
IBM
®

Enterprise Information Portal for Multiplatforms

Application Programming Guide
Version 7.1

SC27-0877-01

���

IBM
®

Enterprise Information Portal for Multiplatforms

Application Programming Guide
Version 7.1

SC27-0877-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 413.

First Edition (March 2001)

This edition applies to Version 7.1 of IBM Enterprise Information Portal and IBM Enterprise Information Portal
Client Kit (product numbers 5697-G29, 5697-G31) and to all subsequent releases and modifications until otherwise
indicated in new editions. This edition replaces SC27–0877–00.

Portions of this product are: Copyright © 1990–2000 ActionPoint, Inc. and/or its licensors, 1299 Parkmoor Drive,
San Jose, CA 95126 U.S.A. All rights reserved.

Outside In® Viewer Technology © 1992–2000 Inso Corporation. All rights reserved.

© Copyright International Business Machines Corporation 1996, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this guide vii
Who should read this guide vii
Where to find more information vii

Information included in your product package vii
Support available on the Web viii

How to send your comments viii

Chapter 1. Introducing Enterprise
Information Portal 1
Searching for customer information. 1

The need 1
The solution 2

The Enterprise Information Portal solution 2
Enterprise Information Portal components . . . 4

What’s new in Version 7.1 6

Chapter 2. Enterprise Information Portal
application programming concepts . . . 7
Understanding data access through content servers . 7
Understanding data concepts 8

Items 8
Item attributes and index classes. 8
Item parts 8
Documents and folders 9

Understanding dynamic data object concepts . . . 9
Dynamic data objects (DDO) 9
Extended data objects (XDO) 10
Representing multimedia content 10
Understanding datastores and DDOs 11
Comparing DDO/XDOs with attribute values
and item parts 11
Understanding persistent identifiers (PID) . . . 11

Understanding federated searching 11
Federated schema mapping 14
Using federated datastore mapping components 14
Running federated queries 14

Chapter 3. Using the Java application
programming interfaces (APIs) 17
Client/server architecture. 17
Differences between the Java and C++ APIs . . . 18
Packaging for the Java environment 18

Programming tips 18
Setting up the Windows® and AIX environment . . 18

Setting environment variables 20
Using Remote Method Invocation (RMI) with
content servers 21

Multiple search facilities 22
Tracing and diagnostic information 22

For text queries using Text Search Engine . . . 22
For parametric queries. 22
Exception handling 22

Constants 23
Connecting to content servers 23

Establishing a connection 23
Connecting and disconnecting from a content
server in a client. 24
Setting and getting content server options . . . 24
Listing servers 25
Listing the entities and entity attributes for a
content server 25

Working with DDOs 26
Creating a DKDDO. 26
Adding properties to a DDO 27
Creating a persistent identifier (PID) 27
Working with data items and properties 27
Getting properties 28
Displaying the whole DDO 29

Working with XDOs 29
Using an XDO PID 29
Understanding XDO properties 29
Programming tips 30
Using XDO as a part of a DDO or stand-alone . 30
Examples of working with an XDO 32

Importing XML documents 41
The XML Document Type Definition (DTD) . . 42
Storing content in XML documents 43
Extracting content from different XML sources. . 44
Importing XML content into Content Manager. . 44

Creating and using the DKPARTS attribute 44
Creating and using the DKFOLDER attribute . . . 45
Using collections and iterators 46

Using sequential collection methods 46
Using the sequential iterator 46
Sorting the collection 47
Understanding federated collection and iterator 48

Querying a content server 49
Differences between dkResultSetCursor and
DKResults 49
Using parametric queries 49
Using text query. 51

Using the result set cursor 57
Opening and closing the result set cursor to
rerun the query 57
Setting and getting positions in a result set cursor 57
Creating a collection from a result set cursor . . 58

Querying collections 58
Getting the result of a query. 58
Evaluating a new query 59
Using queryable collection instead of combined
query 59

Working with specific content servers 59
Working with Content Manager 62
Working with OnDemand 96
Working with ImagePlus for OS/390 100
Working with VisualInfo for AS/400. 103
Working with Domino.Doc 106
Working with Domino Extended Search (DES) 110
Working with relational databases 116

© Copyright IBM Corp. 1996, 2001 iii

||
||
||
||
||

Working with DB2 Warehouse Manager
Information Catalog Manager 119
Using Enterprise Information Portal workflow 122
Creating custom content server connectors . . 125

Chapter 4. Using non-visual and
visual JavaBeans. 141
Using JavaBeans in builders 141

Using IBM VisualAge for Java 141
Non-visual beans 142

Non-visual bean configurations 143
Understanding properties and events for
non-visual beans 143
Building an application using non-visual beans 144

Working with visual beans 151
CMBLogonPanel bean 151
CMBSearchTemplateList bean 153
CMBSearchTemplateViewer bean 154
Validating or editing fields of the
CMBSearchTemplateViewer. 154
CMBSearchResultsViewer bean 155
Overriding pop-up menus 156
CMBFolderViewer bean 156
CMBDocumentViewer bean 157
Viewer specifications 157
Default viewers 157
Launching external viewers 158
CMBItemAttributesEditor bean 158
Vetoing changes in the
CMBItemAttributesEditor 159
General behaviors for visual beans 159
Replacing a visual bean 160
Building an application using visual beans . . 161

Chapter 5. Using the sample Java
applets and servlet 169
Understanding the connect applet 169
Understanding the query applet 170
Understanding the view applet 173
Understanding the retrieve servlet 174
Running applets in a Java application 175
Accessing local applets 175
Accessing remote applets 176
Displaying part information 177
Indexing a part 179
Setting the content viewer 181
Loading video streams 182
Displaying video stream parts information . . . 184
Playing video streams 185
Working in conjunction with Dynamic Page
Builder 185

Chapter 6. Using the sample thin
client 187
Sample JavaServer Pages 187

Chapter 7. Working with information
mining 191

Building an application using the Information
Mining beans 191

Location of the sample files 191
The categorization sample: Categorizing
information found by a standard EIP search . . 192
Scenario 2: Import documents and metadata
using federated search 197
The advanced search sample: Make an
advanced search and analyze the results . . . 200
The Web Crawler sample: Getting information
from crawling the Web 206
Building your own content provider. 210

Understanding the Information Mining JSP
applications 212

Chapter 8. Using the C++ application
programming interfaces 215
Setting up the Windows and AIX environment . . 215

Setting AIX environment variables 216
Setting Windows environment variables . . . 216
Building C++ programs on Windows 217
Setting console subsystem for code page
conversion on Windows 217

Multiple search facilities 218
Tracing information 218

For text queries using Text Search Engine . . . 218
For parametric queries 218

Catching a DKException. 219
Connecting to content servers 219

Establishing a connection 219
Setting and getting content server options . . . 219
Listing content servers 220
Listing a content server’s schema 220

Using DDOs. 221
Creating a DKDDO 222
Creating a persistent identifier (PID) 222
Adding data items and properties 223
Adding properties to a DDO 223
Setting and getting data item values. 224
Getting the DDKDO and attribute properties 224
Displaying the DDO 225
Deleting a DDO 225

Using XDOs 225
Using an XDO PID 225
Understanding XDO data members 225
DB2, ODBC and DataJoiner configuration
strings for C++ 226
Programming tips 226
Using XDO as a part of DDO instead of a
stand-alone XDO 227

Creating and using the DKPARTS attribute . . . 238
Creating and using the DKFOLDER attribute. . . 239
Using DKAny 240

Using type code 241
Managing memory in DKAny 241
Using constructors. 241
Getting the type code. 241
Assigning a new value to DKAny 241
Assigning a value from DKAny 242
Displaying DKAny 242
Destroying DKAny 242

iv Application Programming Guide

Programming tips 243
Using collections and iterators. 243

Using sequential collection methods 243
Using the sequential iterator 243
Managing memory in collections 244
Sorting the collection 245
Programming tips 245
Understanding federated collection and iterator 245

Querying a content server 247
Differences between dkResultSetCursor and
DKResults 247
Using parametric query 247
Using text query 250

Using the result set cursor 255
Opening and closing the result set cursor to
re-execute the query 255
Setting and getting positions in a result set
cursor 255
Creating a collection from a result set 256

Querying collections 257
Getting query results 257
Evaluating a new query 257
Using queryable collection instead of combined
query 258

Using specific content servers 258
Working with Content Manager 260
Working with ImagePlus for OS/390 295
Working with VisualInfo for AS/400. 299
Working with Domino.Doc 304
Working with Domino Extended Search (DES) 308
Working with custom content servers 316

Chapter 9. Using the ActiveX (OLE)
application programming interface . . 331
Running in client/server mode 332

Updating the registry using regedit or
DCOMCnfg 332
Updating the registry using OLEView 332

Setting up the Windows environment 333
Setting Windows environment variables . . . 333
Using DXInstallDL, DXInstallDES, and
DXInstallFed, DXInstallDD, DXInstallIP, and
DXInstallV4 333

Multiple search facilities 334
Connecting to content servers 334

Establishing a connection 334
Setting and getting datastore options 335
Listing servers 335
Listing schema and schema attributes 335

Using DDOs. 336
Creating a persistent identifier (PID) 336
Adding data items and properties 337
Adding properties to a DDO 337
Setting and getting data item values. 338
Getting the properties 338
Displaying the DDO 338
Deleting a DDO 339

Using XDOs 339

Using an XDO PID 339
Understanding XDO data members 339
Using XDO in a datastore 340
Programming tips 340
Using XDO as a part of DDO instead of
stand-alone XDO 340

Creating and using the DX_DL_DKPARTS attribute 344
Creating and using the DX_DL_DKFOLDER
attribute 344
Using collections and iterators. 345
Querying a content server 346

Using parametric query 346
Using text query 349

Using result set cursor 353
Opening and closing the result set cursor to
re-execute the query 353
Setting and getting positions in a result set
cursor 353
Creating a collection from a result set 354

Querying collections 354
Getting the result of a query 354
Evaluating a new query 355
Using queryable collection instead of combined
query 355

Using specific content servers 356
Working with Content Manager 357
Working with Domino Extended Search (DES) 385

Chapter 10. Using the Dynamic Page
Builder 393
Configuring the Dynamic Page Builder with
Net.Data 393

The ENVIRONMENT statement (DTW_DLDPB) 393
The MACRO_PATH statement. 394
The INCLUDE_PATH statement 394
The HTML_PATH statement 394

Dynamic Page Builder functions 394
API functions 394
Input parameters 395
Inline data 396
Variable definition 399
Special output variable 399

Developing a Net.Data macro for the Dynamic
Page Builder 400

Sample macro 1 400
Sample macro 2 404
Improving performance 408
Invoking the wizard 409

Starting the Dynamic Page Builder sample . . . 409
Web server configuration 409
Connection manager setup 410

Notices 413
Trademarks 415

Glossary 417

Index 423

Contents v

vi Application Programming Guide

About this guide

This guide describes how to use and modify the Java, JavaBeans, C++, Active/X,
and Dynamic Page Builder portions of IBM Enterprise Information Portal.
Enterprise Information Portal lets you create multiple search query applications
that search for documents in various content servers and have a World Wide Web
interface.

This guide includes:
v Descriptions of how the various components work.
v Tips for identifying application requirements as you create a query application.
v Details of how the sample code works and how to tailor it to your needs.

The C++ API and Java API chapters contain similar information placed within a
consistent structure; this consistency between chapters unites the information
contained in the C++ and Java API sets. The consistent structure also helps
application developers coordinate the development of their applications, regardless
of the programming language they choose.

For additional information about programming with other IBM Content Manager
components in the C language, see the C Application Programming Guide for the
platform you are using.

Who should read this guide
This guide is intended for application programmers with some or all of the
following skills:
v Experience with either C++, Java, JavaBeans, ActiveX, or HTML
v Familiarity with relational database concepts
v Knowledge of the DDO/XDO protocol

Where to find more information
IBM® Enterprise Information Portal includes a complete set of information to help
you plan for, install, administer, and use your system. Product documentation and
support are also available on the Web.

Information included in your product package
The IBM Enterprise Information Portal publication library is available online in
HTML (Hypertext Markup Language) format. On Windows operating systems, you
can view the publications from the taskbar by clicking Start —� Programs —� IBM
Enterprise Information Portal for Multiplatforms 7.1 —� Information and then
the title of the publication that you want to view.

The IBM Enterprise Information Portal CD-ROM contains each publication in the
Adobe Acrobat portable document format (PDF).

You can view the PDF files online using the provided Adobe Acrobat Reader for
the following operating systems: Windows® or AIX®. (Adobe provides Acrobat
Readers for additional operating systems on their Web site,
http://www.adobe.com.)

© Copyright IBM Corp. 1996, 2001 vii

Table 1 shows the Enterprise Information Portal publications included on the IBM
Enterprise Information Portal CD-ROM.

Table 1. Enterprise Information Portal publications

File name Title Publication number

apgoo Application Programming Guide SC27-0877-01

eipinst Planning and Installing Enterprise Information
Portal1

GC27-0873-00

eipmc Messages and Codes SC27-0874-00

eipmnge Managing Enterprise Information Portal SC27-0875-00

txtse Text Search Engine Application Programming
Reference

SC27-0876-00

Notes:

1. You receive a printed copy of the Planning and Installing Enterprise Information Portal with
the product.

Copying the PDF files: To copy the PDF files from the CD-ROM to your hard
drive:
1. Change to the directory for the language that you are using (for example, ENU

for English).
2. Copy *.PDF files to your designated hard drive directory

Installing the PDF reader: The Adobe Acrobat Reader is available in the
ACROBAT directory of the CD-ROM and from http://www.adobe.com. To install
Acrobat Reader, decompress the program files for your platform and follow the
instructions in the Acrobat installation program or the installation text file.

On AIX, untar the .tar file and read INSTGUID.TXT.

On Windows, run the executable file.

Support available on the Web
Product support is available on the Web. Click Support from the product Web site
at:

http://www.ibm.com/software/data/eip/

The documentation is included in softcopy on the product CD-ROM. To access
product documentation on the Web, click Library on the product Web site.

An HTML-based documentation interface, called Enterprise Documentation Online
(EDO), is also available from the Web. It currently contains the reference
information about the object-oriented and Internet APIs. Go to the Enterprise
Information Portal Library Web page for information about accessing EDO.

How to send your comments
Your feedback helps IBM to provide quality information. Please send any
comments that you have about this publication or other Enterprise Information
Portal documentation. You can use either of the following methods to provide
comments:

viii Application Programming Guide

|

v Send your comments from the Web. Visit the IBM Data Management Online
Reader’s Comment Form (RCF) page at:
http://www.ibm.com/software/data/rcf
You can use the page to enter and send comments.

v Send your comments by e-mail to comments@vnet.ibm.com. Be sure to include
the name of the product, the version number of the product, and the name and
part number of the book (if applicable). If you are commenting on specific text,
please include the location of the text (for example, a chapter and section title, a
table number, a page number, or a help topic title).

About this guide ix

x Application Programming Guide

Chapter 1. Introducing Enterprise Information Portal

Many paper-intensive enterprises, such as insurance companies and financial
institutions, administer large volumes of business-related content. The need for an
enterprise solution for managing and accessing business information spans many
industries.

A content server is a software system that stores multimedia, business forms,
documents, and related data, along with metadata that allows employees to
process and work with the content. When there is no way to effectively connect
disparate content servers, a business can waste time and money by duplicating
information or training employees to perform multiple searches.

Enterprise Information Portal provides leading-edge technology to bring all of your
enterprise resources to your workstation desktop. Enterprise Information Portal can
help you maximize the value of your information and multimedia assets by
connecting disparate content servers through a single client. With an Enterprise
Information Portal client users can quickly and concurrently access all connected
content servers. Users can also do information mining or “intelligent” searches
across content servers, including the Web or an intranet, and they can perform
workflow tasks within your business processes.

With Enterprise Information Portal, you can customize applications for your
enterprise. Using the Enterprise Information Portal toolkits, application
programmers can write both desktop and Web-based applications.

This chapter provides an overview of Enterprise Information Portal. A scenario
about a fictitious insurance company, AA Insurance, demonstrates Enterprise
Information Portal’s features and functionality.

Searching for customer information
AA Insurance (AA), a large property and casualty insurance company, has an
extensive collection of photographs, claims, policies, adjuster’s notes, reports from
experts, and other business documents.

AA keeps all memos that are sent to policy holders, along with medical and
appraisal electronic forms in Lotus® Domino™.Doc file cabinets. AA archives all
policy declarations, notices, and invoices in a Content Manager OnDemand server
for long-term storage and quick access. AA stores all claim forms, photographs,
and letters received from policy holders in a Content Manager for AS/400® system
folder. AA keeps reports from experts in a DB2 Universal Database™ (DB2 UDB)
Data Warehouse Center Information Catalog Manager. AA also stores corporate
media assets such as high-resolution graphics in a Content Manager system for the
advertising, public relations, and new business departments to share. In addition,
AA keeps information, such as company procedures, on its company intranet.

The need
Claims, customer calls, and general policy holder servicing cannot be handled with
the content from one server because employees need to access all customer
information. To provide customer service, employees require simultaneous access
to a variety of content servers. AA Insurance needs a solution that connects their

© Copyright IBM Corp. 1996, 2001 1

content servers and their company intranet for searching and retrieving
information. They also want to expand their use of workflow processing.

Many different employees need to access documents, from clerks to claim adjusters
to agents. AA must restrict access to certain items, while providing unlimited
access to others. AA also wants an easy-to-use interface to reduce the need for
training.

The solution
AA Insurance deploys Enterprise Information Portal because the comprehensive
search technologies allow them to connect and search all of their content servers
for the retrieval of data. Now, when an AA Call Center representative receives a
call, a single federated search retrieves all of the necessary policy holder
information.

AA Insurance also uses Enterprise Information Portal Information Mining feature
to search for and retrieve information from the company’s intranet. They also want
to expand their use of workflow processes.

The Enterprise Information Portal solution
Enterprise Information Portal is a comprehensive product; its components work
together to provide a solution uniquely suited to your enterprise. Centered on a
multiple-tier architecture, Enterprise Information Portal provides an administration
client for managing searches, clients (as samples) for running searches, and
connectors for connecting to disparate content servers such as Content Manager,
Content Manager ImagePlus® for OS/390®, Content Manager OnDemand, Lotus
Domino.Doc, DB2 UDB, DB2® DataJoiner®, and DB2 Data Warehouse Center
Information Catalog Manager. You can write additional connectors for additional
content servers.

Figure 1 on page 3 shows the concept of the multiple-tier architecture of Enterprise
Information Portal.

2 Application Programming Guide

The Enterprise Information Portal architecture allows your client applications to
run single searches on one or more content servers. To perform searches, a client
uses search templates that were defined by the Enterprise Information Portal
administrator.

Using search templates, the client runs a federated search, a search that runs
simultaneously across content servers whose native attributes have been mapped
with the federated attributes used in the search template. The Enterprise
Information Portal search templates contain search criteria, which reference
federated attributes that are mapped to native attributes on each of the content
servers. The Enterprise Information Portal administrator creates the search
templates. Enterprise Information Portal provides connectors to make compatible
the heterogeneous interfaces of content servers. The content servers then return
data objects to the client.

The Enterprise Information Portal architecture provides the following advantages:
v Access using a single query to multiple and varying content servers that support

e-business™ transactions and customer service applications.
v Information mining capability across multiple content servers, including the

Web.
v Workflow process access to data across multiple, heterogeneous content servers.
v Support for the development of client applications that are independent of data’s

location on any content server, because of the separation of client applications,
indexes, and data.

Figure 1. Multiple-tier architecture

Chapter 1. Introducing Enterprise Information Portal 3

Enterprise Information Portal components
This section describes each Enterprise Information Portal component. These
components are shipped as part of the Enterprise Information Portal product.

Administration database
The Enterprise Information Portal database is a DB2 UDB database that stores the
information managed by the administration client. This data is used to perform
federated searching, information mining, and workflow processes.

Migrating your Enterprise Information Portal Version 6.1 database: You must
migrate your data from Enterprise Information Portal Version 6.1 before using your
Enterprise Information Portal Version 7.1 administration database.

Administration client
The system administrator uses the Enterprise Information Portal administration
client to:
v Define each content server for federated searching.
v Identify native entities and attributes on content servers and map them to

federated entities.
v Maintain an inventory of the search criteria for all content servers.
v Create search templates.
v Identify and manage users who can access search templates, the information

mining feature, and workflow processes.
v Define business workflow processes.
v Administer the information mining server: stopping, starting, and testing the

information mining server connection and setting up trace and log levels.

This information is stored in the Enterprise Information Portal database.

It is recommended that you install the administration client on the same
workstation, or server, as the Enterprise Information Portal database.

You can also have as many administration clients as you want on other
workstations. To do this configuration, you need to do one of the following:
v Have DB2 Client Application Enabler installed and configured on each

workstation on which the administration client is installed.
v Use a Remote Method Invocation (RMI) configuration by starting the RMI server

on which the Enterprise Information Portal database is installed. You need to
make sure that your \CMBROOT\cmbclient.ini file points to this server.

Connectors
Connector classes permit client applications to access content servers and the
Enterprise Information Portal database. Enterprise Information Portal ships the
following connectors for content servers:
v Relational database connectors
v Federated connector (to the Enterprise Information Portal database)
v Content Manager connector
v Content Manager OnDemand connector
v Content Manager ImagePlus for OS/390 connector
v Content Manager for AS/400 connector
v Lotus Domino.Doc connector
v Extended search connector

4 Application Programming Guide

v DB2 Data Warehouse Manager Information Catalog Manager connector

The federated connector contains the connector class for the Enterprise Information
Portal database. Each content server connector contains the appropriate connector
class.

Connectors are either local or remote. Local connectors are a set of connector
classes you use for directly connecting to various content servers. Local connectors
can reside on an Enterprise Information Portal desktop client or on an Enterprise
Information Portal RMI server. Remote connectors, which connect to a content
server through an RMI server or an RMI server pool member, are always installed.

Enterprise Information Portal sample client application
The sample client application, built by IBM from the JavaBeans™ in the federated
access toolkit, provides an interface for performing a single search to retrieve and
display documents from multiple content servers.

When a user runs the Enterprise Information Portal sample client application, the
search templates available to that user are retrieved from the Enterprise
Information Portal database. The user then selects a template and enters values for
the search criteria. A list of documents satisfying the search criteria is returned to
the user. Documents can then be selected from the search results list, viewed, and
updated.

Enterprise Information Portal thin client samples
The Enterprise Information Portal thin client samples run only in a Web browser.
Written in HTML and JavaServer Pages™ (JSP), the thin client samples are easily
changed and deployed through a Web browser interface. The thin client samples
are a set of files that you install on your Web server.

Users use the thin client samples for performing a single search to retrieve and
display documents and folders from multiple content servers. Users can also use
the thin client samples for performing tasks in a workflow process.

Connector toolkits and samples
Use the connector toolkits and samples to build your own Internet or desktop
client applications that access data and content in content servers. The toolkits
provide:
v Java®, C++, and ActiveX classes
v Content server-specific samples

Information mining
Information mining provides linguistic services to find hidden information in text
documents on content servers. During processing of the text documents, metadata
(information about data) is created that can be summarized, categorized, and
searched. Enterprise Information Portal provides samples that show how to use
information mining capabilities in a thin client. You can build your own desktop
client or thin client to work with information mining.

Workflow
With Enterprise Information Portal you can control the flow of work in your
business. By using Enterprise Information Portal workflow feature, you can define
and run the workflow process of a work group, department, or enterprise. Using a
graphical builder, you can construct a comprehensive, easy-to-understand graphical
representation of a workflow process in the Enterprise Information Portal

Chapter 1. Introducing Enterprise Information Portal 5

workflow builder. Your users can then use the defined workflow process to
perform their tasks, using a client that you develop or the Enterprise Information
Portal thin client samples.

Content Manager text search server and client
You can use this feature to automatically index, search, and retrieve documents
stored in Content Manager. Users can locate documents by searching for words or
phrases

Restriction: The Content Manager text search server and client is an optional
Content Manager feature that you can configure and run with Content Manager
servers only. If you do not use Content Manager servers, do not install this feature.

Content Manager image search server and client
This feature uses IBM QBIC® (query by image content) technology with which you
can search for objects by certain visual properties, such as color and texture.

Restriction: The Content Manager image search server and client is an optional
Content Manager feature that you can configure and run with Content Manager
servers only. If you do not use Content Manager servers, do not install this feature.

What’s new in Version 7.1
Enterprise Information Portal Version 7.1 provides unprecedented access to
disparate content servers. The new features and components include:
v XML import capabilities

You can now import XML content into Content Manager as DDOs and XDOs
using Java APIs.

v Improved installation procedures
v Additional connectors for relational databases

Enterprise Information Portal provides relational database connectors for DB2
UDB, DB2 DataJoiner, DB2 Data Warehouse Manager Information Catalog
Manager, and other databases through JDBC or ODBC drivers.

v Advanced information mining and search capabilities
Information Mining offers advanced text searching using a flexible query that
you can restrict to documents of certain categories.

v Workflow capabilities
By using Enterprise Information Portal workflow feature, you can define and
run the workflow process of a work group, department, or enterprise.

v Federated level access control
You can control access to Enterprise Information Portal information mining and
workflow processes through the use of privilege sets and access control lists.
Additional access control to data can be managed by the access control features
of each content server.

v Additional support for Content Manager:
– List, add, retrieve, update, and delete of content class
– Asynchronous retrieval of object content

6 Application Programming Guide

|
|

Chapter 2. Enterprise Information Portal application
programming concepts

Enterprise Information Portal offers object-oriented (OO) application programming
interfaces (APIs) that you can use to create query applications that access and
display relational data, including multimedia data. This chapter provides a brief
overview of how these APIs fit into the Enterprise Information Portal architecture,
and describes the object-oriented programming concepts on which the APIs are
based.

Figure 2 shows how the C++, Java (including JavaBeans), and ActiveX APIs access
content servers through the connectors.

Understanding data access through content servers
A content server is a data repository that is compatible with the DDO/XDO
protocol. A content server supports user sessions, connections, transactions,
cursors, and queries. Applications using the application programming interfaces
(APIs) and class libraries described in this book can perform functions supported
by the content servers, such as add, retrieve, update, and delete DDOs. Enterprise
Information Portal supports the following content servers:
v Content Manager
v Domino.Doc
v Domino Extended Search
v ImagePlus for OS/390
v Content Manager OnDemand
v VisualInfo™ for AS/400
v DB2
v DB2 DataJoiner

Figure 2. Enterprise Information Portal organization

© Copyright IBM Corp. 1996, 2001 7

v DB2 Warehouse Manager Information Catalog Manager
v JDBC/ODBC server

Applications that use Enterprise Information Portal can create a federated
datastore, which acts as a common server. Enterprise Information Portal federated
classes enable federated searching, retrieval, and updating across several content
servers.

The Enterprise Information Portal federated datastore and each of the content
servers have different schemas. Integrating multiple heterogeneous content servers
into a federated system requires conversion and mapping.

Schema mapping functions provide the schema information for each content
server. The information provided by schema mapping is used during federated
searching, federated collection, and EIP system administration. Enterprise
Information Portal keeps the schema and mappings, as well as other
administration information in its administration database.

Understanding data concepts
Enterprise Information Portal provides a set of data objects that you can use to
organize and store your data. This section describes the following concepts:
v Items
v Item attributes and index classes
v Item parts
v Documents and folders

Items
Items are the building blocks in Enterprise Information Portal. An item can
represent anything from a multimedia document to a folder. Each item is uniquely
identified by an item ID. The item ID is persistent and stored in a content server.
EIP uses the item ID to access the item’s associated data.

Item attributes and index classes
A native entity is a conceptual object on a content server; for example, index
classes are the native entities on a Content Manager server. The items belong to an
entity. Each native entity defines a set of attributes that describe the items. An
attribute is a characteristic; for example, title and duration might be attributes of a
video object. The characteristic can be determined, and possibly changed, through
operations on the managed object.

The native entity is a category for storing and retrieving objects, consisting of a
named set of attributes. When you create an object in the Content Manager system
for example, your application must assign an index class, the native entity, and
supply the key field values required by that class, the native attributes.

Item parts
An item can contain one or more parts; the number, order, and type of the parts is
specific to the content server and the applications that manage the content. Each
item part corresponds to one multimedia data object, such as an image, video, or
text.

8 Application Programming Guide

Documents and folders
A document can be any multimedia item that has digital content.

In Enterprise Information Portal, a document can contain text, images, video clips,
or a combination of these. For example, a movie document, which can be
considered a document that represents movie images, can also contain text, still
images, and an image of a movie poster.

A document can be composed of parts. For example, a paper document consists of
a set of closely related subsections, such as chapters.

A folder is a container that holds one or more items, such as documents or other
folders. A folder is an item itself. Figure 3 shows how documents, parts, and
folders work together in the Enterprise Information Portal framework.

Understanding dynamic data object concepts
In compliance with Object Management Groups’s (OMG) CORBA Persistent Object
Service and Object Query Service Specification, Enterprise Information Portal
provides an implementation of the dynamic data object (DDO) and its extension,
the extended data object (XDO), which are part of the CORBA Persistent Data
Service (PDS) protocols. The concepts of DDO and XDO are not specific to any one
datastore, and can be used to represent data objects in any database management
system supported by Enterprise Information Portal.

The dynamic data object is an interface to move data in and out of a datastore.
DDOs exist in the application and do not exist after an application terminates.

Dynamic data objects (DDO)
A DDO is a datastore-neutral representation of an object’s persistent data. Its
purpose is to contain all of the data for a single persistent object. It’s also an
interface to retrieve persistent data from, or load persistent data into, a datastore.

A DDO has a single persistent ID (PID), an object type, and a set of data items
whose cardinality is called the data count. Each data item can have a name, a
value, an ID, one or more data properties, and data property count. Each data
property can have an ID, a name, and a value.

For example, a DDO can represent a row of a database table whose columns are
represented by DDO’s data items and their properties. A DDO can contain one or

Figure 3. Documents, folders, and parts

Chapter 2. Enterprise Information Portal application programming concepts 9

more extended data objects (XDOs) that represent non-traditional data types.
Figure 4 shows Dynamic data objects and data items.

Extended data objects (XDO)
An XDO is a representation of complex multimedia data, for example a part in
Content Manager or a new data type introduced by a relational database’s
object-relational facilities, such as IBM DB2 Extenders.

XDOs complement DDOs by storing multimedia data of complex types and
offering functions that implement the data type’s behaviors in the application.
XDOs can be contained in, or owned by, a DDO to represent a complex
multimedia data object.

XDOs have a set of properties to represent such information as data types and IDs.
XDOs can also be stand-alone dynamic objects. Figure 5 shows an example of
XDOs.

Representing multimedia content
DDOs and XDOs can represent data objects of any type and structure. For
example, a movie can be represented by a DDO. This DDO contains multiple data
items, which represent attributes of the movie such as Director_Name or
Movie_Title, and multimedia XDOs, which represent the movie’s multimedia data
such as video clips or still images. An another example, for a DB2 database, a table
is represented by a DDO and a large object, such as a CLOB or BLOB, by an XDO.

Figure 4. Dynamic data objects and data items

Figure 5. Extended data objects (XDOs)

10 Application Programming Guide

Understanding datastores and DDOs
DDOs are created and dynamically associated with a datastore. The association
between a DDO and a datastore is established with the DDOs PID.

In general, an Enterprise Information Portal application goes through the five steps
listed below to move data in and out of a datastore:
1. Create a datastore.
2. Establish a connection to the datastore.
3. Create the DDOs to be operated on, and associate the datastore with the DDOs.
4. Add, retrieve, update, and delete the DDOs using appropriate methods.
5. Close the connection and destroy the datastore.

Comparing DDO/XDOs with attribute values and item parts
A DDO corresponds to an item in Enterprise Information Portal. The DDO’s object
type corresponds to the item’s associated index class. The data items of a DDO
correspond to an item’s attributes. For example, in Content Manager an index class
is created using a set of attributes, and an item is always indexed by an index
class.

A DDO can hold one or more XDOs that correspond to item parts in Enterprise
Information Portal.

Understanding persistent identifiers (PID)
The persistent identifier (PID) uniquely identifies a persistent object in any
datastore. A DDO’s PID consists of an item ID, a datastore name, and other related
information. When a DDO is added to a datastore, a PID needs to be created for it.
For example, a PID must be assigned to a DDO that is created by getting persistent
data out of the datastore with a query result list.

Because a DDO is a dynamic interface to persistent data that is moved in or out of
datastores, different DDOs can represent the same persistent data entities, and
therefore the DDOs can have the same PID. For example, a DDO can be created to
move a data entity into a datastore to store data persistently, and another DDO can
be created to hold the same data entity that is checked out from the same datastore
for modification. In this case, these two DDOs share the same PID value.

Understanding federated searching
Federated searching is the process of searching for data in one or more content
servers. You use a DKDatastoreFed object for a federated search. Federated search
works with classes that are specific implementations of dkDatastore,
dkDatastoreDef, and other related classes that support federated searches. The
specific federated classes work together with other common classes, such as those
for queries, collections, and data objects and are part of the Enterprise Information
Portal framework.

Federated classes work across different content servers, such as ImagePlus for
OS/390 or Domino.Doc. The classes provide a set of generic functions for
federated search and access across the content servers. This common view, called
federated document model, is illustrated in Figure 6 on page 12.

Chapter 2. Enterprise Information Portal application programming concepts 11

The lines in the Figure 6 indicate that a folder can have parts; however, in the
Enterprise Information Portal, parts for folders is not formally supported.

An item can be a document or a folder. A document can contain zero or more
parts. A folder can have zero or more items which can be documents or other
folders.

Not all content servers can support the federated document model. For example, a
DB2 database does not have folders or parts. A federated document maps to a row
in a DB2 table or other relational database.

In general, a document is represented in your program by a dynamic data object
(DDO), which is a self-describing data object for transferring data into and out of a
content server. The DDO itself has a general structure and supports a variety of
models. It is not limited to the federated document model. This flexibility allows a
DDO to represent data in different content servers, each with its own data model.

An entity is a content server object comprised of attributes. An attribute is a label
used for metadata in content servers, for example, key fields are attributes in
Domino.Doc content servers.

Each datastore has its own terminology to explain the model it is supporting.
Table 2 relates the terminology used for various content servers to the federated
model:

Table 2. Mapping terminology for each datastore

Content server Data Source Entity Attribute View

Content Manager Library server index class v attribute

v key attribute

index class view

OnDemand OnDemand
server

v application
group

v search
template

v field

v criteria

N/A

ImagePlus ImagePlus for
OS/390 server

entity attribute N/A

Figure 6. Federated document view

12 Application Programming Guide

Table 2. Mapping terminology for each datastore (continued)

Content server Data Source Entity Attribute View

VisualInfo VisualInfo for
AS/400 server

index class attribute index class view

Domino.Doc Domino server v library

v cabinet

v binder

key field N/A

Domino Extended
Search

Domino
Extended
Search server

database name database name N/A

Relational
database

IBM DB2 UDB,
JDBC, ODBC,
IBM DB2
DataJoiner

table column view

Information
Catalog

DB2
Warehouse
Manager
Information
Catalog
Manager

index class property

Enterprise
Information Portal
federated datastore

mapping
server

mapped
federated entity

mapped
federated
attribute

search template

Figure 7 illustrates a federated search. The federated search uses the Enterprise
Information Portal federated datastore, working through search templates. The
federated datastore then calls the searches for the individual datastores to perform
the actual search on the content servers. This association is established by schema
mapping.

Figure 7. Structure of federated searches

Chapter 2. Enterprise Information Portal application programming concepts 13

RIM is currently used for the communication between the Enterprise Information
Portal federated datastore and the content servers. The applications you develop sit
on top of the Java API classes. You can develop application programs, either in the
form of Java applications, applets, or beans.

Federated schema mapping
A schema mapping represents a mapping between the schema in the content server
and the structure of the items the user wants to process in the application. A
federated schema is the conceptual schema of a Enterprise Information Portal
federated datastore and defines a mapping between the concepts in the federated
datastore and concepts in each participating content server. The schema mapping
handles the difference between how the data is physically stored and how the user
wants to process the data in an application.

The mapping information is represented in memory in schema mapping classes.

Using federated datastore mapping components
In addition to schema mapping information for mapping the entities and
attributes, a federated datastore must also have access to the following
information:

User ID and password mapping
To support a single logon feature, each user ID in the Enterprise
Information Portal can be mapped to the corresponding user ID on each
content server.

Content server registration
Each content server must be registered so that it can be located and logged
on to by the Enterprise Information Portal.

The user ID and content server information is maintained in the Enterprise
Information Portal administration database.

Running federated queries
To run a federated search, first you create a federated query string. You can then
create and run the query in several ways:
v You can create a federated query object, DKFederatedQuery, passing it the query

string; then invoke the execute or evaluate method on the object to process the
query.

v You can pass the query string to the execute or evaluate method of the federated
datastore to process the query directly.

The query string is parsed into a federated query form, which is essentially a
datastore neutral representation of the query. The federated query form is the input
for a federated search.

If the query comes from a graphical user interface (GUI) based application, the
query does not need to be parsed and the corresponding federated query form can
be directly constructed.

As a federated search is processed, Enterprise Information Portal performs the
following steps:
v Translate the query canonical form into several native queries that run on each

content server. The translation information is obtained from the schema
mapping.

14 Application Programming Guide

v Convert federated entities and attributes into native entities and attributes for
each of the content servers. This process uses the mapping and conversion
mechanisms described in the schema mapping.

v Filter only the relevant data during the construction of native queries.
v Form native queries and submit them to the individual content servers.

Each datastore runs the submitted query. The results are returned to the federated
query, which can process them as following:
v Convert native entities and attributes into federated entities and attributes

according to the mapping information.
v Filter the results to include only the requested data.
v Merge the results from several content servers into a federated collection.

The result of a federated search is returned as a federated collection. You can create
an iterator to access the individual collection members. Each call to the next
method in the iterator returns a DKDDO object, which is a datastore neutral
dynamic data object.

The federated collection provides the facility to separate the query results
according to the content server. Create a sequential iterator by invoking the
createMemberIterator method in the federated collection. Using this sequential
iterator, you can access each member collection, which is a DKResults object, and
process it separately.

The components of a federated search and their relationships are illustrated in
Figure 8.

Figure 8. Federated query processing

Chapter 2. Enterprise Information Portal application programming concepts 15

Federated query syntax
When you create a federated query, it must be in the proper syntax, as shown
below. The federated datastore does not support image query. For more
information about image query, see “Understanding image search terms and
concepts” on page 79).

PARAMETRIC_SEARCH=([ENTITY=entity_name,]
[MAX_RESULTS=maximum_results,]
[COND=(conditional_expression)]
[; ...]

);
[OPTION=([CONTENT=yes_no_attronly]

)]

[and

TEXT_SEARCH=(COND=(text_search_expression)
);

[OPTION=([SEARCH_INDEX={search_index_name | (index_list) };]
[MAX_RESULTS=maximum_results;]
[TIME_LIMIT=time_limit]
)]

]

16 Application Programming Guide

Chapter 3. Using the Java application programming interfaces
(APIs)

The Java application programming interfaces (APIs) are a set of classes that access
and manipulate local or remote data. This section describes the Java APIs, the Java
implementation of multiple search facilities, and Internet connectivity.

The Java APIs support:
v A common object model for data access
v Multiple search and update across a heterogeneous combination of content

servers
v A flexible mechanism for using a combination of search engines; for example,

Text Search Engine and query by image content (QBIC)
v Client/server implementation for Java application users
v Workflow capability
v Administration functions

Note: Multistream support for the Java APIs is fully enabled for Windows servers
only. AIX servers, clients and Windows clients cannot support multistreaming.

Client/server architecture
The APIs provide a convenient programming interface for application users. APIs
can reside on both the server and the client (both provide the same interface), and
the applications can be located locally or remotely. The client API communicates
with the server to access data through the network. Communication between the
client and the server is performed by classes; it is not necessary to add any
additional programs.

API classes consist of three packages: server, client and common. The client and
server classes provide the same APIs, but have different implementations.
v The server package is com.ibm.mm.sdk.server. The classes in the server package

are related mainly to Enterprise Information Portal and connect directly with it.
v The client package is com.ibm.mm.sdk.client. The classes in this package are not

directly connected to Enterprise Information Portal; these client classes
communicate with the server classes through the network by invoking the server
classes to execute and retrieve the results

v
v The common classes are shared by both the client and server. Sometimes an

application does not know where the content resides; for example, an
application can have content residing on the client at one time and the server at
another time. The cs package connects the client and server dynamically, so that
the application can move to wherever the content resides.

The client application must import the client package, and server application must
import the server package.

Although the same API is provided for the client and server, the client package has
an additional exception item because it communicates with the server package.

© Copyright IBM Corp. 1996, 2001 17

Differences between the Java and C++ APIs
The list below describes differences between the Enterprise Information Portal Java
and C++ API sets:
v The operators defined in the C++ API are not defined in the Java API. They are

supported as Java functions.
v The Java class object is used in place of the C++ class DKAny to represent a

generic object.
v Common and global constants are defined in the interface DKConstant in the

Java APIs.
v The Java APIs use Java’s garbage collector.

Packaging for the Java environment
The Enterprise Information Portal APIs are contained in four packages as part of
com.ibm.mm.sdk:common, server, client, and cs.

server (com.ibm.mm.sdk.server)
Access and manipulate content server information

client (com.ibm.mm.sdk.client)
Communicate with the server package using Remote Method Invocation
(RMI)

common (com.ibm.mm.sdk.common)
Common classes for both the server package, client package and the cs
package

cs (com.ibm.mm.sdk.cs)
Connect the client or server dynamically

Your application must use the common with either the server package for local
applications, or the client package for applications that access the remote server,
or the cs package.

Programming tips
Do not import client and server packages in the same program. If you are
developing a client application, import the client package. Otherwise, import the
server package. If you do not know where the content resides, then use the cs
package (with the server or client packages).

Use the client package for Web applications. The client package is created with
pure Java programs; the server package includes C programs.

Because a client requires the exception, java.rmi.RemoteException, always attach
this exception in the application whether the application runs on a server or client.

Setting up the Windows® and AIX environment
When you set up your Windows or AIX environment you must establish the
following settings:

server package
Import when a datastore and application are on the server side
v com.ibm.mm.sdk.common
v com.ibm.mm.sdk.server

18 Application Programming Guide

client package
Import when a datastore and application are on the client side.
v com.ibm.mm.sdk.common
v com.ibm.mm.sdk.client

cs package
Import when a datastore location is different from the application location.
v com.ibm.mm.sdk.common
v com.ibm.mm.sdk.cs

Library files

v cmbcm71.jar
v cmbdl71.jar
v cmbdlc71.jar
v cmbdd71.jar
v cmbddc71.jar
v cmbip71.jar
v cmbipcv.jar
v cmbod71.jar
v cmbv471.jar
v cmbv4c71.jar
v cmbfed71.jar
v cmbfedc71.jar
v cmbjdbc71.jar
v cmbjdbcc71.jar
v cmbdes71.jar
v cmbdesc71.jar
v cmbdb271.jar
v cmbdb2c71.jar
v cmbdj71.jar
v cmbdjc71.jar
v DKConstantDL.txt: constants used in the Content Manager class library
v DKConstantFed.txt: constants used in the Federated class library
v DKConstantIP.txt: constants used in the ImagePlus for OS/390 class

library
v DKConstantOD.txt: constants used in the OnDemand class library
v DKConstantV4.txt: constants used in the VisualInfo for AS/400 class

library
v DKConstantDES.txt constants used in the Domino Extended Search class

library
v DKConstantDB2.txt constants used in the DB2 class library
v DKConstantJDBC.txt constants used in the JDBC class library
v DKConstantDJ.txt constants used in the Data Joiner class library

Shared objects for AIX

v libcmbdsdl71.so
v libcmbdsfed71.so
v libcmbdsdb271.so

Chapter 3. Using the Java application programming interfaces (APIs) 19

v libcmbdsdj71.so

DLLs for Windows

v cmbdsdl71.dll
v cmbdsdb271.dll
v cmbdsdj71.dll
v cmbdsdd71.dll
v cmbdsip71.dll
v cmbdsod71.dll
v cmbdsv471.dll
v cmbdsdes71.dll
v cmbdsfed71.dll
v de_db2.dll
v de_ora.dll

Setting environment variables
When developing an application for the Enterprise Information Portal, you must
set up your environment.

For Windows
You can open a DOS command prompt with the environment set up for
developing EIP applications by selecting Start —� Programs —� IBM Enterprise
Information Portal for Multiplatforms 7.1 —� Development Window. As an
alternative, you can run cmbenv71.bat in a DOS command prompt to set up the
environment.

If you want to modify your environment variables, change the following:

PATH Make sure your PATH contains X:\CMBROOT\DLL; where X is the drive on
which you installed Enterprise Information Portal.

CLASSPATH
Make sure your CLASSPATH contains X:\CMBROOT\LIB\xxx where X is the
drive on which you installed Enterprise Information Portal and xxx are the
.jar files, (for example, cmbfed71.jar).

For AIX
In the AIX environment, you can use one of three batch files to set up your
development environment.
1. For a Bourne shell, use cmbenv71.sh

2. For a C shell, use cmenv71.csh

3. For a Korn shell, use cmenv71.ksh

Set the following environment variables:

PATH Make sure your PATH contains /usr/lpp/cmb/lib

LIBPATH
Make sure your LIBPATH contains /usr/lpp/cmb/lib

LD_LIBRARY_PATH
Make sure your LD_LIBRARY_PATH contains /usr/lpp/cmb/lib

CLASSPATH
Make sure your CLASSPATH contains /usr/lpp/cmb/lib/xxx where xxx
are the .jar files, (for example, cmbfed71.jar)

20 Application Programming Guide

|
|
|
|
|

|

|

|

|

Use the -qalign=packed compiler option so that the objects align properly.

Using Remote Method Invocation (RMI) with content servers
Because the client classes in the Java APIs need to communicate with the server
classes to access data through the network, both the server and client must be
prepared for client/server execution. On the server machine, the RMI server must
be running to receive the request from the client using a specified port number.
The client program requires the server name and port number. For
communications between client and server, the port number of the client and
server must be same. Figure 9 shows an example of the RMI hierarchy.

Figure 9 represents a typical Remote Method Invocation (RMI) client/server
hierarchy with multiple RMI servers. An RMI server can connect to an infinite
number of datastores, but each server must be connected to at least one datastore.
The master RMI server (A) can reference other RMI servers in the server pool.
When an RMI client first searches for a datastore, it starts at RMI server (A). If the
datastore is not found there, the RMI pool servers (B), and then (C), are searched
next.

If the same RMI client searches for the datastore again, the client searches the RMI
server where it found the datastore the first time.

To start the RMI server, use cmbregist71.bat on Windows or cmbregist71.sh on
AIX. Before starting the RMI server, define the correct port number and server
type. For information on configuring and administering RMI servers, refer to
Planning and Installing Enterprise Information Portal and Managing Enterprise
Information Portal.

Figure 9. RMI hierarchy

Chapter 3. Using the Java application programming interfaces (APIs) 21

Multiple search facilities
Use the multiple search facilities to search within a given datastore, using one or a
combination of supported queries, listed below, or search on the results of a
previous search. Each search type is supported by one or more search engines. Not
all datastores support multiple search facilities. For more information about specific
datastores and multiple search see “Working with specific content servers” on
page 59.

Parametric query
Query requiring an exact match on the condition specified in the query
predicate and the data values stored in the datastore.

Text query
Query on the content of text fields for approximate match with the given
text search expression; for example, the existence (or nonexistence) of
certain phrases or word-stems.

Image query
Query on the content of images for approximate match with the given
image search expression; for example, the presence of a certain color in the
images.

Tracing and diagnostic information
To handle problems that arise in your Java API applications, you can use tracing
and exception handling.

For text queries using Text Search Engine
The Text Search Engine and all of its functions can only be used with the Content
Manager server.

The following environment variable setting write the trace for a Text Search Engine
query, in binary format, to a specified file:
CMBTMDSTREAMTRACE=fileName

(for example, .\tm.out for Windows or ./tm.out> for AIX)

The following environment variable settings writes the trace for the Text Search
Engine API calls used during a text query to a specified file:
CMBTMTRACE=fileName

The following environment setting writes the text search terms to a specified file:
CMBTMTERM=fileName

For parametric queries
Use the following environment variable setting to write the parametric query
passed to the folder manager to the specified file:
CMBDLQRYTRACE=fileName

Exception handling
When the Java APIs encounter a problem, they throw an exception. Throwing an
exception creates an exception object of DKException class or one of its subclasses.

22 Application Programming Guide

When A DKException is caught, it allows you to see any error messages, error
codes, and error states that occurred while running. When an error is caught, an
error message is issued along with the location of where the exception was thrown.
The error ID and exception ID are also given. The code below shows an example
of the throw and catch process:

try {
DKDatastoreDL dsDL = new DKDatastoreDL();
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD","");
dsDL.disconnect();

}
catch (DKException exc) {

System.out.println("Exception name " + exc.name());
System.out.println("Exception message " + exc.getMessage());
exc.printStackTrace();

}

Constants
The constants provided for use with the Enterprise Information Portal APIs are
defined in DKConstant.java. You can also review a text version of the constants in
DKConstant.txt.

The constants specified are in the form of DK_CM_ (Common constants) or DK_XX_
(where the XX indicates different datastores, for example, DL for Content Manager).
When you specify DDO constants, use DK_CM_DATAITEM_TYPE_ ... (for example,
DK_CM_DATAITEM_TYPE_STRING) for property types. For attribute types, use the
DK_CM_...type constants (for example, DK_CM_INTEGER).

Connecting to content servers
An object of the class DKDatastoreXX (where XX indicates a specific content
server, for example, Content Manager (DL), OnDemand (OD), or ImagePlus for
OS/390 (IP)) represents and manages a connection to a content server, provides
transaction support, and runs server commands.

Establishing a connection
Each DKDatastorexx class provides methods for connecting to it and disconnecting
from it. The following example uses a Content Manager library server named
LIBSRVRN, the user ID FRNADMIN and password PASSWORD. The example creates a
DKDatastoreDL object for the content server, connects to it, works with it, then
disconnects from it.
DKDatastoreDL dsDL = new DKDatastoreDL();
dsDL.connect(libSrv,userid,pw,"");
System.out.println("datastore connected " + libSrv + " userid - " + userid);
userName = dsDL.userName();
dsName = dsDL.datastoreName();
System.out.println("user " + userName + " dsName " + dsName);
dsDL.disconnect();

The complete sample application from which this example was taken
(TConnectDL.java), is available in the CMBROOT\Samples\java\dl directory.

When connecting to a content server you must be aware of the requirements for
each content server; for example, the password for ImagePlus for OS/390 can be
no more than eight characters in length.

Chapter 3. Using the Java application programming interfaces (APIs) 23

Connecting and disconnecting from a content server in a
client

You use a similar procedure to access a content server from a client application.
Your client application must handle any communications errors incurred.

The following example of connecting to a content server from a client application
uses the Content Manager library server LIBSRVRN with the user ID FRNADMIN and
password PASSWORD, then disconnects from the library server.
import com.ibm.mm.sdk.common.*;
import com.ibm.mm.sdk.client.*;
import java.io.*;

public class TConnectDL implements DKConstant
{

// Main method
public static void main(String argv[])
{

DKDatastoreDL dsDL = null;
try {

dsDL = new DKDatastoreDL();
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD","");
dsDL.disconnect();
dsDL.destroy();

}
catch (DKException exc) {

try {
dsDL.destroy();

}
catch (Exception e) {

e.printStackTrace();
}
System.out.println("Exception name " + exc.name());
System.out.println("Exception message " + exc.getMessage());
exc.printStackTrace();

}
catch (Exception exc){

try {
dsDL.destroy();

}
catch (Exception e)
{
e.printStackTrace();
}

System.out.println("Exception message " + exc.getMessage());
exc.printStackTrace();

}
}

After you are finished with a datastore, call the destroy method to free it.

Setting and getting content server options
You can access or set the processing options on a content server using the methods
in DKDatastorexx. The following example shows how to set and get the option for
establishing an administrative session on a Content Manager library server. See the
online API reference for the list of options and their descriptions.
Integer input_option = new Integer(DK_DL_SS_CONFIG);
Integer output_option = null;
dsDL.setOption(DK_DL_OPT_DL_ACCESS,input_option);
output_option = (Integer)dsDL.getOption(DK_DL_OPT_ACCESS);

24 Application Programming Guide

When getting a datastore option, output_option usually is an integer, but you can
cast it to be an object.

Listing servers
DKDatastorexx provides a method to list the servers that it can connect to. The list
of servers are returned in a DKSequentialCollection of DKServerInfoxx objects
(where xx identifies the specific content server, for example, DL for a Content
Manager server, OD for an OnDemand server, and so forth).

Restriction: The Domino.Doc datastore does not provide a method that lists the
servers.

After you obtain a DKServerDefxx object you can retrieve the server name and
server type, and use the server name to establish a connection to it.

The following example shows how to retrieve the list of servers:
DKDatastoreDL dsDL = new DKDatastoreDL();
// ----- List the servers
pCol = (DKSequentialCollection)dsDL.listDataSources();
pIter = pCol.createIterator();
int i = 0;
while (pIter.more())
{

i++;
pSV = (DKServerDefDL)pIter.next();
strServerName = pSV.getName();
strServerType = pSV.getServerType();
System.out.println("Server Name [" + i + "] - " + strServerName +

" Server Type - " + strServerType);
}

Refer to TListCatalogDL.java in the CMBROOT\Samples\java\dl directory for a
complete sample.

Listing the entities and entity attributes for a content server
DKDatastoreXX provides methods for listing the entities or index classes and their
attributes, for a content server.

The list of entities is returned in a DKSequentialCollection object of dkEntityDef
objects. The attributes for an entity are returned in a DKSequentialCollection object
of dkAttrDef objects. After you obtain a dkAttrDef object, you can retrieve
information about the attribute, such as its name and type, and use the information
to form a query.

For further details about these two methods, see the online API reference.

The following example shows how to retrieve the list of index classes as well as
the list of attributes from a Content Manager server.
int i, j;
DKIndexClassDefDL icDef;
DKDatastoreDL dsDL = new DKDatastoreDL();
....
// ----- Connect to the datastore
dsDL.connect("LIBSRVRN", "FRNADMIN", "PASSWORD","");
// ----- List the entities (index classes in Content Manager)
pCol = (DKSequentialCollection) dsDL.listEntities();
pIter = pCol.createIterator();
i = 0;

Chapter 3. Using the Java application programming interfaces (APIs) 25

while (pIter.more()) {
i++;
icDef = (DKIndexClassDefDL)pIter.next();
strIndexClass = icDef.getName();
System.out.println("index class name [" + i + "] - " + strIndexClass);
System.out.println(" list attributes for " + strIndexClass + " index class");
pCol2 = (DKSequentialCollection) dsDL.listEntityAttrs(strIndexClass);
pIter2 = pCol2.createIterator();
j = 0;
while (pIter2.more()) {

j++;
attrDef = (DKAttrDefDL)pIter2.next();
System.out.println(" Attribute name [" + j + "] - " + attrDef.getName());
System.out.println(" datastoreType " + attrDef.datastoreType());

System.out.println(" attributeOf " + attrDef.getEntityName());
System.out.println(" type " + attrDef.getType());
System.out.println(" size " + attrDef.getSize());
System.out.println(" id " + attrDef.getId());
System.out.println(" nullable " + attrDef.isNullable());
System.out.println(" precision " + attrDef.getPrecision());
System.out.println(" scale " + attrDef.getScale());
System.out.println(" stringType " + attrDef.getStringType());
}

System.out.println(" " + j + " attributes listed for " + strIndexClass
+ " index class");

}

The complete sample application from which this example was taken
(TListCatalogDL.java) is available in the CMBROOT\Samples\java\dl directory.

Working with DDOs
You use the DKDDO class for dynamic data objects (DDOs) in your Enterprise
Information Portal applications. A DKDDO object represents an item, which, for
example, could be a Content Manager document or a folder. A DKDDO object
contains attributes. Each attribute has a name, a value, and properties. Each
attribute is identified by a data ID. Attributes are numbered consecutively starting
with 1; the attribute number is the data ID. Because the name, value, and property
of an attribute can vary, DKDDO provides flexible mechanisms to represent data
originating from a variety of content servers and formats. For example, items from
different index classes in Content Manager, or rows from different tables in a
relational database. The DKDDO itself can have properties that apply to the whole
DKDDO, instead of to only one particular attribute.

You associate a DKDDO with a content server before calling the add, retrieve,
update and delete methods to put its attributes into the content server or retrieve
them. You set the content server either as a parameter when you create the
DKDDO object or by calling setDatastore method.

Every DKDDO has a persistent object identifier (PID), which contains information
for locating the attributes in the content server.

Creating a DKDDO
DKDDO has several constructors. You can create a DKDDO by calling its
constructor without any parameters.
DKDDO addo = new DKDDO();

You can use other constructors, passing the number or attributes or the content
server and object type; for example, to create a DKDDO by supplying content
server and object type:

26 Application Programming Guide

DKDatastoreDL dsDL = new DKDatastoreDL(); // create a Content Manager datastore
DKDDO cddo = new DKDDO(dsDL, "GRANDPA"); // create a DDO to hold an object type

// GRANDPA in dsDL

Which constructor you use depends on your application.

Adding properties to a DDO
After you create a DKDDO object to represent a DDO, you must set its type
property. It must be either a document or a folder. This information is recorded as
a DKDDO property. For example, the following line sets the type of DDO to be a
document:
//----- Add the property that it is a document
cddo.addProperty(DK_CM_PROPERTY_ITEM_TYPE, new Short(DK_CM_DOCUMENT));

Creating a persistent identifier (PID)
Each DDO must have a persistent identifier (PID). The PID contains information
about the content server name, type, ID, and object type. The ID identifies the
location of the DDO’s persistent data. For example, in a Content Manager content
server, this ID is the item ID. The item ID is used for the retrieve, update, and
delete methods. For the add method, the item ID will be created and returned by
the datastore.

The following example creates a DDO for retrieving a known item:

Note: The text used in the item ID is provided as an example only.
DKDatastoreDL dsDL = new DKDatastoreDL(); // create a Content Manager datastore
DKPid pid = new DKPid(); // create a PID object
pid.setObjectType("GRANDPA"); // set the index class name it belongs to
pid.setPrimaryId("LN#U5K6ARLGM3DB4"); // set the item ID
DKDDO ddo = new DKDDO(dsDL, pid); // create a DDO with PID and associate

// it with dsDL

After you create a DDO to retrieve a known item, connect to the content server
and call retrieve to retrieve this DDO.

Working with data items and properties
DKDDO provides methods to add attributes and attribute properties to a DKDDO
object.

Suppose you have an entity , such as an index class, DK_CM_DOCUMENT and the
attributes: Name, Type, and Nullable. You create a DKDDO object to handle an
item of that entity, and you want to add two data items to the DKDDO. The
following table shows the relationship between the attributes and the data items:

Table 3. Attribute and data item information

Attribute data item 1 data item 2

Name TITLE Subject

Type String String

Nullable No Yes

You create these attributes and set their values in a DKDDO as follows:
// ----- create a Content Manager content server
DKDatastoreDL dsDL = new DKDatastoreDL();
// -----create a DDO to hold an object type document in dsDL

Chapter 3. Using the Java application programming interfaces (APIs) 27

DKDDO cddo = new DKDDO(dsDL, new short(DK_CM_DOCUMENT));

Short vstring = new Short(DK_CM_DATAITEM_TYPE_STRING);
Integer no = new Integer(DK_CM_FALSE);
Integer yes = new Integer(DK_CM_TRUE);

// ----- Add the first attribute
short data_id = cddo.addData("TITLE"); // add a new data item named "TITLE"
// ----- Add a property Type and set to variable length string
cddo.addDataProperty(data_id, DK_CM_PROPERTY_TYPE, vstring);
// ----- Add a property Nullable and set to false
cddo.addDataProperty(data_id, DK_CM_PROPERTY_NULLABLE, no);
// ----- Set the value of the data item
cddo.setData(data_id, "One dark and stormy night");

// ----- Add the second attribute
data_id = cddo.addData("SUBJECT"); // add a new attribute named "SUBJECT"
// ---- Add a properties and set the value
cddo.addDataProperty(data_id, DK_CM_PROPERTY_TYPE, vstring);
cddo.addDataProperty(data_id, DK_CM_PROPERTY_NULLABLE, yes);
cddo.setData(data_id, "Mystery");

You must set the property Type for an attribute; Nullable and other properties are
optional.

Use the getData method to get the values back for TITLE and SUBJECT:
Object val;
int data_num = 2;
val = cddo.getData(1);
// ----- Get the value of data item 1; displays "One dark and stormy night"
System.out.println(" TITLE = " + val);
// ----- Get the value of data item 2; displays "Mystery"
System.out.println(" SUBJECT = " + cddo.getData(data_num));

Getting properties
When processing a DKDDO, the first thing you want to know is its type:
document or folder. The following sample code determines the type of a DDO:
short prop_id = cddo.propertyId(DK_CM_PROPERTY_ITEM_TYPE);
if (prop_id > 0) {

short type = ((Short) cddo.getProperty(prop_id)).shortValue();
switch(type) {

case DK_CM_DOCUMENT:
// process document
....
break;

case DK_CM_FOLDER:
// process folder
....
break;

}
}

To retrieve properties of an attribute, you must get the data_id of the attribute;
then you can retrieve the properties:
data_id = cddo.dataId("Title"); // get data_id of Title
// ----- Get the number of properties for the attribute
short number_of_data_prop = cddo.dataPropertyCount(data_id);
// ----- Display all data properties belonging to this attribute
// using a loop; the index starts at 1
for(short i = 1; i <= number_of_data_prop; i++) {

System.out.println(i + " Property Name = " + cddo.getDataPropertyName(data_id,i)
+ " value = " + cddo.getDataProperty(data_id,i));

}

28 Application Programming Guide

Both the data_id and property_id start from 1.

Displaying the whole DDO
During application development, you might need to display the contents of a
DKDDO for debugging purposes. For example:
short number_of_attribute = cddo.dataCount();
short number_of_prop = cddo.propertyCount();
short number_of_data_prop;
// list DDO properties
for (short k = 1; k <= number_of_prop; k++) {

System.out.println(k + " Property Name = " + cddo.getPropertyName(k) +
",\t value = " + cddo.getProperty(k));

}
// list data-items and their properties
for (short i = 1; i <= number_of_attribute; i++) {

System.out.println(i + " Attr. Name = " + cddo.getDataName(i) +
",\t value = " + cddo.getData(i));

number_of_data_prop = cddo.dataPropertyCount(i);
for (short j = 1; j <= number_of_data_prop; j++) {

System.out.println("\t" + j + " Data Prop. Name = " +
cddo.getDataPropertyName(i,j) +
",\t value = " +
cddo.getDataProperty(i,j));

}
}

Working with XDOs
An XDO represents a single part in Enterprise Information Portal. To create an
XDO for binary objects you use DKBlobxx, where xx is the suffix representing the
specific server; for example, use DKBlobDL for Content Manager, DKBlobOD for
OnDemand, or DKBlobIP for ImagePlus for OS/390. When you create a DKBlobxx
object, you must pass it the datastore DKDatastorexx.

Using an XDO PID
To use an XDO to locate and store data, you must supply a PID for the DKBlobxx,
using a DKPidXDOxx. An item ID and part ID are required for the DKPidXDOxx.
For Relational Databases (RDB), the table name, column name and datapredicate
are required for DKPidXDOxx.

Understanding XDO properties
Use the methods of the DKBlobxx to set the properties of an XDO where they
apply; all properties are not available for all content servers. When loading, default
values for the properties are set if specific values are not specified. For example,
with Content Manager the following defaults are used:

RepType (representation type)
The default is FRN$NULL. For VisualInfo for AS/400, you must use " ",
eight blank spaces surrounded by leading and trailing quotation marks.

ContentClass
The default is DK_CM_CC_UNKNOWN. For the valid values, see
DKConstant2DL.h in the \cmbroot\include directory for Enterprise
Information Portal.

AffiliatedType
The default is: DK_DL_BASE.

Chapter 3. Using the Java application programming interfaces (APIs) 29

AffiliatedData
The default is: NULL.

To index object content with Content Manager correctly, you must set
SearchEngine, SearchIndex, and SearchInfo in the extension object
DKSearchEngineInfoDL; refer to “Adding an XDO to be indexed by Text Search
Engine” on page 73.

Programming tips
For Content Manager, VI400 and IP, you identify an XDO by the combination of
item ID, part ID and the RepType. For RDB, the key to identify an XDO is
combination of table, column and datapredicate string. To handle a stand-alone
XDO, you provide the item ID and part ID. The RepType is optional since the
system provides a default value for it.

Use the add method of DKBlobxx to add the current content to a datastore. If you
set part ID to 0, the system assigns an available part ID for it. You can retrieve the
part ID value after add if you want to do some other operation with that object
later.

You can use the following statement after add to obtain the system assigned part
ID:
int partID = ((DKPidXDODL)(axdo.getPidObject())).getPartId();

Important: There are two situations where a valid part ID is required and you
cannot set part ID to 0 for a Content Manager server:
1. Adding a part to be indexed by search manager
2. Adding a large object that will be divided into MAXPIECE size pieces

Using XDO as a part of a DDO or stand-alone
An XDO represents a single part object, if you have a DDO representing a
document, which is a collection of part objects. You can manipulate the XDO as a
component of the DDO or as a stand-alone object. When you access the XDO as a
part of the DDO, the DDO provides the item ID. When using the XDO as a
stand-alone object, you use the existing item ID for the XDO.

XDO as a part of DDO
The following example creates a DDO and an XDO as part of it:
// ----- create the DDO
DKPid pid = new DKPid();
pid.setObjectType(indexClassName);
DKDDO ddo = new DKDDO(dsDL, pid);
ddo.addProperty(DK_CM_PROPERTY_ITEM_TYPE,

new Short(DK_CM_DOCUMENT));
...
DKParts parts = new DKParts();

// ----- create the XDO
DKBlobDL axdo = new DKBlobDL(dsDL);
DKPidXDODL apid = new DKPidXDODL();
apid.setPartId(partId);
axdo.setPidObject(apid);
axdo.setContentClass(DK_DL_CC_GIF);
axdo.setAffiliatedType(DK_DL_BASE);
axdo.setContentFromClientFile(imageNames[i]);

// ----- add XDO to the DKParts collection
parts.addElement(axdo);

30 Application Programming Guide

...
// ----- add DDO
dataId = ddo.addData(DKPARTS);
ddo.addDataProperty(dataId, DK_CM_PROPERTY_TYPE,

new Short(DK_CM_COLLECTION_XDO));
ddo.setData(dataId, parts);
ddo.add();

The complete sample application from which this example was taken
(TLoadSampleDL.java) is available in the CMBROOT\Samples\java\dl directory.
TLoadSampleDL.java shows more examples of XDO use.

Stand-alone XDO
All of the following examples are specific to Content Manager. For examples for
RDBs and other connectors, please refer to the sample programs in the
CMBROOT\Samples directory.

Examples of working with an XDO: The following examples illustrate using a
stand-alone XDO.

Adding an XDO from the buffer: This example shows how to add an XDO from
a buffer.

Requirement: You must know the existing XDO item ID to use this sample.
public class txdoaddDL

implements DKConstantDL {

public static void main(String[] args)
{

int partId = 0; //let system decide the partId
String itemId = "CPPIORH4JBIXWIY0"; //existing itemId
String fileName = "g:\\test\\cheetah.gif"; //a Windows file for add
try
{

DKDatastoreDL dsDL = new DKDatastoreDL(); //required datastore
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD",""); //connect to datastore
DKBlobDL axdo = new DKBlobDL(dsDL); //create XDO
DKPidXDODL apid = new DKPidXDODL(); //create Pid
apid.setPartId(partId); //set partId
apid.setItemId(itemId); //set itemId
axdo.setPidObject(apid); //setPid to XDO
axdo.setContentClass(DK_DL_CC_GIF); //set ContentClass
axdo.setContentFromClientFile(fileName); //set file content to buffer area
axdo.add(); //add from buffer
System.out.println("after add partId = " + ((DKPidXDODL)

(axdo.getPidObject())).getPartId()); //display the partId after add
dsDL.disconnect(); //disconnect from datastore and destroy
dsDL.destroy(); }

catch (DKException exc)
{

.... Handle exceptions
}

}

Adding an XDO from a file: This example adds an XDO from a file using the
DKBlobDL class:
public class txdoaddfDL

implements DKConstantDL {

public static void main(String[] args)
{

int partId = 19; //partId 19 is not used yet

Chapter 3. Using the Java application programming interfaces (APIs) 31

String itemId = "CPPIORH4JBIXWIY0"; //existing itemId
String fileName = "/u4/mmdb/images/choice.gif"; //an AIX file for add
try
{

DKDatastoreDL dsDL = new DKDatastoreDL(); //required datastore
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD",""); //connect
DKBlobDL axdo = new DKBlobDL(dsDL); //create XDO
DKPidXDODL apid = new DKPidXDODL(); //create Pid
apid.setPartId(partId); //set partId in Pid
apid.setPrimaryId(itemId); //set itemId in Pid
axdo.setPidObject(apid); //setPid to XDO
axdo.setRepType("ABCD"); //set representation type
axdo.setContentClass(DK_DL_CC_GIF); //set ContentClass
axdo.add(fileName); //add from file
dsDL.disconnect(); //disconnect from datastore
dsDL.destroy(); //destroy the datastore

}
catch (DKException exc) {

try {
dsDL.destroy();
}
catch (Exception e)
{

e.printStackTrace();
}
System.out.println("Exception name " + exc.name());
System.out.println("Exception message " + exc.getMessage());
exc.printStackTrace();

}
catch (Exception exc){

try {
dsDL.destroy();

}
catch (Exception e)
{

e.printStackTrace();
}
System.out.println("Exception message " + exc.getMessage());
exc.printStackTrace();

} }
}

Examples of working with an XDO
The following examples illustrate using a stand-alone XDO.

Adding an annotation object to an XDO
To add an annotation object, insert the following statements before the add method
in the previous example:
//------ set DKAnnotationDL ------ (using extension object)
axdo->setAffiliatedType(DK_DL_ANNOTATION);
DKAnnotationDL ann = new DKAnnotationDL();
ann.setPart(14);
ann.setPageNumber(1);
ann.setX((short)5);
ann.setY((short)5);
axdo->setExtension("DKAnnotationDL", (dkExtension)ann);

Retrieving, updating, and deleting an XDO
To retrieve, update or delete an object in a content server, you provide the correct
item ID, part ID and RepType for the XDO that represents the object.
public class txdorudDL implements DKConstantDL
{

public static void main(String[] args)

32 Application Programming Guide

{
int partId = 17; //partId of object
String itemId = "CPPIORH4JBIXWIY0"; //existing itemId
String fileName = "g:\\test\\choice.gif"; //file content to update
try {

DKDatastoreDL dsDL = new DKDatastoreDL();//required datastore
...
// ---- connection to datastore
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD","");
DKBlobDL axdo = new DKBlobDL(dsDL); //create XDO
DKPidXDODL apid = new DKPidXDODL(); //create Pid
apid.setPartId(partId); //set partId
apid.setPrimaryId(itemId); //set itemId
axdo.setPidObject(apid); //setPid to XDO
axdo.retrieve(); //retrieve the object
//----- Set the file content to the buffer area
axdo.setContentFromClientFile(fileName);
axdo.update(); //update the object with buffer data
axdo.retrieve("new.gif"); //retrieve content to a file
axdo.del(); //delete object from datastore
dsDL.disconnect(); //disconnect from datastore
dsDL.destroy();

}
catch (DKException exc) {

try {
dsDL.destroy();

}
catch (Exception e)
{

e.printStackTrace();
}

System.out.println("Exception name " + exc.name());
System.out.println("Exception message " + exc.getMessage());
exc.printStackTrace();

}
catch (Exception exc){

try {
dsDL.destroy();

}
catch (Exception e)
{

e.printStackTrace();
}
System.out.println("Exception message " + exc.getMessage());
exc.printStackTrace();

} }
}

Invoking an XDO function
This example demonstrates how to test the DKBlob class using the Content
Manager server. For this example you must know the item ID and part ID of the
XDO.
public class txdomiscDL implements DKConstantDL
{

public static void main(String args[])
{

int partId = 5;
String itemId = "GAWCVGGVFUG428UJ";
String repType = "";
// ----- Check the number of arguments for main and determine what to do
if (args.length == 3)
{

partId = (short)Integer.parseInt(args[0], 10);
repType = args[1];
itemId = args[2];
System.out.println("You enter: java txdomiscDL " +

Chapter 3. Using the Java application programming interfaces (APIs) 33

+ partId + " " + repType + " " + itemId);
}
if (args.length == 2)
{

partId = (short)Integer.parseInt(args[0], 10);
repType = args[1];
System.out.println("You enter: java txdomiscDL " +
+ partId + " " + repType);

}
if (args.length == 1)
{

partId =(short)Integer.parseInt(args[0], 10);
System.out.println("You enter: java txdomiscDL " + partId);
System.out.println("The supplied default repType = " + repType);
System.out.println("The supplied default itemId = " + itemId);

}
if (args.length == 0)
{

System.out.println("invoke: java txdomiscDL ");
System.out.println("No parameter, following defaults will be provided:");
System.out.println(" default partId = " + partId);
System.out.println(" default repType = " + repType);
System.out.println(" default itemId = " + itemId);

}

try
{

DKDatastoreDL dsDL = new DKDatastoreDL();
System.out.println("connecting to datastore");
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD","");
System.out.println("datastore connected");

DKBlobDL axdo = new DKBlobDL(dsDL);
DKPidXDODL apid = new DKPidXDODL();
apid.setPartId(partId);
apid.setPrimaryId(itemId);
apid.setRepType(repType);
axdo.setPidObject(apid);
System.out.println("repType=" + apid.getRepType());
System.out.println("itemid=" + apid.getItemId());
System.out.println("partId=" + apid.getPartId());

// ----- Before retrieve
System.out.println("before retrieve:");
System.out.println(" contentclass=" + axdo.getContentClass());
System.out.print(" content length=" + axdo.length());
System.out.println(" (the length of this object instance - in memory)");
System.out.print(" getSize=" + axdo.getSize());
System.out.println(" (get the object size without retrieving object)");
System.out.println(" createdTimestamp=" + axdo.getCreatedTimestamp());
System.out.println(" updatedTimestamp=" + axdo.getUpdatedTimestamp());
axdo.retrieve();

// ----- After retrieve
System.out.println("after retrieve:");
System.out.println(" contentclass=" + axdo.getContentClass());
System.out.print(" content length=" + axdo.length());
System.out.println(" (the length of this object instance - in memory)");
System.out.print(" getSize=" + axdo.getSize());
System.out.println(" (get the object size without retrieving object)");
System.out.println(" createdTimestamp=" + axdo.getCreatedTimestamp());
System.out.println(" updatedTimestamp=" + axdo.getUpdatedTimestamp());
System.out.println(" affiliatedTyp=" + axdo.getAffiliatedType());
if (axdo.getAffiliatedType() == DK_DL_ANNOTATION)
{

DKAnnotationDL ann = (DKAnnotationDL)(axdo.getExtension("DKAnnotationDL"));
System.out.println("affil pageNumber=" + ann.getPageNumber());

34 Application Programming Guide

System.out.println("affil X=" + ann.getX());
System.out.println("affil Y=" + ann.getY());

}
System.out.println("about to do open()...");
axdo.setInstanceOpenHandler("notepad", true);
int cc = axdo.getContentClass();
if (cc == DK_DL_CC_GIF)

axdo.setInstanceOpenHandler("lviewpro", true);
else if (cc == DK_DL_CC_ASCII)

axdo.setInstanceOpenHandler("notepad", true);
else if (cc == DK_DL_CC_AVI)

axdo.setInstanceOpenHandler("mplay32 ", true);
axdo.open();
dsDL.disconnect();
dsDL.destroy();

}
catch (DKException exc)
{

// ------ Handle the exceptions
}

Adding an XDO media object
For every media object added, an entry is created in the FRN$MEDIA table. This
entry contains the information about the media user data. The physical media
object is stored in the VideoCharger content server specified in the network table.
For the following example you must know the item ID of the XDO.
public class txdoAddVSDL implements DKConstantDL
{
// ----- Main method
public static void main(String[] args)
{

String fileName = "/icing1.mpg1"; //a media object
String itemId = "K1A04EWBVHJAV1D7"; //a known itemId
int partId = 45;
// ----- Check the arguments for main
if (args.length == 3)
{

fileName = args[0];
partId = (int)Integer.parseInt(args[1], 10);
itemId = args[2];
System.out.println("You enter: java txdoAddVSDL " +
fileName + " " + partId + " " + itemId);

}
if (args.length == 2)
{

fileName = args[0];
partId =(int)Integer.parseInt(args[1], 10);
System.out.println("You enter: java txdoAddVSDL " +
fileName + " " + partId);
System.out.println("The supplied default itemId = " + itemId);

}
if (args.length == 1)
{

fileName = args[0];
System.out.println("You enter: java txdoAddVSDL " + fileName);
System.out.println("The supplied default partId = " + partId);
System.out.println("The supplied default itemId = " + itemId);

}
if (args.length == 0)
{

System.out.println("invoke: java txdoAddVSDL <filename> <part ID> <item ID>");
System.out.println("No parameter, following defaults will be provided:");
System.out.println(" default fileName = " + fileName);
System.out.println(" default partId = " + partId);
System.out.println(" default itemId = " + itemId);

}

Chapter 3. Using the Java application programming interfaces (APIs) 35

// ----- Processing
try
{

// ----- connect to datastore
DKDatastoreDL dsDL = new DKDatastoreDL();
// ----- replace following with your library server, userid, password
System.out.println("connecting to datastore...");
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD","");
System.out.println("datastore connected");

// ----- create xdo and pid
DKBlobDL axdo = new DKBlobDL(dsDL);
DKPidXDODL apid = new DKPidXDODL();
apid.setPartId(partId);
apid.setPrimaryId(itemId);
axdo.setPidObject(apid);
// ----- you must use the content class DK_DL_CC_IBMVSS for a media object
axdo.setContentClass(DK_DL_CC_IBMVSS);
System.out.println("contentClass=" + axdo.getContentClass());
System.out.println("partId = " + axdo.getPartId());

// ----- set up DKMediaStreamInfoDL
DKMediaStreamInfoDL aVS = new DKMediaStreamInfoDL();
aVS.setMediaFullFileName(fileName);
// ----- if fileName contain a list of media segments then use following
// aVS.setMediaObjectOption(DK_VS_LIST_OF_OBJECT_SEGMENTS);
aVS.setMediaObjectOption(DK_DL_VS_SINGLE_OBJECT);
aVS.setMediaHostName("<insert hostname here>");
aVS.setMediaUserId("<insert user ID here>");
aVS.setMediaPassword("<insert password here>");

// ----- following are optional, if not set default value will be provided
aVS.setMediaNumberOfUsers(2);
aVS.setMediaAssetGroup("AG");
// ----- same as defined in VideoCharger server
aVS.setMediaType("MPEG1");
aVS.setMediaResolution("SIF");
aVS.setMediaStandard("NTSC");
aVS.setMediaFormat("SYSTEM");

axdo.setExtension("DKMediaStreamInfoDL", (dkExtension)aVS);

System.out.println("about to call add()");
axdo.add();
System.out.println("add successfully.....");

System.out.println("after added check for status:");
boolean flag2 = axdo.isCategoryOf(DK_DL_MEDIA_OBJECT);
if (flag2)
{
DKMediaStreamInfoDL media = (DKMediaStreamInfoDL)

axdo.getExtension("DKMediaStreamInfoDL");
System.out.println(" mediaformat=" + media.getMediaFormat());
System.out.println(" mediaBitRate=" + media.getMediaBitRate());
System.out.println(" mediastate(dynamic)=" +

axdo.retrieveObjectState(DK_MEDIA_OBJECT));
}
dsDL.disconnect();
dsDL.destroy();

}
catch (DKException exc) {

try {
dsDL.destroy();

}
catch (Exception e)
{

e.printStackTrace();

36 Application Programming Guide

}
System.out.println("Exception name " + exc.name());
System.out.println("Exception message " + exc.getMessage());
exc.printStackTrace();

}
catch (Exception exc){

try {
dsDL.destroy();

}
catch (Exception e)
{

e.printStackTrace();
}
System.out.println("Exception message " + exc.getMessage());
exc.printStackTrace();

}
}

}

Deleting an XDO media object
The following example shows how to delete an XDO media object. For this
example you must know the item ID, part ID, and RepType (representation type)
of the XDO.
public class txdoDelVSDL implements DKConstantDL
{
public static void main(String args[])
{

int partId = 45;
String repType = "";
String itemId = "K1A04EWBVHJAV1D7";
if (args.length == 3)
{

partId = (short)Integer.parseInt(args[0], 10);
repType = args[1];
itemId = args[2];
System.out.println("You enter: java txdoDelVSDL " +
+ partId + " " + repType + " " + itemId);

}
// ----- Check the arguments for main
if (args.length == 2)
{

partId = (short)Integer.parseInt(args[0], 10);
repType = args[1];
System.out.println("You enter: java txdoDelVSDL " +
+ partId + " " + repType);

}

if (args.length == 1)
{

partId =(short)Integer.parseInt(args[0], 10);
System.out.println("You enter: java txdoDelVSDL " + partId);
System.out.println("The supplied default repType = " + repType);
System.out.println("The supplied default itemId = " + itemId);

}
if (args.length == 0)
{

System.out.println("invoke: java txdoDelVSDL <part ID> <RepType> <item ID>");
System.out.println("No parameter, following defaults will be provided:");
System.out.println(" default partId = " + partId);
System.out.println(" default repType = " + repType);
System.out.println(" default itemId = " + itemId);

}

// ----- Processing
try
{

Chapter 3. Using the Java application programming interfaces (APIs) 37

DKDatastoreDL dsDL = new DKDatastoreDL();
System.out.println("connecting to datastore...");
// ----- replace following with your library server, userid, password
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD","");
System.out.println("datastore connected");

DKBlobDL axdo = new DKBlobDL(dsDL);
DKPidXDODL apid = new DKPidXDODL();
apid.setPartId(partId);
apid.setPrimaryId(itemId);
apid.setRepType(repType);
axdo.setPidObject(apid);
boolean flag2 = axdo.isCategoryOf(DK_DL_MEDIA_OBJECT);
System.out.println("isMediaObject?=" + flag2);
if (flag2)
{

DKMediaStreamInfoDL media = (DKMediaStreamInfoDL)
axdo.getExtension("DKMediaStreamInfoDL");

System.out.println(" mediaformat=" + media.getMediaFormat());
System.out.println(" mediaBitRate=" + media.getMediaBitRate());
System.out.println(" mediastate(dynamic)=" +

axdo.retrieveObjectState(DK_MEDIA_OBJECT));
// ----- set delete option for media object
axdo.setOption(DK_DL_OPT_DELETE_OPTION,

(Object)new Integer(DK_DL_DELETE_NO_DROPITEM_MEDIA_AVAIL));
System.out.println("The delete option =" +

(Integer)(axdo.getOption(DK_OPT_DL_DELETE_OPTION)));
}

System.out.println("about to call del().. ");
axdo.del();
System.out.println("del successfully.....");
flag2 = axdo.isCategoryOf(DK_DL_MEDIA_OBJECT);
System.out.println("after delete isMediaObject? = " + flag2);
System.out.println("about to call dsDL.disconnect()");
dsDL.disconnect();
dsDL.destroy();

}
// ------ Handle exceptions
catch (DKException exc) {

try {
dsDL.destroy();

}
catch (Exception e)
{

e.printStackTrace();
}

System.out.println("Exception name " + exc.name());
System.out.println("Exception message " + exc.getMessage());
exc.printStackTrace();

}
catch (Exception exc){

try {
dsDL.destroy();

}
catch (Exception e)
{

e.printStackTrace();
}
System.out.println("Exception message " + exc.getMessage());
exc.printStackTrace();

}
}

}

38 Application Programming Guide

Retrieving an XDO media object
The following example shows how to retrieve an XDO media object. The retrieved
object contains only the media metadata, not the media object itself. For this
example you must know the item ID and part ID of the XDO.
public class txdoretxsDL implements DKConstantDL
{
public static void main(String args[])
{

int partId = 45;
String itemId = "K1A04EWBVHJAV1D7";
String repType = "";
System.out.println("Processing using the following values: ");
System.out.println(" Part Id = " + partId);
System.out.println(" RepType = " + repType);
System.out.println(" Item Id = " + itemId);

try
{

DKDatastoreDL dsDL = new DKDatastoreDL();
System.out.println("connecting to datastore...");
// ----- replace following with your library server, userid, password
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD","");
System.out.println("datastore connected");

DKBlobDL axdo = new DKBlobDL(dsDL);
DKPidXDODL apid = new DKPidXDODL();
apid.setPartId(partId);
apid.setPrimaryId(itemId);
apid.setRepType(repType);
axdo.setPidObject(apid);
System.out.println("repType=" + apid.getRepType());
System.out.println("objectType=" + axdo.getObjectType());
System.out.println("itemid=" + apid.getItemId());
System.out.println("partId=" + apid.getPartId());

boolean flag = axdo.isCategoryOf(DK_DL_INDEXED_OBJECT);
boolean flag2 = axdo.isCategoryOf(DK_DL_MEDIA_OBJECT);
System.out.println("isIndexedObject?=" + flag);
System.out.println("isMediaObject?=" + flag2);
if (flag)
{
DKSearchEngineInfoDL srch = (DKSearchEngineInfoDL)

axdo.getExtension("DKSearchEngineInfoDL");
System.out.println(" serverName=" + srch.getServerName());
System.out.println(" textIndex=" + srch.getTextIndex());
System.out.println(" timeStamp=" + srch.getSearchTimestamp());
System.out.println(" searchIndex=" + srch.getSearchIndex());
System.out.println(" indexedState=" +

axdo.retrieveObjectState(DK_INDEXED_OBJECT));
}
if (flag2)
{

DKMediaStreamInfoDL media = (DKMediaStreamInfoDL)
axdo.getExtension("DKMediaStreamInfoDL");

System.out.println(" mediaformat=" + media.getMediaFormat());
System.out.println(" mediaBitRate=" + media.getMediaBitRate());
System.out.println(" mediastate(dynamic)=" +

axdo.retrieveObjectState(DK_MEDIA_OBJECT));
}

System.out.println("before retrieve......");
System.out.println(" lob length=" + axdo.length());
System.out.println(" size=" + axdo.getSize());
System.out.println(" createdTimestamp=" + axdo.getCreatedTimestamp());
System.out.println(" updatedTimestamp=" + axdo.getUpdatedTimestamp());

Chapter 3. Using the Java application programming interfaces (APIs) 39

// ----- Perform the retrieve call
axdo.retrieve();

System.out.println("after retrieve......");
System.out.println(" lob length=" + axdo.length());
System.out.println(" size=" + axdo.getSize());
System.out.println(" mimeType=" + axdo.getMimeType());
System.out.println(" createdTimestamp=" + axdo.getCreatedTimestamp());
System.out.println(" updatedTimestamp=" + axdo.getUpdatedTimestamp());
System.out.println("affiliatedTyp=" + axdo.getAffiliatedType());
if (axdo.getAffiliatedType() == DK_DL_ANNOTATION)
{

DKAnnotationDL ann = (DKAnnotationDL)(axdo.getExtension("DKAnnotationDL"));
System.out.println("affil pageNumber=" + ann.getPageNumber());
System.out.println("affil X=" + ann.getX());
System.out.println("affil Y=" + ann.getY());

}
System.out.println("about to do open()...");
axdo.setInstanceOpenHandler("notepad", true); //default for Windows
int cc = axdo.getContentClass();
if (cc == DK_DL_CC_GIF)

axdo.setInstanceOpenHandler("lviewpro ", true); //use lviewpro
else if (cc == DK_DL_CC_AVI)

axdo.setInstanceOpenHandler("mplay32 ", true); //use mplay32
else if (cc == DK_DL_CC_IBMVSS)

axdo.setInstanceOpenHandler("iscoview ", true); //use iscoview
axdo.open();

dsDL.disconnect();
dsDL.destroy();

}
catch (DKException exc)
{

... \\ handle exceptions and destroy the datastore +
}

}
}

Adding an XDO to a storage collection
To add an XDO object associated with user defined storage collection names, use
the extension object DKStorageManageInfoxx, where xx is the suffix representing
the specific server.

The following example uses DKStorageManageInfoDL, for a Content Manager
server.
String fileName = "e:\\test\\notepart.txt"; //file for add
int partId = 0; //let system decide the partId
String itemId = "V5SPB$WBLOHIQ4YI"; //an existing itemId
DKDatastoreDL dsDL = new DKDatastoreDL(); //required datastore
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD",""); //connect to datastore
DKBlobDL axdo = new DKBlobDL(dsDL); //create XDO
DKPidXDODL apid = new DKPidXDODL(); //create PID
apid.setPartId(partId); //set partId
apid.setPrimaryId(itemId); //set itemId
axdo.setPidObject(apid); //set PID object
axdo.setContentClass(DK_DL_CC_ASCII); //set ContentClass

// ----- Create the DKStorageManageInfoDL
StorageManageInfoDL aSMS = new DKStorageManageInfoDL();
aSMS.setRetention(888); //optional
aSMS.setCollectionName("TESTCOLLECT1"); //already defined in DL SMS
aSMS.setManagementClass("TESTMGT1"); //optional
aSMS.setStorageClass("FIXED"); //optional
axdo.setExtension("DKStorageManageInfoDL", (dkExtension)aSMS);
axdo.add(fileName); //add from file

40 Application Programming Guide

System.out.println("after add partId = " + axdo.getPartId());
//display the partId after add

dsDL.disconnect(); //disconnect from and destroy datastore
dsDL.destroy();
// ------ Handle the exceptions

Refer to the following code samples in the CMBROOT\Samples\java\dl directory for
examples of adding search indexed objects and media objects to Content Manager:
v TxdoAddBsmsDL.java

v TxdosAddBsmsDL.java

v TxdoAddFsmsDL.java

v TxdosAddFsmsDL.java

v TxdomAddsmsDL.java

Changing the storage collection of an XDO
You can change the storage collection of an existing XDO. After setting up the
extension object DKStorageManageInfoDL, call the changeStorage method.
System.out.println("about to call changeStorage()......");
axdo.changeStorage();
System.out.println("changeStorage() success......");

The complete sample application from which this example was taken
(TxdoChgSmsCM.java) is available in the CMBROOT\Samples\java\dl directory.

Importing XML documents
Enterprise Information Portal supports importing content from XML documents
into Content Manager as DDOs and XDOs using the Java APIs. This feature makes
it possible to import and store a wide variety of objects in Content Manager—such
as data or multimedia content—from disparate information systems without
developing separate interfaces for each system. For example, if you have an object
stored in one data system, you can convert it into an XML file and then import it
into Content Manager using EIP’s Java APIs. Once in Content Manager, you can do
anything with the object that you could with any other Content Manager object.

You can import XML from different sources, including standard input, files,
buffers, and Web addresses (URLs). It is also possible to import an XML file in its
entirety. These constructors extract content from an XML document, create a
corresponding DKDDO and any dkXDO associated with it. You can then call the
add method on the DDO to add the object into Content Manager. The new DDO
belongs to a Content Manager index class and can only be stored in Content
Manager. Importing a self-referencing XML file allows you to store the original
XML file as an XDO; that is, you do not lose the XML in the import process,
making the XML itself available for possible future use.

When importing content from XML, use these two constructors: public
DKDDO(DKNPair xmlSource, int options) and Public DKDDO(DKNVPair xmlSource).

As you import XML content, keep these parameters in mind:
1. Remeber you can only import into Content Manager.
2. XML files containing content for import must conform to the XML document

type definition, shown below.
3. XML import is supported only by the Java APIs.

Chapter 3. Using the Java application programming interfaces (APIs) 41

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|

|

|
|

|

The following sections describe the prerequisites and methods for importing XML
content:
v The XML document type definition (DTD)
v Storing content in XML documents
v Extracting content from different XML sources
v Importing XML content into Content Manager.

The XML Document Type Definition (DTD)
In order to import content to Content Manager, you must store the content in XML
documents that conform to ddo.dtd, which is located at
CMROOT\samples\java\dl\ddo.dtd.
<!ELEMENT ddo (pid, propertyCount?, property*, dataCount?, dataItem*)>
<!ATTLIST ddo entityName CDATA #REQUIRED

xmlns CDATA #FIXED "http://www.omg.org/pub/docs/formal/97-12-12.pdf#ddo/EIP-7.1">

<!ELEMENT pid EMPTY>
<!ATTLIST pid dsType CDATA #IMPLIED
dsName CDATA #IMPLIED
pidString CDATA #IMPLIED>

<!ELEMENT propertyCount (#PCDATA)>

<!ELEMENT property EMPTY>
<!ATTLIST property propertyId CDATA #IMPLIED

propertyName CDATA #IMPLIED
propertyValue CDATA #IMPLIED>

<!ELEMENT dataCount (#PCDATA)>

<!ELEMENT dataItem (dataPropertyCount?, dataProperty+, (dataValue | dataValues))>
<!ATTLIST dataItem dataId CDATA #IMPLIED
dataName CDATA #REQUIRED>

<!ELEMENT dataPropertyCount (#PCDATA)>

<!ELEMENT dataProperty EMPTY>
<!ATTLIST dataProperty propertyId CDATA #IMPLIED
propertyName CDATA #IMPLIED
propertyValue CDATA #IMPLIED>

<!ELEMENT dataValues (dataValueCount?, dataValue+)>

<!ELEMENT dataValueCount (#PCDATA)>

<!ELEMENT dataValue (#PCDATA | ddo | xdoRef)*>

<!ELEMENT xdoRef (xdoPid, xdoValue)>

<!ELEMENT xdoPid EMPTY>
<!ATTLIST xdoPid dsType CDATA #REQUIRED
dsName CDATA #IMPLIED
xdoType CDATA #REQUIRED
partId CDATA #IMPLIED
repType CDATA #IMPLIED
pidString CDATA #IMPLIED>

<!ELEMENT xdoValue (contentType?, searchEngineInfo?, smsInfo?, xdoContent?)>
<!ATTLIST xdoValue refType CDATA #REQUIRED

42 Application Programming Guide

|
|

|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

refEncoding CDATA #IMPLIED
mimeType CDATA #REQUIRED
XML-LINK CDATA #IMPLIED

HREF CDATA #IMPLIED>

<!ELEMENT contentType (#PCDATA)>

<!ELEMENT searchEngineInfo EMPTY>
<!ATTLIST searchEngineInfo searchEngine CDATA #REQUIRED
searchIndex CDATA #REQUIRED
searchInfo CDATA #REQUIRED>

<!ELEMENT smsInfo EMPTY>
<!ATTLIST smsInfo smsRetention CDATA #IMPLIED
smsCollection CDATA #IMPLIED
smsMgmtClass CDATA #IMPLIED
smsStorageClass CDATA #IMPLIED
smsObjServer CDATA #IMPLIED>

<!ELEMENT xdoContent (#PCDATA)>

Storing content in XML documents
XML files can represent in different ways documents or folders for import into
Content Manager. These documents and folders can also contain parts. The sample
below shows first a typical XML data item, <dataItem dataId="1", whose value is
Basuki. DataItem 13, however, uses the dataName DKParts, which relates to a
self-referencing XDO.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ddo SYSTEM "ddo.dtd">
<ddo entityName="DLSAMPLE">

<pid dsType="DL" dsName="LIBSRVRN"/>
<property propertyId="1" propertyName="item-type" propertyValue="document"/>
<dataItem dataId="1" dataName="DLSEARCH_Author">

<dataProperty propertyId="1" propertyName="type" propertyValue="string"/>
<dataValue>Basuki</dataValue>

</dataItem>
. . . .

<dataItem dataId="13" dataName="DKParts">
<dataProperty propertyId="1" propertyName="type" propertyValue="collection+xdo"/>
<dataProperty propertyId="2" propertyName="nullable" propertyValue="false"/>
<dataValues>

<dataValue>
<xdoRef>
<xdoPid dsType="DL" xdoType="DKBlobDL"/>
<xdoValue refType="self" mimeType="text/xml">

<contentType>XML</contentType>
</xdoValue>

</xdoRef>
</dataValue>
</dataValues>

</dataItem>
</ddo>

For some examples of how XML stores objects, see the following code samples in
the DK\Samples\java\dl\nt\ directory:
v dlsamp01.xml

v dlsamp02.xml

v dlsamp03.xml

v dlsamp04.xml

v dlsamp05.xml

Chapter 3. Using the Java application programming interfaces (APIs) 43

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|

|

|

v dltypes01.xml.

Extracting content from different XML sources
The DKDDO constructor can extract content from a variety of XML sources,
including standard input, files, buffers, and Web addresses (URLs). Call the
DKDDO constructor in order to extract content from your XML source and to
initiate the import process.

Here are examples of each XML source:

XML from a file
xmlSource = new DKNVPair("FILE", "dlsamp01.xml");

XML from a buffer
File file = new File("dlsamp01.xml");
int fileSize = (int) file.length();
byte[] data = new byte[fileSize];
DataInputStream dis = new DataInputStream(new FileInputStream(file));
dis.readFully(data);
String strBuffer = new String(data);
DKNVPair xmlSource = new DKNVPair("BUFFER", strBuffer);
int importOptions=DK_CM_XML_VALIDATION;

XML from a Web address (URL)
xmlSource = new DKNVPair("URL", "file:////d://myxml//dlsamp01.xml");
Int importOptions=0;

Importing XML content into Content Manager
The following example follows these basic steps:
1. Create a DKDDO and specify an XML source.
2. Create and connect to a datastore, in this case Content Manager.
3. Add the new DKDDO to the datastore, again, in this case Content Manager.

The resulting DKDDO conforms to the ddo.dtd specifications and belongs to a
Content Manager index class.
// ----- Construct a DDO by importing the XML document
xmlSource = new DKNVPair("FILE", "dlsamp01.xml");
int importOptions = DK_CM_XML_VALIDATION;
DKDDO ddo = new DKDDO (xmlSource, importOptions);
ds = new DKDatastoreDL();
// connect to the datastore
ddo.setDatastore (ds);
// ----- Add the DDO to the datasore
ddo.add()

Creating and using the DKPARTS attribute
The DKPARTS attribute in a DDO represents the collection of parts in a document.
The value of this attribute is a DKParts object, which is a collection of XDOs. You
set the DKPARTS attribute when you create a DDO, as shown in the following
example. The example text applies only to Content Manager.
DKDatastoreDL dsDL = new DKDatastoreDL();
DKParts parts = new DKParts(); // create new DKParts, collection of parts

DKBlobDL blob = new DKBlobDL(dsDL); // create new XDO BLOB
DKPidXDODL pid = new DKPidXDODL(); // create PID for this XDO object

pid.setPartId(5); // set part number to 5

44 Application Programming Guide

|

|

|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|
|

|
|
|
|
|
|
|
|
|

|

pid.setPrimaryId("LN#U5K6ARLGM3DB4");// the item id this part belongs to
blob.setPidObject(pid); // set the PID for the XDO BLOB
blob.setContentClass(DK_CC_GIF); // set content class type GIF
blob.setRepType(DK_REP_NULL); // set RepType for the part
blob.setContentFromClientFile("choice.gif"); // set the BLOB's content
blob.setInstanceOpenHandler("xv"); // the viewer program on AIX

parts.addElement(blob); // add the BLOB to the DKParts collection
// collection as necessary
....
DKDDO ddo = new DKDDO(); // create a ddo
.... // sets some of its attributes

Object obj = new Short(DK_CM_DOCUMENT); // set the type to document DDO
ddo.addProperty(DK_CM_PROPERTY_ITEM_TYPE, obj);

// ----- Create DKPARTS attribute and set it to refer to the DKParts object
short data_id = ddo.addData(DKPARTS); // add attribute "DKParts"
obj = new Short(DK_CM_DATAITEM_TYPE_COLLECTION_XDO); // add type property
ddo.addDataProperty(data_id, DK_CM_PROPERTY_TYPE, obj);
obj = new Boolean(true); // add nullable property
ddo.addDataProperty(data_id, DK_CM_PROPERTY_NULLABLE, obj);
ddo.setData(data_id, parts); // sets the attribute value

After you set DKPARTS as an attribute value of a DDO, the DDO owns it.

To get the parts from a DDO, use the following example:
data_id = ddo.dataId(DKPARTS); // get DKPARTS data ID
if (data_id == 0) // handle parts not found

throw new DKException(" parts data item not found");

DKParts pCol = (DKParts) ddo.getData(data_id); // get the parts collection

// ----- Create an iterator and process the part collection member one by one
if (pCol != null) {

DKBlobDL blob;
dkIterator iter = pCol.createIterator();
while (iter.more()) {

blob = (DKBlobDL) iter.next();
if (blob != null) {

blob.retrieve(); // retrieve the BLOB
blob.open(); // display the BLOB using the viewer
.... // other processing

}
}

}

Creating and using the DKFOLDER attribute
In a folder DDO, you use the DKFOLDER attribute to represent the collection of
documents and other folders that belong to the folder. The value of this attribute is
a DKFolder object, which is a collection of DDOs. As with DKPARTS, you set
DKFOLDER when you create a DDO, as shown below:
DKDatastoreDL dsDL = new DKDatastoreDL();
...
// ----- Create a new DKFolder, collection of DDO
DKFolder folder = new DKFolder();

DKDDO member = new DKDDO(); // create the first member of this folder
... // set member DDO attributes and properties
folder.addElement(member); // add member to the folder collection
.... // create and add some more member DDO to the
.... // DDO collection as necessary
DKDDO ddo = new DKDDO(); // create a folder DDO

Chapter 3. Using the Java application programming interfaces (APIs) 45

.... // sets some of its attributes

Object obj = new Short(DK_CM_FOLDER); // set the type to folder DDO
ddo.addProperty(DK_CM_PROPERTY_ITEM_TYPE, obj);

// create DKFOLDER attribute and set it to refer to the DKFolder object
short data_id = ddo.addData(DKFOLDER); // add attribute "DKFolder"
obj = new Short(DK_CM_DATAITEM_TYPE_COLLECTION_DDO); // add type property
ddo.addDataProperty(data_id,DK_CM_PROPERTY_TYPE,obj);
obj = new Boolean(true); // add nullable property
ddo.addDataProperty(data_id,DK_CM_PROPERTY_NULLABLE,obj);
ddo.setData(data_id, folder); // sets the attribute value

After you set DKFOLDER as an attribute of a DDO, the DDO owns it.

To get the folder from a DDO, use the following example:
data_id = ddo.dataId(DKFOLDER); // get DKFOLDER data id
if (data_id == 0) // handle folder not found

throw new DKException(" folder data item not found");

DKFolder fCol = (DKFolder) ddo.getData(data_id); // get the parts collection

// create iterator and process the DDO collection member one by one
if (fCol != null) {

DKDDO item;
dkIterator iter = fCol.createIterator();
while (iter.more()) {

item = (DKDDO) iter.next();
if (item != null) {

item.retrieve(); // process the member DDO
.... // other processing

}
}

}

Using collections and iterators
dkCollection is an abstract class providing the methods for working with a
collection. DKSequentialCollection is the concrete implementation of dkCollection.
Other collections are implemented as subclasses of DKSequentialCollection. These
collections contain the data objects as members.

Collection members are usually objects of the same type; however, a collection can
contain members of different types.

Using sequential collection methods
DKSequentialCollection provides methods for adding, retrieving, removing, and
replacing its members. In addition, it also has a sort method, see “Sorting the
collection” on page 47 for more information. The following example illustrates how
to add a new member to a collection:
DKSequentialCollection sq = new DKSequentialCollection();
String str = " first member ";
sq.addElement(str); // add a new element at the last position

The addElement method takes an object as the parameter.

Using the sequential iterator
You iterate over collection members using iterators. The APIs have two types of
iterators: dkIterator and DKSequentialIterator.

