

CICS Transaction Server for VSE/ESA IBM

Recovery and Restart Guide
Release 1

 SC33-1666-00

CICS Transaction Server for VSE/ESA IBM

Recovery and Restart Guide
Release 1

 SC33-1666-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page 151.

First Edition (June 1999)

This edition applies to Release 1 of CICS Transaction Server for VSE/ESA, program number 5648-054, and to all subsequent
versions, releases, and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.

The CICS for VSE/ESA Version 2.3 edition remains applicable and current for users of CICS for VSE/ESA Version 2.3.

Order publications through your IBM representative or the IBM branch office serving your locality.

At the back of this publication is a page entitled “Sending your comments to IBM”. If you want to make any comments, please use
one of the methods described there.

 Copyright International Business Machines Corporation 1982, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Preface . vii
Book structure . vii
Notes on terminology . ix

Part 1. Overview . 1

Chapter 1. Introduction to recovery and restart 3
Faults and their effects . 3
Recovery requirements in an online system . 4
The role of CICS . 5
VTAM persistent sessions considerations . 5
Backward recovery (backout) . 7
Forward recovery . 11
Recovery of VTAM messages . 11
Failures that require CICS recovery processing 11

Part 2. Recovery and restart processes . 15

Chapter 2. Recording of recovery information 17
Recording on the catalogs . 17
Restart data set . 19
Dynamic log (for dynamic transaction backout) 19
System log (journal 1) . 20
Journals 2 through 99 . 23
Journal archive control data set . 25

Chapter 3. CICS shutdown . 27
Normal shutdown processing (PERFORM SHUTDOWN) 27
Immediate shutdown processing (PERFORM SHUTDOWN IMMEDIATE) . . . 29
Shutdown requested by the operating system 29
Uncontrolled termination . 30

Chapter 4. CICS startup . 31
Types of initialization . 31
Recovery of system log and user journals . 31
Cold start . 32
Warm start . 32
Emergency restart . 34
Comparison of the types of restart . 41
User programs at initialization . 43

Chapter 5. Abend processing . 45
Requests for an abend . 45
Transaction abend processing . 45
Processing of operating system abends and program checks 51

Chapter 6. Communication error processing 53
Node error program (DFHZNEP) . 53
Terminal error program (DFHTEP) . 54

 Copyright IBM Corp. 1982, 1999 iii

The in-doubt window . 54

Part 3. Implementing your recovery and restart strategy 55

Chapter 7. Starting to specify recovery and restart facilities 57
Questions relating to recovery requirements . 57
Validate the recovery requirements statement 59
Designing the end user’s restart procedure . 59
Communications between application and user 60
Security . 60
Definitions for recovery functions . 60
Documentation and test plans . 63

Chapter 8. Logging and journaling . 65
System log . 65
Journals for forward recovery . 66
Keypointing . 67
Dynamic log . 68
Explicit journaling . 68

Chapter 9. Recovering resources . 71
Protecting data files and databases . 71
Implementing recoverability of files . 74
Implementing recoverability of temporary storage 79
Implementing recoverability of intrapartition transient data 80
Specifying message-protection options for VTAM terminals 81
Recovering extrapartition transient data . 83

Chapter 10. Dynamic transaction backout (DTB) 87
Specifying DTB . 87
Specifying automatic transaction restart . 87
Global user exits in DFHDBP . 88
Editing the transaction restart program (DFHREST) 89

Chapter 11. User exits for transaction backout during emergency restart 91
Where you can add your own code . 91
Global user exit details . 92
Coding transaction backout exits . 95

Chapter 12. Handling communication errors 97
Communication design . 97
Node error program (DFHZNEP)—VTAM logical units 98
Terminal error program (DFHTEP)—non-VTAM terminals 100

Chapter 13. Recovery coding in application programs 101
Application design . 101
Program design . 103
Coping with transaction and system failures 109
Enqueuing in application programs . 113

Chapter 14. Using a program error program (DFHPEP) 121
Program error program (DFHPEP) . 121

iv CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Chapter 15. Using message caches after emergency restart 123
Logic of inquiry program . 123
Interpreting the contents of a message cache 124
Message cache records . 127

Chapter 16. Backout failure . 129

Chapter 17. Operations . 131

Chapter 18. Report controller recovery . 133
Types of report controller failure . 133
Recovering from failures . 134

Chapter 19. Recovery in a DL/I VSE environment 139
Use of DL/I VSE . 139
Design factors . 139
Implementing recoverability of DL/I VSE databases 140
DL/I VSE error processing . 141

Bibliography . 145
5 Books from VSE/ESA 2.4 base program libraries 146

Books from VSE/ESA 2.4 optional program libraries 148

Notices . 151
Trademarks and service marks . 152

Index . 153

 Contents v

vi CICS Transaction Server for VSE/ESA Recovery and Restart Guide

 Preface

What this book is about
This book contains guidance about determining your CICS recovery and restart
needs, deciding which CICS facilities are most appropriate, and implementing your
design on your CICS system.

The information in this book is generally restricted to a single CICS system. For
guidance on intersystem communication (ISC) and multiregion operation (MRO),
see the CICS Intercommunication Guide. For information about XRF systems, see
the CICS XRF Guide. However, the Extended Recovery Facility (XRF) takeover is
based on emergency restart processing, so the information in this book is relevant
to XRF.

4 This book does not describe recovery and restart for the CICS Front End
4 Programming Interface. For information on this topic, see the CICS Front End

Programming Interface User’s Guide.

Who should read this book
This book is for those responsible for restart and recovery planning, design, and
implementation—either for a complete system or for a particular subject.

What you need to know to understand this book
To understand this book, you should have experience of installing and generating a
CICS system and the products with which it is to work, or of writing CICS
application programs or exit programs. You should also understand your
application requirements well enough to be able to make decisions about realistic
recovery and restart needs, and the trade-offs between those needs and the
performance overhead they incur.

How to use this book
This book deals with a wide variety of topics, all of which contribute to the recovery
and restart characteristics of your system. It is unlikely that you would have to
implement all the possible techniques discussed in this book, so use the table of
contents to find the sections relevant to your work. If you are new to recovery and
restart, you should find Part 1 helpful, because it introduces the basic concepts.

Notes on terminology
In this book, the following terms are used:

� CICS refers to CICS Transaction Server for VSE/ESA
� MB equals 1 048 576 bytes.

 Book structure
Part 1, “Overview” on page 1

Describes:

� The reasons and types of error that make it important for recovery
and restart to be considered

 Copyright IBM Corp. 1982, 1999 vii

� The facilities that CICS provides for data recovery, communication
recovery, and system recovery.

Part 2, “Recovery and restart processes” on page 15
Describes the processes which CICS goes through at restart, and the
processes used for recovery in a running system. The emphasis is on
the parts of the processes that you can influence by your recovery
strategy and implementation.

Part 3, “Implementing your recovery and restart strategy” on page 55
Describes how to implement the functions of recovery and restart.
Each chapter deals in detail with a particular subject, referring back to
information about design or processes when necessary.

viii CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Notes on terminology
5 The terms listed in Table 1 are commonly used in the CICS Transaction Server for
5 VSE/ESA Release 1 library. See the CICS Glossary for a comprehensive definition
5 of terminology.

Table 1 (Page 1 of 2). Commonly used words and abbreviations in CICS Transaction
Server for VSE/ESA Release 1

Term Definition (and abbreviation if
appropriate)

$(the dollar symbol) In the character sets and programming
examples given in this book, the dollar
symbol ($) is used as a national currency
symbol and is assumed to be assigned
the EBCDIC code point X'5B'. In some
countries a different currency symbol, for
example the pound symbol (£), or the yen
symbol (¥), is assigned the same EBCDIC
code point. In these countries, the
appropriate currency symbol should be
used instead of the dollar symbol.

BSM BSM is used to indicate the basic security
management supplied as part of the
VSE/ESA product. It is
RACROUTE-compliant, and provides the
following functions:

 � Signon security
� Transaction attach security

5 C5 The C programming language

3 CICSplex3 A CICSplex consists of two or more
3 regions that are linked using CICS
3 intercommunication facilities. Typically, a
3 CICSplex has at least one
3 terminal-owning region (TOR), more than
3 one application-owning region (AOR), and
3 may have one or more regions that own
3 the resources accessed by the AORs

CICS Data Management Facility The new CICS Transaction Server for
VSE/ESA Release 1 facility to which all
statistics and monitoring data is written,
generally referred to as “DMF”

5 CICS/VSE5 The CICS product running under the
5 VSE/ESA operating system, frequently
5 referred to as simply “CICS”

5 COBOL5 The COBOL programming language

DB2 for VSE/ESA Database 2 for VSE/ESA which was
previously known as “SQL/DS”.

 Preface ix

Table 1 (Page 2 of 2). Commonly used words and abbreviations in CICS Transaction
Server for VSE/ESA Release 1

Term Definition (and abbreviation if
appropriate)

ESM ESM is used to indicate a
RACROUTE-compliant external security
manager that supports some or all of the
following functions:

 � Signon security
� Transaction attach security

 � Resource security
 � Command security
 � Non-terminal security
� Surrogate user security
� MRO/ISC security (MRO, LU6.1 or

LU6.2)
 � FEPI security.

FOR (file-owning region)—also known as
a DOR (data-owning region)

A CICS region whose primary purpose is
to manage VSAM and DAM files, and
VSAM data tables, through function
provided by the CICS file control program.

5 IBM C for VSE/ESA5 The Language Environment version of the
5 C programming language compiler.
5 Generally referred to as “C/VSE”.

5 IBM COBOL for VSE/ESA5 The Language Environment version of the
5 COBOL programming language compiler.
5 Generally referred to as “COBOL/VSE”.

5 IBM PL/I for VSE/ESA5 The Language Environment version of the
5 PL/I programming language compiler.
5 Generally referred to as “PL/I VSE”.

3 IBM Language Environment for VSE/ESA3 The common runtime interface for all
3 LE-conforming languages. Generally
3 referred to as “LE/VSE”.

5 PL/I5 The PL/I programming language

VSE/POWER Priority Output Writers Execution
processors and input Readers. The
VSE/ESA spooling subsystem which is
exploited by the report controller.

VSE/ESA System Authorization Facility The new VSE facility which enables the
new security mechanisms in CICS TS for
VSE/ESA R1, generally referred to as
“SAF”

VSE/ESA Central Functions component The new name for the VSE Advanced
Function (AF) component

3 VSE/VTAM3 “VTAM”

x CICS Transaction Server for VSE/ESA Recovery and Restart Guide

 Part 1. Overview

This part of the book describes:

� The reasons and types of error that make it important for recovery and restart
to be considered

� The facilities that CICS provides for data recovery, communication recovery,
and system recovery.

 Copyright IBM Corp. 1982, 1999 1

2 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Chapter 1. Introduction to recovery and restart

This chapter describes some of the basic concepts of the recovery and restart
facilities provided by CICS.

The principal topics discussed are:

� “Faults and their effects”
� “Recovery requirements in an online system” on page 4
� “The role of CICS” on page 5
� “VTAM persistent sessions considerations” on page 5
� “Backward recovery (backout)” on page 7
� “Forward recovery” on page 11
� “Recovery of VTAM messages” on page 11
� “Failures that require CICS recovery processing” on page 11

Faults and their effects
Among the failures that can occur in a data processing system are:

� Communication failures (in online systems)
� Data set or database failures
� Application or system program failures

 � Processor failures
� Power supply failures

Comparison of batch and online systems
All these problems are potentially more severe in an online system than in a
system that performs only batch processing.

In batch systems, input data is usually prepared before processing begins, and jobs
can be rerun, either from the start of the job or from some intermediate checkpoint.

In online systems, input is usually created dynamically by terminal operators, and
arrives in an unpredictable sequence from many different sources. If a failure
occurs, it is generally not possible simply to rerun the application, because the
content and sequence of the input data is unknown. And, even if it is known, it is
usually impractical for operators to reenter a day’s work.

Online applications therefore require a system with special mechanisms for
recovery and restart which batch systems do not require. These mechanisms
ensure that each resource associated with an interrupted online application returns
to a known state so that processing can restart safely.

In mixed systems, where both batch and online processing can occur against data
at the same time, the recovery requirements for batch processing and online
systems are similar.

 Copyright IBM Corp. 1982, 1999 3

Recovery requirements in an online system
An online system requires mechanisms that, together with suitable operating
procedures, provide automatic recovery from failures and allow the system to
restart with the minimum of disruption.

The two main recovery requirements of an online system are:

� To maintain the integrity of data
� To minimize the effect of failures

Maintaining the integrity of data
“Data integrity” means that the data is in the form you expect and has not been
corrupted. The whole object of recovery operations on files, databases, and similar
data resources is to maintain and restore the integrity of the information. Ideally, it
should be possible to restore the data to a consistent, known state following any
type of failure, with a minimum loss of previous valid updating activity.

 Logging changes
One way of doing this is to keep a record, or log, of all the changes made to a
resource while the system is executing normally. If a failure occurs, the logged
information can help recover the data.

You can use the information in two ways:

1. It can be used to back out incomplete or invalid changes to one or more
resources. This is called backward recovery , or backout. For backout, it is
necessary to record the contents of a data element before it is changed.
These records are called before-images. In general, backout is applicable to
processing failures that prevent one or more transactions (or a batch program)
from completing.

2. It can be used to reconstruct changes to a resource, starting with a backup
copy of the resource taken earlier. This is called forward recovery . For
forward recovery, it is necessary to record the contents of a data element after
it is changed. These records are called after-images.

In general, forward recovery is applicable to data set failures, or failures in
similar data resources, which cause data to become unusable because it has
been corrupted or because the physical storage medium has been damaged.

Note: In many cases, a data set failure also causes a processing failure. Then,
forward recovery must be followed by backward recovery. If CICS is shut down to
perform the forward recovery, a CICS emergency restart performs the backward
recovery.

Minimizing the effect of failures
Any online system should limit the effect of any failure. Where possible, a failure
that affects only one user, one application, or one data set, should not halt the
entire system. Furthermore, if processing for one user is forced to stop
prematurely, it must be possible to back out any changes made to any data sets
(as if the processing had not started).

If processing for the entire system stops, there may be many users whose updating
work is interrupted. On a subsequent startup of the system, only those data set

4 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

updates in process (in flight) at the time of failure should be backed out. Backing
out only the in-flight updates makes restart quicker, and reduces the amount of
data to reenter.

The role of CICS
CICS provides many of the recovery and restart functions needed in an online
system.

