<|lI!

CICS® Transaction Server for VSE/ESA™

CICS External Interfaces Guide

Release 1

SC33-1669-01

<|lI!

CICS® Transaction Server for VSE/ESA™

CICS External Interfaces Guide

Release 1

SC33-1669-01

Note!
Before using this information and the product it supports, be sure to read the general information under

First Edition (February 2000)

This edition applies to Release 1 of the IBM licensed program CICS Transaction Server for VSE/ESA, program
number 5648-054, and to all subsequent versions, releases, and modifications until otherwise indicated in new
editions. Consult the latest edition of the applicable IBM system bibliography for current information on this product.

Order publications through your IBM representative or IBM branch office serving your locality. Publications are not
stocked at the address given below.

At the back of the publication is a page entitled “Sending your comments to IBM”. If you want to make comments,
but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories,
Information Development,

Mail Point 095,

Hursley Park,

Winchester,

Hampshire,

England,

S021 2JN.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Preface

What this book is about

This book describes how you can make the CICS® transaction processing services
of CICS TS for VSE/ESA® available to a variety of external users.

How to use this book
Read [Part 1. Overview” on page 1 for planning information, and for guidance about

which other parts of the book to consult.

What you need to know to understand this book

Within this book, referfence is made to Release 1. The function described in
this book has been added since the release of CICS Transaction Server for
VSE/ESA Release 1 and can be identified within the code as 1.1.1.

This book assumes that you are familiar with CICS, either as a system
administrator or as a system or application programmer. Some parts of the book
assume additional knowledge about CICS and other products.

Notes on terminology

When the term “CICS” is used without any qualification in this book, it refers to the
CICS element of IBM® CICS Transaction Server for VSE/ESA.

© Copyright IBM Corp. 1994, 2000 iii

iV CICS TS for VSE/ESA: CICS External Interfaces Guide

Contents

Preface.

What this book is about

How to use this book .

What you need to know to understand th|s book
Notes on terminology .

Summary of changes . . Xi
Part 1. Overview .1
Chapter 1. Introduction. . 3
General concepts . 6
Distributed computing . . 6
Security support . .7
TCP/IP protocols. . .7
TCP/IP internet addresses and ports . 8
Programming models . .9
Comparing mechanisms 10
EXCI . . . 10
The 3270 brrdge . 10
The 3270 Bridge and FEPI .1
Application design. .1
Separating business and presentatlon Iogrc 12
Chapter 2. How to use this book 15
Part 2. Bridging to 3270 transactions . .17
Chapter 3. Introduction . 19
Overview . . .19
Components of the 3270 bndge . 20
Bridge implementations provided . . 25
Running 3270 transactions in a bridge enwronment .27
Simple terminal transactions . .27
Pseudoconversational transactions . 28
Conversational transactions . - . 29
Implementing a 3270 bridge environment . . 30
Determining the bridge environment model . . 30
Using the long running monitor model to implement the 3270 bndge . . 31
Using the two task model to implement the 3270 bridge . . 33
Using a single message model to implement the 3270 bridge. . 35
Using the direct model to implement the 3270 bridge . . 36
Chapter 4. The Bridge environment . 39
User transaction programming considerations . 39
Defining the user transaction. . . . 44
TRANSACTION resource def|n|t|on . 44
PROFILE resource definition . . . 45
Inquiring about the bridge environment . . 45
ASSIGN command 45
INQUIRE TASK command. . . . 46
INQUIRE TRANSACTION command . . 47

© Copyright IBM Corp. 1994, 2000 \"/

CEMTINQUIRETASK .47

CEMT INQUIRE TRANSACTION48
XPlcommands. .48
The bridge facility .. .49
QUERY . . . 0]
SET TERMINAL/NETNAME oY
Bridge facility global userexit51
Chapter 5. Supplied 3270 bridgeexits55
The TS/TD supplied bridgeexit.55
Using the DFHOCBRE exit55
The Web bridge exit . . . e e e ebs6
Using the Web bridge eX|t . T Y4
Data formats for the supplied bridge eX|ts Y4
BRDATA format. .58
Message data format .59
Chapter 6. Writing your own bridge programs75
Designing your own bridge soluton75
Is a new bridge exitneeded?.75
Is a new formatter needed? . . . Y £
BMS macro generation utlllty program (DFHBMSUP) Y {6
Overview . . . e e T8
Writing your own brldge eX|t e <
Transaction calls to the bridge exit.78
Message calls to the bridgeexit80
API calls to the bridge exit.81
Writing your own formatter .81
Calls to the formatter. . . . e <X
Return codes from the formatter N < 74
Bridge exitarea (BRXA) .84
BRXA headerarea84
BRXA transactionarea .86
BRXA command area . . . < [0]
BRXA command area - common92
BRXA command area - terminal control96
BRXA commandarea-BMS.9
BRXA command area - interval control98
BRXA command area - syncpoint99
BRXA command area-MSG.9
ADS descriptorarea .100
Supplied copybooks . . . T (055
Copybook example (DFHBRACD) e [0 15
Chapter 7. Problem determination107
Troubleshooting .. .107
Defining the problem . . . e L0
Documentation about the problem e e e e108
Using messagesandcodes.108
Using Trace . . . P (0]
Dump and trace formattlng T (¢)
Debugging the bridge exit .109
IDENTIFIER109
EDF o109
Trace . . . e R L
Debugging the supplled brldge eX|t R R 6]

Vi CICS TS for VSE/ESA: CICS External Interfaces Guide

Abend codesand Trace .110

Message validaton.10
Part 3. External CICS Interface.1M
Chapter 8. Introduction to the external CICS interface. 113
Overview. . . e K]
The programmlng mterfaces S .. e M8
lllustrations of the external CICS CALL mterface T
lllustration of the EXCI EXEC CICS interfface 117
Benefits of the external CICS interface.17
Requirements for the external CICS interface 117
Chapter 9. The EXCI CALL interface.19
The CALL interface commands M9
Initialize_User. .12
Allocate_Pipe .128
Open_Pipe. .. .125
DPL_Request. 127
Close_PIPE13
Deallocate_ Pipe .136
Response code values . . . e e e138
Return area for the EXCI CALL mterface138
Return area and function call EQUATE copybooks T KS1C)
Return codes P S 1]
Dpl_retarea return codes Co N K< 1]
Example of EXCI CALLs with null parameters I K210
Chapter 10. The EXEC CICS interface 143
EXEC CICS LINK command . . . A v
Retries on an EXEC CICS LINK command48
Translation required for EXEC CICS LINK command T F510)
Chapter 11. Defining connectionstoCICS 151
CONNECTION resource definition . . . e Y
SESSIONS resource definitions for EXCI connecﬂons . .«158
Inquiring on the state of EXCI connections 155
Chapter 12. The EXCI user-replaceable module 157
Chapter 13. External CICS interface options table, DFHXCOPT 159
Chapter 14. Compiling and Iink-editing external CICS interface client
programs . . e L4
The external CICS mterface stub DFHXCSTB e
The required linkage editormodes 161
Language considerations. .161
PL/I considerations .161
C considerations. .. .161
Sample application programs . . . P [6724
Description of the sample apphcatlons e e
Installing the EXCI sample definitons 163
Running the EXCI sample applications. 164
Results of running the EXCI sample applications 164
Job control language to run an EXCI client program. 166

Contents Vi

Chapter 15. Security . . . e [Ge)

MRO logon and bind-time securrty e (]
Link security170
User security e 4]
Surrogate user checkrng T VA
Chapter 16. Problem determination 173
Trace . . . e VS
System dumps .. e A<
Formatting system dumps .. T A
Abends from related CICS programs e)
The EXCI service trap, DFHXCTRA.177
EXCI trace entry points .77
Chapter 17. Response and reason codes returned on EXClcalls 189
Reason code for response: OK . . e e oo 189
Reason codes for response: WARNING P < 1¢)
Reason codes for response: RETRYABLE19
Reason codes for response: USER_ERROR19
Reason codes for response: SYSTEM_ERROR 1938
Chapter 18. Messagesand Codes.199
Part 4. Appendixes Lo Lo o200
Appendix. Routing program-link requests 208
Staticrouting203
Dynamicrouting .208
Notices . . . C e e e o205
Programming mterface mformatron =1 0[]
Trademarks and servicemarks206
Bibliography . . Ce e 209
CICS Transaction Server for VSE/ESA Release 1 Lrbrary Ce e ... 209
Books from VSE/ESA 2.5 base program libraries. 211
VSE/ESA Version 2 Release 5. . . . 24 B
High-Level Assembler Language (HLASM) e B
Language Environment for VSE/ESA (LE/VSE)212
VSE/ICCF 212
VSE/POWER 212
VSENNSAM.o s s 212
VTAM for VSE/ESA. .2183
Books from VSE/ESA 2.5 optional program libraries 215
C for VSE/ESA (C/VSE) - 1
COBOL for VSE/ESA (COBOLNSE) 2 1Y
DB2 Server for VSE 2 [}
DUIVSE . . . 2 [}
PL/I for VSE/ESA (PL/I VSE) 2 [}
Screen Definition Facility Il (SDFIl).217
TCP/IP for VSE/ESA 297
Determining if a publication iscurrent. 219

Viil CICS TS for VSE/ESA: CICS External Interfaces Guide

Index. L0222t

Sending your commentstolBM227

Contents iX

X CICS TS for VSE/ESA: CICS External Interfaces Guide

Summary of changes

This is a new book to the CICS Transaction Server for VSE/ESA Release 1 Library.

© Copyright IBM Corp. 1994, 2000 Xi

Xii CICS TS for VSE/ESA: CICS External Interfaces Guide

Part 1. Overview

This part of the book outlines some the ways in which you can make CICS
transaction processing services available to a variety of external users.

This part contains:

° ‘ ’”

° ‘ R i

© Copyright IBM Corp. 1994, 2000

Overview

2 CICS TS for VSE/ESA: CICS External Interfaces Guide

Chapter 1. Introduction

This book describes the following sources of external requests, and the routes that
they can use into CICS:

CICS 3270 Bridge
Provides a method for accessing applications that would normally require a
terminal through alternatives, such as TS and TD queues or the CICS web

support. See EPart 2_Bridging to 3270 transactions” on page 17.

VSE™ applications
Applications running in VSE patrtitions can use the External CICS Interface

(EXCI) to access CICS programs. See [Part 3_External CICS Interface” od
bage 111l

The following types of external requests are described in other books:

User socket applications
User socket applications can use the CICS Sockets feature of TCP/IP. See

TCP/IP for VSE/ESA User’s Guide.

Web browsers
Web browsers can use a variety of methods:

CICS Web support
The CICS Web support is a CICS-provided facility for supporting Web
browsers. See the CICS Transaction Server for VSE/ESA CICS Internet

Guide.

CICS Transaction Gateway
The CICS Internet Gateway is a workstation application that can accept
requests from Web browsers and route them into CICS. It uses a CICS
client and the EPI.

Java-enabled Web browsers
Java-enabled Web browsers can use applets that communicate with CICS.
Writers of applets can use CICS-provided Java classes to construct external
call interface (ECI) and external presentation interface (EPI) requests. The Web
browsers communicate with Web servers, and with one of the following:

CICS Transaction Gateway
The CICS Transaction Gateway, a workstation application that uses a CICS
client to route ECI and EPI requests to a CICS server.

CICS client applications
CICS client applications use a CICS client and the ECI or the EPI. See CICS

Family: Client/Server Programming.

CICS programs
Programs running in CICS Servers on any platform can use EXEC CICS LINK
to call a CICS program, or can use transaction routing to send transaction
requests to CICS TS. Programs running in CICS TS can use the CICS front
end programming interface (FEPI) to start transactions in the same or another

instance of CICS TS. See (CICS Front End Programming Interface User’s
Guiad

Telnet clients
Telnet clients can use TN3270 to start transactions.

© Copyright IBM Corp. 1994, 2000 3

3270 users
Users of the IBM 3270 Display System can start transactions. This is the most
familiar method of introducing work to CICS TS.

Eigure 2 on page 5 shows the principal ways of using CICS transaction processing
services from outside CICS.

Key to figure 2

TC = Terminal Control

TR = Transaction Routing

DPL = Distributed Program Link

EXCI = EXternal CICS Interface

ECI = External Call Interfaces

EPI = External Presentation Interface
CwWP = CICS WebServer Plugin

!

Sources of external requests

= Targets of external requests

i | = CICS provided interfaces

= CICS components

= Other product components

Figure 1.

4 CICS TS for VSE/ESA: CICS External Interfaces Guide

CICS Transaction Server environment

€ c € c
83 88
T ® T ®
02 £mmmm oo : 02
O & i W O g
O ® W ! O«
! |
| |
T | WS W
O | n = 1
£ 28 ,
IS >= !
S £s ,
N © W
§ » 3 | ,
\\\\\\ | —__¥___
| | g S 85 8 | |
I | = o @ [| |
jlwo —¢—9 83 |« < S Lo wo —,
| | Oc® =5 . 1 | |
[P | [<RO) n o
=

@

S =1 [23 3 g

4 [0) © [0

IR o8 5 8 £ 3§ &

oI @ INE - (SRS S = (o)) &= <

= N o= oo € bm\v = =0 g
S ™ m o = » o S =9

c Q 9]

© == oD oa I$)

= o= L o

v
CICS Web
support
CICS
sockets
CICS
Transaction Server,

IBM 3270
TN3270
CICS
TX Series
CICS
Transaction Server

User Socket
application

(

5

Chapter 1. Introduction

Figure 2. Client access to existing business logic

General concepts

All the mechanisms described in this book follow a similar pattern. A client is the
source of the external request which comes into CICS over a network using a
variety of transport protocols, or from another CICS region, using Inter Region
Communication (IRC). CICS (or another product) provides a transport-specific
listener (a long-running task) that starts another task (a facilitator such as an alias
or a mirror), to process the incoming request. The facilitator uses CICS services to
access the application.

The priorities of different alias transactions can be adjusted to determine the service
that a client request receives. There must be enough free tasks to service the alias
transactions as they are started by the listener. The CICS programs that service the
client requests are subject to contention for resources in the CICS system, and to
transmission delays if they are remote from the CICS system, or if they request the
use of remote resources by function shipping or distributed program link.

The CICS server is independent of the application model (2/3-tier, 2/3 platforms).
The listener/facilitator deals with the different transports used and sets the rules for
which programming models are supported.

Distributed computing

Distributed computing involves the cooperation of two or more machines
communicating over a network. The machines participating in the system can range
from personal computers to super computers; the network can connect machines in
one building or on different continents.

The main benefit of distributed computing is that it enables you to optimize your
computing resources for both responsiveness and economy. For example, it
enables you to:

» Share the cost of expensive resources, such as a typesetting and printing
service, across many desktops. It also gives you the flexibility to change the
desktop-to-server ratio, depending on the demand for the service.

» Allocate an application’s presentation, business, and data logic appropriately.
Often, the desktop is the best place to perform the presentation logic, as it is
nearest to the end user and can provide highly responsive processing for such
actions as drag and drop GUI interfaces.

Conversely, you may feel that the best place for the database access logic is
close to the actual storage device - that is, on an enterprise or departmental
server. The most appropriate place for the business logic may be less clear, but
there is much to be said for placing this too in the same node as the data logic,
thus allowing a single desktop request to initiate a substantial piece of server
work without intervening network traffic.

Distributed computing enables you to make such trade-offs in a flexible way.

Along with the advantages of distributed computing come new challenges.
Examples include keeping multiple copies of data consistent, keeping clocks in
individual machines synchronized, and providing network-wide security. A system
that provides distributed computing support must address these new issues.

CICS supports distributed computing and the client/server model by means of:

Distributed program link (DPL)
This is similar to a DCE remote procedure call. A CICS client program passes

6 CICS TS for VSE/ESA: CICS External Interfaces Guide

parameters to a remote CICS server program and waits for the server to send
data in reply. Parameters and data are exchanged by means of a
communications area.

The external CICS interface (EXCI)

An MVS client program links to a CICS server program. Again, this is similar to
a DCE RPC.

The external call interface (ECI)
The ECI enables CICS Transaction Server for VSE/ESA server programs to be
called from client programs running on a variety of operating systems. For
information about CICS Clients, see the CICS Family: Client/Server
Programming manual.

Function shipping
The parameters for a single CICS API request are intercepted by CICS code
and sent from the client system to the server. The CICS mirror transaction in
the server executes the request, and returns any reply data to the client
program. This can be viewed as a specialized form of remote procedure call.

Asynchronous transaction processing
A CICS client transaction uses the EXEC CICS START command to initiate
another CICS transaction, and pass data to it. The START request can be
intercepted by CICS code, and function shipped to a server system. The client
transaction and started transactions execute independently. This is similar to a
remote procedure call with no response data.

Distributed transaction processing
A program in the client system establishes a conversation with a
complementary program in the server, and exchanges messages. The programs
may use the APPC protocols.

Transaction routing
Terminals owned by one CICS system to run transactions owned by another.

The CICS family of products runs on a variety of operating systems, and provides a
standard set of functions to enable members to communicate with each other. For

information about the CICS family, see the ICICS Family: Interproduct
Communicatiod

manual.

Security support
CICS Transaction Server for VSE/ESA supports:

* A single network signon (through the ATTACHSEC option of the DEFINE
CONNECTION command)

* Authentication of the client system through bind-time security.

An external security manager can be used to provide resource access control and
login facilities.

In all the above scenarios the client environment must know which server CICS
system to communicate with. This is normally done by specifying the name of the
required remote CICS system in the definition of the relevant remote CICS
resource, or in the client application program.

TCP/IP protocols

TCP/IP is a communication protocol used between physically separated computer
systems. TCP/IP can be implemented on a wide variety of physical networks.

Chapter 1. Introduction 7

TCP/IP is a large family of protocols that is named after its two most important
members, Transmission Control Protocol and Interface Protocol. Eigure 3 shows the
TCP/IP protocols used by CICS ONC RPC in terms of the layered Open Systems
Interconnection (OSI) model. For CICS users, who may be more accustomed to
SNA, the left side of [Eigure 3 shows the SNA layers that correspond very roughly to
the OSI layers.

SNA (o13]] TCP/IP family
Application 7 | Application RPC
Presentation 6 | Presentation XDR
Sockets
Dataflow 5 Session (Empty) interface
Transmission 4 Transport TCPorUDP
Path control 3 Network IP
Datalink 2 Datalink
Subnetwork
Physical 1 Physical

Figure 3. TCP/IP protocols compared to the OSI and SNA models

The protocols used by TCP/IP are shown in the right-hand box in m

Internet Protocol (IP)
In terms of the OSI model, IP is a network-layer protocol. It provides a
connectionless data transmission service, and supports both TCP and UDP.
Data is transmitted link by link; an end-to-end connection is never set up
during the call. The unit of data transmission is the datagram.

Transmission Control Protocol (TCP)
In terms of the OSI model, TCP is a transport-layer protocol. It provides a
connection-oriented data transmission service between applications, that is,
a connection is established before data transmission begins. TCP has more
error checking that UDP.

User Datagram Protocol (UDP)
UDP is also a transport-layer protocol and is an alternative to TCP. It
provides a connectionless data transmission service between applications.
UDP has less error checking than TCP. If UDP users want to be able to
respond to errors, the communicating programs must establish their own
protocol for error handling. With high-quality transmission networks, UDP
errors are of little concern.

Sockets interface
The interface between the fourth and higher layers is the sockets interface.
In some TCP/IP implementations, the sockets interface is the API that
customers use to write their higher-level applications.

TCP/IP internet addresses and ports

TCP/IP provides for process-to-process communication, which means that calls
need an addressing scheme that specifies both the physical host connection (Host
A and Host B in Eigure 4 on page 9) and the software process or application (C, D,
E, F, G, and H). The way this is done in TCP/IP is for calls to specify the host by an
internet address and the process by a port number. You may find internet
addresses also referred to elsewhere as internet protocol (IP) addresses or host
IDs.

8 CICS TS for VSE/ESA: CICS External Interfaces Guide

HostA HostB

Hostaddress 129.126.178.99 123.156.189.2
Portnumbers 21 23 4100 3300 3301 3302
Processes @ E

Figure 4. How applications are addressed

Internet addresses
Each host on a TCP/IP internet is identified by its internet address. An internet

address is 32 bits, but it is usually displayed in dotted decimal notation. Each byte
is converted to a decimal number in the range 0 to 255, and the four numbers are
separated by dots thus: 129.126.178.99.

Remember that an internet is a collection of networks — hence the internet address
must specify both the network and the individual host. How this is done varies with
the size of the network. In the example just given, 129.126 specifies the network,
178.99 specifies the host on that network.

Port numbers (for servers)

An incoming connection request specifies the server that it wants by specifying the
server’s port number. For instance, in w a call requesting port number 21 on
host A is directed to process C.

Well-known ports identify servers that carry standard services such as the File
Transfer Protocol (FTP) or Telnet. The same service is always allocated the same
port number, so, for example, FTP is always 21 and Telnet always 23. Networks
generally reserve port numbers 1 through 255 for well-known ports.

Port numbers (for clients)
Client applications must also identify themselves with port numbers so that server

applications can distinguish different connection requests. The method of allocating
client port numbers must ensure that the numbers are unique; such port numbers
are termed ephemeral port numbers. For example, in ﬁ process F is shown
with port number 3300 on host B allocated.

Programming models

The programming models implemented in CICS are inherited from those designed
for 3270s, and exhibit many of the characteristics of conversational,
terminal-oriented applications. There are basically three styles of programming
model:

¢ Terminal-initiated, that is, the conversational model
 Distributed program link, that is, the RPC model
« START, that is, the queuing model.

Once initiated, the applications typically use these and other methods of continuing

and distributing themselves, for example, with pseudoconversations, RETURN
IMMEDIATE or DTP. The main difference between these models is in the way that

Chapter 1. Introduction 9

they maintain state (for example, security), and hence state becomes an integral
part of the application design. This presents the biggest problem when you attempt
to convert to another application model.

A pseudoconversational model is mostly associated with terminal-initiated
transactions and was developed as an efficient implementation of the
conversational model. With increased use of 1-in and 1-out protocols such as
HTTP, it is becoming necessary to add the pseudoconversational characteristic to
the RPC model.

State management and its associated token management, which were previously
controlled by the terminal, now need additional techniques to support this move.
Similarly, when START requests are disassociated from the terminal, difficulties
arise in returning the requests to their starting point.

Comparing mechanisms

EXCI

This section contrasts the different mechanisms by listing some of the
characteristics and benefits of each interface.

The external CICS interface makes CICS applications more easily accessible from
non-CICS environments.

Programs running in VSE can issue an EXEC CICS LINK PROGRAM command to
call a CICS application programs running in a CICS region. Alternatively, the VSE
programs can use the CALL interface when it is more appropriate to do so.

The provision of this programming interface means that, for example, VSE
programs can:

» Update resources with integrity while CICS is accessing them.

« Take CICS resources offline, and back online, at the start and end of an VSE job.
For example, you can:

— Open and close CICS files.

— Enable and disable transactions in CICS (and so eliminate the need for a
master terminal operator during system backup and recovery procedures).

The external CICS interface opens up a new way to implement client/server
applications, where the client program in a non-CICS environment calls a server
program running in the CICS address space. The external CICS interface benefits
not only TSO and batch applications, but allows you to extend the use of CICS
application programs in an open client/server environment.

Although the CICS external interface operates over CICS MRO links, the client
program can run on non-VSE platforms, and pass requests to CICS over an open
system interface (OSI) using the IBM OpenEdition® Distributed Computing
Environment Application Support MVS/ESA CICS feature (OE DCE AS/CICS). In
this way the external CICS interface provides an open interface to a wide variety of
other application platforms.

The 3270 bridge

The 3270 bridge allows you to introduce new GUI front ends to access existing
3270-based CICS applications without modifying them. This means that you can
concentrate your efforts on the new user interfaces and avoid, or at least postpone,

10 CICS TS for VSE/ESA: CICS External Interfaces Guide

rewriting stable mainframe applications. You do not need to restructure your
applications to separate the business logic from the presentation logic; the bridge

effectively does this for you.

The same applications can be used both by 3270 terminals, and by the new client
applications. This allows a phased migration of users from the 3270 applications to
the new client applications. Applications written for 3270 terminals can be run on

CICS systems without VTAM.

The bridge can process commands faster than existing front-end methods, such as
FEPI and EPI, because the terminal emulation is part of the same CICS
transaction. Unlike other front-end methods, there is only a single unit of work.

For BMS user transactions, there is no need to convert BMS data to 3270 format,
because the client application receives the BMS Application Data Structure, rather
than a 3270 datastream. This provides an easier method for the application
programmer to interface with the user transaction compared to FEPI. A utility
program (DFHBMSUP) is provided to recreate map source code from existing load
modules, so that installations that do not have access to the original source code
can still exploit the new ADS descriptor provided by the BMS macros.

The 3270 Bridge and FEPI

To help you decide between the 3270 bridge technology and FEPI, the following
table summarizes the major characteristics.

Table 1. Comparision between 3270 bridge technology and FEPI

Bridge

FEPI

Enabling technology

An application programming interface

Based on application data structure

Based on the 3270 data stream

Enables optimization due to integral
knowledge of the target

Easier to create generic driver (data
structure is architected)

Efficient; no terminal control involved

VTAM managed connection between source
and target

Single COMMAREA API and user
replaceable program

Requires system programming and VTAM
skills

CICS specific: source and target must be in
the same region

Ideal for driving remote applications, not just
CICS

Driven exit decides method of
communication with the client

Can be freed from the workings of the target;
terminal emulation

Knowledge of UOW

No coordination

Ideal when the routing is done elsewhere

Sysplex support requires three regions

Available only for CICS TS for VSE/ESA
V1R1.1 and later

Available for CICS TS for VSE/ESA V1R1.0

Application design

You can access existing applications originally designed for other environments by
using the bridging facilities described, or write new ones specifically for a new
environment. In general, it is good practice to split applications into a part
containing the business code that is reusable, and a part responsible for

Chapter 1. Introduction 11

presentation to the client. This technique enables you to improve performance by
optimizing the parts separately, and allows you to reuse your business logic with
different forms of presentation.

When separating the business and presentation logic, you need to consider the
following:

* Avoid affinities between the two parts of the application.

+ Be aware of the DPL-restricted AP!I; see ICICS Application Programming

for details.
» Be aware of hidden presentation dependencies, such as EIBTRMID usage.

Separating business and presentation logic

m illustrates a simple CICS application that accepts data from an end user,
updates a record in a file, and sends a response back to the end user. The
transaction that runs this program is the second in a pseudoconversation. The first
transaction has sent a BMS map to the end user’s terminal, and the second
transaction reads the data with the EXEC CICS RECEIVE MAP command, updates
the record in the file, and sends the response with the EXEC CICS SEND MAP
command.

The EXEC CICS RECEIVE and EXEC CICS SEND MAP commands are part of the

transaction’s presentation logic, while the EXEC CICS READ UPDATE and EXEC
CICS REWRITE commands are part of the business logic.

Transaction program

EXECCICSRECEIVEMAP...

EXEC CICSREAD UPDATE ...

EXECCICSREWRITE...

EXECCICS SENDMAP...

Figure 5. CICS functions in a single application program

A sound principle of modular programming in CICS application design is to separate
the presentation logic from the business logic, and to use a communication area
and the EXEC CICS LINK command to make them into a single transaction.

Eigure 6 an page 14 illustrates this approach to application design.

12 CICS TS for VSE/ESA: CICS External Interfaces Guide

Presentation logic Business logic
/ EXEC CICS ADDRESS COMMAREA . ..

EXEC CICS RECEIVE MAP ...
EXEC CICS READ UPDATE ...

EXEC CICS LINK . ..

. \ EXEC CICS REWRITE
EXEC CICS SEND MAP

EXEC CICS RETURN . ..

Figure 6. Separation of business and presentation logic

Once the business logic of a transaction has been isolated from the presentation
logic and given a communication area interface, it is available for reuse with
different presentation methods. For example, you could use CICS Web support with
the CICS business logic interface, to implement a two-tier model where the
presentation logic is HTTP-based.

Chapter 1. Introduction 13

14 CICS TS for VSE/ESA: CICS External Interfaces Guide

Chapter 2. How to use this book

The rest of the manual is organized as follows:

+ [Part 2 Bridging to 3270 transactions” on page 17 describes how to use the
transaction bridging facilities.

- FPart 3 Fxternal CICS Interface” on page 111l describes how to use the CICS
EXCI.

© Copyright IBM Corp. 1994, 2000 15

16 CICS TS for VSE/ESA: CICS External Interfaces Guide

Part 2. Bridging to 3270 transactions

This part of the book describes the 3270 bridge. It covers the following topics:

© Copyright IBM Corp. 1994, 2000

17

Bridging to 3270 transactions

18 CICS TS for VSE/ESA: CICS External Interfaces Guide

Chapter 3. Introduction

This part of the book describes the function that allows you to run CICS
3270-based transactions without a 3270 terminal. It covers the following topics:

Overview

The 3270 bridge provides an interface so that you can run 3270-based CICS
transactions without a 3270 terminal. Commands for the 3270 terminal are
intercepted by CICS and replaced by a messaging mechanism that provides a
bridge between the end-user and the CICS transaction.

With the bridge feature, a client application that may be executing outside the CICS
environment can use transport mechanisms such as the Internet to access and run
a CICS 3270-based user transaction.

The client application can also be a CICS transaction, using, for example, a
temporary storage queue to pass 3270 requests and data to a user transaction
executing in the same CICS region. This provides an similar function to the FEPI
interface.

The user transaction can be an existing 3270 or BMS-based CICS transaction. It
runs unchanged as if it were being driven by a real terminal.

The following diagram shows the flow of a client request in a bridge environment.
The client application requests execution of 3270 transactions by sending a
message to a bridge monitor transaction , over a transport mechanism (which
can be any method supported by CICS, including the Web, and CICS transient data

or temporary storage queues). lComponents of the 3270 bridge” on page 20

describes all the components of the bridge environment shown in this diagram.

© Copyright IBM Corp. 1994, 2000 19

via Web,
TS, TD,
etc.

End user

Virtual 3270

@)

@)

CICS
/’ Initiating transaction
START
3270 Transaction
Bridge - > CICS Task Attach
2.4 B Application code
O R
\O - - RECEIVE (MAP)
X
A Other CICS commands
- - SEND (MAP)
@)
¢ ™ CICS Task Detach

Figure 7. The 3270 bridge environment

Components of the 3270 bridge

Before you plan to use the 3270 bridge, you need to understand the following
terms:

The bridge mechanism
The user transaction

The client application
The transport mechanism
Bridge messages

The bridge monitor

The bridge environment
The bridge exit

The bridge exit area

The bridge facility

The FACILITYLIKE definition

The CICS 3270 bridge mechanism

The CICS 3270 bridge mechanism is the CICS function that allows a user
transaction to be run without a VTAM 3270 terminal. Terminal input/output
commands are intercepted by a bridge exit that emulates the terminal by
passing the commands, packaged as messages to the end-user or client
application.

The user transaction

A user transaction is a 3270 CICS transaction.

The client application

A client application is a program, usually executing outside CICS, and possibly
outside VSE/ESA, that uses the CICS 3270 bridge mechanism to run a user
transaction.

20 CICS TS for VSE/ESA: CICS External Interfaces Guide

The transport mechanism
A transport mechanism is used by the client application to pass messages to
CICS. The Web; and CICS temporary storage and transient data, are all
examples of transport mechanisms. Some transport mechanisms have
separately definable queues.

Messages
A message contains information that provides all or part of the data needed to
run a 3270 user transaction. Data originally written to the 3270 screen by the
user transaction is packaged into messages and sent to the client application.
Data originally read from the 3270 screen by the user transaction is obtained
from messages sent by the client application.

The bridge monitor
A bridge monitor is usually a long-running CICS task that is associated with a
specific transport mechanism, or a specific queue in a transport mechanism. A
bridge monitor is not required if the Client application is a CICS task running in
the same partition using TS or TD queues as the Client application can issue
the START BREXIT command. When a message arrives requesting a CICS
user transaction, the bridge monitor issues a START BREXIT TRANSID
command to start the requested user transaction in a bridge environment
where it will execute in association with the specified bridge exit.

The bridge monitor must ensure that the requested transaction is started, and
started only once. It can receive confirmation messages from the bridge exit
after a successful start.

A bridge monitor can be is designed as a long running CICS task, to start any
user transaction, or it can be designed to start only a single transaction.

The bridge environment
The bridge environment is established by CICS so that the user transaction
can be executed and certain commands intercepted. A bridge exit and a
bridge facility are essential components of the bridge environment.

The bridge exit
A bridge exit is a user-replaceable program that emulates the 3270 terminal
API.

It does this by packaging data originally intended for the 3270 screen into
messages and passing them to the transport mechanism, for delivery to the
client application. Response messages from the client application are returned
to the user transaction to satisfy terminal requests.

A bridge exit is usually designed to work with a specific transport mechanism.

A bridge exit can be generic if it is designed to run any user transaction, or
specific if it is designed to work with a single user transaction.

In CICS Transaction Server for VSE/ESA Release 1.1.1, all 3270 terminal API
requests are passed to the bridge exit. This provides a simple interface for
specific bridge exits, but is very complicated in the generic case.

To reduce the complexity, the bridge exit can be designed to handle some of

the requests, with all the terminal API requests being passed to another
user-replaceable program, known as a formatter.

Chapter 3. Introduction 21

If used, the name of the formatter is obtained from the BRXA_FORMATTER
field in the BRXA and the bridge exit is only called for requests that require
input or output of data. If a formatter is not specified, the bridge exit is called for
all requests.

The bridge exit is always called for the following requests:
* User transaction initialization

* User transaction bind

e User transaction termination

* User transaction abnormal termination

* Read and Write message

» Syncpoint (optional)

A formatter is called for the following requests:
* SEND (Terminal Control and BMS)

* RECEIVE (Terminal Control and BMS)

+ CONVERSE

* FREE

* ISSUE DISCONNECT

+ ISSUE ERASEAUP

* RETRIEVE (in some cases)

All requests made in a bridge exit are run as part of the same unit of work as
the user transaction. Therefore, any recoverable requests made by the bridge
exit are committed or rolled back at the same time as the user transaction
resources.

The abend termination handler in the bridge exit is called when the user
transaction terminates abnormally, so that the client application can be informed
of the abend. The bridge exit can issue only non-recoverable requests in this
call.

The interface between the bridge exit (the BRXA) and CICS is described fully in
[Bridge exit area (BRXA)” an page 84 This interface is defined by CICS and

must be used by all bridge exits.

The messaging interface between the bridge exit and the remote resource or
the end-user is not formally defined. You may define this interface to suit your
own environment. A sample interface has been defined that is used by the
CICS TS/TD supplied exits. This interface is described in

farmat” on page 59. You can use this interface definition as a basis for your own
implementation using other transport mechanisms.

Formatter
A formatter is a user-replaceable program that can (optionally) be used in
association with a bridge exit. The formatter performs all the message building
and analysis functions otherwise done in the bridge exit. Separation of this
function simplifies the logic of the bridge exit and allows the formatting code to
be used by many different bridge exits.

The bridge exit area
The bridge exit area (BRXA) is the communication area between the bridge exit
and CICS. It is a CICS COMMAREA (subject to normal length constraints)
containing a number of sub-areas that are used by the bridge exit to process
each call, and retain information between calls.

It contains the following subareas:

22 CICS TS for VSE/ESA: CICS External Interfaces Guide

Header
This area contains version information and pointers to some of the
following areas.

Transaction area
This area is used by bridge exit initialization processing. It contains
information about the user transaction that CICS runs, and the real
3270 that it expects to use.

Command area
This area provides details of the command request. For CICS API
requests it provides a simplified description of the command and
response fields.

User area
This area is used to store data between calls to the bridge exit. It acts
as a user input area to store the messages needed to satisfy RECEIVE
and RETRIEVE requests, and also as a user output area to store the
messages from SEND requests so that they can all be sent together
when the user transaction terminates.

ADS descriptor
This area contains the ADS descriptor for BMS SEND MAP and
RECEIVE MAP requests.

If the user application issues a BMS command, the bridge exit is called
and passed (in the user area) the BMS Application Data Structure
(ADS). This is another name for the symbolic map that is generated by
the BMS macros used to define the mapping of the 3270 screen. For
BMS programs this gives the client application a simplified interface to
the terminal data, without the need to understand 3270 data streams.

The ADS descriptor allows the exit to interpret the BMS Application
Data Structure (ADS), without requiring that the copybook for the
Application Data Structure (or DSECT) be included in the source for the
exit program at compile time.

The ADS descriptor is generated as part of the mapset load module
produced by the map definition macros, provided these are assembled
using the CICS Transaction Server for VSE/ESA Release 1.1.1 or later
macro library. Mapsets generated with previous CICS releases do not
contain the ADS descriptor. If the mapset does not contain the ADS
descriptor, a null pointer is set in the bridge exit area.

The ADS descriptor can be generated in short or long form, by
specifying the DSECT option on the DFHMSD macro. The long form,
ADSL, contains all fields aligned on 4-byte boundaries. This is required
if the transport mechanism that you are using is MQSeries, or
cross-platform.

Note: If you are unable to reassemble the mapset because you do not
have the source, you can use the DFHBMSUP utility provided by
CICS Transaction Server for VSE/ESA Release 1 to recreate
source statements from your mapset load module. See the
1 [liti idd for information about DFHBMSUP.

During initialization, the bridge exit can set an indicator in the bridge
exit area to control whether or not the ADS descriptor should be passed
to the exit on BMS SEND MAP and RECEIVE MAP calls. (If the ADS

Chapter 3. Introduction 23

descriptor is required, the CICS interface code has to load the mapset
and locate the descriptor, thus increasing the path-length.)

The format of the BRXA is defined in [Bridge exit area (BRXA)” on page 84.

The bridge facility
The bridge facility is a virtual terminal, replacing a real 3270, which is visible
only to the user transaction and does not appear in response to CEMT | TERM
or CEMT | TASK.

It has a dynamically created TERMID that can be used, for example, as the
basis of a unique name for a TD or TS queue.

The bridge facility emulates a real terminal in the following EXEC CICS
interfaces:

* ASSIGN

» Terminal control and BMS API

 EIB

* INQUIRE TASK

* INQUIRE TERMINAL

Note: EXEC CICS INQUIRE TERMINAL and INQUIRE TASK return information
about a bridge facility only if issued from within the user transaction. The
bridge facility is not visible outside the user transaction.

The bridge facility is discarded at the end of the user transaction when the
bridge exit (during termination processing) sets the keep time to zero. The
keep time defines how long the bridge facility should be retained after the
transaction terminates. The bridge exit must specify a non-zero value if the
bridge facility is to be kept for the next part of a pseudoconversation.

The bridge facility can have a TCTUA (Terminal Control Table User Area), which
can be accessed by EXEC CICS ADDRESS TCTUA in the normal way. The
TCTUA is initialized to nulls when the bridge facility is created.

A global user exit (GLUE) called XFAINTU is called when a bridge facility is
created and discarded. XFAINTU is passed the address of the TCTUA, so you
can use this exit to initialize the TCTUA.

The characteristics of a bridge facility are copied from a FACILITYLIKE
definition, with the addition of preset security.

The FACILITYLIKE definition
FACILITYLIKE is the name of a real terminal definition that is used as a
template for some of the properties of the bridge facility.

The name of the FACILITYLIKE definition to be used can be passed to CICS in
one of three ways (the first non-blank value found is used):

* The bridge exit can return the FACILITYLIKE name in the
BRXA_FACILITYLIKE parameter of the bridge exit initialization call.

» The parameter can be obtained from the PROFILE definition for the user
transaction.

» The default is CBRF, a definition supplied by CICS to support the bridge.

Once the bridge facility has been defined, its FACILITYLIKE template cannot be
changed. Therefore, if the bridge facility is reused in a pseudoconversation,
CICS does not search for a new FACILITYLIKE value.

24 CICS TS for VSE/ESA: CICS External Interfaces Guide

Note: If you are running in a CICS system started with the VTAM=NO system
initialization parameter, the resource definition specified by
FACILITYLIKE must be defined as REMOTE. A default definition of
CBRF, defined as REMOTE, is provided in the group DFHTERM.

Bridge implementations provided
The following bridge programs are provided:

DFHOCBRE
A COBOL bridge exit program that uses CICS temporary storage or transient
data queues to pass messages (in MQCIH format) to the end user application
(another CICS application).

DFHOCBRF
A COBOL bridge exit formatter designed to work with DFHOCBRE. This builds
and interprets BRMQ message vectors.

DFHWBLT
An object code bridge exit that allows you to access a CICS transaction from
the World Wide Web. This exit uses the CICS Web Interface support described

in the .

Copybooks

The following copybooks are provided:

DFHOCBRD
COBOL copybook used by DFHOCBRE, and DFHOCBAE.

DFHOCBRU
COBOL copybook used by DFHOCBRF

DFHBRSDx
Copybooks in all supported languages defining the interface between the
bridge monitor and the bridge exit.

DFHBRMHXx
Copybooks in all supported languages defining the message header
included in all messages passed between the supplied bridge exit and the
client application. Constants are also supplied for these copybooks.

DFHBRMQx
Copybooks in all supported languages defining the command vectors in the
messages passed between the supplied bridge exit and the client
application. Constants are also supplied for these copybooks.

See [Data formats for the supplied bridge exits” on page 57 for more information

about the formats of message headers and vectors.

Resource definitions
The following resource definition groups are provided:

DFH$BR
resource definitions to support the DFHOCBRE bridge implementation.

The CA21 SupportPak

The CA21 SupportPak is a support package providing the CICS 3270 Bridge
Passthrough tool. This allows you to run a CICS 3270 user transaction from a 3270
terminal, using the CICS 3270 Bridge facility rather than standard CICS terminal
control function. You can then evaluate whether a CICS 3270 transaction is suitable
to be driven using the 3270 bridge.

Chapter 3. Introduction 25

The Passthrough transactions also allow you to examine the 3270 data streams
created by the bridge exit, and log them for further analysis. You can then use this
information to write your own end-user application to drive the CICS 3270
transaction instead of a real 3270 terminal.

The CA21 SupportPak can be obtained from the Web, at the following URL:
http://www.software.ibm.com/ts/cics/txppacs

26 CICS TS for VSE/ESA: CICS External Interfaces Guide

Running 3270 transactions in a bridge environment

A user transaction is started directly by a bridge monitor transaction using the
START BREXIT TRANSID command.

The user transaction is initialized in a bridge environment; all 3270 terminal
commands are intercepted and passed to the named bridge exit that emulates the
3270 terminal by packaging the commands into messages and passing them to the
transport mechanism for delivery to a client application.

A formatter may be used to package the commands into messages, to simplify the
role of the bridge exit as a message handler only.

The bridge monitor transaction is normally a long running task associated with a
message queue. It looks at the contents of each message to search for requests for
new work, and identifies the name of the user transaction to run. It then starts the
requested transaction and checks that it has started successfully.

The client application, which may be executing anywhere accessible by the
transport mechanism, extracts the 3270 data from the messages and constructs
reply messages, containing 3270 data and commands, to pass to the bridge exit to
satisfy the 3270 terminal commands.

Simple terminal transactions

Bridge monitor

A simple terminal transaction is one in which all user data required to run the
transaction is available before the transaction has started. There is a single input
screen and one or more output screens. It may issue recoverable requests.

The following example of a simple inquiry or update transaction shows how a bridge
exit is called to process various requests, and is passed a structured COMMAREA
containing the full description of the request.

CICS transaction manager Single unit of work Bridge exit

ip Init Transaction

Initialise UOW

User transaction

Link application
program

UOW Prepare _
)

UOW Commit

Figure 8. A simple terminal transaction

Chapter 3. Introduction 27

CICS transaction manager

Init Transactaon

The following example shows a simple inquiry or update transaction when a
formatter is used.

Bridge exit

9

Initialise UOW
-

v

Link application

UOW Prepare <

program € —1 ¥

A 4

User transaction Formatter

UOW Commit

v

Figure 9. A simple terminal transaction using a formatter

Pseudoconversational transactions

A pseudoconversation normally involves a series of transactions, each initiated by
the previous transaction, which may also pass some data. The name of the next
transaction to be run can be defined by the user transaction in different ways:

1. EXEC CICS RETURN TRANSID

EXEC CICS RETURN TRANSID IMMEDIATE

EXEC CICS START TRANSID TERMID

EXEC CICS SET TERMINAL/NETNAME NEXTTRANSID
Terminal data

A

Note: Transactions initiated by START TERMID are not necessarily
pseudoconversational. Here we are considering only those transactions
initiated by a START to the principal facility (the bridge facility) where the
STARTING and STARTED applications are associated in a
pseudoconversation. In this case, START TERMID must specify the bridge
facility.

Commands 1-4 all cause the bridge mechanism to pass the next transaction
identifier and the START code in the bridge exit area (BRXA) on the termination
and abend calls, with an indicator showing the source of the next TRANSID. This
indicator can have 3 settings:

IMMEDIATE
The next TRANSID value came from a RETURN IMMEDIATE.

STARTED
The next TRANSID value came from a START TERMID.

NORMAL
The next TRANSID value came from a RETURN TRANSID or SET
command.

The BRXA_STARTCODE field is also set to the start code appropriate for the next
transaction.

28 CICS TS for VSE/ESA: CICS External Interfaces Guide

At transaction termination, the bridge exit is called and passed the BRXA containing
the next TRANSID and START code, and the indicator. It can then issue an EXEC
CICS START BREXIT command for the next TRANSID, or return the next
transaction information to the client application.

You can design the bridge exit to provide any of the following options for the client
application, when issuing a message for a subsequent transaction:

* Copy the next TRANSID in the output message to the TRANSID field in the new
input message. In this case the specified next TRANSID (from whatever source)
will be run.

» Put a different TRANSID in the TRANSID field of the new input message. This
provides a mechanism for cancelling the existing flow; the equivalent of logging
or powering the terminal off. The existing next transaction and all the start
requests are discarded. An exception trace entry is written.

To preserve the pseudoconversational environment, the bridge exit requests that its
bridge facility be kept by specifying a keep time value. A bridge facility token is
returned to the client application. Subsequent transaction requests in the
pseudoconversation must contain this token.

Note: The same bridge facility must be used by all transactions in the
pseudoconversation.

Pseudoconversational and terminal information (the COMMAREA and TCTUA) are
saved and associated with the bridge facility.

The TERMID is preserved for the lifetime of the bridge facility. This means that
transactions that set up TS or TD queues using a TERMID as part of the name can
be run in a bridge environment.

Note: If the next TRANSID is set (or defaulted) by the bridge exit to the same
value as the next TRANSID saved in the bridge facility, CICS treats the
transaction as part of a pseudoconversation. The user application can issue
EXEC CICS INQUIRE TASK STARTCODE to find out if it is part of a
pseudoconversation. The startcode * TO’ is returned for the first transaction
and 'TP’ for subsequent transactions in the pseudoconversation.

Conversational transactions

The bridge exit can handle conversational user transactions that involve multiple
terminal input screens resulting from the transaction issuing multiple RECEIVEs.
These transactions can by handled by the bridge mechanism in two ways:

* The client application provides the bridge exit with all of the input necessary to
satisfy all of the RECEIVE requests. In effect, this turns a conversational
transaction into a non-conversational transaction. This is possible only if all of the
data necessary to satisfy all input requests is known before starting the
transaction.

It is more usual for the end-user to analyze information from a previous SEND
before responding to a subsequent RECEIVE. To support this the bridge exit
sends a message requesting more data to the client application.

Chapter 3. Introduction 29

Implementing a 3270 bridge environment

The bridge mechanism is very flexible, but most implementations fall into a few
basic models.

This section tells you how to identify the model that fits the requirements of your
system and applications. It then presents examples of each model, which you can
use as checklists when preparing your own client programs, bridge exits and
monitors.

It covers the following topics:

. ‘ ”

° ‘ ”

. " A A A . m

. " N . N i)

Determining the bridge environment model
There are basically four models:
* Long running monitor
» Two-task model
+ Single message monitor
» Direct (without a bridge monitor)

From the questions asked in the following sections, you can determine what kind of
model is required to run the bridge in your implementation:
Is the client application a CICS transaction?

YES use the Direct model. The client program can issue the EXEC CICS
START BREXIT command itself, and does not need a bridge monitor.

Can the bridge exit send and receive messages directly from the client
application?

NO use the Two-task model.
Is a new transaction started when a message arrives in CICS?

YES use a Single message model.

Otherwise, a Long-running monitor model should be used.

30 CICS TS for VSE/ESA: CICS External Interfaces Guide

Using the long running monitor model to implement the 3270 bridge

In this model, the client can be anywhere, but is usually outside CICS, possibly on
a workstation platform. The client application sends a message to CICS, and waits
for a response.

The bridge monitor:

 Identifies that there is a new message (It could be POSTed, or browse a queue)

* Browses the message to obtain the user TRANSID and FACILITYTOKEN, if
present

* Issues an EXEC CICS START TRANSID() BREXIT() BRDATA()

This runs the user transaction. The bridge exit is called to read and write messages
directly from/to the client application. The bridge monitor does not (usually) need
any further involvement in this request, but remains waiting for new requests.

Note: The bridge monitor must not get a lock on the message as the message
must be readable by the bridge exit. The messages can be recoverable.