46 Application Programming Guide

dkIterator, the base iterator, supports the next, more, and reset methods. The
subclass DKSequentialIterator contains more methods. You create an iterator by
calling the createIterator method on the collection. The following example shows
using an iterator:
dkIterator iter = sq.createIterator(); // create an iterator for sq
Object member;
while(iter.more()) { // While there are more members

member = iter.next(); // get the current member and
// advance iter to the next member

System.out.println(member); // display it, if you want to
.... // do other processing
}

DKSequentialIterator provides additional methods to move the iterator in either
direction. The previous example could be rewritten as follows:
DKSequentialIterator iter = // create a sequential iterator for sq

(DKSequentialIterator) sq.createIterator();
Object member;
while(iter.more()) {

member = iter.at(); // get the current member
.... // do other processing
iter.setToNext(); // advance to the next position
}

Using DKSequentialIterator allows you to perform some operations on the current
member before moving to the next member, such as replacing a member with a
new one, or removing it.
String st1 = "the new first member";
sq.replaceElementAt(st1, iter); // replace current member with a new one
.... // or
sq.removeElementAt(iter); // remove the current member
....

Tip: When you remove the current member, the iterator is advanced to the next
member. When removing a member inside a loop, check it as in the following
example:

....
if (removeCondition == true)

sq.removeElementAt(iter); // remove current member, do not advance the
// iterator since it is advanced to the next
// after the removal operation

else
iter.setToNext(); // if no removal, advance the iterator to the

.... // next position

Check the removal condition to avoid skipping the next member after removing
the current one.

Sorting the collection
Use the sort method to sort collection members based on a specified key in either
ascending or descending order. You control the actual sort function by creating a
sort object containing the function and the desired order and passing it to sort. The
interface for sort objects is defined in dkSort.java. The following example
illustrates how to sort a collection of DDOs based on each DDO’s item ID:
DKResults rs;
.... // Execute a query to fill DKResults with DDOs
....
DKSortDDOId sortId; // Declare the sort function object; sort on item-id
rs.sort(sortId); // by default, sort in ascending order
....

Chapter 3. Using the Java application programming interfaces (APIs) 47

Understanding federated collection and iterator
Use a federated collection in your application to process data objects resulting from
a query as a collection. The federated collection preserves the sub-grouping
relationships that exist between the data objects.

A federated collection is grouping of objects that results from a federated search.
Each DKResults object contains the results of the search submitted to a specific
content server. A federated collection can contain other nested collections.

To iterate over the DKResults in a federated collection, use dkIterator or
DKSequentialIterator. Then create another dkIterator for each DKResults object to
process the data objects as appropriate for that content server. Alternatively, you
can use a federated iterator, dkFederatedIterator, to iterate over all the members in
the collection, regardless of which content server the result came from.

You cannot query a federated collection.

Figure 10 illustrates the structure and behavior of DKFederatedCollection.

In Figure 10, the oval represents the DKFederatedCollection containing the
DKResults objects, represented as circles. The dkFederatedIterator traverses across
member boundaries and returns a DDO for each data object.

The first dkIterator is an iterator for the DKFederatedCollection and returns a
DKResults object each time. The second dkIterator is an iterator for the second
DKResults object; it returns a DDO for each member of the DKResults collection.

The setToFirstCollection method in dkFederatedIterator sets the position to the
first DDO object of DKFederatedCollection. In this case, it is the first element of
the first DKResults collection object. If the setToNextCollection method is invoked,
it sets the iterator position to the first DDO object of the second DKResults
collection.

Figure 10. DKFederatedCollection structure and behavior

48 Application Programming Guide

The setToLastCollection method in dkFederatedIterator sets the iterator position to
the last DDO of DKFederatedCollection. In this case, it is the last element of the
last DKResults collection. If you call the setToPreviousCollection method, it sets the
iterator position to the last DDO of the previous DKResults collection.

Querying a content server
You query a content server datastore and receive results in a dkResultSetCursor or
DKResults object. First you create a query object to represent your query; then you
call the execute or evaluate method of the query object. Using the APIs of the
content server, the query object performs query processing tasks, such as preparing
and executing a query, monitoring the status of a query execution, and storing the
results.

There are four types of query objects: parametric, text, image and combined. The
combined query is composed of both text and parametric queries. Not all content
servers can perform combined queries. Content Manager supports image query.

A content server uses two methods for running a query: execute and evaluate. The
execute method returns a dkResultSetCursor object; evaluate returns a DKResults
object. The dkResultSetCursor object is used to handle large result sets, as well as
to delete and update the current position of the result set cursor. Use the fetchNext
method to fetch a group of objects into a collection.

dkResultSetCursor can also be used to rerun a query by calling the close and open
methods. This is described in “Using the result set cursor” on page 57.

DKResults contains all of the results from the query. You can iterate over the items
in the collection either forward or backward and can query the collection or use it
as a scope for another query.

See “Opening and closing the result set cursor to rerun the query” on page 57 for
more information.

Restriction: When you query a Domino.Doc content server, a DKResults object is
returned. However, you cannot query it nor use it as a scope for another query.

Differences between dkResultSetCursor and DKResults
A dkResultSetCursor and a DKResults collection have the following differences:
v The dkResultSetCursor works like a datastore cursor. You can use it for large

result sets because the DKDDOs it contains are fetched one at a time. It can also
be used to rerun a query to get the latest results.
Restriction: You cannot rerun a query on a Domino.Doc content server even
when using a dkResultSetCursor.

v The DKResults contains the entire result set and supports a bi-directional
iterator.

Using parametric queries
A parametric query is a query requiring an exact match on the condition specified
in the query predicate and the data values stored in the datastore.

Formulating a parametric query string
To create a query you first formulate a query string. In the following example, the
query string is defined to represent a query on the index class named GP2DLS2.

Chapter 3. Using the Java application programming interfaces (APIs) 49

The condition of the query is to search for all documents or folders where the
attribute DLSEARCH_DocType is greater than null. The maximum number of
results returned is limited to five, and the content is set to YES so that contents of
the document or folder are returned.
String cmd = "SEARCH=(INDEX_CLASS=GP2DLS2," +

"MAX_RESULTS=5," +
"COND=(DLSEARCH_DocType <> null));" +
"OPTION=(CONTENT=YES;" +
"TYPE_QUERY=DYNAMIC;" +
"TYPE_FILTER=FOLDERDOC)";

The example specifies that a Content Manager server use dynamic SQL for this
query and that all folders and documents be searched. If the attribute name has
more than one word or is in a DBCS language, it should be enclosed in
apostrophes. If the attribute value is in DBCS, it should be enclosed in double
quotation marks.

You can specify more than one search criteria for a parametric query. The following
example shows how to specify a query on two index classes.
String cmd = "SEARCH=(INDEX_CLASS=GP2DLS1,MAX_RESULTS=3," +

"COND=(DLSEARCH_DocType <> null);" +
"INDEX_CLASS=GP2DLS1,MAX_RESULTS=8," +
"COND=('First name'==\"Robert\"));" +
"OPTION=(CONTENT=YES;" +
"TYPE_QUERY=DYNAMIC;" +
"TYPE_FILTER=FOLDERDOC)";

Executing a parametric query
After you have a query string you create the query object. The DKDatastorexx that
represents a content server contains a method for creating a query object. You use
the query object to execute the query and obtain the results. The following
example shows how to create a parametric query object and execute the query on a
Content Manager server. Once the query is executed, the results are returned in a
DKResults collection.
// ----- Create the datastore, the query object, and the results set
DKDatastoreDL dsDL = new DKDatastoreDL();
dkQuery pQry = null;
DKResults pResults = null;
DKNVPair parms[] = null;
// ----- Connect to the datastore
dsDL.connect(libSrv,userid,pw,"");
// ----- Formulate the query string
String cmd = "SEARCH=(INDEX_CLASS=DLSAMPLE," +

"MAX_RESULTS=5," +
"COND=(DLSEARCH_DocType <> NULL));" +
"OPTION=(CONTENT=YES;" +

"TYPE_QUERY=STATIC;" +
"TYPE_FILTER=FOLDERDOC)";

// ----- Create the query using the query string
pQry = dsDL.createQuery(cmd, DK_CM_PARAMETRIC_QL_TYPE, parms);
// ----- Execute the query
pQry.execute(parms);
// ----- Process the results
pResults = (DKResults)pQry.result();
processResults((dkCollection)pResults);
// ----- Disconnect when you are through
dsDL.disconnect();
dsDL.destroy();

The complete sample application from which this example was taken
(TSamplePQryDL.java) is available in the CMBROOT\Samples\java\dl directory.

50 Application Programming Guide

Executing a parametric query from a content server
The DKDatastorexx that represents a content server has a method to execute a
query. The following example shows how to execute a parametric query on a
Content Manager content server. After the query is executed, the results are
returned in a dkResultSetCursor object.
// ----- Create the datastore and cursor
DKDatastoreDL dsDL = new DKDatastoreDL();
dkResultSetCursor pCur = null;
DKNVPair parms[] = null;
// ----- Connect to the content server
dsDL.connect(libSrv,userid,pw,"");
// ----- Formulate the query string
String cmd = "SEARCH=(INDEX_CLASS=DLSAMPLE," +

"MAX_RESULTS=5," +
"COND=((DLSEARCH_DocType <> NULL)" +
"AND (DLSEARCH_Date >= 1995)));" +
"OPTION=(CONTENT=YES;" +

"TYPE_QUERY=DYNAMIC;" +
"TYPE_FILTER=FOLDERDOC)";

...
// ----- Execute the query using the query string
pCur = dsDL.execute(cmd, DK_CM_PARAMETRIC_QL_TYPE, parms);
// ----- Process query results as you want
...
// ----- When finished with the cursor, delete it, and disconnect
pCur.destroy();
dsDL.disconnect();
dsDL.destroy();

The complete sample application from which this example was taken
(TExecuteDL.java) is available in the CMBROOT\Samples\java\dl directory.

Evaluating a parametric query from a content server
The DKDatastorexx that represents a content server has a method to evaluate a
query. The results are returned in a DKResults collection. The following example
shows how to evaluate a parametric query on a Content Manager content server.
// ------ Create the query string
String cmd = "SEARCH=(INDEX_CLASS=DLSAMPLE," +

"COND=((DLSEARCH_Date >= \"1995\") AND " +
"(DLSEARCH_Date <= \"1996\")));" +
"OPTION=(CONTENT=NO;" +

"TYPE_QUERY=DYNAMIC;" +
"TYPE_FILTER=FOLDERDOC)";

DKNVPair parms[] = null;
DKDDO item = null;
// ----- Create the datastore and connect
DKDatastoreDL dsDL;
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");

// ----- Call evaluate, get the results, and create an iterator to process them
DKResults pResults = (DKResults)dsDL.evaluate(cmd,DK_CM_PARAMETRIC_QL_TYPE,parms);
dkIterator pIter = pResults.createIterator();
while (pIter.more()) {

item = (DKDDO)pIter.next();
... // ------ Process the DKDDO as appropriate

}
dsDL.disconnect();
dsDL.destroy();

Using text query
On a Content Manager content server, you can perform text and parametric
searches. Text searches query the text indexes created by the Text Search Engine to
search the actual document text.

Chapter 3. Using the Java application programming interfaces (APIs) 51

Formulating a text query string
You start a text search by formulating a query string. In the following example, a
query string is created representing a query against the TMINDEX text index. The
query string contains criteria to search for all text documents with the word UNIX
or member. The maximum number of results returned is five.
String cmd = "SEARCH=(COND=(UNIX OR member));" +

"OPTION=(SEARCH_INDEX=TMINDEX; MAX_RESULTS=5)";

You can specify that a search is performed against more than one index. The
following example shows how to specify a query on two indexes.
String cmd = "SEARCH=(COND=(UNIX OR member));" +

"OPTION=(SEARCH_INDEX=(TMINDEX, INDEX2); MAX_RESULTS=5)";

If you specify more than one text search index in the query, the indexes must be
the same type. For example, you can specify two precise indexes in the query, but
you cannot specify a precise index and a linguistic index within the query.

Executing a text query
After you have a text query string you create the query object. The DKDatastorexx
that represents a content server contains a method for creating a query object. The
results are returned in a DKResults collection. You use the query object to execute
the query and obtain the results. The following example shows how to create a text
query object and execute a query:
// ----- Create the datastore; declare query and the results
DKDatastoreTS dsTS = new DKDatastoreTS();
dkQuery pQry = null;
DKResults pResults = null;
DKNVPair parms[] = null;
// ----- Connect to the datastore
// for example, dsTS.connect("zebra","7502",DK_CTYP_TCPIP);
dsTS.connect(srchSrv,"","","");
// ----- Formulate the query string
String cmd = "SEARCH=(COND=(member AND UNIX));" +

"OPTION=(SEARCH_INDEX=TMINDEX)";
// ----- Create and execute the query
pQry = dsTS.createQuery(cmd, DK_CM_TEXT_QL_TYPE, parms);
pQry.execute(parms);
// ---- Process the results
pResults = (DKResults)pQry.result();
processResults((dkCollection)pResults);
// ------ When finished, disconnect
dsTS.disconnect();
dsTS.destroy();

The complete sample application from which this example was taken
(TSampleTQryTS.java) is available in the CMBROOT\Samples\java\dl directory.

Executing a text query from the datastore
The DKDatastorexx used to represent a content server provides a method to
execute a query. The results are returned in a dkResultSetCursor object. The
following example shows how to execute a text query against the Content Manager
datastore:
// ----- Create the datastore; declare query and the results
DKDatastoreTS dsTS = new DKDatastoreTS();
dkResultSetCursor pCur = null;
DKNVPair parms[] = null;
// ----- Connect to the datastore
// for example, dsTS.connect("zebra","7502",DK_TS_CTYP_TCPIP);
dsTS.connect(srchSrv,"","","");

// ----- Formulate the query string

52 Application Programming Guide

String cmd = "SEARCH=(COND=(internet OR UNIX));" +
"OPTION=(SEARCH_INDEX=TMINDEX;" +
"MAX_RESULTS=5)";

...
// ----- Execute the query and process the results as appropriate
pCur = dsTS.execute(cmd,DK_CM_TEXT_QL_TYPE,parms);
...
// ----- When finished, delete the cursor and disconnect
pCur.destroy();
dsTS.disconnect();
dsTS.destroy();

The complete sample application from which this example was taken
(TExecuteTS.java) is available in the CMBROOT\Samples\java\dl directory.

Evaluating a text query from the datastore
The DKDatastorexx that you use to represent a content server provides an evaluate
method to run a query and return a DKResults collection. The following example
shows how to evaluate a text query against the Content Manager datastore:
// ----- Create the datastore and the query string
DKDatastoreTS dsTS = new DKDatastoreTS();
String cmd = "SEARCH=(COND=($MC=*$ UN*));" +

"OPTION=(SEARCH_INDEX=TMINDEX)";

DKNVPair parms[] = null;
DKDDO item = null;
DKDatastoreTS dsTS;
// ----- Connect to the datastore
dsTS.connect("TM","", ' ');
...
// ----- Call evaluate, get the results, and process as appropriate
DKResults pResults = (DKResults)dsTS.evaluate(cmd,DK_CM_TEXT_QL_TYPE,parms);
dkIterator pIter = pResults.createIterator();
while (pIter.more()) {

item = (DKDDO)pIter.next();
// ----- Process the individual DKDDO objects
}

// ----- Disconnect
dsTS.disconnect();
dsTs.destroy();

Getting match highlighting information
The match information contains the text of the document and the highlighting
information for every match of the corresponding query.

When formulating the query string you set MATCH_INFO and MATCH_DICT
options. Set MATCH_INFO to YES to return the match highlighting information.
The MATCH_DICT option specifies whether the highlighting information will be
obtained using a dictionary. The match information is returned in the
DKMATCHESINFO attribute in the DKDDO returned from a text query. The value
of the DKMATCHESINFO attribute will be a DKMatchesInfoTS object.

Getting match highlight information is time consuming because the document is
retrieved from the content server and analyzed linguistically to determine potential
matches. Running this process impacts the performance of a text query.

Getting match highlighting information for each text query result item: The
following example retrieves match highlighting information for each text query
result item during a text query. Because the MATCH_DICT option is set to NO, the
dictionary is not used.

Chapter 3. Using the Java application programming interfaces (APIs) 53

// ----- Create the datastore
DKDatastoreTS dsTS = new DKDatastoreTS();
dkResultSetCursor pCur = null;
DKNVPair parms[] = null;
// ----- Connect to the content server
dsTS.connect("TM","","","LIBACCESS=(LIBSRVRN, FRNADMIN, PASSWORD)");
// ----- Formulate the query string
String cmd = "SEARCH=(COND=('UNIX operating' AND system));" +

"OPTION=(SEARCH_INDEX=TMINDEX; MAX_RESULTS=5;
MATCH_INFO=YES; MATCH_DICT=NO)";

...

pCur = dsTS.execute(cmd,DK_CM_TEXT_QL_TYPE,parms);
DKDDO item = null;
DKMatchesInfoTS pMInfo = null;
DKMatchesDocSectionTS pMSect = null;
DKMatchesParagraphTS pMPara = null;
DKMatchesTextItemTS pMText = null;
int i = 0;
int j = 0;
int k = 0;
int m = 0;
int lCCSID = 0;
int lLang = 0;
int lOffset = 0;
int lLen = 0;
int numberSections = 0;
int numberParagraphs = 0;
int numberTextItems = 0;
int numberNewLines = 0;
String strDoc = "";
String strSection = "";
String strText = "";
Object anyObj = null;
while (pCur.isValid())
{

// ----- Get the next DKDDO
item = pCur.fetchNext();
if (item != null)
{

// ----- Process the DKDDO
for (i = 1; i <= item.dataCount(); i++)
{

anyObj = item.getData(i);
if (anyObj instanceof String)
{

...
}
else if (anyObj instanceof Integer)
{

...
}
else if (anyObj instanceof Short)
{

...
}
else if (anyObj instanceof DKMatchesInfoTS)
{

pMInfo = (DKMatchesInfoTS)anyObj;
// ----- process the Match Hightlighting information
if (pMInfo != null)
{

strDoc = pMInfo.getDocumentName();
numberSections = pMInfo.numberOfSections();
// ----- loop thru document sections
for (j = 1; j <= numberSections; j++)

54 Application Programming Guide

{
pMSect = pMInfo.getSection(j);
strSection = pMSect.getSectionName();
numberParagraphs = pMSect.numberOfParagraphs();
// ----- loop thru section paragraphs
for (k = 1; k <= numberParagraphs; k++)
{

pMPara = pMSect.getParagraph(k);
lCCSID = pMPara.getCCSID();
lLang = pMPara.getLanguageId();
numberTextItems = pMPara.numberOfTextItems();
// ----- loop thru paragraph text items
for (m = 1; m <= numberTextItems; m++)
{

pMText = pMPara.getTextItem(m);
strText = pMText.getText();
// ----- if match found in text item get offset
// and length of match in text item
if (pMText.isMatch() == true)

{
lOffset = pMText.getOffset();
lLen = pMText.getLength();

}
numberNewLines = pMText.numberOfNewLines();

}
}

}
}

}
}

}
}
dsTS.disconnect();

Getting match highlighting information for a particular text query result item:
The following example retrieves the match highlighting information for a specific
item returned from a text query. The dkResultSetCursor passed to this routine
must be in an open state.
DKDatastoreTS dsTS = new DKDatastoreTS();
dkResultSetCursor pCur = null;
DKNVPair parms[] = null;

dsTS.connect("TM","","","LIBACCESS=(LIBSRVRN,FRNADMIN,PASSWORD)");
String cmd = "SEARCH=(COND=('UNIX operating' AND system));" +

"OPTION=(SEARCH_INDEX=TMINDEX;MAX_RESULTS=5)";

...

pCur = dsTS.execute(cmd);
DKDDO item = null;
Object anyObj = null;
DKMatchesInfoTS pMInfo = null;
DKMatchesDocSectionTS pMSect = null;
DKMatchesParagraphTS pMPara = null;
DKMatchesTextItemTS pMText = null;
int i = 0;
int j = 0;
int k = 0;
int m = 0;
int lCCSID = 0;
int lLang = 0;
int lOffset = 0;
int lLen = 0;
int numberSections = 0;
int numberParagraphs = 0;
int numberTextItems = 0;

Chapter 3. Using the Java application programming interfaces (APIs) 55

int numberNewLines = 0;
String strDoc;
String strSection;
String strText;
String strDID = "";
String strXNAME = "";
String strDataName = "";
DKPid pid = null;
while (pCur.isValid())
{
item = pCur.fetchNext();
if (item != null)
{
pid = item.getPid();
// Process the DKDDO
for (i = 1; i <= item.dataCount(); i++)
{
anyObj = item.getData(i);
strDataName = item.getDataName(i);
if (strDID.equals(""))
{
strDID = pid.getId();
}
if (strXNAME.equals(""))
{
strXNAME = p.getObjectType();
}
...
}
// Get Match Highlighting Information
pMInfo = dsTS.getMatches(pCur,strDID,strXNAME,false);
strDID = "";
strXNAME = "";
if (pMInfo != null)
{
strDoc = pMInfo.getDocumentName();
numberSections = pMInfo.numberOfSections();
// loop thru document sections
for (j = 1; j <= numberSections; j++)
{
pMSect = pMInfo.getSection(j);
strSection = pMSect.getSectionName();
numberParagraphs = pMSect.numberOfParagraphs();
// loop thru section paragraphs
for (k = 1; k <= numberParagraphs; k++)
{
pMPara = pMSect.getParagraph(k);
lCCSID = pMPara.getCCSID();
lLang = pMPara.getLanguageId();
numberTextItems = pMPara.numberOfTextItems();
// loop thru paragraph text items
for (m = 1; m <= numberTextItems; m++)
{
pMText = pMPara.getTextItem(m);
strText = pMText.getText();
// if match found in text item get offset and
// length of match in text item
if (pMText.isMatch() == true)
{
lOffset = pMText.getOffset();
lLen = pMText.getLength();
}
numberNewLines = pMText.numberOfNewLines();
}
}
}
}

56 Application Programming Guide

}
}
dsTS.disconnect();
dsTS.destroy();

Using the result set cursor
The dkResultSetCursor is a datastore cursor that manages a virtual collection of
DDO objects. This means that the collection does not materialize until you fetch an
element from it. The collection is the resulting set of a query submitted to the
datastore.

Important: When you are finished using the cursor, call the destroy method to free
the memory it used.

Opening and closing the result set cursor to rerun the query
When you create a result set cursor, it is in an open state. To rerun the query, close
and reopen the cursor.
String cmd = "SEARCH=(INDEX_CLASS=DLSAMPLE);" +

"OPTION=(CONTENT=YES;" +
"TYPE_QUERY=DYNAMIC;" +
"TYPE_FILTER=FOLDERDOC)";

DKNVPair parms[] = null;
...

dkResultSetCursor pCur = dsDL.execute(cmd,DK_CM_PARAMETRIC_QL_TYPE,parms);

pCur.close();
pCur.open(); //re-execute the query

Setting and getting positions in a result set cursor
You can use the result set cursor to set and get the current position. The following
example creates and executes a query. Inside a while loop, the cursor position is set
to the first (or next) valid position. Then a DDO is fetched from that position. A
null is returned from the fetchObject method if the cursor is past the last item.
// ----- Formulate the query string
String cmd = "SEARCH=(INDEX_CLASS=DLSAMPLE);" +

"OPTION=(CONTENT=YES;" +
"TYPE_QUERY=DYNAMIC;" +
"TYPE_FILTER=FOLDERDOC)";

DKNVPair parms[] = null;
DKDDO item = null;
int i = 0;
...
// ----- Execute the query; the result cursor is returned
dkResultSetCursor pCur = dsDL.execute(cmd,DK_CM_PARAMETRIC_QL_TYPE,parms);
// ----- Use a while loop to iterate thru the collection
while (pCur.isValid())
{

pCur.setToNext();
item = pCur.fetchObject();
if (item != null)
{

i = pCur.getPosition();
}

}

Another way to do this is:

Chapter 3. Using the Java application programming interfaces (APIs) 57

Object a = null;
pCur = dsDL.execute(cmd,DK_CM_PARAMETRIC_QL_TYPE,parms);
while (pCur.isValid()) {

pCur.setPosition(DK_CM_NEXT,a);
item = pCur.fetchObject();
if (item != null) {

i = pCur.getPosition();
}

}

You can use relative positioning when iterating through the items. The following
example skips every other item in the result set cursor.
Object a = null;
pCur = dsDL.execute(cmd,DK_CM_PARAMETRIC_QL_TYPE,parms);
a = new Integer(2);
while (pCur.isValid()) {

pCur.setPosition(DK_CM_RELATIVE,a); // move cursor 2 positions forward
item = pCur.fetchObject(); // from the current podition
if (item != null) { // (relative)

i = pCur.getPosition();
}

}

Creating a collection from a result set cursor
You can use a result set cursor to populate a collection with a specified number of
items from the result set cursor. The first parameter of the fetchNextN method
specifies how many items to put into the collection. Passing a zero in the first
parameter to indicates that all items will be put into the collection.

In the following example, all items from the result set cursor are fetched into the
sequential collection. If fItems is TRUE, at least one item was returned.
DKSequentialCollection seqColl = new DKSequentialCollection();
boolean fItems = false;
int how_many = 0;
fItems = pCur.fetchNextN(how_many,seqColl);

Querying collections
A queryable collection is a collection that can be queried further, thus providing a
smaller set and more refined results. A concrete implementation of a queryable
collection is a DKResults object, returned as the results of a query evaluation.
DKResults is a subclass of dkQueryableCollection and is a collection of DDOs.

Getting the result of a query
The following example illustrates how to submit a parametric query and get
results:
// ----- Create and establish a connection
DKDatastoreDL dsDL = new DKDatastoreDL();
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");

// ----- Create and execute a query object
String query1 = "SEARCH=(INDEX_CLASS=GRANDPA,COND=(Title <> null));";
DKParametricQuery pq =

(DKParametricQuery) dsDL.createQuery(query1,DK_CM_PARAMETRIC_QL_TYPE, null);
pq.execute();
// ----- Get the reuslt
DKResult rs = (DKResults) pq.result();

The results are in rs, which is a DKResults object.

58 Application Programming Guide

Evaluating a new query
You can query the result from a query to further refine it. The following code,
based on the previous example, shows re-evaluating a query:
String query2 = "SEARCH=(INDEX_CLASS=GRANDPA, COND=(Subject == 'Mystery'));";
Object obj = rs.evaluate(query2,DK_CM_PARAMETRIC_QL_TYPE, null);
....

The second query returns obj, a DKResults object containing the refined results.
The combined results of both queries would be equivalent to:
"SEARCH=(INDEX_CLASS=GRANDPA, COND=(Title <> null AND Subject == 'Mystery'));"

You can repeat the query until you get satisfactory results. After you start with one
type of query, the subsequent queries must be of the same type. If you mix query
types, the result might be null.

The following example shows sequential text queries:
DKDatastoreTS dsTS = new DKDatastoreTS();
dsTS.connect("TM","","","");

// ----- The first query
String tquery1 = "SEARCH=(COND=(IBM)); OPTION=(SEARCH_INDEX=TMINDEX)";
DKTextQuery tq =

(DKTextQuery) dsTS.createQuery(tquery1, DK_CM_TEXT_QL_TYPE, null);
tq.execute();
DKResults trs = (DKResults) tq.result();
// ----- The second query
String tquery2 = "SEARCH=(COND=(Tivoli)); OPTION=(SEARCH_INDEX=TMINDEX)";
Object obj = trs.evaluate(tquery2, DK_CM_TEXT_QL_TYPE, null);

The second query returns obj, a DKResults object containing the refined results.
The combined results of both queries would be equivalent to:
"SEARCH=(COND=(IBM AND Tivoli));OPTION=(SEARCH_INDEX=TMINDEX)";

Using queryable collection instead of combined query
A combined query provides the flexibility to submit a combination of parametric
and text queries, with or without scopes. However, all of these queries must be
submitted at once, not one at a time as you would when evaluating a queryable
collection.

A combined query returns a DKResults object; however, you cannot evaluate
another parametric query against it. You cannot use combined queries on all
content servers.

Evaluating a queryable collection with subsequent queries provides the flexibility
to refine the results of a previous query, step by step, until you get a satisfactory
final result. Subsequent queries are useful for browsing a content server
dynamically and formulating the next query based on the previous results.
However, if you know the total query in advance, it is more efficient to submit the
complete query once or use a combined query.

Working with specific content servers
You use the dkDatastore classes to define an appropriate datastore for the content
servers in your application. The datastore is the primary interface to the Enterprise
Information Portal. Each content server has a separate datastore class.

Chapter 3. Using the Java application programming interfaces (APIs) 59

Use the DKDatastorexx classes, where xx is the suffix of the specific content server,
to create a datastore. Table 4 shows these classes.

Table 4. Server type and class name terminology

Server type Class name

Content Manager DKDatastoreDL

OnDemand DKDatastoreOD

VisualInfo for AS/400 DKDatastoreV4

ImagePlus for OS/390 DKDatastoreIP

Domino.Doc DKDatastoreDD

Domino Extended Search DKDatastoreDES

Relational Database DKDatastoreDB2, DKDatastoreJDBC (for
Java) DKDatastoreDJ

Information Catalog DKDatastoreIC

When creating a datastore for a content server, implement each of the following
classes and interfaces:

dkDatastore
To represent the content server and manage the connection,
communications, and execution of datastore commands. dkDatastore is an
abstract version of the query manager class. It supports the evaluate
method.

dkDatastoreDef
To use the methods to access items stored in the content server, as well as
to create, list, and delete its entities. It maintains a collection of
dkEntityDefs. Examples of concrete classes for this interface are:
v DKDatastoreDefDL
v DKDatastoreDefOD

dkEntityDef
To use the methods to access entity information and to create and delete
entities and attributes. The methods of this class support accessing
multiple-level entities. If a datastore does not support subentities, they
generate DKUsageError objects. If a datastore supports multiple-level
entities, you must implement methods to overwrite the exceptions for
subclasses for these datastores. Examples of concrete classes for the
dkEntityDef interface are:
v DKIndexClassDefDL
v DKAppGrpDefOD

The class hierarchy for an entity definition is illustrated in Figure 11 on
page 61:

60 Application Programming Guide

dkAttrDef
To define methods to access attribute information and to create and delete
attributes. Examples of concrete classes for dkAttrDef are:
v DKAttributeDefDL
v DKFieldDefOD

dkServerDef
To defines methods to access server information. Examples of concrete
classes for dkServerDef are:
v DKServerDefDL
v DKServerDefOD

dkResultSetCursor
To create a datastore cursor that manages a collection of DDO objects. To
use the addObject, deleteObject, and updateObject methods, set the
datastore option DK_CM_OPT_ACCESS_MODE to DK_CM_READWRITE.

dkBlob
To declare a common public interface for binary large object (BLOB) data
types in each content server. The concrete classes derived from dkBlob
share this common interface, allowing processing of BLOBs from
heterogeneous content servers. Examples of concrete classes for dkBlob are:
v DKBlobDL
v DKBlobOD

The data definition classes and their class hierarchy are represented in Figure 12 on
page 62:

Figure 11. Class hierarchy

Chapter 3. Using the Java application programming interfaces (APIs) 61

For more information on dkDatastore and other common classes, see “Developing
custom content server connectors” on page 125.

Working with Content Manager
This section describes how to access data in Content Manager servers, and how to
perform the following tasks:
v Handle large objects
v Use DDOs
v Use XDOs in a search engine
v Use combined query
v Use Text Search Engine
v Use image search (QBIC)
v Use workflows and workbaskets

Handling large objects
When working with large objects in Content Manager, you must set the
MAXPIECE variable and Java heap size.

MAXPIECE environment variable: Content Manager uses the MAXPIECE
variable to define the largest object to be processed as a whole in megabytes. When
MAXPIECE is set, Content Manager stores an object larger than the setting as a
sequence of objects whose size is equal to or less than MAXPIECE. If you do not
set the variable, the object is always treated as a single large object.

In Windows, set the MAXPIECE environment variable as a user environment
variable in the system properties. Use an integer value to indicate the size in
megabytes.

In AIX, set the size in your profile; for example export MAXPIECE=4 sets MAXPIECE
to 4 megabytes.

Figure 12. Data definition class hierarchy

62 Application Programming Guide

Setting Java heap size: If your Java application program tries to use objects larger
than the heap size, your program will fail during execution. To increase maximum
heap size for your application, use the -mx option when you execute your Java
application program.

Using DDOs to represent Content Manager’s data
A DDO associated with DKDatastoreDL has some specific information to represent
the Enterprise Information Portal document model: document, folder, parts, item,
item ID, rank, and so forth. The following sections describe how you access this
information.

DDO properties: The type of an item, whether it is a document or folder, is a
property under the name DK_CM_PROPERTY_ITEM_TYPE. To get the item type of the
DDO, you call:

DKDDO addo = new DKDDO(dsDL, pid);
Object obj = addo.getPropertyByName(DK_CM_PROPERTY_ITEM_TYPE);
if (obj != null) {

short item_type = ((Short) obj).shortValue();
}

item_type is set to DK_CM_DOCUMENT for a document, or DK_CM_FOLDER for a folder.
The if statement ensures that the property exists. See “Adding properties to a
DDO” on page 27 and “Getting properties” on page 28.

PID: The PID contains some information specific to Enterprise Information Portal.
The object type indicates the index class of the DDO; the item ID holds the ID of
the associated item from the datastore. See “Creating a persistent identifier (PID)”
on page 27.

Representing documents: A DDO representing a document has the property
DK_CM_PROPERTY_ITEM_TYPE set to DK_CM_DOCUMENT. Its PID contains the index class
name as the object type. The PID ID the same as the item ID.

The parts inside a document are represented as DKParts objects, which are
collections of binary large objects (BLOBs), each of which is represented as a
DKBlobDL object.

A document DDO has a specific attribute named DKPARTS, whose value is a
DKParts object.

To get to each part in a document, retrieve the DKParts first, then create an iterator
to iterate over the parts. If the document does not have any parts, DKParts is null.

For more information on creating and processing a DKParts object see, “Creating,
updating, and deleting documents or folders” on page 64, “Retrieving a document
or folder” on page 67, and “Creating and using the DKPARTS attribute” on
page 44.

Documents associated with a combined query (a combination of a parametric and
text query) can have a transient attribute named DKRANK, whose value is an object
containing an integer rank computed by the Text Search Engine.

Representing folders: A DDO representing a folder has the property
DK_CM_PROPERTY_ITEM_TYPE set to DK_CM_FOLDERThe PID contains the index class
name as the object type. The PID ID is the same as the item ID.

Chapter 3. Using the Java application programming interfaces (APIs) 63

A DKFolder object represents the table of contents inside a folder. A DKFolder
object is a collection of DDOs. Each DDO represents an item in the folder, either a
document or another folder. A folder DDO has an attribute named DKFOLDER,
whose value is a DKFolder object.

To get to each DDO member of the folder, retrieve the DKFolder object first; then
create an iterator to access each item member. If the folder does not have a
member, DKFolder is null, but the DKFOLDER attribute is always present in a folder
DDO created by the datastore.

For more information on creating and processing a DKFolder object, see “Creating,
updating, and deleting documents or folders”, “Retrieving a document or folder”
on page 67, and “Creating and using the DKFOLDER attribute” on page 45.

Creating, updating, and deleting documents or folders
This section describes the processes involved in creating, updating, and deleting
documents and folders.

Creating a document: To create a document and save its persistent data in the
datastore, you create a DDO, setting all of its attributes and other information,
except its item ID. The item ID is assigned and returned by the datastore. Some of
the previous examples are combined in the following example:
// ----- Step 1: create a datastore and connect to it
DKDatastoreDL dsDL = new DKDatastoreDL();
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");

// ----- Step 2: create a document (or folder) DDO
// and set all its attributes and other required information
DKPid pid = new DKPid();
pid.setObjectType("GRANDPA"); // Set the index-class name it belongs to
DKDDO ddo = new DKDDO(dsDL,pid); // Create a DDO with PID and
... // associate it to dsDL

// ----- Step 2.a: add attributes according to index class GRANDPA
Object obj, vstr;
Boolean yes = new Boolean(true);
Boolean no = new Boolean(false);

short data_id = cddo.addData("Title"); // add new attribute "Title"
vstr = new Short(DK_CM_DATAITEM_TYPE_STRING);
// ----- Aadd type properties VSTRING and nullable
cddo.addDataProperty(data_id, DK_CM_PROPERTY_TYPE, vstr);
cddo.addDataProperty(data_id, DK_CM_PROPERTY_NULLABLE, no);

data_id = cddo.addData("Subject"); // add new attribute "Subject"
cddo.addDataProperty(data_id, DK_CM_PROPERTY_TYPE,vstr);
cddo.addDataProperty(data_id, DK_CM_PROPERTY_NULLABLE,yes);

// ----- Add some more attributes as necessary
....

// ----- Step 2.b: add DKPARTS attribute
DKParts parts = new DKParts(); // create a new DKParts, collection of parts
DKBlobDL blob = new DKBlobDL(dsDL); // create a new XDO blob
DKPidXDODL pidXDO = new DKPidXDODL(); // create PID for this XDO object

pidXDO.setPartId(5); // set part number to 5
blob.setPidObject(pidXDO); // set the PID for the XDO blob
blob.setContentClass(DK_DL_CC_GIF); // set content class type GIF
blob.setRepType(DK_REP_NULL); // set rep type for the part
blob.setContentFromClientFile("choice.gif"); // set the blob's content
blob.setInstanceOpenHandler("xv"); // the viewer program on AIX

64 Application Programming Guide

parts.addElement(blob); // add the blob to the parts collection

.... // create and add some more blobs to

.... // the collection as necessary

// ----- Create DKPARTS attribute and set it to refer to the DKParts object
short data_id = ddo.addData(DKPARTS); // add attribute "DKParts"
obj = new Short(DK_CM_COLLECTION_XDO); // add type property
ddo.addDataProperty(data_id,DK_CM_PROPERTY_TYPE,obj);
ddo.addDataProperty(data_id,DK_CM_PROPERTY_NULLABLE,yes); // add nullable property
ddo.setData(data_id, parts); // sets the attribute value

// ----- Step 2.c: sets the item type : document
obj = new Short(DK_CM_DOCUMENT);
ddo.addProperty(DK_CM_PROPERTY_ITEM_TYPE, obj);

// ----- Step 3: make item persistent; add item to the datastore
ddo.add(); // document created in datastore

In the preceding example, the last step created a document in the datastore with
the information. When a document DDO is added to a datastore, all of its
attributes are added, including all of the parts inside the DKParts collection.

You use the same process for adding a folder DDO; the DKFolder collection
members are added to the datastore as a component of a folder. The folder
contains the table of contents of its members, which are existing documents and
folders, so create all folder members in the datastore before adding a folder DDO.

You can add the same document to a different Content Manager content server. To
add this document to the Content Manager server LIBSRVRN, which has an index
class LIBSV2 with the same structure as LIBSV, use the following example:
// ----- Create datastore and connect to LIBSRVRN
DKDatastoreDL dsN = new DKDatastoreDL();
dsN.connect("LIBSRVRN", "FRNADMIN", "PASSWORD");

// ----- Update the PID
pid = ddo.getPidObject();
pid.setObjectType("LIBSV2"); // set the new indexclass
pid.setPrimaryId(""); // make the item ID blank
pid.setDatastoreName("LIBSRVRN"); // set the new datastore name
ddo.setPidObject(pid); // update the PID
ddo.setDatastore(dsN); // re-associate the DDO with dsN
ddo.add(); // add the DDO

Updating a document or a folder: To update a document or folder:
1. set the item ID and the object type
2. update the appropriate attributes, or add to the DKParts collection
3. call the update method to store the change

For example:
// ----- Update the value of attribute Title
String newTitle = "Accident Report";
short data_id = ddo.getDataByName("Title");
ddo.setData(data_id, newTitle);
ddo.update();

After the call to the update method, the value of the attribute Title in the
datastore is updated. The parts in this document are not updated unless their
content has changed. The connection to the server must be valid when you call the
update method.

Chapter 3. Using the Java application programming interfaces (APIs) 65

Update a folder DDO using similar steps: update the attribute values, or add or
remove elements from DKFolder; then call the update method.

Updating parts: Represent the collection of parts in a document using a DKParts
object.

DKParts is a subclass of DKSequentialCollection. In addition to inheriting the
sequential collection functions, DKParts has two additional methods for adding a
part to, and removing a part from, the collection. These methods also immediately
save the changes to the datastore.

The document must already exist in the content server.

Adding and removing a member: The following example illustrates adding parts:
DKDDO addo = new DKDDO(); // create a document DDO
DKBlobDL newPart = new DKBlobDL(); // create the new part to be added
.... // initialized the DDO and new part
DKParts parts = (DKParts) addo.getDataByName(DKPARTS); // get DKParts
parts.addMember(ddo, newPart); // assume none of these values are NULL

To remove newPart from the collection and the datastore, you would use:
parts.removeMember(addo, newPart);

The removeMember method in DKParts actually deletes the persistent copy of the
part from the datastore.

Differences between update, add, and remove on a document DDO: The addMember
and removeMember methods of DKParts provide conveniences for adding and
removing a part in the collection and the datastore. They are faster than the update
method in a document DDO. The update method on a DDO updates all of the
attributes in the DDO, including DKParts and all of its members that changed. The
steps are:
....
// ----- Get DKParts, assume it exists and not null
DKParts parts = (DKParts) addo.getDataByName(DKPARTS);
parts.addElement(newPart); // add a new part to parts
addo.update(); // updates the whole ddo
....

Updating folders: You represent the collection of documents and folders within a
folder using a DKFolder object. In the datastore, a folder holds a table of contents
referring to its objects instead of keeping all actual objects.

DKFolder is a subclass of DKSequentialCollection. In addition to inheriting the
sequential collection methods, it has two additional members for adding a member
(a document or a folder) to, or removing a member from, the collection and
immediately stores those changes.

The document or folder to be added or removed must already exist in the
datastore.

Adding and removing a member: The following example illustrates adding another
document or folder DDO to a folder DDO:
DKDDO folderDDO = new DKDDO(); // Created the folder DDO
DKDDO newMember = new DKDDO(); // Create the new DDO to be added
.... // The folder DDO and newMember are

66 Application Programming Guide

.... // initialized
// ----- Get the DKFolder, assuming it exists, and the value not null
DKFolder folder = (DKFolder) folderDDO.getDataByName(DKFOLDER);
folder.addMember(folderDDO, newMember);

Both newMember and folderDDO must exist in the datastore for another document or
folder to be added to it.

Similarly, to remove newMember from the collection and the datastore use the
following example:
folder.removeMember(folderDDO, newMember);

Important: Removing a member from a folder only removes that member from the
folder table of contents.

Differences between update, add, and remove on a folder DDO: The addMember and
removeMember methods of DKFolder provide conveniences for adding and
removing a document or folder in the collection and in the datastore. They are
faster than the update method in a folder DDO

The update method on a DDO updates all of the attributes in the DDO, including
DKFolder and all of its members, whereas the addMember and removeMember
methods only add or remove a member in the folder table of contents.

Deleting a document or a folder: Use the del method in the DDO to delete a
document or folder from the content server.
ddo.del();

The DDO must have its item ID and object type set, and have a valid connection
to a datastore.

Use the statement above to delete a folder as well. Only persistent data is deleted,
the in-memory copy of the DDO does not change. Therefore, you can add this
DDO back to the same or different datastore later, in the application. See “Creating
a document” on page 64 for more information.

Retrieving a document or folder
To retrieve a document from a DKDatastoreDL representing a Content Manager
content server, you must know its index class name and item ID. You also must
associate the DDO with a datastore and establish a connection.
DKDDO ddo = new DKDDO(dsDL,pid);
// ----- Create the datastore and establish a connection
DKDatastoreDL dsDL = new DKDatastoreDL();
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");

DKPid pid = new DKPid();
pid.setObjectType("Claim"); // set the index-class name it belongs to
pid.setPrimaryId("LN#U5K6ARLGM3DB4"); // set the item-id
// ----- create a DDO with the PID and associated with the datastore

ddo.retrieve(); // retrieve the document

After a call to retrieve, attribute values of the DDO are set to the values of the
persistent data stored in the content server. If the document has parts, the DKPARTS
attribute is set to a DKParts object. However, the content of each part in this
collection is not retrieved, because a part might be large, it is not desirable to
retrieve all of them at once. Parts are explicitly retrieved as needed.

Chapter 3. Using the Java application programming interfaces (APIs) 67

If the DDO is the result set of a parametric query with the option CONTENT=NO, the
DDO is empty (does not have the attribute values). However, all information
needed to retrieve it is already set.

Retrieving parts: After you retrieve a DDO, you can retrieve its parts stored in
the DKPARTS attribute, as follows:
DKParts parts = (DKParts) ddo.getDataByName(DKPARTS);

This example assumes that the DKPARTS attribute exists; an exception is thrown if it
does not exist. See “Retrieving a folder” for an example of extracting an attribute
value by getting the data ID first and testing it for zero.

To retrieve each part, you must create an iterator to step through the collection and
retrieve each part. See “Creating and using the DKPARTS attribute” on page 44.
// ----- Create an iterator and process the part collection members
if (parts != null) {

DKBlobDL blob;
dkIterator iter = parts.createIterator();
while (iter.more()) {

blob = (DKBlobDL) iter.next();
if (blob != null) {

blob.retrieve(); // retrieve the blob's content
blob.open();

.... // other processing, as needed
}

}
}

Similar to the DDO results of a parametric query, each part XDO inside the
DKParts collection is empty (does not have its content set). However, it has all the
information needed for retrieval. To bring its content and related information into
memory, call the retrieve method:
blob.retrieve();

Retrieving a folder: You retrieve a folder DDO in the same way as you retrieve a
document DDO. After being retrieved, the folder DDO has all of its attributes set,
including the attribute, DKFOLDER, which is set to a DKFolder object, a collection of
the DDO members in the folder. Like the parts in a DKParts object, these member
DDOs contain only enough information to retrieve them. You can retrieve a folder
DDO by using:
data_id = ddo.dataId(DKFOLDER); // get DKFOLDER data-id
if (data_id == 0) // folder not found

throw new DKException(" folder data-item not found");

DKFolder fCol = (DKFolder) ddo.getData(data_id); // get the folder collection

// ----- Create iterator and process the DDO collection members one by one
if (fCol != null) {

DKDDO item;
dkIterator iter = fCol.createIterator();
while (iter.more()) {

item = (DKDDO) iter.next();
if (item != null) {

item.retrieve(); // retrieve the member DDO
.... // other processing

}
}

}

68 Application Programming Guide

For more information, see “Creating and using the DKFOLDER attribute” on
page 45 .

Understanding text searching (Text Search Engine)
You can use a variety of query types with the Text Search Engine. Using the query
results returned from the text search, the item ID, part number, and ranking
information you can create an XDO to retrieve the document from a Content
Manager server.

Use a DKDatastoreTS object to represent the Text Search Engine. Text Search
Engine does not actually store the data, it merely indexes the data stored in
Content Manager to support a text search on them. The result of a text search is an
item identifier describing the location of the document in Content Manager. Use
these identifiers to retrieve the document.

The DKDatastoreTS object does not support add, update, retrieve, and delete
methods. You can query this datastore. Refer to “Loading data to be indexed by
Text Search Engine” on page 74 for information on adding data to Content
Manager that is indexed by Text Search Engine.

Boolean query: A boolean query is made up of words and phrases, separated by
boolean operators. Enclose a phrase in single quotes (’). Phrases are treated as a
literal strings.

The following example creates a query string to search for all text documents with
the word www or the phrase web site in the TMINDEX text search index:
String cmd = "SEARCH=(COND=(www OR 'web site'));" +

"OPTION=(SEARCH_INDEX=TMINDEX)";

Free text query: A free text query is made up of words, phrases, or sentences
enclosed in braces ({�}). The words are not required to be adjacent to each other.
The following example creates a query string to search for all text documents with
the free text web site in the TMINDEX text search index:
String cmd = "SEARCH=(COND=({web site}));" +

"OPTION=(SEARCH_INDEX=TMINDEX)";

Hybrid query: A hybrid query is made up of a boolean query followed by a free
text query. The following example creates a query string to search for all text
documents with the words IBM and UNIX, as well as the free text web site in the
TMINDEX text search index:
String cmd = "SEARCH=(COND=(IBM AND UNIX {web site}));" +

"OPTION=(SEARCH_INDEX=TMINDEX)";

Proximity query: A proximity query looks for a sequence of search arguments
found in the same document, paragraph, or sentence. The following example
creates a query string to search for all text documents with the phrase rational
numbers and the word math in the same paragraph using the TMINDEX text search
index:
String cmd = "SEARCH=(COND=($PARA$ {'rational numbers' math}));" +

"OPTION=(SEARCH_INDEX=TMINDEX)";

Proximity queries require at least two search arguments.

Global text retrieval (GTR) query: A GTR query is optimized for double-byte
character set (DBCS) languages like Japanese or Chinese, but also supports
single-byte character set (SBCS) languages. Enclose all double-byte characters in
single quotes (’). Be sure that the phrase to be searched for is in the specified

Chapter 3. Using the Java application programming interfaces (APIs) 69

character code set and language. The following example shows a GTR search for
all text documents that contain the phrase IBM marketing. The MATCH keyword is
set to indicate the degree of similarity for the phrase.
String cmd = "SEARCH=(COND=($CCSID=850,LANG=6011,MATCH=1$ " +

"'IBM marketing'));" +
"OPTION=(SEARCH_INDEX=TMINDEX)";

Make sure that the text search datastore options DK_OPT_TS_CCSID (coded character
set identifiers) and DK_OPT_TS_LANG (language identifiers) are set properly. The
default for DK_OPT_TS_CCSID is DK_CCSID_00850. The default for DK_OPT_TS_LANG is
DK_LANG_ENU. These values are used as the global defaults for the text query. For
more information, see the online API reference. You can also enter specific CCSID
and LANG information as shown in the following example. You must specify both
CCSID and LANG; one value cannot be specified with the other.

Representing Text Search Engine information using DDOs: You use a DDO
associated with a DKDatastoreTS object to represent the results from text searches.

DKDastastoreTS does not have a property item type as a DKDatastoreDL object.
The format of its ID is also different. A DDO resulting from a text query
corresponds to a text part inside an item. It contains the following attributes:

DKDLITEMID
The item ID for the item containing this text part. Use this item ID to
retrieve the whole item from the content server.

DKPARTNO
An integer part number for this text part. Use the part number with the
item ID to retrieve the part from the content server.

DKREPTYPE
The RepType (representation type) of this text part. Use this attribute with
the item ID and part number, to retrieve the text part from the content
server.

DKRANK
An integer rank indicating the relevance of this part to the results of a text
query. A higher rank means a better match. See Text Search Engine
Application Programming Reference for further information.

DKDSIZE
An integer number representing word occurrences; this is returned only for
boolean queries. See Text Search Engine Application Programming
Reference for further information.

DKRCNT
An integer number representing number of boolean search matches. See
Text Search Engine Application Programming Reference for further
information.

The PID for a text search DDO contains the following information:

datastore type
TS

datastore name
The name used to connect to the content server

object type
Text search index

70 Application Programming Guide

ID Text Search Engine document ID

Establishing a connection: The DKDatastoreTS object provides methods for
connecting and disconnecting. Normally, you create a DKDatastoreTS object,
connect to it, run a query, then disconnect when done. The connect method has
several signatures, providing different ways to connect. The following example
shows the one way to connect using the text search server TM as the datastore
name.
// ----- Create the datastore
DKDatastoreTS dsTS = new DKDatastoreTS();
dsTS.connect("TM", "", "", "");
.... // run a query
dsTS.disconnect();

The complete sample application from which this example was taken
(TConnectTS.java) is available in the CMBROOT\Samples\java\dl directory.

The following example shows another way to connect using the text search server
with the hostname apollo, port number 7502, and TCP/IP communication type
DK_CTYP_TCPIP:
dsTS.connect("apollo", "7502", DK_CTYP_TCPIP);

The following example shows the first connect method using the text search server
hostname apollo, port number 7502, communication type T (TCP/IP):
dsTS.connect("apollo", "", "", "PORT=7502; COMMTYPE=T");

The following example shows the first connect method using the text search server
name TM and using library server LIBSRVR2, user ID FRNADMIN and password
PASSWORD:
dsTS.connect("TM", "", "", "LIBACCESS=(LIBSRVR2, FRNADMIN, PASSWORD)");

The final parameter includes the connect string and can be used to pass a sequence
of parameters in one string.

Tip: To prevent the Text Search Engine connection from timing out, connect to Text
Search Engine, run your queries, and immediately disconnect. Do not leave the
connection open for longer than necessary.

Getting and setting text search options: Text search provides some options that
you can set or get using its methods. The following example shows how to set and
get the option for a text search character code set. See the online API reference for
the list of options and their descriptions.
DKDatastoreTS dsTS = new DKDatastoreTS();
Integer input_option = new Integer(DK_TS_CCSID_00850);
Integer output_option = null;

dsTS.setOption(DK_TS_OPT_CCSID, input_option);
output_option = (Integer) dsTS.getOption(DK_OPT_TS_CCSID);

The ouput_option is an object, but is usually cast to an Integer. .

Tips:

v You must use the search options CCSID and LANG together. The default CCSID and
LANG are specified by the DKDatastoreTS options, DK_OPT_TS_CCSID and
DK_OPT_TS_LANG. Refer to the online API reference for the list of the datastore
options and their descriptions.

Chapter 3. Using the Java application programming interfaces (APIs) 71

v You can specify more than one search option for a query term. The search
options are separated by commas. An example of multiple search terms is given
in “Global text retrieval (GTR) query” on page 69.

v If both the SC (single required character) and the MC (sequence of optional
characters) search options, you must specify the SC search option first. For
example, $SC=?,MC=*$ U?I*.

Listing servers: The DKDatastoreTS object provides a method to list the text
search servers that it can connect to. The following example shows how to retrieve
the list of servers.
DKServerDefTS pSV = null;
DKIndexTS pIndx = null;
String strServerName = null;
char chServerLocation = ' ';
String strLoc = null;
String strIndexName = null;
String strLibId = null;
int i = 0;
DKDatastoreTS dsTS = new DKDatastoreTS();
System.out.println("list servers");
pCol = (DKSequentialCollection)dsTS.listDataSources();
pIter = pCol.createIterator();
while (pIter.more() == true)
{

i++;
pSV = (DKServerDefTS)pIter.next();
strServerName = pSV.getName();
chServerLocation = pSV.getServerLocation();
if (chServerLocation == DK_TS_SRV_LOCAL)

strLoc = "LOCAL SERVER";
else if (chServerLocation == DK_TS_SRV_REMOTE)

strLoc = "REMOTE SERVER";
System.out.println("Server Name [" + i + "] - " + strServerName +

" Server Location - " + strLoc);
}

The list of servers is returned in a DKSequentialCollection of DKServerInfoTS
objects. After you get a DKServerInfoTS object, you can retrieve the server name
and location, and use them to establish a connection.

The complete sample application from which this example was taken
(TListCatalogTS.java) is available in the CMBROOT\Samples\java\dl directory.

Listing schema: You can use methods in DKDatastoreTS to list the schema. The
following example shows how to retrieve the list of indexes. Because you are using
text search, the indexes are text search indexes.
tsCol = (DKSequentialCollection) dsTS.listEntities();
tsIter = pCol.createIterator();
int i = 0;
while (tsIter.more()) {

i++;
TsIndx = (DKSearchIndexDefTS)tsIter.next();
strIndexName = TsIndx.getName();
strLibId = TsIndx.getLibraryId();
... \\ Process the list as appropriate

}

The list of indexes returned as a DKSequentialCollection object containing
DKSearchIndexDefTS objects. After you get an individual DKIndexTS object, you
can retrieve information about the index, such as its name and library ID; then you
can use the name to form a query.

72 Application Programming Guide

The complete sample application from which this example was taken
(TListCatalogTS.java) is available in the CMBROOT\Samples\java\dl directory.

Indexing XDOs by search engine: Before you can search data item using theText
Search Engine, you must index them, that is, have the Text Search Engine create an
index of the words in them. In a similar way, you must index data item before
searching them using image search. If you want to index content using Text Search
Engine, the values of SearchEngine, SearchIndex and SearchInfo are required.

The value of the SearchIndex property is a combination of two names: the search
service name and search index name. For example, if you have defined a text
search server named TM in the EIP administration and a search index named
TMINDEX associated with it, the value for the SearchIndex is TM-TMINDEX.

For an object that is to be indexed by Text Search Engine, the value of
SearchEngine must be SM, for a data item to be indexed by query by image search,
the value of SearchEngine must be QBIC (for more on image search, see
“Understanding image search terms and concepts” on page 79).

Refer to LoadSampleTSQBICDL.java and LoadFolderTSQBICDL.java the
CMBROOT\Samples\java\dl directory for examples of how to load data, or create a
folder and load data.

Adding an XDO to be indexed by Text Search Engine: The following example
illustrates add an XDO that is to be indexed:
// ----- Declare variables for part ID, item ID, and file

int partId = 20;
String itemId = "CPPIORH4JBIXWIY0";
String fileName = "g:\\test\\testsrch.txt";
try {

DKDatastoreDL dsDL = new DKDatastoreDL(); // create datastore
... // connect to datastore
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD","");
DKBlobDL axdo = new DKBlobDL(dsDL); // create XDO
DKPidXDODL apid = new DKPidXDODL(); // create PID
apid.setPartId(partId); // set partId
apid.setPrimaryId(itemId); // set itemId
axdo.setPidObject(apid); // setPid to XDO
axdo.setContentClass(DK_DL_CC_ASCII); // set ContentClass to text

// --- set the searchEngine
DKSearchEngineInfoDL aSrchEx = new DKSearchEngineInfoDL();
aSrchEx.setSearchEngine("SM");
aSrchEx.setSearchIndex("TM-TMINDEX");
aSrchEx.setSearchInfo("ENU");
axdo->setExtension("DKSearchEngineInfoDL", (dkExtension)aSrchEx);
...
// ----- Set file content to buffer area
axdo.setContentFromClientFile(fileName);
axdo.add(); //add from buffer
...
// ----- Display the partId after add
System.out.println("after add partId = " + ((DKPidXDODL)

(axdo.getPidObject())).getPartId());

dsDL.disconnect(); //disconnect from datastore
dsDL.destroy();

}
// ----- Catch any exception
catch (...)

Chapter 3. Using the Java application programming interfaces (APIs) 73

Important: When adding a part object to be indexed by a search engine, don’t set
the RepType (representation type). The Text Search Engine works only with the
default RepType FRN$NULL.

Loading data to be indexed by Text Search Engine: To load data into Content Manager
to be indexed by Text Search Engine, you must create both an index and a text
search index.

Before you can create a text search index, the text search server must be running.
Make sure that your environment is properly set up.

Refer to TListCatalogDL.java and TListCatalogTS.java in the
CMBROOT\Samples\java\dl directory for examples of setting up the environment.
Before running the samples, update them with your server, user ID, and so forth.

To create parts in Content Manager that are indexed by the Text Search Engine,
refer to “Working with XDOs” on page 29.

After the data is loaded into Content Manager, place the documents on the
document queue by calling the wakeUpService method in the DKDatastoreDL.
This method takes a search engine name as a parameter. Then use the Content
Manager text search administration window to perform the indexing. After the
indexing is complete, you can perform queries against Text Search Engine.

For more information on text search administration, refer to the System
Administration Guide.

Using text structured document support: Text structured documents are
composed using a text structure. A document model defines the text structure. For
example, an HTML file contains tags that denote a certain structure. Text Search
Engine can perform searches on words or phrases between the structure elements,
such as HTML tags.

You can perform text queries on structured documents as follows:
1. Create a document model. The document model contains sections; each section

contains the section name and the document tag used; for example, the model
for HTML would look like the following:
<HTML>
<HEAD>
<TITLE>Acme Corp
</TITLE>
</HEAD>
<BODY>
<H1>Acme Corp
</H1>
<P>Acme Corp

<P>John Smith

<P><ADDRESS>Acme Corporation
</ADDRESS>
<HR>
<H2>Acme Corp Business Objectives</H2>
<HR>
<P>
<H2>Marketing</H2>
<P>We need to increase our time to market by 25%.
<P>We need to meet our customers needs.
</BODY>
</HTML>

2. Create the text search index that uses the document model in Content Manager.
3. Set the indexing rules for the text search index and specify the default

document format (for example, DK_TS_DOCFMT_HTML for HTML files).

74 Application Programming Guide

4. Add parts objects to the Content Manager server.
5. Start the indexing process for the text search index.

The following example shows how to list the document models defined in the
system:
// ----- Initialize the variables
DKSequentialCollection pCol = null;
DKDatastoreDefTS dsDef = null;
DKDatastoreAdminTS dsAdmin = null;
dkIterator pIter = null;
DKDocModelTS pDocModel = null;
int ccsid = 0;
String strDocModelName = null;
int i = 0;

// ----- Create the datastore and connect
DKDatastoreTS dsTS = new DKDatastoreTS();
dsTS.connect(srchSrv,"",' ');

dsDef = (DKDatastoreDefTS)dsTS.datastoreDef();
dsAdmin = (DKDatastoreAdminTS)dsDef.datastoreAdmin();

// ----- Get list of document models
pCol = (DKSequentialCollection) dsAdmin.listDocModels("");
pIter = pCol.createIterator();
i = 0;
while (pIter.more() == true)
{

i++;
pDocModel = (DKDocModelTS)pIter.next();
strDocModelName = pDocModel.getName();
ccsid = pDocModel.getCCSID();

}
dsTS.disconnect();

The complete sample application from which this example was taken
(TListDocModelsTS.java) is available in the CMBROOT\Samples\java\dl directory.

The following example shows how to create a document model:
// ----- Create datastore and connect
DKDatastoreTS dsTS = new DKDatastoreTS();
DKDatastoreDefTS dsDef = null;
DKDatastoreAdminTS dsAdmin = null;

// ----- Create an instance of a document model object
DKDocModelTS docModel = new DKDocModelTS();

// ----- Create 2 instances of a document section objects for the model
DKDocSectionTS docSection = new DKDocSectionTS();
DKDocSectionTS docSection2 = new DKDocSectionTS();

// ----- Describe the document model for text document structure
// for files like tstruct.htm above
docModel.setCCSID(DK_TS_CCSID_00850);
docModel.setName(docModelName);
docSection.setName("SAMPTITLE");
docSection.setTag("TITLE");
docModel.addDocSection(docSection);
docSection2.setName("SAMPCORPBODY");
docSection2.setTag("BODY");
docModel.addDocSection(docSection2);

dsTS.connect("TMMUF","","","");

Chapter 3. Using the Java application programming interfaces (APIs) 75

dsDef = (DKDatastoreDefTS)dsTS.datastoreDef();
dsAdmin = (DKDatastoreAdminTS)dsDef.datastoreAdmin();

// ----- Create the document model
dsAdmin.createDocModel("",docModel);

dsTS.disconnect();
dsTS.destroy();

Refer to TCreateDocModelTS.java and TCreateStructDocIndexTS.java in the
CMBROOT\Samples\java\dl directory for more examples.

The following example shows how to create and set the indexing rules for a text
search index that uses a document model:
// ----- Create the datastore and index rules object
DKDatastoreTS dsTS = new DKDatastoreTS();
DKDatastoreDefTS dsDef = null;
DKDatastoreAdminTS dsAdmin = null;
DKIndexingRulesTS indexRules = new DKIndexingRulesTS();

// ----- Create an instance of a document model object
DKDocModelTS docModel = new DKDocModelTS();

// ----- Create 2 instances of a document section objects for the model
DKDocSectionTS docSection = new DKDocSectionTS();
DKDocSectionTS docSection2 = new DKDocSectionTS();

// ----- Create the document model instance for indexing rules
DKDocModelTS docModel2 = new DKDocModelTS();
docModel2.setCCSID(DK_TS_CCSID_00850);
docModel2.setName("SAMPCORPMOD");

// ----- Describe the document model for text document structure
// for files like tstruct.htm above
docModel.setCCSID(DK_TS_CCSID_00850);
docModel.setName("SAMPCORPMOD");
docSection.setName("SAMPTITLE");
docSection.setTag("TITLE");
docModel.addDocSection(docSection);
docSection2.setName("SAMPCORPBODY");
docSection2.setTag("BODY");
docModel.addDocSection(docSection2);

// ----- Connect to the datastore
dsTS.connect("TMMUF","","","");

dsDef = (DKDatastoreDefTS)dsTS.datastoreDef();
dsAdmin = (DKDatastoreAdminTS)dsDef.datastoreAdmin();

DKSearchIndexDefTS pEnt = new DKSearchIndexDefTS((dkDatastore)dsTS);
pEnt.setName("TSTRUCT");
pEnt.setIndexType(DK_TS_INDEX_TYPE_PRECISE);
pEnt.setIndexProperty(DK_TS_PROPERTY_SECTIONS_ENABLED);
pEnt.setLibraryId("LIBSUM");
pEnt.setLibraryClientServices("IMLLSCDL");
pEnt.setLibraryServerServices("IMLLSSDL");
String strIndexFileDir = "e:\\tsindex\\index\\tstruct";
// ----- For AIX us the following form for the file
// String strIndexFileDir = "/home/cltadmin/tsindex/tstruct";
pEnt.setIndexDataArea(strIndexFileDir);
String strWorkFileDir = "e:\\tsindex\\work\\tstruct";
// ----- For AIX us the following form for the file
// String strWorkFileDir = "/home/cltadmin/work/tstruct";
pEnt.setIndexWorkArea(strWorkFileDir);

// ----- Associate document model with index

76 Application Programming Guide

pEnt.addDocModel(docModel);

// ----- Create text search index that supports sections
dsDef.add((dkEntityDef)pEnt);

indexRules.setIndexName("TSTRUCT");
indexRules.setDefaultDocFormat(DK_TS_DOCFMT_HTML);
indexRules.setDefaultDocModel(docModel2);

dsAdmin.setIndexingRules(indexRules);

dsTS.disconnect();
dsTS.destroy();

The complete sample application from which this example was taken
(TCreateStructDocIndexTS.java) is available in the CMBROOT\Samples\java\dl
directory.

The following example shows how to start the indexing process, which is
asynchronous. You can start the indexing process and check the indexing status
using system administration.
// ----- Declare datastore and administration
DKIndexFuncStatusTS pIndexFuncStatus = null;
DKDatastoreTS dsTS = new DKDatastoreTS();
DKDatastoreDefTS dsDef = null;
DKDatastoreAdminTS dsAdmin = null;

dsTS.connect("TMMUF","","","");

dsDef = (DKDatastoreDefTS)dsTS.datastoreDef();
dsAdmin = (DKDatastoreAdminTS)dsDef.datastoreAdmin();

// ----- Start the indexing process
dsAdmin.startUpdateIndex(indexName);

// ----- Get indexing status
pIndexFuncStatus = dsAdmin.getIndexFunctionStatus(indexName,

DK_TS_INDEX_FUNCID_INDEX_DOCUMENTS);
.... // Process the status as appropriate

// ----- Show the scheduled document queue
System.out.println("*getScheduledDocs " + pIndexFuncStatus.getScheduledDocs());

// ----- Show the primary document queue
System.out.println("*getDocsInPrimaryIndex " + pIndexFuncStatus.getDocsInPrimaryIndex());

// ----- Shows the secondary document queue
System.out.println("*getDocsInSecondaryIndex " + pIndexFuncStatus.getDocsInSecondaryIndex());
System.out.println("*getDocMessages " + pIndexFuncStatus.getDocMessages());
if (pIndexFuncStatus.isCompleted() == true)
{

// ---- Processing if indexing is completed
}

if (pIndexFuncStatus.getReasonCode() != 0)
{

dsAdmin.setIndexFunctionStatus(indexName,
DK_TS_INDEX_FUNCID_INDEX_DOCUMENTS, DK_TS_INDEX_ACTID_RESET);

}

dsTS.disconnect();
dsTS.destroy();

The complete sample application from which this example was taken
(TIndexingTS.java) is available in the CMBROOT\Samples\java\dl directory.

Chapter 3. Using the Java application programming interfaces (APIs) 77

Refer to TCheckStatusTS.java in the CMBROOT\Samples\java\dl directory for an
example of checking status, including checking whether a queued request has been
moved from the scheduled document queue to the primary or secondary queues. If
an indexing error occurs you can check the imldiag.log file in the text search
instance directory. For more information on the imldiag.log, see the Text Search
Engine Application Programming Reference.

The following example shows how to execute a structure document text query
based on the document model and the text search index defined above.
// ----- Create the datastore
DKDatastoreTS dsTS = new DKDatastoreTS();
dkResultSetCursor pCur = null;
DKNVPair parms[] = null;
// ----- Connect
dsTS.connect("TMMUF","","","");
// ----- Generate the query string
String cmd = "SEARCH=(COND=($CCSID=850," +

"DOCMOD=(DOCMODNAME=SAMPCORPMOD," +
"SECLIST=(SAMPCORPTITLE,SAMPCORPBODY))$ Corp));" +
"OPTION=(SEARCH_INDEX=TMSTRUCT;MAX_RESULTS=5)";

// ----- Execute the query
pCur = dsTS.execute(cmd,DK_CM_TEXT_QL_TYPE,parms);

// ----- Process the results
.....
dsTS.disconnect();
dsTS.destroy();

The complete sample application from which this example was taken
(TExecuteStructDocTS.java) is available in the CMBROOT\Samples\java\dl directory.

Searching images by content
Users can use IBM Image Search server to search for images in a database by
specifying the type of image or by providing an example image.

Figure 13 on page 79 shows a window in a sample application that connects to the
image search server. Users enter fuzzy search criteria, for example: colors, layout,
and patterns. The application searches for matching images in the database. The
image search server uses query by image content (QBIC) technology to support
searches based on similar colors, layouts, and patterns.

78 Application Programming Guide

Understanding image search terms and concepts: This section describes the
image search components: the server, databases, and catalogs, as well as the
features, the searchable visual characteristics of images, and the relationship of the
image search server to Content Manager.

Understanding image search servers, datastores, and catalogs: Content Manager uses an
image search server to query images. Content Manager applications store image
data items in the object server; the image search server analyzes images and stores
the image information.

A datastore defined by a DKDatastoreQBIC object represents the image search
server. The image search server does not actually store images. It indexes the
images that are stored in the Content Manager server to support searches on that
image. The results of an image search include identifiers (item IDs) that describe
the location of the image in the Content Manager server. You can use these
identifiers with other results, such as the part number and RepType, to retrieve the
image.

You can perform queries on the datastore. However, the datastore for image search
does not support add, update, retrieve, and delete operations. Figure 14 on page 80
shows an example of an image search server.

Figure 13. Image search sample client

Chapter 3. Using the Java application programming interfaces (APIs) 79

The image search server uses a database to hold one or more catalogs, which
contain information about the visual features of images. A single server can contain
one or more databases. Each catalog stores information about one or more of the
four image search features:
v Average color
v Histogram color
v Positional color
v Texture

Understanding image search features: The four image search features and their
purposes are defined in this section:

Average color This is the sum of the color values for all pixels in an image
divided by the number of pixels in the image. Images with similar
predominant colors have similar average colors. For example,
images that contain equal portions of red and yellow will have an
average color of orange.

You use average color when you want to search for images with a
predominant color. You specify the average color using the feature
name QbColorFeatureClass.

Figure 14. An image search server in a Content Manager system. The image search server
communicates with the other Content Manager components through the clients.

80 Application Programming Guide

The following example shows a query string to search for all
images based on a histogram of three colors: 10% red, 50% blue,
and 40% green.

String cmd = "QbColorHistogramFeatureClass ";
cmd += "histogram=<(10, 255, 0, 0), (50, 0, 255, 0),
(40, 0, 0, 255)>";

Histogram color
This is the percentage of color distribution in an image. Histogram
analysis separately measures the different colors in an image. For
example, an image of the countryside has a histogram color that
shows a high frequency of blue, green, and gray.

You use histogram color when you want to search for images that
contain a specific variety of colors. You specify the histogram color
using the feature name QbColorHistogramFeatureClass.

Example: Search using a histogram of three colors, 10% red, 50%
blue, and 40% green:
QbColorHistogramFeatureClass histogram=
<(10, 255, 0, 0) (50, 0, 255, 0), (40, 0, 0, 255)>

Positional color (color layout)
This is the average color value for the pixels in a specified area of
an image. For example, images with bright red objects in the
middle have a positional color of bright red.

You use positional color when you want to search for images that
has a particular average color in a particular area. You specify the
positional color using the feature name QbDrawFeatureClass. For
example, you can earch for average color red and limit the
returned matches to five:
QbColorFeatureClass color=<255,0,0> and max=5

The following example shows a query string to search for all
images based on color layout described by an image in a file on
the client:

String cmd = "QbDrawFeatureClass file=<client,
\"\patterns\pattern1.gif\">";

Texture This is a measure of the coarseness, contrast, and direction of an
image. Coarseness indicates the size of repeating items in an
image. Contrast identifies the brightness variations in an image.
Direction indicates whether a direction predominates in an image.
For example, an image of a wood grain has a similar texture to
other images that contain a wood grain.

You use texture when you want to search for images that have a
particular pattern. You specify the texture using the feature name
QbTextureFeatureClass.

A query based on texture consists of a feature name and its value.
The following example shows a query string to search for all
images based on the texture value provided by an image in a file
on the client:

String cmd = "QbTextureFeatureClass file=<client,
\"\patterns\texture2.gif\">";

You can specify a query with multiple features. The following
example shows a query string to search for all images based on an

Chapter 3. Using the Java application programming interfaces (APIs) 81

average color and a texture value. The average color is red and is
weighted twice that of the texture. The texture value is provided
by an image in a file on the client.

String cmd = "QbColorFeatureClass color=<255, 0, 0> weight=2.0 and ";
cmd += "QbTextureFeatureClass file=<client,
\"\patterns\texture2.gif\">";

Using image search applications
Image search clients create image queries, run them, and then evaluate the
information returned by the image search server. Before an application can search
images by content, the images must be indexed, and the content information must
be stored in an image search database.

Restriction: You cannot index existing images in your object server. You can index
only the images you create in your object server after you install the image search
server and client. Figure 15 shows an example of the client and retrieve images.

To perform an image search:
1. A client builds a QBIC query string and sends it to an image search server.
2. Image search server receives the query string and searches the cataloged

images for matches.
3. Client receives the matches as a list of identifiers. The identifier for each

matching image consists of the item ID, part number, RepType, and rank.
4. Client requests the image part and index information from a library server.

Figure 15. How image search clients search and retrieve images

82 Application Programming Guide

5. Library server returns index information, such as a text description, to the
client. The library server also requests that an object server send specified
image parts to the client.

6. Object server sends image parts and the client acknowledges receiving them.

Creating queries: When you create queries, you construct a query string that the
application passes to the image search server. Table 5 describes mage search query
feature names and values.

Table 5. Image search query valid feature names and values

Feature name Values

QbColorFeatureClass or
QbColor color = < rgbValue , rgbValue , rgbValue >

where rgbValue is an integer from 0 to 255.

file = < fileLocation , ″ fileName ″ >
where fileLocation is either server or client,
fileName is the complete file path specified in
the format appropriate for the system on which
the file resides.

QbColorHistogramFeatureClass
or QbHistogram histogram = < histList >

where histList consists of one or more
histClause separated by a comma (,).

A histClause is specified as (histValue,
rgbValue , rgbValue , rgbValue), where
histValue is an integer from 1 to 100 (a
percentage value), and rgbValue is an integer
from 0 to 255.

file = < fileLocation , ″ fileName ″ >
where fileLocation is either server or client,
fileName is the complete file path specified in
the format appropriate for the system on which
the file resides.

QbDrawFeatureClass or
QbDraw description = < ″ descString ″ >

where descString is a special encoded string
describing a picker file. Format of the description
string:

1. D,w,h specifies the outer dimensions of the
image itself with width w and height h.

2. Rx,y,w,h,r,g,b specifies that a rectangle of
width w and height h is to be positioned
with its upper left corner at the coordinates
(x,y)—with respect to an origin in the upper
left corner of the image rectangle—and this
rectangle should have color values r (red), g
(green), and b (blue).

3. The colon character (:) is used as a separator.

file = < fileLocation , ″ fileName ″ >
where fileLocation is either server or client,
fileName is the complete file path specified in
the format appropriate for the system on which
the file resides.

Chapter 3. Using the Java application programming interfaces (APIs) 83

Table 5. Image search query valid feature names and values (continued)

Feature name Values

QbTextureFeatureClass or
QbTexture file = < fileLocation , ″ fileName ″ >

where fileLocation is either server or client,
fileName is the complete file path specified in
the format appropriate for the system on which
the file resides.

The query string: An image query is a character string that specifies the search
criteria. The search criteria consists of:

Feature name The features used in the search.

Feature value The values of those features. Table 6 on page 85 shows the image
search feature names and the values that can be passed in a query
string.

Feature weight
The relative weight or emphasis placed on each feature. The
weight of a feature indicates the emphasis that the image search
server places on the feature when calculating similarity scores and
returning results for a query. The higher the specified weight, the
greater the emphasis.

Maximum results
In addition to defining the type of images a query will look for,
you can specify the maximum number of matches that the query
will return.

A query string has the form: feature_name value, where feature_name is an image
search feature name, and value is a value associated with the feature. If you use
more than one feature in a query, then you must specify a feature name-value pair
for each feature. The string ″and″ separates each pair.

Image search queries have the following syntax:

Image search query syntax
feature_name value
feature_name value weight

You cannot repeat a feature within a single query. You can specify multiple features
in a query. When you specify multiple features in a query, you can assign a weight
to one or more of the features. Queries that include the emphasis for each feature
have the form: feature_name value weight, where feature_name is an image search
feature name, value is a value associated with the feature, and weight is the weight
assigned to the feature. weight is the combination of the keyword weight, an equal
sign (=), and a real number greater than 0.0.

You can also specify the maximum number of matches that a query returns. To
specify the maximum results, append and max_results to your query. max_results
consists of the keyword max, an equal sign (=), and an integer greater than 0.
Table 6 on page 85 describes feature names and values.

84 Application Programming Guide

Table 6. Image search query: valid feature values

Feature name Values

QbColorFeatureClass or
QbColor color = < rgbValue , rgbValue , rgbValue >

where rgbValue is an integer from 0 to 255.

file = < fileLocation , ″ fileName ″ >
where fileLocation is either server or client,
fileName is the complete file path specified in
the format appropriate for the system on which
the file resides. For example, you can search
using an average color and a texture value. The
texture value is provided by an image in a client
file. The weight of the texture is twice that of the
average color:

QbColorFeatureClass color=
<50, 50, 50> and QbTextureFeatureClass
file=<client, "\patterns\pattern1.gif">
weight=2.0

QbColorHistogramFeatureClass
or QbHistogram histogram = < histList >

where histList consists of one or more
histClause separated by a comma (,).

A histClause is specified as (histValue,
rgbValue , rgbValue , rgbValue), where
histValue is an integer from 1 to 100 (a
percentage value), and rgbValue is an integer
from 0 to 255.

file = < fileLocation , ″ fileName ″ >
where fileLocation is either server or client,
fileName is the complete file path specified in
the format appropriate for the system on which
the file resides.

Chapter 3. Using the Java application programming interfaces (APIs) 85

Table 6. Image search query: valid feature values (continued)

Feature name Values

QbDrawFeatureClass or
QbDraw description = < ″ descString ″ >

where descString is a special encoded string
describing a picker file. Format of the description
string:

1. Dw,h specifies the outer dimensions of the
image itself with width w and height h.

2. Rx,y,w,h,r,g,b specifies that a rectangle of
width w and height h is to be positioned
with its upper left corner at the coordinates
(x,y)—with respect to an origin in the upper
left corner of the image rectangle—and this
rectangle should have color values r (red), g
(green), and b (blue).

3. Use the colon character (:) is used as a
separator.

For example, you can search for color layout
(QbDrawFeatureClass) described by the
description string:

QbDrawFeatureClass description=
<"D100,50:R0,0,50,50,255,0,0"

file = < fileLocation , ″ fileName ″ >
where fileLocation is either server or client,
fileName is the complete file path specified in
the format appropriate for the system on which
the file resides.

QbTextureFeatureClass or
QbTexture file = < fileLocation , ″ fileName ″ >

where fileLocation is either server or client,
fileName is the complete file path specified in
the format appropriate for the system on which
the file resides.

Running queries and evaluating search results: Applications use the image
search API to issue queries and evaluate search results. If information in the image
search database matches the image search criteria, then an identifier of the
matching image or images is returned. This identifier is a dynamic data object
(DDO) that corresponds to an image part inside a Content Manager object.

Establishing a connection in QBIC
Image search provides methods for connecting and disconnecting to the datastore.
After creating a datastore, you connect to it. After you finish working with the
datastore, you disconnect from it. he following example shows how to connect to
an image search server named QBICSRV using the user ID QBICUSER and the
password PASSWORD.

DKDatastoreQBIC dsQBIC = new DKDatastoreQBIC();
dsQBIC.connect("QBICSRV", "QBICUSER", "PASSWORD", "");

... // Process as appropriate
dsQBIC.disconnect();

The complete sample application from which this example was taken
(TConnectQBIC.java) is available in the CMBROOT\Samples\java\dl directory

86 Application Programming Guide

Your application uses the image search connection to connect to an image search
server.

After connecting, call methods that access the image search datastore. To use the
image catalogs, you must first call the openCatalog method to open a catalog for
processing. Call the closeCatalog method after processing is done. The following
example shows how to connect, open a catalog, close the catalog, and disconnect:

// ----- Create a QBIC datastore and connect
DKDatastoreQBIC dsQBIC = new DKDatastoreQBIC();
dsQBIC.connect("QBICSRV", "QBICUSER", "PASSWORD", "");
// ----- open the catalog
dsQBIC.openCatalog("DEMO", "QBIC0725");

... // Do some processing
dsQBIC.closeCatalog();
dsQBIC.disconnect();
dsQBIC.destroy();

Listing image search servers
DKDatastoreQBIC provides a method for listing the image search servers that it
can connect to. It returns a DKSequentialCollection object that contains
DKServerInfoQBIC objects. After you retrieve an individual DKServerInfoQBIC
object, you can get the server name, the host name, and the port number. The
following example shows how to retrieve the list of servers:
DKDatastoreQBIC dsQBIC = new DKDatastoreQBIC();
.....
DKServerInfoQBIC pSV = null;
String strServerName = null;
String strHostName = null;
String strPortNumber = null;
pCol = (DKSequentialCollection)dsQBIC.listDataSources();
iter = pCol.createIterator();
while (iter.more()) {

srvDef = (DKServerDefQBIC)iter.next();
..... // Process each server as appropriate

}

The complete sample application from which this example was taken
(TListCatalogQBIC.java) is available in the CMBROOT\Samples\java\dl directory.

Listing image search databases, catalogs, and features
DKDatastoreQBIC provides a method for listing all the image search databases,
catalogs and features on an image search server. The list is returned as a
DKSequentialCollection object containing DKServerDefQBIC objects. The database
is DKDatabaseDefQBIC objects, catalogs are DKCatalogDefQBIC objects and
features are DKFeatureDefQBIC objects. The following example shows how to
retrieve the list of databases, catalogs, and features
// ----- Create the datastore and connect
DKDatastoreQBIC dsQBIC = new DKDatastoreQBIC();
dsQBIC.connect("QBICSRV", "QBICUSER", "PASSWORD", "");

// ---- Get the list of servers
col = (DKSequentialCollection)dsQBIC.listDataSources();
iter = col.createIterator();
while (iter.more()) {

srvDef = (DKServerDefQBIC)iter.next();
..... // Process each server as appropriate

}

// ----- Get the list of QBIC Databases
col = (DKSequentialCollection)dsQBIC.listEntities();
iter = col.createIterator();
while (iter.more()){

Chapter 3. Using the Java application programming interfaces (APIs) 87

dbDef = (DKDatabaseDefQBIC)iter.next();
// ----- Get the list of catalogs for the database
col2 = (DKSequentialCollection)dbDef.listSubEntities();
iter2 = col2.createIterator();
while (iter2.more()){

catDef = (DKCatalogDefQBIC)iter2.next();
// ----- Get the list of features for the catalog
col3 = (DKSequentialCollection)catDef.listAttrs();
iter3 = col3.createIterator();
while (iter3.more()){

featDef = (DKFeatureDefQBIC)iter3.next();
.... // Process the features as appropriate

}
}

}
dsQBIC.disconnect();
dsQBIC.destroy();
....

The complete sample application from which this example was taken
(TListCatalogQBIC.java) is available in the CMBROOT\Samples\java\dl directory.

Representing image search information with a DDO
A DDO associated with DKDatastoreQBIC contains specific information for
representing image search results. A DDO resulting from an image query
corresponds to an image part inside an item; it has the following set of standard
attributes:

DKDLITEMID
The item ID for the item to which this image part belongs. Use the item ID
to retrieve the whole item from the content server.

DKPARTNO
An integer part number of this image part. Use this with the item ID to
retrieve this part from the content server.

DKREPTYPE
A string for representation type (RepType). The default value is FRN$NULL.
This attribute is reserved.

DKRANK
An integer rank indicating the relevance of this part to the results set of
the image query. The rank is within the range 0 to 100. A higher rank
means a better match.

The PID for an image search DDO has the following information:

datastore type
QBIC

datastore name
The server name used to connect to the datastore

ID The zero-based sequence number of the DDO in the results set

As a convention, the attribute value is always an object.

Working with image queries
This section describes how to run and evaluate image queries.

Running an image query: DKDatastoreQBIC provides a method to create a query
object, an instance of dkQuery. You can then use the execute method of dkQuery to

88 Application Programming Guide

run the query and obtain the results. After you run a query, the results are
returned in a DKResults collection. The following example shows how to create an
image query object and run a query:

// ----- Generate a query string; then create the datastore and connect
String cmd = "QbColor color=<255, 0, 0>";
DKNVPair parms[] = null;
DKDDO item = null;
DKDatastoreQBIC dsQBIC = new DKDatastoreQBIC();
dsQBIC.connect("QBICSRV", "QBICUSER", "PASSWORD", "");
// ----- Open the catalog
dsQBIC.openCatalog("DEMO", "qbic0725");

... // Process as appropriate

// ----- Create the query and run it
dkQuery pQry = dsQBIC.createQuery(cmd, DK_IMAGE_QL_TYPE, parms);
pQry.execute(parms);
// ----- Get the results and process
DKResults pResults = (DKResults)pQry.result();
dkIterator pIter = pResults.createIterator();
while (pIter.more())
{

item = (DKDDO)pIter.next();
// Process the DKDDO

}
dsQBIC.closeCatalog();
dsQBIC.disconnect();
dsQBIC.destroy();
...

The complete sample application from which this example was taken
(SampleIQryQBIC.java) is available in the CMBROOT\Samples\java\dl directory.

Running an image query from the datastore: As an alternative you can use the
execute method of DKDatastoreQBIC to run a query. The results are returned in a
dkResultSetCursor object. The following example shows how to run an image
query.
// ----- Generate a query string; then create the datastore and connect
String cmd = "QbColorFeatureClass color=<255, 0, 0>";

DKNVPair parms[] = null;
DKDDO item = null;
DKDatastoreQBIC dsQBIC = new DKDatastoreQBIC();
dsQBIC.connect("QBICSRV", "QBICUSER", "PASSWORD", "");
dsQBIC.openCatalog("DEMO", "qbic0725");
// ----- Execute the query from the datastore
dkResultSetCursor pCur = dsQBIC.execute(cmd, DK_IMAGE_QL_TYPE, parms);
while (pCur.isValid())
{

item = pCur.fetchNext();
.... // Process the DKDDO

}
pCur.destroy();
dsQBIC.closeCatalog();
dsQBIC.disconnect();
dsQBIC.destroy();

The complete sample application from which this example was taken
(TExecuteQBIC.java) is available in the CMBROOT\Samples\java\dl directory.

Chapter 3. Using the Java application programming interfaces (APIs) 89

Evaluating an image query from the datastore: DKDatastoreQBIC also provides
an evaluate method you can use to run a query. You cast the results to a DKResults
collection. The following example shows how to evaluate an image query from the
datastore:

// ----- Generate a query string; then create the datastore and connect
String cmd = "QbColorFeatureClass color=<255, 0, 0>";
DKNVPair parms[] = null;
DKDDO item = null;
DKDatastoreQBIC dsQBIC = new DKDatastoreQBIC();
dsQBIC.connect("QBICSRV", "QBICUSER", "PASSWORD", "");
dsQBIC.openCatalog("DEMO", "qbic0725");

// ----- Use evaluate to run the query
DKResults pResults = (DKResults) dsQBIC.evaluate(cmd, DK_IMAGE_QL_TYPE, parms);
dkIterator pIter = pResults.createIterator();
while (pIter.more())
{

item = (DKDDO)pIter.next();
... // Process the DKDDO

}
dsQBIC.closeCatalog();
dsQBIC.disconnect();
dsQBIC.destroy();

Using the image search engine
As described in the previous section, you can use the image search engine to
specify a query based on one of the following features: average color, color
percentages, color layout, and textures. You can specify multiple features in a
query. The query results contain the item ID, part number, representation type, and
ranking information. This information can be used to create an XDO that you use
to retrieve the image contents.

Loading data to be indexed for image search: To load data into Content Manager
to be indexed by the image search server, you must create a Content Manager
index class, an image search database, and an image search catalog. The database
holds a collection of image search catalogs. A catalog holds data about the visual
features of images. The image search features must be added to the catalog for
indexing. It is recommended that you add all of the supported features to the
catalog. The image search server must be running when you create an image
search database and catalog. Make sure your environment is set up properly.

After you load data into Content Manager, select Process Image Queue in the
system administration program to place the images in the image queue. After the
indexing is complete, you can run image searches.

Indexing an existing XDO using search engines
You can index an existing XDO using a specified search engine. The following
example calls the setToBeIndexed method of the DKBlobDL class.

try
{

// ----- Create the datastore and connect
DKDatastoreDL dsDL = new DKDatastoreDL();
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD","");

// ----- Create the XDO and PID and set attributes
DKBlobDL axdo = new DKBlobDL(dsDL);
DKPidXDODL apid = new DKPidXDODL();
apid.setPartId(partId);
apid.setPrimaryId(itemId);
axdo.setPidObject(apid);

90 Application Programming Guide

// ----- Set search engine information
DKSearchEngineInfoDL aSrchEx = new DKSearchEngineInfoDL();
aSrchEx.setSearchEngine("SM");
aSrchEx.setSearchIndex("TM-TMINDEX");
aSrchEx.setSearchInfo("ENU");
axdo.setExtension("DKSearchEngineInfoDL", (dkExtension)aSrchEx);
// ----- Call setToBeIndexed on the XDO
axdo.setToBeIndexed();

dsDL.disconnect();
dsDL.destroy();

}
catch (DKException exc)
{

... // Handle the DKException
}
catch (Exception exc)
{

... // Handle the Exception
}

Using combined query
Use a combined query to execute a combination of parametric and text queries, with
or without a scope. A scope is a DKResults object from a previous parametric or
text query. The final result is an intersection between the scopes and the results of
each query. Therefore, be careful in formulating the query and including scopes so
that the individual query results intersect and the result of the combined query is
useful.

If there is at least one parametric and one text query, the resulting DDO returned
in DKResults has the attribute DKRANK, which signifies the highest rank of the
matching part belonging to the document.

Important: For each query in a combined query, you must use a different
connection to the search engine; you cannot route multiple queries through the
same connection.

Combined parametric and text queries: To run a combined query with one
parametric and one text query, without scope, create a combined query object and
pass the two queries as parameters to be executed by the combined query. For
example:
// ----- Create a Content Manager datastore and connect
DKDatastoreDL dsDL = new DKDatastoreDL();
dsDL.connect("LIBSRVRN", "FRNADMIN", "PASSWORD");
// ------ Create a text search datastore and connect
DKDatastoreTS dsTS;
dsTS.connect("TM", "", ' '); // TM is a local alias for
... // the Text Search Engine server

// ----- Generate the parametric query string and create the query
String pquery = "SEARCH=(INDEX_CLASS=GRANDPA, COND=(DLSEARCH_Date > 1994));";
DKParametricQuery pq =

(DKParametricQuery) dsDL.createQuery(pquery, DK_CM_PARAMETRIC_QL_TYPE, null);

// ----- Generate the text query string and create the query
String tquery = "SEARCH=(COND=(Tivoli)); OPTION=(SEARCH_INDEX=TMINDEX)";
DKTextQuery tq =

(DKTextQuery) dsTS.createQuery(tquery, DK_CM_TEXT_QL_TYPE, null);

// ----- Create the combined query
DKCombinedQuery cq = new DKCombinedQuery();

Chapter 3. Using the Java application programming interfaces (APIs) 91

// ----- Package the queries in DKNVPair as input parameters
DKNVPair par[] = new DKNVPair[3];
par[0].set(DK_PARM_QUERY, pq);
par[1].set(DK_TEXT_QUERY, tq);
par[2].setName(DK_PARM_END); // to signal the end of parameter list

// ----- Execute the combined query
cq.execute(par);

// ----- Get the results
DKResults res = (DKResults) cq.result();
if (res != null) {

... // process the results
}

The final if statement ensures that the DKResults object is not null.

Using a scope: If you have a DKResults object that you want to use as the scope,
pass it as one of the query parameters. The following example illustrates using a
DKResults object to function as a scope for a combined query: :
// ----- This scope is the result of a parametric query
DKResults scope;
// ------ This scope is the result of a previous text query
DKResults tscope;

// ----- Package the query in array if DKNVPairs as input parameters
DKNVPair par[] = new DKNVPair[4];
par[0].set(DK_PARM_QUERY, pq);
par[1].set(DK_TEXT_QUERY, tq);
par[2].set(DK_SCOPE_DL, scope);
par[3].set(DK_SCOPE_TS, tscope);
par[4].setName(DK_PARM_END);

// ----- Execute the combined query
cq.execute(par);
....

The results of one combined query can also be used as a scope for another
combined query, and sometimes you can query the results.

Ranking: If the combined query contains at least one text query, then the DDO in
the result set has the attribute DKRANK. This attribute is not stored in the datastore
but is computed each time by the Text Search Engine. The value of the DKRANK is
the highest rank of the parts in the document that satisfies the text query
conditions.

Tips:

v If you have several parametric queries and scopes, it is more efficient to run one
complete parametric query. This is also true for text queries.

v The query option "MAX_RESULTS=nn" limits the number of results returned. If you
set it to 10, for example, it means you only want the 10 results of highest rank.
Usually, this option is more applicable to text queries, because the result is
sorted in descending order by rank.
The meaning of "MAX_RESULTS=nn" is different for parametric queries. Because
there is no notion of rank, the caller gets the first 10 results. The results are
intersected with the result from the text query. Therefore, when combining a
parametric and text query, do not specify this option for the parametric query.

92 Application Programming Guide

Understanding the Content Manager workflow and Content
Manager workbasket functions
This section describes the Content Manager workflow and workbasket functions.

Understanding the Content Manager workflow service: A Content Manager
workbasket is a container that holds Content Manager documents and folders that
you want to process. A Content Manager workflow is an ordered set of Content
Manager workbaskets that represent a specific business process. Folders and
documents move between workbaskets within a Content Manager workflow,
allowing your applications to create simple business models and route work
through the process until completion.

The Content Manager workflow model used in the Content Manager folder
manager follows these rules:
v A workbasket does not need to be located in a Content Manager workflow
v A workbasket can be located in one or more Content Manager workflows
v A workbasket can be in the same workflow more than once
v A document or folder can only be stored in one workflow at a time
v A document or folder can be stored in a workbasket that is not located in a

Content Manager workflow

The Enterprise Information Portal APIs provide classes to work with Content
Manager workflow.

You use DKWorkFlowServiceDL to represent the workflow service of Content
Manager. This class provides the capability to start, change, remove, route, and
complete a document or folder in a Content Manager workflow. In addition, you
can use the DKWorkFlowServiceDL class to retrieve information about
workbaskets and workflows. The DKWorkFlowDL and DKWorkBasketDL classes
are the representations of a workflow item and a workbasket item, respectively.

Establishing a connection: You must establish a connection to a Content Manager
server before you can use its workflow service. The datastore provides connection
and disconnection methods.

The following example shows how to connect to a Content Manager server named
LIBSRVRN, using the user ID FRNADMIN and the password PASSWORD.
DKDatastoreDL dsDL = new DKDatastoreDL();
DKWorkFlowServiceDL wfDL = new DKWorkFlowServiceDL(dsDL);
dsDL.connect("LIBSRVRN", "FRNADMIN", "PASSWORD");
... // Process as appropriate
dsDL.disconnect();
dsDL.destroy();

The complete sample application from which this example was taken
(TListWorkFlowWFS.java) is available in the CMBROOT\Samples\java\dl directory.

Creating a workflow: Use DKWorkflowServiceDL to create a Content Manager
workflow, which typically consists of the following six steps:
1. Create an instance of DKWorkFlowDL.
2. Set the workflow name.
3. Set the workbasket sequence to NULL to indicate that this workflow contains no

workbaskets.
4. Set the privilege.

Chapter 3. Using the Java application programming interfaces (APIs) 93

5. Set the disposition.
6. Call the add method.

The following example follows steps 1-6 to create a Content Manager workflow.

Note: This sample uses DK_SS_CONFIG because, unless you connect to the
datastore with administrator privileges, you do not get the workflow
defined after you connect.

// ----- Create the datastore and the CM workflow services
DKDatastoreDL dsDL = new DKDatastoreDL();
DKWorkFlowServiceDL wfDL = new DKWorkFlowServiceDL(dsDL);

// ----- Set the access option and connect
Object input_option = new Integer(DK_SS_CONFIG);
dsDL.setOption(DK_OPT_DL_ACCESS, input_option);
dsDL.connect("LIBSRVRN", "FRNADMIN", "PASSWORD");

// ------ Create the CM workflow
DKWorkFlowDL newwf = new DKWorkFlowDL(wfDL);
newwf.setName("Process claim");
newwf.setWorkBasketSequence((dkCollection *)NULL);
newwf.setAccessList("All Privileges");
newwf.setHistoryDisposition(DK_WF_SAVE_HISTORY);
newwf.add();
... // Processing as appropriate
dsDL.disconnect();
dsDL.destroy();

The complete sample application from which this example was taken
(TCreateDelWorkFlow.java) is available in the CMBROOT\Samples\java\dl directory.

Listing workflows: DKWorkflowServiceDL provides a method to list the Content
Manager workflows. It returns a sequential collection of DKWorkFlowDL objects.
The following example demonstrates the retrieval of the list of Content Manager
workflows:
DKDatastoreDL dsDL = new DKDatastoreDL();
DKWorkFlowServiceDL wfDL = new DKWorkFlowServiceDL(dsDL);
dsDL.connect("LIBSRVRN", "FRNADMIN", "PASSWORD");
// ----- Get a list of the CM workflows
DKSequentialCollection wfList = (DKSequentialCollection)wfDL.listWorkFlows();
if (wfList != null)
{

dkIterator pIter = wfList.createIterator();
DKWorkFlowDL pwf1;
while (pIter.more())
{

pwf1 = (DKWorkFlowDL)pIter.next();
pwf1->retrieve();
... // Process as appropriate

}
}
dsDL.disconnect();
dsDL.destroy();

The complete sample application from which this example was taken
(TListWorkFlowWFS.java) is available in the CMBROOT\Samples\java\dl directory.

Creating a Content Manager workbasket: You can use DKWorkflowServiceDL to
create a Content Manager workbasket. The Content Manager workbasket creation
process typically consists of the following steps:
1. Create an instance of DKWorkBasketDL.

94 Application Programming Guide

2. Set the workbasket name.
3. Set the privilege.
4. Call the add method.

The following example follows these steps to create a Content Manager
workbasket. This example sets the access option to DK_SS_CONFIG, since user
level access (DK_SS_NORMAL) does not provide for workbasket creation.
DKDatastoreDL dsDL = new DKDatastoreDL();
Object input_option = new Integer(DK_SS_CONFIG);
DKWorkFlowServiceDL wfDL = new DKWorkFlowServiceDL(dsDL);
dsDL.setOption(DK_OPT_DL_ACCESS, input_option);
dsDL.connect("LIBSRVRN", "FRNADMIN", "PASSWORD");
// ----- Create the CM workbasket and set properties
DKWorkBasketDL newwb = new DKWorkBasketDL(wfDL);
newwb.setName("Hot Items");
newwb.setAccessList("All Privileges");
newwb.add();
... // Process as appropriate
dsDL.disconnect();
dsDL.destroy();

The complete sample application from which this example was taken
(TCreateDelWorkBasket.java) is available in the CMBROOT\Samples\java\dl directory.

Listing workbaskets: DKWorkflowServiceDL provides a method that lists the
workbaskets in the system. The following example demonstrates the retrieval of
the list of workbaskets; this list is returned in a sequential collection of
DKWorkBasketDL objects.

The complete sample application from which this example was taken
(TListWorkBasketWFS.java) is available in the CMBROOT\Samples\java\dl directory.
DKDatastoreDL dsDL = new DKDatastoreDL();
DKWorkFlowServiceDL wfDL = new DKWorkFlowServiceDL(dsDL);
dsDL.connect("LIBSRVRN", "FRNADMIN", "PASSWORD");
DKSequentialCollection wbList = (DKSequentialCollection)wfDL.listWorkBaskets();
if (wbList != null)

{
dkIterator pIter = wbList.createIterator();
DKWorkBasketDL pwb1;
while (pIter1.more())
{

pwb1 = (DKWorkFlowDL)pIter1.next();
pwb1->retrieve();
... // do some work

}
}

dsDL.disconnect();
dsDL.destroy();

Listing items in a Content Manager workflow: DKWorkflowServiceDL provides
a method that lists the item IDs of the items in a Content Manager workflow. It
returns the list as a sequential collection of DKString objects. The following
example demonstrates retrieving a list of the item IDs for the items in a Content
Manager workflow:
DKDatastoreDL dsDL = new DKDatastoreDL();
DKWorkFlowServiceDL wfDL = new DKWorkFlowServiceDL(dsDL);
dsDL.connect("LIBSRVRN", "FRNADMIN", "PASSWORD");
// ----- Get the list of CM workflows
KSequentialCollection wfList = (DKSequentialCollection)wfDL.listWorkFlows();
if (wfList != null)
{

Chapter 3. Using the Java application programming interfaces (APIs) 95

dkIterator pIter = wfList.createIterator();
while (pIter.more())
{

DKWorkFlowDL pwf1 = (DKWorkFlowDL)pIter.next();
// ----- Get the list of items in the CM workflow
DKSequentialCollection itemList = (DKSequentialCollection)pwf1.listItemIDs();
if (itemList != null)
{

dkIterator iter1 = itemList.createIterator();
String itemid;
while (iter1.more())
{

itemid = (String)iter1.next();
// ----- Process the items using the item ID

}
}

}
}
dsDL.disconnect();
dsDL.destroy();

The complete sample application from which this example was taken
(TListItemsWFS.java) is available in the CMBROOT\Samples\java\dl directory.

Executing a Content Manager workflow: DKWorkflowServiceDL provides
methods that allow you to execute a Content Manager workflow. The following
example demonstrates how to start an item in a Content Manager workflow, how
to route an item to a workbasket, and how to complete an item in the workflow:
DKDatastoreDL dsDL = new DKDatastoreDL();
DKWorkFlowServiceDL wfDL = new DKWorkFlowServiceDL(dsDL);
DKString itemID = new String("EP8L8OR9MHH##QES");
DKString itemIDWF = new String("HI7MOPALUPFQ1U47");
DKString itemIDWB = new String("E3PP1UZOZUFQ1U3M");
dsDL.connect("LIBSRVRN", "FRNADMIN", "PASSWORD");
wfDL.startWorkFlowItem(itemID, // itemID

itemIDWF, // itemIDWB
NULL, // default (the first workbasket)
TRUE, // overload
DK_WIP_DEFAULT_PRIORITY // initial_priority
);

... // do some work
wfDL.routeWipItem(itemID, // itemID

itemIDWF, // itemIDWB
TRUE, // overload
DK_NO_PRIORITY_CHANGE // initial_priority
);

... // do some work
wfDL.completeWorkFlowItem(itemID);
dsDL.disconnect();
dsDL.destroy();

The complete sample application from which this example was taken
(TProcessWFS.java) is available in the CMBROOT\Samples\java\dl directory.