Automatic backout can be used for most CICS resources (such as databases, files,
and auxiliary temporary storage queues), either following a transaction failure or
during emergency restart of CICS. CICS also handles all the logging needed for
backout. If the backout of a VSAM file fails, CICS backout failure control closes
down the base cluster and all affected files. Then, a forward recovery and backout
utility can recover the data set offline, and the failed data set can be reset to
normal for CICS usage.

CICS message protection performs logging of input and output messages for
VTAM terminals, and enables the messages to be recovered following a system
failure.

CICS logs the information required for the forward recovery of DL/I databases
(after-images).

VTAM persistent sessions considerations
Persistent session support improves the availability of CICS. It benefits from VTAM
4.2 persistent LU–LU session improvements to provide restart-in-place of a failed
CICS without rebinding.

CICS support of persistent sessions includes the support of all LU–LU sessions
except LU0 pipeline and LU6.1 sessions. CICS determines for how long the
sessions should be retained from the PSDINT system initialization parameter. This
is a user-defined time interval. If a failed CICS is restarted within this time, it can
use the retained sessions immediately—there is no need for network flows to

3 rebind them. Note that the “Inter-Enterprise” variant of VSE/VTAM is required
3 for persistent session support .

You can change the interval using the CEMT or EXEC CICS SET VTAM command,
but the changed interval is not stored in the CICS global catalog, and therefore is
not restored in an emergency restart.

If CICS is terminated by means of a CEMT or EXEC CICS PERFORM
SHUTDOWN IMMEDIATE command or if CICS fails, the CICS sessions are held
by VTAM in “recovery pending” state, and may be recovered during startup by a
newly starting CICS system.

During emergency restart, CICS restores those sessions pending recovery from the
CICS global catalog and the CICS system log to an “in session” state. This
happens when CICS opens its VTAM ACB.

Before specific terminal types and levels of service are discussed, note that many
factors can affect the performance of a terminal at takeover, including:

 Chapter 1. Introduction to recovery and restart 5

� The type of terminal
� The total number of terminals connected
� What the end-user is doing at the time of takeover
� The type of failure of the CICS system
� How the terminal is defined

Subsequent processing is LU dependent: cleanup and recovery for non-LU6
persistent sessions are similar to those for non-LU6 backup sessions under XRF.
Cleanup and recovery for LU6.2 persistent sessions maintain the bound session
when possible, but there are cases where it is necessary to unbind and rebind the
sessions; for example, where CICS fails during a session resynchronization.

The end user of a terminal sees different symptoms of a CICS failure following a
restart, depending on whether VTAM persistent sessions are in use:

� If CICS is running without VTAM persistent sessions and fails, the user sees
the VTAM logon panel followed by the “good morning” message (if
AUTOCONNECT(YES) is specified for the RDO TYPETERM resource
definition).

� If CICS does have persistent session support and fails, and the user enters
data while CICS is recovering, the user’s perception is that CICS is “hanging”;
the screen on display at the time of the failure remains until persistent session
recovery is complete. Use of the RDO TYPETERM RECOVOPTION and
RECOVNOTIFY keywords allows you to customize the CICS system so that a
successful emergency restart can either be transparent to the end user, or the
end user can be notified of the CICS failure, allowing the appropriate recovery
actions to be taken.

If APPC sessions are active at the time CICS fails, APPC partners will also
perceive the persistent sessions recovery as CICS “hanging”. Requests issued
by the APPC partner will be saved by VTAM, and passed to CICS when the
persistent recovery is complete. After a successful emergency restart, the
options defined in PSRECOVERY of the RDO CONNECTION definition and
RECOVOPTION of the RDO SESSIONS definition take effect. If the
appropriate recovery options have been selected (see the CICS Resource
Definition Guide), and the APPC sessions are in the correct state, CICS will
perform an ISSUE ABEND (see the CICS Distributed Transaction Programming
Guide) to inform the partner that the current conversation has been abnormally
terminated.

 Unbinding sessions
Sessions held by VTAM in a recovery pending state are not always reestablished
by CICS. CICS (or VTAM) unbinds recovery pending sessions in the following
situations:

� If CICS does not restart within the specified persistent session delay interval

� If a COLD start is performed after a CICS failure

� If CICS restarts with XRF=YES (when the failed CICS was running with
XRF=NO)

� If CICS cannot find a terminal control table terminal entry (TCTTE) for a
session (for example, because the terminal was autoinstalled with
AIRDELAY=0 specified)

6 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

5 � If an RDO TERMINAL or SESSIONs resource definition is defined with the
recovery option (RECOVOPTION) set to UNCONDREL or NONE

� If CICS determines that it cannot recover the session without unbinding and
rebinding it

� If an RDO CONNECTION resource definition is defined with the persistent
session recovery option (PSRECOVERY) set to NONE.

In all these situations, the sessions are unbound, and the result is as if CICS has
restarted following a failure without VTAM persistent session support.

There are some other situations where APPC sessions are unbound. For example,
if a bind was in progress at the time of the failure, sessions are unbound.

Sessions not retained
There are some circumstances in which VTAM does not retain LU–LU sessions:

� VTAM does not retain sessions after a VTAM, VSE, or processor (CPC) failure

� VTAM does not retain CICS sessions if you close VTAM with any of the
following CEMT or EXEC CICS commands:

– SET VTAM FORCECLOSE
– SET VTAM IMMCLOSE
– SET VTAM CLOSED

� VTAM does not retain CICS sessions if you close the CICS node with the
VTAM command VARY,NET,INACT ID=applid

� VTAM does not retain CICS sessions if your CICS system performs a normal
shutdown (with a PERFORM SHUTDOWN command)

For further information on persistent session support, see the CICS System
Definition Guide.

Backward recovery (backout)
Backward recovery, or backout, is a way of “undoing” changes made to resources
such as files or databases.

Backout is one of the fundamental recovery mechanisms of CICS. It relies on
recovery information recorded while CICS and its transactions are running normally.

Recovery information for backout is recorded in the following way. Before a
change is made to a resource, a before-image is recorded on both the CICS
system log and a dynamic log. A before-image is a record of what the resource
was like before the change.

If a transaction fails, information is needed to back out the changes the transaction
made while the rest of the CICS system continues normally. This is dynamic
transaction backout.

For dynamic transaction backout, CICS writes the information to a dynamic log in
main storage. There is one dynamic log for each task.

 Chapter 1. Introduction to recovery and restart 7

If the CICS system fails, information is needed to back out the changes made by all
tasks that were in-flight at the time of failure. This backout happens during
emergency restart.

In readiness for backout during CICS emergency restart, CICS writes recovery
information to a journal, the CICS system log.

 Recoverable resources
In CICS, a recoverable resource is any resource with recorded recovery information
that can be recovered by backout.

The following resources can be made recoverable:

� CICS files that relate to:

– VSAM data sets
– DAM data sets

 � Data tables

� The CICS system definition (CSD) file

� Intrapartition transient data destinations

� Auxiliary temporary storage queues

 � Messages

� Resource definitions dynamically installed using resource definition online
(RDO)

 � DL/I databases

Logical units of work and synchronization points
When one or more resources are being changed, there comes a point when the
changes are “complete” and do not need backout if a failure occurs later.

Logical unit of work
The period between the start of a particular set of changes and the point at which
they are complete is called a logical unit of work (LUW). The LUW is a
fundamental concept of all CICS backout mechanisms.

From the application designer’s point of view, an LUW is a sequence of actions that
needs to be complete before any of the individual actions can be regarded as
complete.

For the CICS backout mechanisms, an LUW is simply that part of a transaction’s
work that, when complete, is regarded as committed. Committed changes do not
have to be backed out if the transaction or the system fails.

 Synchronization points
The end of a logical unit of work is indicated to CICS by a synchronization point
(usually abbreviated to syncpoint).

A syncpoint arises in the following ways:

8 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

� Implicitly at the end of a transaction, signaled by an EXEC CICS RETURN
command at the highest logical level. This means that a logical unit of work
cannot span tasks.

� Explicitly by EXEC CICS SYNCPOINT commands issued by the application
programmer at appropriate points in the transaction.

� Implicitly through a DL/I VSE program specification block (PSB) termination
(TERM) call or command. This means that only one DL/I VSE PSB can be
scheduled within a logical unit of work.

Note that an explicit EXEC CICS SYNCPOINT command, or an implicit
syncpoint at the end of a task, implies a DL/I PSB termination call.

� Implicitly when a batch DL/I VSE program issues a DL/I VSE checkpoint call.
This can occur when the batch DL/I VSE program is sharing a database with
CICS applications through multiple partition support (MPS).

It follows from this that an LUW starts:

� At the beginning of a task

� Whenever an implicit or explicit syncpoint is issued and the transaction does
not end.

An LUW that does not change a recoverable resource has no meaningful effect for
the CICS recovery mechanisms. Nonrecoverable resources are never backed out.

 Examples
In Figure 1, task A is a nonconversational (or pseudoconversational) task with one
LUW, and task B is a multiple-LUW task (typically a conversational task in which
each LUW accepts new data from the user). The figure shows how LUWs end at
syncpoints. During the task, the application program can issue syncpoints
explicitly, and at the end, CICS issues a syncpoint.

LUW

Task A

SOT EOT
(SP)

LUW LUW LUW LUW

Task B

SOT SP SP SP EOT
(SP)

Abbreviations:
EOT: End of task
LUW: Logical unit of work
SOT: Start of task
SP: Syncpoint

Figure 1. Logical units of work (LUWs) and syncpoints

Figure 2 on page 10 shows that database changes made by a task are not
committed until a syncpoint is executed. If task processing is interrupted because
of a failure of any kind, changes made within the abending LUW are automatically
backed out.

 Chapter 1. Introduction to recovery and restart 9

X
.

LUW .
.

Task A .
.

SOT EOT .
(SP).

Mod .
.
.

Commit.
Mod .

.

.
Backout .

===========.
.

LUW1 LUW2 LUW3 . LUW4
.

Task B
.

SOT SP SP . SP EOT
. (SP)

Mod Mod Mod . Mod
1 2 3 . 4

.

.
Commit Commit .Commit Commit
Mod 1 Mod 2 .Mod 3 Mod 4

.

.
Backout .

=======================.
.

Task C
.

SOT . EOT
. (SP)

Mod Mod .
.
.
. Commit
. Mods
.
X

Abbreviations:
EOT: End of task
LUW: Logical unit of work
Mod: Modification to database
SOT: Start of task
SP: Syncpoint
X: Moment of system failure (see discussion in text)

Figure 2. Backout of logical units of work

If there is a system failure at time X:

� The changes made in task A have been committed and are therefore not
backed out.

� In task B, the changes shown as Mod 1 and Mod 2 have been committed, but
the change shown as Mod 3 is not committed and is backed out.

� All the changes made in task C are backed out.

10 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

 Forward recovery
Some types of data set failure cannot be corrected by backward recovery; for
example, failures that cause physical damage to a database or data set. Recovery
from failures of this type is usually based on the following actions:

1. Take a backup copy of the data set at regular intervals.

2. Record an after-image of every change to the data set on the system log or
any other journal.

3. After the failure, use the information recorded on the system log or other
journal to bring the backup copy to the most up-to-date condition possible.

These operations are known as forward recovery.

Forward recovery of local DL/I databases
CICS writes after-images of DL/I VSE database changes to the system log. These
records are available for forward recovery operations.

Forward recovery of CICS data sets
CICS supports forward recovery of VSAM data sets updated by CICS file control
(that is, by files or data tables defined by a CICS RDO FILE definition).

CICS writes the after-images of changes made to a data set on a journal, which
can be the system log. You specify the journal number in the file definition. You
can define the journal to use automatic archiving, that is, CICS automatically
submits a batch job to copy a journal when it is closed. You may then use the
archived journals with offline forward-recovery utilities. The file-definition options
that are required to implement forward recovery are explained further in
“Implementing recoverability of files” on page 74. See Chapter 2, “Recording of
recovery information” on page 17 for more information about automatic archiving.

Recovery of VTAM messages
You can nominate transactions that work with VTAM terminals to be message
protected (see “Specifying message-protection options for VTAM terminals” on
page 81). For such transactions, this means that CICS is responsible for logging
input and output messages; after a system failure, CICS makes these logged
messages available so that application programs can reestablish communication
with the terminals.

In addition, for VTAM terminals that support the set-and-test-sequence number
(STSN) command, CICS can check SNA sequence numbers after a system failure
and retransmit output messages if necessary.

Failures that require CICS recovery processing
The following sections briefly describe CICS recovery processing after:

 � Communication failure
 � Transaction failure
 � System failure

 Chapter 1. Introduction to recovery and restart 11

Whenever possible, CICS attempts to contain the effects of a failure—typically by
terminating only the offending task while all other tasks continue normally. The
updates performed by a prematurely terminated task can be backed out
automatically (see “CICS recovery processing following a transaction failure” on
page 13).

CICS recovery processing following a communication failure
Causes of communication failure include:

 � Terminal failure
� Printer terminal running out of paper
� Power failure at a terminal
� Invalid SNA status

During normal processing, CICS does not store any data to use for recovery from a
communication failure. However, for an intersystem communication (ISC) link
between CICS and IMS or between two CICS systems, CICS stores the inbound
and outbound SNA sequence numbers in the relevant TCTTE control block, and on
the system log.

If the link fails and is later reestablished, CICS and IMS or CICS and CICS use the
SNA set-and-test-sequence numbers (STSN) command to find out what they were
doing (backout or commit) at the time of link failure. For further information on link
failure, see the CICS Intercommunication Guide.

If communication fails, the communication system access method either retries the
transmission or notifies CICS after several. attempts. If a retry is successful, CICS
is not informed. Information about the error can be recorded by the operating
system. If the retries are not successful, CICS is notified.

When CICS detects a communication failure, it gives control to one of two
programs:

� The node error program (NEP) for VTAM logical units
� The terminal error program (TEP) for non-VTAM terminals

Both dummy and sample versions of these programs are provided by CICS. The
dummy versions do nothing; they simply allow the default actions selected by CICS
to proceed. The sample versions show how to write your own NEP or TEP to
change the default actions.

The types of processing that might be in a user-written NEP or TEP are:

� Logging additional error information. CICS provides some error information
when an error occurs.

� Retrying the transmission. This is not recommended because the access
method will already have made several attempts.

� Leaving the terminal out of service. This means that it is unavailable to the
terminal operator until the problem is fixed and the terminal is put back into
service by means of a master terminal transaction.