Client
Application

CICS

Long running

Bridge Monitor
Transaction

START

- User Transaction

Figure 10. The long running monitor model

Client application design
1. Set initial FACILITYTOKEN to nulls

2. Create a message header containing:
* TRANSID
* FACILITYTOKEN
* FACILITYLIKE
* USERID (optional)
» output message and/or queue identifier

3. Loop until end of transaction and NEXTTRANSID is blank:
» Create message vectors containing information to satisfy each expected
CICS API request (this is usually just a RECEIVE or RETRIEVE vector)

Chapter 3. Introduction 31

» Create a message containing the message header plus zero or more vectors
* Output message

* Input message reply (either with a wait option, or a loop)

* Copy the input message header to the next output message

» Extract message vectors from the input message

* Process these and get futher input from the user if necessary

« If next transid is set then copy next transid to TRANSID

4. End of loop

Bridge monitor design
1. Get startup information (for example, queue identifier)
2. Initialize queues
3. Loop until shutdown request
* Wait for new message
* Browse new message header (without locking it)
* Extract following from the message header
— TRANSID
— FACILITYTOKEN
— FACILITYLIKE (optional)
— USERID (optional)
— output message and/or queue identifier
* Create brdata containing (see DFHBRSD for example)
— input message and/or queue identifier
— output message and/or queue identifier
— FACILITYTOKEN or nulls if new request
— FACILITYLIKE if new request (default to blanks)
* EXEC CICS START TRANSID(transid) BREXIT(bridge exit) BRDATA(brdata)
* Check if task shutdown
4. End of loop
5. Shutdown process

Bridge exit design

The supplieds DFHOCBRE and DFHOCBRF can be used with the following changes

(if necessary):

» Change the transport mechanism specific calls

* |If a message header other than MQCIH is used change this in DFHOCBRF

» If message vectors other than the BRMQ vectors are used, change these in
DFHOCBRF

32 CICS TS for VSE/ESA: CICS External Interfaces Guide

Using the two task model to implement the 3270 bridge

In this model, the client can be anywhere, but is usually outside CICS, possibly on
a workstation platform The bridge monitor is started by a message arriving in CICS.
The bridge monitor then:

* Browses the message to obtain the user TRANSID and FACILITYTOKEN, if
present

« Issues an EXEC CICS START TRANSID() BREXIT() BRDATA()

The bridge exit cannot read or write the messages directly using the transport
mechanism, so the bridge monitor and bridge exit communicate with each other
using ECBs. When the bridge exit wants to write a message, it stores the message
in memory, or on a non recoverable TS queue, and posts the bridge monitor. The
bridge monitor then gets the message and sends it to the client. This model is the
most complex, and the messages are not recoverable.

Client
Application

CICS

Bridge Monitor
Transaction

START

- User Transaction

Figure 11. The two-task model

Bridge monitor design
1. Get startup instance information (for example, message and queue identifier)
2. Get shared storage for message buffers Initialise queues
3. Read new message header (if possible without locking it)
4. Extract following from the message header
TRANSID
FACILITYTOKEN
FACILITYLIKE (optional)
USERID (optional)
» output message and/or queue identifier
5. Create brdata containing (see DFHBRSD for example)
* input message buffer address
» output message buffer address
* FACILITYTOKEN or nulls if new request
* FACILITYLIKE if new request (default to blanks)
* ecb address

Chapter 3. Introduction 33

* message buffer address
6. EXEC CICS START TRANSID(transid) BREXIT(bridge exit) BRDATA(brdata)
7. Loop until message indicates end of transaction

* Wait on ecb
* Get message from bridge exit
* Write message
* If message is a request for more data:
— Read next message (wait for response from client)
— Send message to bridge exit
— Post ecb
Bridge exit design
The supplieds DFHOCBRE and DFHOCBRF can be used with the following changes
(if necessary):
» Change the transport mechanism specific calls to use the post/wait mechanism
» If a message header other than MQCIH is used change this in DFHOCBRF

» If message vectors other than the BRMQ vectors are used, change these in
DFHOCBRF

34 CICS TS for VSE/ESA: CICS External Interfaces Guide

Using a single message model to implement the 3270 bridge

In this model, the client can be anywhere, but is usually outside CICS, possibly on

a workstation platform The bridge monitor is started by a message arriving in CICS.

The bridge monitor may read the message recoverably, but in this case should

issue a syncpoint before issuing the START request. The bridge monitor then:

» Browses the message to obtain the user TRANSID and FACILITYTOKEN, if
present

« Issues an EXEC CICS START TRANSID() BREXIT() BRDATA()

After the monitor has issued the START it has no further involvement, so can
terminate.

When the bridge exit is called to read and write messages, it communicates directly
with the client application. The messages can be recoverable.

Client
Application

CICS

Bridge Monitor
Transaction

START

- User Transaction

Figure 12. The single message model

Bridge monitor design
1. Get start-up instance information (for example, message and queue identifier)
2. Initialize queues
3. Read new message header (if possible without locking it)
4. Extract the following from the message header:
TRANSID
FACILITYTOKEN
FACILITYLIKE (optional)
USERID (optional)
» output message and/or queue identifier
5. Create brdata containing (see DFHBRSD for example):
* input message and/or queue identifier
« output message and/or queue identifier
* FACILITYTOKEN or nulls if new request
* FACILITYLIKE if new request (default to blanks)
6. EXEC CICS START TRANSID(transid) BREXIT(bridge exit) BRDATA(brdata)

Chapter 3. Introduction 35

Using the direct model to implement the 3270 bridge

In this model, a CICS application directly starts a user transaction running in the
bridge environment. This model has been known in the past as the ’user bridge’.

The client application, which is a CICS transaction:
* Writes a message on a queue (probably a TS queue)

» Creates brdata (probably consisting of the TS queue name and a null
FACILITYTOKEN)

« Issues an EXEC CICS START TRANSID() BREXIT() BRDATA()

The client application then waits for data on the output queue. When the bridge exit
is called to read and write messages, it communicates directly with the client
application.

If Temporary Storage (TS) queues are used for the transport mechanism, they must
not be recoverable as they are used by both the client and the bridge exit. If the
same exit is used, communication between the client and bridge exit is
synchronized by repeated EXEC CICS DELAY commands to wait for messages on
the TS queue. If this is not efficient enough, this can be changed to an ECB
mechanism.

CICS

Client
Application

START

- User Transaction

Figure 13. The Direct model

Client Application (CICS transaction) design
1. Create new message

= First transid in pseudo conversation
e Null FACILITYTOKEN
* FACILITYLIKE or blank

36 CICS TS for VSE/ESA: CICS External Interfaces Guide

2. Loop until end of pseudo conversation:
* Write message to TS queue
* Create brdata (using DFHBRSD) containing:
— Input and output queue names
— FACILITYLIKE and FACILITYTOKEN from message
« EXEC CICS START TRANSID(from message) BREXIT(bridge exit)
BRDATA(dfhbrsd)
* Loop until end of transaction:
— Loop until message obtained:
- Read message from TS queue
- Wait a second
— Process message (such as send response to client)
— If request for more data
- Create next message
- Write message to TS queue
* |If there is a next TRANSID
— Copy next TRANSID to TRANSID in message

Bridge exit design
DFHOCBRE and DFHOCBRF can be used unchanged.

Chapter 3. Introduction 37

38 CICS TS for VSE/ESA: CICS External Interfaces Guide

Chapter 4. The Bridge environment

The bridge environment is established when CICS receives a START BREXIT
TRANSID call. The transaction specified by TRANSID is associated with the bridge
exit specified by BREXIT (or specified on the TRANSACTION resource definition),
and a virtual 3270 terminal, the bridge facility, is created.

The transaction executes in the usual way, but all terminal commands are
intercepted and passed to the bridge exit.

The user transaction is unchanged, but because of the way it now executes in the
bridge environment, there are some restrictions on what it can do, and some
limitations on how it can use the bridge facility, because it is not a real terminal.

This chapter describes these special characteristics of the user transaction. It
covers the following topics:

. n .. . m

. " . . N .)

° ¢ ”

User transaction programming considerations

The user transaction runs unchanged, with the following limitations.

Abend information
The bridge facility name is not used as the TERMID in any diagnostic
information produced as the result of an abend, except in a transaction dump.

ASSIGN
If the user transaction issues ASSIGN NETNAME, the value returned is the
TERMID. The name is not visible outside the user transaction, and may contain
characters that are not allowed in a VTAM netname definition.

You can only use ASSIGN to request information about BMS attributes such as
MAPCOLUMN, MAPHEIGHT, MAPLINE, and MAPWIDTH, if an ADS descriptor
is present in the mapset, and BRXA_LOAD_ADS_DESCRIPTOR is set to Y in

the bridge exit area. Seel'Bridge exit area (BRXA)” on page 84 for details of the

fields in the bridge exit area.

BMS requests
The 3270 bridge supports the following BMS commands. If other BMS functions
that require a principal facility are used, they cause the user transaction to

abend ABRS.
RECEIVE commands:
Command Calls bridge
exit
RECEIVE MAP TERMINAL YES
RECEIVE MAP FROM NO
RECEIVE MAP MAPPINGDEV NO

Note: TERMINAL is implied if neither TERMINAL nor FROM is specified.

© Copyright IBM Corp. 1994, 2000 39

SEND commands:

Command ACCUM Calls bridge
supported exit
SEND MAP TERMINAL NO YES
SEND TEXT TERMINAL NO YES
SEND TEXT NOEDIT TERMINAL NO YES
SEND TEXT MAPPED TERMINAL NO YES
SEND CONTROL TERMINAL NO YES
SEND MAP SET YES NO
SEND TEXT SET YES NO
SEND TEXT NOEDIT SET YES NO
SEND TEXT MAPPED SET YES NO
SEND CONTROL SET YES NO
SEND MAP MAPPINGDEV NO NO

Note: TERMINAL is implied if none of TERMINAL, SET, or PAGING is

specified.

Routing:

Routing to real terminals from a transaction running on a bridge facility is
supported, but it is not possible to route to a bridge facility, nor to specify a
bridge facility as ERRTERM on ROUTE. If ERRTERM without a name is
specified on a ROUTE request issued in a bridge environment, the
INVERRTERM condition is raised.

PAGING is supported only under routing.
Partitions:

Partition related commands and options are supported, but are treated in the
same way as they would be for a real terminal that does not support partitions.

SEND PARTNSET
Supported, but the bridge exit is not invoked.

RECEIVE PARTN
Supported; the bridge exit is invoked with bridge exit area command
fields set up for a terminal control RECEIVE.

INPARTN
Accepted but ignored; not passed to the bridge exit.

OUTPARTN
Accepted but ignored; not passed to the bridge exit.

ACTPARTN
Accepted but ignored; not passed to the bridge exit.

CICS-supplied transactions

CEDF, CEDX, CSFE, and CSGM cannot run as user transactions.

DB2® authorization check

The RCT allows AUTHTYPE=TERMID or OPID which means that security

40 CICS TS for VSE/ESA: CICS External Interfaces Guide

checking is done against the corresponding name. This fails in a bridge
environment, and AUTHTYPE=USERID must be used instead. This is the
preferred method in all environments.

External security customization
TERMID/OPID/TCTUA information is not passed in the DFHXSID parameter list.

Global User Exits
The following global user exits (GLUEs) are not driven because the bridge
facility is not a real terminal.

XBMIN
to intercept a RECEIVE MAP request.

XBMOUT
to intercept a SEND MAP request.

XTCATT
before a task attach (TCAM).

XTCIN after an input event (TCAM).

XTCOUT
before an output event (TCAM).

XZCATT
before a task attach (VTAM).

XZCIN after an input event (VTAM).

XZCouT
before an output event (VTAM).

XZCOUT1
before a message is broken into RUs (VTAM).

The XALTENF and XICTENF exits can be driven if a request is made for a
bridge facility. The ‘terminal-not-found’ condition is raised because the bridge
facility is not a real terminal.

The standard user exit parameter list field UEPTERM that points to the TERMID
are not set for exits invoked under a bridge task.

ISSUE PRINT
ISSUE PRINT is not supported and results in a no-op. A NORMAL condition is
returned.

Monitoring
A 3270 bridge transaction identifier has been added to monitoring records.

Remote DLI requests
No security check of the PSB against the terminal is done for function-shipped
DLI requests.

Security Processing
When a bridge facility is created, it is signed on as a preset USERID terminal.
The USERID is the value returned on the bridge exit initialization call. If no
value is returned, the USERID with which the transaction was started is used.
As with other preset terminals, the SIGNON and SIGNOFF commands are not
permitted, and INVREQ is raised.

The bridge facility is signed off when it is discarded. It remains signed on if the
user transaction ends and the bridge exit specifies a keep time value.

Chapter 4. The Bridge environment 41

When the bridge exit initialization call returns a bridge facility token, a check is
made that the USERID is the same as that specified when the bridge facility
was created. No other security check is made. If a greater level of security is
required, such as validation of every message, this can be done in the bridge
exit by issuing a VERIFY PASSWORD command.

START
The user transaction can issue EXEC CICS START requests for its own bridge
facility. This allows existing menu-driven and pseudo-conversational applications
that use this interface to work in a bridge environment. See
[Pseudoconversational transactions” on page 24 for a description of START
TERMID where TERMID specifies the bridge facility.

The time delay options, (INTERVAL, TIME, AFTER, AT, HOURS, MINUTES,
SECONDS) are not normally used in the bridge environment. If any of these
options are specified, they are saved with the other START data and passed in
the BRXA to the TERM call of the bridge exit. It is then the responsibility of the
bridge exit to take account of them. They could also be passed back to the end
user application and used there in some way.

The INTERVAL and AFTER values can be used to put the STARTSs for a
particular bridge facility in time order, but the exact delays requested are not
implemented. TIME and AT specifications are ignored completely.

Other options on the START command issued to the user transaction’s own
terminal are not fully supported because they are not required in the bridge
environment:

TERMID
You can only specify the name of the bridge facility for this transaction.
Any other name will result in a TERMIDERR.

USERID
USERID and TERMID are mutually exclusive. The CICS translator
rejects START requests with both USERID and TERMID specified.

TRANSID
If the TRANSID cannot be defined as REMOTE. The TERMID will not
be found if the request is shipped to a remote system.

SYSID Routing of START requests is not possible in a bridge environment.
This option is not supported, unless the value of the SYSID is the local
SYSID. If you specify any other value, the request will be shipped and
the TERMID will not be found on the remote system.

NOCHECK
This option only applies to shipped start requests and is ignored.

PROTECT
If you specify the PROTECT option on a START request for a bridge
facility, and the starting task abends before taking a syncpoint, the
START request is discarded. PROTECT normally delays the starting of
the new task until a SYNCPOINT has occurred. This happens
automatically for a task issuing a START for its own facility because the
START cannot take effect until the starting task has terminated and
freed up its bridge facility.

ATTACH
This option applies only to non-terminal starts. The CICS translator
rejects START ATTACH requests when TERMID is specified.

42 CICS TS for VSE/ESA: CICS External Interfaces Guide

BREXIT
The BREXIT option applies only to non-terminal starts. The CICS
translator rejects START BREXIT requests when TERMID is specified.

STARTed transactions
Some menu applications use START to initiate subsequent transactions.

Started transactions are identified by specifying the appropriate value in
BRXA_STARTCODE the bridge exit initialization call. This value is used to
return the correct response to ASSIGN STARTCODE and INQUIRE TASK
STARTCODE commands issued by the user transaction.

User transactions that are initiated by START may issue one or more
RETRIEVEs to obtain data passed on the START. If there is no data, CICS
does not immediately return ENDDATA, but calls the bridge exit, which can then
provide data to satisfy the request, or return the ENDDATA condition.

Storage violation counts
No storage violation counts will be kept in a bridge facility.

SYNCPOINT
If the user transaction issues an explicit SYNCPOINT, or an implicit
SYNCPOINT occurs, as in CREATE, DISCARD CONNECTION, DISCARD
TDQUEUE, DISCARD TERMINAL, or in a DLI TERM psb, the bridge exit is
called (if the BRXA_CALL_FOR_SYNC parameter is set to BRXA_YES), and
reissues the SYNCPOINT, or ignores it. The bridge exit is permitted to do
recoverable work before and/or after the SYNCPOINT, so it can do recoverable
work in either unit of work. If the bridge exit does not reissue the SYNCPOINT,
the logic of the transaction could be affected.

There is no specific call to the bridge exit for the implicit syncpoint at the end of
the user transaction; this is handled by the termination and/or abend calls. The
exit does not need to issue a SYNCPOINT request in the termination call, and
must not issue a SYNCPOINT request in the abend call.

TCTUA
The TCTUA is available after the INIT call to the bridge exit.

Transaction restart
RESTART(NO) is forced for user transactions because CICS has no way of
restoring the initial input message.

Transaction Routing
Transaction Routing is not supported.

TWA
The TWA is available after the INIT call to the bridge exit.

WAIT TERMINAL
The 3270 bridge does not support the WAIT TERMINAL command. INVREQ is
returned..

Chapter 4. The Bridge environment 43

Defining the user transaction

Keywords are provided in the following resource definitions to define the default
bridge exit and facility.

+ TRANSACTION

* PROFILE

TRANSACTION resource definition

A user transaction definition can have an additional parameter, BREXIT, to define a
default bridge exit. The named bridge exit is used when the transaction is specified
in a START TRANSID BREXIT command, where the BREXIT name is blank. When
the transaction is executed in the usual way, BREXIT is ignored.

4 TRansaction ==> h
Group EED 50000000
DESEPIPEICR =2 600000000000600000006000000060000000660006000006000
PROGram == 50000000
TWasize ==> 00000 0-32767
PROFiTe ==> DFHCICST
PArtitionset ==>
STAtus ==> Enabled Enabled | Disabled
PRIMedsize ==> 00000 0-65520
TASKDAtaloc ==> Below Below | Any
TASKDATAKey ==> User User | CICS
STOrageclear ==> No No | Yes
RUnaway ==> System System | 0-2700000
SHutdown ==> Disabled Disabled | Enabled
ISolate ==> Yes Yes | No
Brexit =8 45000000
REMOTE ATTRIBUTES
DYnamic ==> No No | Yes
- J

Figure 14. The DEFINE panel for the TRANSACTION resource definition

BREXIT
This is an optional parameter that defines the name of the default bridge exit to
be associated with this transaction, if it is started in the 3270 bridge
environment with a START BREXIT command, and BREXIT specifies no name.

The name may be up to 8 characters in length.

If BREXIT is defined, REMOTESYSTEM, REMOTENAME, DYNAMIC(YES),
and RESTART(YES) should not be specified, and are ignored.

44 CICS TS for VSE/ESA: CICS External Interfaces Guide

PROFILE resource definition

The PROFILE provides terminal-related information for a transaction, including the
FACILITYLIKE parameter. The PROFILE of a user transaction can specify
FACILITYLIKE to define the default terminal definition values to be used for the
bridge facility.

4 PROFile ==>)

Group ==>
DEScription
Scrnsize
Uctran
MOdename
Facilitylike ==>

PRIntercomp ==> No No | Yes

=> Default Default|Alternate
=> No No | Yes

L)

Figure 15. The DEFINE panel for the PROFILE resource definition

FACILITYLIKE
This is an optional parameter that specifies the name of an installed terminal
resource definition to be used as a template for the bridge facility. It can be
overridden by specifying FACILITYLIKE in the bridge exit.

There is no default value for this parameter, but if it is not defined here or in the
bridge exit area, CICS uses CBRF.

If you are running in a CICS system started with the VTAM=NO System
initialization (SIT) parameter, the resource definition specified by FACILITYLIKE
must be defined as a remote terminal.

Inquiring about the bridge environment

You can use the following commands and interfaces to determine whether a
transaction or task is executing in a bridge environment, and if so, to obtain
information about the bridge monitor transaction that issued a START TRANSID
BREXIT command to start the user transaction and its associated exit:

* ASSIGN

* INQUIRE TASK

* INQUIRE TRANSACTION

« CEMT

* The exit programming interface (XPI)

ASSIGN command

Function
Request values from outside the application program local environment.

Chapter 4. The Bridge environment 45

Syntax

ASSIGN

»»>—ASSIGN »><
l—BRIDGE(4—character‘ data—area)—l

Figure 16. ASSIGN (extract)

Options

BRIDGE
This parameter returns the transaction name (TRANSID) of the bridge monitor
transaction that initiated the user transaction issuing this request.

A value of blanks is returned if :
» The user transaction was not started by a bridge monitor transaction.

* This command was issued by a program started by a distributed program link
(DPL) request.

Conditions
Unchanged.

INQUIRE TASK command

Function
The INQUIRE TASK command returns information about a given task.

Syntax

INQUIRE TASK

»»—INQUIRE TASK(data-value)— ><
i:BRIDGE(data-area)
IDENTIFIER(data-area)—

Figure 17. INQUIRE TASK (extract)

Options

BRIDGE (data-area)
returns the 4-character name of the bridge monitor transaction that issued a
START BREXIT TRANSID command to start this task. If this task is not
currently running in the 3270 bridge environment, blanks are returned.

IDENTIFIER (data-area)
returns a 48-character field containing user data provided by the bridge exit, if
the task was initiated in the bridge environment, or blanks, otherwise. This field
is intended to assist in online problem resolution.

For example, it could contain the MQ correlator for the MQ bridge, or a Web
token.

Conditions
Unchanged.

46 CICS TS for VSE/ESA: CICS External Interfaces Guide

INQUIRE TRANSACTION command

Function
The INQUIRE TRANSACTION command returns information about a named

transaction.

Syntax

INQUIRE TRANSACTION

BREXIT (data-area)
FACILITYLIKE(data-area)—

»»—INQUIRE TRANSACTION(data-value)— |: >

Figure 18. INQUIRE TRANSACTION (extract)

Options

BREXIT (data-area)
returns the 8-character name of the bridge exit defined by the BREXIT
parameter of the named transaction resource definition.

If BREXIT is not defined, blanks are returned.

FACILITYLIKE (data-area)
returns the 4-character name of the terminal defined by the FACILITYLIKE
parameter of the PROFILE associated with the named transaction resource
definition.

If FACILITYLIKE is not defined, blanks are returned.

Conditions
Unchanged

CEMT INQUIRE TASK

Function
CEMT INQUIRE TASK returns information about a given task.

Syntax

CEMT INQUIRE TASK

»»>—CEMT Inquire TAsk >«
|—BR1'dge(vc7Zue)—| I—IDen‘cif1'er‘(value)—|

Figure 19. CEMT INQUIRE TASK (extract)

Options

BRidge(value)
returns the 4-character name of the bridge monitor transaction that issued a
START BREXIT TRANSID command to start this task. Otherwise, blanks are
returned.

Chapter 4. The Bridge environment 47

IDentifier(value)
returns a 48-character field containing user data provided by the bridge exit, if
the task was initiated in the bridge environment, or blanks, otherwise. This field
is intended to assist in online problem resolution.

For example, it could contain the MQ correlator for the MQ bridge, or a Web
token.

This field can contain hexadecimal values. The ICICS Supplied Transactions

manual tells you how to display these fields and provides more information
about CEMT.

CEMT INQUIRE TRANSACTION

Function
CEMT INQUIRE TRANSACTION returns information about a named transaction.

Syntax
CEMT INQUIRE TRANSACTION

»»—CEMT Inquire TRAnsaction ><
|—BRexi’c(vaZue)—| |—FAcﬂ1'ty11'ke(value)—|

Figure 20. CEMT INQUIRE TRANSACTION (extract)

Options
BRexit(value)

returns the 8-character name of the bridge exit defined by the BREXIT
parameter of the named transaction resource definition.

If BREXIT is not defined, blanks are returned.

FAcilitylike(value)
returns the 4-character name of the terminal defined by the FACILITYLIKE
parameter of the PROFILE associated with the named transaction resource
definition.

If FACILITYLIKE is not defined, blanks are returned.

XPl commands

INQUIRE_TRANDEF
The parameter BREXIT is provided on the INQUIRE_TRANDEF function, returning

the following value:

BREXIT(name8)
returns the name of the bridge exit program. If there is no bridge exit, blanks
are returned.
name8
The name of an 8-byte location to receive the name of the bridge exit
program.

INQUIRE_CONTEXT
A new function, INQUIRE_CONTEXT has been created, returning the following

values:

48 CICS TS for VSE/ESA: CICS External Interfaces Guide

BRIDGE_EXIT_PROGRAM(name8)
returns the name of the bridge exit program used by this task. If CONTEXT
returns NORMAL, the contents of this field are meaningless.
name8
The name of an 8-byte location to receive the name of the bridge exit
program.

BRIDGE_FACILITY_TOKEN(name4)
returns a token that contains the address of the bridge facility used by this task.
This has the same format as a TCTTE and can be mapped using the DSECT
DFHTCTTE. If CONTEXT returns NORMAL, the contents of this field are
meaningless.
name4
The name of a 4-byte location to receive the token.

BRIDGE_TRANSACTION_ID(name4)
returns the name of the bridge monitor transaction used to start this user
transaction. If CONTEXT returns NORMAL, the contents of this field are
meaningless.

name4
The name of a 4-byte location to receive the name of the bridge
transaction.

BRXA_TOKEN(name4)
returns a token that contains the address of the bridge exit area (BRXA) used
by this task. The format of BRXA is defined by the DFHBRARXx copy book. If
CONTEXT returns NORMAL, the contents of this field are meaningless.
name4
The name of a 4-byte location to receive the token.

CONTEXT(byte1)
returns, in a 1-byte location (byte1), the type of environment in which the
transaction is running.

NORMAL
A transaction that is not running in a bridge environment.

BRIDGE
A user transaction that was started using a bridge.

BREXIT
A bridge exit program.

See the ICICS Customization Guida for more information about the XPI.

The bridge facility

The user transaction can retrieve information about the bridge facility using
INQUIRE and ASSIGN.

A user transaction can issue INQUIRE TERMINAL or INQUIRE NETNAME for its
bridge facility, or can issue INQUIRE TASK for itself. The TERMID can be obtained
from EIBTRMID or from ASSIGN FACILITY, and the NETNAME can be obtained
from ASSIGN NETNAME. Any other task issuing these commands for the bridge
transaction facility receives TERMIDERR.

Bridge facilities do not appear in response to INQUIRE TERMINAL browses.

Chapter 4. The Bridge environment 49

QUERY

All keywords of ASSIGN and INQUIRE are supported and return the values that
have been set for the bridge facility from the FACILITYLIKE terminal definition, or
that have been set during the execution of the transaction.

Some keywords return values fixed by CICS for the bridge environment. These are:

Table 2. INQUIRE TERMINAL values

Keyword Returned value
ACQSTATUS ACQUIRED
ACCESSMETHOD VTAM
CORRELID blanks
EXITTRACING NOTAPPLIC
LINKSYSTEM blanks
MODENAME blanks
REMOTENAME blanks
REMOTESYSTEM blanks
REMOTESYSNET blanks
SERVSTATUS INSERVICE
TCAMCONTROL X'FF’
TERMSTATUS ACQUIRED
TTISTATUS YES
ZCPTRACING NOZCPTRACE

Table 3. INQUIRE TASK values

Keyword Returned value

FACILITY the bridge facility
FACILITYTYPE TERM or TASK

STARTCODE S,SD,TO, TP

The keywords listed below represent terminal attributes that can be set by the 3270
Query function at logon time for a real device:

ALTSCRNHT ALTSCRNWD
BACKTRANSST COLORST
GCODES HILIGHTST
PARTITIONSST PROGSYMBOLST

APLKYBDST APLTEXTST
EXTENDEDDSST GCHARS
MSRCONTROLST OUTLINEST
SOSIST VALIDATIONST

If the real FACILITYLIKE terminal is logged on when the bridge facility is created,
the QUERY will have been performed and the values returned will apply to the

bridge facility.

If the real FACILITYLIKE terminal is not logged on at the time that the bridge facility
is created, the QUERY will not have been performed and the bridge facility will be
created using values from the FACILITYLIKE resource definition.

50 cCICS TS for VSE/ESA: CICS External Interfaces Guide

SET TERMINAL/NETNAME

The following table shows the effect of each of the SET TERMINAL/NETNAME
keywords when issued by a user transaction for its bridge facility. Unless otherwise
specified, the response is DFHRESP(NORMAL).

KEYWORD EFFECT

ACQSTATUS Ignored.

ALTPRINTER Value is SET, and is returned on INQUIRE, but is never used by
CICS.

ALTPRTCOPYST Value is SET, and is returned on INQUIRE, but is never used by
CICS.

ATISTATUS Works as for normal 3270.

CANCEL Ignored

CREATESESS Ignored.

DISCREQST Value is SET, and is returned on INQUIRE, but is never used by
CICS.

EXITTRACING Ignored.

FORCE Ignored.

MAPNAME Works as for normal 3270.

MAPSETNAME Works as for normal 3270.

NEXTTRANSID Works as for normal 3270.

OBFORMATST Works as for normal 3270.

PAGESTATUS Ignored.

PRINTER Value is SET, and is returned on INQUIRE, but is never used by
CICS.

PRTCOPYST Value is SET, and is returned on INQUIRE, but is never used by
CICS.

PURGE Ignored.

PURGETYPE Ignored.

RELREQST Value is SET, and is returned on INQUIRE, but is never used by
CICS.

SERVSTATUS Works as for normal 3270.

TCAMCONTROL Returns INVREQ, as for normal 3270.

TERMPRIORITY

Value is SET, and is returned on INQUIRE, but is never used by
CICs.

TERMSTATUS Ignored.

TRACING Value is SET, and is returned on INQUIRE, but is never used by
CICS.

TTISTATUS Ignored.

UCTRANST Works as for normal 3270.

ZCPTRACING Ignored.

Bridge facility global user exit

When enabled, XFAINTU (FAcility INitialization and Tidy Up) is called when a bridge
facility is created or deleted:

« Just after a new bridge facility has been built.

Chapter 4. The Bridge environment 51

» Just before a bridge facility is deleted. This may be at the end of a task when
zero keep time is specified, or when a keep time expires before the facility is
reused.

XFAINTU is needed to carry out any auditing or initialization that is normally done at
LOGON/LOGOFF or AUTOINSTALL/DELETE. This could be TCTUA setup or data
collection that the 3270 user transaction relies upon.

The initialization call to XFAINTU is made before the CICS Recovery Manager is
available. You should not invoke any services from the bridge exit that use
recoverable resources. .

See the ICICS Customization Guide for more information about global user exits.

XFAINTU

When invoked
Just after a bridge facility is created and just before it is freed.

Exit-specific parameters

UEPFAREQ
Address of a 1-byte field that indicates why the exit has been
called. Possible values are:
UEPFAIN
Initialization.
UEPFATU
Tidy-up.
UEPFATUT
Address of a 1-byte field that indicates the type of tidy-up required.
Possible values are:
UEPFANTU
Normal tidy-up.
UEPFAETU
Expired tidy-up.
UEPFANAM
Address of the bridge facility name.

UEPFATYP
Address of a 1-byte field that indicates the facility type. The value is
always:
UEPFABR
3270 bridge facility.

UEPFAUAA
Address of the bridge facility user area (TCTUA).

UEPFAUAL
Address of a one-byte field containing the length of the bridge
facility user area.

Return codes
UERCNORM
Continue processing.

XPI calls
All can be used, except those that use Recovery Manager services.

B2 CICS TS for VSE/ESA: CICS External Interfaces Guide

API calls
All can be used except those that invoke task-related user exits, or use
Recovery Manager services.

Chapter 4. The Bridge environment 53

54 CICS TS for VSE/ESA: CICS External Interfaces Guide

Chapter 5. Supplied 3270 bridge exits

This section tells you about the IBM supplied bridge solutions listed in [Bridgd
ided” . It covers the following topics:

The TS/TD supplied bridge exit

CICS
Web
Driver / Bridge ™
EXCI » Monitor task ‘
APPC - TD

i START with data

3270 transaction under bridge

Y Exit 3270 code
= RECEIVE
- DFHOCBRE
- SEND

TS/TD

Figure 21. The supplied TS/TD bridge exit

This exit, DFHOCBRE (and its associated formatter, DFHOCBRF),is supplied in

COBOL source. It uses CICS temporary storage (TS) or transient data (TD) queues

to pass input and output from and to the client application (another CICS
application).

You can modify this exit to support other transport mechanisms.

DFHOCBRE is the most general of the supplied exits. To run a transaction using
this exit, you simply issue a START TRANSID() BRDATA() BREXIT(DFHOCBRE)

command. The formats of the interfaces and messages used in this bridge exit are

described inlData formats for the supplied bridge exits” on page 57. The TS/TD

supplied bridge exit is an example of the Direct model.

Using the DFHOCBRE exit

Before using the DFHOCBRE bridge exit to run an existing CICS transaction, you

need to perform the following steps:

© Copyright IBM Corp. 1994, 2000

55

1. Translate and compile DFHOCBRE and DFHOCBRF using an appropriate
COBOL compiler.

2. Link DFHOCBRE and DFHOCBRF as standard CICS application programs into a
CICS load library used by the CICS system on which you will run the user
transaction.

3. Define DFHOCBRE and DFHOCBRF as programs to CICS. Sample definitions
are supplied in the DFH$BR group.

4. Define and install transient data queues if required.

5. Write a client requester program. This is an application program, written by you
in any of the supported languages (Assembler, COBOL, PLI, C).

It should issue a START TRANSID BREXIT BRDATA command to start the
required user transaction, passing BRDATA data formatted as described in

It should write data to the TS/TD queue named, to provide 3270 terminal data

for the 3270 user transaction, formatted as described in leessage_dala_tatmai.l

, and read responses back from the queue.
6. Define and install the end-user requester program and transaction.
7. Run the end-user requester transaction.

The Web bridge exit

START
TCP/ CWiI - mAlias transaction (CWBA) or BLI under mirro#BLl
IP <% Server request
Controller DECODE$? ENCODE $ LINK
(CWBM) ' '
Converter | | COMMAREA | »| DFHWBTTA
R
START
3270 yé’nsaction under bridge
Web User transaction
bridge exit
DFHWBLT —» RECEIVE (MAP)
«=«— SEND (MAP)
CICS

Figure 22. The Web supplied bridge exit

This exit, DFHWBLT, is an object code exit that allows you to access a CICS
transaction from the World Wide Web. It uses the CICS Web support described in
the ida.

DFHWBLT works in conjunction with a long running server transaction, CWBM,
which monitors the TCP/IP interface for incoming requests, and a bridge monitor,
DFHWBTTA. The formats of the interfaces and messages used in this bridge exit

56 CICS TS for VSE/ESA: CICS External Interfaces Guide

are the same as in the TS/TD bridge and are described in tData formats for the

Bupplied bridge exits'l. The Web bridge exit is an example of the two task monitor
model.

Using the Web bridge exit

Use of this exit is fully described in the ICICS Internet Guide. After installation, you
do not need to provide any user code to use this solution, but it can be customized.

A more detailed implementation description can be found in the Redbook CICS
Transaction server for 05/390: Web Interface and 3270 Bridge, order number
SG24-5243.

Data formats for the supplied bridge exits

There are two interfaces between the supplied bridge exits and the client
application. They are:

BRDATA
BRDATA is passed to the bridge exit when the user transaction and its
associated bridge exit are started with a START TRANSID BREXIT BRDATA
command. The main purpose of BRDATA is to pass information required for
bridge exit initialization (facility token and facilitylike) and data required to
identify the message queue and message. The names of the parameters and
constants in the BRDATA data, translated into appropriate forms for the different
programming languages supported, are defined in the following copybook files
supplied as part of the 3270 bridge.

Table 4. START data copybooks

Language Definition Constants
Assembler DFHBRSDD DFHBRSCD
C DFHBRSDH DFHBRSCH
PL/I DFHBRSDL DFHBRSCL
COBOL DFHBRSDO DFHBRSCO
Messages

The messages passed between the bridge exit and the client application via TS
and TD queues, to satisfy SEND and RECEIVE requests from the 3270 user
application. The names of the parameters and constants in the message data,
translated into appropriate forms for the different programming languages
supported, are defined in the following copybook files supplied as part of the

3270 bridge.
Table 5. Message data copybooks
Language Definition
Assembler DFHBRMQD
C DFHBRMQH
PL/I DFHBRMQL
COBOL DFHBRMQO

All user messages must begin with a standard message header, MQCIH. The
names of the parameters and constants in MQCIH, translated into appropriate
forms for the different programming languages supported, are defined in the

Chapter 5. Supplied 3270 bridge exits 57

following copybook files supplied as part of the 3270 bridge.

Table 6. MQCIH message header copybooks

Language Definition Constants

Assembler DFHBRMHD DFHBRMCD

C DFHBRMHH DFHBRMCH

PL/I DFHBRMHL DFHBRMCL

COBOL DFHBRMHO DFHBRMCO
BRDATA format

An EXEC CICS START BREXIT() BRDATA() command is issued to run a
transaction in the bridge environment. To use the supplied bridge exits, the BRDATA
data must conform to the following format.

Note that the parameter names shown are in COBOL format with a dash - name
separator, rather than the underscore ’_’ required for other languages.

Offset Type Len Name
Hex
(0) STRUCTURE 72 DFHBRSD
(0) STRUCTURE 16 BRSD-HEADER-DATA
(0) CHARACTER 4 BRSD-STRUCID
(4) FULLWORD 4 BRSD-VERSION
(8) FULLWORD 4 BRSD-STRUCLENGTH
(C) CHARACTER 4 reserved
(10) STRUCTURE 40 BRSD-QUEUE-NAMES
(10) STRUCTURE 20 BRSD-OUTPUT-QUEUE
(10) CHARACTER 2 BRSD-OUTPUT-TYPE
(12) CHARACTER 2 reserved
(14) STRUCTURE 16 BRSD-TS-OUTPUT-QUEUE
(14) CHARACTER 4 BRSD-TD-OUTPUT-QUEUE
(18) CHARACTER 12 reserved
(24) STRUCTURE 20 BRSD-INPUT-QUEUE
(24) CHARACTER 2 BRSD-INPUT-TYPE
(26) HALFWORD 2 BRSD-INPUT-ITEM
(28) STRUCTURE 16 BRSD-TS-INPUT-QUEUE
(28) CHARACTER 4 BRSD-TD-INPUT-QUEUE
(2C) CHARACTER 4 reserved
(30) CHARACTER 8 reserved
(38) CHARACTER 8 BRSD-FACILITY-TOKEN
(40) CHARACTER 4 BRSD-FACILITYLIKE
(44) CHARACTER 4 reserved

BRSD-STRUCID

An eye-catcher. This must be set to the constant brsd-struc-id in the
DFHBRSCx copy book.

BRSD-VERSION
The version number of the start data. This must be set to the constant
brsd-version-2 in the DFHBRSCx copy book.

BRSD-STRUCLENGTH
The length of the start data. This must be set to the constant brsd-length-2

B8 CICS TS for VSE/ESA: CICS External Interfaces Guide

BRSD-OUTPUT-TYPE
An indicator showing whether the output queue is temporary storage (TS) or
Transient data (TD). This must be set to either the constant BRSD-TS or
BRSD-TD in the DFHBRSCx copy book.

BRSD-TS-OUTPUT-QUEUE
The 8 or 16-byte name of the queue, if the output queue is a TS queue.

BRSD-TD-OUTPUT-QUEUE
The 4 byte name of the queue, if the output queue is a TD queue.

BRSD-INPUT-TYPE
The queue type, either TS or TD. This must be set to the constant BRSD-TS or
BRSD in the DFHBRSCx copy book.

BRSD-INPUT-ITEM
The first item number in the TS queue. A value of binary zeroes means ’next’.

BRSD-TS-INPUT-QUEUE
The 8 or 16-byte name of the queue, if the input queue is a TS queue.

BRSD-TD-INPUT-QUEUE
The 4 byte name of the queue, if the input queue is a TD queue.

BRSD-FACILITY-TOKEN
The 8-byte bridge facility token. This value is nulls for a new facility.

BRSD-FACILITYLIKE
The name of an installed terminal that is to be used as a model for the bridge
facility, when BRSD-FACILITY-TOKEN is nulls.

Message data format

Messages sent to the supplied bridge exits by the client application must all
conform to the following format:

All messages must begin with a message header, MQCIH, followed by a variable
number of self defining vectors. Each vector contains a vector header that identifies
the vector type and length so that the bridge exit can interpret the content of each
message.

There are three types of vector:

OUTBOUND REPLY
This type of vector flows from the user transaction to the end-user
transaction carrying a reply. No further input is requested.

OUTBOUND REQUEST
This type of vector flows from the user transaction to the end-user
transaction requesting further input. There is only one in each message and
it must be last.

INBOUND
This type of vector flows from the end-user transaction to the user
transaction carrying data to satisfy a user transaction RECEIVE or
RETRIEVE. Processing is more efficient if the order of RETRIEVE and
RECEIVE vectors in the first message matches the order of CICS
commands in the user transaction, but this is not essential.

RETRIEVE vectors can only flow in the first message. If there are more
RETRIEVEs than can fit in a single message, they can be sent in multiple
messages , provided that:

Chapter 5. Supplied 3270 bridge exits 59

60

» All of the RETRIEVE vectors are sent before any RECEIVE vectors
« All of the messages are written to the queue before the START BREXIT
is issued.

Note: All fields have a minimum length of four bytes. Data is left justified and
padded with blanks if necessary. Field names are shown with ’-’ (dash)
separators, as used in COBOL. Other languages require ’_’ (underscore)

separators.
Header Vector#1 Vector#n
MQCIH BRMQ BRMQ
Figure 23. Message format
MQCIH Message header:
Offset Type Len Name
Hex
(0) STRUCTURE 180 MQCIH
(0) CHARACTER 4 MQCIH-STRUCID
(4) FULLWORD 4 MQCIH-VERSION
(8) FULLWORD 4 MQCIH-STRUCLENGTH
(C) BINARY 8 reserved
(14) CHARACTER 8 reserved
(1C) BINARY 20 reserved
(30) FULLWORD 4 MQCIH-GETWAITINTERVAL
(34) BINARY 8 reserved
(3C) FULLWORD 4 MQCIH-FACILITYKEEPTIME
(40) FULLWORD 4 MQCIH-ADSDESCRIPTOR
(44) FULLWORD 4 MQCIH-CONVERSATIONALTASK
(48) FULLWORD 4 MQCIH-TASKENDSTATUS
(4C) CHARACTER 8 MQCIH-FACILITY
(54) CHARACTER 4 reserved
(58) CHARACTER 4 MQCIH-ABENDCODE
(6C) CHARACTER 8 MQCIH-AUTHENTICATOR
(64) CHARACTER 24 reserved
(7C) CHARACTER 4 MQCIH-TRANSACTIONID
(80) CHARACTER 4 MQCIH-FACILITYLIKE
(84) CHARACTER 4 MQCIH-ATTENTIONID
(88) CHARACTER 4 MQCIH-STARTCODE
(8C) CHARACTER 4 MQCIH-CANCELCODE
(90) CHARACTER 4 MQCIH-NEXTTRANSACTIONID
(94) CHARACTER 16 reserved
(A4) FULLWORD 4 MQCIH-CURSORPOSITION
(A8) FULLWORD 4 MQCIH-ERROROFFSET
(AC) FULLWORD 4 MQCIH-INPUTITEM
(BO) BINARY 4 reserved

MQCIH-STRUCID
The identifier for the CICS information header structure. This is an input field.

MQCIH-VERSION
The version number for the CICS information header structure. This must be
MQCIH-VERSION-2. This is an input field.

CICS TS for VSE/ESA: CICS External Interfaces Guide

MQCIH-STRUCLENGTH
The length of the CICS information header structure. This must be
MQCIH-LENGTH-2. This is an input field.

MQCIH-GETWAITINTERVAL
The maximum wait interval for message input (in milliseconds). This is an input
field.

MQCIH-FACILITYKEEPTIME
The length of time that the bridge facility will be kept after the user transaction
has ended (in seconds). This is an input field.

MQCIH-ADSDESCRIPTOR
An indicator specifying whether ADS descriptors should be sent on SEND and
RECEIVE BMS requests. The MQCADSD-MSGFORMAT value indicates that
the longform of the ADSD is used. Valid values are:
MQCADSD-NONE
MQCADSD-SEND
MQCADSD-RECV
MQCADSD-SEND+MQCADSD-RECV
MQCADSD-SEND+MQCADSD-RECV+MQCADSD-MSGFORMAT

This is an input field.

MQCIH-CONVERSATIONALTASK
An indicator specifying whether the task should be allowed to issue requests for
more information, or should abend. Valid values are:
MQCCT-YES
MQCCT-NO

This is an input field.

MQCIH-TASKENDSTATUS
The value returned on output messages showing the status of the user
transaction. One of the following values will be returned:

MQCTES-NOSYNC
The user transaction has not yet completed, and has not syncpointed.

MQCTES-COMMIT
The user transaction has not yet completed, but has syncpointed the
first unit of work.

MQCTES-BACKOUT
The user transaction has not yet completed. The current unit of work
will be backed out.

MQCTES-ENDTASK
The user transaction has ended (or abended).

This is an output field.

MQCIH-FACILITY
The 8-byte bridge facility token. This value is returned on output messages
when a keep time is specified. This is an input/output field.

MQCIH-ABENDCODE
The abend code returned if the transaction abends, otherwise this field is set to
blanks. This is an output field.

MQCIH-AUTHENTICATOR
The password or passticket for the specified USERID. This is an input field.

Chapter 5. Supplied 3270 bridge exits 61

62

MQCIH-TRANSACTIONID
The transaction identifier of the user transaction.

MQCIH-FACILITYLIKE
The name of an installed terminal that is to be used as a model for the bridge
facility. A value of blanks means that the FACILITYLIKE is taken from the bridge
transaction profile definition, or a default value is used. This is an input field.

MQCIH-ATTENTIONID
The initial value of the AID key when the transaction is started. This is a 1-byte
value, left justified. It is an input field.

MQCIH-STARTCODE
An indicator set on output from CICS with the start code that is appropriate for
the next transaction. Valid values are:
MQCSC-START
MQCSC-STARTDATA
MQCSC-TERMINPUT
MQCSC-NONE

This is an input field.

MQCIH-CANCELCODE
The abend code to be used to terminate the transaction (normally a
conversational transaction that is requesting more data). Otherwise this field is
set to blanks. This is an input field.

MQCIH-NEXTTRANSACTIONID
The name of the next transaction returned by the user transaction (usually by
EXEC CICS RETURN TRANSID). If there is no next transaction, this field is set
to blanks. This is an output field.

MQCIH-CURSORPOSITION
The initial cursor position when the transaction is started. Subsequently, for
conversational transactions, the cursor position is in the RECEIVE vector. This
is an input field.

MQCIH-ERROROFFSET
The position of invalid data detected by the bridge exit. This field provides the
offset from the start of the message to the location of the invalid data.

MQCIH-INPUTITEM
The current TS queue item number being processed by the bridge exit.

Standard header for all vectors:

Offset Type Len Name
Hex
(0) STRUCTURE 16 BRMQ-VECTOR-HEADER

(0) FULLWORD
(4) CHARACTER
(8) CHARACTER
(C) CHARACTER

BRMQ-VECTOR-LENGTH
BRMQ-VECTOR-DESCRIPTOR
BRMQ-VECTOR-TYPE
BRMQ-VECTOR-VERSION

A DDA DO

BRMQ-VECTOR-LENGTH
The length of the vector. On output, this is always rounded up to the next
multiple of 4, to facilitate full word alignment of subsequent vectors in the
message. On input to the bridge exit, it is advisable to round up to the next
multiple of 4 for the same reason.

CICS TS for VSE/ESA: CICS External Interfaces Guide

BRMQ-VECTOR-DESCRIPTOR

An indicator to define the CICS command associated with this vector. Valid

values are:

0402 RECEIVE

0404 SEND

0406 CONVERSE

0418 |ISSUE ERASEAUP
100A RETRIEVE

1802 RECEIVE MAP
1804 SEND MAP

1806 SEND TEXT

1812 SEND CONTROL

BRMQ-VECTOR-TYPE

The vector type. Valid values are:

| Inbound to the bridge exit.

(o)
BRMQ-VECTOR-VERSION

Outbound from the bridge exit.

The vector version number. Valid values are:

X’00000000’
The first version.

Outbound reply vectors

Outbound vectors carry reply messages flowing from the user transaction to the

end-user transaction.

SEND:

Offset
Hex

Type Len
) STRUCTURE
) CHARACTER 1
) CHARACTER
) CHARACTER
) CHARACTER
) CHARACTER
) CHARACTER
) CHARACTER
) CHARACTER
) FULLWORD
) CHARACTER

A AP

BRMQ-SE-ERASE-INDICATOR

The type of ERASE specified by the CICS SEND command that caused the exit

Name

BRMQ-SEND

Header
BRMQ-SE-ERASE-INDICATOR
BRMQ-SE-CTLCHAR
BRMQ-SE-STRFIELD-INDICATOR
BRMQ-SE-DEFRESP-INDICATOR
BRMQ-SE-INVITE-INDICATOR
BRMQ-SE-LAST-INDICATOR
BRMQ-SE-WAIT-INDICATOR
BRMQ-SE-DATA-LEN

variable length data

to be called. Valid character values, left justified, are:

N No ERASE.
E ERASE.
A ERASE ALTERNATE.

Chapter 5. Supplied 3270 bridge exits

D ERASE DEFAULT.

BRMQ-SE-CTLCHAR
The CTLCHAR value specified by the SEND command that caused the exit to
be called. If CTLCHAR is not specified, the default X’C3’ is sent.

BRMQ-SE-STRFIELD-INDICATOR
The presence of STRFIELD on the SEND command. Valid character values, left

justified, are:
Y STRFIELD specified.
N STRFIELD not specified.

BRMQ-SE-DEFRESP-INDICATOR
The presence of DEFRESP on the SEND command that caused the exit to be
called. Valid character values, left justified, are:

Y DEFRESP specified.
N DEFRESP not specified.

