnableTakeover(hSession, timeout, &sessTakeover);
if (msRC != MS_SUCCESS)
{

printf("Enable failed w/ rc = %x \n", msRC);
return(msRC);

}
/* Send the session takeover structure to the backup application server */
/* Application starts playing, recording and loading then unexpectedly */
/* terminates without closing the session. */

msStrError
Maps an control server API return code to an error message string. The message is
retrieved based on the current value of the LC_MESSAGES category.

Syntax
msRC_t msStrError (

msRC_t returnCode, // in
char *buffer, // out
long size // in
);

Parameters

returnCode
The return code used to look up an error message.

buffer
The address of a buffer for the error message.

size
The size of the buffer. If the message size is greater than the buffer size then
the message will be truncated to fit within the buffer.

Return Codes

MS_SUCCESS Successful

MS_SYS_INTERR Internal system error

MS_ALLOW_ERROR Allowance plug-in rejected authentication

msAuthenticate
Authorizes uers for a session.

Syntax
msRC_t msAuthenticate (

msSessionHandle_t sessionHandle, // in
long lenCredentials, // in
char *szCredentials, // in
long lenAuthentication, // in
char *szAuthentication);

Parameters

sessionHandle
Context of the session.

lenCredentials
The length of szCredentials.

76 Programmer’s Reference

szCredentials
The character string that identifies an authorized user. For example, an
encoded user ID and password.

lenAuthentication
The length of szAuthentication.

szAuthentication
The character string that identifies the type of identification requested. For
example, base64.

Example

The setting of the Credentials, and Authentication values are installation defined
(depending on msAllow application):
char Credentials[100];
char Authentication[100];

msRC = msAuthenticate(hsession,strlen(Credentials),Credentials,strlen(Authentication),Authentication);

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid session handle

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Stream Connection Management
The application uses this set of API functions to reserve, modify, and release
control server network connection resources for stream operations. It supports
msOpen Filter, msCloseFilter, msEnumFilterPorts, and msControl Filter APIs. It
uses port connections to support the three kinds of stream operations. Under a
single session, you can use multiple ports to support multiple concurrent stream
accesses.

The control server selects a data pump and its controlled networks and device
adapters. The control server supports prereserved (static reservation) resources to
ensure a specified quality of service for network access. If a requested bandwidth
is specified with the msOpenPort, bandwidth is also reserved on the selected
devices such that subsequent I/O access to them for different assets is guaranteed.

Alternatively, dynamic reservation is also supported. If a requested bandwidth is
not specified with the msOpenPort call, no resources are reserved. Instead, when
one of the stream operations (msOpenPlayStream) is initiated, the control server
dynamically reserves the bandwidth and establishes the network connection based
on the bandwidth required by the stream.

The msClosePort call is used to end a network connection.

msGetPortAttr and msSetPortAttr are used to get and set attributes of the port
resource after it has been opened.

Chapter 4. Control Server Application Programming Interfaces 77

msListPortGroups
Gets the list of configured port group names and their network types.

Syntax
msRC_t msListPortGroups (

msSessionHandle_t sessionHandle, // in
long *count, // out
msPortGrpAttr_t *buffer, // out
long *size // in and out
);

Parameters

sessionHandle
Context of the session.

count
Pointer to the number of entries in the buffer.

buffer
Pointer to the array of structures containing the configured port group names
and their network types. Each port group name in the buffer is a
null-terminated length string.
typedef struct _msPortGrpAttr_t {

char portGroup[MS_MAX_NAME_LEN];
msNetworkType netType;
msDeviceStatus status;

} msPortGrpAttr_t;

portGroup
Port group name.

netType
Network type of the port group.

status
Resource MS_ACTIVE/MS_INACTIVE status. If the port group is the
default port group, MS_DEFAULT is set.

If the buffer address is NULL or if the buffer size is too small:
v The required buffer size is returned in the size parameter.
v The total number of names is returned in the count parameter.

size
Pointer to the size of the buffer.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid session handle

MS_BAD_SIZE Buffer size is too small

MS_ALLOW_ERROR Allowance plug-in rejected authentication

78 Programmer’s Reference

msListPorts
Gets a list of configured port names within a port group.

Syntax
msRC_t msListPorts (

msSessionHandle_t sessionHandle, // in
msPortGroup_t portGroup, // in
msNetworkType netType, // in
long *count, // out
msPortList_t *buffer, // out
long *size

// in-out
);

Parameters

sessionHandle
Context of the session.

portGroup
Port group name. If this parameter is NULL (or empty) then all configured
ports of the specified netType will be returned.

netType
Network type.

count
Pointer to the number of entries in the buffer.

buffer
Pointer to an array of structures returning the configured port names and the
local configured msNetAddr_t structure entries of the ports.
typedef struct _msPortList

_msPort_t portName;
long maxBitRate;
msDeviceStatus status;

} msPortList_t;

portName
Port name.

maxBitRate
Maximum bandwidth of the port.

status
Device MS_ACTIVE or MS_INACTIVE status.

If the buffer address is NULL or if the buffer size is too small:
v The required buffer size is returned in the size parameter.
v The total number of names is returned in the count parameter.

size
Pointer to the size of the buffer.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

Chapter 4. Control Server Application Programming Interfaces 79

MS_BAD_HANDLE Invalid session handle

MS_BAD_NETTYPE Invalid network type

MS_BAD_PORTGRP Invalid port group

MS_BAD_SIZE Buffer size too small

MS_ALLOW_ERROR Allowance plug-in rejected authentication

msOpenPort
Initializes a network connection to the end user by selecting and reserving port
resources. The selection is based on port group and the specified user address.

The control server is responsible for selecting a data pump and a network device
(or adapter) for connection to the user. If a nonzero reservedBitRate is specified, the
control server reserves bandwidth from the data pump and the selected devices
and then establishes the network connection to the user. The application can obtain
the port connection status by the msGetPortAttr call or by using the
msRegisterCallBack mechanism to be notified of the port connection status.

The control server provides admission control and load balancing when selecting
the device based on the bit rate and port group. The control server will select from
a list of ports within the specified port group. When a network device has been
selected, the userAddr will return additional address information about the port
selected. And, if a network device has default network parameters, the
networkParms is also returned.

A port handle is returned for each msOpenPort call. Multiple msOpenPort calls
are supported under a single control server session to support multiple concurrent
stream operations.

Syntax
msRC_t msOpenPort (

msSessionHandle_t sessionHandle, // in
msConnectMode mode, // in
long reservedBitRate, // in
msPortGroup_t portGroup, // in
msUserAddr_t *userAddr, // in and out
msNetworkParms_t *parms, // in and out
msPortHandle_t *portHandle, // out
msPortState *state // out
);

Parameters

sessionHandle
Context of the existing session.

reservedBitRate
Required bandwidth for establishing the connection path. If reservedBitRate is
zero, no reservation of resources is made, and the network connection
establishment is delayed until a msSetPortAttr call with a nonzero
reservedBitRate is specified or when a stream is opened using this port.

If the reservedBitRate is not zero, bandwidth is reserved from the selected data
pump, and the network adapter and network connection are established
immediately.

80 Programmer’s Reference

mode
The connect mode is used to select whether the server will initiate the network
connection to the user. Mode values are:

MS_NET_CONNECT_FOR_OUTPUT
When this mode is used, data pump will initiate the ″connect″ and the
client needs to be in listening mode and ready for data pump to make
the connection.

MS_NET_LISTEN_FOR_INPUT
Reserved.

MS_NET_CONNECT_FOR_INPUT
Reserved on AIX. This mode is supported only for opening encoder
ports.

MS_NET_LISTEN_FOR_OUTPUT
When this mode is used, data pump will be in listening mode, and the
client needs to initiate the ″connect″ to make the connection. The client
can specify a port range that data pump should try and listen on. The
port that data pump is listening on is returned in userAddr-
>portAddr.inetPort.localAddr.sin_port.

Once the connection is established, a MS_EV_PORT_CONNECTED
event is sent back to the client.

portGroup
On Windows, this parameter is reserved and must be set to an empty string.
On AIX, a system-configured name defining a group of configured ports.
portGroup is used by the server when selecting a port within the port group to
balance loads based on bandwidth requirements. A port represents a port
configured in the VideoCharger Server. A port group can be configured to
contain ports in one or more data pumps. Load balancing selection occurs
when the port name and the local port address of the userAddr is initialized to
zero by the application (see the userAddr parameter discussed below).

userAddr
Structure containing the port name, network type, port address, and the
protocol.

msPortAddr_t is a union of the port addresses of the supported networks
defined in msnet.h. In CONNECT mode, msPortAddr specifies the remote or
destination address of the end user.

MS_NET_INET
(Internet). The portName is not used. The normal mode of address
specification is to initialized the local address to 0 and the port group
name is used to select a data pump to establish the internet network
connection. This address specification is the normal mode of operation.
The selection is based on load balancing across the Data Pumps and
selection of the network interfaces within a data pump is based on the
route select by the internet network configured for the port group. The
portName and local address of the selected IP network interface is
returned in the userAddr parameter.

When RTP protocol is used in multicast mode (IP port remote address
specified a class ″D″ address format); a local address can also be
specified. This overwrites the load balancing and route selection
mechanism by the server and uses the local address specified as IP
interface address instead.

Chapter 4. Control Server Application Programming Interfaces 81

InetPort is defined in BSD 4.4 socket address format and includes the
local and remote IP address and port number. The remote IP address
must be fully specified.

If the RTP/UDP protocol option is requested, the port number within
the socket address specifies a port pair (an even # and #+1) to be used
for the two RTP sessions (data & control) when communicating with
the remote client.

MS_NET_ATM
Reserved.

MS_NET_ANALOG
Reserved on AIX. On Windows, (Encoder). The portName should be set
to the logical port name of the encoder that was set when the encoder
was defined to the VideoCharger. Port names can be displayed by
entering the Isvsport command or through the VideoCharger
Configuration and Administration Web interface as described in the
Administrator’s Guide and Reference. The protocol should be set to
MS_PROTO_NULL.

MS_NET_MSC
(MPEG Stream controller device): Reserved.

The userAddr parameter is defined as follows:
typedef struct sockaddr_in sockaddr_in_t;

typedef struct _ms_port_range_t {
in_port_t low_port;
in_port_t high_port;

} ms_port_range_t;

typedef _ms_inetPort_t {
sockaddr_in_t localAddr;
sockaddr_in_t remoteAddr;
ms_port_range_t local_port_range;
ms_port_range_t remote_port_range;
char reserved_1[8];

} ms_inetPort_t;

typedef union _msPortAddr_t {
ms_nullPort_t nullPort; //reserved
ms_inetPort_t inetPort;
ms_atmPort_t atmPort; //reserved
ms_analogPort_t analogPort; //reserved for AIX
mscPort_t msctPort; //reserved

} msPortAddr_t;

typedef struct _msUserAddr_t {
msPort_tportName;
msNetworkType netType; // network type
msPortAddr_t portAddr;
msProtocolType protocol; // protocol Type

} msUserAddr_t;

The protocol parameter is defined as follows:
MS_PROTO_NULL // null protocol/passthrough request
MS_PROTO_TCP // for MS_NET_INET
MS_PROTO_RTP_UDP // for MS_NET_INET
MS_PROTO_HTTP // for MS_NET_INET

parms
Pointer to (optional) network parameters, if supported by the selected network

82 Programmer’s Reference

type. It must be set to NULL if this parameter is not used. If the default is to
be used, it must be initialized to zero. parms is network specific and its format
is a union of the networkParms of the supported networks defined in the
msnet.h file.

The use of these parameters require a ReservedBitRate other than 0 to be
specified.

msNetworkParms_t is defined as follows:
typedef struct _msNetworkParms_t {

msNetworkType netType;
union {

msNullNetParms_t nullNetParms; // passthrough req
msINETParm_t inetParms; // Internet param
msATMParms_t atmParms; // reserved
msAnalogParms_t analogParms; // AIX: reserved;

// Windows: endcoder parms
msMSCParms_t mscParms; // reserved

} netParms;
} msNetworkParms_t;

typedef struct _msNullNetParms_t { /* pass info request */
long rc; /* network access driver return code */
long len; /* request byte array length */
char request[MS_NULLNET_PARM_SIZE];

/* platform independent parameter byte */
/* array with port specific parameters */

} msNullNetParms_t;

typedef struct _msINETParms_t {
long count; /* number of protocols */
long bufferLen; /* buffer length */
char *buffer; /* pointer to protocol buffer */

}msINETParms_t;

typedef struct _msHTTPProto_t {
long autoClose; /* auto close */
char URI[MS_MAX_PATH_LEN]; /* URI string */
char mimeType[MS_MAX_MIMETYPE_LEN]; /* mime type */
msPassInfo_t passInfo; /* reserved */

}msHTTPProto_t;

typedef struct _msEncoderDevParams_t {//for Windows only
//System/Audio/Video bitrates, a value of sero will be ignored.
usinged long muxBitrate;
unsigned long videoBitrate;
unsigned long audioBitrate; //Selects multiplex mode: video, audio or both
msEncoderDevMuxMode muxMode; //Selects input connection in encoder card.
msEncodeDevVideoSourceSelection videoSourceSelection;
//How often, in terms of GOPs should a video sequence header
// be inserted in the stream, important in case of lossy transports.
unsinged long GOPsUntilNextVideoSeqHdr;

}msEncoderDevParms_t

typedef strct _msAnalogParms_t {// For Windows only
msDecoderType decoderType; // analog decoder type
long rc; // analog adapter request,

// format specified in decoder xx.h
long len; // request byte array length
char reqdata[MS-ANALOG_PARM_SIZE];

// platform independent data,
// format specified in decoder xx.h

} msAnalogParms_t;

Chapter 4. Control Server Application Programming Interfaces 83

typedef struct _msProtocol_t {
long length; /* protocol data length */
msProtocolType protoType; /* network protocol type */
char protoAddr; /* msHTTProto_t start addr */

}msProtocol_t;

Currently, the only network types that support networkParms is
MS_NET_NULL (using passthrough request) and MS_NET_INET (for HTTP
protocol), described in the following:

MS_NET_NULL
A generic passthrough option is supported to allow application to pass
network specific requests directly to the network access routines in the
VideoCharger Data Dump to control the operation of the streaming
network device or interface. Currently, this option is only available for
use with the MS_PROTO_TCP or MS_PROTO_RTP_UDP protocol. The
passthrough option is invoked by setting the netType in the
msNetworkParm_t to MS_NET_NULL.

MS_NET_INET
This option is only available for use with the MS_PROTO_HTTP
protocol. To open a port with MS_PROTO_HTTP protocol, a memory
storage (buffer) should be allocated to specify HTTP URI and other
required information. The buffer should be filled out as follows (see
msProtocol_t and msHTTPProto_t):

Table 8. Buffer Byte Offset

Buffer Byte Offset Data Description

0-3 msProtocol_t.length (for example, 1296)

4-7 msProtocol_t.protoType

8-11 msHTTPProto_t.autoClose

12-1035 msHTTPProto_t.URI

1036-1291 msHTTPProto_t.mimeType

1292-1295 Reserved

MS_NET_ATM
Reserved.

MS_NET_INET
Reserved.

MS_NET_ANALOG
Reserved on AIX. On Windows, this option is available for use on
encoder ports to alter the configuration of the encoder. To change the
encoder configuration, options are set in the msEncoderDevParms
structure and the address of this structure is provided as the reqdata
parameter of the msAnalogParms structure.

msNetworkParms_t is defined as follows:
typedef struct _msNetworkParms_t {

msNetworkType netType;
union {

msNullNetParms_t nullNetParms; // passthrough req
msINETParm_t inetParms; // Internet param
msATMParms_t atmParms; // reserved

84 Programmer’s Reference

msAnalogParms_t analogParms; // reserved
msMSCParms_t mscParms; // reserved

} netParms;
} msNetworkParms_t;

portHandle
Identifier of the port opened.

state
Indicates the network connection state. The values are:

MS_CONNECTED
Data pump is connected to the remote/client system.

MS_NOT_CONNECTED
Data pump is not connected to the remote/client system.

MS_CONNECT_PENDING
Reserved.

MS_INDATA_TIMEOUT
Reserved.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_RES_ERROR Inconsistent server resource

MS_BAD_HANDLE Invalid session handle

MS_BAD_MODE Invalid mode

MS_BAD_RATE Invalid bit rate

MS_BAD_PORTGROUP Invalid port group

MS_BAD_USRADDR Invalid user address

MS_BAD_NWPARAM Invalid network parameters

MS_BAD_OPERATION Function (option) not supported

MS_PORT_BW_EXCEEDED Insufficient port bandwidth

MS_DAP_BW_EXCEEDED Insufficient data pump bandwidth

MS_CON_EXISTS Connection already exists

MS_CON_PENDING Listen for input already pending

MS_DATAPUMP_ERR Communication error with data pump

MS_PORT_INACT Port inactive

MS_PORTGROUP_INACT Port group inactive

MS_DATAPUMP_INACT Data pump inactive

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example 1

Following is an example coding sequence using Internet (RTP over UDP):
#include <netdb.h>;
#include <sys/param.h>
#define MS_ENABLE_INET

#define CONNECT_IN 1

Chapter 4. Control Server Application Programming Interfaces 85

msPortHandle_t portHandle;
msUserAddr_t addr;
struct hostent* hpptr;
msPortGroup_t portGroup;
msConnectMode_t connectMode;
msPortState state;

bzero(addr, sizeof(msUserAddr_t); // address initialized to 0

#ifdef CONNECT_IN
connectMode = MS_NET_LISTEN_FOR_OUTPUT;
addr.portAddr.inetPort.local_port_range.low_port = 6000;
addr.portAddr.inetPort.local_port_range.high_port = 6500;
#else // CONNECT_OUT
connectMode = MS_NET_CONNECT_FOR_OUTPUT;
#endif
strcpy (portGroup, ""); // use default portgroup
addr.netType = MS_NET_INET; // set INET network type
addr.protocol = MS_PROTO_RTP_UDP; // set RTP/UDP protocol
strcpy (addr.portName, ""); // set to system select

hpptr = gethostbyname("switchboard");
sockaddr_in_t addrP = &addr.portAddr.inetPort.remoteAddr;
addrP->sin_addr = htonl(* (unsigned long *)hpptr->h_addr);
addrP->sin_family = AF_INET;
addrP->sin_len = sizeof(sin_addr);
addrP->sin_port = 5000; // set port pair to use
rc = msOpenPort(sessionHandle, // open port

connectmode, // mode
1500000, // reservedBitRate
portGroup,
&addr,
NULL, // no network parameter
&portHandle,
&state);

Example 2

The following is an example coding sequence using Internet HTTP protocol:
#include <netdb.h>;
#include <sys/param.h>
#include <sys/socket.h>
msPortHandle_t portHandle;
msUserAddr_t addr;
msNetworkParms_t parms;
struct hostent *hpptr;
msPortGroup_t portGroup;
msHTTPProto_t *pHttpProto;
msProtocol_t *pProtocol;
char *pBuffer;
msConnectMode connectMode;

bzero(addr, sizeof(msUserAddr_t); // address initialized to 0

connectMode = MS_NET_LISTEN_FOR_OUTPUT;

strcpy (portGroup, ""); // use default portgroup
addr.netType = MS_NET_INET; // set INET network type
addr.protocol = MS_PROTO_HTTP; // set HTTP protocol
strcpy (addr.portName, ""); // set to system select

parms.netParm.inetParms.count = 1;
parms.netParm.inetParms.bufferLen = sizeof(msProtocol_t) +

sizeof(msHTTPProto_t);
parms.netParm.inetParms.buffer =

86 Programmer’s Reference

(char *)malloc(parms.netParm.inetParms.bufferLen);
memset(parms.netParm.inetParms.buffer, ’\0’,

parms.netParm.inetParms.bufferLen);

pProtocol = (msProtocol_t *)pBuffer;
pProtocol->protoType = MS_PROTO_HTTP;
pPRotocol->length = sizeof(msProtocol_t) + sizeof(msHTTPProto_t);
pHttpProto = (msHTTPProto_t *)&(pProtocol->protoAddr);
pHttpProto->autoClose = 1
strcpy(pHttpProto->URI, "http://my_movie_location");
strcpy(pHttyProto->mimeType, "video/mpeg");

hpptr = gethostbyname("switchboard");
sockaddr_in_t* addrP = addr.portAddr.inetPort.remoteAddr;
addrP->sin_addr = htonl(* (unsigned long *)hpptr->h_addr);
addrP->sin_family = AF_INET;
addrP->sin_len = sizeof(sin_addr);
addrP->sin_port = 5000; // set port pair to use
rc = msOpenPort(sessionHandle, // open port

connectMode, // mode
1500000, // reservedBitRate
portGroup,
&addr,
&parms,
&portHandle,
&state);

msClosePort
Releases all the resource associated with a port handle. Any stream operation
associated with the port is terminated and the network connection is terminated.

Syntax
msRC_t msClosePort (

msPortHandle_t portHandle // in
);

Parameters

portHandle
Context of the resources to be released.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_RES_ERROR Inconsistent server resource

MS_BAD_HANDLE Invalid port handle

MS_ALLOW_ERROR Allowance plug-in rejected authentication

msSetPortAttr
Sets or changes the parameters of an opened port.

If the reserved BitRate is non-zero, and the network connection has not been
established, this call will establish the connection with the requested bit rate
reserved.

Chapter 4. Control Server Application Programming Interfaces 87

The bit rates parameter cannot be set to non-zero once the network connection has
been established (either explicitly set in the msOpenPort or another msSetPortAttr
call with a non-zero reserved BitRate or implicitly when a stream is opened using
this port).