� Abending the task if it is still active (see “CICS recovery processing following a
transaction failure” on page 13).

� Reducing the amount of error information printed.

12 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

“Your own NEP processors” on page 99, and “Your own TEP code” on page 100,
have more information about the sample NEPs and TEPs. For programming
information about coding your own NEPs and TEPs, see the CICS Customization
Guide. More general information is in Chapter 6, “Communication error
processing” on page 53.

CICS recovery processing following a transaction failure
Causes of a transaction failure include:

� A program check in the application program. CICS intercepts operating system
calls for an abend (provided the abend code is included in the system recovery
table (SRT)) and, in turn, abends the task.

� An invalid request to CICS from an application, causing an abend.

� A task issuing an ABEND request.

� I/O errors on the data set.

During normal execution of a transaction working with recoverable resources, CICS
stores recovery information in a dynamic log. If the transaction fails, CICS uses the
dynamic log information to back out the changes made by the interrupted LUW.
Recoverable resources are thus not left in a partially updated or inconsistent state.
Backing out an individual transaction is called dynamic transaction backout
(DTB).

After DTB has completed, the transaction can restart automatically without the
operator being aware of it happening. This function is especially useful in those
cases where the cause of transaction failure is temporary and an attempt to rerun
the transaction is likely to succeed (for example, DL/I program isolation deadlock).
The conditions when a transaction can be automatically restarted are described
under “Abnormal termination of a task” on page 47.

If DTB fails, perhaps because of an I/O error on a VSAM data set, CICS backout
failure control quiesces all activity on all files referencing data sets that have failed
backout. Forward recovery and backout utilities can then recover the data sets
offline while CICS remains running.

Chapter 5, “Abend processing” on page 45 gives more details about CICS
processing a transaction failure.

CICS recovery processing following a system failure
Causes of a system failure include:

 � Processor failure
� Loss of electrical power supply
� Operating system failure

 � CICS failure.

During normal execution, CICS stores recovery information on a system log, which
can be on disk or tape. After a system failure, CICS is restarted by a special
procedure called emergency restart.

During emergency restart, CICS reads the system log backward and extracts
information that it places on the restart data set.

 Chapter 1. Introduction to recovery and restart 13

CICS then uses the information in the restart data set to:

� Back out recoverable resources
� Recover VTAM messages

5 � Recover resource definitions installed using the CEDA transaction
5 � Recover resource definitions installed using EXEC CICS CREATE commands

More details of CICS processing following a system failure are in “Emergency
restart” on page 34. You might also review “Forward recovery” on page 11.

14 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Part 2. Recovery and restart processes

This part of the book describes the CICS recovery and restart processes, and
indicates where to add user processing to influence these processes. The way you
design for, implement, and extend these functions is described in the later parts of
this book.

This part contains the following chapters:

� Chapter 2, “Recording of recovery information” on page 17
� Chapter 3, “CICS shutdown” on page 27
� Chapter 4, “CICS startup” on page 31
� Chapter 5, “Abend processing” on page 45
� Chapter 6, “Communication error processing” on page 53.

For DL/I VSE information, see Chapter 19, “Recovery in a DL/I VSE environment”
on page 139.

 Copyright IBM Corp. 1982, 1999 15

16 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Chapter 2. Recording of recovery information

This chapter describes where CICS stores information for recovery and restart
purposes, including:

 � “Global catalog”
� “Restart data set” on page 19
� “Dynamic log (for dynamic transaction backout)” on page 19
� “System log (journal 1)” on page 20
� “Journals 2 through 99” on page 23
� “Journal archive control data set” on page 25

When DL/I VSE runs with CICS, all logging for DL/I VSE recovery is directed to the
CICS dynamic and system logs. Do not use the batch log that is normally created
in DL/I VSE batch processing when running DL/I VSE under CICS.

Recording on the catalogs
CICS uses two catalogs:

� The global catalog (DFHGCD)
� The local catalog (DFHLCD)

The global catalog filename is DFHGCD and the local filename is DFHLCD. In an
XRF configuration, the active and alternate CICS each have a local catalog and
share the global catalog. The CICS System Definition Guide tells you how to
create and initialize the CICS catalog data sets.

While CICS is running, the catalogs receive information passed from one execution
of CICS, through a shutdown, to the next execution of CICS. This information is
not only for warm and emergency restarts, but also for a cold start. If the global
catalog fails for any reason, the control record and vital resource information are
lost, and it becomes impossible to perform a warm or emergency start.

Take backups of the catalogs periodically (perhaps at the end of each CICS run) to
limit the damage that could be caused by a catalog failure during a CICS run.

The next two sections list the types of information recorded on the catalogs.

 Global catalog
The global catalog contains information needed at restart, including:

� The control record. After any type of startup, CICS sets an indicator in the
control record to “emergency restart needed”. If CICS terminates normally,
this indicator is changed to “warm start possible”. Then, for an automatic start
(START=AUTO), if the indicator says “warm start possible”, CICS performs a
warm start. If the indicator says “emergency restart needed”, CICS performs
an emergency restart.

CICS performs a cold start when using the catalog for the first time or, if it is
unable to read the catalog.

� Warm keypoint information (described in “Warm keypoints” on page 28).

 Copyright IBM Corp. 1982, 1999 17

� Details of the open/closed status of the system log. When CICS terminates,
normally or abnormally, it tries to close the system log. If this is successful, the
system-log-status indicator is updated.

� Details of the status (ready for use/not ready for use/current) of all data sets in
all disk journals (including system log) defined without the automatic journal
archiving facility.

This status is retained across a restart, thus maintaining the protection against
the reuse of data sets (provided by specifying the PAUSE option in the JCT).

For journals (including the system log) defined with automatic journal archiving,
see “Journal archive control data set” on page 25.

� Resource information. The following information is recorded on the global
catalog during CICS execution (see “Recovering dynamically added resource
definitions” on page 39), and when CICS is shut down normally (when a warm
keypoint is taken):

– Installed program and transaction resource definitions

– Installed terminal entries

– Installed autoinstall terminal models

– Installed partner definitions

– The file control table (and, for VSAM data sets that have suffered a backout
failure, CICS sets a backout-failed status in a record on the CICS global
catalog)

– DL/I VSE status information

– Destination control table (intrapartition entries)

– Dump table information

– Transient data information

– Temporary storage information

– Interval control elements and automatic initiate descriptors at system
termination time

– Unit of recovery descriptors (URDs) at normal shutdown

– Communications network operating system (CNOS) information during
normal CICS operations so that the values can be restored during a
persistent sessions restart

� Statistics information, so that restart may restore the same statistics

� Monitoring information, so that the same monitoring options apply at restart

 Local catalog
The local catalog contains the essential information for the domains to reinitialize.
It also contains the dump data set status record. This records the last dump data
set in use. If the DUMPDS=AUTO system initialization parameter has been
specified, CICS needs this information at startup to determine which dump data set
to open.

Dump options set by CEMT are also recorded, and saved across restarts.

18 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Restart data set
During emergency restart, CICS reads the system log backward and copies
selected information to the restart data set. This is the only use of the restart data
set. The information is used during emergency restart. You should ensure that the
restart data set is large enough to hold all the data copied (see “Recovery control
processing” on page 36).

Dynamic log (for dynamic transaction backout)
For resources defined as recoverable, CICS stores a copy of all changes that might
be needed for dynamic transaction backout on a dynamic log. To back out the
changes made to recoverable resources by a failing transaction, the before-images
of such records must be retrieved from the log. The dynamic log is maintained in
addition to the system log because the backout data on the system log cannot be
read without interfering with other transactions that are writing to it.

Characteristics of a dynamic log
The dynamic log resides in main storage above the 16MB line. The size of the
allocation depends on the value specified in the DBUFSZ system initialization
parameter and the storage used by previous invocations of the transaction. If the
allocation is insufficient, extra storage for spilled dynamic log buffers is allocated
above the 16MB line.

Each dynamic log relates to only one transaction. Information that is no longer
required is deleted at a syncpoint.

Information recorded in a dynamic log
The information recorded in a dynamic log includes:

� Changes to recoverable files:

– Before-image of each updated or deleted record
– Key and data of each new record.

� Changes to DL/I databases:

– After-image of a database change except for a physical replace record
– Before-image of a database change
– KSDS insert log records

� The first VTAM input message for each LUW (for message-protected tasks
only)

� The contents of the following areas as they existed at the start of the task (not
just the current LUW):

– The terminal input/output area (TIOA), which contains the initial input that
initiated the task

– The terminal control table user area (TCTUA)

– The communication area (COMMAREA) as left by a previous task
communicating with the same terminal

These areas are only for transactions that have RESTART(YES) set in the
RDO TRANSACTION resource definition.

 Chapter 2. Recording of recovery information 19

Note: Even though no information is recorded on the dynamic log for recoverable
intrapartition transient data queues or recoverable auxiliary temporary
storage queues, these resources and their associated tables can be
recovered during dynamic transaction backout. This is because the
necessary information is retained in the destination control table, the
temporary storage table, and in the queues themselves (see “Dynamic
transaction backout (DTB)” on page 47).

System log (journal 1)
The CICS system log is a CICS journal (with a journal identification of 01) that can
reside on disk or tape. The following sections describe:

� The information that is recorded on the system log
� The characteristics of the system log on disk
� The characteristics of the system log on tape

The system log is the only place where CICS records backout information for use in
emergency restart processing.

Chapter 8, “Logging and journaling” on page 65 tells you how to set up the
system log.

Information recorded on the system log
The information recorded on the system log is sufficient to allow backout of
changes made to recoverable resources by transactions that were running at the
time of failure, and to restore the recoverable part of CICS system tables.
Typically, this includes before-images of database records and after-images of
recoverable parts of CICS tables—for example, transient data cursors or TCTTE
sequence numbers.

In addition, records may be written to the system log (journal 01) by explicit journal
requests in the user’s application program; for example, EXEC CICS WRITE
JOURNALNUM. You may also choose to place forward recovery information on
the system log (see “Defining journals” on page 67).

User-written log records allow you to provide your own recovery process for
resources that CICS does not recover itself. The DFHUSBP program, which is
invoked during backout, processes these log records and so allows these resources
to be backed out (see “XRCINIT exit” on page 92).

CICS also writes “backout-failed” records to the system log (and global catalog) if a
failure occurs in backout processing of a VSAM data set during dynamic backout or
at emergency restart.

In the event of an uncontrolled termination of CICS, records on the system log are
used as input to the emergency restart process as described in “Emergency restart”
on page 34.

20 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

System activity keypoints
The CICS system log may reside on disk data sets that “wrap around”; that is,
when the end of the data set is reached, writing resumes at the start. This means
that data does not remain on the system log indefinitely; it will eventually be
overwritten. For backout data this is not usually a problem, because the active
records should never be older than the longest task that was running at the time of
failure. You should take care with exceptionally long-running conversational
transactions, however.

On the other hand, the (forward) recovery of CICS tables requires data written by
the last completed task that changed the table. This data could have been
overwritten, but the activity keypointing mechanism prevents its loss by periodically
copying the latest committed versions of CICS tables to the system log. In
addition, the current tasks are identified in activity keypoints, allowing emergency
restart to work out where to stop its backward scan of the system log. Frequently
taken activity keypoints can therefore reduce restart time, at the expense of extra
processing during normal running.

Frequency of taking activity keypoints: The first activity keypoint of a CICS session
is written during system initialization (cold start, warm start, or emergency restart).

The recording of subsequent activity keypoints can be initiated in the following
ways:

� By the CSKP transaction, which is attached after every nn physical writes to
the system log (where nn is specified in the AKPFREQ system initialization
parameter–for further information, see the CICS System Definition Guide).

� Every time logging starts on a new disk data set or tape volume (unless an
activity keypoint is already being written).

Characteristics of the system log on disk
The system log can be implemented with one disk data set (DFHJ01A) or two disk
data sets (DFHJ01A and DFHJ01B), as defined by the JTYPE option in the JCT.

A disk system log is designed to wrap around and reuse its data sets if necessary.
If only one data set is being used and it becomes full, logging continues at the
beginning of the same data set and overwrites information already recorded there.
If two data sets are being used, and the data set in use becomes full, logging
switches to the beginning of the other data set and overwrites information already
recorded there.

 Automatic archiving
To ensure that data sets are not overwritten before the contents have been
archived for recovery purposes, you may specify automatic archiving of filled data
sets with the DFHJCT JOUROPT=AUTOARCH option (for two data sets only). For
further information about automatic archiving, see “Preserving the system log
(automatic archiving)” on page 65.

An alternative is to use the DFHJCT JOUROPT=PAUSE option, which requests a
response from the processor console operator before reusing a data set. This
gives the operator a chance to archive the data set (using a batch job) before
reusing it. If you use the PAUSE option on a single data set system log,
transactions that write to the log must wait while the data set is copied.

 Chapter 2. Recording of recovery information 21

The data set used and the position where logging starts when CICS starts depends
on whether the system log data sets have been formatted for this CICS run.

Table 2 illustrates where logging starts on two-disk system log data sets that have
not been formatted for this CICS run.

Table 3 on page 23 illustrates where logging starts on two-disk system log data
sets that have been preformatted by the DFHJCJFP utility, before the start of this
CICS run. The CICS System Definition Guide tells you more about DFHJCJFP and
formatting journals.

Note: You should not format the system log before an emergency restart
because you will destroy your recovery data and make restart
impossible .

Table 2. Where logging starts on a system log specified with two disk data sets

Type of start DFHJCT JOUROPT=AUTOARCH DFHJCT JOUROPT=PAUSE

cold or warm At start of whichever data set is READY
for use. If both are READY, at start of
DFHJ01A. If neither is READY, DFHJ01A
is requested.

After the last record written to DFHJ01A or
DFHJ01B during previous run of CICS.
(See also note 2.)

emergency After last record written to DFHJ01A or
DFHJ01B during previous run. (See also
note 3.)

Notes:

1. Journaling will start at the beginning of the next data set if:

� the last data set used is near the end of volume
� the data set chosen conflicts with the information on the global catalog
� the data set is flagged ‘not ready for use’

If you specify JSTATUS=RESET, the status of the journal on the CICS global
catalog from the previous run is ignored. In this case, positioning always starts
after the last record written, unless this is near the end of volume when the
next data set is selected.