BRMQ-SE-INVITE-INDICATOR
The presence of INVITE on the send command that caused the exit to be
called. Valid character values, left justified, are:

Y INVITE specified.
N INVITE not specified.

BRMQ-SE-LAST-INDICATOR
The presence of LAST on the SEND command that caused the exit to be
called. Valid character values, left justified, are:

Y LAST specified.
N LAST not specified.

BRMQ-SE-WAIT-INDICATOR
The presence of WAIT on the SEND command that caused the exit to be
called. Valid character values, left justified, are:

Y WAIT specified.
N WAIT not specified.

BRMQ-SE-DATA-LEN
The length of the data associated with the FROM option of the SEND command
that caused the exit to be called. This is explicitly defined in the LENGTH or
FLENGTH option, or derived from the length of the field.

data
Character field of length BRMQ-SE-DATA-LEN containing the data addressed
by the FROM option of the SEND command.

SEND CONTROL: The fields in this vector are included also in SEND MAP and

SEND TEXT.
Offset Type Len Name
Hex
(0) STRUCTURE 52 BRMQ-SEND-CONTROL
(0) CHARACTER 16 Header

(10) CHARACTER
(14) CHARACTER
(18) CHARACTER

BRMQ-SC-ERASE-INDICATOR
BRMQ-SC-ERASEAUP-INDICATOR
BRMQ-SC-FREEKB-INDICATOR

A DM O

64 CICS TS for VSE/ESA: CICS External Interfaces Guide

Offset Type Len Name

Hex

(1C) CHARACTER 4 BRMQ-SC-ALARM-INDICATOR
(20) CHARACTER 4 BRMQ-SC-FRSET-INDICATOR
(24) CHARACTER 4 BRMQ-SC-LAST-INDICATOR
(28) CHARACTER 4 BRMQ-SC-WAIT-INDICATOR
(2C) FULLWORD 4 BRMQ-SC-CURSOR

(30) CHARACTER 4 BRMQ-SC-MSR-DATA

BRMQ-SC-ERASE-INDICATOR
The type of ERASE specified by the CICS BMS SEND command that caused
the exit to be called. Valid character values, left justified, are:

N No ERASE

E ERASE

A ERASE ALTERNATE
D ERASE DEFAULT

BRMQ-SC-ERASEAUP-INDICATOR
The presence of ERASEAUP on the BMS SEND command that caused the exit
to be called. Valid character values, left justified, are:

Y ERASEAUP specified.
N ERASEAUP not specified.

BRMQ-SC-FREEKB-INDICATOR
The presence of FREEKB on the BMS SEND command that caused the exit to
be called. Valid character values, left justified, are:

Y FREEKB specified.
N FREEKB not specified.

BRMQ-SC-ALARM-INDICATOR
The presence of ALARM on the BMS SEND command that caused the exit to
be called. Valid values are:

Y ALARM specified.
N ALARM not specified.

BRMQ-SC-FRSET-INDICATOR
The presence of FRSET on the BMS SEND command that caused the exit to
be called. Valid character values, left justified, are:

Y FRSET specified.
N FRSET not specified.

BRMQ-SC-LAST-INDICATOR
The presence of LAST on the BMS SEND command that caused the exit to be
called. Valid character values, left justified, are:

Y LAST specified.
N LAST not specified.

BRMQ-SC-WAIT-INDICATOR
The presence of WAIT on the BMS SEND command that caused the exit to be
called. Valid character values, left justified, are:

Y WAIT specified.

Chapter 5. Supplied 3270 bridge exits 65

66

N WAIT not specified.

BRMQ-SC-CURSOR
The presence of CURSOR or CURSOR(data-value) on the BMS SEND
command that caused the exit to be called. Valid character values, left justified,
are:

-1 CURSOR specified with dynamic cursor positioning.
-2 Neither CURSOR nor CURSOR(data-value) specified.
other The value of CURSOR(data-value) specified.

BRMQ-SC-MSR-DATA
The value of the MSR option specified on the BMS SEND command that
caused the exit to be called. Valid values are:

X’00000000’
MSR option not specified.

other The value of the MSR option specified.

SEND MAP:
Offset Type Len Name

Hex
(0) STRUCTURE 88 BRMQ-SEND-MAP
(0) CHARACTER 16 Header
(10) CHARACTER 4 BRMQ-SC-ERASE-INDICATOR
(14) CHARACTER 4 BRMQ-SC-ERASEAUP-INDICATOR
(18) CHARACTER 4 BRMQ-SC-FREEKB-INDICATOR
(1C) CHARACTER 4 BRMQ-SC-ALARM-INDICATOR
(20) CHARACTER 4 BRMQ-SC-FRSET-INDICATOR
(24) CHARACTER 4 BRMQ-SC-LAST-INDICATOR
(28) CHARACTER 4 BRMQ-SC-WAIT-INDICATOR
(2C) FULLWORD 4 BRMQ-SC-CURSOR
(30) CHARACTER 4 BRMQ-SC-MSR-DATA
(34) CHARACTER 8 BRMQ-SM-MAPSET
(3C) CHARACTER 8 BRMQ-SM-MAP
(44) CHARACTER 4 BRMQ-SM-DATA-INDICATOR
(48) FULLWORD 4 BRMQ-SM-DATA-LEN
(4C) FULLWORD 4 BRMQ-SM-DATA-OFFSET
(50) FULLWORD 4 BRMQ-SM-ADSD-LEN
(54) FULLWORD 4 BRMQ-SM-ADSD-OFFSET
(58) CHARACTER variable length data

Fields BRMQ-SC-

BRMQ-SM-MAPSET

The value of the MAPSET option specified by the SEND MAP command that
caused the exit to be called.

BRMQ-SM-MAP
The value of the MAP option specified by the SEND MAP command that
caused the exit to be called.

BRMQ-SM-DATA-INDICATOR

ERASE-INDICATOR to BRMQ-SC-MSR-DATA are defined in

The presence of MAPONLY and DATAONLY options on the SEND MAP
command that caused the exit to be called. Valid character values, left justified,

are:

CICS TS for VSE/ESA: CICS External Interfaces Guide

D DATAONLY specified.
M MAPONLY specified.
N Neither DATAONLY nor MAPONLY specified.

BRMQ-SM-DATA-LEN
The length of the data associated with the FROM option on the SEND MAP
command that caused the exit to be called. This is the length of the symbolic
map or ADS (application data structure).

BRMQ-SM-DATA-OFFSET
The offset from the beginning of the SEND MAP vector to the data associated
with the FROM option of the SEND MAP command that caused the exit to be
called.

BRMQ-SM-ADSD-LEN
The length of the ADS descriptor associated with this map. This length is zero if

the ADSD is not available, or was not requested. See EADS descriptor area” od

for a description of the ADS.

BRMQ-SM-ADSD-OFFSET
The offset from the beginning of the SEND MAP vector to the ADSD. This is
zero if the ADSD is not available, or was not requested.

data
Character field of length BRMQ-SM-DATA-LEN containing the data specified by
the FROM option of the SEND MAP command, in ADS (Application Data

Structure) format. This is followed by an ADS descriptor for this data, of length
BRMQ-SM-ADSD-LEN, if an ADS descriptor was requested.

SEND TEXT:

Offset Type Len Name
Hex
(0) STRUCTURE 60 BRMQ-SEND-TEXT
(0) CHARACTER 16 Header
(10) CHARACTER 4 BRMQ-SC-ERASE-INDICATOR
(14) CHARACTER 4 BRMQ-SC-ERASEAUP-INDICATOR
(18) CHARACTER 4 BRMQ-SC-FREEKB-INDICATOR
(1C) CHARACTER 4 BRMQ-SC-ALARM-INDICATOR
(20) CHARACTER 4 BRMQ-SC-FRSET-INDICATOR
(24) CHARACTER 4 BRMQ-SC-LAST-INDICATOR
(28) CHARACTER 4 BRMQ-SC-WAIT-INDICATOR
(2C) FULLWORD 4 BRMQ-SC-CURSOR
(30) CHARACTER 4 BRMQ-SC-MSR-DATA
(34) CHARACTER 4 BRMQ-ST-TEXT-TYPE
(38) FULLWORD 4 BRMQ-ST-DATA-LEN
(3C) CHARACTER variable length data

F|elds BRMQ-SC-ERASE-INDICATOR to BRMQ-SC-MSR-DATA are defined in
BRMQ-ST-TEXT-TYPE

The presence of MAPPED or NOEDIT options on the SEND TEXT command
that caused the exit to be called. Valid character values, left justified, are:

M MAPPED specified.
N NOEDIT specified.

Chapter 5. Supplied 3270 bridge exits 67

blank Neither MAPPED nor NOEDIT specified.

BRMQ-ST-DATA-LEN
The length of the text associated with the FROM option of the SEND TEXT
command that caused the exit to be called.

data
Character field of length BRMQ-ST-DATA-LEN containing the data specified by
the FROM option of the SEND TEXT command that caused the exit to be
called. For SEND TEXT MAPPED, the additional 4 bytes created by the SEND
MAP command, are included in this field, but the additional length is not
included in BRMQ-ST-DATA-LEN.

ISSUE ERASEAUP:
Offset Type Len Name
Hex
(0) STRUCTURE 20 BRMQ-ISSUE-ERASEAUP
(0) CHARACTER 16 Header
(10) CHARACTER 4 BRMQ-IE-WAIT-INDICATOR

BRMQ-IE-WAIT-INDICATOR
The presence of the WAIT option on the ISSUE ERASEAUP command that
caused the exit to be called. Valid character values, left justified, are:

Y WAIT specified.
N WAIT not specified.

Outbound request vectors
Outbound request vectors flow from the user transaction to the end-user transaction
requesting further input. There is only one in each message and it must be last.

RECEIVE REQUEST:
Offset Type Len Name
Hex
(0) STRUCTURE 20 BRMQ-RECEIVE-REQUEST
(0) CHARACTER 16 Header
(10) CHARACTER 4 BRMQ-RER-BUFFER-INDICATOR

BRMQ-RER-BUFFER-INDICATOR
The presence of the BUFFER option on the RECEIVE request that caused the
exit to be called. Valid character values, left justified, are:

Y BUFFER specified.
N BUFFER not specified.
RECEIVE MAP REQUEST:
Offset Type Len Name
Hex
(0) STRUCTURE 36 BRMQ-RECEIVE-MAP-REQUEST
(0) CHARACTER 16 Header
(10) CHARACTER 8 BRMQ-RMR-MAPSET
(18) CHARACTER 8 BRMQ-RMR-MAP
(20) FULLWORD 4 BRMQ-RMR-ADSD-LEN
(

24) CHARACTER variable length data

68 CICS TS for VSE/ESA: CICS External Interfaces Guide

BRMQ-RMR-MAPSET
The value of the MAPSET option on the RECEIVE MAP command that caused
the exit to be called.

BRMQ-RMR-MAP
THE value of the MAP option on the RECEIVE MAP command that caused the
exit to be called.

BRMQ-RMR-ADSD-LEN
The length of the ADS descriptor associated with this map. This length is zero if
the ADSD is not available, or was not requested (MQCIH-ADSDESCRIPTOR
set to MQCADSD-NONE).

data
The ADS descriptor associated with the requested map. No data is sent if
BRMQ-RMR-ADSD-LEN is zero.

CONVERSE REQUEST:

Offset Type Len Name
Hex
(0) STRUCTURE 48 BRMQ-CONVERSE-REQUEST
(0) CHARACTER 16 Header
(10) CHARACTER 4 BRMQ-COR-ERASE-INDICATOR
(14) CHARACTER 4 BRMQ-COR-CTLCHAR
(18) CHARACTER 4 BRMQ-COR-STRFIELD-INDICATOR
(1C) CHARACTER 4 BRMQ-COR-DEFRESP-INDICATOR
(20) CHARACTER 12 (reserved)
(2C) FULLWORD 4 BRMQ-COR-DATA-LEN
(30) CHARACTER variable length data

BRMQ-COR-ERASE-INDICATOR
The type of ERASE specified by the CICS SEND command that caused the exit
to be called. Valid character values, left justified, are:

N No ERASE.
E ERASE.
A ERASE ALTERNATE.

D ERASE DEFAULT.

BRMQ-COR-CTLCHAR
The CTLCHAR value specified by the SEND command that caused the exit to
be called. If CTLCHAR is not specified, the default X’C3’ is sent.

BRMQ-COR-STRFIELD-INDICATOR
The presence of STRFIELD on the SEND command. Valid character values, left

justified, are:
Y STRFIELD specified.
N STRFIELD not specified.

BRMQ-COR-DEFRESP-INDICATOR
The presence of DEFRESP on the SEND command that caused the exit to be
called. Valid character values, left justified, are:

Y DEFRESP specified.
N DEFRESP not specified.

Chapter 5. Supplied 3270 bridge exits 69

BRMQ-COR-DATA-LEN
The length of the data associated with the FROM option of the SEND command
that caused the exit to be called. This is explicitly defined in the LENGTH or
FLENGTH option, or derived from the length of the field.

data
Character field of length BRMQ-COR-DATA-LEN containing the data addressed
by the FROM option of the CONVERSE command.

Inbound vectors
Inbound vectors flow from the end-user transaction to the user transaction carrying
data to satisfy a user transaction RECEIVE, CONVERSE, or RETRIEVE.

RECEIVE:
Offset Type Len Name
Hex
(0) STRUCTURE 36 BRMQ-RECEIVE
(0) CHARACTER 16 Header

(10) CHARACTER
(14) CHARACTER
(18) CHARACTER
(1C) FULLWORD BRMQ-RE-CPOSN

20) FULLWORD BRMQ-RE-DATA-LEN
24) CHARACTER variable length data

BRMQ-RE-TRANSMIT-SEND-AREAS
BRMQ-RE-BUFFER-INDICATOR
BRMQ-RE-AID

A DDA

BRMQ-RE-TRANSMIT-SEND-AREAS
A flag indicating whether previously generated, but not yet transmitted, SEND
areas are to be preserved. Valid character values, left justified, are:

Y Preserve untransmitted SEND areas.
N Delete untransmitted SEND areas.

BRMQ-RE-BUFFER-INDICATOR
A flag indicating whether the data provided in the inbound vector is in a format
to be received by a CICS RECEIVE command with the BUFFER option. Valid
character values, left justified, are:

Y Data in BUFFER format.
N Data not in BUFFER format.
BRMQ-RE-AID

The AID key that was simulated to generate data in response to the RECEIVE
command. The first byte of this field contains equivalent values to EIBAID, as
defined by DFHAID. The remaining three bytes are padded with blanks. This
value is inserted into the EIBAID field.

BRMQ-RE-CPOSN
The offset of the cursor at the time the RECEIVE data was generated. This
value is inserted in EIBCPOSN for the transaction issuing the EXEC CICS
RECEIVE.

BRMQ-RE-DATA-LEN
The length of the data provided in this vector in response to the RECEIVE
command. This value is copied into the LENGTH or FLENGTH field.

70 CICS TS for VSE/ESA: CICS External Interfaces Guide

data
Character field of length BRMQ-RE-DATA-LEN to be copied into the INTO area,
or referenced by the SET option, of the RECEIVE command that caused the
exit to be called.

RECEIVE MAP:

Offset Type Len Name
Hex
(0) STRUCTURE 48 BRMQ-RECEIVE-MAP
(0) CHARACTER 16 Header
(10) CHARACTER 4 BRMQ-RM-TRANSMIT-SEND-AREAS
(14) CHARACTER 8 BRMQ-RM-MAPSET
(1C) CHARACTER 8 BRMQ-RM-MAP
(24) CHARACTER 4 BRMQ-RM-AID
(28) FULLWORD 4 BRMQ-RM-CPOSN
(2C) FULLWORD 4 BRMQ-RM-DATA-LEN
(30) CHARACTER variable length data

BRMQ-RM-TRANSMIT-SEND-AREAS
A flag indicating whether previously generated, but not yet transmitted, SEND
areas are to be preserved. Valid character values, left justified, are:

Y Preserve untransmitted SEND areas.
N Delete untransmitted SEND areas.

BRMQ-RM-MAPSET
The name of the MAPSET to be used to present the data. If this is blank, the
data is to be presented to the next RECEIVE MAP command, regardless of the
MAPSET value specified by the command.

BRMQ-RM-MAP
The name of the MAP to be used to present the data. If this is blank, the data
is to be presented to the next RECEIVE MAP command, regardless of the MAP
value specified by the command.

BRMQ-RM-AID
The AID key that was simulated to generate data in response to the RECEIVE
command. The first byte of this field contains equivalent values to EIBAID, as
defined by DFHAID. The remaining three bytes are padded with blanks. This
value will be inserted into the EIBAID field for the transaction issuing the EXEC
CICS RECEIVE MAP.

BRMQ-RM-CPOSN
The offset of the cursor at the time the RECEIVE data was generated. This
value will be inserted into the EIBCPOSN field for the transaction issuing the
EXEC CICS RECEIVE MAP.

BRMQ-RM-DATA-LEN
The length of the data provided in this vector in response to the RECEIVE MAP

command that caused the exit to be called. This value is copied into the
LENGTH or FLENGTH field.

data
Character field of length BRMQ-RM-DATA-LEN, in ADS (Application Data
Structure) format equivalent to the MAP and MAPSET specified by the
RECEIVE command.

Chapter 5. Supplied 3270 bridge exits 71

CONVERSE:

Offset
Hex

(0)

Type

STRUCTURE
CHARACTER
CHARACTER
CHARACTER
CHARACTER
FULLWORD

FULLWORD

CHARACTER

Len

A DDA

Name

BRMQ-CONVERSE

Header
BRMQ-CO-TRANSMIT-SEND-AREAS
reserved

BRMQ-CO-AID

BRMQ-CO-CPOSN
BRMQ-CO-DATA-LEN

variable length data

BRMQ-CO-TRANSMIT-SEND-AREAS
A flag indicating whether previously generated, but not yet transmitted, SEND
areas are to be preserved. Valid character values, left justified, are:

Y
N

BRMQ-CO-AID
The AID key that was simulated to generate data in response to the RECEIVE
command. The first byte of this field contains equivalent values to EIBAID, as
defined by DFHAID. The remaining three bytes are padded with blanks. This
value is inserted into the EIBAID field.

BRMQ-CO-CPOSN
The offset of the cursor at the time the RECEIVE data was generated. This
value is inserted in EIBCPOSN for the transaction issuing the EXEC CICS
RECEIVE.

BRMQ-CO-DATA-LEN
The length of the data provided in this vector in response to the RECEIVE
command. This value is copied into the LENGTH or FLENGTH field.

data

Preserve untransmitted SEND areas.

Delete untransmitted SEND areas.

Character field of length BRMQ-CO-DATA-LEN to be copied into the INTO area,
or referenced by the SET option, of the CONVERSE command that caused the
exit to be called.

RETRIEVE:

Offset
Hex
(0)

0)
(10)
(14)
(18)
(20)
(24)

Type

STRUCTURE
CHARACTER
CHARACTER
CHARACTER
CHARACTER
FULLWORD

CHARACTER

BRMQ-RT-RTRANSID
The value to be returned in the RTRANSID field, to the program that issued the
RETRIEVE. A blank indicates that there is no RTRANSID.

BRMQ-RT-RTERMID
The value to be returned in the RTERMID field, to the program that issued the
RETRIEVE. A blank indicates that there is no RTERMID.

72

CICS TS for VSE/ESA: CICS External Interfaces Guide

Len

A OO~

Name

BRMQ-RETRIEVE
Header
BRMQ-RT-RTRANSID
BRMQ-RT-RTERMID
BRMQ-RT-QUEUE
BRMQ-RT-DATA-LEN
variable length data

BRMQ-RT-QUEUE
The value to be returned in the QUEUE field, to the program that issued the
RETRIEVE. A blank indicates that there is no QUEUE.

BRMQ-RT-DATA-LEN
The length of the data provided in this vector in response to the RETRIEVE
command that caused the exit to be called. This value is copied into the
LENGTH or FLENGTH field.

data
Character field of length BRMQ-RT-DATA-LEN to be copied into the INTO area,
or referenced by the SET option of the RETRIEVE command.

Note: The RETRIEVE vector is only valid in the first inbound message. It is ignored
in other messages.

Chapter 5. Supplied 3270 bridge exits 73

74 CICS TS for VSE/ESA: CICS External Interfaces Guide

Chapter 6. Writing your own bridge programs

If you do not want to use the IBM supplied bridge exits and monitors, you can
modify them, or write your own. This chapter tells you how you can modify the
supplied exits and about the interfaces that are defined by CICS that you must
support in your own programs. It covers the following topics:

Designing your own bridge solution

The bridge mechanism is very flexible, but most implementations fall into a few
basic models.

llmplementing a 3270 bridge environment” on page 3d tells you how to identify the

model that fits the requirements of your system and applications. It then presents
examples of each model, which you can use as checklists when preparing your own
client programs, bridge exits and monitors.

Is a new bridge exit needed?

If you want to use a transport mechanism other than TS, TD or the Web, or you
want to use a message format that doesn’t have MQCIH as the message header, it
may be simpler to modify DFHOCBRE, rather than write your own complete
solution.

Changing the transport mechanism
The supplied exit has three sections marked "transport mechanism specific”.
These should be changed to replace the TS/TD code with transport specific
code. The brdata may also need to change. This is contained in the
DFHBRSCO and DFHBRSDO copybooks, and in the INIT routine.

Changing the message header
The only user of the MQCIH message header is the DFHOCBRE bridge exit. It
is not used in the formatter, or the common code. Therefore if you want to
simplify the MQCIH, for example to hard code most of the values in the exit,
and have a reduced header, this can be done by changing the DFHMQMHO
and DFHMQMCO copy books in the "message header” sections and routines
marked as "MSG-HDR SPECIFIC ROUTINES".

If you want a much simpler interface which is tailored for a specific(type) of
application, then you should consider writing your own bridge exit that is specifically
designed for a single transaction (or a number of transactions with identical
interfaces).

An example of this approach is described in the Dallas System Center Redbook.

Is a new formatter needed?

If you want to use a message format that doesn’t use BRMQ message vectors, it
may be simpler to modify DFHOCBREF, rather than write your own complete solution.

Changing the message vectors
The only user of the BRMQ message vectors is the DFHOCBRF formatter. It is

© Copyright IBM Corp. 1994, 2000 75

not used in the bridge exit, or the common code. Therefore if you want to
simplify the BRMQ vectors, for example to hard code values in the exit, and
have a reduced header, this can be done by changing the DFHBRMQ copy
book in the "message structures” section, and occurances of the BRMQ field

If you want a much simpler interface which is tailored for a specific(type) of
application, then you should consider writing your own formatter that is specifically
designed for a single transaction (or a number of transactions with identical
interfaces). The data can be read by the bridge exit as normal, but the formatter
can be tailored for only those API interfaces that are specifically required.

BMS macro generation utility program (DFHBMSUP)

Overview

This chapter describes the BMS macro generation utility, DFHBMSUP, to recreate
BMS macro statements from a mapset load module.

DFHBMSUP can recreate the original BMS macros that were assembled to produce
a mapset load module, when the macro statements are no longer available.

The utility program generates map definition macros that are equivalent to the
originals, and thus can be used to recreate symbolic maps if the original source has
been lost. However, it is not possible to recover the original field names used. Field
names are generated by the utility and you can then edit them.

DFHBMSUP sets a return code indicating success or failure.

Note: DFHBMSUP cannot process mapset load modules created on CICS/DOS/VS
1.7 and earlier releases.

Input
All input information is defined in the JCL.
DFHBMSUP requires the following inputs:

Input MAPSET
Name defined in the PARM field of the EXEC statement.

The library in which the mapset resides must be included in the LIBDEF
search statement.

Output
DFHBMSUP provides the following outputs:

Output map
Name defined in the BMSOUT DLBL statement.

DLBL statement
This section describes the DLBL statement for the output file used by DFHBMSUP.

BMSOUT DLBL
Defines a file contain the BMS macro statements generated by the utility.

Return codes
DFHBMSUP sets one of the following return codes:

0 Utility executed successfully.

4 Input mapset could not be loaded.

76 CICS TS for VSE/ESA: CICS External Interfaces Guide

8 Output mapset could not be opened.

Example of using DFHBMSUP
m shows the statements required to process a BMS mapset load module.
Macro statements are generated and written to the MAPOUT file.

/* khhkkkhkhkhkhhhkhhhhhhhdhhdhrhhhhhrdhkx
/* Sample job for running the =
/* DFHBMSUP to create a BMS MAP =*
/* from the assembled Mapset *
/* *
/* khhkkkhkhkhkhhhkhhhhhhhhrhhrhhhhhrdhk
// OPTION PARTDUMP

// DLBL BMSOUT, 'output_file',0,SD
// EXTENT SYS019,volume,1,0,xXxx,XX
// ASSGN SYS019,DISK,VOL-volume,SHR
// ASSGN SYS009,SYSLST

// LIBDEF *,SEARCH=search 1ist

// EXEC PGM=DFHBMSUP,SIZE=DFHBMSUP,parm="mapname’
/*

/&

* ££ EOJ

Figure 24. DFHBMSUP—generating BMS macro statements.

Example of DFHBMSUP output
The following macro statements were generated from the mapset load module,

BMSET40. Note that the utility generates a new name for the mapset, @000001, so
that you can assemble it without overwriting the existing mapset.

You can edit all the names to be more meaningful for your application.

* This is an unaligned mapset
*

TITLE 'BMSET40 Mapset MACRO Definition Listing'
@000001 DFHMSD TYPE=DSECT,LANG=ASM,MODE=INOUT

*

BMAP400 DFHMDI SIZE=(1,80),CTRL=(FRSET,FREEKB),COLUMN=1,LINE=1, *
MAPATTS=(COLOR,HILIGHT)
DFHMDF P0S=0,LENGTH=4,ATTRB=(ASKIP,BRT),COLOR=PINK, *

HILIGHT=REVERSE,INITIAL="'BM40"
DFHMDF POS=5,LENGTH=1,COLOR=BLUE
FLDOGOO1 DFHMDF P0S=16,LENGTH=45,ATTRB=(ASKIP,BRT),COLOR=NEUTRAL
DFHMDF P0OS=62,LENGTH=1,COLOR=BLUE
FLDOOOO2 DFHMDF P0S=78,LENGTH=1,COLOR=YELLOW
BMAP401 DFHMDI SIZE=(9,80),CTRL=(FRSET,FREEKB),COLUMN=1,LINE=2, *
MAPATTS=(COLOR,HILIGHT)
DFHMDF P0S=0,LENGTH=1,COLOR=BLUE, INITIAL=" "'
DFHMDF P0S=80,LENGTH=1,COLOR=BLUE, INITIAL=" "
DFHMDF P0S=160,LENGTH=1,COLOR=BLUE, INITIAL="
DFHMDF P0S=240,LENGTH=1,COLOR=BLUE, INITIAL="
DFHMDF P0S=320,LENGTH=1,COLOR=BLUE, INITIAL="
DFHMDF P0S=400,LENGTH=1,COLOR=BLUE, INITIAL="
DFHMDF P0S=480,LENGTH=1,COLOR=BLUE, INITIAL="
DFHMDF P0S=560,LENGTH=1,COLOR=BLUE, INITIAL="
DFHMDF P0S=658,LENGTH=39,COLOR=TURQUOISE, *
INITIAL="'THIS SHOULD BE IN THE MIDDLE OF LINE 10'

*
BMAP402 DFHMDI SIZE=(1,80),CTRL=(FRSET,FREEKB),COLUMN=1,LINE=11,
MAPATTS=(COLOR,HILIGHT)
DFHMDF P0S=0,LENGTH=1,COLOR=BLUE,INITIAL=" "'

*

BMAP403 DFHMDI SIZE=(1,80),CTRL=(FRSET,FREEKB),COLUMN=1,LINE=11, *
MAPATTS=(COLOR,HILIGHT)
DFHMDF P0S=17,LENGTH=41,COLOR=TURQUOISE, *

Chapter 6. Writing your own bridge programs 77

INITIAL="'THIS TEXT SHOULD NOT APPEAR ON THE SCREEN'
*
BMAP404 DFHMDI SIZE=(10,80),CTRL=(FRSET,FREEKB),COLUMN=1,LINE=12, *
MAPATTS=(COLOR,HILIGHT)
DFHMDF P0S=18,LENGTH=39,COLOR=TURQUOISE, *
INITIAL="'THIS SHOULD BE IN THE MIDDLE OF LINE 12'
DFHMDF P0S=80,LENGTH=1,COLOR=BLUE, INITIAL=" "
DFHMDF P0S=160,LENGTH=1,COLOR=BLUE, INITIAL=""
DFHMDF P0S=240,LENGTH=1,COLOR=BLUE, INITIAL=" "
DFHMDF P0S=320,LENGTH=1,COLOR=BLUE, INITIAL=" "
DFHMDF P0S=400,LENGTH=1,COLOR=BLUE, INITIAL=" "
DFHMDF P0S=480,LENGTH=1,COLOR=BLUE, INITIAL=" "'
DFHMDF P0S=560,LENGTH=1,COLOR=BLUE, INITIAL=""
DFHMDF P0S=640,LENGTH=1,COLOR=BLUE, INITIAL=" "
DFHMDF P0S=720,LENGTH=1,COLOR=BLUE, INITIAL=" "
*
BMAP405 DFHMDI SIZE=(3,80),CTRL=(FRSET,FREEKB),COLUMN=1,LINE=22, *
MAPATTS=(COLOR,HILIGHT)
FLDOOOO3 DFHMDF P0S=80,LENGTH=78,COLOR=BLUE

DFHMDF P0S=160,LENGTH=41,COLOR=BLUE, *
INITIAL="'PF1=HELP PF3=EXIT PF12=RETURN'
DFHMDF P0S=208,LENGTH=30,COLOR=BLUE, *
INITIAL="ENTER=CONTINUE CLEAR=EXIT'
©@000001 DFHMSD TYPE=FINAL
END

Writing your own bridge exit

Your bridge exit is always called for the following requests:
e User transaction initialization

e User transaction bind

e User transaction termination

» User transaction abnormal termination

* Syncpoint (optional)

If a formatter is specified in the INIT call, then the bridge exit is also called for Read
and Write message requests.

If a formatter is specified in the INIT call, it is called for the following requests.
Otherwise, if a formatter is not used, the bridge exit is also called for these
requests:

* SEND (Terminal Control and BMS)

« RECEIVE (Terminal Control and BMS)

« CONVERSE

+ FREE

* ISSUE DISCONNECT

* ISSUE ERASEAUP

* RETRIEVE (in some cases)

Transaction calls to the bridge exit

The following calls are made at transaction initialization, termination, syncpoint and
abend:

INIT (Initialization) call
This call is made by the CICS transaction manager during the establishment of
the bridge environment for the user transaction. The bridge facility is identified
and a FACILITY_TOKEN created. If a null FACILITY_TOKEN is supplied, the
bridge exit establishes a new bridge facility and creates a new token; if a valid
FACILITY_TOKEN is supplied, the bridge exit uses the existing bridge facility,
and the parameter FACILITYLIKE is ignored.

78 CICS TS for VSE/ESA: CICS External Interfaces Guide

This call also processes the BRDATA passed on the START command, storing
the passed data in the Bridge Exit Area (BRXA) for subsequent use during the
execution of the user transaction.

The following values can be set in the transaction and common area of the

BRXA on this call. Any other values are ignored.

Table 7. Init call parameters

Field Name Default
BRXA_FACILITY_TOKEN nulls
BRXA_FACILITYLIKE blanks
BRXA_FORMATTER blanks
BRXA_USER_ABEND_CODE blanks
BRXA_CALL_EXIT_FOR_SYNCPOINT BRXA_YES

Commands that cause an explicit or implicit syncpoint, or that use a resource of
a type that can be defined as recoverable cannot be used in the the INIT call.

Invalid commands are:
* File commands

+ Temporary storage commands

¢ Transient data commands

» Task related user exit requests

e CREATE commands
¢ SYNCPOINT commands
« ENQ commands

» CICS Business Transaction Services (BTS) commands

BIND call

This call is made by the CICS transaction manager during task initalization,
when the Unit of Work (UOW) is created.

It is used to open queues and possibly obtain the message to run the user

transaction.

You can also use the EXEC CICS VERIFY command in this call to validate a

password or pass-ticket in the message.

The following BRXA parameters can be set in the BIND call:

Table 8. Bind call parameters

Field Name

Default

BRXA_STARTCODE

BRXA_TERMINPUT (if
BRXA_FACILITY_TOKEN is null) or value
from the bridge facility

BRXA_USER_ABEND_CODE blanks
BRXA_LOAD_ADS_DESCRIPTOR BRXA_NO
BRXA_IDENTIFIER nulls
BRXA_FORMATTER blanks

Chapter 6. Writing your own bridge programs

79

SYNCPOINT call
This is only called if the field BRXA_CALL_EXIT_FOR_SYNCPOINT is set.
BRXA_SYNC_COMMAND is set to indicate whether the SYNCPOINT is a
rollback. This call allows the exit to write a request to the client before and/or
after the syncpoint call. Note that if the call is a rollback, the write request
should not be recoverable. The SYNCPOINT call must be reissued exactly the
same as the original call.

TERM (termination) call
This call is made by the CICS transaction manager when the user transaction
issues a RETURN command. On this call the bridge exit sends the response
message back to the client application. This can be done by a direct interface to
the transport mechanism or indirectly by passing the response message to the
bridge monitor for transmission.

This call also identifies the next transaction to be run if this has been specified
and can then issue an EXEC CICS START BREXIT command for the next
TRANSID, or return the next transaction information to the client application.

The following values can be set in the transaction and common area of the
BRXA on this call. Any other values are ignored.

* BRXA_FACILITY_KEEP_TIME

*+ BRXA_USER_ABEND_CODE

ABEND call
This call is made if the user transaction abends, so that the bridge exit can
send non-recoverable messages to the client application. For example, a
non-syncpointing MQPUT can be issued for the MQ bridge.

Recoverable requests cannot be made in this call.
BRXA_USER_ABEND_CODE can not be set in this call.

The following values can be set in the transaction and common areas on this
call. Any other values are ignored.
* BRXA_FACILITY_KEEP_TIME

Message calls to the bridge exit
The following calls are made if a formatter is specified in the INIT call:

brxa-read-message-nowait
The purpose of this call is to read the next message if there already is one
available. It is only used if the client application writes more than one message
at a time. When a message is read, the bridge exit could check the password
or pass-ticket in the message using an EXEC CICS VERIFY PASSWORD to
ensure that the message came from an authorized source.

brxa-read-message-wait
The purpose of this call to to get the next message. This is usually done by
sending a message to the client, requesting the next message, and waiting for
a reply. When a message is read, the bridge exit could check the password or
pass-ticket in the message using an EXEC CICS VERIFY PASSWORD to
ensure that the message came from an authorized source.

brxa-write-message
The purpose of this call is to write a message. This is an intermediate message
due to either a flush request, or the message buffer being full.

80 CICS TS for VSE/ESA: CICS External Interfaces Guide

API calls to the bridge exit

These calls are only made if a formatter is not specified in the INIT call:

SEND call
This call is made to the bridge exit when the user transaction issues a SEND
command. This is the reverse of what happens in a RECEIVE command. In this
case the bridge exit copies data from the command area to a message to be
returned to the client application.

RECEIVE call
This call is made to the bridge exit when the user transaction issues a
RECEIVE command. Using the input obtained from BRDATA (or from a client
application message), data is copied to the INTO or SET storage for the user
transaction RECEIVE command. For RECEIVE MAP calls, this is the ADS. The
bridge exit can set the following fields in the command area:
* The EIBRESP/EIBRESP2 values (defaults to NORMAL)
» The EIBAID value (defaults to ENTER)
* The EIBCPOSN value (defaults to 0)

CONVERSE
This call combines the function of SEND and RECEIVE.

FREE
After this call has been made, no further API calls should be made.

ISSUE DISCONNECT
After this call has been made, no further API calls should be made.

ISSUE ERASEAUP
This call causes the exit clear the screen data.

RETRIEVE
RETRIEVE calls are normally only used in the first leg of a pseudoconversation,
when a startcode of SD is returned. All other RETRIEVE requests should return
ENDDATA.

Writing your own formatter

If the bridge exit specifies a formatter, the formatter is called for the following
requests:

* SEND (Terminal Control and BMS)

* RECEIVE (Terminal Control and BMS)
+ CONVERSE

+ FREE

* ISSUE DISCONNECT

* ISSUE ERASEAUP

* RETRIEVE (in some cases)

Calls to the formatter
Your formatter must handle the following calls:

RECEIVE call
This call is made to the formatter when the user transaction issues a RECEIVE
command. Using the input obtained from BRDATA (or from a client application
message), data is copied to the INTO or SET storage for the user transaction
RECEIVE command. For RECEIVE MAP calls, this is the ADS. The bridge exit
can set the following fields in the command area:

Chapter 6. Writing your own bridge programs 81

» The EIBRESP/EIBRESP2 values (defaults to NORMAL)
» The EIBAID value (defaults to ENTER)
* The EIBCPOSN value (defaults to 0)

If the RECEIVE does not have data to answer a receive request (for a
conversational transaction), then if the client can send more than one message
at a time, this call can return a response of BRXA-FMT-READ-MESSAGE-
NOWAIT to CICS to ask if the next message has already arrived. CICS then
calls the formatter again. If a message was available the formatter will be called
again for the same request. This time there should be a information to process
the command. If there is (still) nothing in the message to answer the receive
request, this call can add a vector to the end of the message, requesting more
data, and return a response of BRXA-FMT-REQUEST-NEXT-MESSAGE to
CICS. The bridge exit will write the current message, and read the next
message when it arrives. When the message is read, the formatter will be
called again. This time there should be information to process the command.

SEND call
This call is made to the bridge exit when the user transaction issues a SEND
command. This is the reverse of what happens in a RECEIVE command. In this
case the bridge exit copies data from the command area to a message to be
returned to the client application. If the message is too large to process, the
send call returns a response of BRXA-FMT-OUTPUT-BUFFER-FULL to CICS.
This results in the bridge exit being called to send the message and free the
buffer space. The formatter will be called again for the same request. If the
SEND results in the current message being flushed, this call should return a
response of BRXA-FMT-WRITE-MESSAGE. The formatter will not be called
again for the same request.

CONVERSE
This call combines the function of SEND and RECEIVE.

FREE
After this call has been made, no further API calls should be made.

ISSUE DISCONNECT
After this call has been made, no further API calls should be made.

ISSUE ERASEAUP

RETRIEVE
RETRIEVE calls are normally only used in the first leg of a pseudoconversation,
when a startcode of SD is returned. All other RETRIEVE requests should return
ENDDATA.

Return codes from the formatter

If the formatter cannot fully process a command, it passes a return code back to
CICS in the field BRXA_FMT_RESPONSE. This gives the formatter the option of
calling the bridge exit. CICS also passes state information to the formatter in fields
BRXA_READ_NOWAIT_ISSUED and BRXA_REQUEST_NEXT_ISSUED.

BRXA_FMT_RESPONSE
The following output values can be returned to CICS in BRXA_FMT_RESPONSE

BRXA_FMT_NONE
(default) No action. The formatter has processed the request.

BRXA_FMT_OUTPUT_BUFFER_FULL
There is no room to add the next vector. Call the bridge exit to write the
message, clear the buffer, then call the formatter again.

82 CICS TS for VSE/ESA: CICS External Interfaces Guide

BRXA_FMT_WRITE_MESSAGE
The request required data to be flushed. Call the bridge exit to write the
message.

BRXA_FMT_REQUEST_NEXT_MESSAGE
The formatter has processed all the data in the message. Call the bridge exit to
read another message, then call the formatter again.

BRXA_FMT_READ_MESSAGE_NOWAIT
The formatter has processad all the data in the message. Check to see if there
is a new message before requesting any further input. Call the bridge exit to
read a message, then call the formatter again.

BRXA_READ_NOWAIT_ISSUED

The following values are passed to the formatter in
BRXA_READ_NOWAIT_ISSUED. This field is used by the formatter to check if it
has already returned a BRXA_FMT_READ_MESSAGE_NOWAIT for this command.

BRXA_NO
A BRXA_FMT_READ_MESSAGE_NOWAIT has not been returned for this
command.

BRXA_YES
A BRXA_FMT_READ_MESSAGE_NOWAIT has been returned for this
command.

BRXA_REQUEST_NEXT_ISSUED

The following values are passed to the formatter in
BRXA_REQUEST_NEXT_ISSUED. This field is used by the formatter to check if it
has already returned a BRXA_FMT_REQUEST_NEXT_MESSAGE for this
command.

BRXA_NO
A BRXA_FMT_REQUEST_NEXT_MESSAGE has not been returned for this
command.

BRXA_YES
A BRXA_FMT_REQUEST_NEXT_MESSAGE has been returned for this
command.

Chapter 6. Writing your own bridge programs 83

Bridge exit area (BRXA)

This section contains Product-sensitive Programming Interface and Associated
Guidance Information.

The bridge exit area (BRXA) is the interface between the bridge exit or the
formatter and CICS.

This is an interface defined by CICS, and must be used by all bridge exits and
formatters. It is a CICS COMMAREA, accessed by ADDRESS COMMAREA, which
is passed to the bridge exit or formatter by CICS whenever it is called.

The names of the parameters and constants, translated into appropriate forms for
the different programming languages supported, are supplied in the copybook files

listed in ESupplied copybooks” on page 1085.

The BRXA contains a number of sub-areas that are used by the bridge exit and
formatter to process each call, and retain information between calls. It consists of
the following sub-areas:

Header
This area contains version information and pointers to some of the following
areas.

Transaction area
This area is used by bridge exit initialization processing. It contains
information about the user transaction that CICS will run, and the real 3270
that it expects to use.

Command area
This area provides details of the command request. For CICS API requests
it provides a simplified description of the command and response fields.

User area
This area is used to store data between calls to the bridge exit. It acts as a
user input area to store the messages needed to satisfy RECEIVE and
RETRIEVE requests, and also as a user output area to store the messages
from SEND requests so that they can all be sent together when the user
transaction terminates.

ADS descriptor
This area contains an ADS descriptor for BMS SEND MAP and RECEIVE
MAP requests, if the mapset has been assembled with CICS Transaction
Server for VSE/ESA Release 1.1.1 or later release and an ADS descriptor
has been created.

The ADS descriptor is created by the BMS macros in either a long or a
short form. Long data has the same content as short data, but the fields
are word aligned to support those transport mechanisms that require all
message fields to be word aligned.

BRXA header area

Offset Type Len Name
Hex
(0) STRUCTURE 56 BRXA_HEADER

(0) CHARACTER
(8) FULLWORD
(C) FULLWORD

BRXA_HEADER_EYECATCHER
BRXA_HEADER_LENGTH
BRXA_HEADER_VERSION_NO

A b~ o

84 CICS TS for VSE/ESA: CICS External Interfaces Guide

Offset Type Len Name

Hex

(10) ADDRESS 4 BRXA_TRANSACTION_AREA_PTR
(14) FULLWORD 4 BRXA_TRANSACTION_AREA_LEN
(18) ADDRESS 4 BRXA_COMMAND_AREA_PTR
(1C) FULLWORD 4 BRXA_COMMAND_AREA_LEN
(20) ADDRESS 4 BRXA_USER_AREA_PTR

(24) FULLWORD 4 BRXA_USER_AREA_LEN

(28) ADDRESS 4 BRXA_INPUT_MSG_PTR

(2C) FULLWORD 4 BRXA_INPUT_MSG_LEN

(30) ADDRESS 4 BRXA_OUTPUT_MSG_PTR

(34) FULLWORD 4 BRXA_OUTPUT_MSG_LEN

The BRXA header contains the following fields:

BRXA_HEADER_EYECATCHER
An eye-catcher to identify the area as an BRXA. This is initialized by CICS to
the value BRXA_HEADER_EYE ('>BRAREA ’), which is defined in the
DFHBRACX copy books.

BRXA_HEADER_LENGTH
The length of the header.

BRXA_HEADER_VERSION_NO
The version number of the BRXA. This allows future releases to extend the
BRXA. This is initialized by CICS to the value of
BRXA_CURRENT_VERSION_NO in the DFHBRACXx copybook.

BRXA_TRANSACTION_AREA_PTR
The address of the transaction subarea, BRXA_TRANSACTION_AREA. This is
set by CICS, and should not be modified by the bridge exit code.

BRXA_TRANSACTION_AREA_LEN
The length of the transaction subarea, BRXA_TRANSACTION_AREA. This is
set by CICS, and should not be modified by the bridge exit code.

BRXA_COMMAND_AREA_PTR
The address of the command subarea, BRXA_COMMAND_AREA, This is set
by CICS, and should not be modified by the bridge exit code.

BRXA_COMMAND_AREA_LEN
The length of the command subarea, BRXA_COMMAND_AREA. This is set by
CICS, and should not be modified by the bridge exit code.

BRXA_USER_AREA_PTR
A field that allows the address of a user area to be saved across bridge exit
calls within a task. The user area should be obtained using an EXEC CICS
GETMAIN.

BRXA_USER_AREA_LEN
A field in which the exit can save the length of the user area.

BRXA_INPUT_MSG_PTR
A field used to save the address of an input message. This field is intended to
be used in conjunction with a formatter.

BRXA_INPUT_MSG_LEN
A field used to save the current length of the input message.

Chapter 6. Writing your own bridge programs 85

BRXA_OUTPUT_MSG_PTR
A field used to save the address of an output message. This field is intended to

be used in conjunction with a formatter.

BRXA_OUTPUT_MSG_LEN

A field used to save the current length of the output message.

BRXA transaction area

Offset Type Len Name
Hex
(0) STRUCTURE 180 BRXA_TRANSACTION_AREA
(0) CHARACTER 8 BRXA_TRAN_AREA_EYECATCHER
(8) CHARACTER 4 BRXA_BRIDGE_TRANID
(C) CHARACTER 4 BRXA_TRANID
(10) CHARACTER 4 BRXA_NEXTTRANID
(14) CHARACTER 4 BRXA_ABEND_CODE
(18) CHARACTER 8 BRXA_CALLING_PROG
(20) CHARACTER 8 BRXA_USERID
(28) CHARACTER 8 reserved
(30) CHARACTER 2 BRXA_STARTCODE
(32) CHARACTER 1 BRXA_LOAD_ADS_DESCRIPTOR
(33) CHARACTER 1 BRXA_TRACE
(34) CHARACTER 4 BRXA_FACILITYLIKE
(38) UNSIGNED 4 BRXA_FACILITY_KEEP_TIME
(3C) CHARACTER 8 BRXA_FACILITY_TOKEN
(44) HALFWORD 2 BRXA_SCREEN_HEIGHT
(46) HALFWORD 2 BRXA_SCREEN_WIDTH
(48) HALFWORD 2 BRXA_ALTERNATE_SCREEN_HEIGHT
(4A) HALFWORD 2 BRXA_ALTERNATE_SCREEN_WIDTH
(4C) CHARACTER 48 BRXA_IDENTIFIER
(7C) CHARACTER 8 BRXA_FORMATTER
(84) CHARACTER 1 BRXA_CALL_EXIT_FOR_SYNC
(85) CHARACTER 1 BRXA_NEXTTRANID_SOURCE
(86) CHARACTER 6 reserved
(8C) CHARACTER 8 reserved
(94) FULLWORD 4 BRXA_BRDATA_PTR
(98) FULLWORD 4 BRXA_BRDATA_LEN
(9C) CHARACTER 4 BRXA_INTERVAL
(AO) CHARACTER 4 BRXA_TIME
(A4) FULLWORD 4 BRXA_HOURS
(A8) FULLWORD 4 BRXA_MINUTES
(AC) FULLWORD 4 BRXA_SECONDS
(B0) CHARACTER 1 BRXA_START_AFTER
(B1) CHARACTER 1 BRXA_START_AT
(B2) CHARACTER 2 reserved

The transaction area contains the following fields:

BRXA_TRAN_AREA_EYECATCHER
An eye-catcher to identify the area as a BRXA transaction area. This is set by
CICS, before passing control to the bridge exit, to the value
BRXA_TRAN_AREA_EYE (>BRTRANA’), defined in the DFHBRACXx copy
books.

86 CICS TS for VSE/ESA: CICS External Interfaces Guide

BRXA_BRIDGE_TRANID
The transaction identifier of the bridge monitor transaction that issued a START
TRANSID BREXIT command to start this bridge exit and its associated user
transaction.

BRXA_TRANID
The transaction identifier of the user transaction.

BRXA_NEXTTRANID
The transaction identifier of the next transaction. This is set by CICS from the
TRANSID value provided in the final RETURN command of the user
transaction; from the value provided by a SET TERMINAL NEXTTRANSID
command, or from the TRANSID of the first START issued by the user
transaction for the bridge facility. This field contains blanks (X’40’) if no next
transaction has been specified.

BRXA_ABEND_CODE
The abend code if the bridge transaction abends before initializing the user
transaction, or if the user transaction abends. If the transaction has not
abended, this field is blanks.

BRXA_CALLING_PROG
The name of the program in the user transaction which issued the command
causing the bridge exit to be invoked. For the initialization, termination, and
abend calls, this field is set to blanks.

BRXA_USERID
The USERID under which the user transaction is running.

BRXA_STARTCODE
This field is set to the start code appropriate to the next transaction returned in
BRXA_NEXTTRANID. The following start codes are possible:
brxa_start
START command without data.
brxa_startdata
START command with data.
brxa_terminput
Terminal input (default).

The initial value of this field is blanks.

BRXA_LOAD_ADS_DESCRIPTOR
A 1-character field that tells CICS whether or not to provide the ADS descriptor
on subsequent SEND MAP and RECEIVE MAP commands.