Syntax
msRC_t msSetPortAttr (

msPortHandle_t portHandle, // in
long reservedBitRate, // in
msNetworkParms_t *parms, // in and out
msPortState *state // out
);

Parameters

portHandle
Context of the port.

reservedBitRate
Bit rate for the port. If the value is nonzero, network connection will be
initiated with this call. If the value is -1 (this option is only applicable for
MS_NET_ATM), proceed with establishing the network connection, and use the
bit rate specified in the network parameter. If the port is already in connect
state (MS_CONNECTED), this parameter must be set to zero.

parms
Pointer to area containing optional network parameters if appropriate. The
format of this parameter is dependent on the port netType.

For an MS_NET_INET port request, the parms parameter is valid if the port is
already in MS_CONNECTED state or the reservedbitRate is set non-zero to
request port connection with the msSetPortAttr call.

state
Network connection state.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_RES_ERROR Inconsistent server resource

MS_BAD_HANDLE Invalid port handle.

MS_BAD_RATE Invalid bit rate

MS_BAD_OPERATION Invalid operation (function not supported)

MS_NO_RESOURCES Invalid reservedbitrate

MS_BAD_NWPARAM Invalid network parameters

MS_PORT_BW_ERR Insufficient port bandwidth

MS_DAP_BW_ERR Insufficient data pump bandwidth

MS_CON_NOTEXISTS Connection not exist

MS_CON_EXISTS Connection already exists

MS_CON_PENDING Listen for input already pending

MS_DATAPUMP_ERR Communication error with data pump

MS_PORT_INACT Port inactive

88 Programmer’s Reference

MS_PORTGROUP_INACT Port group inactive

MS_DATAPUMP_INACT Data pump inactive

MS_ALLOW_ERROR Allowance plug-in rejected authentication

msGetPortAttr
Returns the user address, network parameters, connection state, and the stream
handle connected to this port.

Syntax
msRC_t msGetPortAttr (

msPortHandle_t portHandle, // in
long *reservedBitRate, // out
msPortGroup_t *portGroup, // out
msUserAddr_t *laddr, // out
msNetworkParms_t *parms, // out
msPortState *state, // out
msStreamHandle_t *streamHandle // out
);

Parameters

portHandle
Context of the port resource connection.

reservedBitRate
Pointer to current reserved bandwidth for the port.

portGroup
Pointer to the port group name.

addr
Pointer to area containing the user address. See “msOpenPort” on page 80 for a
description.

parms
Pointer to area containing optional network parameters if appropriate. If a
network connection has not been established, the device default network
parameters are returned. See “msOpenPort” on page 80 for a description.

state
Indicates the network connection state. See “msOpenPort” on page 80 for
details.

streamHandle
Pointer to stream handle connected to this port. NULL if the port is not
connected to a stream.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid port handle

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Chapter 4. Control Server Application Programming Interfaces 89

Stream Operations
The stream interface provides methods to access a media stream. The functions
include playing, passing, and seeking a stream.

Stream Operation API Usage Description

Following is the typical API sequence for playing a stream:
1. msOpenSession: Establish a session with the control server.
2. msOpenPort: Open network connection to the user.
3. msOpenPlayStream: Bind a port to an asset to play a stream.
4. msUpdatePlayStream: Reserved.
5. msPlay: Play the stream.
6. msCloseStream Break resource binding to the stream.
7. msClosePort: Close the network connection to the user.
8. msCloseSession: Close a session with the control server.

Stream States

The stream states are modelled after the stream state machine of the DSM-CC
standard documented in the 5/1995 version of the ISO/IED 138188-6. The stream
interface provides a method to control the transport of a media stream. The
interface leverages the DSM Scale and Pos_t structures. The time value which the
application provides with the Pos_t is the stream position at which to begin or end
a transport. The following are the valid stream states:

OPEN_PLAY The control server has reserved asset ready for playing a stream.

PAUSE The media stream is in paused state and does not transport any media
stream.

PLAY The stream is playing.

EOS The media stream is at the end.

The following are the stream state machines:

Stream State Machines for Play Operations

Figure 7 on page 91 shows the stream state machines for play operations.

90 Programmer’s Reference

msOpenPlayStream
Opens a stream to play an asset to an open port. A play stream can only be used
for playing asset(s) and cannot be mixed with record or pipe operation.

If a network connection has not already been established, a network interface or
port is selected based on the port group and userAddr parameter of the port. If a
specific port is not specified by the application, admission control and load
balancing is used to select the data pump and the port when establishing the
network connection. When a network connection is established, the opened port’s
userAddr and networkParms of the port might have been updated and can be
obtained by using the msGetPortAttr call.

The bandwidth reserved for the stream is derived from three bitRate-related
parameters in the following:
v portHandle from the msOpenPort call (if specified from static connection

reservation)
v Asset normal play rate

If the reserved bit rate of the port is greater than the normal play bit rate of the
asset, then the normal play bit rate of the asset defines the bit rate of the stream.

Figure 7. Stream state machines for the play operations

Chapter 4. Control Server Application Programming Interfaces 91

If the reserved bit rate of the port is not set and the asset normal play rate is
available, the port and the stream will reserve the bit rate using the asset normal
play rate.

Note: The valid output port for playing a stream is MS_NET_INET (TCP/IP, RTP
over UDP/IP).

Syntax
msRC_t msOpenPlayStream (

msPortHandle_t portHandle, // in
msAssetName_t assetName, // in
msScale_t maxScale, // in
msStreamMode mode, // in
msPos_t startPos, // in
msPos_t endPos, // in
msScale_t scale, // in
long entry, // in
long label, // in
long nextLabel, // in
msStreamHandle_t *streamHandle // out
);

Parameters

portHandle
Context of the port resource connection.

assetName
A null-delimited asset name.

maxScale
Reserved. Set to 1:1.

mode
Initial mode of the stream. Choose one of the following:

MS_PLAY Stream starts playing immediately.

MS_PAUSE Stream is started in pause mode.

MS_SEAMLESS_MODE
Reserved.

startPos
Position (calculated from the beginning of the asset) to begin playback of the
current asset. If 0, start playing at the beginning of the current asset.

The msPos_t structure supports two types of position specification:

MS_NPT_OFFSET
DSM-CC NPT (normal play time) format. The hi field is measured in
seconds or bytes; the lo field is measured in microseconds or bytes.

MS_BYTE_OFFSET
Byte offset format. The hi and lo field (the 4 bytes on right combined
with the 4 bytes on left) together forms the 64 bit offset value.

The following is the msPos_t structure definition:
typedef struct _msPos_t {

msPosType type; // Position type
long hi;
ulong lo;

} msPos_t;

92 Programmer’s Reference

endPos
Position (calculated from the beginning of the asset) for ending playback of the
asset. If 0, play to the end of the asset.

scale
Reserved. Set to 1:1.

entry
Reserved; should be 1.

label
Reserved; should be 1.

nextLabel
Reserved; should be 0.

streamHandle
Context of the stream handle.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_RES_ERROR Inconsistent server resource

MS_BAD_HANDLE Invalid handle

MS_BAD_MAXSCALE Invalid maximum scale

MS_BAD_MODE Invalid mode

MS_BAD_NAME Invalid name

MS_NAME_NOT_FOUND Invalid name

MS_BAD_START Stream does not contain this position

MS_BAD_STOP End position can never be reached

MS_BAD_OFFSET Invalid start or end position

MS_BAD_SCALE Invalid scale

MS_BAD_LABEL Invalid label

MS_BAD_ENTRY Invalid entry

MS_BAD_FILEACCESS Invalid file access mode

MS_BAD_RATE Invalid bit rate

MS_PORT_BW_EXCEEDED Insufficient port bandwidth

MS_DAP_BW_EXCEEDED Insufficient data pump bandwidth

MS_STR_BW_EXCEEDED Stream bandwidth exceeded (asset play rate > port rate)

MS_LIMIT_EXCEEDED Open limit exceeded (no asset replica available)

MS_NO_RESOURCES Insufficient resources for request

MS_CON_EXISTS Connection already exists

MS_CON_INUSE Port connection already in-use

MS_DATAPUMP_ERR Communication error with data pump

MS_PORT_INACT Port inactive

MS_PORTGROUP_INACT Port group inactive

MS_DATAPUMP_INACT Data pump inactive

Chapter 4. Control Server Application Programming Interfaces 93

MS_DAP_STR_EXCEEDED Data pump stream limit exceeded

MS_ALLOW_ERROR Allowance plug-in rejected authentication

In addition, errors prefixed with MS_AST_ might be returned when accessing the
specified asset to open a play stream.

msRecord
Creates an asset from encoder input.

Syntax
msRC_t msRecord (

msStreamHandle_t streamHandle, // in
msPos_t startPos, // in
msPos_t endPos /* in
);

Parameters

streamHandle
Pointer to stream handle connected to this port. NULL if the port is not
connected to a stream.

startPos
Position to begin recording into the current asset. The only value supported is
0 for recording from the beginning of the asset or appending to the end of an
existing asset.

endPos
Position in the asset to end recording. The only supported value is 0, which
specifies that the stream will be recorded until it is paused or closed.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid session handle

MS_ALLOW_ERROR Allowance plug-in rejected authentication

MS_BAD_OPERATION Function (option) not supported

msOpenRecordStream (Windows only)
Opens a stream to record from an open port into an asset. A record stream can be
used for recording into an asset and cannot be mixed with play or pipe operations.

The asset must have already been opened for write either with MS_O_CREATE or
MS_O_APPEND. msOpenRecordStream will write the received stream data into
the asset. In addition, the write bit rate in the msOpenAsset call must be specified.
It is also the responsibility of the application to initialize the asset attributes using
the msSetAssetAttr before the msRecordOpenStream call. (For example, set the
default playback rate stream type, duration, and byte size before recording.) When
msCloseStream is called, the asset attributes will be updated to indicate the new
size of the asset.

94 Programmer’s Reference

Recording a media stream is available only from MS_NET_ANALOG ports. The
configured bit rate for the encoder port is used to reserve resources.

Syntax
msRC_t msOpenRecordStream (

msPortHandle_t portHandle, // in
msAssetHandle_t *assetHandle, // in
msStreamMode mode, // in
msPos_t startPos, // in
msPos_t endPos, // in
msStreamHandle_t *streamHandle // out
);

Parameters

portHandle
Context of the port resource connection.

assetHandle
Context of the asset resource.

mode
Mode of the stream. Choose one of the following:

MS_RECORD Stream starts recording immediately.

MS_PAUSE Stream is paused.

startPos
Position to begin recording into the current asset. The only value supported is
0 for recording from the beginning of the asset or appending to the end of an
existing asset.

endPos
Position in the asset to end recording. The only supported value is 0, which
specifies that the stream will be recorded until it is paused or closed.

streamHandle
Context of the stream.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_RES_ERROR Inconsistent server resource

MS_BAD_HANDLE Invalid handle

MS_BAD_MODE Invalid mode

MS_BAD_NETTYPE Unsupported network type

MS_BAD_RATE Invalid port bit rate to record this asset

MS_BAD_START Stream does not contain this position

MS_BAD_STOP End position can never be reached

MS_BAD_SCALE Invalid scale

MS_BAD_FILEACCESS Invalid file access mode

MS_PORT_BW_EXCEEDED Insufficient port bandwidth

MS_DAP_BW_EXCEEDED Insufficient data pump bandwidth

Chapter 4. Control Server Application Programming Interfaces 95

MS_STR_BW_EXCEEDED Stream bandwidth exceeded (port rate > asset I/O rate)

MS_LIMIT_EXCEEDED Open limit exceeded (no asset replica available)

MS_NO_RESOURCES Insufficient resources for request

MS_CON_EXISTS Port connection already

MS_CON_INUSE Port connection already in-use

MS_DATAPUMP_ERR Communication error with data pump

MS_PORT_INACT Port inactive

MS_PORTGROUP_INACT Port group inactive

MS_DATAPUMP_INACT Data pump inactive

MS_PATH_MISMATCHED Port/Asset opened from different data pumps

MS_DAP_STR_EXCEEDED Data pump stream limit exceeded

MS_ALLOW_ERROR Allowance plug-in rejected authentication

In addition, errors prefixed with MS_AST_ might be returned when accessing the
specified asset to open a record stream.

msOpenPipeStream
Opens a pipe stream by connecting an input port to an output port and starts
piping the stream immediately. A pipe stream is dedicated to redirecting a stream
and cannot be mixed with playing or recording a stream.

Bandwidth reservation: The bandwidth reserved for the stream is derived from the
configured bit rate for the encoder port. If the portln and portOut bandwidths have
been specified, the portln bit rate must be less than or equal to the portOut
bandwidth. Otherwise, the request will be rejected.

The input port for a pipe stream must be MS_NET_ANALOG (encoder), and the
output port type must be MS_NET_INET. No other types are currently supported
for this call. AIX has no encoder support.

Syntax
msRC_t msOpenPipeStream (

msPortHandle_t port+In, // in
msPortHandle_t portOut, // in
msStreamType_t type, // in
msStreamHandle_t *streamHandle // out
);

Parameters

portIn
Context of the input port resource connection.

portOut
Context of the output port resource connection.

type
Type of stream received from the input port. This parameter is currently not
used by the supported input and output port. msStreamType is type-defined
to msAssetType. (See “msOpenAsset” on page 107 for details.)

96 Programmer’s Reference

This parameter is currently not used by the analog-in/inet-out port
combination supported. However, this parameter should be set to MS_MPEG1 |
MS_TRANSTR to preserver application compatibility.

streamHandle
Context of the stream.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_RES_ERROR Inconsistent server resource

MS_BAD_HANDLE Invalid handle

MS_BAD_RATE Invalid rate

MS_BAD_STREAMTYPE Invalid stream type

MS_BAD_NETTYPE Unsupported network type

MS_PORT_BW_EXCEEDED Insufficient port bandwidth

MS_DAP_BW_EXCEEDED Insufficient data pump bandwidth

MS_STR_BW_EXCEEDED Stream bandwidth exceeded (portIn rate > portOut rate)

MS_NO_RESOURCES Insufficient resources for request

MS_CON_EXISTS Port connection already

MS_CON_INUSE Port connection already in-use

MS_DATAPUMP_ERR Communication error with data pump

MS_PORT_INACT Port inactive

MS_PORTGROUP_INACT Port group inactive

MS_DATAPUMP_INACT Data pump inactive

MS_PATH_MISMATCHED Port/Asset opened from different data pumps

MS_DAP_STR_EXCEEDED Data pump stream limit exceeded

MS_ALLOW_ERROR Allowance plug-in rejected authentication

msCloseStream
Ends the stream operation. This operation waits until all stream buffers have been
drained within a fixed period of time.

This call does not close any port or asset handles specified in the
msOpenPlayStream call. Assets that have been implicitly opened in the play
stream are closed.

Syntax
msRC_t msCloseStream (

msStreamHandle_t streamHandle // in
);

Parameters

streamHandle
Identifier for this stream.

Chapter 4. Control Server Application Programming Interfaces 97

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_RES_ERROR Inconsistent server resource

MS_BAD_HANDLE Invalid stream handle

MS_DRAIN_ERROR Stream not drained successfully

MS_ALLOW_ERROR Allowance plug-in rejected authentication

In addition, an error prefixed with MS_AST_ might be returned when closing the
asset(s) associated with the stream to be closed.

msPlay
Causes the Server to start or continue playing (sending) the stream from the
specified or current position. The current position in the stream is either specified
from the msOpenPlayStream call, the startPos position from the last msJump call,
or the stopPos position from the last msPause call.

When the stream is in pause mode, the current play stream Entry, startPos and
endPos can be changed from the current position using this call. Changing these
parameters is equivalent to performing msJump prior to the msPlay function. If
the play stream position has been updated, the deterministic start time for the
actual play operation for the msPlay call is not guaranteed.

Syntax
msRC_t msPlay (

msStreamHandle_t streamHandle, // in
long entry, // in
msPos_t startPos, // in
msPos_t endPos, // in
msScale_t scale // in
);

Parameters

streamHandle
Identifier for this stream.

entry
Entry number of the asset to start playing. If 0, refer to the current entry.

startPos
Position to begin playing. If 0, start playing from the beginning of the specified
asset. If the value is -1, play from the current position.

endPos
Position to end playing. If 0, play to the end of the specified asset. If -1, end
playing at the previously specified endPos.

scale
Reserved. Set to 1:1.

98 Programmer’s Reference

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid stream handle

MS_BAD_START Stream does not contain this position

MS_BAD_STOP End position can never be reached

MS_BAD_SCALE Invalid scale

MS_BAD_ENTRY Invalid entry

MS_ALLOW_ERROR Allowance plug-in rejected authentication

msPause
Causes the VideoCharger Server to stop playing the stream.

If the stream is already paused, it will be treated as a no-op. If the stream has
already passed the requested pause position, the stream is paused immediately,
and the new current position is the requested paused position.

Note: After a stream is stopped, the stream might be restarted by using the msPlay
call.

Syntax
msRC_t msPause (

msStreamHandle_t streamHandle, // in
long entry, // in
msStreamMode mode, // in
msPos_t stopPos // in
);

Parameters

streamHandle
Identifier for play or record stream.

entry
Entry number of the asset to pause. If 0, refer to the current entry. (Not
applicable for msRecord. See “msPlay” on page 98 for details).

mode
MS_STOP or MS_PAUSE.

stopPos
Position at which the stop or pause will occur. If entry is the current entry and
the stopPos is 0 or less than the current position, the stream is paused
immediately. Otherwise, the stream will be stopped when it reaches the
requested stop position. See “msOpenPlayStream” on page 91 for definition of
msPos_t.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

Chapter 4. Control Server Application Programming Interfaces 99

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid stream handle

MS_BAD_STOP End position can never be reached

MS_BAD_ENTRY Invalid entry

MS_ALLOW_ERROR Allowance plug-in rejected authentication

msJump
Causes the server to start playing the stream at the position indicated by startPos,
after it reaches the stopPos, unless the stream is in pause mode. In this case, the
msPlay call must be issued to start playing the stream at the new position.

On AIX: startPos must be within the range specified in the msOpenPlayStream or
msUpdatePlayStream call.

On Windows: startPos must be within the range specified in the
msOpenPlayStream call.

Syntax
msRC_t msJump (

msStreamHandle_t streamHandle, // in
long entry, // in
msPos_t stopPos, // in
msPos_t startPos, // in
msScale_t scale // in
);

Parameters

streamHandle
Identifier for this stream.

entry
Entry number of the asset to jump to. If 0, refer to the current entry. (Not
applicable for msRecord. See “msPlay” on page 98 for details.)

stopPos
Position for stopping stream transport within the current asset. If 0, or current
position is already past the new stopPos, jump immediately. See
“msOpenPlayStream” on page 91 for definition of msPos_t.

startPos
Position to start stream transport. If 0, start at startPos position of the asset set
in the msOpenPlayStream or msUpdatePlayStream call. See
“msOpenPlayStream” on page 91 for definition of msPos_t.

scale
Scaling factor to be applied to the bit rate of the stream at the new startPos.
This parameter is currently not supported. (See “msOpenPlayStream” on
page 91 for a complete description of how scaling works).

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

100 Programmer’s Reference

MS_BAD_HANDLE Invalid stream handle

MS_BAD_START Stream does not contain this position

MS_BAD_STOP End position can never be reached

MS_BAD_OFFSET Invalid start or stop position

MS_BAD_ENTRY Invalid entry

MS_ALLOW_ERROR Allowance plug-in rejected authentication

msGetPlayStreamAttr
Gets attributes of a play stream.

Syntax
msRC_t msGetPlayStreamAttr (

msStreamHandle_t streamHandle, // in
long *count, // out
msPlayStreamEntry_t *buffer, // out
long *size // in and out
);

Parameters

streamHandle
Identifier for this play stream.

count
Pointer to the number of asset playlist entries in the stream.

buffer
Pointer to an array of play asset entries. A play asset entry is defined as
follows:
typedef struct _msPlayStreamEntry_t {

msAssetName_t assetName;
msPos_t startPos;
msPos_t endPos;
msScale_t scale;
long entry;
long label;
long nextLabel;

} msPlayStreamEntry_t;

If the buffer address is NULL or if the buffer size is too small:
v Required buffer size is returned in the size parameter.
v Total number of entries is returned in the count parameter.

size
Pointer to the size of the buffer.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid stream handle

MS_NO_RESOURCES Insufficient resource for request

MS_BAD_SIZE Buffer size too small

Chapter 4. Control Server Application Programming Interfaces 101

MS_ALLOW_ERROR Allowance plug-in rejected authentication

msGetPlayStatus
Requests the status of a play stream.

This call returns the mode of the stream, as well as the current position and rate of
the stream.

Syntax
msRC_t msGetPlayStatus (

msStreamHandle_t streamHandle, // in
msPlayStatus_t *status // out
);

Parameters

streamHandle
Identifier for this play stream.

status
Pointer to an msPlayStatus_t structure:
typedef struct _msPlayStatus_t {

msPortHandle_t port;
msAssetName_t assetName;
msStreamState state;
msPos_t position;
long bitRate;
msScale_t scale;
long assetEntry;
long assetLabel;

} msPlayStatus_t;

This structure contains the following information:

port
Identifier for the port handle of the stream.

state
Current state of the stream. The defined stream states are:

MS_STATE_PLAY
Stream is playing

MS_STATE_PAUSE
Stream is paused

MS_STATE_EOS
End of stream has been reached

assetEntry
Current asset entry number. If the state is MS_STATE_EOS, this returns the
last played entry.

The following parameter fields are returned when the state is in play or pause
mode:

assetName
The null-delimited name of the asset.