2. If the last data set used is near the end of volume, or the data set chosen
conflicts with the CICS global catalog, or the data set is flagged ‘not ready for
use’, journaling will start at the beginning of the next data set. However, if you
specify JSTATUS=RESET, the status of the journal on the global catalog from
the previous run is ignored. In this case, positioning always starts after the last
record written, unless this is near the end of volume when the next data set is
selected.

3. If you specify neither JOUROPT=AUTOARCH nor JOUROPT=PAUSE,
journaling starts in the same place as if you had specified JOUROPT=PAUSE,
except that an extent would never be flagged ‘not ready for use’.

4. If the previous run of CICS was terminated with an IMMEDIATE shutdown,
journal control closes the system log. In this case, an archive request was
submitted and positioning is the same as for a cold or warm start.

5. For more information about the JOUROPT options, see page 65.

6. You cannot specify warm or emergency starts. They depend on the
START=AUTO system initialization parameter.

22 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Table 3. Where logging starts on a reformatted system log specified with two disk data sets

Type of start DFHJCT JOUROPT=AUTOARCH DFHJCT JOUROPT=PAUSE

cold or warm At start of whichever data set is READY
for use. If both are READY, at start of
DFHJ01A. If neither is READY, DFHJ01A
is requested.

At start of DFHJ01A. (See also note 2.)

emergency Not possible. Not possible.

Note: If the data set chosen conflicts with the information on the global catalog, or
the data set is flagged ‘not ready for use’, journaling will start at the
beginning of the next data set. However, if you specify JSTATUS=RESET,
the status of the journal on the CICS global catalog from the previous run is
ignored, so positioning always starts at the beginning of DFHJ01A.

Characteristics of the system log on tape
When implemented on tape, the system log consists of a series of tape volumes.

One or two tape drives
CICS supports the use of one or two tape drives. File names are associated with
the tape drives as follows:

� For one tape drive, the file name is DFHJ01A. When one tape volume has
been filled, another tape volume is mounted and recording continues using the
same TLBL name.

� For two tape drives, the CICS TLBL names are DFHJ01A and DFHJ01B.
When one tape volume has been filled, journaling continues to the volume on
the other tape drive. Thus the series of volumes is recorded by using the two
tape drives, and the two file names, alternately.

Journals 2 through 99
Journals 2 through 99 have three purposes: user journaling, automatic journaling,
and recording after-images for use with a forward recovery utility:

� User journaling is under your control; it is not used for recovery purposes by
CICS.

You can create user journal records by executing EXEC CICS WRITE
JOURNALNUM commands in transactions.

� Automatic journaling means that CICS (on behalf of the user) automatically
writes records to any journal, including the system log, as a result of:

– Records read from or written to files (before-images and after-images).

– Input or output messages from terminals accessed through VTAM. These
are requested by options of an RDO TRANSACTION resource definition.
These messages can be used to create audit trails. Remember that
syncpoint records are written only to the system log.

You can request automatic journaling by using options of an RDO FILE
resource definition or by using DFHFCT TYPE=FILE macro operands.
Automatic journaling is used for user-defined purposes, for example, for an
audit trail, or for a forward recovery program. It is not used for CICS recovery
purposes.

 Chapter 2. Recording of recovery information 23

� CICS records after-images of updates made to CICS files for use with a
forward recovery utility.

You specify which journal is to receive this data by the FWDRECOVLOG option
of an RDO FILE resource definition. You can use any journal, including the
system log, for this purpose.

Like the system log, you can define user journals for one or two disks or tape.
Table 4 indicates where disk journaling (for two data sets) begins for each type of
start.

Table 4. Where journaling starts on journals 2 through 99 specified with DISK2

 Type of start DFHJCT JOUROPT=AUTOARCH No automatic archiving

Did not format
with
DFHJCJFP
utility before
start

cold or warm At start of whichever data set is
READY for use. If both are
READY, at start of DFHJnnA. If
neither is READY, DFHJnnA is
requested.

After the last record written to
DFHJnnA or DFHJnnB during the
previous run of CICS.
(See note 1.)

emergency After the last record written to
DFHJnnA or DFHJnnB during the
previous run of CICS.

Did reformat
with
DFHJCJFP
utility before
start

cold or warm At start of whichever data set is
READY for use. If both are
READY, at start of DFHJnnA. If
neither is READY, DFHJnnA is
requested.

At start of DFHJnnA.
(See note 2.)

emergency Journaling starts as for cold/warm
starts, but formatting means that
the data is lost. (See note 3.)

Notes:

1. Journaling will start at the beginning of the next data set if:

� The last data set used is near the end of volume.
� The data set chosen conflicts with the information on the global catalog.
� The data set is flagged ‘not ready for use’

However, if you specify JSTATUS=RESET, the status of the journal on the
CICS global catalog from the previous run is ignored. In this case, positioning
always starts after the last record written, unless this is near the end of volume
when the next data set is selected.

2. If the data set chosen conflicts with the information on the CICS global catalog,
or the data set is flagged ‘not ready for use’, journaling will start at the
beginning of the next data set. However, if you specify JSTATUS=RESET, the
status of the journal on the CICS global catalog from the previous run is
ignored, so positioning always starts at the beginning of DFHJnnA.

3. If the previous run of CICS was terminated with an IMMEDIATE shutdown,
CICS journal control will have closed the user journal. In this case, an archive
will have been submitted and positioning is as for a cold or warm start.

Chapter 8, “Logging and journaling” on page 65 provides information about
implementing journals.

24 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Journal archive control data set
For journals defined with automatic journal archiving DFHJCT TYPE=ENTRY macro
(JOUROPT=AUTOARCH option), details of their status are kept on the journal
archive control data set (DFHJACD). This is a VSAM relative record data set
(RRDS). For more information about defining the DFHJACD data set, see the
CICS System Definition Guide.

 Chapter 2. Recording of recovery information 25

26 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

 Chapter 3. CICS shutdown

This chapter describes the various ways CICS can shut down, both normally and
abnormally. It also describes the ways that CICS, during shutdown, records
information needed for its restart. It covers the following topics:

� “Normal shutdown processing (PERFORM SHUTDOWN)”

� “Immediate shutdown processing (PERFORM SHUTDOWN IMMEDIATE)” on
page 29

� “Shutdown requested by the operating system” on page 29

� “Uncontrolled termination” on page 30

CICS can stop executing as a result of:

� A normal (controlled) shutdown requested by the master terminal operator

� A normal shutdown requested by an EXEC CICS command in an application
program

� Cancelation at the end of emergency restart

CICS can also stop executing in the following (abnormal) ways:

� An immediate shutdown requested by the master terminal operator

� An immediate shutdown requested by an EXEC CICS command in an
application program

� A request from the operating system (arising, for example, from a program
check or system abend)

� An uncontrolled shutdown (caused, for example, by a machine check or power
failure)

� A CICS system module encountering an irrecoverable error

� The START=LOGTERM system initialization parameter

Normal shutdown processing (PERFORM SHUTDOWN)
Normal shutdown is initiated by the master terminal operator, or by an EXEC CICS
command in an application program. It takes place in three quiesce stages as
described below.

First quiesce stage
During the first quiesce stage of shutdown all terminals are active, all CICS facilities
are available, and the following activities are performed concurrently:

� Tasks that already exist complete.

� Tasks that are automatically initiated are run—if they start before the second
quiesce stage.

� Any programs listed in the first part of the shutdown program list table (PLT)
are run sequentially. (The shutdown PLT suffix is specified in the PLTSD
system initialization parameter, which may be overridden by the PLT option of
the CEMT or EXEC CICS PERFORM SHUTDOWN command.)

 Copyright IBM Corp. 1982, 1999 27

� A new task started as a result of terminal input is allowed to start only if its
transaction code is listed in the current transaction list table (XLT) or has been
defined as SHUTDOWN(ENABLED) in the transaction definition (RDO). The
XLT list of transactions restricts the tasks that can be started by terminals and
allows the system to shut down in a controlled manner. The current XLT is the
one specified by the XLT=xx system initialization parameter, which may be
overridden by the XLT option of the CEMT or EXEC CICS PERFORM
SHUTDOWN command.

Certain CICS-supplied transactions are, however, allowed to start whether their
code is listed in the XLT or not. These transactions are CEMT, CESF, CLS1,
CLS2, CSAC, CSTE, and CSNE.

The first quiesce stage is complete when the last of the programs listed in the first
part of the shutdown PLT has executed and all user tasks are complete.

Note: Long-running tasks (such as conversational tasks) must terminate before
CICS shutdown can proceed.

Second quiesce stage
During the second quiesce stage of shutdown:

� Terminals are not active.

� No new tasks are allowed to start.

� Programs listed in the second part of the shutdown PLT (if any) run
sequentially. These programs cannot communicate with terminals or make any
request that would cause a new task to start.

The second quiesce stage ends when the last of the programs listed in the PLT
has completed executing.

Third quiesce stage
During the third quiesce stage of shutdown:

� CICS closes all files that are defined to CICS file control. However, CICS does
not catalog the files as UNENABLED; they can then be opened implicitly by the
first reference after a subsequent CICS restart.

� CICS writes statistics to the CICS data management facility (DMF).

� CICS writes the following information to the CICS global catalog:

– A warm keypoint (see “Warm keypoints”).

– A warm-start-possible indicator. This status applies on the next initialization
of CICS if START=AUTO is specified.

� CICS stops executing.

 Warm keypoints
The CICS-provided warm keypoint program (DFHWKP) writes a warm keypoint to
the CICS global catalog during the third quiesce stage of shutdown processing
when all system activity is quiesced. The warm keypoint contains information used
to restore the operating environment during a subsequent warm start or emergency
restart.

28 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

The information listed under “Warm start” on page 32 includes that recorded by a
warm keypoint.

Immediate shutdown processing (PERFORM SHUTDOWN IMMEDIATE)
When the master terminal operator or a program requests an immediate shutdown
of CICS, processing is different from a normal shutdown in the following important
ways:

� User tasks are not guaranteed to complete.

� None of the programs listed in the shutdown PLT is executed.

� CICS does not write a warm keypoint or a warm-start-possible indicator to the
CICS global catalog.

� CICS does not close files defined to CICS file control.

� Sessions wait for the restart system to initialize or the expiry of the interval
specified in the PSDINT system initialization parameter

The next initialization of CICS must be an emergency restart in order to preserve
data integrity. An emergency restart is certain if the next initialization of CICS
specifies START=AUTO, because an emergency-restart-needed indicator is written
to the CICS global catalog whenever CICS is initialized. This indicator remains
until the next startup, provided you do not reinitialize the CICS global catalog.

Shutdown requested by the operating system
This type of shutdown can be initiated by the operating system as a result of a
program check or an operating system abend. A program check or system abend
can cause either an individual transaction to abend or CICS to terminate. (For
further details, see “Processing of operating system abends and program checks”
on page 51.)

A CICS termination caused by an operating-system request:

� Does not guarantee that user tasks will complete

� Does not allow shutdown PLT programs to execute

� Does not write a warm keypoint or a warm-start-possible indicator to the CICS
global catalog

� Takes a system dump as specified by the DUMP system initialization parameter

� Does not close any open files. VSAM files are automatically verified by VSAM
on the next open

The next initialization of CICS must be an emergency restart in order to preserve
data integrity. An emergency restart is certain if the next initialization of CICS
specifies START=AUTO, because of the emergency-restart-needed indicator written
to the CICS global catalog whenever CICS is initialized.

 Chapter 3. CICS shutdown 29

 Uncontrolled termination
An uncontrolled shutdown of CICS can be caused by:

 � Power failure
 � Machine check
 � Operating-system failure

In each case, CICS cannot perform any shutdown processing. In particular, CICS
does not write a warm keypoint or a warm-start-possible indicator to the CICS
global catalog.

The next initialization of CICS must be an emergency restart in order to preserve
data integrity. An emergency restart is certain if the next initialization of CICS
specifies START=AUTO system initialization parameter, because of the
emergency-restart-needed indicator written to the CICS global catalog whenever
CICS is initialized.

Printing the dump data set
Most uncontrolled shutdowns will produce a transaction dump. One step of the
restart procedure is to print the dump data set. If CICS is initialized using a
different dump data set, the print job can be run in parallel with the initialization. If
the local catalog stores the name of the dump data set in use when the shutdown
occurred, the restart can automatically choose to open a second dump data set.

This is done by specifying the DUMPDS=AUTO system initialization parameter, and
defining both dump data sets, DFHDMPA and DFHDMPB, to CICS.

On a warm or emergency start, CICS selects the dump data set that was not in use
when the previous CICS run terminated. On a cold start, CICS selects DFHDMPA.

30 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

 Chapter 4. CICS startup

This chapter describes the CICS startup processing specific to recovery and restart.
It is divided into the following sections:

� “Types of initialization”
� “Recovery of system log and user journals”
� “Cold start” on page 32
� “Warm start” on page 32
� “Emergency restart” on page 34
� “Comparison of the types of restart” on page 41
� “User programs at initialization” on page 43

Types of initialization
You can specify any of these system initialization START options:

� START=AUTO, which results in:

– A warm start, if the previous termination was normal

– An emergency restart, if the previous termination was not normal

– A cold start if CICS is running for the first time after initializing the catalogs.

When START=AUTO is specified, CICS inspects the control record on the
CICS global catalog. If it finds an emergency-restart-needed indicator, it
performs an emergency restart. If it finds a warm-start-possible indicator, it
performs a warm start. If it does not find an indicator (when the CICS catalogs
are used for the first time), it performs a cold start.

� START=COLD, which results in a cold start.

� START=STANDBY, for XRF only, which identifies the system as an alternate
CICS system. An active CICS system is started, like a non-XRF system, using
START=AUTO or COLD.

� START=LOGTERM, which stops CICS at the beginning of emergency restart
before backout processing, to allow offline recovery processing.

The use, at restart, of the catalogs, the system log, and user journals is described
in Chapter 2, “Recording of recovery information” on page 17.

The CICS initialization process for cold, warm and emergency restarts is described
below.

Recovery of system log and user journals
For all types of startup, CICS recovers the status of the system log and user
journals as follows:

� For a journal defined to use automatic archiving, CICS recovers the status from
the journal archive control data set (DFHJACD). If, for some reason, you want
to override the status information, redefine the DFHJACD data set. The CICS
System Definition Guide tells you how to do this.

 Copyright IBM Corp. 1982, 1999 31

� For a disk journal that does not use automatic archiving, CICS recovers the
status from the CICS global catalog. To ignore this status information at
startup, use the JSTATUS=RESET system initialization parameter.