Working with OnDemand
Enterprise Information Portal APIs support the following features when working
with OnDemand content servers:
v Connecting and disconnecting from one or more OnDemand servers
v Listing users on an OnDemand server
v Listing application groups
v Listing application group fields

96 Application Programming Guide

v Listing search template folders
v Querying an application group
v Retrieving an OnDemand document
v Retrieving the logical view data of a given OnDemand document
v Retrieving the resource group for a given OnDemand document
v Retrieving annotation data for a given OnDemand document
v Retrieving OnDemand segments

Restriction: OnDemand does not support Text Search Engine and QBIC search or
Combined query.

You represent an OnDemand content server using a DKDatastoreOD in an
Enterprise Information Portal application, and you represent an OnDemand
document as a DDO using a DKDDO. OnDemand DDOs contain the following
information:
v Document attribute names and their values
v Document data and annotations (represented as DKParts)
v Collection of logical views for a document
v Resource group data

An OnDemand document’s attributes are stored in a DKDDO as properties. An
OnDemand document’s segments and notes are stored as DKParts.

All other document data (resource group and views, both fixed and logical), are
stored as special properties in an OnDemand DDO with the following property
names are reserved for the OnDemand:

DKViewDataOD
A collection of logical views

DKFixedViewDataOD
Contains fixed view information

DKResourceGrpOD
Contains resource group data

Listing information on OnDemand
You can list application groups and folders for OnDemand servers.

Listing application groups: You can list application groups in OnDemand using
the listEntities method of DKDatastoreOD. The following example illustrates how
to use this method:
...
pCol = (DKSequentialCollection) dsOD.listEntities(); // gets application groups
pIter = pCol.createIterator();
i = 0;

while (pIter.more() == true)
{

i++;
agDef = (DKAppGrpDefOD)pIter.next();
strAppGrp = agDef.getName();
System.out.println(" app grp name[" + i + "]: " + strAppGrp);
System.out.println(" show attributes for " + strAppGrp + " app grp - ");

...

Chapter 3. Using the Java application programming interfaces (APIs) 97

The following example illustrates getting the attribute information for each
application group:
...
pCol2 = (DKSequentialCollection) dsOD.listEntityAttrs(strAppGrp);
pIter2 = pCol2.createIterator();
j = 0;

while (pIter2.more() == true)
{

j++;
attrDef = (DKFieldDefOD)pIter2.next();
System.out.println(" Attribute name[" + j + "]: " + attrDef.getName());
System.out.println(" datastoreType: " + attrDef.datastoreType());
System.out.println(" attributeOf: " + attrDef.getEntityName());
System.out.println(" type: " + attrDef.getType());
System.out.println(" size: " + attrDef.getSize());
System.out.println(" id: " + attrDef.getId());
System.out.println(" nullable: " + attrDef.isNullable());
System.out.println(" precision: " + attrDef.getPrecision());
System.out.println(" scale: " + attrDef.getScale());
System.out.println(" stringType: " + attrDef.getStringType());

}

System.out.println(" " + j + " attribute(s) listed for " +
strAppGrp + " app grp\n");

...

Listing search template folders: The following example shows how to list folders
in OnDemand:
...
dsDef = (DKDatastoreDefOD)dsOD.datastoreDef();
pCol = (DKSequentialCollection) dsDef.listSearchTemplates();
pIter = pCol.createIterator();
i = 0;
while (pIter.more() == true)
{

i++;
folderName = (String)pIter.next();
.... // Process the folder as appropriate

}
dsOD.disconnect();
dsOD.destroy();

Retrieving an OnDemand document
In OnDemand you can retrieve folders and documents. You can also display
documents with their parts and attributes.

Retrieving a particular document or folder: The following example shows the
query string used to retrieve a particular document or folder from an OnDemand
server:
// ----- Generate the query string
String cmd = "SEARCH=(APPL_GROUP=CREDIT," +

"MAX_RESULTS=5,COND=(where name='ADRIAN CYCLERY'));" +
"OPTION=(CONTENT=YES)";

DKNVPair[] parms = new DKNVPair[1];
String cmd = "where (account = '000-000-001')";
parms[0] = new DKNVPair("APPL_GROUP", "CREDIT");

parms[1] = new DKNVPair("CONTENT", "YES");
parms[1] = new DKNVPair("MAX_RESULTS", new Integer(5));
...

98 Application Programming Guide

Displaying documents and their parts and attributes: The following example
displays the documents found by the query with their parts and attributes:
// ----- For each data item, get the attributes
// numDataItems is the number of data items
for (j = 1; j <= numDataItems; j++)
{

a = p.getData(j);
strDataName = p.getDataName(j);
System.out.println(" " + j + ". Attribute Name: " + strDataName);
System.out.println("type: " + p.getDataPropertyByName

(j,DK_CM_PROPERTY_TYPE));
System.out.println("nullable: " + p.getDataPropertyByName

(j,DK_CM_PROPERTY_NULLABLE));

if (strDataName.equals(DKPARTS) == false &&
strDataName.equals("DKResourceOD") == false &&
strDataName.equals("DKViewDataOD") == false &&
strDataName.equals("DKFixedViewDataOD") == false)

{
System.out.println("attribute id: "

+ p.getDataPropertyByName(j,DK_PROPERTY_ATTRIBUTE_ID));
}
// ----- Check for the type of the attribute
if (a instanceof String)
{

System.out.println("Attribute Value: " + a);
}
else if (a instanceof Integer)
{
System.out.println("Attribute Value: " + a);

}
else if (a instanceof Short)
{
System.out.println("Attribute Value: " + a);
}
else if (a instanceof DKDate)
{
System.out.println("Attribute Value: " + a);
}
else if (a instanceof DKTime)
{
System.out.println("Attribute Value: " + a);
}
else if (a instanceof DKTimestamp)
{

System.out.println("Attribute Value: " + a);
}
else if (a instanceof dkCollection)
{

System.out.println("Attribute Value is collection");
pCol = (dkCollection)a;
pIter = pCol.createIterator();
i = 0;

while (pIter.more() == true)
{

i++;
a = pIter.next();
pDO = (dkDataObjectBase)a;

if (pDO.protocol() == DK_XDO)
{

System.out.println("dkXDO object " + i + " in collection");
pXDO = (dkXDO)pDO;
DKPidXDO pid2 = pXDO.getPid();
System.out.println("XDO pid string: " + pid2.pidString());

Chapter 3. Using the Java application programming interfaces (APIs) 99

// Retrieve and open instance handler for an XDO
pXDO.retrieve();
// pXDO.open();

}
}

}
else if (a != null)
{

System.out.println("Attribute Value: " + a.toString());
if (strDataName.equals("DKResourceOD") ||

strDataName.equals("DKFixedViewDataOD"))
{

pDO = (dkDataObjectBase)a;

if (pDO.protocol() == DK_XDO)
{

System.out.println("dkXDO object ");
pXDO = (dkXDO)pDO;
DKPidXDO pid2 = pXDO.getPid();
System.out.println("XDO PID string: " + pid2.pidString());
// Retrieve and open instance handler for an XDO
pXDO.retrieve();
// pXDO.open();

Working with ImagePlus for OS/390
Enterprise Information Portal APIs support the following features when working
with ImagePlus for OS/390 content servers:
v Connecting and disconnecting from one or more ImagePlus servers
v Retrieving categories
v Retrieving attribute fields
v Retrieving folders
v Retrieving documents

You represent an ImagePlus for OS/390 content server using DKDatastoreIP in
your application.

Restriction: ImagePlus for OS/390 does not support Text Search Engine and QBIC
search or combined queries.

Listing entities and attributes
After creating a datastore for an ImagePlus for OS/390 content server as a
DKDatastoreIP object and connecting, you can check the entities and attributes for
the datastore. The following example illustrates listing the entities found in a
ImagePlus for OS/390 content server:
// ----- After creating a datastore and connecting
// dsIP is a DKDatastoreIP object
DKEntityDefIP entDef = null;
DKAttrDefIP attrDef = null;

DKSequentialCollection pCol = (DKSequentialCollection)dsIP.listEntities();
dkIterator pIter = null;

if (pCol == null)
{

// ----- Handle if the collection of entities is null
}
else
{
... // ----- Process as appropriate

100 Application Programming Guide

The complete sample application from which this example was taken
(TListCatalogIP.java) is available in the CMBROOT\Samples\java\dl directory.

The following example illustrates listing the attributes associated with each entity
using the getAttr and listAttrNames methods of DKEntityDefIP.
// ----- List attributes using listAttrNames and getAttr methods

pIter = pCol.createIterator();
while (pIter.more())
{

// ----- Iterate over the each entity
entDef = (DKEntityDefIP)pIter.next();
System.out.println(" Entity type : " + entDef.getType());
System.out.println(" Entity type name: " + entDef.getName());

// ----- Get a list of attributes for the entity
String[] attrNames = entDef.listAttrNames();
int count = attrNames.length;
for (int i = 0; i < count; i++)
{

attrDef = (DKAttrDefIP)entDef.getAttr(attrNames[i]);
System.out.println(" Attr name : " + attrDef.getName());
System.out.println(" Attr id : " + attrDef.getId());
System.out.println(" Entity name : " + attrDef.getEntityName());
System.out.println(" Datastore name: " + attrDef.datastoreName());
System.out.println(" Attr type : " + attrDef.getType());
System.out.println(" Attr restrict : " + attrDef.getStringType());
System.out.println(" Attr min val : " + attrDef.getMin());
System.out.println(" Attr max val : " + attrDef.getMax());
System.out.println(" Attr display : " + attrDef.getSize());
System.out.println(" Attr precision: " + attrDef.getPrecision());
System.out.println(" Attr scale : " + attrDef.getScale());
System.out.println(" Attr update ? " + attrDef.isUpdatable());
System.out.println(" Attr nullable ? " + attrDef.isNullable());
System.out.println(" Attr queryable? " + attrDef.isQueryable());
System.out.println("");

}
}

The following example illustrates an alternative way to list the attributes associated
with each entity by using the listEntityAttrs method of DKDatastoreIP.
// --- List attributes using listEntityAttrs method
pIter = pCol.createIterator();
while (pIter.more())
{

entDef = (DKEntityDefIP)pIter.next();
System.out.println(" Entity type : " + entDef.getType());
System.out.println(" Entity type name: " + entDef.getName());

DKSequentialCollection pAttrCol =
(DKSequentialCollection)dsIP.listEntityAttrs(entDef.getName());

if (pAttrCol == null)
{

// ----- Handle if the collection of attributes is null
}
else
{

dkIterator pAttrIter = pAttrCol.createIterator();
while (pAttrIter.more())
{

attrDef = (DKAttrDefIP)pAttrIter.next();
System.out.println(" Attr name : " + attrDef.getName());
System.out.println(" Attr id : " + attrDef.getId());
System.out.println(" Entity name : " + attrDef.getEntityName());
System.out.println(" Datastore name: " + attrDef.datastoreName());

Chapter 3. Using the Java application programming interfaces (APIs) 101

System.out.println(" Attr type : " + attrDef.getType());
System.out.println(" Attr restrict : " + attrDef.getStringType());
System.out.println(" Attr min val : " + attrDef.getMin());
System.out.println(" Attr max val : " + attrDef.getMax());
System.out.println(" Attr display : " + attrDef.getSize());
System.out.println(" Attr precision: " + attrDef.getPrecision());
System.out.println(" Attr scale : " + attrDef.getScale());
System.out.println(" Attr update ? " + attrDef.isUpdatable());
System.out.println(" Attr nullable ? " + attrDef.isNullable());
System.out.println(" Attr queryable? " + attrDef.isQueryable());
System.out.println("");
}

}
}

ImagePlus for OS/390 query syntax
The following illustrates the query syntax for ImagePlus for OS/390:
SEARCH = (COND=(search_expression), ENTITY={entity_name | mapped_entity_name}

[, MAX_RESULTS = maximum_results]);
[OPTION=([CONTENT={YES | ATTRONLY | NO};][PENDING={YES | NO};])]

The query consists of the following parameters:

search_expression
Each search expression consists of one or more search criteria. The operator
AND is used between search criteria.

The search criteria have the form:
{attr_name | mapped_attr_name} operator literal

where

attr_name
the name of the entity attribute on which to base the search

mapped_attr_name
the mapped attribute name associated with the attribute on which
to base the search

operator
Equality (==) is supported for all attributes; for attributes of type
DATE, you can use the following additional operators
v greater than (>)
v less than (<)
v greater than or equal to (>=)
v less than or equal to (<=)

literal

A literal. For numeric literals, no quotes should be used.

For date, time, timestamp, and string literals, no quotes are
necessary, although you can use either double and single quotes. If
a string literal contains a single quote, use single quote for the
string literal and two single quotes for the quote in the string.
Examples of literals include:
ReceiveDate == 1999-03-08
ReceiveDate == '1999-03-08'
FolderId == "Folder number 1"
FolderID == 'John''s Folder'

102 Application Programming Guide

entity_name
Name of the entity to be searched

mapped_entity_name
Entity name mapped to the entity to be searched

maximum_results
Maximum number of results to be returned

The option keywords are:

CONTENT Controls the amount of information returned in the results

YES (default)
Set the PIDs, attributes and their values for a document or
folder. If there are parts in a document, the XDO PIDs are
set. If there are documents in a folder, the document PIDs
are set.

NO Set only the document or folder PIDs.

ATTRONLY
Set only the PIDs, attributes and their values for a
document or folder.

PENDING Controls whether to include pending documents that do not have
any parts. This option only applies when ENTITY is set to DOCUMENT
or an entity mapped to DOCUMENT.

YES Include pending documents

NO (default)
Do not include pending documents in the results

Working with VisualInfo for AS/400
The Enterprise Information Portal API classes provided for VisualInfo for AS/400
are similar to those provided for Content Manager.

Restriction: VisualInfo for AS/400 does not support Text Search Engine and QBIC
search or combined queries.

Listing index classes and attributes
You represent a VisualInfo for AS/400 content server as a DKDatastoreV4. After
creating the datastore and connecting to it, you can list the index classes and
attributes for the VisualInfo for AS/400 server. The following example illustrates
doing this:
// ----- After creating a datastore (dsV4) and connecting, get index classes
pCol = (DKSequentialCollection) dsV4.listEntities();
pIter = pCol.createIterator();
i = 0;
while (pIter.more() == true)
{

i++;
icDef = (DKIndexClassDefV4)pIter.next();
strIndexClass = icDef.getName();
... // ---- Process the index classes as appropriate
// ----- Get the attributes
pCol2 = (DKSequentialCollection) dsV4.listEntityAttrs(strIndexClass);
pIter2 = pCol2.createIterator();
j = 0;

while (pIter2.more() == true)
{

Chapter 3. Using the Java application programming interfaces (APIs) 103

j++;
attrDef = (DKAttrDefV4)pIter2.next();
... // ----- Process the attributes
}

}

dsV4.disconnect();
dsV4.destroy();

The complete sample application from which this example was taken
(TListCatalogV4.java) is available in the CMBROOT\Samples\java\dl directory.

Executing a query
The following example runs a query in VisualInfo for AS/400 and processes the
results.
// ----- After creating a datastore (dsV4) and connecting, build the
// query and parameters and execute it
pCur = dsV4.execute(cmd,DK_CM_PARAMETRIC_QL_TYPE,parms);
...

if (pCur == null)
{

// ---- Handle if the cursor is null
}

while (pCur.isValid())
{

p = pCur.fetchNext();
if (p != null)
{

cnt++;
i = pCur.getPosition();
System.out.println("\n=====> Item " + i + " <=====");
numDataItems = p.dataCount();
DKPid pid = p.getPid();
System.out.println(" pid string: " + pid.pidString());
k = p.propertyId(DK_CM_PROPERTY_ITEM_TYPE);

if (k > 0)
{

Short sVal = (Short)p.getProperty(k);
j = sVal.shortValue();
switch (j)
{

case DK_CM_DOCUMENT :
{

... // Handle if the item is a document ");
break;

}
case DK_CM_FOLDER :
{

... // Handle if the item is a folder
break;

}
}

}

for (j = 1; j <= numDataItems; j++)
{

a = p.getData(j);
strDataName = p.getDataName(j);
... // Process the attributes as appropriate
if (strDataName.equals(DKPARTS) == false

&& strDataName.equals(DKFOLDER) == false)
{
System.out.println(" attribute id: "

104 Application Programming Guide

+ p.getDataPropertyByName(j,DK_CM_PROPERTY_ATTRIBUTE_ID));
}

if (a instanceof String)
{

System.out.println(" Attribute Value: " + a);
}
else if (a instanceof Integer)

... // ---- Handle each type for attribute {
else if (a instanceof dkCollection)
{

// ---- Handle if attribute value is a collection
pCol = (dkCollection)a;
pIter = pCol.createIterator();
i = 0;
while (pIter.more() == true)
{

i++;
a = pIter.next();
pDO = (dkDataObjectBase)a;

if (pDO.protocol() == DK_CM_PDDO)
{

// Process a DDO
pDDO = (DKDDO)pDO;
...

}
else if (pDO.protocol() == DK_CM_XDO)
{

// Process an XDO
pXDO = (dkXDO)pDO;
DKPidXDO pid2 = pXDO.getPid();
...

}
}

}
else if (a != null)
{

// Process the attribute
}
else ... // Handle if the attribute is null
}
}

}
pCur.destroy(); // Delete the cursor when you're done

The complete sample application from which this example was taken
(TExecuteV4.java) is available in the CMBROOT\Samples\java\dl directory.

Executing a parametric query
The following example runs a parametric query.
// ----- Create the query string and the query object
String cmd = "SEARCH=(INDEX_CLASS=V4DEMO)";
pQry = dsV4.createQuery(cmd, DK_CM_PARAMETRIC_QL_TYPE, parms);
// ----- Run the query
pQry.execute(parms);

System.out.println("number of query results = " + pQry.numberOfResults());

// ----- Processing the query results
pResults = (DKResults)pQry.result();
processResults((dkCollection)pResults);
...

Chapter 3. Using the Java application programming interfaces (APIs) 105

The complete sample application from which this example was taken
(TSamplePQryV4.java) is available in the CMBROOT\Samples\java\dl directory.

Working with Domino.Doc
Domino.Doc is the Lotus Domino solution for organizing, managing, and storing
business documents, and making them accessible within and outside of a business.
Domino.Doc supports the open document management API (ODMA), so that you
can create, save, and retrieve documents using ODMA-enabled applications.
ODMA connects to a Domino.Doc server using an HTTP or Lotus Notes™ protocol.

The Enterprise Information Portal APIs support the following features for working
with a Domino.Doc content server:
v Connecting and disconnecting from one or more Domino.Doc servers
v Ability to search binders
v Ability to retrieve documents
v ODMA compliance so that users can work in familiar applications

Restriction: Domino.Doc does not support Text Search Engine and QBIC search or
combined queries.

When using the API to work with a Domino.Doc object, you must build an
expression to return the objects. This section describes the design of the API and
how to build the expression. Figure 16 on page 107 represents the Domino.Doc
object model.

106 Application Programming Guide

The elements contained in Domino.Doc and the APIs to represent them are
arranged such that:
v The library contains rooms (DKRoomDefDD objects) and cabinets

(DKCabinetDefDD objects)
v Each cabinet contains binders (DKBinderDefDD object)
v Each binder contains a profile (DKAttrProfileDefDD object) and security
v Each binder contains documents (DKDocumentDefDD objects)
v Each document contains a profile (DKAttrProfileDefDD object) and security
v Each profile contains fields (DKAttrFieldDefDD objects)
v Each field can contain keywords (DKAttrKeywordDefDD objects)

Listing entities and subentities
The following example lists the rooms in a Domino.Doc content server:

Figure 16. Domino.Doc object model

Chapter 3. Using the Java application programming interfaces (APIs) 107

...
// ----- Get a list of rooms
dkCollection rooms = dsDD.listEntities();
// ----- Iterate thru the rooms and their subEntities
dkIterator itRooms = rooms.createIterator();
itRooms.reset();
while(itRooms.more()) {

... // Process the rooms and entities

The complete sample application from which this example was taken
(TListSubEntitiesDD.java) is available in the CMBROOT\Samples\java\dl directory.

The following example lists document attributes and keywords:
...
DKAttrProfileDefDD profile = aDocument.getProfile();
dkCollection fields = profile.getFields();

if((fields != null) &&(fields.cardinality() > 0))
{

dkIterator itFields = fields.createIterator();
while(itFields.more())
{

DKAttrDefDD aField = (DKAttrDefDD)itFields.next();
// ---- get the keywords
dkCollection keywords = ((DKAttrFieldDefDD)aField).getKeywords();
if(keywords != null)
{

if(keywords.cardinality() > 0)
{

dkIterator itKeywords = keywords.createIterator();
while(itKeywords.more())
{

DKAttrDefDD aKeyword = (DKAttrDefDD)itKeywords.next();
// ----- Process the keyword

...

Listing cabinet attributes
Cabinets are the only items that contain useful attributes for application
developers. DKDatastoreDD lists cabinets as searchable entities. The following
example lists cabinets and their attributes.
...
dkCollection cabinets = dsDD.listSearchableEntities();
dkIterator itCabinets = cabinets.createIterator();
while(itCabinets.more())
{

// ----- For each cabinet, list it's attributes.
dkEntityDef aCabinet = (dkEntityDef)itCabinets.next();
cabinetName = aCabinet.getName();
// ----- List Document Profiles without sub-attributes
System.out.println("\n" + Me + ": calling listAttrs for" + cabinetName);
DKSequentialCollection coll = (DKSequentialCollection) aCabinet.listAttrs();

...

The complete sample application from which this example was taken
(TListAttributes.java) is available in the CMBROOT\Samples\java\dl directory.

Using queries in Domino.Doc
ENTITY= must be the first word in the query string if you want to limit the query to
one cabinet. If the ENTITY parameter and its value are missing, then the entire
library is searched. Also, the value must be enclosed in double quotation marks (″),
for example, "Diane Cabinet".

QUERY= is a required parameter.

108 Application Programming Guide

So, in Domino.Doc a query string looks like this:
"ENTITY=<"cabinetTitle"> QUERY=<"lotusQueryString">"

Use the FTSearch method to query the Domino.Doc datastore. The Domino.Doc
datastore needs to be fully text indexed for this method to work efficiently. To test
for an index, use the IsFTIndexed property. To create an index, use the
UpdateFTIndex method.

The FTSearch method searches all of the documents in a datastore — to search
documents found in a particular view, use the FTSearch method in NotesView, to
search documents found in a particular document collection, use the FTSearch
method in NotesDocumentCollection.

If you don’t specify a sort option, you get the documents sorted according to a
relevance score. If you want to sort by date, you do not get relevance scores with
the sorted results. If you pass the resulting DocumentCollection to a
NotesNewsletter instance, it formats its doclink report with either the document
creation date or the relevance score, depending on which sort options you use.

Using query syntax
The syntax rules for a query are in the following list. Use parentheses to override
precedence and to group operations.

Plain text
To search for a word or phrase, enter the word or phrase you are searching
for. Enclose search keywords and symbols in apostrophes (’). In a
LotusScript literal, remember to use quotation marks (″).

Wildcards
Use the question mark (?) to match any single character in any position
within a word. Use the asterisk (*) to match zero to n (where n is any
number) characters in any position in a word.

Logical operators
Use logical operators to expand or restrict your search. The operators and
their precedence are:
1. ! (not)
2. & (and)
3. , (accrue)
4. | (or)

You can use either the keyword or symbol.

Proximity operators
Use proximity operators to search for words that are close to each other.
These operators require word, sentence, and paragraph breaks in a full-text
index. The operators are near, sentence, and paragraph.

Field operator
Use the field operator to restrict your search to a specified field. The syntax
is FIELD field-name operator, where operator is CONTAINS for text and
rich text fields, and is one of the following symbols for number and date
fields: =, >, >=, <, <=

Exactcase operator
Use the exactcase operator to restrict a search for the next expression to the
specified case.

Chapter 3. Using the Java application programming interfaces (APIs) 109

Termweight operator
Use the termweight n operator to adjust the relevance ranking of the
expression that follows, where n is 0-100.

Working with Domino Extended Search (DES)
Domino Extended Search (DES) allows you to query and retrieve documents from:
v Lotus Notes® databases
v NotesPump databases
v File systems
v Web search engines

DES includes the following features:
v Connecting and disconnecting from one or more DES servers
v Listing DES servers
v Listing databases and fields
v Ability to use Generalized Query Language (GQL) to perform searches
v Ability to retrieve documents

Restriction: DES does not support:
v Adding, updating, and deleting documents
v Text Search Engine and QBIC search
v Combined query
v Workbasket and workflow

All DES features are accessed and controlled by the DES configuration database.
Use the configuration database to assign database definitions for data sources to be
searched, network addresses, access control information, and other related
information.

Listing DES servers
In order to provide access to multiple DES servers, you can create a file named
cmbdes.ini that contains the server information. This file must be located in
x:\CMBROOT (where x is the drive letter). The cmbdes.ini file must contain one
line for each server, in the following format:
DATASOURCE=TCP/IP address;PORT=port number

TCP/IP is the TCP/IP address of the DES server and the port number is the port
number defined in order to access the server.

Listing databases and fields
When you build a query to search a DES server, you must know the database
names and the field names that are available. The DKDatastoreDES object provides
the listEntities method to list the databases and the listEntityAttrs method to
list the fields for each database. The following example retrieves a list of databases
and their fields:
try {

DKSequentialCollection pCol = null;
dkIterator pIter = null;
DKSequentialCollection pCol2 = null;
dkIterator pIter2 = null;
String strDatabase = null;
DKDatabaseDefDES dbDef = null;
DKFieldDefDES attrDef = null;
int i = 0;

110 Application Programming Guide

int j = 0;
DKDatastoreDES dsDES = new DKDatastoreDES();
System.out.println("connecting to datastore");
dsDES.connect(libSrv,userid,pw,connect_string);
System.out.println("datastore connected libSrv " + libSrv + " userid " +

userid);
System.out.println("list DES databases");
pCol = (DKSequentialCollection) dsDES.listEntities();
pIter = pCol.createIterator();
i = 0;
while (pIter.more() == true)
{
i++;
dbDef = (DKDatabaseDefDES)pIter.next();
strDatabase = dbDef.getName();
System.out.println("database name [" + i + "] - " + strDatabase);
System.out.println(" list attributes for " + strDatabase + " database");
pCol2 = (DKSequentialCollection) dsDES.listEntityAttrs(strDatabase);
pIter2 = pCol2.createIterator();
j = 0;
while (pIter2.more() == true)
{
j++;
attrDef = (DKFieldDefDES)pIter2.next();
System.out.println(" Attribute name [" + j + "] - " + attrDef.getName());
System.out.println(" datastoreType " + attrDef.datastoreType());
System.out.println(" attributeOf " + attrDef.getEntityName());
System.out.println(" type " + attrDef.getType());
System.out.println(" size " + attrDef.getSize());
System.out.println(" id " + attrDef.getId());
System.out.println(" nullable " + attrDef.isNullable());
System.out.println(" precision " + attrDef.getPrecision());
System.out.println(" scale " + attrDef.getScale());
System.out.println(" stringType " + attrDef.getStringType());
System.out.println(" queryable " + attrDef.isQueryable());
System.out.println(" displayName " + attrDef.getDisplayName());
System.out.println(" helpText " + attrDef.getHelpText());
System.out.println(" language " + attrDef.getLanguage());
System.out.println(" valueCount " + attrDef.getNumVals());
}
System.out.println(" " + j + " attributes listed for

" + strDatabase + " database");
}
System.out.println(i + " databases listed");
dsDES.disconnect();
System.out.println("datastore disconnected");
}
catch(DKException exc)
{

System.out.println("Exception name " + exc.name());
System.out.println("Exception message " + exc.getMessage());
System.out.println("Exception error code " + exc.errorCode());
System.out.println("Exception error state " + exc.errorState());
exc.printStackTrace();

}

The complete sample application from which this example was taken
(TListCatalogDES.java) is available in the CMBROOT\Samples\java\dl directory.

Using Generalized Query Language (GQL)
DES uses the Generalized Query Language (GQL) to perform searches. Table 7
contains examples of valid GQL expressions.

Table 7. GQL expressions
GQL expression Description

Chapter 3. Using the Java application programming interfaces (APIs) 111

Table 7. GQL expressions (continued)
″software″ search for documents which contain the

word software
(TOKEN:WILD ″exec*″) search for documents which contain any

word beginning with exec
(AND ″software″ ″IBM″) search for documents which contain both

words software and IBM
(START ″View″ ″How″) search for documents in which the View field

begins with the word How
(EQ ″View″ ″How Do I?″) search for documents in wich the View field

contains the exact string How Do I?
(GT ″BIRTHDATE″ ″19330804″) search for documents in which the

BIRTHDATE field is greater than August 4,
1933

DES uses the query type DK_DES_GQL_QL_TYPE. This query type has the following
syntax:
SEARCH=(DATABASE=(db_name | db_name_list | ALL);

COND=(GQL expression));
[OPTION=([SEARCHABLE_FIELD=(fd_name, ...);]

[RETRIEVABLE_FIELD=(fd_name, ...);]
[MAX_RESULTS=maximum_results;]
[TIME_LIMIT=time)]

db_name_list is a list of database names (db_name) separated by commas and ALL
means search all of the available databases. The default time limit for a search is 30
seconds.

This example uses the query string to search for documents in the Notes Help
database, where the View field is How Do I? and the maximum expected results are
five.
String cmd = "SEARCH=(DATABASE=(Notes Help);" +

"COND=(EQ \"View\" \"How Do I?\"));" +
"OPTION=(MAX_RESULTS=5)"

This example executes a GQL query against DES. After the query is executed, the
results are returned in a dkResultSetCursor object.
DKDatastoreDES dsDES = new DKDatastoreDES();
dkResultSetCursor pCur = null;
DKNVPair parms[] = null;
System.out.println("connecting to datastore");
dsDES.connect(libSrv,userid,pw,connect_string);
System.out.println("datastore connected libSrv " + libSrv + " userid " + userid);
String cmd = "SEARCH=(DATABASE=(Notes Help);" +

"COND=(EQ \"View\" \"How Do I?\"));"
"OPTION=(MAX_RESULTS=5)";

DKDDO ddo = null;
System.out.println("query string " + cmd);
System.out.println("executing query");
pCur = dsDES.execute(cmd,DK_DES_GQL_QL_TYPE,parms);

System.out.println("cardinality " + pCur.cardinality());
System.out.println("datastore executed query");
System.out.println("process query results");
...
pCur.destroy(); // Finished with the cursor
System.out.println("query results processed");
dsDES.disconnect();
System.out.println("datastore disconnected");

112 Application Programming Guide

The complete sample application from which this example was taken
(TExecuteDES.java) is available in the CMBROOT\Samples\java\dl directory.

DDO properties in DES
A DDO in DES will always have the type DK_CM_DOCUMENT. To get the item type of
the DDO, you call:
Object obj = ddo.getPropertyByName(DK_CM_PROPERTY_ITEM_TYPE);
short type = ((Short) obj).shortValue();

Creating PIDs in DES
The persistent identifier (PID) contains specific information about a document. The
object type indicates the database where the document was found. For more
information on PIDs see “Understanding persistent identifiers (PID)” on page 11
and “Creating a persistent identifier (PID)” on page 27. A PID is created by using
the database name, followed by the | character and the document ID, for example:
database name|documentId ()

Contents of a DES document
Each item in the DDO represents either a field, a collection, or a DKParts object.

Field A single field has the field name inside the item name. The value of the
field is inside the item value. The property of the field can be:
v DK_CM_VSTRING
v DK_CM_FLOAT
v DK_CM_XDOOBJECT
v DK_CM_DATE
v DK_CM_SHORT

Collection
When a field has multiple values, the field name is in the item name. The
item value is a DKSequentialCollection object. The property can be a
DK_CM_COLLECTION, or a DK_CM_COLLECTION_XDO if the field is a
BLOB.

DKParts
A document DDO has a specific attribute with a reserved name DKPARTS,
its value is a DKParts object. The DKParts object can be used to store the
address information about a document.

This example processes the contents of a DDO:
public static void displayDDO(DKDDO ddo)

throws DKException, Exception
{
dkXDO pXDO = null;
int i = 0;
int numDataItems = 0;
short k = 0;
short j = 0;
Integer valueCount = null;
Object value = null;
String dataName = null;
dkCollection pCol = null;
dkIterator pIter = null;
Object anObject = null;
numDataItems = ddo.dataCount();
DKPid pid = ddo.getPidObject();
System.out.println("pid string " + pid.pidString());

System.out.println("Number of Attributes " + numDataItems);
for (j = 1; j <= numDataItems; j++)

Chapter 3. Using the Java application programming interfaces (APIs) 113

{
anObject = ddo.getData(j);
dataName = ddo.getDataName(j);
System.out.println(j + ": Name " + dataName);
// determine if data item has a single value or multiple values
Short type = (Short)ddo.getDataPropertyByName(j, DK_CM_PROPERTY_TYPE);
k = type.shortValue();
if (k == DK_CM_COLLECTION)
{
pCol = (dkCollection)anObject;
pIter = pCol.createIterator();
i = 0;
while (pIter.more() == true)

{
i++;
value = pIter.next();
System.out.println(" Value" + i + " " + value);
}

}
else if (k == DK_CM_COLLECTION_XDO)
{
pCol = (dkCollection)anObject;
pIter = pCol.createIterator();
i = 0;
while (pIter.more() == true)
{
i++;
blob = (DKBlobDES)pIter.next();
System.out.println(" Value" + i + " " + blob.getContent());
}

}

else
System.out.println(" Value " + anObject);
}

}

The complete sample application from which this example was taken
(TExecuteDES.java) is available in the CMBROOT\Samples\java\dl directory.

Retrieving a document
To retrieve a document from a DKDatastoreDES object, you must know the name
of the database where the document resides and the document ID. You must also
associate the DDO to a datastore and establish a connection. This example retrieves
a document from a database:
DKDatastoreDES dsDES = new DKDatastoreDES();
dsDES.connect(libSrv, userid, pw, connect_string);
DKPid pid = new DKPid();
// primary id is 'database name' followed by the character '|' followed by document Id
pid.setPrimaryId("Notes Help" + DK_DES_ITEMID_SEPARATOR + "215e");
pid.setObjectType("Notes Help");
DKDDO ddo = new DKDDO(dsDES, pid);
ddo.retrieve();

The complete sample application from which this example was taken
(TRetrieveDDODES.java) is available in the CMBROOT\Samples\java\dl directory.

Retrieving a BLOB
To retrieve a BLOB from a DKDatastoreDES object, you must know the name of
the database where the document resides, the document ID which contains the
BLOB, and the field name that has the contents of the BLOB. You must also
associate the DDO to a datastore and establish a connection.

114 Application Programming Guide

In the following example, the file system database named DES files contains an
HTML file named D:\desdoc\README.html. The field that has the contents of the
HTML file is named Doc$Content. The HTML file is retrieved and saved as
D:\DESReadme.html.
DKDatastoreDES dsDES = new DKDatastoreDES();
dsDES.connect(libSrv, userid, pw, connect_string);
DKBlobDES xdo = new DKBlobDES(dsDES);
DKPidXDODES pid = new DKPidXDODES();
pid.setDocumentId("D:\\desdoc\\README.html");
pid.setDatabaseName("DES files");
pid.setFieldName("Doc$Content");
xdo.setPidObject(pid);
xdo.retrieve("c:\\DESReadme.html");

The complete sample application from which this example was taken
(TRetrieveXDODES.java) is available in the CMBROOT\Samples\java\dl directory.

Associating MIME types with documents
DES does not directly support identification of MIME types. However, you must
know the MIME type of an XDO that you want to display within a viewer. The
CMBCC2MIME.INI file is used to determine the MIME type of a document. When a
retrieved query from DES returns a BLOB, the CMBCC2MIME.INI file is searched to
determine if a MIME type can be assigned to the BLOB. This file is searched for
NotesPump and FileSystem databases only. The default MIME type is text/html,
when there is no type match found inside the CMBCC2MIME.INI file.

Using federated searching in DES
When you create query expressions for federated searching, the syntax used in
DES is similar to SQL syntax. The federated query expressions are converted to
GQL syntax before they are submitted to DES. Because SQL and GQL grammar
have many differences, only a subset of the SQL grammar is supported by
Enterprise Information Portal.

Table 8 summarizes the SQL to GQL conversion of the supported comparison and
logical operators.

Table 8. SQL and GQL operators
SQL operator GQL operator
AND AND
OR OR
NOT not supported
IN not supported
BETWEEN BETWEEN
EQ EQ
NEQ not supported
GT GT
LT LT
LIKE not supported
GEQ GTE
LEQ LTE
NOTLIKE not supported
NOTIN not supported
NOTBETWEEN not supported

Chapter 3. Using the Java application programming interfaces (APIs) 115

Working with relational databases
The Enterprise Information Portal API classes support IBM DB2 Universal
Database, and other relational databases using Java Database Connectivity (JDBC)
and IBM DB2 DataJoiner.

Connecting to relational databases
To represent a relational database, create a DKDatastorexx object, where the xx is
DB2 for a DB2 database, DJ for DataJoiner, or JDBC for Java Database Connectivity.
The following sample connects to the DB2 sample database:

dsDB2 = new DKDatastoreDB2();
dsDB2.connect("sample","db2admin","password","");
.....
dsDB2.disconnect();
dsDB2.destroy();

Use the database name when connecting.

Connection strings: When connecting to a relational database, you can specify a
connection string and pass it as a parameter. If you specify multiple connection
strings, separate them with a semi-colon (;). Connection strings can take the
following forms:

Connection strings for DB2, DataJoiner, and ODBC:
NATIVECONNECTSTRING=(native connect string)

Specifies a native connect string to be passed to the database when
connecting. Check the information for your content server to determine the
valid native connections strings.

SCHEMA=schema name

Specifies the database schema name to be used when running the
listEntities, listEntityAttrs, listPrimaryKeyNames, listForeignKeyNames
methods.

Connection strings for JDBC:
SCHEMA=schema name

Specifies the database schema name to be used when running the
listEntities, listEntityAttrs, listPrimaryKeyNames, listForeignKeyNames
methods.

Configuration strings: You can specify a configuration string and pass it as a
parameter to the configuration method of. If you specify multiple configuration
strings, separate them with a semi-colon (;). Configuration strings have the
following forms:

Configuration strings for DB2, DataJoiner, and ODBC:
CC2MIMEURL=(URL)

Specifies the cmbcc2mime.ini file as a uniform resource locator address. Use
this form of the configuration string or CC2MIMEFILE, depending on the
location of the file.

CC2MIMEFILE=(filename)

Specifies the cmbcc2mime.ini file by name.
DSNAME=(datastore name)

116 Application Programming Guide

Specifies the name of the datastore. For federated queries and other
federated functions, Enterprise Information Portal sets this automatically.

AUTOCOMMIT=ON | OFF

Sets autocommit on or off. Default is off. When this datastore is used for
federated queries and other federated functions, autocommit is on by
default.

Configurations strings for JDBC:
CC2MIMEURL=(URL)

Specifies the cmbcc2mime.ini file as a uniform resource locator address. Use
this form of the configuration string or CC2MIMEFILE, depending on the
location of the file.

CC2MIMEFILE=(filename)

Specifies the cmbcc2mime.ini file by name.
JDBCSERVERSURL=(URL)

Specifies the cmbjdbcsrvs.ini file in a uniform resource locator address.
This file contains the list of JDBC servers.

JDBCSERVERSFILE=(filename)

Specifies the cmbjdbcsrvs.ini file that contains the list of JDBC servers as a
filename.

JDBCDRIVER=(JDBC driver)

Specifies the JDBC driver that you want to use. This is automatically set
when you use the EIP administration client program.

DSNAME=(datastore name)

Specifies the name of the datastore. For federated queries and other
federated functions, Enterprise Information Portal sets this automatically.

AUTOCOMMIT=ON | OFF

Sets autocommit on or off. Default is off. When this datastore is used for
federated queries and other federated functions, autocommit is on by
default.

Listing entities and entity attributes
After creating the datastore for the relational database and connecting to it, you
can list the entity and entity attributes. The following example illustrates retrieving
the list and stepping through it:
// ----- After creating a datastore and connecting, get index classes
pCol = (DKSequentialCollection)dsDB2.listDataSources();
pIter = pCol.createIterator();
while (pIter.more() == true)
{

i++;
pSV = (DKServerDefDB2)pIter.next();
strServerName = pSV.getName();
.... // Use the server name as appropriate

}
// ----- Connect to datastore
dsDB2.connect(db, userid, pw, "");
if (!schema.equals(""))
{

dsDefDB2 = (DKDatastoreDefDB2)dsDB2.datastoreDef();

Chapter 3. Using the Java application programming interfaces (APIs) 117

dsDefDB2.setSchemaName(schema);
schema = dsDefDB2.getSchemaName();
System.out.println(" New Schema Name = [" + schema + "]");

}
// ----- List the tables
pCol = (DKSequentialCollection) dsDB2.listEntities();
pIter = pCol.createIterator();
i = 0;
while (pIter.more() == true)
{

i++;
tableDef = (DKTableDefDB2)pIter.next();
strTable = tableDef.getName();
// ----- List attributes (columns for the table)
pCol2 = (DKSequentialCollection) dsDB2.listEntityAttrs(strTable);
pIter2 = pCol2.createIterator();
j = 0;
while (pIter2.more() == true)
{

j++;
colDef = (DKColumnDefDB2)pIter2.next();
.... // Process the information as appropriate

}
}
// ----- Commit and disconnect
dsDB2.commit();
dsDB2.disconnect();
dsDB2.destroy();

Refer to TListCatalogDB2.java, TListCatalogJDBC.java, and TListCatalogDJ.java
in the CMBROOT\Samples\java\dl directory for complete examples.

Executing a query
To run a query you first create the query string and then execute the query. The
following example runs a query and processes the results.
// ----- After creating a datastore and connecting, build the
// query and parameters and execute it
sDB2 = new DKDatastoreDB2();
dkResultSetCursor pCur = null;
DKNVPair parms[] = new DKNVPair[2];
String strMax = "5";
parms[0] = new DKNVPair(DK_CM_PARM_MAX_RESULTS,strMax);
parms[1] = new DKNVPair(DK_CM_PARM_END,null);
// ----- Connect to datastore
dsDB2.connect(database,userid,pw,"");
// --- Create the query string
String cmd = "";
cmd = "SELECT * FROM EMPLOYEE";

DKDDO p = null;
DKDDO pDDO = null;
dkXDO pXDO = null;
DKPidXDO pidXDO = null;
int i = 0;
int numDataItems = 0;
short k = 0;
short j = 0;
String strDataName;
dkCollection pCol = null;
dkIterator pIter = null;
Object a = null;
dkDataObjectBase pDO = null;
int cnt = 0;

// ----- Execute the query
pCur = dsDB2.execute(cmd,DK_CM_SQL_QL_TYPE,parms);

118 Application Programming Guide

if (pCur == null)
{

// Handle if the cursor is null
}
while (pCur.isValid())
{

p = pCur.fetchNext();
if (p != null)
{

cnt++;
i = pCur.getPosition();
// Get item information
numDataItems = p.dataCount();
DKPid pid = p.getPidObject();
System.out.println("pid string " + pid.pidString());
System.out.println("Number of Data Items " + numDataItems);
for (j = 1; j <= numDataItems; j++)
{

a = p.getData(j);
strDataName = p.getDataName(j);
// Handle the attributes ;

if (a instanceof String)
{
System.out.println(" Attribute Value " + a);
}
....... // Handle for various types)
else if (a instanceof dkDataObjectBase)
{

pDO = (dkDataObjectBase)a;
if (pDO.protocol() == DK_PDDO)

{
System.out.println(" DKDDO object ");
pid = ((DKDDO)pDO).getPidObject();

}
else if (pDO.protocol() == DK_XDO)

{
// dkXDO object

pXDO = (dkXDO)pDO;
pidXDO = pXDO.getPidObject();

}
}
....... // Handle for various types
{

}
}
// Delete the cursor when you're done, commit and disconnect
pCur.destroy(); // Finished with the cursor
dsDB2.commit();
dsDB2.disconnect();
dsDB2.destroy();

Refer to TExecuteDB2.java,TExecuteJDBC.java, and TExecuteDJ.java in the
CMBROOT\Samples\java\dl directory for complete examples.

Working with DB2 Warehouse Manager Information Catalog
Manager

Enterprise Information Portal APIs support the following features when working
with DB2 Warehouse Manager Information Catalog Manager content servers:
v Connecting and disconnecting from one or more DB2 servers with DB2

Warehouse Manager Information Catalog Manager
v Listing the data sources available
v Listing entities and attributes

Chapter 3. Using the Java application programming interfaces (APIs) 119

v Mapping information in the Information Catalog
v Retrieving an DB2 Warehouse Manager Information Catalog Manager reports
v Setting and getting access options

Restriction: DB2 Warehouse Manager Information Catalog Manager does not
support Text Search Engine and QBIC search or Combined query.

Connecting to a DB2 Warehouse Manager Information Catalog
Manager server
You represent a DB2 Warehouse Manager Information Catalog Manager content
server using DKDatastoreIC in an Enterprise Information Portal application.

To access an Information Catalog content server, you create a DKDatastoreIC object
in your application and connect to it. The following example illustrates connecting
to a DKdatastoreIC datastore, getting the datastore name, and disconnecting:
// ----- Create the datastore and connect
DKDatastoreIC icDs = new DKDatastoreIC();
icDs.connect(database, userid, pw, "");

// ----- Get the datastore name
String dsName = icDs.datastoreName();
....
icDs.disconnect();
icDs.destroy();

Listing entities and attributes
You can list the entities and attributes for a DB2 Warehouse Manager Information
Catalog Manager content server. When mapping the Information Catalog objects to
federated entities, you must map Instance identifier attribute to retrieve the objects.
Do not use Instance identifier or INSTIDNT as the names for federated entities or
attributes when querying a DB2 Warehouse Manager Information Catalog Manager
content server.

The following example illustrates getting a list of entities and attributes for an
Information Catalog content server; the entities and attributes are mapped to the
objects and properties on the content server.

// ------ Create the datastore and connect
DKDatastoreIC dsIC = new DKDatastoreIC();
dsIC.connect(db, userid, pw, "");

// ----- Create an iterator and get a list of entities
dkIterator itr = dsIC.datastoreDef().listEntities().createIterator();
while (itr.more()) {

dkEntityDef entity = (dkEntityDef)itr.next();
.... // --- Process as appropriate ;

}

// ----- Get a list of the entity names
String entityNames[] = dsIC.datastoreDef().listEntityNames();
int numEntities = entityNames.length;
for (i = 0; i < numEntities; i++) {

.... // Process the names as appropriate
}
// ----- Get a list of the attributes
String eName = "IMAGES";
itr = dsIC.datastoreDef().listEntityAttrs(eName).createIterator();
while (itr.more()) {

dkAttrDef entityAttr = (dkAttrDef)itr.next();
.... // Process as you want or print out a list

System.out.println("Entity Attr = " + entityAttr.getName());
System.out.println("Entity Attr Desc= " + entityAttr.getDescription());

120 Application Programming Guide

}
// ----- Get a list of the attribute names
eName = "CHARTS";
String entityAttrNames[] = dsIC.datastoreDef().listEntityAttrNames(eName);
int numEntityAttrs = entityAttrNames.length;
for (i = 0; i < numEntityAttrs; i++) {

..... // Process as you want or print out the names
System.out.println("Entity Attr Name = " + entityAttrNames[i]);

}
...
dsIC.disconnect();
dsIC.destroy();

Executing a query
To query a DB2 Warehouse Manager Information Catalog Manager content server,
you first create a query string. You can use a parametric query string for a
parametric query, or an SQL query sting.

Parametric query string: You can use a parametric query by creating a parametric
query string. The following example shows a parametric query string, that searches
specified dimensions in the table using ENTITY, the Name, and the short description:
String parqry =

"SEARCH=(ENTITY=Dimensions within a multi-dimensional database," +
"MAX_RESULTS=10, COND=(('Name' LIKE 'M%')" +
" OR ('Short description' = 'Product dimension')));" +
"OPTION=(CONTENT=YES)";

A parametric query specifies the attributes to be searched.

SQL query string: You can create an SQL query by creating an SQL query string.
The following example shows an SQL query string:
String sqlqry = "Select * from dimenson where name like 'M%'" +

"or shrtdesc = 'Product dimension'";

An SQL query uses SQL syntax.

Running the query: After you have the query string, use the execute method on
DKDatastoreIC to run the query. The execute method returns a result set cursor
you can use to access the collection. The following sample illustrates running a
parametric query:

DKDatastoreIC dsIC = new DKDatastoreIC();
..... \\ create the query string

dkResultSetCursor rs = dsIC.execute(qry, DK_CM_PARAMETRIC_QL_TYPE, null);
if(rs != null) {

while(rs.isValid()) {
DKDDO ddo = rs.fetchNext();
if(ddo != null) {

for(short i = 1; i <= ddo.dataCount(); i++) {
String dName = ddo.getDataName(i).trim();
Object dValue = ddo.getData(i);
.... \\ ----- Process the data as you want

}
}

}
}
rs.close();

For an SQL query, the method call would be like the following:
rs = dsIC.execute(cmd, DK_CM_SQL_QL_TYPE, null);

Chapter 3. Using the Java application programming interfaces (APIs) 121

You can also use the evaluate method on DKDatastoreIC to run a query. This
method returns a collection as a Java Object; you can cast the Object to a
DKResults collection. The following example illustrates using the evaluate for a
parametric query.

DKDatastoreIC dsIC = new DKDatastoreIC();
....
// ----- Create the query string
String qry = "SEARCH=(ENTITY=Dimensions within a multi-dimensional database," +

"MAX_RESULTS=10,COND=(('Name' LIKE 'M%')" +
" OR ('Short description' = 'Product dimension')));" +
"OPTION=(CONTENT=YES)";

pResults = (DKResults)dsIC.evaluate(qry, DK_CM_PARAMETRIC_QL_TYPE, parms);
// ----- Process the results
processResults((dkCollection)pResults);
System.out.println("--- Number of items = " + pResults.cardinality());
....

Using Enterprise Information Portal workflow
You can use the Java APIs to create or extend your own applications to use the
workflow support available in Enterprise Information Portal. Typically, you first
perform a federated search, then create a work packet, assign at least one content
item to the workpacket, then start the workflow. You use the APIs to access a
worklist and then to display the worklist contents. As the activities are completed,
the workflow moves from one activity to the next in the workflow.

Connecting to workflow services
To use EIP workflow in your applications, first create a DKWorkFlowServicesFed
object and connect to it. The following example starts workflow services:

// ----- Create the strings for the name of the service, user ID and Password
String wfsrv = "cmbdb";
String userid = "cmbadmin";
String pw = "password";
// ----- Create a federated datastore
DKDatastoreFed dsFed = new DKDatastoreFed();
dsFed.connect(wfsrv, userid, pw,"");
//----- Create the workflow service
DKWorkFlowServiceFed svWF =new DKWorkFlowServiceFed ();
// ----- Set the datastore in the workflow service
svWF.setDatastore(dsFed);
// ----- Connect to the service
svWF.connect (wfsrv, userid, pw,"");

When you are finished using the workflow service, you must disconnect by calling
the disconnect and the destroy methods.

svWF.disconnect();
dsFed.disconnect();
svWF.destroy();
dsFed.destroy();

Creating a workpacket
You create a workpacket by constructing a DKWorkPacketFed object, specifying the
name of the workpacket, a description, and the workflow template name. Add the
PID string of each document in the workpacket into the workpacket by calling the
addItem method. You get the PID string from the federated search results, ant it
contains the references to the actual document in the content server. The following
is a simple example.

DKWorkPacketFed wp1 = new DKWorkPacketFed(dsFed);
// ----- Set the workpacket name, descriptions and priority
wp1.setName("wp1");

122 Application Programming Guide

wp1.setDescription("This is a test1");
wp1.setPriority(100);
// ----- Set workflow template name
wp1.setWFTemplateName("Batman");
// ----- Add a PID string referring to a DES document
wp1.addItem("45 3 DES4 ross10 Notes Help18 15 Notes Help|23fa");
// ----- Add the new workpacket into database
wp1.add();
// ----- Retrieve the ID of the workpacket
String wpID = wp1.getID();

Starting a workflow
Once you have created the workflow you have to start it. Starting a workflow
consists of the following steps:
1. Create a DKWorkFlowFed object and set the workflow name
2. Create a workflow instance using a valid workflow template, that is a

workflow definition defined in the EIP workflow builder.
3. Set the workpacket ID and priority in the container.
4. Start the workflow.

In the following example these steps are used to start a workflow:
// ----- Create the DKWorkFlowFed object and set the name and workpacket ID
DKWorkFlowFed WF = new DKWorkFlowFed(svWF);
WF.setName(wp1.getID());
// ----- Create an instance of a workflow with the workflow template name
// in the workpacket
WF.add(wp1.getWFTemplateName());
// ----- Refresh the workflow object
WF.retrieve();
// ----- Construct the container object for the workflow
DKWorkFlowContainerFed con = WF.inContainer();
// ----- Retrieve the container data
con.retrieve();
// ----- Set the workpacket ID and priority
con.setWorkPacketID(wp1.getID());
con.setPriority(wp1.getPriority());
// ----- Update the container
con.update();
// ----- Start the workflow
WF.start(con);

Terminating a workflow
You can terminate a workflow by calling the terminate or del method as shown in
the following example:

// ----- Retrieve the status of the workflow named WF
WF.retrieve();
int state = WF.state();
// ----- Check the status and either terminate or delete
if (state == DKConstantFed.DK_FED_FMC_PS_NOTSET ||

state == DKConstantFed.DK_FED_FMC_PS_RUNNING ||
state == DKConstantFed.DK_FED_FMC_PS_SUSPENDED ||
state == DKConstantFed.DK_FED_FMC_PS_SUSPENDED)

{
WF.terminate();

}

if (state == DKConstantFed.DK_FED_FMC_PS_READY ||
state == DKConstantFed.DK_FED_FMC_PS_FINISHED||
state == DKConstantFed.DK_FED_FMC_PS_TERMINATING ||
state == DKConstantFed.DK_FED_FMC_PS_TERMINATED ||
state == DKConstantFed.DK_FED_FMC_PS_TERMINATED)

Chapter 3. Using the Java application programming interfaces (APIs) 123

{
WF.del();

}

Accessing a worklist
You can access a worklist by creating a DKWorkListFed object that refers to the
worklist you created using EIP administration. The following example accesses a
worklist named WL0712 and displays the information contained in that worklist:

// ----- Create the DKWorkListFed
DKWorkListFed WL = new DKWorkListFed(svWF, "WL0712");
WL.retrieve();
// ----- Display information about the worklist
System.out.println ("worklist name = " + WL.getName());
System.out.println ("description = " + WL.getDescription() +

" owner = " + WL.getOwner() +
" filter = " + WL.getFilter() +
" threshold = " + WL.getThreshold() +
" sort criteria = " + WL.getSortCriteria());

Accessing work items
After you have created the DKWorkListFed, you can retrieve the work items as a
collection. The following example illustrates retrieving the work items:

// ----- Create a collection and an iterator
DKSequentialCollection coll = (DKSequentialCollection)WL.listWorkItems();
dkIterator iter = (DKSequentialIterator) coll.createIterator ();
Object a;
DKWorkItemFed item;
String nodename;
String workflowname;

// ----- Step through the collections
while (iter.more ())
{

a = iter.next ();
item = (DKWorkItemFed) a;
if (item != null)
{

item.retrieve ();
nodename = item.name ();
workflowname = item.workFlowName ();
DKWorkPacketFed wp = new DKWorkPacketFed(dsFed, workflowname);
System.out.println ("workitem node = " + nodename +

" workflow name = " + workflowname);
}

}
iter = null;

Moving items in the workflow
As a workflow progesses, you move work items from one activity to the next by
using the checkOut and checkIn methods. The following examples illustrates
moving workitems:

DKWorkItemFed item =new DKWorkItemFed(svWF, "wf1", "node1", cmbadmin);
item.retrieve();
// ----- Call the checkOut method to lock the workitem
item.checkOut();
// ----- Call the checkIn method
item.checkIn(null);

Creating your own actions
You can create your own actions that you can use in a workflow. You defined the
actions and add them to actions lists in EIP Administration.

124 Application Programming Guide

|

When you create an action you must supply a Java class to perform the action. The
Java class you create must implement the interface dkWorkFlowUserExit and
implement the doAction method. In this method you actually perform the action.

As an alternative you can create a concrete subclass of
dkAbstractWorkFlowUserExit, which implements dkWorkFlowUserExit.

Creating custom content server connectors
You can create your own connectors for custom content servers not currently
included in Enterprise Information Portal. If you integrate a custom server into
Enterprise Information Portal you must provide your own Java classes to support
the definition of any additional servers.

Developing custom content server connectors
The object-oriented API framework is designed with the following objectives:
v Additional data storage systems, or content servers, can be added into the

framework seamlessly
v Ability to map to any complex content server data type
v A common object model for all content server data access
v A flexible mechanism to use a combination of different types of search engines,

such as Text Search Engine, image search (QBIC), and so forth
v Client/server implementation for Java application users

For information on specific object-oriented APIs see the online API reference.

If you are integrating a custom content server into Enterprise Information Portal
you must:
v import the com.ibm.mm.sdk.common package
v link to the cmbcm71.jar file in order to access the common framework

Enterprise Information Portal database infrastructure: The primary interface of
each content server to a Enterprise Information Portal database is found in the
dkDatastore classes. Each content server has a separate datastore class which
implements this class to provide the implementation information for a specific
content server. Each content server type is represented by a class called
DKDatastorexx, where xx could be the name or type of the specific content server.
Table 9 lists the content servers provided in Enterprise Information Portal.

Table 9. Content servers provided in Enterprise Information Portal

Server type Class name

Content Manager DKDatastoreDL

OnDemand DKDatastoreOD

VisualInfo for AS/400 DKDatastoreV4

ImagePlus for OS/390 DKDatastoreIP

Domino.Doc DKDatastoreDD

Domino Extended Search DKDatastoreDES

DB2 Universal Database DKDatastoreDB2

JDBC DKDatastoreJDBC

IBM DB2 DataJoiner DKDatastoreDJ

DB2 Warehouse Manager Information
Catalog Manager

DKDatastoreIC

Chapter 3. Using the Java application programming interfaces (APIs) 125

Common classes in Enterprise Information Portal:

dkDDO

The dkDDO class provides a representation and a protocol to define and
access an object’s data, independent of the object’s type. The DDO protocol
is implemented as a set of methods to define, add, and access each data
item of an object. This protocol allows a client to create an object
dynamically and get its persistent data in and out of the datastore,
independent of the datastore’s type.

When implementing a datastore you can utilize schema mapping
information registered in the datastore class. The schema maps each
individual persistent data item to its underlying representation in the
datastore. A DDO has a set of attributes, each attribute has a type, value,
and properties associated with it. The DDO itself can have properties
belonging to the whole DDO instead of to a particular attribute. For
example, this class could be mapped to an item for the Content Manager
datastore, and mapped to a document for the OnDemand datastore.

For information on mapping terminology for each datastore see Table 2 on
page 12.

This diagram represents the hierarchy for the dkDDO class:
java.lang.Object

|
+----com.ibm.mm.sdk.common.dkDataObjectBase

|
+----com.ibm.mm.sdk.common.dkDataObject

|
+----com.ibm.mm.sdk.server.DKDDOBase

|
+----com.ibm.mm.sdk.server.DKDDO

dkXDO

The dkXDO class represents complex user defined types (UDTs) or large
objects (LOB). This object can exist stand-alone or as a part of a DDO.
Therefore, it has a persistent ID (PID) and create, retrieve, update, and
delete methods. The dkXDO class extends the public interface of
dkXDOBase by defining independent datastore access create, retrieve,
update, and delete methods. These methods enable an application to store
and retrieve the object’s data to and from a datastore without the existence
of an associated DDO class object or stand-alone XDO.

A stand-alone XDO must have its PID set in order to locate its position in
the datastore. If the XDO is used in conjunction with the DDO the PID is
set automatically. For example, this class could be mapped to a part in a
document for the Content Manager datastores, and mapped to notes for
the OnDemand datastores. Here is the class hierarchy for the dkXDO class:
java.lang.Object

|
+----com.ibm.mm.sdk.server.dkDataObjectBase

|
+----com.ibm.mm.sdk.server.dkXDOBase

|
+----com.ibm.mm.sdk.server.dkXDO

dkCollection

126 Application Programming Guide

The dkCollection class is a base public interface for a collection of any
objects. dkCollection can not evaluate a query. A collection might have a
name (the default name is an empty string), but it could be set to anything.
For example, DKParts is a subclass of DKSequentialCollection which is in
turn a subclass of dkCollection.

DKResults

DKResults is a subclass of dkQueryableCollection, therefore it supports
sorting and bi-directional iterators, and it can be queried. The element
members of a DKResults class are objects, instances of the DKDDO class,
which represent query results. The iterator created by this class is
dkSequentialIterator.

Here is the class hierarchy for the DKResults class:
java.lang.Object

|
+----com.ibm.mm.sdk.server.DKSequentialCollection

|
+----com.ibm.mm.sdk.server.dkQueryableCollection

|
+----com.ibm.mm.sdk.server.DKResults

dkQuery

dkQuery is an interface for a query object associated with one specific
datastore. Objects which implement this interface are created by datastore
classes. The result of a query is usually a DKResults object. Examples of a
concrete implementation of the dkQuery interface are DKParametricQuery,
DKTextQuery, DKImageQuery, and so forth which are created by their
associated datastore.

DKCQExpr
The DKCQExpr class represents a compound or combined query
expression. It can contain a dkQExpr query expressions tree, which can
contain a combination of one parametric, text, or image query. In order for
each content server to be able to engage in the federated query, the server
needs to be able to process this DKCQExpr object.

dkSchemaMapping
dkSchemaMapping is an interface that defines an associative mapping
between a mapped or federated entity and a map-to or native entity in
content server. The content server needs to understand this mapping class
in order to unmap and remap federated entities and attributes to its own
native entities and attributes in a query and return results.

dkDatastore and related classes: You must implement one concrete class for each
of the following classes or interfaces for your content server. For example in a
OnDemand server, the concrete class that implements the dkDatastore interface
will be DKDatastoreOD.

dkDatastore
dkDatastore represents and manages a connection to the datastore, its
transactions, and the execution of datastore commands. It supports the
evaluate method, so it can be considered a subclass of the query manager.

The main methods in the dkDatastore interface are:

connect()
Connects to the datastore

Chapter 3. Using the Java application programming interfaces (APIs) 127

disconnect()
Disconnects from the datastore

evaluate(), execute(), executeWithCallback()
Queries the datastore

commit(), rollback()
Performs transactions in the datastore

Restriction: Some content servers do not support these methods.

changePassword(userid, oldPasswd, newPasswd)
Changes the login password for the current logon user ID from the
content server

listDataSources()
Returns a collection of content server objects to use for logon. This
method in dkDatastore class does not need to be connected to the
content server.

listDataSourceNames()
Returns an array of content server names.

getExtension(String)
Gets the dkExtension object from the datastore. If the given
extension does not already exist and it is supported by the
datastore, a newly constructed object will be returned, otherwise, a
null value will be returned.

addExtension(String, dkExtension)
Adds a new extension object to this datastore

createDDO(String,int)
Creates a new data object based on the given object type and flag.
It returns a new DKDDO object with all the properties and
attributes set. The caller must fill in the attribute values for this
data object.

The data object manipulation methods in the dkDatastore interface are:

addObject(dkDataObject)
Adds a new document or folder to the content server

retrieveObject(dkDataObject)
Retrieves a document or folder from the content server

deleteObject(dkDataObject)
Deletes a document or folder from the content server

updateObject(dkDataObject)
Updates a document or folder

The schema mapping related methods in the dkDatastore interface are:

registerMapping(DKNVPair)
Registers the mapping information to this datastore

unRegisterMapping(String)
Removes the mapping information

listMappingNames()
Returns an array of mapping names

128 Application Programming Guide

getMapping(String)
Returns a dkSchemMapping object

dkDatastoreDef
The dkDatastoreDef interface defines methods to access datastore
information as well as to create, list, and delete its entities. It maintains a
collection of dkEntityDef objects.

Table 10 contains examples of concrete classes for the dkDatastoreDef
interface.

Table 10. Concrete classes for dkDatastoreDef

Server type Class name

Content Manager DKDatastoreDefDL

OnDemand DKDatastoreDefOD

VisualInfo for AS/400 DKDatastoreDefV4

ImagePlus for OS/390 DKDatastoreDefIP

Domino.Doc DKDatastoreDefDD

Domino Extended Search DKDatastoreDefDES

IBM DB2 Universal Database DKTableDefDB2

JDBC DKTableDefJDBC

ODBC DKTableDefODBC

DB2 DataJoiner DKTableDefDJ

DB2 Warehouse Manager Information Catalog
Manager

DKDatastoreDefIC

The main methods in the dkDatastoreDef interface are:

listEntities()
Lists entities

listEntityAttrs()
Lists entity attributes

addEntity()
Adds an entity

getEntity(name)
Gets an entity

Each concrete class can also have its own datastore specific methods with
method names that are familiar to that datastore. For example, the
DKDatastoreDefDL class contains these specific methods:
v listIndexClassNames()
v listIndexClasses()

The DKDatastoreDefOD class contains these specific methods:
v listAppGrps()
v listAppGrpNames()

dkEntityDef
The dkEntityDef class defines methods to:
v Access entity information
v Create and delete attributes

Chapter 3. Using the Java application programming interfaces (APIs) 129

v Create and delete the entity

In the dkEntityDef class all methods that are related to subentities generate
a DKUsageError indicating that the default datastore does not support
subentities. However, if the datastore can support this kind of multiple
level entity, like the Domino.Doc datastore for example, the subclass for
this datastore needs to implement the proper methods to overwrite the
exceptions.

Table 11 contains examples of concrete classes for the dkEntityDef class.

Table 11. Concrete classes for dkEntityDef

Server type Class name

Content Manager DKIndexClassDefDL

OnDemand DKAppGrpDefOD

VisualInfo for AS/400 DKIndexClassDefV4

ImagePlus for OS/390 DKEntityDefIP

Domino.Doc DKCabinetDefDD

Domino Extended Search DKDatabaseDefDES

DB2 Universal Database DKTableDefDB2

JDBC DKTableDefJDBC

ODBC DKTableDefODBC

DB2 DataJoiner DKTableDefDJ

DB2 Warehouse Manager Information
Catalog Manager

DKEntityDefIC

The main methods in the dkEntityDef class are:

ListAttrs()
Lists the entity attributes

getAttr(String attrName)
Gets an entity attribute

addAttr(DKAttrDef)
Adds an attribute to an entity

getName()
Gets the name of the entity

setName(String)
Sets the name of the entity

hasSubEntities()
Checks to see if the entity contains subentities

getSubEntity(String)
Gets the subentity

addSubEntity(dkEntityDef)
Adds a subentity to an entity

listSubEntities()
Lists the subentities

removeAttr(String)
Removes a subentity

130 Application Programming Guide

add() Adds the entity to the datastore

update()
Updates the entity in the datastore

retrieve()
Retrieves the entity values from the datastore

del() Deletes the entity from the datastore

dkAttrDef
The dkAttrDef class defines methods to access attribute information and
create and delete attributes. Table 12 contains examples of concrete classes
for the dkAttrDef class.

Table 12. Concrete classes for dkAttrDef

Server type Class name

Content Manager DKAttrDefDL

OnDemand DKFieldDefOD

VisualInfo for AS/400 DKAttrDefV4

ImagePlus for OS/390 DKAttrDefIP

Domino.Doc DKAttrDefDD

Domino Extended Search DKFieldDefDES

DB2 Universal Database DKColumnDefDB2

JDBC DKColumnDefJDBC

ODBC DKColumnDefODBC

DB2 DataJoiner DKColumnDefDJ

DB2 Warehouse Manager Information
Catalog Manager

DKAttrDefIC

The main methods in the dkAttrDef class are:

ListAttrs()
Lists the attributes

getAttr(String attrName)
Gets an attribute

getName()
Gets the name of the attribute

getDescription()
Gets the description of the attribute

add() Adds the entity to the datastore

dkServerDef
The dkServerDef class provides the server definition information for each
content server. Table 13 contains examples of concrete classes for the
dkServerDef class.

Table 13. Concrete classes for dkServerDef

Server type Class name

Content Manager DKServerDefDL

OnDemand DKServerDefOD

VisualInfo for AS/400 DKServerDefV4

Chapter 3. Using the Java application programming interfaces (APIs) 131

Table 13. Concrete classes for dkServerDef (continued)

Domino.Doc DKServerDefDD

Domino Extended Search DKServerDefDES

DB2 Universal Database DKServerDefDB2

JDBC DKServerDefJDBC

ODBC DKServerDefODBC

DB2 DataJoiner DKServerDefDJ

DB2 Warehouse Manager Information
Catalog Manager

DKServerDefIC

The main methods in the dkServerDef class are:

setDatastore(dkDatastore ds)
Sets the reference to the datastore object

getDatastore()
Gets the reference to the datastore object

getName()
Gets the name of the datastore

setName(String name)
Sets the name of the datastore

datastoreType()
Gets the datastore type

dkResultSetCursor
dkResultSetCursor is a datastore cursor which manages a virtual collection
of DDO objects. The collection is a result set of a query submitted to the
datastore. Each element of the collection is not created until the datastore
fetches the element.

The main methods in the dkResultSetCursor class are:

isScrollable()
Returns TRUE if the cursor can be scrolled forward and backward

isUpdatable()
Returns TRUE if the cursor can be updated

isValid()
Returns TRUE if the cursor is valid

isBegin()
Returns TRUE if the cursor is positioned at the beginning

isEnd()
Returns TRUE if the cursor is positioned at the end

isInBetween()
Returns TRUE if cursor is positioned between data objects in the
result set

getPosition()
Gets the current position of the cursor

setPosition(int position, Object value)
Sets the cursor to the specific position

132 Application Programming Guide

setToNext()
Sets the cursor to point to the position of the next data object in
the result set

fetchObject()
Fetches the element of the result set at the current position and
returns it as a DDO

fetchNext()
Fetches the next element of the result set and returns it as a DDO

fetchNextN(int how_many, dkCollection collection)
Fetches as the next n elements of the result set and inserts them
into the specific collection

findObject(int position, String predicate)
Finds the data object that satisfies the specific predicate, moves the
cursor to that position, and then fetches and returns the data object

addObject(DKDDO ddo)
Adds a new element of the same type, represented by the specific
DDO, to the datastore

deleteObject()
Deletes the element at the current position from the datastore

updateObject(DKDDO ddo)
Updates the element at the current position in the datastore, using
the specific DDO

newObject()
Constructs a new element of the same type and returns it as a
DDO

open() Opens the cursor and, if necessary, executes the query to get the
result set

close() Closes the cursor and invalidates the result set

isOpen()
Returns TRUE if the cursor is currently open

destroy()
Deletes the resultSetCursor. This allows for cleanup before the
resultSetCursor is garbage-collected.

datastoreName()
Gets the datastore name associated with the definition to which the
resultSetCursor belongs

datastoreType()
Gets the datastore type associated with the definition to which the
resultSetCursor belongs

handle(int type)
Gets the result set handle that is associated with the result set
cursor, by type

Requirement: In order to use the addObject, deleteObject and
updateObject methods you must set the datastore option
DK_DL_OPT_ACCESS_MODE to DK_READWRITE.

dkBlob
dkBlob is an abstract class that declares a common public interface for

Chapter 3. Using the Java application programming interfaces (APIs) 133

basic binary large object (BLOB) data types. The concrete classes derived
from the dkBlob class share this common public interface which allows
polymorphic processing of collections of BLOBs originating from
heterogeneous datastores. There is also a dkClob and a dkDBClob class
which can have concrete classes.

Table 14 contains examples of concrete classes for the dkBlob class.

Table 14. Concrete classes for dkBlob

Server type Class name

Content Manager DKBlobDL

OnDemand DKBlobOD

VisualInfo for AS/400 DKBlobV4

ImagePlus for OS/390 DKBlobIP

Domino.Doc DKBlobDD

Domino Extended Search DKBlobDES

DB2 Universal Database DBBlobDB2, DKBlobDB2

JDBC DKBlobJDBC, DKBlobJDBC

ODBC DKBlobODBC, DKBlobODBC

DB2 DataJoiner DKBlobDJ, DKBlobDJ

DB2 Warehouse Manager Information
Catalog Manager

DKBlobIC

The main methods in the dkBlob class are:

getContent()
Returns a byte array stream containing the BLOB data of this
object

getContentToClientFile(String afileName, int fileOption)
Copies the BLOB data from this object to the specific file

setContent(byte[] aByteArr)
Sets the LOB data of this object with the content of the byte array
argument

setContentFromClientFile(String afileName)
Replaces the LOB data of this object with the contents of the file
afileName

add(String afileName)
Adds the content of a file to the persistent datastore

retrieve(String afileName)
Retrieves the content of the persistent datastore into the specified
file

update(String afileName)
Updates the object and the persistent datastore with the content of
the specified file

del(boolean flush)
Deletes the object’ data from the persistent datastore. If flush is
TRUE, this method clears the content, otherwise the current
content is preserved.

134 Application Programming Guide

concatReplace(dkBlob aBlob), concatReplace(byte[] aByteArr)
Concatenates this object with another dkBlob object or a byte array
stream

length()
Returns the length of the LOB

indexOf(String aString, int startPos), indexOf(dkBlob aBlob, int
startPos)

Returns the byte offset of the first occurrence of the search
argument within this object, starting the search at offset start
positions

subString(int startPos, int length)
Returns a string object containing a substring of the LOB data of
this object

remove(int startPos, int aLength)
Deletes the portion of the LOB data of this object starting at
startPos for aLength bytes

insert(String aString, int startPos), insert(dkBlob aBlob, int startPos)
Inserts the argument data, following position startPos in the LOB
data of this object

open(String afileName)
Unloads the object contents to the file afileName and then invokes
a default file handler

setClassOpenHandler(String aHandler, boolean newSynchronousFlag)
Sets the executable program name for a class file handler

setInstanceOpenHandler(String aHandler, boolean
newSynchronousFlag)

Identifies the executable file handler program name and indicates
whether this file handler should be invoked synchronously or
asynchronously for this object

getOpenHandler()
Sets the executable program name handler for the file handler for
an entire class

isOpenSynchronous()
Returns the current synchronization property for this handler

dkAnnotationExt
dkAnnotationExt is the interface class for all annotation objects. If your
content server supports annotation data, you need to implement this
interface. This annotation object is an extension to your DKBlobxx class,
where the dkBlob object is the representation of the binary annotation data
and the DKParts collection.

dkDatastoreExt
The dkDatastoreExt class defines the interface for datastore standard
extension classes.

Table 15 contains examples of concrete classes for the dkDatastoreExt class.

Table 15. Concrete classes for dkDatastoreExt

Server type Class name

Content Manager DKDatastoreExtDL

Chapter 3. Using the Java application programming interfaces (APIs) 135

Table 15. Concrete classes for dkDatastoreExt (continued)

OnDemand DKDatastoreExtOD

VisualInfo for AS/400 DKDatastoreExtV4

ImagePlus for OS/390 DKDatastoreExtIP

Domino.Doc DKDatastoreExtDD

Domino Extended Search DKDatastoreExtDES

DB2 Universal Database DKDatastoreExtDB2

JDBC DKDatastoreExtJDBC

DB2 DataJoiner DKDatastoreExtDJ

The main methods in the dkDatastoreExt class are:

getDatastore()
Gets the reference to the owner datastore object

setDatastore(dkDatastore ds)
Sets the reference to the owner datastore object

isSupported(String functionName)
Queries if the given function name is supported by this extension

listFunctions()
Lists all supported function-names from this extension

addToFolder(dkDataObject folder, dkDataObject member)
Adds a new member item to this folder and reflects the results
immediately in the datastore

removeFromFolder(dkDataObject folder, dkDataObject member)
Removes a member from this folder and reflects the results
immediately in the datastore

checkOut(dkDataObject item)
Check out a document or folder item from the datastore. You have
exclusive updating privileges to the item, while other users are
allowed read access only, until you check it back in.

checkIn(dkDataObject item)
Check in a document or folder item previously checked out from
the datastore. You release all write privileges with this method.

getCommonPrivilege()
Gets the common privilege of a specific datastore

isCheckedOut(dkDataObject item)
Checks if a document or folder item was checked out from the
datastore

checkedOutUserid(dkDataObject item)
Gets the user ID that checked out the item from the datastore

unlockCheckedOut(dkDataObject item)
Unlocks the item from the datastore

changePassword (String userId, String oldPwd, String newPwd)
Changes password on the server for the given user ID

moveObject (dkDataObject dataObj, String entityName)
Moves the current data object from one entity to another

136 Application Programming Guide

retrieveFormOverlay(String id)
Retrieves the form overlay object

DKPidXDO
The DKPidXDO class represents the persistent identification of the BLOB
data in the content server.

Table 16 contains examples of concrete classes for the DKPidXDO class.

Table 16. Concrete classes for DKPidXDO

Server type Class name

Content Manager DKPidXDODL

OnDemand DKPidXDOOD

VisualInfo for AS/400 DKPidXDOV4

ImagePlus for OS/390 DKPidXDOIP

Domino.Doc DKPidXDODD

Domino Extended Search DKPidXDODES

DB2 Universal Database DKPidXDODB2

JDBC DKPidXDOJDBC

ODBC DKPidXDOODBC

DB2 DataJoiner DKPidXDODJ

DB2 Warehouse Manager Information
Catalog Manager

DKPidXDOIC

dkUserManagement
The dkUserManagement class represents and processes all of the
datastore’s user management methods.

Table 17 contains examples of concrete classes for the dkUserManagement
class.

Table 17. Concrete classes for dkUserManagement

Server type Class name

Content Manager DKUserMgmtDL

VisualInfo for AS/400 DKUserMgmtV4

ImagePlus for OS/390 DKUserMgmtIP

DKConstant
All common constants are defined in the DKConstant class. Each content
server will have its own DKConstantxx class for defining the content
server specific constants. It is recommended that all content servers use the
common constants whenever possible.

DKMessageId
All common message IDs are defined in this class. Each content server will
have its own DKMessageIdxx class for defining its own message IDs. It is
recommended that all content servers use the common messages whenever
possible.

These property files contain common warning and error messages:
v DKMessage_en.properties
v DKMessage_es.properties

Chapter 3. Using the Java application programming interfaces (APIs) 137

Each content server will have its own DKMessagexx_yy_zz.properties files
for its warning and error messages.

Figure 17 uses the OnDemand content server as a model and is an example of the
datastore structure used in Enterprise Information Portal.

Figure 18 uses the OnDemand content server as a model for showing the
Enterprise Information Portal data structure.

Figure 17. Example of datastore structure

Figure 18. Example of data structure

138 Application Programming Guide

Using the FeServerDefBase class
The FeServerDefBase class is the abstract class that you must extend in order to
create a custom server definition. The Java class that extends this base class must
have a constructor that accepts the following parameters and passes them to the
super class:

String connectString
The connect string for the server

String[] serverList
The list of defined servers

String[] associatedServerList
The list of servers associated with this server (null if none)

String[] serverTypes
The list of defined server type IDs

String[] serverTypeDescriptions
The list of descriptions for defined server types

When you create the Java class that extends the FeServerDefBase class you must
determine how to handle the data for the new server dialog. You can use the same
class or a separate model class. If the custom content server requires more than
fields for the connect string, you must use the Enterprise Information Portal
database and Java APIs as a model in order for additional functions to perform
properly.

When the content servers are selected in the Enterprise Information Portal
Administration program, the New menu will contain the list of server types stored
in the FASERVERTYPES table in the Enterprise Information Portal database. This
table contains the name of the Java class to be instantiated when the menu item is
selected.

If you support password verification, you must place your Java class in the same
directory as the Enterprise Information Portal Administration .jar file, you can
dynamically instantiate that Java class and invoke the verify method with the user
input password as a parameter. The verify method will return null for a valid
password or return an array of strings with the information for an invalid
password.

Chapter 3. Using the Java application programming interfaces (APIs) 139

140 Application Programming Guide

Chapter 4. Using non-visual and visual JavaBeans

This chapter describes the non-visual and visual JavaBeans provided in Enterprise
Information Portal .

Enterprise Information Portal provides 13 non-visual JavaBeans for use in Java
applications, such as building servlets or JavaServer Pages (JSPs). Use non-visual
beans in command line or windowed applications and as data models for the
visual beans. Non-visual beans provide programming interfaces and components
for applications created in a visual builder environment. The com.ibm.mm.beans
package contains the non-visual beans.

Enterprise Information Portal provides seven visual JavaBeans to build
Swing-based Java applications using the Enterprise Information Portal federated
search capabilities. The com.ibm.mm.beans.gui package contains the classes for the
visual beans.

Using JavaBeans in builders
This section explains how to use JavaBeans in IBM VisualAge for Java and in other
builders.

Using IBM VisualAge for Java
You must be using a version of VisualAge for Java that supports Java 2. To add the
JavaBeans to VisualAge for Java:
1. Create a new project called ″EIP″.
2. From the Workbench window, choose Selected | Add | Project.
3. Import the necessary jar files into the EIP project and click on EIP in the

Projects tree of the Workbench window.
4. choose File | Import... and follow the instructions in the Smartguide to import

each of the following:
v \CMBROOT\lib\cmb71.jar
v \CMBROOT\lib\cmbview71.jar
v \CMBROOT\lib\cmbsdk71.jar
v \CMBROOT\lib\lotuskms.jar
v \CMBROOT\lib\eclisrv.jar
v \SQLLIB\java\db2java.zip

The cmb71.jar file contains the visual and non-visual beans. The other jar files
are used by the beans.

5. Replace \SQLLIB with the DB2 path and \CMBROOT with Enterprise Portal
path.

6. Add the beans to a new category of the tools palette of the Visual
Composition.

7. Open a class in the Visual Composition Editor.
8. Choose Bean | Modify Palette.
9. Create a new category called ″EIP″.
10. Select this category and press Browse.. to look for the EIP beans.

© Copyright IBM Corp. 1996, 2001 141

11. The beans classes begin with ″CMB″ and have associated BeanInfo class. Add
each bean class to the category.

Using other builders
The Enterprise Portal JavaBeans can be used with other Java builders that support
Java 2. Follow the builder’s instructions for adding new jar files to add the jars
specified in the instructions for VisualAge for Java above. Then, follow the
builder’s instructions for adding beans from a jar to add the EIP beans, which are
in cmb71.jar.

Non-visual beans
EIP provides a set of non-visual JavaBeans for use in all Java applications. A
typical use is in building Servlets or Java Server Pages (JSPs), although they can
also be used in command line or windowed applications. The next section
describes each non-visual bean.

The CMBROOT\Samples\java directory contains examples of the non-visual and
utility beans.

CMBConnection
This bean maintains the connection to the federated database and content
servers. By default, a connection is made to a federated database, but a
direct connection can also be made to a content server.

CMBConnectionPool
This bean maintains a pool of CMBConnection instances. It provides a
performance optimization for server applications in situations where the
same user ID is used by multiple users by avoiding a disconnect and
reconnect when the a CMBConnection instance for the same user ID is
reused.

CMBDataManagement
This bean provides EIP data manipulation functions, including creating,
retrieving, updating, and deleting document and folder content and
associated annotations. The bean provides checkin/checkout/unlock
functions on data items. You can obtain an instance of this bean from
CMBConnection.

CMBDocumentServices
This bean provides rendering and conversion of documents for thick and
thin clients (see Document Viewing Services below). Conversion is not
supported for AIX.

CMBExceptionHandler
This utility bean can be used to provide common exception handling for
exception events generated by other nonvisual beans.

CMBQueryService
This bean provide query capabilities, either by search template or by using
a query string.

CMBSchemaManagement
This bean provides access to available search templates, mapped entities
and attributes. An instance of this bean can be obtained from
CMBConnection, in which case it returns schema information about the
server or database connected to by CMBConnection. Alternatively, you can
create an instance separate from CMBConnection, to gain access to schema
information for any content server.

142 Application Programming Guide

|
|
|
|
|
|

CMBSearchResults
This bean maintains search results that are generated by searches
performed using CMBQueryService or CMBSearchTemplate.

CMBSearchTemplate
This bean provides a search template and methods to perform a search
using the template. Instances of CMBSearchTemplate can be obtained from
CMBSchemaManagement.

CMBTraceLog
This utility bean can be used to provide common trace event handling for
the nonvisual beans. It can write the trace messages to a log file or display
them in a window.

CMBUserManagement
This bean provides capabilities to view and modify the content server user
ID mapping associated with an EIP user ID.

CMBWorkFlowDataManagement
This bean makes it possible to retrieve workflow data. You can obtain an
instance of this bean from CMBConnection.

CMBWorkFlowQueryService
This bean makes workflow queries possible. You can obtain an instance of
this bean from CMBConnection.

Non-visual bean configurations
Non-visual beans have local, remote and dynamic configurations.

local Connects directly to the content server

remote
Connects to a content server using an RMI server

dynamic
Enables an application that dynamically switches between local and remote
based on the cmbcs.ini file. The cmbcs.ini file specifies whether the
content server is local or remote.

Understanding properties and events for non-visual beans
Each non-visual bean provides the following:
v Imported properties, vetoable or not

The property value is determined by other beans at run time by PropertyChange
or VetoableChange events. Beans that have import properties must listen to
PropertyChange or VetoableChange events.

v Exported properties, vetoable or not
A non-visual bean may have a constrained property and some other beans might
have interest in its value. Whenever its value is changed, the bean is responsible
for generating a PropertyChange or VetoableChange event.

v Stand-alone properties
No other beans have interest in this property value.

v Events generated by this bean
v Events in which this bean is interested

Chapter 4. Using non-visual and visual JavaBeans 143

|
|
|

|
|
|

Building an application using non-visual beans

A sample non-Graphical User Interface (GUI) application
The example in this section uses non-visual beans to create a sample non-GUI
application. The sample application includes every bean except the
CMBUserManagement bean. The complete sample application from which this
example was taken (DemoSimpleAppl.java) is available in the
Cmbroot/Samples/java/beans directory. The sample application shows how to:
1. Connect to the Enterprise Information Portal server
2. Get a list of search template names
3. Use the search template name to get a list of search criteria names
4. Select a search template and gets its search criteria
5. Complete the search values and submits a query
6. Print the result using the search results bean
7. Select a result row and displays it
8. Disconnect from the server
import com.ibm.mm.beans.*;
import com.ibm.mm.beans.util.*;
import com.ibm.mm.beans.gui.*;

import java.beans.*;
import java.util.*;

public class DemoSimpleAppl
{

int docCounter = 0;
TUtilPersistent per = new TUtilPersistent();
TUtilSimpleUI ui = new TUtilSimpleUI();
CMBSchemaManagement schemaBean = null;
CMBSearchResults resultBean = null;
CMBConnection connBean = null;
CMBQueryService queryBean = null;
CMBSearchTemplate stBean = null;
CMBDataManagement dataBean = null;
CMBTraceLog traceBean = null;
CMBDocumentViewer viewerBean = null;

public DemoSimpleAppl()
{

try {
System.out.println("Creating CMBUserManagement bean using " +

"ser/class/jar specified in the classpath.");
connBean = (com.ibm.mm.beans.CMBConnection) Beans.instantiate(null,

"com.ibm.mm.beans.CMBConnection");

System.out.println("Creating CMBSchemaManagement Bean from " +
"CMBConnection bean...");

schemaBean = connBean.getSchemaManagement();

System.out.println("Creating CMBQueryService Bean from " +
"CMBConnection Bean...");

queryBean = connBean.getQueryService();
schemaBean.setCacheEnabled(true);

System.out.println("Creating CMBDataManagement Bean from " +
"CMBConnection Bean...");

dataBean = connBean.getDataManagement();

resultBean = (com.ibm.mm.beans.CMBSearchResults) Beans.instantiate(null,
"com.ibm.mm.beans.CMBSearchResults");

resultBean.setConnection(connBean);

144 Application Programming Guide

In the constructor for the DemoSimpleAppl class, we create the beans that we will
need to use later in our application. First, the connection bean is created. Then the
beans that are created by the connection bean, schema and data management, and
query service, are retreived. The result bean is created, and its connection property
is set.

traceBean = (com.ibm.mm.beans.util.CMBTraceLog) Beans.instantiate(null,
"com.ibm.mm.beans.util.CMBTraceLog");

connBean .addCMBTraceListener(traceBean);
schemaBean.addCMBTraceListener(traceBean);
resultBean.addCMBTraceListener(traceBean);
queryBean .addCMBTraceListener(traceBean);
dataBean .addCMBTraceListener(traceBean);

connBean .setTraceEnabled(true);
schemaBean.setTraceEnabled(true);
resultBean.setTraceEnabled(true);
queryBean .setTraceEnabled(true);
dataBean .setTraceEnabled(true);

traceBean.setDebugLogEnabled(true);
traceBean.setProgressLogEnabled(true);

In the above code, the trace log bean is created. Then tracing is enabled in all the
non-visual beans, and the tracing bean added as a listener to the trace events
generated by the beans. Then properties on the trace bean are set to show debug
and progress events, and to display the debug messages in a window.

viewerBean = new CMBDocumentViewer();
viewerBean.setConnection(connBean);

Create the bean for viewing the documents which the application will retrieve in
its search results. The CMBDocumentViewer visual bean will launch the
appropriate viewer for the document, depending on its MIME type.

}
catch (Exception exc) {

exc.printStackTrace();
}

checkConnBeanProperty sets the server name, the name of the EIP federated
database, that the connection uses, and the user ID and password for that
database. These values are set as properties on the connection bean.

/**
* Checks CMBConnection bean property before connect.
*/

void
checkConnBeanProperty()
{

try {
if (connBean.getServerName().length() == 0) {

String srv = ui.getString("Server name is empty, " +
"please enter the server name:");

connBean.setServerName(srv);
}
if (connBean.getUserid().length() == 0) {

String uid = ui.getString
("User ID is empty, please enter the user ID:");

connBean.setUserid(uid);
}
if (connBean.getPassword().length() == 0) {

String pwd = ui.getString
("Password is empty, please enter the password:");

Chapter 4. Using non-visual and visual JavaBeans 145

connBean.setPassword(pwd);
}

}
catch (Exception exc) {

exc.printStackTrace();
}

}

void
connect()
{

checkConnBeanProperty();

try {
System.out.println("Connecting...");
connBean.connect();
System.out.println("OK, connected\n");

}
catch (Exception exc) {

exc.printStackTrace();
}

}

The connect function connects to the EIP federated database, using the
database(server) name, userid, and password properties that have already been set
on the connection bean.
public void listTemplates()

{
try {

String[] stNames = schemaBean.getSearchTemplateName();
System.out.println("There are " + stNames.length + " search templates:");

for(int i=0; i<stNames.length; i++) {
System.out.println("\t" + stNames[i]);

}
}
catch (Exception ex) {

ex.printStackTrace();
}

}
public void listSTCriteria()
{

try {
String stName = ui.getString("Please enter the search template name:");
CMBSearchTemplate stObj = schemaBean.getSearchTemplate(stName);
System.out.println("Search template '" + stName + "' retrieved...");
String[] critNames = stObj.listSearchCriteriaNames();
System.out.println("There are " + critNames.length + " criteria: ");
for (int i=0; i<critNames.length; i++) {

System.out.println("\t" + critNames[i]);
CMBSTCriterion critObj = stObj.getSearchCriterion(i);
System.out.println("\t\tdisplayName: " + critObj.getDisplayName());
System.out.println("\t\tattrName: " + critObj.getAttrName());
System.out.println("\t\tdisplayWidth: " + critObj.getDisplayWidth());
System.out.println("\t\ttype: " + critObj.getType());
System.out.println("\t\tdefaultValue: " + critObj.getDefaultValue());
System.out.println("\t\tdefaultOp: " + critObj.getDefaultOperator());
short[] validOps = critObj.getValidOperators();
System.out.println("\t\tvalidOps:");

for (int j=0; j<validOps.length; j++) {
switch((int)validOps[j]) {

case CMBBaseConstant.CMB_OP_EQUAL:
System.out.println("\t\t\t.EQ."); break;

case CMBBaseConstant.CMB_OP_NOT_EQUAL:
System.out.println("\t\t\t.NEQ."); break;

case CMBBaseConstant.CMB_OP_LESS_EQUAL:
System.out.println("\t\t\t.LEQ."); break;

146 Application Programming Guide

case CMBBaseConstant.CMB_OP_LESS:
System.out.println("\t\t\t.LT."); break;

case CMBBaseConstant.CMB_OP_GREATER_EQUAL:
System.out.println("\t\t\t.GEQ."); break;

case CMBBaseConstant.CMB_OP_GREATER:
System.out.println("\t\t\t.GT."); break;

case CMBBaseConstant.CMB_OP_BETWEEN:
System.out.println("\t\t\t.BETWEEN."); break;

case CMBBaseConstant.CMB_OP_NOT_BETWEEN:
System.out.println("\t\t\t.NOTBETWEEN."); break;

case CMBBaseConstant.CMB_OP_IN:
System.out.println("\t\t\t.IN."); break;

case CMBBaseConstant.CMB_OP_NOT_IN:
System.out.println("\t\t\t.NOTIN."); break;

case CMBBaseConstant.CMB_OP_LIKE:
System.out.println("\t\t\t.LIKE."); break;

case CMBBaseConstant.CMB_OP_NOT_LIKE:
System.out.println("\t\t\t.NOTLIKE."); break;

default: break;
}

}
}

}
catch (Exception ex) {

ex.printStackTrace();
}

}

The Schema Management bean contains all information about search templates,
their names, and criteria. The listTemplates function retrieves and prints out the list
of all template names. getSearchCriteria is used by listSTCriteria, which lists
information about all the search criteria for a single specified template.

catch (CMBConnectFailedException ex) {
System.out.println("Connection to back-end server failed...");
ex.printStackTrace();

}
catch (CMBNoConnectionException ex) {

System.out.println("There is no current connection, please logon..");
ex.printStackTrace();

}
catch (Exception ex) {

ex.printStackTrace();
}

}
private void getSearchCriterion(CMBSearchTemplate stObj)
{

try {
String critName = ui.getString("Please enter criterion name: ");
Vector critList = stObj.getSearchCriteria();
CMBSTCriterion critObj = null;
for (int i=0; i<critList.size(); i++) {

critObj = (CMBSTCriterion)critList.elementAt(i);
if (critObj.getName().equals(critName))

break;
}

if (critObj == null) {
System.err.println("Invalid criterion name, please try again...");
return;

}

int critOp = ui.getInteger("Please enter search operator: " +
"\nEQ: 1\t\tNEQ: 2\t\tLEQ: 3\t\tLT: 4" +
"\nGEQ: 5\t\tGT: 6\t\tBETWEEN: 7\tNOTBETWEEN: 8" +
"\nIN: 9\t\tNOTIN: 10\tLIKE: 11\tNOTLIKE: 12\n");

Chapter 4. Using non-visual and visual JavaBeans 147

switch (critOp) {
case 1:

critObj.setOperator(CMBBaseConstant.CMB_OP_EQUAL); break;
case 2:

critObj.setOperator(CMBBaseConstant.CMB_OP_NOT_EQUAL); break;
case 3:

critObj.setOperator(CMBBaseConstant.CMB_OP_LESS_EQUAL); break;
case 4:

critObj.setOperator(CMBBaseConstant.CMB_OP_LESS); break;
case 5:

critObj.setOperator(CMBBaseConstant.CMB_OP_GREATER_EQUAL); break;
case 6:

critObj.setOperator(CMBBaseConstant.CMB_OP_GREATER); break;
case 7:

critObj.setOperator(CMBBaseConstant.CMB_OP_BETWEEN); break;
case 8:

critObj.setOperator(CMBBaseConstant.CMB_OP_NOT_BETWEEN); break;
case 9:

critObj.setOperator(CMBBaseConstant.CMB_OP_IN); break;
case 10:

critObj.setOperator(CMBBaseConstant.CMB_OP_NOT_IN); break;
public void runQuery()
{

try {
boolean runQry = false;
String stName = ui.getString("Please enter the search template name:");
CMBSearchTemplate stObj = schemaBean.getSearchTemplate(stName);
if (stObj == null) {

System.out.println("Unknown template name, please try again");
return;

}

String[] critNames = stObj.listSearchCriteriaNames();
System.out.println("There are " + critNames.length + " criteria: ");
for (int i=0; i<critNames.length; i++) {

System.out.println("\t" + critNames[i]);
}

while (!runQry) {
System.out.println("Selections:");
System.out.println("1. Specify a search criterion");
System.out.println("2. Run query ...");
switch (ui.getInteger("Enter your selection:")) {

case 2: runQry = true; break;
case 1: getSearchCriterion(stObj); break;

}
}

The runQuery function requests the user to input the name of the search template
with which they wish to perform their search. Then, as long as the user does not
choose to run the query, it will allow them to specify values for more search
criteria.

stObj.addCMBSearchReplyListener(resultBean);
stObj.setAsynchSearch(false);
queryBean.setAsynchSearch(false);
queryBean.runQueryWithCursor(stObj);
resultBean.newResults(queryBean.getResults());
CMBItem[] itemList = resultBean.getItem();
for (int k=0; k<itemList.length; k++) {

CMBItem hit = (CMBItem)itemList[k];
System.out.println("Hit item #" + k + ", pidString=" + hit.getPidString());
try {

String[] values = hit.getAttrValue();
String[] names = hit.getAttrName();
for(int I=0; I<values.length; I++) {

148 Application Programming Guide

System.out.println("\t" + names[l] + ": " + values[l]);
if (docCounter < 5) {

docCounter++;
String dsType = hit.getServerType();
System.out.println("Found an item of dsType '" + dsType +

"' - about to bring up " +
dsType + " viewer ...");

dataBean.setDataObject(hit);
viewerBean.showDocument(hit); //borowed from visual bean

System.out.println("Viewer bean called ...");
}

}

In the code above, the search template is wired to send its search results to the
result bean. Then the query is run synchronously, and once it is completed the
results are retrieved from the results bean. For each result, the document viewer
bean will launch the correct viewer for the document type.

catch (CMBException ex) {
ex.printStackTrace();
Object data = ex.getErrorData();
if (data != null && data instanceof Exception)

((Exception)data).printStackTrace();
}

}
}

case 11:
critObj.setOperator(CMBBaseConstant.CMB_OP_LIKE); break;

case 12:
critObj.setOperator(CMBBaseConstant.CMB_OP_NOT_LIKE); break;

default:
break;

}
if (critOp == 7 || critOp == 8) {

String critVal1 = ui.getString("Please enter 1st search value: ");
String critVal2 = ui.getString("Please enter 2nd search value: ");
String[] critVals = new String[2];
critVals[0] = critVal1;
critVals[1] = critVal2;
critObj.setValues(critVals);

}
else if (critOp == 9 || critOp == 10) {

Vector vals = new Vector();
boolean notDone = true;
while (notDone) {

String val =
ui.getString("Please enter value: (-1 if done entering)");

if (val.equals("-1"))
notDone = false;

else
vals.addElement(val);

}
String[] critVals = new String[vals.size()];
vals.copyInto(critVals);
critObj.setValues(critVals);

}
else {

String critVal = ui.getString("Please enter search value: ");
if (critVal.equals("null"))

critObj.setValue(critVal);
else

critObj.setValue("'" + critVal + "'");
}

}

Chapter 4. Using non-visual and visual JavaBeans 149

catch (Exception ex) {
ex.printStackTrace();

}
}

These catch blocks will handle most errors that occured during runQuery.

public static void main(String argv[])
{

String testName ="IBM CMB Demonstration program: DemoSimpleAppl";
String copyright ="C) Copyright IBM Corp. 1994,1999. All Rights Reserved.";

System.out.println("");
System.out.println(testName);
System.out.println(copyright);
System.out.println("");
System.out.println("");

TUtilSimpleUI ui = new TUtilSimpleUI();
DemoSimpleAppl psObj = new DemoSimpleAppl();
boolean loopControl = true;

System.out.println("Going to connect to the server...");
psObj.connect();
psObj.viewerBean.setConnection(psObj.connBean);

while (loopControl) {
System.out.println("");
System.out.println("Selections:");
System.out.println("0. Exit");
System.out.println("1. List Search Templates");
System.out.println("2. List Search Criteria");
System.out.println("3. Run query ...");
switch (ui.getInteger("Enter your selection:")) {

case 0: loopControl = false; break;
case 1: psObj.listTemplates(); break;
case 2: psObj.listSTCriteria(); break;
case 3: psObj.runQuery(); break;

}
}
try {

psObj.connBean.disconnect();
psObj.traceBean.finalize();
System.out.println("Bye.");
System.exit(0);

}
catch (Exception ex) {

ex.printStackTrace();
}

}
}

This is the main function of the DemoSimpleAppl class. It instantiates the user
interface object, UtilSimpleUI, and the DemoSimpleAppl class itself. It then
connects to the EIP federated database, and enters a loop. In this loop, the user can
choose one of four functions: 1. Exit the application 2. List the Search Templates
that exist in the EIP database 3. List the Search Criteria in a given search template
4. Run a query Once the user chooses to exit the application, the function
disconnects from the EIP federated database and exits.

JavaServer Pages (JSP) and non-visual beans
For information about JavaServer Pages and non-visual beans, see “Chapter 6.
Using the sample thin client” on page 187. For more information about JSPs and

150 Application Programming Guide

Information Mining beans, see “Building an application using the Information
Mining beans” on page 191 and “Understanding the Information Mining JSP
applications” on page 212.

Working with visual beans
Visual beans allow you to integrate the functionality of the Enterprise Information
Portal client into applications based on Swing. Each visual bean has a Connection
property. This property must reference an instance of CMBConnection, the
nonvisual bean that maintains the connection to the content servers. Any
application built with the EIP visual beans must also contain an instance of the
CMBConnection nonvisual bean.

CMBLogonPanel
This bean displays a panel to login to the federated database. It also
provides the window where users can modify the UserIDs and passwords
on the content servers.

CMBSearchResultsViewer
This bean displays search results. When the search result returns folders,
use CMBSearchResultsViewer bean to ″drill-down″ into the folder to see its
contents. Items in the search results or folders can be selected and opened
for viewing in a Windows Explorer style window

CMBSearchTemplateList
This bean displays a list of available search templates and allows selection
of a template.

CMBSearchTemplateViewer
This bean displays a search template and provides fields for users to enter
search criteria. It also performs a search.

CMBFolderViewer
Displays contents of one or more folders in a Windows Explorer style
window

CMBItemAttributesEditor
Displays a window where users can update the index class and indexing
attributes for an item

CMBDocumentViewer
Displays one or more documents by launching the appropriate viewer

CMBLogonPanel bean
The CMBLogonPanel bean (see Figure 19 on page 152) displays a window that lets
users login to a content server and change a password.

Chapter 4. Using non-visual and visual JavaBeans 151

In the CMBLogonPanel bean, when a user clicks Change, the Change Password
window appears (see Figure 20.) The user enters the old password, and enters the
new password twice.

In the CMBLogonPanel bean, when a user clicks Update Mapping in the
CMBLogonPanel bean, the Update Userid Mapping window opens (see Figure 21
on page 153). When you Update Mapping, you update the user ID and password

specified for a server.

Figure 19. CMBLogonPanel bean

Figure 20. Change Password window

152 Application Programming Guide

At the top of the window is a list of all servers and a corresponding user ID. Users
can select one or more servers from the list. Click Select All to select all servers.
Users can specify a new user ID and (optionally) password after you select one or
more servers. If you select one server, the user ID appears in the Userid field. If
users select more than one user ID, the Userid field is blank.

Deselect All
Removes all server selections.

Apply Click to apply mapping and password changes without closing the
window.

OK Click to accept changes and close the window.

Cancel
Click to close window without making changes.

CMBSearchTemplateList bean
The CMBSearchTemplateList bean has three styles. The image style, shown in
Figure 22, uses one image for the backgrounds of the selected items and another
for the unselected items. Figure 23 on page 154 shows the simple template list style.
Figure 24 on page 154 shows the drop-down template list style.

Figure 21. Update Userid Mapping window

Figure 22. Image template list style

Chapter 4. Using non-visual and visual JavaBeans 153

CMBSearchTemplateViewer bean
The CMBSearchTemplateViewer bean (see Figure 25) displays a window where
users can specify search criteria according to the search template defined by the
system administrator. The CMBSearchTemplateViewer bean launches a search and
generates the CMBSearchResults event to return the search results.