102 Programmer’s Reference

position
Current position of the stream. The returned position format
(MS_NPT_POS or MS_BYTE_POS) is based on the startPos format specified
in the msOpenPlayStream or the last msUpdatePlayStream call for the
current asset entry.

bitRate
Reserved play bit rate of the stream.

scale
Current play scale factor.

assetLabel
Current asset label.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid stream handle

MS_NO_RESOURCES Insufficient resource for request

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Control Server API Asset Management
These functions are used to determine the physical placement of assets and to
perform the transfer of asset data, based upon the characteristics of those assets.

API Usage Description

Following is the typical API sequence for writing an asset to a VideoCharger
1. msOpenSession: Session is established with the VideoCharger
2. msOpenAsset: Using the open mode to create a new asset, an asset is created

within the control server. At this point, the asset name is put into the catalog,
but other resources have yet to be allocated.

3. msSetAssetAttr: Physical properties of the asset are specified, including name,
size, duration, rate and usage. The VideoCharger uses this information to
allocate resources.

4. msWrite: Write asset data to the server. The client library handles this call and
actually writes the data to one or more Data Pumps.

5. msCloseAsset: The asset is closed and is now available to be played.
6. msCloseSession: Session with control server is closed.

Asset Names

Asset names are null-delimited character strings defined by msAssetName_t in the
msapi.h header file. Maximum size, including the NULL delimiter, is defined by
MS_MAX_NAME_LEN.

Asset Group Names

Asset group names are null-delimited character strings defined by
msAssetGroup_t in the msapi.h header file. Maximum size, including the null

Chapter 4. Control Server Application Programming Interfaces 103

delimiter, is defined by MS_MAX_ASSETNAME_LEN. If a default asset group was
configured, it can be referenced by MS_DEFAULT_ASSET_GROUP.

Asset Management States

The asset management states include:

Closed (C
Asset is closed.

Open (OR)
Asset is open and ready to accept read requests.

Open (OW)
Asset is open and ready to accept write requests.

Asset Management State Machine

Figure 8 shows the asset management state machine.

msListAssetGroups
Gets the list of configured asset group names.

Syntax

Figure 8. Asset management state machine

104 Programmer’s Reference

msRC_t msListAssetGroups (
msSessionHandle_t sessionHandle, // in
long *count, // out
msAssetGrpAttr_t *buffer, // out
long *size // in and out
);

Parameters

sessionHandle
Context of the session.

count
Pointer to the number of entries in the buffer.

buffer
Pointer to an array of structures that contain the asset group names and
attribute flags. Each asset group name in the buffer is a null-delimited
variable-length string.
typedef struct _msAssetGrpAttr_t {

msAssetGrpType type; // asset group type
msAssetGroup_t assetGroup; // asset group name

} msAssetGrpAttr_t;

The following asset group type flags are defined:

MS_AG_DEFAULT
Asset group is the default asset group.

MS_AG_CURRENT
Asset group is the current asset group.

If the buffer address is NULL or if the buffer size is too small:
v Required buffer size is returned in the size parameter.
v Total number of names is returned in the count parameter.

size
Pointer to the size of the buffer.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_SIZE Buffer size is too small.

MS_BAD_HANDLE Invalid session handle

MS_NULL_PARM count and size cannot be NULL

MS_ALLOW_ERROR Allowance plug-in rejected authentication

msListAssets
Gets a list of asset names associated with an asset group.

Because the list of asset names can be very large, several calls to msListAssets
might be required to get a complete list of assets names.

Chapter 4. Control Server Application Programming Interfaces 105

The msListAssets function is not a general purpose asset catalog service. The
VideoCharger does not lock or track updates to the asset list while sections of the
asset list are being sent to an application.

After the list of asset names has been obtained, an asset monitoring program could
enable MS_GLOBAL_EVENTS and MS_ASSET_EVENTS in the user callback
routine (see “msRegisterCallBack” on page 65). Doing so would notify the callback
routine when an asset is added, changed, or deleted.

Syntax
msRC_t msListAssets (

msSessionHandle_t sessionHandle, // in
msAssetName_t assetGroup, // in
long *count, // out
long *nextEntry, // in and out
char *buffer, // out
long size // in
);

Parameters

sessionHandle
Context of this session.

assetGroup
Address of the asset group name. If this is an empty string, the current asset
group is used. Set this parameter to MS_DEFAULT_ASSET_GROUP to
specify the default asset group

count
Pointer to the number of entries in the buffer.

nextEntry
Pointer to the position from which to start the list. To start at the beginning of
the list, set this parameter to zero. Upon return, this parameter will be one of
the following:

zero There are no more asset names to be returned.

non-zero There are more asset names to be returned. On subsequent
calls, return the value from the previous call.

buffer
Pointer to the buffer to return the asset names. Each asset name in the buffer is
a null-delimited, variable-length string.

size
Byte size of the buffer. A buffer size of BUFSIZ or greater is recommended.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid session handle

MS_NULL_PARM assetGroup, count, nextEntry and buffer cannot be NULL

MS_BAD_AGRP_NAME Invalid asset group

MS_ALLOW_ERROR Allowance plug-in rejected authentication

106 Programmer’s Reference

msOpenAsset
Returns an asset handle used in subsequent calls to record, read, or write data
from or to an asset.

Syntax
msRC_t msOpenAsset (

msSessionHandle_t sessionHandle, // in
char *assetName, // in
msAssetMode mode, // in
long copyRate, // in
msAssetHandle_t *assetHandle // out
);

Parameters

sessionHandle
Context of this session.

assetName
Name of the asset to be opened.

mode
Special open processing.

Only one of the following two options must be specified:

MS_O_READ
Open the asset for reading only. An asset can have multiple readers.

MS_O_WRITE
Open the asset for writing only. In addition, asset attributes, keyed
data and status can be read. An asset can have only one writer.

One or more of the following options can be OR’ed with one of the above
options.

MS_O_NSHARE
Open the asset for exclusive use.

One of the following options can be OR’ed with the MS_O_WRITE option.

MS_O_CREATE
Create the asset if it does not exist. If the asset already exists, then
MS_NAME_EXISTS is returned.

MS_O_TRUNCATE
Truncate all video content from the asset.

MS_O_APPEND
Position asset to the end-of-asset position.

An asset’s video data is automatically parsed as it is being written. When
sufficient video data has been parsed, asset attributes are automatically
updated. To suppress automatic parsing of video data and automatic updating
of asset attributes, specify the following option with either MS_O_CREATE or
MS_O_TRUNCATE.

MS_O_NPARSE
Suppress automatic asset parsing.

copyRate
Rate in bits per second at which this asset is to be read from, written to or

Chapter 4. Control Server Application Programming Interfaces 107

recorded to. Specify zero for best efforts without reservation. (Note: this
copyRate parameter is not the default play back bit rate. Default play back bit
rate is set by calling msSetAssetAttr.)

assetHandle
Context of this asset.

Return Codes

MS_SUCCESS Successful.

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid session handle

MS_NULL_PARM assetName and assetHandle cannot be NULL

MS_BAD_NAME Asset name is longer than
MS_MAX_ASSETNAME_LEN

MS_NAME_NOT_FOUND Asset name not found

MS_BAD_MODE Invalid mode or combination of modes

MS_BAD_RATE Copy rate cannot be less than zero

MS_SHARE_ERROR Asset cannot be shared.

MS_IN_USE Exclusive use denied. Asset is already in use

MS_NAME_EXISTS Asset already exists and could not be created

MS_CATALOG_ERROR Unable to access or modify asset catalog

MS_NO_RESOURCES Insufficient resources for request

MS_ASSET_BUSY Indicates asset is temporarily unavailable

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Comments

When an asset is created, it has the following attributes:

name As specified in msOpenAsset assetName parameter.

type As specified when the asset group (for this asset) was configured.

duration Set to 0:0:0:0.

frameRate Set to zero.

bitRate As specified when the asset group (for this asset) was configured.

numUsers Reserved; set to zero.

After the asset is created, its attributes can be reset using the msSetAssetAttr
function. Asset attributes are fully described under msSetAssetAttr.

Restrictions

The copyRate parameter in msOpenAsset is intended for use with real-time
sequential reads or real-time sequential writes. In particular, it is meant to support
the playing of an asset while it is being loaded. Real-time random access and
real-time interleaved reads and writes are not supported.

The following restriction applies when the copyRate parameter is non-zero:

108 Programmer’s Reference

v msSeek() is not allowed.

The following restrictions apply when the mode parameter specifies MS_O_WRITE:
v msSeek() is not allowed.
v MS_O_CREATE , MS_O_TRUNCATE, or MS_O_APPEND is required if an

encoded video stream is to be written. In place updating of the encoded video
stream of an existing asset is not supported.

The following restriction applies when the copyRate parameter is non-zero and the
mode parameter is MS_O_WRITE:
v Either MS_O_CREATE or MS_O_TRUNCATE must be specified.

Example

Open a movie (asset) whose title is, for example, It’s a Great Life:
msSessionHandle_tsession;
msAssetHandle_tmovie;

msServerName_t vcsrvname;
strcpy(vcsrvname, "");
msServerInstance_t vcinst;
strcpy(vcinst, "");
msAppSignature_t vcsig;
strcpy(vcsig, "");
msOpenSession(vcsrvname, vcinst, MS_DEFAULT_ASSET_GROUP, vcsig, &session);
msAuthenticate(session, credentials, authentication);
msOpenAsset(session, "It’s a Great Life", MS_O_READ, 0, &movie);

msCloseAsset
Closes an open asset.

Syntax
msRC_t msCloseAsset (

msAssetHandle_t assetHandle // in
);

Parameters

assetHandle
Asset handle that was returned by a previous call to msOpenAsset.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid asset handle

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example

Close a movie:
msAssetHandle_t movie;

msCloseAsset(movie);

Chapter 4. Control Server Application Programming Interfaces 109

msDeleteAsset
Deletes an asset.

Syntax
msRC_t msDeleteAsset (

msSessionHandle_t sessionHandle, // in
char *assetName, // in
msDeleteCondition condition // in
);

Parameters

sessionHandle
Handle returned by a previous call to msOpenSession. This handle uniquely
identifies the server from which the asset will be deleted.

assetName
Pointer to a null-delimited string naming the asset to be deleted.

condition
Condition for deleting the asset:

MS_DELETE_SAFE
Delete the asset only if all asset resources are inactive.

MS_DELETE_QUIESCE
Mark the asset as not available and defer deletion until the asset is no
longer in use.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid session handle

MS_BAD_CONDITION Invalid condition

MS_NULL_PARM assetName cannot be NULL

MS_NAME_NOT_FOUND Asset name not found

MS_IN_USE Asset is in use and cannot be deleted

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example

Delete a movie, for example, Plan 9 From Outer Space, from the archive.
msSessionHandle_t session;
msServerInstance_t vcinst;
strcpy(vcinst, "");
msAppSignature_t vcsig;
strcpy(vcsig, "");
msOpenSession("myArchive.myCompany.com", vcinst,

"myArchive/ScienceFiction", vcsig, &session);
msAuthenticate(session, credentials, authentication);
msDeleteAsset(session, "Plan 9 From Outer Space", MS_DELETE_QUIESCE);
msCloseSession(session);

110 Programmer’s Reference

msSetAssetAttr
Sets asset attributes. The asset must be opened in write mode.

Syntax
msRC_t msSetAssetAttr (

msAssetHandle_t asset, // in
msAssetAttrFlags flags, // in
msAssetAttributes_t *attributes // in
);

Parameters

asset
Handle returned by a previous call to msOpenAsset. This handle uniquely
identifies the asset.

flags
Bit mask built up by OR’ing together attribute flags. Attribute flags specify
which values in the asset attributes structure are being set. The asset attribute
flags are:

MS_ASSET_NAME
Set asset name.

MS_ASSET_TYPE
Set asset type.

MS_ASSET_DURATION
Set asset duration.

MS_ASSET_FRAME_RATE
Set asset frame rate.

MS_ASSET_BIT_RATE
Set asset bit rate.

MS_ASSET_ALL
Set all asset attributes.

attributes
Address of an asset attributes structure. The following attributes can be set:

name Asset name is a null-delimited character string. Maximum
number of characters is 255.

duration Length of the asset in SMPTE units (hours (0-23), minutes
(0-59), seconds (0-59), and frames 0-30)).

frameRate Average play back rate of the asset in frames per second.

bitRate Average playback rate of the asset in bits per second. The
VideoCharger uses this field as the default playback rate of the
asset. (Note: the bit rate returned by msGetAssetStatus is the
copy rate at which the asset was opened.)

type Type of asset, made up of five components:
1. Type of asset:

MS_MPEG1 MPEG 1: audio and/or video.

MS_MPEG2 MPEG 2: audio and/or video.

MS_MPEG4 MPEG-4: audio and/or video.

Chapter 4. Control Server Application Programming Interfaces 111

MS_AVI AVI: audio and/or video.

MS_MJPEG MJPEG: video only.

MS_H 263 H.263: video only.

MS_G 723 G.723: audio only.

MS_LBR Interleaved MS_H263 and MS_G 723.

MS_MOV QuickTime: audio and/or video.

MS_WAV WAV: audio only.

MS_MVR HotMedia®: audio and/or video.
2. Optional format which may be OR’ed with MS_MPEG1 or

MS_MPEG2. The following formats are defined:

MS_SIF
240 horizontal lines with 352 pixels per line at 30
frames per second.

MS_CCIR601
240 horizontal lines with 720 pixels per line at 60
frames per second.

MS_HHR
120 horizontal lines with 720 pixels per line at 60
frames per second.

3. Optional resolution which may be OR’ed with MS_MPEG1
or MS_MPEG2. The following resolutions are defined:

MS_NTSC
NTSC television resolution: 525 horizontal lines of
which 480 are used for picture, each containing 704
pixels. The 480 lines of picture are made up of two
interlaced fields: 240 odd lines and 240 even lines.

MS_PAL
PAL® television resolution: similar to NTSC, but
with 625 horizontal lines per frame.

4. Optional composition which may be OR’ed with
MS_MPEG1. The following resolutions are defined:

MS_SYSSTR
MPEG system stream.

Optional composition which may be OR’ed with
MS_MPEG2. The following resolutions are defined:

MS_TRANSTR
MPEG transport stream.

MS_PGMSTR
MPEG program stream.

Optional composition which may be OR’ed with any
format. The following resolutions are defined:

MS_AUDIO
Audio only stream. For example, MP3 files.

MS_VIDEO
Video only stream.

112 Programmer’s Reference

5. Optional enryption which can be OR’ed with any format:

MS_ENCRYPTED
Flag definition to indicate encrypted content.

typedef struct _msSMPTE_t {
uchar hours; // # of hours
uchar minutes; // # of minutes past the hour
uchar seconds; // # of seconds past the minute
uchar frames; // # of frames past the second

} msSMPTE_t;

typedef struct _msAssetAttributes_t {
msAssetName_t name; // asset name
msStreamType type; // type of asset
msSMPTE_t duration; // estimated length in SMPTE
float frameRate; // playback rate in frames/sec
long bitRate; // playback rate in bits/sec
long numUsers; // (reserved - set to zero)
long reserved[2];

} msAssetAttributes_t;

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid asset handle

MS_BAD_FLAG Invalid attribute flag

MS_BITRATE_REQ If flagged, bitrate must be greater than zero

MS_NUM_USERS_REQ If flagged, number of users must be greater than zero

MS_NULL_PARM attributes cannot be NULL

MS_BAD_STATE Invalid state

MS_DISK_BW_EXCEEDED Insufficient disk bandwidth

MS_DAP_BW_EXCEEDED Insufficient data pump bandwidth

MS_NO_SPACE No space available

MS_NO_RESOURCES Insufficient resources for request

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example

Set the asset attributes of a movie called, for example, A Day In The Sun:
msSessionHandle_t session;
msAssetHandle_t asset;
msAssetAttributes_t attr;

strcpy(attr.name, "A Day In The Sun");
attr.type = MS_MPEG1;
attr.duration.hours = 1;
attr.duration.minutes = 32;
attr.duration.seconds = 18;
attr.duration.frames = 6;
attr.frameRate = 26;
attr.bitRate = 3000000;
msServerName_t vcsrvname;
strcpy(vcsrvname, "");
msServerInstance_t vcinst;

Chapter 4. Control Server Application Programming Interfaces 113

strcpy(vcinst, "");
msAppSignature_t vcsig;
strcpy(vcsig, "");
msOpenSession(vcsrvname, vcinst, MS_DEFAULT_ASSET_GROUP, vcsig, &session);
msAuthenticate(session, credentials, authentication);
msOpenAsset(session, attr.name, MS_O_WRITE, 0, &asset);
msSetAssetAttr(asset, MS_ASSET_ALL, &attr);

msGetAssetAttr
Gets asset attributes. The asset must be opened in read mode.

Syntax
msRC_t msGetAssetAttr (

msAssetHandle_t asset, // in
msAssetAttributes_t *attributes // out
);

Parameters

asset
Handle returned by a previous call to msOpenAsset. This handle uniquely
identifies the asset.

attributes
Address of an assetAttributes_t structure.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid asset handle

MS_NULL_PARM attributes cannot be NULL

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example

Get the asset attributes of a movie called, for example, A Day In The Sun:
msSessionHandle_t session;
msAssetHandle_t asset;
msAssetAttributes_t attr;

msServerName_t vcsrvname;
strcpy(vcsrvname, "");
msServerInstance_t vcinst;
strcpy(vcinst, "");
msAppSignature_t vcsig;
strcpy(vcsig, "");

msOpenSession(vcsrvname, vcinst, "myAssetGroup", vcsig, &session);
msAuthenticate(session, credentials, authentication);
msOpenAsset(session, "A Day In The Sun", MS_O_READ, 0, &asset);
msGetAssetAttr(asset, &attr);
msCloseAsset(asset);
msCloseSession(session);

114 Programmer’s Reference

msSetAssetInfo
Sets asset attributes. The asset must be opened in write mode.

Asset attributes can be used for:
v application specific data
v network access routines (NAR). The header file for a NAR must contain the

definition of the key and the data structures that are to be stored and/or
retrieved. The header file for a NAR is provided by your NAR provider.

Syntax
msRC_t msSetAssetInfo (

msAssetHandle_t assetHandle, // in
msAssetDataKey key, // in
char *buffer, // in
long size // in
);

Parameters

assetHandle
Identifier for the asset.

key
Key that will be associated with this data. If the key already exists, the existing
data will be replaced with the new data from this call. The following data keys
are defined:

MS_KEY_PRIVATE
Application specific data. Maximum size of the data is 8192 bytes.

MS_KEY_VDEC
Reserved.

MS_KEY_IVS_CLIENT
VideoCharger Server specific data. Maximum size of the data is 16
kilobytes.

MS_KEY_ATM
Reserved.

MS_KEY_MSC
Reserved.

MS_KEY_ALL
All keyed data. Use this key to get or set all of the keyed data
associated with an asset.

MS_KEY_SESSINFO
Quicktime session descriptor. Maximum size of the data is 16 kilobytes.

Keys in the range of 0-1024 are reserved for system definitions. Values outside
of this range are available as user defined for application usage.

buffer
Address of the asset data buffer. If the address of the buffer is NULL and the
size parameter is set to zero, the asset data associated with the key and the key
itself will be deleted.

Chapter 4. Control Server Application Programming Interfaces 115

size
Byte size of the buffer. If the size parameter is set to zero and the address of
the buffer is NULL, the asset data associated with the key and the key itself
will be deleted.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid asset handle

MS_NULL_PARM size cannot be NULL

MS_BAD_SIZE size cannot be negative or greater than 8192

MS_NO_RESOURCES Insufficient resources for request

MS_BAD_STATE Invalid state

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example

Store the movie release date and movie studio information with a movie asset:
msSessionHandle_t session;
msAssetHandle_t movie;

struct {
int year;
int month;
int day;
char studio[255];

} myAssetData = { 1994, 12, 5, "XYZ Movie Company" };

msServerName_t vcsrvname;
strcpy(vcsrvname, "");
msServerInstance_t vcinst;
strcpy(vcinst, "");
msAppSignature_t vcsig;
strcpy(vcsig, "");

msOpenSession(vcsrvname, vcinst, MS_DEFAULT_ASSET_GROUP, vcsig, &session);
msAuthenticate(session, credentials, authentication);
msOpenAsset(session, "Our Town", MS_O_WRITE, 0, &movie);
msSetAssetInfo(movie, MS_KEY_PRIVATE, (char *) myAssetData, sizeof(myAssetData));
msClose(movie);

msCloseSession(session);

msGetAssetInfo
Gets asset attributes. The asset must be opened in read mode.

Syntax
msRC_t msGetAssetInfo (

msAssetHandle_t assetHandle, //in
msAssetDataKey key, // in
char *buffer, // out and in
long *size, // in and out
);

Parameters

assetHandle
Identifier for the asset.

116 Programmer’s Reference

key
Key used to obtain specific asset data.

buffer
Address of a buffer where the requested data will be returned.

If the buffer address is NULL or if the buffer size is too small, the required
buffer size is returned in the size parameter.

size
Pointer to the byte size of the buffer.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid asset handle

MS_NULL_PARM size cannot be NULL

MS_BAD_SIZE Buffer size too small

MS_BAD_KEY Key not found

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example

Get application’s private data associated with the asset called, for example, It’s
Going To Work!:
msSessionHandle_t session;
msAssetHandle_t movie;
privateData_t *buffer;
long size;

msServerName_t vcsrvname;
strcpy(vcsrvname, "");
msServerInstance_t vcinst;
strcpy(vcinst, "");
msAppSignature_t vcsig;
strcpy(vcsig, "");

msOpenSession(vcsrvname, vcinst, MS_DEFAULT_ASSET_GROUP, vcsig, &session);
msAuthenticate(session, credentials, authentication);
msOpenAsset(session, "It’s Going To Work!", MS_O_READ, 0, &movie);
// get size of the private data
msGetAssetInfo(movie, MS_KEY_PRIVATE, NULL, &size);
buffer = (privateData_t *)malloc(size);
// get private data
msGetAssetInfo(movie, MS_KEY_PRIVATE, buffer, &size);

msGetAssetStatus
Gets the status of an asset.