If this field is set to Y’ (BRXA_YES) when the user transaction issues a SEND
MAP and RECEIVE MAP command, CICS loads the mapset, locates the ADS
descriptor for the map, and provides its address in
BRXA_ADS_DESCRIPTOR_PTR in the command subarea.

The ADS descriptor format is explained in LADS descriptor area” on page 10d.

If this field has any value other than ’Y’, then CICS does not attempt to load the
mapset and locate the descriptor, and BRXA_ADS_DESCRIPTOR_PTR is set
to null.

This value can only be set in the INIT call.

Chapter 6. Writing your own bridge programs 87

88

BRXA_TRACE

A 1-character field that is set to 'Y’ (BRXA_YES) if level-2 tracing is set on for
the bridge. The bridge can use this flag to trace input and output data, for
example, for diagnostic purposes.

Note that for BR level tracing, the BRXA is already traced by CICS on input and
output.

BRXA_FACILITYLIKE

The name of an installed 3270 terminal to be used as a template terminal
definition for the bridge facility.

The exit sets this value during the initialization call. If the exit does not provide
a value, CICS looks for a value specified as FACILITYLIKE in the user
transaction’s profile. If this value is also blanks, CICS uses the CICS-supplied
definition CBRF (based on model DFHLU2).

If the specified FACILITYLIKE does not exist, CICS abends the transaction
ABRJ.

It is not possible to change the FACILITYLIKE definition after the terminal has
been created, so this parameter is ignored if BRXA_FACILITY_TOKEN is
specified.

If the real FACILITYLIKE terminal is logged on when the bridge facility is
created, any values returned by QUERY will apply also to the bridge facility.

BRXA_FACILITY_KEEP_TIME

The time (in seconds) that the bridge facility is kept after the user transaction
terminates. If a non-zero value is set in this field the bridge facility and its
pseudo-conversational data are retained.

CICS sets this value to zero before the bridge exit initialization call. The exit can
set it at any time; CICS does not use the value until the exit returns from the
task termination call. If the value is zero, CICS discards the bridge facility; if
non-zero, CICS retains the facility and associated data.

The maximum value is one week (604800 seconds). If a value larger than this
is specified, CICS retains the bridge facility for one week.

BRXA_FACILITY_TOKEN

A token representing the bridge facility to be used. CICS initializes this value to
nulls but the exit can set it in the initialization call.

Specifying a value implies reusing a bridge facility kept from a previous
transaction.

The default value of nulls results in CICS dynamically allocating a new bridge
facility.

The name of the bridge facility is accessible to the user transaction in the
EIBTRMID field of the EIB. No other TERMIDs in the system are the same,
although the name may be reused almost immediately when the user
transaction finishes, if BRXA_FACILITY_KEEP_TIME is set to zero.

BRXA_SCREEN_HEIGHT

The current screen height.

CICS TS for VSE/ESA: CICS External Interfaces Guide

BRXA_SCREEN_WIDTH
The current screen width.

BRXA_ALTERNATE_SCREEN_HEIGHT
The alternate screen height.

BRXA_ALTERNATE_SCREEN_WIDTH
The alternate screen width.

BRXA_IDENTIFIER
A 48-character field provided by the bridge exit. The intended use of this field is
for task-specific information to assist in on-line problem resolution. It could
contain, for example, the MQ correlator for the MQ bridge, or a Web token.

BRXA_FORMATTER
An 8- byte character field to be used by the bridge exit to specify the name of a
user replaceable program to be used as a formatter. If a program name is
specified in this field, then the it is called for all BMS, terminal, and interval
control requests. The bridge exit is only called for XM, SYNC and MSG
requests.

BRXA_CALL_EXIT_FOR_SYNCPOINT
A 1-character field that tells CICS whether or not to call the bridge exit for
SYNCPOINT requests.

If this field is set to Y’ (BRXA_YES), then the bridge exit is called; if it is set to
‘N’ (BRXA_NO), then the bridge exit is not called.

This value can only be set in the INIT call.

BRXA_NEXTTRANID_SOURCE
A 1-character field that indicates how the next transaction was specified. This
indicator can have three settings:

BRXA_IMMEDIATE
The next TRANSID value came from a RETURN IMMEDIATE
command.

BRXA_STARTED
The next TRANSID value came from a START TERMID command.

BRXA_NORMAL
The next TRANSID value came from a RETURN TRANSID or SET
TERMINAL/NETNAME command.

BRXA_BRDATA_PTR
A fullword (4-byte) field that contains the address of the data specified by the
BRDATA parameter on the START TRANSID BREXIT command.

BRXA_BRDATA_LEN
A fullword (4-byte) field that contains the length of the data specified by the
BRDATA parameter on the START TRANSID BREXIT command.

BRXA_INTERVAL
A 4-character field containing the INTERVAL value specified by the user
transaction on a START for its bridge facility.

BRXA_TIME
A 4-character field containing the TIME value specified by the user transaction
on a START for its bridge facility.

Chapter 6. Writing your own bridge programs 89

BRXA_HOURS
A fullword (4-byte) field containing the HOURS value specified by the user
transaction on a START for its bridge facility.

BRXA_MINUTES
A fullword (4-byte) field containing the MINUTES value specified by the user
transaction on a START for its bridge facility.

BRXA_SECONDS
A fullword (4-byte) field containing the SECONDS value specified by the user
transaction on a START for its bridge facility.

BRXA_START_AFTER
A 1-character field containing the AFTER value specified by the user transaction
on a START for its bridge facility.

BRXA_START_AT
A 1-character field containing the AT value specified by the user transaction on
a START for its bridge facility.

BRXA command area

90

The command area contains information relating to the command that has caused
the bridge exit to be called. Common fields appear in the first common section of
the command area, and fields specific to a particular command, or group of
commands, follow.

The following diagrams show the various fields in the BRXA_COMMAND_AREA,
and the commands for which they are valid.

An’I' in the table indicates that the field is an input parameter to the exit; it is set by
CICS before passing control to the exit, and any changes to the value made by the
exit are ignored by CICS.

An 'O’ in the table indicates that the field is an output parameter from the exit; the
exit must set this value before return (unless the default value is acceptable),
because CICS uses the value in completing the command.

A’-’ or a blank in the table indicates that the field is not applicable to that
command. The values on entry to the exit are undefined, and CICS ignores any
value set in the field by the exit.

Table 9. BRXA command area field usage

SEND

RECEIVE
CONVERSE
ISSUE ERASEAUP
ISSUE DISCONNECT
FREE

SEND MAP

SEND CONTROL
SEND TEXT
RECEIVE MAP
RECV PARTN
RETRIEVE
Syncpoint

Field name

brxa_command_common

brxa_function_code

brxa_command_code
brxa_user_abend_code ojlojo0ojojO0O|j]O0O]j]O0O]j]O|lO]|]O|JO]|]O]|O

brxa_from_ptr I - -] -1 - I - | T

CICS TS for VSE/ESA: CICS External Interfaces Guide

Table 9. BRXA command area field usage (continued)

Field name

SEND

RECEIVE

CONVERSE

ISSUE ERASEAUP

ISSUE DISCONNECT
SEND CONTROL
RECEIVE MAP
RECV PARTN

SEND MAP
SEND TEXT
RETRIEVE

FREE

Syncpoint

brxa_from_len

brxa_into_ptr

brxa_into_len

brxa_resp

brxa_resp2

Oo|0O

O|0O

O|lO0|0O|O

O|0O

brxa_cposn

brxa_aid

OoO|O0|0|O|0O|0O

O|lO0|O0|O|0O|O

O|0O
Oo|0O
Oo|0O
O|0O
Oo|0O
Oo|O0|0|O|O|0O
OoO|0|0|O0|0O|0O

brxa_erase_indicator

brxa_last_indicator

brxa_wait_indicator

brxa_tc_command

brxa_ctlchar

brxa_buffer_indicator

brxa_strfield_indicator

brxa_defresp_indicator

brxa_invite_indicator

brxa_bms_command

brxa_mapset

brxa_map

brxa_ads_descriptor_ptr

brxa_cursor

brxa_msr_data

brxa_data_indicator

brxa_eraseaup_indicator

brxa_freekb_indicator

brxa_alarm_indicator

brxa_msr_indicator

brxa_frset_indicator

brxa_text_type

brxa_ic_command

brxa_rtermid

@)

brxa_rtransid

o

brxa_queue

brxa_sync_command

Chapter 6. Writing your own bridge programs

91

Table 9. BRXA command area field usage (continued)

5
o
3 2 3
= o
a 3 £ o g|E
w 2 & 3 S| Q| W w g 3 E
Q| W o ol o w >
2l ol z| 2| 2| W 2| 2 2 o o E ¢
. w w o P @ | W Wl W W w w S
Field name wl £ O 2 @ Ll nw v o £ £ £ &
brxa_explicit |
brxa_rollback |
BRXA command area - common
Offset Type Len Name
Hex
(0) STRUCTURE 48 BRXA_COMMAND_COMMON

(0) CHARACTER
(8) CHARACTER
(A) CHARACTER
(C) CHARACTER
(10) ADDRESS

(14) FULLWORD
(18) ADDRESS

(1C) FULLWORD
(20) FULLWORD
(22) HALFWORD
(24) HALFWORD
(26) CHARACTER
(27) CHARACTER
(28) CHARACTER
(29) CHARACTER
(2A) CHARACTER
(2B) CHARACTER
(2C) CHARACTER
(2D) CHARACTER

[RN O I S NI NG NG N NG O)

BRXA_COMMAND_AREA_EYECATCHER
BRXA_FUNCTION_CODE
BRXA_COMMAND_CODE
BRXA_USER_ABEND_CODE
BRXA_FROM_PTR
BRXA_FROM_LEN
BRXA_INTO_PTR
BRXA_INTO_LEN

BRXA_RESP

BRXA_RESP2

BRXA_CPOSN

BRXA_AID
BRXA_ERASE_INDICATOR
BRXA_LAST_INDICATOR
BRXA_WAIT_INDICATOR
BRXA_FMT_RESPONSE
BRXA_READ_NOWAIT_ISSUED
BRXA_REQUEST_NEXT_ISSUED
(reserved)

BRXA_COMMAND_AREA_EYECATCHER

An eye-catcher to identify the area as a bridge command area. This is set by

CICS, before passing control to the bridge exit, to the value

BRXA_COMMAND_AREA_EYE (>BRCOMMA’), which is defined in the
DFHBRACXx copy book.

BRXA_FUNCTION_CODE

A 2-character code identifying the CICS function for which the bridge exit was
called. For calls before and after the user transaction runs, this is '00’. For all
other requests, this is the 2-digit value in the first byte of EIBFN converted to

character form. Valid EBCDIC characters are used for the function and
command code to simplify testing of the values in user transaction exit
programs written in all the supported languages, and to simplify passing of the

codes to other systems. A constant with a meaningful name is provided for all

the supported languages to simplify testing. The value is:

92 CICS TS for VSE/ESA: CICS External Interfaces Guide

BRXA_XM
BRXA_TC
BRXA_IC
BRXA_SYNC
BRXA_BMS
BRXA_MSG

BRXA_COMMAND_CODE
A two-character code identifying the CICS command for which the bridge exit
was called. For transaction initialization this is 00, for transaction bind this is
'02’, for transaction termination this is '04’, and for transaction abend this is '06’.
For all other requests, this is the value in the second byte of EIBFN converted
to character form.

See the ICICS Application Programming Referenca for information about EIBFN
values. Valid EBCDIC characters are used for the function and command code
to simplify testing of the values in user transaction exit programs written in all
the supported languages, and to simplify passing of the codes to other systems.
Constants with meaningful names are provided for all the supported languages
to simplify testing. The values are:

BRXA_INIT

BRXA_BIND

BRXA_TERM

BRXA_ABEND

* tc

BRXA_RECEIVE

BRXA_SEND

BRXA_CONVERSE

BRXA_ISSUE_DISCONNECT

BRXA_ISSUE_ERASEAUP

BRXA_FREE

* bms

BRXA_RECEIVE_MAP

BRXA_SEND_MAP

BRXA_SEND_TEXT

BRXA_SEND_CONTROL

* ic

BRXA_RETRIEVE

* sync

BRXA_SYNCPOINT

* msg

BRXA_READ_MESSAGE_NOWAIT

BRXA_READ_MESSAGE_WAIT

BRXA_WRITE_MESSAGE

BRXA_USER_ABEND_CODE
The abend code. CICS initializes this value to blanks. If the exit changes it to
any other value, CICS generates a transaction abend with this code.

BRXA_FROM_PTR
The address of the FROM data in SEND, CONVERSE, SEND MAP, SEND
TEXT, and START commands. This is zero for other commands, or if FROM is
not specified on the command.

BRXA_FROM_LEN
The length of the FROM data in SEND, CONVERSE, SEND MAP, SEND TEXT,
and START commands. This is zero for other commands, or if FROM is not
specified on the command.

BRXA_INTO_PTR
The address of the INTO data in RECEIVE, CONVERSE, RECEIVE MAP and
RETRIEVE commands. This must be set by the bridge exit, and CICS copies

Chapter 6. Writing your own bridge programs 93

data from this address into the INTO area specified on the command, or copies
the address into the SET parameter specified on the command.

Note: The exit must GETMAIN storage for INTO input because local storage
could be reused on return from the bridge exit.

BRXA_INTO_LEN
The length of the INTO data in RECEIVE, CONVERSE, RECEIVE MAP, and
RETRIEVE commands. This must be set by the user transaction exit, and CICS
copies this value into the LENGTH, FLENGTH, or INTOLENGTH parameter
specified on the command, and uses the value when copying data into the
INTO area.

Note: CONVERSE is the only command which has both FROM and INTO, and
the BRXA_FROM_PTR and BRXA_INTO_PTR (and corresponding
lengths) could be replaced by a single BRXA_DATA_PTR (and
BRXA_DATA_LEN). For CONVERSE, the exit replaces the FROM
address and length by the INTO address and length.

BRXA_RESP
The resp code to be set (by CICS) in EIBRESP. This will be set to zero by
CICS before calling the exit, and the exit must set this value if anything other
than a normal response is required. CICS will generate an ABRN transaction
abend if the value returned is not one that could normally be produced by CICS
for this command.

If this value is zero on return, CICS may itself set the EIBRESP value and raise
a condition.

BRXA_RESP2
The RESP2 code CICS returns and stores in EIBRESP2. This is set to zero by
CICS before calling the exit, and the exit must change this value if anything
other than a normal response is required.

CICS does not check the value specified for consistency with the command. If
this value is zero on return, CICS may itself set the EIBRESP2 value and raise
a condition.

BRXA_CPOSN
The cursor position to be set (by CICS) in EIBCPOSN for RECEIVE,
CONVERSE, and RECEIVE MAP commands. This is set to zero by CICS
before calling the exit, and the exit must change this value if the user
transaction uses the value in EIBCPOSN.

BRXA_AID
The attention identifier (PF key code) to be set (by CICS) in EIBAID for
RECEIVE, CONVERSE, and RECEIVE MAP commands. This is set to ENTER
(X'7D’) by CICS before calling the exit, and the exit must change this value if
the user transaction expects another value in EIBAID. The exit can use the
values defined in DFHAID copy books to set the value (these are EBCDIC
values of the 3270 AID characters).

BRXA_ERASE_INDICATOR
A 1-character value which is set (by CICS) to indicate whether ERASE, ERASE
ALTERNATE, or ERASE DEFAULT is specified on SEND, CONVERSE SEND
MAP, SEND TEXT, or SEND CONTROL commands. Constants with meaningful
names are provided for all languages to allow the bridge exit to test this value if
necessary. The values are:

94 CICS TS for VSE/ESA: CICS External Interfaces Guide

BRXA_ERASE

BRXA_ERASE_ALTERNATE

BRXA_ERASE_DEFAULT
BRXA_LAST_INDICATOR

A 1-character field indicating whether LAST is specified on a SEND command.

Valid values are 'Y’ or ’N’; the following constants are provided for the exit to
test this field:

BRXA_YES
BRXA_NO
BRXA_WAIT_INDICATOR
A one-character field indicating whether WAIT is specified on a SEND
command, or on a RETRIEVE command. Valid values are 'Y’ or 'N’; the
following constants are provided for the exit to test this field:
BRXA_YES
BRXA_NO
BRXA_FMT_RESPONSE
This field is used by the formatter to tell the CICS that the bridge exit should be
called to read or write a message. Possible values are:
BRXA_FMT_NONE
No action. The formatter has processed the request.

BRXA_FMT_OUTPUT _BUFFER_FULL
There is no room to add the next vector. Call the bridge exit to write the
message, clear the buffer, then call the formatter again.
BRXA_FMT_WRITE_MESSAGE
The request required data to be flushed. Call the bridge exit to write the
message.
BRXA_FMT_READ MESSAGE_NOWAIT
The formatter has processed the data in the message. Check to see if there
is a new message before requesting any further input. Call the bridge exit
to read a message, then call the formatter again.
BRXA_FMT_REQUEST_NEXT_MESSAGE
The formatter has processed the data in the message. Call the bridge exit
to read a message, then call the formatter again.
BRXA_READ_NOWAIT_ISSUED

This field is used by the formatter to check if it has already returned a
BRXA_FMT_READ_MESSAGE_NOWAIT for this command. Possible values

are:

BRXA_NO
BRXA_FMT_READ_MESSAGE_NOWAIT has not been returned for this
command.

BRXA_YES
BRXA_FMT_READ_MESSAGE_NOWAIT has been returned for this
command.

BRXA_REQUEST_NEXT_ISSUED
This field is used by the formatter to check if it has already returned a

BRXA_FMT_REQUEST_NEXT_MESSAGE for this command. Possible values
are:

BRXA_NO

BRXA_FMT_REQUEST_NEXT_MESSAGE has not been returned for
this command.

Chapter 6. Writing your own bridge programs 95

BRXA_YES
BRXA_FMT_REQUEST_NEXT_MESSAGE has been returned for this
command.

BRXA command area - terminal control

The terminal control command area defines some terminal control specific
parameters.

Commands supported are SEND, RECEIVE, and CONVERSE.

Offset Type Len Name
Hex
(0) STRUCTURE 53 BRXA_TC_COMMAND
(0) common 48

(2C) CHARACTER
(2D) CHARACTER
(2E) CHARACTER
(2F) CHARACTER
(30) CHARACTER

BRXA_CTLCHAR
BRXA_BUFFER_INDICATOR
BRXA_STRFIELD_INDICATOR
BRXA_DEFRESP_INDICATOR
BRXA_INVITE_INDICATOR

—_ = A

BRXA_CTLCHAR
The 3270 Write Control Character (WCC) passed on SEND and CONVERSE
commands as CTLCHAR. If not specified on the command, the default value
(X’'C3- unlock keyboard, reset MDT flags) is passed to the exit.

BRXA_BUFFER_INDICATOR
A 1-character field indicating whether BUFFER was specified on a RECEIVE
command. Valid values are ’Y’ or 'N’; the following constants are provided for
the exit to test this field:

BRXA_YES
BRXA_NO

BRXA_STRFIELD_INDICATOR
A 1-character field indicating whether STRFIELD was specified on a SEND or
CONVERSE command. Valid values are ’Y’ or 'N’; the following constants are
provided for the exit to test this field:
BRXA_YES
BRXA_NO

BRXA_DEFRESP_INDICATOR
A 1-character field indicating whether DEFRESP was specified on a SEND or
CONVERSE command. Valid values are "Y’ or 'N’; the following constants are
provided for the exit to test this field:

BRXA_YES
BRXA_NO

BRXA_INVITE_INDICATOR
A 1-character field indicating whether INVITE was specified on a SEND
command. Valid values are 'Y’ or 'N’; the following constants are provided for
the exit to test this field:

BRXA_YES
BRXA_NO

BRXA command area - BMS

The BMS command interface defines some BMS specific parameters.

96 CICS TS for VSE/ESA: CICS External Interfaces Guide

Commands supported are SEND MAP, SEND TEXT, SEND CONTROL, and
RECEIVE MAP.

Offset Type Len Name
Hex
(0) STRUCTURE 77 BRXA_BMS_COMMAND
(0) common 44
(2C) CHARACTER 7 BRXA_MAPSET
(33) CHARACTER 1 (reserved)
(34) CHARACTER 7 BRXA_MAP
(3B) CHARACTER 1 (reserved)
(3C) ADDRESS 4 BRXA_ADS_DESCRIPTOR_PTR
(40) HALFWORD 2 BRXA_CURSOR
(42) CHARACTER 4 BRXA_MSR_DATA
(46) CHARACTER 1 BRXA_DATA_INDICATOR
(47) CHARACTER 1 BRXA_ERASEAUP_INDICATOR
(48) CHARACTER 1 BRXA_FREEKB_INDICATOR
(49) CHARACTER 1 BRXA_ALARM_INDICATOR
(4A) CHARACTER 1 BRXA_FRSET_INDICATOR
(4B) CHARACTER 1 BRXA_MSR_INDICATOR
(4C) CHARACTER 1 BRXA_TEXT_TYPE

BRXA_MAPSET
The (unsuffixed) mapset name specified on SEND MAP or RECEIVE MAP.

BRXA_MAP
The map name specified on SEND MAP or RECEIVE MAP.

BRXA_ADS_DESCRIPTOR_PTR
The address of the ADS descriptor for BMS SEND MAP and RECEIVE MAP
commands. This is set by CICS, if the bridge exit has set the flag indicating that
the descriptor should be loaded, and if the relevant mapset has been
reassembled under CICS Transaction Server for VSE/ESA Release 1 to include
the descriptor. Otherwise this pointer is set to 0.

BRXA_CURSOR
A halfword value containing the CURSOR position specified on SEND MAP,
SEND TEXT, or SEND CONTROL command, which identifies where the cursor
is to be positioned on the 3270 screen. A value of -1 is passed if the application
specified CURSOR with no value on SEND MAP command, indicating that
symbolic cursor positioning is required, that is, that the cursor is to be
positioned in the first field in the application data structure that has a value of -1
in the corresponding length field. A value of -2 is passed if the application did
not specify CURSOR on the SEND MAP command.

BRXA_MSR_DATA
The 4-character value specified in MSR on a SEND MAP, SEND CONTROL, or
SEND TEXT command. Constants are provided in the copy book DFHMSRCA
that allow the exit to test the values specified.

Note: If you assume that a BFB will always be constructed as if its TYPETERM
were defined with MSRCONTROL(NO), then this parameter could be
omitted, because BMS ignores the MSR field specified on the command
for a 3270 terminal for which MSRCONTROL(NO) is specified.

BRXA_DATA_INDICATOR
A 1-character field indicating whether DATAONLY, MAPONLY, or neither is

Chapter 6. Writing your own bridge programs 97

specified on the SEND MAP command. Valid values are ‘D’ (DATAONLY), "M’
(MAPONLY) or 'N’ (neither specified); the following constants are provided for
the exit to test this field:

BRXA_DATAONLY
BRXA_MAPONLY
BRXA_NEITHER

(Note that if MAPONLY is specified, the FROM pointer and length are zero,
because there is no application data structure in this case.)

BRXA_ERASEAUP_INDICATOR
A 1-character field indicating whether ERASEAUP is specified on a SEND MAP
or SEND CONTROL command. Valid values are Y’ or 'N’; the following
constants are provided for the exit to test this field:

BRXA_YES
BRXA_NO

BRXA_FREEKB_INDICATOR
A 1-character field indicating whether FREEKB is specified on a SEND MAP,
SEND TEXT, or SEND CONTROL command. Valid values are 'Y’ or 'N’; the
following constants are provided for the exit to test this field:

BRXA_YES
BRXA_NO

BRXA_ALARM_INDICATOR
A 1-character field indicating whether ALARM is specified on a SEND MAP,
SEND TEXT, or SEND CONTROL command. Valid values are 'Y’ or 'N’; the
following constants are provided for the exit to test this field:

BRXA_YES
BRXA_NO

BRXA_MSR_INDICATOR
A 1-character field indicating whether MSR is specified on a SEND MAP, SEND
TEXT, or SEND CONTROL command. Valid values are ’Y’ or 'N’; the following
constants are provided for the exit to test this field:

BRXA_YES
BRXA_NO

BRXA_FRSET_INDICATOR
A 1-character field indicating whether FRSET is specified on a SEND MAP or
SEND CONTROL command. Valid values are 'Y’ or 'N’; the following constants
are provided for the exit to test this field:

BRXA_YES
BRXA_NO

BRXA_TEXT_TYPE
A 1-character field indicating whether NOEDIT or MAPPED is specified on a
SEND TEXT command. Valid values are blank (neither NOEDIT nor MAPPED
specified), ‘N’ (NOEDIT specified) and ‘"M’ (MAPPED specified); the following
constants are provided for the exit to test this field:

BRXA_TEXT_NORMAL
BRXA_TEXT_MAPPED
BRXA_TEXT_NOEDIT

BRXA command area - interval control

The interval control command area defines some interval control specific
parameters.

The only command supported is RETRIEVE.

98 CICS TS for VSE/ESA: CICS External Interfaces Guide

Offset Type Len Name

Hex

(0) STRUCTURE 60 BRXA_IC_COMMAND
(0) common 44

(2C) CHARACTER 4 BRXA_RTERMID
(30) CHARACTER 4 BRXA_RTRANSID
(34) CHARACTER 8 BRXA_QUEUE

BRXA_RTERMID
The value of RTERMID specified on a START command. For the RETRIEVE
command, this is a field that the bridge exit can set to pass the RTERMID value
back to the application issuing the RETRIEVE.

BRXA_RTRANSID
The value of RTRANSID specified on a START command. For the RETRIEVE
command, this is a field that the bridge exit can set to pass the RTRANSID
value back to the application issuing the RETRIEVE.

BRXA_QUEUE
The value of QUEUE specified on START command. For the RETRIEVE
command this is a field in which the bridge exit can set the QUEUE value to be
used by the application issuing the RETRIEVE,

BRXA command area - syncpoint

The syncpoint command area defines actions at SYNCPOINT and SYNCPOINT
ROLLBACK. BRXA_EXPLICIT is used to indicate that this request originated from
an explicit EXEC CICS SYNCPOINT command, or that it is an implicit syncpoint
generated by CICS. It is set to Y’ or ‘N’ before the exit is invoked; the following
constants are provided for the exit to test this field:

BRXA_YES
BRXA_NO

Valid values for BRXA_ROLLBACK are ’Y’ or 'N’; the following constants are
provided for the exit to test this field:

BRXA_YES
BRXA_NO
Offset Type Len Name
Hex
(0) STRUCTURE 46 BRXA_SYNC_COMMAND
(0) common 44
(2C) CHARACTER 1 BRXA_EXPLICIT
(2D) CHARACTER 1 BRXA_ROLLBACK

BRXA command area - MSG

This command area defines actions when the bridge exit is called to read or write a
message. These functions are only used if the bridge exit specified a formatter on
initialization.

This command area defines actions at initialization. Relevant fields are in the

common part of the command area. The layout of the MSG section of the command
area is :

Chapter 6. Writing your own bridge programs 99

Offset Type
Hex

(0) STRUCTURE

Len Name

48 BRXA_MSG_COMMAND

ADS descriptor area

The ADS descriptor allows interpretation of the BMS Application Data Structure (the
symbolic map used by your application program for the data in SEND and
RECEIVE MAP requests) - without requiring your program to include the relevant
DSECT or copybook at compile time.

The ADS descriptor contains a header with general information about the map, and
a field descriptor for every field that appears in the ADS, corresponding to every
named field in the map definition macro. It can be located in the mapset from an
offset field in DFHMAPDS.

The ADS descriptor is available only if the map load module has been reassembled
(using CICS Transaction Server for VSE/ESA Release 1.1.1 or a later release) to
include the descriptor, and CICS attempts to locate the descriptor only if the
BRXA_LOAD_ADS_DESCRIPTOR indicator is set to BRXA_YES in the bridge exit
initialization call.

The ADS descriptor is created by the BMS macros in either a long or a short form.
Long data has the same content as short data, but the fields are aligned on 4-byte
boundaries to support those transport mechanisms that require all message fields to
be word aligned. nly the long form is supported in the C language. The ADS
descriptor is defined below in both short and long format.

ADS descriptor header
The ADS descriptor header contains general information about the map and a

pointer to the first of a variable number of chained field descriptions.

Short form:
Offset Type Len Name
Hex
(0) STRUCTURE 38 ADS_DESCRIPTOR
(0) HALFWORD 2 ADSD_LENGTH
(2) CHARACTER 4 ADSD_EYECATCHER
(6) HALFWORD 2 ADSD_MAP_INDEX
(8) HALFWORD 2 ADSD_FIELD_COUNT
(A) HALFWORD 2 ADSD_STRUCTURE_LENGTH
(C) HALFWORD 2 ADSD_ATTRIBUTE_NUMBER
(E) CHARACTER 12 ADSD_ATTRIBUTE_TYPE_CODES
(1A) CHARACTER 1 ADSD_MAP_JUSTIFY_HOR
(1B) CHARACTER 1 ADSD_MAP_JUSTIFY_VER
(1C) HALFWORD 2 ADSD_MAP_STARTING_LINE
(1E) HALFWORD 2 ADSD_MAP_STARTING_COLUMN
(20) HALFWORD 2 ADSD_MAP_LINES
(22) HALFWORD 2 ADSD_MAP_COLUMNS
(24) CHARACTER 1 ADSD_WRITE_CONTROL_CHARACTER
(25) CHARACTER 1 (reserved)
(26) STRUCTURE * ADSD_FIRST_FIELD

ADSD_LENGTH
The length of the ADS descriptor.

100 CICS TS for VSE/ESA: CICS External Interfaces Guide

ADSD_EYECATCHER
An eye-catcher (ADSD’) to identify this as an ADS descriptor.

ADSD_MAP_INDEX
The index number of the map within the mapset. This is needed to determine
the HTML template corresponding to the map.

ADSD_FIELD_COUNT
The number of fields within the ADS; that is, the number of named fields in the
map definition. A separate field is counted for each element of an array defined
with the OCCURS parameter, but subfields of group fields (GRPNAME) are not
counted. The field count may be zero, in which case there are no field
descriptors following the header.

ADSD_STRUCTURE_LENGTH
The length of the application data structure.

ADSD_ATTRIBUTE_NUMBER
The number of extended attributes in each field of the ADS; that is, the number
of attributes specified in DSATTS in the map definition.

ADSD_ATTRIBUTE_TYPE_CODES
a 1-character code for the attribute types in each field, in order, derived from
DSATTS:
C = COLOR
P =PS
H = HILIGHT
V = VALIDN
O = OUTLINE
S = SOSI
T = TRANSP

ADSD_MAP_JUSTIFY_HOR
The horizontal justification for the map, either L (LEFT) or R (RIGHT) from the
JUSTIFY operand on the map definition.

ADSD_MAP_JUSTIFY_VER
The vertical justification for the map, from the JUSTIFY operand on the map
definition. This can have the values F (FIRST), L (LAST), B (BOTTOM), or
blank (no vertical JUSTIFY operand).

ADSD_MAP_STARTING_LINE
The starting line for the map, from the LINE operand on the DFHMDI macro,
(LINE = NEXT gives a value of 255; LINE = SAME gives a value of 254.)

ADSD_MAP_STARTING_COLUMN
The starting column for the map, from the COLUMN operand on the DFHMDI
macro. (COLUMN = NEXT gives a value of 255; COLUMN = SAME gives a
value of 254.)

ADSD_MAP_LINES
The number of lines in the map from the 'SIZE=" operand.

ADSD_MAP_COLUMNS
The number of columns in the map from the 'SIZE=" operand.

ADSD_WRITE_CONTROL_CHAR
The 3270 encoded WCC derived from the 'CONTROL=" operand.

Chapter 6. Writing your own bridge programs 101

ADSD_FIRST_FIELD

The first field descriptor. The address of ADSD_FIRST_FIELD can be used as

the initial value of the pointer for the field descriptor (unless
ADSD_FIELD_COUNT is 0).

Long form:
Offset Type Len Name

Hex
(0) STRUCTURE 60 ADS_LONG_DESCRIPTOR
(0) FULLWORD 42 ADSDL_LENGTH
(4) CHARACTER 4 ADSDL_EYECATCHER
(8) FULLWORD 4 ADSDL_MAP_INDEX
(C) FULLWORD 4 ADSDL_FIELD_COUNT
(10) FULLWORD 4 ADSDL_STRUCTURE_LENGTH
(14) FULLWORD 4 ADSDL_ATTRIBUTE_NUMBER
(18) CHARACTER 12 ADSDL_ATTRIBUTE_TYPE_CODES
(24) CHARACTER 1 ADSDL_MAP_JUSTIFY_HOR
(25) CHARACTER 1 ADSD_MAP_JUSTIFY_VER
(26) CHARACTER 2 reserved
(28) FULLWORD 4 ADSDL_MAP_STARTING_LINE
(2C) FULLWORD 4 ADSDL_MAP_STARTING_COLUMN
(30) FULLWORD 4 ADSDL_MAP_LINES
(34) FULLWORD 4 ADSDL_MAP_COLUMNS
(38) CHARACTER 1 ADSDL_WRITE_CONTROL_CHARACTER
(39) CHARACTER 3 (reserved)
(3C) STRUCTURE * ADSDL_FIRST_FIELD

ADSDL_LENGTH
The length of the ADS descriptor.

ADSDL_EYECATCHER
An eye-catcher (ADSL’) to identify this as an ADS descriptor.

ADSDL_MAP_INDEX
The index number of the map within the mapset. This is needed to determine
the HTML template corresponding to the map.

ADSDL_FIELD_COUNT
The number of fields within the ADS; that is, the number of named fields in the
map definition. A separate field is counted for each element of an array defined
with the OCCURS parameter, but subfields of group fields (GRPNAME) are not
counted. The field count may be zero, in which case there are no field
descriptors following the header.

ADSDL_STRUCTURE_LENGTH
The length of the short application data structure.

ADSDL_ATTRIBUTE_NUMBER
The number of extended attributes in each field of the ADS; that is, the number
of attributes specified in DSATTS in the map definition.

ADSDL_ATTRIBUTE_TYPE_CODES
a 1-character code for the attribute types in each field, in order, derived from
DSATTS:
C = COLOR
P=PS
H = HILIGHT
V = VALIDN

102 CICS TS for VSE/ESA: CICS External Interfaces Guide

O = OUTLINE
S = SOSI
T = TRANSP

ADSDL_MAP_JUSTIFY_HOR
The horizontal justification for the map, either L (LEFT) or R (RIGHT) from the
JUSTIFY operand on the map definition.

ADSDL_MAP_JUSTIFY_VER
The vertical justification for the map, from the JUSTIFY operand on the map
definition. This can have the values F (FIRST), L (LAST), B (BOTTOM), or
blank (no vertical JUSTIFY operand).

ADSDL_MAP_STARTING_LINE
The starting line for the map, from the LINE operand on the DFHMDI macro,
(LINE = NEXT gives a value of 255; LINE = SAME gives a value of 254.)

ADSDL_MAP_STARTING_COLUMN
The starting column for the map, from the COLUMN operand on the DFHMDI
macro. (COLUMN = NEXT gives a value of 255; COLUMN = SAME gives a
value of 254.)

ADSDL_MAP_LINES
The number of lines in the map from the 'SIZE=" operand.

ADSDL_MAP_COLUMNS
The number of columns in the map from the 'SIZE=" operand.

ADSDL_WRITE_CONTROL_CHAR
The 3270 encoded WCC derived from the 'TCONTROL=" operand.

ADSDL_FIRST_FIELD
The first field descriptor. The address of ADSD_FIRST_FIELD can be used as
the initial value of the pointer for the field descriptor (unless
ADSD_FIELD_COUNT is 0).

ADS field descriptor
After the header, the ADS descriptor contains a variable number of field descriptors.

Short form:
Offset Type Len Name

Hex
(0) STRUCTURE 42 ADS_FIELD_DESCRIPTOR
(0) CHARACTER 32 ADSD_FIELD_NAME
(20) HALFWORD 2 ADSD_FIELD_NAME_LEN
(22) HALFWORD 2 ADSD_OCCURS_INDEX
(24) HALFWORD 2 ADSD_FIELD_OFFSET
(26) HALFWORD 2 ADSD_FIELD_DATA_LEN
(28) CHARACTER 1 ADSD_FIELD_JUSTIFY
(29) CHARACTER 1 ADSD_FIELD_FILL_CHAR
(2A) CHARACTER * ADSD_NEXT_FIELD

ADSD_FIELD_NAME
The unsuffixed field name padded with blanks.

ADSD FIELD NAME_LEN
The number of characters in the field name.

ADSD_OCCURS_INDEX
When OCCURS is specified for a field definition there is a separate field

Chapter 6. Writing your own bridge programs 103

104

descriptor for each element of the array, and ADSD_OCCURS_INDEX indicates
the array index for the particular field. If OCCURS is not specified, then
ADSD_OCCURS_INDEX is 0.

ADSD_FIELD_OFFSET
The offset of the field within the ADSDL. The offset is to the beginning of the
(fullword) length field, and you must add 4 (for the length field) + 4 (for the 3270
attribute) + 8 fullwords for the extended attributes to obtain the offset of the
data part of the field.

ADSD_FIELD_DATA_LEN
The length of the field in the ADS.

ADSD_FIELD_JUSTIFY
A 1-character field Indicating whether the data is to be justified left 'L’ or right
'R’ if the supplied length is less than the length in the ADS.

ADSD_FIELD_FILL_CHAR
The character (blank or ’0’) to be used to pad the remainder of the field in the
ADS.

ADSD_NEXT_FIELD
The next field descriptor. The address of ADSD_NEXT_FIELD can be used to
update a pointer for the field descriptor.

Long form:
Offset Type Len Name

Hex
(0) STRUCTURE 52 ADS_LONG_FIELD_DESCRIPTOR
(0) CHARACTER 32 ADSDL_FIELD_NAME
(20) FULLWORD 4 ADSDL_FIELD_NAME_LEN
(24) FULLWORD 4 ADSDL_OCCURS_INDEX
(28) FULLWORD 4 ADSDL_FIELD_OFFSET
(2C) FULLFWORD 4 ADSDL_FIELD_DATA_LEN
(30) CHARACTER 1 ADSDL_FIELD_JUSTIFY
(31) CHARACTER 1 ADSDL_FIELD_FILL_CHAR
(32) CHARACTER 2 reserved
(34) CHARACTER * ADSD_NEXT_FIELD

ADSD_LONG_FIELD_NAME
The unsuffixed field name padded with blanks.

ADSDL_FIELD_NAME_LEN
The number of characters in the field name.

ADSDL_OCCURS_INDEX
When OCCURS is specified for a field definition there is a separate field
descriptor for each element of the array, and ADSD_OCCURS_INDEX indicates
the array index for the particular field. If OCCURS is not specified, then
ADSD_OCCURS_INDEX is 0.

ADSDL_FIELD_OFFSET
The offset of the field within the ADS. The offset is to the beginning of the
(halfword) length field, and you must add 2 (for the length field) + 1 (for the
3270 attribute) + attribute_number (for the extended attributes specified in
DSATTS) to obtain the offset of the data part of the field.

ADSDL_FIELD_DATA_LEN
The length of the field in the ADS.

CICS TS for VSE/ESA: CICS External Interfaces Guide

ADSDL_FIELD_JUSTIFY
A 1-character field Indicating whether the data is to be justified left 'L’ or right
‘R’ if the supplied length is less than the length in the ADS.

ADSDL_FIELD_FILL_CHAR
The character (blank or ’'0’) to be used to pad the remainder of the field in the
ADS.

ADSDL_NEXT_FIELD
The next field descriptor. The address of ADSD_NEXT_FIELD can be used to
update a pointer for the field descriptor.

Supplied copybooks

The names of the parameters and constants, translated into appropriate forms for
the different programming languages supported, are defined in files supplied as part
of the 3270 bridge. The files or copybooks for the various languages are listed in
the following table.

Table 10. BRXA copybooks

Language Area definition Area constants
Assembler DFHBRARD DFHBRACD
C DFHBRARH DFHBRACH
PL/I DFHBRARL DFHBRACL
COBOL DFHBRARO DFHBRACO

Copybook example (DFHBRACD)

The following constants are provided for use by an assembler language bridge exit
to set and interpret values in the BRXA.

API function codes are character equivalent constants of the first byte of the EIBFN

values documented in the ICICS Application Programming Reference manual.

* function codes
BRXA_XM EQU c'oo’
BRXA_TC EQU c'o4'
BRXA_IC EQU c'1o'
BRXA_SYNC EQU C'16'
BRXA_BMS EQU c'18'
BRXA_MSG EQU C'O1'

* indicator values

BRXA_YES EQU C'Y!'
BRXA_NO EQU C'N'
BRXA_ERASE EQU C'E'
BRXA_ERASE_ALTERNATE EQU C'A'
BRXA_ERASE_DEFAULT EQU C'D'
BRXA_DATAONLY EQU C'D'
BRXA_MAPONLY EQU C'M'
BRXA_NEITHER EQU C'N'
BRXA_TEXT_NORMAL EQU C' '
BRXA_TEXT_MAPPED EQU C'M'
BRXA_TEXT_NOEDIT EQU C'N'
BRXA_IMMEDIATE EQU C'I'
BRXA_STARTED EQU C'S'
BRXA_NORMAL EQU C'B'
* Start codes

BRXA_START EQU C'S '
BRXA_STARTDATA EQU C'SD'
BRXA_TERMINPUT EQU C'TD'

Chapter 6. Writing your own bridge programs 105

* formatter response values

BRXA_FMT_NONE EQU C'N'
BRXA_FMT OUTPUT BUFFER FULL EQU C'F'
BRXA_FMT_WRITE_MESSAGE EQU C'W!'

BRXA_FMT_REQUEST NEXT MESSAGE EQU C'Q'
BRXA_FMT_READ_MESSAGE_NOWAIT ~EQU C'R’

APl command codes are character equivalent constants of the second byte of the
EIBFN values documented in the icati 1

manual.

* xm

BRXA_INIT EQU C'0o0'
BRXA _BIND EQU C'o2'
BRXA_TERM EQU C'04'
BRXA_ABEND EQU C'06'
* tc

BRXA RECEIVE EQU C'e2'
BRXA_SEND EQU C'04'
BRXA_CONVERSE EQU C'06'

BRXA_ISSUE_DISCONNECT EQU C'14'
BRXA_ISSUE_ERASEAUP EQU C'18'

BRXA_FREE EQU C'22'
* bms

BRXA_RECEIVE_MAP EQU C'02'
BRXA_SEND_MAP EQU C'0o4'
BRXA_SEND_TEXT EQU C'06'
BRXA_SEND_CONTROL EQU C'12'
* ic

BRXA_RETRIEVE EQU C'OA'
* sync

BRXA_SYNCPOINT EQU C'02'

* msg (new for CTS 1.3)

BRXA_READ MESSAGE_NOWAIT ~ EQU C'02'
BRXA_READ_MESSAGE_WAIT EQU C'04"
BRXA_WRITE_MESSAGE EQU C'06'

106 CICS TS for VSE/ESA: CICS External Interfaces Guide

Chapter 7. Problem determination

This chapter contains Diagnosis, Modification, or Tuning Information.

This chapter helps you debug problems in the CICS 3270 bridge exit
user-replaceable program, the IBM-supplied parts of the CICS 3270 bridge, and in
the system setup of the CICS 3270 bridge. If you suspect that you have a problem
in another part of CICS, refer to the ICICS Problem Determination Guida.

The 3270 user program should be tested with a real 3270 terminal before
transferring to a bridge environment.

Diagnostic information is designed to provide first failure data capture, so that if an
error occurs, enough information about the error is available directly without having
to reproduce the error situation. The information is presented in the following forms:

Messages
The CICS 3270 bridge provides CICS messages. These messages are
listed in .

Trace The CICS 3270 bridge produces system trace entries containing all the
important information required for problem diagnosis.

Dump Dump formatting is provided for data areas relating to the CICS 3270
bridge.
Abend codes

Transaction abend codes are standard 4-character names. The abend
codes produced by the CICS 3270 bridge are listed in ICICS Messages and
Coged.

Troubleshooting

This section provides some hints on troubleshooting. It follows the general outline:
1. Define the problem.
2. Obtain information (documentation) on the problem.

Defining the problem

When you have a problem, first try to define the circumstances that gave rise to it.
If you need to report the problem to the IBM software support center, this
information is useful to the support personnel.

1. What is the system configuration?
* CICS Transaction Server release
* Release of any other products providing transport mechanisms for the 3270
bridge, such as MQSeries.
* LE/370 release
* VSE/ESA release
2. When did the problem first occur?
What were you trying to accomplish at the time the problem occurred?
4. What changes were made to the system before the occurrence of the problem?
« To the VSE/ESA system
» To the bridge exit
* To the CICS user program being accessed by the bridge
* To the end-user program
* To the transport mechanisms

w

© Copyright IBM Corp. 1994, 2000 107

* To CICS Transaction Server
5. What is the problem?
* Incorrect output
* Hang/Wait: Use CEMT INQUIRE to display details of the transaction.
* Loop: Use CEMT INQUIRE to display the details of the transaction.
» Abend in the bridge exit
* Abend in a CICS program
* Abend in the IBM-supplied part of the CICS 3270 bridge
» Performance problem
» Storage violation
* Logic Error
6. At what point in the processing did the problem occur?

Documentation about the problem

To investigate most problems, you must look at the dumps, traces, and logs
prowded with VSE and CICS.
» System Dump: This contains the CICS internal trace
» CICS auxiliary trace, if enabled
» TCP/IP for VSE trace, if relevant
e GTF trace, if enabled
« Console log
* CSMT log
* CICS job log

To identify which are likely to be useful for your problem, try to work out the area of
the CICS 3270 bridge giving rise to the problem.

Using messages and codes

CICS 3270 bridge messages have identifiers of the form DFHBRnnnn, where nnnn
are four numeric characters. These numbers indicate which component generated

the message, as shown in ICICS Messages and Codes.

When the CICS 3270 bridge issues a message as a result of an error, it also makes
an exception trace entry. The CICS 3270 bridge also generates information
messages, for instance during enable processing and disable processing.

CICS 3270 bridge messages are supplied in supported National Languages. The
CICS message editing utility can be used to translate them into other languages
supported by CICS.

Using Trace

The CICS 3270 bridge creates CICS system trace entries, which can be formatted
using software supplied as part of CICS.

You can request level 2 tracing using SET TRACETYPE or the CETR supplied
transaction. This gives a full trace of data being transmitted between the user
transaction and the end-user application.

108 CICS TS for VSE/ESA: CICS External Interfaces Guide

You should request level 2 tracing for the bridge by specifying BR in the SET
TRACETYPE or CETR command. CICS sets BRXA_TRACE to Y’ if level 2 tracing
is requested, but the bridge exit should create exception trace entries even if this
flag is not set.

CICS trace output is described in the ICICS Problem Determination Guidg, and
details of the contents of each trace points are given in the EZ.LCS_T:ace_Entued
Handbook

Dump and trace formatting

To control dump formatting of CICS 3270 bridge data areas, you can change the
parameters ofr DFHPD410 to include BR=0I112 dump formatting as follows:

The parameters have these meanings:

BR=0 Suppress system dump for the 3270 bridge.

BR=1 Produce system dump summary listing for the 3270 bridge.

BR=2 Produce system dump for the 3270 bridge.

BR=3 Produce system dump summary listing and a system dump for the 3270
bridge.

Details on specifying parameters and anlysing dumps are described in the lcicd

CICS 3270 bridge output in the formatted dump consists of the major control blocks
of the CICS 3270 bridge, with interpretation of some of the fields. The CICS 3270
bridge output can be found in the IPCS output by searching for ==BR. It is under the
heading BRIDGE FACILITY SUMMARY.

Debugging the bridge exit

IDENTIFIER

EDF

The following aids are provided to help you resolve problems occurring in the bridge
exit while bridging to a 3270 user transaction:

The bridge exit constructs a 48-byte identifier field, containing information to aid
problem determination. This can contain relevant fields taken from the START data.
You can access the identifier with INQUIRE TASK, or CEMT INQUIRE TASK.

The CEDX transaction provides EDF for non-terminal tasks. This allows you to use
EDF with the bridge exit (which is a non terminal task). You should issue CEDX
against the bridge transaction to see the initialization call to the bridge exit,
otherwise you should issue CEDX against the user transaction.

Note that bridge facilities are not EDF-able.

The supplied bridge exit program, DFHOCBRE, is defined with EDF disabled; you
will need to modify this is you intend to use CEDX.

See the ICICS Supplied Transactiond for more information about the use of CEDX.

Chapter 7. Problem determination 109

Trace

Trace records are written during execution of the bridge exit. See the [CIC3
Enhancements Guida for a description of the trace entries.

Level 2 trace will show you the messages transmitted, so you can verify that the
user transaction and end-user application are cooperating correctly.

You can also use the ENTER TRACENUM command in the bridge exit to write user
records to the CICS trace.

Debugging the supplied bridge exit

The supplied bridge exit, DFHOCBRE, is very well commented. You are
recommended to read the source carefully before use. The following aids are
provided to help you resolve problems:

Abend codes and Trace

The supplied exit creates trace and exception trace entries during execution. It also
returns some abend codes (ABXx). The bridge mechanism validates correct use of
BRXA, and ABRx abends result from incorrect usage. These codes and the trace
points are all fully documented in the comments within DFHOCBRE.

Note: If you change the supplied exit, you can change the ABR prefix.

You need to activate the level-2 tracing with SET TRACETYPE or CETR, specifying
the BR component.