The CMBSearchTemplateViewer bean lists search criteria such as Source or Userid.
Each search criteria has a label, an operator, and a text field. The BETWEEN or
NOTBETWEEN operator display has two text fields. The IN or NOTIN operators have a
multi-line text area.

Text search areas

The CMBSearchTemplateViewer bean can contain areas that allow users to perform
a search on full text or index attributes. A full text search area on the template can
be as simple as a text field with a label.

Users must match the query syntax for a free or boolean text search when they
enter the query string in the text field (see the DKDatastoreTS class). Turn to the
online API reference for details.

Validating or editing fields of the CMBSearchTemplateViewer
You can provide validation logic for the CMBSearchTemplateViewer bean to
modify search criteria entered by the user. Do this by providing a handler for the
CMBTemplateFieldChangedEvent. The current values of the search criteria are
stored in the CMBTemplate returned by the getTemplate method prior to this event
being called. You can examine and change the criteria. After the event handling is
complete, the new values display.

Figure 23. Simple template list style

Figure 24. Drop-down template list style

Figure 25. CMBSearchTemplateViewer bean

154 Application Programming Guide

CMBSearchResultsViewer bean
The CMBSearchResultsViewer bean displays search results in a window that ha a
tree pane and a details pane. Users can resize the window by clicking and
dragging on the line separating the panes.

Figure 26 shows the CMBSearchResultsViewer bean with the Search Results folder
selected.

CMBSearchResultsViewer Tree pane
The tree pane (on the left) contains a main folder labeled Search Results.
Beneath that folder is each folder found in the search. The tree pane is
optional. Remove it by setting the TreePaneVisible property:
setTreePaneVisible(false).

CMBSearchResultsViewer Details pane
The details pane displays the contents of the folder selected in the tree
pane. When users select the Search Results folder, a tab appears on the
notebook containing the search template name. When users select a
different folder within Search Results, one or more tabs display: one for
each index class in the folder. The tab names have the form:
index class @ server

where index class is the index class name and server is the content server
name. The table columns change to display the attributes according to the
index class. Multiple selection is supported in the details pane. Turn off
Multiple selection by setting the MultiSelectEnabled property:
setMultiSelectEnabled(false).

Pop-up menus
A pop-up menu offering Sort options appears when a user right-clicks on a
table column heading. Users click Sort Ascending to sort the items in the
table in ascending order. Users click Sort Descending to sort the items in
descending order.

Another pop-up menu appears when a user right-clicks a folder other than
the Search Results folder in the tree pane, or right-clicks a document or
folder in the details pane. The pop-up menu lets users View folder details
in the tree pane, or Edit Attributes for folders

Optional: Use the CMBViewFolderEvent rather than show the details of
the folder within the CMBSearchResultsViewer bean. Use the event to
make the CMBFolderViewer bean display the selected folder’s contents.

Figure 26. CMBSearchResultsViewer bean

Chapter 4. Using non-visual and visual JavaBeans 155

Double-click action
Double-clicking a folder in the tree pane or an item in the details pane
performs the same action as clicking in the View pop-up menu item. If
you suppress the default item pop-up menu, a CMBItemActionEvent
occurs.

Overriding pop-up menus
You can override the pop-up menus on the CMBSearchResultsViewer and
CMBFolderViewer with either a different pop-up menu or no pop-up menu. To
turn off the default menus, use setDefaultPopupMenu(false).

When the user right-clicks a folder in the tree pane, a CMBFolderPopupEvent is
generated. When the user right-clicks an item in the details pane, a
CMBItemPopupEvent is generated. You can use a handler to provide a different
pop-up menu.

CMBFolderViewer bean
The CMBFolderViewer bean displays a tree pane that looks like the
CMBSearchResultsViewer bean. There is no main Search Results folder. Figure 27
shows the tree and details panes of the CMBFolderViewer bean.

The CMBFolderViewer bean displays a tree of folders on the left pane. The right
pane displays a notebook of tables of the documents contained by folder selected
in the tree pane. A resizeable splitter separates the tree and notebook panes.

CMBFolderViewer Tree pane
The tree pane contains folders. Nested folders appear beneath each folder.

CMBFolderViewer Details pane
The details pane contains the contents of the folder that is selected in the
tree pane. The contents display in a notebook with a tab for each index
class and server. that the items in the table are indexed under. The tab
names have the form:
index class @ server

Figure 27. CMBFolderViewer bean

156 Application Programming Guide

where index class is the name of the index class and server is the name of
the server. Within each notebook page is a table displaying the documents
and folders within the selected folder. The table columns change to display
the attributes according to the index class.

Pop-up menus

The behavior of the pop-up menus for the folder viewer is identical to that of the
search results viewer.

Double-click action

Double-clicking in the folder viewer is identical to that of the search results viewer.

CMBDocumentViewer bean
The CMBDocumentViewer bean provides capabilities to view documents by either
launching or embedding content-type specific document viewers. There are two
types of viewers supported:
1. Java-based viewers. These viewers must extend the class

CMBJavaDocumentViewer.
2. Non-Java viewers. Any executable may be launched as a viewer for a particular

content-type.

If the Visible property is set to false, the viewer is always displayed in a separate
window. If the Visible property is true, the viewer will be displayed within the
display region of the CMBDocumentViewer bean if possible. (Currently, this is only
possible for Java-based viewers.)

CMBJavaDocumentViewer is an abstract class extended by providers of Java-based
document viewers that plug into the CMBDocumentViewer bean. These viewers
can display the documents in the visible space of the CMBDocumentViewer bean
or in separate windows on the screen.

Viewer specifications
There are two ways to specify viewers:
1. In EIP Administration, specify the viewers using the MIME Type to Application

Association Editor. This is selected by choosing MIME to Appl. Editor from the
Tools menu. For Java-based viewers, the application name should be the Java
class name, including the .class suffix. For executables, the application name
should be the name of the executable.

2. Using the Mime2App property on CMBDocumentViewer. This property can be
set to an instance of a Properties object that maps the MIME types to
application names.

In cases where a viewer is specified for a MIME type in both EIP Administration
and using the Mime2App property, the specification using the Mime2App will take
precedence.

Default viewers
If no viewer is specified for a particular content type, a default viewer will be
launched. For documents from OnDemand, the OnDemand client (in view-only
mode) is launched. Documents from all other content servers will be viewed using

Chapter 4. Using non-visual and visual JavaBeans 157

the Content Manager viewer. The Content Manager viewer also provides display
and editing of annotations. To edit annotations, select ″Edit Document″ from the
″File″ menu of the viewer.

Launching external viewers
Use the Mime2App property of CMBDocumentViewer to specify applications to
launch as document viewers for documents of certain MIME types. Use
setMime2App with a properties object as the argument that has names of MIME
types mapping to values that are executable names. The sample application
contains the following code, which launches wangimg.exe, for viewing TIFF
documents on Windows:
Properties apps = new Properties();
apps.put("image/tiff","C:/Program Files/Windows/Accessories/ImageVue/wangimg.exe");
documentViewer.setMime2App(apps);

CMBItemAttributesEditor bean
The CMBItemAttributesEditor bean (see Figure 28) displays a window for viewing
and modifying the index class and indexing attributes of a folder or document.

A list containing all available entities appears at the top of the window. The
current entity is selected by default. A list of attributes for that entity appears
beneath the entity. The text fields (first name, last name, and so forth) initially
contain the current values for the item.

If users select a new entity, any attributes with the same names as the
previously-selected entity have their values propagated to the like-named attributes
in the new entity.

Clicking Reset returns the entity and attributes to their original values.

Clicking OK updates the entity and attributes and triggers events before and after
the update. You can use the event before the update to validate fields or complete
missing fields before the update is performed. This event can veto the specified
update.

Figure 28. CMBItemAttributesEditor bean

158 Application Programming Guide

Vetoing changes in the CMBItemAttributesEditor
You can provide additional validation logic to the CMBItemAttributesEditor that
verifies attribute values entered by the user and modifies them, or rejects an
update, if the values are not valid. Do this by providing a handler for the
CMBEditRequestedEvent.

The following example shows how to reject a requested update if any attribute is
blank:
itemAttributesEditor.addEditRequestedListener(new CMBEditRequestedListener() {

public void onEditRequested(CMBEditRequestedEvent event) {
String[] attributes = event.getAttributes();
for (int i = 0; i < attributes.length; i++) {

if (attributes[i].length() == 0)
event.denyUpdate();
JOptionPane.showMessageDialog(EditAttributesDialog.this,

"Blank attribute value","Error",JOptionPane.ERROR_MESSAGE);
return;

}
}

});

General behaviors for visual beans
The following sections describe properties and behaviors that are common among
visual beans.

Properties
This section describe three properties shared by visual beans.

Connection
Each bean has a Connection property, which refers to an instance of the
CMBConnection non-visual bean. You must set the Connection property
for the visual bean to operate correctly.

CollationStrength
All beans that perform sorting have a CollationStength property. The
values defined for CollationStrength property are the same values defined
for the java.text.Collator class of Java.

Hiding/Showing buttons
You can hide or show the Push buttons that appear on all visual beans.
Use the set<name> Button Visible property, where <name> is the name of
the push button.

Save/restore configuration
The CMBSearchTemplateViewer, CMBSearchResultsViewer, and CMBFolderViewer
have two methods - loadConfiguration and saveConfiguration- that can be used
to save and restore field values and column sizes between application sessions. A
properties object is an argument for all these methods. You can use the same
properties object for all three beans. The names of the saved properties are unique
across the beans.

The following code saves the properties of CMBSearchTemplateViewer and
CMBSearchResultsViewer:
Properties properties = new Properties();
searchTemplateViewer.saveConfiguration(properties);
searchResultsViewer.saveConfiguration(properties);
try {

Chapter 4. Using non-visual and visual JavaBeans 159

FileOutputStream outStream = new FileOutputStream("SearchFrame.properties");
properties.save(outStream,"MyApp");
} catch (IOException e) {
}

The following code restores the properties:
try {

FileInputStream inStream = new FileInputStream("SearchFrame.properties");
Properties properties = new Properties();
properties.load(inStream);
searchTemplateViewer.restoreConfiguration(properties);
searchResultsViewer.restoreConfiguration(properties);
} catch (FileNotFoundException e) {
} catch (IOException e) {
}

Help events
Each visual bean generates a CMBHelp event when the user requests help, either
by clicking Help button or pressing F1. Some beans generate the following
help-related events when users press F1 or Help from secondary windows:

CMBChangePasswordHelpEvent
When Help is clicked on the Change Password window

CMBUpdateMappingHelpEvent
When Help is clicked on the Update Mapping window

CMBLoginFailedHelpEvent
When Help is clicked on the Server Logon Failed window

CMBServerUnavailableHelpEvent
When Help is clicked on the Server Unavailable window

Tip: One possible method of handling help from all of these sources is to create a
single class that implements the listeners for all of these events. Within the onHelp
method, additional logic might be needed to determine which bean was the source
of the event, and display help text appropriate for that bean.

Replacing a visual bean
It is possible to replace one of the visual beans with another or with Swing
components. To do this, the new bean should implement the handlers for the
events of the visual bean it is replacing. It should also generate at least the key
events of the bean it is replacing. The key events are described in Table 18.

Table 18. Visual beans and key events

Visual bean Key events

CMBSearchTemplateList CMBTemplateSelectedEvent

CMBSearchTemplate Viewer CMBSearchStartedEventCMBSearchResults Event

CMBSearchResultsViewer CMBViewDocumentEvent CMBViewFolder
Event-CMBEditItemAttributesEvent

CMBFolderViewer CMBViewDocumentEvent CMBEditItem AttributesEvent

CMBDocumentViewer CMBDocumentOpenedEvent CMBDocument Closed
Even

CMBItemAttributesEditor none

All data needed for implementing the bean function is available either from events
that the bean is handling or from the CMBConnection non-visual bean.

160 Application Programming Guide

The following code examples shows a TabbedPane replacing the
CMBSearchTemplateList bean, where each tab is the name of a search template and
the component associated with the tab is the CMBSearchTemplateViewer bean.
This example can be added to the SearchFrame.java class:
topPanel.remove(searchTemplateList);
topPanel.remove(searchTemplateViewer);
topPanel.add(templateNotebook, "Center");
connection.addCMBConnectionReplyListener(new
CMBConnectionReplyListener() {

public void onCMBConnectionReply(CMBConnectionReplyEvent evt) {
templateNotebook.removeAll();
if (connection.isConnected()) {

CMBSchemaManagement mgt = connection.getSchemaManagement();
try {

mgt.clearSchemaCache();
String[] names = mgt.getSearchTemplateName();
for (int i = 0; i < names.length; i++) {

if (i == 0) {
templateNotebook.add(names[i],searchTemplateViewer);
CMBSearchTemplate template = mgt.getSearchTemplate(names[i]);
searchTemplateViewer.setTemplate(template);
searchResultsViewer.setTemplate(template);

} else
templateNotebook.add(names[i],new JPanel());

}
} catch (Exception e) {}

}
}

});
templateNotebook.addChangeListener(new ChangeListener() {

public void stateChanged(ChangeEvent event) {
templateNotebook.setComponentAt(templateNotebook.

indexOfComponent(searchTemplateViewer),
new JPanel());

templateNotebook.setComponentAt(templateNotebook.getSelectedIndex(),
searchTemplateViewer);

try {
CMBSearchTemplate template =
connection.getSchemaManagement().getSearchTemplate(templateNotebook.getTitleAt

(templateNotebook.getSelectedIndex()));
searchTemplateViewer.setTemplate(template);
searchResultsViewer.setTemplate(template);
} catch (Exception e) {}

}
});

Building an application using visual beans
The following sections show how the visual beans fit together when you build an
application.

A sample application
The following sample application consists of three classes and uses every bean
except CMBFolderViewer.

SearchFrame
Display the main application window

LogonDialog
Displays the logon panel

EditAttributesDialog
Displays the item attributes editor

Chapter 4. Using non-visual and visual JavaBeans 161

SearchFrame: SearchFrame is the main application window. SearchFrame uses
CMBSearchTemplateList, CMBSearchTemplateViewer, CMBSearchResultsViewer,
and CMBDocumentViewer beans.
import java.util.*;
import java.io.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.beans.*;
import com.ibm.mm.beans.*;
import com.ibm.mm.beans.gui.*;

/** Sample application showing the use of Enterprise Information Portal
visual JavaBeans. */

public class SearchFrame extends JFrame
{

CMBConnection connection = new CMBConnection();
CMBSearchTemplateList searchTemplateList = new CMBSearchTemplateList();
CMBSearchTemplateViewer searchTemplateViewer = new
CMBSearchTemplateViewer();
CMBSearchResultsViewer searchResultsViewer = new CMBSearchResultsViewer();
CMBDocumentViewer documentViewer = new CMBDocumentViewer();

// Set look and feel to windows
static {

try {
UIManager.setLookAndFeel("com.sun.java.swing.plaf.windows.WindowsLookAndFeel");

} catch (Exception e) {
System.out.println(e);
}

}

public static void main(String[] args) {

// Create the frame and display it
SearchFrame searchFrame = new SearchFrame();
searchFrame.setVisible(true);

// Display modal logon dialog
LogonDialog logonDialog =

new LogonDialog(searchFrame,searchFrame.connection);
logonDialog.setVisible(true);

}

public SearchFrame() {

// add cc beans to main frame
getContentPane().setLayout(new BorderLayout());
JPanel topPanel = new JPanel(new BorderLayout());
topPanel.add(searchTemplateList, "West");
topPanel.add(searchTemplateViewer, "Center");
getContentPane().add(topPanel, "North");
getContentPane().add(searchResultsViewer, "Center");
getContentPane().add(documentViewer, "East");

// set connection property on all visual beans
searchTemplateList.setConnection(connection);
searchTemplateViewer.setConnection(connection);
searchResultsViewer.setConnection(connection);
documentViewer.setConnection(connection);

// set other properties on cc beans
try {
connection.setServerName("cmbdb");
} catch (PropertyVetoException e) {
}

162 Application Programming Guide

searchTemplateViewer.setStartSearchButtonVisible(true);
searchTemplateViewer.setStopSearchButtonVisible(true);
searchResultsViewer.setDetailsHorizontalLinesVisible(false);
searchResultsViewer.setDetailsVerticalLinesVisible(false);
searchResultsViewer.setSaveResultsPerTemplate(true);
documentViewer.setVisible(false);

// Uncomment to launch Wang viewer for TIFF documents on Windows
/* Properties apps = new Properties(); apps.put("image/tiff","C:/Program
Files/Windows NT/Accessories/ImageVue/wangimg.exe");
documentViewer.setMime2App(apps); */

// Restore saved session configuration of beans
try {
FileInputStream inStream = new FileInputStream("SearchFrame.properties");
Properties properties = new Properties();
properties.load(inStream);
searchTemplateViewer.restoreConfiguration(properties);
searchResultsViewer.restoreConfiguration(properties);
} catch (FileNotFoundException e) {
} catch (IOException e) {
}

// "wire" the beans together
searchTemplateList.addTemplateSelectedListener(searchTemplateViewer);
searchTemplateList.addTemplateSelectedListener(searchResultsViewer);
searchTemplateViewer.addSearchStartedListener(searchResultsViewer);
searchTemplateViewer.addSearchResultsListener(searchResultsViewer);
searchResultsViewer.addViewDocumentListener(documentViewer);

// Invoke a secondary dialog for edit attributes
searchResultsViewer.addEditItemAttributesListener(new
CMBEditItemAttributesListener() {

public void onEditItemAttributes(CMBEditItemAttributesEvent event) {
EditAttributesDialog editAttributesDialog = new
EditAttributesDialog(SearchFrame.this,connection,event.getItem());
editAttributesDialog.setVisible(true);

}
});

// Event to disconnect and shutdown on window close
addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent event) {

// Save configuration of beans
Properties properties = new Properties();
searchTemplateViewer.saveConfiguration(properties);
searchResultsViewer.saveConfiguration(properties);
try {

FileOutputStream outStream = new FileOutputStream("SearchFrame.properties");
properties.save(outStream,"SearchFrame Properties");

} catch (IOException e) {
}
documentViewer.terminate();
try {

connection.disconnect();
} catch (Exception e) {

JOptionPane.showMessageDialog(SearchFrame.this,"Logoff
failed","Error",JOptionPane.ERROR_MESSAGE);

}
System.exit(0);
}
});
}

/** called when frame is created. Size and position window. */
public void addNotify() {

Chapter 4. Using non-visual and visual JavaBeans 163

super.addNotify();
setSize(640,440);
Dimension size = getSize();
Dimension screenSize = getToolkit().getScreenSize();
setLocation((screenSize.width-size.width)/2, (screenSize.height-size.height)/2);
}

}

LogonDialog: The code example that follows shows LogonDialog, a window for
logging on. It uses the CMBLogonPanel bean.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.ibm.mm.beans.*;
import com.ibm.mm.beans.gui.*;

/** Dialog to logon using the Enterprise Information Portal CMBLogonPanel bean. */
class LogonDialog extends JDialog {

CMBLogonPanel logonPanel = new CMBLogonPanel();

LogonDialog(SearchFrame searchFrame, CMBConnection connection) {
super(searchFrame,"Logon",true);
logonPanel.setConnection(connection);
getContentPane().add(logonPanel);
setSize(400,300);
Dimension size = getSize();
Dimension screenSize = getToolkit().getScreenSize();
setLocation((screenSize.width-size.width)/2, (screenSize.height-size.height)/2);
logonPanel.addLogonCompletedListener(new CMBLogonCompletedListener() {

public void onLogonCompleted(CMBLogonCompletedEvent event) {
dispose();
}

});
logonPanel.addLogonCancelledListener(new CMBLogonCancelledListener() {

public void onLogonCancelled(CMBLogonCancelledEvent event) {
System.exit(0);
}

});
}

}

EditAttributesDialog: EditAttributesDialog is a window where users can view
and change document or folder attributes. It uses the CMBItemAttributesEditor
bean.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.ibm.mm.beans.*;
import com.ibm.mm.beans.gui.*;

/** Dialog to edit attributes using the EIP CMBItemAttributesEditor bean.*/

class EditAttributesDialog extends JDialog {

CMBItemAttributesEditor itemAttributesEditor = new CMBItemAttributesEditor();

EditAttributesDialog(SearchFrame searchFrame, CMBConnection connection,
CMBItem item) {

super(searchFrame,"Edit Attributes",true);
itemAttributesEditor.setConnection(connection);
itemAttributesEditor.setItem(item);
getContentPane().add(itemAttributesEditor);
setSize(400,300);
Dimension size = getSize();

164 Application Programming Guide

Point parentLocation = searchFrame.getLocation();
Dimension parentSize = searchFrame.getSize();
setLocation(

parentLocation.x+(parentSize.width-size.width)/2,
parentLocation.y+(parentSize.height-size.height)/2);
itemAttributesEditor.addEditCompletedListener

(new CMBEditCompletedListener() {
public void onEditCompleted(CMBEditCompletedEvent event) {
dispose();
}

});
itemAttributesEditor.addEditCancelledListener(new CMBEditCancelledListener()

{
public void onEditCancelled(CMBEditCancelledEvent event) {
dispose();
}

});
}

}

Connecting the visual beans
This section explains one scenario for connecting visual beans to create a simple
application. Except for the Search push button, all beans are connected by adding
the target bean as a listener of the indicated event of the source bean. For example,
to connect the SearchTemplateList to the SearchTemplateViewer, a single line of
code is needed, similar to:
CMBSearchTemplateList1.addItemSelectedListener(CMBSearchTemplateViewer1);

To add a push button for launching searches, use a standard JButton. Create an
inner class to cause the action event from the push button to invoke the
appropriate method, for example:
JButton1.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
CMBSearchTemplateViewer1.startSearch();

}
}

In Figure 29 on page 166, the lines from each of the beans to the connection bean
indicate that the bean contains a reference to the connection bean. This is created
by setting the connection property for each bean. For example, to create a reference
from the logon panel bean to the connection bean, a line of code is needed, similar
to:
CMBLogonPanel1.setConnection(CMBConnection1);

Chapter 4. Using non-visual and visual JavaBeans 165

Figure 29 shows nine beans. A JFrame or other container bean would be the parent
of all of these beans. One possible order of events during run time might be:
1. The user enters a user ID and password into the logon window and clicks

OK. The CMBLogonPanel bean invokes the connect method of the
CMBConnection bean to establish the connection to the server.

2. The connection bean establishes the connection. The CMBSearchTemplateList
bean retrieves and displays the list of search templates for that user ID. (No
methods need to be invoked to cause this to happen. The
CMBSearchTemplateList bean is listening to the appropriate events of the
CMBConnection bean. CMBSearchTemplateList sets up the listeners when a
CMBConnection bean associated itself with it using the setConnection
method.)

3. The user selects a search template from the list. The CMBSearchTemplateList
bean generates a CMBTemplateSelectedEvent. Both the
CMBSearchTemplateViewer and the CMBSearchResultsViewer are listening for
the event. The CMBSearchTemplateViewer displays the appropriate template.
The CMBSearchResultsViewer clears and displays columns in the details pane
as defined by the template.

4. The user completes the template, and either presses Enter or clicks Search. If
the user clicks Search, the action event handler invokes the startSearch
method. If the user presses Enter, the startSearch method is invoked
implicitly.

5. The CMBSearchTemplateViewer bean validates the template fields to
determine whether a search can begin. If the search can begin, a
CMBSearchStartedEvent is generated. CMBSearchResultsViewer listens for a
CMBSearchStartedEvent and clears the results in preparation for new search
results.

6. As the search progresses, CMBSearchResultsEvents are generated to provide
partial search results to the CMBSearchResultsViewer. (When the search is
completed the CMBSearchCompleted event is generated. Although not shown
in Figure 29, this event can be used to enable the Search push button again if
it was disabled at the start of the search.)

7. The user can expand folders in the Search Results window, then select a
document or folder for viewing. When this is done, a CMBViewFolderEvent
or CMBViewDocumentEvent is generated. The CMBFolderViewer and
CMBDocumentViewer beans are listening to their respective events, and
display the folder or document.

Figure 29. Visual bean connections

166 Application Programming Guide

8. From the CMBFolderViewer, users can select a document to view. Selecting a
document for viewing generates a CMBViewDocumentEvent. The
CMBDocumentViewer listens for this event and displays the document in the
appropriate viewer.

9. Users can select a document’s or folder’s attributes for updating from the
CMBSearchResultsViewer or CMBFolderViewer. Selecting a document
generates a CMBEditItemAttributesEvent.

10. The CMBItemAttributesEditor bean listens for an
CMBEditItemAttributesEvent. It displays the entity and attributes for the item.
The user can then change the entity and attributes and then click OK to apply
the changes.

Using beans in more than one window or dialog
You must provide additional code to pass an event from a bean in one window to
a bean in another window. Typically, the fact that an event has been sent is usually
the reason for displaying a window. The EditAttributesDialog window contains the
ItemAttributesEditor. SearchFrame creates the window when a
CMBEditItemAttributesEvent launches:
// Invoke a secondary dialog for edit attributes
searchResultsViewer.addEditItemAttributesListener(new
CMBEditItemAttributesListener() {

public void onEditItemAttributes(CMBEditItemAttributesEvent event) {
EditAttributesDialog editAttributesDialog = new
EditAttributesDialog(SearchFrame.this,connection,event.getItem());
editAttributesDialog.setVisible(true);

}
});

The information that is normally passed to the CMBItemAttributesEditor bean is
passed as arguments to the constructor of the window instead. Within the
constructor, the information is passed to the CMBItemAttributesEditor bean by
setting the following properties:

itemAttributesEditor.setConnection(connection);

itemAttributesEditor.setItem(item);

Chapter 4. Using non-visual and visual JavaBeans 167

168 Application Programming Guide

Chapter 5. Using the sample Java applets and servlet

Web administrators use the Java applets to quickly create a Web site for
connecting, querying, and accessing Enterprise Information Portal. The Java
applets, also known as the Internet application toolkit, are built using the Java API,
the Java Development Toolkit 1.1 using Remote Method Invocation (RMI) for
remote access, and the new Delegation Event Model. The applets only work with
Content Manager.

The Internet application toolkit consists of the connect, query, and view applets,
and the retrieve servlet. The applets work in conjunction to give easy access to
Enterprise Information Portal. The applet works in conjunction to give easy access
to Content Manager. The retrieve servlet provides flexibility for returning and
displaying various data types that can be returned and displayed in a Web
browser.

The Internet application toolkit has the following three variations:

DTApp
Use this application to browse the data in accessible Enterprise Information
Portal servers.

To run on AIX enter:
. DTApp.ksh

To run on Windows NT: Click Start Programs –\ Content Manager –\
Internet Application Toolkit.

dtappsvr.html
Use this sample file to run the Internet application toolkit locally in a Web
browser.

To run, open dtappsvr.htmlin a Web browser that fully supports JDK 1.1,
such as the HotJava Browser 1.0 FCS.

Requirement: You must install the client toolkit on the workstation
machine.

dtappclt.html
Use this sample file to access the Internet application toolkit from a
workstation that does not have any Content Manager components
installed.

To use dtappclt.html, you must set up a Web site and other configurations
that are explained in detail in the following sections.

Understanding the connect applet
The connect applet provides a simple window for users to connect to different
servers and check on connection status. As shown in Figure 30 on page 170, it has
fields for the user ID and password, and lists of the accessible content servers and
their types.

© Copyright IBM Corp. 1996, 2001 169

|
|

The connect applet has the following parameters:

Country
National language and formats that supersede LanguageCode and
RegionCode (for example, Japan).

LanguageCode
Language code, which must have the corresponding region code (for
example, ja).

RegionCode
Region code which must have the corresponding language code (for
example, JP).

RemoteHost
RMI server host name. Used by remote clients to access the correct RMI
server.

RemotePort
RMI server Port number. Used by remote clients to access the correct RMI
port number.

Understanding the query applet
The query applet lists the entities and their attributes of the connected datastore
and provides a window where users can construct queries. Users can search for
attribute values and text strings, or combine them to enrich the search capability.
The search results display in the view applet while the query runs. The query
applet has no parameters. Figure 31 on page 171 shows an example of a Parametric
Search page.

Figure 30. Datastore Logon window

170 Application Programming Guide

The Parametric Search page displays the list of available index classes and the
attributes associated with each index class. Clicking on the attributes and operators
and entering the values constructs a parametric search string which is shown in
the lower section of the page.

Users can change the query by either selecting the current criteria and resetting
them, or by clicking Edit Query and modifying the parametric search string
directly. Modifications made using the Edit Query push button disassociate the
search string from other modification methods until a new query is done. Figure 32
on page 172 shows an example page from the Query Criteria notebook.

Figure 31. Parametric Search page of the Query Criteria notebook

Chapter 5. Using the sample Java applets and servlet 171

The Text search page displays the list of text search index classes and provides a
field for entering a search string. Users can either enter a simple boolean search, or
click Advanced to create a more complicated query.

Combining the Parametric Search page and the Text search page allows you to do
a combined search. If a search string is entered in both the Parametric Search page
and the Text search page, the application performs a combined search and displays
the intersection of the two search results.

The last page, Query Options, allows users to set generic options for all queries.
The Query applet does not have any parameters.

Figure 32. Text search page of the Query Criteria notebook

172 Application Programming Guide

Understanding the view applet
The view applet displays the search results in a tree structure. Users can click to
expand or collapse an item in the result list. Users can also create, retrieve, update,
and delete objects if they have the privilege to do so. Select an item from the result
list and click the right mouse button to display the pop-up menu that shows the
actions that you can perform on that data object.Figure 33 shows an example of a
view applet display·.

Individual item parts can be viewed separately with the view applet, which
displays GIF and JPEG files, or in conjunction with the retrieve servlet, which
displays the part through a Web browser. To view the item in its entirety, users
right-click an item and select the menu item for the Dynamic Page Builder website
that has been set up with the corresponding connections and data. All of the item
parts are brought together and displayed as one part through the Web.

The view applet has the following parameters:

cgisource
The Web address for the retrieve servlet. For example,
http://voodoo.stl.ibm.com:8080/servlet/DTRetrieve?

indexClassList
The list of index classes, their attributes, and the thumbnail part. For
example, (GRANDPA)(1 2 3)(1) means show the first three attributes of index
class GRANDPA, and the first image part is the thumbnail (specifying 0 does
not show the thumbnail).

Figure 33. Results View window

Chapter 5. Using the sample Java applets and servlet 173

advance
The flag for showing the advanced features—create, update, and delete.
The default value is true.

Understanding the retrieve servlet
The retrieve servlet is used by the view applet to retrieve and display various
types of parts from Enterprise Information Portal. The servlet is located in the
cmbroot\lib\servlet directory, which contains the following four files:

DTRetrieve.java
The source code for the servlet

You can modify the source as needed and use it to better understand how
the servlet works. As new MIME types are required, you can modify
DTRetrieve to handle them.

DTRetrieve.class
The executable file for the servlet

Servlets.properties
The file where you put initialization parameter values

DTRetrieve has three initialization parameters:

datastore
The name of the library server to connect to

Restriction: Currently, the Content Manager client for AIX is
single-threaded and the servlet servers operate by spawning new
threads for each request. Two or more requests arriving at the
retrieve servlet at the same time cause exceptions and the servlet
server might stop.

user ID
The user ID to connect with

password
The password to connect with

Classes.zip
The servlet class library files

For the servlet to run, you need either a Web server capable of running servlets or
srun.exe, which is part of the Java Servlet Development Package available from
JavaSoft at http://www.javasoft.com.

The Solaris package works for AIX also. To run srun, enter srun -s
servlets.properties from the directory cmbroot\lib\servlet. This starts a servlet
server with the initial arguments set in servlets.properties. If your Web server
supports servlets, refer to your Web server documentation to set up the servlet (for
example, where to put the servlet).

If you are using srun.exe, enter
srun.exe -s servlets.properties

in the servlet directory. For more information, enter srun -?.

For more information about servlets, go to http://www.javasoft.com and search for
the Java Servlet Development Kit (JSDK).

174 Application Programming Guide

Running applets in a Java application
DTApp.bat is the file that runs the applets as a Java application. Enter dtapp at a
command prompt to start the applets, retrieve the list of available content servers
and open the window shown in Figure 34.

You can set two view settings:

View-�Set Web Browser
Allows you to specify the Web browser to use when viewing parts that are
not GIF or JPEG files. For example, you might type:
c:\netscape\program\netscape.exe

View-�Set Web Server
Allows you to specify the Web server address to use. For example:
http://webserver/servlet/DTRetrieve?

When retrieving files that are not GIF or JPEG types, ensure that both of the above
options are set correctly and that srun is running correctly for the servlet.

Accessing local applets
A sample HTML page, dtappsvr.html, incorporates the DTConnectApplet,
DTQueryApplet, and DTTreeViewApplet and allows users to log onto, query, and
view data from Enterprise Information Portal. To access this HTML page:
1. Go to the cmbroot\lib\servlet directory and modify the servlets.properties

file to have the correct content server name, user ID, and password for
connecting to the correct server.

Figure 34. Main application window

Chapter 5. Using the sample Java applets and servlet 175

If you do not modify servlets.properties, the current DTRetrieve.class is
compiled with server = LIBSRVR2, user ID = FRNADMIN, and password =
password.

2. In a Web browser page file:/cmbroot/dtappsvr.html where cmbroot is the
directory path for dtappsvr.html. For example, c:\cmbroot. This starts the three
applets.
The connection window opens. Connect to the content server with the correct
user ID and password, run a query, and view the results.
Restriction: You must use a Web browser that is enabled for JDK 1.1. Currently,
the HotJava Browser 1.0 FCS is the only Web browser fully enabled for JDK 1.1
. Within the HotJava Browser, make sure that the security level for unsigned
applets is medium.

Accessing remote applets
A sample HTML page, dtappclt.html, incorporates three
applets—DTConnectApplet, DTQueryApplet and DTTreeViewApplet—and allows
users to remotely log onto, query, and view data from Enterprise Information
Portal. To access this HTML page:
1. Make sure that cmbroot is set to an HTML-accessible directory for the Web

server residing on your machine. If not, consult either your Web administrator
or your Web server documentation to have this set up.

2. Go to the cmbroot\lib\servlet directory and modify the servlets.properties file
to set the correct content server name, user ID, and password for connecting to
the correct server.
If you do not modify servlets.properties, the current DTRetrieve.class is
compiled with server = LIBSRVR2, user ID = FRNADMIN, and password =
password.

3. Edit dtappclt.html to remove the comment tags from RemoteHost and
RemotePort, after the definition of DTConnectApplect.class. Set RemoteHost to
the host name of the Web server. Set RemotePort to the port number that the
RMI server is using.
Tip: Alternatively, the cmbclient.ini file, which is located in the cmbroot
directory, can be modified with the Web server’s host name at the HOSTNAME
keyword and a port number at the PORTNUMBER keyword. The port number
should be a unique port number, which will be used for RMI communication.
The cmbclient.ini file should be stored in the same directory as the client Web
browser’s invocation directory.

4. On Windows 95 and Windows NT, modify the cmbregist.cmd file. On AIX,
modify the placeholder file, which is located in thecmbroot\lib directory.
Modify the file to use the same port number as the RemotePort parameter in
dtappclt.html, or the same PORTNUMBER in cmbclient.ini, if cmbclient.ini is
used.

5. Go to the cmbroot\lib directory and enter cmbregist to initialize the RMI
server.

6. Go to a browser and invoke the Web page dtappctl.html from your Web
server’s alias, http://webserver/cmbroot/dtappctl.html. This brings up the
Web page and starts the three applets.
The connection window opens when the applets have been properly loaded
and have started up. Connect with the correct user ID/password/server
combination, make a query against the index class, and view the items sent
back.
Restrictions:

176 Application Programming Guide

v You must use a Web browser that is enabled for JDK 1.1. Currently, the
HotJava Browser 1.0 FCS is the only fully JDK 1.1 enabled Web browser.
Within the HotJava Browser, make sure that the security level for unsigned
applets is medium.

v The Content Manager client for AIX is currently single-threaded, so any one
process on AIX can have only one connection at a time. This means that
there can be only one remote connection at a time through one RMI process.

Displaying part information
The info function displays Content Type, Size and other information for the
selected part. A part must have a part ID and can also have a pre-defined type to
describe its content. The following screen captures show parts indexed,
respectively, by a text search server, an image search server, and nothing. Figure 35
shows an Info window example for an ASCII file indexed by Text search. Figure 36
on page 178 shows an Info window example of a GIF file indexed by Image

Search. Figure 37 on page 178 shows an example of a non-indexed GIF file.

Figure 35. Info window for an ASCII file

Chapter 5. Using the sample Java applets and servlet 177

The Index Details window shows the search engine type, server, and index
information for the selected part. The screen captures in Figure 38 on page 179 and
Figure 39 on page 179 show examples of parts indexed by Text search or an image
search server.

Figure 36. Info window for a GIF file indexed by Image Search

Figure 37. Info window for a non-indexed GIF file

178 Application Programming Guide

Indexing a part
Use the index part function to index a part while loading, updating, or indexing an
existing part. If you set the indexing information when you create a part, the part
is created with its indexing information. When you update a part, if the part has
not been previously indexed, you can set the indexing information and it will be
indexed when it is updated. If the part was previously indexed, it is indexed using
existing indexing information when it is updated. To index a part while the part is
being loaded or updated, click Set Indexing in the Create or Update window.
Figure 40 on page 180 shows an example of a Text part in the Create window.

Figure 38. Index Details for GIF file indexed by Text Search

Figure 39. Index Details for GIF file indexed by QBIC

Chapter 5. Using the sample Java applets and servlet 179

To index an existing part, select a part from the query result tree and then select
Index from the pop-up menu. The window shown in Figure 41 opens.

If the search server is not connected when you select a search type, the Logon
window will automatically pop up. At this point, you must select a server to
connect to. You need to know which search server is associated with the currently
connected server. If the parts have already been indexed by any search engine,
those parts cannot be indexed again. In this situation, selecting the Index menu
choice will open the Index Details window. This rule applies to the update method
as well.

Selecting the search engine type from the Indexed by list updates the window
with the necessary values. The windows are shown in Figure 41, and Figure 42 on
page 181.

Figure 40. the Create window

Figure 41. Sample Index window from Text Search

180 Application Programming Guide

When you update an indexed part, the update function will automatically invoke
the indexing process using existing indexing information.

Setting the content viewer
The set content viewer window allows you to specify a viewer for displaying the
content of a particular type of object. Each type can have only one viewer. The
settings will be saved into a file; therefore, the settings will always be available
throughout different sessions. After you have set a viewer, you can invoke the
viewer from the query result tree by selecting a part and clicking the View push
button.

Content Type
The choices for the content type.

After a type is selected, its ID will be displayed in the Content Type ID
field.

Content Viewer
The viewer application name with full path.

Click Browse push button to navigate the local file system. A file selection
box will pop up if you click on this button.

Figure 42. Sample Index window from Image Search

Chapter 5. Using the sample Java applets and servlet 181

OK Save the displayed settings and close the window.

Apply Save the displayed settings.

Clear Clear the displayed settings.

Cancel
Close this window without committing any changes that have not been
changed using the Apply or Clear push buttons.

The settings are saved into the file named dtcviewer.set. For AIX, the default
directory of this file is under $HOME; for Windows, the default directory is under
%CMBROOT%.

Loading video streams
This function loads video streams into Content Manager. Each video stream is a
digitized file and must reside on a machine that is running an FTP server. The FTP
server is necessary to transfer the video file to the VideoCharger server.

To load a video stream, first select Create Part from the query result tree menu. A
Create window will pop up as shown in the screen capture below. From that
window, you must select the IBM VSS content type for loading video stream
parts. This selection will enable the Set Media Properties push button and will
require you to enter video asset properties.

182 Application Programming Guide

The following screen capture shows the window that pops up when you press the
Set Media Properties push button.

The required inputs are:

FTP Host
The machine host name that has the video assets and an FTP server
running

Local/Remote radio group
Specifies whether the FTP host is local to the machine that this application
runs from

Selecting Remote will disable the Browse push button.

FTP User ID/Password
The user ID and password to log on to the host machine

Media File Fullpath
The video file full path and name

If this file is local, the user can click the Browse push button to navigate
the local file system to find the video file.

Single Media Object/List of Media Segments radio group
Indicates whether the file displayed in the Media File Fullpath field is the
actual video stream file, or a control file which contains a list of fullpaths
containing a set of video segments

Maximum Concurrent Users
Specifies maximum concurrent users for this video asset

This value is not enforced by the current version of VideoCharger (Version
2). Any positive, non-zero number will be accepted.

Asset Group Name
The storage entity name as defined in VideoCharger

Chapter 5. Using the sample Java applets and servlet 183

Currently, VideoCharger has only one asset group. During VideoCharger
installation, this default asset group name is AG. However, the installer may
change this name; you must know the actual asset group name in order to
load video parts.

Displaying video stream parts information
This function allows you to retrieve video parts information and loading status.
From the query result tree, select a video part and Info pop-up menu item. The
generic part information window displays the following information:

184 Application Programming Guide

From the above window, click Media Details to display video stream part
information:

The Status field displays the video loading states, including:
1. Load in process
2. Load complete
3. Load failed

This value will be updated automatically during the loading process.

Playing video streams
To play video streams, you must have the VideoCharger Player installed. The
VideoCharger Player is currently available for Windows only. To play a video
stream, set the content viewer for video stream parts, then double-click on a video
part from the query result tree.

Working in conjunction with Dynamic Page Builder
If Dynamic Page Builder is set up and configured, the applets also have a feature
to view data that has been set up to be displayed by Dynamic Page Builder and
Net.Data®. In the view applet, when the list of items returned are also viewable
from a Dynamic Page Builder setup site, click the right mouse button after
selecting one of the document items. A pop-up menu appears with Dynamic Page
as one of the menu items. Select that menu item to display a window that prompts
you for the part in this item that describes how the document should be brought
together and for the URL of the Dynamic Page Builder setup. Make sure that

Chapter 5. Using the sample Java applets and servlet 185

frnpage.d2w for Dynamic Page Builder is set up correctly. See “Configuring the
Dynamic Page Builder with Net.Data” on page 393 for more information on how to
configure Dynamic Page Builder.

186 Application Programming Guide

Chapter 6. Using the sample thin client

The thin client uses JavaServer Pages™ (JSP) on a Web server. The thin client
sample application uses the CMBDocumentServices and related classes in the .jsp
files. A client can communicate with the Web server using HTTP with parameters
that are passed in HTML forms.

Unlike the Enterprise Information Portal client the Thin client does not:
v Require Java on the client
v Require native code, such as the server connector or viewer, on the client
v Introduce firewall problems because HTTP is used

Note: The thick client also does not introduce firewall problems.

For more information about the thin client, see the thinClientInstall.html file
located in your CMBROOT/Samples/jsp/clientapp directory.

Sample JavaServer Pages
This section explains how to use the sample Thin client to demonstrate how to use
the non-visual beans in a JavaServer Pages-based application and to cover the
function provided in the sample Thin client.

A set of sample JSPs are provided to demonstrate building a JSP application using
EIP non-visual beans. These files, listed and explained below can be found in the
CMBROOT/Samples/jsp/clientapp directory:

addtoworkpacket.jsp
Displays a form for adding an item to an existing workpacket.

banner.jsp
Displays the EIP banner, provides a search, workflow, and logout button.
The search and workflow buttons provide a way to switch between
workflow client tasks and federated search tasks.

changeworkflow.jsp
Changes the workpacket to a different workflow.

continueworkpacket.jsp
Performs the continue action on a workpacket.

deletenotification.jsp
Deletes a notification from the list of notifications.

deleteworkpacket.jsp
Deletes a workpacket.

editattributes.jsp
Displays the attributes of an item. It can also be invoked with parameters
to cause item update.

editworkpacketattributes.jsp
Displays a form for editing the attributes of a work packet.

expertsearch.jsp
Displays the entities, or the attributes of a particular entity if the name of

© Copyright IBM Corp. 1996, 2001 187

the entity is passed as a parameter. Filling in the form and pressing search
launches a search, invoking search.jsp.

error.jsp
Formats error messages and displays them.

errorreport.jsp
Consists of jsp code to be included that generates a report when given an
exception. Included by login.jsp, useridmapping.jsp, and searchresults.jsp.

foldercontents.jsp
Displays details on a folder. The folder is passed as a parameter. The
details are displayed as a table.

functions.js
Consists of common javascript functions used by the JSPs.

index.html
Displays login.jsp.

inttostrings.jsp
Consists of jsp code to be included that provides common functions used
by workflow related JSPs. Included by addtoworkpacket.jsp and
worklist.jsp.

itemlistdisplay.jsp
Consists of jsp code to be included that generates the html page of a list of
items. Included by foldercontents.jsp, searchresults.jsp, and worklist.jsp.

login.jsp
Displays a form for logging into EIP. After the UserID, password, and
server name are specified, it performs the login and displays
mainframes.jsp. Also provides a way to change the password and manage
your UserID mapping. login.jsp uses errorreport.jsp to generate the error
reports.

logout.jsp
Terminates the EIP session and provides a link to the login.jsp.

mainframes.jsp
provides the main display of the application, which is divided into two
sections: document search on the bottom and the banner on the top.

Master.css
A style sheet used by all of the JSPs. By modifying this style sheet, the look
of all the pages can be changed.

newworkpacket.jsp
Displays a form to create a new workpacket.

print.jsp
Displays a form to display the document in a print-friendly fashion.

prioritizeworkpacket.jsp
Displays a dialog to change the priority of a workpacket.

reindex.jsp
Displays the current index. It can be invoked with parameters to cause the
item to be reindexed.

removefromworkpacket.jsp
Removes an item from a workpacket.

188 Application Programming Guide

resumeworkpacket.jsp
Resumes a suspended workpacket.

searchframes.jsp
A set of frames for the left hand side of the main frame. It will display the
template search and search results in frames on top and bottom
respectively. Alternatively, if passed a parameter, it will display entity
search or worklist.

searchresults.jsp
Performs a search and displays the search results. The search string is
provided as a parameter and the results are returned as a table. It uses
itemlistdisplay.jsp to generate the html output. It also displays a form to
update the userid mapping for a federated userid if the search fails due to
an unsuccessful connection with the content server. It uses errorreport.jsp
to generate the error reports.

searchtemplate.jsp
Displays the search templates, or a particular template if provided the
template name as a parameter. Filling out the template and pressing Search
launches a search, invoking searchresults.jsp. Choosing a template invokes
templatesearchtask.jsp to display the particular template and the search
results.

suspendworkpacket.jsp
Suspends a workpacket.

templatesearchtask.jsp
Displays a set of frames for the bottom section of the main frame. It will
display the template search form in the top frame and search results in the
bottom frame.

thinclient.css
Consists of a style sheet used by the JSPs. By modifying this style sheet,
the look of those pages can be changed.

UserIDmapping.jsp
Displays the current userid mapping for a federated userid. It also
performs mapping updates when invoked with parameters. It uses
errorreport.jsp to generate the error reports.

viewframes.jsp
Displays a set of frames to view a document. It has a toolbar in the top
frame and a page view in the bottom frame.

viewpage.jsp
Displays a single page of a document.

viewtoolbar.jsp
Displays the toolbar for controlling the viewed page of a document and
moving from page to page.

workflowstyle.css
Consists of a style sheet used by all of the JSPs dealing with workflow
tasks. By modifying this style sheet, the look of those pages can be
changed.

worklist.jsp
Displays the list of worklists, or the details of a particular worklist if
passed the name or a worklist as a parameter, or the details of a particular
work packet if passed the worklist and workpacket id’s as parameters.

Chapter 6. Using the sample thin client 189

190 Application Programming Guide

Chapter 7. Working with information mining

Building an application using the Information Mining beans
Before you can use the Information Mining beans, you must install and configure
the EIP information mining feature on the machine that will run the beans.

These are the Information Mining beans:
v CMBSummarizationService
v CMBCategorizationService
v CMBAdvancedSearchService
v CMBAdvancedSearchQueryBuilder
v CMBTextAnalysisAdapter
v CMBWebCrawlerService

The following examples demonstrate how you can use the Information Mining
beans to build applications that:
v Categorization sample: Gather information in preparation for information

mining - a typical step for a librarian. See Figure 43 on page 192. In this sample,
you make a standard EIP search to find information in the EIP content server.
(Gathering information from the Web is in the Web Crawler sample.) You
categorize the information and make it available for search within the categories
(the advanced search sample). The category information is placed with the
document IDs in storage known as the catalog.

v The summarization sample: Another typical step for a librarian. As in the
categorization sample, you make a standard EIP search to find information in
the EIP content server. You then summarize the information and store the
summaries in the catalog. See Figure 45 on page 197.

v The advanced search sample: This is an information mining step. You make an
advanced EIP search, which allows you to search for information using a flexible
query, and to search in specific categories. The search results contain the found
information, but not the categories from which the information originated. To
restore the category information from the catalog to the search results, you again
run the categorization step.
Then follows a step that restores also the summary information from the catalog
to the results.
This is shown in Figure 46 on page 200.

v The Web Crawler sample: Get information from the Web by crawling and make
the information available for search within the categories (the advanced search
sample). This is also a librarian step, similar to the categorization sample, except
that you gather the information from the Internet or an intranet rather than from
the EIP content server.
See Figure 48 on page 206.

Location of the sample files
The samples described in this chapter are provided in
CMBROOT\samples\jsp\clientapp\infomining:

Sample Location

© Copyright IBM Corp. 1996, 2001 191

Categorization application
\samples\java\beans\infomining\categorization

Summarization application
\samples\java\beans\infomining\summarization

Advanced search application
\samples\java\beans\infomining\advancedsearch

Web Crawler application
\samples\java\beans\infomining\webcrawler

Content provider sample
\samples\java\beans\infomining\contentprovider

Taxonomy files
\samples\java\beans\infomining\taxonomy

Each of these directories contains a compile.bat file to enable you to compile the
source code. The application sample directories also contain a run.bat file to
enable you to run the sample applications.

The JSP applications are in the following directory:

JSP applications
\SAMPLES\jsp\clientapp\infomining

The categorization sample: Categorizing information found by
a standard EIP search

This sample demonstrates how you can categorize documents that have been
retrieved by a standard EIP search. The analysis results are stored, and the
appropriate documents are made available for search within the categories (the
advanced search sample). See “Location of the sample files” on page 191.

Figure 43. The categorization sample

192 Application Programming Guide

In Figure 43 on page 192, a standard EIP search is made on documents held in the
content server. The categorization service bean takes the IDs of the found
documents and stores them in the catalog. The categorization service bean then
uses the IDs to locate the found documents (not shown) and to determine to which
categories they belong. The bean stores the category information with the
document IDs in the catalog. This information, the document IDs and the category
information is then made available for further processing.

The following beans are used in this sample:
v CMBConnection
v CMBQueryService (to perform standard EIP search)
v CMBSearchResults (to perform standard EIP search)
v CMBTextAnalysisAdapter
v CMBCategorizationService

For this sample, the application:
1. Creates the beans
2. Customizes the beans so that the categorization result is stored and the

appropriate documents are available for advanced search
3. Connects the beans
4. Runs the query
5. Displays the text analysis results for verification

An explanation of each of the preceding five steps follows the source for
Categorization.java.

Complete source for Categorization.java
import com.ibm.mm.beans.*;
import com.ibm.mm.beans.infomining.*;
import java.util.Vector;

public class Categorization implements CMBResultListener, CMBExceptionListener
{
public Categorization() throws Exception
{
// creating beans
CMBConnection connection = new CMBConnection();
CMBQueryService queryService = new CMBQueryService();
CMBSearchResults searchResults = new CMBSearchResults();
CMBCategorizationService categorizationService = new CMBCategorizationService();
CMBTextAnalysisAdapter adapter1 = new CMBTextAnalysisAdapter();
CMBTextAnalysisAdapter adapter2 = new CMBTextAnalysisAdapter();

// customizing beans
CMBInfoMiningUtilities.setContentProvider(new CMBDefaultContentProvider());
connection.setConnectionType(CMBConnection.CMB_CONNTYPE_REMOTE,

"file:///C:/cmbroot/cmbclient.ini");
connection.setServerName("content server name");
connection.setUserid("userid");
connection.setPassword("password");
categorizationService.setTaxonomyFileName("simple.taxonomy");
categorizationService.setCategorySchemaFileName("simple.tcd");
categorizationService.setReadContentFromCatalogEnabled(false);
categorizationService.setReadResultFromCatalogEnabled(false);
categorizationService.setWriteContentToCatalogEnabled(true);
categorizationService.setWriteResultToCatalogEnabled(true);

// connecting beans
connection.addCMBConnectionReplyListener(queryService);
connection.addCMBConnectionReplyListener(searchResults);

Chapter 7. Working with information mining 193

connection.addCMBConnectionReplyListener(categorizationService);
queryService.addCMBSearchReplyListener(searchResults);
searchResults.addCMBResultListener(adapter1);
adapter1.addCMBTextAnalysisRequestListener(categorizationService);
categorizationService.addCMBTextAnalysisReplyListener(adapter2);
adapter2.addCMBResultListener(this);

connection.addCMBExceptionListener(this);
queryService.addCMBExceptionListener(this);
searchResults.addCMBExceptionListener(this);
categorizationService.addCMBExceptionListener(this);
adapter1.addCMBExceptionListener(this);
adapter2.addCMBExceptionListener(this);

// running query
connection.connect();
CMBSchemaManagement schema = connection.getSchemaManagement();
CMBSearchTemplate searchTemplate = schema.getSearchTemplate("template name");
String[] searchValues = {"search value"};
searchTemplate.setSearchCriterion("criterion name",

CMBBaseConstant.CMB_OP_EQUAL, searchValues);
queryService.setQueryObject(searchTemplate);
queryService.runQuery();
connection.disconnect();
}

// implementing com.ibm.mm.beans.CMBResultListener
public void onCMBResult(CMBResultEvent e)
{
Vector cmbItemVector = (Vector)e.getData();

if(cmbItemVector == null)
return;

for(int i = 0; i < cmbItemVector.size(); i++)
{
CMBItem currentItem = (CMBItem)cmbItemVector.elementAt(i);

System.out.println("PID : " + currentItem.getPidString());
System.out.print("Categories: ");

Vector categoryVector = currentItem.getCategories();
CMBCategory category = null; //we display only the first one
if((categoryVector != null) && (categoryVector.size() > 0))
category = (CMBCategory)categoryVector.elementAt(0);

while(category != null)
{
System.out.print(" < " + category.getName());
category = category.parent();
}
System.out.println("\n");
}

}

//implementing CMBExceptionListener
public void onCMBException(CMBExceptionEvent e)
{
((Exception)e.getData()).printStackTrace();
}

public static void main(String[] args)
{
try
{
new Categorization();
}
catch(Exception e)
{

194 Application Programming Guide

e.printStackTrace();
}

}
}

Creating the beans
You need a connection to a content server to perform a search. The connection can
be established using the CMBConnection bean.

The beans CMBQueryService and CMBSearchResults are required to perform a
federated search. The documents are made available for advanced search using the
CMBCategorizationService bean, which will assign the documents to one or more
categories. The two adapters are required to convert search result events to text
analysis request events and then text analysis reply events back to search result
events.

Customizing the beans
The code shown in the customizing section must be adapted according to your
installation. On the connection bean you need to specify the connection type, the
name of the content server to connect, a user ID, and the appropriate password.

The line
connection.setConnectionType(CMBConnection.CMB_CONNTYPE_REMOTE,

"file:///C:/cmbroot/cmbclient.ini");

specifies that the sample is to be run on the client. If this line is not included this
would be a server application.

Before you can run the categorization service bean, you have to associate it with a
taxonomy using a taxonomy file and a category schema file. Both files are created
by the categorizer training tool as described in Planning and Installing Enterprise
Information Portal.

You have to set the readContentFromCacheEnabled and
readResultFromCacheEnabled properties to false to specify that the categorization
service beans must not use the catalog to read document content or the text
analysis results. With these two properties set to false, the bean retrieves the latest
version of the document content from the content server and analyzes the text.

The content and the text analysis results are written to the catalog, which prepares
the document for advanced search. The advanced search provides a search in
certain categories, which is possible only if the appropriate category information is
stored in the catalog.

There are other catalog-related properties that are documented in the online API
reference for the information mining beans.

Connecting the beans
Figure 44 on page 196 illustrates the flow of events among the beans:

Chapter 7. Working with information mining 195

Three of the beans used in this sample listen to the CMBConnectionReplyEvent to
get the connection handle. The CMBQueryService bean initiates a search that
results in an event that then starts the event flow through the other beans.

Because exceptions are also sent as events, the Categorization class has to handle
the appropriate event by implementing the CMBExceptionListener interface and is
connected to the beans to receive exceptions.

You can also add the CMBSummarization service in this sample to create
summaries for the documents. See “The advanced search sample: Make an
advanced search and analyze the results” on page 200 for more information.

The CMBTextAnalysisAdapter allows the text analysis beans to respond not only to
a CMBResultEvent but to other events as well. It does this by converting the
CMBResultEvent to a generic event called CMBTextAnalysisRequestEvent. The text
analysis beans themselves produce a CMBTextAnalysisReplyEvent which the
CMBTextAnalysisAdapter converts back to a CMBResultEvent. In this way, the
adapter allows text analysis beans to be inserted anywhere where a
CMBResultEvent, or a similar event, occurs.

Running the query
Before you can run the query you need to establish the connection to the content
server by calling the connect method on the CMBConnection bean:

Figure 44. The categorization sample: event flow

196 Application Programming Guide

connection.connect();

To start the federated search, you need to specify a search template, a criterion of
the template, the compare operator, and a search value. Refer to the Javadoc to get
information about the query syntax.

To close the current connection, call the disconnect() method:
connection.disconnect();

Displaying text analysis results
The Categorization class implements the CMBResultListener interface to list the
documents that have been found during the search and to display the category
information created for each document. The CMBResultEvent, received as an
argument in the onCMBResult method contains a vector of CMBItem objects where
each CMBItem object represents a document:

Vector cmbItemVector = (Vector)e.getData();

A CMBItem object encapsulates the PID of the document:
CMBItem currentItem = (CMBItem)cmbItemVector.elementAt(i);
System.out.println("PID : " + currentItem.getPidString());

as well as the results of text analysis beans if there were some in the event flow:
Vector categoryVector = currentItem.getCategories();

The vector returned by the getCategories() method of Class CMBItem contains
objects of class CMBCategory that can be used to determine the absolute path to
the current category.

Scenario 2: Import documents and metadata using federated
search

Figure 45. The summarization sample

Chapter 7. Working with information mining 197

This sample demonstrates how you can summarize documents that have been
retrieved by a standard EIP search. See “Location of the sample files” on page 191.

In Figure 45 on page 197, a standard EIP search is made on documents held in the
EIP content server. The summarization service bean takes the IDs of the found
documents and stores them in the catalog. The summarization service bean then
uses the IDs to locate the found documents (not shown) and to create summaries
of them. The bean stores the summarization information with the document IDs in
the catalog. This information, the document IDs and the summaries, is then made
available for further processing.

Tip: You can combine the use of the categorization service bean and the
summarization service bean, one after the other, in any sequence, to add analysis
information to the catalog.

Complete source for Summarization.java
Here is the complete source of the summarization sample. For further details, see
“The categorization sample: Categorizing information found by a standard EIP
search” on page 192.
import com.ibm.mm.beans.*;
import com.ibm.mm.beans.infomining.*;
import java.util.Vector;

public class Summarization implements CMBResultListener, CMBExceptionListener
{
public Summarization() throws Exception
{
// creating beans
CMBConnection connection = new CMBConnection();
CMBQueryService queryService = new CMBQueryService();
CMBSearchResults searchResults = new CMBSearchResults();
CMBSummarizationService summarizationService = new CMBSummarizationService();
CMBTextAnalysisAdapter adapter1 = new CMBTextAnalysisAdapter();
CMBTextAnalysisAdapter adapter2 = new CMBTextAnalysisAdapter();

// customizing beans
CMBInfoMiningUtilities.setContentProvider(new CMBDefaultContentProvider());
connection.setConnectionType(CMBConnection.CMB_CONNTYPE_REMOTE,

"file:///C:/cmbroot/cmbclient.ini");
connection.setServerName("content server name");
connection.setUserid("userid");
connection.setPassword("password");
summarizationService.setReadContentFromCatalogEnabled(false);
summarizationService.setReadResultFromCatalogEnabled(false);
summarizationService.setWriteContentToCatalogEnabled(true);
summarizationService.setWriteResultToCatalogEnabled(true);

// connecting beans
connection.addCMBConnectionReplyListener(queryService);
connection.addCMBConnectionReplyListener(searchResults);
connection.addCMBConnectionReplyListener(summarizationService);
queryService.addCMBSearchReplyListener(searchResults);
searchResults.addCMBResultListener(adapter1);
adapter1.addCMBTextAnalysisRequestListener(summarizationService);
summarizationService.addCMBTextAnalysisReplyListener(adapter2);
adapter2.addCMBResultListener(this);

connection.addCMBExceptionListener(this);
queryService.addCMBExceptionListener(this);
searchResults.addCMBExceptionListener(this);
summarizationService.addCMBExceptionListener(this);
adapter1.addCMBExceptionListener(this);
adapter2.addCMBExceptionListener(this);

198 Application Programming Guide

// running query
connection.connect();
CMBSchemaManagement schema = connection.getSchemaManagement();
CMBSearchTemplate searchTemplate = schema.getSearchTemplate("template name");
String[] searchValues = {"search value"};
searchTemplate.setSearchCriterion("criterion name",

CMBBaseConstant.CMB_OP_EQUAL, searchValues);
queryService.setQueryObject(searchTemplate);
queryService.runQuery();
connection.disconnect();
}

// implementing com.ibm.mm.beans.CMBResultListener
public void onCMBResult(CMBResultEvent e)
{
Vector cmbItemVector = (Vector)e.getData();

if(cmbItemVector == null)
return;

for(int i = 0; i < cmbItemVector.size(); i++)
{
CMBItem currentItem = (CMBItem)cmbItemVector.elementAt(i);

System.out.println("PID : " + currentItem.getPidString());
System.out.println("Summary : " + currentItem.getSummary());

}
}

//implementing CMBExceptionListener
public void onCMBException(CMBExceptionEvent e)
{
((Exception)e.getData()).printStackTrace();
}

public static void main(String[] args)
{
try
{
new Summarization();
}
catch(Exception e)
{
e.printStackTrace();
}

}
}

Chapter 7. Working with information mining 199

The advanced search sample: Make an advanced search and
analyze the results

This sample demonstrates how to run an advanced search and conduct a text
analysis (summarization and categorization) on the documents that have been
found. An advanced search can only find documents that have been made
available for that kind of search as in the categorization sample. See “Location of
the sample files” on page 191.

In contrast to the previous samples where a standard EIP search is carried out on
the entire EIP content server, this sample begins by making a so-called advanced
search only on the documents whose IDs are stored in the catalog. To narrow the
search even further, you tell the advanced search query builder not only the text
you want to search for, but also the categories of documents you want to search in.

Tips: 1. An advanced search can be made only on documents whose IDs and
categories are stored in the catalog; that is, on documents resulting from the
categorization sample.

2. The result of an advanced search contains only the IDs of the found documents
– not the name of the categories in which the documents where found. To obtain
the category information, you make use again of the categorization service bean.

When the advanced EIP search has produced a result list, the IDs of the found
documents are used by the categorization service bean to retrieve the category
information previously stored there by the same bean in the categorization sample.

Note that in this sample, the bean reads the category information from the catalog,
whereas in the categorization sample the bean writes the category information to
the catalog. You can, however, force the categorization service bean not to read the
category information previously stored in the catalog, and to recategorize the
documents (write it again to the catalog). You do this using the
ReadContentFromCacheEnabled and ReadResultFromCacheEnabled flags. Note,
however, that if these flags are set to true (the default value), and the catalog does
not contain the required category or summary information, then an analysis is
automatically started and the catalog or summary information is written to the
catalog.

Figure 46. The advanced search sample

200 Application Programming Guide

The advanced search sample continues by using the summarization bean to
retrieve from the catalog the summaries of the documents found by the advanced
search. Also here you can force the summarization service bean not to read the
summary information previously stored in the catalog, and to recreate it (write it
again to the catalog).

In each stage of the advanced search sample, the result is enriched: the initial
result contains only the IDs of the found documents, then the category information
is added, and then the summary information.

The following beans are used in this sample:
v CMBConnection
v CMBAdvancedSearchQueryBuilder
v CMBAdvancedSearchService
v CMBTextAnalysisAdapter
v CMBCategorizationService
v CMBSummarizationService

For this sample the application:
1. Creates the beans
2. Connects the beans
3. Runs the query
4. Displays the text analysis results

An explanation of each of the preceding four steps follows the source for
AdvancedSearch.java.

Complete source for AdvancedSearch.java
import com.ibm.mm.beans.*;
import com.ibm.mm.beans.infomining.*;
import java.util.Vector;

public class AdvancedSearch implements CMBResultListener, CMBExceptionListener
{
public AdvancedSearch() throws Exception
{
// creating beans
CMBConnection connection = new CMBConnection();
CMBAdvancedSearchQueryBuilder queryBuilder = new CMBAdvancedSearchQueryBuilder();
CMBAdvancedSearchService searchService = new CMBAdvancedSearchService();
CMBCategorizationService categorizationService = new CMBCategorizationService();
CMBSummarizationService summarizationService = new CMBSummarizationService();
CMBTextAnalysisAdapter adapter1 = new CMBTextAnalysisAdapter();
CMBTextAnalysisAdapter adapter2 = new CMBTextAnalysisAdapter();

// customizing beans
connection.setConnectionType(CMBConnection.CMB_CONNTYPE_REMOTE,

"file:///C:/cmbroot/cmbclient.ini");
connection.setServerName("content server name");
connection.setUserid("userid");
connection.setPassword("password");
queryBuilder.setTaxonomyFileName("simple.taxonomy");
categorizationService.setTaxonomyFileName("simple.taxonomy");
categorizationService.setCategorySchemaFileName("simple.tcd");
categorizationService.setReadContentFromCatalogEnabled(true);
categorizationService.setReadResultFromCatalogEnabled(true);
categorizationService.setWriteContentToCatalogEnabled(true);
categorizationService.setWriteResultToCatalogEnabled(true);
summarizationService.setReadContentFromCatalogEnabled(true);

Chapter 7. Working with information mining 201

summarizationService.setReadResultFromCatalogEnabled(true);
summarizationService.setWriteContentToCatalogEnabled(true);
summarizationService.setWriteResultToCatalogEnabled(true);

// connecting beans
connection.addCMBConnectionReplyListener(searchService);
connection.addCMBConnectionReplyListener(categorizationService);
connection.addCMBConnectionReplyListener(summarizationService);
queryBuilder.addCMBAdvancedSearchRequestListener(searchService);
searchService.addCMBResultListener(adapter1);
adapter1.addCMBTextAnalysisRequestListener(categorizationService);
categorizationService.addCMBTextAnalysisReplyListener(summarizationService);
summarizationService.addCMBTextAnalysisReplyListener(adapter2);
adapter2.addCMBResultListener(this);

connection.addCMBExceptionListener(this);
queryBuilder.addCMBExceptionListener(this);
searchService.addCMBExceptionListener(this);
categorizationService.addCMBExceptionListener(this);
summarizationService.addCMBExceptionListener(this);
adapter1.addCMBExceptionListener(this);
adapter2.addCMBExceptionListener(this);

// running query
connection.connect();
queryBuilder.setTextSearchQuery("query string");
queryBuilder.setCategoryNames("categories");
queryBuilder.runQuery();
connection.disconnect();
}

// implementing com.ibm.mm.beans.CMBResultListener
public void onCMBResult(CMBResultEvent e)
{
Vector cmbItemVector = (Vector)e.getData();

if(cmbItemVector == null)
return;

for(int i = 0; i < cmbItemVector.size(); i++)
{
CMBItem currentItem = (CMBItem)cmbItemVector.elementAt(i);

System.out.println("PID : " + currentItem.getPidString());
System.out.print("Summary : " + currentItem.getSummary());
System.out.print("Categories: ");

Vector categoryVector = currentItem.getCategories();
CMBCategory category = null; //we display only the first one
if((categoryVector != null) && (categoryVector.size() > 0))
category = (CMBCategory)categoryVector.elementAt(0);

while(category != null)
{
System.out.print(" < " + category.getName());
category = category.parent();
}
System.out.println("\n");
}

}

//implementing CMBExceptionListener
public void onCMBException(CMBExceptionEvent e)
{
((Exception)e.getData()).printStackTrace();
}

public static void main(String[] args)
{
try

202 Application Programming Guide

{
new AdvancedSearch();
}
catch(Exception e)
{
e.printStackTrace();
}

}
}

Creating the beans
You need a connection to a content server to perform a search. The connection can
be established using the CMBConnection bean. The beans
CMBAdvancedQueryBuilder and CMBAdvancedSearchService are required to
perform an advanced EIP search. A summary and category information can be
created using the beans CMBSummarizationService and CMBCategorizationService.
The two adapters are required to convert search result events to text analysis
request events and then text analysis reply events back to search result events.

Here is the code that creates the beans:
CMBConnection connection = new CMBConnection();
CMBAdvancedSearchQueryBuilder queryBuilder = new CMBAdvancedSearchQueryBuilder();
CMBAdvancedSearchService searchService = new CMBAdvancedSearchService();
CMBCategorizationService categorizationService = new CMBCategorizationService();
CMBSummarizationService summarizationService = new CMBSummarizationService();
CMBTextAnalysisAdapter adapter1 = new CMBTextAnalysisAdapter();
CMBTextAnalysisAdapter adapter2 = new CMBTextAnalysisAdapter();

Customizing the beans
The code shown in the customizing section has to be adapted according to your
installation. On the connection bean you need to specify the connection type, the
name of the content server to connect, a user ID and the appropriate password. By
specifying the client INI file, you indicate that the sample has been written to run
on an EIP client.

Before you can run the advanced query builder and the categorization service bean
you need to associate them with a taxonomy using a taxonomy file. In addition,
the category schema file has to be set on the categorization service bean. Both files
are created by the categorizer training tool as described in Enterprise Information
Portal Planning and Installing Enterprise Information Portal.

Here is the code that does the customization for the sample:
connection.setConnectionType(CMBConnection.CMB_CONNTYPE_REMOTE,

"file:///C:/cmbroot/cmbclient.ini");
connection.setServerName("content server name");
connection.setUserid("userid");
connection.setPassword("password");
queryBuilder.setTaxonomyFileName("simple.taxonomy");
categorizationService.setTaxonomyFileName("simple.taxonomy");
categorizationService.setCategorySchemaFileName("simple.tcd");
categorizationService.setReadContentFromCatalogEnabled(true);
categorizationService.setReadResultFromCatalogEnabled(true);
categorizationService.setWriteContentToCatalogEnabled(true);
categorizationService.setWriteResultToCatalogEnabled(true);
summarizationService.setReadContentFromCatalogEnabled(true);
summarizationService.setReadResultFromCatalogEnabled(true);
summarizationService.setWriteContentToCatalogEnabled(true);
summarizationService.setWriteResultToCatalogEnabled(true);

The code assumes that the categorization input comes from the catalog.

Chapter 7. Working with information mining 203

categorizationService.setReadContentFromCatalogEnabled(true);
categorizationService.setReadResultFromCatalogEnabled(true);

These are the default values, so you can omit these statements. However, if you
want the content or the result to be read from the content server and not from the
catalog, make these statements false, like this:

categorizationService.setReadContentFromCatalogEnabled(false);
categorizationService.setReadResultFromCatalogEnabled(false);

Connecting the beans
Figure 47 illustrates the flow of events among the beans in this sample:

Three of the beans used in this sample listen to the CMBConnectionReplyEvent to
get the connection handle. The CMBAdvancedSearchQueryBuilder bean initiates a
search that results in an event which then starts the event flow through the other
beans.

Here is the code that connects the beans:

Figure 47. The advanced search sample: Event flow

204 Application Programming Guide

connection.addCMBConnectionReplyListener(searchService);
connection.addCMBConnectionReplyListener(categorizationService);
connection.addCMBConnectionReplyListener(summarizationService);
queryBuilder.addCMBAdvancedSearchRequestListener(searchService);
searchService.addCMBResultListener(adapter1);
adapter1.addCMBTextAnalysisRequestListener(categorizationService);
categorizationService.addCMBTextAnalysisReplyListener(summarizationService);
summarizationService.addCMBTextAnalysisReplyListener(adapter2);
adapter2.addCMBResultListener(this);

connection.addCMBExceptionListener(this);
queryBuilder.addCMBExceptionListener(this);
searchService.addCMBExceptionListener(this);
categorizationService.addCMBExceptionListener(this);
summarizationService.addCMBExceptionListener(this);
adapter1.addCMBExceptionListener(this);
adapter2.addCMBExceptionListener(this);

Because exceptions are also sent as events, the AdvancedSearch class has to handle
the appropriate event by implementing the CMBExceptionListener interface and is
connected to the beans to be notified about exceptions.

Running the query
Before you can run the query you need to establish the connection to the content
server by calling the connect method on the CMBConnection bean:

connection.connect();

To start the advanced EIP search, you need to specify a search query string and the
categories to search in.

You need to adapt the following code according to your configuration:
queryBuilder.setTextSearchQuery("query string");
queryBuilder.setCategoryNames("categories");
queryBuilder.runQuery();

To close the current connection, just call the disconnect() method:
connection.disconnect();

Displaying text analysis results
The AdvancedSearch class implements the CMBResultListener interface to be able
to list the documents that have been found during the search and to display the
category and summary information created for each document. The
CMBResultEvent, received as argument in the onCMBResult method contains a
vector of CMBItem objects where each CMBItem object represents a document:

Vector cmbItemVector = (Vector)e.getData();

A CMBItem object encapsulates the PID of the document:
CMBItem currentItem = (CMBItem)cmbItemVector.elementAt(i);
System.out.println("PID : " + currentItem.getPidString());

as well as the results of text analysis beans if there were some in the event flow.

Then you get the summary information:
System.out.print("Summary : " + currentItem.getSummary());

and the category information:
Vector categoryVector = currentItem.getCategories();

Chapter 7. Working with information mining 205

The vector returned by the getCategories() method of Class CMBItem contains
objects of class CMBCategory that can be used to determine the absolute path to
the current category.

The Web Crawler sample: Getting information from crawling
the Web

This sample demonstrates how to import crawled documents into the information
mining feature and conduct a text analysis (categorization) on the documents that
have been imported. This can only be done if IBM Web Crawler has run previously
and new or changed objects have been saved within the defined Web space. The
saved pages must contain URL metadata. Set the web crawler to include the
following metadata: edit your webspace imy.ini file and set the [STORE] section
SAVE_HEADLINESk option equal to 1 before you start the crawl. See “Location of
the sample files” on page 191.

As in samples 1 and 2, the results of the Web Crawler search bean can be made
available for a subsequent advanced search (see the advanced search sample).

The following beans are used in this sample:
v CMBConnection
v CMBWebCrawlerService
v CMBTextAnalysisAdapter
v CMBCategorizationService

For this sample the application:
1. Creates the beans
2. Customizes the beans so that the text analysis results are read from the catalog

Figure 48. The Web Crawler sample

206 Application Programming Guide

|
|
|
|
|

3. Connects the beans
4. Sets or changes the default properties of CMBWebCrawlerService
5. Starts the Web Crawler service
6. Displays the text analysis results

An explanation of each of the preceding steps follows the source for
WebCrawler.java.

Complete source for WebCrawler.java
import com.ibm.mm.beans.*;
import com.ibm.mm.beans.infomining.*;
import java.util.Vector;

public class WebCrawler implements CMBResultListener, CMBExceptionListener
{
public WebCrawler() throws Exception
{
// creating beans
CMBConnection connection = new CMBConnection();
CMBWebCrawlerService crawlerService = new CMBWebCrawlerService();
CMBCategorizationService categorizationService = new CMBCategorizationService();
CMBTextAnalysisAdapter adapter1 = new CMBTextAnalysisAdapter();
CMBTextAnalysisAdapter adapter2 = new CMBTextAnalysisAdapter();

// customizing beans
connection.setConnectionType(CMBConnection.CMB_CONNTYPE_REMOTE,

"file:///C:/cmbroot/cmbclient.ini");
connection.setServerName("content server name");
connection.setUserid("userid");
connection.setPassword("password");
crawlerService.setRootDir("C:\\webspaces");
crawlerService.setWebSpace("webspace name");
categorizationService.setTaxonomyFileName("simple.taxonomy");
categorizationService.setCategorySchemaFileName("simple.tcd");
categorizationService.setReadContentFromCatalogEnabled(true);
categorizationService.setReadResultFromCatalogEnabled(false);
categorizationService.setWriteContentToCatalogEnabled(true);
categorizationService.setWriteResultToCatalogEnabled(true);

// connecting beans
connection.addCMBConnectionReplyListener(categorizationService);
connection.addCMBConnectionReplyListener(crawlerService);
crawlerService.addCMBResultListener(adapter1);
adapter1.addCMBTextAnalysisRequestListener(categorizationService);
categorizationService.addCMBTextAnalysisReplyListener(adapter2);
adapter2.addCMBResultListener(this);

connection.addCMBExceptionListener(this);
crawlerService.addCMBExceptionListener(this);
categorizationService.addCMBExceptionListener(this);
adapter1.addCMBExceptionListener(this);
adapter2.addCMBExceptionListener(this);

// running web crawler service
connection.connect();
crawlerService.start();
connection.disconnect();
}

// implementing com.ibm.mm.beans.CMBResultListener
public void onCMBResult(CMBResultEvent e)
{
Vector cmbItemVector = (Vector)e.getData();

if(cmbItemVector == null)
return;

Chapter 7. Working with information mining 207

for(int i = 0; i < cmbItemVector.size(); i++)
{
CMBItem currentItem = (CMBItem)cmbItemVector.elementAt(i);

System.out.println("PID : " + currentItem.getPidString());
System.out.print("Categories: ");

Vector categoryVector = currentItem.getCategories();
CMBCategory category = null; //we display only the first one
if((categoryVector != null) && (categoryVector.size() > 0))
category = (CMBCategory)categoryVector.elementAt(0);

while(category != null)
{
System.out.print(" < " + category.getName());
category = category.parent();
}
System.out.println("\n");
}

}

//implementing CMBExceptionListener
public void onCMBException(CMBExceptionEvent e)
{
((Exception)e.getData()).printStackTrace();
}

public static void main(String[] args)
{
try
{
new WebCrawler();
}
catch(Exception e)
{
e.printStackTrace();
}

}
}

Creating the beans
You build a connection to a content server for security reasons because information
mining needs to know who is working with the system. This ensures that only
those who are registered in the system are allowed to use it. The connection can be
established using the CMBConnection bean.

The bean CMBWebCrawlerService is used to import the previously crawled
documents into the information mining component and to throw a
CMBResultEvent notification. Summary and category information can be created
using the beans CMBSummarizationService and CMBCategorizationService. In this
sample, the CMBCategorizationService service bean is used. The two adapters
convert crawler service result events to text analysis request events, and then text
analysis reply events back to the sample result event.

Customizing the beans
The code shown in the customizing section has to be adapted according to your
installation. On the connection bean, you need to specify the connection type, the
name of the content server to connect, a user ID and the appropriate password.
Because the sample has been written to run on an EIP client, the client INI file has
to be specified.

Before you can run the Web Crawler service and the categorization service bean,
you need to associate them with a taxonomy using a taxonomy file. Also the

208 Application Programming Guide

rootDir on your local host, where the Web Crawler saved or changed the crawled
objects within the Web space, must be specified together with the previously
defined Web space name.

In addition, the category schema file has to be set on the categorization service
bean. Both files are created by the categorizer training tool as described in Planning
and Installing Enterprise Information Portal.

It is essential that ReadContentFromCatalogEnabled and
ReadResultFromCatalogEnabled is set to true (the default value), because otherwise
it would try to read from the EIP content server. This also implies that, for this
sample to work, the content or result must already exist in the catalog.

Connecting the beans
Figure 49 illustrates the flow of events among the beans in this sample:

Two of the beans used in this sample listen to the CMBConnectionReplyEvent to
get the connection handle. The CMBWebCrawlerService initiates the crawl service
that results in an event that then starts the event flow through the other beans.

Because exceptions are also sent as events, the WebCrawler class has to handle the
appropriate event by implementing the CMBExceptionListener interface, and is
connected to the beans to receive exceptions.

Starting the Web crawler service
Before you can start the Web crawler service you need to establish the connection
to the content server by calling the connect method on the CMBConnection bean:

Figure 49. The Web Crawler sample: Event flow

Chapter 7. Working with information mining 209

|
|
|
|

connection.connect();

Here is the code to start the Web crawler service:
crawlerService.start();

To close the current connection, call the disconnect() method:
connection.disconnect();

Displaying text analysis results
The WebCrawler class implements the CMBResultListener interface to list the
documents that have been found on the Web space and imported to the
information mining component and to display the category information created for
each document. The CMBResultEvent, received as an argument in the
onCMBResult method contains a vector of CMBItem objects where each CMBItem
object represents a document:
Vector cmbItemVector = (Vector)e.getData();

A CMBItem object encapsulates the PID of the document:
CMBItem currentItem = (CMBItem)cmbItemVector.elementAt(i);
System.out.println("PID : " + currentItem.getPidString());

as well as the results of text analysis beans if there were some in the event flow.

In this sample, you get Categories which is the only text analysis bean in the event
flow:
Vector categoryVector = currentItem.getCategories();

The vector returned by the getCategories() method of Class CMBItem contains
objects of class CMBCategory that can be used to determine the absolute path to
the current category.

Building your own content provider
You may need to build your own content provider when you need to apply
custom filters to retrieve text from the binary part of a proprietary format.

This section describes how you can write your own content provider that can deal
with a custom object model, or with proprietary formats inside the parts of a
CMBItem. To support you in this work, Information Mining provides:
v Interface CMBContentProvider which defines the interface for classes that know

how to determine the text to be used for text analysis.
v Method setContentProvider(CMBContentProvider) in CMBInfoMiningUtilities

which sets a ContentProvider.

The CMBContentProvider interface defines one method getContent() which
returns the text of the specified item to be used for text analysis.
v parameter connection: an open connection to the server.
v parameter item: the current item to be processed.
v exception CMBContentProviderException: if an error occurs while processing the

current item.
public String getContent(CMBConnection connection, CMBItem item)

throws CMBContentProviderException;

210 Application Programming Guide

To tell the system which ContentProvider to use, use the method
setContentProvider(CMBContentProvider) in the CMBInfoMiningUtilities class to
specify an object that has this interface. Here’s an example:
CMBInfoMiningUtilities.setContentProvider

(new MyCompaniesLatestGreatestContentProvider());

To develop your own content provider you can use the sample content provider
(SimpleContentProvider) as a starting point. See “Location of the sample files” on
page 191 for the location of the sample content provider.

A default content provider is provided with Information Mining. It employs INSO
Corporation’s OutsideIn technology to process a large number of document
formats. It extends the CMBContentProvider interface to allow selecting individual
parts for processing, and offers a mechanism for preventing processing objects that
are too large for in-memory processing, such as video streams.

To register the default content provider use:
CMBInfoMiningUtilities.setContentProvider(new CMBDefaultContentProvider());

These are the methods provided:
/**
* Default constructor.
* All parts in CMBItem are processed (provided they do not exceed the
* default size cutoff value of 16 MB) and the texts bits are concatenated.
*/
public CMBDefaultContentProviderINSO() ()

/**
* Constructor defining the part to be extracted.
* This constructor allows specifying one part in the CMBItems to be
* accessed which contains the text parts to be processed.
* @param partIndex index of the part in CMBItem to be processed for
* text content
*/
public CMBDefaultContentProviderINSO(int partIndex) ()

/**
* Constructor defining the parts to be extracted.
* This constructor allows specifying the parts in the CMBItems
* which contain the text parts to be processed. If multiple parts
* are specified the resulting text bits will be concatenated.
* @param partIndices indices of parts to be processed
*/
public CMBDefaultContentProviderINSO(int[] partIndices) ()

/**
* Set the value of maxPartSize in bytes.
* This value specifies the largest part size that is processed by
* the retrieval subsystem. The cutoff is introduced to avoid system
* crashes due to trying to load video streams into main memory for
* processing.
* @param v number of bytes to assign to maxPartSize.
*/
public void setMaxPartSize(int v) ()

/**
* Set the part indices of the parts to be processed.
* Use this method if there is a need to change the part mask
* during the ongoing operation.
* @param array of part indices
*/

Chapter 7. Working with information mining 211

public void setPartsMask(int[] partIndices) ()

/**
* Get textual contents of a CMBItem.
* This is the default method for text retrieval on CMBItems. The standard
* behaviour
* is to look at all available parts for text content, collect this content
* and concatenate it.
*
* @return text content of all parts in the specified CMBItem
* @param connection EIP connection
* @param item CMBItem to be processed
*/
public String getContent(CMBConnection connection, CMBItem item)

throws CMBContentProviderException ()

Understanding the Information Mining JSP applications
There are two Information Mining Java Server Page (JSP) applications:
v fedSearch.jsp searches within Enterprise Information Portal. It categorizes,

summarizes, and indexes the documents into the Information Mining
component. Then it displays the found documents in a category structure.

v advSearch.jsp searches for text within the Information Mining component where
you can search for documents within categories. It, too, displays the found
documents in a category structure.

The location of the JSP applications is given in “Location of the sample files” on
page 191. The directory contains these files:

fedSearch.jsp The source code for the fedSearch JSP.

This JSP provides the Enterprise Information Portal search-specific
form-handling code and form-formatting instructions (HTML). It
also acts as the controller for selecting views of the data.

advSearch.jsp The source code for the advSearch JSP.

This JSP provides the advanced search-specific form-handling code
and form-formatting instructions (HTML). It also acts as the
controller for selecting views of the data. This file also contains
initialisation instructions specific to the advanced search, in
particular the availability of categories that can be searched in.

Settings.jsp The source code for the Settings JSP.

This JSP allows you to customize settings to adapt them to your
environment.

catView.jsp This JSP provides the view-specific code and formatting
instructions (HTML) for the category view of returned results. It
contains loops for iterating through returned results, but it mostly
contains formatting instructions.

classes.jsp This JSP provides the logic and bean-connection code. It contains
only java code. There is an implementation of a simple data
structure class used for viewing of returned results. There is also
an implementation of an event handler to retrieve and manipulate
returned results. This is where the core of the work is done after a
results list has been returned from either Enterprise Information
Portal search or the advanced search.

212 Application Programming Guide

The source code is a sample of using the Information Mining beans, and it contains
a description of how the code works: instanciating the beans, connecting the beans
together, processing the return of documents using an event handler, and so on.

For the JSPs to run you must have not only Enterprise Information Portal but also
the Information Mining component installed, with Enterprise Information Portal
connected to a back-end data source. You also need a Web server that is capable of
running JSPs.

For more details on JSP applications, go to
http://java.sun.com/products/jsp/index.html.

Chapter 7. Working with information mining 213

214 Application Programming Guide

Chapter 8. Using the C++ application programming interfaces

The C++ APIs are a set of classes that access and manipulate locally or remotely
stored data.

This chapter describes the C++ API, the C++ implementation of multiple search
facilities, and Internet connectivity.

The C++ API supports:
v Multiple search and update across a heterogeneous combination of content

servers
v A common object model for data access
v A flexible mechanism for using a combination of search engines; for example,

Text Search Engine and query by image content (QBIC).

When building an application using the C++ APIs that you will use for debugging,
link your application with the debug version of the API libraries, that is, the *d.lib
libraries. When building your final production application, link with the
non-debugging libraries (*.lib).

Setting up the Windows and AIX environment
When you set up your Windows or AIX environment, you must establish the
settings described in this section. Table 19 lists Library, AIX shared and DLL
requirements.

Requirement: To use C++, you must install DB2 Client Application Enabler (CAE)
on all remote servers running the Enterprise Information Portal database. The CAE
user ID and password must be the same user ID and password you use with the
Enterprise Information Portal database. For details, see the Managing Enterprise
Information Portal.

Table 19. Library, shared objects and DLL environment information
Library Shared objects for AIX Windows DLLs
cmbcm716.lib libcmbcm71366.a cmbcm716.dll
cmbcm716d.lib, libcmbdb271366.a cmbcm716d.dll
cmbdl716.lib, cmbdl716d.lib libcmbdl71366.a

libcmbdlfac71366.so
cmbdb2716.dll
cmbdb2fac716.dll

cmbip716.lib cmbdb2716d.dll
cmbdb2fac716d.dll

cmbip716d.lib libcmbdb2fac71366.so cmbdl716.dll
cmbv4716.lib libcmbdj71366.a cmbdl716d.dll
cmbv4716d.lib libcmbdjfac71366.so cmbdlfac716.dll
cmbdd716.lib cmbdlfac716d.dll
cmbdd716d.lib cmbodbc716.dll

cmbodbcfac716.dll
cmbdes716.lib cmbodbc716d.dll

cmbodbcfac716d.dll
cmbdes716d.lib cmbfed716.dll

cmbfedfac716.dll
cmbdb2716.lib cmbfed716d.dll

cmbfedfac716d.dll

© Copyright IBM Corp. 1996, 2001 215

|
|
|
|

Table 19. Library, shared objects and DLL environment information (continued)
Library Shared objects for AIX Windows DLLs
cmbdb2716d.lib cmbdd716.dll

cmbddfac716.dll
cmbdj716d.lib cmbdd716d.dll

cmbddfac716d.dll
cmbdj716.lib cmbip716.dll

cmbipfac716.dll
cmbip716d.dll
cmbipfac716d.dll
cmbv4716.dll
cmbv4fac716.dll
cmbv4716d.dll
cmbv4fac716d.dll
cmbdes716.dll
cmbdesfac716.dll
cmbdes716d.dll
cmbdesfac716d.dll
cmbdj716.dll
cmbdjfac716.dll
cmbdj716d.dll
cmbdjfac716d.dll
de_db2.dll
de_db2_d.dll
de_ora.dll
de_ora_d.dll

Setting AIX environment variables
Use the -qalign=packed compiler option to properly align objects. Refer to the
sample makefiles in the samples directory for more information.

Set the following environment variables:

In the AIX environment, you can use one of three batch files to set up your
development environment.
1. For a Bourne shell, use cmbenv71.sh

2. For a C shell, use cmenv71.csh

3. For a Korn shell, use cmenv71.ksh

Set the following environment variables:

NLS path
export NLSPATH=${NLSPATH}:/usr/lpp/cmb/msg/En_US/%N

PATH
export PATH=/usr/lpp/cmb/lib

LIBPATH
export LIBPATH=/usr/lpp/cmb/lib

INCLUDE
export INCLUDE=/usr/lpp/cmb/INCLUDE

Setting Windows environment variables
You can open a DOS command prompt with the environment configured for
developing EIP applications by selectingStart —� Programs —� IBM Enterprise

216 Application Programming Guide

|
|

|

|

|

|

|
|

Information Portal for Multiplatforms 7.1 —� Development Window. As an
alternative, you can run CMBenv71.bat in a DOS command prompt to set up the
environment.

If you want to modify your environment variables, change the following:

PATH
set PATH=x:\CMBROOT\DLL

where x is your drive

INCLUDE
set INCLUDE=x:\CMBROOT\INCLUDE

where x is your drive

Building C++ programs on Windows
To create a project and makefile in Microsoft® Developers Studio version 5.2 or
higher:
1. Select the Win32 console application from the left frame.
2. In the window that opens, select empty project.
3. If you used a different program to write your application, click Project —\Add

to Project.
4. Select Files and then the .cpp file you want to import.
5. Select Project/Settings. Click the General tab in Microsoft Foundation Classes.
6. Select Use MFC in a Shared DLL.
7. Click the C/C++ tab. Change the category to Preprocessor. Type the path for the

Development Kit - OO API include directories are located in the ″Additional
include directories″ text field.

8. Click the Link tab, type in under ″Object/library modules″ where the
Development Kit - OO API lib is located (for example, x:\cmbroot\lib where x
is the drive).

9. You can now build and run your project.

To use an existing makefile using Microsoft Developers Studio version 5.2 or
higher, you must complete the following steps:
1. Open the workspace and select the sample makefile.
2. Click Project Settings.
3. Select the C/C++ tab. Change the category to Preprocessor, type in the

pathname where the Development Kit - OO API include directories are located
in the ″Additional include directories″ text field.

4. Click the Link tab, type in under the Object/library modules where the
Development Kit - OO API lib is located.

5. You can now build and run your project.

Setting console subsystem for code page conversion on
Windows

#include <DKConstant.h>
#include <DKEnvironment.hpp>

void main(int argc, char *argv[])
{

// set sub system to console at the beginning of program this

Chapter 8. Using the C++ application programming interfaces 217

|
|
|

// will cause the code page that the error messages are returned
// in by DKExceptions to be converted from the Windows Graphical
// User Interface (ANSI format) to the Console (OEM format)
// If this is not specified the default is DK_SS_WINDOWS
DKEnvironment::setSubSystem(DK_SS_CONSOLE);
...

}

Multiple search facilities
Use the multiple search facilities to search within a given content server, using one
or a combination of supported query types (defined below) or to search the results
of previous search. Each search type is supported by one or more search engines.

Parametric query
Queries requiring an exact match between the condition specified in the
query and stored data.

Text query
Queries requiring an approximate match between the given query and
stored text.

Not all content servers support multiple search facilities. For more information
about specific content servers and multiple search, see “Using specific content
servers” on page 258.

Tracing information
You can use any of the following environment variable settings to get tracing
information.

For text queries using Text Search Engine
The Text Search Engine and all of its functions can only be used with the Content
Manager server.

The following environment variable settings put a Text Search Engine query, in
binary format, into a specified file.
v CMBTMDSTREAMTRACE=<fileName> (for example, .\tm.out for Windows or

<./tm.out> for AIX)

The following environment variable settings put the Text Search Engine API calls
used during a text query into a specified file.
v CMBTMTRACE=<fileName> (for example, .\tm.api for Windows or ./tm.api for

AIX)

The following environment setting puts the text search terms into a specified file.
v CMBTMTERM=<fileName> (for example,.\tmterm.out)

For parametric queries
The following environment variable setting puts the parametric query passed to
the folder manager into the specified file.
v CMBDLQRYTRACE=<fileName> (for example, <.\dlqry.out> for Windows or

<./dlqry.out> for AIX)

218 Application Programming Guide

Catching a DKException
A DKException, once caught, allows you to see any error messages, error codes,
and error states that occurred while running. If an error is caught below the
DKException name, an error is issued along with the location of where the
exception was thrown. The error ID and exception ID are also given.
try {

DKDatastoreDL dsDL;
dsDL.connect("TM","","","");
dsDL.disconnect();
}
catch(DKException &exc) {

cout << "Error id " << exc.errorId() << endl;
cout << "Exception id " << exc.exceptionId() << endl;
for(unsigned long i = 0; i< exc.textCount();i++) {

cout << "Error text: " << exc.text(i) << endl;
}
for (unsigned long g=0; g< exc.locationCount();g++) {

const DKExceptionLocation* p = exc.locationAtIndex(g);
cout << "Filename: " << p->fileName() << endl;
cout << "Function: " << p->functionName() << endl;
cout << "LineNumber: " << p->lineNumber() << endl;

}
cout << "Exception Class Name: " << exc.name() << endl;

}

Connecting to content servers
A DKDatastorexx (where xx is the suffix representing the specific content server,
for example, Content Manager (DL), ImagePlus for OS/390 (IP), and so forth)
represents and manages a connection to a content server, provides transaction
support, and runs server commands.

Establishing a connection
A content server provides methods for connecting to it and disconnecting from it.
The following example shows how to connect to a Content Manager library server
named LIBSRVRN, using the user ID USER1 and password PASSWORD. In a typical
application, you create a datastore, connect to it, work with it, then disconnect
from it, as shown in the following example.
...
try {

DKDatastoreDL dsDL;
cout << "Datastore DL created" << endl;
cout << "connecting to datastore" << endl;
dsDL.connect(libsrv,userid,pw);
cout << "datastore connected " << libsrv << " userid - " << userid << endl;
dsDL.disconnect();
cout << "datastore disconnected" << endl;

}
...

The complete sample application from which this example was taken
(TConnectDL.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

Setting and getting content server options
Each content server provides some processing or informational options that you
can set or get using its methods. The following example shows how to set and get
the option for establishing an administrative session. See the online API reference
for the list of options for each content server and their descriptions.

Chapter 8. Using the C++ application programming interfaces 219

DKAny input_option = DK_DL_SS_CONFIG;
DKAny output_option;
dsDL.setOption(DK_DL_OPT_ACCESS,input_option);
dsDL.getOption(DK_DL_OPT_ACCESS,output_option);

Listing content servers
Each content server provides a method for listing the content servers it can connect
to.

Restriction: The Domino.Doc datastore does not provide such a method.

The list of servers is returned in a sequential collection of DKAny objects
containing DKServerInfoxx (where xx is the datastore suffix in which you want to
work, for example, Content Manager (DL), ImagePlus for OS/390 (IP), and so
forth) objects. After you obtain a DKServerDefxx object you can retrieve the server
name and server type, and use the server name to establish a connection. The
following example shows how to retrieve the list of servers:
DKDatastoreDL dsDL;
DKSequentialCollection *pCol = 0;
dkIterator *pIter = 0;
DKServerDefDL *pSV = 0;
DKString strServerName;
DKString strServerType;
DKAny a;
long i = 0;
cout << "list servers" << endl;
a = dsDL.listDataSources();
pCol = (DKSequentialCollection*)((dkCollection*)a);
pIter = pCol->createIterator();
while (pIter->more() == TRUE)
{

i++;
pSV = (DKServerDefDL*)((void*)(*pIter->next()));
strServerName = pSV->getName();
strServerType = pSV->getServerType();
.... // Process the list of servers as appropriate
delete pSV;

}
delete pIter;
delete pCol;

The complete sample application from which this example was taken
(TListCatalogDL.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

Listing a content server’s schema
Each content server provides methods for listing its schema. In a content server,
these methods list entities and their attributes.

The list of entities is returned in a DKSequentialCollection object of dkEntityDef
objects. The list of attributes for an index class are returned in a
DKSequentialCollection object of dkAttrDef objects. After you obtain a dkAttrDef
object, you can retrieve information about the attribute, such as its name and type,
and use the information to form a query. For specific information about these two
methods, see the online API reference.

The following example shows how to retrieve the list of index classes and
attributes from a Content Manager server:

220 Application Programming Guide

...
cout << "list index classes" << endl;
pCol = (DKSequentialCollection*)((dkCollection*)dsDL.listDataSources());
pIter = pCol->createIterator();
i = 0;
while (pIter->more() == TRUE)
{
i++;
pEnt = (DKIndexClassDefDL*)((void*)(*pIter->next()));
strIndexClass = pEnt->getName();
cout << "index class name [" << i << "] - " << strIndexClass << endl;
cout << " list attributes for " << strIndexClass << " index class" << endl;
pCol2 = (DKSequentialCollection*)((dkCollection*)dsDL.listEntities(strIndexClass));
pIter2 = pCol2->createIterator();
j = 0;
while (pIter2->more() == TRUE)
{
j++;
pA = pIter2->next();
pAttr = (DKAttrDefDL*) pA->value();
cout << " Attribute name [" << j << "] - " << pAttr->getName() << endl;
cout << " datastoreName " << pAttr->datastoreName() << endl;
cout << " datastoreType " << pAttr->datastoreType() << endl;
cout << " attributeOf " << pAttr->getEntityName() << endl;
cout << " type " << pAttr->getType() << endl;
cout << " size " << pAttr->getSize() << endl;
cout << " id " << pAttr->getId() << endl;
cout << " nullable " << pAttr->isNullable() << endl;
cout << " precision " << pAttr->getPrecision() << endl;
cout << " scale " << pAttr->getScale() << endl;
cout << " string type " << pAttr->getStringType() << endl;
delete pAttr;
}

cout << " " << j << " attributes listed for " << strIndexClass
<< " index class" << endl;

delete pIter2;
delete pCol2;
delete pEnt;
...

The complete sample application from which this example was taken
(TListCatalogDL.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

Tip: Instead of deleting pEnt immediately, you can defer it and use the apply
method to delete the attribute definition inside of the collection. See “Managing
memory in collections” on page 244 for more information.
...
pCol2->apply(deleteDKAttrDefDL);
delete pCol2;
...

Using DDOs
This section describes how to use a DDO and contains examples that help you
learn how to:
1. Associate a DKDDO with a content server
2. Create a DKDDO
3. Create Persistent Identifiers (PIDs) for DKDDO attributes
4. Add attributes and define attribute properties
5. Define the DKDDO as a folder or as a document
6. Set and view values for the attribute properties

Chapter 8. Using the C++ application programming interfaces 221

7. Check the DKDDO properties
8. Check the attribute properties
9. Display the DKDDO content
10. Delete the DKDDO

DKDDO can be regarded as a container of attributes. An attribute, has a name,
value, and properties. Each attribute is identified by a sequential, unique data ID
number. For example, if a container had 10 attributes, the first attribute would
have the data ID of one, and the last attribute would have a data ID of 10.

Because the data ID number, name, value, and property of an attribute can vary,
DKDDO provides flexible mechanisms to represent data originating from different
content servers and in different formats. DKDDO can represent data items from
different index classes in Content Manager, or rows from different tables in a
relational database. The DKDDO itself has properties that apply to the whole
DKDDO, instead of to only one attribute.

You must associate a DKDDO with a content server before you can call the add,
retrieve, update, and delete methods to send its attributes into the content server
and retrieve them. You associate a DKDDO with a content server by calling the
proper DKDDO constructor or by calling setDatastore method.

Every DKDDO has a persistent identifier (PID). The PID contains information for
locating the attributes in the datastore. For example, in Content Manager, a
DKDDO represents an item, which could be a document or a folder.

Creating a DKDDO
Example 1 shows the simplest way to create a DKDDO, by calling its constructor,
which takes no parameter.
DKDDO addo;

If you know the amount of DDO attributes, you can pass this information to the
constructor as shown in Example 2.
DKDDO bddo(10);

In Example 2 , the DKDDO is constructed and can hold up to ten attributes.
Example 2 is more efficient than the Example 1, which had no parameters, because
addo grows dynamically to accommodate more attributes.

You can create a DKDDO by supplying content server and object type as input.
// create a Content Manager datastore
DKDatastoreDL dsDL;
// create a DDO to hold an object type GRANDPA in dsDL
DKDDO* cddo = new DKDDO(&dsDL, "GRANDPA");

Creating a persistent identifier (PID)
Each DDO must have a persistent identifier (PID). The PID contains information
about the content server’s name, type, ID, and object type. The PID identifies the
DDO’s persistent data location. For example, in a Content Manager content server,
the PID is the item ID. The item ID is one of the most important parameters for
the retrieve, update, and delete methods. For the add method, the content server
creates and returns the item ID.

To create a DDO for retrieving a known item, do the following:

222 Application Programming Guide

DKDatastoreDL dsDL; // create a Content Manager content server
DKPid pid;
pid.setObjectType("GRANDPA"); // set the index class name it belongs to
pid.setId("LN#U5K6ARLGM3DB4"); // set the item id
DKDDO* ddo = new DKDDO(&dsDL, pid); // create a DDO with PID and associate it to dsDL

Connect to the content server and call the retrieve method to retrieve the DDO
created in the example.

Adding data items and properties
Suppose the index class GRANDPA has the attributes shown in Table 20.

Table 20. Attribute and data_id information

Attribute data_id=1 2

Name Title Subject

Type String String

Nullable No Yes

You can represent the information shown in Table 3 on page 27 as follows:
// create a Content Manager content server
DKDatastoreDL dsDL;
// create a DDO to hold an object type GRANDPA in dsDL
DKDDO* cddo = new DKDDO(&dsDL, "GRANDPA");
DKAny any;
DKBoolean yes = TRUE;
DKBoolean no = FALSE;
// add the first attribute named "Title"
unsigned short data_id = cddo->addData("Title");

// add a property named: "type", set to value : variable length string
any = DK_CM_DATAITEM_TYPE_STRING;
cddo->addDataProperty(data_id, DK_CM_PROPERTY_TYPE, any);

// add a property named: "nullable", set to value : boolean false
any = no;
cddo->addDataProperty(data_id, DK_CM_PROPERTY_NULLABLE , any);

// add the second attribute named "Subject"
data_id = cddo->addData("Subject");

// add a property named: "type", set to value : variable length string
any = DK_VSTRING;
cddo->addDataProperty(data_id, DK_CM_PROPERTY_TYPE, any);

// add a property named: "nullable", set to value : boolean true
any = yes;
cddo->addDataProperty(data_id, DK_CM_PROPERTY_NULLABLE , any);

The above example illustrates the standard attribute properties of type and
nullable. You can have as many additional properties as required by your
application.