 Cold start
In a cold start, CICS initializes with limited reference to any system activity
recorded in the CICS catalogs. A cold start occurs only when the catalogs are
newly initialized.

Resource definition information comes from:

� The program library for those tables specified in system initialization parameters
(such as DCT=xx).

� The CICS system definition (DFHCSD) file for those resources defined by
resource definition online (RDO). The GRPLIST system initialization parameter
specifies the particular groups to be used.

Note: If a failure occurs during a cold start, do not attempt to do an emergency
restart, because the information needed for emergency restart may not have
been written to the CICS global catalog. When the cause of the failure has
been corrected, initiate another cold start.

User processing can be added to a cold start through the use of programs listed in
the program list table (PLT) to run at initialization (see “Using initialization (PLTPI)
programs” on page 84).

Note that, on a cold start:

� CICS recovers the status of the system log and user journals (see “Recovery of
system log and user journals” on page 31).

� CICS does not use any system log or warm keypoint information from an earlier
execution. If you use a cold start after a failure, you might lose data integrity.

� For VSAM data sets that have suffered a backout failure that has not been
corrected, the backout-failed status is kept on the CICS global catalog.

� Data on intrapartition transient-data and on auxiliary temporary storage is lost.

� Dump table entries are lost.

� The value of the SVA system initialization parameter is retained on the local
catalog across a cold start, unless it is overridden.

 Warm start
A warm start restores certain elements of CICS to the status recorded in the warm
keypoint of the previous normal shutdown (see “Warm keypoints” on page 28).

In a warm start:

� Resource definition information comes from the program library for those tables
specified in system initialization parameters (such as DCT=xx). Resources
defined by RDO are restored from the CICS global catalog. The resource
information is then updated with information from the warm keypoint.

32 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Between the previous shutdown and the warm start, if you place on the
program library new versions of control tables containing attributes of any entry
to be warm started, be aware that there might be a conflict between the
information in the warm keypoint and that in the control table. This might
cause problems later.

� CICS recovers the status of the system log and user journals (see “Recovery of
system log and user journals” on page 31).

User processing can be added to a warm start through the use of programs listed
in the program list table (PLT) to run at initialization (see “Using initialization
(PLTPI) programs” on page 84).

Unless you specify COLD in any of the system initialization parameters that have
that option, the following items are warm started—that is, they return to the state
they were in at the previous normal shutdown:

� Selected fields from the CSA.

� Intrapartition transient data. At a warm start, destinations may be added,
changed, or deleted by changing the DCT load module if the DCT=(xx,COLD)
system initialization parameter is coded. You might, however, lose data if you
change or delete a destination.

� FCT information. Note that specifying the FCT=xx system initialization
parameter has no effect at warm start, because all file definitions are restored
from the CICS global catalog.

If a VSAM data set has suffered a failure during dynamic transaction backout
(DTB) or emergency restart, and if the failure has not yet been corrected, the
backout-failed status is preserved across a warm start.

� Installed transactions and profiles. Variable information (such as counters and
indicators) is reset—except for the enabled/disabled status and the transaction
priority, which retain the status recorded in the warm keypoint.

� Installed programs and mapsets. Variable information (such as counters and
indicators) is reset—except for the enabled/disabled status, which is restored to
the state at the time CICS was shut down.

� Program definitions created by program autoinstall are restored only if they are
cataloged. This depends on the autoinstall PGAICTLG system initialization
parameter, as follows:

PGAICTLG=NONE
autoinstalled program definitions are not cataloged.

PGAICTLG=MODIFY
If you code this, or allow it to default, autoinstalled program definitions are
cataloged only if the program definition is modified by a SET PROGRAM
request subsequent to the autoinstall.

PGAICTLG=ALL
Autoinstalled program definitions are written to the global catalog at the
time of the autoinstall and following any subsequent modification.

� TCT information using information in the warm keypoint.

1. Autoinstalled terminal entries are not recovered at warm start except in the
following situation. If an autoinstalled terminal is logged off when there is a
logoff delay (indicated by the AILDELAY system initialization parameter), it

 Chapter 4. CICS startup 33

is possible that the time will not expire before CICS is terminated. If this is
the case, and the terminal definition has been cataloged (whenever the
AIRDELAY parameter is not zero), the terminal will be recovered at warm
or emergency restart, and will be deleted after the period specified by
AIRDELAY on the restart JCL. If the JCL used to restart the CICS system
specifies AIRDELAY=0, the terminal is recovered, but is deleted as soon as
CICS restart is complete.

2. Only the CICS global catalog is referenced for RDO-eligible terminals at a
warm start. To add or change a terminal, use RDO. If you want to install
and delete terminals, use autoinstall.

3. For terminals not eligible for RDO, to change terminal definitions you must
restart CICS with a new terminal control table.

4. Defined APPC connections are warm started. Autoinstalled single-session
APPC connections (via CINIT) are subject to the same rules as
autoinstalled terminals. Autoinstalled parallel-session APPC connections
and single-session APPC connections via a BIND are not warm-started
because they are not cataloged.

� Auxiliary temporary storage information. The READ pointers are recovered.

� Control information in the form of interval control elements (ICEs) for
outstanding START TRANSID commands and equivalent interval control
requests generated internally (by BMS, for example).

� Basic mapping support (BMS) information.

� Details of unit-of-recovery descriptors (URDs) for both external resource
managers and APPC conversations.

� Statistics (the collection interval and option, and the logical end-of-day time).

 � Monitoring status.

� Dump options set by CEMT or by a program using CICS system programming
commands.

� System and transaction dump table entries added by CEMT or by a program
using CICS system programming commands.

� The value of the SVA system initialization parameter.

Partial warm start
A partial warm start is similar to a complete warm start, except that some selected
CICS facilities are cold-started, as specified in the system initialization parameters.
Information comes from the warm keypoint written at the previous normal
shutdown, and is applicable only for those facilities that were not specified to be
cold-started. The remaining facilities are cold-started.

 Emergency restart
Following an abnormal shutdown, an emergency restart returns recoverable
resources to their committed states; that is:

� Changes to recoverable resources made by logical units of work that were
interrupted, are backed out.

34 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

3 For a DL/I VSE database, you do not normally need to run the DLZBACK0
batch backout utility before the emergency restart. But, if backout of the DL/I
VSE database fails during emergency restart, any further attempt to perform
the backout will also fail unless the batch backout utility has been run before

3 the emergency restart. The DL/I VSE Resource Definition and Utilities manual
3 tells you how and when to do it.

If backout for a VSAM data set fails, CICS makes the data set unavailable, and
you may run a batch backout utility.

� Messages associated with message-protected tasks are preserved.

� Dynamically added VTAM TCT resource (terminal, typeterm, sessions, and
connection) definitions that were committed during execution of a CEDA
INSTALL or EXEC CICS CREATE command, are preserved (see “Recovering
dynamically added resource definitions” on page 39).

Do not make changes to recoverable resources between the abnormal shutdown
and the emergency restart. To do so endangers successful emergency restart
processing.

Do not attempt to do an emergency restart if a failure has occurred during a cold
start. This is because information needed for emergency restart may not have
been written to the CICS global catalog.

Emergency restart processing uses as input the records accumulated on the
system log during the previous execution (see “Information recorded on the system
log” on page 20). To make emergency restart processing possible, specify a

4 nonzero value for the AKPFREQ system initialization parameter.

During emergency restart, CICS recovers the status of the system log and user
journals (see “Recovery of system log and user journals” on page 31).

CICS repositions the latest system log data set. Emergency restart reads the
system log backward, and copies to the restart data set the system log records for
those LUWs that were processing when the abnormal termination of CICS
occurred. (This book normally refers to such tasks as in-flight tasks or in-flight
LUWs .)

CICS backout processing uses the information on the restart data set to remove the
effects of data-set modifications made by in-flight tasks. CICS performs
initialization, recovery of resource definitions, and then backout processing.

User processing can be added to emergency restart processing in several ways as
described in:

� “Using initialization (PLTPI) programs” on page 84

� Chapter 11, “User exits for transaction backout during emergency restart” on
page 91.

Resource definition information is obtained from:

� The program library for those tables specified in system initialization parameters
(such as DCT=xx). The FCT is an exception, and is not referred to during
emergency restart.

Information about RDO-eligible terminals is taken only from the last warm
keypoint (see “Warm keypoints” on page 28). Any terminals installed after

 Chapter 4. CICS startup 35

CICS wrote the last warm keypoint will not be recovered. If CICS cannot find a
warm keypoint, it installs resources that were active at the last cold start. To
make changes to these terminals, always use RDO.

� The CICS global catalog. The CICS global catalog is also used to restore
information about statistics gathering and monitoring status, in the same way as
for a warm start. Dump options and SVA system initialization parameter status
are reapplied from the local catalog.

The CICS global catalog contains autoinstalled program definitions if the
PGAICTLG system initialization parameter has been coded with MODIFY or
ALL.

� The system log, activity keypoints, and syncpoint log records for temporary
storage and intrapartition transient data.

Recovery control processing
Recovery control reads the system log backward at least as far as the most recent
activity keypoint, and copies recovery information to the restart data set. Backout
processing uses the information on the restart data set later in the emergency
restart process.

The following information is collected:

� Information relating to in-flight LUWs and tasks.

� Information relating to completed LUWs and tasks, for example:

– Committed output messages.

– Tasks that have (1) completed since the last activity keypoint and (2) have
the high-order bit set as specified in the JTYPEID operand of an EXEC
CICS WRITE JOURNALNUM command (see “User records on the system
log” on page 38).

� Information relating to committed resource definition changes made using
RDO.

When all the above information has been copied from the system log, summary
information is recorded on the restart data set, and is available for user-written
programs (see Chapter 11, “User exits for transaction backout during emergency
restart” on page 91).

 Backout processing
After CICS has written the backout information to the restart data set, transaction
backout processing can begin. The effects of inflight tasks on the following
resources are backed out:

� Recoverable transient data destinations.

� Recoverable temporary storage queues. The READ pointers are set to zero.

Records older than a specified limit are purged. A parameter (TSAGE) in the
temporary storage table (TST) can be used to specify an interval beyond which
the queue is to be purged.

Those start operations that were initiated with data (EXEC CICS START
command with FROM, RTRANSID, RTERMID, or QUEUE) are recovered, as

36 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

long as you specify a REQID with the same name as a recoverable temporary
storage queue.

� Files. File access methods that do not support delete requests (VSAM-ESDS
and DAM) are a special case:

– An application program may choose to delete a record logically by
performing a get-for-update followed by a write-update of the same record
but with a marked-for-deletion flag.

Backout processing for such a deletion is exactly the same as for any other
updated record. The record marked for deletion is overwritten with the
before-image—that is, the same record, but not marked for deletion. (For
this reason, these types of data sets must not be reorganized between an
abnormal termination and an emergency restart.)

– To back out a record added to the file, backout processing cannot, on its
own, perform the necessary deletion because (1) no delete request is
available, and (2) backout processing does not know the user’s
marked-for-deletion code.

5 Therefore, the record must be marked for deletion in a XRCFCER backout
5 exit program, (see “XRCFCER exit” on page 94).

If no exit program is available, data set integrity for VSAM files is
maintained by making the data set unavailable.

Any alterations made to the data-set name of a file are applied to the installed
file definition before transaction backout opens the file. Thus, the data-set
name is the same as at the time of the failure, and the file is opened against
the correct data set.

If file backout fails to open a VSAM file for any reason, the operator is
prompted to GO or to CANCEL CICS. If GO is specified, backout failure
processing takes place. If, however, the file does not open because CICS has
already detected a backout failure, there is no operator prompt but the open
error exit, XRCOPER, is still taken. CICS flags the backout failure and makes
the affected data set unavailable. You may use a batch backout utility to
recover the data set offline.

4 � DL/I VSE databases. If DL/I VSE backout processing fails, the global user exit,
4 XRCDBER, is driven. XRCDBER can return either to ignore the error and
4 continue with the next database, or prompt the operator to GO, or CANCEL
4 CICS.

� Data tables. A CICS-maintained data table has the same recovery/restart
properties as the source data set, because CICS always keeps a data table
and its source data set in step with each other. If recovery action is required
during an emergency restart, the source data set is opened but the loading of
the data table is not initiated at that time. This is because there has not yet
been any opportunity to activate user exits to control the insertion of entries into
the table. CSFU, the system transaction that is responsible for opening files
defined with the RDO FILE resource definition option, OPENTIME(STARTUP),
or the DFHFCT TYPE=FILE macro operand FILSTAT=OPENED, initiates the
loading of any data tables left open after restart recovery.

In contrast, the recovery attributes of a user-maintained data table and its
source data set are independent of each other. Recovery support is provided
for user-maintained data tables, but only for dynamic backout. Because no
records are written to the system log, there is no recovery at emergency restart.

 Chapter 4. CICS startup 37

When a user-maintained data table is opened after a CICS restart, it is loaded
with the contents of the source data set. Thus the same recovery support is
given whether you specify RECOVERY(ALL) or RECOVERY(BACKOUTONLY)
on the RDO FILE resource definition.

� Message-protected tasks. Recovery of message-protected tasks involves
reading message texts from the restart data set into message caches for use
by user programs. CICS does not read or purge the contents of a message
cache.

A message cache is created only if the task is invoked from a VTAM terminal,
under conditions explained in “Interpreting the contents of a message cache”
on page 124. A message cache is a temporary storage queue with a DATAID
of “DFHMXXXX”, where XXXX is the identification of the logical unit.

� User records on the system log. User-journaled records are written to a journal
with the 2-byte JTYPEID set to X'nnFF', where ‘nn’ is a 1-byte function
identifier. If this journal is the system log, the records written by LUWs in flight
at the time of failure are written to the restart data set. In addition, if the
high-order bit of the function identifier byte of JTYPEID is set
(JTYPEID=X'80FF', for example), these records are also copied to the restart
data set for all tasks completed after the last activity keypoint.

During emergency restart, the records on the restart data set are processed by
the DFHUSBP user backout program. DFHUSBP presents each record to the
XRCINPT exit point as it is read from the restart data set. You may add an exit
program to recover and process this journaled data. For information about the
exit, see “XRCINPT exit” on page 93.

Completion of emergency restart
CICS takes a syncpoint that commits the processing performed during backout.
CICS can then continue.

CICS takes an activity keypoint that ensures that there is at least one activity
keypoint on the new system log data set. It will show that there are no in-flight
tasks, and thus mark the backward scan of the system log on a subsequent
emergency restart, in case no other activity keypoint is written during this execution
of CICS.