Message validation

If CICS detects an invalid character in an input message, the MQCIH-
ERROROFFSET field is set to the offset of the invalid character, counted from the
start of the message.

110 CICS TS for VSE/ESA: CICS External Interfaces Guide

Part 3. External CICS Interface

This part of the book describes the external CICS interface.

This part contains:

© Copyright IBM Corp. 1994, 2000 111

External CICS Interface

112 CICS TS for VSE/ESA: CICS External Interfaces Guide

Chapter 8. Introduction to the external CICS interface

This chapter gives a brief overview of the external CICS interface (EXCI), covering

the foIIowin% topics:

] . R ”

Overview

The external CICS interface is an application programming interface that enables a
non-CICS program (a client program) running in VSE to call a program (a server
program) running in a CICS region and to pass and receive data by means of a
communications area. The CICS application program is invoked as if linked-to by
another CICS application program.

This programming interface allows a user to allocate and open sessions (or pipes')
to a CICS region, and to pass distributed program link (DPL) requests over them.
The multiregion operation (MRO) facility of CICS interregion communication (IRC)
facility supports these requests, and each pipe maps onto one MRO session, with a
limit of 25 pipes per EXCI partition.

The client program and the CICS server region (the region where the server
program runs or is defined) must be in the same VSE image.

A client program that uses the external CICS interface can operate multiple
sessions for different users (either under the same or separate TCBs) all coexisting
in the same VSE partition without knowledge of, or interference from, each other.

Where a client program attaches another client program, the attached program runs
under its own VSE task.

The programming interfaces

The external CICS interface provides two forms of programming interface: the EXCI
CALL interface and the EXEC CICS interface.

The EXCI CALL interface: This interface consists of six commands that allow you
to:

» Allocate and open sessions to a CICS system from non-CICS programs running
under VSE

* |Issue DPL requests on these sessions from the non-CICS programs
* Close and deallocate the sessions on completion of the DPL requests.

The six EXCI commands are:
* [|nitialize-User

* Allocate_Pipe

* Open_Pipe

e DPL call

1. pipe. A one-way communication path between a sending process and a receiving process. In an external CICS interface
implementation, each pipe maps onto one MRO session, where the client program represents the sending process and the CICS
server region represents the receiving process.

© Copyright IBM Corp. 1994, 2000 113

* Close_Pipe
* Deallocate_Pipe

The EXEC CICS interface: The external CICS interface provides a single,
composite command—EXEC CICS LINK PROGRAM—that performs all six
commands of the EXCI CALL interface in one invocation.

This command is similar but not identical to the distributed program link command
of the CICS command-level application programming interface.

— API restrictions for server programs
A CICS server program invoked by an external CICS interface request is
restricted to the DPL subset of the CICS application programming interface.
This subset (the DPL subset) of the APl commands is the same as for a
CICS-to-CICS server program.

See the ICICS Application Programming Guidd for details of the DPL subset for

server programs.

Choosing between the EXEC CICS and the CALL interface

As illustrated in the various language versions of the CICS-supplied sample client
program (see Sample application programs” on page 164 for details), you can use
both the CALL interface (all six commands) and the EXEC CICS LINK command in
the same program, to perform separate requests. As a general rule, it is unlikely
that you would want to do this in a production program.

Each form of the external CICS interface has its particular benefits.

* For low-frequency or single DPL requests, you are recommended to use the
EXEC CICS LINK command.
It is easier to code, and therefore less prone to programming errors.
Note that each invocation of an EXEC CICS LINK command causes the external
CICS interface to perform all the functions of the CALL interface, which results in
unnecessary overhead.

* For multiple or frequent DPL requests from the same client program, you are
recommended to use the EXCI CALL interface.
This is more efficient, because you need only perform the Initialize_User and
Allocate_Pipe commands once, at or near the beginning of your program, and
the Deallocate_Pipe once on completion of all DPL activity. In between these
functions, you can open and close the pipe as necessary, and while the pipe is
opened, you can issue as many DPL calls as you want.

lllustrations of the external CICS CALL interface
The diagrams in Eigure 25 on page 115 through Eigure 28 on page 118 illustrate the

external CICS interface using the EXCI CALL interface.

114 CICS TS for VSE/ESA: CICS External Interfaces Guide

VSE Client Application CICS Server Region

External CICS user <+«—+ MRO EXCI CONNECTION
environment <«——+ installed with 3
established <+—+ sessions

(PROTOCOL=EXCI)
(RECEIVECOUNT=3)

Figure 25. Stage 1: Status after an INITIALIZE_USER call

Notes:

1. In m the target CICS region is running with IRC open, and one EXCI
connection with three sessions installed, at the time the client application
program issues an INITIALIZE_USER call.

2. The client application program address space is initialized with the EXCI user
environment. There is no MRO activity at this stage, and no pipe exists.

VSE Client Application CICS Server Region

Pipe allocated R <«—+ MRO EXCI CONNECTION
<+«—+ installed with 3
<+— sessions
(PROTOCOL=EXCI)
(RECEIVECOUNT=3)

Figure 26. Stage 2: Status after the first ALLOCATE_PIPE call

Note: In w the external CICS interface logs on to MRO, identifying the
target CICS server region.

Chapter 8. Introduction to the external CICS interface 115

VSE Client Application CICS Server Region

Pipe opened < » MRO EXCI CONNECTION
<+«—+ installed with 3
<+—— sessions
(PROTOCOL=EXCI)
(RECEIVECOUNT=3)

Figure 27. Stage 3: Status after the OPEN_PIPE call

Notes:

1. In m the external CICS interface connects to the CICS server region,
and the pipe is now available for use.

2. The remaining two EXCI sessions are free, and can be used by further open
pipe requests from the same, or a different, client application program (provided
the connection is generic).

VSE Client Application CICS Server Region

DPL Request and data
B —

Pipe opened < » MRO EXCI CONNECTION

47

Response and data «—— installed with 3
<+— sessions

(PROTOCOL=EXCI)

(RECEIVECOUNT=3)

Figure 28. Stage 4: Status with one open pipe, processing a DPL call

Note: In m the external CICS interface passes the DPL request over the
open pipe, with any associated data. The CICS server region returns a
response and data over the open pipe.

Closing pipes: When the client application program closes a pipe, it remains
allocated ready for use by the same user, and the status is as shown in

. At this stage, the MRO session is available for use by another open
pipe request, from the same or from a different client application program (provided
the connection is generic).

Deallocating pipes: When the client application program deallocates a pipe, it logs
off from MRO and frees all the storage associated with the session. This leaves the

status as shown in Eigure 25 on page 115,

116 CICS TS for VSE/ESA: CICS External Interfaces Guide

lllustration of the EXCI EXEC CICS interface

Eigure 29 illustrates the EXEC CICS interface, and how it resolves to the six EXCI
CALLs.

VSE Client Application

EXEC CICS LINK command]

The EXEC Interface Stub
(DFHXCSTB)

The stub calls the EXCI
EXEC interface program. EXEC interface program
issues following calls:

INITIALIZE_USER

ALLOCATE_PIPE —+— pipe to CICS server
region is allocated

OPEN_PIPE <«——> pipe opened

DPL <+——> Request and data sent and
response and data received

CLOSE_PIPE —— pipe closed

DEALLOCATE_PIPE

Figure 29. lllustration of the external CICS interface using the EXEC CICS command

Benefits of the external CICS interface

The external CICS interface makes CICS applications more easily accessible from
non_cics environments.

Programs running in VSE/ESA can issue an EXEC CICS LINK PROGRAM
command, or use the EXCI CALL interface, to call a CICS application program
running in a CICS server region.

The provision of this programming interface means that, for example, VSE
programs can:

» Update resources with integrity while CICS is accessing them.

» Take CICS resources offline, and back online, at the start and end of a VSE job.
For example you can:

— Open and close CICS files.

— Enable and disable transactions in CICS (and so eliminate the need for a
master terminal operator during system backup and recovery procedures).

Requirements for the external CICS interface

Client programs running in a VSE partition can communicate only with CICS server
partitions running under CICS Transaction Server for VSE/ESA, Release 1 or a
later.

Chapter 8. Introduction to the external CICS interface 117

Also, the client program can connect to the server CICS region only through the
CICS Transaction Server for VSE/ESA Release 1, or later, interregion
communication program, DFHIRP.

For information about DFHIRP, and its requirement to be installed in the VSE

shared virtual area (SVA), see the ICICS System Definition Guide.

118 CICS TS for VSE/ESA: CICS External Interfaces Guide

Chapter 9. The EXCI CALL interface

The EXCI CALL interface consists of six commands that allow you to:

» Allocate and open sessions to a CICS system from non-CICS programs running
under MVS

 Issue distributed program link (DPL) requests on these sessions from the
non-CICS programs

The six EXCI commands are:
* Initialize_User

» Allocate_Pipe

* Open_Pipe

* DPL_Request

* Close_Pipe

* Deallocate_Pipe

The application program stub, DFHXCSTB: The EXCI commands invoke the
external CICS interface via an application programming stub provided by CICS,
called DFHXCSTB. You must include this stub when you link-edit your non-CICS
program.

The CALL interface commands

In the description of each command that follows, the syntax box illustrates the
assembler form of the command. The commands are also supported by C for VSE,
COBOL for VSE, and PL/I for VSE programming languages, using the CALL
conventions appropriate for the languages.

There are examples of these CALLs, in all the supported languages, in the sample

client programs provided by CICS. See ESample application programs” on page 162

for information about these.

© Copyright IBM Corp. 1994, 2000 119

Initialize _User

Function

Initialize the user environment including obtaining authority to use IRC facilities. The
environment is created for the lifetime of the VSE task, so the command needs to
be issued only once per user per VSE task. Further commands from this user must
be issued under the same VSE task.

Note: A useris a program that has issued an Initialize_user request (or for which
an Initialize_User request has been issued), with a unique name per VSE
task. For example:

* A simple client program running under VSE can be a single user of the
external CICS interface.

* Aclient program running under VSE can open several pipes and issue
external CICS interface calls over them sequentially, on behalf of different
vendor packages. In this case, from the viewpoint of the client program,
each of the packages is a user, identified by a unique user name. Thus a
single client program can operate on behalf of multiple users.

* A program running under VSE can attach several VSE subtasks, under
each of which a vendor package issues external CICS interface calls on
its own behalf. Each package is a client program in its own right, and runs
under its own VSE subtask. Each is also a user, with a unique user name.

Syntax
CALL DFHXCIS

»>—CALL DFHXCIS, (version_number ,—return_area,—user_token,—call_type,——— >

»—user_name) ,—VL,MF=(E, (1))

v
A

Parameters

version_number
A fullword binary input area indicating the version of the external CICS interface
parameter list being used. It must be set to 1 in the client program.

The equated value for this parameter in the CICS-supplied copybook
DFHXCPLx (where x indicates the language) is VERSION_1. See page 139 for
copybook details.

return_area
A 5-word output area to receive response and reason codes, and a message
pointer field. For more details see lReturn area for the EXCI CALL interface” onl

user_token
A 1-word output area containing a 32-bit token supplied by the CICS external
interface to represent the client program.

The user token corresponds to the user-name parameter. The client program

must pass this token on all subsequent external CICS interface commands
made for the user defined on the user_name parameter.

120 CICS TS for VSE/ESA: CICS External Interfaces Guide

call_type
A 1-word input area indicating the function of the command. It must be set to 1
in the client program to indicate that this is an Initialize_User command.

The equated value for this call in the CICS-supplied copybook DFHXCPLXx
(where x indicates the language) is INIT_USER. See page fiad for copybook
details.

user_name
An input area holding a name that identifies the user of the external CICS
interface. Generally, this is the client program. If this user is to use a specific
pipe, then the value in user_name must match that of the NETNAME attribute
of the CONNECTION definition for the specific pipe.

Responses and reason codes
For all non-zero response codes, a unique reason code value identifies the reason
for the response.

Note: All numeric response and reason code values are in decimal.

The following is a summary of the response and reason codes that the external
CICS interface can return on the Initialize_User call:

Response OK
Command executed successfully (RC 0). Reason code:
0 Normal response

Response WARNING
The command executed successfully, but with an error (RC 4). Reason

codes:
3 VERIFY_BLOCK_FM_ERROR
4 WS_FREEMAIN_ERROR

Response RETRYABLE
The command failed because of setup errors but can be reissued (RC 8).
Reason code:
201 NO_CICS_IRC_STARTED

Response USER_ERROR
The command failed because of an error in either the client or the server
(RC 12). Reason codes:
401 INVALID_CALL_TYPE
402 INVALID_VERSION_NUMBER
403 INVALID_USER_NAME
410 DFHMEBM_LOAD_FAILED
411 DFHMET4E_LOAD_FAILED
412 DFHXCURM_LOAD_FAILED
413 DFHXCTRA_LOAD_FAILED
419 CICS_AFCB_PRESENT
420 DFHXCOPT_LOAD_FAILED

Response SYSTEM_ERROR
The command failed (RC 16). Reason codes:
601 WS_GETMAIN_ERROR
602 XCGLOBAL_GETMAIN_ERROR
603 XCUSER_GETMAIN_ERROR
605 VERIFY_BLOCK_GM_ERROR
606 SSI_VERIFY_FAILED
607 CICS_SVC_CALL_FAILURE

Chapter 9. The EXCI CALL interface 121

622 ESTAE_SETUP_FAILURE
623 ESTAE_INVOKED
627 INCORRECT_SVC_LEVEL

For more information about response codes, see EResponse code values” on

For information about the reason codes, see EChapter 17_Response and reasod

122 CICS TS for VSE/ESA: CICS External Interfaces Guide

Allocate_Pipe

Function

Allocate a single session, or pipe, to a CICS region. This command does not
connect the client program to a CICS region; this happens on the Open_Pipe
command. You can allocate up to 25 pipes in an EXCI partition.

Syntax
CALL DFHXCIS

»>—CALL DFHXCIS, (version_number,—return_area,—user_token,—call type,———— >

>—pipe_token,—[CICS_applid_,—l—al locate_opts) ,—VL,MF=(E, (1)) ><
null_ptr,

Parameters

version_number
A fullword binary input area indicating the version of the external CICS interface
parameter list being used. It must be set to 1 in the client program.

The equated value for this parameter in the CICS-supplied copybook
DFHXCPLx (where x indicates the language) is VERSION_1. See page [12d for
copybook details.

return_area

A 5-word output area to receive response and reason codes, and a message
pointer field. For more details see [Return area for the EXCI CAI | interface” on

user_token
The 1-word token returned on the Initialize_User command.

call_type
A 1-word input area indicating the function of the command. It must be set to 2
in the client program to indicate that this is an Allocate_Pipe command.

The equated value for this call in the CICS-supplied copybook DFHXCPLx
(where x indicates the language) is ALLOCATE_PIPE. See page [L3d for
copybook details.

pipe_token
A 1-word output area. CICS returns a 32-bit token in this area to represent the
allocated session. This token must be used on any subsequent command that
uses this session.

CICS_applid (or null_ptr)
An 8-byte input area containing the generic applid of the CICS system to which
the allocated session is to be connected.

Although an applid is required to complete the Allocate_Pipe function, this
parameter is optional on the Allocate_Pipe call. You can either specify the
applid on this parameter to the Allocate_Pipe call, or in the user-replaceable
module, DFHXCURM, using the URMAPPL parameter (DFHXCURM is always
invoked during Allocate_Pipe processing). You can also use the URMAPPL
parameter in DFHXCURM to override an applid specified on the Allocate_Pipe

Chapter 9. The EXCI CALL interface 123

call. See [Chapter 12. The EXCI user-replaceable module” on page 157 for

information about the URMAPPL parameter.

If you omit the applid from the call, you must ensure that the CALL parameter
list contains a null address for CICS_applid. How you do this depends on the
language you are using for the non-CICS client program. For an example of a
call that omits an optional parameter, see L i
allocate_opts
A 1-byte input area to represent options specified on this command. The
options specify which type of session is to be used—specific or generic. X'00'
represents a specific session. X'80' represents a generic session.

The equated value for these options in the CICS-supplied copybook DFHXCPLx
(where x indicates the language) are SPECIFIC_PIPE and GENERIC_PIPE.
See page fad for copybook details.

Responses and reason codes
For all non-zero response codes, a unique reason code value identifies the reason
for the response.

Note: All numeric response and reason code values are in decimal.

The following is a summary of the response and reason codes that the external
CICS interface can return on the Allocate_Pipe call:

Response OK
Command executed successfully (RC 0). Reason code:
0 Normal response

Response USER_ERROR
The command failed because of an error in either the client or the server
(RC 12). Reason codes:
401 INVALID_CALL_TYPE
402 INVALID_VERSION_NUMBER
404 INVALID_USER_TOKEN

Response SYSTEM_ERROR
The command failed (RC 16). Reason codes:
604 XCPIPE_GETMAIN_ERROR
608 IRC_LOGON_FAILURE
622 ESTAE_SETUP_FAILURE
623 ESTAE_INVOKED
628 IRP_LEVEL_CHECK_FAILURE

For information about response codes, see EResponse code values” on page 138,
For information about the reason codes, see EChapter 17_Response and reasod

124 CICS TS for VSE/ESA: CICS External Interfaces Guide

Open_Pipe

Function

Cause IRC to connect an allocated pipe to a receive session of the appropriate
connection defined in the CICS region named either on the Allocate_Pipe
command, or in DFHXCURM. The appropriate connection is either:

» The EXCI connection with a NETNAME value equal to the user_name parameter
on the Initialize_User command (that is, you are using a specific connection,
dedicated to this client program), or

* The EXCI connection defined as generic.

Note: This command should be used only when there is a DPL call ready to be
issued to the CICS region. When not in use, EXCI sessions should not be
left open.

If sessions are left open, CICS may not be able to shut its IRC facility in an orderly
manner. A normal shutdown of CICS without the support of the shutdown assist
transaction waits if any EXCI sessions are not closed. CICS issues message
DFHIR2321 indicating the following information:

* The netname of the session if it is on a specific connection

» The word GENERIC if the open sessions are on a generic connection.

Provided that at least one DPL_Request call has been issued on the session,
message DFHIR2321 also shows the job name, step name, and procedure name of
the client job that is using the session, and the ID of the VSE image on which the
client program is running.

Syntax
CALL DFHXCIS

»>—CALL DFHXCIS, (version_number,—return_area,—user_token,—call_type,——— >

»—pipe_token) ,—VL,MF=(E, (1))

v
A

Parameters

version_number
A fullword binary input area indicating the version of the external CICS interface
parameter list being used. It must be set to 1 in the client program.

The equated value for this parameter in the CICS-supplied copybook
DFHXCPLx (where x indicates the language) is VERSION_1. See page fad for
copybook details.

return_area
A 5-word output area to receive response and reason codes, and a message

pointer field. For more details, see LB.e.tum_a.tea_tor_the_EXGLCAu_m.te.dacelad

user_token
The 1-word token returned on the Initialize_User command.

Chapter 9. The EXCI CALL interface 125

call_type
A 1-word input area indicating the function of the command. This must be set to
3 in the client program to indicate that this is an Open_pipe command.

The equated value for this call in the CICS-supplied copybook DFHXCPLXx
(where x indicates the language) is OPEN_PIPE. See page fad for copybook
details.

pipe_token
A 1-word output area containing the token passed by CICS on the
Allocate_Pipe command. It represents the pipe being opened on this command.

Responses and reason codes
For all non-zero response codes, a unique reason code value identifies the reason

for the response.
Note: All numeric response and reason code values are in decimal.

The following is a summary of the response and reason codes that the external
CICS interface can return on the Open_Pipe call:

Response OK
Command executed successfully (RC 0). Reason code:
0 NORMAL

Response WARNING
The command executed successfully, but with an error (RC 4). Reason
codes:
1 PIPE_ALREADY_OPEN

Response RETRYABLE
The command failed because of setup errors but can be reissued (RC 8).
Reason codes:
202 NO_PIPE
203 NO_CICS

Response USER_ERROR
The command failed because of an error in either the client or the server
(RC 12). Reason codes:
401 INVALID_CALL_TYPE
402 INVALID_VERSION_NUMBER
404 INVALID_USER_TOKEN
418 INVALID_PIPE_TOKEN

Response SYSTEM_ERROR
The command failed (RC 16). Reason codes:
609 IRC_CONNECT_FAILURE
621 PIPE_RECOVERY_FAILURE
622 ESTAE_SETUP_FAILURE
623 ESTAE_INVOKED

For information about response codes, see LBe.spans&mde_\taJues_an_page_iSd

For information about the reason codes, see iChapter 17 Response and reasod

126 CICS TS for VSE/ESA: CICS External Interfaces Guide

DPL_Request

Function

Issue a distributed program link request across an open pipe connected to the
CICS region on which the server (or target) application program resides. The
command is synchronous, and the VSE task waits for a response from CICS. Once
a pipe is opened, any number of DPL requests can be issued before the pipe is
closed. To the server program, the link request appears just like a standard EXEC
CICS LINK request from another CICS region, and it is not aware that it is sent
from a non-CICS client program using EXCI.

Syntax
CALL DFHXCIS

»>—CALL DFHXCIS, (version_number ,—return_area,—user_token,—call_type,———— >

»—pipe_token,—pgmname ,—[COMMAREA ,]—COMMAREA_Zen ,—data_len, >
null_ptr,

transid, uowid, userid, dpl_retarea,—[DPL_opts]—)—>
nulZ_pi.‘r,—| l—null_pt‘r,—| |—null_ptr',—I null_ptr

»—VL,MF=(E, (1)) >e

Parameters

version_number
A fullword binary input area indicating the version of the external CICS interface
parameter list being used. It must be set to 1 in the client program.

The equated value for this parameter in the CICS-supplied copybook
DFHXCPLx (where x indicates the language) is VERSION_1. See page 139 for
copybook details.

return_area

A 5-word output area to receive response and reason codes, and a message
pointer field. For more details, see FBeturn area for the EXCI CAll interface” od

user_token
A 1-word input area specifying the user token returned to the client program on
the Initialize_User command.

call_type
A 1-word input area indicating the function of the command. This must be set to
6 in the client program to indicate that the pipe is now being used for the
DPL_Request call.

The equated value for this call in the CICS-supplied copybook DFHXCPLx

(where x indicates the language) is DPL_REQUEST. See page [13d for
copybook details.

Chapter 9. The EXCI CALL interface 127

pipe_token
A 1-word input area specifying the token returned by EXCI on the Allocate_Pipe
command. It represents the pipe being used for the DPL_Request call.

pgmname
The 8-character name of the CICS application program being called as the
server program.

This is either the name as specified on a predefined PROGRAM resource
definition installed in the CICS server region, or as it is known to a user-written
autoinstall program if the program is to be autoinstalled. The program can be
defined in the CICS server region as a local program, or it can be defined as
remote. Programs defined as remote enable “daisy-chaining”, where EXCI-CICS
DPL calls become EXCI-CICS-CICS DPL calls.

COMMAREA (or null_ptr)
A variable length input area for the communications area (COMMAREA)
between the client and server programs. The length is defined by
COMMAREA_len.

This is the storage area that contains the data to be sent to the CICS
application program. This area is also used to receive the updated COMMAREA
from the CICS application program (the server program).

This parameter is optional. If it is not required, you must ensure that the CALL
parameter list contains a null address for this parameter. How you do this
depends on the language you are using for the non-CICS client program. For
an example of a call that omits an optional parameter, see lExample of EXCI

COMMAREA_len
A fullword binary input area. This parameter specifies the length of the
COMMAREA. |t is also the length of the server program’s COMMAREA
(EIBCALEN).

If you specify a COMMAREA, you must also specify this parameter to define
the length.

If you don’t specify a COMMAREA, this parameter is ignored.

data_len
A fullword binary input area. This parameter specifies the length of contiguous
storage, from the start of the COMMAREA, to be sent to the server program.

This parameter restricts the amount of data sent to the server program, and
should be used to optimize performance if, for example, the COMMAREA is
large but the amount of data being passed is small.

Note that on return from the server program, the EXCI data transformer
program ensures that the COMMAREA in the non-CICS client program is the
same as that of the server program. This caters for the following conditions:

* The data returned is more than the data passed in the original COMMAREA.
« The data returned is less than the data passed in the original COMMAREA.
» There is no data returned because it is unchanged.

* The server is returning null data.

128 CICS TS for VSE/ESA: CICS External Interfaces Guide

The value of data_len must not be greater than the value of COMMAREA_len.
A value of zero is valid and results in no data being sent to the server program.

If you don’t specify a COMMAREA, this parameter is ignored.

transid (or null_ptr)
A 4-character input area containing the id of the CICS mirror transaction under
which the server program is to run. This transaction must be defined to the
CICS server region, and its definition must observe the following rules:

* It must not specify the server program as the initial program of the
transaction

* It must specify the mirror program DFHMIRS, and the profile DFHCICSA.

Failure to specify DFHMIRS as the initial program means that a COMMAREA
passed from the client application program is not passed to the CICS server
program. Furthermore, the DPL request fails and the client application program
receives a response of SYSTEM_ERROR and reason
SERVER_PROTOCOL_ERROR.

When the CICS server region receives a DPL request, it attaches the mirror
transaction and invokes DFHMIRS. The mirror program then passes control to
the requested server program, passing the COMMAREA supplied by the client
program. The COMMAREA passed to the server program is primed with the
data only, the remainder of the COMMAREA being set to nulls.

The purpose of the transid parameter is to distinguish between different
invocations of the server program. This enables you to run different invocations
of the server program under transactions that specify different attributes. For
example, you can vary the transaction priorities, or the security requirements.

A transid is optional. By default, the CICS server region uses the CICS-supplied
mirror transaction, CSMI. If you don’t want to specify transid, you must ensure
that the CALL parameter list contains a null address for this parameter. How
you do this depends on the language you are using for the non-CICS client
program. For an example of a call that omits an optional parameter, see

”

uowid (or null_ptr)
An input area containing a unit-of-work identifier, using the APPC architected
format, that is passed on the DPL_Request for correlation purposes.

This parameter is optional. If you don’t want to specify uowid, you must ensure
that the CALL parameter list contains a null address for this parameter. How
you do this depends on the language you are using for the non-CICS client
program. For an example of a call that omits an optional peremeter, see

”

If specified, the uowid parameter is passed to the CICS server region, which
uses it as the APPC UOWID for the first unit of work executed by the CICS
server program. If the server program issues intermediate syncpoints before
returning to the client program, CICS uses the supplied uowid for the
subsequent units of work, but with the two byte sequence number incremented
for each new logical unit of work. If the CICS server program updates remote
resources, the client-supplied APPC UOWID is distributed to the remote
systems that own the resources.

Chapter 9. The EXCI CALL interface 129

The uowid parameter is supplied on the EXCI CALL interface for correlation
purposes only, to allow units of work that originated from a particular client
program to be identified in CICS. The uowid is not provided for recovery
purposes between CICS and the client program. No syncpoint coordination
occurs between the client program and CICS, because all CICS server
programs called from a client program run with SYNCONRETURN specified.

The uowid can be a maximum of 27 bytes long and has the following format:

* A 1-byte length field containing the overall length of the UOWID (excluding
this field).

* A 1-byte length field containing the length of the logical unit name (excluding
this field).

* Alogical unit name field of variable length up to a maximum of 17 bytes.
To conform to APPC architecture rules, the LUNAME must be of the form
AAAAAAAA.BBBBBBBB, where AAAAAAAA is optional and:
— AAAAAAAA and BBBBBBBBare 18-byte names separated by a period
— If AAAAAAAA is omitted, the period must also be omitted

— AAAAAAAA and BBBBBBBB must be type—1134 symbol strings (that is,
character strings consisting of one or more EBCDIC uppercase letters
A—Z and 0-9, the first character of which must be an uppercase letter).

* The clock value—the middle 6 bytes of an 8-byte store clock (STCK) value.
* A 2-byte sequence number.

If you omit a unit-of-work identifier (by specifying a null pointer), and the DPL
request is not part of an RRMS unit-of-recovery, the external CICS interface
generates one for you, consisting of the following:
* A 1-byte length field set to X'1A".
* A 1-byte LU length field set to X'11".
* A 17-byte LU name consisting of:

— An 8-byte eyecatcher set to ‘DFHEXCIU’.

— A 1-byte field containing a period (.)

— A 4-byte field containing the VSE, in characters, under which the client is

running.
— A 4-byte field containing the address space id (ASID) in which the VSE

client program is running. The field contains the four character EBCDIC
representation of the two—byte hex address space id.

* The clock value—the middle 6 bytes of an 8-byte store clock (STCK) value
* A two—byte sequence number set to X'0001".

userid (or null_ptr)
An 8-character input area containing the external security manager (ESM)
userid for user security checking in the CICS region. The external CICS
interface passes this userid to the CICS server region for user resource and
command security checking in the server application program.

A userid is required only if the MRO connection specifies the
ATTACHSEC(IDENTIFY) attribute. If the connection specifies
ATTACHSEC(LOCAL), the CICS server region applies link security checking.
See the ICICS Security Guidd for information about link security on MRO
connections.

130 CICS TS for VSE/ESA: CICS External Interfaces Guide

See also I'Chapter 15. Security” on page 169 for information about external

CICS interface security considerations.

This parameter is optional. However, if you don’t specify a userid, the external
CICS interface passes the security userid under which the client program is
running. For example, if the client program is running as a VSE batch job, the
external CICS interface obtains and passes the userid specified on the USER
parameter of the ID statement in the batch job JCL.

If you want to let userid default, you must ensure that the CALL parameter list
contains a null address for this parameter. How you do this depends on the
language you are using for the non-CICS client program. For an example of a
call that omits an optional parameter, see Lt i
apl_retarea
A 12-byte output area into which the DPL_Request processor places responses
to the DPL request. Generally, these responses are from CICS, but in some
cases the error detection occurs in the external CICS interface, which returns
exception conditions that are the equivalent of those returned by an EXEC
CICS LINK command.

This field is only meaningful in the following circumstances:

* The response field of the EXCI return-area has a zero value, or

» The EXCI return-area indicates that the server program has abended
(response=USER_ERROR and reason=SERVER_ABENDED).

The 12 bytes form three fields, providing the following information:

Field 1 (fullword value)
This field is a fullword containing a RESP value from the DPL_Request call.

See [Error codes” on page 146 for the RESP values that can be returned

on a DPL_Request call.

If the DPL_Request call reaches CICS, this field contains the EIBRESP
value, otherwise it contains an equivalent response set by the external
CICS interface. If this field is set by the external CICS interface, RESP is
further qualified by a RESP2 value in the second field.

A zero value is the normal response, which equates to EXEC_NORMAL in
the return codes copybooks.

Field 2 (fullword value)
This field is a fullword that may contain a RESP2 value from the link
request, further qualifying the RESP value in field 1.

If the DPL_Request call reaches CICS, the RESP2 field is generally null
(CICS does not return RESP2 values across MRO links). However, if the
RESP field indicates SYSIDERR (value 53), this field provides a reason

code. SeelDpl_retarea return cades” on page 13d for more information.

If the RESP field is set by the external CICS interface, it is further qualified
by a RESP2 value in this second field. For example, if the data_len
parameter specifies a value greater than the COMMAREA_len parameter,
the external CICS interface returns the RESP value 22 (which equates to
EXEC_LENGERR in the return codes copybooks), and a RESP2 value of
13.

Chapter 9. The EXCI CALL interface 131

See the LINK conditions in the
for full details of the possible RESP and RESP2 values.

Note: The data transformer program makes special use of the RESP2
field. If any error occurs in the transformer, the error is returned in
RESP2.

Field 3 (fullword value)
The third field, a 4-character field, contains:
* The abend code if the server program abended
* Four blanks if the server program did not abend.

If a server program abends, it is backed out to its last syncpoint which may be
the start of the task, or an intermediate syncpoint. The server program can
issue intermediate syncpoints because SYNCONRETURN is forced.

DPL_opts (or null_ptr)
A 1-byte input area indicating options to be used on the DPL_Request call.

For CICS Transaction Server for VSE/ESA Release 1, X'80' is the only valid
option, and it indicates that SYNCONRETURN is specified. SYNCONRETURN
is mandatory.

The equated value for this parameter in the CICS-supplied copybook
DFHXCPLx (where x indicates the language) is SYNCONRETURN. See page
fiad for copybook details.

SYNCONRETURN specifies that the server region is tot ake a syncpoint on
successful completion of the server program. Note that although
SYNCONRETURN is mandatory, this does not prevent a server program from
taking its own explicit syncpoints.

Responses and reason codes
For all non-zero response codes, a unique reason code value identifies the reason
for the response.

Note: All numeric response and reason code values are in decimal.
The following is a summary of the response and reason codes that the external

CICS interface can return on the DPL call:

Response OK
Command executed successfully (RC 0). Reason code:
0 NORMAL

Response WARNING
The command executed successfully, but with an error (RC 4). Reason

codes:
6 IRP_IOAREA_FM_FAILURE
7 SERVER_TERMINATED

Response RETRYABLE
The command failed because of setup errors but can be reissued (RC 8).
Reason codes:
203 NO_CICS

Response USER_ERROR
The command failed because of an error in either the client or the server
(RC 12). Reason codes:

132 CICS TS for VSE/ESA: CICS External Interfaces Guide

401 INVALID_CALL_TYPE

402 INVALID_VERSION_NUMBER
404 INVALID_USER_TOKEN

406 PIPE_NOT_OPEN

407 INVALID_USERID

408 INVALID_UOWID

409 INVALID_TRANSID

414 IRP_ABORT_RECEIVED

415 INVALID_CONNECTION_DEFN
416 INVALID_CICS_RELEASE
417 PIPE_MUST_CLOSE

418 INVALID_PIPE_TOKEN

422 SERVER_ABENDED

Response SYSTEM_ERROR
The command failed (RC 16). Reason codes:
612 TRANSFORM_1_ERROR
613 TRANSFORM_4_ERROR
614 IRP_NULL_DATA_RECEIVED
615 IRP_NEGATIVE_RESPONSE
616 IRP_SWITCH_PULL_FAILURE
617 IRP_IOAREA_GM_FAILURE
619 IRP_BAD_IOAREA
620 IRP_PROTOCOL_ERROR
622 ESTAE_SETUP_FAILURE
623 ESTAE_INVOKED
624 SERVER_TIMEDOUT
625 STIMER_SETUP_FAILURE
626 STIMER_CANCEL_FAILURE
629 SERVER_PROTOCOL_ERROR

For information about response codes, see Response cade values” an page 138,

For information about the reason codes, see [Chapter 17 Response and reason

Chapter 9. The EXCI CALL interface

133

Close PIPE

Function

Disconnect an open pipe from CICS. The pipe remains in an allocated state, and its
tokens remain valid for use by the same user. To reuse a closed pipe, the client
program must first reissue an Open_Pipe command using the pipe token returned
on the Allocate_Pipe command for the pipe. Pipes should not be left open when not
in use because this prevents CICS from shutting down its IRC facility in an orderly
manner. Therefore, the Close_Pipe command should be issued as soon as possible
after all DPL_Request calls have completed.

Syntax
CALL DFHXCIS

»>—CALL DFHXCIS, (version_number ,—return_area,—user_token,—call_type,———— >

»—pipe_token),—VL,MF=(E, (1))

v
A

Parameters

version_number
A fullword binary input area indicating the version of the external CICS interface
parameter list being used. It must be set to 1 in the client program.

The equated value for this parameter in the CICS-supplied copybook
DFHXCPLx (where x indicates the language) is VERSION_1. See page [134 for
copybook details.

return_area
A 5-word output area to receive response and reason codes, and a message
pointer field. For more details, see EReturn area for the EXCI CAl| interface” on

user_token
The 1-word input area specifying the token, returned to the client program by
EXCI on the Initialize_User command, that represents the user of the pipe
being closed.

call_type
A 1-word input area indicating the function of the command. This must be set to
4 in the client program to indicate that this is a Close_Pipe command.

The equated value for this call in the CICS-supplied copybook DFHXCPLXx
(where x indicates the language) is CLOSE_PIPE. See page fLad for copybook
details.

pipe_token
A 1-word input area specifying the token, returned to the client program by
EXCI on the original Allocate_Pipe command, that represents the pipe being
closed.

Responses and reason codes

For all non-zero response codes, a unique reason code value identifies the reason
for the response.

Note: All numeric response and reason code values are in decimal.

134 CICS TS for VSE/ESA: CICS External Interfaces Guide

The following is a summary of the response and reason codes that the external
CICS interface can return on the Close_Pipe call:

Response OK
Command executed successfully (RC 0). Reason code:
0 NORMAL

Response WARNING
The command executed successfully, but with an error (RC 4). Reason
codes:
2 PIPE_ALREADY_CLOSED

Response USER_ERROR
The command failed because of an error in either the client or the server
(RC 12). Reason codes:
401 INVALID_CALL_TYPE
402 INVALID_VERSION_NUMBER
404 INVALID_USER_TOKEN
418 INVALID_PIPE_TOKEN

Response SYSTEM_ERROR
The command failed (RC 16). Reason codes:
610 IRC_DISCONNECT_FAILURE
622 ESTAE_SETUP_FAILURE
623 ESTAE_INVOKED

For information about response codes, see EResponse cade values” an page 138,

For information about the reason codes, see [Chapter 17 Respanse and reasor

Chapter 9. The EXCI CALL interface 135

Deallocate_Pipe

Function

Deallocate a pipe from CICS. On completion of this command, the pipe can no
longer be used, and its associated tokens are invalid. This command should be
issued for pipes that are no longer required. This command frees storage
associated with the pipe.

Syntax
CALL DFHXCIS

»>—CALL DFHXCIS, (version_number,—return_area,—user_token,—call_type,———— >

»—pipe token) ,—VL,MF=(E, (1)) >

Parameters

version_number
A fullword binary input area indicating the version of the external CICS interface
parameter list being used. It must be set to 1 in the client program.

The equated value for this parameter in the CICS-supplied copybook
DFHXCPLx (where x indicates the language) is VERSION_1. See page [13d for
copybook details.

return_area
A 5-word output area to receive response and reason codes, and a message

pointer field. For more details, see FReturn area for the EXGI CAIT interface” od

user_token
A 1-word input area containing the token returned on the Initialize_User
command.

call_type
A 1-word input area indicating the function of the command. This must be set to
5 in the client program to indicate that this is a Deallocate_Pipe command.

The equated value for this call in the CICS-supplied copybook DFHXCPLx
(where x indicates the language) is DEALLOCATE_PIPE. See page 29 for
copybook details.

pipe_token
A 1-word input area containing the token passed back on the original
Allocate_Pipe command, that represents the pipe now being deallocated.

Responses and reason codes
For all non-zero response codes, a unique reason code value identifies the reason
for the response.

Note: All numeric response and reason code values are in decimal.

The following is a summary of the response and reason codes that the external
CICS interface can return on the Deallocate_Pipe call:

136 CICS TS for VSE/ESA: CICS External Interfaces Guide

Response OK
Command executed successfully (RC 0). Reason code:
0 NORMAL

Response WARNING
The command succeeded successfully, but with an error (RC 4). Reason

codes:
5 XCPIPE_FREEMAIN_ERROR
6 IRP_IOAREA_FM_FAILURE

Response USER_ERROR
The command failed because of an error in either the client or the server
(RC 12). Reason codes:
401 INVALID_CALL_TYPE
402 INVALID_VERSION_NUMBER
404 INVALID_USER_TOKEN
405 PIPE_NOT_CLOSED
418 INVALID_PIPE_TOKEN

Response SYSTEM_ERROR
The command failed (RC 16). Reason codes:
611 IRC_LOGOFF_FAILURE
622 ESTAE_SETUP_FAILURE
623 ESTAE_INVOKED

For information about response codes, see EResponse cade values” on page 138,

For information about the reason codes, see [Chapter 17 Respanse and reasor

Chapter 9. The EXCI CALL interface 137

Response code values

The values that can be returned in the response field are shown in [fable 11 (all
values are in decimal).

Table 11. EXCI response codes (returned in response field of return_area)
ValueMeaning Explanation

0 OK For all EXCI CALL commands other than the DPL_request, the
call was successful. If an OK response is received for a
DPL_request, you must also check dpl_retarea to ensure CICS did
not return a condition code. If the EIBRESP field of Dpl_retarea is
zero, the DPL call was successful.

4 WARNING The external CICS interface detected an error, but this did not stop
the CALL command completing successfully. The reason code
field describes the error detected.

8 RETRYABLE The EXCI CALL command failed. This class of failure relates to
errors in the setup of the system environment, and not errors in
the external CICS interface or client program. The reason code
documents the specific error in the environment setup.

The external CICS interface command can be reissued without
changing the client program once the environment error has been
corrected. The environmental errors concerned are ones that do
not require a VSE re-IPL. Each reason code value for a
RETRYABLE response documents whether the CALL can be
reissued directly, or whether the pipe being used has to be closed
and reopened first.

12 USER_ERROR The EXCI CALL command failed. This class of error means there
is an error either in the client program, or in the CICS server
program, or in the CICS server region. An example of an error in
the CICS server system would be a failed security check, or an
abend of the CICS server program, in which case the abend code
is set in the abend code field of dpl_retarea. Each reason code
value for a response of USER_ERROR explains whether the
command can be reissued directly, or whether the pipe being used
has to be closed and reopened first.

16 SYSTEM_ The EXCI CALL command failed. This class of error means that

ERROR the external CICS interface has detected an error. The reason
code value identifies the specific error. If the error can be
corrected, then the command can be reissued. Each reason code
value for a SYSTEM_ERROR response explains whether the
command can be reissued directly, or whether the pipe being used
has to be closed and reopened first.

Return area for the EXCI CALL interface

The format of the 5-word return area for the EXCI CALL interface is as follows:
1. 1—word response field.

2. 1-word reason field.

3. Two 1-word subreason fields—subreason field-1 and subreason field-2.

4

1—word CICS message pointer field. This is zero if there is no message present.
If a message is present, this field contains the address of the storage area
containing the message, which is formatted as follows:

* A 2-byte LL field. LL is the length of the message plus the length of the LLBB
field.

* A 2-byte BB field, set to binary zero.

138 CICS TS for VSE/ESA: CICS External Interfaces Guide

» A variable length field containing the text of the message.

Return area and function call EQUATE copybooks

CICS provides four language-specific copybooks that map the storage areas for the
return_area and dpl_retarea parameters of the EXCI CALL commands. The
copybooks also provide EQUATE statements for each type of EXCI CALL.

These copybooks, and the libraries they are supplied in for the supported
languages, are shown in

Table 12. Supplied copybooks of return areas and equated names

Copybook name Language Library

DFHXCPLD Assembler PRD1BASE
DFHXCPLH C PRD1BASE
DFHXCPLO COBOL PRD1BASE
DFHXCPLL PL/I PRD1BASE

Return codes

CICS provides four language-specific copybooks that map the storage areas for the
return_area and dpl_retarea parameters of the EXCI CALL commands. The
copybooks also provide EQUATE statements for each type of EXCI CALL. The
names of the copybooks for the supported languages, and the libraries they are
supplied in, are shown in .

Table 13. Supplied copybooks of RESPONSE and REASON codes

Copybook name Language Library

DFHXCRCD Assembler PRD1BASE
DFHXCRCH C PRD1BASE
DFHXCRCO COBOL PRD1BASE
DFHXCRCL PL/I PRD1BASE

Dpl_retarea return codes

These are the same as for CICS-to-CICS EXEC CICS DPL commands but with the
following additions for the EXCI call interface:

Table 14. Exceptional conditions. RESP and RESP2 values returned to dpl_retarea

Condition RESP2 Meaning

INVREQ 21 SYNCONRETURN_NOT_SPECIFIED
LENGERR 22 COMMAREA_LEN_TOO_BIG

LENGERR 23 COMMAREA_BUT_NO_COMMAREA_LEN

SYSIDERR also can be returned on an EXCI DPL_Request, if the DPL_Request
specifies a program defined in the CICS server region as a remote program, and
the link between the server and the remote CICS region is not open. In this
situation, SYSIDERR is returned in the first word of the DPL_Retarea (code 53).
The reason code qualifying SYSIDERR is placed in the second word of this area
(the equivalent of a RESP2 value).For SYSIDERR, the information stored in this
field is derived from bytes 1 and 2 of the CICS EIBRCODE field. For example, if a
remote link is not available, the EIBRCODE value stored in bytes 2 and 3 of the
DPL_Retarea RESP2 field is X'0800'". For a list of the SYSIDERR reason codes that

Chapter 9. The EXCI CALL interface 139

can be returned in the RESP2 field, see the SYSIDERR section of the notes on

EIBRCODE in the ICICS Application Programming Referenca manual.

TERMERR also may be returned on an EXCI DPL request if the DPL request was
to a program defined as remote, and an unrecoverable error occurs during
conversation with the mirror on the remote CICS system. For example, suppose
client program BATCH1 issues an EXCI DPL request to CICSA for program
PROGH1, which is defined as remote, and the request is function-shipped to CICSB
where the program resides. If the session between CICSA and CICSB fails, or
CICSB itself fails whilst executing the program PROG1, then TERMERR s returned
to CICSA, and in turn to BATCH1.

No unique EXCI_DPL_RESP2 values are returned for TERMERR, PGMIDERR,
NOTAUTH, and ROLLBACK.

Example of EXCI CALLs with null parameters

If you omit an optional parameter, such as userid on a DPL_Request, you must
ensure that the parameter list is built with a null address for the missing parameter.
The example that follows illustrates how to issue an EXCI DPL Call with the userid
and uowid parameters omitted in a COBOL program.

DPL CALL without userid and uowid (COBOL): In this example, the DPL
parameters used on the call are defined in the WORKING-STORAGE SECTION, as

follows:

DPL parameter = COBOL variable Field definition
version_number 01 VERSION-1 PIC S9(8) COMP VALUE 1.
return_area 01 EXCI-RETURN-CODE. (structure)

user_token 01 USER-TOKEN PIC S9(8) COMP VALUE ZERO.
call_type 03 DPL-REQUEST PIC S9(8) COMP VALUE 6.
pipe_token 01 PIPE-TOKEN PIC S9(8) COMP VALUE ZERO.
pgmname 01 TARGET-PROGRAM PIC X(8) VALUE "DFHoeAXCS".
commarea 01 COMMAREA. (structure)

commarea_len 01 COMM-LENGTH PIC S9(8) COMP VALUE 98.
data_len 01 DATA-LENGTH PIC S9(8) COMP VALUE 18.
transid 01 TARGET-TRANSID PIC X(4) VALUE "EXCI".
dpl_retarea 01 EXCI-DPL-RETAREA. (structure)

dpl_opts 01 SYNCONRETURN PIC X VALUE X'80'.

The variable used for the null address is defined in the LINKAGE SECTION, as
follows:

LINKAGE SECTION.
01 NULL-PTR USAGE IS POINTER.

Using the data names specified in the WORKING-STORAGE SECTION as
described above, and the NULL-PTR name as described in the LINKAGE
SECTION, the following invocation of the DPL function omits the vowid and the
userid parameters, and replaces them in the parameter list with the NULL-PTR
variable:

140 CICS TS for VSE/ESA: CICS External Interfaces Guide

DPL-SECTION.

*

SET ADDRESS OF NULL-PTR TO NULLS.

*

CALL 'DFHXCIS' USING VERSION-1 EXCI-RETURN-CODE USER-TOKEN
DPL-REQUEST PIPE-TOKEN ~ TARGET-PROGRAM
COMMAREA COMM-LENGTH DATA-LENGTH
TARGET-TRANSID NULL-PTR NULL-PTR
EXCI-DPL-RETAREA SYNCONRETURN.

This example is taken from the CICS-supplied sample external CICS interface
program, DFHOCXCC, which is supplied in PRD1BASE. For an example of how to
omit the same parameters from the DPL call in the other supported languages, see
the following sample programs:
DFH$AXCC

The assembler sample
DFH$PXCC

The PL/I sample
DFH$DXCC

The C/370™ sample.

Chapter 9. The EXCI CALL interface 141

142 CICS TS for VSE/ESA: CICS External Interfaces Guide

Chapter 10. The EXEC CICS interface

This chapter describes the EXEC CICS LINK PROGRAM command for the external
CICS interface. It covers the following topics:

‘ ”

The external CICS interface provides this as a single, composite command, to
invoke all the calls of the EXCI CALL interface. Each time you issue an EXEC CICS
LINK PROGRAM command in a client application program, the external CICS
interface invokes on your behalf each of the six EXCI calls.

© Copyright IBM Corp. 1994, 2000 143

EXEC CICS LINK command

Purpose

Format

Comments

Parameters

Link from a VSE client program to the specified server program in a server CICS
region.

LINK

»»—| INK—PROGRAM (name)—RETCODE (data-area) |_ _| >
SYNCONRETURN

|—COMMAREA (data-area)—LENGTH (data- value)J |—APPLID (name)J

|—TRANSID(name)—| |—DATALENGTH(data-value)—|

Error conditions:LENGERR, LINKERR, NOTAUTH, PGMIDERR, ROLLEDBACK,
SYSIDERR, TERMERR, WARNING

With the exception of the APPLID and RETCODE parameters, the external CICS
interface parameters for an EXEC CICS LINK command are the same as for a
CICS-CICS DPL command.

This book describes only those parameters that you can use with the external CICS
interface. For programming information about the EXEC CICS LINK PROGRAM

command, see the ICICS Application Programming Referenca manual.

Note that the LENGTH and DATALENGTH parameters specify halfword binary
values, unlike the corresponding COMMAREA_len and data_len parameters of the
EXCI CALL interface, which specify fullword values.

An external CICS interface EXEC CICS LINK command always uses a generic
connection.

The parameters that you can use on the external CICS interface form of the LINK
command, are as follows:

APPLID(name)
Specifies the generic APPLID of the target CICS server region.