Adding properties to a DDO
The DKDDO has all the required attribute information. However, there is no
information to indicate if the DKDDO is either a document or a folder. The
following example sets he DKDDO property to indicate that the DKDDO is a
document:

Chapter 8. Using the C++ application programming interfaces 223

any = DK_CM_DOCUMENT; // it is a document
cddo->addProperty(DK_CM_PROPERTY_ITEM_TYPE, any);

Setting and getting data item values
In this section, you set the values for the Title and Subject data items you created
in “Adding data items and properties” on page 223.
// set Title value to the given string
// assume we know the data_id for the data_item "Title" is 1
any = DKString("One dark and stormy night");
cddo->setData(1, any);

// set Subject value to the given string
// assume we do not know the data_id for the data_item "Subject"
// find data_id for data_item named "Subject"
data_id = cddo->dataId("Subject");
any = DKString("Mystery");
cddo->setData(data_id, any);

Use the getData method to get the values back for Title and Subject:
any = cddo->getData(1);
cout << "Title = " << any << endl; // displays "One dark and stormy night"
cout << "Subject = " << cddo->getData(data_id) << endl; // displays "Mystery"

Getting the DDKDO and attribute properties
The code example below shows how to retrieve the DKDDO properties:
unsigned short prop_id =

cddo->propertyId(DK_CM_PROPERTY_ITEM_TYPE);
if (prop_id > 0) {

unsigned short type = (unsigned short) cddo->getProperty(prop_id);
switch(type) {

case DK_CM_DOCUMENT:
// process document
...
break;
case DK_CM_FOLDER:
// process folder
...
break;

}
}

The code example below shows how to retrieve attribute properties of the ″Title″
attribute. You must have the attribute data_id to retrieve the properties.
// get data_id of Title
data_id = cddo->dataId("Title");
// how many props does it have?
unsigned short number_of_data_prop = cddo->dataPropertyCount(data_id);
// displays all data properties belonging to this attribute
// notice that the loop index starts from 1, where
// 1 <= i <= number_of_data_prop
for (unsigned short i = 1; i <= number_of_data_prop; i++) {

cout << i << " Property Name = " << cddo->
getDataPropertyName(data_id, i) << " value = " << cddo->
getDataProperty(data_id, i) << endl;

}

Important: Both data_id and property_id start from 1. If you specify 0 you receive
an exception.

224 Application Programming Guide

Displaying the DDO
Follow the example below to display the DKDDO content. During application
development, you may need to display the DKDDO content for debugging
purposes.
unsigned short number_of_attribute = cddo->dataCount();
unsigned short number_of_prop;
unsigned short number_of_data_prop;
// list DDO properties
for (short k = 1; k <= number_of_prop; k++) {

cout << k << " Property Name = " << cddo->getPropertyName(k) <<
",\t value = " << cddo->getProperty(k) << endl;

}
// list data-items and their properties
for (unsigned short i = 1; i <= number_of_attribute; i++) {

cout << i << " Attr. Name = " << cddo->getDataName(i) <<
<< ",\t value = " << cddo->getData(i) << endl;
number_of_data_prop = cddo->dataPropertyCount(i);
for (unsigned short j = 1; j <= number_of_data_prop; j++) {

cout << "\t" << j << " Data Prop. Name = "
<< cddo->getDataPropertyName(i, j)
<< ",\t value = " << cddo->getDataProperty(i, j)
<< endl;

}
}

Deleting a DDO
There are two ways to delete a DDO.

1. You delete a DKDDO by calling its destructor. The DDO is deleted in memory,
but the persistent copy in the content server is unchanged.

2. You use the del method in DKDDO, which deletes the persistent copy in the
content server. The DKDDO representation in memory does not change. The
attribute values are in a DKAny object. The destructor deletes object references to
dkCollection and dkDataObjectBase, including references to DKParts, DKFolder,
DKDDO, and DKBlob.

Using XDOs
An XDO represents a single part in Enterprise Information Portal. One type of
XDO is called DKBlobxx, (where xx is the suffix representing the specific server.
For example, xx could represent Content Manager (DL), OnDemand (OD),
ImagePlus for OS/390 (IP), or other servers. DKBlobxx requires the datastore
DKDatastorexx as an input to create the object instance.

Using an XDO PID
An XDO needs a PID to store its data persistently. For Content Manager, VI400 and
IP390, the item ID and part ID of DKPidXDOxx are required for XDO to locate the
persistent data in a datastore. Relational Databases require the table, column and
datapredicate string to locate the persistent data in a datastore.

Understanding XDO data members
For object content of Content Manager to be indexed by a search engine correctly,
you must set the values for the following XDO properties. You use the methods of
the DKBlobxx to set these properties where they apply. The required values to set
are SearchEngine, SearchIndex and SearchInfo. All the properties are not available
for all content server types. If not set, the default values are used.

Chapter 8. Using the C++ application programming interfaces 225

Note: The following values are for Content Manager only.

RepType (representation type)
FRN$NULL

Attention: The only representation type (or RepType) supported by
Content Manager for AS/400 is " ", eight blank spaces surrounded by
leading and trailing quotation marks.

ContentClass
DK_DL_CC_UNKNOWN

AffiliatedType
DK_DL_BASE

AffiliatedData
NULL

Tip: For the valid values of ContentClass, See the file INCLUDE/DKConstant2DL.h
provided with Content Manager.

DB2, ODBC and DataJoiner configuration strings for C++
This section defines the C++ DB2, ODBC and DataJoiner configuration strings.

CC2MIMEFILE=(filename)
Specify the cmbcc2mime.ini file (optional).

DSNAME=(datastore name)
Specify the datastore name (optional). Note: When this datastore is used by
Federated, this option is set automatically.

AUTOCOMMIT=ON | OFF
Specify autocommit is on or off. Default is off (optional). Note: When this
datastore is used by Fed autocommit is always on. This is set
automatically.

This section defines the C++ DB2, ODBC and DataJoiner connnect strings.

NATIVECONNECTSTRING=(native connect string)
Specify a native connect string to be passed to the native connect call
(optional).

SCHEMA=name
Specify schema to be used for listEntities, listEntityAttrs,
listPrimaryKeyNames, listForeignKeyNames methods (optional).

Programming tips
For Content ManagerContent Manager, VI400 and IP390, you identify an XDO by
the combination of item ID, part ID, and RepType. For Relational Databases, the
combination of table name, column name and datapredicate is the key to identify
an XDO. For a standalone XDO, you must provide the item ID and part ID.
RepType is optional, because the system provides a default value (FRN$NULL).

For the add method, if you set part ID to 0, the system assigns an available part ID
for it. You can retrieve the part ID value after add if you want to do some other
operation with that object later.

You can use the following statement after add to obtain the system assigned part
ID:

226 Application Programming Guide

unsigned long partID = ((DKPidXDODL*)(axdo->getPidObject()))
->getPartId();

Important: When adding a part for the search manager to index on a Content
ManagerContent Manager content server, you must have a valid part ID and
cannot set teh part ID to 0.

Using XDO as a part of DDO instead of a stand-alone XDO
An XDO represents a single part object when a DDO is a document that is a
collection of part objects. You can manipulate the XDO as a component of the DDO
or as a stand-alone object. To handle as a part of the DDO, you must get the item
ID for the XDO from the DDO. To handle it as a stand-alone object, you must
know the existing item ID for the XDO.

XDO as a part of DDO
The major statements used to relate the XDO with the DDO are listed in the
following code sample:
//create DDO
DKPid pid;
pid.setObjectType(indexClassName);
DKDDO* ddo = new DKDDO(&dsDL, pid);
ddo->addProperty(DK_CM_PROPERTY_ITEM_TYPE, DK_CM_DOCUMENT);
...
DKParts* parts = new DKParts;
DKAny any;
//create XDO
DKBlobDL* axdo = new DKBlobDL(&dsDL);
DKPidXDODL apid;
apid.setPartId(partId);
axdo->setPidObject(apid);
axdo->setContentClass(DK_DL_CC_GIF);
axdo->setAffiliatedType(DK_DL_BASE);
axdo->setContentFromClientFile(imageNames[i]);

//add XDO to the DKParts collection
any = (dkDataObjectBase*)axdo;
parts->addElement(any);
...
//add DDO
short partsDataId = -1;
partsDataId = ddo->addData(DKPARTS);
ddo->addDataProperty(partsDataId, DK_CM_PROPERTY_TYPE, DK_CM_COLLECTION_XDO);
any = (dkCollection*)(parts);
ddo->setData(partsDataId, any);
ddo->add();

The complete sample application from which this example was taken
(TLoadSampleDL.cpp) is located in the Cmbroot/Samples/cpp/dl directory.

Stand-alone XDO
The following code examples specific for Content Manager are for a stand-alone
XDO. For RDB and other connectors, please refer to the sample programs in the
CMBROOT\Samples directory.

Adding an XDO from buffer: This example shows how to add an XDO from the
buffer. To use this sample, you must know the existing XDO item ID.
void main(int argc, char *argv[])
{

DKDatastoreDL dsDL;
DKString itemId, fileName;
unsigned long partId;

Chapter 8. Using the C++ application programming interfaces 227

|
|
|

partId = 0; //let system decide the part ID
itemId = "CPPIORH4JBIXWIY0"; //existing item ID
fileName = "g:\\test\\cheetah.gif"; //a Windows file to be added
try
{

//connection to datastore
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD","");
DKBlobDL* axdo = new DKBlobDL(&dsDL); //create XDO
DKPidXDODL* apid = new DKPidXDODL; //create Pid
apid->setPartId(partId); //set part ID
apid->setItemId(itemId); //set item ID
axdo->setPidObject(apid); //set Pid to XDO
axdo->setContentClass(DK_DL_CC_GIF); //set ContentClass
axdo->setContentFromClientFile(fileName); //set file content to buffer area
axdo->add(); //add from buffer
//display the part ID after add
cout<<"after add partId="<<((DKPidXDODL*)

(ablobDL->getPidObject()))->getPartId()<<endl;
delete apid; //call destructor
dsDL.disconnect(); //disconnect from datastore

}
catch (DKException &exc)
{

cout << "Error id" << exc.errorId() << endl;
cout << "Exception id " << exc.exceptionId() << endl;
for(unsigned long i = 0; i< exc.textCount();i++)
{

cout << "Error text:" << exc.text(i) << endl;
}
for (unsigned long g=0; g< exc.locationCount();g++)
{

const DKExceptionLocation* p = exc.locationAtIndex(g);
cout << "Filename: " << p->fileName() << endl;
cout << "Function: " << p->functionName() << endl;
cout << "LineNumber: " << p->lineNumber() << endl;

}
cout << "Exception Class Name: " << exc.name() << endl;

}
}//end of main

Adding an XDO from a file: This example adds an XDO from a file using the
DKBlobDL class.
void main(int argc, char *argv[])
{

DKDatastoreDL dsDL;
DKString itemId, fileName;
unsigned long partId;
partId = 37; // part ID 37 not being used yet
itemId = "CPPIORH4JBIXWIY0"; // existing item ID
fileName = "/u4/mmdb/test/choice.gif"; // file(in AIX system) to be add
try
{

// connection to datastore
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD","");
DKBlobDL* axdo = new DKBlobDL(&dsDL); // create XDO
DKPidXDODL* apid = new DKPidXDODL; // create Pid
apid->setPartId(partId); // set part ID
apid->setPrimaryId(itemId); // set item ID
axdo->setPidObject(apid); // set Pid to XDO
axdo->setRepType("ABCD"); // set representation type
axdo->setContentClass(DK_DL_CC_GIF); // set ContentClass
axdo->add(fileName); // add from file
delete axdo; // call destructor
delete apid; // call destructor
dsDL.disconnect(); // disconnect from datastore

}

228 Application Programming Guide

catch (DKException &exc)
{

cout << "Error id" << exc.errorId() << endl;
cout << "Exception id " << exc.exceptionId() << endl;
for(unsigned long i = 0; i< exc.textCount();i++)
{

cout << "Error text:" << exc.text(i) << endl;
}
for (unsigned long g=0; g< exc.locationCount();g++)
{

const DKExceptionLocation* p = exc.locationAtIndex(g);
cout << "Filename: " << p->fileName() << endl;
cout << "Function: " << p->functionName() << endl;
cout << "LineNumber: " << p->lineNumber() << endl;

}
cout << "Exception Class Name: " << exc.name() << endl;

}
}//end of main

Adding an annotation object to an XDO: To add an annotation object, you must
insert the following statements in your program before the add method.
//------ set DKAnnotationDL ------ (using extension object)
axdo->setAffiliatedType(DK_DL_ANNOTATION);
DKAnnotationDL ann;
ann.setPart(14);
ann.setPageNumber(1);
ann.setX(5);
ann.setY(5);
axdo->setExtension("DKAnnotationDL", (dkExtension*)&ann);

Retrieving, updating, and deleting an XDO: To retrieve, update, or delete an
XDO in a conent server, provide the correct item ID, part ID, and RepType to
identify the object.
void main(int argc, char *argv[])
{

DKDatastoreDL dsDL;
DKString itemId, fileName;
unsigned long partId;
partId = 17; //part ID of object
itemId = "CPPIORH4JBIXWIY0"; //existing item ID
fileName = "g:\\test\\choice.gif"; //file content to update
try
{

//connection to datastore
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD","");
DKBlobDL* axdo = new DKBlobDL(&dsDL); //create XDO
DKPidXDODL* apid = new DKPidXDODL; //create Pid
apid->setPartId(partId); //set part ID
apid->setPrimaryId(itemId); //set item ID
axdo->setPidObject(apid); //set Pid to XDO
axdo->retrieve(); //retrieve the object
axdo->setContentFromClientFile(fileName); //set file content to buffer area
axdo->update(); //update the object with buffer data
axdo->retrieve("new.gif"); //retrieve content to a file
axdo->del(); //delete object from datastore
delete axdo; //call destructor
delete apid; //call destructor
dsDL.disconnect(); //disconnect from datastore

}
catch (DKException &exc)
{

cout << "Error id" << exc.errorId() << endl;
cout << "Exception id " << exc.exceptionId() << endl;
for(unsigned long i = 0; i< exc.textCount();i++)
{

Chapter 8. Using the C++ application programming interfaces 229

cout << "Error text:" << exc.text(i) << endl;
}
for (unsigned long g=0; g< exc.locationCount();g++)
{

const DKExceptionLocation* p = exc.locationAtIndex(g);
cout << "Filename: " << p->fileName() << endl;
cout << "Function: " << p->functionName() << endl;
cout << "LineNumber: " << p->lineNumber() << endl;

}
cout << "Exception Class Name: " << exc.name() << endl;

}
}//end of main

Invoking an XDO function: This example demonstrates how to test the DKBlob
class using the Content Manager server. For this example you must know the item
ID and part ID of the XDO.
void main(int argc, char *argv[])
{

DKDatastoreDL dsDL;
long hsession;
DKString itemId, repType;
int partId;
itemId = "GAWCVGGVFUG428UJ";
repType = "FRN$NULL";
partId = 2;

cout <<"argc is "<<argc<<endl;
if (argc == 1)
{

cout<<"invoke: txdomisc <partId> <repType> <itemId>"<<endl;
cout<<" no parameter, following default will be provided:"<<endl;
cout<<"The supplied default partId = "<<partID<<endl;
cout<<"The supplied default repType = "<<repType<<endl;
cout<<"The supplied default itemId = "<<itemId<<endl;

}
else if (argc == 2)
{

partId = atoi(argv[1]);
cout<<"you enter: txdomisc "<<argv[1]<<endl;
cout<<"The supplied default repType = "<<repType<<endl;
cout<<"The supplied default itemId = "<<itemId<<endl;

}
else if (argc == 3)
{

partId = atoi(argv[1]);
repType = DKString(argv[2]);
cout<<"you enter: txdomisc ""<<argv[1]<<" "<<argv[2]<<endl;
cout<<"The supplied default itemId = "<<itemId<<endl;

}
else if (argc == 4)
{

partId = atoi(argv[1]);
repType = DKString(argv[2]);
itemId = DKString(argv[3]);
cout<<"you enter: txdomisc ""<<argv[1]<<" "<<argv[2]<<" "<<argv[3]<<endl;

}
cout << connecting Datastore" << endl;
try
{

dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");
cout << "datastore connected" << endl;
hsession = (long) (dsDL.connection()->handle());
cout << "datastore handle" << hsession <<endl;

DKBlobDL* axdo = new DKBlobDL(&dsDL);
DKPidXDODL* apid = new DKPidXDODL;

230 Application Programming Guide

apid ->setPartId(partId);
apid ->setPrimaryId(itemId);
apid ->setRepType(repType);
axdo ->setPidObject(apid);
cout<<"itemId= "<<axdo->getItemId()<endl;
cout<<"partId= "<<((DKPidXDODL*) (axdo->getPidObject()))->getPartId()<<endl;
cout<<"repType= "<<axdo->getRepType()<<endl;

//== before retrieve
cout<<"before retrieve:"<<endl;
cout<<" content class="<<axdo->getContentClass()<<endl;
cout<<" content length="<<axdo->length();
cout<<" (the length of this object instance - in memory)"<<endl;
cout<<" getSize="<<axdo->getSize();
cout<<" (get the object size without retrieving object)"<<endl;
cout<<" createdTimestamp="<<axdo->getCreatedTimestamp()<<endl;
cout<<" updatedTimestamp="<<axdo->getUpdatedTimestamp()<<endl;
axdo->retrieve();

//== after retrieve
cout<<"after retrieve:"<<endl;
cout<<" content class="<<axdo->getContentClass()<<endl;
cout<<" content length="<<axdo->length();
cout<<" (the length of this object instance - in memory)"<<endl;
cout<<" getSize="<<axdo->getSize();
cout<<" (get the object size without retrieving object)"<<endl;
cout<<" createdTimestamp="<<axdo->getCreatedTimestamp()<<endl;
cout<<" updatedTimestamp="<<axdo->getUpdatedTimestamp()<<endl;
cout<<" mimeType="<<axdo->getMimeType()<<endl;
int atype = axdo->getAffiliatedType();
cout<<" affiliatedType= "<<axdo->getAffiliatedType()<<endl;
if (atype == DK_DL_ANNOTATION)
{
DKAnnotationDL* ann = (DKAnnotationDL*)axdo->getExtension("DKAnnotationDL");
cout <<" pageNumber= "<<ann->getPageNumber()<<endl;
cout <<" partId= "<<ann->getPart()<<endl;
cout <<" X=<<ann->getX()<<endl;
cout <<" Y=<<ann->getY()<<endl;
}
//== open content
int concls = axdo->getContentClass();
if (concls == DK_DL_CC_ASCII)

axdo->setInstanceOpenHandler("notepad", TRUE);
else if (concls == DK_DL_CC_GIF)

axdo->setInstanceOpenHandler("lviewpro", TRUE);
else if (concls == DK_DL_CC_AVI)

axdo->setInstanceOpenHandler("mplay32", TRUE);
axdo->open();

delete apid;
delete axdo;
dsDL.disconnect();
cout<<"datastore disconnected"<<endl;

}
catch(DKException &exc)
{
cout << "Error id" << exc.errorId() << endl;
cout << "Exception id " << exc.exceptionId() << endl;
for(unsigned long i=0;i< exc.textCount();i++)
{
cout << "Error text:" << exc.text(i) << endl;
}
for (unsigned long g=0;g< exc.locationCount();g++)
{
const DKExceptionLocation* p = exc.locationAtIndex(g);
cout << "Filename: " << p->fileName() << endl;
cout << "Function: " << p->functionName() << endl;

Chapter 8. Using the C++ application programming interfaces 231

cout << "LineNumber: " << p->lineNumber() << endl;
}
cout << "Exception Class Name: " << exc.name() << endl;
}

cout << "done ..." << endl;
}

Adding an XDO Media Object: For every media object added, an entry is created
in the FRN$MEDIA table. That entry contains the information about the media
user data. The physical media object is stored in the VideoCharger content server
specified in the network table.
void main(int argc, char *argv[])
{

DKString itemId, fileName;
int partId;
itemId = "K1A04EWBVHJAV1D7";
partId = 22;
fileName = "/icing1.mpg1";
if (argc == 1)
{

cout<<"invoke: txdoAddVSDL <fileName> <partId> <itemId>"<<endl;
cout<<" no parameter, following default will be provided:"<<endl;
cout<<"The supplied default fileName = "<<fileName<<endl;
cout<<"The supplied default partId = "<<partId<<endl;
cout<<"The supplied default itemId = "<<itemId<<endl;

}
else if (argc == 2)
{

fileName = DKString(argv[1]);
cout<<"you enter: txdoAddVSDL "<<argv[1]<<endl;
cout<<"The supplied default partId = "<<partId<<endl;
cout<<"The supplied default itemId = "<<itemId<<endl;

}
else if (argc == 3)
{

fileName = DKString(argv[1]);
partId = atoi(argv[2]);
cout<<"you enter: txdoAddVSDL "<<argv[1]<<" "<<argv[2]<<endl;
cout<<"The supplied default itemId = "<<itemId<<endl;

}
else if (argc == 4)
{

fileName = DKString(argv[1]);
partId = atoi(argv[2]);
itemId = DKString(argv[3]);
cout<<"you enter: txdoAddVSDL "<<argv[1]<<" "<<argv[2]<<" "<<argv[3]<<endl;

}
try
{
// connect to datastore
cout << "Connecting datastore ..." << endl;
DKDatastoreDL dsDL;
// replace following with your library server, userid, password
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");
cout << "datastore connected" << endl;

// *** create xdo and pid
DKBlobDL* axdo = new DKBlobDL(&dsDL);
DKPidXDODL* apid = new DKPidXDODL;
apid ->setPartId(partId);
apid ->setPrimaryId(itemId);
axdo ->setPidObject(apid);
// *** you must use the content class DK_DL_CC_IBMVSS for a media object
axdo ->setContentClass(DK_DL_CC_IBMVSS);
cout <<"itemId= "<<axdo->getItemId()<<endl;
cout <<"partId= "<<axdo->getPartId()<<endl;

232 Application Programming Guide

cout <<"repType= "<<axdo->getRepType()<<endl;
cout <<"content class="<< axdo->getContentClass()<<endl;

// *** setup DKMediaStreamInfoDL
DKMediaStreamInfoDL aVS;
aVS.setMediaFullFileName(fileName);
aVS.setMediaObjectOption(DK_DL_VS_SINGLE_OBJECT);
aVS.setMediaHostName("<insert hostname here>");
aVS.setMediaUserId("<insert user ID here>");
aVS.setMediaPassword("<insert password here>");

//following are optional, if not set then default value will be provided
aVS.setMediaNumberOfUsers(1);
aVS.setMediaAssetGroup("AG");
// *** same as defined in VideoCharger server
aVS.setMediaType("MPEG1");
aVS.setMediaResolution("SIF");
aVS.setMediaStandard("NTSC");
aVS.setMediaFormat("SYSTEM");

axdo ->setExtension("DKMediaStreamInfoDL", (dkExtension*)&aVS);
cout <<"about to do add()"<<endl;
axdo ->add();
cout<<"Object added successfully "<<endl;

cout<<"after added check for status:"<<endl;
DKBoolean flag2 = axdo->isCategoryOf(DK_DL_MEDIA_OBJECT);
if (flag2)
{

DKMediaStreamInfoDL* mediaInfo = (DKMediaStreamInfoDL*)
axdo->getExtension("DKMediaStreamInfoDL");

cout<<" copyRate="<<mediaInfo->getMediaCopyRate()<<endl;
cout<<" mediaType="<<mediaInfo->getMediaType()<<endl;
cout<<" mediaFrameRate="<<mediaInfo->getMediaFrameRate()<<endl;
cout<<" mediaState="<<mediaInfo->getMediaState()<<endl;
cout<<" mediaTimestamp="<<mediaInfo->getMediaTimestamp()<<endl;
cout<<" MediaState(dynamic)="<<axdo->retrieveObjectState(DK_MEDIA_OBJECT)<<endl;

}

dsDL.disconnect();
cout<<"datastore disconnected"<<endl;
}
catch(DKException &exc)
{

cout << "Error id" << exc.errorId() << endl;
cout << "Exception id " << exc.exceptionId() << endl;
for(unsigned long i=0;i< exc.textCount();i++)
{
cout << "Error text:" << exc.text(i) << endl;
}
for (unsigned long g=0;g< exc.locationCount();g++)
{
const DKExceptionLocation* p = exc.locationAtIndex(g);
cout << "Filename: " << p->fileName() << endl;
cout << "Function: " << p->functionName() << endl;
cout << "LineNumber: " << p->lineNumber() << endl;
}
cout << "Exception Class Name: " << exc.name() << endl;
}
cout << "done ..." << endl;

}

Deleting an XDO Media Object: This example shows how to delete an XDO
media object. For this example you must know the item ID, partID, and RepType
of the XDO.

Chapter 8. Using the C++ application programming interfaces 233

void main(int argc, char *argv[])
{

DKDatastoreDL dsDL;
DKString itemId, repType;
int partId;
itemId = "Y68M1I@VYDG8SPQ4";
partId = 1;
repType = "FRN$NULL";
if (argc == 1)
{

cout<<"invoke: txdoDelVSDL <partId> <repType> <itemId>"<<endl;
cout<<" no parameter, following default will be provided:"<<endl;
cout<<"The supplied default partId = "<<partId<<endl;
cout<<"The supplied default repType = "<<repType<<endl;
cout<<"The supplied default itemId = "<<itemId<<endl;

}
else if (argc == 2)
{

partId = atoi(argv[1]);
cout<<"you enter: txdoDelVSDL "<<argv[1]<<endl;
cout<<"The supplied default repType = "<<repType<<endl;
cout<<"The supplied default itemId = "<<itemId<<endl;

}
else if (argc == 3)
{

repType = DKString(argv[2]);
partId = atoi(argv[1]);
cout<<"you enter: txdoDelVSDL "<<argv[1]<<" "<<argv[2]<<endl;
cout<<"The supplied default itemId = "<<itemId<<endl;

}
else if (argc == 4)
{

itemId = DKString(argv[3]);
repType = DKString(argv[2]);
partId = atoi(argv[1]);
cout<<"you enter: txdoDelVSDL "<<argv[1]<<" "<<argv[2]<<" "<<argv[3]<<endl;

}

try
{

cout << "Connecting datastore ..." << endl;
// replace following with your library server, userid, password
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");
cout << "datastore connected" << endl;

DKBlobDL* axdo = new DKBlobDL(&dsDL);
DKPidXDODL* apid = new DKPidXDODL;
apid ->setPartId(partId);
apid ->setPrimaryId(itemId);
apid ->setRepType(repType);
axdo ->setPidObject(apid);
cout <<"itemId= "<<axdo->getItemId()<<endl;
cout <<"partId= "<<((DKPidXDODL*)(axdo->getPidObject()))->getPartId()<<endl;

DKBoolean flag2 = axdo->isCategoryOf(DK_DL_MEDIA_OBJECT);
cout <<"isMediaObject? = "<<flag2<<endl;
if (flag2)
{

DKMediaStreamInfoDL* mediaInfo = (DKMediaStreamInfoDL*)
axdo->getExtension("DKMediaStreamInfoDL");

cout<<" copyRate="<<mediaInfo->getMediaCopyRate()<<endl;
cout<<" mediaType="<<mediaInfo->getMediaType()<<endl;
cout<<" mediaFrameRate="<<mediaInfo->getMediaFrameRate()<<endl;
cout<<" mediaState="<<mediaInfo->getMediaState()<<endl;
cout<<" mediaTimestamp="<<mediaInfo->getMediaTimestamp()<<endl;
cout<<" MediaState(dynamic)="<<axdo->retrieveObjectState(DK_MEDIA_OBJECT)<<endl;

234 Application Programming Guide

cout<<"about to set the delete option for media object..."<<endl;
DKAny delOpt = DK_DL_DELETE_NO_DROPITEM_MEDIA_AVAIL;
axdo->setOption(DK_DL_OPT_DELETE_OPTION, delOpt);
DKAny opt;
axdo->getOption(DK_DL_OPT_DELETE_OPTION, opt);
long lopt = opt;
cout<<"The setted delete option = "<<lopt<<endl;

}
cout<<"about to do del()"<<endl;
axdo->del();
cout<<"del successfully..."<<endl;
flag2 = axdo->isCategoryOf(DK_DL_MEDIA_OBJECT);
cout<<"after delete isMediaObject? = "<<flag2<<endl;
delete axdo;
delete apid;
dsDL.disconnect();
cout<<"datastore disconnected"<<endl;

}
catch(DKException &exc)
{

cout << "Error id" << exc.errorId() << endl;
cout << "Exception id " << exc.exceptionId() << endl;
for(unsigned long i=0;i< exc.textCount();i++)
{
cout << "Error text:" << exc.text(i) << endl;
}
for (unsigned long g=0;g< exc.locationCount();g++)
{
const DKExceptionLocation* p = exc.locationAtIndex(g);
cout << "Filename: " << p->fileName() << endl;
cout << "Function: " << p->functionName() << endl;
cout << "LineNumber: " << p->lineNumber() << endl;
}
cout << "Exception Class Name: " << exc.name() << endl;
}
cout << "done ..." << endl;

}

Retrieving an XDO Media Object: This example shows how to retrieve an XDO
media object. The retrieved object contains only the media metadata, not the media
object itself. For the example below, you must know the item ID and part ID of the
XDO.
void main(int argc, char *argv[])
{

DKDatastoreDL dsDL;
DKString itemId, repType;
int partId;
itemId = "K1A04EWBVHJAV1D7";
partId = 1;
repType = "FRN$NULL";
if (argc == 1)
{

cout<<"invoke: txdoRetxsDL <partId> <repType> <itemId>"<<endl;
cout<<" no parameter, following default will be provided:"<<endl;
cout<<"The supplied default partId = "<<partId<<endl;
cout<<"The supplied default repType = "<<repType<<endl;
cout<<"The supplied default itemId = "<<itemId<<endl;

}
else if (argc == 2)
{

partId = atoi(argv[1]);
cout<<"you enter: txdoRetxsDL "<<argv[1]<<endl;
cout<<"The supplied default repType = "<<repType<<endl;
cout<<"The supplied default itemId = "<<itemId<<endl;

}

Chapter 8. Using the C++ application programming interfaces 235

else if (argc == 3)
{

repType = DKString(argv[2]);
partId = atoi(argv[1]);
cout<<"you enter: txdoRetxsDL "<<argv[1]<<" "<<argv[2]<<endl;
cout<<"The supplied default itemId = "<<itemId<<endl;

}
else if (argc == 4)
{

itemId = DKString(argv[3]);
repType = DKString(argv[2]);
partId = atoi(argv[1]);
cout<<"you enter: txdoRetxsDL "<<argv[1]<<" "<<argv[2]<<" "<<argv[3]<<endl;

}

try
{

cout << "Connecting datastore ..." << endl;
// replace following with your library server, userid, password
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");
cout << "datastore connected" << endl;

DKBlobDL* axdo = new DKBlobDL(&dsDL);
DKPidXDODL* apid = new DKPidXDODL;
apid ->setPartId(partId);
apid ->setPrimaryId(itemId);
apid ->setRepType(repType);
axdo ->setPidObject(apid);
cout <<"itemId= "<<axdo->getItemId()<<endl;
cout <<"partId= "<<((DKPidXDODL*)(axdo->getPidObject()))->getPartId()<<endl;

DKBoolean flag = axdo->isCategoryOf(DK_DL_INDEXED_OBJECT);
DKBoolean flag2 = axdo->isCategoryOf(DK_DL_MEDIA_OBJECT);
cout <<"isIndexed? = "<<flag<<endl;
cout <<"isMediaObject? = "<<flag2<<endl;
if (flag)
{

DKSearchEngineInfoDL* srchInfo = (DKSearchEngineInfoDL*)
axdo->getExtension("DKSearchEngineInfoDL");

cout<<" ServerName="<<srchInfo->getServerName()<<endl;
cout<<" TextIndex="<<srchInfo->getTextIndex()<<endl;
cout<<" srchEngine="<<srchInfo->getSearchEngine()<<endl;
cout<<" srchIndex="<<srchInfo->getSearchIndex()<<endl;
cout<<" indexedState="<<axdo->retrieveObjectState(DK_DL_INDEXED_OBJECT)<<endl;

}

if (flag2)
{

DKMediaStreamInfoDL* mediaInfo = (DKMediaStreamInfoDL*)
axdo->getExtension("DKMediaStreamInfoDL");

cout<<" copyRate="<<mediaInfo->getMediaCopyRate()<<endl;
cout<<" mediaType="<<mediaInfo->getMediaType()<<endl;
cout<<" mediaFrameRate="<<mediaInfo->getMediaFrameRate()<<endl;
cout<<" mediaState="<<mediaInfo->getMediaState()<<endl;
cout<<" mediaTimestamp="<<mediaInfo->getMediaTimestamp()<<endl;
cout<<" MediaState(dynamic)= "

<<axdo->retrieveObjectState(DK_DL_MEDIA_OBJECT)<<endl;
}

cout<<"before retrieve..."<<endl;
cout <<" length of lobdata = "<<axdo->length()<<endl;
cout<<" size of lobdata = "<<axdo->getSize()<<endl;
cout<<" created Timestamp = "<<axdo->getCreatedTimestamp()<<endl;
cout<<" updated Timestamp = "<<axdo->getUpdatedTimestamp()<<endl;
axdo->retrieve();
cout<<"after retrieve..."<<endl;
cout <<" length of lobdata = "<<axdo-><length()<<endl;

236 Application Programming Guide

cout <<" mimeType = "<<axdo->getMimeType()<<endl;
cout <<" size of lobdata = "<<axdo->getSize()<<endl;
cout<<" created Timestamp = "<<axdo->getCreatedTimestamp()<<endl;
cout<<" updated Timestamp = "<<axdo->getUpdatedTimestamp()<<endl;

int atype = axdo->getAffiliatedType();
cout <<"affiliatedType= "<<axdo->getAffiliatedType()<<endl;
if (atype == DK_ANNOTATION)
{

DKAnnotationDL* ann = (DKAnnotationDL*)axdo->getExtension("DKAnnotationDL");
cout<<" pageNumber= "<<ann->getPageNumber()<<endl;
cout<<" partId= "<<ann->getPart()<<endl;
cout<<" X= "<<ann->getX()<<endl;
cout<<" Y= "<<ann->getY()<<endl;

}
cout<<"about to do open()..."<<endl;
axdo->setInstanceOpenHandler("notepad", TRUE); //default use Notepad in Windows
int concls = axdo->getContentClass();
if (concls == DK_DL_CC_GIF)
axdo->setInstanceOpenHandler("lviewpro", TRUE); //use lviewpro in Windows
else if (concls == DK_DL_CC_AVI)
axdo->setInstanceOpenHandler("mplay32", TRUE); //use mplay32 in Windows
else if (concls == DK_DL_CC_IBMVSS)
axdo->setInstanceOpenHandler("iscoview", TRUE); //use iscoview in Windows

axdo->open();

delete axdo;
delete apid;
dsDL.disconnect();
cout<<"datastore disconnected"<<endl;

}
catch(DKException &exc)
{
cout << "Error id" << exc.errorId() << endl;
cout << "Exception id " << exc.exceptionId() << endl;
for(unsigned long i=0;i< exc.textCount();i++)
{
cout << "Error text:" << exc.text(i) << endl;
}
for (unsigned long g=0;g< exc.locationCount();g++)
{
const DKExceptionLocation* p = exc.locationAtIndex(g);
cout << "Filename: " << p->fileName() << endl;
cout << "Function: " << p->functionName() << endl;
cout << "LineNumber: " << p->lineNumber() << endl;
}
cout << "Exception Class Name: " << exc.name() << endl;
}
cout << "done ..." << endl;

}

Adding an XDO to a storage collection: To add an XDO object associated with
user-defined storage collection names, you must use the extension object
DKStorageManageInfoDL.
DKString fileName = "e:\\test\\notepart.txt"; //file for add
int partId = 0; //let system decide the partId
DKString itemId = "V5SPB$WBLOHIQ4YI"; //an existing itemId
DKString rtype = "FRN$NULL"; //optional
DKDatastoreDL dsDL; //required datastore
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD"); //connect to datastore
DKBlobDL* axdo = new DKBlobDL(&dsDL); //create XDO
DKPidXDODL* apid = new DKPidXDODL; //create Pid
apid->setPartId(partId); //set partId
apid->setPrimaryId(itemId); //set itemId
apid->setRepType(rtype); //set repType
axdo->setPidObject(apid); //set pid object

Chapter 8. Using the C++ application programming interfaces 237

axdo->setContentClass(DK_DL_CC_ASCII); //set ContentClass

//---set DKStorageManageInfoDL-----
DKStorageManageInfoDL aSMS = new DKStorageManageInfoDL();
aSMS.setRetention(888); //optional
aSMS.setCollectionName("TESTCOLLECT1"); //already defined in DL SMS
aSMS.setManagementClass("TESTMGT1"); //optional
aSMS.setStorageClass("FIXED"); //optional
axdo->setExtension("DKStorageManageInfoDL", (dkExtension)aSMS);
axdo->add(fileName); //add from file
System.out.println("after add partId = " + axdo->getPartId());

//display the partId after add
dsDL.disconnect(); //disconnect from datastore
System.out.println("datastore disconnected");

Refer to the files TxdoAddBsmsDL.cpp, TxdoAddFsmsDL.cpp, TxdosAddBsmsDL.cpp,
TxdosAddFsmsDL.cpp, and TxdomAddsmsDL.cpp in the samples directory as examples
of adding search indexed objects and media objects to Content Manager.

Changing the storage collection of an XDO: You can change the storage
collection of an existing XDO. After setting up the extension object
DKStorageManageInfoDL you call the changeStorage method.
System.out.println("about to call changeStorage()......");
axdo->changeStorage();
System.out.println("changeStorage() success......");

The complete sample application from which this example was taken
(TxdoChgSmsDL.cpp)is located in the Cmbroot/Samples/cpp/dl directory.

Creating and using the DKPARTS attribute
The DKPARTS attribute in a DDO represents the collection of parts in a document.
The value of this attribute is a DKParts object, which is a collection of XDOs. You
set the DKPARTS attribute when you retrieve or create a DDO, as shown in the
following code example:
DKDatastoreDL dsDL;
// create a new DKParts, collection of parts
DKParts* parts = new DKParts;
// create a new XDO blob
DKBlobDL* blob = new DKBlobDL(&dsDL);
// create Pid for this XDO object
DKPidXDODL pid;
// set part number to 5
pid.setPartId(5);
// the item-id this part belongs to
pid.setId("LN#U5K6ARLGM3DB4");
// set the Pid for the XDO blob
blob->setPid(&pid);
// set content class type GIF
blob->setContentClass(DK_CC_GIF);
// set rep type for the part
blob->setRepType(DK_REP_NULL);
// set the blob's content
blob->setContentFromClientFile("choice.gif");
// the viewer program on AIX
blob->setInstanceOpenHandler("xv");

DKAny any = (dkDataObjectBase*) blob;
// add the blob to the parts collection
parts->addElement(any);

... // create and add some more blobs to the

... // collection as necessary

238 Application Programming Guide

// create a ddo
DKDDO* ddo = new DKDDO;
... // sets some of its attributes
// set the type to document DDO
DKAny any = DK_CM_DOCUMENT;
ddo->addProperty(DK_CM_PROPERTY_ITEM_TYPE, any);

// create DKPARTS attribute and sets it to refer to the DKParts object
// add attribute "DKParts"
unsigned short data_id = ddo->addData(DKPARTS);
// add type property
any = DK_COLLECTION_XDO;
ddo->addDataProperty(data_id,DK_CM_PROPERTY_TYPE,any);
// add nullable property
any = (DKBoolean) TRUE;
ddo->addDataProperty(data_id,DK_CM_PROPERTY_NULLABLE ,any);
any = (dkCollection*) parts;
// sets the attribute value
ddo->setData(data_id, any);

After you set DKPARTS as an attribute value of a DDO, the DDO owns it.

To get the parts from a DDO, use the following example:
// get DKPARTS data-id
data_id = ddo->dataId(DKPARTS);
// parts not found
if (data_id == 0) {

DKException exc(" parts data-item not found");
DKTHROW exc;
}

// get the parts collection
any = ddo->getData(data_id);
DKParts* pCol = (DKParts*) any.value();
// create iterator and process the part collection member one by one
if (pCol != NULL) {

DKAny* element;
DKBlobDL* blob;
dkIterator* iter = pCol->createIterator();
while (iter->more()) {

element = iter->next();
blob = (DKBlobDL*) element->value();
if (blob != NULL) {

// display the blob using the viewer
blob->open();
// other processing
...

}
}
delete iter;

}

Creating and using the DKFOLDER attribute
In a folder DDO, the DKFOLDER attribute represents a collection of folders and
documents that belong to the folder. The value of this attribute is a DKFolder
object, which is a collection of DDOs. Similar to DKPARTS, DKFOLDER is set
when you retrieve or create a DDO, as shown in the following code sample:
DKDatastoreDL dsDL;
DKFolder* folder = new DKFolder;
// create a new DKFolder, collection of DDO
DKDDO* member = new DKDDO;
// create the first member of this folder
// sets the member DDO attributes and properties
...

Chapter 8. Using the C++ application programming interfaces 239

// add member to the folder collection
folder->addElement(member);
...
// create and add some more member DDO to the
// DDO collection as necessary
...
// create a folder ddo
DKDDO* ddo = new DKDDO;
// sets some of its attributes
...
// set the type to folder DDO
DKAny any = DK_CM_FOLDER;
ddo->addProperty(DK_CM_PROPERTY_ITEM_TYPE, any);

// create DKFOLDER attribute and sets it to refer to the DKFolder object
unsigned short data_id = ddo->addData(DKFOLDER);
// add attribute "DKFolder"

any = DK_COLLECTION_DDO;
// add type property
ddo->addDataProperty(data_id,DK_CM_PROPERTY_TYPE,any);
// add nullable property
any = (DKBoolean) TRUE;
ddo->addDataProperty(data_id,DK_CM_PROPERTY_NULLABLE ,any);
any = (dkCollection*) folder;
// sets the attribute value
ddo->setData(data_id, any);

After you set DKFOLDER as an attribute of a DDO, the DDO owns it.

To get the folder from a DDO, use the following example:
// get DKFOLDER data-id
data_id = ddo->dataId(DKFOLDER);
if (data_id == 0) { // folder not found

DKException exc(" folder data-item not found");
DKTHROW exc;
}

// get the parts collection
any = ddo->getData(data_id);
DKFolder* fCol = (DKFolder*) any.value();
// create iterator and process the DDO collection member one by one
if (fCol != NULL) {

DKAny* element;
DKDDO* item;
dkIterator* iter = fCol->createIterator();
while (iter->more()) {

element = iter->next();
item = (DKDDO*) element->value();
if (item != NULL) {

// process the member DDO
item->retrieve();
// other processing
...

}
}
delete iter;

}

Using DKAny
DKAny contains any object whose type can vary at run time. A DKAny object can
be any of the following types:
v null
v (unsigned) short

240 Application Programming Guide

v (unsigned) long
v double
v char
v TypeCode
v DKBoolean
v DKString
v DKDate
v DKTime
v DKTimestamp

In addition to the above types, a DKAny object can also contain the following
object reference types:
v dkDataObjectBase*
v dkCollection*
v void*

Using type code
You can determine the current type of a DKAny object by calling the typeCode
method, which returns a TypeCode object, that is, tc_null for null, tc_short for
short, and so forth. Refer to the online API reference for a complete listing of type
codes.

Managing memory in DKAny
DKAny manages the memory for the object it contains, unless the contained object
is an object reference type. Copy related operations involving object references will
create a copy of the pointer only. You need to keep track of object reference types
during copying and deletion.

Using constructors
DKAny provides a constructor for each type it supports. The following example
shows how to create a DKAny object that contains some of the types listed in the
previous section.
DKAny any1((unsigned short) 10); // contains unsigned short 10
DKAny any2((long) 200); // contains long 200
DKAny any3(DKString("any string")); // contains DKString
DKAny any4(DKTime(10,20,30)); // contains DKTime
DKAny any5((dkDataObjectBase*) new DKDDO); // contains DKDDO
DKAny any6(new MyObject(5,"abc")); // contains MyObject
DKAny any7(new DKDDO); // shorter form of any5

Getting the type code
Use the typeCode method to find the type code of the object inside DKAny.
DKAny::TypeCode type_code;
type_code = any1.typeCode(); // type_code is tc_ushort
type_code = any4.typeCode(); // type_code is tc_time
type_code = any5.typeCode(); // type_code is tc_dobase (object ref)
type_code = any6.typeCode(); // type_code is tc_voidptr since

// MyObject is not recognized by DKAny

Assigning a new value to DKAny
To assign a new value to an existing DKAny object, use the equal sign (=)
assignment operator. DKAny provides an assignment for each type code.

Chapter 8. Using the C++ application programming interfaces 241

DKAny any; // any contains null
long vlong = 300;
DKTimestamp vts(1997,8,28,10,11,12,999);
dkDataObjectBase* dobase =
(dkDataObjectBase*) new DKDDO;
any = vlong; // any contains long 300
any = vts; // any contains timestamp
any = dobase; // any contains ddo
any = new DKDDO; // any contains ddo

Assigning a value from DKAny
Assigning a DKAny back to a regular type requires a cast operator. For example:
vlong = (long) any2; // sets vlong to 200
DKTime at = (DKTime) any4; // sets at to (10,20,30)
DKDDO* ddo = (DKDDO*) ((dkDataObjectBase*) any5); // extract the ddo
dkDataObjectBase* dobase = any7; // extract the DDO

You will get an invalid type conversion exception if the type does not match.
Therefore, you must check the type code before converting DKAny to a regular
type:
if (any5.typeCode() == DKAny::tc_dobase)

dobase = (dkDataObjectBase*) any5;

You can create a case statement to check the type of DKAny, as follows:
switch(any.typeCode()) {

case DKAny::tc_short:
// operation for short
...
break;

case DKAny::tc_ushort:
// operation for unsigned short
...
break;

... etc.
}

If the DKAny object contains an object reference, you can get the DKAny content
as a void pointer, then cast it to the proper type. However, use this operation only
if you know the type code that is used inside DKAny:
// knows exactly any5 contains DKDDO
ddo = (DKDDO*) any5.value();

Displaying DKAny
You can use cout to display the content of a DKAny object:
cout << any3 << endl; // displays "any string"
cout << any4 << endl; // displays "10:20:30"
cout << any5 << endl; // displays "(dkDataObjectBase*) <address>",

// where address is the memory location of the ddo

Destroying DKAny
Because DKAny can hold an object reference but does not manage memory for
object reference types, you must manage the memory for these types. The
following example manages the memory for a DKAny object:
DKDDO* ddo = new DKDDO; // creates a DKDDO in the heap
DKAny anyA((dkDataObjectBase*)ddo);
DKAny* anyB = new DKAny(anyA); // creates anyB in the heap

// anyA and anyB contains a
// reference to the same ddo

...

242 Application Programming Guide

delete anyB; // delete anyB, does not delete ddo
if (anyA.typeCode() == DKAny::tc_dobase)

delete ((dkDataObjectBase*) anyA.value()); // deletes the ddo

The last delete statement must be performed before exiting the scope, otherwise
anyA is deleted, leaving the DDO as a memory leak.

Programming tips
Recommendation: When converting an integer literal to DKAny, it is advisable to
state the type explicitly to avoid an undesirable type conversion. Turn to
any = 10; // ambiguous
any = (unsigned long) 10; // unambiguous
any = (short) 4; // unambiguous

Using collections and iterators
dkCollection is an abstract class which provides the interface to collection methods.
DKSequentialCollection provides the concrete implementation of those methods.
Other collections are derived as a subclass of DKSequentialCollection. These
collections contain DKAny objects as members.

When a new member is added, the collection owns it. When the member is
retrieved, you get a pointer to a DKAny object inside the collection. This object
belongs to the collection, meaning that the collection manages the memory for its
DKAny members. A DKAny object can hold an object reference but cannot manage
memory for object reference types, you must manage the memory for those.

Collection members are usually objects of the same type. However, you can have
members of different types in one collection.

Using sequential collection methods
DKSequentialCollection provides methods for adding, retrieving, removing, and
replacing its members. In addition, it has the apply and sort methods. The
following example illustrates how to add a new member to a collection:
DKSequentialCollection sq;
DKAny any = DKString(" first member ");
sq.addElement(any); // add a new element at last position

// any will be copied into the collection
// you own the original any, the collection
// owns the copy

Using the sequential iterator
Iterators are provided to let you iterate over collection members. There are two
types of iterators: the base iterator dkIterator, which supports the next, more, and
reset methods; and its subclass DKSequentialIterator, which contains more
methods. An iterator is created by calling the createIterator method on the
collection. This method creates a new iterator and returns it to you. Use the
following code to iterate over a collection:
dkIterator* iter = sq.createIterator(); // create an iterator for sq
DKAny* member;

// while there are more members
// get the current member and
// advance iter to the next member

while(iter->more()) {
member = iter->next();

cout << *member << endl; // display it, if you want to

Chapter 8. Using the C++ application programming interfaces 243

... // do other processing
}

delete iter; // do not forget to delete iter

DKSequentialIterator provides additional methods to move the iterator in either
direction. The above code could be rewritten as follows:
DKSequentialIterator* iter = // create an iterator for sq
(DKSequentialIterator*) sq.createIterator();
DKAny* member;

while(iter->more()) {
member = iter->at(); // get the current member
... // do other processing
iter->setToNext(); // advance to the next position

}
delete iter;

This code allows you to perform some operations on the current member before
moving to the next member. Such an operation could be replacing a member with
a new one, or removing it.
any = DKString("the new first member");

sq.replaceElementAt(any, *iter); // replace current member with a new one
... // or
sq.removeElementAt(); // remove the current member
...

Tip: When you remove the current member, the iterator is advanced to the next
member. When removing a member inside a loop, check it as follows:
...
if (removeCondition == TRUE)

sq.removeElementAt(*iter); // remove current member, do not advance iter
// since it is advanced to the next after
// the removal operation

else
iter->setToNext(); // no removal, advance the iterator

... // to the next position

The above check is necessary in order to avoid skipping the next member after
removing the current one.

Managing memory in collections
The collection manages the memory for its members, which are DKAny objects.
The same rules governing DKAny objects apply here, if the object inside DKAny is
an object reference type then you are responsible for managing the memory when
you are:
v Destroying the collection
v Replacing a member
v Removing a member

This example shows how to manage the memory in these situations:
// retrieve the member and hang-on to it
member = iter->at();

// code to handle this member as to prevent memory leaks
if (member->typeCode() == DKAny::tc_dobase) {

// delete it if no longer needed
delete ((dkDataObjectBase*) member->value());

}

sq.removeElementAt(*iter); // remove it from the collection

244 Application Programming Guide

Instead of deleting the member you can add it into another collection. You should
take similar steps before using replaceElementAt and removeAllElement methods.

Before destroying a collection, delete its members. You can write a method to
perform this task and pass this method to the apply method for the collection.
Suppose you have a collection of DKAny objects containing DKAttributeDef
objects. The following example deletes the collection:
DKDatastoreDL dsDL;
...
DKAny any = dsDL.listSchemaAttributes("GRANDPA");
dkCollection* acoll = (dkCollection*) any;
... // use the attributes
acoll->apply(deleteDKAttributeDef); // deletes all members
delete acoll;

In this example, deleteDKAttributeDef is a method that takes the DKAny object as
a parameter. It is defined as follows:
void deleteDKAttributeDef(DKAny& any) {

delete ((DKAttributeDef*) any.value());
any.setNull(); // good practice

}

You could write your own delete method to delete your collection or remove some
members before deleting the collection.

The destructors for some known collections, like DKParts, DKFolder, and
DKResults, perform these necessary clean-up steps. However, they do not manage
storage when running replaceElementAt, removeElementAt, or removeAllElement
methods.

Sorting the collection
Use the sort method to sort collection members in either ascending or descending
order based on a specified key. You must pass a sort object and the desired order.
The interface for sort objects is defined in dkSort.hpp; so you can write your own
sort method for sorting your specific collection. The following example illustrates
how to sort a collection of DDOs based on each DDO’s item ID:
DKResults* rs;
... // execute a query to fill DKResults with DDOs
...

DKSortDDOId sortId; // the sort function; sort on item-id
rs->sort(&sortId); // by default, sort in ascending order
...

The definition of a function object DKSortString is provided in the samples
directory as an example of creating a sort function object.

Programming tips
The sort object is created in the stack, so it does not have to be explicitly deleted.
The method is reentrant, meaning that a single copy can be shared, reused, or
passed to another method.

Understanding federated collection and iterator
An application uses a federated collection to process as a group data objects
resulting from a query. At the same time the federated collection preserves the
subgrouping relationships that exist between them.

Chapter 8. Using the C++ application programming interfaces 245

A federated collection can contain an infinite number of nested collections.

A federated collection is a collection of DKResults objects. It is created to hold the
results of DKFederatedQuery, which can come from several heterogeneous content
servers. Each DKResults object contains the search results from a specific content
server.

To step through a federated collection, create and use a dkIterator or
DKSequentialIterator. Then create another dkIterator to step through each
DKResults object to iterate over it and process it according to its originating
content server.

You can also create a federated iterator, dkFederatedIterator, and use it to step
through all collection members, regardless of which content server the result came
from.

Restriction: You cannot query a federated collection.

Figure 50 shows the structure and behavior of DKFederatedCollection.

In Figure 50, the oval represents the DKFederatedCollection containing several
smaller circles which are DKResults objects. The dkFederatedIterator traverses
collection boundaries and returns a DDO each time.

The first dkIterator is an iterator for the DKFederatedCollection and returns a
DKResults object each time. The second dkIterator is an iterator for the second
DKResults object contained in the federated collection, therefore it returns a DDO
member from the DKResults collection.

The setToFirstCollection method in dkFederatedIterator sets the position to the
first DDO of DKFederatedCollection. In this case, it is the first element of the first
DKResults collection object. At this point, if the setToNextCollection method is
invoked, it sets the iterator position to the first DDO of the second DKResults
collection.

Figure 50. Structure and behavior of DKFederatedCollection

246 Application Programming Guide

The setToLastCollection method in dkFederatedIterator sets the iterator position
to the last DDO of DKFederatedCollection. In this case, it is the last element of the
last DKResults collection object. If the setToPreviousCollection method is
invoked, it sets the iterator position to the last DDO of the previous DKResults
collection.

Querying a content server
You can search a content server and receive results in a dkResultSetCursor or
DKResults object. You can create a query object to represent your query, then
invoke the execute method or evaluate method of the query object. With the help
of its content servers, the query object performs query processing tasks, such as
preparing and executing a query, monitoring the status of a query execution, and
storing the results.

There are three query object types: parametric, text, and combined. The combined
query is composed of both text and parametric queries. Not all content servers can
perform combined queries.

A content server uses two methods for running a query: execute and evaluate.
The execute method returns a dkResultSetCursor object, the evaluate method
returns a DKResults object. The dkResultSetCursor object is used to handle large
result sets and perform delete and update methods on the current position of the
result set cursor. You can use the fetchNextN method to retrieve a group of objects
into a collection.

You can also use dkResultSetCursor to run a query again by calling the close and
open methods. This is described in “Using the result set cursor” on page 255.

DKResults contains all of the results from the query. You can move an iterator
either forwards or backwards over the items in the collection. The DKResults
collection can be queried and used as a scope for another query. See “Querying
collections” on page 257 for more information.

Restriction: Although Domino.Doc content servers return a DKResults object, this
object cannot be queried nor used as a scope for another query.

Differences between dkResultSetCursor and DKResults
A dkResultSetCursor and a DKResults collection have the following differences:
v The dkResultSetCursor works like a content server cursor; it can be used for

large result sets because the DKDDOs it contain are fetched one at a time. It can
also be used to run a query again to get the latest results.
Attention: The Domino.Doc content server cannot rerun a query.

v The DKResults object contains the entire result set and supports a bi-directional
iterator.

Using parametric query
This section explains how to formulate, and execute different kinds of parametric
queries.

Formulating a parametric query
The following example is a query string representing a query on the index class
DLSAMPLE. The query is searching for all documents or folders with an attribute of

Chapter 8. Using the C++ application programming interfaces 247

DLSEARCH_DocType <> null. The maximum number of results returned is limited to
five. The content is set to YES, so that contents of the document or folder are
returned.

The query also specifies that a Content Manager server use dynamic SQL for this
query and that all folders and documents be searched. If the attribute name has
more than one word or is in a DBCS language, it should be enclosed in
apostrophes (’). If the attribute value is in DBCS, it should be enclosed in quotation
marks (″).
DKString cmd = "SEARCH=(INDEX_CLASS=DLSAMPLE,";
cmd += "MAX_RESULTS=5,";
cmd += "COND=(DLSEARCH_DocType <> NULL));";
cmd += "OPTION=(CONTENT=YES;";
cmd += "TYPE_QUERY=DYNAMIC;";
cmd += "TYPE_FILTER=FOLDERDOC)";

Formulating a parametric query on multiple criteria
You can specify multiple search criteria using a parametric query. The following
example shows how to specify a query on two index classes.
DKString cmd = "SEARCH=(INDEX_CLASS=DLSAMPLE,MAX_RESULTS=3,";
cmd += "COND=(DLSEARCH_DocType <> NULL);";
cmd += "INDEX_CLASS=DLSAMPLE,MAX_RESULTS=8,";
cmd += "COND=('First name' == \"Robert\"));";
cmd += "OPTION=(CONTENT=YES;";
cmd += "TYPE_QUERY=DYNAMIC;";
cmd += "TYPE_FILTER=FOLDERDOC)";

Executing a parametric query
Each content server provides a method for creating a query object. You can use
that query object to execute the query and obtain the results. The following
example shows how to create a parametric query object in a Content Manager
server and then execute that query. After the query executes, the results are
returned in a DKResults collection.
DKDatastoreDL dsDL;
dkQuery* pQry;
DKAny any;
DKResults* pResults;

cout << "connecting to datastore" << endl;
dsDL.connect(libsrv,userid,pw);
cout << "datastore connected libsrv: " << libsrv << " userid: " << userid << endl;

DKString cmd = "SEARCH=(INDEX_CLASS=DLSAMPLE,";
cmd += "MAX_RESULTS=5,";
cmd += "COND=(DLSEARCH_DocType <> NULL));";
cmd += "OPTION=(CONTENT=YES;";
cmd += "TYPE_QUERY=STATIC;TYPE_FILTER=FOLDERDOC)";
cout << "query string " << cmd << endl;
cout << "create query" << endl;
pQry = dsDL.createQuery(cmd);
cout << "executing query" << endl;
pQry->execute();
cout << "query executed" << endl;
cout << "get query results" << endl;
any = pQry->result();
pResults = (DKResults*)((dkCollection*) any);

processResults(pResults);

dsDL.disconnect();

248 Application Programming Guide

The complete sample application from which this example was taken
(TSamplePQryDL.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

Attention: When you delete a DKResults object, all of its members are also deleted.
Make sure that you do not delete the element twice. See “Using collections and
iterators” on page 243 for more information.

Executing a parametric query from the content server
Each content server provides a method for executing a query. The following
example shows how to execute a parametric query in a Content Manager server.
After the query executes, the results are returned in a dkResultSetCursor object.
...
DKDatastoreDL dsDL;
dkResultSetCursor* pCur = 0;
cout << "Datastore DL created" << endl;
cout << "connecting to datastore" << endl;
dsDL.connect(libsrv,userid,pw);
cout << "datastore connected " << libsrv << " userid - " << userid << endl;
// DKString cmd = "SEARCH=(COND=('DLSEARCH_DocType' == \"html\"));";
DKString cmd = "SEARCH=(INDEX_CLASS=DLSAMPLE,";
cmd += "MAX_RESULTS=5,";
cmd += "COND=(DLSEARCH_DocType <> NULL));";
cmd += "OPTION=(CONTENT=YES;";
cmd += "TYPE_QUERY=STATIC;TYPE_FILTER=FOLDERDOC)";
cout << "query string " << cmd << endl;
cout << "executing query" << endl;
pCur = dsDL.execute(cmd);
cout << "query executed" << endl;
...
...
if (pCur != 0)
delete pCur;
dsDL.disconnect();
...

The complete sample application from which this example was taken
(TExecuteDL.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

Evaluating a parametric query from the content server
Each content server provides a method for evaluating a query. The following
example shows how to evaluate a parametric query in a content server. After the
query executes, the results are returned in a DKResults collection.
DKDatastoreDL dsDL;
dsDL.connect("LIBSRVRN", "FRNADMIN", "PASSWORD");
DKAny *element;
DKDDO *item;
DKString cmd = "SEARCH=(INDEX_CLASS=GP2DLS5,";
cmd += "COND=((DLSEARCH_Date >= \"1995\") AND ";
cmd += "(DLSEARCH_Date <= \"1996\")));";
cmd += "OPTION=(CONTENT=NO;";
cmd += "TYPE_QUERY=DYNAMIC;TYPE_FILTER=FOLDERDOC)";

...
DKAny any = dsDL.evaluate(cmd);
DKResults* pResults = (DKResults*)((dkCollection*) any);
dkIterator* pIter = pResults->createIterator();
while (pIter->more()) {

element = pIter->next();
item = (DKDDO*)element->value();
// Process the DKDDO

Chapter 8. Using the C++ application programming interfaces 249

}
delete pIter;
delete pResults;
dsDL.disconnect();

Using text query
This section explains text queries.

Formulating a text query
The following example shows a query for a text index called TMINDEX. The query
searches for all text documents with the word UNIX or member. The maximum
number of results returned is five.
DKString cmd = "SEARCH=(COND=(UNIX OR member));";
cmd += "OPTION=(SEARCH_INDEX=TMINDEX;MAX_RESULTS=5)";

Formulating a text query on multiple indexes
You can use text query to search more than one index. The following example
shows how to specify a query for two indexes.
DKString cmd = "SEARCH=(COND=(UNIX OR member));";
cmd += "OPTION=(SEARCH_INDEX=(TMINDEX,TMINDEX2); MAX_RESULTS=5)";

Important: If you specify more than one text search index in the query, the indexes
must be the same type. For example, you can specify two precise indexes in the
query, but you cannot specify a precise index and a linguistic index within the
query.

Executing a text query
Each content server provides a method for creating a query object. You can use
that query object to execute the query and obtain the results. The following
example shows how to create a text query object and execute that query. After a
query executes, the results are returned in a DKResults collection.
DKDatastoreTS dsTS;
dkQuery* pQry;
DKAny any;
DKResults* pResults;

cout << "connecting to datastore" << endl;
//dsTS.connect("zebra","7502",DK_CTYP_TCPIP);
dsTS.connect(srchSrv,"","");
cout << "connected to datastore srchSrv: " << srchSrv << endl;

DKString cmd = "SEARCH=";
cmd += "(COND=(UNIX OR member));";
cmd += "OPTION=(SEARCH_INDEX=";
cmd += srchIndex;
cmd += ")";
cout << "query string " << cmd << endl;
cout << "create query" << endl;
pQry = dsTS.createQuery(cmd);
cout << "executing query" << endl;
pQry->execute();
cout << "query executed" << endl;
cout << "get query results" << endl;
any = pQry->result();
pResults = (DKResults*)((dkCollection*) any);

processResults(pResults);

dsTS.disconnect();

250 Application Programming Guide

The complete sample application from which this example was taken
(TSampleTQryTS.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

Executing a text query from the datastore
Each content server provides a method for executing a query. The following
example shows how to execute a text query in a Content Manager server. After the
query executes, the results are returned in a dkResultSetCursor object.
DKDatastoreTS dsTS;
dsTS.connect("TM", "", ' ');
DKString cmd = "SEARCH=(COND=('UNIX operating' AND system));";
cmd += "OPTION=(SEARCH_INDEX=TMINDEX)";
...

dkResultSetCursor* pCur = dsTS.execute(cmd);
DKDDO *item = 0;
while (pCur->isValid()) {

item = pCur->fetchNext();
if (item != 0) {

// Process the DKDDO
...
delete item;

}
}
delete pCur;
dsTS.disconnect();

The complete sample application from which this example was taken
(TExecuteTS.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

Evaluating a text query from the datastore
Each content server provides a method for executing a query. The following
example shows how to execute a text query in a Content Manager server. After the
query executes, the results are returned in a DKResults collection.
DKDatastoreTS dsTS;
dsTS.connect("TM", "", ' ');
DKAny *element;
DKDDO *item;
DKString cmd = "SEARCH=(COND=('UNIX operating' AND system));";

cmd += "OPTION=(SEARCH_INDEX=TMINDEX)";

...
DKAny any = dsTS.evaluate(cmd);
DKResults* pResults = (DKResults*)((dkCollection*) any);
dkIterator* pIter = pResults->createIterator();
while (pIter->more()) {

element = pIter->next();
item = (DKDDO*) element->value();
// Process the DKDDO
...

}
delete pIter;
delete pResults;
dsTS.disconnect();

Getting match highlighting information for each text query result
item
This example retrieves match highlighting information for each text query result
item during a text query, by setting the MATCH_INFO option to YES. The MATCH_DICT
option specifies whether the highlighting information should be obtained using a
dictionary. The match information is returned in the DKMATCHESINFO attribute of the
DKDDO returned from a text query. The value of the DKMATCHESINFO attribute will
be a DKMatchesInfoTS object.

Chapter 8. Using the C++ application programming interfaces 251

Attention: This process is time consuming because the document is retrieved from
the content server and linguistically analyzed to determine potential matches.
DKDatastoreTS dsTS;
dsTS.connect("TM","","","LIBACCESS=(LIBSRVRN,FRNADMIN,PASSWORD)");
DKString cmd = "SEARCH=(COND=('UNIX operating' AND system));"
cmd += "OPTION=(SEARCH_INDEX=TMINDEX;MAX_RESULTS=5;MATCH_INFO=YES;MATCH_DICT=NO)";

...

dkResultSetCursor* pCur = dsTS.execute(cmd);
DKDDO *item = 0;
DKAny anyObj;
dkDataObjectBase *pDOBase = 0;
DKMatchesInfoTS *pMInfo = 0;
DKMatchesDocSectionTS *pMSect = 0;
DKMatchesParagraphTS *pMPara = 0;
DKMatchesTextItemTS *pMText = 0;
long i = 0;
long j = 0;
long k = 0;
long m = 0;
long lCCSID = 0;
long lLang = 0;
long lOffset = 0;
long lLen = 0;
long numberSections = 0;
long numberParagraphs = 0;
long numberTextItems = 0;
long numberNewLines = 0;
DKString strDoc;
DKString strSection;
DKString strText;
while (pCur->isValid())
{
item = pCur->fetchNext();
if (item != 0)
{
// Process the DKDDO
for (i = 1; i <= item->dataCount(); i++)
{
anyObj = item->getData(i);
switch (anyObj.typeCode())
{
case DKAny::tc_string :
{
...
break;
}
case DKAny::tc_long :

{
...
break;
}
case DKAny::tc_short :
{
...
break;
}
case DKAny::tc_dobase :
{
// process the Match Hightlighting information
pDOBase = a;
pMInfo = (DKMatchesInfoTS*)pDOBase;

if (pMInfo != 0)
{

strDoc = pMInfo->getDocumentName();

252 Application Programming Guide

numberSections = pMInfo->numberOfSections();
// loop thru document sections

for (j = 1; j <= numberSections; j++)
{
pMSect = pMInfo->getSection(j);
strSection = pMSect->getSectionName();
numberParagraphs = pMSect->numberOfParagraphs();

// loop thru section paragraphs
for (k = 1; k <= numberParagraphs; k++)
{
pMPara = pMSect->getParagraph(k);
lCCSID = pMPara->getCCSID();
lLang = pMPara->getLanguageId();
numberTextItems = pMPara->numberOfTextItems();

// loop thru paragraph text items
for (m = 1; m <= numberTextItems; m++)
{
pMText = pMPara->getTextItem(m);
strText = pMText->getText();

// if match found in text item get offset and
// length of match in text item

if (pMText->isMatch() == TRUE)
{
lOffset = pMText->getOffset();
lLen = pMText->getLength();

}
numberNewLines = pMText->numberOfNewLines();
}
}
}
}
break;
}
default :
{
break;
}
}
}
...
delete item;

}
}
delete pCur;
dsTS.disconnect();

Getting match highlighting information for a particular text query
result item
This example retrieves match highlighting information for a specific item returned
from a text query. The match information contains the text of the document and
the highlighting information for every match of the corresponding query. The
dkResultSetCursor passed into this routine must be in an open state.

Attention: This process is time consuming because the document is retrieved from
the content server and linguistically analyzed to determine potential matches.
DKDatastoreTS dsTS;
dsTS.connect("TM","","","LIBACCESS=(LIBSRVRN,FRNADMIN,PASSWORD)");
DKString cmd = "SEARCH=(COND=('UNIX operating' AND system));"
cmd += "OPTION=(SEARCH_INDEX=TMINDEX;MAX_RESULTS=5)";

...

dkResultSetCursor* pCur = dsTS.execute(cmd);
DKDDO *item = 0;
DKAny anyObj;

Chapter 8. Using the C++ application programming interfaces 253

dkDataObjectBase *pDOBase = 0;
DKMatchesInfoTS *pMInfo = 0;
DKMatchesDocSectionTS *pMSect = 0;
DKMatchesParagraphTS *pMPara = 0;
DKMatchesTextItemTS *pMText = 0;
long i = 0;
long j = 0;
long k = 0;
long m = 0;
long lCCSID = 0;
long lLang = 0;
long lOffset = 0;
long lLen = 0;
long numberSections = 0;
long numberParagraphs = 0;
long numberTextItems = 0;
long numberNewLines = 0;
DKString strDoc;
DKString strSection;
DKString strText;
DKString strDID;
DKString strXNAME;
DKString strDataName;
DKPid pid;
while (pCur->isValid())
{

item = pCur->fetchNext();
if (item != 0)
{
pid = item->getPid();
// Process the DKDDO
for (i = 1; i <= item->dataCount(); i++)
{
anyObj = item->getData(i);
strDataName = item->getDataName(i);
if (strDataName == "")
{
strDID = pid.getId();
}
if (strXNAME == "")
{
strXNAME = p->getObjectType();
}
switch (anyObj.typeCode())
{
...
}
}
// Get Match Highlighting Information
pMInfo = dsTS.getMatches(pCur,strDID,strXNAME,FALSE);
strDID = "";
strXNAME = "";
if (pMInfo != 0)
{
strDoc = pMInfo->getDocumentName();
numberSections = pMInfo->numberOfSections();
// loop thru document sections
for (j = 1; j <= numberSections; j++)
{
pMSect = pMInfo->getSection(j);
strSection = pMSect->getSectionName();
numberParagraphs = pMSect->numberOfParagraphs();
// loop thru section paragraphs
for (k = 1; k <= numberParagraphs; k++)
{
pMPara = pMSect->getParagraph(k);
lCCSID = pMPara->getCCSID();

254 Application Programming Guide

lLang = pMPara->getLanguageId();
numberTextItems = pMPara->numberOfTextItems();
// loop thru paragraph text items
for (m = 1; m <= numberTextItems; m++)
{
pMText = pMPara->getTextItem(m);
strText = pMText->getText();
// if match found in text item get offset and
// length of match in text item
if (pMText->isMatch() == TRUE)
{
lOffset = pMText->getOffset();
lLen = pMText->getLength();
}
numberNewLines = pMText->numberOfNewLines();
}
}
}
delete pMInfo;
}
...
delete item;
}

}
delete pCur;
dsTS.disconnect();

Using the result set cursor
The dkResultSetCursor is a content server cursor that manages a virtual collection
of DDOs and does not appear until you fetch an element from it. The collection set
resulting from a query submitted to the content server.

Important: When you stop using the cursor, call the destroy method to close it and
prevent memory leaks.

Opening and closing the result set cursor to re-execute the
query

When you create a result set cursor, it is open. To run a query again, you close and
reopen the cursor, as shown in the following example:
DKString cmd = "SEARCH=(INDEX_CLASS=DLSAMPLE);";
cmd += "OPTION=(CONTENT=YES;";
cmd += "TYPE_QUERY=DYNAMIC;" ;
cmd += "TYPE_FILTER=FOLDERDOC)";
...

dkResultSetCursor* pCur = dsDL.execute(cmd);
// re-execute the query
pCur->close();
pCur->open();

Setting and getting positions in a result set cursor
You can both set and get the current cursor position. The following example
creates and runs a query. Inside the while loop, the cursor position is set to the
first (or next) valid position. Then a DDO is fetched from that position. Finally, the
cursor position is retrieved, and assigned to the variable i. A null is returned from
the fetchObject method if the cursor is past the last result item.
DKString cmd = "SEARCH=(INDEX_CLASS=DLSAMPLE);";
cmd += "OPTION=(CONTENT=YES;";
cmd += "TYPE_QUERY=DYNAMIC;" ;

Chapter 8. Using the C++ application programming interfaces 255

cmd += "TYPE_FILTER=FOLDERDOC)";
pCur = 0;
DKDDO *item = 0;
long i = 0;
...

dkResultSetCursor* pCur = dsDL.execute(cmd);
while (pCur->isValid()) {

pCur->setToNext();
item = pCur->fetchObject();
if (item != 0) {

i = pCur->getPosition();
delete item;

}
}
delete pCur;

Another way to do this is:
DKAny a;
pCur = dsDL.execute(cmd);
while (pCur->isValid()) {

pCur->setPosition(DK_CM_NEXT,a);
item = pCur->fetchObject();
if (item != 0) {

i = pCur->getPosition();
delete item;

}
}
delete pCur;

You can use relative positioning. The following example skips every other item in
the result set:
DKAny a;
long increment = 2;
pCur = dsDL.execute(cmd);
a = increment;
while (pCur.isValid()) {

pCur->setPosition(DK_CM_RELATIVE,a);
item = pCur->fetchObject();
if (item != 0) {

i = pCur->getPosition();
delete item;

}
}
delete pCur;

Creating a collection from a result set
You can use the result set cursor to populate a collection with a specified number
of items from the result set. In the following example, all items from the result set
are fetched into a sequential collection. The first parameter specifies how many
items to put into the collection. A zero in the first parameter of the fetchNextN
method indicates that all result set items will be put into the collection. If fItems is
TRUE, at least one item was returned.
DKSequentialCollection seqColl;
DKBoolean fItems = FALSE;
long how_many = 0;
fItems = pCur->fetchNextN(how_many,seqColl);

256 Application Programming Guide

Querying collections
A queryable collection is a collection that can be queried further, thus providing a
smaller evaluation set or more refined results. A concrete implementation of a
queryable collection is a DKResults object. DKResults is a collection of DDOs,
which are the result of a query.

Getting query results
The following example illustrates how to submit a parametric query and get
results:
// establish a connection
DKDatastoreDL dsDL;
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");
// create a query object
DKString query1 = "SEARCH=(INDEX_CLASS=GRANDPA,COND=(Title <> NULL));";
DKParametricQuery* pq =(DKParametricQuery*)
dsDL.createQuery(query1,DK_PARAMETRIC_QL_TYPE, NULL);
pq->execute();
DKAny any = pq->result();
DKResult* rs = (DKResults*) any.value();

The results are in rs, which is a DKResults object. You can use previous code
examples to process the collection and get the DDO.

Evaluating a new query
As shown in the code example below, you can query the result from the query to
further refine it. For example:
DKString query2 = "SEARCH=(INDEX_CLASS=GRANDPA, COND=(Subject == 'Mystery'));";

any = rs->evaluate(query2,DK_PARAMETRIC_QL_TYPE, NULL);
...

A DKResults object called any contains the refined results. The combined results of
both queries are:
"SEARCH=(INDEX_CLASS=GRANDPA, COND=(Title <> NULL AND Subject == 'Mystery'));"

You can repeat this step until you get satisfactory results. After you start with one
type of query, the subsequent queries must be of the same type, because you might
get a null result.

The following example is for text queries:
DKDatastoreTS dsTS;
dsTS.connect("TM","","","");

DKString tquery1 = "SEARCH=(COND=(IBM)); OPTION=(SEARCH_INDEX=TMINDEX)";
DKTextQuery* tq = (DKTextQuery*) dsTS.createQuery(tquery1,DK_TEXT_QL_TYPE, NULL);
tq->execute();
any = tq->result();
DKResults* trs = (DKResults*) any.value();

DKString tquery2 = "SEARCH=(COND=(Tivoli));OPTION=(SEARCH_INDEX=TMINDEX)";
any = trs->evaluate(tquery2,DK_TEXT_QL_TYPE, NULL);

A DKResults object called any contains the DKResults object containing the
combined results of both queries:
"SEARCH=(COND=(IBM AND Tivoli));OPTION=(SEARCH_INDEX=TMINDEX)";

Chapter 8. Using the C++ application programming interfaces 257

Using queryable collection instead of combined query
Evaluating a queryable collection is similar to other Java classes. One such class is
combined query. You can use a combined query to submit a combination of
parametric and text queries, with or without scopes. However, all of these queries
must be submitted at once, not one at a time as you would when evaluating a
queryable collection.

The result of a combined query is a DKResults object, so you can theoretically
evaluate another parametric query against it; although it might not always work.
You cannot perform combined queries on all content servers.

Evaluating a queryable collection with subsequent queries provides the flexibility
to refine the results of a previous query, step by step, until you get a satisfactory
final result. This is quite useful for dynamically browsing a content server and
formulating the next query based on the previous results. However, if you know
the total query in advance, it is more efficient to submit the complete query once.

Using specific content servers
Each content server uses the dkDatastore classes, or data definition classes, as the
primary interface to the Enterprise Information Portal database. Each content
server has a separate content server class that implements the dKDatastore class to
provide information specific to the content server.

Each content server type is represented by a class called DKDatastorexx, where xx
is an abbreviation that identifies the specific content server as shown in table
Table 21.

Table 21. Server type and class name terminology

Server type Class name

Content Manager DKDatastoreDL

VisualInfo for AS/400 DKDatastoreV4

ImagePlus for OS/390 DKDatastoreIP

Domino.Doc DKDatastoreDD

Domino Extended Search DKDatastoreDES

relational database DKDatastoreDB2, DKDatastoreJDBC,
DKDatastoreODBC (for C++ on WinNT),
DKDatastoreDJ

Information Catalog DKDatastoreIC

relational database DKDatastoreDB2, DKDatastoreODBC (for
C++ on WinNT), DKDatastoreDJ

Information Catalog DKDatastoreIC

When creating a content server you must implement one concrete class for each of
the following classes or interfaces:

dkDatastore
Represents and manages a connection to the content server, transactions,
and the execution of content server commands. dkDatastore is an abstract
version of the query manager class. It supports the evaluate method, so it
can be considered a subclass of query manager.

258 Application Programming Guide

dkDatastoreDef
Defines methods to access items stored in the content server; it can also
create, list, and delete its entities. It maintains a collection of dkEntityDefs.
Examples of concrete classes for this interface are:
v DKDatastoreDefDL
v DKDatastoreDefV4

dkEntityDef
Defines methods to:
v Create and delete an entity.
v Access entity information.
v Create and delete attributes.

In this class, all methods related to subentities generate DKUsageError
objects indicating that the datastore does not then support subentities.
However, if the content server supports multiple-level entities the subclass
for the content servers must implement methods to overwrite the
exceptions, for example. Examples of concrete classes for the dkEntityDef
interface are:
v DKIndexClassDefDL
v DKEntityDefIP

dkAttrDef
Defines methods to access attribute information and to create and delete
attributes. Examples of concrete classes for dkAttrDef are:
v DKAttributeDefDL
v DKAttrDefV4

dkServerDef
Defines methods to access server information. Examples of concrete classes
for dkServerDef are:
v DKServerDefDL
v DKServerDefDD

dkResultSetCursor
A content server cursor that manages a virtual collection of DDO objects.
The collection is a query result set. Elements of the collection do not
materialize until a datastore fetch operation is run. To use the addObject,
deleteObject, and updateObject methods, you must set the datastore
option DK_CM_OPT_ACCESS_MODE to DK_CM_READWRITE.

dkBlob
An abstract class that declares a common public interface for binary large
object (BLOB) data types in each content server. The concrete classes
derived from dkBlob share this common interface, allowing polymorphic
processing of BLOB collections originating from heterogeneous content
servers. Examples of concrete classes for dkBlob are:
v DKBlobDL
v DKBlobDD

For more information on dkDatastore and other common classes, see “Developing
custom content servers” on page 316.

Chapter 8. Using the C++ application programming interfaces 259

Working with Content Manager
This section describes how to:
v Handle large objects
v Use DDOs in the server
v Use XDOs in a search engine
v Use combined query
v Use Text Search Engine
v Use image search (QBIC)
v Use workflows and workbaskets

Handling large objects
This section describes how Content Manager handles large objects.

Setting Java heap size: Java has a limitation for the default initial and maximum
heap size. The default initial heap size is 1 048 576 and the default maximum heap
size is 16 777 216 bytes. If your Java application program uses objects larger than
the default maximum heap size, your program will fail during execution. To
increase the maximum heap size for your application, use the -mx option when you
run your Java application program, for example:
java -mx40000000 yourApplication

Using DDOs to represent Content Manager’s data
A DDO associated with DKDatastoreDL has some specific information to represent
the Enterprise Information Portal document metaphor: document, folder, parts,
item, item ID, rank, and so forth. The following sections describe how you record
this information.

DDO properties: The type of an item, either a document or folder, is a property
under the name DK_CM_PROPERTY_ITEM_TYPE. To get the item type of the DDO, you
call:
DKAny any = cddo->getPropertyByName(DK_CM_PROPERTY_ITEM_TYPE);
if (!any.isNull()) {

unsigned short item_type = (unsigned short) any;
} ... // do something

After the property is called, the item_type is equal to DK_CM_DOCUMENT for a
document, or DK_CM_FOLDER for a folder. The if statement ensures that the property
exists. See “Adding properties to a DDO” on page 223 and “Getting the DDKDO
and attribute properties” on page 224 for more information.

PID: The PID contains important pieces of information specific to Enterprise
Information Portal: the object type indicates the index class the DDO belongs to;
the PID contains the item ID of the associated item from the datastore. See
“Creating a persistent identifier (PID)” on page 222.

Representing documents: A DDO representing a document has the property
DX_DL_PROPERTY_ITEM_TYPE equal to DX_DL_DOCUMENT. Its PID contains the index
class name as the object type, and the item ID in the PID’s ID.

The parts inside a document are represented as DXPartsDL objects, which are
collections of binary large objects (BLOBs), each of which is represented as a
DXBlobDL object. A document DDO has a specific attribute with the reserved
name DX_DL_DKPARTS, whose value is also DKParts object. To get to each part in a
document, you must retrieve DKParts first, then create an iterator to retrieve each
part. If the document does not have a part at all, DKPARTS is null. Documents

260 Application Programming Guide

associated with a combined query (a combination of a parametric and text query)
can have a transient attribute called DKRANK, whose value is an object containing an
integer rank computed by the Text Search Engine.

For more information on creating and processing a DKParts object, see “Creating,
updating, and deleting documents or folders”, “Retrieving a document or folder”
on page 265, and “Creating and using the DKPARTS attribute” on page 238.

Representing folders: A DDO representing a folder has a property
DK_CM_PROPERTY_ITEM_TYPE equal to DK_CM_FOLDER. Similar to a document DDO, its
PID contains the index class name as the object type, and item ID in the PID’s ID.

The table of contents inside a folder is represented as a DKFolder object, which is a
collection of DDOs. Each collection represents an item—either a document or
another folder—belonging to this folder. A folder DDO has a specific attribute with
a reserved name DKFOLDER, whose value is also DKFolder object.

To get to each DDO member of the folder, you must retrieve DKFOLDER first, then
create an iterator to retrieve each item member. If the folder does not have a
member, DKFOLDER is null.

For more information on creating and processing a DKFolder object, see “Creating,
updating, and deleting documents or folders”, “Retrieving a document or folder”
on page 265, and “Creating and using the DKFOLDER attribute” on page 239.

Creating, updating, and deleting documents or folders
This section describes creating, updating, and deleting documents and folders.

Creating a document: To create a document and save it in a content server, you
must create a DDO, setting all of its attributes and other information, except its
item ID. The item ID is assigned and returned by the content server. Some of the
previous examples are combined in the following example:
// step 1: create a datastore and connect to it
DKDatastoreDL dsDL;
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");

// step 2: create a document (or folder) DDO
// and set all its attributes and other required information
// See the section on "Using DDO"
DKPid pid;
// set the index-class name it belongs to
pid.setObjectType("GRANDPA");
// create a DDO with pid and associated to dsDL
DKDDO* ddo = new DKDDO(&dsDL,pid);

// step 2.a: add attributes according to index-class GRANDPA
DKAny any;
DKBoolean yes = TRUE;
DKBoolean no = FALSE;
// add a new attribute named "Title"
unsigned short data_id = cddo->addData("Title");
// add type property VSTRING
any = DK_VSTRING;
cddo->addDataProperty(data_id, DK_CM_PROPERTY_TYPE, any);
// add nullable property: non-nullable
any = no;
cddo->addDataProperty(data_id, DK_CM_PROPERTY_NULLABLE , any);

// add a new attribute named "Subject"
data_id = cddo->addData("Subject");

Chapter 8. Using the C++ application programming interfaces 261

any = DK_VSTRING;
cddo->addDataProperty(data_id, DK_CM_PROPERTY_TYPE, any);
any = yes;
cddo->addDataProperty(data_id, DK_CM_PROPERTY_NULLABLE , any);

// add some more attributes as necessary
// ...

// step 2.b: add DKPARTS attribute
// create a new XDO blob
DKParts* parts = new DKParts;
DKBlobDL* blob = new DKBlobDL(&dsDL);

DKPidXDODL pidXDO; // create Pid for this XDO object

pidXDO.setPartId(5); // set part number to 5
blob->setPid(&pidXDO); // set the Pid for the XDO blob
blob->setContentClass(DK_CC_GIF); // set content class type GIF
blob->setRepType(DK_REP_NULL); // set rep type for the part
blob->setContentFromClientFile("choice.gif"); // set the blob's content

DKAny any = (dkDataObjectBase*) blob;
parts->addElement(any); // add the blob to the parts collection

... // create and add some more blobs

... // to the collection as necessary

// create DKPARTS attribute and sets it to refer to the DKParts object
// add attribute "DKParts"
unsigned short data_id = ddo->addData(DKPARTS);
any = DK_COLLECTION_XDO;
// add type property
ddo->addDataProperty(data_id,DK_CM_PROPERTY_TYPE,any);
any = (DKBoolean) TRUE;
// add nullable property
ddo->addDataProperty(data_id,DK_CM_PROPERTY_NULLABLE ,any);
any = (dkCollection*) parts;
// sets the attribute value
ddo->setData(data_id, any);

// step 2.c: sets the item type : document
any = DK_CM_DOCUMENT;
ddo->addProperty(DK_CM_PROPERTY_ITEM_TYPE, any);

// step 3: make it persistent
// a document is created in the datastore
ddo->add();

After the last step, the document is created in the content server. When a
document DDO is added to a content server, all of its attributes are added,
including all of the parts listed in DKPARTS. This also applies to adding a folder
DDO, the DKFOLDER collection members are added to the datastore as a component
of the folder. A folder contains a table of contents of its members, which are
existing documents and folders. Therefore, all folder members must be created in
the datastore before you can add a folder DDO. You can add the same document
to a different content server of the same type. For example, to add the document to
the server LIBSRVRN, which has an index class GRANDPA2 with the same structure as
GRANDPA:
// create datastore and connect to LIBSRVRN
DKDatastoreDL dsN;
dsN.connect("LIBSRVRN","FRNADMIN","PASSWORD");
// update the Pid
pid = ddo->getPid();
pid.setObjectType("GRANDPA2"); // set the new index-class
pid.setId(""); // blank the item-id

262 Application Programming Guide

pid.setDatastoreName("LIBSRVRN"); // set the new datastore name
ddo->setPid(pid); // update the Pid
ddo->setDatastore(&dsN); // re-associate it with dsN
ddo->add(); // add it

Updating a document or a folder: To update a document you must set the item
ID and object type. Then, update the desired attributes, or add parts to the
collection. Finally, call the update method to store the change, for example:
// update the value of attribute Title
DKAny any = DKString("Guess who is behind all this");
unsigned short data_id = ddo->getDataByName("Title");
ddo->setData(data_id, any);
ddo->update();

After the call to the update method, the value of the attribute Title in the
datastore is updated. The parts in this document are not updated unless their
content has changed. The connection to the server must be valid when you call the
update method. Updating a folder DDO requires similar steps: you update the
attribute values, or add or remove elements from DKFolder, then call the update
method.

Updating parts: The collection of parts in a document is represented in a DKParts
object called DKPARTS.DKParts is a subclass of DKSequentialCollection. In
addition to inheriting the sequential collection functions, DKParts has two
additional members for adding a part to, and removing a part from, the collection
and immediately saves those changes. The document must already exist in the
content server.

Adding and removing a part: The following example adds a part to a document:
// a document DDO
DKDDO* ddo;
// a new part to be added
DKBlobDL* newPart;
// ddo and newPart are
// initialized somewhere along the line
...
...
// get DKParts
DKAny any = ddo->getDataByName(DKPARTS);
DKParts* parts = (DKParts*) any.value();
// assume none of these values are NULL
parts->addMember(ddo, newPart);

Similarly, to remove newPart from the collection and the content server, enter:
parts->removeMember(ddo, newPart);

The removeMember method in DKParts actually deletes the part from the content
server.

Differences between update, add, and remove on a document DDO: DKParts addMember
and removeMember methods provide conveniences for adding and removing a part
in the collection and the content server. Compared to the update method in a
document DDO, the addMember and removeMember are faster.

The update method on a DDO updates all of the attributes in the DDO, including
DKParts and all of its members that changed. The steps are shown in the following
example:

Chapter 8. Using the C++ application programming interfaces 263

...
DKAny any = ddo->getDataByName(DKPARTS);
// get DKParts, assume it exists
DKParts* parts = (DKParts*) any.value();
// assume it is not NULL
any = (dkDataObjectBase*) newpart;
parts->addElement(any);
// updates the whole ddo
ddo->update();
...

Updating folders: The collection of documents and folders within a folder is
represented as a DKFolder object. In the content server, a folder holds a table of
contents referring to its objects instead of all of the actual objects.

DKFolder is a subclass of DKSequentialCollection. In addition to inheriting the
sequential collection methods, it has two additional members for adding a member
to, or removing a member from, the collection and immediately stores those
changes.

The added document or folder to be added must already exist in the content
server, as must the folder to be added to.

Adding and removing a member: The following example adds another document or
folder to a folder:
// a folder DDO
DKDDO* folderDDO;
// a new DDO to be added as a member of this folder
DKDDO* newMember;
... // folderDDO and newMember are
... // initialized somewhere along the line
DKAny any = folderDDO->getDataByName(DKFOLDER);
// get DKFolder, assume it exists
DKFolder* folder = (DKFolder*) any.value();
// assume non NULL
folder->addMember(folderDDO, newMember);

Similarly, to remove newMember from the collection and the content server, enter:
folder->removeMember(folderDDO, newMember);

Important: Removing a member from a folder only removes that member from the
folder table of contents. If you use the removeElementAt method it does not delete
the member from memory or from the content server.

Differences between update, add, and remove on a folder DDO: DKFolder addMember
and removeMember methods provide conveniences for adding and removing a
document or folder the collection and the content server. Compared with the
update method in a folder DDO, add and remove methods are faster.

The update method on a DDO updates all of the attributes in the DDO, including
DKFolder and all of its members, whereas add and remove member methods
involve only adding and removing one particular member to or from the folder
table of contents.

Deleting a document or a folder: Use the del method in the DDO to delete a
document or folder from the content server.
ddo->del();

264 Application Programming Guide

The DDO must have its item ID and object type set, and your program must have
a valid connection to the content server.

Only persistent data is deleted, the in-memory copy of the DDO does not change.
Therefore, you can add this DDO back to the same or different content server later.
See “Creating a document” on page 261 for more information.

Retrieving a document or folder
To retrieve a document from DKDatastoreDL, you must know the document’s
index class name and item ID. You must first associate the DDO to a content server
and establish a connection.
DKDatastoreDL dsDL;
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");
DKPid pid;
// set the index-class name it belongs to
pid.setObjectType("GRANDPA");
// set the item-id
pid.setId("LN#U5K6ARLGM3DB4");
// create a DDO with pid and associated to dsDL
DKDDO* ddo = new DKDDO(&dsDL, pid);
// retrieve it
ddo->retrieve();

To retrieve the DDO, call:
ddo->retrieve();

After a call to retrieve, all of the DDO’s attribute values are set to the value of the
persistent data stored in the datastore. If the document has parts, the DKPARTS
attribute is set to a DKParts object. However, the content of each part in this
collection is not retrieved. Because a part might be large, it is not desirable to
retrieve all of them into memory at once. It is better to explicitly retrieve the part
you want.

If the DDO is a parametric query result that was run with the query option
CONTENT=NO, the DDO is empty (does not have the attribute values). However, all
information required to retrieve it is already set.

Retrieving parts: After you retrieve a DDO, you can retrieve its parts that are
identified in DKPARTS, as follows:
DKAny any = ddo->getDataByName(DKPARTS);
DKParts* parts = (DKParts*) any.value();

This example assumes that the DKPARTS attribute exists. An exception is generated
if the attribute does not exist. See “Retrieving a folder” on page 266 for an example
of extracting an attribute value by getting the data ID first and testing it for zero.

To retrieve each part, you must create an iterator to step through the collection and
retrieve each part. See “Creating and using the DKPARTS attribute” on page 238.
// create iterator and process the part collection member one by one
if (parts != NULL) {

DKAny* element;
DKBlobDL* blob;
dkIterator* iter = parts->createIterator();
while (iter->more()) {

element = iter->next();
blob = (DKBlobDL*) element->value();
if (blob != NULL) {

// retrieve the blob's content
blob->retrieve();

Chapter 8. Using the C++ application programming interfaces 265

// other processing, as needed
blob->open();

}
}
delete iter;

}

Similar to the DDO results of a parametric query, each part XDO inside the
DKParts collection is empty (does not have its content set). However, it has all the
information needed for information retrieval. To bring its content and related
information into memory, call:
blob->retrieve();

Retrieving a folder: Retrieve a folder DDO the same way as you would retrieve a
document DDO. After being retrieved, the folder DDO has all of its attributes set,
including a special attribute, DKFOLDER. This attribute value is set to a DKFolder
object, a collection of DDO members in this folder. Like the parts in DKParts, these
member DDOs contain only enough information to retrieve them. You can retrieve
a folder DDO as follows:
// get DKFOLDER data-id
data_id = ddo->dataId(DKFOLDER);
// folder not found
if (data_id == 0) {

DKException exc(" folder data-item not found");
DKTHROW exc;

}
// get the folder collection
any = ddo->getData(data_id);
DKFolder* fCol = (DKFolder*) any.value();
// create iterator and process the DDO collection member one by one
if (fCol != NULL) {

DKAny* element;
DKDDO* item;
dkIterator* iter = fCol->createIterator();
while (iter->more()) {

element = iter->next();
item = (DKDDO*) element->value();
if (item != NULL) {

// retrieve the member DDO
item->retrieve();
// other processing
...

}
}
delete iter;

}

See also “Creating and using the DKFOLDER attribute” on page 239.

Understanding text searching (Text Search Engine)
The Text Search Engine product can specify boolean, proximity, global text retrieval
(GTR), hybrid, and free text queries. You can use the text search item ID, part
number, and ranking information returned by the query to create an XDO that
retrieves the text document contents in a Content Manager server.

The DKDatastoreTS object does not support add, update, retrieve, and delete
methods. You can query this content server. Refer to “Loading data to be indexed
by Text Search Engine” on page 272 for information on adding data to Content
Manager that is indexed by Text Search Engine.

266 Application Programming Guide

Boolean query: A boolean query is made up of words and phrases, separated by
boolean operators. A phrase is a sequence of words enclosed in apostrophes ('),
that is searched for as a literal string.

The following example is searching for all text documents with the word WWW or
the phrase Web site in the TMINDEX text search index:
DKString cmd = "SEARCH=(COND=(WWW OR 'Web site'));";

cmd += "OPTION=(SEARCH_INDEX=TMINDEX)";

Free text query: A free text query is made up of words, phrases, or sentences
enclosed in braces ({ }). The words are not required to be adjacent to each other.
The following example is searching for all text documents with the free text web
site in the TMINDEX text search index:
DKString cmd = "SEARCH=(COND=({Web site}));";

cmd += "OPTION=(SEARCH_INDEX=TMINDEX)";

Hybrid query: A hybrid query is made up of a boolean query followed by a free
text query. The example is searching for all text documents with the words IBM and
UNIX, as well as the free text web site in the TMINDEX text search index.
DKString cmd = "SEARCH=(COND=(IBM AND UNIX {Web site}));";

cmd += "OPTION=(SEARCH_INDEX=TMINDEX)";

Proximity query: A proximity query relates to a sequence of search arguments
found in the same document, paragraph, or sentence. The following example is
searching for all text documents with the phrase rational numbers and the word
math in the same paragraph.
DKString cmd = "SEARCH=(COND=($PARA$ {'rational numbers' math}));";

cmd += "OPTION=(SEARCH_INDEX=TMINDEX)"

Note: this type of query requires at least two search arguments.

Global text retrieval (GTR) query: A GTR query is optimized for double-byte
character set (DBCS) languages like Japanese or Chinese, but also supports
single-byte character set (SBCS) languages. The following example shows a search
for all text documents with the phrase IBM marketing. All double-byte characters
should be enclosed in apostrophes ('). The phrase to be searched for should be in
the specified character code set and language. The MATCH keyword is set to
indicate the degree of similarity for the phrase.
DKString cmd = "SEARCH=(COND=($CCSID=850, LANG=6011,MATCH=1$ ";

cmd += "'IBM marketing'));";
cmd += "OPTION=(SEARCH_INDEX=TMGTRX)";

Make sure that the text search datastore options DK_OPT_TS_CCSID (coded character
set identifiers) and DK_OPT_TS_LANG (language identifiers) are set properly. The
default for DK_OPT_TS_CCSID is DK_CCSID_00850. The default for DK_OPT_TS_LANG is
DK_LANG_ENU. These values are used as the global defaults for the text query. For
more information, see the online API reference.

You can also enter specific CCSID and LANG information as shown in the example.
You must specify both CCSID and LANG; one value cannot be specified with the
other.

Representing Text Search Engine information using DDOs: A DDO associated
with a DKDatastoreTS object has specific information for representing results from
text searches. DKDastastoreTS does not have a property item type as a

Chapter 8. Using the C++ application programming interfaces 267

DKDatastoreDL object does. The format of its ID is also different. A DDO resulting
from a text query corresponds to a text part inside an item. It has a set of standard
attributes, described below.

DKDLITEMID
The item ID that this text is part of. Use this item ID to retrieve the whole
item from the content server.

DKPARTNO
An integer part number for this text part. Use the part number with the
item ID to retrieve the text part from the content server.

DKREPTYPE
The RepType of this text part. Use this attribute with the item ID and part
number to retrieve the text part from the content server.

DKRANK
An integer rank signifying the relevance of this part to the results of a text
query. A higher rank means a better match. See the online API reference for
further information.

DKDSIZE
An integer number representing word occurrences (in the results of
boolean queries). See the online API reference for further information.

DKRCNT
An integer number representing boolean search matches. See the online
API reference for further information.

The PID for a text search DDO has the following information:

datastore type
TS

datastore name
The name used to connect to the content server

object type
Text search index

ID Text Search Engine document ID

Establishing a connection: The DKDatastoreTS object provides two methods for
connecting and a method for disconnecting. Normally, you create a DKDatastoreTS
object, connect to it, run a query, then disconnect when done. The following
example shows the first connection method using the text search server TM.
DKDatastoreTS dsTS;
dsTS.connect("TM","","","");
... // do some work
dsTS.disconnect();

The complete sample application from which this example was taken
(TConnectTS.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

The following example shows the second connection method using the text search
server with the hostname apollo, port number 7502, and TCP/IP communication
type DK_CTYP_TCPIP:
dsTS.connect("apollo","7502",DK_CTYP_TCPIP);

The following example shows the first connection method using the text search
server hostname apollo, port number 7502, communication type T (TCP/IP):

268 Application Programming Guide

dsTS.connect("apollo","","", "PORT=7502;COMMTYPE=T");

The following example shows the first connection method using the text search
server name TM, library server LIBSRVRN, user ID FRNADMIN, and password PASSWORD:
dsTS.connect("TM","","", "LIBACCESS=(LIBSRVRN,FRNADMIN,PASSWORD)");

Note that you can use the last parameter LIBACCESS, also called the connect string,
to pass a sequence of parameters.

Tip: To prevent the Text Search Engine connection from timing out, connect to Text
Search Engine, run your queries, and immediately disconnect. Do not leave the
connection open.

Getting and setting text search options: Text search provides some options that
you can set or get using its methods. See the online API referenceonline API
referencefor the list of options and their descriptions. The following example
shows how to set and get the option for a text search character code set.
DKAny input_option = DK_CCSID_00850;
DKAny output_option;
dsTS.setOption(DK_OPT_TS_CCSID,input_option);
dsTS.getOption(DK_OPT_TS_CCSID,output_option);

Tips: The search options CCSID and LANG go together. If one is specified, the other
must also be specified. The default CCSID and LANG are specified by the
DKDatastoreTS options, DK_OPT_TS_CCSID and DK_OPT_TS_LANG. Refer to the online
API referenceonline API referencefor the list of the content server options and their
descriptions.

You can specify more than one search option for a query term. The search options
are separated by commas. An example of multiple search terms is in “Global text
retrieval (GTR) query” on page 69.

Listing servers: The DKDatastoreTS object provides a method to list the text
search servers that it can connect to. The following example shows how to retrieve
the list of servers.
DKDatastoreTS dsTS;
DKSequentialCollection *pCol = 0;
dkIterator *pIter = 0;
DKString strServerName;
char chServerLocation = ' ';
DKString strLoc;
DKServerDefTS *pSV = 0;
long i = 0;
DKAny a;
cout << "list servers" << endl;
a = dsTS.listDataSources();
pCol = (DKSequentialCollection*)((dkCollection*)a);
pIter = pCol->createIterator();
while (pIter->more() == TRUE)
{

i++;
pSV = (DKServerDefTS*)((void*)(*pIter->next()));
strServerName = pSV->getName();
chServerLocation = pSV->getServerLocation();
if (chServerLocation == DK_SRV_LOCAL)
{

strLoc = "LOCAL SERVER";
}
else if (chServerLocation == DK_SRV_REMOTE)
{

Chapter 8. Using the C++ application programming interfaces 269

strLoc = "REMOTE SERVER";
}
cout << "Server Name [" << i << "] - " << strServerName

<< " Server Location - " << strLoc << endl;
delete pSV;

}
delete pIter;
delete pCol;

The list of servers is returned in a DKSequentialCollection of DKServerInfoTS
objects. After you get a DKServerInfoTS object, you can retrieve the server name
and location. You can then use the server name to establish a connection to it.

The complete sample application from which this example was taken
(TListCatalogTS.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

Listing schema:: A DKDatastoreTS object provides methods for listing the
schema. For text search, these are text search indexes. The following example
shows how to retrieve the index list.

The list of indexes is returned in a DKSequentialCollection object of DKIndexTS
objects. After you get a DKIndexTS object, you can retrieve information about the
index, such as its name and library ID, which you can use to form a query.
DKDatastoreTS dsTS;
DKSequentialCollection *pCol = 0;
dkIterator *pIter = 0;
DKString strIndexName;
DKString strLibId;
DKServerDefTS *pSV = 0;
DKSearchIndexDefTS *pIndx = 0;
long i = 0;
DKAny a;
cout << "connecting to datastore" << endl;
dsTS.connect("TM","","");
cout << "list search indexes" << endl;
pCol = (DKSequentialCollection*)((dkCollection*)dsTS.listEntities());
pIter = pCol->createIterator();
i = 0;
while (pIter->more() == TRUE)
{

i++;
pIndx = (DKSearchIndexDefTS*)((void*)(*pIter->next()));
strIndexName = pIndx->getName();
strLibId = pIndx->getLibraryId();
cout << "index name [" << i << "] - " << strIndexName

<< " Library - " << strLibId << endl;
delete pIndx;
}

delete pIter;
delete pCol;
dsTS.disconnect();

The complete sample application from which this example was taken
(TListCatalogTS.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

See “Managing memory in collections” on page 244 for information about deleting
the collection.