Syntax
msRC_t msGetAssetStatus (

msAssetHandle_t assetHandle, // in
msAssetStatus_t *assetStatus // out
);

Chapter 4. Control Server Application Programming Interfaces 117

Parameters

assetHandle
Identifier for the asset.

assetStatus
Asset status is defined by the following structure:
typedef struct _msAssetStatus_t {

msInt64_t size; // current byte size
long bitRate; // copy rate
msAssetMode mode; // open mode
msAssetFlags flags; // asset information flags
msAssetDate_t create; // created date
msAssetDate_t modify; // last modified date
msAssetDate_t access; // last accessed date
long writers; // number of writers
long readers; // number of readers
msInt64_t resvSize; // size reservation

} msAssetStatus_t;

where:

size Current byte size of the asset.

bitRate Rate in bits per second at which this asset is read or written. If
zero, the rate is unknown. (Note: the bit rate that is set by
msSetAssetAttr and retrieved by msGetAssetAttr is the
default bit rate used to play an asset.)

mode See “msOpenAsset” on page 107 for a description of asset open
modes.

flags The following flag is defined: MS_ASSET_LOADING. If this
flag is set, the asset is being loaded.

create Date and time when the asset was created.

modify Date and time when the asset was last modified.

access Date and time when the asset was last accessed.

writers The number of writers to this asset.

readers The number of readers from this asset.

resvSize The number of bytes reserved for this asset. An application can
compare the size parameter and resvSize parameter to monitor
the progress of asset loading (msLoad) or staging (msStage). If
an asset is being written (msWrite) or recorded
(msOpenRecordStream) then the resvSize parameter is set to
zero. In all cases, once an asset is loaded and closed, the
resvSize parameter will equal the size parameter.

Comments

If the MS_ASSET_LOADING flag is set, then the resvSize parameter represents the
reserved size of the asset when loading is complete. If the MS_ASSET_LOADING
flag is not set, then the resvSize parameter and the size parameter are the same. If
the resvSize parameter is zero, then the reserved size of the asset cannot be
determined (as when recording or writing to the asset).

118 Programmer’s Reference

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid asset handle

MS_NULL_PARM assetStatus cannot be NULL

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example

Get the status of an asset:
msSessionHandle_t session;
msAssetHandle_t movie;
msAssetStatus_t status;

msServerName_t vcsrvname;
strcpy(vcsrvname, "");
msServerInstance_t vcinst;
strcpy(vcinst, "");
msAppSignature_t vcsig;
strcpy(vcsig, "");

msOpenSession(vcsrvname, vcinst, MS_DEFAULT_ASSET_GROUP, vcsig, &session);
msAuthenticate(session, credentials, authentication);
msOpenAsset(session, "It’s Going To Work!", MS_O_READ, 0, &movie);
msGetAssetStatus(movie, &status);
if (status.resvSize)

printf("Asset is %d%% loaded\n",
(status.size * 100) / status.resvSize);

msGetAssetGrpStatus
Gets the status of an asset group.

Syntax
msRC_t msGetAssetGrpStatus (

msSessionHandle_t sessionHandle, // in
msAssetGroup_t assetGroup, // in
msAssetGrpStatus_t *assetGrpStatus // out
);

Parameters

sessionHandle
Context of this session.

assetGroup
Name of the asset group.

assetGrpStatus
Asset group status is defined by the following structure:
typedef struct _msAssetGrpStatus_t {

msAssetGrpType_t type; // MS_AG_DEFAULT or zero
msInt64_t maxSpace; // maximum space
msInt64_t allocSpace; // allocated space
long numAssets; // number of assets

} msAssetGrpStatus_t;

Chapter 4. Control Server Application Programming Interfaces 119

where:

type MS_AG_DEFAULT if this asset group is the default asset group; zero
otherwise.

maxSpace
The maximum amount of space (in bytes) for assets within this asset
group.

allocSpace
The amount of space (in bytes) that has been allocated for assets within
this asset group.

numAssets
The number of assets within this asset group.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid asset handle

MS_NULL_PARM assetGrpStatus cannot be NULL

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example

Get the status of the default asset group:
msSessionHandle_t session;
msAssetGrpStatus_t status;

msServerName_t vcsrvname;
strcpy(vcsrvname, "");
msServerInstance_t vcinst;
strcpy(vcinst, "");
msAppSignature_t vcsig;
strcpy(vcsig, "");

msOpenSession(vcsrvname, vcinst, MS_DEFAULT_ASSET_GROUP, vcsig, &session);
msAuthenticate(session, credentials, authentication);
msGetAssetGrpStatus(session, "", &status);

msStage
Stages (copies) an asset from one server to one or more other servers. When an
asset is staged, the asset content, attributes, and metadata are copied to the
destination server(s). If the asset already exists on a destination server, it will not
be updated and an MS_EV_STAGE_ERROR event will be generated.

Due to the length of time a stage operation can take, the msStage function works
asynchronously; that is, it returns after initiating the stage operation. The asset
being staged must be opened in read mode. You can determine the progress of the
stage by calling msGetAssetStatus. You can cancel the stage by calling
msCloseAsset.

Syntax

120 Programmer’s Reference

msRC_t msStage (
msAssetHandle_t assetHandle, // in
long numLocations, // in
msAssetLocation_t *assetLocation, // in
msInt64_t startOffset, // in
msInt64_t endOffset // in
);

Parameters

assetHandle
Identifier of the asset on the sending server.

numLocations
The number of locations to which the asset will be staged.

assetLocation
Pointer to an array of asset locations. Each asset location has the following
format:
typedef struct _msAssetLocation_t {

msServerName_t serverName; // server name
msServerInstance_t serverInstance; // (reserved)
msAssetGroup_t assetGroup; // asset group name
msAssetName_t assetName; // asset name
long numUsers; // (reserved)

} msAssetLocation_t;

startOffset
Byte offset within the asset at which to begin staging. Must be zero, which
starts staging at the beginning of the asset.

endOffset
Byte offset within the asset at which to end staging. Must be zero, which ends
staging at the end of the asset.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid session or asset handle

MS_NULL_PARM assetLocation cannot be NULL

MS_BAD_NAME Invalid server name

MS_BAD_ASSET_GRP Invalid asset group

MS_NAME_NOT_FOUND Asset name not found

MS_BAD_STAGE Stage failed

MS_BAD_STATE Invalid state

MS_DISK_BW_EXCEEDED Insufficient disk bandwidth

MS_DAP_BW_EXCEEDED Insufficient data pump bandwidth

MS_NO_SPACE No space available

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example

Chapter 4. Control Server Application Programming Interfaces 121

Stage the movie Stagecoach, for example, from the Archive to the ″Feature Movies″
asset group on the default server. The host name of the Archive is
″myArchive.myCompany.com″, the name of the archive asset group is
″Movies/Features’ and the name of the asset is Stagecoach.
msSessionHandle_t session;
msAssetHandle_t asset;
msLocation_t dest = { "", "", "Feature Movies", "Stagecoach", 1 };

void myCallBack(msEvent_t *event)
{

if (event->type == MS_ASSET_EVENT)
if (event->asset.event == MS_EV_STAGE_ERROR) {

printf("Error %d staging to asset %s\n", event->asset.result);
return;

} else if (event->asset.event == MS_EV_STAGE_COMPLETE) {
exit(0);

}
}

}

main()
{

msServerInstance_t vcinst;
strcpy(vcinst, "");
msAppSignature_t vcsig;
strcpy(vcsig, "");

msOpenSession("myArchive.myCompany.com", vcinst,
"Movies/Features", vcsig, &session);

msAuthenticate(session, credentials, authentication);
msRegisterCallBack(session, MS_ASSET_EVENTS, myCallBack);
msOpenAsset(session, "Stagecoach", MS_O_READ, 0, &asset);
msStage(asset, 1, &dest, 0, 0);
// Wait for the MS_EV_STAGE_COMPLETE event.
pause();
return(0);

}

msExport
Copies assets from the VideoCharger Server to any machine with an FTP daemon.

Due to the length of time a export operation can take, the msExport function
works asynchronously; that is, it returns after initiating the export operation. You
can cancel the export by calling msCloseAsset.

Syntax
msRC_t msExport (

msAssetHandle_t assetHandle, // in
msHostName_t hostName, // in
msUserID_t userID, // in
msPassword_t password, // in
msPathName_t fileName // in
);

Parameters

assetHandle
Handle returned by a previous call to msOpenAsset. This handle uniquely
identifies the asset.

hostName
The target host name where the file is to be transferred to.

122 Programmer’s Reference

userID
A user ID on the host specified by the hostName parameter. If NULL is
specified then the user ID defaults to anonymous.

password
The password for the specified user ID. If NULL is specified, then the
password defaults to the null string.

fileName
A file name array of null delimited, fully qualified file names.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid asset handle

MS_NULL_PARM attributes and fileName cannot be NULL

MS_DISK_BW_EXCEEDED Insufficient disk bandwidth

MS_DAP_BW_EXCEEDED Insufficient data pump bandwidth

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example

Export the movie myasset from the VideoCharger Server to a machine with host
name ″myDataServer.myCompany.com″ (user ID ″target1″ and password ″i4got″),
and save the movie as /home/provider1/somefile.
msSessionHandle_t session;
msAssetHandle_t asset;
msAssetAttribute_t attr;
char *hostName = "myDataServer.myCompany.com";
char *userID = "target1";
char *password = "i4got";
char *assetName="myasset";
msPathName_t filename = "/home/provider1/somefile",
msInit(0, 0, MS_CURRENT_VERSION);

msServerName_t vcsrvname;
strcpy(vcsrvname, "");
msServerInstance_t vcinst;
strcpy(vcinst, "");
msAppSignature_t vcsig;
strcpy(vcsig, "");

msOpenSession (vcsrvname, vcinst, MS_DEFAULT_ASSET_GROUP, vcsig, &sessionHandle);
msAuthenticate(session, credentials, authentication);
msRegisterCallBack(sessionHandle, MS_ALL_EVENTS, callBack);
msOpenAsset (sessionHandle,assetName, msAssetMode(MS_O_READ), 0, &assetHandle);
msExport(assetHandle, hostName, userID, password, fileName);

wait_for (MS_EV_EXPORT_COMPLETE);

msUnregisterCallBack(sessionHandle);
msCloseAsset(assetHandle);
msCloseSession(sessionHandle);

Chapter 4. Control Server Application Programming Interfaces 123

msLoad
Copies an existing data file to a VideoCharger Server.

Due to the length of time a load operation can take, the msLoad function works
asynchronously; that is, it returns after initiating the load operation. The asset
being loaded must be opened in write mode. You can determine the progress of
the load by calling msGetAssetStatus. You can cancel the load by calling
msCloseAsset.

For AIX only: As data is being loaded, it is automatically parsed and asset
attributes are automatically updated. These actions can be suppressed by
specifying MS_O_NPARSE when msOpenAsset is called.

Syntax
msRC_t msLoad (

msAssetHandle_t assetHandle, // in
msAssetAttrFlags flags, // in
msAssetAttributes_t *attributes, // in
msHostName_t hostName, // in
msUserID_t userID, // in
msPassword_t password, // in
long numFiles, // in
msPathName_t fileName[] // in
);

Parameters

assetHandle
Handle returned by a previous call to msOpenAsset. This handle uniquely
identifies the asset.

flags
Bit mask that is built up by OR’ing together attribute flags. Attribute flags
specify which values in asset attributes structure are being set. See
“msSetAssetAttr” on page 111 for a description of these flags.

attributes
Address of an asset attributes structure. See “msSetAssetAttr” on page 111 for a
description of these attributes.

hostName
The host name where the file or files are to be transferred from.

userID
A user id on the host specified by the hostName parameter. If NULL is
specified then the user ID defaults to ″anonymous″.

password
The password for the specified user ID. If NULL is specified, the password
defaults to the null string.

numFiles
The number of file names in the file name array.

fileName
A file name array of null delimited, fully qualified file names.

All of the files in the array will be concatenated together to form a single asset.
In this way, very large assets can be created from systems that do not support
very large files.

124 Programmer’s Reference

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid asset handle

MS_NULL_PARM attributes and fileName cannot be NULL

MS_BAD_STATE Invalid state

MS_DISK_BW_EXCEEDED Insufficient disk bandwidth

MS_DAP_BW_EXCEEDED Insufficient data pump bandwidth

MS_NO_SPACE No space available

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example

Load a video file onto the VideoCharger Server:
msSessionHandle_t session;
msAssetHandle_t asset;
msAssetAttribute_t attr;
char *hostName = "myDataServer.myCompany.com";
char *userID = "provider1";
char *password = "14got";
msPathName_t filename[] = "/home/provider1/current/first_half",

"/home/provider1/current/second_half";

strcpy(attr.name, "Lawnmower Man");
attr.type = MS_MPEG1;
attr.duration.hours = 1;
attr.duration.minutes = 32;
attr.duration.seconds = 18;
attr.duration.frames = 6;
attr.frameRate = 26;
attr.bitRate = 3000000;
attr.numUsers = 0;
attr.options = 0;

msServerName_t vcsrvname;
strcpy(vcsrvname, "");
msServerInstance_t vcinst;
strcpy(vcinst, "");
msAppSignature_t vcsig;
strcpy(vcsig, "");

msOpenSession(vcsrvname, vcinst, MS_DEFAULT_ASSET_GROUP, vcsig, &session);
msAuthenticate(session, credentials, authentication);
msRegisterCallBack(sessionHandle, MS_ALL_EVENTS, callBack);
msOpenAsset(session, attr.name,

MS_O_WRITE | MS_O_CREATE | MS_O_NSHARE, 0, &asset)

msLoad(asset, MS_ASSET_ALL, &attr, hostName, userID, password, &fileName);
wait_for (MS_EV_LOAD_COMPLETE);

msUnregisterCallBack(sessionHandle);
msCloseAsset(asset);
msCloseSession(session);

Chapter 4. Control Server Application Programming Interfaces 125

msRead
Reads data from an asset. Each successive call to msRead reads a sequential
number of bytes from the current position. The asset must be opened in read
mode.

Syntax
msRC_t msRead (

msAssetHandle_t assetHandle, // in
char *buffer, // out
long size, // in
long *bytesRead // out
);

Parameters

assetHandle
Identifier for the asset.

buffer
Pointer to the buffer to which data will be transferred.

size
Number of bytes to read.

bytesRead
Number of bytes actually read.

Return Codes

MS_SUCCESS Successful.

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid asset handle

MS_NULL_PARM buffer and bytesRead cannot be NULL

MS_READ_EOA End of asset reached

MS_BAD_STATE Invalid state

MS_DISK_BW_EXCEEDED Insufficient disk bandwidth

MS_DAP_BW_EXCEEDED Insufficient data pump bandwidth

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example

Read the movie The Seven Samurai, for example, from the default server and write
it to an arbitrary block device. Do not allow any other access to this asset during
this operation.
msSessionHandle_t session;
msAssetHandle_t asset;
int dev;
long bytesRead;
char buffer[BUFSIZ];

msServerName_t vcsrvname;
strcpy(vcsrvname, "");
msServerInstance_t vcinst;
strcpy(vcinst, "");

126 Programmer’s Reference

msAppSignature_t vcsig;
strcpy(vcsig, "");

msOpenSession(vcsrvname, vcinst, MS_DEFAULT_ASSET_GROUP, vcsig, &session);
msAuthenticate(session, credentials, authentication);
msOpenAsset(session, "The Seven Samurai",MS_O_READ | MS_O_NSHARE, 0, &asset)

dev = open("/dev/myBlockDevice", O_WRONLY);

do {
msRead(asset, buffer, BUFSIZ, &bytesRead);
write(dev, buffer, bytesRead);

} while (bytesRead == BUFSIZ);

msCloseAsset(asset);
msCloseSession(session);

msWrite
Writes data to an asset. Each successive call to msWrite writes a sequential number
of bytes to the end of the asset. The asset must be opened in write mode.

As data is being loaded, it is automatically parsed and asset attributes are
automatically updated. These actions can be suppressed by specifying
MS_O_NPARSE when msOpenAsset is called.

Syntax
msRC_t msWrite (

msAssetHandle_t assetHandle, // in
char *buffer, // in
long size, // in
long *bytesWritten // out
);

Parameters

assetHandle
Identifier for the asset.

buffer
Pointer to the buffer from which data will be written.

size
Number of bytes to write.

bytesWritten
Number of bytes actually written.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid asset handle

MS_NULL_PARM buffer and bytesWritten cannot be NULL

MS_BAD_STATE Invalid state

MS_DISK_BW_EXCEEDED Insufficient disk bandwidth

MS_DAP_BW_EXCEEDED Insufficient data pump bandwidth

Chapter 4. Control Server Application Programming Interfaces 127

MS_NO_SPACE No space available

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example

Import the movie The Seven Samurai, for example, from digital tape to a new asset
on the server. Assume that the movie attributes have already been put into an
msAssetAttributes_t structure called attr.
msSessionHandle_t session;
msAssetHandle_t asset;
msAssetAttributes_t attr; // assume that this is already filled in
int tape;
long bytesRead, bytesWritten;
char buffer[BUFSIZ];

msServerName_t vcsrvname;
strcpy(vcsrvname, "");
msServerInstance_t vcinst;
strcpy(vcinst, "");
msAppSignature_t vcsig;
strcpy(vcsig, "");

msOpenSession(vcsrvname, vcinst, MS_DEFAULT_ASSET_GROUP, vcsig, &session);
msAuthenticate(session, credentials, authentication);
msOpenAsset(session, attr.name, MS_O_WRITE | MS_O_CREATE, attr.bitRate, &asset)

msSetAssetAttr(asset, MS_ASSET_ALL, &attr);

tape = open("/dev/rmt0", O_RDONLY);

do {
bytesRead = read(tape, buffer, BUFSIZ,);
msWrite(asset, buffer, bytesRead, &bytesWritten);

} while (bytesWritten == BUFSIZ);

msCloseAsset(asset);
msCloseSession(session);

msSeek
Sets the current byte position within an asset that is being read. Subsequent calls to
msRead will begin data transfer from the newly set position.

msSeek only works in conjunction with msRead. It has no effect on writing
position, staging position or streaming position. The asset must be opened in read
mode.

Syntax
msRC_t msSeek (

msAssetHandle_t assetHandle, // in
msSeekWhence whence, // in
msInt64_t offset // in
);

Parameters

assetHandle
Identifier for the asset.

128 Programmer’s Reference

offset
64-bit integer that specifies a byte offset into the asset which is being read.

whence
Specifies how the offset parameter is to be used. The following options are
available:

MS_SEEK_SET
Set the asset-byte position to the value of the offset parameter.

MS_SEEK_CUR
Set the asset-byte position to its current position plus the value
of the offset parameter.

MS_SEEK_END
Set the asset-byte position to the byte size of the asset.

An error occurs if the resulting asset-byte position is greater than the byte size
of the asset.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid asset handle

MS_BAD_OFFSET Resulting offset is greater than the asset byte size

MS_BAD_OPTION Invalid positioning option was passed

MS_BAD_STATE Invalid state

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example

Read a section of an asset called ″Plan 9″ from byte offset 210418 up to byte offset
300490:
msSessionHandle_t session;
msAssetHandle_t asset;
msInt64_t offset;
int i;
int limit = 300490;
int bytesRead;
int size = BUFSIZ;
char buffer[BUFSIZ];

msServerName_t vcsrvname;
strcpy(vcsrvname, "");
msServerInstance_t vcinst;
strcpy(vcinst, "");
msAppSignature_t vcsig;
strcpy(vcsig, "");

msOpenSession(vservername, vcinst, MS_DEFAULT_ASSET_GROUP, vcsig, &session);
msAuthenticate(session, credentials, authentication);
msOpenAsset(session, "Plan 9", MS_O_READ, 0, &asset)

offset.hi = 0;
offset.lo = 210418;
msSeek(asset, MS_SEEK_SET, offset);

Chapter 4. Control Server Application Programming Interfaces 129

for (i = 210418; i < limit; i += bytesRead)
{

if (i + BUFSIZ >= limit)
size = limit - i;

msRead(asset, buffer, size, &bytesRead);
// do something with the buffer ...

}

msCloseAsset(asset);
msCloseSession(session);

msRawAdd
Associates an existing file on a data pump with an asset. The asset must be opened
in write mode.

An asset added via msRawAdd is not automatically parsed and the asset attributes
are not automatically updated.

Syntax
msRC_t msRawAdd (

msAssetHandle_t assetHandle, // in
msAssetAttrFlags flags, // in
msAssetAttributes_t *attributes, // in
char *URLName // in
);

Parameters

assetHandle
Handle returned by a previous call to msOpenAsset. This handle uniquely
identifies the asset.

flags
Bit mask that is built up by OR’ing together attribute flags. Attribute flags
specify which values in asset attributes structure are being set. See
“msSetAssetAttr” on page 111 for a description of these flags.

attributes
Address of an asset attributes structure. See “msSetAssetAttr” on page 111 for a
description of these attributes.

URLName
Address of a Uniform Resource Locator (Web address) name of the file. Format
of the Web address name is:
//host_name/fully_qualified_file_name

Attention: The host name specified must match the network host name
specified when the data pump was configured.