Although an applid is required for an external CICS interface command, this
parameter is optional on the LINK command itself because you can also specify
it in the user-replaceable module, DFHXCURM. If you omit the generic APPLID
from the LINK command, you must ensure it is specified by the
user-replaceable module, DFHXCURM, on the URMAPPL parameter. You can
also use the URMAPPL parameter in DFHXCURM to override an applid

144 CICS TS for VSE/ESA: CICS External Interfaces Guide

specified on the LINK command. See ‘Chapter 12. The EXCI user-replaceabld
module” on page 157 for information about the URMAPPL parameter.

COMMAREA(data-area)
Specifies a communication area that is to be made available to the invoked
program. In this option, a pointer to the data area is passed.

See the ICICS Application Programming Guide for more information about

passing data to CICS application programs.

DATALENGTH(data-value)
Specifies a halfword binary value that is the length of a contiguous area of
storage, from the start of the COMMAREA, to be passed to the invoked
program. If the amount of data being passed in a COMMAREA is small, but the
COMMAREA itself is large so that the linked-to program can return the
requested data, you should specify DATALENGTH in the interest of
performance.

LENGTH(data-value)
Specifies a halfword binary value that is the length in bytes of the
communication area.

PROGRAM(name)
Specifies the program name (1-8 characters) of the CICS server application
program to which control is to be passed unconditionally. The specified name
must either have been defined as a program to CICS, or the CICS server
region must be capable of autoinstalling a definition for the named program.

Note the use of quotes:
EXEC CICS LINK PROGRAM('PROGX')

PROGX is in quotes because it is the program name.
EXEC CICS LINK PROGRAM(DAREA)

DAREA is not in quotes because it is the name of a data area that contains the
8-character program name.

RETCODE(data-area)
Specifies a 20-byte area into which the external CICS interface places return
code information. This area is formatted into five one—word fields as follows:

RESP The primary response code indicating whether the external CICS
interface LINK command caused an exception condition during its
execution.

RESP2
The secondary response code that further qualifies, where necessary,
some of the conditions raised in the RESP parameter.

ABCODE

Contains a valid CICS abend code if the server program abended in the
server region.

MSGLEN
Indicates the length of the message (if any) issued by the CICS server
region during the execution of the server program. Note that the length
is the actual length of the message text only, and does not include this
one—word length field.

Chapter 10. The EXEC CICS interface 145

Error codes

MSGPTR
This is the address of the message text returned by the CICS server
region.

Note: MSGLEN and MSGPTR are only valid on a LINKERR condition, with the
RESP2 value 414.

SYNCONRETURN
Specifies that the CICS server region, named on the APPLID parameter, is to
take a syncpoint on successful completion of the server program.

SYNONRETURN is mandatory for an external CICS interface LINK command.

TRANSID(name)
Specifies the name of the mirror transaction that the remote region is to attach,
and under which it is to run the server program. If you omit the TRANSID
option, the CICS server region attaches CSMI.

Note: The TRANSID option specified on the LINK command overrides any
TRANSID option specified on the program resource definition installed in
the CICS server region.

While you can specify your own name for the mirror transaction initiated by DPL
requests, the transaction must be defined in the server region, and the
transaction definition must specify the mirror program, DFHMIRS. Defining your
own transaction to invoke the mirror program gives you the freedom to specify
appropriate values for some other options on the transaction resource definition.

See also the important rules about specifying transid with a DPL_Request
on page f2d.

Most of the exception conditions that are returned on the external CICS interface
LINK command are the same as for the CICS-to-CICS distributed program link
command. Those that are the same, and their corresponding numeric values are as
follows:
INVREQ
16
LENGERR
22
PGMIDERR
27
SYSIDERR
53
NOTAUTH
70
TERMERR
81
ROLLEDBACK
82

These exception condition codes are returned in the RESP field.

146 CICS TS for VSE/ESA: CICS External Interfaces Guide

RESP and RESP2
References to the RESP and RESP2 fields in this section are to the first two
fields of the RETCODE parameter.

The exception conditions that are specific to the external CICS interface are as
follows:

» The RESP2 values on the error conditions INVREQ and LENGERR are specific
to the external CICS interface.

» The exception conditions WARNING and LINKERR are specific to the external
CICS interface.

The WARNING and LINKERR exceptions are a result of responses to individual
EXCI calls issued by the external CICS interface in response to an EXEC CICS
LINK command. These WARNING and LINKERR exceptions correspond to EXCI
call responses as follows:

WARNING (RESP value 4)
This is returned when the EXCI module handling the EXEC CICS LINK request
receives a USER_ERROR or SYSTEM_ERROR response to a Close_Pipe or
Deallocate_Pipe request issued on behalf of an EXEC CICS LINK command.
The RESP value is set to WARNING because the DPL request to CICS
completed successfully, but an error occurred in subsequent processing.

The RESP2 field is set to the EXCI reason code, which gives more information
about the error.

LINKERR (RESP value 88)
This is returned when the EXCI module handling the EXEC CICS LINK request
receives a RETRYABLE, USER_ERROR, or SYSTEM_ERROR response to an
EXCI call issued on behalf of the EXEC CICS LINK command. The DPL
request has failed. The RESP2 field is set to the EXCI reason code, which
gives more information about the error.

See I ”
for descriptions of EXCI reason codes.

Note: The external CICS interface ignores any WARNING conditions that occur in
response to EXCI calls it issues on behalf of an EXEC CICS LINK
command. It treats the WARNING on an EXCI call as a good response and
continues normally. If no other errors occur, the EXEC CICS command
completes with a zero response in the EXEC_RESP field.

Chapter 10. The EXEC CICS interface 147

Retries on an EXEC CICS LINK command

If the external CICS interface receives a RETRYABLE response on an EXCI call
that it makes on behalf of an EXEC CICS LINK command, it automatically retries
the EXEC CICS LINK command up to five times, providing more serious errors do
not occur. If the RETRYABLE response is still received after the fifth retry, the
RESP field is set to LINKERR, and the reason returned on the EXCI CALL request
that causes the exception is returned in the RESP2 field.

The external CICS interface retries the EXEC CICS LINK command by first closing
and deallocating the pipe, then reissuing the six EXCI CALL commands. During
Allocate_Pipe processing, the EXCI CALL interface calls the user-replaceable
module, DFHXCURM, to give you the opportunity to change the APPLID of the
CICS system to which the request has been sent. See L

Lser-replaceable module” an page 157 for details of DFHXCURM.

[Table 19 lists all the exception conditions and RESP2 values that are specific to the
EXEC CICS LINK command for the external CICS interface.

Table 15. Exceptional conditions. RESP and RESP2 values returned from the EXEC API.

Condition RESP2 Meaning
(RESP)
INVREQ (16) 21 SYNCONRETURN has not been specified
LENGERR (22) 22 COMMAREA length greater than 32763 bytes specified
23 COMMAREA specified but no LENGTH parameter specified
WARNING (4) 401 Invalid call_type parameter value specified on Close_Pipe or
Deallocate_Pipe call
402 Invalid version_number parameter specified on Close_Pipe or
Deallocate_Pipe call
404 Invalid user_token specified on Close_Pipe or Deallocate_Pipe
call
405 A Deallocate_Pipe call has been issued against a pipe that is not
yet closed
418 An invalid pipe token has been issued on a Close_Pipe or

Deallocate_Pipe call

610 There has been a CICS IRP logoff failure on a Deallocate_Pipe
call

611 There has been a CICS IRC disconnect failure on a Close_Pipe
call

622 There has been a VSE ESTAEX setup failure on a Close_Pipe or
Deallocate_Pipe call

623 A program check on a Close_Pipe or Deallocate_Pipe call has
caused the ESTAEX to be invoked
LINKERR (88) 201 Command has been issued on a VSE image which has had no
IRC activity since the previous IPL
202 There are no available sessions

203 CICS has not yet been brought up, or (2) has not yet opened
IRC, or (3) no generic connection is installed, or (4) no specific
connection is installed with the required netname.

401 Invalid parameter

402 Invalid version number

403 User name is all blanks

404 Invalid address in user token

405 Command has been issued against a pipe that is not closed
406 Command has been issued against a pipe that is not open
407 Userid of all blanks has been passed

148 CICS TS for VSE/ESA: CICS External Interfaces Guide

Table 15. Exceptional conditions (continued). RESP and RESP2 values returned from the

EXEC API.
Condition RESP2 Meaning
(RESP)
408 Error in UOWID parameter
409 Transid consisting of all blanks or zero has been passed
410 Load of message module, DFHMEBM, failed
411 Load of message module, DFHMETA4E, failed
412 Load of DFHXCURM failed
413 Load of DFHXCTRA failed
414 If run as a CICS-to-CICS linked-to program, this server program
would have resulted in an error with an appropriate message sent
to the terminal. Running the program as an EXCI server program
returns the message addressed by the MSGPTR field of the
RETCODE area
415 Target connection is an MRO connection, not an EXCI connection
416 Command has been issued against a pre-CICS Transaction
Server for VSE/ESA Release 1 system
417 Command has been issued against a pipe in the MUST CLOSE
state. Further EXCI EXEC CICS LINK commands will have
unpredictable results and are, therefore, not permitted
418 Pipe_token does not address an XCPIPE control block, or there
is a mismatch between user_token and pipe_token
419 CICS runs, or did run, under the VSE subtask that this command
is attempting to use. This is not permitted asnd the command fails
420 Load of DFHXCOPT failed
422 The server has abended
601 A VSE GETMAIN of working storage failed. This error leads to
user abend 408
602 A VSE GETMAIN failed. This error leads to user abend 403
603 A VSE GETMAIN failed. This error leads to user abend 410
604 A VSE GETMAIN failed
605 A VSE GETMAIN for the VERIFY block failed. This error leads to
user abend 409
607 An SVC call failed. This error leads to user abend 406
608 Logon to IRP failed
609 Connect to IRP failed
610 Disconnect from IRP failed|
611 Logoff from IRP failed
612 Invalid data input to transformer_1
613 Invalid data input to transformer_4
614 CICS has responded but has not sent any data
615 CICS cannot satisfy the request
616 IRP_SWITCH_PULL request (to read data sent from CICS into a
larger input/output area) has failed
617 A GETMAIN for a larger input/output area failed
619 IRP has had a problem with the input/output area passed from
the client program
620 IRP has disconnected from EXCI
621 A DISCONNECT command is issued in an error situation
following an IRP CONNECT. The DISCONNECT has failed,
indicating a serious error.
622 XCPRH ESTAEX setup command failed This error leads to user

abend 402.

Chapter 10. The EXEC CICS interface 149

Table 15. Exceptional conditions (continued). RESP and RESP2 values returned from the
EXEC API.

Condition RESP2 Meaning

(RESP)

623 XCPRH ESTAEX invoked due to program check during the
processing of this command. ESTAEX attempts backout and
takes a SYSDUMP. Further requests are permitted although the
pipe is now in a MUST CLOSE state.

624 The DPL request has been passed to CICS but the time specified
in DFHXCOPT has been exceeded. The request is aborted.

625 A VSE STIMERM macro call failed

626 A VSE STIMERM CANCEL request failed

627 The CICS SVC is at the incorrect level. This error leads to user
abend 407.

628 DFHIRP is at the incorrect level

903 AN XCEIP ESTAEX setup command failed

904 The server program abended with the abend code in the
ABCODE field of the RETCODE area

905 An XCEIP ESTAEX invoked due to program check during the
processing of this command. ESTAEX attempts backout and
takes a SYSDUMP

See Return codes” on page 134 for details of the various copybooks that contain

full details of all response and reason codes, including equated values.

Note: All numeric response and reason code values are shown in decimal.

Translation required for EXEC CICS LINK command

Application programs that use the EXEC CICS LINK form of the external CICS
interface command must translate their programs before assembly or compilation.
You do this using the version of the CICS translator that is appropriate for the
language of your client program, specifying the translator option EXCI.

The translator option EXCI is mutually exclusive with the CICS and DLI options.

For more information about translating programs that contain EXEC CICS
commands, see the icati] 1

For information about compiling and link-editing external CICS interface client
programs, see page H61.

150 CICS TS for VSE/ESA: CICS External Interfaces Guide

Chapter 11. Defining connections to CICS

Connections between an EXCI client program and a CICS region require
connection definitions in the CICS region. You define these using the
CONNECTION and the SESSIONS resource definition facilities provided by CICS.

The following options are provided specifically for the external CICS interface:
* CONNTYPE on the CONNECTION resource definition

« EXCI on the PROTOCOL attribute of the CONNECTION and SESSIONS
resource definitions.

The following topics are covered in this chapter:

CONNECTION resource definition

The EXCI option is provided on the PROTOCOL attribute of the CONNECTION
resource definition to indicate that the connection is for use by a VSE program
using the external CICS interface.

The CONNTYPE attribute is provided on the CONNECTION resource definition. For
EXCI connections, this indicates whether the connection is generic or specific. It is
not to be used for any protocol other than the external CICS interface.

4 N\

Connection ==
Group 2 66000000
DESCRIPEIEN =B 0000000000006000000000000000000000600006000600000000000

\'4

CONNECTION IDENTIFIERS
Netname ==>
INDsys ==> ,...

REMOTE ATTRIBUTES

CONNECTION PROPERTIES

ACcessmethod ==> IRC Vtam | IRc | INdirect | Xm
Protocol ==> EXCI Appc | Lu6l | EXCI
Conntype ==> Generic | Specific
SInglesess ==> No No | Yes
- J

Figure 30. The DEFINE panel for CONNECTION

CONNTYPE({SPECIFICIGENERIC})
For external CICS interface connections, indicates the nature of the connection.

SPECIFIC
The connection is for communication from a non-CICS client program to the
CICS region, and is specific. A specific connection is an MRO link with one
or more sessions dedicated to a single user in a client program.

© Copyright IBM Corp. 1994, 2000 151

Note: A useris a program that has issued an Initialize_User request (or for
which an Initialize_User request has been issued), with a unique
name per VSE task. For example:

» A simple client program running under VSE can be a single user
of the external CICS interface.

* Aclient program running under VSE can open several pipes and
issue external CICS interface calls over them sequentially, on
behalf of different vendor packages. In this case, from the
viewpoint of the client program, each of the packages is a user,
identified by a unique user name. Thus a single client program
can operate on behalf of multiple users.

* A program running under VSE can attach several VSE subtasks,
under each of which a vendor package issues external CICS
interface calls on its own behalf. Each package is a client program
in its own right, and runs under its own VSE subtask. Each is also
a user, with a unique user name.

For a specific connection, NETNAME is mandatory.

GENERIC
The connection is for communication from a non-CICS client program to the
CICS system, and is generic. A generic connection is an MRO link with a
number of sessions to be shared by multiple EXCI users. For a generic
connection you cannot specify the NETNAME attribute.

Note: You must install only one generic EXCI connection in a CICS region.

NETNAME
For an external CICS interface connection, NETNAME corresponds to the name

of the user of a specific pipe, as specified on the user_name parameter of an
INITIALISE_USER call.

For an external CICS interface specific pipe, you must specify a NETNAME.

For external CICS interface generic pipes, you must leave NETNAME blank.

PROTOCOL({APPCILU61IEXCIIblank})
The type of protocol that is to be used for the link.

blank
For MRO between CICS regions. You must leave the PROTOCOL blank for
MRO, and on the SESSIONS definition you must specify LU6.1 as the
PROTOCOL.

APPC (LUTYPE®6.2 protocol)
Advanced program-to-program communication, or APPC protocol. This is
the default value for ACCESSMETHOD(VTAM). Specify this for CICS-CICS
ISC.

LU61

LUTYPES6.1 protocol. Specify this for CICS-CICS ISC or CICS-IMS ISC, but
not for MRO.

EXCI
The external CICS interface. Specify this to indicate that this connection is
for use by a non-CICS client program using the external CICS interface.

152 CICS TS for VSE/ESA: CICS External Interfaces Guide

SESSIONS resource definitions for EXCI connections

You indicate on the PROTOCOL attribute of the SESSIONS resource definition
whether the sessions allocated on the MRO connection are for use by the external
CICS interface.

Sessions
Group
DEscription

SESSION IDENTIFIERS
Connection
SESSName
NETnameq
MOdename

\'4

\

nonoun
nn un n
\

\

SESSION PROPERTIES

Protocol ==> Appc Appc | Lu6l | EXCI

9 e)

Figure 31. The DEFINE panel for SESSIONS

PROTOCOL({APPCILUG61IEXCI})
Indicates the type of protocol that is to be used for an intercommunication link
(ISC or MRO).

APPC (LUTYPE6.2)
Advanced program-to-program communication (APPC) protocol. Specify this
for CICS-CICS ISC.

LU61
LUTYPE®6.1 protocol. Specify this for CICS-CICS ISC, for CICS-IMS, or for
MRO.

EXCI
The external CICS interface. Specify this to indicate that the sessions are
for use by a non-CICS client program using the external CICS interface. If
you specify EXCI, you must leave SENDCOUNT blank.

RECEIVECOUNT({blanklnumber})
The number of MRO, LUTYPES6.1, or EXCI sessions that usually receive before
sending.

For MRO, receive sessions can only receive before sending.

blank
These sessions can send only; there are no receive sessions.

number
Specifies the number of receive sessions on connections that specify blank,
LUB1, or EXCI on the protocol parameter of the CONNECTION definition.
CICS uses the number to generate the last two or three characters of the
session names (see RECEIVEPFX for details).

If you are using the default receive prefix (<), or your own 1-character
prefix, specify a number in the range 1 through 999.

If you specify a 2-character prefix, the number is restricted to the range 1
through 99.

Chapter 11. Defining connections to CICS 153

Except for external CICS interface (EXCI) connections, the
RECEIVECOUNT in this system should equal SENDCOUNT in the other
system.

RECEIVEPFX(<Iprefix)
Specifies a 1- or 2-character prefix that CICS is to use as the first 1 or 2
characters of the receive session names (the names of the terminal control
table terminal entries (TCTTES) for the sessions).

Prefixes must not cause a conflict with an existing connection or terminal name.

< (MRO and EXCI sessions)
For MRO sessions, if you do not specify your own receive prefix, CICS
enforces the default prefix—the less-than symbol (<), which is used in
conjunction with the receive count to generate receive session names.

CICS creates the last three characters of the session names from the
alphanumeric characters A through Z, and 1 through 9. These 3-character
identifiers begin with the letters AAA, and continue in ascending sequence
until the number of session entries reaches the limit set by the
RECEIVECOUNT value. Note that receive session names are generated
after the send sessions, and they follow in the same sequence.

For example, if the last session name generated for the send sessions is
<AAJ, using the default prefix (<) CICS generates the receive session
names as <AAK, <AAL, <AAM, and so on. (This method of generation of
session identifiers is the same as for APPC sessions, except for the initial
prefix symbol.)

Note: If you specify your own prefix, CICS generates the session names
as in earlier releases, which is the same as for LUTYPE®6.1
sessions.

prefix (LUTYPEG.1 sessions)
If the sessions are on LUTYPEG.1 ISC connections, you must specify a 1-
or 2-character prefix. Do not use the default < symbol for LUTYPESG.1
sessions.

For LUTYPESG.1 sessions (and MRO if you specify your own 1- or
2-character prefix) CICS generates session names by appending a number
to the prefix, either in the range 1 through 99, or 1 through 999. The
number begins with 1 and is incremented by 1 until the specified
RECEIVECOUNT is reached.

SENDCOUNT (blanklnumber)
The number of MRO or LUTYPES6.1 sessions that usually send before
receiving.

For MRO, send sessions must send before they can receive.

blank
These sessions can receive only; there are no send sessions.

You must leave this field blank when the sessions are on an external CICS
interface (EXCI) connection.

number
Specifies the number of send sessions on connections that specify blank or

154 CICS TS for VSE/ESA: CICS External Interfaces Guide

LUB1 on the protocol parameter of the CONNECTION definition. CICS uses
the number to generate the last two or three characters of the session
names (see SENDPFX for details).

If you are using the default send prefix (>), or your own 1-character prefix,
specify a number in the range 1 through 999.

If you specify a 2-character prefix, the number is restricted to the range 1
through 99.

Except for external CICS interface (EXCI) connections the SENDCOUNT in
the sending system should equal RECEIVECOUNT in the receiving system.

SENDPFX(>lprefix)
Specifies a 1- or 2-character prefix that CICS is to use as the first 1 or 2
characters of the send session names (the names of the terminal control table
terminal entries (TCTTES) for the sessions).

Prefixes must not cause a conflict with an existing connection or terminal name.

> (MRO sessions)
For MRO sessions, if you do not specify your own send prefix, CICS
enforces the default prefix—the greater-than symbol (>), which is used in
conjunction with the send count to generate send session names.

CICS creates the last three characters of the session names from the
alphanumeric characters A through Z, and 1 through 9. These 3-character
identifiers begin with the letters AAA, and continue in ascending sequence
until the number of session entries reaches the limit set by the
SENDCOUNT value.

For example, using the default prefix (>) CICS generates session names as
>AAA, >AAB, >AAC, and so on. (This method of generation of session
identifiers is the same as for APPC sessions, except for the initial symbol.)

Note: If you specify your own prefix, CICS generates the session names
as in earlier releases, which is the same as for LUTYPE®6.1
sessions.

prefix (for LUTYPEG6.1 sessions)
If the sessions are on LUTYPE6.1 ISC connections, you must specify a 1-
or 2-character prefix. Do not use the default > symbol for LUTYPE6.1
sessions.

For LUTYPESG.1 sessions (and MRO if you specify your own 1- or
2-character prefix) CICS generates session names by appending a number
to the prefix, either in the range 1 through 99, or 1 through 999. The
number begins with 1 and is incremented by 1 until the specified
SENDCOUNT is reached.

Inquiring on the state of EXCI connections

If you have access, through a CICS terminal, to the CICS server region, you can
inquire about batch jobs that are running a client application program, and which
are using the external CICS interface to link to a server program in CICS.

Chapter 11. Defining connections to CICS 155

To obtain this information about batch jobs linked to CICS through MRO, you use
the CEMT INQUIRE EXCI command. This command enables you to identify the
names of external CICS interface batch jobs currently connected to CICS through
the interregion communication (IRC) facility.

CICS returns job identifications in the form:
jobname.execprogramname.partitionid.procname - vseid

The vseid identifies the VSE system on which the job is running.

Information about jobs using the external CICS interface is available only when the
job has issued at least one DPL request. A non-zero task number indicates that a
DPL request is currently active. A zero task number indicates an external CICS
interface session is still open (connected) for that job, although no DPL request is
currently active.

See the ICICS Supplied Transactiond manual for more information about the CEMT

command.

156 CICS TS for VSE/ESA: CICS External Interfaces Guide

Chapter 12. The EXCI user-replaceable module

This chapter contains Product-sensitive Programming Interface information.

The external CICS interface provides a user-replaceable module, DFHXCURM. The
load module is supplied in PRD1.SDFHEXCI, and the source in PRD1.BASE.

DFHXCURM is invoked in the non-CICS region during the processing of
Allocate_Pipe commands, and after the occurrence of any retryable error. The
retryable responses are:

» The target CICS region is not available

» There are no pipes available on the target CICS region

* There has been no IRC activity since the VSE/ESA IPL.

As supplied, DFHXCURM is effectively a dummy program because of a branch
instruction that bypasses the sample logic and returns control to the external CICS
interface caller. To use the sample logic, remove the branch instruction and
assemble and link-edit the module. Customizing DFHXCURM allows you to do the
following:

* When invoked during Allocate_Pipe processing, you can change the specified
CICS APPLID, in order to route the request to another CICS system.

* When invoked after a retryable error you can store information regarding CICS
availability. You can then use this information on the next invocation of
DFHXCURM for Allocate_Pipe processing, so that you can decide to which CICS
system to route the request.

DFHXCURM is called using standard VSE/ESA register conventions, with register 1
containing the address of the parameter list, and register 14 the return address of
the caller. The parameters addressed by register 1 are mapped in the
EXCI_URM_PARMS DSECT, which is contained within the DFHXCPLD copybook.
The parameters passed to DFHXCURM are as follows:

URMINV
The address of a fullword that contains the reason for the invocation of
DFHXCURM, defined by the following equates:

URM_ALLOCATE EQU 1 This invocation is for an Allocate Pipe

URM_NO_CICS EQU 2 The target CICS region is not available

URM_NO_PIPE EQU 3 There are no pipes available

URM_NO_CICS_IRC EQU 4 There has been no IRC activity since the VSE/ESA IPL
URMCICS

The address of an 8-byte area that contains the generic APPLID of the target
CICS system, as specified on the CICS_applid parameter of the Allocate_Pipe
command, or on the APPLID parameter of the EXEC CICS LINK command.

When specified by one of these commands, you can change the APPLID to that
of a different target CICS region.

If the CICS_applid parameter is omitted from the Allocate_Pipe call, or APPLID
is omitted from the EXEC CICS LINK command, the field addressed by this
parameter contains 8 blanks. In this case, you must specify an APPLID in
DFHXCURM before returning control to the caller.

URMAPPL
The address of an 8-byte area that contains the client program’s user name as

© Copyright IBM Corp. 1994, 2000 157

specified on the my_name parameter of the Initialize_User command. Note that
if DFHXCURM is invoked for an EXEC CICS LINK command, this name is
always set to DFHXCEIP.

URMPROG
The address of an 8-byte area that contains the name of the target program (if
available). This name is available only if DFHXCURM is invoked for an EXEC
CICS LINK command. For an external CICS interface Allocate_Pipe command,
the program name is not known until the DPL call is issued.

URMOPTS
The address of a 1-byte area that contains the allocate options, which can be
X'00' or X'80', as specified on the allocate_opts parameter. This address is valid
for an Allocate_Pipe request only.

URMANCH
The address of a 4-byte area that is provided for use by DFHXCURM only. A
typical use for this is to store a global anchor address of an area used to save
information across a number of invocations of DFHXCURM. For example, you
can GETMAIN the necessary storage and save the address in the 4-byte area
addressed by this parameter. The initial value of the 4-byte area is set to zero.

158 CICS TS for VSE/ESA: CICS External Interfaces Guide

Chapter 13. External CICS interface options table, DFHXCOPT

The EXCI options table, generated by the DFHXCOPT macro, enables you to
specify a number of parameters that are required by the external CICS interface.

CICS provides the default DFHXCOPT table in source form, which you can tailor to
your own requirements. The source of the default table and the load module are
supplied in PRD1.BASE.

You assemble and link-edit the modified DFHXCOPT table into a suitable library in
the LIBDEF PHASE, SEARCH library chain of the job that runs the VSE/ESA client
program. You can use your own version of the CICS DFHAUPLE procedure to
assemble and link-edit your customized options table. The DFHAUPLE procedure is
supplied in PRD1.SDFHINST. Unlike the tables you specify for CICS regions, the
DFHXCOPT table cannot be suffixed, and the external CICS interface component
loads the first table of this name that it finds in the STEPLIB concatenation. Unlike
the tables you specify for CICS regions, the DFHXCOPT table cannot be suffixed,
and the external CICS interface component loads the first table of this name that it
finds in the LIBDEF PHASE, SEARCH library chain.

[Table 14 shows the format of the DFHXCOPT macro and its parameters.

Table 16. The DFHXCOPT macro parameters

DFHXCO TYPE={CSECTIDSECT}
[[MSGCASE={MIXEDIUPPER}]

[, TIMEOUT={0lnumber}]

[, TRACE={OFFI1I2}]

[, TRACESZE={16|number-of-kilobytes}]
[, TRAP={OFFION}]

You must terminate your parameters with the following END
statement.

END DFHXCOPT

TYPE={CSECTIDSECT}
Indicates the type of table to be generated.

CSECT
A regular control section that is normally used.

DSECT
A dummy control section.

MSGCASE={MIXEDIUPPER}
Specifies whether the DFHEXxxxxmessages are to be issued in mixed or
uppercase.

MIXED
Code this if messages are to be issued in mixed case.

UPPER
Code this if messages are to be issued in uppercase.

TIMEOUT={0lnumber}
Specifies the time interval, in hundredths of a second, during which the external
CICS interface waits for a DPL command to complete.

© Copyright IBM Corp. 1994, 2000 159

0 Specifies that you do not want any time limit applied, and that the external
CICS interface is to wait indefinitely for a DPL command to complete.

number
Specifies the time interval, in hundredths of a second, that the external
CICS interface is to wait for a DPL command to complete. The number
represents hundredths of a second, from 1 up to a maximum of
2 147 483 647. For example:
6000 Represents a timeout value of one minute
30000 Represents a timeout value of five minutes
60000 Represents a timeout value of ten minutes.

TRACE={OFFI112}
Specifies whether you want external CICS interface internal tracing, and at what
level.

OFF
External CICS interface internal tracing is not required. However, even with
normal tracing switched off, exception trace entries are always written to the
internal trace table.

1 Exception and level-1 trace entries are written to the internal trace table.

2 Exception, level-1, and level-2 trace entries are written to the internal trace
table.

TRACESZE={16lnumber-of-kilobytes}
Specifies the size in kilobytes of the internal trace table for use by the external
CICS interface. This table is allocated in virtual storage above the 16MB line, if
available.You should ensure that there is enough virtual storage for the trace
table by specifying a large enough partition size on the VSE/ESA ALLOC
parameter.

16 16KB is the default size of the trace table, and also the minimum size.

number-of-kilobytes
The number of kilobytes of storage to be allocated for the internal trace
table, in the range 16KB through 1 048 576KB. Subpool 1 is used for the
trace table storage, which exists for the duration of the jobstep VSE
subtask. The table is page-aligned and occupies a whole number of pages.
If the value specified is not a multiple of the page size (4KB), it is rounded
up to the next multiple of 4KB.

TRAP={OFFION}
Specifies whether the service trap module, DFHXCTRA, is to be used.
DFHXCTRA is supplied as a user-replaceable module, in which IBM service
personnel can add code to trap errors.

OFF
Code this if you do not want to use DFHXCTRA.

ON
Code this if you require DFHXCTRA.

160 CICS TS for VSE/ESA: CICS External Interfaces Guide

Chapter 14. Compiling and link-editing external CICS interface
client programs

This chapter discusses the following topics:

* The external CICS interface stub, DFHXCSTB

The CICS-supplied procedures for the external CICS interface
* Language considerations

« Sample application programs

+ Job control language to run an EXCI client program.

The external CICS interface stub, DFHXCSTB

All programs that use the external CICS interface to pass DPL requests to a CICS
server region must include the CICS-supplied program stub, DFHXCSTB.

The stub intercepts all external CICS interface commands, whether they are EXCI
CALL interface commands, or EXEC CICS LINK commands, and ensures they are
passed to the appropriate external CICS interface routine for processing.

DFHXCSTB is a common stub, designed for inclusion in programs written in all the
supported languages. It is supplied in the PRD1.BASE library.

Note: The PRD1.BASE also contains entries for DFHXCIE and DFHXCIS, which
are aliases for DFHXCSTB.

The required linkage editor modes
You must specify AMODE(31) for your EXCI client program.

Language considerations

There are some language requirements that apply to writing a VSE/ESA client
program that uses the external CICS interface. These affect programs written in
PL/I and C.

PL/l considerations

PL/l programs written to the external CICS interface must provide their parameters
on the CALL to DFHXCIS in the form of an assembler-style parameter list.

The EXCI copybook for PL/I, DFHXCPLL, contains the necessary definition of the
DFHXCIS entry point, as follows:

DCL DFHXCIS ENTRY OPTIONS (INTER ASSEMBLER);

The same rule applies for the EXCI LINK command, and in this case the CICS
translator ensures that the correct parameter list is built.

For an example of an EXCI client program written in PL/I, see the source of the
sample program, DFH$PXCC.

C considerations

C programs written to the external CICS interface must provide their parameters on
the CALL to DFHXCIS in the form of an assembler-style parameter list. You ensure
this by declaring the entry point to DFHXCIS with OS LINKAGE.

© Copyright IBM Corp. 1994, 2000 161

The EXCI copybook for C, DFHXCPLH, contains the necessary definition of the
DFHXCIS entry point, as follows:

#pragma linkage(dfhxcis,0S)

The same rule applies for the EXCI LINK command, and in this case the CICS
translator ensures that the correct parameter list is built.

For an example of an EXCI client program written in C, see the source of the
sample program, DFH$DXCC.

Sample application programs

CICS provides a number of sample programs that are designed to help you in
writing your own application programs. To help with writing programs that use the
external CICS interface, CICS provides a sample VSE/ESA client program and a
sample CICS server program.

The samples show you how to code client applications that use both the EXCI
CALL interface and EXEC CICS LINK command.

Description of the sample applications

The sample external CICS interface programs are included on the CICS
Transaction Server for VSE/ESA Release 1 base tape.

The sample VSE/ESA client program is provided in Assembler language, COBOL
for VSE, Cfor VSE, and PL/I for VSE. The sample CICS server program is provided
in assembler only. Assembler language programs are in source and executable
form. COBOL, PL/I, and C programs are provided in source form only. Each version
of the client program has basically the same function, but programming methods
vary somewhat according to the language used.

The sample programs, shown in [[able 17, are supplied in source form in
PRD1.BASE. The sample assembler server program is also supplied in executable
form in PRD1.BASE. The assembler client program is supplied in PRD1.BASE.

Note: The assembler versions of the client program use SAM, which requires the
programs to be link-edited in RMODE(24). The assembler source code
includes the required RMODE(24) statement. Normally, EXCI client programs
run AMODE(31),RMODE(ANY).

Table 17. The external CICS interface sample programs

Language Name Type of program
Assembler DFH$AXCC Client program
Assembler DFH$AXCS Server program
COBOL DFHOCXCC Client program
PL/I DFH$PXCC Client program
C DFH$DXCC Client program

Each version of the client is divided into three separate sections as follows:

1. The first section issues a single EXEC CICS LINK command to inquire on the
state of the sample VSAM file, FILEA, in the target CICS system.

162 CICS TS for VSE/ESA: CICS External Interfaces Guide

If the file is in a suitable state, processing continues to sections two and three,
which together provide complete examples of the use of the EXCI CALL
interface.

2. The second section initiates a specific MRO connection to the target CICS
system and, once the pipe is open, performs a series of calls that each retrieve
a single sequential record from the sample VSAM file, until no more records are
available.

3. The third section is a simple routine to close the target sample file once
processing of the data is complete. It also terminates the MRO connection now
that the link is no longer required.

Some of the parameters used on the EXCI CALL and EXEC CICS LINK commands
in the client program need to be tailored for your own target CICS server region.

Change these as required, then retranslate, compile (or assemble), and link-edit the
program.

The variables and their values specified in the sample programs are given in

Table 18. Parameters used in the sample client programs

Variable name in sample program Default value
TARGET_FILE FILEA
TARGET_TRANSID EXCI
TARGET_SYSTEM DBDCCICS (applid)
TARGET_PROGRAM DFH$AXCS
APPLICATION BATCHCLI

The assembler versions of the client programs are supplied pregenerated in an
executable form. All versions of the program accept a run-time parameter to specify
the target server region APPLID. For the pregenerated assembler version this
avoids you having to reassemble the program to specify the applid of your own
CICS server region. You can also use the sample client program with different CICS
regions without needing to modify the program each time.

Installing the EXCI sample definitions

Resource definitions that support the EXCI sample programs are included in the
CICS system definition file (CSD) in groups DFH$EXCI and DFH$FILA.

Note that the sample definitions, while included in the CSD, are not included in the
IBM-defined group list DFHLIST. Thus, if CICS is initialized with
GRPLIST=DFHLIST, you must install the EXCI resource definition groups before
using the samples. Alternatively, you can add the sample groups to your startup
group list, so that they are installed automatically at system initialization.

The resource definition groups that must be installed are as follows:

DFHS$EXCI
This contains definitions for the sample server transaction, server program,
EXCI connections, and sessions.

Only one server program is included—in assembler language, called
DFHS$AXCS.

Chapter 14. Compiling and link-editing external CICS interface client programs 163

The sample application is designed to run the transaction EXCI, which is
defined to invoke the DFHMIRS mirror program and references profile
DFHCICSA. The required transaction definition for EXCI is included in the
group.

Sample CONNECTION and SESSIONS definitions for specific and generic
connections are included.

Note: Both the generic and specific connection definitions supplied in the
sample group DFH$EXCI specify ATTACHSEC(IDENTIFY). This
security option causes the server program DFH$EXCS to fail with an
ATCY abend if you run the sample programs in an environment that
does not have an external security manager (ESM) installed and
active.

If you want to run the external CICS interface sample programs
without any security active, you must alter the connection resource
definitions to specify ATTACHSEC(LOCAL).

DFHSFILA
This contains the definition for the supplied sample VSAM file, FILEA, which
is referenced by the EXCI sample programs.

Once these are installed, you must ensure that interregion communication (IRC) is
open. If IRC is not opened during CICS initialization, set it open using the CEMT
SET IRC OPEN command.

Running the EXCI sample applications

If you want to use the COBOL, PL/I, or C version of the EXCI client program, you
must translate, compile, and link-edit the program into a suitable library.

You can use the sample JCL shown in Eigure 36 on page 167 as a basis for

creating your own batch job to run the client program. Note the use of the OS390
parameter on the EXEC statement: this is mandatory.

If you use the pregenerated assembler version, specify the APPLID of your target
CICS server region as a parameter on the EXEC statement for the client program,
as follows:

// EXEC PGM=DFH$AXCC,PARM="applid"',0S390

Results of running the EXCI sample applications

An example of the output produced by successful execution of the pregenerated
assembler version of the client program, DFH$AXCC, is shown in ﬁm

If an error occurs while running the application, then, assuming the error is not
severe, messages are written to the SYSLST output log displaying the reasons
and/or return codes that cause processing to be terminated. Several examples of

error-invoked output are shown in Eigure 33, Eigure 34, and Eigure 35 on page 166.

164 CICS TS for VSE/ESA: CICS External Interfaces Guide

#===================== [XCI Sample Client Program

* *
* EXEC Level Processor. *
* Setting up the EXEC level call. *
* The Link Request has successfully completed. *
* Server Response: *
* The file is set to a browsable state. *
* *
* CALL Level Processor. *
* Initialize_User call complete. *
* Allocate_Pipe call complete. *
* Open_Pipe call complete. *
* The connection has been successful. *
* The target file follows: *
* *
k=========================== Jop 0f File ======================================%
000102F. ALDSON WARWICK, ENGLAND 9835618326 11 81$1111.11Y00007300
000104S. BOWLER LONDON, ENGLAND 1284629326 11 81$0999.99Y00007400
000106B. ADAMS CROYDON, ENGLAND 1948567326 11 81$0087.71Y00007500
000111GENE BARLOWE SARATOGA,CALIFORNIA 4612075301 02 74$0111.11Y00007600
000762GEORGE BURROW SAN JOSE,CALIFORNIA 2231212101 06 74$0000.00Y00007700
000983H. L. L. CALL WASHINGTON, DC 3451212021 04 75$9999.99Y00007800
003210B.CREPIN NICE, FRANCE 1234567026 11 81$3349.99Y00008100
003214HUBERT C HERBERT SUNNYVALE, CAL. 3411212000 06 73$0009.99N000OO8200
003890PHILIPPE SMITH, JR NICE, FRANCE 0000000028 05 74$0009.99NOOOO8300
004004STAN SMITH DUBLIN, IRELAND 7111212102 11 73$1259.99N00008400
004445S. GALSON SOUTH BEND, S.DAK. 6121212026 11 81$0009.99N00008500
004878D.C. CURRENT SUNNYVALE, CALIF. 3221212010 06 73$5399.99N00008600
005005J. S. LAVERENCE SAN FRANCISCO, CA. 0000000101 08 73$0009.99N000O8700
005444JEAN LAWRENCE SARATOGA, CALIF. 6771212020 10 74$0809.99N00008800
005581J0HN ALDEN III BOSTON, MASS. 4131212011 04 74$0259.99N00008900
006016DR W. T. KAR NEW DELHI, INDIA 7033121121 05 74$0009.88Y00009000
006670WILLIAM KAPP NEW YORK, N.Y. 2121212031 01 75$3509.88N00009100
06968D. CONRAD WARWICK, ENGLAND 5671382126 11 81$0009.88Y00009200
007248B. C. WILLIAMSON REDWOOD CITY, CALF. 3331212111 10 75$0009.88N00009400
007779MRS. W. WELCH SAN JOSE, CALIF. 4151212003 01 75$0009.88Y00009500
100000G. NEADS TORONTO, ONTARIO 0341512126 11 81$0010.00Y00009600
111111C. MEARS OTTAWA, ONTARIO 5121200326 11 81$0011.00Y00009700
200000A. BONFIELD GLASCOW, SCOTLAND 6373829026 11 81$0020.00Y00009900
300000K. TRENCHARD NEW YORK, U.S. 6473980126 11 81$0030.00Y00010000
333333D. MYRING CARDIFF, WALES 7849302026 11 81$0033.00Y00010100
400000W. TANNER MILAN, ITALY 2536373826 11 81$0040.00Y00010200
444444A, FISHER CALGARY, ALBERTA 7788982026 11 81$0044.00Y00010300
500000J. DENFORD MADRID, SPAIN 4445464026 11 81$0000.00Y00010400
555555C. JARDINE KINGSTON, N.Y. 3994442026 11 81$0005.00Y00010500
600000F. HUGHES DUBLIN, IRELAND 1239878026 11 81$0010.00Y00010600
666666A. BROOKMAN LA HULPE, BRUSSELS 4298384026 11 81$0016.00Y00010700
700000A. MACALLA DALLAS, TEXAS 5798432026 11 81$0002.00Y00010800
777777D. PRYKE WILLIAMSBURG, VIRG. 9187613126 11 81$0027.00Y00010900
800000H. BRISTOW WESTEND, LONDON 2423338926 11 81$0030.00Y00011000
888888B. HOWARD NORTHAMPTON, ENG. 2369163926 11 81$0038.00Y00011100
900000D. WOODSON TAMPA, FLA. 3566812026 11 81$0040.00Y00011200
999999R. JACKSON RALEIGH, N.Y. 8459163926 11 81$0049.00Y00011300
*¥=========================== [nd of File ======================================
*

* Closing Dpl Request has been attempted.

* Close Pipe call complete.

* Deallocate_Pipe call complete.

*

k¥=================== fnd of EXCI Sample Client Program ========================

Figure 32. Successful execution

Chapter 14. Compiling and link-editing external CICS interface client programs

* %k kX X

165

¥============z======== [XCI Sample Client Program ===========zzz==========z====&

EXEC Level Processor.
Setting up the EXEC level call.
The Link Request has failed. Return codes are;
Resp = 00000088 Resp2 = 00000203 Abend Code:
>>>> Aborting further processing <<<<

* Ok 3k X X X %
* Ok ok 3k X X %

Figure 33. No CICS return code. The target CICS region specified by the client program is not found, or IRC was not
opened.

#===================== EXCI Sample Client Program ====s========================%
* *
* EXEC Level Processor. *
* Setting up the EXEC level call. *
* The Link Request has successfully completed. *
* Server Response: *
* The file could not be found. *
* >>>> Aborting further processing <<<< *
* *

¥=================== End of EXCI Sample Client Program ========================x

Figure 34. No file found. The target file name to the server program was not found on the target CICS system.
*===================== EXCI Sample Client Program =============================x

*
EXEC Level Processor. *
Setting up the EXEC level call. *
The Link Request has failed. Return codes are; *
Resp = 00000088 Resp2 = 00000414 Abend Code: *

A message was received from the target CICS system: *
*

k

* Ok X X X ok %

DFHAC2001 04/29/93 16:43:03 IYAHZCAZ Transaction 'BAD_' is unrecognized. Chec
that the transaction name is correct.

* >>>> Aborting further processing <<<<

Figure 35. Incorrect transaction identifier. The target transid passed in the external CICS interface call is not defined
on the target CICS system. Note the message received from the target CICS system.

Job control language to run an EXCI client program

An EXCI client program runs in a VSE patrtition, for example, as a batch job. Note
the following requirements when writing the JCL for your client program:

* Include in the LIBDEF PHASE, SEARCH statement those libraries that contain
the CICS-supplied external CICS interface modules and also the client program.
The external CICS interface modules are supplied in PRD1.BASE. These are:

DFH$AXCC
DFHMEBM
DFHMET4E
DFHXCEIX
DFHXCOPT
DFHXCPRX

166 CICS TS for VSE/ESA: CICS External Interfaces Guide

DFHXCSTB
DFHXCTRA
DFHXCURM

* You are recommended to include a LIBDEF DUMP,CATALOG=library.sublibrary.
The external CICS interface uses SYSDUMP for some error conditions.

* The EXCI job must run in a partition large enough to allow for the size of the
internal trace table specified by the TRACESZE parameter in the DFHXCOPT
options table.

m shows a sample job that you can use or modify to start a client program.

// JOB EXCI accounting_information

//#================s==s==o===ss=s=ssss=sssssssssssssssssssssssssssok
/1/* JCL to execute an external CICS interface client program =
|/#=============================s===s====s=s==s=ssss=sss=ssssssss=ss==sk

// 1D USER=userid,PWD=password

// LIBDEF PHASE,SEARCH=(lib.sublib,lib2,lib3,...)
// LIBDEF DUMP,CATALOG=(lib.sublib)

// EXEC PGM=pgmname,0S390

Figure 36. Sample job for starting an EXCI client program

Notes:

1. The job userid,, specified on the USER parameter of the ID statement in the
batch job JCL, must be defined to an external security manager (ESM) if batch
security is used.

2. In addition to being used for job step initiation security, the job userid is also
used for MRO logon and bind-time security checking.

See EChapter 15_Security” on page 169 for information about security when
using the external CICS interface.

3. See lnstalling the EXCI sample definitions” an page 163 for information about

modifying the sample connection definitions before you run the sample
application programs in an environment that does not have an external security
manager (ESM) installed and active.

Chapter 14. Compiling and link-editing external CICS interface client programs 167

168 CICS TS for VSE/ESA: CICS External Interfaces Guide

Chapter 15. Security

CICS applies security checks in a number of ways against requests received from a

VSE client program. These security checks use the security authorization facility

(SAF) interface, and require the services of an external security manager (ESM).

The security checks are described in the following topics:

* MRO logon and bind-time security, performed by DFHIRP

» Link security, performed by the CICS server region

» User security in the server application program

» Surrogate user checking performed by the external CICS interface in the client
program address space.

MRO logon and bind-time security

DFHIRP, the CICS interregion communication program, performs two security
checks against users that want to:

1. Log on to IRP (specific connections only)

2. Connect to a CICS region (also referred to as bind-time security).

Generic EXCI connections
The discussion about logon security checking in this chapter applies only to
EXCI connections that are defined as SPECIFIC. The MRO logon security
check is not performed for generic connections.

The VSE client program is treated just the same as another CICS region as far as
MRO logon and connect (bind-time) security checking is concerned. This means
that when the client program logs on to the interregion communication program, IRP
performs logon and bind-time security checks against the userid under which the
client program is running. In the remainder of this chapter, we refer to this as the
batch region’s userid.

To enable your client program to log on successfully to IRP, and to connect to the
target server region, first ensure that you define the batch region’s user ID in a user
profile to the ESM. When you have defined the batch region’s userid to the ESM,
you can then give the batch region the appropriate logon and bind-time
authorizations.

1. Logon authorization
Authorize the batch region’s userid to the DFHAPPL.user_name defined on the
INITIALIZE_USER command. Generally, depending on the ESM, the batch
region requires UPDATE authoirty to the relevant IRP logon security profile.

Failure to authorize the batch region’s userid to logon to IRP causes
Allocate_Pipe processing to fail with RESPONSE(SYSTEM_ERROR) and
REASON(IRC_LOGON_FAILURE). The subreason field-1 for a logon security
check failure returns decimal 204.

2. Bind-time authorization
Ensure the batch region’s userid has the appropriate authority to connect to the
target CICS server region. Generally, depending on the ESM, the batch region
requires READ authority to the relevant IRP bind security profile.

Failure to authorize the batch region’s userid to connect to the CICS server
region causes Open_Pipe processing to fail with

© Copyright IBM Corp. 1994, 2000 169

RESPONSE(SYSTEM_ERROR) and REASON(IRC_CONNECT_FAILURE). The
subreason field-1 for a bind-time security check failure returns decimal 176.

See the ESM’s documentation for information about how to specify MRO logon and
bind-time security checks.

Link security

The target CICS server region performs link security checking against requests from
the client program. These security checks cover transaction attach security (when
attaching the mirror transaction), and resource and command security checking
within the server application program. The link userid that CICS uses for these
security checks is the batch region’s userid.

To ensure these link security checks do not cause security failures, you must

ensure that the link user ID is authorized to the following resource profiles, as

appropriate:

» The profile for the mirror transaction, either CSMI for the default, or the mirror
transaction specified on the transid parameter. This is required for transaction
attach security checking.

» The profiles for all the resources accessed by the CICS server application
program—files, queues (transient data and temporary storage), programs, and so
on. This is required for resource security checking.

* The CICS command profiles for the SPI commands issued by the CICS server
application program—INQUIRE, SET, DISCARD and so on. This is required for
command security checking.

User security

The target CICS server region performs user security checking against the userid
passed on a DPL CALL request. User security checking is performed only when
connections specify ATTACHCSEC(IDENTIFY).

User security is performed in addition to any link security.

For user security, in addition to any authorizations you make for link security, you
must also authorize the userid specified on the DPL_Request call.

Note that there is no provision for specifying a userid on the EXEC CICS LINK
command. In this case, the external CICS interface passes the batch region’s
userid. User security checking is therefore performed against the batch region’s
userid if the connection definition specifies ATTACHSEC(IDENTIFY).