Indexing XDOs by search engines: If you want to index object content using Text
Search Engine, the values of SearchEngine, SearchIndex, and SearchInfo are
required.

270 Application Programming Guide

The SearchIndex value is a combination of two names: the search service name and
search index name. For example, if the system administration program refers to a
text search server named TM for which you defined a search index named TMINDEX,
then the correct value for the SearchIndex is TM-TMINDEX.

The value of SearchEngine must be SM for text search. The value of SearchEngine
must be QBIC for image search (query by image content).

The SearchIndex for QBIC is a combination of three values: QBIC database name,
QBIC catalog name, and QBIC server name. For example, if the QBIC database
name is SAMPLEDB, the QBIC catalog name is SAMPLECAT, and the QBIC server name
is QBICSRV, then the correct value for the SearchIndex would be
SAMPLEDB-SAMPLECAT-QBICSRV.

Refer to the files FLoadSampleTSQBICDL.cpp and LoadFolderTSQBICDL.cpp inside the
samples directory, for examples of how to load data, or create a folder and then
load data.

Important: When adding a part object to be indexed by a search engine, don’t set
the RepType. Currently, the Text Search Engine works only with the default
RepType FRN$NULL.

Adding an XDO to be indexed by Text Search Engine:
void main(int argc, char *argv[])
{

DKDatastoreDL dsDL;
DKString itemId, repType;
int partId;
itemId = "N2JJBERBQFK@WTVL";
repType = "FRN$NULL";
partId = 10;
if (argc == 1)
{

cout<<"invoke: indexPartxsDL <partId> <repType> <itemId>"<<endl;
cout<<" no parameter, following default will be provided:"<<endl;
cout<<"The supplied default partId = "<<partId<<endl;
cout<<"The supplied default repType = "<<repType<<endl;
cout<<"The supplied default itemId = "<<itemId<<endl;

}
else if (argc == 2)
{

partId = atoi(argv[1]);
cout<<"you enter: indexPartxsDL "<<argv[1]<<endl;
cout<<"The supplied default repType = "<<repType<<endl;
cout<<"The supplied default itemId = "<<itemId<<endl;

}
else if (argc == 3)
{

partId = atoi(argv[1]);
repType = DKString(argv[2]);
cout<<"you enter: indexPartxsDL "<<argv[1]<<" "<<argv[2]<<endl;
cout<<"The supplied default itemId = "<<itemId<<endl;

}
else if (argc == 4)
{

partId = atoi(argv[1]);
repType = DKString(argv[2]);
itemId = DKString(argv[3]);
cout<<"you enter: indexPartxsDL "<<argv[1]<<" "<<argv[2]<<" "<<argv[3]<<endl;

}
cout << "connecting Datastore" << endl;
try

Chapter 8. Using the C++ application programming interfaces 271

{
//replace following with your library server, userid, password
dsDL.connect("LIBSRVN","FRNADMIN","PASSWORD");

cout << "datastore connected" << endl;

DKBlobDL* axdo = new DKBlobDL(&dsDL);
DKPidXDODL* apid = new DKPidXDODL;
apid ->setPartId(partId);
apid ->setPrimaryId(itemId);
apid ->setRepType(repType);
axdo ->setPidObject(apid);
cout<<"itemId= "<<axdo->getItemId()<<endl;
cout<<"partId= "<<axdo->getPartId()<<endl;
cout<<"repType= "<<axdo->getRepType()<<endl;

//--- set searchEngine -----
cout<<"set search engine and setToBeIndexed()"<<endl;
DKSearchEngineInfoDL aSrchEx;
aSrchEx.setSearchEngine("SM");
aSrchEx.setSearchIndex("TM-TMINDEX");
aSrchEx.setSearchInfo("ENU");
axdo->setExtension("DKSearchEngineInfoDL", (dkExtension*)&aSrchEx);
axdo->setToBeIndexed();
cout<<"setToBeIndexed() done..."<<endl;

delete apid;
delete axdo;
dsDL.disconnect();
cout<<"datastore disconnected"<<endl;

}
catch(DKException &exc)
{

cout << "Error id" << exc.errorId() << endl;
cout << "Exception id " << exc.exceptionId() << endl;
for(unsigned long i=0;i< exc.textCount();i++)
{
cout << "Error text:" << exc.text(i) << endl;
}
for (unsigned long g=0;g< exc.locationCount();g++)
{
const DKExceptionLocation* p = exc.locationAtIndex(g);
cout << "Filename: " << p->fileName() << endl;
cout << "Function: " << p->functionName() << endl;
cout << "LineNumber: " << p->lineNumber() << endl;
}
cout << "Exception Class Name: " << exc.name() << endl;
}
cout << "done ..." << endl;

}

Loading data to be indexed by Text Search Engine: To load data into Content
Manager to be indexed by Text Search Engine, you must create both an index and
a text search index.

Before you can create a text search index, the text search server must be running.
Make sure that your environment is properly set up by running the samples
TListCatalogDL.cpp and TListCatalogTS.cpp. Before running the samples, update
them with your server, user ID, and so forth.

To create parts in Content Manager that are indexed by the Text Search Engine,
refer to “Using XDOs” on page 225.

272 Application Programming Guide

After the data is loaded into Content Manager, use the wakeUpService method in
the DKDatastoreDL class to place the documents on the document queue.

From the Content Manager text search Administration window:
1. Double-click the text search server.
2. Double-click the text search index.
3. Click INDEX.

This indexes the documents on the document query. After the indexing is
complete, you can perform text search queries.

For more information about text search administration, refer to the System
Administration Guide.

Using text structured document support: Text structured documents are
composed using text, for example an HTML file. A document model defines how
the text document is laid out. For example, an HTML file contains tags for
beginning and ending the file. Text Search Engine can perform searches on words
or phrases between the HTML tags.

You can perform text queries on structured documents as follows:
1. Create a document model. The document model contains sections which

include the section name and document tag in the text document, for example:
<HTML>
<HEAD>
<TITLE>My Corp
</TITLE>
</HEAD>

<BODY>

<H1>My Corp
</H1>
<P>My Corp

<P>Robert Summers

<P><ADDRESS>My Corporation
</ADDRESS>

<HR>
<H2>My Corp Business Objectives</H2>
<HR>

<P>
<H2>Marketing</H2>

<P>We need to increase our time to market by 25%.

<P>We need to meet our customers needs.

</BODY>
</HTML>

2. Create a text search index that uses the document model.
3. Set the indexing rules for the text search index and specify the default

document format (for example, DK_TS_DOCFMT_HTML for HTML files)
4. Add parts objects to the Content Manager server.
5. Start the indexing process for the text search index.

This example shows how to list the document models defined in your system.
DKDatastoreTS dsTS;
DKDatastoreDefTS* dsDef = 0;
DKDatastoreAdminTS* dsAdmin = 0;

Chapter 8. Using the C++ application programming interfaces 273

DKDocModelTS* docModel = 0;
DKSequentialCollection *pCol = 0;
long ccsid = 0;
DKString strDocModelName;
dkIterator *pIter = 0;
long i = 0;
DKAny a;

dsTS.connect(srchSrv,"","");

dsDef = (DKDatastoreDefTS*)dsTS.datastoreDef();
dsAdmin = (DKDatastoreAdminTS*)dsDef->datastoreAdmin();

// list document models
pCol = (DKSequentialCollection*)dsAdmin->listDocModels("");
pIter = pCol->createIterator();
while (pIter->more() == TRUE)
{

i++;
docModel = (DKDocModelTS*)((void*)(*pIter->next()));
strDocModelName = docModel->getName();
ccsid = docModel->getCCSID();
delete docModel;

}
delete pIter;
delete pCol;

dsTS.disconnect();

The complete sample application from which this example was taken
(TListDocModelsTS.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

This example shows how to create a document model.
DKDatastoreTS dsTS;
DKDatastoreDefTS* dsDef = 0;
DKDatastoreAdminTS* dsAdmin = 0;

// create an instance of a document model object
DKDocModelTS* docModel = new DKDocModelTS();

// create 2 instances of a document section objects for the model
DKDocSectionTS* docSection = new DKDocSectionTS();
DKDocSectionTS* docSection2 = new DKDocSectionTS();

// Describe the document model for text document structure
// for files like tstruct.htm above

docModel->setCCSID(DK_TS_CCSID_00850);
docModel->setName("SAMPCORPMOD");
docSection->setName("SAMPCORPTITLE");
docSection->setTag("TITLE");
docModel->addDocSection(docSection);
docSection2->setName("SAMPCORPBODY");
docSection2->setTag("BODY");
docModel->addDocSection(docSection2);

dsTS.connect("TMMUF","","","");

dsDef = (DKDatastoreDefTS*)dsTS.datastoreDef();
dsAdmin = (DKDatastoreAdminTS*)dsDef->datastoreAdmin();

// create doc model
dsAdmin->createDocModel("",docModel);

274 Application Programming Guide

// delete document model & sections
delete docModel;

dsTS.disconnect();

The complete sample application from which this example was taken
(TCreateDocModelTS.cpp) and (TCreateStructDocIndexTS.cpp) are available in the
Cmbroot/Samples/cpp/dl directory.

This example shows how to create and set the indexing rules for a text search
index and that uses a document model.
DKDatastoreTS dsTS;
DKDatastoreDefTS* dsDef = 0;
DKDatastoreAdminTS* dsAdmin = 0;
DKIndexingRulesTS* indexRules = new DKIndexingRulesTS();

// create an instance of a document model object
DKDocModelTS* docModel = new DKDocModelTS();

// create 2 instances of a document section objects for the model
DKDocSectionTS* docSection = new DKDocSectionTS();
DKDocSectionTS* docSection2 = new DKDocSectionTS();

// doc model instance for indexing rules
DKDocModelTS* docModel2 = new DKDocModelTS();
docModel2->setCCSID(DK_TS_CCSID_00850);
docModel2->setName("SAMPCORPMOD");

// Describe the document model for text document structure
// for files like tstruct.htm above

docModel->setCCSID(DK_TS_CCSID_00850);
docModel->setName("SAMPCORPMOD");
docSection->setName("SAMPCORPTITLE");
docSection->setTag("TITLE");
docModel->addDocSection(docSection);
docSection2->setName("SAMPCORPBODY");
docSection2->setTag("BODY");
docModel->addDocSection(docSection2);

dsTS.connect("TMMUF","","","");

dsDef = (DKDatastoreDefTS*)dsTS.datastoreDef();
dsAdmin = (DKDatastoreAdminTS*)dsDef->datastoreAdmin();

DKSearchIndexDefTS* pEnt = new DKSearchIndexDefTS(&dsTS);

pEnt->setName("TSTRUCT");
pEnt->setIndexType(DK_TS_INDEX_TYPE_PRECISE);

// This index is text structure document section enabled
pEnt->setIndexProperty(DK_TS_PROPERTY_SECTIONS_ENABLED);

pEnt->setLibraryId("LIBSUM");
pEnt->setLibraryClientServices("IMLLSCDL");
pEnt->setLibraryServerServices("IMLLSSDL");
DKString strIndexFileDir = "e:\\tsindex\\index\\tstruct";
//**** for AIX ***************************************
//DKString strIndexFileDir = "/home/cltadmin/tsindex/index/tstruct";
pEnt->setIndexDataArea(strIndexFileDir);
DKString strWorkFileDir = "e:\\tsindex\\work\\tstruct";
//**** for AIX ***************************************
//DKString strWorkFileDir = "/home/cltadmin/tsindex/work/tstruct";
pEnt->setIndexWorkArea(strWorkFileDir);

Chapter 8. Using the C++ application programming interfaces 275

// Associate document model with index
pEnt->addDocModel(docModel);

// Create text search index that supports sections
dsDef->add(pEnt);

delete pEnt;

indexRules->setIndexName("TSTRUCT");
indexRules->setDefaultDocFormat(DK_TS_DOCFMT_HTML);
indexRules->setDefaultDocModel(docModel2);
dsAdmin->setIndexingRules(indexRules);

delete indexRules;

dsTS.disconnect();

The complete sample application from which this example was taken
(TCreateStructDocIndexTS.cpp) is available in the Cmbroot/Samples/cpp/dl
directory. The example shows how to start the indexing process by using the
system administration program.
DKDatastoreTS dsTS;
DKDatastoreDefTS* dsDef = 0;
DKDatastoreAdminTS* dsAdmin = 0;
DKIndexFuncStatusTS* pIndexFuncStatus = 0;

dsTS.connect(srchSrv,"","");

dsDef = (DKDatastoreDefTS*)dsTS.datastoreDef();
dsAdmin = (DKDatastoreAdminTS*)dsDef->datastoreAdmin();

// starts the indexing process
dsAdmin->startUpdateIndex(srchIndex);

// Get indexing status
pIndexFuncStatus = dsAdmin->getIndexFunctionStatus(srchIndex,

DK_TS_INDEX_FUNCID_INDEX_DOCUMENTS);

cout << "***** index status *****" << endl;
cout << "*isCompleted " << pIndexFuncStatus->isCompleted() << endl;
cout << "*getEnabledId " << pIndexFuncStatus->getEnabledId() << endl;
cout << "*getReasonCode " << pIndexFuncStatus->getReasonCode()

<< endl;
cout << "*getFuncStopped " << pIndexFuncStatus->getFunctionStopped()

<< endl;
cout << "*getStartedLast " << pIndexFuncStatus->getStartedLast()

<< endl;
cout << "*getEndedLast " << pIndexFuncStatus->getEndedLast() << endl;
cout << "*getStartedExecution " << pIndexFuncStatus->getStartedExecution()

<< endl;
cout << "*getScheduledDocs " << pIndexFuncStatus->getScheduledDocs()

<< endl;
cout << "*getDocsInPrimaryIndex " << pIndexFuncStatus->getDocsInPrimaryIndex()

<< endl;
cout << "*getDocsInSecondaryIndex " << pIndexFuncStatus->getDocsInSecondaryIndex()

<< endl;
cout << "*getDocMessages " << pIndexFuncStatus->getDocMessages()

<< endl;
if (pIndexFuncStatus->isCompleted() == TRUE)

{
// indexing completed
}
if (pIndexFuncStatus->getReasonCode() != 0)
{
dsAdmin->setIndexFunctionStatus(srchIndex,

276 Application Programming Guide

DK_TS_INDEX_FUNCID_INDEX_DOCUMENTS,DK_TS_INDEX_ACTID_RESET);
}

delete pIndexFuncStatus;
dsTS.disconnect();

The complete sample application from which this example was taken
(TIndexingTS.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

The indexing process is asynchronous so this program just begins the process. To
check the status, you must use the system administration program.

The sample named TCheckStatusTS.cpp can be used to see if a queued request has
been moved from the scheduled document queue to the primary or secondary
queues. If an indexing error occurs, you can check imldiag.log file. For more
information about the imldiag.log file see the Text Search Engine Application
Programming Reference.

This example shows how to execute a structure document text query based on the
document model and the text search index defined above.
DKDatastoreTS dsTS;
dkResultSetCursor* pCur = 0;

dsTS.connect("TMMUF","","","");

DKString cmd = "SEARCH=(COND=($CCSID=850,";
cmd += "DOCMOD=(DOCMODNAME=SAMPCORPMOD,";
cmd += "SECLIST=(SAMPCORPTITLE,SAMPCORPBODY))$ Corp));";
cmd += "OPTION=(SEARCH_INDEX=TSTRUCT;MAX_RESULTS=5)";

pCur = dsTS.execute(cmd);

// process the results

dsTS.disconnect();

The complete sample application from which this example was taken
(TExecuteStructDocTS.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

Searching images by content
In the past, image queries were limited to file names and descriptions associated
with images. You can use the IBM Image Search server to search for stored images
by specifying the image type or by providing an example of the image.

Figure 51 on page 278 shows a sample application that connects to the image
search server. The image search server uses Query by Image Content (QBIC)
technology to search for similar colors, layouts, and patterns.

Chapter 8. Using the C++ application programming interfaces 277

Understanding image search terms and concepts
This section describes the image search components: the server, databases, catalogs
and the relationship of the image search server to the entire Content Manager
system. It also describes features that are the searchable visual characteristics of
images.

Understanding image search server, databases, and catalogs: A Content Manager
system uses an image search server to search for images. Content Manager
applications store image objects in the object server; the image search server
analyzes images and stores the image information. The image search server does
not store images themselves. Figure 52 on page 279 shows an example of an image
search server.

Figure 51. Image search sample client application

278 Application Programming Guide

The image search server contains one or more catalogs that hold information about
one or more of the four image search features:
v Average Color
v Color Histogram
v Color Layout
v Texture

Understanding image search features: This section explains the four image search
features.

Average color Use average color to search for images that have a predominant
color. Images with similar predominant colors have similar average
colors. For example, images that contain equal portions of red and
yellow will have an average color of orange.

QbColorFeatureClass is the feature name for average color.

Histogram color
Measures the percentages of color distribution of an image.
Histogram analysis separately measures the different colors in an

Figure 52. An image search server in a Content Manager system. The image search server
communicates with the other Content Manager components through the clients.

Chapter 8. Using the C++ application programming interfaces 279

image. For example, an image of the countryside has a histogram
color that shows a high frequency of blue, green, and gray.

Use histogram color to search for images that contain a similar
variety of colors. QbColorHistogramFeatureClass is the feature
name for histogram color.

Positional color
Positional colors measure the average color value for the pixels in
a specified area of an image. For example, images with bright red
objects in the middle have a positional color of bright red.

QbDrawFeatureClass is the feature name for positional color.

Texture Use texture to search for images that have a particular pattern.
Texture measures the coarseness, contrast, and directionality of an
image. Coarseness indicates the size of repeating items in an
image. Contrast identifies the brightness variations in an image.
Directionality indicates whether a direction predominates in an
image. For example, an image of a wood grain has a similar
texture to other images that contain a wood grain.

QbTextureFeatureClass is the feature name for texture.

Using image search applications
Image search client applications create image queries, run them, and then evaluate
the information returned by the image search server. Before an application can
search images by content, the images must be indexed, and the content
information must be stored in an image search database.

Requirement: You cannot index existing images in your object server. You can
index only the images you create in your object server after you install the image
search server and client. Figure 53 on page 281 shows an example of the image
search client search and retrieve process.

280 Application Programming Guide

1. A client application builds a QBIC query string and sends it to an image search
server.

2. Image search server receives the query string and searches the cataloged
images for matches.

3. Client receives the matches as a list of identifiers. The identifier for each
matching image consists of the:
v Item ID
v Part number
v RepType
v Rank

4. Client requests the image part and index information from a library server.
5. Library server returns index information, such as a text description, to the

client. The library server also requests that an object server send specified
image parts to the client.

6. Object server sends image parts and the client acknowledges receiving them.

Creating queries: When you create queries, you construct a query string that the
application passes to the image search server.

The query string: An image query is a character string that specifies the search
criteria. The search criteria consist of:

Feature name The features used in the search.

Figure 53. How image search clients search and retrieve images

Chapter 8. Using the C++ application programming interfaces 281

Feature value The values of those features. Table 22 shows the image search
feature names and the values that can be passed in a query string.

Feature weight
The relative weight or emphasis placed on each feature. The
weight of a feature indicates the emphasis that the image search
server places on the feature when calculating similarity scores and
returning results for a query. The higher the specified weight, the
greater the emphasis.

Maximum results
The maximum number of matches for the query to return.

A query string has the form: feature_name value, where feature_name is an image
search feature name, and value is a value associated with the feature. The string
″and″ separates each pair.

Image search queries have the following syntax:
feature_name value

feature_name value weight

You cannot repeat a feature within a single query. When you specify multiple
features in a query, you can assign a weight to one or more of the features. weight
is the weight assigned to the feature. weight is the combination of the keyword
weight, an equal sign (=), and a real number greater than 0.0.

You may also specify the maximum number of matches that a query returns. To
specify the maximum results, append and max_results to your query. max_results
consists of the keyword max, an equal sign (=), and an integer greater than 0.
Table 22 describes Image search query feature names and values.

Table 22. Image search query valid feature names and values

Feature name Values

QbColorFeatureClass or
QbColor color = < rgbValue , rgbValue , rgbValue >

where rgbValue is an integer from 0 to 255.

file = < fileLocation , ″ fileName ″ >
where fileLocation is either server or client,
fileName is the complete file path specified in
the format appropriate for the system on which
the file resides.

QbColorHistogramFeatureClass
or QbHistogram histogram = < histList >

where histList consists of one or more
histClause separated by a comma (,).

A histClause is specified as (histValue,
rgbValue , rgbValue , rgbValue), where
histValue is an integer from 1 to 100 (a
percentage value), and rgbValue is an integer
from 0 to 255.

file = < fileLocation , ″ fileName ″ >
where fileLocation is either server or client,
fileName is the complete file path specified in
the format appropriate for the system on which
the file resides.

282 Application Programming Guide

Table 22. Image search query valid feature names and values (continued)

Feature name Values

QbDrawFeatureClass or
QbDraw description = < ″ descString ″ >

where descString is a special encoded string
describing a picker file. Format of the description
string:

1. D,w,h specifies the outer dimensions of the
image itself with width w and height h.

2. Rx,y,w,h,r,g,b specifies that a rectangle of
width w and height h is to be positioned
with its upper left corner at the coordinates
(x,y)—with respect to an origin in the upper
left corner of the image rectangle—and this
rectangle should have color values r (red), g
(green), and b (blue).

3. The colon character (:) is used as a separator.

file = < fileLocation , ″ fileName ″ >
where fileLocation is either server or client,
fileName is the complete file path specified in
the format appropriate for the system on which
the file resides.

QbTextureFeatureClass or
QbTexture file = < fileLocation , ″ fileName ″ >

where fileLocation is either server or client,
fileName is the complete file path specified in
the format appropriate for the system on which
the file resides.

Query examples:

1. Search for average color red:
QbColorFeatureClass color=<255,0,0>

2. Search using a histogram of three colors, 10% red, 50% blue, and 40% green:
QbColorHistogramFeatureClass histogram=
<(10, 255, 0, 0) (50, 0, 255, 0), (40, 0, 0, 255)>

3. Search using an average color and a texture value. The texture value is
provided by an image in a file on the client. The weight of the texture is twice
that of the average color:
QbColorFeatureClass color=
<50, 50, 50> and QbTextureFeatureClass file=<client, "\patterns\pattern1.gif">
weight=2.0

4. Search for the described color layout:
QbDrawFeatureClass description=<"D100,50:R0,0,50,50,255,0,0">

5. Search for average color red and limiting the returned matches to five:
QbColorFeatureClass color=<255,0,0> and max=5

Establishing a connection in QBIC
Image search provides methods for connecting and disconnecting to the content
server. The following example shows how to connect to an image search server
named QBICSRV using the user ID QBICUSER and the password PASSWORD.

Chapter 8. Using the C++ application programming interfaces 283

DKDatastoreQBIC dsQBIC = new DKDatastoreQBIC();
dsQBIC.connect("QBICSRV", "QBICUSER", "PASSWORD", "");
... // do some work
dsQBIC.disconnect();

The complete sample application from which this example was taken
(TConnectQBIC.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

The image search connection allows an application to connect to an image search
server.

After connecting, your program can use methods that access the image search
server, except for the methods that are not related to image search catalogs, such as
listDatabases. An openCatalog method is required to open a catalog for
processing. A closeCatalog method is called after processing is done. The
following example shows how to connect, open a catalog, close the catalog, and
disconnect.

DKDatastoreQBIC dsQBIC = new DKDatastoreQBIC();
dsQBIC.connect("QBICSRV", "QBICUSER", "PASSWORD", "");
dsQBIC.openCatalog("DEMO", "QBIC0725");
... // do some work
dsQBIC.closeCatalog();
dsQBIC.disconnect();

Listing image search servers
The image search server provides a method for listing the image search servers
that it can connect to. The following example shows how to retrieve in a
DKSequentialCollection object the list of servers that contain DKServerInfoQBIC
objects. After you get a DKServerInfoQBIC object, you can retrieve the server
name, the host name, and the port number.
DKDatastoreQBIC dsQBIC;
DKSequentialCollection *pCol = 0;
dkIterator *pIter = 0;
DKServerDefQBIC *pSV = 0;
DKString strServerName;
DKAny a;
long i = 0;
cout << "list servers" << endl;
a = dsQBIC.listDataSources();
pCol = (DKSequentialCollection*)((dkCollection*)a);
pIter = pCol->createIterator();
while (pIter->more() == TRUE)
{

i++;
pSV = (DKServerDefQBIC*)((void*)(*pIter->next()));
strServerName = pSV->getName();
cout << "Server Name [" << i << "] - " << strServerName << endl;
delete pSV;
}

delete pIter;
delete pCol;

The complete sample application from which this example was taken
(TListCatalogQBIC.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

Listing image search databases, catalogs, and features
DKDatastoreQBIC provides a method for listing all of the image search databases,
catalogs, and features on an image search server. The list is returned in a
DKSequentialCollection object that contains DKIndexQBIC objects. After you get a

284 Application Programming Guide

DKIndexQBIC object, you can retrieve the database, catalog, and feature name. The
following example shows how to retrieve the list of databases, catalogs, and
features.
DKDatastoreQBIC dsQBIC;
DKSequentialCollection *pCol = 0;
dkIterator *pIter = 0;
DKSequentialCollection *pCol2 = 0;
dkIterator *pIter2 = 0;
DKSequentialCollection *pCol3 = 0;
dkIterator *pIter3 = 0;
DKDatabaseDefQBIC *pEntDB = 0;
DKCatalogDefQBIC *pEntCat = 0;
DKString strCatName;
DKString strDBName;
DKString strFeatName;
DKFeatureDefQBIC *pAttr = 0;
DKAny a;
DKAny *pA = 0;
long i = 0;
long j = 0;
long k = 0;
cout << "connecting to datastore" << endl;
dsQBIC.connect("QBICSRV","USERID","PW");
cout << "list databases " << endl;
pCol = (DKSequentialCollection*)((dkCollection*)dsQBIC.listEntities());
pIter = pCol->createIterator();
i = 0;
while (pIter->more() == TRUE)
{

i++;
pEntDB = (DKDatabaseDefQBIC*)((void*)(*pIter->next()));
strDBName = pEntDB->getName();
cout << "database name [" << i << "] - " << strDBName << endl;
cout << " list catalogs for DB " << strDBName << endl;
pCol2 = (DKSequentialCollection*)((dkCollection*)pEntDB->listSubEntities());
pIter2 = pCol2->createIterator();
j = 0;
while (pIter2->more() == TRUE)
{

j++;
pA = pIter2->next();
pEntCat = (DKCatalogDefQBIC*) pA->value();
strCatName = pEntCat->getName();
cout << "catalog name [" << j << "] - " << strCatName << endl;
pCol3 = (DKSequentialCollection*)((dkCollection*)pEntCat->listAttrs());

pIter3 = pCol3->createIterator();
k = 0;
while (pIter3->more() == TRUE)
{
k++;
pA = pIter3->next();
pAttr = (DKFeatureDefQBIC*) pA->value();
cout << " Attribute name [" << k << "] - "

<< pAttr->getName() << endl;
cout << " datastoreName " << pAttr->datastoreName()

<< endl;
cout << " datastoreType " << pAttr->datastoreType()

<< endl;
cout << " attributeOf " << pAttr->getEntityName()

<< endl;
delete pAttr;

}
delete pIter3;
delete pCol3;
delete pEntCat;
}

Chapter 8. Using the C++ application programming interfaces 285

cout << " " << j << " features listed for catalog: "
<< strCatName << endl;

delete pIter2;
delete pCol2;
delete pEntDB;
}
delete pIter;
delete pCol;
cout << i << " databases listed" << endl;
dsQBIC.disconnect();

The complete sample application from which this example was taken
(TListCatalogQBIC.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

Representing image search information with a DDO
A DDO associated with DKDatastoreQBIC contains specific information for
representing image search results. A DDO resulting from an image query
corresponds to an image part inside an item; it has the following set of standard
attributes:

The PID for an image search DDO has the following information:

content server type
QBIC

content server name
The server name used to connect to the content server

ID The zero-based sequence number of the DDO in the results set

As a convention, the attribute value is always an object.

DKDLITEMID
The item ID specifying where this image part is stored. Use this item ID to
retrieve the whole item from the content server.

DKPARTNO
A long integer part number identifying the location of this image part. In
Java, DKPARTNO is an integer part number. Use with the item ID to
retrieve this part from the content server.

DKREPTYPE
A representation type string with a default value of FRN$NULL. This
attribute is reserved.

DKRANK
A long integer rank signifying the relevance of this part to the result set
from the image query. The rank is within the range 0 to 100. A higher rank
means a better match.

Working with image queries
This section describes how to create, run, and evaluate image queries.

Creating an image query: The following example shows a query string that
searches for all images with average color red. ″QbColorFeatureClass″ represents
the feature for average color.

String cmd = "QbColorFeatureClass color=<255, 0, 0>";

Running an image query: The content server lets you create a query object to run
the query and obtain the results. The following example shows how to create an
image query object and run it. After you run a query, the results are returned in a
DKResults collection.

286 Application Programming Guide

DKDatastoreQBIC* dsQBIC;
dsQBIC = new DKDatastoreQBIC();
dsQBIC->connect("QBICSRV", "QBICUSER", "PASSWORD");
dsQBIC->openCatalog("DEMO", "qbic0725");
DKAny* element;
DKDDO* item;
DKString cmd = "QbColor color=<255, 0, 0>";
dkQuery* pQry = dsQBIC->createQuery(cmd);
pQry->execute();
DKAny any = pQry->result();
DKResults* pResults = (DKResults*)((dkCollection*)any);
dkIterator* pIter = pResults->createIterator();
while (pIter->more())

{
element = pIter->next();
item = (DKDDO*)element->value();
// Process the DKDDO
...
}

delete pIter;
delete pResults;
delete pQry;
dsQBIC->closeCatalog();
dsQBIC->disconnect();

The complete sample application from which this example was taken
(TSampleIQryQBIC.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

Running an image query from the content server: DKDatastoreQBIC provides a
method for running a query. The following example shows how to run an image
query on the content server. Results are returned in a dkResultSetCursor object.

DKDatastoreQBIC* dsQBIC;
dsQBIC = new DKDatastoreQBIC();
dsQBIC->connect("QBICSRV", "QBICUSER", "PASSWORD");
cout << "datastore connected" << endl;
dsQBIC->openCatalog("DEMO", "qbic0725");
DKString cmd = "QbColorFeatureClass color=<255, 0, 0>";
dkResultSetCursor* pCur = dsQBIC->execute(cmd);
DKDDO* item = 0;
while (pCur->isValid())
{
item = pCur->fetchNext();
if (item != 0)
{

// Process the DKDDO
...
delete item;

}
}
delete pCur;
dsQBIC->closeCatalog();
dsQBIC->disconnect();

The complete sample application from which this example was taken
(TExecuteQBIC.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

Evaluating an image query from the datastore: DKDatastoreQBIC provides a
method to evaluate a query. The following example shows how to evaluate an
image query from the content server. Results are returned in a DKResults
collection.

DKDatastoreQBIC* dsQBIC;
dsQBIC = new DKDatastoreQBIC();
dsQBIC->connect("QBICSRV", "QBICUSER", "PASSWORD");
dsQBIC->openCatalog("DEMO", "qbic0725");

Chapter 8. Using the C++ application programming interfaces 287

DKAny* element;
DKDDO* item;
DKString cmd = "QbColor color=<255, 0, 0>";
DKAny any = dsQBIC->evaluate(cmd);
DKResults* pResults = (DKResults*)((dkCollection*)any);
dkIterator* pIter = pResults->createIterator();
while (pIter->more())

{
element = pIter->next();
item = (DKDDO*)element->value();
// Process the DKDDO
...
}

delete pIter;
delete pResults;
dsQBIC->closeCatalog();
dsQBIC->disconnect();

Using the image search engine
You can use the image search server to specify a query based on one of the
following features: average color, color percentages, color layout, and textures. You
can also specify multiple features in a query. The query results contain the item ID,
part number, representation type, and ranking information. You can use this
information to create an XDOfor retrieving the image contents.

Query based on average color: A query based on average color consists of a
feature name and its value. The following example shows how to search for all
images based on average color red:
String cmd = "QbColorFeatureClass color=<255, 0, 0>";

Query based on color percentages: A query based on color percentages consists
of a feature name and its value. The following example shows how to search for
all images based on a histogram of three colors: 10% red, 50% blue, and 40% green.
String cmd = "QbColorHistogramFeatureClass ";

cmd += "histogram=<(10, 255, 0, 0),(50, 0, 255, 0),(40, 0, 0, 255)>";

Query based on color layout: A query based on color layout consists of a feature
name and its value. The following example shows how to search for all images
based on color layout described by an image in a file on the client:
String cmd = "QbDrawFeatureClass file=<client, \"\patterns\pattern1.gif\">";

Query based on texture: A query based on texture consists of a feature name and
its value. The following example shows how to search for all images based on the
texture value provided by an image in a file on the client:
String cmd = "QbTextureFeatureClass file=<client, \"\patterns\pattern2.gif\">";

Query with multiple features: You can specify a query with multiple features.
The following example shows how to search for all images based on an average
color and a texture value. The texture value is provided by an image in a file on
the client. The weight of the average color is twice that of the texture:
String cmd = "QbColorFeatureClass color=<255, 0, 0> weight=2.0 and ";

cmd += "QbTextureFeatureClass file=<client, \"\patterns\pattern2.gif\">";

Loading data to be indexed for image search: To load data into a Content
Manager server to be indexed by the image search server, you must create a
Content Manager index class, an image search database, and an image search
catalog. The database is a collection of image search catalogs. A catalog holds data
about the visual features of images.

288 Application Programming Guide

The image search features need to be added to the catalog for indexing. You
should add all supported features to the catalog.

The image search server must be running when you create an image search
database and catalog. Make sure your environment is set up properly.

After the data is loaded into Content Manager, you can place the image in the
image queue. In the system administration program, select Process Image Queue.
After the indexing is complete, you can run image searches.

Indexing an existing XDO using search engines
You can index an existing XDO using a specified search engine. This example tests
the setToBeIndexed method of the DKBlobDL class.
void main(int argc, char *argv[])
{

DKDatastoreDL dsDL;
DKString itemId, repType;
int partId;
itemId = "N2JJBERBQFK@WTVL";
repType = "FRN$NULL";
partId = 10;
if (argc == 1)
{

cout<<"invoke: indexPartxs <partId> <repType> <itemId>"<<endl;
cout<<" no parameter, following default will be provided:"<<endl;
cout<<"The supplied default partId = "<<partId<<endl;
cout<<"The supplied default repType = "<<repType<<endl;
cout<<"The supplied default itemId = "<<itemId<<endl;

}
else if (argc == 2)
{

partId = atoi(argv[1]);
cout<<"you enter: indexPartxs "<<argv[1]<<endl;
cout<<"The supplied default repType = "<<repType<<endl;
cout<<"The supplied default itemId = "<<itemId<<endl;

}
else if (argc == 3)
{

partId = atoi(argv[1]);
repType = DKString(argv[2]);
cout<<"you enter: indexPartxs "<<argv[1]<<" "<<argv[2]<<endl;
cout<<"The supplied default itemId = "<<itemId<<endl;

}
else if (argc == 4)
{

partId = atoi(argv[1]);
repType = DKString(argv[2]);
itemId = DKString(argv[3]);
cout<<"you enter: indexPartxs "<<argv[1]<<" "<<argv[2]<<" "<<argv[3]<<endl;

}
cout << "connecting Datastore" << endl;
try

{
//replace following with your library server, userid, password
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");
cout << "datastore connected" << endl;

DKBlobDL* axdo = new DKBlobDL(&dsDL);
DKPidXDODL* apid = new DKPidXDODL;
apid ->setPartId(partId);
apid ->setId(itemId);
axdo ->setPid(apid);
axdo ->setRepType(repType);
cout<<"itemId= "<<(axdo->getPid())->getId()<<endl;
cout<<"partId= "<<((DKPidXDODL*)(axdo->getPid()))->getPartId()<<endl;

Chapter 8. Using the C++ application programming interfaces 289

cout<<"repType= "<<axdo->getRepType()<<endl;

//--- set searchEngine -----
cout<<"set search engine and setToBeIndexed()"<<endl;
DKSearchEngineInfoDL aSrchEx;
aSrchEx.setSearchEngine("SM");
aSrchEx.setSearchIndex("TM-TMINDEX");
aSrchEx.setSearchInfo("ENU");
axdo->setExtension("DKSearchEngineInfoDL", (dkExtension*)&aSrchEx);
axdo->setToBeIndexed();
cout<<"setToBeIndexed() done..."<<endl;

delete apid;
delete axdo;
dsDL.disconnect();
cout<<"datastore disconnected"<<endl;

}
catch(DKException &exc)
{

cout << "Error id" << exc.errorId() << endl;
cout << "Exception id " << exc.exceptionId() << endl;
for(unsigned long i=0;i< exc.textCount();i++)
{
cout << "Error text:" << exc.text(i) << endl;
}
for (unsigned long g=0;g< exc.locationCount();g++)
{
const DKExceptionLocation* p = exc.locationAtIndex(g);
cout << "Filename: " << p->fileName() << endl;
cout << "Function: " << p->functionName() << endl;
cout << "LineNumber: " << p->lineNumber() << endl;
}
cout << "Exception Class Name: " << exc.name() << endl;
}
cout << "done ..." << endl;

}

Using combined query
Use a combined query to execute a combination of parametric and text queries, with
or without a scope. A scope is a DKResults object formed from a previous
parametric or text query. The result is an intersection between the scopes and the
results of each query. Therefore, if you are not careful when formulating the query
and including scopes, individual query results might not intersect and the result of
the combined query is empty.

If there is at least one parametric and one text query, the resulting DDO has the
attribute DKRANK, which signifies the highest rank of the matching part belonging to
the document.

Restriction: For each query in a combined query, you must use a different
connection to the search engine; you cannot route multiple queries through the
same connection.

Combined parametric and text queries: To run a combined query made up of
one parametric and one text query, without a scope, you must create a combined
query object and pass the two queries as input parameters to be run by the
combined query. For example:
DKDatastoreDL dsDL;
dsDL.connect("LIBSRVRN","FRNADMIN","PASSWORD");

DKDatastoreTS dsTS;
// TM is a local alias for the Text Search Engine server
dsTS.connect("TM","",' ');

290 Application Programming Guide

// create a parametric query
DKString pquery = "SEARCH=(INDEX_CLASS=GRANDPA,COND=(DLSEARCH_Date > 1994));";
DKParametricQuery* pq =

(DKParametricQuery*) dsDL.createQuery(pquery,DK_PARAMETRIC_QL_TYPE, NULL);

// create a text query
DKString tquery = "SEARCH=(COND=(Tivoli));OPTION=(SEARCH_INDEX=TMINDEX)";
DKTextQuery* tq =

(DKTextQuery*) dsTS.createQuery(tquery,DK_TEXT_QL_TYPE, NULL);

// create a combined query
DKCombinedQuery* cq = new DKCombinedQuery();

// package the queries in DKNVPair as input parameters
DKNVPair par[3];
par[0].set(DK_PARM_QUERY, pq);
par[1].set(DK_TEXT_QUERY, tq);
// to signal the end of parameter list
par[2].setName(DK_PARM_END);

// execute the combined query
cq->execute(par);

// get the results
DKAny any = cq->result();
DKResults* res = (DKResults*) any.value();
if (res != NULL) {

// process the results
...

}

The last if statement is necessary to ensure that the DKResults object is not null.

Using a scope: If you have a DKResults object that you want to use as the scope,
you can slightly modify the previous example to insert the scope as an additional
parameter:
DKResults* scope; // assume that this is the scope

// initialized somewhere as a result of
// some parametric query

DKResults* tscope // assume that this is the scope
// initialized somewhere as a result of
// some text query

...
// package the query in DKNVPair as input parameters
DKNVPair par[4];
par[0].set(DK_PARM_QUERY, pq);
par[1].set(DK_TEXT_QUERY, tq);
par[2].set(DK_SCOPE_DL, scope);
par[3].set(DK_SCOPE_TS, tscope);
par[4].setName(DK_PARM_END);
// execute the combined query
cq->execute(par);
...

The results of one combined query can also be used as a scope for another
combined query, and sometimes you can query the results.

Ranking: If the combined query contains at least one text query, then the
resulting DDO has the attribute DKRANK. This attribute is not stored, but is
computed each time by the Text Search Engine. The value of the rank corresponds
to the highest rank of the part in the document that satisfies the text query
conditions.

Chapter 8. Using the C++ application programming interfaces 291

Tips: If you have several parametric queries and scopes, it is more efficient to run
one complete query. This is also true for text queries.

The query option "MAX_RESULTS=nn" limits the number of returned results. Usually,
this option is more applicable to text queries, because the result is sorted in
descending order by rank. If this option is set to 10, for example, it means that the
caller only wants the 10 highest matching results.

The meaning of the query option "MAX_RESULTS=nn" is different for parametric
queries. Because there is no notion of rank, the caller gets the first 10 results. The
results are intersected with the result from the text query. Therefore, when
combining parametric and text queries, it is advisable not to specify the query
option "MAX_RESULTS=nn" for the parametric query.

Understanding the workflow and workbasket functions
This section describes the workflow and workbasket functions.

Understanding the workflow service: A workbasket is a container that holds
documents and folders that you want to process. A workflow is an ordered set of
workbaskets that represent a specific business process. Folders and documents
move between workbaskets within a workflow, allowing your applications to
create simple business models and route work through the process until
completion.

The workflow model in Content Manager follows these rules:
v A workbasket does not need to be located in a workflow
v A workbasket can be located in one or more workflows
v A workbasket can be in the same workflow more than once
v A document or folder can only be stored in one workflow at a time
v A document or folder can be stored in a workbasket that is not located in a

workflow

The DKWorkFlowServiceDL class represents the workflow service of Content
Manager. This class provides the capability to start, change, remove, route, and
complete a document or folder in a workflow. Additionally, you can use the
DKWorkFlowServiceDL class to retrieve information about workbaskets and
workflows.

The DKWorkFlowDL and DKWorkBasketDL classes are the object-oriented
representations of a workflow item and a workbasket item, respectively.

Establishing a connection: You must establish a connection to a Content Manager
server before you can use the workflow service. The content server provides
connection and disconnection methods.

The following example shows how to connect to a Content Manager server named
LIBSRVRN, using the user ID FRNADMIN and the password PASSWORD.
DKDatastoreDL dsDL;
DKWorkFlowServiceDL wfDL(&dsDL);
dsDL.connect("LIBSRVRN", "FRNADMIN", "PASSWORD");
... // do some work
dsDL.disconnect();

The complete sample application from which this example was taken
(TListWorkFlowWFS.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

292 Application Programming Guide

Creating a workflow: Use DKWorkflowServiceDL to create a workflow. To do
this, you typically complete the following six steps:
1. Create an instance of DKWorkFlowDL
2. Set the workflow name (″GOLF″)
3. Set the workbasket sequence (″NULL″) to indicate that this workflow contains

no workbaskets
4. Set the privilege (″All Privileges″)
5. Set the disposition (DK_WF_SAVE_HISTORY)
6. Call the add method add ()

The example follows the six steps to create a workflow.
DKDatastoreDL dsDL;
DKAny input_option = DK_SS_CONFIG;
DKWorkFlowServiceDL wfDL(&dsDL);
dsDL.setOption(DK_DL_OPT_ACCESS, input_option);
dsDL.connect("LIBSRVRN", "FRNADMIN", "PASSWORD");
DKWorkFlowDL * newwf = new DKWorkFlowDL(&wfDL);
newwf->setName("GOLF");
newwf->setWorkBasketSequence((dkCollection *)NULL);
newwf->setAccessList("All Privileges");
newwf->setHistoryDisposition(DK_WF_SAVE_HISTORY);
newwf->add();
... // do some work
dsDL.disconnect();

The complete sample application from which this example was taken
(TCreateDelWorkFlowWFS.cpp) is available in the Cmbroot/Samples/cpp/dl directory

Important: If you connect to the datastore as a normal user (DK_SS_NORMAL),
you do not get the workflow defined after you connect. Therefore, this sample uses
DK_SS_CONFIG.

Listing workflows: DKWorkflowServiceDL provides a method for listing the
workflows in the system as shown in the following example. The list is returned in
a sequential collection of DKWorkFlowDL objects.
DKDatastoreDL dsDL;
DKWorkFlowServiceDL wfDL(&dsDL);
dsDL.connect("LIBSRVRN", "FRNADMIN", "PASSWORD");
DKSequentialCollection * wfList1 = (DKSequentialCollection *)wfDL.listWorkFlows();
if (wfList1 != NULL)

{
dkIterator * pIter1 = wfList1->createIterator();
DKWorkFlowDL * pwf1;
while (pIter->more())
{

pwf1 = (DKWorkFlowDL *)((void*)(*pIter1->next()));
pwf1->retrieve();
... // do some work
delete pwf1;

}
}

dsDL.disconnect();

The complete sample application from which this example was taken
(TListWorkFlowWFS.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

Creating a workbasket: Use DKWorkflowServiceDL to create a workbasket. To do
this, you typically complete the following steps:
1. Create an instance of DKWorkBasketDL

Chapter 8. Using the C++ application programming interfaces 293

2. Set the workbasket name (Hot Items)

3. Set the privilege (All Privileges)

4. Call the add method

The following example follows these steps to create a workbasket. A complete code
sample named TCreateDelWorkBasket.cpp is available in the samples directory. If
you connect to the datastore as a normal user (DK_SS_NORMAL), you do not get
the workbasket defined after you connect. Therefore, this sample uses
DK_SS_CONFIG.
DKDatastoreDL dsDL;
DKAny input_option = DK_SS_CONFIG;
DKWorkFlowServiceDL wfDL(&dsDL);
dsDL.setOption(DK_DL_OPT_ACCESS, input_option);
dsDL.connect("LIBSRVRN", "FRNADMIN", "PASSWORD");
DKWorkBasketDL * newwb = new DKWorkBasketDL(&wfDL);
newwb->setName("Hot Items");
newwb->setAccessList("All Privileges");
newwb->add();
... // do some work
dsDL.disconnect();

Listing workbaskets: DKWorkflowServiceDL provides a method for listing the
workbaskets in the system as shown in the following example. The list is returned
in a sequential collection of DKWorkBasketDL objects.
DKDatastoreDL dsDL;
DKWorkFlowServiceDL wfDL(&dsDL);
dsDL.connect("LIBSRVRN", "FRNADMIN", "PASSWORD");
DKSequentialCollection * wfList1=(DKSequentialCollection *)wfDL.listWorkBaskets();
if (wbList1 != NULL)

{
dkIterator * pIter1 = wbList1->createIterator();
DKWorkBasketDL * pwb1;
while (pIter->more())
{

pwb1 = (DKWorkBasketDL *)((void*)(*pIter1->next()));
pwb1->retrieve();
... // do some work
delete pwb1;

}
}

dsDL.disconnect();

The complete sample application from which this example was taken
(TListWorkBasketWFS.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

Listing items in a workflow: DKWorkflowServiceDL provides a method for
listing the item IDs of the items in a workflow as shown in the following example.
The list is returned in a sequential collection of DKString objects.
DKDatastoreDL dsDL;
DKWorkFlowServiceDL wfDL(&dsDL);
DKString itemIDWF = DKString("HI7MOPALUPFQ1U47");
dsDL.connect("LIBSRVRN", "FRNADMIN", "PASSWORD");
DKWorkFlowDL * wf = new DKWorkFlowDL(&wfDL, (char *)itemIDWF);
wf->retrieve;
DKSequentialCollection * pColDoc1 = (DKSequentialCollection *)wf->listItemIDs();
if (pColDoc1 != NULL)

{
dkIterator* pIterDoc1 = pColDoc1->createIterator();
DKString DocID1;
while (pIterDoc1->more() == TRUE)
{

DocID1 = (DKString)(*pIterDoc1->next()));

294 Application Programming Guide

... // do some work
}

}
dsDL.disconnect();

The complete sample application from which this example was taken
(TListItemsWFS.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

Executing a workflow: DKWorkflowServiceDL provides methods for executing a
workflow. The following example demonstrates how to start an item in a
workflow, how to route an item to a workbasket, and how to complete an item in
a workflow. To use this sample you must modify it to:
v Use a valid item ID instead of EP8L8OR9MHH##QES
v Use a valid workflow ID instead of HI7MOPALUPFQ1U47
v Use a valid workbasket ID instead of E3PP1UZOZUFQ1U3M
DKDatastoreDL dsDL;
DKWorkFlowServiceDL wfDL(&dsDL);
DKString itemID = DKString("EP8L8OR9MHH##QES");
DKString itemIDWF = DKString("HI7MOPALUPFQ1U47");
DKString itemIDWB = DKString("E3PP1UZOZUFQ1U3M");
dsDL.connect("LIBSRVRN", "FRNADMIN", "PASSWORD");
wfDL.startWorkFlowItem(itemID, // itemID

itemIDWF, // itemIDWB
NULL, // default(the first workbasket)
TRUE, // overload
DK_WIP_DEFAULT_PRIORITY // initial_priority

);
... // do some work
wfDL.routeWipItem(itemID, // itemID

itemIDWF, // itemIDWB
TRUE, // overload
DK_NO_PRIORITY_CHANGE // initial_priority

);
... // do some work
wfDL.completeWorkFlowItem(itemID);
dsDL.disconnect();

The complete sample application from which this example was taken
(TProcessWFS.cpp) is available in the Cmbroot/Samples/cpp/dl directory.

Working with ImagePlus for OS/390
ImagePlus for OS/390 includes the following features:
v Connecting and disconnecting from the datastore
v Retrieving categories
v Retrieving attribute fields
v Retrieving folders
v Retrieving documents

Restriction: ImagePlus for OS/390 does not support:
v Text Search Engine and QBIC search
v Combined query
v Workbasket and workflow

Listing entities and attributes
The following example lists all of the entities found in an ImagePlus for OS/390
content server.

Chapter 8. Using the C++ application programming interfaces 295

// List entities...
DKEntityDefIP* docDef = 0;
DKAttrDefIP* attrDef = 0;

cout << "---List entities---" << endl;
DKSequentialCollection* pCol = (DKSequentialCollection*)(dsIP.listEntities());
dkIterator* pIter = 0;

if (pCol == 0)
{

cout << "collection of entities is null!" << endl;
}
else
{
...

The complete sample application from which this example was taken
(TListCatalogIP.cpp) is available in the Cmbroot/Samples/cpp/ip directory.

The following example uses the getAttr and listAttrNames methods to list all of
the attributes associated with each entity.
// Method 1:
cout << "---List attributes using listAttrNames and getAttr methods---" << endl;

pIter = pCol->createIterator();
while (pIter->more())
{

docDef = (DKEntityDefIP*)(pIter->next()->value());
cout << " Document type : " << docDef->getType() << endl;
cout << " Document type name: " << docDef->getName() << endl;

long tmpCount;
DKString* attrNames;

// Upon return, tmpCount contains the number of elements in the list.
attrNames = docDef->listAttrNames(tmpCount);
for (int i=0; i<tmpcoun; i++)
{

cout << " Attr name before lookup " << attrNames[i] << endl;
attrDef = (DKAttrDefIP*)(docDef->getAttr(attrNames[i]));
cout << " Attr name [" << i << "] : " << attrDef->getName() << endl;
cout << " Attr id : " << attrDef->getId() << endl;
cout << " Entity name : " << attrDef->getEntityName() << endl;
cout << " Datastore name: " << attrDef->datastoreName() << endl;
cout << " Attr type : " << attrDef->getType() << endl;
cout << " Attr restrict : " << attrDef->getStringType() << endl;
cout << " Attr min val : " << attrDef->getMin() << endl;
cout << " Attr max val : " << attrDef->getMax() << endl;
cout << " Attr display : " << attrDef->getSize() << endl;
cout << " Attr precision: " << attrDef->getPrecision() << endl;
cout << " Attr scale : " << attrDef->getScale() << endl;
cout << " Attr update ? " << attrDef->isUpdatable() << endl;
cout << " Attr nullable ? " << attrDef->isNullable() << endl;
cout << " Attr queryable? " << attrDef->isQueryable() << endl;
cout << "" << endl;
delete attrDef;
} // end for

delete [] attrNames;

} // end while
delete pIter;

The following example uses the listEntityAttrs method to list all the attributes
associated with each entity.

296 Application Programming Guide

// Method 2:
cout << "---List attributes using listEntityAttrs method---" << endl;

pIter = pCol->createIterator();
while (pIter->more())
{

docDef = (DKEntityDefIP*)(pIter->next()->value()); // iterator returns DKAny*
cout << " Document type : " << docDef->getType() << endl;
cout << " Document type name: " << docDef->getName() << endl;
DKSequentialCollection* pAttrCol = (DKSequentialCollection*)

(dsIP.listEntityAttrs(docDef->getName()));
if (pAttrCol == 0)
{

cout << "collection of entity attrs is null for entity "
<< docDef->getName()
<< endl;

}
else
{

int i=0;
dkIterator* pAttrIter = pAttrCol->createIterator();
while (pAttrIter->more())
{

i++;
// ----- The iterator returns a pointer to DKAny
attrDef = (DKAttrDefIP*)(pAttrIter->next()->value());
cout << " Attr name [" << i << "] : " << attrDef->getName() << endl;
cout << " Attr id : " << attrDef->getId() << endl;
cout << " Entity name : " << attrDef->getEntityName() << endl;
cout << " Datastore name: " << attrDef->datastoreName() << endl;
cout << " Attr type : " << attrDef->getType() << endl;
cout << " Attr restrict : " << attrDef->getStringType() << endl;
cout << " Attr min val : " << attrDef->getMin() << endl;
cout << " Attr max val : " << attrDef->getMax() << endl;
cout << " Attr display : " << attrDef->getSize() << endl;
cout << " Attr precision: " << attrDef->getPrecision() << endl;
cout << " Attr scale : " << attrDef->getScale() << endl;
cout << " Attr update ? " << attrDef->isUpdatable() << endl;
cout << " Attr nullable ? " << attrDef->isNullable() << endl;
cout << " Attr queryable? " << attrDef->isQueryable() << endl;
cout << "" << endl;
delete attrDef;
} // end while
delete pAttrIter;
}
delete pAttrCol;
delete docDef;
} // end while
delete pIter;
}
delete pCol;

ImagePlus for OS/390 query syntax
The following example shows the query syntax for ImagePlus for OS/390:
SEARCH=(COND=(ip_search_expression),ENTITY={entity_name | mapped_entity_name}

[,MAX_RESULTS=maximum_results]);
[OPTION=([CONTENT={YES | ATTRONLY | NO};][PENDING={YES | NO};])]

The valid variables are:

ip_search_expression
ip_search_criteria [[binary_operator ip_search_criteria] ...]

Restriction: Only the boolean operator AND is supported

Chapter 8. Using the C++ application programming interfaces 297

ip_search_criteria
{attr_name | mapped_attr_name} operator literal

attr_name
Name of the entity attribute to search for.

mapped_attr_name
Attribute name mapped with the attribute to search for.

operator
For DATE attributes , the following operators are supported:

== equality

> greater than

< less than

>= greater than or equal to

<= less than or equal to

For all other attributes, only equality (==) is supported

literal

For numeric attributes, do not use quotation marks (″), for example:
FolderType == 9

For date, time, and timestamp attributes, quotation marks or apostrophes
(’) are not necessary, but are tolerated, for example:
ReceiveDate == 1999-03-08
ReceiveDate == '1999-03-08'

For string attributes, quotation marks or apostrophes (’) are not necessary,
but are tolerated. If the string contains an apostrophe (’), the string must be
specified using two apostrophes, for example for a value of Folder'1:
FolderId == 'Folder''1'

entity_name
Name of the entity to be searched for

mapped_entity_name
the Entity name mapped with the entity to search for

maximum_results
The desired maximum number of results to be returned

The valid keywords are:

CONTENT option
Controls the amount of information returned in the results

YES The PIDs, attributes, and their values for a document or folder are
set. If there are parts in a document, the XDO PIDs are set. If there
are documents in a folder, the document PIDs are set.

YES is the default.

NO Only the document or folder PIDs are set.

ATTRONLY
Only the PIDs, attributes, and their values for a document or folder
are set.

298 Application Programming Guide

PENDING option
Controls whether or not documents that do not have parts are included in
the results. This option only applies when ENTITY is set to DOCUMENT or to
an entity mapped to DOCUMENT.

YES YES is the default value. Includes pending documents in the
results

NO Does not include pending documents in the results

Working with VisualInfo for AS/400
The API classes provided for VisualInfo for AS/400 are very similar to those
provided for Content Manager.

Restriction: VisualInfo for AS/400 does not support:
v Text Search Engine and QBIC search
v Combined query
v Workbasket and workflow

Listing index classes and attributes
The following example lists index classes and attributes in VisualInfo for AS/400.
cout << "list index class(es)..." << endl;
pCol = (DKSequentialCollection*)((dkCollection*)dsV4.listSchema());
pIter = pCol->createIterator();
i = 0;

while (pIter->more() == TRUE)
{
i++;
a = (*pIter->next());
strIndexClass = a;
cout << "index class name [" << i << "] - " << strIndexClass << endl;
cout << " list attribute(s) for " << strIndexClass << " index class:" << endl;
pCol2 =
(DKSequentialCollection*)((dkCollection*)dsV4.listSchemaAttributes(strIndexClass));
pIter2 = pCol2->createIterator();
j = 0;

while (pIter2->more() == TRUE)
{
j++;
pA = pIter2->next();
pDef = (DKAttributeDef*) pA->value();
cout << " Attribute name [" << j << "] - " << pDef->name << endl;
cout << " datastoreType - " << pDef->datastoreType << endl;
cout << " attributeOf - " << pDef->attributeOf << endl;
cout << " type - " << pDef->type << endl;
cout << " size - " << pDef->size << endl;
cout << " id - " << pDef->id << endl;
cout << " nullable - " << pDef->nullable << endl;
cout << " precision - " << pDef->precision << endl;
cout << " scale - " << pDef->scale << endl;
cout << " string type - " << pDef->stringType << endl;
}

cout << " " << j << " attribute(s) listed for "
<< strIndexClass << " index class" << endl;

pCol2->apply(deleteDKAttributeDef);
delete pIter2;
delete pCol2;
}

delete pIter;

Chapter 8. Using the C++ application programming interfaces 299

delete pCol;
cout << i << " index class(es) listed" << endl;
dsV4.disconnect();
cout << "datastore disconnected" << endl;

The complete sample application from which this application was taken
(TListCatalogV4.cpp) is available in the Cmbroot/Samples/cpp/v4 directory.

Executing a query
Figure 54 on page 301 shows an example of how to run a query in VisualInfo for
AS/400 and process the results.

300 Application Programming Guide

cout << "executing query..." << endl;
...
pCur = dsV4.execute(cmd);
cout << " query executed" << endl;
...
cout << "\n........ Displaying query results \n\n";

...
while (pCur->isValid())
{

p = pCur->fetchNext();

if (p != 0)
{

cout << "==========> " << "Item " << cnt << " <=========" << endl;
numDataItems = p->dataCount();
pid = p->getPid();
cout << " Pid String: " << pid.pidString() << endl;
k = p->propertyId(DK_CM_PROPERTY_ITEM_TYPE);

if (k > 0)
{

a = p->getProperty(k);
val = a;
cout << " ******************************" << endl;

switch (val)
{

case DK_CM_DOCUMENT :
{

cout << " Item is a document " << endl;
break;
}
case DK_CM_FOLDER :
{

cout << " Item is a folder " << endl;
break;
}

}

cout << " ******************************" << endl;
}

cout << " Number of Data Items: " << numDataItems << endl;

for (j = 1; j <= numDataItems; j++)
{

a = p->getData(j);
strDataName = p->getDataName(j);

switch (a.typeCode())
{

case DKAny::tc_string :
{

strData = a;
cout << " attribute name: " << strDataName

<< ", value: " << strData << endl;
break;
}

case DKAny::tc_long :
{

lVal = a;

Figure 54. Query in VisualInfo for AS/400 (Part 1 of 3)

Chapter 8. Using the C++ application programming interfaces 301

cout << " attribute name: " << strDataName
<< ", value: " << lVal << endl;

break;
}

case DKAny::tc_null :
{

cout << " attribute name: " << strDataName << ", value: NULL " << endl;
break;

}

case DKAny::tc_collection :
{

pdCol = a;
cout << strDataName << " collection name: " << strDataName << endl;
cout << "--------------------------------------" << endl;
pdIter = pdCol->createIterator();
ushort b = 0;

while (pdIter->more() == TRUE)
{

b++;
cout << " ---" << endl;
a = *(pdIter->next());
pDOBase = a;

if (pDOBase->protocol() == DK_PDDO)
{

pDDO = (DKDDO*)pDOBase;
cout << " DKDDO object " << b << " in " << strDataName

<< " collection " << endl;
k = pDDO->propertyId(DK_CM_PROPERTY_ITEM_TYPE);

if (k > 0)
{

a = pDDO->getProperty(k);
val = a;
cout << " ******************************" << endl;

switch (val)
{

case DK_CM_DOCUMENT :
{

cout << " Item is a document " << endl;
break;
}
case DK_CM_FOLDER :
{

cout << " Item is a folder " << endl;
break;
}

}
cout << " ******************************" << endl;
}

}

Figure 54. Query in VisualInfo for AS/400 (Part 2 of 3)

302 Application Programming Guide

The complete sample application from which this application was taken
(TExecuteV4.cpp) is available in the Cmbroot/Samples/cpp/v4 directory.

Executing a parametric query
The following example runs a parametric query.
cout << "query string: " << cmd << endl;
cout << "creating query..." << endl;
pQry = dsV4.createQuery(cmd);
cout << "executing query..." << endl;
pQry->execute();
cout << "query executed" << endl;
cout << "getting query results..." << endl;
any = pQry->result();
pResults = (DKResults*)((dkCollection*) any);

else if (pDOBase->protocol() == DK_XDO)
{

pXDO = (dkXDO*)pDOBase;
cout << " dkXDO object " << b << " in " << strDataName

<< " collection " << endl;

}
}

if (pdIter != 0)
{

delete pdIter;
}

if (b == 0)
{

cout << strDataName << " collection has no elements " << endl;
}

cout << " ---" << endl;
break;
}

default:
cout << "Type is not supported\n";

}

cout << " type: " << p->getDataPropertyByName(j,DK_CM_PROPERTY_TYPE) << endl;
cout << " nullable: " << p->getDataPropertyByName(j,DK_CM_PROPERTY_NULLABLE)

<< endl;

if (strDataName != DKPARTS && strDataName != DKFOLDER)
{

cout << " attribute id: " << p->getDataPropertyByName(j,DK_PROPERTY_ATTRIBUTE_ID) << endl;
}

}

cnt++;
delete p;
}
}

cout << "Total Item count is " << cnt-1 << endl;

if (pCur != 0)
delete pCur;

Figure 54. Query in VisualInfo for AS/400 (Part 3 of 3)

Chapter 8. Using the C++ application programming interfaces 303

processResults(pResults);

dsV4.disconnect();
cout << "datastore disconnected" << endl;
delete pQry;
delete pResults;

The complete sample application from which this application was taken
(TSamplePQryV4.cpp) is available in the Cmbroot/Samples/cpp/v4 directory.

Working with Domino.Doc
Domino.Doc is the Lotus Domino solution for organizing, managing, and storing
business documents, and making them accessible within and outside of a business.

Domino.Doc supports the open document management API (ODMA), so that you
can create, save, and retrieve documents using ODMA-enabled applications.
ODMA connects to a Domino.Doc server using an HTTP or Lotus Notes protocol.

Domino.Doc includes the following features:
v Ability to search binders
v Ability to retrieve documents
v ODMA compliance so that users can work in familiar applications

Restriction: Domino.Doc does not support:
v Text Search Engine and QBIC search
v Combined query
v Workbasket and workflow

With the Domino.Doc API, you build an expression to return an object. This
section describes the design of the Domino.Doc API and how the objects fit into
the hierarchy, and thus how to build the expression. Figure 55 on page 305 shows
how the components of the object model are related.

304 Application Programming Guide

The elements contained in Domino.Doc are arranged so that:
v The library contains rooms (DKRoomDefDD objects) and cabinets

(DKCabinetDefDD objects)
v Each cabinet contains binders (DKBinderDefDD object)
v Each binder contains a profile (DKAttrProfileDefDD object) and security
v Each binder contains documents (DKDocumentDefDD objects)
v Each document contains a profile (DKAttrProfileDefDD object) and security
v Each profile contains fields (DKAttrFieldDefDD objects)
v Each field can contain keywords (DKAttrKeywordDefDD objects)

Listing entities and subentities
The following example lists the entities in Domino.Doc. In the example, rooms are
the entities, and cabinets, binders and documents are subentities.

Figure 55. Domino.Doc object model

Chapter 8. Using the C++ application programming interfaces 305

The complete application from which this example was taken
(TListEntitiesDD.cpp) is available in the Cmbroot/Samples/cpp/dd directory.
dkCollection* pColl = domDoc.listEntities();

long nbrEnts = pColl->cardinality();

dkIterator* itEnts = pColl-> createIterator();
while(itEnts->more())
{ // For each returned dkEntityDef...

DKRoomDefDD* pEnt = (DKRoomDefDD*)itEnts->next()->value();
cout << "Room title: " << pEnt->getName() << endl;
cout << " Has SubEntities: " << pEnt->hasSubEntities() << endl;

// print subEntities (Cabinets->Binders->Documents)
printSubEnts(pEnt, domDoc, 1);

delete pEnt;
}
delete itEnts;
delete pColl;

The following example lists the subentities (cabinets, binders, and documents)
associated with an entity (in this case a room).
void printSubEnts(DKEntityDefDD* pEnt, DKDatastoreDD& domDoc, int indents)
{

// indents: 1=Cabinets; 2=Binders; 3=Documents
DKString indentation = "";

for(int i = 0; i < indents; i++)
{

indentation += " ";
}

if(pEnt->hasSubEntities())
{

dkCollection* pColl = pEnt->listSubEntities();
long nbrEnts = pColl->cardinality();
dkIterator* itEnts = pColl-> createIterator();
while(itEnts->more())
{

DKEntityDefDD* pEnt = (DKEntityDefDD*)itEnts->next()->value();
cout<< indentation << "SubEntity title: " << pEnt->getName() << endl;
printSubEnts(pEnt, domDoc, indents+1);
delete pEnt;

}
delete itEnts;
delete pColl;

}
return;

}

Listing cabinet attributes
Cabinets are the only items that contain any useful attributes. If you try to list
entity attributes for rooms, nothing will appear in the collection. So, when
DKDatastoreDD lists searchable entities it lists cabinets.

Building queries in Domino.Doc
ENTITY= must be the first word in the query string if you want to limit the query to
one cabinet. If the ENTITY parameter and its value are missing, then the entire
library is searched. Also, the value must be enclosed in quotation marks ("), for
example, "Diane Cabinet".
"ENTITY=<"cabinetTitle"> QUERY=<"lotusQueryString">"

306 Application Programming Guide

QUERY= is a required parameter.

In Domino.Doc a query string looks like this:

Use the FTSearch method to query the Domino.Doc content server. The
Domino.Doc content server must be fully text indexed for this method to work
efficiently. To test for an index, use the IsFTIndexed property. To create an index,
use the UpdateFTIndex method.

The FTSearch method searches all of the documents in a content server—to search
documents within a particular view, use the FTSearch method in NotesView; to
search documents within a particular document collection, use the FTSearch
method in NotesDocumentCollection.

If you don’t specify a sort option, documents are sorted by relevance. If you want
to sort by date, you do not get relevance scores with the sorted results. If you pass
the resulting DocumentCollection to a NotesNewsletter instance, results are sorted
by either the document creation date or the relevance score, depending on which
sort options you use.

Using query syntax
The syntax rules for a query are in the following list. Use parentheses to override
precedence and to group operations.

Plain text
Use plain text to search for a word or phrase as is. Enclose search
keywords and symbols must be enclosed in apostrophes ('). Remember to
use quotation marks (") if, you are inside a LotusScript literal.

Wildcards
Use the question mark (?) to match any single character in any position
within a word. Use the asterisk (*) to match zero to n (where n is any
number) characters in any position in a word.

Logical operators
Use logical operators to expand or restrict your search. The operators and
their precedents are:
1. ! (not)
2. & (and)
3. , (accrue)
4. | (or)

You can use either the keyword or symbol.

Proximity operators
Use proximity operators to search for words that are close to each other.
These operators require word, sentence, and paragraph breaks in a full-text
index. The operators are:
1. near
2. sentence
3. paragraph

Field operator
Use the field operator to restrict your search to a specified field. The syntax
is FIELD field-name operator, where operator is CONTAINS for text and
rich text fields, and is one of the following symbols for number and date
fields:

Chapter 8. Using the C++ application programming interfaces 307

1. =,
2. >,
3. >=, <,
4. <=

Exactcase operator
Use the exactcase operator to restrict a search for the next expression to the
specified case.

Termweight operator
Use the termweight n operator to adjust the relevance ranking of the
expression that follows, where n is 0-100.

Working with Domino Extended Search (DES)
Domino Extended Search (DES) allows you to query and retrieve documents from:
v Lotus Notes databases
v NotesPump databases
v File systems
v Web search engines

This section provides instructions on:
v Listing DES servers
v Listing databases and fields
v Ability to use Generalized Query Language (GQL) to perform searches
v Ability to retrieve documents

Restriction: DES does not support:
v Adding, updating, and deleting documents
v Text Search Engine and QBIC search
v Combined query
v Workbasket and workflow

All DES features are accessed and controlled by the DES configuration database.
Use the configuration database to assign database definitions for data sources to be
searched, network addresses, access control information, and other related
information.

Listing DES servers
To provide access to multiple DES servers, you can create a file named cmbdes.ini
that contains the server information. Store this file in
x:\CMBROOT

(where x is the drive letter). The cmbdes.ini file must contain one line for each
server, in the following format:
DATASOURCE=TCP/IP address;PORT=port number

TCP/IP is the TCP/IP address of the DES server and the port number is the port
number defined for accessing the server (for example: PORT=80).

Listing databases and fields
When you build a query to search a DES server, you must know the available
database and field names. The DKDatastoreDES object provides the listEntities

308 Application Programming Guide

method to list the databases and the listEntityAttrs method to list the fields for
each database. The following example shows how to retrieve a list of databases
and their fields.
...
cout << "list entities" << endl;
pCol = (DKSequentialCollection*)((dkCollection*)dsDES.listEntities());
pIter = pCol->createIterator();
i = 0;
while (pIter->more() == TRUE)
{
i++;
pEnt = (DKDatabaseDefDES*)((void*)(*pIter->next()));
strDBName = pEnt->getName();
cout << "\ndatabase name [" << i << "] - " << strDBName << endl;
cout << "dispname: " << pEnt->getDisplayName() << endl;
cout << "helptext: " << pEnt->getHelpText() << endl;
cout << "lang: " << pEnt->getLanguage() << endl;
int iVCount = pEnt->getNumVals();
cout << "NumValus: " << iVCount << endl;
cout << "datatype: " << pEnt->getDataType() << endl;
cout << "searchable:" << pEnt->isSearchable() << endl;
cout << "retrievable" << pEnt->isRetrievable() << endl;
cout << "\n list attributes for " << strDBName << " database name" << endl;
pCol2 = (DKSequentialCollection*)((dkCollection*)dsDES.listEntityAttrs(strDBName));
pIter2 = pCol2->createIterator();

j = 0;
while (pIter2->more() == TRUE)
{
j++;
pA = pIter2->next();
pAttr = (DKFieldDefDES*) pA->value();
cout << " Attribute name [" << j << "] - " << pAttr->getName() << endl;
cout << " datastoreName " << pAttr->datastoreName() << endl;
cout << " datastoreType " << pAttr->datastoreType() << endl;
cout << " attributeOf " << pAttr->getEntityName() << endl;
cout << " type " << pAttr->getType() << endl;
cout << " size " << pAttr->getSize() << endl;
cout << " id " << pAttr->getId() << endl;
cout << " nullable " << pAttr->isNullable() << endl;
cout << " precision " << pAttr->getPrecision() << endl;
cout << " scale " << pAttr->getScale() << endl;
cout << " string type " << pAttr->getStringType() << endl;
cout << " display name " << pAttr->getDisplayName() << endl;
cout << " help text " << pAttr->getHelpText() << endl;
cout << " language " << pAttr->getLanguage() << endl;
cout << " isQueryable " << pAttr->isQueryable() << endl;
cout << " isRetrievable " << pAttr->isRetrievable() << endl;
delete pAttr;
}
cout << " " << j << " attributes listed for "

<< strDBName << " database name" << endl;
delete pIter2;
delete pCol2;
delete pEnt;

}
delete pIter;
delete pCol;
cout << i << " entities listed\n" << endl;
...

The complete sample application from which this example was taken
(TListCatalogDES.cpp) is available in the Cmbroot/Samples/cpp/des directory.

Chapter 8. Using the C++ application programming interfaces 309

Using Generalized Query Language (GQL)
DES uses the Generalized Query Language (GQL) to perform searches. Table 23
contains examples of valid GQL expressions.

Table 23. GQL expressions
GQL Expression Description
"software" search for documents that contain the word

software
(TOKEN:WILD "exec*") search for documents that contain any word

beginning with exec
(AND "software" "IBM") search for documents that contain both words

software and IBM
(START "View" "How") search for documents in which the View field begins

with the word How
(EQ "View" "How Do I?") search for documents in which the View field

contains the exact string How Do I?
(GT "BIRTHDATE" "19330804") search for documents in which the BIRTHDATE

field is greater than August 4, 1933

DES uses the query type DK_DES_GQL_QL_TYPE. This query type has the following
syntax:
SEARCH=(DATABASE=(db_name | db_name_list | ALL);

COND=(GQL expression));
[OPTION=([SEARCHABLE_FIELD=(fd_name, ...);]

[RETRIEVABLE_FIELD=(fd_name, ...);]
[MAX_RESULTS=maximum_results;]
[TIME_LIMIT=time)]

db_name_list is a list of database names (db_name) separated by commas and ALL
means search all of the available databases. The default time limit for a search is 30
seconds.

This example uses the query string to search for documents in the Notes Help
database, where the View field is How Do I? and the maximum results expected are
5.
String cmd = "SEARCH=(DATABASE=(Notes Help);" +

"COND=(EQ \"View\" \"How Do I?\"));" +
"OPTION=(MAX_RESULTS=5)"

This example runs a GQL query for DES.
DKDatastoreDES dsDES;
dkResultSetCursor* pCur = 0;
cout << "Datastore DES created" << endl;
cout << "connecting to datastore" << endl;
dsDES.connect(libsrv,userid,pw,str);
cout << "datastore connected " << libsrv << " userid - " << userid << endl;

DKString cmd = "SEARCH=(DATABASE=(Notes Help);";
cmd += "COND=((IN \"Subject\" \"your\")));";
cmd += "OPTION=(MAX_RESULTS=2;TIME_LIMIT=10);";

cout << "query string " << cmd << endl;
cout << "executing query" << endl;
pCur = dsDES.execute(cmd);
cout << "query executed" << endl;
...

310 Application Programming Guide

The complete sample application from which this example was taken
(TExecuteDES.cpp) is available in the Cmbroot/Samples/cpp/des directory.

DDO properties in DES
A DDO in DES always has the type DK_CM_DOCUMENT. To get the item type of the
DDO, you call:
DKDDO *p = 0;
ushort k = p->propertyId(DK_CM_PROPERTY_ITEM_TYPE);
if (k > 0)
{
DKAny a = p->getProperty(k);
ushort val = a; // val = DK_CM_DOCUMENT
}

Creating PIDs in DES
The persistent identifier (PID) contains specific information about a document. The
object type identifies the database where the document was found. A PID is
created by using the database name, followed by the | character and the document
ID, for example:
database name|documentId ()

For more information on PIDs see “Understanding persistent identifiers (PID)” on
page 11 and “Creating a persistent identifier (PID)” on page 27.

Contents of a DES document
Each item in the DDO represents either a field, a collection, or a DKParts object.

Field The field name for a single field is inside the item name. The field value is
also inside the item value. The field property can be:
v DK_CM_VSTRING
v DK_CM_FLOAT
v DK_CM_XDOOBJECT
v DK_CM_DATE
v DK_CM_SHORT

Collection
When a field has multiple values, the field name is in the item name. The
item value is a DKSequentialCollection object. The property can be
DK_CM_COLLECTION or DK_CM_COLLECTION_XDO if the field is a
BLOB.

DKParts
A document DDO has a specific attribute with a reserved name DKPARTS,
its value is a DKParts object. DKPARTS object can store the uniform
resource locator (URL) information about a document. DKPARTS can also
contain an XDO with its contents as a string representing the URL of a
document.

This example processes the contents of a DDO:
DKDDO *p = 0;
dkDataObjectBase *pDOBase = 0;
DKDDO *pDDO = 0;
dkXDO *pXDO = 0;
DKAny a;
ushort j = 0;
ushort k = 0;
ushort val = 0;
ushort cnt = 1;
DKString strData = "";

Chapter 8. Using the C++ application programming interfaces 311

DKString strDataName = "";
dkCollection* pdCol = 0;
dkIterator* pdIter = 0;
ushort numDataItems = 0;
DKPidXDODES *pidXDO = 0;
DKPid *pid = 0;
DKString strPid;
long pidIdCnt = 0;
long pidIndex = 0;
while (pCur->isValid())
{

p = pCur->fetchNext();
if (p != 0)
{

cout << "==========> " << "Item " << cnt << " <=========" << endl;
numDataItems = p->dataCount();

pid = (DKPid*)p->getPidObject();
strPid = pid->pidString();
cout << "pid string " << strPid << endl;
cout << "pid id string " << pid->getId() << endl;
strPid = pid->getIdString();
cout << "pid idString " << strPid << endl;

pidIdCnt = pid->getIdStringCount();
cout << "pid idString cnt " << pidIdCnt << endl;
strPid = pid->getPrimaryId();
cout << "pid primary id " << strPid << endl;
pidIndex = 0;
strPid = pid->getIdString(pidIndex);
cout << "pid item id " << strPid << endl;

k = p->propertyId(DK_CM_PROPERTY_ITEM_TYPE);
if (k > 0)
{

a = p->getProperty(k);
val = a;
cout << "******************************" << endl;
switch (val)
{

case DK_CM_DOCUMENT :
cout << "Item is a document " << endl;

break;
default:

cout << " Item is not recognized " << endl;
break;

}
cout << "******************************" << endl;
}
cout << "Number of Data Items " << numDataItems << endl;
for (j = 1; j <= numDataItems; j++)
{

a = p->getData(j);
strDataName = p->getDataName(j);
switch (a.typeCode())
{

case DKAny::tc_string :
{

strData = a;
cout << "attribute name : " << strDataName << " value : " << strData << endl;

}
break;
case DKAny::tc_long :

{
long l = a;
cout << "attribute name : " << strDataName << " value : " << l << endl;

}
break;
case DKAny::tc_double :

{

312 Application Programming Guide

double db = a;
cout << "attribute name : " << strDataName << " value : " << db << endl;

}
break;
case DKAny::tc_timestamp :

{
DKTimestamp tt = a;
cout << "attribute name : " << strDataName << " value : "

<< tt.getMonth() << "/" << tt.getDay() << "/" << tt.getYear() << " "
<< tt.getHours() << ":" << tt.getMinutes() << ":" << tt.getSeconds() << endl;
}

break;
case DKAny::tc_dobase :

{
pDOBase = a;
pXDO = (dkXDO*)pDOBase;
cout << "attribute name : " << strDataName << " value : " << endl;
pidXDO = (DKPidXDODES*)pXDO->getPid();
cout << "XDO pid database name " << pidXDO->getDatabaseName() << endl;
cout << "XDO pid docId " << pidXDO->getDocId() << endl;
cout << "XDO mimetype " << pXDO->getMimeType() << endl;
((DKBlobDES*)pXDO)->getContentToClientFile("c:\\temp\\temp.html", 1);
}

break;

case DKAny::tc_collection :
{

pdCol = a;
cout << strDataName << " collection name : " << strDataName << endl;
cout << "--------------------------------------" << endl;
pdIter = pdCol->createIterator();
ushort b = 0;
while (pdIter->more() == TRUE)

{
b++;

cout << " ---" << endl;
a = *(pdIter->next());

switch (a.typeCode())
{

case DKAny::tc_string :
{

strData = a;
cout << "attribute name : " << strDataName

<< " value : " << strData << endl;
}

break;
case DKAny::tc_long :

{
long l = a;
cout << "attribute name : " << strDataName << " value : " << l << endl;

}
break;
case DKAny::tc_double :

{
double db = a;
cout << "attribute name : " << strDataName << " value : " << db << endl;

}
break;
case DKAny::tc_timestamp :

{
DKTimestamp tt = a;
cout << "attribute name : " << strDataName << " value : "

<< tt.getMonth() << "/" << tt.getDay() << "/" << tt.getYear() << " "
<< tt.getHours() << ":" << tt.getMinutes() << ":" << tt.getSeconds() << endl;

}
break;
case DKAny::tc_dobase :

Chapter 8. Using the C++ application programming interfaces 313

{
pDOBase = a;
pXDO = (dkXDO*)pDOBase;
cout << "attribute name : " << strDataName << " value : " << endl;
pidXDO = (DKPidXDODES*)pXDO->getPid();
cout << "XDO pid database name " << pidXDO->getDatabaseName() << endl;
cout << "XDO pid docId " << pidXDO->getDocId() << endl;
cout << "XDO mimetype " << pXDO->getMimeType() << endl;
DKString str = "c:\\temp\\temp";
DKString strT = b;
str = str + strT + ".html";
((DKBlobDES*)pXDO)->getContentToClientFile(str, 1);
}
break;
}

ushort usCount = p->dataPropertyCount(j);
for (ushort k = 1; k <= usCount; k++)
{
a = p->getDataProperty(j, k);
cout << " property " << k << " " << a << endl;
}

}

if (b == 0)
{
cout << strDataName << " collection has no elements " << endl;
}

cout << " ---" << endl;
break;

}
}
ushort usCount = p->dataPropertyCount(j);
for (ushort k = 1; k <= usCount; k++)
{
a = p->getDataProperty(j, k);
cout << " property " << k << " " << a << endl;

}
}

cnt++;
delete p;

The complete sample application from which this example was taken
(TExecuteDES.cpp) is available in the Cmbroot/Samples/cpp/des directory.

Retrieving a document
To retrieve a document from a DKDatastoreDES object, you must know the name
of the database that contains the document and the document ID. You must also
associate the DDO to a content server and establish a connection. This example
retrieves a document:
DKDatastoreDES dsDES;
dkResultSetCursor* pCur = 0;
cout << "Datastore DES created" << endl;
cout << "connecting to datastore" << endl;
dsDES.connect(libsrv,userid,pw,str);

cout << "datastore connected " << libsrv << " userid - " << userid << endl;
...
p = new DKDDO(&dsDES, "");
DKPid pid2;
pid2.setDatastoreType(dsDES.datastoreType());
pid2.setDatastoreName(dsDES.datastoreName());
pid2.setId("Notes Help|215e");
pid2.setObjectType("");
p->setPidObject((DKPid*)&pid2);
p->retrieve();
...

314 Application Programming Guide

The complete sample application from which this example was taken
(TRetrieveDDODES.cpp) is available in the Cmbroot/Samples/cpp/des directory.

Retrieving a BLOB
To retrieve a BLOB from a DKDatastoreDES object, you must know the name of
the database, the ID of the document that contains the BLOB, and the name of the
field that contains the BLOB. You must also associate the DDO to a content server
and establish a connection.

In the following example, the database named DES files contains an HTML file
named D:\desdoc\README.html. The field that contains the HTML file is named
Doc$Content. The sample code retrieves the HTML file and saves it as
D:\DESReadme.html.
DKDatastoreDES dsDES;
dkResultSetCursor* pCur = 0;
cout << "Datastore DES created" << endl;
cout << "connecting to datastore" << endl;
dsDES.connect(libsrv,userid,pw,str);

cout << "datastore connected " << libsrv << " userid - " << userid << endl;
...
cout << "executing retrieve a XDO" << endl;

DKBlobDES* p = new DKBlobDES(&dsDES);
DKPidXDODES pid;
pid.setDocId("D:\\desdoc\\README.html");
pid.setDatabaseName("DES files");
pid.setFieldName("Doc$Content");
pid.setPrimaryId("DES files|D:\\desdoc\\README.html");
p->setPidObject((DKPidXDO*)&pid);

p->retrieve("c:\\temp\\DESReadme.html");

cout << "retrieve executed" << endl;
...

The complete sample application from which this example was taken
(TRetrieveXDODES.cpp) is available in the Cmbroot/Samples/cpp/des directory.

Associating MIME types with documents
DES does not directly support identification of Multipurpose Internet Mail
Extension (MIME) types. However, you must know the MIME type of an XDO that
you want to display within a Web browser.

The CMBCC2MIME.INI file is used to determine the MIME type of a document. When
a DES query from NotesPump or FileSystem databases returns a BLOB, the
CMBCC2MIME.INI file is searched to determine if a MIME type can be assigned to the
BLOB. The default MIME type is text/html. A sample file named
cmbcc2mime.ini.samp is available in the samples directory.

Using federated searching in DES
When you create federated queries, the syntax used in DES is similar to SQL
syntax. The federated query expressions are converted to GQL syntax before they
are submitted to DES. Because SQL and GQL grammar have differences however,
only a subset of the SQL grammar is supported by Enterprise Information Portal.

Table 24 summarizes the SQL to GQL conversion of the supported comparison and
logical operators.

Table 24. SQL and GQL operators
SQL operator GQL operator

Chapter 8. Using the C++ application programming interfaces 315

Table 24. SQL and GQL operators (continued)
AND AND
OR OR
NOT not supported
IN not supported
BETWEEN BETWEEN
EQ EQ
NEQ not supported
GT GT
LT LT
LIKE not supported
GEQ GTE
LEQ LTE
NOTLIKE not supported
NOTIN not supported
NOTBETWEEN not supported

Working with custom content servers
In Enterprise Information Portal you have the option of creating your own server
definitions for custom content servers. If you integrate a custom server into
Enterprise Information Portal you must provide your own C++ classes to support
the definition.

Developing custom content servers
For information about specific object-oriented APIs see the online API reference.

If you are integrating a custom content server into Enterprise Information Portal.
You must:
v import the com.ibm.mm.sdk.common package
v link to the cmbcm716.dll, non-debugged version, and cmbcm716d.dll, debugged

version, files in order to access the common framework

Enterprise Information Portal database infrastructure: The primary interface
between content servers and an Enterprise Information Portal is the dkDatastore
classes. Each content server has a separate class that implements the dkDatastore
class to provide its specific implementation information. Each content server type
is represented by a class called DKDatastorexx, where xx identifies the name or
type of the specific content server. Table 25 lists the content servers provided in
Enterprise Information Portal.

Table 25. Enterprise Information Portal content servers

Server type Class names

Content Manager DKDatastoreDL

OnDemand DKDatastoreOD

VisualInfo for AS/400 DKDatastoreV4

ImagePlus for OS/390 DKDatastoreIP

Domino.Doc DKDatastoreDD

Domino Extended Search DKDatastoreDES

DB2 Universal Database DKDatastoreDB2

DB2 DataJoiner DKDatastoreDJ

ODBC DKDatastoreODBC

316 Application Programming Guide

Common classes in Enterprise Information Portal:

dkDDO

The dkDDO class provides a representation and a protocol to define and
access an object’s data, independent of the object’s type. The DDO protocol
is implemented as a set of methods to define, add, and access each data
item of an object. You can use this protocol to dynamically create an object
and get it from the content server regardless of the content server’s type.

When implementing a content server, you can utilize schema mapping
information, registered in the content server class. The schema maps each
individual persistent data item to its underlying representation in the
content server.

A DDO has a set of attributes; each attribute has a type, value, and
properties associated with it. The DDO itself can have properties that
belong to the DDO as a whole. For example, you can map which class to
an item in Content Manager datastore, or a document in OnDemand.

dkXDO

The dkXDO class represents complex user-defined types or large objects
(LOBs) which can exist stand-alone or as a part of DDO. Therefore, it has a
persistent identifier (PID) and create, retrieve, update, and delete methods.

The dkXDO class extends the public interface of dkXDOBase by defining
independent content server access, create, retrieve, update, and delete
methods. These methods enable an application to store and retrieve the
object’s data to and from a content server without the existence of an
associated DDO class object or stand-alone XDO.

You must set the PD for a stand-alone XDO to locate its position in the
content server. If you are using the XDO with a DDO, the PID is set
automatically. For example you can map which class to an item for the
Content Manager datastores, and mapped to notes for the OnDemand
datastores.

dkCollection

The dkCollection class is a collection of objects. dkCollection cannot
evaluate a query. A collection might have a name (the default name is an
empty string). For example, DKParts is a subclass of
DKSequentialCollection, which is in turn a subclass of dkCollection.

DKResults

DKResults is a subclass of dkQueryableCollection, therefore it supports
sorting and bi-directional iterators, and it is queryable. The element
members of a DKResults class are objects, instances of the dkDDO class
that represent query results. The iterator created by this class is
dkSequentialIterator.

dkQuery

dkQuery is an interface for a query object associated with a specific
content server. Objects that implement this interface are created by content
server classes. The result of a query is usually a DKResults object.
Examples of a concrete implementation of the dkQuery interface are
DKParametricQuery, DKTextQuery and DKImageQuery, which are created
by their associated content servers.

Chapter 8. Using the C++ application programming interfaces 317

dkCQExpr
The dkCQExpr class represents a compound or combined query
expression. It can contain a dkQExpr query expressions tree, which can
contain a combination of parametric, text, and image query. If you want
each content server to allow a federated search, the content server must be
able to process this dkCQExpr object.

dkSchemaMapping
dkSchemaMapping is the an interface that defines an associative mapping
between a federated entity and a native entity in content server. The
content server must understand this mapping class to unmap and remap
federated entities and attributes to native entities and attributes for a query
and return results.

dkDatastore and related classes: You must implement one concrete class for each
of the following classes or interfaces for your content server. For example in an
OnDemand server, the concrete class that implements the dkDatastore interface is
DKDatastoreOD.

dkDatastore
dkDatastore represents and manages a connection to the content server, its
transactions and commands. It supports the evaluate method, so it can be
considered a subclass of the query manager.

The main methods in the dkDatastore interface are:

connect()
Connects to the content server

disconnect()
Disconnects from the content server

evaluate(), execute(), executeWithCallback()
Queries the content server

commit(), rollback()
Performs transactions in the datastore

Restriction : Some content servers do not support these methods.

registerServices(), unregisterServices()
Registers search engines

changePassword(userid, oldPasswd, newPasswd)
Changes the login password for the current user id on the content
server

listDataSources()
Returns a collection of content server User ID objects to use for
logon. You do not need to be connected to the content server to
use this method.

listDataSourceNames()
Returns an array of content server names

getExtension(String)
Gets the dkExtension object from the content server. If the given
extension does not already exist but is supported by the content
server, a newly created object is returned, otherwise, a null value is
returned.

addExtension(String, dkExtension)
Adds a new extension object (XDO) to this content server

318 Application Programming Guide

CreateDDO(String,int)
Creates a data object based on the given object type and flag.
Create DDO returns a new DKDDO object with all the properties
and attributes set. The calling program must provide the attribute
values for this data object.

The data object manipulation methods in the dkDatastore interface are:

addObject(dkDataObject)
Adds a new document or older to the content server

retrieveObject(dkDataObject)
Retrieves a document or folder from the content server

deleteObject(dkDataObject)
Deletes a document or folder from the content server

updateObject(dkDataObject)
Updates a document or folder in the content server

moveObject(dkDataObject, String)
Moves a folder or document from one entity to another

The schema mapping methods in the dkDatastore interface are:

registerMapping(DKNVPair)
Registers the mapping information to this content server

unRegisterMapping(String)
Removes the mapping information from this content server

listMappingNames()
Returns an array of mapping names from this content server

getMapping(String)
Returns a dkSchemMapping object

dkDatastoreDef
The dkDatastoreDef interface defines methods to access content server
information and to create, list, and delete its entities. It maintains a
collection of dkEntityDef objects.

Table 26 contains examples of concrete classes for the dkDatastoreDef
interface.

Table 26. Concrete classes for dkDatastoreDef
Server type Class name
Content Manager DKDatastoreDefDL
OnDemand DKDatastoreDefOD
VisualInfo for AS/400 DKDatastoreDefV4
ImagePlus for OS/390 DKDatastoreDefIP
Domino.Doc DKDatastoreDefDD
Domino Extended Search DKDatastoreDefDES
DB2 Universal Database DKDatastoreDefDB2,
DB2 DataJoiner DKDatastoreDefDJ
ODBC DKDatastoreDefODBC

The main methods in the dkDatastoreDef interface are:

listEntities()
Lists entities

Chapter 8. Using the C++ application programming interfaces 319

listEntityAttrs()
Lists entity attributes

addEntity()
Adds an entity

getEntity(name)
Gets an entity

Each concrete class can also have its own content server-specific methods
with names that are familiar to that content server. For example, the
DKDatastoreDefDL class contains these specific methods:
v listIndexClassNames()
v listIndexClasses()

The DKDatastoreDefOD class contains these specific methods:
v listAppGrps()
v listAppGrpNames()

dkEntityDef
The dkEntityDef class defines methods to:
v Create and delete the entity
v Access entity information
v Create and delete attributes

In the dkEntityDef class, all methods that are related to subentities
generate a DKUsageError indicating that the default content server does
not support subentities. However, if the content server does support this
kind of multiple level entity, as does Domino.Doc, for example, the
subclass for this content server must implement the proper methods to
overwrite the exceptions.

Table 27 contains examples of concrete classes for the dkEntityDef class.

Table 27. Concrete classes for dkEntityDef
Server type Class name
Content Manager DKIndexClassDefDL
OnDemand DKAppGrpDefOD
VisualInfo for AS/400 DKIndexClassDefV4
ImagePlus for OS/390 DKEntityDefIP
Domino.Doc DKCabinetDefDD
Domino Extended Search DKDatabaseDefDES
DB2 Universal Database DKTableDefDB2, DKColumnDefDB2
DB2 DataJoiner DKTableDefDJ, DKColumnDefDJ
ODBC DKTableDefODBC, DKColumnDefODBC

The main methods in the dkEntityDef class are:

ListAttrs()
Lists the entity attributes

getAttr(String attrName)
Gets a specified entity attribute

addAttr(DKAttrDef)
Adds an attribute to an entity

320 Application Programming Guide

getName()
Gets the name of the entity

setName(String)
Sets the name of the entity

hasSubEntities()
Determines whether the entity contains subentities

getSubEntity(String)
Gets the subentity

addSubEntity(dkEntityDef)
Adds a subentity to the entity

listSubEntities()
Lists the subentities of the entity

removeAttr(String)
Removes a subentity from the entity

add() Adds the entity to the content server

update()
Updates the entity in the content server

retrieve()
Retrieves the entity values from the content server

del() Deletes the entity from the content server

dkAttrDef
The dkAttrDef class defines methods for accessing attribute information
and creating and deleting attributes.

Table 28 contains examples of concrete classes for the dkAttrDef class.

Table 28. Concrete classes for dkAttrDef
Server type Class name
Content Manager DKAttributeDefDL
OnDemand DKFieldDefOD
VisualInfo for AS/400 DKAttrDefV4
ImagePlus for OS/390 DKAttrDefIP
Domino.Doc DKAttrDefDD
Domino Extended Search DKFieldDefDES
DB2 Universal Database
DB2 DataJoiner
ODBC

The main methods in the dkAttrDef class are:

ListAttrs()
Lists the attributes

getAttr(String attrName)
Gets a specified attribute

getName()
Gets the name of the attribute

getDescription()
Gets the description of the attribute

add() Adds the entity to the content server

Chapter 8. Using the C++ application programming interfaces 321

dkServerDef
The dkServerDef class provides the server definition information for each
content server.

Table 29 contains examples of concrete classes for the dkServerDef class.

Table 29. Concrete classes for dkServerDef
Server type Class name
Content Manager DKServerDefDL
OnDemand DKServerDefOD
VisualInfo for AS/400 DKServerDefV4
Domino.Doc DKServerDefDD
Domino Extended Search DKServerDefDES
DB2 Universal Database DKServerDefDB2
DB2 DataJoiner DKServerDefDJ
ODBC DKServerDefODBC

The main methods in the dkServerDef class are:

setDatastore(dkDatastore ds)
Sets the reference to the content server object

getDatastore()
Gets the reference to the content server object

getName()
Get the name of the content server

setName(String name)
Sets the name of the content server

datastoreType()
Gets the content server type

dkResultSetCursor
dkResultSetCursor is a content server cursor in the query result set that
you can use to manage a virtual collection of DDO objects. The collection
is a query result set. Each element of the collection is not created until the
content server retrieves the element.

The main methods in the dkResultSetCursor class are:

isScrollable()
Returns TRUE if the cursor can be scrolled forward and backward

isUpdatable()
Returns TRUE if the cursor can be updated

isValid()
Returns TRUE if the cursor is valid

isBegin()
Returns TRUE if the cursor is positioned at the beginning of the
result set

isEnd()
Returns TRUE if the cursor is positioned at the end of the result set

isInBetween()
Returns TRUE if cursor is positioned between data elements in the
result set

322 Application Programming Guide

getPosition()
Gets the current position of the cursor

setPosition(int position, Object value)
Sets the cursor to the specified position

setToNext()
Sets the cursor to point to the next element in the result set

fetchObject()
Retrieves the current element from the result set and returns it as a
DDO

fetchNext()
Retrieves the next element from the result set and returns it as a
DDO

fetchNextN(int how_many, dkCollection collection)
Retrieves as the next n elements of the result set and inserts them
into the specified collection

findObject(int position, String predicate)
Finds the data object that satisfies the specified predicate, moved
the cursor to that position, and then retrieves the object

addObject(DKDDO ddo)
Adds a new element of the same type, represented by the specific
DDO, to the datastore

deleteObject()
Deletes the current element from the content server

updateObject(DKDDO ddo)
Updates the current element at the current position in the content
server, using the specified DDO

newObject()
Creates an element of the same type and returns it as a DDO

open() Opens the cursor, and if necessary, runs the query to create the
result set

close() Closes the cursor and the result set

isOpen()
Returns TRUE if the cursor is open

destroy()
Deletes the cursor; this allows for cleanup before the cursor is
collected as garbage.

datastoreName()
Gets the name of the content server name to which the cursor
belongs

datastoreType()
Gets the datastore type to which the cursor belongs

handle(int type)
Gets the resultset handle that is associated with the resultset
cursor, by type

Chapter 8. Using the C++ application programming interfaces 323

Requirement: To use the addObject, deleteObject, and updateObject
methods, you must set the datastore option DK_OPT_ACCESS_MODE to
DK_READWRITE.

dkBlob
dkBlob is an abstract class that declares a common public interface for
binary large object (BLOB) data types.

Table 30 contains examples of concrete classes for the dkBlob class.

Table 30. Concrete classes for dkBlob
Server type Class name
Content Manager DKBlobDL
OnDemand DKBlobOD
VisualInfo for AS/400 DKBlobV4
ImagePlus for OS/390 DKBlobIP
Domino.Doc DKBlobDD
Domino Extended Search DKBlobDES
DB2 Universal Database DKBlobDB2
DB2 DataJoiner DKBlobDJ
ODBC DKBlobODBC

The main methods in the dkBlob class are:

getContent()
Returns a byte array containing the BLOB data of the object

getContentToClientFile(String afileName, int fileOption)
Copies the BLOB data from the object to the specified file

setContent(byte[] aByteArr)
Sets the LOB data for the object with the contents of the byte array

setContentFromClientFile(String afileName)
Replaces the LOB data of the object with the contents of the file
afileName

add(String afileName)
Adds the content of the specified file to the content server

retrieve(String afileName)
Retrieves the content of the content server into the specified file

update(String afileName)
Updates the object and the content server with the content of the
specified file

del(boolean flush)
Deletes the object’s data from the content server, if flush is TRUE;
otherwise the current content is preserved.

concatReplace(dkBlob aBlob), concatReplace(byte[] aByteArr)
Concatenates this object with another dkBlob object or byte array

length()
Returns the length of the LOB content of the object

indexOf(String aString, int startPos), indexOf(dkBlob aBlob, int
startPos)

Starting the search at offset start positions, returns the byte offset
of the first occurrence of the search argument within this object,

324 Application Programming Guide

subString(int startPos, int length)
Returns a string object that contains a substring of the LOB data of
this object

remove(int startPos, int aLength)
Starting at startPos for aLength bytes, deletes a portion of the LOB
data of this object.

insert(String aString, int startPos), insert(dkBlob aBlob, int startPos)
Inserts the argument data, following the startPos position in the
LOB data of the object

open(String afileName)
Unloads the object contents to the file afileName and then runs a
default file handler

setClassOpenHandler(String aHandler, boolean newSynchronousFlag)
Identifies, by executable program name, the file handler for an
entire class. This method also indicates whether to run the handler
synchronously or asynchronously for the file object.

setInstanceOpenHandler(String aHandler, boolean
newSynchronousFlag)

Identifies, by executable program name, the file handler and
indicates whether to run it synchronously or asynchronously for
this object

getOpenHandler()
Gets the executable program name of the file handler for an entire
class

isOpenSynchronous()
Returns the current synchronization setting for the file handler

dkClob
dkClob is an abstract class that declares a public interface for storing
character large object (CLOB) data types, such as documents.

Table 31 contains examples of concrete classes for the dkClob class.

Table 31. Concrete classes for dkClob
Server type Class name
DB2 Universal Database DKClobDB2
DB2 DataJoiner DKClobDJ
ODBC DKClobODBC

The main methods in the dkClob class are:

open() Open() is a member inherited from dkXDOBase. Open() will be
implemented or overridden by concrete subclasses of dkClob.

dkXDO Members: dkXDO& add(), dkXDO retrieve(), dkXDO update(),
dkXDO del()

Inherited as protected members from dkXDO. Where necessary,
these protected members will be implemented or overridden by
concrete subclasses of dkClob.

The following list contains members defined by dkClob:

Data access

Chapter 8. Using the C++ application programming interfaces 325

add(String afileName)
Adds the content of the specified file to the content server

retrieve(String afileName)
Retrieves the content of the content server into the specified file

update(String afileName)
Updates the object and the content server with the content of the
specified file

del(DKBoolean flush)
Deletes the object’s data from the content server, if flush is TRUE;
otherwise the current content is preserved.

getContentToClientFile(String afileName, int fileOption)
Copies the CLOB data from the object to the specified file

setContentFromClientFile(String afileName)
Replaces the LOB data of the object with the contents of the file
afileName

indexOf(String& aString, long startPos=1), indexOf(dkClob& adkClob,
long startpos=1)

Starting the search at offset start positions, returns the byte offset
of the first occurrence of the search argument within this object,

subString(long startpos, long length)
Returns a string object that contains a substring of the LOB data of
this object

remove(long startpos, long aLength)
Starting at startPos for aLength bytes, deletes a portion of the LOB
data of this object.

insert(DKString aString, long startpos), insert(dkClob& adkClob, long
startpos)

Inserts the argument data following the startPos position in the
CLOB data of the object

open(String afileName)
Unloads the object contents to the file afileName and then runs a
default file handler

setInstanceOpenHandler(String ahandler, DKBoolean
newSynchronousFlag)

Identifies, by executable program name, the file handler and
indicates whether to run it synchronously or asynchronously for
this object

setClassOpenHandler(String ahandler, DKBoolean newSynchronousFlag)
Identifies, by executable program name, the file handler for an
entire class. This method also indicates whether to run the handler
synchronously or asynchronously for the file object.

getOpenHandler()
Gets the executable program name of the file handler for an entire
class

isOpenSynchronous()
Returns the current synchronization setting for the file handler

dkAnnotationExt
dkAnnotationExt is the interface class for all annotation objects. If your

326 Application Programming Guide

content server supports annotation data, you must implement this
interface. This annotation object is an extension of your DKBlobxx class,
where the dkBlob object is the representation of the binary annotation data
and the DKParts collection.

dkDatastoreExt
The dkDatastoreExt class defines the standard datastore extension classes.