Return Codes

MS_SUCCESS Successful

MS_RPC_ERROR RPC system error

MS_SYS_INTERR Internal system error

MS_BAD_HANDLE Invalid asset handle

MS_NULL_PARM attributes and URLName cannot be NULL

MS_BAD_NAME Invalid Web address name

130 Programmer’s Reference

MS_BAD_STRIPE_GRP Web address name does not reference a valid stripe
group

MS_BAD_ASSET_GRP Asset group does not contain stripe group

MS_BAD_STATE Invalid state

MS_DISK_BW_EXCEEDED Insufficient disk bandwidth

MS_DAP_BW_EXCEEDED Insufficient data pump bandwidth

MS_NO_SPACE No space available

MS_ALLOW_ERROR Allowance plug-in rejected authentication

Example

After using FTP to put a file, for example ″Lawnmower Man,″ on a data pump,
enable it for use by the VideoCharger:
msSessionHandle_t session;
msAssetHandle_t asset;
msAssetAttribute_t attr;
char *Web address = "//myDataServer.myCompany.com/myMountPoint/myStripGroup/myFile";
strcpy(attr.name, "Lawnmower Man");
attr.type = MS_MPEG1;
attr.duration.hours = 1;
attr.duration.minutes = 32;
attr.duration.seconds = 18;
attr.duration.frames = 6;
attr.frameRate = 26;
attr.bitRate = 3000000;
attr.numUsers = 0;
attr.options = 0;

msServerName_t vcsrvname;
strcpy(vcsrvname, "");
msServerInstance_t vcinst;
strcpy(vcinst, "");
msAppSignature_t vcsig;
strcpy(vcsig, "");

msOpenSession(vcsrvname, vcinst, MS_DEFAULT_ASSET_GROUP, vcsig, &session);
msAuthenticate(session, credentials, authentication);
msOpenAsset(session, attr.name,

MS_O_WRITE | MS_O_CREATE | MS_O_NSHARE, 0, &asset)

msRawAdd(asset, MS_ASSET_ALL, &attr, Web address);

msCloseAsset(asset);
msCloseSession(session);

Chapter 4. Control Server Application Programming Interfaces 131

132 Programmer’s Reference

Chapter 5. Real-Time Transport Protocol (RTP)

The AVB INET RTP/UDP specific commands can be accessed using the
msSetPortAttr call using the msNullNetParms_t sub-structure within the
msNetworkParms_t structure. The platform independent command data is passed
using the request buffer. The RTP IOCTL command is passed directly to the RTP
NAR processing.

Command Argument Descriptions

These commands expose specific multicast socket options to be used for User
Datagram Protocol (UDP) in an Internet Protocol (IP) multicast scenario only. The
len parameter is the length in bytes of data that the parameter buf is pointing to.
The buf parameter points to the following data structure:
#include <netinet/in.h>
#include <sys/types.h>
/* network order */
struct rtp_udp_pi {

uint32 option, /* IP_MULTICAST_IF, etc. */
struct ip_mreq imr, /* Interface & Multicast addresses */
uchar c, /* on/off and ttl */
uint32 flags /* reserved */

};

The option structure member specifies the type of set socket option (for example,
IP_MULTICAST_IF). The imr structure member is used to specify the multicast and
interface addresses used for the IP_ADD_MEMBERSHIP set socket option. The c
structure member specifies either the on/off value for the IP_MULTICAST_LOOP
set socket option, or the TTL (time-to-live) value for the IP_MULTICAST_TTL set
socket option. The flags structure member is reserved.

The RTP NAR discards any msSetPortAttr() calls for any case other than multicast
RTP/UDP. Only IP_ADD_MEMBERSHIP, IP_MULTICAST_IF,
IP_MULTICAST_TTL, and IP_MULTICAST_LOOP set socket options are
supported. (Refer to AIX Communications Programming Concepts for further
discussion on socket options and how to use them.) These socket option calls
should be processed by the RTP NAR after the msOpenPort call and before the
first msPlay function is called. (No RTP data or control packets will be processed
before the first msPlay is called to allow for multicast set up to take place.)
However, The RTP NAR will transparently process any of these socket options
after the msOpenPort call. The default set socket options for RTP/UDP multicast
are as follows:

IP_ADD_MEMBERSHIP
Use the client multicast address (for the multicast address) and
INADDR_ANY for the default interface.

IP_MULTICAST_IF
The interface leading to the default route is used. If there is no default
route configured on the host, a host unreachable error is returned when a
write operation is performed. Note that because bandwidth admission
control is performed at msOpenPort time, using this option to change the
interface after the msOpenPort call, results in bypassing the admission
control of the server and can result in a loss in quality of services.

© Copyright IBM Corp. 1997, 2003 133

IP_MULTICAST_TTL
The default RTP/UDP multicast time-to-live value is 16.

IP_MULTICAST_LOOP
The default value for multicast loopback is off (0).

Return Codes

Possible return values are returned in the rc parameter field of the
msNullNetParms_t sub-structure:

MS_SUCCESS

MS_BAD_NWPARAM Illegal argument

MS_BAD_STATE Illegal state

System errors return errno value masked with MS_DAP_PREFIX.

134 Programmer’s Reference

Chapter 6. IBM VideoCharger Extender for DB2 Universal
Database™

The IBM VideoCharger Extender for DB2 Universal Database (DB2® UDB) enables
you to manage your video and audio objects through your DB2 database while
using your VideoCharger Server for storage and retrieval of the objects. The
extender provides you with the full power of DB2 for managing your data, and the
advantages of scalability and data streaming provided by VideoCharger.

The VideoCharger Extender operates with DB2 for Windows NT/2000 and DB2 for
AIX. For storing objects on the VideoCharger Server and querying the database,
your client can reside on any platform supported by DB2. For playing objects
stored on the VideoCharger Server, your client must be on a platform supported by
the VideoCharger Player—either Windows 95, Windows 98, Windows NT, or
Windows 2000. Your DB2 server must be on AIX or Windows NT/2000.

For additional information about DB2 UDB, see:
DB2 Universal Database Quick Beginnings

DB2 Universal Database Administration Guide

DB2 Universal Database Embedded SQL Programming Guide

For AIX: You can access C language source code for Extender in avs.db.sample
under /usr/samples/avs/database.

For Windows: You can access the C language source code, vcsample, under the
root directory where you installed VideoCharger.

UDTs for the VideoCharger Extender
Table 9 describes the UDTs created by the VideoCharger Extender. The table also
lists the DB2 source data type for each distinct data type.

Table 9. UDTs defined by the VideoCharger Extender

UDT Source data type Description

vcobjfilename VARCHAR(128) Fully qualified name of a workstation file

vcobjmetadata VARCHAR(8196) The metadata that describes an object

The metadata is set by and stored on the VideoCharger
Server.

© Copyright IBM Corp. 1997, 2003 135

Table 9. UDTs defined by the VideoCharger Extender (continued)

UDT Source data type Description

vcobjref VARCHAR(128) The object reference information stored in the database in the
format:

server-ip-address:port-number/asset-group/object-name

where:

server-ip-address:port-number
The IP address and port number for the
VideoCharger Server

If you don’t provide a port number, the default port
number for the VideoCharger media manager, 23793,
is used.

asset-group
The VideoCharger asset group

object-name
The name of the object stored on the VideoCharger
Server

vcobjsize DOUBLE The size of the object in kilobytes (KBs)

The size is stored on the VideoCharger Server.

vcobjstatus CHAR(1) The status of the object

The status can be:

I Invalid. The store failed and the object cannot be
used.

P Pending. The object is being loaded onto the
VideoCharger Server.

V Valid. The object is available for use.

The status is stored in the vc_object table in your database.

UDFs for the VideoCharger Extender
This section provides reference information for the UDFs created by the
VideoCharger Extender. The UDFs are listed in alphabetical order.

vcGetObjMetaData
Returns the metadata for the object. The metadata is retrieved from the
VideoCharger Server. If a file name is specified, the metadata is stored in the file.

Syntax

Retrieve reference information to a file

\\ vcGetObjMetaData (object-reference , file-name) \]

Parameters
object-reference

The reference information used to identify the object on the VideoCharger
Server. The data type for this parameter is vcobjref.

136 Programmer’s Reference

file-name
The name of the file where the returned metadata is stored. The data type for
this parameter is vcobjfilename.

Return value
The metadata for the object. The data type for this value is vcobjmetadata.

The value returned contains the content-type information used to identify the
object to a browser. When you pass this value to a browser, the browser launches
the VideoCharger Player. The content-type information is not stored when a file
name is provided.

Example
See the sample program, vcsample.sqc, provided with the VideoCharger Extender
for an example of using this UDF.

vcGetObjSize
Returns the size of the object. The size is retrieved from the VideoCharger Server.

Syntax

\\ vcGetObjSize (object-reference) \]

Parameters
object-reference

The reference information used to identify the object on the VideoCharger
Server. The data type for this parameter is vcobjref.

Return value
The size of the object. The data type for this value is vcobjsize.

Example
See the sample program, vcsample.sqc, provided with the VideoCharger Extender
for an example of using this UDF.

vcGetObjStatus
Returns the status of the object. The status is retrieved from the VideoCharger
Server.

Syntax

\\ vcGetObjStatus (object-reference) \]

Parameters
object-reference

The reference information used to identify the object on the VideoCharger
Server. The data type for this parameter is vcobjref.

Return value
The status of the object. The data type for this value is vcobjstatus.

Example
See the sample program, vcsample.sqc, provided with the VideoCharger Extender
for an example of using this UDF.

Chapter 6. IBM VideoCharger Extender for DB2 Universal Database™ 137

vcInsertObjRef
Loads an object onto the VideoCharger Server and stores the reference information
in the database table.

Syntax

\\ vcInsertObjRef (ftp-host , ftp-userid , ftp-password , \

\ server-name , asset-group , file-list) \]

Parameters
ftp-host

Host name of the server where the object is located. The data type for this
parameter is VARCHAR(64).

ftp-userid
User ID used to access the object using FTP. The data type for this parameter is
VARCHAR(18).

ftp-password
Password associated with ftp-userid. The data type for this parameter is
VARCHAR(18).

server-name
The IP address and port number for the VideoCharger Server. The data type
for this parameter is VARCHAR(64).

If you don’t provide a port number, the default port number for the
VideoCharger media manager, 23793, is used.

asset-group
The VideoCharger Server asset group. The data type for this parameter is
VARCHAR(64).

If a null string is entered (""), the default asset group is used.

file-list
The list of files to be loaded. File names must be separated by a comma (,). If
more than one file is listed, the files are concatenated in the specified order
and a single file is stored on the VideoCharger Server. The data type for this
parameter is VARCHAR(255).

Return value
The reference information used to identify the object on the VideoCharger Server.
The data type for this value is vcobjref.

Example
The following statement stores information about a video in a table named
video_preview and loads an object onto the VideoCharger Server from a host
named video1:
EXEC SQL insert into video_preview values (’00001’,’Topgun’,

vcInsertObjRef(’video1’, --ftp host name
’userid’, --ftp user ID
’password’, --ftp password
’9.111.22.333:23793’, --VideoCharger Server IP address
’AG’, --VideoCharger Server asset group
’c:\topgun.mpg, c:\icing.mpg’)); --file list

138 Programmer’s Reference

Messages issued by the VideoCharger Extender
The VideoCharger Extender UDFs return a code in the SQLSTATE field of the
SQLCA structure. Some messages are also logged to the log directory on the DB2
server:

For AIX: The log directory is in the /var/adm/ras directory
For Windows: The log directory is in the registry

Messages in the log can be mapped to a return code by replacing the prefix AVS
with the number three (3). For example, message AVS8705E maps to return code
38705.

The following codes are returned by the UDFs:

38705

Explanation: The VideoCharger media manager was
unable to perform database operation on video-type
tables.

User Response: Verify that the VideoCharger system
is properly configured for database operation.

38706

Explanation: An error condition was detected while
performing the operation, the operation could not be
completed.

User Response: Verify that the VideoCharger system
is properly configured. See your IBM Service
representative for further assistance.

38707

Explanation: Received a corrupt order from a
VideoCharger UDF.

User Response: Retry the operation. If the problem
persists, contact your IBM Service representative for
further assistance.

38708

Explanation: Internal error in VideoCharger media
manager.

User Response: The VideoCharger media manager
installation is incorrect, re-install the media manager. If
the problem persists, contact your IBM Service
representative for further assistance.

38709

Explanation: Insert operation failed, no file was
specified to load.

User Response: Correct the command and retry the
operation. If the problem persists, contact your IBM
Service representative for further assistance.

38727

Explanation: The VideoCharger media manager was
unable to perform database operation on video-type
tables.

User Response: Verify that the VideoCharger system
is properly configured for database operation.

38728

Explanation: The VideoCharger UDF is unable to
communicate with the VideoCharger subsystem.

User Response: Verify that the VideoCharger system
is properly configured and running.

38729

Explanation: An error occurred while attempting to
receive a response from the VideoCharger subsystem.

User Response: Verify that the VideoCharger system
is properly configured and running.

38730

Explanation: An insert operation failed.

User Response: Verify that the VideoCharger system
is properly configured and running.

38770

Explanation: Delete object failed.

User Response: Verify that the VideoCharger system
is properly configured and running.

38771

Explanation: Delete object failed.

User Response: Verify that the VideoCharger system
is properly configured and running.

Chapter 6. IBM VideoCharger Extender for DB2 Universal Database™ 139

38772

Explanation: Get object metadata failed.

User Response: Verify that the VideoCharger system
is properly configured and running.

38773

Explanation: Get object metadata failed.

User Response: Verify that the VideoCharger system
is properly configured and running.

38774

Explanation: Get object metadata failed.

User Response: Verify that the VideoCharger system
is properly configured and running.

38775

Explanation: Get object metadata failed.

User Response: Verify that the VideoCharger system
is properly configured and running.

38776

Explanation: Get object reference failed.

User Response: Verify that the VideoCharger system
is properly configured and running.

38777

Explanation: Get object size failed.

User Response: Verify that the VideoCharger system
is properly configured and running.

38778

Explanation: Get object size failed.

User Response: Verify that the VideoCharger system
is properly configured and running.

38779

Explanation: Get object status failed.

User Response: Verify that the VideoCharger system
is properly configured and running.

38780

Explanation: Get object status failed.

User Response: Verify that the VideoCharger system
is properly configured and running.

38781

Explanation: An invalid parameter was detected.

User Response: A null parameter was specified where
non-null should be used.

38782

Explanation: An insert operation failed.

User Response: Verify that the VideoCharger system
is properly configured and running.

38783

Explanation: An insert operation failed.

User Response: Verify that the VideoCharger system
is properly configured and running.

38805

Explanation: Internal system error.

User Response: See message number 2100-010 in the
IBM VideoCharger Administrator’s Guide and Reference.

38806

Explanation: Initialization is not done.

User Response: See message number 2100-011 in the
IBM VideoCharger Administrator’s Guide and Reference.

38808

Explanation: Invalid number of files.

User Response: See message number 2100-230 in the
IBM VideoCharger Administrator’s Guide and Reference.

38809

Explanation: Service not available.

User Response: See message number 2100-231 in the
IBM VideoCharger Administrator’s Guide and Reference.

38812

Explanation: Resource is temporarily unavailable.

User Response: See message number 2100-012 in the
IBM VideoCharger Administrator’s Guide and Reference.

38813

Explanation: Invalid event type.

User Response: See message number 2100-078 in the
IBM VideoCharger Administrator’s Guide and Reference.

140 Programmer’s Reference

38816

Explanation: Bad flag.

User Response: See message number 2100-160 in the
IBM VideoCharger Administrator’s Guide and Reference.

38818

Explanation: Bad argument.

User Response: See message number 2100-016 in the
IBM VideoCharger Administrator’s Guide and Reference.

38819

Explanation: Invalid asset group.

User Response: See message number 2100-091 in the
IBM VideoCharger Administrator’s Guide and Reference.

38820

Explanation: Invalid mode.

User Response: See message number 2100-003 in the
IBM VideoCharger Administrator’s Guide and Reference.

38821

Explanation: Invalid SMPTE time.

User Response: See message number 2100-017 in the
IBM VideoCharger Administrator’s Guide and Reference.

38822

Explanation: Session Limit exceeded.

User Response: See message number 2100-026 in the
IBM VideoCharger Administrator’s Guide and Reference.

38825

Explanation: RPC system error.

User Response: See message number 2100-075 in the
IBM VideoCharger Administrator’s Guide and Reference.

38829

Explanation: Invalid bit rate.

User Response: See message number 2100-092 in the
IBM VideoCharger Administrator’s Guide and Reference.

38830

Explanation: Inconsistent resource.

User Response: See message number 2100-094 in the
IBM VideoCharger Administrator’s Guide and Reference.

38839

Explanation: Asset bit rate is required.

User Response: See message number 2100-175 in the
IBM VideoCharger Administrator’s Guide and Reference.

38885

Explanation: Bad name existed.

User Response: See message number 2100-163 in the
IBM VideoCharger Administrator’s Guide and Reference.

38898

Explanation: Video file already exists.

User Response: See message number 2100-174 in the
IBM VideoCharger Administrator’s Guide and Reference.

38899

Explanation: Name already exists.

User Response: See message number 2100-163 in the
IBM VideoCharger Administrator’s Guide and Reference.

38901

Explanation: Name not found.

User Response: See message number 2100-164 in the
IBM VideoCharger Administrator’s Guide and Reference.

38902

Explanation: Number of locations/files is < 1.

User Response: See message number 2100-177 in the
IBM VideoCharger Administrator’s Guide and Reference.

38903

Explanation: More info/entries available.

User Response: See message number 2100-178 in the
IBM VideoCharger Administrator’s Guide and Reference.

38905

Explanation: Insufficient resources.

User Response: See message number 2100-009 in the
IBM VideoCharger Administrator’s Guide and Reference.

38907

Explanation: Insufficient disk space.

User Response: See message number 2100-096 in the
IBM VideoCharger Administrator’s Guide and Reference.

Chapter 6. IBM VideoCharger Extender for DB2 Universal Database™ 141

38910

Explanation: Max users > 0 is required.

User Response: See message number 2100-176 in the
IBM VideoCharger Administrator’s Guide and Reference.

38913

Explanation: Asset is already in use.

User Response: See message number 2100-165 in the
IBM VideoCharger Administrator’s Guide and Reference.

38915

Explanation: Asset exists in asset group.

User Response: See message number 2100-193 in the
IBM VideoCharger Administrator’s Guide and Reference.

38916

Explanation: Unable to open catalog.

User Response: See message number 2100-194 in the
IBM VideoCharger Administrator’s Guide and Reference.

38993

Explanation: No asset replica available.

User Response: See message number 2100-159 in the
IBM VideoCharger Administrator’s Guide and Reference.

142 Programmer’s Reference

Chapter 7. Programming with the new RTSP daemon and
plug-in

In VideoCharger Version 8.1, the RTSP daemon now includes the following
features:
v Allowance/logging of the plug-in performance interface.
v RFC3016 (MPEG-4) compliance.
v Object-based state machine conformant to the RFC, to react to events that are

generated from the stream graph, for MPEG-4 compliance.
v Session Teardown corrections, to keep a client disconnect from tearing down a

session--instead, tear down occurs after a time-out or after the RTCP receiver
reports indicate that the client is no longer connected.

v Parameter passing to the stream graph, for wireless MPEG-4 support.
v Improved scalability from Version 7.

Overview of the RTSP daemon
The daemon contains the listener thread (listens for new connections on port 554
and for RTSP messages on the open connections), and a number of work threads.
As soon as the listener receives a proper RTSP message (terminated by a carriage
return and a linefeed), it puts the message at the end of the queue. The worker
threads periodically check for new messages in the queue, processes the messages,
and sends the responses back to the client (see .

After receiving relevant information from the message in the queue (content of the
message, IP address of the client, socket descriptor to send back the response), the
worker thread parses the request. It then validates the request using session
information received from both the Session Manager and a per object state
machine (an object being uniquely identified by a stream URL and an RTSP session
identifier). At validation stage, the worker also calls the RTSP plug-in (if present)
and notifies it of the new request. If validated, the request is then processed (calls
to MS API). Finally, the states of the concerned objects are changed according to

Figure 9. RTSP daemon flow

© Copyright IBM Corp. 1997, 2003 143

the current return code (as in 200 OK, 401 UNAUTHORIZED) and the
corresponding response is sent back to the client. The response also passes through
the plug-in if present.

The Session Manager stores information for the different sessions. It keeps the data
relevant to a session (for example, plug-in for that session, state for each object)
inside a specific data structure (a hash table containing vectors of object based
data). The information relative to the MS API (handles to assets, filters, etc.) is held
inside a single structure, GlobalInit. GlobalInit and the Session Manager are
singletons, which means that you cannot create multiple instances of these classes
at run-time.

Overview of the RTSP plug-in
A series of virtual methods (for example, OnEventIn, OnEventOut), contained
inside a base class, serves as an interface for the RTSP plug-in. You can write
custom plug-ins by extending this base class, overwriting some of its methods, and
defining a macro to get an entry point for the new plug-in. Refer to “vcAllow.h
(base class of the RTSP plug-in interface for Windows)” on page 145.

The RTSP plug-in is a dynamically loaded DLL that receives incoming and
outgoing RTSP messages from the workers. If the DLL is present inside the system,
each worker creates an instance of the plug-in at its initialization to handle the
RTSP messages that are not part of a session (for example, DESCRIBE, GET
PARAMETER). Once a session is set up, a new plug-in is instantiated and held
inside the Session Manager. That particular plug-in then receives the rest of the
RTSP messages for that session.