Note: If your connection resource definitions for the external CICS interface specify
ATTACHSEC(IDENTIFY), your server programs will fail with an ATCY abend
if you run them in an environment that does not have an external security
manager (ESM) installed and active.

If you want to run external CICS interface server programs without any
security active, you must specify ATTACHSEC(LOCAL).

170 CICS TS for VSE/ESA: CICS External Interfaces Guide

Surrogate user checking

A surrogate user check is performed to verify that the batch region’s userid is
authorized to issue DPL calls for another user (that is, is authorized as a surrogate
of the userid specified on the DPL_Request call).

EXCI client jobs are subject to surrogate user checking if SURROGCHK=YES (the
default) is specified in the EXCI options table, DFHXCOPT. If you specify
SURROGCHK=YES (or allow it to default) authorize the batch region’s userid as a
surrogate of the userid specified on all DPL_Request calls.

If surrogate user checking is enabled (SURROGCHK=YES), but no userids
specified on the DPL call, no surrogate user check is performed, because the userid
on the DPL call defaults to the batch region’s userid. For this bypass of surrogate
user checking to be successful, ensure that you have correctly omitted the userid
on the DPL call. See [Example of EXCI CALLs with null parameters” on page 140
for information about the correct way to specify a null pointer when omitting an
EXCI call parameter.

If you don’t want surrogate user security checking, specify SURROGCHK=NO in
the DFHXCOPT options table (note that SURROGCHK=YES is the default).

Surrogate user checking is useful when the batch region’s userid is the same as the
CICS server region userid, in which case the link security check (see

) is bypassed. In this case, a surrogate user check is recommended,
because the USERID specified on the DPL call is not an authenticated userid (no
password is passed).

If the batch region’s userid and the CICS region user ID are different, link security
checking is enforced. With link security, a non-authenticated userid passed on a
DPL call cannot acquire more authority than that allowed by the link security check.
It can acquire only the same, or less, authority than that allowed by the link security
check.

Chapter 15. Security 171

172 CICS TS for VSE/ESA: CICS External Interfaces Guide

Chapter 16. Problem determination

This chapter contains Diagnosis, Modification or Tuning information.

This chapter describes some of the aids to problem determination provided by the
external CICS interface. It covers:

» Trace

* System dumps

» VSE/ESA abends

* The EXCI service trap, DFHXCTRA

* EXCI trace entry points

Details of the external CICS interface messages and abend codes are given in

Trace

The external CICS interface writes trace data to an internal trace table. The internal
trace table resides in the partition GETVIS in 31-bit storage. Trace data is
formatted and included in any dumps produced by the external CICS interface.

Trace entries are issued by the external CICS interface destined for the internal

trace table. They are listed in LEXCI trace entry paints” on page 177.

Note: The external CICS interface maintains a separate trace table for each user
VSE task in an external CICS interface application program.

The external CICS interface does not support any form of auxiliary trace.

To format external CICS interface trace entries, you use the same FID and ID as for
CICS (that is, FID=X'EF', and ID=X'F6C").

System dumps

The external CICS interface produces VSE/ESA SDUMPs for error conditions.
These dumps contain all the external CICS interface control blocks, as well as trace
entries.

Formatting system dumps

You can use the CICS INFOANA exit, DFHPD410, to format the system dumps.
The following keywords are available for use when formatting an external CICS
interface dump using DFHPD410:

KE
Formats PSW and registers, and all external CICS interface control blocks.

LD
Formats a load map of where the external CICS interface modules are loaded
in the address space, and gives their PTF level.

MRO
Formats the MRO control blocks for the external CICS interface address space,
including common control blocks that reside in the VSE/ESA common service
area (CSA). This option also formats some MRO blocks that reside in the CICS
address space for pipes connected to CICS.

© Copyright IBM Corp. 1994, 2000 173

TR
Formats the external CICS interface trace table. You can format the trace table
in abbreviated and full forms (TR=1 gives you the abbreviated trace).

SuU
Produces a dump summary.

Multiple VSE subtasks

If the external CICS interface takes a system dump when there is more than one
VSE task in use, it dumps only the control blocks and trace table for the VSE task
that requested the dump.

If you take a dump of the external CICS address space using a console command,
the CICS verb exit routine, DFHPD410 formats the control blocks and trace tables
for every VSE task using EXCI that it finds in the dump.

Abends from related CICS programs

Certain abends can occur in other CICS programs during the implementation of an
external CICS interface client program. These include:

* The CICS translator
e The system dump formatter, DFHPD410
* The resource definition offline utility program, DFHCSDUP.

The following VSE 04xx abends can occur when you are running an external CICS

interface job:

0401

Explanation: An external CICS interface (EXCI)
request was issued using the CALL API or the EXEC
API, and the EXCI stub DFHXCSTB link-edited with the
application detected that it was running in AMODE 24.
The external CICS interface only supports calls made in
AMODE 31.

System Action: The application terminates
abnormally.

User Response: Change the application so that EXCI
calls are made in AMODE 31, or relink-edit the
application AMODE 31.

Module: DFHXCSTB

0402

Explanation: The external CICS interface module
DFHXCPRH issued an VSE/ESA ESTAEX macro to
establish a recovery environment, but a nonzero return
code was returned from VSE/ESA.

System Action: The application terminates abnormally
with a dump.

User Response: Examine the dump and any
associated VSE/ESA messages produced to determine
why the VSE/ESA ESTAEX request failed.

If the error occurred while processing an
INITIALIZE_USER request on behalf of the application,

174 CICS TS for VSE/ESA: CICS External Interfaces Guide

an attempt to format the dump using the CICS
INFOANA dump formatter does not produce any
formatted output. This is because the error occurred too
early in EXCI initialization for there to be any control
blocks.

Module: DFHXCPRH

0403

Explanation: The external CICS interface module
DFHXCPRH issued an VSE/ESA GETMAIN request to
obtain storage for its XCGLOBAL block, but a nonzero
return code was returned from VSE/ESA.

System Action: Module DFHXCPRH issues a
VSE/ESA abend with abend code 0403 which invokes
its ESTAEX routine to clear up its environment. A dump
is taken before returning control to the application. An
application using the EXCI CALL API receives
RESPONSE(SYSTEM_ERROR)
REASON(XCGLOBAL_GETMAIN_ERROR) in its return
area. The subreason1 field of the return area contains
the R15 return code from VSE/ESA indicating why the
GETMAIN failed. An application using the EXCI EXEC
API receives RESP(LINKERR) RESP2(602).

User Response: Use the VSE/ESA R15 return code
obtained from the application or from the dump to
determine why the VSE/ESA GETMAIN request failed. If
the reason is insufficient storage, increase the region
size of the batch application.

An attempt to format the dump produced with the CICS
IPCS dump formatter does not produce any formatted
output for the job because the error occurred too early
in EXCI initialization for there to be any control blocks.

Module: DFHXCPRH

0404

Explanation: The external CICS interface module
DFHXCPRH needed to take an VSE/ESA SDUMP for
an earlier reported problem. However the error has
occurred too early in EXCI initialization for EXCI dump
services to be available.

System Action: Module DFHXCPRH issues a
VSE/ESA abend with abend code 0404 which invokes
its ESTAEX routine from which a SYSDUMPX is taken
to capture the earlier reported problem.

User Response: Examine the dump to determine the
cause of the earlier reported problem.

An attempt to format the SYSMDUMP produced with
the CICS IPCS dump formatter does not produce any
formatted output for the job because the error occurred
too early in EXCI initialization for there to be any control
blocks.

Module: DFHXCPRH

0406

Explanation: The external CICS interface module
DFHXCPRH called the CICS SVC to initialize the EXCI
environment. The CICS SVC call failed.

System Action: Module DFHXCPRH issues a
VSE/ESA abend with abend code 0406 which invokes
its ESTAEX routine to clear up its environment. A
system dump is taken before returning control to the
application. An application using the EXCI CALL API
receives RESPONSE(SYSTEM_ERROR)
REASON(CICS_SVC_CALL_FAILURE) in its return
area. The subreason1 field of the return area contains
the R15 return code from the CICS SVC indicating why
it failed. An application using the EXCI EXEC API
receives RESP(LINKERR) RESP2(607).

User Response: Use the VSE/ESA R15 return code
obtained from the application or from the dump to
determine why the CICS SVC call failed.

An attempt to format the system dump produced with
the CICS INFOANA dump formatter does not produce
any formatted output for the job because the error
occurred too early in EXCI initialization for there to be
any control blocks.

Module: DFHXCPRH

0407

Explanation: The external CICS interface module
DFHXCPRH issued a call to the CICS SVC to check
whether the SVC in use is at the correct level to be
used with the external CICS interface. The check failed
indicating that the CICS SVC is not at the correct level.

System Action: Message DFHEX0100 is output, and
module DFHXCPRH issues a VSE/ESA abend with
abend code 0407 which invokes its ESTAEX routine to
clear up its environment. A system dump is taken before
returning control to the application. An application using
the EXCI CALL API receives
RESPONSE(SYSTEM_ERROR)
REASON(INCORRECT_SVC_LEVEL) in its return area.
An application using the EXCI EXEC API receives
RESP(LINKERR) RESP2(627).

User Response: See the explanation of message
DFHEX0100 for guidance.

An attempt to format the system dump produced with
the CICS INFOANA dump formatter does not produce
any formatted output for the job because the error
occurred too early in EXCI initialization for there to be
any control blocks.

Module: DFHXCPRH

0408

Explanation: The external CICS interface module
DFHXCPRH issued a VSE/ESA GETMAIN request for
its working storage but a nonzero return code was
returned from VSE/ESA.

System Action: Module DFHXCPRH issues a
VSE/ESA abend with abend code 0408 which invokes
its ESTAEX routine to clear up its environment. A
system dump is taken before returning control to the
application. An application using the EXCI CALL API
receives RESPONSE(SYSTEM_ERROR)
REASON(WS_GETMAIN_ERROR) in its return area.
The subreason1 field of the return area contains the
R15 return code from VSE/ESA indicating why the
GETMAIN failed. An application using the EXCI EXEC
API receives RESP(LINKERR) RESP2(601).

User Response: Use the VSE/ESA R15 return code
obtained from the application or from the dump to
determine why the VSE/ESA GETMAIN request failed.
the reason is insufficient storage, increase the region
size of the batch application.

f

An attempt to format the system dump produced with
the CICS INFOANA dump formatter does not produce
any formatted output for the job because the error
occurred too early in EXCI initialization for there to be
any control blocks.

Module: DFHXCPRH

Chapter 16. Problem determinaton 175

0410

Explanation: The external CICS interface module
DFHXCPRH issued a VSE/ESA GETMAIN request for
an XCUSER block but a nonzero return code was
returned from VSE/ESA.

System Action: Module DFHXCPRH issues a
VSE/ESA abend with abend code 0410 which invokes
its ESTAEX routine to clear up its environment. A
system dump is taken before returning control to the
application. An application using the EXCI CALL API
receives RESPONSE(SYSTEM_ERROR)
REASON(XCUSER_GETMAIN_ERROR) in its return
area. The subreason1 field of the return area contains
the R15 return code from VSE/ESA indicating why the
GETMAIN failed. An application using the EXCI EXEC
API receives RESP(LINKERR) RESP2(603).

User Response: Use the VSE/ESA R15 return code
obtained from the application or from the dump to
determine why the VSE/ESA GETMAIN request failed.
the reason is insufficient storage, increase the region
size of the batch application.

Module: DFHXCPRH

f

0412

Explanation: The external CICS interface dump
module DFHXCEIP was processing an EXCI EXEC API
request and detected that the EXEC parameter list
passed to it contained a function that is not supported
by the external CICS interface.

System Action: The application is abnormally
terminated with a dump.

User Response: This error indicates that the
parameter list being passed to the EXCI has not been
generated by the CICS translator. The translator should
always be used. Correct the application to specify the
correct EXCI EXEC API command.

An attempt to format the system dump produced with
the CICS INFOANA dump formatter may not produce
any formatted output for the job if this was the first EXCI
request for this TCB.

Module: DFHXCEIP

0413

Explanation: The external CICS interface dump
module DFHXCEIP was processing an EXCI EXEC API
request and detected that the EXEC parameter list
passed to it did not require the mandatory RETCODE
parameter in which return codes are returned to the
application.

176 CICS TS for VSE/ESA: CICS External Interfaces Guide

An attempt to format the system dump produced with
the CICS INFOANA dump formatter may not produce
any formatted output for the job if this was the first EXCI
request for this VSE task.

System Action: The application is abnormally
terminated with a dump.

User Response: This error indicates that the
parameter list being passed to the EXCI has not been
generated by the CICS translator. The translator should
always be used. Correct the application to specify
RETCODE.

Module: DFHXCEIP

0414

Explanation: The external CICS interface module
DFHXCEIP issued an VSE/ESA ESTAEX macro to
establish a recovery environment but a nonzero return
code was returned from VSE/ESA.

System Action: The application terminates abnormally
with a dump.

User Response: Examine the dump and any
associated VSE/ESA messages to determine why the
VSE/ESA ESTAEX request failed.

An attempt to format the system dump produced with
the CICS INFOANA dump formatter may not produce
any formatted output for the job if this was the first EXCI
request for this VSE task.

Module: DFHXCEIP

0415

Explanation: The external CICS interface module
DFHXCEIP detected an error early in EXCI initialization
before EXCI dump services were available. DFHXCEIP
issues abend 0415 so that its ESTAEX routine is
invoked from where a system dump is taken instead to
capture the error.

System Action: The application terminates abnormally
with a dump.

User Response: Examine the system dump to
determine the cause of the earlier reported error.

An attempt to format the system dump produced with
the CICS INFOANA dump formatter does not produce
any formatted output for the job because the error
occurred too early in EXCI initialization for there to be
any control blocks.

Module: DFHXCEIP

The EXCI service trap, DFHXCTRA

A user-replaceable program, DFHXCTRA, is available for use under the guidance of
IBM service personnel. It is the equivalent of DFHTRAP used in CICS. It is invoked
every time the external CICS interface writes a trace entry.

DFHXCTRA can perform one or all of the following actions:

1. Request the external CICS interface to write a trace entry on its behalf
2. Instruct the external CICS interface to take an SDUMP

3. Instruct the external CICS interface to disable DFHXCTRA

The CICS-supplied sample version of DFHXCTRA performs all three of the above
functions if it detects a trace entry that indicates that a FREEMAIN error occurred
while trying to free an EXCI pipe control block.

The source for DFHXCTRA is supplied in PRD1.BASE. The parameter list passed
to DFHXCTRA is defined in the copybook DFHXCTRD, which is supplied in
PRD1.BASE.DFHXCTRD also defines all the external CICS interface trace points
for use by DFHXCTRA.

EXCI trace entry points

Reviewer
Additional trace points.

surrogate user checking - EX2009 and EX200A

Table 19. External CICS interface trace entries

Point ID

Module Lvl Type Data

EX 0001

DFHXCPRH Exc PIPE_ALREADY_OPEN

1. Caller’s parameter list

2. Call type

3. Caller’s user name

4. Return codes and message
pointer

Pipe token

o

EX 0002

DFHXCPRH Exc PIPE_ALREADY_CLOSED

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

Pipe token

PN~

o

EX 0003

DFHXCPRH Exc VERIFY_BLOCK_FM_ERROR

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

pPOD =~

EX 0005

DFHXCPRH Exc XCPIP_ FM_ERR

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

5. Pipe token

PO~

Chapter 16. Problem determination 177

Table 19. External CICS interface trace entries (continued)

Point ID

Module

Lvi

Type

Data

EX 0006

DFHXCPRH

Exc

IRP_IOAREA_FM_ERR

PN~

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

EX 0201

DFHXCPRH

Exc

NO_CICS_IRC_STARTED

PN

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

EX 0202

DFHXCPRH

Exc

NO_PIPE

pPOD =~

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

Pipe token

Target CICS applid

EX 0203

DFHXCPRH

Exc

NO_CICS_ON_OPEN

PP OO

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

Pipe token

Target CICS applid

EX 0204

DFHXCPRH

Exc

NO_CICS_ON_DPL_1

PO OO

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

Pipe token

Target CICS applid

EX 0205

DFHXCPRH

Exc

NO_CICS_ON_DPL_2

PON= OO

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

Pipe token

Target CICS applid

EX 0206

DFHXCPRH

Exc

NO_CICS_ON_DPL_3

PONM= OO

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

Pipe token

Target CICS applid

EX 0403

DFHXCPRH

Exc

INVALID_APPL_NAME

PONM= OO

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

178 CICS TS for VSE/ESA: CICS External Interfaces Guide

Table 19. External CICS interface trace entries (continued)

Point ID

Module

Lvi

Type

Data

EX 0405

DFHXCPRH

Exc

PIPE_NOT_CLOSED

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

Pipe token

PN~

o

EX 0406

DFHXCPRH

Exc

PIPE_NOT_OPEN

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

Pipe token

PN~

o

EX 0407

DFHXCPRH

Exc

INVALID_USERID

Caller’s parameter list
Call type
Caller’s user name

@~

EX 0408

DFHXCPRH

Exc

INVALID_UOWID

Caller’s parameter list
Call type

Caller’s user name
UOWID

PN~

EX 0409

DFHXCPRH

Exc

INVALID_TRANSID

Caller’s parameter list
Call type
Caller’s user name

W~

EX 0414

DFHXCPRH

Exc

ABORT_RECEIVED

Caller’s parameter list
Call type

Caller’s user name
Target CICS applid
Message to be returned

AN

EX 0415

DFHXCPRH

Exc

INVALID_CONNECTION

Caller’s parameter list
Call type

Caller’s user name
Connection name
Target CICS applid

akrwh =~

EX 0416

DFHXCPRH

Exc

INVALID_CICS_RELEASE

Caller’s parameter list
Call type

Caller’s user name
Target CICS applid

pPOM =~

EX 0417

DFHXCPRH

Exc

PIPE_MUST_CLOSE

Caller’s parameter list
Call type

Caller’s user name
Pipe token

PN~

EX 0418

DFHXCPRH

Exc

INVALID_PIPE_TOKEN

Caller’s parameter list
Call type

Caller’s user name
Pipe token

PN~

EX 0422

DFHXCPRH

Exc

SERVER_ABENDED

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

5. DPL return area

PN~

Chapter 16. Problem determination

179

Table 19. External CICS interface trace entries (continued)

Point ID

Module

Lvi

Type

Data

EX 0603

DFHXCPRH

Exc

XCUSER_GM_ERROR

pPOD~

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

EX 0604

DFHXCPRH

Exc

XCPIPE_GM_ERROR

PN

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

EX 0607

DFHXCPRH

Exc

SVC_CALL_FAILED

pPOD =~

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

EX 0608

DFHXCPRH

Exc

IRP_LOGON_FAILURE

PN

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

Target CICS applid

Logon name

EX 0609

DFHXCPRH

Exc

IRP_CONNECT_FAIL

POND OO

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

Pipe token

Target CICS applid

EX 0610

DFHXCPRH

Exc

IRP_DISC_FAIL

POND OO

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

Target CICS applid

Pipe token

EX 0611

DFHXCPRH

Exc

IRP_LOGOFF_FAILED

rPOND OO

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

Target CICS applid

Pipe token

EX 0612

DFHXCPRH

Exc

TRANSFORM_1_ERROR

PODH OO

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

EX 0613

DFHXCPRH

Exc

TRANSFORM_4_ERROR

PN~

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

180 CICS TS for VSE/ESA: CICS External Interfaces Guide

Table 19. External CICS interface trace entries (continued)

Point ID

Module

Lvi

Type

Data

EX 0614

DFHXCPRH

Exc

IRP_NULL_DATA

PN~

o

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

Target CICS applid

EX 0615

DFHXCPRH

Exc

IRP_NEG_RESPONSE

PN~

o

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

Target CICS applid

EX 0616

DFHXCPRH

Exc

IRP_SWITCH_PULL_ERR

PN

oo

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

Target CICS applid

Pipe token

EX 0617

DFHXCPRH

Exc

IRP_IOAREA_GM_ERR

PN~

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

EX 0619

DFHXCPRH

Exc

IRP_BAD_IOAREA

PO~

Caller’s parameter list
Call type

Caller’s user name
IOAREA address

EX 0620

DFHXCPRH

Exc

IRP_PROTOCOL_ERR

akrwh -~

Caller’s parameter list
Call type

Caller’s user name
Target CICS applid
Pipe token

EX 0621

DFHXCPRH

Exc

PIPE_RECOVERY_FAILURE

a0~

Caller’s parameter list
Call type

Caller’s user name
Target CICS applid
Pipe token

EX 0622

DFHXCPRH

Exc

ESTAEX_SETUP_FAIL

PN~

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

EX 0623

DFHXCPRH

Exc

ESTAEX_INVOKED

POd =

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

0S/390 abend code (see
"0S/390 API Abend Codes” in
section "VSE/Advanced
Functions & SVC Errors” of
VSE/ESA messages and
Codes — Volume 1)

Chapter 16. Problem determination 181

Table 19. External CICS interface trace entries (continued)

Point ID

Module

Lvi

Type

Data

EX 0624

DFHXCPRH

Exc

TIMEDOUT

Caller’s parameter list
Call type

Caller’s user name
Server program name
Target CICS applid

EX 0625

DFHXCPRH

Exc

STIMER_SETUP_FAIL

PONd OO~

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

EX 0626

DFHXCPRH

Exc

STIMER_CANCEL_FAIL

pPOD =~

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

EX 0627

DFHXCPRH

Exc

INCORRECT_SVC_LEVEL

Caller’s parameter list
Call type

Caller’s user name
SVC instruction

EX 0800

DFHXCPRH

Exc

RESP shows LENGERR

PO AN~

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

COMMAREA length

Data length

EX 0801

DFHXCPRH

Exc

RESP shows INVREQ

PODH OO

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

DPL options specified

EX 0802

DFHXCPRH

Exc

RESP shows PGMIDERR

Caller’s parameter list
Call type

Caller’s user name
Program name
Target CICS applid

EX 0803

DFHXCPRH

Exc

RESP shows ROLLEDBACK

Caller’s parameter list
Call type

Caller’s user name
Program name
Target CICS applid

EX 0804

DFHXCPRH

Exc

RESP shows NOTAUTH

Caller’s parameter list
Call type

Caller’s user name
Program name
Target CICS applid

EX 0805

DFHXCPRH

Exc

RESP shows SYSIDERR

oMM IORONS OO ORON SO

Caller’s parameter list
Call type

Caller’s user name
Program name
Target CICS applid
DPL_Retarea

182 CICS TS for VSE/ESA: CICS External Interfaces Guide

Table 19. External CICS interface trace entries (continued)

Point ID Module Lvl Type Data
EX 0806 DFHXCPRH Exc RESP shows TERMERR 1. Caller’s parameter list
2. Call type
3. Caller’s user name
4. Program name
5. Target CICS applid
EX 0904 DFHXCTRP Exc Overlength trace data field 1. XCTRP parameter list
EX 0905 DFHXCTRA Exc DFHXCTRA trace entry 1. User specified data
EX 1000 DFHXCPRH EX 1 Entry For INIT_USER commands:

1. Caller’s parameter list
2. Call type

3. Caller's user name

4. Caller’s register 14

For Allocate_Pipe requests:
Caller’s parameter list
Call type

Caller’s user name
CICS name

Allocate options
Caller’s register 14

ok wh~

requests:

Caller’s parameter list
Call type

Caller’s user name
CICS name

Pipe token

Caller’s register 14

or DPL requests:
Caller’s parameter list
Call type

Caller’s user name
CICS name

Pipe token

Program name
Caller’s register 14

Nookrwhd=T ODO0R~ON=

For Open, Close, and Deallocate

Chapter 16. Problem determination

183

Table 19. External CICS interface trace entries (continued)

Point ID

Module

Lvi

Type

Data

EX 1001

DFHXCPRH

EX 1

Exit

For INIT_USER, OPEN, CLOSE,
and DEALLOCATE requests:

1.
2.
3.
4

5.

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

Caller’s register14

For Allocate requests:

1.

2.
3.
4

oo

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

Pipe token

Caller’s register 14

For DPL requests:

PN~

Caller’s parameter list

Call type

Caller’s user name

Return codes and message
pointer

DPL return area

Caller’s register 14

EX 1010

DFHXCEIP

EX 1

Entry

o

agrOD =IO

Program name

Target CICS applid
Transaction 1D

Caller’s register 14

Up to the first 100 bytes of
COMMAREA (if passed)
COMMAREA length, if
COMMAREA passed

Data length, if COMMAREA
passed

EX 1011

DFHXCEIP

EX 1

Exit

ok wh~

N

EXEC retarea

Program name

Target CICS applid
Transaction 1D

Caller’s register 14

Up to the first 100 bytes of
COMMAREA (if passed)
COMMAREA length, if
COMMAREA passed

EX 2000

DFHXCPRH

EX 2

IRP_LOGON

Nooakrwh=

Caller’s parameter list
Call type

Caller’s user name
Target CICS applid
IRP userid

SLCB address
Connection name

184 CICS TS for VSE/ESA: CICS External Interfaces Guide

Table 19. External CICS interface trace entries (continued)

Point ID

Module

Lvi

Type

Data

EX 2001

DFHXCPRH

EX 2

IRP_CONN

Nooakrwh =~

Caller’s parameter list
Call type

Caller’s user name
Target CICS applid
IRP userid

IRP thread ID

SCCB address

EX 2002

DFHXCPRH

EX 2

IRP_DISC

a0~

Caller’s parameter list
Call type

Caller’s user name
Target CICS applid
Pipe token

EX 2003

DFHXCPRH

EX 2

IRP_LOGOFF

ahrwh -~

Caller’s parameter list
Call type

Caller’s user name
Pipe token

IRP userid

EX 2004

DFHXCPRH

EX 2

IRP_SWITCH

o0k wh =

Caller’s parameter list
Call type

Caller’s user name
Target CICS applid
IRP userid

IRP threadid

EX 2005

DFHXCPRH

EX 2

IRP_SWITCH_DATA

N

o0k wh~

User’s appl name

Pipe token

Request header

Bind data

UOWID/USERID FMH
Transformed DPL request to
CICS (up to 1000 bytes)
Final 1000 bytes of
transformed DPL request

EX 2006

DFHXCPRH

EX 2

IRP_DATA

Nookrwh~

Caller’s parameter list
Call type

Caller’s user name
Target CICS applid
Length of data returned
Data (first 1000 bytes)
Data (final 1000 bytes)

EX 2007

DFHXCPRH

EX 2

PRE_URM

PN~

o

Caller’s parameter list

Call type

Caller’s user name
Parameters passed to
DFHXCURM

URMINV, reason for calling
URM

URMCICS, target CICS applid
URMANCH, URM anchor
point address

Chapter 16. Problem determination

185

Table 19. External CICS interface trace entries (continued)

Point ID

Module

Lvi

Type

Data

EX 2008

DFHXCPRH

EX 2

POST_URM

pPOd~

o

o

Caller’s parameter list

Call type

Caller’s user name
Parameters passed to
DFHXCURM

URMINYV, reason for calling
URM

URMCICS, target CICS applid
URMANCH, URM anchor
point address

EX 3000

DFHXCEIP

Exc

ESTAEX_SETUP_ERROR

N —

Return area (20 bytes)
VSE/ESA return code

EX 3001

DFHXCEIP

Exc

ESTAEX_INVOKED

Return area (20 bytes)

EX 3002

DFHXCEIP

Exc

INV_CTYPE_ONL_INIT

Return area (20 bytes)
Call type

EX 3003

DFHXCEIP

Exc

INV_VNUM_ONL_INIT

Return area (20 bytes)
Version number

EX 3004

DFHXCEIP

Exc

INV_APPL_NAME_ON_INIT

Return area (20 bytes)
User name

EX 3005

DFHXCEIP

Exc

INV_CTYPE_ON_ALLOC

Return area (20 bytes)
Call type

EX 3006

DFHXCEIP

Exc

INV_VNUM_ON_ALLOC

Return area (20 bytes)
Version number

EX 3007

DFHXCEIP

Exc

INV_UTOKEN_ON_ALLOC

Return area (20 bytes)
User token

EX 3008

DFHXCEIP

Exc

INV_CTYPE_ON_OPEN

Return area (20 bytes)
Call type

EX 3009

DFHXCEIP

Exc

INV_VNUM_ON_OPEN

Return area (20 bytes)
Version number

EX 3010

DFHXCEIP

Exc

INV_UTOKEN_ON_OPEN

Return area (20 bytes)
User token

EX 3011

DFHXCEIP

Exc

INV_PTOKEN_ON_OPEN

Return area (20 bytes)
Pipe token

EX 3012

DFHXCEIP

Exc

INV_CTYPE_ON_DPL

Return area (20 bytes)
Call type

EX 3013

DFHXCEIP

Exc

INV_VNUM_ON_DPL

Return area (20 bytes)
Version number

EX 3014

DFHXCEIP

Exc

INV_UTOKEN_ON_DPL

Return area (20 bytes)
User token

EX 3015

DFHXCEIP

Exc

INV_PTOKEN_ON_DPL

N — N — N — N — N — NN — N — N — N — N — N — N — N — N = | =

Return area (20 bytes)
Pipe token

EX 3017

DFHXCEIP

Exc

INV_USERID_ON_DPL

Return area (20 bytes)
Userid

EX 3018

DFHXCEIP

Exc

PIPE_NOT_OPEN_ON_DPL

Return area (20 bytes)
Pipe token

EX 3019

DFHXCEIP

Exc

PIPE_MUST_CLOSE_ON_DPL

N =N =N =

Return area (20 bytes)
Pipe token

186 CICS TS for VSE/ESA: CICS External Interfaces Guide

Table 19. External CICS interface trace entries (continued)

Point ID Module Lvl Type Data

EX 3020 DFHXCEIP Exc INV_CTYPE_ON_CLOSE 1. Return area (20 bytes)
2. Call type

EX 3021 DFHXCEIP Exc INV_VNUM_ON_CLOSE 1. Return area (20 bytes)
2. Version number

EX 3022 DFHXCEIP Exc INV_UTOKEN_ON_CLOSE 1. Return area (20 bytes)
2. User token

EX 3023 DFHXCEIP Exc INV_PTOKEN_ON_CLOSE 1. Return area (20 bytes)
2. Pipe token

EX 3024 DFHXCEIP Exc INV_CTYPE_ON_DEALL 1. Return area (20 bytes)
2. Call type

EX 3025 DFHXCEIP Exc INV_VNUM_ON_DEALL 1. Return area (20 bytes)
2. Version number

EX 3026 DFHXCEIP Exc INV_UTOKEN_ON_DEALL 1. Return area (20 bytes)
2. User token

EX 3027 DFHXCEIP Exc INV_PTOKEN_ON_DEALL 1. Return area (20 bytes)
2. Pipe token

EX 3028 DFHXCEIP Exc PIPE_NOT_CLOSED_ON_DEALL |1. Return area (20 bytes)
2. Pipe token

EX 3029 DFHXCEIP Exc XCEIP_RETRYING

Return area (20 bytes)

Chapter 16. Problem determination

187

188 CICS TS for VSE/ESA: CICS External Interfaces Guide

Chapter 17. Response and reason codes returned on EXCI

calls

This chapter gives details of the reason codes for the responses returned on the

EXCI call interface.

Note: All numeric response and reason code values shown are in decimal.

See also "0S/390 API Return Codes” in section "VSE/Advanced Functions & SVC
Errors” of VSE/ESA Messages and Codes — Volume 1 for OS/390 return codes.

Reason code for response: OK

0 NORMAL

Explanation: Call completed normally.

Reason codes for response: WARNING

1 PIPE_ALREADY_OPEN

Explanation: An Open_Pipe request has been issued
for a pipe that is already open.

System Action: None. The pipe remains open.

User Response: If this response is unexpected,
investigate whether an incorrect pipe token has been
used on the Open_Pipe call.

2 PIPE_ALREADY_CLOSED

Explanation: A Close_Pipe request has been issued
for a pipe that is already closed.

System Action: The external CICS interface ignores
the request and the pipe remains closed.

User Response: |If the response is unexpected, check
that the Close_Pipe call is specifying the correct pipe
token.

4 WS_FREEMAIN_ERROR

Explanation: An attempt to FREEMAIN working
storage has resulted in a OS/390 FREEMAIN error.

System Action: The return code from the FREEMAIN
is returned in the EXCI subreason field-1. The
Initialize_User request continues unaffected.

User Response: |If the problem persists, take a dump
of the batch region and use the dump, together with the
return code from the OS/390 FREEMAIN to determine
why the FREEMAIN is failing.

5 XCPIPE_FREEMAIN_ERROR

Explanation: An attempt to FREEMAIN pipe storage
has resulted in an OS/390 FREEMAIN error.

© Copyright IBM Corp. 1994, 2000

System Action: The return code from the FREEMAIN
is returned in the EXCI subreason field-1. However, the
external CICS interface continues processing the
Deallocate_Pipe request. If the request fails with
another error, this reason code is overwritten.

User Response: If the problem persists, take a dump
of the client application program address space, and
use the dump, with the return code from the OS/390
FREEMAIN to determine why the FREEMAIN is failing.

6 IRP_IOAREA_FM_FAILURE

Explanation: An attempt to FREEMAIN an MRO I/O
area has resulted in an OS/390 FREEMAIN error.

System Action: The return code from the FREEMAIN
is returned in the EXCI subreason field-1, but the DPL
request continued to completion. Reason
IRP_IOAREA_FM_FAILURE is returned to your
application only if the DPL request completes, otherwise
it is overwritten by subsequent response and reason
codes.

User Response: If the problem persists, take a dump
of the batch region and use it with the return code from
the OS/390 FREEMAIN to determine why the
FREEMAIN is failing.

7 SERVER_TERMINATED

Explanation: The CICS session, on which the server
program has been executing, has been freed by CICS.

System Action: The CICS application server program
has been detached at some point in its processing, and
control is returned to the external CICS interface, which
writes a trace entry for this error.

User Response: The most likely reason for this error
is that the server program has caused CICS to

189

terminate, perhaps by an EXEC CICS PERFORM
SHUTDOWN command. During shutdown, CICS frees

EXCI sessions so that shutdown can complete.

Reason codes for response: RETRYABLE

202 NO_PIPE

Explanation: An attempt has been made to open a
pipe, but the target CICS system associated with the
pipe has no free receive sessions.

System Action: The Open_pipe call fails, and the
external CICS interface invokes the user-replaceable
module, DFHXCURM.

User Response: This situation can occur even if the
client application program has allocated (using
Allocate_Pipe calls) no more pipes than the number of
receive sessions defined on the target connection. This
is because CICS can be in the process of cleaning up a
pipe from a Close_Pipe request. For this reason, you
are recommended to specify a larger RECEIVECOUNT
value than is theoretically necessary when defining the
SESSIONS resource definition to CICS. The application
program can reissue the Open_Pipe request.

203 (on Open_Pipe call)
NO_CICS

Explanation: An attempt has been made to open a
pipe but the target CICS system is not available, or

hasn’t yet opened IRC, or the target connection is out of
service, or the relevant EXCI connection definition is not
installed in the target CICS.

System Action: The open pipe request fails, and the
external CICS interface invokes the user-replaceable
module, DFHXCURM.

User Response: If subreason field-1 is non-zero (the
IRP response code (R15)), subreason field-2 contains
the IRP reason code. For an explanation of the IRP
return codes, see the interregion control blocks in the
manual. The IRP return codes are in
the DFHIRSPS copybook, listed under the heading IRC.

When you have corrected the problem, your client
application program can reissue the Open_Pipe call.

Reason codes for response: USER_ERROR

401 INVALID_CALL_TYPE

Explanation: An invalid call-type parameter value is
specified on this EXCI request.

System Action: The request is rejected.

User Response: Check your EXCI client program and
ensure the call_type parameter specifies the appropriate
value for the EXCI call, as follows.

Initialize_User

Allocate_Pipe

Open_Pipe

Close_Pipe

Deallocate_Pipe

DPL

O hhWN =

402 INVALID_VERSION_NUMBER

Explanation: The version_number parameter does not
specify a value of 1.

System Action: The request is rejected.

User Response: Check the client application program
and ensure that all EXCI calls specify the value of 1 for
the version number.

190 CICS TS for VSE/ESA: CICS External Interfaces Guide

403 INVALID_APPL_NAME

Explanation: The user_name parameter consists of all
blank characters (X'40'").

System Action: The call is rejected.

User Response: Change the application program to
specify a valid, non-blank user name.

404 INVALID_USER_TOKEN

Explanation: The client application program has
issued an EXCI request using a user token that is
unknown to the external CICS interface.

System Action: The request is rejected.

User Response: The Initialize_User call returns a
4-byte token that must be used on all further requests
for the that user. Check the client application program
and correct the error to ensure that the correct token is
passed.

405 PIPE_NOT_CLOSED

Explanation: A Deallocate_Pipe request has been
issued against a pipe that has not yet been closed.

System Action: The external CICS interface ignores

the request and the pipe remains open.

User Response: Check the client application program,
and ensure that the Deallocate_Pipe request is
intended. If so, issue a Close_Pipe request for the pipe
before issuing the Deallocate_Pipe request.

406 PIPE_NOT_OPEN

Explanation: A DPL call has been issued on a pipe
that is not open.

System Action: The external CICS interface rejects
the DPL request.

User Response: Check the client application program,
and ensure that an Open_Pipe request is issued before
using the pipe on a DPL request. If an Open_Pipe has
been issued by the application program, check that it
has not been closed inadvertently before all the DPL
requests have been made.

407 INVALID_USERID

Explanation: A DPL request has been issued with a
USERID parameter that consists of all blanks.

System Action: The DPL request is rejected.

User Response: Check the EXCI client program and
ensure that the DPL request passes a valid USERID
parameter. If you don’t want to specify a userid, code
the call parameter list with a null address for userid. If
you pass a null address, the external CICS interface
passes the userid under which the client application
program is running (the batch region’s userid).

408 INVALID_UOWID

Explanation: A DPL request has been issued with a
uowid parameter that has invalid length fields.

System Action: The DPL request is rejected.

User Response: Check the client application program
and ensure that the DPL request passes a valid uvowid
parameter. If you don’t want to specify a unit of work id,
code the call parameter list with a null address for
uowid, in which case the external CICS interface
generates a unit of work id for you.

409 INVALID_TRANSID

Explanation: A DPL request has been issued with a
transid parameter that consists of all blanks.

System Action: The DPL request is rejected.

User Response: Check the client application program
and ensure that the transid parameter is specified
correctly or has not been overwritten in some way. If
you don’'t want to specify your own transid, code the call
parameter list with a null address for transid, in which
case the external CICS interface uses the default CICS
mirror transaction, CSMI.

410 DFHMEBM_LOAD_FAILED

Explanation: During Initialize_User processing, the
external CICS interface attempted to load the main
message module in preparation for issuing external
CICS interface messages, and the load of this module
failed.

System Action: The Initialize_User call is rejected.
The return code from the OS/390 load macro (R15) is
returned in the subreason field-1. The external CICS
interface handles the error, and returns the abend (R0)
that would have occurred in the subreason field-2.

User Response: Using the OS/390 return code,
determine why the load failed. The most likely reason is
that the message module, DFHMEBM, is not in any
library included in the LIBDEF PHASE, SEARCH library
concatenation of the batch job. Ensure the PRD1.BASE
library is included in the LIBDEF PHASE, SEARCH
library concatenation, and restart the client application
program.

41 DFHMET4E_LOAD_FAILED

Explanation: The load of message module,
DFHMET4E, has failed. During Initialize_User
processing, the external CICS interface attempted to
load its message table in preparation for issuing
messages. The load of this module failed.

System Action: The Initialize_User call is rejected.
The return code from the OS/390 load macro (R15) is
returned in the subreason field-1. The external CICS
interface handles the error, and returns the abend (R0)
that would have occurred in the subreason field-2.

User Response: Using the OS/390 reason code,
determine why the load failed. The most likely reason is
that the message table, DFHMETA4E, is not in any
library included in the LIBDEF PHASE, SEARCH library
concatenation of the batch job. Ensure the PRD1.BASE
library is included in the LIBDEF PHASE, SEARCH
library concatenation, and restart the client application
program.

412 DFHXCURM_LOAD_FAILED

Explanation: During Initialize_User processing, the
external CICS interface attempted to load the
user-replaceable module, DFHXCURM. The load of this
module failed.

System Action: The Initialize_User call is rejected.
The return code from the OS/390 load macro (R15) is
returned in the subreason field-1. The external CICS
interface handles the error, and returns the abend (RO)
that would have occurred in the subreason field-2.

User Response: Using the OS/390 reason code,
determine why the load failed. The most likely reason is
that module DFHXCURM is not in any library included
in the LIBDEF PHASE, SEARCH library concatenation
of the batch job. Ensure the library containing the

Chapter 17. Response and reason codes returned on EXCl calls 191

module is included in the LIBDEF PHASE, SEARCH
library concatenation, and restart the client application
program.

CONNECTION and SESSIONS resource definitions.
You must close and reopen the pipe before reissuing
the DPL request.

413 DFHXCTRA_LOAD_FAILED

Explanation: During Initialize_User processing, the
external CICS interface attempted to load the trap
module (DFHXCTRA). The load of this module has
failed.

System Action: The Initialize_User call is rejected.
The return code from the OS/390 load macro (R15) is
returned in the subreason field-1. The external CICS
interface handles the error, and returns the abend (RO0)
that would have occurred in the subreason field-2.

User Response: Using the OS/390 reason code,
determine why the load failed. The most likely reason is
that DFHXCTRA is not in any library included in the
LIBDEF PHASE, SEARCH library concatenation of the
batch job. Ensure the library containing the module is
included in the LIBDEF PHASE, SEARCH library
concatenation, and restart the client application
program.

414 IRP_ABORT_RECEIVED

Explanation: Whilst processing a DPL request, an
error occurred in the CICS server region, resulting in an
abort FMH7 flow being returned to the external CICS
interface.

System Action: A message is returned to the client
application program. This is the message that would
have been issued to the terminal if the server program
had been initiated from a terminal. A pointer to the
message is returned to the client application program in
the message pointer field of the EXCI return area. See
the description of the EXCI return areas for the exact
definition of the message format. The pipe is put into a
“must close” state.

User Response: Use the message to determine the
cause of the error. A typical example is where the server
transaction cannot be attached, either because is
disabled, or it has not been defined, or because of a
security failure. Correct the problem, close and reopen
the pipe, and reissue the DPL request.

415 INVALID_CONNECTION_DEFN

Explanation: A DPL request has been rejected by
CICS because the target connection is not defined for
use by an external CICS client application program.

System Action: The DPL request is rejected and the
pipe is put into a “must close” state.

User Response: The most likely reason for this is that
the connection definition in the CICS server region has
been defined incorrectly as a CICS-to-CICS MRO
connection, instead of an EXCI connection. Ensure that
PROTOCOL(EXCI) is specified on the appropriate

192 CICS TS for VSE/ESA: CICS External Interfaces Guide

416 INVALID_CICS_RELEASE

Explanation: A DPL request has been rejected by the
target CICS server region because it doesn’t recognize
the request.

System Action: The DPL call is rejected and the pipe
is put into a “must close” state.

User Response: The most likely reason for this is that
the client application program has specified a target
CICS server region that is not a CICS Transaction
Server for VSE/ESA Release 1 region. CICS regions
earlier than this do not recognize EXCI call requests.
Correct the problem, close and reopen the pipe and
then reissue the DPL request.

417 PIPE_MUST_CLOSE

Explanation: A DPL request has been issued on a
pipe that is in a “must close” state.

System Action: The DPL request is rejected.

User Response: Some EXCI errors are serious
enough to require that the pipe be closed and reopened
in order to restore the pipe to a point where it can be
used for further DPL requests. Others, more minor
errors, allow further calls without closing and reopening
the pipe. A previous error on this pipe has been of the
more serious variety and the pipe is now in a “must
close” state. Close and reopen the pipe and reissue the
DPL request.

418 INVALID_PIPE_TOKEN

Explanation: An Open_Pipe, Close_Pipe,
Deallocate_Pipe, or DPL request has been issued, but
the pipe token passed on the call is either not a valid
pipe, or is not a valid pipe allocated for this user (that is,
there is mismatch between the user token and the pipe
token).

System Action: The call is rejected.

User Response: Ensure that the pipe token has not
been overwritten and is being passed correctly on the
call. Also ensure there is no mismatch between the user
token and the pipe token.

419 CICS_AFCB_PRESENT

Explanation: An Initialize_User request has been
issued on a VSE task that has already been used by
CICS. The external CICS interface cannot share a VSE
task with CICS, ensuring that a CICS application
program cannot issue EXCI requests.

System Action: The Initialize_User request is
rejected.

User Response: To use the external CICS interface,
you must create a new VSE subtask (or daughter
subtask), and issue the EXCI calls under that unique
subtask.

420 DFHXCOPT_LOAD_FAILED

Explanation: During Initialize_User processing, the
external CICS interface attempted to load its options
module, DFHXCOPT. The load of this module failed.

System Action: The Initialize_User call is rejected.
The return code from the OS/390 load macro (R15) is
returned in the subreason field-1. The external CICS
interface handles the error, and returns the abend (R0)
that would have occurred in the subreason field-2.

User Response: Using the OS/390 reason code,

determine why the load failed. The most likely reason is
that DFHXCOPT is not in any library included in the
LIBDEF PHASE, SEARCH library concatenation of the
batch job. Correct the problem and restart the client
application program.

422 SERVER_ABENDED

Explanation: Whilst processing a DPL request, the
CICS server application program abended without
handling the error.

System Action: The server application program is
abended and backout out. The abend code is returned
in the abend code field of the EXCI return area.

User Response: Determine why the server program
abended and fix the problem.

Reason codes for response: SYSTEM_ERROR

601 WS_GETMAIN_ERROR

Explanation: During Initialize_User processing, a
GETMAIN for working storage failed.

System Action: Processing cannot continue without
working storage, so the request is terminated. At this
point the external CICS interface trace and dump
services are not available to provide diagnostic
information, therefore EXCI issues an OS/390 abend
(U0408) to force a SYSDUMP. The return code from the
0S/390 GETMAIN request is returned in the return
area.

User Response: Locate the GETMAIN return code in

the dump, and use this and the rest of the dump to

determine why the GETMAIN failed. Possible reasons

are:

» The ALLOC size specified for the partition is too
small

» The SIZE parameter is too large, restricting the
amount of storage available for the OS/390
GETMAIN.

Correct the ALLOC or SIZE parameters and restart the
client application.

602 XCGLOBAL_GETMAIN_ERROR

Explanation: During Initialize_User processing, a
GETMAIN failed for a critical control block
(XCGLOBAL).

System Action: Processing cannot continue without
this control block, and the request is terminated. At this
point the external CICS interface trace and dump
services are not available to provide diagnostic
information, therefore EXCI issues an OS/390 abend
(U0403) to force a SYSDUMP. The return code from the
0S/390 GETMAIN request is returned in the return
area.

User Response: Locate the GETMAIN return code in

the dump, and use this and the rest of the dump to
determine why the GETMAIN failed. Possible reasons
are:

* The ALLOC size specified for the partition is too
small

» The SIZE parameter is too large, restricting the
amount of storage available for the OS/390
GETMAIN.

Correct the ALLOC or SIZE parameters and restart the
client application.

603 XCUSER_GETMAIN_ERROR

Explanation: During Initialize_User processing, a
GETMAIN request failed for the user control block
(XCUSER).

System Action: Initialize_User processing is
terminated. The return code from the GETMAIN is
returned in subreason field-1 of the return area. The
external CICS interface issues message DFHEX0003
and issues an OS/390 abend (0410) to force a
SYSDUMP.

User Response: Use the return code from the
GETMAIN, with the dump, to determine why the
GETMAIN failed. Possible reasons are:

* The ALLOC size specified for the partition is too
small

* The SIZE parameter is too large, restricting the
amount of storage available for the OS/390
GETMAIN.

Correct the ALLOC or SIZE parameters and restart the
client application.

604 XCPIPE_GETMAIN_ERROR

Explanation: During Allocate_Pipe processing, a
GETMAIN request for the pipe control block (XCPIPE)
failed.

Chapter 17. Response and reason codes returned on EXCl calls 193

System Action: Allocate_Pipe processing is
terminated. The return code from the GETMAIN is
returned in subreason field-1 of the EXCI return area.
The external CICS interface issues message
DFHEXO0003, and takes a system dump.

User Response: Use the return code from the
GETMAIN, and the dump, to determine why the
GETMAIN failed. Possible reasons are:

* The ALLOC size specified for the partition is too
small

* The SIZE parameter is too large, restricting the
amount of storage available for the OS/390
GETMAIN.

Correct the ALLOC or SIZE parameters and restart the
client application.

605 VERIFY_BLOCK_GM_ERROR

Explanation: During Initialize_User processing, a
GETMAIN failed for an EXCI internal control block.

System Action: |Initialize_User processing is
terminated. The return code from the GETMAIN is
returned in the subreason field-1 of the EXCI return
area. This error occurs before EXCI dumping services
are initialized, Therefore EXCI issues an OS/390 abend
(U0409) to force a SYSDUMP The return code from the
0S/390 GETMAIN request is returned in the return
area.

User Response: Locate the GETMAIN return code in
the dump, and use this and the rest of the dump to
determine why the GETMAIN failed. Possible reasons
are:

» The ALLOC size specified for the partition is too
small

* The SIZE parameter is too large, restricting the
amount of storage available for the OS/390
GETMAIN.

Correct the ALLOC or SIZE parameters and restart the
client application.

607 CICS_SVC_CALL_FAILURE

Explanation: During Initialize_User processing, a call
to the currently installed CICS SVC failed.