Table 32 contains examples of concrete classes for the dkDatastoreExt class.

Table 32. Concrete classes for dkDatastoreExt
Server type Class name
Content Manager DKDatastoreExtDL
OnDemand DKDatastoreExtOD
VisualInfo for AS/400 DKDatastoreExtV4
ImagePlus for OS/390 DKDatastoreExtIP
Domino.Doc DKDatastoreExtDD
Domino Extended Search DKDatastoreExtDES
DB2 Universal Database
DB2 DataJoiner
ODBC

The main methods in the dkDatastoreExt class are:

getDatastore()
Gets the reference to the owning content server object

setDatastore(dkDatastore ds)
Sets the reference to the owning content server object

isSupported(String functionName)
Determines whether the specified function name is supported by
this extension

listFunctions()
Lists all supported function names for the extension

addToFolder(dkDataObject folder, dkDataObject member)
Adds a member to this folder and to the content server

removeFromFolder(dkDataObject folder, dkDataObject member)
Removes a member from this folder and the content server

checkOut(dkDataObject item)
Checks out a document or folder item from the content server.
While the item is checked out, you have exclusive updating
privileges to the item and other users have read access only.

checkIn(dkDataObject item)
Checks in a document or folder item previously checked out from
the content server. By checking in the file, you release all write
privileges with this method.

getCommonPrivilege()
Gets the common privilege of a specific content server

isCheckedOut(dkDataObject item)
Determines whether a document or folder item was checked out
from the content server

checkedOutUserid(dkDataObject item)
Gets the user ID that checked out the item from the content server

Chapter 8. Using the C++ application programming interfaces 327

unlockCheckedOut(dkDataObject item)
Unlocks the item from the content server

changePassword (String userId, String oldPwd, String newPwd)
Changes the password on the content server for the specified user
ID

moveObject (dkDataObject dataObj, String entityName)
Moves the entityName object from one entity to another

retrieveFormOverlay(String id)
Retrieves the form overlay object

DKPidXDO
The DKPidXDO class represents the persistent identification of the BLOB
data in the content server.

Table 33 contains examples of concrete classes for the DKPidXDO class.

Table 33. Concrete classes for DKPidXDO
Server type Class name
Content Manager DKPidXDODL
OnDemand DKPidXDOOD
VisualInfo for AS/400 DKPidXDOV4
ImagePlus for OS/390 DKPidXDOIP
Domino.Doc DKPidXDODD
Domino Extended Search DKPidXDODES
DB2 Universal Database DKPidXDODB2
DB2 DataJoiner DKPidXDODJ
ODBC DKPidXDOODBC

dkUserManagement
The dkUserManagement class represents and processes all of the content
server’s user management methods.

Table 34 contains examples of concrete classes for the dkUserManagement
class.

Table 34. Concrete classes for dkUserManagement
Server type Class name
Content Manager DKUserMgmtDL
VisualInfo for AS/400 DKUserMgmtV4
ImagePlus for OS/390 DKUserMgmtIP
DB2 Universal Database
DB2 DataJoiner
ODBC

DKConstant
All common constants are defined in the DKConstant class. Each content
server has its own DKConstantxx class for defining constants specific to
that content server.

Recommendation: All content servers use the common messages whenever
possible.

DKMessageId
All common message IDs are defined in this class. Each content server has
its own DKMessageIdxx class for defining its own message IDs.

Recommendation: All content servers use the common messages whenever
possible.

328 Application Programming Guide

The following property files contain two common warning and error
messages:
DKMessage_en_US.properties

DKMessage_es_ES.properties

Each content server has its own DKMessagexx_yy_zz.properties files for its
warning and error messages.

Figure 56 is an example of the datastore structure used in Enterprise Information
Portal, using the OnDemand content server as a model.

Figure 57 on page 330 shows an example of the data structure used in Enterprise
Information Portal, using the OnDemand content server as a model.

Figure 56. Datastore structure example

Chapter 8. Using the C++ application programming interfaces 329

Figure 57. Data structure example

330 Application Programming Guide

Chapter 9. Using the ActiveX (OLE) application programming
interface

The ActiveX application programming interfaces (API) are a set of classes that
access and manipulate locally or remotely stored data.

This section describes the design of the ActiveX API and the ActiveX
implementation of multiple search facilities. Using any macro language or
programming tool that supports automation (for example, VBA, Lotus script, and
so forth) you create custom applications for searching and updating across
multiple content servers.

The ActiveX API supports:
v Multiple search and update across a heterogeneous combination of content

servers
v A common object model for data access
v A flexible mechanism for using a combination of search engines; for example,

Text Search Engine and query by image content (QBIC).

In addition to the code segments described in this chapter, three sets of samples
are provided on the Enterprise Information Portal CD-ROM, one for each type of
query. Visual Basic forms are created with Visual Basic Version 6. The forms
incorporate relatively simple user interfaces and are intended as general guidelines
only. You are encouraged to explore and use some of the more sophisticated
features of Visual Basic, such as the tree and image list controls, or Lotus
Approach’s Forms and Picture Plus fields for displaying data.

See the examples in the samples directory, for information on how to use each
sample.

The ActiveX classes are automation servers that support the COM IDispatch
interface. A type library is shipped with the .DLL so that a programming tool can
determine which interfaces an object supports, as well as the names of its
members. Because automation servers are not meant to be subclassed, the ActiveX
classes represent the leaf classes in the C++ class hierarchy and include all of the
methods of their C++ counterparts, plus those of their parents.

For methods that return non-leaf class objects, the return type is either replaced by
the concrete equivalent or by the type object. Visual Basic users can use the built-in
TypeOf method to determine the real type. Two APIs will be described in
subsequent sections, which use the same samples as those in the sections but
translated into Visual Basic. In general, the differences between the C++ and
ActiveX API are:
v Operators are either replaced by functions, or in cases where the functionality

can be replaced by one or more existing functions, eliminated entirely.
v Because the data types must allow automation, methods that take a DKAny

object as argument take a VARIANT object instead. This allows the methods to
perform run-time type checking to ensure that the data passed is the correct
type.

© Copyright IBM Corp. 1996, 2001 331

Running in client/server mode
The ActiveX APIs can be configured to run in a client/server mode. ActiveX APIs
rely on DCOM as the underlying mechanism for accessing remote objects on the
network. DCOM requires Windows NT 4.0 Service Pack 2 (or higher) which
provides support for launching DLL-based objects remotely using a surrogate.

All of the server components are installed by default. To enable the ActiveX classes
to operate in the client/server mode, you must update the registry using regedit,
DCOMCnfg or OLEView. DCOMCnfg and regedit come with the operating system.
OLEView is supplied with Visual C++ and the Win32 Software Developer’s Kit
(SDK). You can also download OLEView from the Microsoft Web site

Updating the registry using regedit or DCOMCnfg
1. Ensure that HKEY_LOCAL_MACHINE\Software\Microsoft\OLE has the value Y. This

value globally affects whether any remote clients can launch or connect to
already running objects. The registry entries relevant to remote objects are
found under AppID in HKEY_CLASSES_ROOT.

2. For servers, the AppID entry for a content server should have a value named
DllSurrogate added with an empty string value.

3. For servers: Add a value named RunAs which can be either a local or domain
account, or the string Interactive User, to specify that the account of the
logged-on user should be used. If RunAs is missing, the COM service control
manager uses Launching User as the string value, that is, the user that has
requested the object. However, this only works when the client allows it with
the requested impersonation level.

4. For clients, add a value named RemoteServerName with a string value that is the
name of the remote machine on which the server resides. Also,

5. For clients to function as a client, remove the following registry entry:
HKEY_CLASSES_ROOT\CLSID\{clsid}\InProcServer32

Updating the registry using OLEView
If you are using OLEView to change your registry, complete the following steps:
1. Click Expert mode and expand the node on All Objects.

All the automation classes appear as content server classes.
2. Select a class and click the Implementation tab. On the Implementation panel,

select use surrogate process.
3. The Activation page can be used to specify the remote machine name (this is

equivalent to the RemoteServerName registry entry) and the activation options
Interactive user and Launching user.

To access an object on the server, the launch and activate permissions on the server
must be set to allow access by a client account. This can be done using DCOMCnfg
or OLEView. Set the authentication level to something other than none. The
impersonation level can be set to either identify or impersonate (the default values
are connect and identify.)

332 Application Programming Guide

Setting up the Windows environment
When you set up your Windows or AIX environment, you must establish the
settings described in this section.

DLLs for Windows

v cmbxfed716.dll
v cmbxdl716.dll
v cmbxdes716.dll
v cmbxdd716.dll
v cmbxip716.dll
v cmbxv4716.dll

Miscellaneous files

v cmbxfed716.tlb
v cmbxdl716.tlb
v cmbxdes716.tlb
v cmbxdd716.tlb
v cmbxip716.tlb
v cmbxv4716.tlb

Setting Windows environment variables
Set the following environment variables:

PATH
set PATH=x:\CMBROOT\DLL

where x is your drive

INCLUDE
set INCLUDE=x:\CMBROOT\INCLUDE

where x is your drive

Using DXInstallDL, DXInstallDES, and DXInstallFed,
DXInstallDD, DXInstallIP, and DXInstallV4

The ActiveX API is installed as part of the object-oriented toolkit. You must run the
following files to register the classes before you can use the automation classes:

DXInstallDL.exe
DXInstallDES.exe
DXInstallFed.exe
DXInstallDD.exe
DXInstallIP.exe
DXInstallV4.exe

Registering classes
To register classes with the Windows registry:
1. Open a command prompt and go to the directory that contains Enterprise

Information Portal (for example, C:\CMBROOT).
2. To run the appropriate executable file enter one of the following three

commands:

Chapter 9. Using the ActiveX (OLE) application programming interface 333

DXInstallDL

DXInstallDES

DXInstallFed

3. You get a message indicating the success or failure of the process.
4. If an error occurs, go to the log directory and locate the DXInstallDL.log,

DXInstallDES.log, or DXInstallFed.log file; in it you will find information
regarding which classes have failed to register. You must manually edit those
entries in the registry.

Removing registration
To remove the classes registration during the uninstall process, you must run an
additional file.
1. Locate the files named DXUninstallDL.exe, DXUninstallDES.exe, and

DXUninstallFed.exe

2. Follow the same procedure as before, and check the appropriate log file if you
encounter any errors.

Requirement: Make sure that the FRNADDRON environment variable in Visual
Basic is set to yes before you use the APIs.

Multiple search facilities
Use the multiple search facilities to:
v Search within a given content server, using one or a combination of supported

query types:

Parametric query
Query requiring an exact match between the condition specified in the
query and stored data.

Text query
Query requiring an approximate match between the given query and
stored text.

Each search type is supported by one or more search engines.
v Search the results of previous search.

Not all content servers support multiple search facilities. For more information
about specific content servers and multiple search see “Using specific content
servers” on page 258.

Connecting to content servers
A DXDatastorexx (where xx is the suffix representing the specific content server, for
example, Content Manager (DL), Domino Extended Search (DES), and so forth)
represents and manages a connection to a content server, provides transaction
support, and runs server commands.

Establishing a connection
In a typical example, you create and connect to a content server, work with it and
then disconnect. The following example shows how to connect to a Content
Manager library server named LIBSRVRN, using the user ID FRNADMIN and password
PASSWORD.

334 Application Programming Guide

Dim dsDL as new DXDatastoreDL
dsDL.connect "LIBSRVRN", "FRNADMIN", "PASSWORD"
dsDL.disconnect

Setting and getting datastore options
The content server provides some options that you can set or get using its
methods. The following example shows how to set and get the option to establish
an administrative session. The online API reference lists and describes the options
for each content server.
Dim session_type As Long
Dim outType As Variant
Dim dsDL As New DXDatastoreDL
dsDL.setOption DX_DL_OPT_ACCESS, DX_DL_SS_CONFIG
dsDL.connect "LIBSRVRN", "FRNADMIN", "PASSWORD"
dsDL.getOption DX_DL_OPT_ACCESS, outType
session_type = outType

If session_type = DX_DL_SS_CONFIG Then
MsgBox "Datastore access is an administrative session"
End If

dsDL.disconnect

Listing servers
The content server can connect to different library servers. The content server
provides a method to list the library servers it can connect to. Restriction: The
Domino.DOC content server does not provide such a method.

The following section lists the three steps to retrieve the list of library servers and
shows a code sample. The steps are:
1. Create a DXDatastoreDL
2. List the Content Manager servers
3. Create an iterator for the collection and loop through the DXServerDefDL

objects to get the server name and type
Dim dsDL As New DXDatastoreDL
Dim col As DXSequentialCollectionDL
Set col = dsDL.listDataSources
Dim serverDef As DXServerDefDL
Dim iter As DXSequentialIteratorDL
Set iter = col.createIterator
Dim i As Long
i = 0
Do While iter.more

i = i + 1
Set serverDef = iter.Next
MsgBox "Server Name [" & i & "] - " & serverDef.getName

& " Server Type - " & serverDef.getServerType
Loop

Listing schema and schema attributes
A content server provides methods for listing its schema. In a content server, these
methods list index classes and their attributes. The following example shows how
to retrieve the list of index classes, as well as the list of attributes. The steps are:
1. Create a DXDatastoreDL
2. Connect to the Content Manager server LIBSRVRN using the user ID FRNADMIN

and the password PASSWORD

3. List the attributes for each index class

Chapter 9. Using the ActiveX (OLE) application programming interface 335

4. Disconnect from the Content Manager server
Dim dsDL As New DXDatastoreDL
Dim col As DXSequentialCollectionDL
Dim col2 As DXSequentialCollectionDL
Dim serverDef As DXServerDefDL
Dim iter As DXSequentialIteratorDL
Dim iter2 As DXSequentialIteratorDL
Dim entDef As DXIndexClassDefDL
Dim strEntity As String
Dim attrDef As DXAttrDefDL
Dim i As Long
Dim j As Long
dsDL.Connect "LIBSRVRN", "FRNADMIN", "PASSWORD"
Set col = dsDL.listEntities
Set iter = col.createIterator
i = 0
Do While iter.more

i = i + 1
Set entDef = iter.Next
MsgBox "Entity Name [" & i & "] - " & entDef.getName
strEntity = entDef.getName
Set col2 = dsDL.listEntityAttrs(strEntity)
Set iter2 = col2.createIterator
j = 0
Do While iter2.more

j = j + 1
Set attrDef = iter2.Next
MsgBox " Attribute Name [" & j & "] - " & attrDef.getName

Loop
Loop
dsDL.disconnect

Using DDOs
DXDDO can be regarded as an attribute container. An attribute has a name, value,
and properties. Each attribute is identified by a data ID.

Because the number, name, value, and property of an attribute can vary, DXDDO
provides flexible mechanisms to represent data originating from a variety of
content servers and in different formats. For example, items from different index
classes in Content Manager, or rows from different tables in a relational database.
The DXDDO can have properties that apply to the whole DXDDO, instead of to
only one attribute.

You must associate a DXDDO with a content server before you can call the add,
retrieve, update and delete methods to send its attributes into the content server
and retrieve them. You do this by calling the proper DXDDO constructor or by
calling setDatastore method.

Every DXDDO has a persistent identifier (PID) that contains information for
locating the attributes in the datastore. For example, in Content Manager, a DDO
represents an item, which could be a document or a folder.

Creating a persistent identifier (PID)
Each DDO requires a persistent identifier (PID). The PID contains information
about the content server name, content server type, ID, and object type. The PID
provides the location in the content server of the DDO’s persistent data. For
example, in a Content Manager datastore, this PID is the item ID. The item ID is

336 Application Programming Guide

one of the most important parameters for the retrieve, update, and delete
methods. For the add method, the item ID is created and returned by the content
server.

To create a DDO to retrieve a known item:
Dim dsDL as new DXDatastoreDL 'create a Content Manager datastore
Dim ddo as new DXDDODL
ddo.setObjectType "GRANDPA" 'set the index class name it belongs to
ddo.setPid "LN#U5K6ARLGM3DB4" 'set the item ID
ddo.setDatastore dsDL 'associate ddo with dsDL

Then connect to the content sever and call the retrieve method to retrieve this
DDO.

Adding data items and properties
Suppose the index class GRANDPA has the attributes shown in Table 35.

Table 35. Grandpa attributes

Attribute data_id=1 2

Name Title Subject

Type String String

Nullable No Yes

You can represent the information above in a DXDDO as follows:
Dim dsDL as new DXDatastoreDL 'create a Content Manager datastore
Dim cddo as new DXDDODL 'create a DDO to hold an object type
cddo.setObjectType "GRANDPA" 'set the index class name it belongs to
cddo.setDatastore dsDL 'associate ddo with dsDL
Dim data_id as Integer

'Add the first attribute
data_id = cddo.addData("Title") 'add a new attribute named "Title"

'Add a property named: DX_DL_PROPERTY_TYPE, set to value : variable length string
cddo.addDataPropertyAndValue data_id, DX_DL_PROPERTY_TYPE, DX_VString

'Add a property named: DX_DL_PROPERTY_NULLABLE, set to value : boolean false
cddo.addDataPropertyAndValue data_id, DX_DL_PROPERTY_NULLABLE, False

'Add the second attribute
data_id = cddo.addData("Subject") 'add a new attribute named "Subject"

'Add a property named: DX_DL_PROPERTY_TYPE, set to value : variable length string
cddo.addDataPropertyAndValue data_id, DX_DL_PROPERTY_TYPE, DX_VString

'Add a property named: DX_DL_PROPERTY_NULLABLE, set to value : boolean true
cddo.addDataPropertyAndValue data_id, DX_DL_PROPERTY_NULLABLE, True

The above example illustrates the standard properties that an attribute should
have, namely DX_DL_PROPERTY_TYPE and DX_DL_PROPERTY_NULLABLE.You can have as
many additional properties as required by your application.

Adding properties to a DDO
The DXDDO has all the required attribute information. However, there is no
information to indicate if the DXDDO is either a document or a folder. The
following example sets the DXDDO property to indicate that the DXDDO is a
document:

Chapter 9. Using the ActiveX (OLE) application programming interface 337

cddo.addProperty DX_DL_PROPERTY_ITEM_TYPE, DX_DL_DOCUMENT 'it is a document

Setting and getting data item values
After you create a data item and its properties, you can set its value:
'Set Title value to the given string assume we know the data_id for
'the data_item "Title" is 1
cddo.setData 1, "One dark and stormy night"

'Set Subject value to the given string assume we do not know the data_id

'for the data_item "Subject"
data_id = cddo.dataId("Subject") 'find data_id for data_item named "Subject"
cddo.setData data_id, "Mystery"

Use the getData method to retrieve the value:
Dim data as String
data = cddo.getData(1)
MsgBox "Title = " & data 'displays "One dark and stormy night"
MsgBox "Subject = " & cddo.getData(data_id) 'displays "Mystery"

Getting the properties
When processing a DXDDO, the first thing you want to know is its type:
document or folder. The following code determines the DXDDO type:
Dim prop_id as Integer
Dim myType as Integer
prop_id = cddo.propertyId(DX_DL_PROPERTY_ITEM_TYPE)
If prop_id > 0 Then

myType = cddo.getProperty(prop_id)
Select Case myType
case DX_DL_DOCUMENT

'process document
...

case DX_DL_FOLDER
'process folder
...

End Select
End If

To retrieve attribute properties , you must have the attribute data_id:
data_id = cddo.dataId("Title") 'get data_id of Title
'How many prop does it have
Dim number_of_data_prop as Integer
number_of_data_prop = cddo.dataPropertyCount(data_id)
'Displays all data properties belonging to this attribute
'Notice that the loop index starts from 1, 1 <= i <= number_of_data_prop
Dim i as Integer
For i = 1 To number_of_data_prop

MsgBox Str(i) & " Property Name =
" & cddo.getDataPropertyName(data_id, i) & _
" value = " & cddo.getDataProperty(data_id, i)

Next

Important: Both data_id and property_id start from 1; if you specify 0, you
receive an exception.

Displaying the DDO
During application development, you might need to display the content of a
DXDDO for debugging purpose. For example:

338 Application Programming Guide

Dim number_of_attribute as Integer
number_of_attribute = cddo.dataCount
Dim number_of_prop as Integer, k as Integer, j as Integer
Dim number_of_data_prop as Integer, i as Integer
number_of_prop = cddo.propertyCount
'List DDO properties
For k = 1 To number_of_prop

MsgBox Str(k) & " Property Name =
" & cddo.getPropertyName(k) & ", value =
" _ & cddo.getProperty(k)

Next
'List data items and their properties
For i = 1 To number_of_attribute

MsgBox Str(i) & " Attr. Name =
" & cddo.getDataName(i) & ", value =
" & _cddo.getData(i)

number_of_data_prop = cddo.dataPropertyCount(i)
For j = 1 To number_of_data_prop

MsgBox Str(j) & " Data Prop. Name =
" & cddo.getDataPropertyName(i, j) _ & ", value =
" & cddo.getDataProperty(i, j)

Next
Next

Deleting a DDO
If you delete a DXDDO by calling its destructor, the DDO is deleted in memory,
but the persistent copy in the content server is unchanged. Conversely, the del
method in DXDDO deletes the persistent copy in the content server, with its
representation in memory remaining unchanged.

Using XDOs
An XDO represents a single part in Enterprise Information Portal. There is one
type of XDO for binary objects called DXBlobxx (where xx is the suffix
representing the specific server, for example, Content Manager (DL), Domino
Extended Search (DES), and so forth). DXBlobxx requires the datastore
DXDatastorexx as an input to create the object instance.

Using an XDO PID
An XDO needs to have a PID in order to store its data persistently. The item ID
and part ID of DXPidXDOxx are required for XDO to locate the persistent data in a
datastore.

Understanding XDO data members
You must set the values for XDO RepType, ContentClass, AffiliatedType,
AffiliatedData, SearchEngine, SearchIndex, and SearchInfo. If you do not set these
values, the XDO content is indexed by a search engine and the following default
values are used:

RepType
DX_DL_DK_REP_NULL

Attention: The only representation type (or RepType) supported by
VisualInfo for AS/400 is " ", eight blank spaces surrounded by leading
and trailing quotation marks.

ContentClass
DX_DL_CC_UNKNOWN

Chapter 9. Using the ActiveX (OLE) application programming interface 339

AffiliatedType
DX_DL_BASE

AffiliatedData
NULL

Tip: For the valid values of ContentClass, see the enumerated constant
CONTENT_CLASS provided with Content Manager.

Using XDO in a datastore
To retrieve, update or delete a content server object, provide the correct item ID,
part ID, and repType to identify the object.
Dim partId as Integer
partId = 17 'partId of object
Dim itemId as String, fileName as String
itemId = "CPPIORH4JBIXWIY0" 'existing itemId
fileName = "g:\\test\\choice.gif" 'file to be updated
Dim dsDL as new DXDatastoreDL 'required datastore
dsDL.connect "LIBSRVRN", "FRNADMIN", "PASSWORD" 'connection to datastore
Dim axdo as new DXBlobDL
axdo.init dsDL 'create XDO
axdo.setPartId partId 'set partId
axdo.setPid itemId 'set itemId
axdo.retrieve 'retrieve the object
axdo.setContentFromClientFile fileName 'set file content to buffer area
axdo.update 'update the object with buffer data
axdo.retrieve "new.gif" 'retrieve content to a file
axdo.del 'delete object from datastore
dsDL.disconnect 'disconnect from datastore

Programming tips
You identify an XDO by the combination of item ID, part ID, and RepType. For a
standalone XDO, you must provide the item ID and part ID. RepType is optional,
because the system provides a default value (FRN$NULL).

For the add method, if you set part ID to 0, the system assigns an available part ID
for it. You can retrieve the part ID value after add if you want to do some other
operation with that object later.

Important: When adding a part for the search manager to index on a Content
Manager content server, you must hve a valid part ID and cannot set the part ID
to 0.

Using XDO as a part of DDO instead of stand-alone XDO
An XDO represents a single part object when a DDO is a document that is a
collection of part objects. You can manipulate the XDO as a component of the DDO
or as a stand-alone object. To handle as a part of the DDO, you must get the item
ID for the XDO from the DDO. To handle it as a stand-alone object, you must
know the existing item ID for the XDO.

XDO as part of DDO
The major statements used to relate the XDO with the DDO are:
'Create DDO
Dim ddo as new DXDDODL
ddo.setObjectType indexClassName
ddo.setDatastore dsDL
ddo.addPropertyAndValue DX_DL_PROPERTY_ITEM_TYPE, DX_DL_DOCUMENT
...
...

340 Application Programming Guide

|
|
|

Dim parts as new DXPartsDL
'Create XDO
Dim axdo as new DXBlobDL
axdo.init dsDL
axdo.setPartId partId 'set partId
axdo.setContentClass DX_DL_CC_GIF
axdo.setAffiliatedType DX_DL_BASE
axdo.setContentFromClientFile imageNames(i)
'Add XDO to the DXPartsDL collection
parts.addElement axdo
...
...
'Add DDO
dataId = ddo.addData(DX_DL_DKPARTS)
ddo.addDataPropertyAndValue dataId, DX_DL_PROPERTY_TYPE, DX_Collection_XDO
ddo.setData dataId, parts
ddo.add

The complete sample application from which this example was taken (wfs.frm,
written in Visual Basic) is available in the Cmbroot/Samples/activex/dl
directory.

Stand-alone XDO
The following code examples are specific to Content Manager for a stand-alone
XDO. For relational databases, please refer to the sample programs in the
CMBROOT\Samples directory.

Adding an XDO from the buffer: This example shows how to add an XDO from
the buffer. To use this sample, you must know the existing item ID of the XDO.
Dim dsDL as new DXDatastoreDL
Dim itemId as String, fileName as String
Dim partId as Integer
partId = 37 'partId 37 not being used yet
itemId = "CPPIORH4JBIXWIY0" 'existing itemId
fileName = "g:\\test\\cheetah.gif" 'file to be added
dsDL.connect "LIBSRVRN", "FRNADMIN", "PASSWORD" 'connection to datastore
Dim axdo as new DXBlobDL
axdo.init dsDL 'create XDO
axdo.setPartId partId 'set partId
axdo.setPid itemId 'set itemId
axdo.setContentClass DX_DL_CC_GIF 'set ContentClass
axdo.setContentFromClientFile fileName 'set file content to buffer area
axdo.add 'add from the buffer
MsgBox "after add partId=" & axdo.getPartId
dsDL.disconnect 'disconnect from datastore

Adding an XDO from a file: This example adds an XDO from a file. To add an
XDO from a file, add the following to the code from the previous example.
axdo.setContentFromClientFile fileName
axdo.add
axdo.add fileName

Adding an annotation object to an XDO: To add an annotation object, you must
insert the following statements in your program before the add method.
axdo.setAffiliatedType DX_Annotation
axdo.setAffiliatedData 14, 1, 5, 5

Retrieving, updating and deleting an XDO: To retrieve, update, or delete an
XDO in a content server, provide the correct item ID, part ID, and RepType to
identify the object.

Chapter 9. Using the ActiveX (OLE) application programming interface 341

Private Sub cout(str As String)
Results.Text = Results.Text & Chr$(13) & Chr$(10) & str
End Sub

Private Sub Add_Click()

'following itemId should be already exist
'modify it with your own known itemId
'itemId = "POL025$BQVH$TZBS"
itemId = "FPN3ZP$MPZI@U0C0"
partId = 95
Set dsDL = New DXDatastoreDL
Set xdo = New DXBlobDL
xdo.init dsDL
xdo.setPartId partId
xdo.setPid itemId

'media content class is 209
xdo.setContentClass DX_CC_IBMVSS
cout "Do new DXMediaStreamInfoDL.."
Dim aVS As New DXMediaStreamInfoDL
aVS.setMediaFullFileName "/icing.mpg1"
aVS.setMediaObjectOption DX_VS_SingleObject
aVS.setMediaHostName "<insert hostname here>"
aVS.setMediaUserId "<insert user ID here>"
aVS.setMediaPassword "<insert password here>"
aVS.setMediaNumberOfUsers 1
aVS.setMediaAssetGroup "AG"
aVS.setMediaType "MPEG1"
aVS.setMediaResolution "SIF"
aVS.setMediaStandard "NTSC"
aVS.setMediaFormat "SYSTEM"
cout "set mediaStream extension obj..."
xdo.setExtension aVS
On Error GoTo Errors
cout "about to add media object..."
xdo.Add
On Error GoTo Errors
cout "add successfully..."
Add.Enabled = False
Exit Sub

Errors:
cout "Errors:" & str(Err.Number) & Err.Description

End Sub

Private Sub Retrieve_Click()

cout "itemId=" & xdo.getPid
cout "partId=" & xdo.getPartId
cout " "
Dim state As Integer
Dim mflag As Boolean
mflag = xdo.isCategoryOf(DX_Media_Object)
On Error GoTo Errors
cout "isCategoryOf media obj = " & mflag
If (mflag) Then

cout "Get mediaStream extension obj..."
Dim aVS2 As Variant
Set aVS2 = xdo.getExtension("DXMediaStreamInfoDL")
On Error GoTo Errors
cout " aVS2.getMediaCopyRate=" & aVS2.getMediaCopyRate
cout " aVS2.getMediaInvalidCommands=" & aVS2.getMediaInvalidCommands
cout " aVS2.getMediaDurSeconds=" & aVS2.getMediaDurSeconds
cout " aVS2.getMediaDurFrames=" & aVS2.getMediaDurFrames
cout " aVS2.getMediaFrameRate=" & aVS2.getMediaFrameRate

342 Application Programming Guide

cout " aVS2.getMediaBitRate=" & aVS2.getMediaBitRate
cout " aVS2.getMediaNumberOfUsers=" & aVS2.getMediaNumberOfUsers
cout " aVS2.getMediaAssetGroup=" & aVS2.getMediaAssetGroup
cout " aVS2.getMediaType=" & aVS2.getMediaType
cout " aVS2.getMediaResolution=" & aVS2.getMediaResolution
cout " aVS2.getMediaStandard=" & aVS2.getMediaStandard
cout " aVS2.getMediaFormat=" & aVS2.getMediaFormat
cout " aVS2.getMediaState=" & aVS2.getMediaState
state = xdo.retrieveObjectState(DX_Media_Object)
cout "xdo.retrieveObjectState(media) =" & state
On Error GoTo Errors

End If

cout "===before retrieve==="
cout " getLength=" & xdo.getLength
cout " getSize=" & xdo.getSize
cout " updatedTimestamp=" & xdo.getUpdatedTimestamp
cout " createdTimestamp=" & xdo.getCreatedTimestamp
cout " mimeType=" & xdo.mimeType
cout "===about to retrieve as filedx.ivs ==="
xdo.Retrieve ("filedx.ivs")
On Error GoTo Errors
cout " retrieve successfully"
cout "===after retrieve==="
cout " getLength=" & xdo.getLength
cout " getSize=" & xdo.getSize
cout " getContentClass=" & xdo.getContentClass

Exit Sub

Errors:
cout "Errors:" & str(Err.Number) & Err.Description

End Sub

Private Sub Delete_Click()

cout "itemId=" & xdo.getPid
cout "partId=" & xdo.getPartId
Dim mflag As Boolean
mflag = xdo.isCategoryOf(DX_Media_Object)
cout "isCategoryOf media obj = " & mflag
If (mflag) Then

cout "setting delete Option...."
xdo.setOption DX_Opt_DL_Delete_Option, DX_Delete_NoDropitemMediaAvail
Dim ln As Long
xdo.getOption DX_Opt_DL_Delete_Option, ln
cout "getOption deleteOpt=" & ln

End If
cout "===about to call delete==="
xdo.del
cout " delete successfully"
cout "===after delete==="
mflag = xdo.isCategoryOf(DX_Media_Object)
cout " isCategoryOf media obj = " & mflag
Add.Enabled = True
Retrieve.Enabled = False
Delete.Enabled = False

Exit Sub

Errors:
cout "Errors:" & str(Err.Number) & Err.Description

End Sub

Chapter 9. Using the ActiveX (OLE) application programming interface 343

Creating and using the DX_DL_DKPARTS attribute
The DX_DL_DKPARTS attribute in a DDO represents the collection of parts in a
document. The value of this attribute is a DXParts object, which is a collection of
XDOs. You set the DKPARTS attribute when you retrieve a DDO, as shown below:
Dim dsDL as new DXDatastoreDL
Dim parts as new DXPartsDL 'create a new DXPartsDL , collection of parts
Dim blob as new DXBlobDL 'create a new XDO blob
blob.init dsDL
blob.setPartId 5 'set part number to 5
blob.setPid "LN#U5K6ARLGM3DB4" 'the item ID this part belongs to
blob.setContentClass DX_DL_CC_GIF 'set content class type GIF
blob.setRepType DX_DL_DK_REP_NULL 'set rep type for the part
blob.setContentFromClientFile "choice.gif" 'set the blob's content
blob.setInstanceOpenHandler "Netscape", True 'the viewer program
parts.addElement blob 'add the blob to the parts collection
... 'create and add some more blobs to the collection as necessary
Dim ddo as new DXDDO 'create a ddo
... 'sets some of its attributes
ddo.addProperty DX_DL_PROPERTY_ITEM_TYPE, DX_DL_DOCUMENT
'Create DX_DL_DKPARTS attribute and sets it to refer to the DXPartsDL object
Dim data_id as Integer
data_id = ddo.addData DX_DL_DKPARTS 'add attribute DX_DL_DKPARTS
ddo.addDataPropertyAndValue data_id, DX_DL_PROPERTY_TYPE, DX_Collection_XDO
ddo.addDataPropertyAndValue data_id, DX_DL_PROPERTY_NULLABLE, True
ddo.setData data_id, parts 'sets the attribute value

After you set a DXParts as an attribute value of a DDO, the DDO owns it and will
take care of deleting it:
data_id = ddo.dataId(DX_DL_DKPARTS) 'get DX_DL_DKPARTS data-id
If data_id = 0 Then

MsgBox " parts data item not found"
End If
Dim col as DXPartsDL
Set col = ddo.getData(data_id) 'get the parts collection
'Create iterator and process the part collection member one by one
If col Is Nothing Then
Else

Dim iter as DXSequentialIterator
Dim blob as DXBlobDL
Set iter = col.createIterator
Do While iter.more

Set blob = iter.next
If blob Is Nothing Then
Else
blob.open 'display the blob using the viewer
... 'other processing
End If

Loop
End If

Creating and using the DX_DL_DKFOLDER attribute
In a folder DDO, the DX_DL_DKFOLDER attribute represents a collection of
folders and documents belonging to this folder. For example, a
DX_DL_DKFOLDER attribute represents a collection of folders and documents in
Content Manager. The value of this attribute is a DXFolder object, a collection of
DDOs. Similar to DX_DL_DKPARTS, DX_DL_DKFOLDER is set during DDO
retrieve, or it can be created and set by you, as shown below:
Dim dsDL as new DXDatastoreDL
Dim folder as new DXFolderDL 'create a new DXFolderDL, collection of DDO
Dim member as new DXDDODL 'create the first member of this folder
... 'sets the member DDO attributes and properties

344 Application Programming Guide

folder.addElement member 'add member to the folder collection
... 'create and add some more member DDO to the DDO collection as necessary
Dim ddo as new DXDDODL 'create a folder ddo
... 'sets some of its attributes
ddo.addPropertyAndValue DX_DL_PROPERTY_ITEM_TYPE, DX_DL_FOLDER
'Create DX_DL_FOLDER attribute and sets it to refer to the DXFolderDL object
Dim data_id as Integer
data_id = ddo.addData(DX_DL_DKFOLDER) 'add attribute DX_DL_DKFOLDER
ddo.addDataPropertyAndValue data_id, DX_DL_PROPERTY_TYPE, DX_Collection_DDO
ddo.addDataPropertyAndValue data_id, DX_DL_PROPERTY_NULLABLE, True
ddo.setData data_id, folder 'sets the attribute value

After a DXParts is set to be an attribute value of a DDO, the DDO owns it and will
take care of deleting it:
data_id = ddo.dataId(DX_DL_DKFOLDER) 'get DX_DL_DKFOLDER data-id
If data_id = 0 Then 'folder not found

MsgBox "folder data item not found"
End If
Dim col as DXFolderDL
Set col = ddo.getData(data_id) 'get the parts collection
'Create iterator and process the DDO collection member one by one
If col Is Nothing Then
Else

Dim item as DXDDODL
Dim iter as DXSequentialIteratorDL
Set iter = col.createIterator
Do While iter.more

Set item = iter.next
If item Is Nothing Then
Else
item.retrieve 'process the member DDO
... 'other processing
End If

Loop
End If

Using collections and iterators
The ActiveX collection classes are made up of DXSequentialCollectionxx,
DXResultsxx, DXPartsxx, and DXFolderxx where xx is the suffix representing the
specific server, for example, Content Manager (DL), or Domino Extended Search
(DES). DXSequentialCollectionxx contains VARIANTs as members. DXResults and
DXFolder contain DXDDOs, and DXParts objects contain DXBlobs.

DXSequentialCollectionDL is used for retrieving datastore information such as
schemas and servers, so it provides a minimum set of methods. The other
collection classes provide methods for adding, retrieving, removing, and replacing
members.

Create an iterator by calling the createIterator method on a collection. Use
iterators to step through collection members. The following code steps through a
collection:
Dim iter as DXSequentialIteratorDL
Set iter = coll.createIterator 'create an iterator for coll
Do While iter.more 'while there are more members

Set member = iter.next 'get the current member and advance iter to the next member
'Do something with the member
...

Loop

DXSequentialCollectionDL provides methods for adding, retrieving, removing, and
replacing its members. The code could be rewritten as follows:

Chapter 9. Using the ActiveX (OLE) application programming interface 345

Dim iter as DXSequentialIteratorDL
Set iter = coll.createIterator 'create an iterator for coll
Do While iter.more 'while there are more members

Set member = iter.at 'get the current member
'Do something with the member
...
iter.setToNext 'advance to the next position

Loop

All of the collection classes except DXSequentialCollectionDL allow you to perform
operations at the current member before moving to the next member. When you
remove the current member, the iterator advances to the next member. Therefore,
when removing a member inside a loop, construct a check to avoid skipping the
next member after removing the current one. For example:
...
If removeCondition = True Then

coll.removeElementAt 'remove current member, do not advance iter since
'it is advanced to the next after the removal operation

Else
iter.setToNext 'no removal, advance the iterator to the next position

End If

Querying a content server
You can search a content server and receive results in a DXResultSetCursor or
DXResults object. You can create a query object to represent your query, then
invoke the execute method or evaluate method of the query object. With the help
of its content servers, the query object performs query processing tasks, such as
preparing and executing a query, monitoring the status of a query execution, and
storing the results.

There are three query object types: parametric, text, and combined. The combined
query is composed of both text and parametric queries. Not all content servers can
perform combined queries.

A content server uses two methods for running a query: execute and evaluate.
The execute method returns a DXResultSetCursor object, the evaluate method
returns a DKResults object. The dkResultSetCursor object is used to handle large
result sets and perform delete and update methods on the current position of the
result set cursor. You can use the fetchNextN method to retrieve a group of objects
into a collection.

You can also use dkResultSetCursor to run a query again by calling the close and
open methods. This is described in “Using the result set cursor” on page 255.

DKResults contains all of the results from the query. You can move an iterator
either forwards or backwards over the items in the collection. The DKResults
collection can be queried and used as a scope for another query. See “Querying
collections” on page 257 for more information.

Restriction: Although Domino.Doc content servers return a DKResults object, this
object cannot be queried nor used as a scope for another query.

Using parametric query
This section explains the parametric query function.

346 Application Programming Guide

Formulating a parametric query
The following example is a query string representing a query on the index class
DLSAMPLE. The query is searching for all documents or folders with an attribute of
DLSEARCH_DocType <> null. The maximum number of results returned is limited to
five. The content is set to YES, so that contents of the document or folder are
returned.

The query also specifies that a Content Manager server use dynamic SQL for this
query and that all folders and documents be searched. If the attribute name has
more than one word or is in a DBCS language, it should be enclosed in
apostrophes (’). If the attribute value is in DBCS, it should be enclosed in quotation
marks (″).
Dim cmd as string
cmd = "SEARCH=(INDEX_CLASS=DLSAMPLE,"
cmd = cmd & "MAX_RESULTS=5,"
cmd = cmd & "COND=(DLSEARCH_DocType <> NULL));"
cmd = cmd & "OPTION=(CONTENT=YES;"
cmd = cmd & "TYPE_QUERY=DYNAMIC;"
cmd = cmd & "TYPE_FILTER=FOLDERDOC)"

Formulating a parametric query on multiple criteria
You can specify multiple search criteria using a parametric query. The following
example shows how to specify a query on two index classes.
Dim cmd as String
cmd = "SEARCH=(INDEX_CLASS=DLSAMPLE,MAX_RESULTS=3,";
cmd += cmd & "COND=(DLSEARCH_DocType <> NULL);";
cmd += cmd & "INDEX_CLASS=DLSAMPLE,MAX_RESULTS=8,";
cmd += cmd & "COND=('First name' == \"Robert\"));";
cmd += cmd & "OPTION=(CONTENT=YES;";
cmd += cmd & "TYPE_QUERY=DYNAMIC;";
cmd += cmd & "TYPE_FILTER=FOLDERDOC)";

Executing a parametric query
Using Content Manager as a model, the steps are:
1. Create a DXDatastoreDL object.
2. Connect to the Content Manager server LIBSRVRN using the user ID FRNADMIN

and the password PASSWORD.
3. Create a parametric query. The following query specifies to find all documents

for the GP2DLS3 index class with the attribute last name equal to SUMMERS.
4. Run the query and examine the results using DXResultsDL.
5. Disconnect from the Content Manager server.
Dim dsDL as new DXDatastoreDL
Dim qry As DXParametricQueryDL
Dim results as DXResultsDL
Dim item as DXDDODL
Dim iter as DXSequentialIteratorDL
dsDL.connect "LIBSRVRN", "FRNADMIN", "PASSWORD"
Dim cmd as String
cmd = "SEARCH=(INDEX_CLASS=GP2DLS3,"
cmd = cmd & "COND=('last name' == ""SUMMERS""));"
cmd = cmd & "OPTION=(CONTENT=YES;"
cmd = cmd & "TYPE_QUERY=DYNAMIC;TYPE_FILTER=DOC)"
Set qry = dsDL.createQuery(cmd, DX_DL_PARAMETRIC_QL_TYPE)
qry.execute
Set results = qry.result
Set iter = results.createIterator
Do While iter.more

Chapter 9. Using the ActiveX (OLE) application programming interface 347

Set item = iter.next
'Do something with the DDO...

Loop
dsDL.disconnect

Executing a parametric query from the content server
Using Content Manager as a model, the steps are:
1. Create a DXDatastoreDL object.
2. Connect to the Content Manager server LIBSRVRN using the user ID FRNADMIN

and the password PASSWORD.
3. Search all folders and documents for the DLSAMPLE index class.
4. Execute the query and examine the results using DXResultSetCursor. A null is

returned from fetchNext if the cursor is past the last item in the result.
5. Disconnect from the Content Manager server.
Dim dsDL as new DXDatastoreDL
Dim cur As DXResultSetCursorDL
dsDL.connect "LIBSRVRN", "FRNADMIN", "PASSWORD"
Dim cmd as String
cmd = "SEARCH=(INDEX_CLASS=DLSAMPLE);"
cmd = cmd & "OPTION=(CONTENT=YES;"
cmd = cmd & "TYPE_QUERY=DYNAMIC;TYPE_FILTER=FOLDERDOC)"
Set cur = dsDL.execute(cmd, DX_DL_PARAMETRIC_QL_TYPE)
Dim item as DXDDODL
Do While cur.isValid

Set item = cur.fetchNext
'Do something with the ddo item

Loop
cur.destroy 'in case the variable is being used by another query
dsDL.disconnect

Evaluating a parametric query from the datastore
Using Content Manager as a model, the steps are:
1. Create a DXDatastoreDL object.
2. Connect to the Content Manager server LIBSRVRN using the user ID FRNADMIN

and the password PASSWORD.
3. Search all folders and documents for the GP2DLS5 index class with a condition

of DLSEARCH_Date >= 1995 and DLSEARCH_Date <= 1996. Because content is equal
to NO, only the document and folder PIDs appear in the results.

4. Run the query and examine the results using DXResultsDL.
5. Disconnect from the Content Manager server.
Dim dsDL as new DXDatastoreDL
Dim results As DXResultsDL
Dim iter as DXSequentialIteratorDL
Dim item as DXDDODL
dsDL.connect "LIBSRVRN", "FRNADMIN", "PASSWORD"
Dim cmd as String
cmd = "SEARCH=(INDEX_CLASS=GP2DLS5,;"
cmd = cmd & "COND=((DLSEARCH_Date >= ""1995"") AND "
cmd = cmd & "(DLSEARCH_Date <= ""1996"")));"
cmd = cmd & "OPTION=(CONTENT=NO;"
cmd = cmd & "TYPE_QUERY=DYNAMIC;TYPE_FILTER=FOLDERDOC)"
Set results = dsDL.evaluate(myQyuery, DX_DL_PARAMETRIC_QL_TYPE)
Set iter = results.createIterator
Do While iter.more

Set item = iter.next
'Do something with the DDO item

Loop

348 Application Programming Guide

Using text query
This section explains text queries.

Formulating a text query
The following example shows a query for a text index called TMINDEX. The query
searches for all text documents with the word UNIX or member. The maximum
number of results returned is five.
Dim cmd as String
cmd = "SEARCH=(COND=(UNIX OR member));"
cmd = cmd & "OPTION=(SEARCH_INDEX=TMINDEX;MAX_RESULTS=5)"

Formulating a text query on multiple indexes
You can use text query to search more than one index. The following example
shows how to specify a query for two indexes.

Important: If you specify more than one text search index in the query, the indexes
must be the same type. For example, you can specify two precise indexes in the
query, but you cannot specify a precise index and a linguistic index within the
query.
Dim cmd as String
cmd = "SEARCH=(COND=(UNIX OR member));";
cmd += cmd & "OPTION=(SEARCH_INDEX=(TMINDEX,TMINDEX2); MAX_RESULTS=5)";

Important: If you specify more than one text search index in the query, the indexes
must be the same type. For example, you can specify two precise indexes in the
query, but you cannot specify a precise index and a linguistic index within the
query.

Executing a text query
Using Content Manager as a model, the steps are:
1. Create a DXDatastoreTS object.
2. Connect to the text search server TM.
3. Create a text query. The following query searches documents with the phrase

UNIX operating and the word system.
4. Run the query and examine the results using DXResults.
5. Disconnect from the text search server.
Dim dsTS as new DXDatastoreTS
Dim qry As DXTextQueryTS
Dim results as DXResultsDL
Dim item as DXDDODL
Dim iter as DXSequentialIteratorDL dsTS.connect "TM", "", "", ""
Dim cmd as String
cmd = "SEARCH="
cmd = cmd & "(COND=('UNIX operating' AND system));"
cmd = cmd & "OPTION=(SEARCH_INDEX=TMINDEX)"
Set qry = dsTS.createQuery(cmd, DX_TS_TEXT_QL_TYPE)
qry.execute
Set results = qry.result
Set iter = results.createIterator
Do While iter.more

Set item = iter.next
'Do something with the DDO item

Loop
dsTS.disconnect

Executing a text query from the content server
Using Content Manager as a model, the steps are:
1. Create a DXDatastoreTS object.

Chapter 9. Using the ActiveX (OLE) application programming interface 349

2. Connect to the text search server by host name and port number.
3. Search for all text documents with the free text Web site.
4. Run the query and examine the results using DXResultSetCursor. A null is

returned from fetchNext if the cursor is past the last item in the result.
5. Disconnect from the text search server.
Dim dsTS as new DXDatastoreTS
Dim cur As DXResultSetCursorDL
Dim item as DXDDODL
dsTS.connect "zebra", "7502", DX_CTYP_TCPIP
dim cmd as String
cmd = "SEARCH="
cmd = cmd & "(COND=({web site}));"
cmd = cmd & "OPTION=(SEARCH_INDEX=TMINDEX)"
Set cur = dsTS.execute(cmd, DX_TS_TEXT_QL_TYPE)
Do While cur.isValid

Set item = cur.fetchNext
'Do something with the DDO item

Loop
cur.destroy 'in case the variable is being reused by another query
dsTS.disconnect

Evaluating a text query from the content server
Using Content Manager as a model, the steps are:
1. Create a DXDatastoreTS object.
2. Connect to the text search server TM.
3. Search for all text documents with words that start with the letters UN.
4. Run the query and examine the results using DXResultsDL.
5. Disconnect from the text search server.
Dim dsTs as new DXDatastoreTS
Dim item as DXDDODL
Dim results As DXResultsDL
Dim iter as DXSequentialIteratorDL
dsTS.connect "TM", "", "", ""
Dim cmd as String
cmd = "SEARCH="
cmd = cmd & "(COND=($MC=*$ UN*));"
cmd = cmd & "OPTION=(SEARCH_INDEX=TMINDEX)"
Set results = dsTS.evaluate(myQyuery, DX_TS_TEXT_QL_TYPE)
Set iter = results.createIterator
Do While iter.more

Set item = iter.next
'Do something with the DDO item

Loop
dsTS.disconnect

Getting match highlighting information for each text query result
item
This example retrieves match highlighting information for each text query result
item during a text query, by setting the MATCH_INFO option to YES. The MATCH_DICT
option specifies whether the highlighting information should be obtained using a
dictionary. The match information is returned in the DKMATCHESINFO attribute of the
DKDDO returned from a text query. The value of the DKMATCHESINFO attribute will
be a DKMatchesInfoTS object.

Attention: This process is time consuming because the document is retrieved from
the content server and linguistically analyzed to determine potential matches.
Dim dsTS As new DXDatastoreTS
Dim cur as DXResultSetCursorDL
Dim item as DXDDODL

350 Application Programming Guide

Dim count As Integer, i As Integer
Dim pidId As String, dataName As String
Dim data As Variant
Dim mInfo As DXMatchesInfoTS
Dim mSect As DXMatchesDocSectionTS
Dim mPara As DXMatchesParagraphTS
Dim mText As DXMatchesTextItemTS
Dim li As Integer, lj As Integer, lk As Integer
Dim numSects As Integer, numParas As Integer, numTextItems As Integer
Dim numNewLines As Integer
Dim strDataName As String
Dim iCCSID As Integer, iLang As Integer
Dim iOffset As Integer, iLen As Integer
Dim cmd As String
dsTS.Connect "TM", "", "", "LIBACCESS=(LIBSRVRN,FRNADMIN,PASSWORD)"
cmd = "SEARCH=(COND=(UNIX));"
cmd = cmd & "OPTION=(SEARCH_INDEX=TMINDEX;MATCH_INFO=YES;MATCH_DICT=NO"
cmd = cmd & "MAX_RESULTS=2)"
Set cur = dsTS.execute(cmd, DX_TS_TEXT_QL_TYPE)
Do While cur.isValid

Set item = cur.fetchNext
pidId = item.getPid
count = item.dataCount
For i = 1 To count
dataName = item.getDataName(i)
If dataName = DX_DL_DKMATCHESINFO Then
Set mInfo = item.GetData(i)
strDataName = mInfo.getDocumentName
numSects = mInfo.numberOfSections
For li = 1 To numSects
Set mSect = mInfo.getSection(li)
strDataName = mSect.getSectionName
numParas = mSect.numberOfParagraphs
For lj = 1 To numParas
Set mPara = mSect.getParagraph(lj)
iCCSID = mPara.getCCSID
iLang = mPara.getLanguageId
numTextItems = mPara.numberOfTextItems
For lk = 1 To numTextItems
Set mText = mPara.getTextItem(lk)
strDataName = mText.GetText
If mText.isMatch = True Then
iOffset = mText.getOffset
iLen = mText.getLength
End If
numNewLines = mText.numberOfNewLines
Next
Next
Next
Else
data = item.GetData(i)
End If
Next ' end for i = 1 to count

Loop
cur.destroy
dsTS.disconnect

Getting match highlighting information for a particular text query
result item
This example retrieves match highlighting information for a specific item returned
from a text query. The match information contains the text of the document and
the highlighting information for every match of the corresponding query. The
dkResultSetCursor passed into this routine must be in an open state.

Chapter 9. Using the ActiveX (OLE) application programming interface 351

Attention: This process is time consuming because the document is retrieved from
the content server and linguistically analyzed to determine potential matches.
Dim dsTS As new DXDatastoreTS
Dim cur as DXResultSetCursor
Dim item as DXDDO
Dim count As Integer, i As Integer
Dim pidId As String, dataName As String
Dim data As Variant
Dim mInfo As DXMatchesInfoTS
Dim mSect As DXMatchesDocSectionTS
Dim mPara As DXMatchesParagraphTS
Dim mText As DXMatchesTextItemTS
Dim li As Integer, lj As Integer, lk As Integer
Dim numSects As Integer, numParas As Integer, numTextItems As Integer
Dim numNewLines As Integer
Dim strDataName As String
Dim iCCSID As Integer, iLang As Integer
Dim iOffset As Integer, iLen As Integer
Dim docId As String, indexName As String
Dim cmd As String
dsTS.Connect "TM", "", "", "LIBACCESS=(LIBSRVRN,FRNADMIN,PASSWORD)"
cmd = "SEARCH=(COND=(UNIX));"
cmd = cmd & "OPTION=(SEARCH_INDEX=TMINDEX"
cmd = cmd & "MAX_RESULTS=2)"
Set cur = dsTS.execute(cmd, DX_TS_TEXT_QL_TYPE)
Do While cur.isValid

Set item = cur.fetchNext
pidId = item.getPid
docId = pidId
count = item.dataCount
indexName = item.getObjectType
For i = 1 To count
dataName = item.getDataName(i)
data = item.GetData(i)
Next ' end for i = 1 to count
Set mInfo = ds.getMatches(cur, docId, indexName, False)
If (mInfo Is Nothing) = False Then
Set mInfo = item.GetData(i)
strDataName = mInfo.getDocumentName
numSects = mInfo.numberOfSections
For li = 1 To numSects
Set mSect = mInfo.getSection(li)
strDataName = mSect.getSectionName
numParas = mSect.numberOfParagraphs
For lj = 1 To numParas
Set mPara = mSect.getParagraph(lj)
iCCSID = mPara.getCCSID
iLang = mPara.getLanguageId
numTextItems = mPara.numberOfTextItems
For lk = 1 To numTextItems
Set mText = mPara.getTextItem(lk)
strDataName = mText.GetText
If mText.isMatch = True Then
iOffset = mText.getOffset
iLen = mText.getLength

End If
numNewLines = mText.numberOfNewLines
Next
Next
Next
End If
Loop
cur.destroy
dsTS.disconnect

352 Application Programming Guide

Using result set cursor
The dXResultSetCursor is a content server cursor that manages a virtual collection
of DDOs and does not appear until you fetch an element from it. The collection set
resulting from a query submitted to the content server.

Important: When you stop using the cursor, call the destroy method to close it and
prevent memory leaks.

Opening and closing the result set cursor to re-execute the
query

When you create a result set cursor, it is open. To run a query again, you close and
reopen the cursor, as shown in the following example:
Dim cmd as String
cmd = "SEARCH=(INDEX_CLASS=DLSAMPLE);"
cmd = cmd & "OPTION=(CONTENT=YES;"
cmd = cmd & "TYPE_QUERY=DYNAMIC;"
cmd = cmd & "TYPE_FILTER=FOLDERDOC)"
Dim cur as DXResultSetCursorDL
...
Set cur = dsDL.execute(cmd, DX_DL_PARAMETRIC_QL_TYPE)
cur.close
cur.open

Setting and getting positions in a result set cursor
The result set cursor allows you to set and get the current cursor position. The
following example completes the following steps:
1. Run a query.
2. Set the position to next, and fetch the DDO.
3. Get the current position of the result set cursor. A null value is returned from

fetchObject if the cursor is past the last item in the result.
Dim cmd as string
cmd = "SEARCH=(INDEX_CLASS=DLSAMPLE);"
cmd = cmd & "OPTION=(CONTENT=YES;"
cmd = cmd & "TYPE_QUERY=DYNAMIC;"
cmd = cmd & "TYPE_FILTER=FOLDERDOC)"
Dim cur as DXResultSetCursorDL
Dim item as DXDDODL
Dim i as Long
i = 0
...
Set cur = dsDL.execute(cmd, DX_DL_PARAMETRIC_QL_TYPE)
Do while cur.isValid

cur.setToNext
Set item = cur.fetchObject
If item is Nothing Then
Else

i = cur.getPosition
'Do something with the DDO

End If
Loop
cur.destroy 'in case the variable is being reused by another query

Another way to do this is:
Set cur = dsDL.execute(cmd, DX_DL_PARAMETRIC_QL_TYPE)
Do While cur.isValid

cur.setPosition DX_DL_NEXT, 1 'the 1 is ignored for DX_NEXT
Set item = cur.fetchObject
If item is Nothing Then

Chapter 9. Using the ActiveX (OLE) application programming interface 353

Else
i = cur.getPosition
'Do something with the DDO item

End If
Loop
cur.destroy 'in case the variable is being reused by another query

You can use relative positioning. In the following example, every other item in the
result set cursor is skipped.
Dim increment as Long

increment = 2
Set cur = dsDL.execute(cmd, DX_DL_PARAMETRIC_QL_TYPE)
Do While cur.isValid

cur.setPosition DX_DL_RELATIVE, increment
Set item = cur.fetchObject
If item is Nothing Then
Else

i = cur.getPosition
'Do something with the DDO

End If
Loop
cur.destroy 'in case the variable is being reused by another query

Creating a collection from a result set
You can use the result set cursor to populate a collection with a specified number
of items from the result set. In the following example, all items from the result set
are fetched into a sequential collection. The first parameter specifies how many
items to put into the collection. A zero in the first parameter of the fetchNextN
method indicates that all result set items will be put into the collection. If fItems is
TRUE, at least one item was returned.
Dim seqColl as DXSequentialCollection
Dim fItems as Boolean
fItems = False
Dim how_much as Long
how_much = 0
fItems = cur.fetchNextN(how_much, seqColl)

Querying collections
A queryable collection is a collection that can be queried further, thus providing a
smaller evaluation set or more refined results. A concrete implementation of a
queryable collection is a DKResults object. DKResults is a collection of DDOs,
which are the result of a query.

Getting the result of a query
The following example illustrates how to submit a parametric query and get
results:
'Establish a connection
Dim dsDL as new DXDatastoreDL
dsDL.connect "LIBSRVRN", "FRNADMIN", "PASSWORD"
'Create a query object
Dim query1 as String
query1 = "SEARCH=(INDEX_CLASS=GRANDPA,COND=(Title <> NULL));"
Dim pq as DXParametricQuery
Set pq = dsDL.createQuery(query1, DX_DL_PARAMETRIC_QL_TYPE)
pq.execute
Dim rs as DXResultsDL
Set rs = pq.result

354 Application Programming Guide

The results are in rs, which is a DXResults object. You can use previous code
examples to process the collection and get the DDO.

Evaluating a new query
You can query the result from the example shown in the previous section to
further refine it. For example:
Dim query2 as String
query2 = "SEARCH=(INDEX_CLASS=GRANDPA,COND=(Subject == 'Mystery'));"
Dim rs2 as DXResults
Set rs2 = rs.evaluate(query2, DX_Parametric_QL_type

The totals of both queries would be equivalent to:
"SEARCH=(INDEX_CLASS=GRANDPA,COND=(Title <> NULL AND Subject == 'Mystery'));"

You can repeat this step until you get satisfactory results. After you start with one
type of query, the subsequent queries must be of the same type, because you might
get a null result.

The following example is for text queries:
Dim dsTS as new DXDatastoreTS
dsTS.connectPort "TM","","",""
Dim tquery1 as String
tquery1 = "SEARCH=(COND=(IBM));OPTION=(SEARCH_INDEX=TMINDEX)"
Dim tq as DXTextQuery
Set tq = dsTS.createQuery(tquery1)
tq.execute
Dim trs as DXResults
Set trs = tq.result
Dim tquery2 as String
tquery2 = "SEARCH=(COND=(Tivoli));OPTION=(SEARCH_INDEX=TMINDEX)"
Dim trs2 as DXResults
Set trs2 = trs.evaluate(tquery2, DX_TS_TEXT_QL_TYPE)

The sum of both queries is equivalent to:
"SEARCH=(COND=(IBM AND Tivoli));OPTION=(SEARCH_INDEX=TMINDEX)";

Using queryable collection instead of combined query
Evaluating a queryable collection is similar to other Java classes. One such class is
combined query. You can use a combined query to submit a combination of
parametric and text queries, with or without scopes. However, all of these queries
must be submitted at once, not one at a time as you would when evaluating a
queryable collection.

The result of a combined query is a DKResults object, so you can theoretically
evaluate another parametric query against it; although it might not always work.
You cannot perform combined queries on all content servers.

Evaluating a queryable collection with subsequent queries provides the flexibility
to refine the results of a previous query, step by step, until you get a satisfactory
final result. This is quite useful for dynamically browsing a content server and
formulating the next query based on the previous results. However, if you know
the total query in advance, it is more efficient to submit the complete query once.

Chapter 9. Using the ActiveX (OLE) application programming interface 355

Using specific content servers
Each content server uses the dkDatastore classes, or data definition classes, as the
primary interface to the Enterprise Information Portal database. Each content
server has a separate content server class that implements the dKDatastore class to
provide information specific to the content server.

Each content server type is represented by a class called DKDatastorexx, where xx
is an abbreviation that identifies the specific content server as shown in Table 36.

Table 36. Server type and class name terminology

Server type Class name

Content Manager DXDatastoreDL

Domino Extended Search DXDatastoreDES

When creating a content server you must implement one concrete class for each of
the following classes or interfaces:

DXDatastorexx
Represents and manages a connection to the content server, transactions,
and the execution of content server commands. DXDatastore is an abstract
version of the query manager class. It supports the evaluate method, so it
can be considered a subclass of query manager.

DXDatastoreDefxx
Defines methods to access items stored in the content server; it can also
create, list, and delete its entities. It maintains a collection of DXEntityDefs.
Examples of concrete classes for this interface are:
v DXDatastoreDefDL
v DXDatastoreDefDES

DXEntityDefxx
Defines methods to:
v Create and delete an entity
v Access entity information
v Create and delete attributes

In this class, all methods related to subentities generate DKUsageError
objects indicating that the datastore does not then support subentities.
However, if the content server supports multiple-level entities the subclass
for the content servers must implement methods to overwrite the
exceptions, for example. Examples of concrete classes for the DXEntityDef
interface are:
v DXIndexClassDefDL
v DXEntityDefTS

DXAttrDefxx
Defines methods to access attribute information and to create and delete
attributes. Examples of concrete classes for DXAttrDefxx are:
v DXAttrDefDL
v DXFieldDefDES

DXServerDefxx
Defines methods to access server information. Examples of concrete classes
for DXServerDefxx are:

356 Application Programming Guide

v DXServerDefDL
v DXServerDefDES

DXResultSetCursorxx
A content server cursor that manages a virtual collection of DDO objects.
The collection is a query result set. Elements of the collection do not
materialize until a datastore fetch operation is run. To use the addObject,
deleteObject, and updateObject methods, you must set the datastore
option DK_DL_OPT_ACCESS_MODE to DK_READWRITE. Examples of concrete
classes for dkResultSetCursor are:
v DXResultSetCursorDL
v DXResultSetCursorV4

DXBlobxx
An abstract class that declares a common public interface for binary large
object (BLOB) data types in each content server. The concrete classes
derived from DXBlob share this common interface, allowing polymorphic
processing of BLOB collections originating from heterogeneous content
servers. Examples of concrete classes for DXBlobxx are:
v DXBlobDL
v DXBlobDD

Working with Content Manager
This section describes how to:
v Handle large objects
v Use DDOs in the server
v Use XDOs in a search engine
v Use combined query
v Use Text Search Engine
v Use image search (QBIC).
v Use workflows and workbaskets

Using DDOs to represent datastore information
A DDO associated with DKDatastoreDL has some specific information to represent
the Enterprise Information Portal document metaphor: document, folder, parts,
item, item ID, rank, and so forth. The following sections describe how you record
this information.

DDO properties: The type of an item, either a document or folder, is a property
under the name DK_Property_Item_Type. To get the item type of the DDO, you call:
Dim a as VARIANT
Dim item_type as Integer
a = cddo.getPropertyByName(DX_DL_PROPERTY_ITEM_TYPE)
If IsEmpty(a) Then
Else

item_type = a
End If

After the property is called, the item_type is equal to DK_CM_DOCUMENT for a
document, or DK_CM_FOLDER for a folder. The if statement ensures that the property
exists. See “Adding properties to a DDO” on page 223 and “Getting the DDKDO
and attribute properties” on page 224 for more information.

PID: The PID contains important pieces of information specific to Enterprise
Information Portal: the object type indicates the index class the DDO belongs to;

Chapter 9. Using the ActiveX (OLE) application programming interface 357

the PID contains the item ID of the associated item from the datastore. See
“Creating a persistent identifier (PID)” on page 222.

Representing documents: A DDO representing a document has the property
DX_DL_PROPERTY_ITEM_TYPE equal to DX_DL_DOCUMENT. Its PID contains the index
class name as the object type, and the item ID is in the PID’s ID.

The parts inside a document are represented as DXPartsDL objects, which are
collections of binary large objects (BLOBs), each of which is represented as a
DXBlobDL object.

A document DDO has the specific attribute with the reserved name DX_DL_DKPARTS,
whose value is also DXPartsDL object.

To get to each part in a document, you must retrieve DXPartsDL first, then create an
iterator to retrieve each part. If the document does not have a part at all, DKParts is
null.

For more information on creating and processing a DKParts object, see “Retrieving
a document or folder” on page 361 and “Creating and using the DX_DL_DKPARTS
attribute” on page 344.

Documents associated with a combined query (a combination of a parametric and
text query) can have a transient attribute called DX_DKRANK, whose value is an object
containing an integer rank computed by the Text Search Engine.

Representing folders: A DDO representing a folder has a property
DX_DL_PROPERTY_ITEM_TYPE equal to DX_DL_FOLDER. Similar to a document DDO, its
PID contains the index class name as the object type, and item ID in the PID’s ID.

The table of contents inside a folder is represented as a DXFolderDL object, which
is a collection of DDOs. Each collection represents an item—either a document or
another folder—belonging to this folder. A folder DDO has a specific attribute with
a reserved name DX_DL_DKFOLDER, whose value is also DXFolderDL object.

To get to each DDO member of the folder, you must retrieve DXFolderDL first, then
create an iterator to retrieve each item member. If the folder does not have a
member, DXFolderDL is null.

For more information on creating and processing a DKFolder object, see
“Retrieving a document or folder” on page 361 and “Creating and using the
DX_DL_DKFOLDER attribute” on page 344.

Creating, updating, and deleting documents or folders
This section describes how to create, update, and delete documents and folders.

Creating a document: To create a document and save it in a content server, you
must create a DDO, setting all of its attributes and other information, except its
item ID. The item ID is assigned and returned by the content server. The following
example combines parts of the previous examples:
'step 1: create a datastore and connect to it
Dim dsDL as new DXDatastoreDL
dsDL.connect "LIBSRVRN", "FRNADMIN", "PASSWORD"

'step 2: create a document (or folder) DDO and set all its attributes and
'other required information - see the section on "Using DDO"
Dim cddo as new DXDDO

358 Application Programming Guide

cddo.setObjectType "GRANDPA" 'set the index class name it belongs to
cddo.setDatastore dsDL 'associate to dsDL

'step 2.a: add attributes according to index class GRANDPA
Dim data_id as Integer
data_id = cddo.addData("Title") 'add a new attribute named "Title"
cddo.addDataPropertyAndValue data_id, DX_DL_PROPERTY_TYPE,

DX_VString 'add type property VSTRING
cddo.addDataPropertyAndValue data_id,

DX_DL_PROPERTY_NULLABLE, False 'add nullable property
data_id = cddo.addData("Subject") 'add a new attribute named "Subject"
cddo.addDataPropertyAndValue data_id, DX_DL_PROPERTY_TYPE, DX_VString
cddo.addDataPropertyAndValue data_id, DX_DL_PROPERTY_NULLABLE, True
'Add some more attributes as necessary
' ...

'step 2.b: add DX_DL_DKPARTS attribute
Dim blob as new DXBlobDL
blob.setDatastore dsDL 'create a new XDO blob
blob.setPartId 5 'set part number to 5
blob.setContentClass DX_DL_CC_GIF 'set content class type GIF
blob.setRepType DX_DL_DK_REP_NULL 'set rep type for the part
blob.setContentFromClientFile "choice.gif" 'set the blob's content
blob.setInstanceOpenHandler "netscape", true 'set the blob's viewer
parts.addElement blob 'add the blob to the parts collection
... 'create and add some more blobs to the collection as necessary
'Create DX_DL_DKPARTS attribute and sets it to refer to the DXPartsDL object
data_id = ddo.addData(DX_DL_DKPARTS) 'add attribute DX_DL_DKPARTS
cddo.addDataPropertyAndValue data_id, DX_DL_PROPERTY_TYPE,

DX_Collection_XDO 'add type property
cddo.addDataPropertyAndValue data_id, DX_DL_PROPERTY_NULLABLE,

True 'add nullable property
cddo.setData data_id, parts 'sets the attribute value

'step 2.c: sets the item type : document
cddo.addPropertyAndValue DX_DL_PROPERTY_ITEM_TYPE, DX_DL_DOCUMENT

'step 3: make it persistent
cddo.add 'a document is created in the datastore

After the last step, the document is created in the content server. When a
document DDO is added to a content server, all of its attributes are added,
including all of the parts listed in DXPARTSDL.

This also applies to adding a folder DDO, the DXFolderDL collection members are
added to the datastore as a component of the folder. A folder contains a table of
contents of its members, which are existing documents and folders. Therefore, all
folder members must be created in the datastore before you can add a folder DDO.

You can add the same document to a different content server of the same type. For
example, to add the document to the server LIBSRVRN, which has an index class
GRANDPA2 with the same structure as GRANDPA:
'Create datastore and connect to LIBSRVRN
Dim dsN as new DXDatastoreDL
dsN.connect "LIBSRVRN", "FRNADMIN", "PASSWORD"
'Update the Pid
ddo.setObjectType "GRANDPA2" 'set the new index class
ddo.setPid "" 'blank the item ID
ddo.setDatastoreName "LIBSRVRN" 'set the new datastore name'
ddo.setDatastore dsN 'set the new datastore
ddo.add 'add it

Chapter 9. Using the ActiveX (OLE) application programming interface 359

Updating a document or a folder: To update a document, you must set the item
ID and object type. Then, update the desired attributes or add to the parts
collection. Finally, call the update method to store the change. For example:
'Update the value of attribute Title
Dim data_id as Integer
data_id = ddo.getDataByName("Title")
ddo.setData data_id, "Guess who is behind all this"
ddo.update

After the call to the update method, the value of the attribute Title in the content
server is updated. The parts in this document are not updated unless their content
has changed. The connection to the server must be valid when you call the update
method.

Updating a folder DDO requires similar steps: you update the attribute values, or
add or remove elements from DXFolderDL, then call the update method.

Updating parts: The collection of parts in a document is represented in a
DXPartsDL object called DKPARTS.

DKParts has two additional members for adding a part to, and removing a part
from, the collection and immediately saves those changes.

The document must already exist in the content server.

Adding and removing a part: The following example adds a part to a document:
Dim ddo as DXDDO 'a document DDO
Dim newPart as DXBlobDL 'a new part to be added
... 'ddo and newPart are initialized somewhere along the line
Dim parts as DXPartsDL
Set parts = ddo.getDataByName(DX_DL_DKPARTS) 'get DXPartsDL
parts.addMember ddo, newPart

Similarly, to remove newPart from the collection and the content server, enter:
parts.removeMember ddo, newPart

The removeMember method in DXPartsDL deletes the part from the content server.

Differences between update, add, and remove on a document DDO: DKParts addMember
and removeMember methods provide conveniences for adding and removing a part
in the collection and the content server. Compared to the update method in a
document DDO, the addMember and removeMember are faster.

The update method on a DDO updates all of the attributes in the DDO, including
DXPartsDL and all of its members that changed. The steps are:
...
Dim parts as DXPartsDL
Set parts = ddo.getDataByName(DX_DL_DKPARTS) 'get DXPartsDL , assume it exists
parts.addElement newPart
ddo.update 'updates the whole ddo

Updating folders: The collection of documents and folders within a folder is
represented as a DKFolder object. In the content server, a folder holds a table of
contents referring to its objects instead of all of the actual objects.

DXFolderDL has two additional members for adding a member to, or removing a
member from, the collection and immediately stores those changes.

360 Application Programming Guide

The added document or folder to be added must already exist in the content
server, as must the folder to be added to.

Adding and removing a member: The following example adds another document or
folder to a folder:
Dim folderDDO as DXDDO 'a folder DDO
Dim newMember as DXDDO 'a new DDO to be added as a member of this folder
... 'folderDDO and newMember are initialized somewhere along the line
Dim folder as DXFolderDL
'get DXFolderDL , assume it exists
Set folder = folderDDO.getDataByName(DX_DL_DKFOLDER)
folder.addMember folderDDO, newMember

To remove newMember from the collection and the content server, enter:
folder.removeMember folderDDO, newMember

Important: Removing a member from a folder only removes that member from the
folder table of contents. If you use the removeElementAt method it does not delete
the member from memory or from the content server.

Differences between update, add, and remove on a folder DDO: DXFolderDL
addMember and removeMember methods provide conveniences for adding and
removing a document or folder in the collection and the content server. Compared
with the update method in a folder DDO, add and remove methods are faster.

The update method on a DDO updates all of the attributes in the DDO, including
DXFolderDL and all of its members, whereas add and remove member methods
involve only adding and removing one particular member to or from the folder
table of contents.

Deleting a document or a folder: Use the del method in the DDO to delete a
document or folder from the content server.
ddo.del

The DDO must have its item ID and object type set, and your program must have
a valid connection to the content server.

Use the statement above to delete a folder as well. Only the persistent data is
deleted, the in-memory copy of the DDO does not change. Therefore, you can add
this DDO back to the same or different datastore later. See “Creating a document”
on page 358 for more information.

Retrieving a document or folder
To retrieve a document from DXDatastoreDL, you must know the document’s
index class name and item ID. You must first associate the DDO to a content server
and establish a connection.
Dim dsDL as new DXDatastoreDL
dsDL.connect "LIBSRVRN", "FRNADMIN", "PASSWORD"
Dim ddo as new DXDDO
ddo.setObjectType "GRANDPA" 'set the index class name it belongs to
ddo.setPid "LN#U5K6ARLGM3DB4" ' set the item ID
ddo.setDatastore dsDL 'associate to dsDL
ddo.retrieve 'retrieve it

To retrieve the DDO, call:
ddo.retrieve

Chapter 9. Using the ActiveX (OLE) application programming interface 361

After a call to retrieve, all of the DDO’s attribute values are set to the value of the
persistent data stored in the datastore. If the document has parts, the
DX_DL_DKPARTS attribute is set to a DKParts object. However, the content of each
part in this collection is not retrieved. Because a part might be large, it is not
desirable to retrieve all of them into memory at once. It is better to explicitly
retrieve the part you want.

If the DDO is a parametric query result that was run with the query option
CONTENT=NO, the DDO is empty (does not have the attribute values). However, all
information required to retrieve it is already set.

Retrieving parts: After you retrieve a DDO, you can retrieve its parts that are
identified in DX_DL_DKPARTS attribute, as follows:
Dim parts as DXPartsDL
Set parts = ddo.getDataByName(DX_DL_DKPARTS)

The example assumes that the DX_DL_DKPARTS attribute exists. An exception is
generated if the attribute does not exist. See “Retrieving a folder” for an example
of extracting attribute value by getting the data ID first and testing it for zero.

To retrieve each part, you must create an iterator to step through the collection and
retrieve each part. See “Creating and using the DX_DL_DKPARTS attribute” on
page 344.
'Create iterator and process the part collection member one by one
If parts Is Nothing Then
Else

Dim blob as DXBlobDL
Dim iter as DXSequentialIterator
Set iter = parts.createIterator
Do While iter.more

Set blob = iter.next
If blob Is Nothing Then
Else

blob.retrieve 'retrieve the blob's content
blob.open 'other processing, as needed

End If
Loop

End If

Similar to the DDO results of a parametric query, each part XDO inside the
DXPartsDL collection is empty (does not have its content set). However, it has all
the information needed for information retrieval. To bring its content and related
information into memory, call:
blob.retrieve

Retrieving a folder: Retrieve a folder DDO the same way as you would retrieve a
document DDO. After being retrieved, the folder DDO has all of its attributes set,
including a special attribute, DX_DL_DKFOLDER. This attribute value is set to a
DKFolder object, a collection of DDO members in this folder. Like the parts in
DXPartsDL , these member DDOs contain only enough information to retrieve them.
You can retrieve a folder DDO as follows:
data_id = ddo.dataId(DX_DL_DKFOLDER) 'get DX_DL_DKFOLDER data-id
If data_id = 0 Then 'folder not found

MsgBox " folder data item not found"
Exit sub

End If
Dim col as DXFolderDL
col = ddo.getData(data_id) 'get the folder collection
'Create iterator and process the DDO collection member one by one

362 Application Programming Guide

If col Is Nothing Then
Else

Dim item as DXDDODl
Dim iter as DXSequentialIterator
Set iter = col.createIterator
Do While iter.more

Set item = iter.next
If item Is Nothing Then
Else

item.retrieve 'retrieve the member DDO
.... 'other processing

End If
Loop

End If

See also “Creating and using the DX_DL_DKFOLDER attribute” on page 344.

Understanding text searching (Text Search Engine)
A DXDatastoreTS object represents the Text Search Engine. Text Search Engine does
not actually store the data, it merely indexes the data stored in Content Manager to
support a text search on them. The result of a text search is an item identifier
describing the location of the document in Content Manager. Use these identifiers
to retrieve the document.

The DXDatastoreTS object does not support add, update, retrieve, and delete
methods. You can query this datastore. Refer to “Adding an XDO to be indexed by
Text Search Engine” on page 367 for information on adding data to Content
Manager that is indexed by Text Search Engine.

The Text Search Engine product can specify boolean, proximity, global text retrieval
(GTR), hybrid, and free text queries. You can use the text search item ID, part
number, and ranking information returned by the query to create an XDO that
retrieves the text document contents in a Content Manager server.

Boolean query: A boolean query is made up of words and phrases, separated by
boolean operators. A phrase is a sequence of words enclosed in apostrophes (’), to
be searched as a literal string.

The following example is searching for all text documents with the word WWW or
the phrase Web site in the TMINDEX text search index:
Dim cmd as String
cmd = "SEARCH=(COND=(www OR 'web site'));"
cmd = cmd & "OPTION=(SEARCH_INDEX=TMINDEX)"

Free text query: A free text query is made up of words, phrases, or sentences
enclosed in braces ({}). The words are not required to be adjacent to each other. In
the following example, all text documents with the free text web site in the
TMINDEX text search index are being searched for:
Dim cmd as String
cmd = "SEARCH=(COND=({web site}));"
cmd = cmd & "OPTION=(SEARCH_INDEX=TMINDEX)"

Hybrid query: A hybrid query is made up of a boolean query followed by a free
text query. The example is searching for all text documents with the words IBM and
UNIX, as well as the free text web site in the TMINDEX text search index.
Dim cmd as String
cmd = "SEARCH=(COND=(IBM AND UNIX {web site}));"
cmd = cmd & "OPTION=(SEARCH_INDEX=TMINDEX)"

Chapter 9. Using the ActiveX (OLE) application programming interface 363

Proximity query: A proximity query relates to a sequence of search arguments
found in the same document, paragraph, or sentence. The following example is
searching for all text documents with the phrase rational numbers and the word
math in the same paragraph.
Dim cmd as String
cmd = "SEARCH=(COND=($PARA$ {'rational numbers' math}));"
cmd = cmd & "OPTION=(SEARCH_INDEX=TMINDEX)"

Note: this type of query requires at least two search arguments.

Global text retrieval (GTR) query: A GTR query is optimized for double-byte
character set (DBCS) languages like Japanese or Chinese, but also supports
single-byte character set (SBCS) languages. The following example shows a search
for all text documents with the phrase IBM marketing. All double-byte characters
should be enclosed in apostrophes ('). The phrase to be searched for should be in
the specified character code set and language. The MATCH keyword is set to
indicate the degree of similarity for the phrase.
Dim cmd as String
cmd = "SEARCH=(COND=($CCSID=850,LANG=6011,MATCH=1$ "
cmd = cmd & "'IBM marketing'));"
cmd = cmd & "OPTION=(SEARCH_INDEX=TMGTRX)"

Make sure that the text search datastore options DX_TS_OPT_CCSID (coded character
set identifiers) and DX_TS_OPT_LANG (language identifiers) are set properly. The
default for DX_TS_OPT_CCSID is DX_TS_CCSID_00850. The default for DX_TS_OPT_LANG
is DX_TS_LANG_ENU. These values are used as the global defaults for the text query.
For more information, see the online API reference. You can also enter specific
CCSID and LANG information as shown in the following example. You must specify
both CCSID and LANG; one value cannot be specified with the other.

Representing Text Search Engine information using DDOs: A DDO associated
with a DXDatastoreTS object has specific information for representing results from
text searches. DKDastastoreTS does not have a property item type as does a
DXDatastoreDL object. The format of its ID is also different. A DDO resulting from
a text query corresponds to a text part inside an item. It has a set of standard
attributes, described below.

DX_DL_DKDLITEMID
The item ID that this text is part of. Use this item ID to retrieve the whole
item from the content server.

DX_DL_DKPARTNO
An integer part number for this text part. Use the part number with the
item ID to retrieve the text part from the content server.

DX_DL_DKREPTYPE
The RepType of this text part. Use this attribute with the item ID and part
number, to retrieve the text part from the content server.

DX_DL_DKRANK
An integer rank signifying the relevance of this part to the results of a text
query. A higher rank means a better match. See Text Search Engine
Application Programming Reference for further information.

DX_DL_DKDSIZE
An integer number representing word occurrences in the results of boolean
queries. See Text Search Engine Application Programming Reference for further
information.

364 Application Programming Guide

DX_DL_DKRCNT
An integer number representing boolean search matches. See Text Search
Engine Application Programming Reference for further information.

The PID for a text search DDO has the following information:

datastore type
TS

datastore name
The name used to connect to the content server

object type
Text search index

ID Text Search Engine document ID

Establishing a connection: The DKDatastoreTS object provides two methods for
connecting and a method for disconnecting. In a typical example, you create a
DKDatastoreTS object, connect to it, run a query, then disconnect when done. The
following example shows the first connection method using the text search server
TM.
Dim dsTS as new DXDatastoreTS
dsTS.connect "TM", "", "", ""
dsTS.disconnect

The following example shows the second connection method using the text search
server with the hostname apollo, port number 7502, and TCP/IP communication
type DX_CTYP_TCPIP:
dsTS.connectPort "apollo", "7502", DX_TS_CTYP_TCPIP

The following example shows the first connection method using the text search
server hostname apollo, port number 7502, communication type T (TCP/IP):
dsTS.connect "apollo", "", "", "PORT=7502; COMMTYPE=T"

The following example shows the first connection method using the text search
server name TM, library server LIBSRVRN, user ID FRNADMIN, and password PASSWORD:
dsTS.connect "TM", "", "", "LIBACCESS=(LIBSRVRN,FRNADMIN,PASSWORD)"

Note that you can use the last parameter, also called the connect string, to pass a
sequence of parameters in one string.

Tip: To prevent the Text Search Engine connection from timing out, connect to Text
Search Engine, run your queries, and immediately disconnect. Do not leave the
connection open.

Getting and setting text search options: Text search provides some options that
you can set or get using its methods. See the online API reference for the list of
options and their descriptions. The following example shows how to set and get
the option for a text search character code set.
Dim session_type As Long
Dim ccsid As Variant
Dim dsTS As New DXDatastoreTS
dsTS.setOption DX_TS_OPT_CCSID, DX_TS_CCSID_00850
dsTS.setOption DX_TS_OPT_LANG, DX_TS_LANG_ENU
dsTS.connect "TM", "", "", ""
dsTS.getOption DX_TS_OPT_CCSID, ccsid

Chapter 9. Using the ActiveX (OLE) application programming interface 365

If ccsid = DX_CCSID_00850 Then
MsgBox "Datastore character code set is 850"

End If
dsTS.disconnect

Tips: The search options CCSID and LANG go together. If one is specified, the other
must also be specified. The default CCSID and LANG are specified by the
DXDatastoreTS options, DX_TS_OPT_CCSID and DX_TS_OPT_LANG. Refer to the online
API reference for the list of the content server options and their descriptions.

You can specify more than one search option for a query term. The search options
are separated by commas. An example of multiple search terms is given in “Global
text retrieval (GTR) query” on page 364.

Listing servers: The DXDatastoreTS object provides a method to list the text
search servers that it can connect to. The following example shows how to retrieve
the list of servers.
Dim dsTS As New DXDatastoreTS
Dim col As DXSequentialCollectionDL
Set col = dsTS.listDataSources
Dim serverDef As DXServerDefTS
Dim iter As DXSequentialIteratorDL
Set iter = col.createIterator
Dim i As Long
i = 0
Do While iter.more

i = i + 1
Set serverDef = iter.Next
MsgBox "Server Name [" & i & "] - " & serverDef.getName

& " Server Loc - " & serverDef.getServerLocation
Loop

Listing schema: A DXDatastoreTS object provides methods for listing the schema.
For text search, these are text search indexes. The following example shows how to
retrieve the index list.
Dim dsTS As New DXDatastoreTS
Dim col As DXSequentialCollectionDL
Dim iter As DXSequentialIteratorDL
Dim entDef As DXSearchIndexDefTS
Dim i As Long
dsTS.Connect "TM", "", "", ""
Set col = dsTS.listEntities
Set iter = col.createIterator
i = 0
Do While iter.more

i = i + 1
Set entDef = iter.Next
MsgBox "Entity Name [" & i & "] - " & entDef.getName

Loop
dsTS.disconnect

Indexing XDOs by search engine: If you want to index object content using Text
Search Engine, the values of SearchEngine, SearchIndex and SearchInfo are
required.

The SearchIndex value is a combination of two names: the search service name and
search index name. For example, if the system administration program, refers to a
text search server named TM for which you defined a search index named TMINDEX
for it, then the correct value for the SearchIndex is TM-TMINDEX.

366 Application Programming Guide

The value of SearchEngine must be SM for text search. The value of SearchEngine
must be Query By Image Content (QBIC).

The SearchIndex for QBIC is a combination of three values: QBIC database name,
QBIC catalog name, and QBIC server name. For example, if the QBIC database
name is SAMPLEDB, the QBIC catalog name is SAMPLECAT, and the QBIC server name
is QBICSRV, then the correct value for the SearchIndex would be
SAMPLEDB-SAMPLECAT-QBICSRV.

Important: Do not set the RepType when you add a part object for a search engine
to index. The Text Search Engine works only with the default RepType FRN$NULL.

Adding an XDO to be indexed by Text Search Engine:
Dim partId as Integer
partId = 0 'let system decide the partId
Dim itemId as String, fileName as String
itemId = "CPPIORH4JBIXWIY0" 'existing itemId
fileName = "g:\\test\\cheetah.gif" 'file content to be indexed
Dim dsDL as new DXDatastoreDL 'required datastore
dsDL.connect "LIBSRVRN", "FRNADMIN", "PASSWORD" 'connection to datastore
Dim axdo as new DXBlobDL
axdo.init dsDL 'create XDO
axdo.setPartId partId 'set partId
axdo.setPid itemId 'set itemId
axdo.setContentClass DX_DL_CC_ASCII 'set ContentClass to text

'---set searchEngine ----- (deprecated)
axdo.setSearchEngine "SM"
axdo.setSearchIndex "TM-TMINDEX"
axdo.setSearchInfo "ENU"

'---set searchEngine ----- (using an extension object)
Dim srcheng As New DXSearchEngineInfoDL
srcheng.setSearchEngine "SM"
srcheng.setSearchInfo "ENU"
srcheng.setSearchIndex "TMMUF-TMINDEX"
xdo.setExtension srcheng

axdo.setContentFromClientFile fileName 'set file content to buffer area
axdo.add 'add from the buffer
MsgBox "after add partId = " & axdo.getPartId 'display the partId after add
axdo.retrieve 'retrieve object
axdo.setInstanceOpenHandler "notepad", true 'set open viewer
axdo.open 'open content with viewer
dsDL.disconnect 'disconnect from datastore

Loading data to be indexed by Text Search Engine: You must create an index
and a text search index when you load data for Content Manager to index.

Make sure the text search server is running before you create a text search index.
To verify your environment setup, run the samples TListCatalogDL.frm and
TListCatalogTS.frm. Before you run the samples, update them with your server,
user ID, and related information.

To create parts indexed by TM in Content Manager, refer to “Using XDOs” on
page 339.

After you load the data into Content Manager, the wakeUpService method in the
DXDatastoreDL class places the documents on the document queue. From the
Content Manager text search administration window, double-click the text search
server. Double-click the text search index. Click INDEX.

Chapter 9. Using the ActiveX (OLE) application programming interface 367

When you click INDEX, you index the documents on the document queue. After
Content Manager completes the indexing, you can perform text search queries.

For more information on text search administration, refer to the System
Administration Guide.

Using text structured document support: Text-structured documents have a
text-based structure. An HTML file is an example of a text-based document. A
document model defines the document layout. For example, an HTML file contains
tags such as <HEAD>, </H1> and <BODY>. You can use Text Search Engine to search
for words or phrases between the HTML tags.

You can perform text queries on structured documents as follows:
1. Create a document model that contains sections made up of the section name

and document tag in the text document. For example:
<HTML>
<HEAD>
<TITLE>My Corp
</TITLE>
</HEAD>

<BODY>

<H1>My Corp
</H1>
<P>My Corp

<P>Robert Summers

<P><ADDRESS>My Corporation
</ADDRESS>

<HR>
<H2>My Corp Business Objectives</H2>
<HR>

<P>
<H2>Marketing</H2>

<P>We need to increase our time to market by 25%.

<P>We need to meet our customers needs.

</BODY>
</HTML>

2. Create a text search index that uses the document model.
3. Set the indexing rules for the text search index and specify the default

document format. For example, use DK_TS_DOCFMT_HTML for HTML files.
4. Add parts objects to the Content Manager server.
5. Start the text search index indexing process.

You must use the system administration program to check the indexing process
status.

Check the imldiag.log file in the text search instance directory if an indexing error
occurs. For more information on the imldiag.log file see the Text Search Engine
Application Programming Reference.

Searching images by content
You can use the IBM Image Search server to search for stored images. You specify
the image type or provide an example of the image.

Figure 58 on page 369 shows an example of the Image Search window in the
application that connects to the image search server. The image search server uses

368 Application Programming Guide

Query by Image Content (QBIC) technology to support searches based on Average
Color, Color Layout and other features.

Understanding image search terms and concepts
This section describes the image search components: the server, databases, catalogs
and the relationship of the image search server to the entire Content Manager
system. It also describes features that are the searchable visual image characteristics.

Understanding image search server, databases, and catalogs: A Content Manager
system searches for images using an image search server. Content Manager
applications store image objects in the object server. The image search server
analyzes and stores the image information. 59 shows an example of the image
search server. Image servers do not store images.

Figure 58. Image search window example. Users select search criteria, such as Average
Color or Texture

Chapter 9. Using the ActiveX (OLE) application programming interface 369

The image search server contains one or more catalogs that hold information about
one or more of the four image search features:
v Average Color
v Color Histogram
v Color Layout
v Texture

Understanding the Image Search Features List terms: This section explains the
four image search features and provides the feature names used in the search.

Average color Use average color to search for images that have a predominant
color. For example, images that contain equal portions of red and
yellow will have an average color of orange. If you search for an
image with an average color of orange, the search engine could
find an image of fruit with an orange-colored peel, such as an
orange and a tangerine.

The feature name you enter to search by Average Color is
QbColorFeatureClass.

Histogram color

Figure 59. An image search server in a Content Manager system. The image search server
communicates with the other Content Manager components through the clients.

370 Application Programming Guide

Use Histogram Color to search for images containing a similar
variety of colors. Histogram Color measures the percentages of
color distribution of an image. Histogram analysis separately
measures the different colors in an image. For example, an image
of a meadow and blue sky has a histogram color with a high
frequency of blue and green. The feature name you enter to search
by Histogram Color is QbColorHistogramFeatureClass.

Color Layout

Use Color Layout to search for images with a similar layout. Color
Layout measures the average color value for the pixels in a
specified area of an image. For example, a image search for Color
Layout that specified with picture with bright red objects in the
middle could return an image of a sunset. The feature name you
enter to search by Color Layout is QbDrawFeatureClass.

Texture

Use Texture to search for images that have a particular pattern. The
Texture feature measures image coarseness, contrast, and direction.
Coarseness indicates the size of repeating items in an image.
Contrast identifies the brightness variations in an image. Direction
indicates whether a direction predominates in an image. For
example, an image that contains a wood grain has a similar texture
to other images that contain a wood grain. The feature name you
enter to search by Color Layout is QbTextureFeatureClass.

Using image search applications
Image search client applications create image queries, run them, and then evaluate
the information returned by the image search server. Before an application can
search images by content, you must index the images and store the content
information in an image search database.

Restriction: You cannot index existing images in your object server. You can index
only the images you create in your object server after you install the image search
client and server (see Figure 60 on page 372).

Chapter 9. Using the ActiveX (OLE) application programming interface 371

The following list describes how image search clients search for and retrieve
images.
1. A client application builds a QBIC query string and sends it to an image search

server.
2. An image search server receives the query string and searches the cataloged

images for matches.
3. Client receives the matches as a list of identifiers. The identifier for each

matching image consists of the:
v Item ID
v Part number
v RepType
v Rank

4. Client requests the image part and index information from a library server.
5. Library server returns index information, such as a text description, to the

client. The library server also requests that an object server send specified
image parts to the client.

6. Object server sends image parts and the client acknowledges receiving them.

Creating queries: When you create queries, you construct a query string that the
application passes to the image search server.

The query string: An image query is a character string that specifies the search
criteria. The search criteria consist of:

Feature name The features used in the search.

Figure 60. How image search clients search for and retrieve images

372 Application Programming Guide

Feature value The values of those features. Table 37 shows the image search
feature names and the values that can be passed in a query string.

Feature weight
The relative weight or emphasis placed on each feature. The
weight of a feature indicates the emphasis that the image search
server places on the feature when calculating similarity scores and
returning results for a query. The higher the specified weight, the
greater the emphasis.

Maximum results
In addition to defining the type of images a query will look for,
you can specify the maximum number of matches that the query
will return.

A query string has the form: feature_name value, where feature_name is an image
search feature name, and value is a value associated with the feature. If you use
more than one feature in a query, then you must specify a feature name-value pair
for each feature. The string ″and″ separates each pair.

Image search queries have the following syntax:
feature_name value
feature_name value weight

You cannot repeat a feature within a single query. When you specify multiple
features in a query, you can assign a weight to one or more of the features. weight
is the combination of the keyword weight=>0.0.

You can also specify the maximum number of matches that a query returns. To
specify the maximum matches, append and max_results to your query.
max_results consists of the keyword max=>0. Table 37 lists valid image search
query feature names and values.

Table 37. Image search query valid feature names and values

Feature name Values

Average Color
QbColorFeatureClass or
QbColor

color = < rgbValue , rgbValue, rgbValue >
where rgbValue is an integer from 0 to 255.

file = < fileLocation , ″ fileName ″ >
where fileLocation is either server or client,
fileName is the complete file path specified in the
format appropriate for the system on which the
file resides.

Chapter 9. Using the ActiveX (OLE) application programming interface 373

Table 37. Image search query valid feature names and values (continued)

Feature name Values

Histogram Color
QbColorHistogramFeatureClass
or QbHistogram

histogram = < histList>
where histList consists of one or more
histClause separated by a comma (,).

A histClause is specified as (histValue, rgbValue ,
rgbValue , rgbValue), where histValue is an integer
from 1 to 100 (a percentage value), and rgbValue
is an integer from 0 to 255.

file = < fileLocation , ″ fileName ″ >
where fileLocation is either server or client,
fileName is the complete file path specified in the
format appropriate for the system on which the
file resides.

Color Layout
QbDrawFeatureClass or
QbDraw

description = < ″ descString ″ >
where descString is a special encoded string
describing a picker file. Description string
format:

1. Dw,h specifies the outer dimensions of the
image with width w and height h.

2. Rx,y,w,h,r,g,b specifies that a rectangle of
width w and height h is to be positioned with
its upper left corner at the coordinates (x,y).

3. Use the colon (:) as a separator.

file = < fileLocation , ″ fileName ″ >
where fileLocation is either server or client,
fileName is the complete file path specified in the
format appropriate for the system on which the
file resides.

Color Texture
QbTextureFeatureClass or
QbTexture

file = < fileLocation , ″ fileName ″ >
where fileLocation is either server or client,
fileName is the complete file path specified in
the format appropriate for the system on which
the file resides.

Query examples:

1. Search for Average Color red:
QbColorFeatureClass color=<255,0,0>

2. Search using a histogram of three colors, 10% red, 50% blue, and 40% green:
QbColorHistogramFeatureClass histogram=
<(10, 255, 0, 0) (50, 0, 255, 0), (40, 0, 0, 255)>

3. Search using an average color and a texture value. The texture value is
provided by an image in a file on the client. The texture weight is twice that of
the average color:
QbColorFeatureClass color=
<50, 50, 50> and QbTextureFeatureClass file=<client, "\patterns\pattern1.gif">
weight=2.0

4. Search for the described color layout:

374 Application Programming Guide

QbDrawFeatureClass description=<"D100,50:R0,0,50,50,255,0,0">

5. Search for average color red and limit the returned matches to five:
QbColorFeatureClass color=<255,0,0> and max=5

Establishing a connection in QBIC
Image search provides methods for connecting and disconnecting to the content
server. The following example shows how to connect to an image search server
named QBICSRV using the user ID QBICUSER and the password PASSWORD.
Dim dsQBIC as new DXDatastoreQBIC
dsQBIC.connect "QBICSRV", "QBICUSER", "PASSWORD", ""
... // do some work
dsQBIC.disconnect

The image search connection allows an application to connect to an image search
server. After connecting, your program can use methods that access the image
search server except for the methods that are not related to image search catalogs,
such as listDatabases. An openCatalog method is required to open a catalog for
processing. A closeCatalog method is called after processing is done. The
following example shows how to connect, open a catalog, close the catalog, and
disconnect.
Dim dsQBIC as new DXDatastoreQBIC
dsQBIC.connect "QBICSRV", "QBICUSER", "PASSWORD", ""
dsQBIC.openCatalog "DEMO", "QBIC0725"
... // do some work
dsQBIC.closeCatalog
dsQBIC.disconnect

Listing image search servers
The image search server provides a method for listing the image search servers
that it can connect to. The following example shows how to retrieve in a
DXSequentialCollection object the list of servers that contain DXServerInfoQBIC
objects. After you get a DXServerInfoQBIC object, you can retrieve the server
name, the host name, and the port number.

Dim dsQBIC as new DXDatastoreQBIC
Dim serverInfo as DXServerInfoQBIC
Dim col as DXSequentialCollection
Dim iter as DXSequentialIterator
Dim serverName as String, hostName as String, portNumber as String
Dim i as Long
i = 0
Set col = dsQBIC.listServers
Set iter = col.createIterator
Do While iter.more

i = i + 1
Set serverInfo = iter.next
serverName = serverInfo.serverName
hostName = serverInfo.hostName
portNumber = serverInfo.portNumber
MsgBox "Server Name [" & i & "] - " & serverName &

"Host Name " & hostName & "Port Number " & portNumber
Loop

Listing image search databases, catalogs and features
DXDatastoreQBIC provides a method for listing all of the image search databases,
catalogs, and features on an image search server. The list is returned in a
DXSequentialCollection object that contains DXIndexQBIC objects. After you get a
DXIndexQBIC object, you can retrieve the database, catalog, and feature name. The
following example shows how to retrieve the list of databases, catalogs, and
features.

Chapter 9. Using the ActiveX (OLE) application programming interface 375

Dim index as DXIndexQBIC
Dim databaseName as String
Dim col as DXSequentialCollection
Dim iter as DXSequentialIterator
Dim i as Long
i = 0

Set col = dsQBIC.listDatabases
Set iter = col.createIterator
Do While iter.more

i = i + 1
Set index = iter.next
databaseName = index.name
MsgBox "Database Name [" & i & "] - " & databaseName

Loop

The following example shows how to retrieve the list of QBIC catalogs. The list of
catalogs is returned in a sequential collection of DXIndexQBIC objects. Once a
DXIndexQBIC object is obtained, you can pull out the QBIC catalog name.

Dim index as DXIndexQBIC
Dim catalogName as String
Dim col as DXSequentialCollection
Dim iter as DXSequentialIterator
Dim i as Long
i = 0

Set col = dsQBIC.listCatalogs("DEMO")
Set iter = col.createIterator
Do While iter.more

i = i + 1
Set index = iter.next
catalogName = index.name
MsgBox "Catalog Name [" & i & "] - " & catalogName

Loop

Representing image search information with a DDO
A DDO associated with DXDatastoreQBIC contains specific information for
representing image search results. A DDO from an image query corresponds to an
image part inside an item; it has the following set of standard attributes:

The PID for an image search DDO has the following information:

content server type
QBIC

content server name
The server name used to connect to the content server.

ID The zero-based sequence number of the DDO in the result set.

As a convention, the attribute value is always an object.

DKDLITEMID
The item ID specifying where this image part is stored. Use this item ID to
retrieve the whole item from the content server.

DKPARTNO
A long integer part number identifying the location of this image part. In
Java, DKPARTNO is an integer part number. Use with the item ID to
retrieve this part from the content server.

DKREPTYPE
A representation type string with a default value of FRN$NULL. This
attribute is reserved.

376 Application Programming Guide

DKRANK
A long integer rank signifying the relevance of this part to the result set
from the image query. The rank is within the range 0 to 100. A higher rank
means a better match.

Working with image queries
This section describes how to create, run, and evaluate image queries.

Creating an image query: The following example shows a query string that
searches for all images with average color red. ″QbColorFeatureClass″ represents
the feature for average color.

String cmd = "QbColorFeatureClass color=<255, 0, 0>";

Running an image query: The datastore provides a method to create a query
object. You use the query object to run the query and obtain the results. The
following example shows how to create an image query object and run it. After
you run a query, the results are returned in a DXResultsDL collection.

Dim dsQBIC as new DXDatastoreQBIC
dsQBIC.connect "QBICSRV", "QBICUSER", "PASSWORD"
dsQBIC.openCatalog "DEMO", "QBIC0725"

Dim cmd as String
cmd = "QbColor color=<255,0,0>"
Dim query as DXImageQuery
Set query = dsQBIC.createQuery(cmd)
query.execute

Dim results as DXResults
Dim iter as DXSequentialIterator
Dim ddo as DXDDO
Set results = query.results
Set iter = results.createIterator
Do While iter.more

Set ddo = iter.next
'Do something with the DDO

Loop

dsQBIC.closeCatalog
dsQBIC.disconnect

Running an image query from the content server: DKDatastoreQBIC provides a
method for running a query. The following example shows how to run an image
query on the content server. Results are returned in a dkResultSetCursor object.

Dim dsQBIC as new DXDatastoreQBIC
dsQBIC.connect "QBICSRV", "QBICUSER", "PASSWORD"
dsQBIC.openCatalog "DEMO", "QBIC0725"

Dim cmd as String
cmd = "QbColor color=<255,0,0>"
Dim cursor as DXResultSetCursor
Set cursor = dsQBIC.execute(cmd)

Dim ddo as DXDDO
Do While cursor.isValid

Set ddo = cursor.fetchNext
'Do something with the DDO

Loop

cursor.destroy
dsQBIC.closeCatalog
dsQBIC.disconnect

Chapter 9. Using the ActiveX (OLE) application programming interface 377

Evaluating an image query from the datastore: DKDatastoreQBIC provides a
method to evaluate a query. The following example shows how to evaluate an
image query from the content server. Results are returned in a DXResultsDL
collection.