The plug-in can react to incoming RTSP messages in two ways. First, it can return
an error code and an additional header (for example, 401 UNAUTHORIZED and
WWW-Authenticate as a response-header to ask a client for authentication) to the
worker thread. Note that returning a 3xx code and specifying the location in the
response-header implements re-direction. Second, if bound to a session, the plug-in
can directly put an RTSP message in the queue for that particular session (for
example TEARDOWN... to close the session). For that purpose, the plug-in uses a
Message Forward object (initialized inside the worker), which checks the session
number of the message before forwarding it. The plug-in must be able to control
its own session only. Refer to “SimpleAllow.cpp (sample code for the RTSP plug-in
for Windows)” on page 146 for a sample RTSP plug-in that implements the above
behaviors. The sample also describes how to capture the RTSP SET PARAMETER
command that the RTSP daemon forwards down to the corresponding graph if the
returned error code is 200 OK.

Finally, the plug-in might capture and treat PROGRESS and NOPROGRESS status
codes fed back by the corresponding graph. For example, the QoS manager in
qtfilter detects an interruption in RTCP reports from client and may decide to feed
back a NOPROGRESS to the RTSP daemon, which forwards it to the appropriate
RTSP plug-in. The plug-in could impose a PAUSE and/or TEARDOWN on that
particular session if a PROGRESS code is not received after x seconds. This
behavior is easily implemented through the Message Forward object described
above.

Sample code
The following RTSP plug-in sample code implements the following behaviors:

144 Programmer’s Reference

1. Authenticates based on client IP address. If IP equals 127.0.0.1, then the client
requires a user name and password.

2. Teardowns the section after playing back for six seconds if authentication
failed.

3. Logs {command type, code, asset name, timestamp} of OnEventIn() and
OnEventOut() events.

4. Captures the SET PARAMETER RTSP command.
5. Captures the PROGRESS / NOPROGRESS status codes sent by the corresponding

graph.

Attention: For AIX sample code, refer to the VideoCharger Software Development
Kit.

vcAllow.h (base class of the RTSP plug-in interface for Windows)
#ifndefVC_ALLOW_H
#defineVC_ALLOW_H
#include "ercodes.h"

class vcallow;

typedef vcallow* (*MAKE_ALLOW_OBJ)(void);
typedef char* streamop_t;
typedef char* sessionid_t;
typedef char* ipaddress_t;
typedef void* handle_t;

#ifdef WIN32
#ifdef DLL_EXPORT
#undef DLL_EXPORT
#endif

#if (defined ALLOW_DLL)
#define DLL_EXPORT __declspec(dllexport)
#else
#define DLL_EXPORT __declspec(dllimport)
#endif
#else
#define DLL_EXPORT
#endif

//extend this class to write customized allowance plugins
class DLL_EXPORT vcallow
{
public:
vcallow() {}
virtual ~vcallow(){}
virtual int Init(sessionid_t sessionID, ipaddress_t ipaddress,
handle_t handle)
{ this->sessionID = sessionID; this->ipaddress = ipaddress;
return XOK; }
virtual int OnEventIn(streamop_t eventType, int cSeq,
char* assetName, char *eventString, char *respheaderString)
{return XOK;}
virtual int OnEventOut(streamop_t eventType, int cSeq,
char* assetName, char *eventString, int errorCode)
{return XOK;}
virtual int Close(int errorCode) {return XOK;}
protected:
sessionid_t sessionID; // string representing the session ID
ipaddress_t ipaddress; // client IP addr in dotted decimal
};

// ExExport macro must be used by plugin writers to export all the methods of their class
#ifdef ALLOW_EX
#define EXT_EXPORT __declspec(dllexport)
#else
#define EXT_EXPORT
#endif

// MAKE_ALLOW_DLL macro must be used by plugin writers to export entry point

Chapter 7. Programming with the new RTSP daemon and plug-in 145

to their plugin.
#define MAKE_ALLOW_DLL(classDll) extern "C" EXT_EXPORT vcallow * makeDll()
{return new classDll();}
#endif //VC_ALLOW_H

SimpleAllow.cpp (sample code for the RTSP plug-in for
Windows)
#include "vcallow.h"
#include "msgForward.h"
#include <fstream.h>
#include <string>
#include <sys/timeb.h>
#include <time.h>
#include <process.h>
#include <windows.h>

//proc that waits 6 sec and kills the session
unsigned int EXT_EXPORT __stdcall forward_proc(void* inargs) ;

class EXT_EXPORT simpleAllow : public vcallow {
public:
simpleAllow() : vcallow() {
sessionID = NULL;
ipaddress = NULL;
mf = NULL;
logFile.open("vcAllow.log", ios::app);
}
~simpleAllow()
{
logFile.close();
if (sessionID != NULL) delete [] (char*)sessionID;
if (ipaddress != NULL) delete [] (char*)ipaddress;
}
int Init(sessionid_t sessionID, ipaddress_t ipaddress,
handle_t handle)
{
this->sessionID = new char[strlen(sessionID)+1];
strcpy(this->sessionID, sessionID);
this->ipaddress = new char[strlen(ipaddress)+1];
strcpy(this->ipaddress, ipaddress);
if (handle != NULL) {
mf = (MsgForward*)handle;
}
return XOK;
}
int OnEventIn(streamop_t eventType, int cSeq,
char* assetName, char *eventString, char *respheaderString)
{
//write event in logfile
_ftime(&timebuffer);
sprintf(buff,"%s %s %ld.%u\n", (char*)eventType, assetName,
timebuffer.time, timebuffer.millitm);
logFile << buff << flush;
//treat the incoming events
if (!strcmp((const char*)eventString,"FILTER_EVENT"))
{
if(!strcmp((const char*)eventType,"PROGRESS"))
{
//treat the progress event here
}
else if (!strcmp((const char*)eventType,"NOPROGRESS"))
{
//treat the no progress event here
}

}

146 Programmer’s Reference

//treat the set_parameter messages
if (!strcmp((const char*)eventString,"SET_PARAMETER"))
{
// do some stuff
}

//Authorization : BASIC example
//Check if the client is on my local address
if ((!strcmp((const char*)ipaddress,"127.0.0.1")))
{
//ask for authorization on describe
if (!strcmp((const char*)eventType,"DESCRIBE"))
{
if(strstr((const char*)eventString, "Authorization") == NULL){
//the first time, ask for authorization
strcpy(respheaderString,"WWW-Authenticate: Basic realm=\"OliWorld\"");
return XEAUTH;
} else {
//the second time, simply return ok
return XOK;
}
}
else if (!strcmp((const char*)eventType,"PLAY"))
{
// at play time, when the session is initialized, check for the password
// the username / password are here "ibm", "ibm", encoded in base64
// as described in the RFC
if (strstr((const char*)eventString, "aWJtOmlibQ==") == NULL) {
//not the good password, start timer to teardown the session
strcpy(nameofasset, assetName);
unsigned int threadid;
_beginthreadex(NULL, 0, forward_proc, (void*)this, 0, &threadid);
//we return XOK, but the video will close after 6 sec.
return XOK;
}
else {
//good password
return XOK;
}
}
else return XOK;
}
else if (!strcmp((const char*)ipaddress,"9.2.66.66"))
{
//this particular client isn’t allowed to do anything
return XEAUTH;
}
else return XOK;

}
int OnEventOut(streamop_t eventType, int cSeq,
char* assetName, char *eventString, int errorCode)
{
_ftime(&timebuffer);
sprintf(buff,"%s %s %ld.%u %d\n", (char*)eventType, assetName,
timebuffer.time, timebuffer.millitm, errorCode);
logFile << buff << flush;
return XOK;
}
int Close(int errorCode)
{
return XOK;
}
void simpleAllow::doForward()
{
//an example of forwarded msg
//don’t forward any msg if this plug-in is not part of a session

Chapter 7. Programming with the new RTSP daemon and plug-in 147

if ((sessionID == NULL) || (mf == NULL))
return;

sprintf(buff, "TEARDOWN %s RTSP/1.0\nCSeq: %d\nSession: %s\nUser-Agent: QTS
(qtver=4.1.1;os=Windows NT 5.0Service Pack 1, RC 1.1)\r\n\r\n", nameofasset,
0, sessionID);

if (mf != NULL)
mf->forward(buff, ipaddress);
}
protected:
char buff[128];
char nameofasset[128];
MsgForward* mf;
struct _timeb timebuffer;
ofstream logFile;

};
unsigned int __stdcall forward_proc(void* inargs) {
simpleAllow* sa = (simpleAllow*)inargs;
Sleep(6000);
//forward the message so that it’ll be treated by the server
sa->doForward();
return 0;
}

MAKE_ALLOW_DLL(simpleAllow);

148 Programmer’s Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1997, 2003 149

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

150 Programmer’s Reference

Trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States, other countries, or both:

IBM DisplayWrite PowerPC
400 e-business PTX
Advanced Peer-to-Peer Networking HotMedia QBIC
AIX Hummingbird RS/6000
AIXwindows ImagePlus SecureWay
APPN IMS SP
AS/400 Micro Channel VideoCharger
C Set ++ MQSeries Visual Warehouse
CICS MVS/ESA VisualAge
DATABASE 2 NetView VisualInfo
DataJoiner OS/2 WebSphere
DB2 OS/390
DB2 Universal Database PAL

Approach, Domino, Lotus, Lotus 1-2-3, Lotus Notes and SmartSuite are trademarks
or registered trademarks of the Lotus Development Corporation in the United
States, other countries, or both.

Intel and Pentium are trademarks or registered trademarks of Intel Corporation in
the United States, other countries, or both.

Microsoft, Windows, and Windows NT are registered trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 151

152 Programmer’s Reference

Glossary

This glossary defines terms and abbreviations
specific to this system. Terms shown in italics are
defined elsewhere in this glossary.

A
accessory script. A CGI script that processes SEARCH,
POST, PUT, or DELETE requests. The accessory scripts
process requests that are not explicitly mapped to a
CGI script named on an EXEC directive.

address. The unique code assigned to each device or
workstation connected to a network. See also IP address.

admission control. The process used by the server to
ensure that its bandwidth needs are not compromised
by new asset requests.

aggregate bandwidth. Total throughput, in megabits
per second, that moves through a server or server
subsystem.

alias. In the Internet, a name assigned to a server that
makes the server independent of the name of its host
machine. The alias must be defined in the domain name
server.

American National Standard Code for Information
Interchange (ASCII). The standard code, using a
coded character set consisting of 7-bit coded characters
(8 bits including parity check), that is used for
information interchange among data processing
systems, data communication systems, and associated
equipment. The ASCII set consists of control characters
and graphic characters.

analog video. Video in which the information that
represents images is in a continuous-scale electrical
signal for amplitude and time.

API. See application programming interface.

application programming interface (API). A software
interface that enables applications to communicate with
each other. An API is the set of programming language
constructs or statements that can be coded in an
application program to obtain the specific functions
and services provided by the underlying licensed
program.

application server. Software that handles
communication with the client requesting an asset and
queries of the Content Manager.

ASCII. See American National Standard Code for
Information Interchange.

asset. A digital multimedia resource that is stored for
later retrieval as requested by an application. An
example of such a resource is a digitized video or
audio file. An asset is stored as a file in a multimedia
file system supported by the data pump.

asset group. An organizational grouping within the
multimedia file system with similar characteristics. You
can use an asset group to allocate resources of a data
pump. For example, you could establish two asset
groups representing distinct departments whose assets
should be kept separate for security or billing purposes.

asymmetric video compression. In multimedia
applications, the use of a powerful computer to
compress a video so that a less powerful system can
decompress it.

asynchronous transfer mode (ATM). A transfer mode
in which the information is organized into cells; it is
asynchronous in the sense that the recurrence of cells
containing information from an individual user is not
necessarily periodic. ATM is specified in international
standards such as ATM Forum UNI 3.1.

attribute. A unit of data that describes a certain
characteristic or property (for example, name, address,
age, and so forth) of an item, and which can be used to
locate that item. An attribute has a type, which
indicates the range of information stored by that
attribute, and a value, which is within that range. For
example, information about a file in a multimedia file
system, such as title, running time, or encoding type
(MPEG1, H.263, and so forth).

audio. The sound portion of a video signal.

Audio/Video Interleaved (AVI). A RIFF (Resource
Interchange File Format) file specification that permits
audio and video data to be interleaved in a file. The
separate tracks can be accessed in alternate chunks for
playback or recording while maintaining sequential
access on the file device.

Audio-Video Subsystem (AVS). File format for files
that can contain video and audio data, video-only data,
audio-only data, or image data (a single still image).
The Audio-Video Subsystem format is supported by the
ActionMedia II MMPM/2 Media Control interface.

AVI. See Audio/Video Interleaved.

AVS. See Audio-Video Subsystem.

© Copyright IBM Corp. 1997, 2003 153

B
background. The conditions under which low priority,
non-interactive programs are run.

bandwidth. (1) The difference, expressed in Hertz,
between the highest and the lowest frequencies of a
range of frequencies. (2) In asynchronous transfer mode
(ATM), the capacity of a virtual channel, expressed in
terms of peak cell rate (PCR), sustainable cell rate
(SCR), and maximum burst size (MBS). (3) A measure
of the capacity of a communication transport medium
(such as a TV cable) to convey data.

baseband. A frequency band that uses the complete
bandwidth of a transmission.

batch. (1) An accumulation of data to be processed. (2)
A group of records or data processing jobs brought
together for processing or transmission.

bitmap. (1) A representation of an image by an array
of bits. (2) A pix map with a depth of one bit plane.

block. A string of data elements recorded or
transmitted as a unit. The elements can be characters,
words, or physical records. Disk device drivers
currently use a block size of 32 KB or 256 KB to write
to the disk.

broadband. A frequency band divisible into several
narrower bands so that different kinds of transmissions
(such as voice, video, and data) can occur at the same
time. See baseband.

bus. A facility for transferring data between several
devices located between two end points, only one
device being able to transmit at a given moment.

C
cache. A special-purpose buffer, smaller and faster
than main storage, used to hold a copy of data that can
be accessed frequently. Use of a cache reduces access
time, but might increase memory requirements.

caching proxy server. A proxy server that can store
the documents it retrieves from other servers in a local
cache. The catching proxy server can then respond to
subsequent requests for these documents without
retrieving them from other servers, a process that can
improve response time.

cardinality. The number of rows in a database table.

CGI. See Common Gateway Interface.

CGI script. A computer program that runs on a Web
server and uses the Common Gateway Interface (CGI) to
perform tasks that are not usually done by a Web
server (for example, database access and form

processing). A CGI script is a CGI program that is
written in a scripting language such as Perl.

client. A computer system or process that requests a
service of another computer system or process that is
typically referred to as a server. Multiple clients can
share access to a common server.

client/server. In communications, the model of
interaction in distributed data processing in which a
program at one site sends a request to a program at
another site and awaits a response. The requesting
program is called a client; the answering program is
called a server.

codec. A processor that can code analog audio or
video information in digital form for transmission, and
decode digital data back to analog form.

Common Gateway Interface (CGI). A standard for the
exchange of information between a Web server and
programs that are external to it. The external programs
can be written in any programming language that is
supported by the operating system on which the Web
server is running. See CGI script.

compressed audio. A method of digitally encoding
and decoding several seconds of voice quality audio
per single videodisc frame. This increases the storage
capability to several hours of audio per videodisc.
Sometimes referred to as still frame audio or sound
over still.

compressed video. A video resulting from the process
of digitally encoding and decoding a video image or
segment using a variety of computer techniques to
reduce the amount of data required to represent the
content accurately.

compression. The process of eliminating gaps, empty
fields, redundancies, and unnecessary data to shorten
the length of records or blocks.

controller. The functional component responsible for
resource management (load balancing and admission
control). The controller communicates with one or more
data pumps to initiate and terminate connections to
clients.

D
data pump. The combination of the disks that hold
the data and the networking hardware and software
required to deliver assets to clients.

data rate. The rate at which data is transmitted or
received from a device. Interactive applications tend to
require a high data rate, while batch applications can
usually tolerate lower data rates.

154 Programmer’s Reference

data striping. Storage process in which information is
split into blocks (a fixed amount of data) and the
blocks are written to (or read from) a series of disks in
parallel.

data transfer rate. The average number of bits,
characters, or blocks per unit time passing between
corresponding equipment in a data transmission
system.

Notes:

1. The rate is expressed in bits, characters, or blocks
per second, minute, or hour.

2. Corresponding equipment should be indicated; for
example, modems, intermediate equipment, or
source and sink.

DCE. See Distributed Computing Environment.

decode. To convert data by reversing the effect of
some previous encoding.

decompression. Process of restoring compressed data
to its original state, so that it can be used again.

device driver. Software used to manage a specific
device. Other software uses the device driver as the
interface to the device for reading, writing, and control
functions.

digital. Pertaining to data in the form of digits.

digital audio. Audio tones represented by
machine-readable binary numbers rather than by
analog recording techniques.

digital video. Video in which the information (usually
including audio) is encoded as a sequence of binary
digits. The information is usually compressed. It can be
stored and transported just as any other digital
information. Viewing digital video involves
decompressing the video data, converting it to an
analog form, displaying the video on a monitor, and
playing the sound through an amplifier and speakers.

digitize. To convert analog video and audio signals
into digital format.

digitized image. An image derived from a scanning
device or a digitizing card with a camera.

Distributed Computing Environment (DCE). The
Open Software Foundation (OSF) specification (or a
product derived from this specification) that assists in
networking. DCE provides such functions as
authentication, directory service (DS), and remote
procedure call (RPC).

document root directory. The primary directory where
a Web server stores accessible documents. When the
server receives requests that do not point to a specific
directory, it tries to serve the request from this
directory.

domain. That part of a computer network in which
the data processing resources are under common
control.

domain name. In the Internet suite of protocols, a name
of a host system. A domain name consists of a
sequence of subnames separated by a delimiter
character.

domain name server. In the Internet suite of protocols,
a server that responds to queries from clients for
name-to-address and address-to-name mappings as
well as for other information.

dotted decimal notation. The syntactical
representation of an IP address. The 4 bytes of the
address are written as four decimal numbers separated
by periods (dots), for example, 9.37.83.123.

E
encode. To convert data by using a code in such a
manner that reconversion to the original form is
possible.

Ethernet. A 10-Mbps baseband local area network that
allows multiple stations to access the transmission
medium at will without prior coordination, avoids
contention by using carrier sense and deference, and
resolves contention by using collision detection and
transmission.

Extensible Markup Language (XML). A standard
metalanguage for defining markup languages that was
derived from, and is a subset of, SGML. XML omits the
more complex and less-used parts of SGML and makes
it much easier to write applications to handle
document types, author and manage structured
information, and transmit and share structured
information across diverse computing systems. The use
of XML does not require the robust applications and
processing that is necessary for SGML. XML is being
developed under the auspices of the World Wide Web
Consortium (W3C).

External Data Representation (XDR). A standard,
developed by Sun Microsystems, Incorporated, for
representing data in machine-independent format.

F
F-Coupler (frequency coupler). A physical device that
merges broadband analog signals with digital data on
an IBM Cabling System using shielded twisted-pair
wiring. The IBM F-Coupler separates analog signals
and sends them from the IBM Cabling System to the
workstation. The F-Coupler allows the IBM Cabling
System to accommodate simultaneous analog video
with data traffic on a token-ring network.

FDDI. See Fiber Distributed Data Interface.

Glossary 155

Fiber Distributed Data Interface. An American
National Standards Institute (ANSI) standard for a
100-Mbps LAN using optical fiber cables.

file name extension. An addition to a file name that
identifies the file type (for example, text file or program
file).

file system. In AIX, the method of partitioning a hard
drive for storage. See also multimedia file system.

file system manager. The component that manages
the multimedia file system.

File Transfer Protocol (FTP). In the Internet suite of
protocols, an application layer protocol that uses
Transmission Control Protocol (TCP) and Telnet services
to transfer bulk-data files between machines or hosts.

firewall. (1) In communication, a functional unit that
protects and controls the connection of one network to
other networks. The firewall (a) prevents unwanted or
unauthorized communication traffic from entering the
protected network and (b) allows only selected
communication traffic to leave the protected network.
(2) In equipment, a partition used to control the spread
of fire.

fps. Frames per second. The number of frames
displayed per second.

fragment. The smallest unit of file system disk space
allocation. A fragment can be 512, 1024, 2048, or 4096
bytes in size. The fragment size is defined when a file
system is created.

frequency coupler. See F-coupler.

FTP. See File Transfer Protocol.

full-motion video. Video reproduction at 30 frames
per second (fps) for NTSC signals or 25 fps for PAL
signals.

G
gateway. A functional unit that interconnects two
computer networks with different network
architectures. A gateway connects networks or systems
of different architectures. A bridge interconnects
networks or systems with the same or similar
architectures.

GB. See gigabyte.

gigabyte (GB). (1) For processor storage, real and
virtual storage, and channel volume, 230, or 1 073 741
824 bytes. (2) For disk storage capacity and
communications volume, 1 000 000 000 bytes.

H
Hertz (Hz). A unit of frequency equal to one cycle per
second. In the United States, line frequency is 60 Hz or
a change in voltage polarity 120 times per second; in
Europe, line frequency is 50 Hz or a change in voltage
polarity 100 times per second.

home page. The initial Web page that is returned by a
Web site when you enter the address for the Web site
in a Web browser. For example, if a user specifies the
address for the IBM Web site, which is
http://www.ibm.com, the Web page that is returned is
the IBM home page. Essentially, the home page is the
entry point for accessing the contents of the Web site.

host. A computer, connected to a network, which
provides an access point to that network. A host can be
a client, a server, or a client and a server
simultaneously.

host name. In the Internet suite of protocols, the name
given to a computer. Sometimes, host name refers to
the fully qualified domain name; other times, it is used
to mean the most specific subname of a fully qualified
domain name. For example, if
mycomputer.city.company.com is the fully qualified
domain name, either of the following might be
considered the host name:

v mycomputer.city.company.com

v mycomputer

HTML. See Hypertext Markup Language.