Recovery of specific items
This section describes the recovery at emergency restart of file states, databases,
dynamically added resources, and VTAM messages.

Recovering file states
During emergency restart, the state of a file is restored from the global catalog to
its state at the time of the shutdown. For example, changes made by EXEC CICS
or CEMT SET FILE commands during the last CICS run are restored in the FCT
entry.

This applies, in particular, to the ENABLED/DISABLED state and to the SERVREQ
options (UPDATE, DELETE...), but does not apply to the opened or closed state.

The file is opened at first reference or after initialization, in accordance with the
RDO FILE resource definition option OPENTIME or the DFHFCT macro operand

38 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

FILSTAT, regardless of the open or closed state of the file at the end of the last
CICS run.

Note: All files defined to CICS file control are closed during a normal shutdown,
but they are not defined as UNENABLED in the global catalog. This allows each
file to be implicitly opened on the first reference to the file after the CICS restart.

For VSAM files that have suffered a backout failure (during either dynamic
transaction backout (DTB) or a previous emergency restart) that has not been
corrected, the backout-failed status is carried across an emergency restart (as for
other types of start).

Note that the recovery of file states is not synchronized with other recoverable
changes in the way that file data recovery is. If a file state change is in-flight at the
time of a CICS failure, it is not defined whether the change takes effect or not.
There is no backout of in-flight LUWs for file state recovery.

Backout processing for DL/I databases
Changes that were made to databases by inflight LUWs are backed out in the
following ways:

� Segments that were updated are overwritten by their before-images.
� Segments that were deleted are added.
� Segments that were added are deleted.

Recovering dynamically added resource definitions
This section describes the mechanism used during emergency restart for
recovering resource definitions that were added using the CEDA transaction.

CICS has two ways of installing and committing resource definitions:

� VTAM TCT resource definitions (CONNECTION, SESSIONS, TERMINAL and
TYPETERM) are installed in groups and committed at the group level (group
commit).

� Other resources definitions are installed in groups but committed at the
individual resource level (commit immediate).

The CICS global catalog keeps a record of the status of the RDO-supported
resource definitions. If a CEDA INSTALL for a group of VTAM TCT resources is
successful, CICS writes the changed resource definitions to the CICS global
catalog during commit processing, when the changes become visible to other CICS
tasks.

For resources other than VTAM TCT resources, CICS writes each single resource
definition to the CICS global catalog as soon as the corresponding resource is
installed. If CICS does not succeed in installing the entire group, it does not back
out the individual installed resources. They are, in effect, committed individually.

If CICS fails after this commit processing has completed, it may recover committed
resource definitions from the CICS global catalog on a subsequent emergency
restart.

If CICS fails before commit processing has started for the group, it will, on a
subsequent emergency restart, recover any resources (except VTAM TCT

 Chapter 4. CICS startup 39

resources) from the CICS global catalog. CICS will back out any VTAM TCT
resources in the uncommitted group install.

Committing the changes to VTAM TCT resources at the group level requires the
install process to write the definitions to the system log so that CICS can complete
an in-flight commit at emergency restart. Because CICS commits all other RDO
resources immediately during install, it does not need to write these to the system
log.

Before committing changes to VTAM TCT resource definitions, CICS writes the
changed resource definitions to the system log.

If CICS fails while commit processing is taking place, the system log contains
VTAM TCT resource definitions that are to be committed, but are not on the CICS
global catalog. Other resources in the group that were installed before CICS failed
are on the CICS global catalog.

During the subsequent emergency restart, the resource manager creates its set of
resource definitions from the CICS global catalog. The resource manager then
asks recovery control to pass it the VTAM TCT resource definitions logged during
the CEDA INSTALL where commit processing started but did not complete. The
resource manager reinstalls such definitions, making them visible to the CICS
system, and writes to the CICS global catalog the definitions read from the system
log.

After installing each resource, CICS sends a message to the CSDL log. If, after an
emergency restart, you are in any doubt about the state of a resource, you should
install the whole group again.

Recovering autoinstalled terminals: Autoinstalled terminal entries are recovered
at an emergency restart, but not at a warm start. After a delay period (the default
is seven minutes) specified by the AIRDELAY system initialization parameter, any
autoinstalled terminal that was recovered but is not in session again is deleted.
The terminal is deleted even if it has outstanding work scheduled, such as an AID
(automatic initiate descriptor).

AIRDELAY=0 means that autoinstalled terminals are not written to the CICS global
catalog and are therefore not recovered—this applies to terminals and APPC single
session via a CINIT. Also, autoinstalled single sessions via a BIND and parallel
sessions are not recovered.

If you code AUTOCONNECT=YES as an autoinstalled terminal model, terminals
using such a model establish sessions as soon as CICS takes control. They are
not deleted after the delay period. You should take care when you select terminals
with an AUTOCONNECT=YES model. Such a terminal might be autoconnected
and in session after an emergency restart, and the terminal user might not be
present. This could considerably impair your virtual storage saving.

Recovering autoinstalled programs: See page 33 for information about when
autoinstalled programs are cataloged in the CICS global catalog.

Recovering program definitions: Program definitions created by program
autoinstall are restored only if they are cataloged. This depends on the autoinstall
PGAICTLG system initialization parameter.

40 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Recovering dynamic changes to transient data queue attributes
During normal operation, CICS allows you to change specific attributes of DCT
resources. You make such changes by using the CEMT INQUIRE TDQUEUE or
CEMT SET TDQUEUE command. The CICS-Supplied Transactions manual tells
you how to use these transactions.

When you perform an emergency restart, CICS restores changes made to DCT
entries for recoverable transient data queues. The attributes restored for each DCT
entry are the automatic transaction initiation (ATI) trigger level, terminal identifier,
and transaction identifier.

Resynchronization and re-presentation of VTAM messages
When LU-LU sessions are reestablished after an emergency restart, CICS
participates in a resynchronization protocol with logical units to find out if any
messages, in either direction, were lost when CICS terminated. Lost messages are
retransmitted either by the LU or by CICS from a resend slot in temporary storage.
Resend slots are deleted when the temporary storage is cold started, or at the next
emergency restart if it is not recoverable, or when a program deletes the temporary
storage.

The logical units that require resynchronization are marked in the terminal control
table terminal entries (TCTTEs) during backout processing. Resynchronization is
not attempted if:

� The terminal is acquired with COLDACQ specified.

� The session is a pipeline session.

� The TCTTE is marked to cold start the session by the TCT assembly process.
This is done for terminals, such as 3270 terminals, that do not support the set
and test sequence number (STSN) command.1

If the previous session abended, do not use COLDACQ, because this overrides
CICS integrity control, and could lead to data integrity problems. Also, check the
CSMT log for an activity keypoint after the restart of a session following a CICS
failure. If there is no activity keypoint, issue COLDACQ again after the next
emergency restart.

Comparison of the types of restart
Table 5 compares aspects of the three types of restart. Note that you do not
specify warm and emergency starts; they come from the START=AUTO system
initialization parameter. For clarity, the figure does not compare aspects of
resource definition. That comparison is in Table 6 on page 42.

1 Further information on STSN commands can be found in the appropriate CICS subsystem guides.

 Chapter 4. CICS startup 41

Table 5. Comparison of types of CICS restart

 Cold Start Warm Start Emergency Restart

Information from system log of
previous run?

Not used Not used Used

Auxiliary temporary storage
retained?

No Yes—all data Yes (assuming queue names
recoverable)

Intrapartition transient data
destination retained?

No Yes—all data Yes (assuming destinations
logically or physically recoverable)

Backout performed? No No Yes

Message recovery? No No Yes

User control blocks reinitialized?
(TCTUA, Comm. Area, CWA).

No No No

Post-initialization PLT processing
possible?

Yes Yes Yes

Table 6. Sources of resource definition information for different types of start

Source of resource definition (RD)
information:

Cold Start Warm Start Emergency
Restart

RD information in all tables referenced by
system initialization parameters

Obtained from
program library

Obtained from
program library

Obtained from
program library

RD information contained in warm keypoint
of previous run

Not used Used to update RD
information from
program library

Not available

RD information in the groups in the list(s)
named by the GRPLIST system
initialization parameter for THIS
initialization

Taken from CICS
system definition
file (CSD) and
merged with
information from
the program library.
See Note 1.

Not used Not used

RD information in the groups in the list(s)
named by the GRPLIST system
initialization parameter for the PREVIOUS
initialization

Not applicable Obtained from
CICS global
catalog

Obtained from
CICS global
catalog

RD information in groups that have been
INSTALLed since the last cold start

Not applicable Obtained from
CICS global
catalog

Obtained from
CICS global
catalog (and
system log for
VTAM TCT
resources)

Autoinstalled terminals Not applicable CICS global
catalog if AID
outstanding

CICS global
catalog

Autoinstalled programs Not applicable Obtained from
CICS global
catalog. See Note
2.

Obtained from
CICS global
catalog. See Note
2.

42 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Notes:

1. For more information about the CSD, see the CICS Resource Definition Guide.

2. In the case of autoinstalled programs, these may or may not have been
recorded on the CICS global catalog depending on the PGAICTLG system
initialization parameter specified on the previous run of CICS.

User programs at initialization
After any type of startup (cold, warm, or emergency), and before CICS finally takes
control, any programs listed to run at initialization execute sequentially. You list
these programs in the program list table (PLT), defined by the PLTPI system
initialization parameter.

Following execution of the initialization programs, CICS takes a syncpoint that
commits changes made to recoverable resources and releases enqueues on them.

For more information about PLT programs, see “Using initialization (PLTPI)
programs” on page 84.

 Chapter 4. CICS startup 43

44 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

 Chapter 5. Abend processing

This chapter describes abend processing under the following headings:

� “Requests for an abend”
� “Transaction abend processing”
� “Processing of operating system abends and program checks” on page 51.

Requests for an abend
The following events can request CICS to abend a transaction:

� A transaction ABEND request issued by a CICS management module

� An EXEC CICS ABEND request issued by a user program

� Certain commands issued from the master terminal, such as CEMT SET TASK
PURGE or FORCEPURGE

� Certain commands issued from an application program, such as EXEC CICS
SET TASK PURGE or FORCEPURGE

� A transaction abend request issued by DFHZNEP or DFHTEP following a
communication error

Transaction abend processing
If, during transaction abend processing, another abend occurs and CICS continues,
there is a risk of a transaction abend loop and further processing of a resource that
has lost integrity (because of uncompleted recovery). If CICS detects that this is
the case, the CICS system abends with message DFHPC0402, DFHPC0405,
DFHPC0408, or DFHPC0409.

How CICS handles transaction abends
The action taken by CICS on the abend exit code can:

� Terminate the task normally
� Terminate the task abnormally .

“Abnormal termination of a task” on page 47 describes the processing that may
follow the abnormal termination of a task.

 Exit code
Exit code can be written either in programs (separate modules defined by CEDA
DEFINE PROGRAM commands) or routines within the application program. Exit
code, if activated, can gain control when a task abend occurs.

Exit code can be activated, deactivated, or reactivated by EXEC CICS HANDLE
ABEND commands; for programming information on these, see the CICS
Application Programming Reference manual.

 Copyright IBM Corp. 1982, 1999 45

Only one abend exit can be active at any given logical level within a task. This
means that:

1. When one application program uses the LINK command to pass control to
another program, the program sending control and the program receiving
control can each have one active exit.

2. When an exit is activated (at a particular program level), any other exit already
active at the same level becomes deactivated automatically.

Reasons that an application programmer might have for coding a program level
abend exit, and functions that might be incorporated, are discussed in “Handling
abends and program level abend exits” on page 111.

When an abend request is issued for a task, CICS immediately passes control to
the exit that is active at the current logical level2:

� If no exit is active at the current logical level, CICS checks progressively up
through higher logical levels and passes control to the first exit code found to
be active.

� If CICS finds no active exit at, or higher than, the current logical level, the task
terminates abnormally (see “Abnormal termination of a task” on page 47).

When control is transferred to any exit code, CICS deactivates the exit before any
of its code is executed. (This means that, in the event of another abend request,
the exit will not be reentered, and control is passed to activated exit code (if any) at
the next higher level.)

The exit code then executes as an extension of the abending task, and runs at the
same level as the program that issued the EXEC CICS HANDLE ABEND command
that activated the exit.

After any program level abend exit code has been executed, the next action
depends on how the exit code ends:

� If the exit code ends with an EXEC CICS ABEND command, CICS gives
control to the next higher level exit code that is active. If no exit code is active
at higher logical levels, CICS terminates the task abnormally . The next
section describes what may happen after abnormal termination of a task.

� If the exit code ends with an EXEC CICS RETURN command, CICS returns
control to the next higher logical level at the point following the EXEC CICS
LINK command (not to any exit code that may be active) just as if the EXEC
CICS RETURN had been issued by the lower level application program. This
leaves the task in a normal processing state and it does not terminate at this
point.

In the special case of an EXEC CICS RETURN command being issued by exit
code at the highest logical level, CICS regains control and terminates the task
normally . This means that:

1. Dynamic transaction backout is not performed.
2. An end-of-task syncpoint record is written to the system log.

2 The program receiving control is said to be at a lower logical level than the program that issues the LINK command. The concept
of logical levels is explained in the CICS Application Programming Guide.

46 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Note: If a transaction updates recoverable resources and, therefore, requires
dynamic transaction backout to be performed in the event of a task abend,
the exit code must end with an EXEC CICS ABEND command.

Abnormal termination of a task
If the exit code ends with an ABEND command, abnormal termination of a task
starts after all active program-level abend exits (if any) have executed. The
sequence of actions during abnormal termination of a task depends on the following
factors:

� Code in the transaction restart program (DFHREST)
� The transaction has freed the principal facility
� Backout is successful.

 Transaction restart
The transaction restart user-replaceable program (DFHREST) enables you to
participate in the decision as to whether a transaction should be restarted or not.

For programming information about how to provide your own code for DFHREST,
see the CICS Customization Guide.

Notes:

1. CICS invokes DFHREST only when RESTART(YES) is specified in a
transaction’s resource definition.

2. When transaction restart occurs, a new task is attached that invokes the initial
program of the transaction. This is true even if the task abended in the second
or subsequent LUW, and DFHREST requested a restart.

3. Statistics on the total number of restarts against each transaction are kept.

4. Emergency restart does not restart any tasks.

5. Making a transaction restartable involves slightly more overhead than dynamic
transaction backout because more items are logged; such items are logged
only on the dynamic log.