Dim dsQBIC as new DXDatastoreQBIC
dsQBIC.connect "QBICSRV", "QBICUSER", "PASSWORD"
dsQBIC.openCatalog "DEMO", "QBIC0725"

Dim cmd as String
cmd = "QbColor color=<255,0,0>"
Dim results as DXResults
Dim iter as DXSequentialIterator
Dim ddo as DXDDO
Set results = dsQBIC.evaluate(cmd)
Set iter = results.createIterator
Do While iter.more

Set ddo = iter.next
'Do something with the DDO

Loop

dsQBIC.closeCatalog
dsQBIC.disconnect

Using the image search engine
You can use the image search server to specify a query based on one of the
following features: average color, color percentages, color layout, and textures. You
can also specify multiple features in a query. The query results contain the item ID,
part number, representation type, and ranking information. You can use this
information to create an XDO for retrieving the image contents.

Query based on average color: A query based on average color consists of a
feature name and its value. The following example shows how to search for all
images based on average color red:
String cmd = "QbColorFeatureClass color=<255, 0, 0>";

Query based on color percentages: A query based on color percentages consists
of a feature name and its value. The following example shows how to search for
all images based on a histogram of three colors: 10% red, 50% blue, and 40% green.
String cmd = "QbColorHistogramFeatureClass ";

cmd += "histogram=<(10, 255, 0, 0),(50, 0, 255, 0),(40, 0, 0, 255)>";

Query based on color layout: A query based on color layout consists of a feature
name and its value. The following example shows how to search for all images
based on color layout described by an image in a file on the client:

String cmd = "QbDrawFeatureClass file=<client, \"\patterns\pattern1.gif\">";

Query based on texture: A query based on texture consists of a feature name and
its value. The following example shows how to search for all images based on the
texture value provided by an image in a file on the client:

String cmd = "QbTextureFeatureClass file=<client, \"\patterns\pattern2.gif\">";

Query with multiple features: You can specify a query with multiple features.
The following example shows how to search for all images based on an average
color and a texture value. The texture value is provided by an image in a file on
the client. The weight of the average color is twice that of the texture:
String cmd = "QbColorFeatureClass color=<255, 0, 0> weight=2.0 and ";

cmd += "QbTextureFeatureClass file=<client, \"\patterns\pattern2.gif\">";

378 Application Programming Guide

Loading data to be indexed for image search: To load data into a Content
Manager server to be indexed by the image search server, you must create a
Content Manager index class, an image search database, and an image search
catalog. The database is a collection of image search catalogs. A catalog holds data
about the visual features of images.

The image search features need to be added to the catalog for indexing. You
should add all supported features to the catalog.

The image search server must be running when you create an image search
database and catalog. Verify your environment settings before you run a query.

After the data is loaded into Content Manager, you can place the image in the
image queue. In the system administration program, select Process Image Queue.
After the indexing is complete, you can run image searches.

Indexing an existing XDO using search engines
You can index an existing XDO using a specified search engine.
Private Sub cout(str As String)
Results.Text = Results.Text & Chr$(13) & Chr$(10) & str
End Sub

Private Sub Run_Click()

itemId = "N2JJBERBQFK@WTVL"
partId = 13
Set dsDL = New DXDatastoreDL
Set xdo = New DXBlobDL
xdo.init dsDL
xdo.setPartId partId
xdo.setPid itemId

cout "Check if was indexed, if not then do indexing:"
Dim catflag As Boolean
catflag = xdo.isCategoryOf(DX_Indexed_Object)
cout "isCategoryOf indexed obj = " & catflag
If (catflag) Then

cout "==alreay indexed, do getExtension to show informations:"
Dim srcheng2 As Variant
Set srcheng2 = xdo.getExtension("DXSearchEngineInfoDL")
On Error GoTo Errors
cout " srcheng2.getSearchEngine=" & srcheng2.getSearchEngine
cout " srcheng2.getSearchIndex=" & srcheng2.getSearchIndex
cout " srcheng2.getSearchInfo=" & srcheng2.getSearchInfo
cout " srcheng2.getTextIndex=" & srcheng2.getTextIndex
cout " srcheng2.getCatalog=" & srcheng2.getCatalog
cout " srcheng2.getDataBase=" & srcheng2.getDataBase
cout " srcheng2.getServerName=" & srcheng2.getServerName
cout " srcheng2.getSearchClassId=" & srcheng2.getSearchClassId
cout " srcheng2.getSearchTimestamp=" & srcheng2.getSearchTimestamp
cout " xdo.retrieveObjectState=" & xdo.retrieveObjectState(DX_Indexed_Object)

Else
cout "==not indexed, do new DXSearchEngingInfoDL to prepare:"
Dim srcheng As New DXSearchEngineInfoDL
srcheng.setSearchEngine "SM"
srcheng.setSearchInfo "ENU"
srcheng.setSearchIndex "TMMUF-TMINDEX"
cout " set srcheng extension obj..."
xdo.setExtension srcheng
On Error GoTo Errors
cout " about to setToBeIndexed..."
xdo.setToBeIndexed
On Error GoTo Errors
cout " setToBeIndexed success..."

Chapter 9. Using the ActiveX (OLE) application programming interface 379

End If
cout "isCategoryOf media obj=" & xdo.isCategoryOf(DX_Media_Object)
cout "isCategoryOf indexed obj=" & xdo.isCategoryOf(DX_Indexed_Object)

Exit Sub
Errors:

cout "Errors:" & str(Err.Number) & Err.Description

End Sub

Using combined query
Use a combined query to execute a combination of parametric and text queries, with
or without a scope. A scope is a DKResults object that is formed from a previous
parametric or text query. The result is an intersection between the scopes and the
results of each query. Therefore, if you are not careful when formulating the query
and including scopes, individual query results might not intersect and the
combined query result is empty.

If there is at least one parametric and one text query, the resulting DDO has the
attribute DKRANK, which signifies the highest rank of the matching part belonging to
the document.

Restriction: For each query in a combined query, you must use a different
connection to the search engine; you cannot route multiple queries through the
same connection.

Combined parametric and text queries: To run a combined query made up of
one parametric and one text query, without a scope, you must create a combined
query object and pass the two queries as input parameters to be run by the
combined query. For example:
Dim dsDL as new DXDatastoreDL
dsDL.connect "LIBSRVRN", "FRNADMIN", "PASSWORD"
Dim dsTS as new DXDatastoreTS
dsTS.connectPort "TM", "", DX_TS_CTYP_TCPIP 'TM is a local alias for the TM server
'Create a parametric query
Dim pquery as String
pquery = "SEARCH=(INDEX_CLASS=GRANDPA,COND=(DLSEARCH_Date > 1994);"
Dim pq as DXParametricQuery
Set pq = dsDL.createQuery(pquery)
'Create a text query
Dim tquery as String
tquery = "SEARCH=(COND=(Tivoli));OPTION=(SEARCH_INDEX=TMINDEX)"
Dim tq as DXTextQuery
Set tq = dsTS.createQuery(tquery)
'Create a combined query
Dim cq as new DXCombinedQuery
'Package the queries in DXNVPair as input parameters
Dim par(1 To 3) As New DXNVPair
par(1).Set DX_PARM_QUERY, pq
par(2).Set DX_TEXT_QUERY, tq
par(3).setName DX_PARM_END 'to signal the end of the parameter list
'Execute the combined query
cq.execute par
'Get the results
Dim res as DXResults
Set res = cq.result
If res Is Nothing Then
Else

'Process the results
...

End If

380 Application Programming Guide

The last if-statement is necessary to ensure that the DKResults object is not null.

Using a scope: If you have a DXResultsDL object that you want to use as the
scope, you can slightly modify the previous example to insert the scope as an
additional parameter:
Dim scope as DXResults
'assume that this is the scope
'initialized somewhere as a result
'of some parametric query
...
'Package the query in DXNVPair as input parameters
Dim par(1 to 4) as new DXNVPair
par(1).set DX_PARM_QUERY, pq
par(2).set DX_TEXT_QUERY, tq
par(3).set DX_SCOPE_DL, scope
par(4).setName DX_PARM_END
'Execute the combined query
cq.execute par
...

The results of one combined query can also be used as a scope for another
combined query, and sometimes you can query the results.

Ranking: If the combined query contains at least one text query, then the
resulting DDO has the attribute DX_DKRANK. This attribute is not stored, but is
computed each time by the Text Search Engine. The value of the rank corresponds
to the highest rank of the part in the document that satisfies the text query
conditions.

Tips: If you have several parametric queries and scopes, it is more efficient to run
one complete query. This is also true for text queries.

The query option "MAX_RESULTS=nn" limits the number of returned results. Usually,
this option is more applicable to text queries, because the result is sorted in
descending order by rank. If this option is set to 10, for example, it means that the
caller only wants the 10 highest matching results.

The meaning of the query option "MAX_RESULTS=nn" is different for parametric
queries. Because there is no notion of rank, the caller gets the first 10 results. The
results are intersected with the result from the text query. Therefore, when
combining parametric and text queries, it is advisable not to specify the query
option "MAX_RESULTS=nn" for the parametric query.

Understanding the workflow and workbasket functions
This section describes the workflow and workbasket functions.

Understanding the workflow service: The ActiveX APIs provide the workflow
service for the Content Manager datastore, encompassing the workflow and
workbasket functions that are available in the Folder Manager. A workbasket is a
container that holds documents and folders that you want to process. A workflow
is an ordered set of workbaskets that represent a specific business process. Folders
and documents move between workbaskets within a workflow, allowing your
applications to create simple business models and to route work through the
process until completion.

The workflow model used in Content Manager follows these rules:
v A workbasket does not need to be located in a workflow
v A workbasket can be located in one or more workflows

Chapter 9. Using the ActiveX (OLE) application programming interface 381

v A workbasket can be located in the same workflow more than once
v A document or folder can only be stored in one workflow at a time; however,

workbaskets can be located in multiple workflows
v A document or folder can be stored in a workbasket that is not located in a

workflow.

The DXWorkFlowServiceDL class represents the workflow service of the Content
Manager datastore. This class provides the capability to start, change, remove,
route, and complete a document or folder in a workflow. Additionally, the
DXWorkFlowServiceDL class allows you to retrieve information about workbaskets
and workflows.

The DXWorkFlowDL and DXWorkBasket classes are the object-oriented
representations of a workflow item and a workbasket item, respectively.

Establishing a connection: You must establish a connection to a Content Manager
server before you can use the workflow service. The content server provides
connection and disconnection methods. The connect method allows an application
to connect to Content Manager. After you create a workflow service, you can run
subsequent methods of the workflow service.

The following example shows how to connect to a Content Manager server named
LIBSRVRN, using the user ID FRNADMIN and the password PASSWORD.
Dim dsDL As New DXDatastoreDL
Dim wfDL As New DXWorkFlowServiceDL
wfDL.init (dsDL)

dsDL.connect "LIBSRVRN", "FRNADMIN", "PASSWORD"
... ' do some work
dsDL.disconnect

The complete sample application from which this example was taken (wfs.frm,
written in Visual Basic) is available in the Cmbroot/Samples/activex/dl
directory.

Creating a workflow: The workflow service allows you to create a new workflow.
The typical workflow creation process follows these steps:
1. Create an instance of DXWorkFlowDL
2. Set the workflow name to GOLF

3. Set the workbasket sequence to NULL to indicate that this workflow contains
no workbaskets

4. Set the privilege to All Privileges

5. Set the disposition to DX_WF_SAVE_HISTORY
6. Call the add method

The following example uses these steps to create a workflow. If you connect to the
datastore as a normal user (DX_SS_NORMAL), you will not get the workflow that
is defined after you connect. Therefore, this sample uses DX_SS_CONFIG.
Dim dsDL As New DXDatastoreDL
Dim wfDL As New DXWorkFlowServiceDL
wfDL.init dsDL
dsDL.setOption DX_OPT_DL_ACCESS, DX_SS_CONFIG
dsDL.connect "LIBSRVRN", "FRNADMIN", "PASSWORD"
Dim newwf As New DXWorkFlowDL
newwf.init wfDL
newwf.setName "GOLF"

382 Application Programming Guide

newwf.setAccessList "All Privileges"
newwf.setHistoryDisposition DX_WF_SAVE_HISTORY
newwf.add
... ' do some work
dsDL.disconnect

The complete sample application from which this example was taken (wfs.frm,
written in Visual Basic) is available in the Cmbroot/Samples/activex/dl
directory.

Listing workflows: DKWorkflowServiceDL provides a method for listing the
workflows in the system as shown in the following example. The list is returned in
a sequential collection of DKWorkFlowDL objects.
Dim dsDL As New DXDatastoreDL
Dim dsDL As New DXWorkFlowServiceDL
wfDL.init dsDL
dsDL.connect "LIBSRVRN", "FRNADMIN", "PASSWORD"

Dim wfList1 As New DXSequentialCollection
Set wfList1 = wfDL.listWorkFlows
Dim pIter1 As New DXSequentialIterator
Set pIter1 = wfList1.createIterator

Dim pwf1 As DXWorkFlowDL
Do While pIter1.more

Set pwf1 = pIter1.Next
pwf1->retrieve();
... ' do some work

Loop
dsDL.disconnect

The complete sample application from which this example was taken (wfs.frm,
written in Visual Basic) is available in the Cmbroot/Samples/activex/dl
directory.

Creating a workbasket: The workflow service allows you to create a new
workbasket. The typical workbasket creation process follows these steps:
1. Create an instance of DXWorkBasketDL
2. Set the workbasket name to Hot Items

3. Set the privilege to All Privileges

4. Call the add method

The following example uses these steps to create a workflow. If you connect to the
datastore as a normal user (DX_SS_NORMAL), you will not get the workflow that
is defined after you connect. Therefore, this sample uses DX_SS_CONFIG.
Dim dsDL As New DXDatastoreDL
Dim wfDL As New DXWorkFlowServiceDL
wfDL.init dsDL
dsDL.setOption DX_OPT_DL_ACCESS, DX_SS_CONFIG
dsDL.connect "LIBSRVRN", "FRNADMIN", "PASSWORD"
Dim newwb As New DXWorkBasketDL
newwb.init wfDL
newwb.setName "Hot Items"
newwb.setAccessList "All Privileges"
newwb.add
... ' do some work
dsDL.disconnect

Chapter 9. Using the ActiveX (OLE) application programming interface 383

The complete sample application from which this example was taken (wfs.frm,
written in Visual Basic) is available in the Cmbroot/Samples/activex/dl
directory.

Listing workbaskets: DKWorkflowServiceDL provides a method for listing the
workbaskets in the system as shown in the following example. The list is returned
in a sequential collection of DKWorkBasketDL objects.
Dim dsDL As New DXDatastoreDL
Dim dsDL As New DXWorkFlowServiceDL
wfDL.init dsDL
dsDL.connect "LIBSRVRN", "FRNADMIN", "PASSWORD"

Dim wbList1 As New DXSequentialCollection
Set wbList1 = wfDL.listWorkFlows
Dim pIter1 As New DXSequentialIterator
Set pIter1 = wbList1.createIterator

Dim pwb1 As DXWorkBasketDL
Do While pIter1.more

Set pwb1 = pIter1.Next
pwb1->retrieve();
... ' do some work

Loop
dsDL.disconnect

The complete sample application from which this example was taken (wfs.frm,
written in Visual Basic) is available in the Cmbroot/Samples/activex/dl
directory.

Listing items in a workflow: The workflow service provides a method for listing
the item IDs of the items in a workflow as shown in the following example. The
list is returned in a sequential collection of DXString objects.
Dim dsDL As New DXDatastoreDL
Dim dsDL As New DXWorkFlowServiceDL
wfDL.init dsDL
dsDL.connect "LIBSRVRN", "FRNADMIN", "PASSWORD"
Dim itemIDWF As String
itemIDWF = "H17MOPALUPFQ1U47"
Dim wf As New DXWorkFlowDL
wf.init wfDL
wf.setID itemIDWF
wf.retrieve

Dim pColDoc1 As New DXSequentialCollection
Set pColDoc1 = wf.listItemIDs
Dim pIter1 As New DXSequentialIterator
Set pIter1 = wbList1.createIterator

Dim DocID As String
Do While pIter1.more

DocID = pIter1.Next
... ' do some work

Loop
dsDL.disconnect

The complete sample function from which this example was taken (wfs.frm,
written in Visual Basic) is available in the Cmbroot/Samples/activex/dl
directory.

Executing a workflow: DKWorkflowServiceDL provides methods for executing a
workflow. The following example demonstrates how to start an item in a

384 Application Programming Guide

workflow, how to route an item to a workbasket, and how to complete an item in
a workflow. To use this sample you must modify it to:
v Use a valid item ID instead of EP8L8OR9MHH##QES
v Use a valid workflow ID instead of HI7MOPALUPFQ1U47
v Use a valid workbasket ID instead of E3PP1UZOZUFQ1U3M
Dim dsDL As New DXDatastoreDL
Dim dsDL As New DXWorkFlowServiceDL
wfDL.init dsDL
dsDL.connect "LIBSRVRN", "FRNADMIN", "PASSWORD"
Dim itemID As String
Dim itemIDWF As String
Dim itemIDWB As String
itemID = "EP8L8OR9MHH##QES"
itemIDWF = "H17MOPALUPFQ1U47"
itemIDWB = "E3PP1UZOZUFQ1U3M"
wfDL.startWorkFlowItemInFirstWorkBasket itemID, itemIDWF, TRUE,

DX_WIP_DEFAULT_PRIORITY
... ' do some work
wfDL.routeWipItem itemID, itemIDWB, TRUE, DX_NO_PRIORITY_CHANGE
... ' do some work
wfDL.completeWorkFlowItem itemID
dsDL.disconnect

The complete sample function from which this example was taken (wfs.frm,
written in Visual Basic) is available in the samples directory.

Working with Domino Extended Search (DES)
Domino Extended Search (DES) allows you to query and retrieve documents from:
v Lotus Notes databases
v NotesPump databases
v File systems
v Web search engines

With DES you can:
v Connectand disconnect from one or more DES servers
v List DES servers
v List databases and fields
v Perform searches using Generalized Query Language (GQL)
v Retrieve documents

Restriction: DES doe not support:
v Adding, updating, and deleting documents
v Text Search Engine and QBIC search
v Combined query
v Workbasket and workflow

All DES features are accessed and controlled by the DES configuration database.
Use the configuration database to assign database definitions for data sources to be
searched, network addresses, access control information, and other related
information.

Chapter 9. Using the ActiveX (OLE) application programming interface 385

Listing DES servers
To provide access to multiple DES servers, you can create a file named cmbdes.ini
that contains the server information. Store this file in x:\CMBROOT (where x is the
drive letter). The cmbdes.ini file must contain one line, in the following format, for
each server, :
DATASOURCE=TCP/IP address;PORT=port number

TCP/IP is the TCP/IP address of the DES server and the port number is the port
number defined for server access (for example: PORT=80).

Listing databases and fields
When you build a query to search a DES server, you must know the available
database and field names that are available. The DXDatastoreDES object provides
the listEntities method to list the databases and the listEntityAttrs method to
list the fields for each database. The following example shows an example of a list
of databases and their fields.
cout "list entities"

Set pCol = dsDES.listEntities
Set pIter = pCol.createIterator

Dim pCol2 As DXSequentialCollectionDES
Dim pIter2 As DXSequentialIteratorDES

Dim pEnt As DXDatabaseDefDES
Dim pAttr As DXFieldDefDES

i = 0
Do While pIter.more

i = i + 1

Set pEnt = pIter.Next
cout "database name [" & i & "] - " & pEnt.getName
cout "dispname: " & pEnt.getDisplayName
cout "helptext: " & pEnt.getHelpText
cout "lang: " & pEnt.getLanguage
cout "NumValus: " & pEnt.getNumVals
cout "datatype: " & pEnt.getDataType
cout "searchable:" & pEnt.isSearchable
cout "retrievable" & pEnt.isRetrievable

cout " list attributes for " & strDBName & " database name"

Set pCol2 = dsDES.listEntityAttrs(pEnt.getName)
Set pIter2 = pCol2.createIterator

j = 0
Do While pIter2.more

j = j + 1
Set pAttr = pIter2.Next
cout " Attribute name [" & j & "] - " & pAttr.getName
cout " datastoreName " & pAttr.datastoreName
cout " datastoreType " & pAttr.datastoreType
cout " type " & pAttr.getType
cout " size " & pAttr.getSize
cout " nullable " & pAttr.isNullable
cout " precision " & pAttr.getPrecision
cout " scale " & pAttr.getScale
cout " string type " & pAttr.getStringType
cout " display name " & pAttr.getDisplayName
cout " help text " & pAttr.getHelpText
cout " language " & pAttr.getLanguage
cout " isQueryable " & pAttr.isQueryable
cout " isRetrievable " & pAttr.isRetrievable

386 Application Programming Guide

Loop

cout " " & j & " attributes listed for " & pEnt.getName & " database name"
Loop
cout i & " entities listed\n"

dsDES.disconnect
cout "datastore disconnected"

cout "done ..."

The complete sample application from which this example was taken
(TListCatalogDES.frm) is available in the Cmbroot/Samples/activex/des directory.

Using Generalized Query Language (GQL)
DES uses the Generalized Query Language (GQL) to perform searches. Table 38
contains GQL expression examples.

Table 38. GQL expressions
GQL expression Description
"software" Search for documents containing the word

software
(TOKEN:WILD "exec*") Search for documents containing any word

beginning with exec
(AND "software" "IBM") Search for documents containing both words

software and IBM
(START "View" "How") Search for documents in which the View

field begins with the word How
(EQ "View" "How Do I?") Search for documents in which the View

field contains the exact string How Do I?
(GT "BIRTHDATE" "19330804") Search for documents in which the

BIRTHDATE field is greater than August 4,
1933

DES uses the query type DX_DES_GQL_QL_TYPE which has the following syntax:
SEARCH=(DATABASE=(db_name | db_name_list | ALL);

COND=(GQL expression));
[OPTION=([SEARCHABLE_FIELD=(fd_name, ...);]

[RETRIEVABLE_FIELD=(fd_name, ...);]
[MAX_RESULTS=maximum_results;]
[TIME_LIMIT=time)]

db_name_list is a list of database names (db_name) separated by commas and ALL
means search all of the available databases. The default time limit for a search is 30
seconds.

This example uses the query string to search for documents in the Notes Help
database, where the View field is How Do I? and the maximum results expected are
5.
myQuery = "SEARCH=(DATABASE=(Notes Help);"
myQuery = myQuery & "COND=(EQ \"View\" \"How Do I?\"));"
myQuery = myQuery & "OPTION=(MAX_RESULTS=5)"

This example runs a GQL query for DES. After the query runs, the
dkResultSetCursor object returns the results:
...
Private Sub Execute_Click()
Dim myQuery As String
Dim paramList(0) As DXNVPairDES
Dim vParamList As Variant

Chapter 9. Using the ActiveX (OLE) application programming interface 387

vParamList = paramList()
Dim i As Long
i = VarType(vParamList)
'Replace the following query string with your own -
'or get text from Query text box - remember to
'strip out the line feed and carriage control characters
'myQuery = QueryString.Text
myQuery = "SEARCH=(DATABASE=(DES files);"
myQuery = myQuery & "COND=((IN ""Doc$Content"" ""a"")));"
myQuery = myQuery & "OPTION=(MAX_RESULTS=2;TIME_LIMIT=15)"
QueryString.Text = myQuery
Dim rsCursor As DXResultSetCursorDES
Set rsCursor = dsdes.Execute(myQuery, DX_DES_GQL_QL_TYPE)
On Error GoTo HandleError
Dim res As New ProcessRes 'create text box
res.ProcessResults rsCursor
res.Show
Exit Sub
...

A complete example of the application from which this sample was taken
(TExecuteDES.frm) is available in the Cmbroot/Samples/activex/dl directory.

DDO properties in DES
A DDO in DES always has the type DX_DES_DOCUMENT. To get the DDO object type:
Object obj = ddo.getPropertyByName(DX_DL_PROPERTY_TYPE);
short type = ((Short) obj).shortValue();

Creating PIDs in DES
The PID contains specific document information. The object type identifies the
database where the document was found. To create a PID, use the database name,
followed by the logical (|) or character | character and the document ID. For
example:
database name|documentId ()

For more information on PIDs, see “Understanding persistent identifiers (PID)” on
page 11 and “Creating a persistent identifier (PID)” on page 27.

DES document contents
Each item in the DDO represents a field, a collection, or a DKParts object.

Field The field name for a single field is inside the item name. The field value is
also inside the item value. The field property can be:
v DX_CM_VSTRING
v DX_CM_FLOAT
v DX_CM_XDOOBJECT
v DX_CM_DATE
v DX_CM_SHORT

Collection
When a field has multiple values, the field name is in the item name. The
item value is a DXSequentialCollection object. The property can be
DX_CM_COLLECTION, or DX_CM_COLLECTION_XDO if the field is a
BLOB.

DKParts
A document DDO has a specific attribute with a reserved name DKPARTS,
its value is a DKParts object. You can use DKPARTS to store the document
Uniform Resource Locator (URL) information. DKPARTS can also contain
an XDO with its contents as a string representing the document URL.

388 Application Programming Guide

This example processes the contents of a DDO:
...
cout "query string " & cmd
cout "create query"
Dim pQry As DXDESQueryDES
Set pQry = dsDES.createQuery(cmd, DX_DES_GQL_QL_TYPE)
cout "executing query"
pQry.execute
cout "query executed"
cout "get query results"

Dim presults As DXResultsDES
Set presults = pQry.result

processResults presults

dsDES.disconnect
cout "datastore disconnected"
End Sub

Private Sub processResults(results As DXResultsDES)
Dim iter As DXSequentialIteratorDES
Set iter = results.createIterator

cout " cardinality of results " & results.cardinality

Dim item As DXDDODES

Do While iter.more
Set item = iter.Next

If item.getPropertyByName("item-type") = DX_DES_DOCUMENT Then
cout " Item is a document, number of data item "

& item.dataCount
For i = 1 To item.dataCount

dataName = item.getDataName(i)
cout " data item[" & i & "] = " & dataName & ",

\t\t value " & item.GetData(i)
usCount = item.dataPropertyCount(i)
For k = 1 To usCount

cout " property " & k & " " & item.getDataProperty(i, k)
Next

Next
Else

cout " Item is not recognized "
End If

Loop
...

A complete example of the application from which this sample was taken
(TQueryDES.frm) is available in the samples directory.

Retrieving a document
To retrieve a document from a DXDatastoreDES object, you must know the name
of the database that contains the document and the document ID. You must also
associate the DDO to a content server and establish a connection.

Retrieving a BLOB
To retrieve a BLOB from a DXDatastoreDES object, you must know the name of
the database, the ID of the document that contains the BLOB, and the name of the
field that contains the BLOB. You must also associate the DDO to a content server
and establish a connection.

Chapter 9. Using the ActiveX (OLE) application programming interface 389

In the following example, the database named DES files contains an HTML file
named D:\desdoc\README.html. The field that contains the HTML file is named
Doc$Content. The sample code retrieves the HTML file and saves it as
D:\DESReadme.html.
Private Sub Retrieve_Click()

Set xdo = New DXBlobDES
xdo.init dsdes
Set pid = New DXPidXDODES
pid.setDocId ("d:\\desdoc\\README.html")
pid.setDatabaseName ("DES files")
pid.setPrimaryId ("DES files|D:\\desdoc\\README.html")
xdo.setPidObject pid
xdo.setFieldName ("Doc$Content")
cout "===before retrieve==="
xdo.Retrieve ("c:\Temp\DESReadme.html")

On Error GoTo Errors
cout " retrieve successfully"

Exit Sub

A complete example of the application from which this sample was taken
(TxdoRetrieveDES.frm) is available in the samples directory.

Associating MIME types with documents
DES does not directly support identification of Multipurpose Internet Mail
Extension (MIME) types. However, you must know the MIME type of an XDO that
you want to display within a web browser.

The CMBCC2MIME.INI file is used to determine the MIME type of a document. When
a DES query from NotesPump or FileSystem databases returns a BLOB, the
CMBCC2MIME.INI file is searched to determine if a MIME type can be assigned to the
BLOB. The default MIME type is text/html. A sample file named
cmbcc2mime.ini.samp is available in the samples directory.

Using federated searching in DES
When you create federated queries, the syntax used in DES is similar to SQL
syntax. The federated query expressions are converted to GQL syntax before they
are submitted to DES. Because SQL and GQL grammar have differences however,
only a subset of the SQL grammar is supported by Enterprise Information Portal.

Table 39 summarizes the SQL to GQL conversion of the supported comparison and
logical operators.

Table 39. SQL and GQL operators
SQL operator GQL operator
AND AND
OR OR
NOT not supported
IN not supported
BETWEEN BETWEENE
EQ EQ
NEQ not supported
GT GT
LT LT
LIKE not supported
GEQ GTE
LEQ LTE
NOTLIKE not supported

390 Application Programming Guide

Table 39. SQL and GQL operators (continued)
NOTIN not supported
NOTBETWEEN not supported

Chapter 9. Using the ActiveX (OLE) application programming interface 391

392 Application Programming Guide

Chapter 10. Using the Dynamic Page Builder

This chapter describes how to use the Dynamic Page Builder (DPB) to create a Web
application to make Content Manager data available over the Internet or an
intranet. DPB is a set of application programming interfaces (APIs) that lets you
build applications that retrieve Content Manager text and image content. You can
also dynamically create documents, including video streams, for display in a Web
browser.

The DPB requires IBM’s Net.Data as a front-end parsing and formatting tool.
Net.Data combines the functions of Common Gateway Interface (CGI), Connection
Manager, and Web page generation. Net.Data has a wizard to help you access
Net.Data function from your application.

See the Net.Data documentation for more information about using Net.Data. To
view the documentation from the Windows NT desktop, go to Start -\ Programs -\
Net.Data -\ Net.Data Documentation.

Configuring the Dynamic Page Builder with Net.Data
Net.Data uses an initialization file (db2www.ini) to customize settings and search
paths. The file location, contents and syntax depends on your operating system
and Web server. The following list shows an example of a Net.Data path:

ICS for AIX /usr/lpp/internet/server_root/pub

NCSA for AIX /usr/httpd/htdocs

IIS for Windows NT \inetpub\wwwroot

ICS for Windows NT \www\html

The Dynamic Page Builder uses the following three special path statements and
one environment statement:

ENVIRONMENT (DTW_DLDPB)

MACRO_PATH

INCLUDE_PATH

HTML_PATH

The ENVIRONMENT statement (DTW_DLDPB)
The following statement is for the Dynamic Page Builder on Net.Data; it provides
the server setting for the cliette program and macro files:
ENVIRONMENT(DTW_DLDPB) dtwdldpb (IN DATABASE, LOGIN, PASSWORD,

OUT RETURN_CODE) CLIETTE "DTW_DLDPB:$(DATABASE)"

dtwdldpb
is a required, shared DLL providing the non-cliette access to Content
Manager. Not currently supported by Dynamic Page Builder.

(IN DATABASE, LOGIN, PASSWORD, OUT RETURN_CODE)
is the variable setting for macro files, and it provides the capability to

© Copyright IBM Corp. 1996, 2001 393

allow different users to log on to the cliette. If you want to run in the
single user mode, remove this line from db2www.ini and the macro files to
improve performance.

The MACRO_PATH statement
The MACRO_PATH identifies one or more directories to search for macro files. The
syntax of the MACRO_PATH is:
MACRO_PATH [=] path[;path;..]

The INCLUDE_PATH statement
The INCLUDE_PATH identifies one or more directories in which to search for a
file specified on the %INCLUDE statement in a macro file:
Net.Data db2www.ini file
INCLUDE_PATH=c:\inetpub\wwwroot
Macro file
%INCLUDE "dlheader.html"

The HTML_PATH statement
This is the special path variable. When Content Manager returns a large object, it
saves all of the objects to the tmplobs directory. tmplobs is the subdirectory under
the first directory name specified in the HTML_PATH statement.

The syntax of the HTML_PATH statement is similar to the MACRO_PATH
statement:
HTML_PATH [=] path[;path;..]

Dynamic Page Builder functions
This section describes the Dynamic Page Builder APIs, the parameters passed to
them, the parameters passed through in-line data, and the variables to be defined.

API functions
Table 40 shows the terms that Dynamic Page Builder reserves for API functions.
The online API reference defines API function terms.

Table 40. API function terms

Term Definition

DP_DLConnect Connect to Content Manager

DP_DLListServer List all of the Content Manager servers

DP_TMConnect Connect to the text search server

DP_QBConnect Connect to the image search server

DP_DisConnect Disconnect from a search engine

DP_IndexClass Get the index classes

DP_IndexAttribute Get the index attributes

DP_QBOpenCatalog Access the QBIC catalog

DP_QBCloseCatalog Exit the QBIC catalog

DP_QBListCatalog List the QBIC catalogs

DP_PMQuery Perform a parametric search

DP_PMQuerySQL Perform a parametric search using DB2 access; the
parameters are the same as DP_PMQuery()

394 Application Programming Guide

Table 40. API function terms (continued)

Term Definition

DP_PMQuerySQL2 Perform a parametric search using DB2 access; the
parameters are the same as DP_PMQuery() with one
exception: DP_ATTRIBUTE_NAME

DP_TMQuery Perform a text search

DP_TMQuerySQL Perform a text search using DB2 access; the parameters
are the same as DP_TMQuery()

DP_QBQuery Perform an image search

DP_QBQuerySQL Perform an image search using DB2 access; the
parameters are the same as DP_QBQuery()

DP_TMQuery2 Perform a text search while connected with Text Engine

DP_QBQuery2 Perform an image search while connected

DP_CBQuery Perform a combined search

DP_CBQuerySQL Perform a combined search using DB2 access; the
parameters are the same as DP_CBQuery()

DP_Folders Get a folder collection

DP_Parts Get a parts collection

DP_MetaData Get the metadata

DP_Retrieve Get a data object

DP_WorkflowService Access the workflow services class

DP_ListWorkFlows List the workflows

DP_ListWorkBaskets List the workbaskets in the system or within the
specified workflow

DP_ListItems List the items in the specified workflow or workbasket

DP_WorkFlowDL Access the DKWorkFlowDL class

DP_WorkBasketDL Access the DKWorkBasketDL class

DP_Object Execute an object

DP_SQLTrigger Run SQL through the input parameter DP_SQLSTATEMENT

Input parameters
Table 41 describes the API function input parameters and application. Each
function allows only one input parameter.

Table 41. API function input parameter application and description

Parameter Applied at Description

CONNECT_STRING DP_DLConnect Connection string for Content
Manager

CONNECT_STRING DP_TMConnect Connection string for the TM

DP_DATASTORE DP_DisConnect Content server identifier (DL for
Content Manager, TM for Text
Search, QBIC for image search)

PMQUERY_STRING DP_PMQuery Parametric search query string
(DL for Content Manager, TM for
Text Search)

Chapter 10. Using the Dynamic Page Builder 395

Table 41. API function input parameter application and description (continued)

Parameter Applied at Description

PMQUERY_STRING DP_CBQuery Parametric search query string
(DL for Content Manager, TM for
Text Search)

TMQUERY_STRING DP_TMQuery Text search query string

TMQUERY_STRING DP_CBQuery Text search query string

INDEX_CLASS DP_IndexAttribute Content Manager index class
name

DP_THUMBID DP_Retrieve Part ID of item retrieved

DP_DESCRIBEID DP_Parts Part ID of TOC Part

PID DP_Folders Part Item ID

PID DP_Parts Part Item ID

PID DP_MetaData Part Item ID

PID DP_Retrieve Part Item ID

DP_DESCRIBEID DP_Retrieve Part ID of TOC Part; file name
for thumbnail image

An example of a function call with input parameters is:
%FUNCTION(DTW_DLDPB) DP_DisConnect(DP_DATASTORE)

{ DP_DisConnect; %}

Inline data
You can also pass parameters to Dynamic Page Builder using inline data as shown
in Table 42.

Table 42. Dynamic Page Builder inline data

Parameter Term Definition

For DP_DLConnect(),
DP_TMConnect() and
DP_QBConnect()

CONNECT_STRING Connection string for Content
Manager

For DP_DisConnect() DP_DATASTORE Content server identifierDL
for Content Manager, TM for
text search, QBIC for image
search

For DP_PMQuery() and
DP_CBQuery()

DP_THUMBID Part ID of retrieved item

DP_DESCRIBEID Part ID of TOC part; file
name for thumbnail image

PMQUERY_STRING Parametric search query
string

Ignores remaining parameters
if PMQUERY_STRING is
supplied

INDEX_CLASS Content Manager index class
names

PM_MAX_RESULTS Maximum parametric search
results

PM_CONDITION Query expression

TYPE_FILTER Filter (DOC, FOLDER, FOLDERDOC)

396 Application Programming Guide

Table 42. Dynamic Page Builder inline data (continued)

Parameter Term Definition

DP_ORDERBY Order by attribute name;
default is ascending.

Add an exclamation point (!)
in front of the attribute name
to perform descending
sorting. For example,
!DLSEARCH_Author

DP_MAX_DISPLAY Maximum display results

For DP_TMQuery() and
DP_CBQuery()

DP_MAP2DL=yes/no Displays Content Manager
attribute information

TMQUERY Text search string

TM_CONDITION Query expression

TM_MAX_RESULTS Maximum text search results

SEARCH_INDEX TM index class name

DP_TIMELIMIT Text search time limit

DP_ORDERBY Perform a parametric search

DP_MAX_DISPLAY Maximum display results

DP_THUMBID Part ID display for the part
retrieved from Content
Manager. Returns Thumbnail
file name in the column of
the header name DP_THUMBID,
if inline parameters provided
correct DP_THUMBID

DP_DESCRIBEID TOC Part ID. Provides
original file name for
thumbnail. Generates random
file name if it finds incorrect
DP_DESCRIBEID for
thumbnail

DP_MAP2DL=yes/no Return DP_PMQuery output
format instead. (yes/no)

For "DP_QBQuery" and
"DP_CBQuery"

QBIC_FEATURE_NAME QBIC feature class

QBIC_FEATURE_VALUE QBIC search value

DP_THUMBID Text search query string

DP_DESCRIBEID Text search query string

DP_MAP2DL Text search query string

DP_MAX_DISPLAY Text search query string

DP_TMQuery2() Text search query string plus
one additional parameter,
CONNECT_STRING, to
connect to Text Search
Engine;

Chapter 10. Using the Dynamic Page Builder 397

Table 42. Dynamic Page Builder inline data (continued)

Parameter Term Definition

DP_QBQuery2() Takes the same parameters as
DP_QBQuery() plus
CONNECT_STRING to
connect to image search
server; also,
QBIC_DATABASE and
QBIC_CATALOG to open the
QBIC catalog.

For DP_MetaData() PID Parts item ID

For DP_Retrieve() PID Parts item ID

DP_THUMBID Part ID of item retrieved

DP_IMAGENAME Returns as file name
(yes/no). Default is yes. The
file content will be returned if
set to no

DP_DESCRIBEID Part ID of TOC part; file
name for thumbnail image

For DP_Parts() PID Parts item ID

DP_DESCRIBEID Part ID of TOC part; file
name for Thumbnail image

For DP_Folders() PID Parts item ID

DP_THUMBID Part ID of item retrieved

DP_DESCRIBEID Part ID of TOC Part; file
name for Thumbnail image

For "DP_QBListCatalog()" QBIC_DATABASE QBIC database name

For "DP_QBOpenlog()" QBIC_DATABASE QBIC database name

QBIC_CATALOG QBIC catalog name

DP_TMQuery2 Combines DP_TMConnect(),
DP_TMQuery(), and
DP_DisConnect() as one API
that reduces the HTTP traffic.
It takes the same parameters
(input/inline) as
DP_TMQuery() with
additional inline parameter
(CONNECT_STRING) for TM
connection.

398 Application Programming Guide

Table 42. Dynamic Page Builder inline data (continued)

Parameter Term Definition

DP_QBQuery2 Similar to DP_TMQuery2.
This is the combined API that
represents DP_QBConnect,
DP_QBOpenCatalog,
DP_QBQuery,
DP_QBCloseCatalog, and
DP_DisConnect in one API
call. It takes the same
parameters as DP_QBQuery()
with additional inline
parameters
CONNECT_STRING for
QBIC connection,
QBIC_DATABASE, and
QBIC_CATALOG for QBIC
open catalog.

Variable definition
Define the variables listed in the db2www.ini file so that you can use them in the
macro files:
ENVIRONMENT(DTW_DLDPB) dtwdldpb (IN DATABASE, LOGIN, PASSWORD,
START_ROW_NUM, OUT RETURN_CODE) CLIETTE "DTW_DLDPB:$(DATABASE)"

DATABASE
Content Manager server name

LOGIN
Content Manager user ID

PASSWORD
Content Manager password

START_ROW_NUM
Starting row number for display in report section

RETURN_CODE
Return code from DP API

Special output variable
DP API assigns the Number of Rows Affected (NRA) to the second title column of
the first returned row to display the total NRA by DP_PMQuery() and DP_CBQuery.

This is an example of a report section of DP_PMQuery():
%FUNCTION(DTW_DLDPB) DP_PMQuery(in...)

...
%REPORT {

Total Number of Hits $(N2)
%ROW{
...
%}

%}
%}

Chapter 10. Using the Dynamic Page Builder 399

Developing a Net.Data macro for the Dynamic Page Builder
This section shows two sample macro files that help illustrate the Dynamic Page
Builder macro file elements.

Sample macro 1
Sample macro 1 retrieves all of the index class information from the Content
Manager server. The sample macro displays the index class information as a list.
From this list, you select an index class and retrieve its index attributes. A second
HTML page displays the index attributes.

This sample macro file has four sections:
v The definition section
v The function definition section
v The HTML input section
v The HTML report section

There is no limit on the HTML sections in a macro file.

To build a macro, add a macro statement to be processed dynamically at the server.
Two examples are: @DP_IndexClass in the HTML_INPUT section and
@DP_IndexAttribute in the HTML_REPORT section.

Examine the sample macro, section by section, to understand the macro execution:

Definition section
%(-------------------- Define Section ----------------------%}
%DEFINE{

DLTable = %TABLE(100)
PROGRAM = "/cgi-bin/db2www.exe/frndp2.d2w"

%}

After you define one or more variables in a single definition section, the variables
can be referenced anywhere in the macro file using the syntax: $(Variable)

Function definition section
%(------------ FUNCTION Definition Section --------------%}
%FUNCTION(DTW_DLDPB) DP_IndexClass (OUT table) {
<–– This function has no need for an ––>
<–– input parameter, but will return ––>
<–– the result in a table. ––>

DP_IndexClass;

<–– This function invokes the Dynamic Page Builder API (DP_IndexClass).––>

%REPORT{ %row{ <OPTION value=$(V1)>$(V1) %} %}
<–– The formatted return result is ––>
<–– set to be the option value of the ––>
<–– selection box. ––>

%MESSAGE {
<–– error detection. ––>

-160: "Error: 160: Catalog lookup failure" : exit
%}

%}
%FUNCTION(DTW_DLDPB) DP_IndexAttribute (in idx, OUT table) {

DP_IndexAttribute;
<–– This function invokes the Dynamic ––>

400 Application Programming Guide

<–– Page Builder API (DP_IndexAttribute) ––>

INDEX_CLASS = $(Index_Class);
<–– pass index class from inline data ––>

%REPORT {
<–– format return result ––>

%row {
<–– loop through each row ––>

<TR>
<–– Table row ––>

<TD> $(ROW_NUM) </TD>
<–– display row number ––>

<TD> $(V1) </TD>
<–– display 1st column ––>

</TR>
%}

%}

%MESSAGE {
-162: "Error: 162: Catalog lookup failure" : exit

%}
%}

This function definition section contains two function declarations. The first,
DP_IndexClass, is the Dynamic Page Builder API ″get″ index class. It takes no input
parameters and stores the return result in a single column table.

%REPORT{ %row{ <OPTION value=$(V1)>$(V1)
%}

%}

The return result is assigned to <OPTION value=> format, and builds the items of
the selection box for you to pick the index class and display the index attributes at
the second HTML page. The second function definition DP_IndexAttribute is the
Dynamic Page Builder API ″get″ index attribute. It takes the single parameter
INDEX_CLASS and returns the results in a single column table. The passing of input
parameters as inline data is available in most of Dynamic Page Builder APIs. In the
sample macro, INDEX_CLASS is passed through inline data, not input parameters.
Inline data will be ignored if both input parameters and inline data are provided.

HTML input section
%(----------------- HTML Input Section ---------------------%}

%HTML_INPUT{
<–– Identifies the name of this section ––>
<HTML>

<FORM METHOD=POST ACTION="$(PROGRAM)/report">
<–– Form tag with variable substitution; ––>
<–– this will invoke the $(PROGRAM)/report ––>
<–– section when this form is submitted. ––>

<center>
<h2> Result of Index Class in Content Manager server </h2>
<p> Select the categories for the attributes associated.
<p>

<TABLE border=1 width=50%>
<TR>
<TD align=center> <SELECT NAME="Index_Class" SIZE=8 WIDTH=80>
@DP_IndexClass(DLTable)

<–– This line contains a call to DPP ––>
</SELECT> </TD>
</TR>
</TABLE>

<TR>

Chapter 10. Using the Dynamic Page Builder 401

<TD> <INPUT TYPE="submit" NAME="get_IndexAttr"
VALUE="Get Attribute">

</TD> </TR>
</CENTER>
</FORM>

</HTML>
%}

The entire HTML section is surrounded by the HTML section identifier:
%HTML_INPUT { ... %} INPUT identifies the name of this section, which has been
used in the web address also: http://www.ibm.com/cgi-
bin/db2www/sample.d2w/INPUT

This section contains an example of a function call. The expression of
@DP_IndexClass(DLTable) is a call to the Dynamic Page Builder API. This function
is defined in the function definition section described in “Dynamic Page Builder
functions” on page 394. The result of the DP_IndexClass function is inserted into
the HTML text in the same location as the@DP_IndexClass() expression.

Figure 61 shows an example of what the input section looks like in the sample
application.

HTML report section
%(------------------- HTML Report Section -----------------------%}
%HTML_REPORT{
<HTML>

<CENTER>
<h2>Index Attribute of $(Index_Class)</h2>

<–– Substitution from INPUT section ––>
<TABLE cellpadding=1 cellspacing=5 border=1 width=80%>

<TR>
<TH>Row Number</TH>
<TH>Index Attribute</TH>
</TR>
@DP_IndexAttribute(Index_Class,DLTable)

<–– call to a function ––>
</TABLE>
</CENTER>

</HTML>
%}

Figure 61. Index Class result

402 Application Programming Guide

Like the INPUT section, this section is standard HTML, enhanced with a macro
statement that substitutes a variable and a function call.

The Index_Class variable is substituted into the title statement. DP_IndexAttribute
is the call to the previously defined function. It passes the content of the variable
Index_Class, which was selected from the INPUT form (see Figure 61 on page 402,
shows the category Grandpa selected. Figure 62 shows the HTML report listing the
12 index attributes of Grandpa.

DP_IndexAttribute also accepts inline parameters, as shown in the following
statement:

@DP_IndexAttribute(""
,DLTable)

DP_IndexAttribute requires a variable defined using inline data in the function
definition section:
%FUNCTION(DTW_DLDPB) DP_IndexAttribute (in idx, OUT table) {

DP_IndexAttribute;
INDEX_CLASS = $(Index_Class);

<–– Index_Class referenced here ––>
...

%}

%(---------------- HTML Report Section -----------------%}
%HTML_REPORT{
<HTML>

<CENTER>
<h2>Index Attribute of $(Index_Class)</h2>
<TABLE cellpadding=1 cellspacing=5 border=1 width=80%>
<TR>
<TH>Row Number</TH>
<TH>Index Attribute</TH>
</TR>
@DP_IndexAttribute(Index_Class,DLTable)

Figure 62. Attributes of index class Grandpa

Chapter 10. Using the Dynamic Page Builder 403

</TABLE>
</CENTER>

</HTML>
%}

Sample macro 2
Sample macro 2 performs a parametric search and returns a report that includes
hyperlinks to the returned files.

This macro file consists of three major sections:
v Definition section
v The function definition section
v The HTML Input Section

Sample Macro 2 calls the HTML input section in the program with the PPID
parameter set to Not NULL.

Definition section
You need the DATABASE, LOGIN, and PASSWORD variables in the Define section if they
are defined in the db2www.ini file as: ENVIRONMENT(DTW_DLDPB) dtwdldpb (IN
DATABASE, LOGIN, PASSWORD, OUT RETURN_CODE) CLIETTE "DTW_DLDPB:$(DATABASE)".
%(--------------------- Define Section --------------------------%}
%DEFINE{

DATABASE = "LIBSRVRN"
<–– Library server name ––>

LOGIN = "FRNADMIN"
<–– User logon ID ––>

PASSWORD = "PASSWORD"
<–– User logon password ––>

dlResult = %TABLE(ALL)
<–– Result set table ––>

TOC_PART = "2"
<–– Part number of description part ––>

THUMBID = "5"
<–– Part number to display ––>

PROGRAM = "/cgi-bin/db2www.exe/frndp59.d2w"
qst = "SEARCH=(INDEX_CLASS=GRANDPA,MAX_RESULTS=10);"

<–– Parametric Query string ––>
%}

Function definition section
This function definition section contains two function declarations. The first,
DP_Parts, is the Dynamic Page Builder API declaration for retrieving collections. It
retrieves all of the individual parts in the document and stores them in the tmplobs
subdirectory of the HTML root directory. It has one input parameter, part item ID
and stores the returned result in a five-column table.

$(V1) Part item ID

$(V2) File size

$(V3) File type

$(V4) File name

$(V5) Part ID

DP_PMQuery is the Dynamic Page builder API for processing parametric queries. It
has one input parameter, PMQUERY_STRING, and returns the results in the variable
columns in the five-column table.

$(V1) Part item ID

404 Application Programming Guide

$(V2) Filter (Document, Folder, or Unknown)

$(V3) DKFolder. In the results, you might receive the folder collection after the
Parametric query. In this case, $(V3) is set to YES to indicate that there is a
folder collection, and that you need to call DP_Folder() to process it. $(V3)
can be blank to indicate that no folder collection is associated with it. $(V3)
can also be the file name of a thumbnail image if DP_THUMBID is
provided and no folder collection is found.

$(V4) DKParts. Setting $(V4) to yes indicates that there is an associated parts
collection. You can call DP_Parts() to retrieve all of the parts within the
current parts collection.

$(V5)...$(Vn)
Values of index attributes.

%(------------------- FUNCTION Definition Section -----------------------%}

%FUNCTION(DTW_DLDPB) DP_Parts (in PID, OUT table) {
DP_Parts;

<–– Invoke DP_API ––>
DP_DESCRIBEID=$(TOC_PART);

<–– Assign TOC part number ––>
%REPORT{

%ROW {
<–– Loop through each row ––>

%IF (ROW_NUM == "3")
<FRAME SRC="$(V4)">

%ENDIF
<–– If the 3rd row, display the 4th column ––>

%}
%}

%}

%FUNCTION(DTW_DLDPB) DP_PMQuery (in PMQUERY_STRING,OUT table) {
DP_PMQuery;

<–– Invoke DP_API ––>
DP_THUMBID=$(THUMBID);

<–– Assign part number to be shown ––>
DP_DESCRIBEID=$(TOC_PART);

<–– Provide file name in TOC part for thumbnail;––>
<–– random file name will be ––>
<–– generated if DP_DESCRIBEID does ––>
<–– not provide, or can't find the TOC part. ––>

%REPORT {
%ROW {

@DTW_DIVREM(ROW_NUM,"3","5",REM)
<–– Get remainder of dividing "3"; ––>
<–– For showing 3 records per row ––>

%IF (REM == "1")
<–– Remainder = "1" ––>

<TR>
<–– New table row ––>

%ENDIF
<TD WIDTH=33.33% ALIGN=CENTER>

<–– Display the 3rd column ––>

%IF ($(V4) == "YES")
$(V9)

<–– Hyperlink with PPID value ––>
%ENDIF
</TD>
%IF (REM == "0")

</TR>
<–– Close table row ––>

%ENDIF
%}

Chapter 10. Using the Dynamic Page Builder 405

%}

%MESSAGE {
-170: "Error: 170: Query failure" : exit
%}

HTML input section
To run this program, send a URL request to your Web server. For example,
http://WWW/cgi-bin/db2www.exe/frndp59.d2w/input, where WWW is the main Web
server directory.

To process the input section (because PPID begins as NULL), the %ELSE portion is
executed to invoke DP_PMQuery() for data processing. This displays a thumbnail
image and builds a link to assign a PPID value. You can display the document by
clicking the Title link to call the program and pass PPID as a parameter. The If
statement is satisfied with the PPID assigned and DP_Parts() is invoked to retrieve
the document. Figure 63 shows an example of a query string for the
INDEX_CLASS=GRANDPA. Figure 64 on page 407 shows an example of a search
results report that includes links.

Figure 63. Query string example

406 Application Programming Guide

If you receive a broken image, make sure that:
v The image object is available in the object server
v The thumbnail ID is valid
v The object that resides in the object server is not corrupt

See the Net.Data documentation for more information about macro programming.
%(------------------- HTML Section ---------------------%}
%HTML(INPUT){
<HTML>

<head>
<BASE HREF="http://jasonwu.stl.ibm.com/" >
</head>
<center>
%IF (PPID != "")

<–– detect PPID variable, the first time ––>
<–– through will be NULL ––>

<FRAMESET FRAMEBORDER="no" ROWS="100%,*,*">

Figure 64. Search results report

Chapter 10. Using the Dynamic Page Builder 407

<NOFRAMES>
<BODY BGCOLOR="#ffffff" LINK="#000080" ALINK="#00ff00"
VLINK="#557f55">
</BODY>
</NOFRAMES>
@DP_Parts(PPID,dlResult)

<–– Invoke DP_API ––>
</FRAMESET>

%ELSE

 <font+1> Query String

$(qst)

<font+1> Result Sets

<HR size=3>

<TABLE cellpadding=7 cellspacing=4 border=1 width=80%>

@DP_PMQuery(qst,dlResult)
<–– Invoke DP_API ––>

</TABLE>
%ENDIF
</center>

</HTML>
%}

Improving performance

Live Connection Manager
This section explains how to use Content Manager Dynamic Page Builder with the
Net.Data Live Connection Manager to improve performance by eliminating
start-up overhead. A live connection consists of a connection manager and cliettes.

Cliettes are single-threaded processes that the connection manager starts and keeps
resident while the server runs, processes data, and communicates with the
Net.Data environment.

Live Connection has two advantages:

Enhanced performance
Avoids the library server connection to save time.

Sequential display
Offers the ability to use next and previous options, which help navigate
large result sets in an application. By setting the variables START_ROW_NUM
and RPT_MAX_ROW, you can break down large result sets into smaller
segments.

Reuse dynamic pages
Dynamic Page Builder retrieves image content from Content Manager at run time
and stores it on the server with the file name provided in the TOC part.

A TOC part is one of the parts within the document that identifies the relationship
between an individual part and the file name it is associated with. An example
TOC part is shown below (anynet.htm is an HTML file):
anynet.htm:3
abstract.txt:4
anynet1t.gif:5
sqcloud0.gif:17
sqclouda.gif:18
bigsq.gif:19
dot_clea.gif:20
dot_clea.gif:21
anynet1.gif:22
anynet2.gif:23

408 Application Programming Guide

sqhome.gif:24
tellsq.gif:25
getsq.gif:26
software.gif:27

With the TOC part, you can reduce the overhead associated with file input and
output by setting the environment variable DLPD_FILEMODE=2 when you invoke the
Live Connection Manager (see “The ENVIRONMENT statement (DTW_DLDPB)”
on page 393.) With DLPD_FILEMODE=2, the Dynamic Page Builder does not overwrite

existing files, so you can reuse a file.

Invoking the wizard
Net.Data offers a wizard to help you access Net.Data function from your
application.

How you start the Content Manager Dynamic Page Builder wizard depends on the
platform and shell script you use (see Table 43).

Table 43. Platforms and script files
Platform Script file
Windows NT DPWizard.bat
AIX Korn Shell DPWizard.ksh
AIX C Shell DPWizard.csh

After you complete all of the data fields in the Dynamic Page Builder wizard, a
macro file creates a file in the current directory with the file name you specified.
Copy the created macro file to the MACRO_PATH directory as defined in the
db2www.ini file, so that you can execute the file from your Web application.

Starting the Dynamic Page Builder sample
This section describes how to use some of the different kinds of available Web
servers.

The following examples assume that C is your drive, DB2WWW is the root directory
for ICS on Windows NT, and InetPub is IIS root directory on Windows NT.

Web server configuration

Windows NT with the IIS V2 Web server
1. Start Microsoft Internet Service Manager. Double-click on the computer name of

WWW service to display the WWW service properties for your machine.
2. Click on Directories to create cgi-bin, tmplobs, and cmbroot aliases. Make sure

you specify the corresponding directories and make sure the directories exist.
3. Choose READ and EXECUTE access rights for cgi-bin. Choose READ only for

tmplobs. For example:
Directory: c:\InetPub\wwwroot\cgi-bin Alias: /cgi-bin
Directory: c:\InetPub\wwwroot\tmplobs Alias: /tmplobs
Directory: c:\cmbroot Alias: /cmbroot (Assume Content Manager is

installed at C:\CMBROOT)

4. Copy the Content Manager files from the Net.Data HTML directory to <home>
alias. For example:
copy c:\db2www\html*.* c:\InetPub\wwwroot
copy c:\db2www\cgi-bin\db2www.exe c:\InetPub\wwwroot\cgi-bin

Chapter 10. Using the Dynamic Page Builder 409

5. Modify c:\InetPub\wwwroot\db2www.ini to make sure that the HTML_PATH
and INCLUDE_PATH point to c:\InetPub\wwwroot.

Windows NT with the IBM ICS Web server
This is the Net.Data default setup for Windows NT 4.0. All you must do is make
sure that the cgi-bin, tmplobs, and cmbroot aliases are set and that the directories
exist. For example:
Directory: c:\db2www\cgi-bin Alias: /cgi-bin
Directory: c:\db2www\html\tmplobs Alias: /tmplobs
Directory: c:\cmbroot Alias: /cmbroot

You can verify this by using your Web browser to access:

<lines>: http://machine/admin-bin/cfgin/mpfrule< /lines>

IBM AIX with the IBM ICS Web server
This is the Net.Data default setup for AIX, so all you must do is create a directory
named /usr/lpp/internet/server_root/pub/tmplobs for BLOBs, and ensure that
you bring up the Web server as a subsystem, by entering the following command
for example:
startsrc -s http

Connection manager setup

Windows NT 4.0 platform
1. Modify the dtwcm.cnf file in the c:\db2www\connect directory. Locate the section

starting with DTW_DLDPB and modify the parameters as shown in the following
example:

2. CLIETTE DTW_DLDPB:LIBSRVRN{ ––> Library server
MIN_PROCESS=1 ––> Minimum start
MAX_PROCESS=5 ––> Maximum process
START_PRIVATE_PORT=7150
START_PUBLIC_PORT=7350
EXEC_NAME=cldldpb.exe
DATABASE=LIBSRVRN ––> Library server
BINDFILE=NOT_USED
LOGIN=FRNDPMIN ––> DP user ID
PASSWORD=PASSWORD ––> DP password

}

a. Set MIN_PROCESS parameter to 0 for the remaining sections in the file.
b. Start the library server and the object server.
c. Double-click the Net.Data icon to start the Live Connection Manager.

IBM AIX OS
Modify the dtwcm.cnf file in the /usr/lpp/internet/db2www/db2 directory. Locate
the section starting with DTW_DLDPB and modify the parameters as shown in the
following example:
CLIETTE DTW_DLDPB:LIBSRVRX{ ––> Library Server
MIN_PROCESS=1 ––> Minimum start
MAX_PROCESS=5 ––> Maximum process
START_PRIVATE_PORT=7150
START_PUBLIC_PORT=7350
EXEC_NAME=./cldldpb DATABASE=LIBSRVRX ––> Library server
BINDFILE=NOT_USED LOGIN=FRNDPMIN ––> DP user ID
PASSWORD=PASSWORD ––> DP password

}

1. Set MIN_PROCESS parameter to 0 for the remaining sections in the file.
2. Start the library server and the object server

410 Application Programming Guide

3. Start Live Connection Manager by typing dtwcm -d from the directory of
/usr/lpp/internet/db2www/db2

Configuring sample macro files
1. Specify SERVER, DATABASE, LOGIN, PASSWORDQB_CATALOGQB_DATABASEQB_CONNECT

and HTMLROOT parameters in files frndp15.d2w and frndp25.d2w, which are
located under c:\db2www\macro for Windows NT and
/usr/lpp/internet/db2www/macro for AIX:
%define{
SERVER = "Enter Web server machine host name here"
DATABASE = "Enter Library server name here"
LOGIN = "Enter Library server user id here"
PASSWORD = "Enter Library server password here"
QB_CATALOG = "Enter QBIC Catalog here"
QB_DATABASE = "Enter QBIC Database here"
QB_CONNECT = "Enter QBIC_Server/UserID/Password here"
HTMLROOT = "Enter Default HTML root directory here"
%}

2. Specify the Web address in the file dlheader.html, located in
c:\InetPub\wwwroot directory for Windows NT with IIS Web server,
c:\db2www\html directory for Windows NT with ICS Web server, and the
/usr/lpp/internet/server_root/pub directory for IBM AIX with ICS Web
server; for example:
<head>
<title>IBM Content Manager Internet Connection</title>
<BASE HREF="http://xyz/">
</head>

xyz is your Web server address for the Internet or Web server host machine
name (or IP address) for your intranet.

3. Specify web addresses in the files of dpcolorapplet.html,
dphistogramapplet.html, and dpdrawapplet.html, which are located under
-cmbroot (Content Manager installation directory) for Windows NT, or
/usr/lpp/internet/server_root/pub for AIX.

Running the sample macro
Open http://xyz/dlqbic.html in your Web browser. xyz is your Web server address
for the Internet or Web server host name (or IP address) for your intranet.

Chapter 10. Using the Dynamic Page Builder 411

412 Application Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2001 413

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

414 Application Programming Guide

Trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States, other countries, or both:

AIX IBM
AS/400 ImagePlus
DataJoiner Net. Data
DB2 OS/390
DB2 Universal Database QBIC
e-business VisualInfo

Domino, Lotus, Lotus Notes, and Notes are trademarks of Lotus Development
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product or service names may be the trademarks or service marks
of others.

Notices 415

416 Application Programming Guide

Glossary

This glossary defines terms and abbreviations
specific to the Enterprise Information Portal
system, but not necessarily to this particular
document. Terms shown in italics are defined
elsewhere in this glossary.

A
abstract class. An object-oriented programming class
that represents a concept, classes derived from it
represent implementations of the concept. You cannot
construct an object of an abstract class; that is, it cannot
be instantiated.

access control. The process of ensuring that certain
functions and stored objects can be accessed only by
authorized users in authorized ways.

access control list. A list consisting of one or more
individual user IDs or user groups and their associated
privileges. You use access lists to control user access to
search templates in the Enterprise Information Portal
system.

action list. An approved list of the actions, defined by
a system administrator or some other workflow
coordinator, that a user can perform in a workflow.

ADSM. See Tivoli® Storage Manager.

API. See application programming interface.

application programming interface (API). A software
interface that enables applications to communicate with
each other. An API is the set of programming language
constructs or statements that can be coded in an
application program to obtain the specific functions
and services provided by the underlying licensed
program.

attribute. A characteristic that identifies and describes
a managed object. The characteristic can be determined,
and possibly changed, through operations on the
managed object. For example, title and duration might
be attributes of a video object. See federated attribute and
native attribute.

B
binary large object (BLOB). A sequence of bytes with
a size ranging from 0 bytes to 2 gigabytes. This string
does not have an associated code page and character
set. Image, audio, and video objects are stored in
BLOBs.

BLOB. See binary large object.

C
cache. An area of storage used to temporarily store
objects on the client workstation. See also LAN cache.

CGI. See Common Gateway Interface.

CGI script. A computer program that runs on a Web
server and uses the Common Gateway Interface (CGI) to
perform tasks that are not usually done by a Web
server (for example, database access and form
processing). A CGI script is a CGI program that is
written in a scripting language such as Perl.

CIF. See common interchange file.

CIU. See common interchange unit.

class. In object-oriented design or programming, a
model or template that can be instantiated to create
objects with a common definition and therefore,
common properties, operations, and behavior. An object
is an instance of a class.

client toolkit. The Content Manager toolkit enables
you to build your own Internet or desktop client
applications that access data and objects managed by
Content Manager. Use the toolkit to develop Web-based
and desktop applications that combine object catalog
and text searches in a single query.

client application. An application written with the
object-oriented or Internet APIs to access content
servers from Enterprise Information Portal.

collection. A group of objects with a similar set of
management rules.

combined search. A query that combines one or more
of the following types of searches: parametric, text, or
image.

Common Gateway Interface (CGI). A standard for the
exchange of information between a Web server and
programs that are external to it. The external programs
can be written in any programming language that is
supported by the operating system on which the Web
server is running. See CGI script.

common interchange file (CIF). A file that contains
one ImagePlus Interchange Architecture (IPIA) data
stream.

common interchange unit (CIU). The independent
unit of transfer for a common interchange file (CIF). It

© Copyright IBM Corp. 1996, 2001 417

is the part of the CIF that identifies the relationship to
the receiving database. A CIF can contain multiple
CIUs.

connector class. Object-oriented programming class
that provides standard access to APIs that are native to
specific content servers.

constructor. In programming languages, a method that
has the same name as a class and is used to create and
initialize objects of that class.

content server. A software system that stores
multimedia and business data and the related metadata
required for users to work with that data. Content
Manager and Content Manager ImagePlus for OS/390
are examples of content servers.

cursor. A named control structure used by an
application program to point to a specific row within
some ordered set of rows. The cursor is used to retrieve
rows from the set.

D
data format. A logical name assigned to a file type,
valid only within Content Manager. Content Manager
provides a large range of predefined data formats. You
can also define your own data format. For example,
you can define your own data format called MYGIF
and use it for GIF files.

datastore. (1) Generic term for a place (such as a
database system, file, or directory) where data is stored.
(2) In an application program, a virtual representation
of a content server.

DDO. See dynamic data object.

document. An item that can be stored, retrieved, and
exchanged among Content Manager systems and users
as a separate unit. It can be any multimedia digital
object. A single document can include varied types of
content, including for example, text, images, and
spreadsheets.

document content architecture (DCA). An architecture
that guarantees information integrity for a document
being interchanged in an office system network. DCA
provides the rule for specifying form and meaning of a
document. It defines revisable form text (changeable)
and final form text (unchangeable).

dynamic data object (DDO). In an application
program, a generic representation of a stored object that
is used to move that object in to, and out of, storage.

dynamic page builder. An API in the Internet
application development toolkit that is used to create
applications that dynamically format the results of
queries and display those results on a Web page.

E
extended data object (XDO). In an application
program, a generic representation of a stored complex
multimedia object that is used to move that object in to,
and out of, storage. XDOs are most often contained in
DDOs.

F
feature. The visual content information that is stored
in the image search server. Also, the visual traits that
image search applications use to determine matches.
The four QBIC features are average color, histogram
color, positional color, and texture.

federated attribute. An Enterprise Information Portal
metadata category that is mapped to native attributes in
one or more content servers. For example, the federated
attribute, policy number, can be mapped to a key field,
policy num, in Content Manager and to a key field,
policy ID, in Content Manager ImagePlus for OS/390.

federated collection. A grouping of objects that results
from a federated search.

federated datastore. Virtual representation of any
number of specific content servers, such as Content
Manager.

federated entity. An Enterprise Information Portal
metadata object that is comprised of federated attributes
and optionally associated with one or more federated
text indexes.

federated search. A query issued from Enterprise
Information Portal that simultaneously searches for
data in one or more content servers, which can be
heterogeneous.

federated text index. An Enterprise Information Portal
metadata object that is mapped to one or more native
text indexes in one or more content servers.

file system. In AIX, the method of partitioning a hard
drive for storage.

folder. A container used to organize objects, which can
be other folders or documents.

folder manager. The Content Manager model for
managing data as online documents and folders. You
can use the folder manager APIs as the primary
interface between your applications and the Content
Manager content servers.

form element. In the dynamic page builder, an
element of the user interface that can be created with
HTML tags. The dynamic page builder supports several
HTML form elements.

418 Application Programming Guide

H
handle. A character string that represents an object,
and is used to retrieve the object.

history log. A file that keeps a record of activities for
a workflow.

HTML. See Hypertext Markup Language.

Hypertext Markup Language (HTML). A markup
language that conforms to the SGML standard and was
designed primarily to support the online display of
textual and graphical information that includes
hypertext links.

I
Image Object Content Architecture (IOCA). A
collection of constructs used to interchange and present
images.

index class. A category for storing and retrieving
objects, consisting of a named set of attributes. When
you create an object in the Content Manager system,
your application must assign an index class and supply
the key field values required by that class. An index
class identifies the key fields, automatic processing
requirements, and storage requirements for an object.

index class subset. A view of an index class that an
application uses to store, retrieve, and display folders
and objects.

index class view. The term used in the APIs for index
class subset.

information mining. The automated process of
extracting key information from text (summarization),
finding predominant themes in a collection of
documents (categorization), and searching for relevant
documents using powerful and flexible queries.

interchange. The capability to import or export an
image along with its index from one Content Manager
ImagePlus for OS/390 system to another ImagePlus
system using a common interchange file or common
interchange unit.

IOCA. See Image Object Content Architecture.

item. Generic term for the smallest unit of information
that Enterprise Information Portal administers. An item
contains one or more item parts. Each item has an
identifier. An item can be a folder or a document.

iterator. A class or construct that you use to step
through a collection of objects one at a time.

J
JavaBeans. A platform-independent, software
component technology for building reusable Java
components called “beans.” Once built, these beans can
be made available for use by other software engineers
or can be used in Java applications. Also, using
JavaBeans, software engineers can manipulate and
assemble beans in a graphical drag-and-drop
development environment.

K
key field. See attribute.

L
LAN cache. An area of temporary storage on a local
object server that contains a copy of objects stored on a
remote object server.

library client. The component of a Content Manager
system that provides a low-level programming interface
for the library system. The library client includes APIs
that are part of the software developer’s kit.

library server. The component of a Content Manager
system that contains index information for the objects
stored on one or more object servers.

list. A data structure, or electronic queue, that your
application uses to temporarily insert or remove objects
for work.

M
media archiver. A physical device that is used for
storing audio and video stream data. The VideoCharger
is a type of media archiver.

media server. An AIX-based component of the
Content Manager system that is used for storing and
accessing video files.

method. In Java design or programming, the software
that implements the behavior specified by an operation.
Synonymous with member function in C++.

N
native attribute. A characteristic of an object that is
managed on a specific content server and that is specific
to that content server. For example, the key field policy
num might be a native attribute in a Content Manager
content server, whereas the field policy ID might be a
native attribute in an Content Manager OnDemand
content server.

native entity. An object that is managed on a specific
content server and that is comprised of native attributes.

Glossary 419

For example, Content Manager index classes are native
entities comprised of Content Manager key fields.

native text index. An index of the text parts of a
defined group of items that are managed on a specific
content server. For example, a single text search index on
a Content Manager content server.

network table file. A text file that contains the
system-specific configuration information for each node
in a Content Manager system. Each node in the system
must have a network table file that identifies the node
and lists the nodes that it needs to connect to.

The name of a network table is FRNOLINT.TBL.

O
Object Linking and Embedding (OLE). A Microsoft
specification for both linking and embedding
applications so that they can be activated from within
other applications.

object server. The component of a Content Manager
system that physically stores the objects or information
accessed by client applications.

object server cache. The working storage area for the
object server. Also called the staging area.

OLE. See Object Linking and Embedding.

overlay. A collection of predefined data such as lines,
shading, text, boxes, or logos, that can be merged with
variable data on a page during printing.

P
package. A collection of related classes and interfaces
that provides access protection and namespace
management.

parametric search. A query for objects that is based on
the properties of the objects.

part. A subelement of an item that corresponds to a
discrete multimedia data object, such as an image,
video, audio, or text. An item can contain parts with
diverse binary formats, for example, an image, a word
processing file, and a spreadsheet.

persistent identifier (PID). An identifier that uniquely
identifies an object, regardless of where it is stored. The
PID consists of both an item ID and a location.

PID. See persistent identifier.

privilege. The right to access a specific object in a
specific way. Privileges includes rights such as creating,
deleting, and selecting objects stored in the system.
Privileges are assigned by the administrator.

privilege set. A collection of privileges for working
with system components and functions. The
administrator assigns privilege sets to users (user IDs)
and user groups.

property. A characteristic of an object that describes the
object. A property can be changed or modified. Type
style is an example of a property.

Q
QBIC. See query by image content.

query by image content (QBIC). A query technology
that enables searches based on visual content, called
features, rather than plain text. Using QBIC, you can
search for objects based on their visual characteristics,
such as color and texture.

query string. A character string that specifies the
properties and property values for a query. You can
create the query string in an application and pass it to
the query.

S
search criteria. In Enterprise Information Portal,
specific fields that an administrator defines for a search
template that limit or further define choices available to
the users.

search template. A form, consisting of search criteria
designed by an administrator, for a specific type of
federated search. The administrator also identifies the
users and user groups who can access each search
template.

server definition. The characteristics of a specific
content server that uniquely identify it to Enterprise
Information Portal.

server inventory. The comprehensive list of native
entities and native attributes from specified content
servers.

server type definition. The list of characteristics, as
identified by the administrator, required to uniquely
identify a custom server of a certain type to Enterprise
Information Portal.

staging area. The working storage area for the object
server. Also referred to as object server cache.

streamed data. Any data sent over a network
connection at a specified rate. A stream can be one data
type or a combination of types. Data rates, which are
expressed in bits per second, vary for different types of
streams and networks.

subclass. A class that is derived from another class.
One or more classes might be between the class and
subclass.

420 Application Programming Guide

superclass. A class from which a class is derived. One
or more classes might be between the class and
superclass.

suspend. To remove an object from its workflow and
define the suspension criteria needed to activate it.
Later activating the object enables it to continue
processing.

T
thin client. A client that has little or no installed
software but has access to software that is managed
and delivered by network servers that are attached to
it. A thin client is an alternative to a full-function client
such as a workstation.

Tivoli Storage Manager (TSM). A client/server
product that provides storage management and data
access services in a heterogeneous environment. It
supports various communication methods, provides
administrative facilities to manage the backup and
storage of files, and provides facilities for scheduling
backup operations.

TSM. See Tivoli Storage Manager.

TSM management class. A logical area of storage that
is managed by Tivoli Storage Manager.

U
user. In Enterprise Information Portal, anyone who is
identified in the Enterprise Information Portal
administration program.

user exit. (1) A point in an IBM-supplied program at
which a user exit routine can be given control. (2) A
programming service provided by an IBM software
product that can be requested during the execution of
an application program for the service of transferring
control back to the application program upon the later
occurrence of a user-specified event.

user exit routine. A user-written routine that receives
control at predefined user exit points.

user group. A group consisting of one or more
defined individual users, identified by a single group
name.

user mapping. Associating Enterprise Information
Portal user IDs and passwords to corresponding user
IDs and passwords in one or more content servers.
User mapping enables single logon to Enterprise
Information Portal and multiple content servers.

V
volume. A representation of an actual physical storage
device or unit on which the objects in your system are
stored.

W
work item. A work activity that is active within a
workflow.

work packet. In Enterprise Information Portal, a
collection of documents that is routed from one location
to another. Users access and work with work packets
through worklists.

work state. The status of an individual work item.

workflow. A sequence of steps, and the rules
governing those steps, through which a work packet
travels while it is being processed.

For example, a process called claims approval would
describe the steps that a work packet related to
approving an insurance claim must follow.

workflow coordinator. User who receives notification
that a work item in the workflow has not been processed
in some specified time. The user is selected for a
specific user group or upon creation of the workflow.

workflow state. The status of an entire workflow.

worklist. A collection of work items assigned to a user
and retrieved from a workflow management system.

X
XDO. See extended data object.

Glossary 421

422 Application Programming Guide

Index

A
accessing a worklist 124
actions, creating 124
ActiveX 331
administration client

description 4
administration database, description 4
advanced search sample in Information

Mining 200
annotation object, adding 32
Application Programming Interfaces

(API)
Active/X 331

Installation 333
Multiple search 334

C++ 215
Dynamic Page Builder 393

configuring DPB with
Net.Data 393

connection manager 410
Environment (DTW_DLDPB) 393
HTML_PATH 394
INCLUDE_PATH 394
MACRO_PATH 394
parameters 395
performance 408
reserved terms 394
sample macro 1 400
sample macro 2 404
sample startup 409
server configuration 409
wizard 409

Java 17
Architecture 17
Differences from C++ 18
Multiple search 22, 218
Packaging 18

attribute mapping 12
attributes, listing 100, 103, 295, 299

B
buffer, adding an XDO 31
building an application, non-visual

beans 144
building an application, visual

beans 161

C
C++ 215
cabinet attributes, listing 108, 306
categorization sample in Information

Mining 192
class name terminology 60, 258
client 17
cmbregist71.bat 21
cmbregist71.sh 21
code page conversion 217
Collections and iterators

C++ 243

Collections and iterators (continued)
Memory management 244
Programming tips 245
Sequential collection 243
Sequential iterator 243
Sorting 245

Java 46
Sequential collection 46
Sequential iterator 46
Sorting 47

Combined query
Active/X 380

parametric with text 380
Programming tips 381
ranking 381
using a scope 381

C++ 290
parametric with text 290
Programming tips 292
ranking 291
using a scope 291

Java 91
parametric with text 91
Programming tips 92
using a scope 92

common 17
common classes, Enterprise Information

Portal 126, 317
common object model 17, 215

ActiveX application
programming 331

configuration string 116
connection string 116
connectors, creating custom 125
connectors, description 4
connectors,developing 125
connectors toolkit, description 5
console sub system, setting 217
constants 23
Content Manager, working with 62, 260,

357
content provider in Information

Mining 210
content server, executing a parametric

query 249
content servers 7, 23

accessing options 24
connecting 23
listing servers 25

content servers, specific 59, 258
content servers,creating connectors 125
content viewer 181
cs package 18
custom content servers, developing 316
custom content servers, working

with 316
custom content servers

connectors,developing 125

D
data access 7
data concepts, persistent 8

data definition classes 61
databases, listing 110, 308, 386
datastore 7
datastore, evaluating a parametric

query 51, 249
datastore, evaluating a text query 53,

251
datastore, executing a parametric

query 51
datastore, executing a text query 52, 251
datastore registration 14
DB2 Warehouse Manager Information

Catalog Manager, working with 119
connecting 120
executing a query 121

DDO, adding properties 27, 223
DDO, properties 63, 260, 357
DDO, understanding datastores 11
DDO, XDO as a part of 30, 227
DES 110, 308, 385
diagnostic information 22
DKAny

Assignment from 242
Assignment to 241
Destroying 242
Display of 242
Memory Management 241
Programming tips 243
type code, Getting 241
Typecode 241
Using type constructors 241

DKAny, using 240
dkCollection 46
DKConstants 23
dkDatastore 127, 318
DKDatastorexx 60
DKDatastoreDL

Active/X 334
Connecting 334
DKDatastoreDL options 335
List schema and schema

attributes 335
List servers 335

C++ 219
Connecting 219
DKDatastoreDL options 219
List schema and schema

attributes 220
List servers 220

Java 23
Connecting 23
DKDatastoreDL options 24
List schema and schema

attributes 25
List servers 25

DKDatastoreTS
Active/X 363

Connecting 365
DKDatastoreTS options 365
List schema 366
List servers 366

© Copyright IBM Corp. 1996, 2001 423

DKDatastoreTS (continued)
C++ 266

Connecting 268
DKDatastoreTS options 269
List schema 270
List servers 269

Java 69
Connecting 71
DKDatastoreTS options 71
List schema 72
List servers 72

DKException (Java) 22
dkFederatedIterator 48
dkIterator 48
DKSequentialCollection 46
dkSort 47
dkWorkFlowUserExit 124
DLL 18, 215
document, DES 113, 311, 388
documents 9
documents, representing 63, 260, 358
Domino.Doc, working with 106, 304
Domino Extended Search, working

with 110, 308, 385
Dynamic Data Object (DDO)

Active/X 336
Adding 337
attribute, DKFOLDER 344
attribute, DKPARTS 344
data item values 338
Deleting 339
Displaying 338
Information, Digital Library 357
Information, Text Search

Engine 364
PID 336
properties 338

C++ 221
Adding 223
attribute, DKFOLDER 239
attribute, DKPARTS 238
Creating 222
data item values 224
deleting 225
Displaying 225
Information, Digital Library 260
Information, Text Search

Engine 267
PID 222
properties 224

Java 26
Adding 27
attribute, DKFOLDER 45
attribute, DKPARTS 44
attribute properties 28
Creating 26
data item values 27
Displaying 29
Information, Digital Library 63
Information, Text Search

Engine 70
PID 27
properties 28

dynamic data objects 9
dynamic data objects, comparing 11

E
EIP workflow services 122

connecting to 122
creating a workpacket 122

Enterprise Information Portal
components 4

administration client 4
administration database 4
connector toolkit 5
connectors 4
image search 6
Information Mining feature 5
sample client application 5
text search 6
thin client samples 5
workflow builder 5
workflow feature 5

Enterprise Information Portal,
concepts 7

Enterprise Information Portal database 8
Enterprise Information Portal database

infrastructure 125, 316
entities, listing 100, 107, 295, 305
entity mapping 12
exception handling 22

DKException 22
extended data objects 9

F
federated collection, understanding 48,

245
federated datastore mapping components,

Enterprise Information Portal 14
federated iterator, understanding 48, 245
federated query processing 14
federated query syntax 16
federated schema mapping 14
federated searching, DES 115, 315, 390
federated searching, understanding 11
FeServerDefBase 139
fields, listing 110, 308, 386
file, adding and XDO 31
folders 9
folders, representing 63, 261, 358
folders, updating 66, 264, 360
framework, Enterprise Information

Portal 9
function, invoking and XDO 230

G
Generalized Query Language 111, 310,

387
GQL 111, 310, 387

I
image queries, working with 88, 286
image search

description 6
image search, catalogs 79
image search, databases 79
image search, features 80, 279
image search, representing

information 88, 286

image search applications 82, 280
image search catalogs, listing 87, 284
image search concepts 79, 278
image search databases, listing 87, 284
image search engine, using 90, 288
image search features, listing 87, 284
image search servers, listing 87, 284
image search terms 79, 278
ImagePlus for OS/390, working

with 100, 295
images by content, searching 78, 277
importing XML 41
index classes 8
index classes, listing 103, 299
Information Catalog, working with 119
Information Mining

advanced search sample 200
beans 191
building an application 191
categorization sample 192
JSP applications 212
location of the sample files 191
own content provider 210
summarization sample 197
Web Crawler sample 206

Information Mining feature
description 5

item attributes 8
item parts 8
items 8
iterators 46

J
jar files 18
Java 17
Java APIs 17

differences 18
JavaBeans 141
JavaBeans, understanding 141
JavaServer Pages 150
JSP 150
JSP applications in Information

Mining 212

L
large objects, handling 62, 260
Library 18, 215

M
mapping terminology 12
match highlighting 53, 55, 251, 253
media object, adding an XDO 232
media object, deleting and XDO 233
media object, retrieving an XDO 235
member, adding 66, 263
member, removing 66, 263
MIME types, DES 115, 315, 390
multimedia data object 8
multimedia data objects 10
multimedia item 9
multiple search 17, 215, 331

N
native entity 8
non-visual beans 141

424 Application Programming Guide

non-visual beans, understanding
events 143

non-visual beans, understanding
properties 143

non-visual beans, working with 142
Notices 413

O
object management

Active/X 358
creating 358
deleting 361
updating 360

C++ 261
creating 261
deleting 264
updating 263

Java 64
creating 64
deleting 67
updating 65

OnDemand, listing information 97
OnDemand, retrieving documents 98
OnDemand, working with 96

P
package hierarchy, Java 18
Parametric query 22, 218
parametric query, executing 50, 248
parametric query, formulating 49, 247
parametric query, formulating multiple

criteria 50, 248
part, indexing 179
part information, displaying 177
parts 9
parts, updating 66, 263
password mapping 14
persistent data concepts 8
persistent identifier 11

Q
QBIC 283
QBIC, connecting 86
queries, Domino.Doc 108, 306
Query

Active/X 346
parametric type 346
text type 349

C++ 247
dkResultSetCursor vs

DKResults 247
parametric type 247
text type 250

Java 49
dkResultSetCursor vs

DKResults 49
parametric type 49
query object types 49
text type 51

query applet, understanding 170
query string 49, 52
query syntax, Domino.Doc 109, 307
query syntax, ImagePlus for

OS/390 102, 297

Queryable collection
Active/X 354

evaluating 355
getting results 354
queryable vs refined 355

C++
evaluating 257
getting results 257
queryable vs refined 258

Java 58
evaluating 59
getting results 58
Programming tips 59
queryable vs refined 59

QUIC 78

R
related classes 127, 318
relational databases, working with 116
Remote Method Invocation (RMI) 21
Result set cursor

Active/X 353
C++ 255

creating a collection 256
open and close 255
set and get 255

Java 57
creating a collection 58
open and close 57
set and get 57

Retrieval
Active/X 361

documents 361
folders 362
parts 362

C++ 265
folders 266
parts 265

Java 67
folders 68
parts 68

RMI server 21
cmbregist71.bat 21
cmbregist71.sh 21
starting 21

S
sample client application

description 5
sample files, location

Information Mining 191
schema, listing 117
schema attributes, listing 117
search engines, indexing an existing

XDO 90, 289
search template folders 98
searchable entities 108, 306
server 17
Settings

C++ 216
Building on AIX 216
Building on NT 217
On AIX 216
On NT 216, 333

Java
Client connect and disconnect 24

Settings (continued)
Java (continued)

Client/Server 17
On AIX 20
On NT 20
Programming tips 18
Setup environment 18, 333

Using sample Java applets and
servlet 169

Connect 169
Dynamic Page Builder 185
Java application on client 175
Local access 175
Remote access 176
Retrieve servlet 174
View 173

shared objects 18, 215
sorting 47
Stand-alone code examples

C++
annotation type 229
from buffer 227
from file 228
search indexed by Text Search

Engine 271
Java

search indexed by Text Search
Engine 73

starting a workflow 123
storage collection 40, 237
storage collection, adding an XDO 40,

237
storage collection, changing 41, 238
subentities, listing 107, 305
summarization sample in Information

Mining 197

T
terminating a workflow 123
Text query 22, 218
text query, executing 52, 250
text query, formulating 52, 250
text query, formulating multiple

indexes 52, 250
text query, getting a particular result

item 55, 253
text query, getting each result item 53,

251
text search

description 6
Text Search Engine

Active/X 363
Boolean query 363
Client/Server mode 332
Free text query 363
GTR query 364
Hybrid query 363
Load and index data 367
Programming tip 366
Proximity query 364

C++
Boolean query 267
Exceptions 219
Free text query 267
GTR query 267
Hybrid query 267
Load and index data 272

Index 425

Text Search Engine (continued)
Programming tip 269
Proximity query 267

Java 69
Boolean query 69
Exceptions 22
Free text query 69
GTR query 69
Hybrid query 69
Load and index data 74
MAXPIECE 62
Programming tip 71, 365
Proximity query 69
Setting heap size 63, 260

Text Search Engine, parametric
queries 22, 218

Text Search Engine, text queries 22, 218
text structured document 74, 273
Thin client, using 187
thin client samples

description 5
Tracing information 22, 218

U
user ID mapping 14

V
video stream, displaying parts

information 184
video stream, playing 185
video streams, loading 182
visual beans 141
visual beans, common behaviors 159
visual beans, specialized behaviors 160
visual beans, working with 151
VisualInfo for AS/400, working

with 103, 299

W
Web Crawler sample in Information

Mining 206
workbasket, understanding 292
workbasket, understanding in Content

Manager 93
workflow 123

starting 123
terminating 123

workflow, understanding 292
workflow, understanding in Content

Manager 93
workflow builder, description 5
workflow feature

description 5
workflow service 93, 292
worklist 124

accessing 124
accessing work items 124
moving work items 124

workpacket 122

X
XDO

Active/X 339

XDO (continued)
data members 339
DDO, part of 340
in datastore 340
indexing 366
Programming tips 340
stand-alone 341

C++ 225
data members 225
DDO, part of 227
indexing 270
PID 225, 339
Programming tips 226
stand-alone 227

Java 29
adding an annotation 32
adding from a buffer 31
adding from a file 31
data properties 29
DDO, part of 30
deleting 32
function, invoking an XDO 33
indexing 73
media object, adding 35
media object, deleting 37
media object, retrieving 39
PID 29
Programming tips 30
retrieving 32
stand-alone 31
storage collection, adding 40
storage collection, changing 41
updating 32

XDO, deleting 229

XDO, retrieving 229

XDO, updating 229

XML

dtd for import 42
importing 41

426 Application Programming Guide

����

Program Number: 5697-G29, 5697-G31

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC27-0877-01

	Contents
	About this guide
	Who should read this guide
	Where to find more information
	Information included in your product package
	Support available on the Web

	How to send your comments

	Chapter 1. Introducing Enterprise Information Portal
	Searching for customer information
	The need
	The solution

	The Enterprise Information Portal solution
	Enterprise Information Portal components
	Administration database
	Administration client
	Connectors
	Enterprise Information Portal sample client application
	Enterprise Information Portal thin client samples
	Connector toolkits and samples
	Information mining
	Workflow
	Content Manager text search server and client
	Content Manager image search server and client

	What's new in Version 7.1

	Chapter 2. Enterprise Information Portal applicationprogramming concepts
	Understanding data access through content servers
	Understanding data concepts
	Items
	Item attributes and index classes
	Item parts
	Documents and folders

	Understanding dynamic data object concepts
	Dynamic data objects (DDO)
	Extended data objects (XDO)
	Representing multimedia content
	Understanding datastores and DDOs
	Comparing DDO/XDOs with attribute values and item parts
	Understanding persistent identifiers (PID)

	Understanding federated searching
	Federated schema mapping
	Using federated datastore mapping components
	Running federated queries
	Federated query syntax

	Chapter 3. Using the Java application programming interfaces(APIs)
	Client/server architecture
	Differences between the Java and C++ APIs
	Packaging for the Java environment
	Programming tips

	Setting up the Windows® and AIX environment
	Setting environment variables
	For Windows
	For AIX

	Using Remote Method Invocation (RMI) with content servers

	Multiple search facilities
	Tracing and diagnostic information
	For text queries using Text Search Engine
	For parametric queries
	Exception handling

	Constants
	Connecting to content servers
	Establishing a connection
	Connecting and disconnecting from a content server in aclient
	Setting and getting content server options
	Listing servers
	Listing the entities and entity attributes for a content server

	Working with DDOs
	Creating a DKDDO
	Adding properties to a DDO
	Creating a persistent identifier (PID)
	Working with data items and properties
	Getting properties
	Displaying the whole DDO

	Working with XDOs
	Using an XDO PID
	Understanding XDO properties
	Programming tips
	Using XDO as a part of a DDO or stand-alone
	XDO as a part of DDO
	Stand-alone XDO

	Examples of working with an XDO
	Adding an annotation object to an XDO
	Retrieving, updating, and deleting an XDO
	Invoking an XDO function
	Adding an XDO media object
	Deleting an XDO media object
	Retrieving an XDO media object
	Adding an XDO to a storage collection
	Changing the storage collection of an XDO

	Importing XML documents
	The XML Document Type Definition (DTD)
	Storing content in XML documents
	Extracting content from different XML sources
	XML from a file
	XML from a buffer
	XML from a Web address (URL)

	Importing XML content into Content Manager

	Creating and using the DKPARTS attribute
	Creating and using the DKFOLDER attribute
	Using collections and iterators
	Using sequential collection methods
	Using the sequential iterator
	Sorting the collection
	Understanding federated collection and iterator

	Querying a content server
	Differences between dkResultSetCursor and DKResults
	Using parametric queries
	Formulating a parametric query string
	Executing a parametric query
	Executing a parametric query from a content server
	Evaluating a parametric query from a content server

	Using text query
	Formulating a text query string
	Executing a text query
	Executing a text query from the datastore
	Evaluating a text query from the datastore
	Getting match highlighting information

	Using the result set cursor
	Opening and closing the result set cursor to rerun the query
	Setting and getting positions in a result set cursor
	Creating a collection from a result set cursor

	Querying collections
	Getting the result of a query
	Evaluating a new query
	Using queryable collection instead of combined query

	Working with specific content servers
	Working with Content Manager
	Handling large objects
	Using DDOs to represent Content Manager's data
	Creating, updating, and deleting documents or folders
	Retrieving a document or folder
	Understanding text searching (Text Search Engine)
	Searching images by content
	Using image search applications
	Establishing a connection in QBIC
	Listing image search servers
	Listing image search databases, catalogs, and features
	Representing image search information with a DDO
	Working with image queries
	Using the image search engine
	Indexing an existing XDO using search engines
	Using combined query
	Understanding the Content Manager workflow and ContentManager workbasket functions

	Working with OnDemand
	Listing information on OnDemand
	Retrieving an OnDemand document

	Working with ImagePlus for OS/390
	Listing entities and attributes
	ImagePlus for OS/390 query syntax

	Working with VisualInfo for AS/400
	Listing index classes and attributes
	Executing a query
	Executing a parametric query

	Working with Domino.Doc
	Listing entities and subentities
	Listing cabinet attributes
	Using queries in Domino.Doc
	Using query syntax

	Working with Domino Extended Search (DES)
	Listing DES servers
	Listing databases and fields
	Using Generalized Query Language (GQL)
	DDO properties in DES
	Creating PIDs in DES
	Contents of a DES document
	Retrieving a document
	Retrieving a BLOB
	Associating MIME types with documents
	Using federated searching in DES

	Working with relational databases
	Connecting to relational databases
	Listing entities and entity attributes
	Executing a query

	Working with DB2 Warehouse Manager Information CatalogManager
	Connecting to a DB2 Warehouse Manager Information CatalogManager server
	Listing entities and attributes
	Executing a query

	Using Enterprise Information Portal workflow
	Connecting to workflow services
	Creating a workpacket
	Starting a workflow
	Terminating a workflow
	Accessing a worklist
	Accessing work items
	Moving items in the workflow
	Creating your own actions

	Creating custom content server connectors
	Developing custom content server connectors
	Using the FeServerDefBase class

	Chapter 4. Using non-visual and visual JavaBeans
	Using JavaBeans in builders
	Using IBM VisualAge for Java
	Using other builders

	Non-visual beans
	Non-visual bean configurations
	Understanding properties and events for non-visual beans
	Building an application using non-visual beans
	A sample non-Graphical User Interface (GUI) application
	JavaServer Pages (JSP) and non-visual beans

	Working with visual beans
	CMBLogonPanel bean
	CMBSearchTemplateList bean
	CMBSearchTemplateViewer bean
	Validating or editing fields of the CMBSearchTemplateViewer
	CMBSearchResultsViewer bean
	Overriding pop-up menus
	CMBFolderViewer bean
	CMBDocumentViewer bean
	Viewer specifications
	Default viewers
	Launching external viewers
	CMBItemAttributesEditor bean
	Vetoing changes in the CMBItemAttributesEditor
	General behaviors for visual beans
	Properties
	Save/restore configuration
	Help events

	Replacing a visual bean
	Building an application using visual beans
	A sample application
	Connecting the visual beans
	Using beans in more than one window or dialog

	Chapter 5. Using the sample Java applets and servlet
	Understanding the connect applet
	Understanding the query applet
	Understanding the view applet
	Understanding the retrieve servlet
	Running applets in a Java application
	Accessing local applets
	Accessing remote applets
	Displaying part information
	Indexing a part
	Setting the content viewer
	Loading video streams
	Displaying video stream parts information
	Playing video streams
	Working in conjunction with Dynamic Page Builder

	Chapter 6. Using the sample thin client
	Sample JavaServer Pages

	Chapter 7. Working with information mining
	Building an application using the Information Mining beans
	Location of the sample files
	The categorization sample: Categorizing information found bya standard EIP search
	Complete source for Categorization.java
	Creating the beans
	Customizing the beans
	Connecting the beans
	Running the query
	Displaying text analysis results

	Scenario 2: Import documents and metadata using federatedsearch
	Complete source for Summarization.java

	The advanced search sample: Make an advanced search andanalyze the results
	Complete source for AdvancedSearch.java
	Creating the beans
	Customizing the beans
	Connecting the beans
	Running the query
	Displaying text analysis results

	The Web Crawler sample: Getting information from crawlingthe Web
	Complete source for WebCrawler.java
	Creating the beans
	Customizing the beans
	Connecting the beans
	Starting the Web crawler service
	Displaying text analysis results

	Building your own content provider

	Understanding the Information Mining JSP applications

	Chapter 8. Using the C++ application programming interfaces
	Setting up the Windows and AIX environment
	Setting AIX environment variables
	Setting Windows environment variables
	Building C++ programs on Windows
	Setting console subsystem for code page conversion onWindows

	Multiple search facilities
	Tracing information
	For text queries using Text Search Engine
	For parametric queries

	Catching a DKException
	Connecting to content servers
	Establishing a connection
	Setting and getting content server options
	Listing content servers
	Listing a content server's schema

	Using DDOs
	Creating a DKDDO
	Creating a persistent identifier (PID)
	Adding data items and properties
	Adding properties to a DDO
	Setting and getting data item values
	Getting the DDKDO and attribute properties
	Displaying the DDO
	Deleting a DDO

	Using XDOs
	Using an XDO PID
	Understanding XDO data members
	DB2, ODBC and DataJoiner configuration strings for C++
	Programming tips
	Using XDO as a part of DDO instead of a stand-alone XDO
	XDO as a part of DDO
	Stand-alone XDO

	Creating and using the DKPARTS attribute
	Creating and using the DKFOLDER attribute
	Using DKAny
	Using type code
	Managing memory in DKAny
	Using constructors
	Getting the type code
	Assigning a new value to DKAny
	Assigning a value from DKAny
	Displaying DKAny
	Destroying DKAny
	Programming tips

	Using collections and iterators
	Using sequential collection methods
	Using the sequential iterator
	Managing memory in collections
	Sorting the collection
	Programming tips
	Understanding federated collection and iterator

	Querying a content server
	Differences between dkResultSetCursor and DKResults
	Using parametric query
	Formulating a parametric query
	Formulating a parametric query on multiple criteria
	Executing a parametric query
	Executing a parametric query from the content server
	Evaluating a parametric query from the content server

	Using text query
	Formulating a text query
	Formulating a text query on multiple indexes
	Executing a text query
	Executing a text query from the datastore
	Evaluating a text query from the datastore
	Getting match highlighting information for each text query resultitem
	Getting match highlighting information for a particular text queryresult item

	Using the result set cursor
	Opening and closing the result set cursor to re-execute thequery
	Setting and getting positions in a result set cursor
	Creating a collection from a result set

	Querying collections
	Getting query results
	Evaluating a new query
	Using queryable collection instead of combined query

	Using specific content servers
	Working with Content Manager
	Handling large objects
	Using DDOs to represent Content Manager's data
	Creating, updating, and deleting documents or folders
	Retrieving a document or folder
	Understanding text searching (Text Search Engine)
	Searching images by content
	Understanding image search terms and concepts
	Using image search applications
	Establishing a connection in QBIC
	Listing image search servers
	Listing image search databases, catalogs, and features
	Representing image search information with a DDO
	Working with image queries
	Using the image search engine
	Indexing an existing XDO using search engines
	Using combined query
	Understanding the workflow and workbasket functions

	Working with ImagePlus for OS/390
	Listing entities and attributes
	ImagePlus for OS/390 query syntax

	Working with VisualInfo for AS/400
	Listing index classes and attributes
	Executing a query
	Executing a parametric query

	Working with Domino.Doc
	Listing entities and subentities
	Listing cabinet attributes
	Building queries in Domino.Doc
	Using query syntax

	Working with Domino Extended Search (DES)
	Listing DES servers
	Listing databases and fields
	Using Generalized Query Language (GQL)
	DDO properties in DES
	Creating PIDs in DES
	Contents of a DES document
	Retrieving a document
	Retrieving a BLOB
	Associating MIME types with documents
	Using federated searching in DES

	Working with custom content servers
	Developing custom content servers

	Chapter 9. Using the ActiveX (OLE) application programminginterface
	Running in client/server mode
	Updating the registry using regedit or DCOMCnfg
	Updating the registry using OLEView

	Setting up the Windows environment
	Setting Windows environment variables
	Using DXInstallDL, DXInstallDES, and DXInstallFed,DXInstallDD, DXInstallIP, and DXInstallV4
	Registering classes
	Removing registration

	Multiple search facilities
	Connecting to content servers
	Establishing a connection
	Setting and getting datastore options
	Listing servers
	Listing schema and schema attributes

	Using DDOs
	Creating a persistent identifier (PID)
	Adding data items and properties
	Adding properties to a DDO
	Setting and getting data item values
	Getting the properties
	Displaying the DDO
	Deleting a DDO

	Using XDOs
	Using an XDO PID
	Understanding XDO data members
	Using XDO in a datastore
	Programming tips
	Using XDO as a part of DDO instead of stand-alone XDO
	XDO as part of DDO
	Stand-alone XDO

	Creating and using the DX_DL_DKPARTS attribute
	Creating and using the DX_DL_DKFOLDER attribute
	Using collections and iterators
	Querying a content server
	Using parametric query
	Formulating a parametric query
	Formulating a parametric query on multiple criteria
	Executing a parametric query
	Executing a parametric query from the content server
	Evaluating a parametric query from the datastore

	Using text query
	Formulating a text query
	Formulating a text query on multiple indexes
	Executing a text query
	Executing a text query from the content server
	Evaluating a text query from the content server
	Getting match highlighting information for each text query resultitem
	Getting match highlighting information for a particular text queryresult item

	Using result set cursor
	Opening and closing the result set cursor to re-execute thequery
	Setting and getting positions in a result set cursor
	Creating a collection from a result set

	Querying collections
	Getting the result of a query
	Evaluating a new query
	Using queryable collection instead of combined query

	Using specific content servers
	Working with Content Manager
	Using DDOs to represent datastore information
	Creating, updating, and deleting documents or folders
	Retrieving a document or folder
	Understanding text searching (Text Search Engine)
	Searching images by content
	Understanding image search terms and concepts
	Using image search applications
	Establishing a connection in QBIC
	Listing image search servers
	Listing image search databases, catalogs and features
	Representing image search information with a DDO
	Working with image queries
	Using the image search engine
	Indexing an existing XDO using search engines
	Using combined query
	Understanding the workflow and workbasket functions

	Working with Domino Extended Search (DES)
	Listing DES servers
	Listing databases and fields
	Using Generalized Query Language (GQL)
	DDO properties in DES
	Creating PIDs in DES
	DES document contents
	Retrieving a document
	Retrieving a BLOB
	Associating MIME types with documents
	Using federated searching in DES

	Chapter 10. Using the Dynamic Page Builder
	Configuring the Dynamic Page Builder with Net.Data
	The ENVIRONMENT statement (DTW_DLDPB)
	The MACRO_PATH statement
	The INCLUDE_PATH statement
	The HTML_PATH statement

	Dynamic Page Builder functions
	API functions
	Input parameters
	Inline data
	Variable definition
	Special output variable

	Developing a Net.Data macro for the Dynamic Page Builder
	Sample macro 1
	Definition section
	Function definition section
	HTML input section
	HTML report section

	Sample macro 2
	Definition section
	Function definition section
	HTML input section

	Improving performance
	Live Connection Manager
	Reuse dynamic pages

	Invoking the wizard

	Starting the Dynamic Page Builder sample
	Web server configuration
	Windows NT with the IIS V2 Web server
	Windows NT with the IBM ICS Web server
	IBM AIX with the IBM ICS Web server

	Connection manager setup
	Windows NT 4.0 platform
	IBM AIX OS
	Configuring sample macro files
	Running the sample macro

	Notices
	Trademarks

	Glossary
	Index