HTTP (Hypertext Transfer Protocol). In the Internet
suite of protocols, the protocol that is used to transfer
and display hypertext documents

HTTPd. See HTTP daemon.

HTTP daemon. A multithreaded Web server that
receives incoming Hypertext Transfer Protocol (HTTP)
requests.

HTTP method. An action used by the Hypertext
Transfer Protocol (HTTP). HTTP methods include GET,
POST, and PUT.

Hypertext Markup Language (HTML). A markup
language that conforms to the SGML standard and was
designed primarily to support the online display of
textual and graphical information that includes
hypertext links.

Hz. See Hertz.

156 Programmer’s Reference

I
I frame (information frame). In video compression a
frame that has been compressed independently of any
other frames. Also referred to as a reference frame,
intra frame, or still frame.

i-node. In the AIX operating system, the internal
structure that describes the individual files in the
operating system; there is one i-node for each file. An
i-node contains the node, type, owner, and location of a
file. A table of i-nodes is stored near the beginning of a
file system.

interactive video. Combining video and computer
technology so the user’s actions determine the sequence
and direction the application takes.

Internet. The worldwide collection of interconnected
networks that use the Internet suite of protocols and
permit public access.

Internet Protocol (IP). In the Internet suite of protocols,
a connectionless protocol that routes data through a
network or interconnected networks and acts as an
intermediary between the higher protocol layers and
the physical network.

intranet. A private network that integrates Internet
standards and applications (such as Web browsers)
with an organization’s existing computer networking
infrastructure.

IP. See Internet Protocol.

IP address. The unique 32-bit address that specifies
the actual location of each device or workstation on the
Internet. The address field contains two parts: the first
part is the network address; the second part is the host
number. For example, 9.67.97.103 is an IP address.

IP multicast. Transmission of an Internet Protocol (IP)
datagram to a set of systems that form a single
multicast group. See multicast.

ISO-9660. Format used for files on CD-ROM. Used
with DOS.

isochronous. A communications capability that
delivers a signal at a specified, bounded rate, which is
desirable for continuous data such as voice and
full-motion video.

J
Joint Photographic Experts Group (JPEG). (1) A
group that worked to establish the standard for the
compression of digitized continuous-tone images. (2)
The standard for still pictures developed by this group.

JPEG. See Joint Photographic Experts Group.

K
Kb. See Kilobit.

KB. See Kilobyte.

Kbps. Kilobits per second.

kilobit (Kb). (1) For processor storage, real and virtual
storage, and channel volume, 210 or 1024 bits. (2) For
disk storage capacity and communications volume,
1000 bits.

kilobyte (KB). (1) For processor storage, real and
virtual storage, and channel volume, 210 or 1024 bytes.
(2) For disk storage capacity and communications
volume, 1000 bytes.

L
LAN. See local area network.

latency. The time interval between the instant at
which an instruction control unit initiates a call for data
and the instant at which the actual transfer of the data
starts.

LBR. See low bit rate.

local area network (LAN). A network in which a set
of devices are connected to one another for
communication and that can be connected to a larger
network.

low bit rate (LBR). A generic term for an interleaved
H.263/G.723 stream. Low bit rate streams range from
6.4 Kbps up to 384 Kbps.

M
Management Information Base (MIB). A collection of
objects that can be accessed by means of a network
management protocol.

maximum transmission unit (MTU). In LANs, the
largest possible unit of data that can be sent on a given
physical medium in a single frame. For example, the
MTU for Ethernet is 1500 bytes.

Mb. See megabit.

MB. See megabyte.

Mbps. Megabits per second.

MCA. See Micro Channel architecture.

megabit (Mb). (1) For processor storage, real and
virtual storage, and channel volume, 220 or 1 048 576
bits. (2) For disk storage capacity and communications
volume, 1 000 000 bits.

Glossary 157

megabyte (MB). (1) For processor storage, real and
virtual storage, and channel volume, 220 or 1 048 576
bytes. (2) For disk storage capacity and
communications volume, 1 000 000 bytes.

method. In Java design or programming, the software
that implements the behavior specified by an operation.
Synonymous with member function in C++.

MIB. See Management Information Base.

MIB variable. A managed object that is defined in the
Management Information Base (MIB). The managed object
is defined by a textual name and a corresponding
object identifier, a syntax, an access mode, a status, and
a description of the semantics of the managed object.
The MIB Variable contains pertinent management
information that is accessible as defined by the access
mode.

Micro Channel Architecture (MCA). The rules that
define how subsystems and adapters use the Micro
Channel bus in a computer. The architecture defines the
services that each subsystem can or must provide.

MIDI. See Musical Instrument Digital Interface.

MIME type. An Internet standard for identifying the
type of object being transferred across the Internet.
MIME types include several variants of audio, image,
and video. Each object has a MIME type.

M-JPEG. See Motion JPEG.

Motion JPEG (M-JPEG) . Used for animation.

Moving Pictures Expert Group (MPEG). (1) A group
that is working to establish a standard for compressing
and storing motion video and animation in digital
form. (2) The standard under development by this
group.

MPEG. See Moving Pictures Expert Group.

MTU. See maximum transmission unit.

multicast. Transmission of the same data to a selected
group of destinations.

multimedia. Combining different media elements
(text, graphics, audio, still image, video, animation) for
display and control from a computer.

multimedia file system. A file system that is optimized
for the storage and delivery of video and audio.

Multipurpose Internet Mail Extensions (MIME) . See
MIME type.

Musical Instrument Digital Interface (MIDI). A
protocol that allows a synthesizer to send signals to
another synthesizer or to a computer, or a computer to
a musical instrument, or a computer to another
computer.

N
name server. See domain name server.

National Television Standard Committee (NTSC). (1)
A committee that sets the standard for color television
broadcasting and video in the United States (currently
in use also in Japan). (2) The standard set by the NTSC
committee.

NTSC. See National Television Standard Committee.

P
page pool. The area in the shared memory segment
from which buffers are allocated for data that is read
from or written to disk. Page pool size is one of the file
manager startup configuration parameters.

PAL. See Phase Alternation Line.

pattern-matching character. See wildcard character.

PCI. See Peripheral Component Interconnect.

peak rate. The maximum rate encountered over a
given period of time.

performance group. A group of file systems sharing
system resources that can affect file system
performance.

Peripheral Component Interconnect (PCI). A type of
bus architecture.

Phase Alternation Line (PAL). The television
broadcast standard for European video outside of
France and the countries of the former Soviet Union.

pin. Keeping the program from being paged out after
it is loaded into memory.

port. A system or network access point for data entry
or exit. In the Internet suite of protocols, a specific logical
connector between the Transmission Control Protocol
(TCP) or the User Datagram Protocol (UDP) and a
higher-level protocol or application.

port group. A logical name used to group one or more
ports (network devices or interfaces) of the same
network type that can be used to reach a given
end-user destination. For example, if multiple ATM
adapters in the VideoCharger Server complex are
connected to the same ATM networks, these adapters
can be configured under the same port group. The
controller selects ports as necessary to balance the load.

presentation formatter. A CGI program that defines
the forms used to select and present assets to clients.

158 Programmer’s Reference

protocol. The meanings of, and the sequencing rules
for, requests and responses used for managing a
network, transferring data, and synchronizing the states
of network components.

protocol gateway. A type of firewall that protects
computers in a business network from access by users
outside that network.

proxy server. A server that receives requests intended
for another server and that acts on the client’s behalf
(as the client’s proxy) to obtain the requested service. A
proxy server is often used when the client and the
server are incompatible for direct connection (for
example, when the client is unable to meet the security
authentication requirements of the server but should be
permitted some services).

Q
quality of service (Do’s). For an asynchronous transfer
mode (ATM) virtual channel or a Networking
BroadBand Services (NBBS) network connection, a set
of communication characteristics such as end-to-end
delay, jitter, and packet loss ratio.

R
RAID. See Redundant Array of Independent Disks.

README file. A file that should be viewed before the
program associated with it is installed or run. A
README file typically contains last-minute product
information, installation information, or tips for using
the product.

real time. The processing of information that returns a
result so rapidly that the interaction appears to be
instantaneous.

Real-Time Transport Protocol (RTP). A protocol that
provides end-to-end network transport functions
suitable for applications transmitting real-time data,
such as audio, video or simulation data, over multicast
or unicast network services.

rebalance. Restriping and redistributing data across
the available hard disks after a disk or disks have been
removed from a file system.

Redundant Array of Independent Disks (RAID). A
collection of two or more disk drives that present the
image of a single disk drive to the system. In the event
of a single device failure, the data can be read or
regenerated from the other disk drives in the array.

remote procedure call (RPC). (1) A facility that a client
uses to request the execution of a procedure call from a
server. This facility includes a library of procedures and
an external data representation. (2) A client request to a
service provider located in another node.

request. The part of a Web address that follows the
protocol and server host name. For example, in the
address http://www.server.com/rfoul/sched.htm, the
request is /rfoul/sched.html.

ReSerVation Protocol (RSVP). A resource reservation
setup protocol designed for an integrated services
Internet. The protocol provides receiver-initiated setup
of resource reservations for multicast and unicast data
flows.

Resource Interchange File Format (RIFF) . Used for
storing sound or graphics for playback on different
types of computer equipment.

restriping. Redistributing and rebalancing data across
all available and defined disks in a multimedia file
system. This is typically done when a disk is removed
from a file system for repair or when a new disk is
added to a file system.

RIFF. See Resource Interchange File Format.

RLE. See Run-Length Encoding.

RPC. See remote procedure call.

RSVP. See ReSerVation Protocol.

RTP. See Real-Time Transport Protocol.

Run-Length Encoding (RLE). A type of compression
that is based on strings of repeated, adjacent characters
or symbols, which are called “runs.”

S
SCSI. See small computer system interface.

server. A functional unit that provides services to one
or more clients over a network. Examples include a file
server, a print server, and a mail server.

Simple Network Management Protocol (SNMP). In
the Internet suite of protocols, a network management
protocol that is used to monitor routers and attached
networks. SNMP is an application layer protocol.
Information on devices managed is defined and stored
in the application’s Management Information Base (MIB).

small computer system interface (SCSI). A standard
hardware interface that enables a variety of peripheral
devices to communicate with one another.

SMIT. See System Management Interface Tool.

SNMP. See Simple Network Management Protocol.

sticky pool. The part of the page pool that is made
available to cache the first block of frequently used
interactive files. Sticky pool size is one of the file
manager startup configuration parameters.

Glossary 159

streamed data. Any data sent over a network
connection at a specified rate. A stream can be one data
type or a combination of types. Data rates, which are
expressed in bits per second, vary for different types of
streams and networks.

stripe group. A collection of disks that are grouped
together for serving media streams. The multimedia file
system uses stripe groups to optimize delivery of
multimedia assets.

stripe width. The size of the block that data is split
into for striping.

striping. Splitting data to be written into equal blocks
and writing blocks simultaneously to separate disk
drives. Striping maximizes performance to the disks.
Reading the data back is also scheduled in parallel,
with a block being read concurrently from each disk
then reassembled at the host.

System Management Interface Tool (SMIT). An
interface tool of the AIX operating system for installing,
maintaining, configuring, and diagnosing tasks.

T
Tagged Image File Format (TIFF). A file format for
storing high-quality graphics.

TCP. See Transmission Control Protocol.

TCP/IP. See Transmission Control Protocol/Internet
Protocol.

throughput. A measure of the amount of information
transmitted over a network in a given period of time.
For example, a network’s data transfer rate is usually
measured in bits per second. Throughput is a measure
of performance. It is also measured in Kbps or Mbps.

TIFF. See Tagged Image File Format.

token ring. According to IEEE 802.5, network
technology that controls media access by passing a
token (special packet or frame) between media-attached
stations.

token-ring network. A network that uses a ring
topology, in which tokens are passed in a circuit from
node to node. A node that is ready to send can capture
the token and insert data for transmission.

topology. In communications, the physical or logical
arrangement of nodes in a network, especially the
relationships among nodes and the links between them.

Transmission Control Protocol (TCP). A
communications protocol used in the Internet and in any
network that follows the Internet Engineering Task
Force (IETF) standards for internetwork protocol. TCP
provides a reliable host-to-host protocol between hosts
in packet-switched communications networks and in

interconnected systems of such networks. It uses the
Internet Protocol (IP) as the underlying protocol.

Transmission Control Protocol/Internet Protocol
(TCP/IP). The suite of transport and application
protocols that run over the Internet Protocol.

U
UDP. See User Datagram Protocol.

uniform resource locator (URL). A sequence of
characters that represent information resources on a
computer or in a network such as the Internet. This
sequence of characters includes the abbreviated name
of the protocol used to access the information resource
and the information used by the protocol to locate the
information resource. For example, in the context of the
Internet, these are abbreviated names of some protocols
used to access various information resources: http, ftp,
gopher, telnet, and news.

User Datagram Protocol (UDP). In the Internet suite of
protocols, a protocol that provides unreliable,
connectionless datagram service. It enables an
application program on one machine or process to send
a datagram to an application program on another
machine or process. UDP uses the Internet Protocol (IP)
to deliver datagrams.

V
video mixing. The process of dynamically inserting or
combining multiple video objects into a single object for
distribution. An example would be the mixing of
commercials and broadcast programs for satellite
distribution.

video object. The data file containing a program
recorded for playback on a computer or television set.

video-on-demand (VOD). A service for providing
consumers with movies and other programming almost
immediately, per request.

video stream. The path data follows when read from
the VideoCharger Server system to the display unit.

VOD. See Video-on-demand.

W
WAIS. See Wide Area Information Service.

WAV. A format to store digitally recorded sound.

Web server. A server that is connected to the Internet
and is dedicated to serving Web pages.

160 Programmer’s Reference

Wide Area Information Service (WAIS). A network
information system that enables clients to search
documents on the World Wide Web.

wildcard character. A special character such as an
asterisk (*) or a question mark (?) that can be used to
represent one or more characters. Any character or set
of characters can replace a wildcard character.

World Wide Web (WWW). A network of servers that
contain programs and files. Many of the files contain
hypertext links to other documents available through
the network.

WWW. See World Wide Web.

X
XML. See Extensible Markup Language.

Glossary 161

162 Programmer’s Reference

Index

A
addr 89
admission control 1
ai_current_version 31
ampersand, hexadecimal 13, 21
API calls for C, required 30
application development environment,

AIX 7, 53
application development environment,

Windows 17, 53
application server

components 5
setting 36

application server interface layer (ASIL)
application programming

interfaces 25
building the metadata file 47
cleaning up 32
init API call 31
interface to a user-supplied

routine 51
metadata file API call 33
overview 4
presentation formatter 3
required API calls for C 30
restricting assets 44
samples 25
saving individual data 38
setting asset parameters 42
setting the Server 35
specifying an asset 40
streaming via HTTP protocol 50
user data processing, AIX 31
video data retrieval API calls 30
video selection API calls 30

Archive, AIX 12
asAssetName 40, 41, 44, 52
asBufferAddress 34
asBufferSize 34
asLocalServerFlag 36
asPlayMode 40
asProcessUserData, AIX 51
asRestrictionType 44
asServerName 36
asSessionFlag, AIX 52
asSessionTime, AIX 52
asset groups

amount of space 120
getting status 119
listing assets associated with 105
listing names 104
maximum space 120
names 103
number of assets 120
parameter 62, 64, 105, 106, 138
status parameter 119
type 120
videoag 12

asset label 103
asset name 9
assetEntry 102

assets
associating a file to 130
attribute flags 111
attributes 108
attributes structure 111
bit rate 108
closing 109
closing streams 97
condition for deleting 110
copying to the VideoCharger

Server 124
creating 107
creation time 118
deleting 110
details 9
displaying 9
duration 108, 111
events 69
exporting 122
frame rate 108, 111
getting an asset handle 107
getting attributes 114, 116
getting status 102, 117
group names 103
jumping to a new position 100
last accessed 118
limiting 9
listing 9
loading 124
management state machine 104
management states 104
managing 103
modification time 118
name 108, 111
names 103
numUsers 108
pausing 99
permissions 107
playing 98
positioning 107
rate 107, 111
readers 118
reading data 126
recording, Windows 94
redirecting a stream 96
reserved bytes 118
restricting 44
searching 9
seeking within 128
setting attributes 111, 115
setting parameters 42
specifying 40
specifying name 40
staging 120
suppressing parsing 107
truncating 107
type 108
types 111
whence 129
writers 118
writing 103

assets (continued)
writing data to 127

assets, AIX
API calls for retrieving 30
API calls for selecting 30
displaying 10
overriding MIME type 15
special characters 13, 15
streaming 14
streaming from a given start

position 14
streaming using plug-in 14

assets, Windows 20
API calls for retrieving 30
API calls for selecting 30
displaying 18
special characters 21, 23
streaming 22
streaming from a given start

position 23
streaming using plug-in 22

asUserDataSize 38
asUserDataSize, AIX 52
asUserDataValue 38
asUserDataValue, AIX 52
asVideoBuildResponse 47
asVideoCount, AIX 52
asVideoExit 32
asVideoGetResponse 33
asVideoInit 31
asVideoList, AIX 52

number of videos in 52
asVideoName, AIX 52
asVideoParms 43
asVideoPlayTime, AIX 52
asVideoPosition 40
asVideoReqHdl 31, 32, 34, 36, 38, 43, 48,

51
asVideoSetParms 42
asVideoSetRestriction 44
asVideoSetServer 35
asVideoSetUserData 38
asVideoSetVideoName 40
asVideoStreamHTTP 50
asVideoTitle 40, 42
asynchronous errors 66
attributes

getting for an asset 114
attributes structure 111
authenticating

msAuthenticate 76
Secure msAPI plug-in 59

autoplay 29, 40, 42
AVI

metadata file 28
MIME type 13, 21
setting asset attribute 112

avs.applsrv.client.adt fileset 53
avs.applsrv.client.adt fileset, AIX 7
avs.applsrv.client.adt fileset,

Windows 17

© Copyright IBM Corp. 1997, 2003 163

avs.applsrv.client.rte fileset 53

B
balance 45, 47
bandwidth

maximum of port 79
bass 45, 47
bit mask 66
bit rate 28, 111
buf 133
buffer

byte offset 84
number of entries 78, 79, 105
parameter 73, 76, 77, 78, 101, 105,

106
pointer 79
size 34, 76, 77

BuildResponse 30
byte offset 121, 123

C
callback functions

registering 65
unregistering 70

callBackAddr 66
calling sequences 30
case-sensitivity 26
characters, AIX

special 13
special in Internet Explorer 15

characters, Windows
special 21
special in Internet Explorer 23

client library
application programming

interfaces 55
initializing 61
overview 54

clientPortHigh, AIX 11
clientPortHigh, Windows 19
clientPortLow, AIX 11
clientPortLow, Windows 19
closing a session 63
codepage 28
codepage conversion 29
command syntax 26
commands

case-sensitivity 26
comments, sending vi
Common Gateway Interface (CGI), AIX

multicast video guide 9
video selection presentation

formatter 7
video-on-demand presentation

formatter 7
Common Gateway Interface (CGI),

Windows
multicast video guide 18
video selection presentation

formatter 17
video-on-demand presentation

formatter 17
compiling programs 54
condition 110

content management 54
Content Manager, setting 36
control server application programming

interfaces
associating an asset to a file 130
authenticating 76
closing a Server session 63
closing an asset 109
closing streams 97
compiling 54
completing takeover 74
copying an asset 124
deleting an asset 110
enabling takeover 71
exporting an asset 122
getting an asset handle 107
getting asset attributes 114, 116
getting asset group status 119
getting asset status 117
getting play stream status 102
getting port parameters 89
getting session handles 73
getting session parameters 64
getting stream attributes 101
init API call 61
invoking 54
jumping to a new stream

position 100
listing asset group names 104
listing assets in asset groups 105
listing port groups 78
listing port names 79
loading an asset 124
managing assets 103
managing sessions 56
managing stream connection 77
mapping return code to error

message 76
opening a Server session 62
opening a stream 91
opening ports 80
operating streams 90
overview 53
pausing a stream 99
playing a stream 98
programming model 55
reading asset data 126
recording an asset from an

encoder 94
recording an asset, Windows 94
redirecting a stream 96
registering callback 65
releasing ports 87
return code definitions 56
samples 53
seeking within an asset 128
setting asset attributes 111, 115
setting port parameters 87
setting session parameters 63
staging an asset 120
starting takeover 72
takeover by a new application

server 75
takeover when original application

server terminates 75
trace services 56
transferring 57

control server application programming
interfaces (continued)

unregistering callback 70
writing an asset 103
writing to an asset 127

copying files to the VideoCharger
server 124

copyRate 107
count 78, 79, 101, 105, 106

D
data keys 115
data pump 85, 130
dataprotocol 28
DB2 extender

getting metadata 136
getting object size 137
getting object status 137
loading an object into the Server 138
messages 139
overview 135
samples 135
UDFs 136
UDTs 135