System Action: The return code from the CICS SVC
is returned in the subreason field-1 of the EXCI return
area. This error occurs before the external CICS
interface dump services are initialized, therefore EXCI
issues an OS/390 user abend (0406) to force a
SYSDUMP.

User Response: Contact your IBM support center for
assistance, with the return code and the dump
available.

194 CICS TS for VSE/ESA: CICS External Interfaces Guide

608 IRC_LOGON_FAILURE

Explanation: During Allocate_Pipe processing, an
attempt by the external CICS interface to LOGON to
DFHIRP failed.

System Action: The Allocate_Pipe request fails.
DFHIRP returns a R15 value to subreason field-1 and a
RO value (the reason code) to subreason field-2. The
first two bytes of subreason field-1 are the return code
qualifier and the last two bytes are the return code itself.

User Response: For an explanation of the IRP return
codes, see the interregion control blocks in the [CIC3

manual. The IRP return codes are in the
DFHIRSPS copybook, listed under the heading IRC.
Use the return codes to determine why the logon failed,
or contact your IBM support personal with details of the
failure.

609 IRC_CONNECT_FAILURE

Explanation: During Open_Pipe processing, an
attempt to connect to the target CICS system failed.

System Action: The Open_Pipe request fails.
DFHIRP returns a R15 value to subreason field-1 and a
RO value (the reason code) to subreason field-2. The
first two bytes of subreason field-1 are the return code
qualifier and the last two bytes are the return code itself.

User Response: For an explanation of the IRP return

codes, see the interregion control blocks in the
manual. The IRP return codes are in the

DFHIRSPS copybook, listed under the heading IRC.

Use the return code to determine why the logon failed,
and reissue the open pipe request.

Note: This error is not caused by the target CICS being
unavailable, which is returned as a RETRYABLE
condition (NO_CICS).

610 IRC_DISCONNECT_FAILURE

Explanation: During Close_Pipe processing, CICS
issued a DFHIRP disconnect call to terminate the
connection to CICS. This request has failed.

System Action: The call fails and the pipe is left
open. DFHIRP returns a R15 value to subreason field-1
and a RO value (the reason code) to subreason field-2.
The first two bytes of subreason field-1 are the return
code qualifier and the last two bytes are the return code
itself.. The external CICS interface takes a system
dump.

Although the disconnect failed, it is possible that the
pipe is still connected to CICS. However, all connections
are automatically disconnected at the end of the batch
program.

User Response: For an explanation of the IRP return
codes, see the interregion control blocks in the CICS

Data Aread manual. The IRP return codes are in the
DFHIRSPS copybook, listed under the heading IRC.
Use the return code and the dump to determine the
cause of the error.

611 IRC_LOGOFF_FAILURE

Explanation: During Deallocate_Pipe processing,
CICS issued a DFHIRP logoff call. This request failed.

System Action: The Deallocate_Pipe call fails and the
pipe remains allocated. DFHIRP returns a R15 value to
subreason field-1 and a RO value (the reason code) to
subreason field-2. The first two bytes of subreason
field-1 are the return code qualifier and the last two
bytes are the return code itself. The external CICS
interface takes a system dump.

Note: Because it remains allocated, the pipe is
available for further calls. Any storage associated
with the pipe is not freed. However, this storage
is freed at the end of the client application
program.

User Response: For an explanation of the IRP return
codes, see the interregion control blocks in the lcicd

manual. The IRP return codes are in the
DFHIRSPS copybook, listed under the heading IRC.
Use the return code and the dump to determine the
cause of the error.

612 TRANSFORM_1_ERROR

Explanation: During DPL processing, whilst
processing the data in preparation for sending to CICS,
an internal call to program DFHXFQ resulted in an error.

System Action: The DPL request is terminated.

User Response: The return code from the call is
returned in the EXCI subreason field-1, and the external
CICS interface takes a system dump.

This is an external CICS interface error. Contact your
IBM support center with details of the return code and
the dump.

613 TRANSFORM_4_ERROR

Explanation: During DPL processing, whilst
processing the data returned by the CICS server region,
an internal call to module DFHXFQ resulted in an error.

System Action: The DPL request is terminated. Note
that the server application program has executed. The
return code from the call to DFHXFQ is returned in the
EXCI subreason field-1. This return code corresponds to
any EIBRCODE information that was available. The
external CICS interface takes a system dump.

User Response: This is an external CICS interface
error. Contact your IBM support center with details of
the return code and the dump.

614 IRP_NULL_DATA_RECEIVED

Explanation: During DPL processing, a request has
been sent to the target CICS and this target CICS has
replied without returning any data.

System Action: The DPL processing is terminated
and the external CICS interface takes a system dump.

User Response: This is an internal protocol error.
Contact your IBM support center with details of the
dump.

615 IRP_NEGATIVE_RESPONSE

Explanation: An internal protocol error has occurred
whilst trying to communicate with the target CICS
region.

System Action: The DPL request fails, the pipe is put
into a “must close” state, and the external CICS
interface takes a system dump.

User Response: This is an external CICS interface
error. Keep the dump and contact your IBM support
center.

Note: The pipe is in a “must close” state. Before
attempting further calls, the pipe must first be
closed and reopened.

616 IRP_SWITCH_PULL_FAILURE

Explanation: An internal protocol error has occurred
whilst trying to communicate with the target CICS
region.

System Action: The DPL request fails, the pipe is put
into a “must close” state, and the external CICS
interface takes a system dump. The IRP return code
(R15) and reason code if any (R0) are returned in the
EXCI subreason field-1 and subreason field-2.

User Response: This is an external CICS interface
error. Keep the dump and contact your IBM support
center.

Note: The pipe is in a “must close” state, and before
attempting further DPL calls, the pipe must first
be closed and reopened.

617 IRP_IOAREA_GM_FAILURE

Explanation: During DPL processing, an OS/390
GETMAIN request for an internal control block failed.

System Action: The DPL request is terminated. The
return code from the GETMAIN is returned in the EXCI
subreason field-1.

Note: This error occurs whilst processing the data
returned by CICS, after the server application

Chapter 17. Response and reason codes returned on EXCl calls 195

program has completed execution. This error
results in the pipe being put into a “must close”
state.

User Response: Use the return code to determine
why the GETMAIN failed. Possible reasons are:

» The ALLOC size specified for the partition is too
small

* The SIZE parameter is too large, restricting the
amount of storage available for the OS/390
GETMAIN.

Correct the ALLOC or SIZE parameters and restart the
client application.

619 IRP_BAD_IOAREA

Explanation: During a DPL request, an I/O area has
been supplied to DFHIRP that could not be used.

System Action: The DPL request is terminated, the
pipe is forced into a “must close” state, and the external
CICS interface takes a system dump.

User Response: This is an external CICS interface
error. Contact the IBM support center with details of the
return code and the dump.

Note: The pipe is in a “must close” state after this error,
and before attempting further calls must first be
closed and reopened.

620 IRP_PROTOCOL_ERROR

Explanation: An internal protocol error has occurred
whilst trying to communicate with the target CICS
system.

System Action: The DPL request is terminated, the
pipe is forced into a “must close” state, and the external
CICS interface takes a system dump.

User Response: This is an external CICS interface
error. Keep the dump and contact your IBM support
center.

Note: The pipe is in a “must close” state after this error,
and before attempting further calls must first be
closed and reopened.

621 PIPE_RECOVERY_FAILURE

Explanation: An error has occurred during an open
pipe request. The external CICS interface attempts to
recover by disconnecting the pipe again. During this
disconnection, further errors have occurred.

System Action: The Open_Pipe call is terminated and
the pipe is placed in a “must close” state. The return
code from DFHIRP is returned in the EXCI subreason
field-1, and a system dump is taken.

User Response: For an explanation of the IRP return
codes, see the interregion control blocks in the lcicd

196 CICS TS for VSE/ESA: CICS External Interfaces Guide

[Data Aread manual. The IRP return codes are in the
DFHIRSPS copybook, listed under the heading IRC.
Use the dump and IRP return codes to determine why
the disconnect failed. You may also want to use the
EXCI trace to determine the earlier error that caused
the open pipe recovery routine to be invoked.

Note: The pipe is now in a “must close” state and if
further calls are to be issued, the pipe must be
closed and reopened again first.

622 ESTAEX_SETUP_FAILURE

Explanation: In order to protect itself from possible
program checks the external CICS interface establishes
an OS/390 ESTAEX. In this case, the OS/390 ESTAEX
macro has failed.

System Action: The call terminated, and the return
code from the OS/390 ESTAEX command is returned in
the EXCI subreason field-1. This error may occur before
EXCI dump services are initialized, therefore an EXCI
issues an 0OS/390 abend (U0402) to force a SYSDUMP.

User Response: Use the return code and the dump to
determine why the ESTAEX command failed. This may
be an internal EXCI error and if the problem persists,
contact your IBM support center.

623 ESTAEX_INVOKED

Explanation: A program check is encountered during
call processing, and the ESTAEX is invoked.

System Action: The program check is handled by the
EXCI ESTAEX and an attempt is made to recover to a
state that can support further EXCI calls. The OS/390
abend code is returned in the EXCI subreason field-1 of
the return area. To aid further diagnosis, a SYSDUMP is
taken.

User Response: Use the return code and the dump to
determine why a program check occurred in the
external CICS interface. The most likely reason for this
is that the EXCI code abended whilst trying to access
the client program’s parameters. Use the EXCI trace to
determine if any of the parameters might have caused
this error. If this is not the case, this may be an error in
the external CICS interface. Keep the dump and contact
your IBM support center.

624 SERVER_TIMEDOUT

Explanation: A DPL request has been issued and the
target server program has executed in the CICS server
region. However, the server program has been
executing for longer than the time-out value specified in
the DFHXCOPT table.

System Action: The external CICS interface stops
waiting for the server program to complete. Because the
server program might complete some time after the
time-out, and try to respond to the DPL call, the pipe is

forced into a “must close” state.

User Response: Determine why the server application
program timed out. Either there is a problem with the
server program itself (for example, it might be in a loop),
or the timeout value is too low.

625 STIMER_SETUP_FAILURE

Explanation: In order to provide a TIMEOUT
mechanism, the external CICS interface issues an
0S/390 STIMERM macro call. This call has failed.

System Action: The return code from the call is
returned in the subreason field-1 of the EXCI return
area. The DPL request is terminated and the external
CICS interface takes a system dump. The pipe is
placed in a “must close” state.

User Response: Use the OS/390 return code and the
dump to determine why the call failed. This could be an
external CICS interface error. Contact your IBM support
center with details of the dump.

Note: The pipe is in a “must close” state after this error,
and before attempting further calls must first be
closed and reopened.

626 STIMER_CANCEL_FAILURE

Explanation: On successful completion of a DPL
request, the cancel of an STIMERM request issued to
check the TIMEOUT value has failed with an error.

System Action: The return code from the STIMERM
CANCEL is returned in the subreason field-1 of the
EXCI return area. The pipe is placed in a “must close”
state, and the external CICS interface takes a system
dump.

User Response: Use the return code and the dump to
determine why the OS/390 STIMERM CANCEL
command failed. This could be an external CICS
interface error. Contact your IBM support center with
details of the dump.

Note: The pipe is in a “must close” state after this error,
and before attempting further calls must first be
closed and reopened.

628 IRP_LEVEL_CHECK_FAILURE

Explanation: The release level of the module DFHIRP
is not at the same, or higher, level than the release level
of the external CICS interface.

System Action: The Allocate_pipe request is
terminated. The IRP return code (R15) is returned in the
EXCI subreason field-1, and the function level of
DFHIRP being used is returned in the EXCI subreason
field-2. Subreason field-2 is only meaningful if
subreason field-1 is zero. The external CICS interface
takes a system dump.

User Response: Check the level of the DFHIRP
module installed in the LPA. Ensure that it is at least the
same as the external CICS interface. The installed level
of DFHIRP must be the highest level of CICS or
external CICS interface in use in the VSE/ESA image.
For more details about installing DFHIRP, see the %

629 SERVER_PROTOCOL_ERROR

Explanation: A response to a DPL request has been
returned by CICS but the external CICS interface does
not understand the response.

System Action: The DPL request is terminated and
the external CICS interface takes a system dump.

User Response: Use the dump to determine why the
response was in error. The most likely reason for this is
that the CICS application server program was not
running under the control of a CICS mirror task. This
can happen if the transaction definition named by the
transid parameter on the DPL call does not specify
DFHMIRS as the program name. This would cause
unidentified responses being sent from the CICS server
region.

Chapter 17. Response and reason codes returned on EXCl calls 197

198 CICS TS for VSE/ESA: CICS External Interfaces Guide

Chapter 18. Messages and Codes

For details of all messages and abend codes for the external CICS interface, see
the following manuals:

VSE/ESA Messages and Codes — Volume 1

VSE/ESA Messages and Codes — Volume 2
VSE/ESA Messages and Codes — Volume 3

© Copyright IBM Corp. 1994, 2000 199

200 cCICS TS for VSE/ESA: CICS External Interfaces Guide

Part 4. Appendixes

© Copyright IBM Corp. 1994, 2000 201

202 CICS TS for VSE/ESA: CICS External Interfaces Guide

Appendix. Routing program-link requests

Important

For detailed information about routing program-link requests, see the cics
Intercommunication Guide. This appendix is an overview of how program-link
requests received from outside CICS can be routed to other regions.

“Traditional” CICS-to-CICS distributed program link (DPL) calls, instigated by EXEC
CICS LINK PROGRAM commands, can be “daisy-chained” from region to region,
simply by defining the program as remote in each region except the last (server)
region, where it is to execute. The same applies to program-link requests received
from outside CICS. For example, all of the following types of program-link request
can be routed:
+ Calls received from:

— CICS Web support

— The CICS Transaction Gateway

+ Calls from external CICS interface (EXCI) client programs

» External Call Interface (ECI) calls from any of the CICS Client workstation
products

 Distributed Computing Environment (DCE) remote procedure calls (RPCs)
* ONC/RPC calls.

Static routing

A program-link request received from outside CICS can be statically routed to a
remote CICS region by specifying the name of the remote region on the
REMOTESYSTEM option of the installed program definition.

Dynamic routing

A program-link request received from outside CICS can be dynamically routed by:
» Defining the program to CICS as DYNAMIC(YES)
» Coding your dynamic routing program to route the request.

© Copyright IBM Corp. 1994, 2000 203

204 CICS TS for VSE/ESA: CICS External Interfaces Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or setrvice.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS 1S” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore this statement may
not apply to you.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Subject to IBM’s valid
intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, are the responsibility of the
user.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact Laboratory Counsel, MP151, IBM
United Kingdom Limited, Hursley Park, Winchester, Hampshire, England SO21 2JN.

© Copyright IBM Corp. 1994, 2000 205

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing,
IBM Corporation, 500 Columbus Avenue, Thornwood, New York 10594, U.S.A.

Programming interface information

This book is intended to help you use the external interfaces provided by the CICS
Transaction Server for OS/390. This book documents General-use Programming
Interface and Associated Guidance Information provided by CICS.

General-use programming interfaces allow the customer to write programs that
obtain the services of CICS.

This book also documents Product-sensitive Programming Interface and Associated
Guidance Information and Diagnosis, Modification or Tuning Information provided by
CICS.

Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of
CICS. Use of such interfaces creates dependencies on the detailed design or
implementation of the IBM software product. Product-sensitive programming
interfaces should be used only for these specialized purposes. Because of their
dependencies on detailed design and implementation, it is to be expected that
programs written to such interfaces may need to be changed in order to run with
new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified, where it occurs, by an introductory statement to a chapter or section.

Diagnosis, Modification, or Tuning Information is provided to help you diagnose
problems in your CICS system.

Note: Do not use this Diagnosis, Modification, or Tuning Information as a
programming interface.

Diagnosis, Modification, or Tuning Information is identified, where it occurs, by an
introductory statement to a chapter or section.

Trademarks and service marks

The following terms, used in this publication, are trademarks or service marks of
IBM Corporation in the United States or other countries:

BookManager IBM MVS/ESA
C/370 IBMLink 0S/390
CICS IMS OpenEdition
CICS/ESA MQ RACF

DB2 MQSeries VTAM

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

206 CICS TS for VSE/ESA: CICS External Interfaces Guide

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

Notices 207

208 CICS TS for VSE/ESA: CICS External Interfaces Guide

Bibliography

CICS Transaction Server for VSE/ESA Release 1 Library

Evaluation and planning
[CiCS Release Guidd Gcaa1aad
[CICS Report Cantraller Planning Guidd BCa3-1041
[CICS Enhancements Guidd Gcaasz63
General
[CiCS Master Inded BCaz-16ad
[CICS Trace Entries Handbaok BCa4-5554
[CICS User's Handbaok Bx33-:6101
m} (softcopy only) Gcaz-164d
Administration
[CICS Supplied Transactiond BC33-1654
Programming
[CICS System Programming Referencd BC33-165d
BEXX Guidd BCa4-5764
Diagnosis
[CICS Messages and Coded BC33-:679d
[CICS Diagnosis Referencd y33-6084
[CICS Data Aread Cya33-608d
[CICS Supplementary Data Aread [Y33-6087
Communication
[CICS Internet Guidd BCa4-5764
Special topics
ICICS Recavery and Restart Guide BCa3-166d
[CICS Perormance Guidd BCa3-1667
[CICS Shared Data Tables Guidd GCaa1e6d
lCiCs Security Guicd
[CICS External Interfaces Guidd BCaz-166d
[CICS XRE Guidd BCa3-1671
[CICS Repart Contraller User's Guidd BCa4-562d
CICS Clients
[administratiod

© Copyright IBM Corp. 1994, 2000 209

210 cCICS TS for VSE/ESA: CICS External Interfaces Guide

Books from VSE/ESA 2.5 base program libraries

VSE/ESA Version 2 Release 5

Book title Order number
Administration SC33-6705
Diagnosis Tools SC33-6614
Extended Addressability SC33-6621
Guide for Solving Problems SC33-6710
Guide to System Functions SC33-6711
Installation SC33-6704
Licensed Program Specification GC33-6700
Messages and Codes Volume 1 SC33-6796
Messages and Codes Volume 2 SC33-6798
Messages and Codes Volume 3 SC33-6799
Networking Support SC33-6708
Operation SC33-6706
Planning SC33-6703
Programming and Workstation Guide SC33-6709
System Control Statements SC33-6713
System Macro Reference SC33-6716
System Macro User’s Guide SC33-6715
System Upgrade and Service SC33-6702
System Utilities SC33-6717
TCP/IP User’s Guide SC33-6601
Turbo Dispatcher Guide and Reference SC33-6797
Unattended Node Support SC33-6712
e-business Connectors User's Guide SC33-6719

High-Level Assembler Language (HLASM)

Book title Order number
General Information GC26-8261
Installation and Customization Guide SC26-8263
Language Reference SC26-8265
Programmer’s Guide SC26-8264

© Copyright IBM Corp. 1994, 2000

211

Language Environment for VSE/ESA (LE/VSE)

Book title Order number
C Run-Time Library Reference SC33-6689

C Run-Time Programming Guide SC33-6688
Concepts Guide GC33-6680
Debug Tool for VSE/ESA Fact Sheet GC26-8925
Debug Tool for VSE/ESA Installation and Customization Guide SC26-8798
Debug Tool for VSE/ESA User’'s Guide and Reference SC26-8797
Debugging Guide and Run-Time Messages SC33-6681
Diagnosis Guide SC26-8060
Fact Sheet GC33-6679
Installation and Customization Guide SC33-6682
LE/VSE Enhancements SC33-6778
Licensed Program Specification GC33-6683
Programming Guide SC33-6684
Programming Reference SC33-6685
Run-Time Migration Guide SC33-6687
Writing Interlanguage Communication Applications SC33-6686
VSE/ICCF

Book title Order number
Adminstration and Operations SC33-6738
User’s Guide SC33-6739
VSE/POWER

Book title Order number
Administration and Operation SC33-6733
Application Programming SC33-6736
Networking Guide SC33-6735
Remote Job Entry User’s Guide SC33-6734
VSE/VSAM

Book title Order number
Commands SC33-6731
User’s Guide and Application Programming SC33-6732

212 CICS TS for VSE/ESA: CICS External Interfaces Guide

VTAM for VSE/ESA

Book title Order number
Customization LY43-0063
Diagnosis LY43-0065
Data Areas LY43-0104
Messages and Codes SC31-6493
Migration Guide GC31-8072
Network Implementation Guide SC31-6494
Operation SC31-6495
Overview GC31-8114
Programming SC31-6496
Programming for LU6.2 SC31-6497
Release Guide GC31-8090
Resource Definition Reference SC31-6498

Books from VSE/ESA 2.5 base program libraries

213

214 CICS TS for VSE/ESA: CICS External Interfaces Guide

Books from VSE/ESA 2.5 optional program libraries

C for VSE/ESA (C/VSE)

Book title Order number
C Run-Time Library Reference SC33-6689
C Run-Time Programming Guide SC33-6688
Diagnosis Guide GC09-2426
Installation and Customization Guide GC09-2422
Language Reference SC09-2425
Licensed Program Specification GC09-2421
Migration Guide SC09-2423
User’s Guide SC09-2424

COBOL for VSE/ESA (COBOL/VSE)

Book title

Order number

Debug Tool for VSE/ESA Fact Sheet GC26-8925
Debug Tool for VSE/ESA Installation and Customization Guide SC26-8798
Debug Tool for VSE/ESA User’s Guide and Reference SC26-8797
Diagnosis Guide SC26-8528
General Information GC26-8068
Installation and Customization Guide SC26-8071
Language Reference SC26-8073
Licensed Program Specifications GC26-8069
Migration Guide GC26-8070
Migrating VSE Applications To Advanced COBOL GC26-8349
Programming Guide SC26-8072

© Copyright IBM Corp. 1994, 2000

215

DB2 Server for VSE

Book title Order number
Application Programming SC09-2393
Database Administration GC09-2389
Installation GC09-2391
Interactive SQL Guide and Reference SC09-2410
Operation SC09-2401
Overview GC08-2386
System Administration GC09-2406

DL/I VSE

Book title Order number
Application and Database Design SH24-5022
Application Programming: CALL and RQDLI Interface SH12-5411
Application Programming: High-Level Programming Interface SH24-5009
Database Administration SH24-5011
Diagnostic Guide SH24-5002
General Information GH20-1246
Guide for New Users SH24-5001
Interactive Resource Definition and Utilities SH24-5029
Library Guide and Master Index GH24-5008
Licensed Program Specifications GH24-5031
Low-level Code and Continuity Check Feature SH20-9046
Library Guide and Master Index GH24-5008
Messages and Codes SH12-5414
Recovery and Restart Guide SH24-5030
Reference Summary: CALL Program Interface SX24-5103
Reference Summary: System Programming SX24-5104
Reference Summary: HLPI Interface SX24-5120
Release Guide SC33-6211

PL/I for VSE/ESA (PL/I VSE)

Book title

Order number

Compile Time Messages and Codes SC26-8059
Debug Tool For VSE/ESA User’s Guide and Reference SC26-8797
Diagnosis Guide SC26-8058
Installation and Customization Guide SC26-8057
Language Reference SC26-8054

216 CICS TS for VSE/ESA: CICS External Interfaces Guide

Book title

Order number

Licensed Program Specifications GC26-8055
Migration Guide SC26-8056
Programming Guide SC26-8053
Reference Summary SX26-3836

Screen Definition Facility 1l (SDF 1)

Book title Order number
VSE Administrator's Guide SH12-6311
VSE General Introduction SH12-6315
VSE Primer for CICS/BMS Programs SH12-6313
VSE Run-Time Services SH12-6312

TCP/IP for VSE/ESA

Documentation for TCP/IP for VSE/ESA is available by ordering the "TCP/IP for
VSE/ESA PDF Product Library” product kit, SK2T-1336. Not all the books are

separately orderable as they are only available in PDF form. The following titles are
available on the product kit at the time of going to press:

Book title Order number
TCP/IP for VSE/ESA — IBM Program Setup and Supplementary Information | SC33-6601
TCP/IP for VSE/ESA Flyer G221-9030
TCP/IP for VSE/ESA Performance Considerations n/a

TCP/IP for VSE/ESA LPS GC33-6594
The Native TCP/IP forVSE GC33-6594
TCP/IP Tutorial and Technical Overview GG24-3376
VSE/ESA as a Web Server SG24-2040
TCP/IP for VSE 1.4 Installation Guide n/a

TCP/IP for VSE 1.4 User’'s Guide n/a

TCP/IP for VSE 1.4 Commands n/a

TCP/IP for VSE 1.4 Programmer’s Reference n/a

TCP/IP for VSE 1.4 Messages and Codes n/a

TCP/IP for VSE 1.4 Optional Products n/a

Books from VSE/ESA 2.5 optional program libraries

217

218 CICS TS for VSE/ESA: CICS External Interfaces Guide

Determining if a publication is current

IBM regularly updates its publications with new and changed information. When first
published, both hardcopy and BookManager softcopy versions of a publication are
in step, but subsequent updates will probably be available in softcopy before they
are available in hardcopy.

For CICS for VSE/ESA books, these softcopy updates appear regularly on the
Transaction Processing and Data Collection Kit CD-ROM, SK2T-0730-xx and on the

VSE/ESA Collection Kit CD-ROM, SK2T-0060-xx. Each reissue of the collection kit
is indicated by an updated order number suffix (the -xx part). For example,
collection kit SK2T-0730-06 is more up-to-date than SK2T-0730-05. The collection
kit is also clearly dated on the cover.

Here’s how to determine if you are looking at the most current copy of a publication:

* A publication with a higher suffix number is more recent than one with a lower
suffix number. For example, the publication with order number SC33-0667-02 is
more recent than the publication with order number SC33-0667-01. (Note that
suffix numbers are updated as a product moves from release to release, as well
as for hardcopy updates within a given release.)

* When the softcopy version of a publication is updated for a new collection kit the
order number it shares with the hardcopy version does not change. Also, the
date in the edition notice remains that of the original publication. To compare
softcopy with hardcopy, and softcopy with softcopy (on two editions of the
collection kit, for example), check the last two characters of the publication’s
filename. The higher the number, the more recent the publication. For example,
DFHPF104 is more recent than DFHPF103. Next to the publication titles in the
CD-ROM booklet and the readme files, asterisks indicate publications that are
new or changed.

» Updates to the softcopy are clearly marked by revision codes (usually a “#”
character) to the left of the changes.

© Copyright IBM Corp. 1994, 2000 219

220 CICS TS for VSE/ESA: CICS External Interfaces Guide

Index

i 3270 bridge 19 (continued)
Numerlcs writing a bridge exit 78
3270 bridge 19 writing a formatter 81

abend processing 22
ADS descriptor 23

ASSIGN 45 A

benefits 10 abend codes 174

BMS Application Data Structure 23 addressing mode (AMODE)

BRDATA format 58 assembler sample program 162
BREXIT 44 client program requirements 161
bridge design 75 ADS 23

bridge environment 21, 39 ADS descriptor 23

bridge exit 21 allocate_opts, parameter of ALLOCATE_PIPE
bridge exit area 22, 84 command 124

bridge exit calls 78 Allocate_Pipe command 123

bridge exit interfaces 84 ALLOCATE_PIPE command

bridge facility 24 invocation of DFHXCURM during 157
bridge facility properties 49 security check failure 169

bridge mechanism 20 allocating a pipe 123

bridge monitor 21 application programming

CEMT INQUIRE TASK 47 commands 119

CEMT INQUIRE TRANSACTION 48 copybooks 139

client application 20 DPL subset 114

conversational Transactions 29 exception conditions returned on LINK
DLI 41 command 146

Dump 109 language considerations 161
Example environments 30 RESP and RESP2 fields 146
FACILITYLIKE 24 restrictions for server programs 114
formatter 22 sample programs 162

formatter calls 81 stub 161

formatter return codes 82 translation required for EXEC CICS LINK
INQUIRE_CONTEXT 48 command 150

INQUIRE TASK 46 applid, specifying on ALLOCATE_PIPE command 123
INQUIRE_TRANDEF 48 assembler

INQUIRE TRANSACTION 47 copybook 139

ISSUE PRINT 41 EXCI CALL interface 119

message data format 59 sample program 141, 162

messages 21 automatic retry of EXEC CICS LINK 148
Monitoring 41

passthrough tool 25

pseudoconversational transactions 28 B

resource definition 44 basic sequential access method (BSAM)
Security 41 use of by assembler sample client program 162
simple terminal transactions 27 batch jobs, querying the status of 156
START 42 benefits of external CICS interface 10
STARTed transactions 43 bind-time security 169

Supplied bridge exits 55 BMS Application Data Structure 23
supplied copybooks 25 BREXIT option

supplied resource definitions 25 CEMT INQUIRE TRANSACTION 48
syncpoints 43 INQUIRE TRANSACTION command 47
TCTUA 24,43 bridge (3270) 19

Trace 108 abend processing 22
TRANSACTION definition 44 ADS descriptor 23

transport mechanism 21 ASSIGN 45

user transaction 20 benefits 10

user transaction restrictions 39 BMS Application Data Structure 23
Using DFHOCBREt 55 BRDATA format 58

Using the Web bridge exit 57 BREXIT 44

© Copyright IBM Corp. 1994, 2000 221

bridge (3270) 19 (continued)

bridge designr 75

bridge environment 21, 39
bridge exit 21

bridge exit area 22, 84
bridge exit calls 78

bridge exit interfaces 84
bridge facility 24

bridge facility properties 49
bridge mechanism 20

bridge monitor 21

CEMT INQUIRE TASK 47
CEMT INQUIRE TRANSACTION 48
client application 20
conversational transactions 29
DLI 41

Dump 109

Example environments 30
FACILITYLIKE 24

formatter 22

formatter return codes 82
formattert calls 81
INQUIRE_CONTEXT 48
INQUIRE TASK 46
INQUIRE_TRANDEF 48
INQUIRE TRANSACTION 47
ISSUE PRINT 41

message data format 59
messages 21

Monitoring 41

passthrough tool 25
pseudoconversational transactions 28
resource definition 44
running a transaction 27
Security 41

simple terminal transactions 27
START 42

STARTed transactions 43
Supplied bridge exits 55
supplied copybooks 25
supplied implementations 25
supplied resource definitions 25
syncpoints 43

TCTUA 24,43

Trace 108

TRANSACTION definition 44
transport mechanism 21
user transaction 20

user transaction restrictions 39
Using DFHOCBRE 55

Using the Web bridge exit 57
writing a bridge exit 78
writing a formatter 81

bridge exit

BRXA ADS descriptor area 100
BRXA command area (BMS) 97
BRXA command area (common) 92

BRXA command area (interval control) 99

BRXA command area (MSG) 99
BRXA command area (syncpoint) 99
BRXA command area (terminal control)

222 CICS TS for VSE/ESA: CICS External Interfaces Guide

bridge exit (continued)
BRXA header area 84
BRXA transaction area 86
message format 59
message vectors 59
MQCIH message header 59
START data format 58
BRIDGE option
CEMT INQUIRE TASK 47
INQUIRE TASK command 46
BRXA
ADS descriptor area 100
command area (BMS) 97
command area (common) 92
command area (interval control) 99
command area (syncpoint) 99
command area (terminal control) 96
header area 84
transaction area 86

C

C language
copybook 139
EXCI CALL interface 119
sample program 141, 162
special considerations for client program 161
CA21 25
call_type
parameter of ALLOCATE_PIPE command 123
parameter of CLOSE_PIPE command 134
parameter of DEALLOCATE_PIPE command 136
parameter of DPL_Request command 127
parameter of INITIALIZE_USER command 121
parameter of OPEN_PIPE command 126
CEMT INQUIRE EXCI command 156
CICS_applid, parameter of ALLOCATE_PIPE
command 123
CICS system definition file, EXCI sample
definitions 163
CICS system initialization parameters
VTAM 25, 45
client program
addressing mode 161
BSAM, use of by assembler sample program 162
connection through DFHIRP 117
definition of 113
JCL needed
running an EXCI client 166
linking to server with EXEC CICS LINK 144
MRO logon and bind-time security 169
PL/I and C language considerations 161
sample job for starting 167
sample program 162
translating 150
use of multiple sessions 113
Close_Pipe command 134
closing a pipe 134
COBOL I
copybook 139
example of EXCI DPL call 140

COBOL Il (continued)
EXCI CALL interface 119
sample program 162
codes, abend 174
COMMAREA, parameter of DPL_Request
command 128
COMMAREA_len, parameter of DPL_Request
command 128
connecting an allocated pipe 125
CONNECTION definition
CONNTYPE attribute 151
PROTOCOL attribute 152
connection-oriented data transmission 8
connectionless data transmission 8
CONNTYPE attribute, CONNECTION definition 151
copybooks for assembler, C language, COBOL,
PL/I 139
cross-system multiregion operation (XCF/MRO) 113
CSMI
attached by CICS server 146
CSMI (CICS-supplied mirror transaction)
authorizing the link user ID 170
default transid 129
security 170

data_len, parameter of DPL_Request command 128
datagram 8

DCE (distributed computing environment) 10

Deallocate_Pipe command 136

deallocating a pipe 136

DFH$AXCC, assembler sample program
example of output 164

DFH¢AXCC, assembler sample program 141

DFH¢DXCC, C sample program 141

DFH¢PXCC, PL/I sample program 141

DFHS$EXCI, sample server definitions 163

DFHS$FILA, sample file definitions 164

DFHOCBRD 25

DFHOCBRE 25

DFHOCBRF 25

DFHOCBRU 25

DFHAUPLE procedure 159

DFHBMSUP utility program
introduction 76

DFHBRMHx 25

DFHBRMQx 25

DFHBRSDx 25

DFHIRP (interregion communication program)
connection of client and server 117
security checks performed by 169

DFHLIST, note about sample definitions 163

DFHWBLT 25

DFHXCIE, alias for DFHXCSTB stub 161

DFHXCIS, alias for DFHXCSTB stub 161

DFHXCOPT, options table 159

DFHXCPLD, return area and equate copybook for

assembler 139
DFHXCPLH, return area and equate copybook for C
language 139

DFHXCPLL, return area and equate copybook for
PL/I 139
DFHXCPLO, return area and equate copybook for
COBOL 139
DFHXCRCD, return code copybook for assembler 139
DFHXCRCH, return code copybook for C
language 139
DFHXCRCL, return code copybook for PL/I 139
DFHXCRCO, return code copybook for COBOL 139
DFHXCSTB, stub for client programs 161
DFHXCTRA, EXCI service trap 177
DFHXCTRD, parameter list 177
DFHXCURM, user-replaceable module 157
disconnecting a pipe 134
distributed application design 11
distributed computing environment (DCE) 10
distributed program link (DPL)
API subset for server programs 114
example COBOL call without userid and uowid 140
request program call 127
dotted decimal 9
DPL_opts, parameter of DPL_Request command 132
DPL_Request call 127
dpl_retarea, parameter of DPL_Request
command 131
dumps 173
formatting 173

E

ELPA (extended link pack area), installation of
DFHIRP 118
ephemeral port numbers 9
EQUATE copybooks 139
exception conditions returned on LINK command 146
EXCI on CEMT INQUIRE command 156
EXEC CICS LINK command 144
automatic retry 148
choosing between EXEC CICS and CALL
interface 114
security checking 170
translation 150
extended link pack area (ELPA), installation of
DFHIRP 118
external CICS interface (EXCI) 113, 143
benefits 10
CALL interface
choosing between EXEC CICS and CALL
interface 114
return area 138
syntax 119
CICS releases supported 117
compiling and link-editing client programs 161
defining connections 151
description of 113
inquiring on the state of connections 155
languages supported 119
messages 199
options table, DFHXCOPT 159
PL/I and C language considerations 161
problem determination 173

Index 223

external CICS interface (EXCI) 113, 143 (continued)
programming languages supported 119
reason codes 189
response codes 189
security 169
user-replaceable module (DFHXCURM) 157

F

FACILITYLIKE 24
FACILITYLIKE option
CEMT INQUIRE TRANSACTION 48
INQUIRE TRANSACTION command 47
File Transfer Protocol 9
freeing storage associated with a pipe 136
function call EQUATE copybooks 139

G

generic connection
definition of 152
note about lack of security checks 169

IDENTIFIER
bridge exit area 89
IDENTIFIER option
CEMT INQUIRE TASK 48
INQUIRE TASK command 46
Initialize_User command 120
internet address 8
Internet Protocol (IP) 8
interregion communication (IRC)
opening after installation of sample definitions 164

J

job control language (JCL)
for running an EXCI client program 166

L

LINK command 144
choosing between EXEC CICS and CALL
interface 114
link-editing
DFHXCOPT options table 159
for client program 161
translation required for EXEC CICS LINK
command 150
use of DFHXCSTB stub 119
using DFHAUPLE 159
logon security 169

M

messages 108, 199

mirror transaction
authorizing the link user ID 170
security 170

224 CICS TS for VSE/ESA: CICS External Interfaces Guide

MSGCASE, parameter of DFHXCOPT 159
multiregion operation (MRO)

cross-system (XCF/MRO) 113

logon and bind time security 169

N

null parameters, example of EXCI CALLs with 140

o)

Open_Pipe command 125
open system interface (OSl) 10
opening a pipe 125

options table, DFHXCOPT 159
OSI (open system interface) 10

P

parameters
null 140
specifying with options table 159
pgmname
parameter of DPL_Request command 128
pipe
allocating 123
closing 134
connecting 125
deallocating 136
definition of 113
disconnecting 134
freeing storage associated with 136
invocation of DFHXCURM during
ALLOCATE_PIPE 157
opening 125
restriction on leaving open 125
reusing a closed pipe 134
pipe_token
parameter of ALLOCATE_PIPE command 123
parameter of CLOSE_PIPE command 134
parameter of DEALLOCATE_PIPE command 136
parameter of DPL_Request command 128
parameter of OPEN_PIPE command 126
PL/I
copybook 139
EXCI CALL interface 119
sample program 141, 162
special considerations for client program 161
port number 8
problem determination 173
dumps 173
service trap 177
trace 173
VSE abends 174
programming models 9
programming restrictions for server programs 114
PROTOCOL attribute
CONNECTION definition 152
SESSIONS definition 153

R

reason codes 189
Allocate_Pipe call 124

reason codes 189 (continued)
Close_Pipe call 134
Deallocate_Pipe call 136
DPL call 132
Initialize_User call 121
Open_Pipe call 126
RECEIVECOUNT attribute, SESSIONS definition 153
RECEIVEPFX attribute, SESSIONS definition 154
residence mode (RMODE)
assembler sample program 162
resource access control facility (RACF) 169
specifying userid on DPL_Request command 130
resource definition
CONNECTION definition 151
sample programs 163
SESSIONS definition 153
RESP and RESP2 fields 146
response codes 138, 189
Allocate_Pipe call 124
Close_Pipe call 134
Deallocate_Pipe call 136
DPL call 132
Initialize_User call 121
Open_Pipe call 126
retries on an EXEC CICS LINK command 148
return_area
parameter of ALLOCATE_PIPE command 123
parameter of CLOSE_PIPE command 134
parameter of DEALLOCATE_PIPE command 136
parameter of DPL_Request command 127
parameter of INITIALIZE_USER command 120
parameter of OPEN_PIPE command 125
reusing a closed pipe 134
running the sample applications 164

S

sample programs 141, 162
description 162
security 169
SENDCOUNT attribute, SESSIONS definition 154
SENDPFX attribute, SESSIONS definition 155
server program
API restrictions 114
connection through DFHIRP 117
definition of 113
DPL subset 114
linking from client with EXEC CICS LINK 144
programming restrictions 114
sample program 162
security considerations 170
service trap 177
SESSIONS definition
PROTOCOL attribute 153
RECEIVECOUNT attribute 153
RECEIVEPFX attribute 154
SENDCOUNT attribute 154
SENDPFX attribute 155
sockets interface 8
specific connection
definition of 151
MRO logon security checks 169

storage, freeing 136
stub for client programs
DFHXCIE 161
DFHXCIS 161
DFHXCSTB 161
sysplex, use of cross-system MRO 113
system definition file (CSD), CICS 163

T

TCP/IP 7
Telnet 9
TIMEOUT, parameter of DFHXCOPT 159
trace 173

TRACE parameter of DFHXCOPT 160

trace points 177

TRACESZE parameter of DFHXCOPT 160
transid, parameter of DPL_Request command 129
translation of EXEC CICS LINK command 150
Transmission Control Protocol (TCP) 8
trap, DFHXCTRA 177

TRAP, parameter of DFHXCOPT 160
TYPE, parameter of DFHXCOPT 159

U

unit-of-work identifier, DPL_Request 129

uowid, parameter of DPL_Request 129

User Datagram Protocol (UDP) 8

user environment, initializing 120

user_name, parameter of INITIALIZE_USER

command 121

user-replaceable module
DFHXCURM 157

user security 170

user_token
parameter of ALLOCATE_PIPE command 123
parameter of CLOSE_PIPE command 134
parameter of DEALLOCATE_PIPE command 136
parameter of DPL_Request command 127
parameter of INITIALIZE_USER command 120
parameter of OPEN_PIPE command 125

userid, parameter of DPL_Request command 130

utility programs, offline
recreating BMS macro statements, DFHBMSUP 76

\'

version_number
parameter of ALLOCATE_PIPE command 123
parameter of CLOSE_PIPE command 134
parameter of DEALLOCATE_PIPE command 136
parameter of DPL_Request command 127
parameter of INITIALIZE_USER command 120
parameter of OPEN_PIPE command 125

VSE abends 174

VTAM system initialization parameter 25, 45

w

well-known ports 9

Index 225

X

XFAINTU, global user exit 52

226 CICS TS for VSE/ESA: CICS External Interfaces Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the
information is presented.

To request additional publications, or to ask questions or make comments about the
functions of IBM products or systems, you should talk to your IBM representative or
to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring any
obligation to you.

You can send your comments to IBM in any of the following ways:
* By mail, to this address:

Information Development Department (MP095)

IBM United Kingdom Laboratories

Hursley Park

WINCHESTER,

Hampshire
United Kingdom

* By fax:
— From outside the U.K., after your international access code use
44-1962-870229

— From within the U.K., use 01962-870229

» Electronically, use the appropriate network ID:
— IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
— IBMLink : HURSLEY(IDRCF)
— Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

* The publication number and title

* The topic to which your comment applies

* Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1994, 2000 227

Program Number: 5648-054

@ Printed in the United States of America
@ on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1669-01

[oseapy OpIN<) SEORLIOIU] [RUINIXY SO VSH/ASA 195 S1, SOID

‘uoLjewdojul autds

	Preface
	What this book is about
	How to use this book
	What you need to know to understand this book
	Notes on terminology

	Contents
	Summary of changes
	Part 1. Overview
	Chapter 1. Introduction
	General concepts
	Distributed computing
	Security support

	TCP/IP protocols
	TCP/IP internet addresses and ports
	Internet addresses
	Port numbers (for servers)
	Port numbers (for clients)

	Programming models
	Comparing mechanisms
	EXCI
	The 3270 bridge
	The 3270 Bridge and FEPI

	Application design
	Separating business and presentation logic

	Chapter 2. How to use this book
	Part 2. Bridging to 3270 transactions
	Chapter 3. Introduction
	Overview
	Components of the 3270 bridge
	Bridge implementations provided
	Copybooks
	Resource definitions
	The CA21 SupportPak

	Running 3270 transactions in a bridge environment
	Simple terminal transactions
	Pseudoconversational transactions
	Conversational transactions

	Implementing a 3270 bridge environment
	Determining the bridge environment model
	Using the long running monitor model to implement the 3270 bridge
	Client application design
	Bridge monitor design
	Bridge exit design

	Using the two task model to implement the 3270 bridge
	Bridge monitor design
	Bridge exit design

	Using a single message model to implement the 3270 bridge
	Bridge monitor design

	Using the direct model to implement the 3270 bridge
	Client Application (CICS transaction) design
	Bridge exit design

	Chapter 4. The Bridge environment
	User transaction programming considerations
	Defining the user transaction
	TRANSACTION resource definition
	PROFILE resource definition

	Inquiring about the bridge environment
	ASSIGN command
	Function
	Syntax
	Options
	Conditions

	INQUIRE TASK command
	Function
	Syntax
	Options
	Conditions

	INQUIRE TRANSACTION command
	Function
	Syntax
	Options
	Conditions

	CEMT INQUIRE TASK
	Function
	Syntax
	Options

	CEMT INQUIRE TRANSACTION
	Function
	Syntax
	Options

	XPI commands
	INQUIRE_TRANDEF
	INQUIRE_CONTEXT

	The bridge facility
	QUERY
	SET TERMINAL/NETNAME
	Bridge facility global user exit
	XFAINTU

	Chapter 5. Supplied 3270 bridge exits
	The TS/TD supplied bridge exit
	Using the DFH0CBRE exit

	The Web bridge exit
	Using the Web bridge exit

	Data formats for the supplied bridge exits
	BRDATA format
	Message data format
	MQCIH Message header:
	Standard header for all vectors:
	Outbound reply vectors
	Outbound request vectors
	Inbound vectors

	Chapter 6. Writing your own bridge programs
	Designing your own bridge solution
	Is a new bridge exit needed?
	Is a new formatter needed?

	BMS macro generation utility program (DFHBMSUP)
	Overview
	Input
	Output
	DLBL statement
	Return codes
	Example of using DFHBMSUP
	Example of DFHBMSUP output

	Writing your own bridge exit
	Transaction calls to the bridge exit
	Message calls to the bridge exit
	API calls to the bridge exit

	Writing your own formatter
	Calls to the formatter
	Return codes from the formatter
	BRXA_FMT_RESPONSE
	BRXA_READ_NOWAIT_ISSUED
	BRXA_REQUEST_NEXT_ISSUED

	Bridge exit area (BRXA)
	BRXA header area
	BRXA transaction area
	BRXA command area
	BRXA command area - common
	BRXA command area - terminal control
	BRXA command area - BMS
	BRXA command area - interval control
	BRXA command area - syncpoint
	BRXA command area - MSG
	ADS descriptor area
	ADS descriptor header
	ADS field descriptor

	Supplied copybooks
	Copybook example (DFHBRACD)

	Chapter 7. Problem determination
	Troubleshooting
	Defining the problem
	Documentation about the problem

	Using messages and codes
	Using Trace
	Dump and trace formatting
	Debugging the bridge exit
	IDENTIFIER
	EDF
	Trace

	Debugging the supplied bridge exit
	Abend codes and Trace
	Message validation

	Part 3. External CICS Interface
	Chapter 8. Introduction to the external CICS interface
	Overview
	The programming interfaces
	Choosing between the EXEC CICS and the CALL interface

	Illustrations of the external CICS CALL interface
	Illustration of the EXCI EXEC CICS interface

	Benefits of the external CICS interface
	Requirements for the external CICS interface

	Chapter 9. The EXCI CALL interface
	The CALL interface commands
	Initialize_User
	Allocate_Pipe
	Open_Pipe
	DPL_Request
	Close_PIPE
	Deallocate_Pipe

	Response code values
	Return area for the EXCI CALL interface
	Return area and function call EQUATE copybooks
	Return codes
	Dpl_retarea return codes

	Example of EXCI CALLs with null parameters

	Chapter 10. The EXEC CICS interface
	EXEC CICS LINK command
	Retries on an EXEC CICS LINK command
	Translation required for EXEC CICS LINK command

	Chapter 11. Defining connections to CICS
	CONNECTION resource definition
	SESSIONS resource definitions for EXCI connections
	Inquiring on the state of EXCI connections

	Chapter 12. The EXCI user-replaceable module
	Chapter 13. External CICS interface options table, DFHXCOPT
	Chapter 14. Compiling and link-editing external CICS interfaceclient programs
	The external CICS interface stub, DFHXCSTB
	The required linkage editor modes

	Language considerations
	PL/I considerations
	C considerations

	Sample application programs
	Description of the sample applications
	Installing the EXCI sample definitions
	Running the EXCI sample applications
	Results of running the EXCI sample applications

	Job control language to run an EXCI client program

	Chapter 15. Security
	MRO logon and bind-time security
	Link security
	User security
	Surrogate user checking

	Chapter 16. Problem determination
	Trace
	System dumps
	Formatting system dumps
	Multiple VSE subtasks

	Abends from related CICS programs
	The EXCI service trap, DFHXCTRA
	EXCI trace entry points

	Chapter 17. Response and reason codes returned on EXCIcalls
	Reason code for response: OK
	Reason codes for response: WARNING
	Reason codes for response: RETRYABLE
	Reason codes for response: USER_ERROR
	Reason codes for response: SYSTEM_ERROR

	Chapter 18. Messages and Codes
	Part 4. Appendixes
	Appendix. Routing program-link requests
	Static routing
	Dynamic routing

	Notices
	Programming interface information
	Trademarks and service marks

	Bibliography
	CICS Transaction Server for VSE/ESA Release 1 Library

	Books from VSE/ESA 2.5 base program libraries
	VSE/ESA Version 2 Release 5
	High-Level Assembler Language (HLASM)
	Language Environment for VSE/ESA (LE/VSE)
	VSE/ICCF
	VSE/POWER
	VSE/VSAM
	VTAM for VSE/ESA

	Books from VSE/ESA 2.5 optional program libraries
	C for VSE/ESA (C/VSE)
	COBOL for VSE/ESA (COBOL/VSE)
	DB2 Server for VSE
	DL/I VSE
	PL/I for VSE/ESA (PL/I VSE)
	Screen Definition Facility II (SDF II)
	TCP/IP for VSE/ESA

	Determining if a publication is current
	Index
	Sending your comments to IBM