6. In some cases, the benefits of transaction restart can be obtained instead by
using the EXEC CICS SYNCPOINT ROLLBACK command. Although use of
the ROLLBACK command is not usually recommended, it does keep all the
executable code in the application programs (except for DFHDBP exit code).
For more information about the use of the ROLLBACK option when working in
an ISC or MRO environment, see the CICS Intercommunication Guide.

Dynamic transaction backout (DTB)
Assuming that the resources affected by the abending task are recoverable, CICS
performs dynamic transaction backout (DTB).

DTB backs out the effects of a transaction that terminates abnormally. The
resources specified as recoverable are restored to the state they were in at the
beginning of the interrupted LUW (that is, at the most recent synchronization point
or start of task). The resources are thus restored to a consistent state.

DTB is similar in effect to the backout of in-flight tasks during emergency restart
(following a CICS failure). The most important differences are that DTB operates
on a single abnormally terminating transaction and that the backout is carried out

 Chapter 5. Abend processing 47

online (that is, while the rest of the CICS system continues to run normally). DTB
thus provides immediate recovery of data integrity following a transaction failure.

User exits are provided for errors (see “Global user exits in DFHDBP” on page 88).

To restore the resources to the state they were in at the beginning of the LUW, a
description of their state at that time must be preserved. For tables maintained by
CICS (the destination control table and the temporary storage unit table),
information is held in the tables themselves. For transient data and auxiliary
temporary storage, deleted records or the before-images of records that have
changed are saved on the transient data or temporary storage data sets
themselves. For DL/I VSE databases or CICS files, the before-images of deleted
or changed records are recorded on a dynamic log (described in “Dynamic log (for
dynamic transaction backout)” on page 19). The first input messages from
message-protected VTAM terminals are also held on this log.

DTB backs out changes made by the abending transaction to the following
resources:

CICS files
In the special case of the file access methods that do not support delete
requests (VSAM-ESDS and DAM), records to be deleted should be marked for
deletion in an XDBFERR exit program (see “Global user exits in DFHDBP” on
page 88). (Such records can be truly deleted when the data set is
subsequently reorganized offline by a user-supplied utility.) If you do not have
an exit program, backout failure processing is entered.

If backout of a VSAM file fails, CICS:

� Notes the backout-failed status in the base cluster block

� Logs a backout-failed record in the CICS system log

� Sets a backout-failed status in the CICS global catalog

� Closes the FCT entries open against the base cluster, to prevent further
updates on the damaged data set.

CICS then informs the operator of the status of the data set, and a batch
backout utility may be run using the information provided by CICS, a copy of
the data set restored from the backup copy, and archived logs. For more
information about running batch backout, see Chapter 16, “Backout failure” on
page 129.

DL/I VSE databases
If DL/I VSE backout processing fails, all potentially affected databases are
stopped to preserve data integrity, but CICS continues to run.

Intrapartition transient data (logical recovery only)
Intrapartition destinations specified as logically recoverable are restored by
DTB.

Physical recovery, which may be specified for emergency restart, is not part of
DTB. This means that:

� Any records retrieved by the abended LUW are not available to be read by
another task, and are therefore lost.

48 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

� Any records written by the abending LUW are not backed out. This means
that these records are available to be read by other tasks, although they
might be invalid.

Recovery of extrapartition queues is not supported.

Auxiliary temporary storage
DTB recovers temporary storage data written to or released from auxiliary
storage. It does not recover temporary storage data in main storage.

Terminal messages
For message-protected tasks, the transmission of any deferred output
messages, which would normally occur after syncpoint processing, is
suppressed by DTB. The first input message after the last synchronization
point is recovered from the dynamic log and presented to the XDBIN exit of
DFHDBP.

EXEC CICS START requests
Recovery of START requests during DTB depends on whether the following
operands are coded with the START request:

� The PROTECT operand (which ensures that the new task cannot START
execution until the START-issuing task has passed its next syncpoint)

� The FROM and LENGTH operands (which pass data through temporary
storage to the STARTed task).

Recovery of START requests during DTB is described below for different
combinations of these operands on a START request that has already been
issued.

Simple START request (without PROTECT, FROM, and LENGTH operands)
DTB has no effect; the new task starts at its specified time (and may
already be executing when the START-issuing task backs out). Abending
the START-issuing task does not abend the started task.

START request with PROTECT (but without the FROM and LENGTH
operands)
DTB of the START-issuing task cancels the START request. The new task
will not have started yet because the START-issuing task being backed out
will not have reached the syncpoint.

START request that passes data to the new task by means of the FROM
and LENGTH operands (but without the PROTECT operand)
Assuming that the temporary storage queue used for START request data
is designated as recoverable by a DFHTST TYPE=RECOVERY macro,
DTB of the task also backs out the data being transferred to the new task.
The new task still starts at its specified time, but the data is not available to
the started task and will therefore raise a NOTFND condition.

START request with PROTECT, FROM and LENGTH operands
DTB of the START-issuing task backs out the data being transferred to the
new task (assuming temporary storage is designated as recoverable) and
cancels the START request. The new task therefore never gets started.

Note: Recovery of temporary storage (whether or not PROTECT is specified)
does not cause dynamic restart of the new task. (It may qualify for
restart like any other task, if RESTART(YES) is coded on the RDO
TRANSACTION resource definition.) On emergency restart, the START

 Chapter 5. Abend processing 49

command restarts only tasks started with data written to a recoverable
temporary storage queue.

Basic mapping support (BMS) messages
DTB recovery of BMS messages affects those BMS operations that store data
on temporary storage. They are:

� BMS commands that specify the PAGING operand
� The BMS ROUTE command
� The message switching transaction (CMSG).

Backout of these BMS operations is based on backing out START requests
(because, internally, BMS uses the START mechanism to implement the
operations listed above). You request backout of these operations by marking
the temporary storage DATAIDs that carry the messages as recoverable in the
DATAID operand of the DFHTST TYPE=RECOVERY macro. For more
information about this operand, see the CICS Resource Definition Guide.

Application programmers can override the default temporary storage DATAIDs
by specifying the following operands:

� REQID operand in the EXEC CICS SEND MAP command
� REQID operand in the EXEC CICS SEND TEXT command
� REQID operand in the EXEC CICS ROUTE command
� PROTECT operand in the CMSG transaction.

Note: If DTB fails, restart is not attempted regardless of the setting of the restart
program.

Actions taken at abnormal task termination
The CICS abnormal condition program is invoked during abnormal task termination
unless the task is to be restarted.

The principal action of this program is to send, if possible, an abend message to
the terminal connected to the abending transaction. It also sends a message to the
master terminal destination.

Before sending the message to the master terminal, the abnormal condition
program links to the user-replaceable program error program (DFHPEP). DFHPEP
is given control through a LINK from the CICS abnormal condition program. This
occurs after all program-level abend exit code has been executed by the task that
abnormally terminates, and after dynamic transaction backout (if any) has been
performed.

Notes:

1. DFHPEP is not given control when the task abend is part of the processing
done by CICS to avoid a system stall.

2. DFHPEP processing takes place after a transaction dump has been taken.
DFHPEP cannot prevent the taking of a dump.

3. DFHPEP is not given control when the task is terminated because of an attach
failure. Examples are when the transaction does not exist or when a security
violation is detected.

The CICS-provided DFHPEP program executes no functions, but you can include in
it your own code to carry out installation-level action following a transaction abend

50 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

(see “Program error program (DFHPEP)” on page 121). There is only one program
error program for the whole system.

All CICS facilities are available to the DFHPEP program. You can:

� Send messages to the terminal
� Send messages to the master terminal
� Record information or statistics about the abend
� Request the disabling of the transaction entry associated with this task.

Processing of operating system abends and program checks
There is a limit to the processing you can attempt after an operating-system abend
or a program check.

If the abend is associated with any domain other than the application domain, there
is no further user involvement in processing the error.

If the abend is in the application domain, one of the following can occur:

� CICS terminates (see “Shutdown requested by the operating system” on
page 29).

� CICS remains operational, but the CICS task currently in control can terminate.

If a program check occurs when a user task is processing, the task abends with an
abend code of ASRA. If a program check occurs when a CICS system task is
processing, CICS terminates.

If an operating-system abend has occurred, processing continues by searching the
system recovery table, DFHSRT. The SRT is a table containing a set of
operating-system abend codes that you want CICS to recover from. CICS
searches the SRT looking for the system abend code issued by the system.

� If a match is not found, CICS is terminated.

� If a match is found, and a CICS system task is processing, CICS is terminated.

� If a match is found, and a user task is processing, the default action is to
abend the task with an abend code of ASRB. However, you can change this
action by coding a global user exit program at exit point XSRAB. The value of
the return code from XSRAB determines which of the following happens next:

– The task terminates with the ASRB abend code.

– The task terminates with the ASRB abend code and CICS cancels any
program-level abend exits that are active for the task.

 – CICS terminates.

For programming information about the XSRAB exit point, see the CICS
Customization Guide.

CICS supplies an SRT that has a default set of abend codes; and you can add to,
delete from, or modify the default list of abend codes. For more information about
the SRT, see the CICS Resource Definition Guide.

Note: Because it is possible to introduce recursions between program checks and
abends, take great care when coding a global user exit program at the
XSRAB exit point.

 Chapter 5. Abend processing 51

52 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Chapter 6. Communication error processing

This chapter describes the main CICS programs that participate in communication
error processing:

� Node error program (DFHZNEP)
� Terminal error program (DFHTEP).

CICS controls terminals by using VTAM (in conjunction with NCP for remote
terminals). These communication access methods detect transmission errors
between the central processing complex (CPC) and a remote terminal, and
automatically invoke error recovery procedures, if specified. These error recovery
procedures generally involve:

� Retransmission of data a defined number of times or until data is transmitted
error-free.

� Recording of information about the error on a data set or internally in control
blocks. You can, at times, access data recorded in control blocks using
communication system commands.

If the data is not transmitted successfully after the specified number of retries:

� CICS terminal management is notified.

� One of the following CICS terminal error transactions is initiated:

– Control can pass to a node error program (DFHZNEP) provided by
yourself.

– Control can pass to a terminal error program (DFHTEP) provided by
yourself.

Chapter 12, “Handling communication errors” on page 97 is a starting point for
coding your own error programs.

Node error program (DFHZNEP)
You can specify your own processing for VTAM errors in a node error program
(NEP). You can use the sample NEP supplied, change the sample, or write your
own.

The NEP is entered once for each terminal error; therefore it should be designed to
process only one error for each invocation. (The types of processing that might be
done are discussed in “Your own NEP processors” on page 99.)

In some circumstances, VTAM communication system errors can be passed to an
application program. If you issue an EXEC CICS HANDLE command with the
TERMERR condition specified, the application program can decide on the action to
take in response to the error condition. The TERMERR condition is raised if the
DFHZNEP program, (if you have one), schedules an ABTASK action (ATNI abend)
for a terminal error while the task is attached.

Note: The TERMERR is raised for the current or next terminal control request. If
the task is executing normally and performing non-terminal operations when the
VTAM network error occurs, the task is unaware of the error and continues
processing until it attempts the next terminal control request. It is at this point that

 Copyright IBM Corp. 1982, 1999 53

the task receives the TERMERR. If the task does not issue any further
terminal-type request it will not receive the TERMERR or ABEND.

Terminal error program (DFHTEP)
You can specify your own processing for non-VTAM communication errors in a
terminal error program (TEP). You can use the sample TEP supplied with CICS
(DFHXTEP), change the sample, or write your own.

The TEP is entered once for each terminal error and therefore should be designed
to process only one error for each invocation.

The in-doubt window
When different CICS systems are connected by MRO or across an ISC (LU6.1 or
APPC) link, tasks can communicate across the connection and can update
resources in a logically interdependent way. If the connection or either system fails
between syncpoints, both systems can back out any updates of recoverable
resources either dynamically or on emergency restart.

If a failure occurs during the syncpointing process, the situation is less clear. For
an interval of time called the in-doubt window, neither system “knows” if the other
has committed its updates and, therefore, whether it should commit its own. The
possibility of failure during the in-doubt window should be taken into account when
designing applications.

The processing of a distributed syncpoint involves a complicated set of flows and
protocols. Different concepts are involved in MRO, LU6.1, and APPC syncpointing.
See the CICS Intercommunication Guide for descriptions of each of these.

The processing between two syncpoints is called a logical unit of work (LUW) and
is identified by a unique identifier. This identifier is written to the system log by
each task when the task makes its first change to a recoverable resource. It is also
included in any of the messages generated in diagnosing a failure during the
in-doubt window. A user-written log-scanning utility can read all log records for the
LUW in the affected CICS regions, and determine what action is needed to bring
the databases into synchronization. Programming information about this is given in
the CICS Customization Guide.

54 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Part 3. Implementing your recovery and restart strategy

This part describes the way you implement your recovery and restart strategy.

It contains these chapters:

� Chapter 7, “Starting to specify recovery and restart facilities” on page 57

� Chapter 8, “Logging and journaling” on page 65

� Chapter 9, “Recovering resources” on page 71

� Chapter 10, “Dynamic transaction backout (DTB)” on page 87

� Chapter 11, “User exits for transaction backout during emergency restart” on
page 91

� Chapter 12, “Handling communication errors” on page 97

� Chapter 13, “Recovery coding in application programs” on page 101

� Chapter 14, “Using a program error program (DFHPEP)” on page 121

� Chapter 15, “Using message caches after emergency restart” on page 123

� Chapter 16, “Backout failure” on page 129

� Chapter 17, “Operations” on page 131.

 Copyright IBM Corp. 1982, 1999 55

56 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Chapter 7. Starting to specify recovery and restart facilities

This chapter describes how to specify the basic CICS recovery facilities in the
following topics:

� “Questions relating to recovery requirements”

� “Validate the recovery requirements statement” on page 59

� “Designing the end user’s restart procedure” on page 59

� “Communications between application and user” on page 60

� “Security” on page 60

� “Definitions for recovery functions” on page 60

� “Documentation and test plans” on page 63

In addition to the information in other parts of this book, for reference information
about resource definition, see the CICS Resource Definition Guide, and for further
information about system initialization parameters, see the CICS System Definition
Guide.

Questions relating to recovery requirements
For ease of presentation, the following questions assume a single application.

Note: If a new application is added to an existing system, the effects of the
addition on the whole system need to be considered.

Question 1: Does the application update data in the system? If the application is
to perform no updating (that is, it is an inquiry-only application), recovery and
restart functions are not needed within CICS. (But you should take backup copies
of non-updated data sets in case they become unreadable.) The following
questions assume that the application does perform updates.