Distributed Computing Environment
(DCE) 55

duration
asset, AIX 52
assets 108, 111

E
enc, Windows 20
encoding formats 1
encoding in UTF-8, Windows 20
endPos 93, 95, 98
entry 93, 98, 99, 100
eos 90
error events 69
error messages

mapping from return code 76
errors, streaming 68
eventMask 66
events

asset 69
definition 66
error 69
masks 66
notification 65
port 68
stream 68
types 66

examples
billing code 52
building a metadata file 48
coding RTP over UDP 85
coding using HTTP protocol 86
creating a playlist 25
dynamically saving individual user

data 39
dynamically setting restrictions 47
dynamically specifying the server

name 37
exit 32
get response 34

164 Programmer’s Reference

examples (continued)
init 31
loading an object 138
opening a port 85
restricting play controls 45
sending command data to

ISCAIUXV 25
setting server 36
setting user data 38
setting video name 40
setting video parameters 43
streaming via HTTP 51
UNIX STDIN for video selection,

cumulative example 50
video selection C calls 49

examples, AIX
dynamically specifying the video

name 42
multicasting 16
original application server

terminates 75
special characters 13
streaming an asset 14
streaming an asset by specifying

overriding MIME type 15
streaming an asset from a given start

position 14
streaming an asset with special

characters 15
streaming an offline asset using

plug-in 14
takeover by a new application

server 75
takeover flow 58, 59
video-on-demand link 16

examples, Windows
multicasting 24
special characters 21
streaming an asset 22
streaming an asset by specifying

overriding MIME type 23
streaming an asset from a given start

position 22
streaming an asset with special

characters 23
video-on-demand link 24

exit API call 32
exporting assets 122
extender

getting metadata 136
getting object size 137
getting object status 137
loading an object into the Server 138
messages 139
overview 135
samples 135
UDFs 136
UDTs 135

F
feedback, sending vi
file-list 138
file-name 137
filesize64 29
firewall, Windows 20
flags 111

fork subroutine, AIX 56
frameRate 108, 111
ftp host 138
ftp password 138
ftp user ID 138

G
G723

metadata file 28
MIME type 13, 21
setting asset attribute 112

generic stream player 12, 20
getResponse 30
global event reporting 66

H
H263

metadata file 28
MIME type 13, 21
setting asset attribute 112

handle, count 73
handles

getting session 73
initializing 31
initializing for video request 30
listing active handles 73

header files
invoking 54

hexadecimal characters, AIX 13
hexadecimal characters, Windows 21
hexadecimal UTF-8, Windows 20
HotMedia

metadata file 28
setting asset attribute 112

HTML pages, AIX
changing the logo 16
iscpfsel 10

HTML pages, Windows
changing the logo 24
iscpfsel 18

HTTP protocol
setting up the Server 50

I
INIT 57
init API call

client library 61
handle 31

Internet Explorer, special characters 13,
22

Internet Protocol 1
invs_cmds 29
ISCAIUXV

directing the play file to 25
sending command data to 25

iscfpsel, AIX 7
iscfpsel, Windows 17
iscpfcat, Windows 6, 18
iscpfevt, Windows 6, 18
iscpffrm, AIX 6, 9, 16
iscpfhom, AIX 6, 9
iscpfhom, Windows 6, 18
iscpfmct, AIX 9

iscpfmet, Windows 6, 18
iscpfmet.exe 2
iscpfpst, AIX 6, 9
iscpfsel, AIX 6, 9, 10, 14

parameters 10
iscpfsel, Windows 6, 18, 22

HTML pages 18
iscpfsel.exe

hexadecimal UTF-8 20

K
keys 115

L
label 93
LBR

MIME type 13, 21
setting asset attribute 112

len 133
length 28
logo, AIX

changing on video-on-demand home
page 16

logo, Windows
changing on video-on-demand home

page 24
longname 28
loopback 134

M
management states

assets 104
maxBitRate 79
maxScale 92
mediatype 28
messages, extender 139
metadata file

ASIL API call 33
building 47
definition 4
example 29
file format 29
object 135
obtaining a copy 33
overview 27
returning for object 136
session data parameters 27
stream data parameters 28

MIME types, AIX
overriding 15
parameter 11

MIME types, default 13
MIME types, Windows

parameter 19
MJPEG

metadata file 28
MIME type 13, 21
setting asset attribute 112

mode 81, 99, 107
modes

stream 92, 95
MOV

setting asset attribute 112

Index 165

MP3
setting attribute for sub-types 112

MPEG stream controller device 82
MPEG-1

metadata file 28
MIME type 13, 21
setting asset attribute 111
setting attribute for sub-types 112

MPEG-2
metadata file 28
MIME type 13, 21
setting asset attribute 111

MPEG-4
metadata file 28
MIME type 13, 21
setting asset attribute 111

ms_inetPort_t structure 82
ms_port_range_t structure 82
ms.h 54
msAnalogParms_t structure 83
msapi.h 54
msAssetAttributes_t structure 113
msAssetEvent_t structure 70
msAssetGrpAttr_t structure 105
msAssetGrpStatus_t structure 119
msAssetLocation_t 121
msAssetStatus_t structure 118
msAuthenticate 76
msCloseAsset 109
msClosePort 87
msCloseSession 63
msCloseStream 97
msDeleteAsset 110
msEnableTakeover 57, 71
msEncoderDevParms_t structure 83
mserror.h 54
msErrorEvent_t structure 70
msEvent_t structure 70
msExport 122
msGetAssetAttr 114
msGetAssetGrpStatus 119
msGetAssetInfo 116
msGetAssetStatus 117
msGetPlayStatus 102
msGetPlayStreamAttr 101
msGetPortAttr 89
msGetSessionAttr 64
msGetSessionHandles 73
msHTTPProto_t structure 83
msINETParms_t structure 83
msInit 61
msJump 100
msListAssetGroups 104
msListAssets 105
msListPortGroups 78
msListPorts 79
msLoad 124
msnet.h 54
msNetworkParms_t 84
msNetworkParms_t structure 83, 133
msNullNetParms_t structure 83, 133
msOpenAsset 107
msOpenPipeStream 96
msOpenPlayStream 91
msOpenPort 80
msOpenRecordStream, Windows 94
msOpenSession 62

msPause 99
msPlay 98
msPlayStatus_t structure 102
msPlayStreamEntry_t structure 101
msPortAddr_t structure 82
msPortEvent_t structure 70
msPortGrpAttr_t structure 78
msPortList structure 79
msPos_t structure 92
msProtocol_t structure 84
msRawAdd 130
msRead 126
msRecord 94
msRegisterCallBack 65
msSeek 108, 128
msSessTakeover_t structure 71
msSessTakeoverHandle_t structure 73
msSessTakeoverInfo_t structure 72
msSetAssetAttr 111
msSetAssetInfo 115
msSetPortAttr 87, 133
msSetSessionAttr 63
msSMPTE_t structure 113
msStage 120
msStreamEvent_t structure 70
msStrError 76
msTakeover 58, 72
msTakeoverComplete 74
msUnregisterCallBack 70
msUserAddr_t structure 82
msVersion_t structure 65
msVersionStr_t structure 65
msWrite 127
multicast video guide presentation

formatters, AIX 9
example 16

multicast video guide presentation
formatters, Windows 18

example 24
multicasting

client address 133
interface 133
loopback 134
target address 28
time-to-live (TTL) 134

multicasting, AIX
multicast video guide presentation

formatter 9, 16
RFC 1
video-on-demand presentation

formatter 16
multicasting, Windows

multicast video guide presentation
formatter 18, 24

RFC 1
video-on-demand presentation

formatter 24
Multimedia Archive, AIX 12
MVR 112

metadata file 28

N
netType 78, 79
network address 28
network type 79
nextEntry 106

nextLabel 93
numberstreams 28

O
object

loading into the VideoCharger
Server 138

metadata UDT 135
reference information UDT 136
returning status for 137
returning the metadata for 136
returning the size for 137
size UDT 136
status UDT 136

object-reference 136
offline, AIX 12
open_play 90
opening a session 62
option structure member 133

P
parms 88, 89
parsing, suppressing 107
passticket 28
passticket, AIX 47
passticket, Windows 47
path maximum transmission unit (MTU),

AIX
RFC 1

pause 40, 42, 45, 46, 90
percent sign, hexadecimal 13, 21
play 90
play asset entry 101
play operations, state machines 90
Player

generic stream player 12, 20
overriding MIME type 15
plug-in 14, 22
streaming from a given start

position 14, 23
playf 45, 46
playlist

creating 25
number of assets 101

playlist, AIX 52
playr 45, 46
playt 45, 46
plug-in, AIX 11
plug-in, Windows 19
plug-ins

authentication 59
RTSP daemon 143

plus sign, hexadecimal 13, 21
pointy bracket, hexadecimal 13, 21
port events 68
port groups 78, 79, 81, 89

listing 78
network type 78

port name 79, 81
portIn 96
portOut 96
ports

closing 87
getting parameters 89

166 Programmer’s Reference

ports (continued)
listing 79
opening 80
recording from 94
setting parameters 87
streaming to 91

position 103
pound sign, hexadecimal 13, 21
presentation formatters, AIX

application server interface layer
(ASIL) 3

interactions 3
invoking 9
modifying 6
multicast video guide 9
operating 7
overview 3
relation to application server interface

layer 4
routines 9
samples 3
video selection 7
video-on-demand 7

presentation formatters, Windows
application server interface layer

(ASIL) 3
interactions 3
invoking 18
modifying 6
multicast video guide 18
operating 17
overview 3
relation to application server interface

layer 4
routines 18
samples 3
video selection 17
video-on-demand 17

ProcessUserData, AIX 31, 52
protocol 28
publications

AIX v
DB2 135
ordering vi
product v
Windows vi

Q
QuickTime

metadata file 28
MIME type 13, 21
setting asset attribute 112

quote, hexadecimal 13, 21

R
Real-Time Transport Protocol (RTP)

commands 133
RFC 1

registering callback 65
Remote Procedure Calls (RPC) 55
ReSerVation Protocol (RSVP), AIX

RFC 1
reserved bit rate 80, 88, 89, 103
reserved bytes 118

restricting play controls 29, 44
resume 45, 47
return codes

definition 56
mapping to error message 76

returnCode 76
revisions since version 7.1 1
RFC

multicast 1
path MTU 1
Real-Time Transport Protocol (RTP) 1
ReSerVation Protocol 1
TCP extensions 1

routines, AIX
user-supplied 51

RTSP daemon 143

S
samples

application server interface layer 25
samples, AIX

control server application
programming interfaces 53

DB2 extender 135
presentation formatter 3

samples, Windows
DB2 extender 135
presentation formatter 3

scale 93, 98
scaling 100, 103
searching, AIX

video-on-demand presentation
formatter 7, 16

searching, Windows
video-on-demand presentation

formatter 17, 24
Secure msAPI plug-in 59
security for msAPIs 59
seekb 45, 46
seekf 45, 46
server-name 138
serveraddr 28
serverHostname 62
serverInstance 62
serverPortHigh, AIX 11
serverPortHigh, Windows 20
serverPortLow, AIX 11
serverPortLow, Windows 19
session

authenticating 76
data parameters 27

SESSION 57
session management 54

closing 63
getting session handles 73
getting session parameters 64
opening 62
overview 56
registering callback 65
setting session parameters 63
states 57
takeover, AIX 57, 71, 72, 74, 75
unregistering callback 70

session takeover, AIX
completing 74
enabling 71

session takeover, AIX (continued)
flow examples 58
flows for a cooperative session

transfer 59
new application server example 75
overview 57
starting 72
when original application server

terminates 75
session, AIX

time active 52
sessionTakeover 71, 72
sessiontype 28
sessoin close values, AIX 52
sessTakeoverInfo 72
SetRestriction 30
SetServer 30
SetUserData, AIX 30
SetVideoName 30
SetVideoParms 30
signature 62, 64, 72
SimpleAllow.cpp 146
size 61, 76, 77, 78, 79, 101, 105, 106, 117

returning for object 137
SMPTE timecode 29, 111
sockets 28
software development toolkit, AIX 7
software development toolkit,

Windows 54
sourceaddr 28
special characters, AIX 13, 15
special characters, Windows 21, 23
staging assets 120
startAddr 61
startPos 92, 95, 98, 100
startPos, AIX 11
startPos, Windows 19
startposition 29
state 85, 88, 89, 102
state machines

asset management 104
stream 90

status 78, 79, 102
returning for object 137

stop 45, 46
stopPos 99, 100
stopPos, AIX 11
stopPos, Windows 19
stopposition 29
stream 45, 47
stream connection management 54

overview 77
stream data parameters 28
stream ended 68
stream events 68
stream mode, AIX 11
stream operations 54
StreamHTTP 30
streamMode, Windows 19
streams

application programming
interfaces 90

closing 97
getting attributes of a play

stream 101
getting status 102
jumping to a new position 100

Index 167

streams (continued)
mode 95
modes 92
opening 91
operating 90
pausing 99
playing 98
position 103
recording 94
recording an asset, Windows 94
redirecting 96
state 102
state machines for play operations 90

structure, application server 43
structures

ms_inetPort_t 82
ms_port_range_t 82
msAnalogParms_t 83
msAssetAttributes_t 113
msAssetEvent_t 70
msAssetGrpAttr_t 105
msAssetGrpStatus_t 119
msAssetLocation_t 121
msAssetStatus_t 118
msEncoderDevParams_t 83
msErrorEvent_t 70
msEvent_t 70
msHTTPProto_t 83
msINETParms_t 83
msNetworkParms_t 83, 133
msNullNetParms_t 83, 133
msPlayStatus_t 102
msPlayStreamEntry_t 101
msPortAddr_t 82
msPortEvent_t 70
msPortGrpAttr_t 78
msPortList 79
msPos_t 92
msProtocol_t 84
msSessTakeover_t 71
msSessTakeoverHandle_t 73
msSessTakeoverInfo_t 72
msSMPTE_t 113
msStreamEvent_t 70
msUserAddr_t 82
msVersionStr_t 65

szAuthentication 77

T
takeover

session 71, 72
structure 72

takeover flow, AIX
cooperative transfer 59
end of the original process 58

takeover, AIX
programming model 59

takeoverTimeout 71
TCP extensions 1
time a session was active, AIX 52
time-to-live (TTL) 134
timeout

takeover 71
title 28
title, AIX 10

video 52

title, pointer 40
title, Windows 19
tracing 56
transferring a control server session 57
treble 45, 47
type 96

U
UN_INIT 57
unicode 20
unicode, Windows 20
UNIX STDIN

command flags 26
command syntax 26
reading syntax statements 27
requirements 25

unregistering
callback 70

user data
size 39
string 39

user data, AIX
pointer to value 52
processing 31, 51
saving 38
size call 52

User Datagram Protocl (UDP) 133
userAddr 81
UTF-8 encoding, Windows 20

V
vcAllow.h 145
vcGetObjMetaData 136
vcGetObjSize 137
vcGetObjStatus 137
vcInsertObjRef 138
vcobjfilename 135
vcobjmetadata 135
vcobjref 136
vcobjsize 136
vcobjstatus 136
version

client library 61
identifying for the metadata file 27
msInit 62
msVersionStr_t structure 64

video command file 25
video data retrieval API calls 30
video ID, AIX 10
video ID, Windows 19
video play file 25
video playlist, creating 25
video request

closing 30
initializing 30

video selection API calls 30
video selection presentation formatters,

AIX 7
video selection presentation formatters,

Windows 17
video-on-demand presentation formatters,

AIX 7
changing the logo 16
example 16

video-on-demand presentation formatters,
Windows 17

changing the logo 24
example 24

videoag, AIX 12
VideoCharger Server

copying files to 124
overview 1
setting up for HTTP protocol 50
specifying for a video request 35

VideoCharger Server, AIX
revisions since version 7.1 1

VideoCharger Server, Windows
revisions since version 7.1 1

Videosrvr, AIX 12
volume 45, 47

W
WAV

metadata file 28
MIME type 13, 21
setting asset attribute 112

what’s new 1
whence 129
workstation file UDT 135

168 Programmer’s Reference

����

Program Number: 5724-B19

Printed in U.S.A.

SC27-1352-01

Sp
in
e
in
fo
rm
at
io
n:

�
�

�

IB
M

Co
nt

en
t

M
an

ag
er

Vi
de

oC
ha

rg
er

fo
r

M
ul

tip
la

tfo
rm

s
Pr

og
ra

m
m

er
’s

R
ef

er
en

ce
Ve

rs
io

n
8

R
el

ea
se

2

	Contents
	About This Reference
	Who Should Use This Reference
	Highlighting
	Product Publications
	Related Publications
	Ordering Publications
	How to Send Comments

	Chapter 1. Introduction to the VideoCharger Server
	What's New in Version 8.1

	Chapter 2. Presentation Formatters
	Overview
	Understanding the Application Server Interface Layer

	Modifying the Presentation Formatter
	Operating Presentation Formatters on AIX
	VideoCharger Application Development Environment on AIX
	Video Selection Presentation Formatter on AIX
	Video-on-Demand Presentation Formatter on AIX
	Multicast Video Guide on AIX
	Invoking the Presentation Formatters on AIX
	Developing HTML Pages Using iscpfsel on AIX
	Streaming asset names with special characters using iscpfsel

	Streaming through HTTP Protocol on AIX Using the Generic Stream Player
	Handling Asset Names that Contain Special Characters
	Example 1: Streaming an Asset
	Example 2: Streaming an Offline Asset Using Plug-in
	Example 3: Streaming an Asset Using HTTP From a Given Start Position
	Example 4: Streaming an Asset Using HTTP by Specifying Overriding MIME Type
	Example 5: Streaming an Asset with Special Characters

	Video On-Demand and IP Multicast Examples for AIX
	VOD Example for AIX
	IP Multicast Example for AIX

	Changing the Logo on the Video-on-Demand Home Page on AIX

	Operating Presentation Formatters for Windows
	VideoCharger Application Development Environment on Windows
	Video Selection Presentation Formatter on Windows
	Video-on-Demand Presentation Formatter on Windows
	Multicast Video Guide on Windows
	Invoking the Presentation Formatters on Windows
	Developing HTML Pages Using iscpfsel on Windows
	Streaming through HTTP Protocol on Windows Using the Generic Stream Player
	Handling Asset Names that Contain Special Characters
	Example 1: Streaming an Asset
	Example 2: Streaming an Asset Using HTTP From a Given Start Position
	Example 3: Streaming an Asset Using HTTP by Specifying Overriding MIME Type
	Example 4: Streaming an Asset with Special Characters

	Video On-Demand and IP Multicast Examples for Windows
	VOD Example for Windows
	IP Multicast Example for Windows

	Changing the Logo on the Video-on-Demand Home Page on Windows

	Chapter 3. Application Server Interface Layer Application Programming Interfaces
	UNIX STDIN Command Syntax
	Metadata File
	Session Data Parameters
	Stream Data Parameters
	File Format

	ASIL API Calls Required for all C Language Calling Sequences
	ASIL API Calls for Video Data Retrieval
	ASIL API Calls for Video Selection
	Processing User Data
	asVideoInit
	asVideoExit
	asVideoGetResponse
	asVideoSetServer
	asVideoSetUserData (AIX only)
	asVideoSetVideoName
	asVideoSetParms
	asVideoSetRestriction
	asVideoBuildResponse
	asVideoStreamHTTP
	asProcessUserData (AIX only)

	Chapter 4. Control Server Application Programming Interfaces
	VideoCharger Application Development Environment
	API Invocation
	Notes about the Control Server API Programming Model
	Return Code Definition
	Trace Services
	Session Management
	Session Management States
	Session Takeover (AIX only)
	Authenticating session functions with the Secure msAPI plug-in

	msInit
	msOpenSession
	msCloseSession
	msSetSessionAttr (AIX only)
	msGetSessionAttr
	msRegisterCallBack
	msUnregisterCallBack
	msEnableTakeover (AIX only)
	msTakeover (AIX only)
	msGetSessionHandles (AIX only)
	msTakeoverComplete (AIX only)
	Example: New Application Server (AIX only)
	Example: Original Application Server Terminates (AIX only)
	msStrError
	msAuthenticate
	Stream Connection Management
	msListPortGroups
	msListPorts
	msOpenPort
	msClosePort
	msSetPortAttr
	msGetPortAttr
	Stream Operations
	msOpenPlayStream
	msRecord
	msOpenRecordStream (Windows only)
	msOpenPipeStream
	msCloseStream
	msPlay
	msPause
	msJump
	msGetPlayStreamAttr
	msGetPlayStatus
	Control Server API Asset Management
	msListAssetGroups
	msListAssets
	msOpenAsset
	msCloseAsset
	msDeleteAsset
	msSetAssetAttr
	msGetAssetAttr
	msSetAssetInfo
	msGetAssetInfo
	msGetAssetStatus
	msGetAssetGrpStatus
	msStage
	msExport
	msLoad
	msRead
	msWrite
	msSeek
	msRawAdd

	Chapter 5. Real-Time Transport Protocol (RTP)
	Chapter 6. IBM VideoCharger Extender for DB2 Universal Database™
	UDTs for the VideoCharger Extender
	UDFs for the VideoCharger Extender
	vcGetObjMetaData
	Syntax
	Parameters
	Return value
	Example

	vcGetObjSize
	Syntax
	Parameters
	Return value
	Example

	vcGetObjStatus
	Syntax
	Parameters
	Return value
	Example

	vcInsertObjRef
	Syntax
	Parameters
	Return value
	Example

	Messages issued by the VideoCharger Extender

	Chapter 7. Programming with the new RTSP daemon and plug-in
	Overview of the RTSP daemon
	Overview of the RTSP plug-in
	Sample code
	vcAllow.h (base class of the RTSP plug-in interface for Windows)
	SimpleAllow.cpp (sample code for the RTSP plug-in for Windows)

	Notices
	Trademarks

	Glossary
	Index