Question 2: Will this application be used concurrently by more than one user? If
two or more users are to run this application concurrently, you must take special
steps to avoid interference between multiple executions of the application.

Question 3: Does this application update data sets that other online applications
access? If yes, does the business require updates to be made online , and then to
be immediately available to other applications—that is, as soon as the application
has made them? This could be a requirement in an online order entry system
where it is vital for inventory data sets3 to be as up-to-date as possible for use by
other applications at all times.

Alternatively, can updates be stored temporarily and used to update the data set(s)
later—perhaps using offline batch programs? This might be acceptable for an
application that records only data not needed immediately by other applications.

3 In the context of these questions, the term “data sets” includes databases.

 Copyright IBM Corp. 1982, 1999 57

Question 4: Does this application update data sets that batch applications access?
If yes, establish whether the batch applications are to access the data sets
concurrently with the online applications. (If accesses made by the batch
applications are limited to read-only, it is possible for the data sets to be shared
between online and batch applications, although read integrity may not be
guaranteed. If you intend to update data sets concurrently from both online and
batch applications, you may wish to consider using DL/I, which ensures both read
and write integrity.)

Question 5: Does the application access any confidential data? Files that contain
confidential data, and the applications that have access to those files, must be
clearly identified at this stage. You may need to ensure that only authorized users
may access confidential data when service is resumed after a failure, by asking for
reidentification in a sign-on message.

Question 6: If a data set becomes unusable, should all applications be terminated
while recovery is performed? If degraded service to any application has to be
preserved while recovery of the data set takes place, include procedures to do this.

Question 7: Which of the files to be updated are to be regarded as vital files?
Identify any files that are so vital to the business that they must always be
recoverable.

Question 8: How long can the business tolerate being unable to use the
application in the event of a failure? Indicate (approximately) the maximum time
that the business can allow the system to be out of service after a failure. Is it
minutes or hours? The time allowed may have to be negotiated according to the
types of failure and the ways in which the business can continue without the online
application.

Question 9: How is the user to continue or restart entering data after a failure?
This is an important part of a recovery requirements statement because it can
affect the amount of programming required. The user’s restart procedure will
depend largely on what is feasible—for example:

� Is it necessary for the user to continue business by other means—for example,
manually?

� Does the user still have source material (papers, documents) that allow the
continued entry (or reentry) of data? If the source material is transitory
(received over the telephone, for example), this will require slightly more
complex procedures.

� Even if the user does still have the source material, does the quantity of data
preclude its reentry?

Such factors define the point where the user restarts work. This could be at a point
that is as close as possible to the point reached before the system failure (which
might be implemented with the aid of a progress transaction4). Or it could be at
some point earlier in the application—even at the start of the transaction.

These considerations should be in the external design statement.

4 A progress transaction here means one that enables users to determine the last actions performed by the application on their
behalf.

58 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Question 10: During what periods of the day are online applications expected to be
available? This is an important consideration when applications (online and batch)
require so much of the available computer time that difficulties can arise in
scheduling precautionary work for recovery (taking backup copies, for example).
See “Daily and weekly schedules” on page 131.

Validate the recovery requirements statement
After considering the above questions, produce a formal statement of application
and recovery requirements. Before any design or programming work begins, all
interested parties should agree on the statement—including:

� Those responsible for business management

� Those responsible for data management

� Those who are to use the application—including the end users, and those
responsible for computer and online system operation.

Designing the end user’s restart procedure
Decide how the user is to restart work on the application after a system failure.
Points to consider are:

� The need for users to reidentify themselves to the system in a signon message
(dictated by security requirements, as discussed under “Question 5: Does the
application access any confidential data?” on page 58).

� The availability of appropriate information for users, so that they know what
work has and has not been done. Consider the possibility of a progress
transaction (as discussed under Progress transaction on page 101).

� How much or how little rekeying will be needed when resuming work (dictated
by the feasibility of rekeying data, as discussed under “Question 9: How is the
user to continue or restart entering data after a failure?” on page 58).

The design of the user’s restart procedure (including the progress transaction, if
used) should include precautions to ensure that each input data item is processed
once only.

End user’s standby procedures
Decide how application work might continue in the event of a prolonged failure of
the system. For example, for an order-entry application, it might be practical (for a
limited time) to continue taking orders offline—by pencil-and-paper methods. If
such an approach is planned, you need to specify how the offline data is to be
subsequently entered into the system; it may be necessary to provide a catch-up
function.

Note: If the user is working with a terminal attached to a programmable controller,
it may be possible to continue gathering data without access to the central
processing complex.

 Chapter 7. Starting to specify recovery and restart facilities 59

Communications between application and user
For each application, specify what type of terminal the user is to work with.

Decide if special procedures are to be provided to overcome communication
problems; for example:

� Allow the users to continue work on an alternative terminal (but with
appropriate security precautions, such as signing on again).

� In cases where the user’s terminal is attached to a programmable controller,
determine what recovery actions that controller (or the program in it) is capable
of providing.

� If a user’s printer becomes unusable (because of hardware or communication
problems), consider the use of alternatives, such as the computer center’s
printer, as a standby.

This information is needed in internal design when considering the handling of
communication breaks (see “Handling communication breaks” on page 98).

 Security
Decide the security procedures for an emergency restart or a break in
communications. For example, when confidential data is at risk, specify that the
users should sign on again and have their passwords rechecked.

Bear in mind the security requirements when a user needs to use an alternative
terminal if a failure is confined to one terminal (or to a few terminals).

Note: The signon state of a user is not retained after a VTAM persistent sessions
restart.

Definitions for recovery functions
In the next few pages, you can find information about the definitions that form the
basis of a system that uses recovery and restart functions. The information is a
starting point, so that you know what to look for in the appropriate book in the CICS
library.

Basic file definition
The file definitions needed for backout and forward recovery are described in
“Implementing recoverability of files” on page 74.

System recovery table (SRT)
The basic DFHSRT entry (DFHSRT TYPE=INITIAL, SUFFIX=xx) causes CICS to
intercept certain operating system abend codes and to attempt recovery. Use of an
SRT also causes CICS to attempt recovery from program checks. If you want to
intercept additional operating system abends, or abend codes, you must code
DFHSRT TYPE=SYSTEM|USER macros.

For a brief overview of the system recovery program and table, see “Processing of
operating system abends and program checks” on page 51. That chapter provides
further references.

60 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Definitions for transactions and programs
You use resource definition online (RDO) to define and install transactions, profiles,
programs, and mapsets. Installing the following groups provides basic recovery
functions:

 DFHAKP
 DFHBACK
 DFHJRNL
 DFHRSEND
 DFHRSPLG
 DFHSTAND
 DFHVTAM

Note that backout occurs for all transactions.

For file DL/I VSE recovery , you should install the DFHAKP, DFHBACK, and
DFHJRNL groups. You should also take the following options of an RDO
TRANSACTION resource definition into account when defining user transactions
that will update files and DL/I VSE databases:

RESTART
This option defines whether CICS will consider restarting a transaction.
(“Editing the transaction restart program (DFHREST)” on page 89 tells you
more about replacing the default DFHREST program.)

DTIMOUT
If the task remains suspended (inactive) for the specified interval, CICS initiates
an abnormal termination of the task. CICS does not perform an abnormal
termination if:

� DTIMOUT(NO) is specified.
� The task is currently not system-purgeable (SPURGE=NO).
� The task is not in a state suitable for an abnormal termination.

SPURGE
Indicates whether the transaction is initially system-purgeable. That is, can
CICS purge the transaction as a result of the deadlock timeout facility
(DTIMOUT), EXEC CICS TASK(id) PURGE command, or CEMT SET TASK(id)
PURGE command? For more information about options on the RDO
TRANSACTION definition, see the CICS Resource Definition Guide.

If you specify a transaction as system-purgeable, and backout is attempted, the
backout might not complete successfully because of a lack of resources. For
this reason, DFHDBP is defined in the DFHBACK group as being resident to
avoid errors of not having enough storage to load the program.

For terminal error handling, you should install the DFHSTAND (needed by the
terminal abnormal-condition handling program) and DFHVTAM (needed by the
VTAM abnormal-condition program) groups. You should also consider the
NEPCLASS option of the RDO PROFILE resource definition, described under “Your
own NEP processors” on page 99. If you are interested in message protection for
VTAM terminals, see “Specifying message-protection options for VTAM terminals”
on page 81.

To define individual programs required for recovery and restart, you need an RDO
PROGRAM resource definition for:

 Chapter 7. Starting to specify recovery and restart facilities 61

� Each user exit program
� Each replaceable program, for example DFHREST and DFHPEP
� Each program list table and each PLT program
� Any program that you want to override the automatically-generated version.

Note: User exit programs, replaceable programs, and PLT programs can be
autoinstalled.

Definition of the system log and other journals
This is a basic definition of the system log using two disk data sets:

DFHJCT TYPE=ENTRY

 ,JFILEID=SYSTEM

 ,JOUROPT=(CRUCIAL,RETRY,AUTOARCH)

 ,ARCHJCL=DFH$ARCH

 ,JTYPE=DISK2

 ,BUFSIZE=nnnnn

3 ,DEVADDR=(SYSnnn,SYSnnn)

5 For a user journal with two disk data sets:

DFHJCT TYPE=ENTRY

 ,JFILEID={2-99}

 ,JOUROPT=(CRUCIAL,RETRY,AUTOARCH)

 ,ARCHJCL=DFH$ARCH

 ,JTYPE=DISK2

 ,BUFSIZE=nnnnn

3 ,DEVADDR=(SYSnnn,SYSnnn)

For further information, see Chapter 8, “Logging and journaling” on page 65.

System initialization parameters
The following list summarizes the system initialization parameters that you need to
consider for recovery and restart. For more information about the options, see the
CICS System Definition Guide.

AILDELAY={ð-hhmmss}

AIRDELAY={7ðð-hhmmss}

AKPFREQ={2ðð-65535|ð}

APPLID=({DBDCCICS|name1}[,name2])

CSDFRLOG={1-99}

CSDRECOV={NONE|ALL|BACKOUTONLY}

DBP={YES|xx}

DBUFSZ={5ðð|number}

3 {DLI|DL1}=({NO|YES|xx}[,COLD])

FCT={YES|xx|NO}

JCT={YES|xx|NO}

JSTATUS=RESET

NEWSIT={YES|NO}

PGAICTLG={MODIFY|NONE|ALL}

PGAIEXIT={DFHPGADX|name}

PGAIPGM={INACTIVE|ACTIVE}

PLTPI={YES|xx|NO}

PSDINT={ð-hhmmss}

SRT={YES|xx|NO}

START={AUTO|(AUTO,ALL)|COLD|(COLD,ALL)|LOGTERM|STANDBY}

SYSIDNT={CICS|name}

TBEXITS=([name1],[name2],[name3],[name4])

62 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Activity keypoints must be taken to make emergency restart possible. Therefore,
you should specify a nonzero value for AKPFREQ (the default is 200.)

If you code NEWSIT=YES at a warm start, the values in the SIT take effect, and
there is no reference to the warm keypoint information that has previously been
stored for the SIT.

Destination control table (DCT)
Use the DESTRCV={LG|PH} operand of the DFHDCT TYPE=INTRA macro for
each intrapartition destination that you want to be recoverable. See the CICS
Resource Definition Guide for information on which destinations must be
recoverable.

Program list table (PLT)
You use the DFHPLT macro to name each program executed during initialization or
controlled shutdown of CICS. See the CICS Resource Definition Guide for
information on the names of each program during initialization or controlled
shutdown.

Temporary storage table (TST)
When you define your temporary storage with DFHTST macros, note that TSAGE
and DATAID operands influence the recovery characteristics of that temporary
storage.

Transaction list table (XLT)
Use the DFHXLT macro to name the transactions that can be initiated from a
terminal during the first quiesce stage of normal shutdown. See also the
SHUTDOWN attribute on the RDO TRANSACTION resource definition.

Documentation and test plans
During internal design, consider how to document and test the defined recovery
and restart programs, exits, and procedures.

Recovery and restart programs and procedures usually relate to exceptional
conditions, and can therefore be more difficult to test than those that handle normal
conditions. They should, nevertheless, be tested as far as possible, to ensure that
they handle the functions they are designed for.

CICS facilities, such as the execution diagnostic facility (CEDF) and command
interpreter (CECI), can assist in causing exception conditions and interpreting
program and system reactions to those conditions.

The ability of the installed CICS system, application programs, operators, and
terminal users to cope with exception conditions depends on the designer and the
implementer being able to:

� Forecast the exceptional conditions that can be expected

� Document what operators and users should do in the process of recovery, and
include escape procedures for problems or errors that persist.

Conditions that need documented procedures include:

 Chapter 7. Starting to specify recovery and restart facilities 63

� Power failure of the processor

� Failure of CICS

� Physical failure of data set(s)

 � Transaction abends

� Communication failures—such as the loss of telephone lines or a printer being
out of service.

Note: It is essential that recovery and restart procedures are tested and rehearsed
in a controlled environment by all personnel who might have to cope with a
failure. This is especially important in installations that have temporary
operators.

64 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Chapter 8. Logging and journaling

This chapter tells you how to implement the system log and journals on disk and
tape. The use of journals for forward recovery, keypointing, the dynamic log, and
the catalogs are discussed in the following sections:

 � “System log”

� “Journals for forward recovery” on page 66

� “Keypointing” on page 67

� “Dynamic log” on page 68

� “Explicit journaling” on page 68

 System log
You define the system log using the DFHJCT TYPE=ENTRY, JFILEID=SYSTEM
macro, which is described briefly on page 62 and more fully in the CICS Resource
Definition Guide.

Implementing the system log on disk
The system log can be implemented on disk on one data set (JTYPE=DISK1 in the
JCT, where the filename is DFHJ01A), or on two datasets (JTYPE=DISK2 in the
JCT, where the file names are DFHJ01A and DFHJ01B).

One or two data sets?
You are recommended to use two disk data sets of equal size, and specify either
automatic archiving, or the PAUSE option. In this way, online tasks need not be
delayed, because one data set can be archived while the other is in use. Note that
two disk data sets do not carry out dual logging. Information is logged to only one
data set at a time.

If you use only one disk data set for the system log and it becomes full, online
tasks may have to wait while the data set is archived to tape. You can avoid this
problem by ensuring that the data set has enough space for the maximum amount
of logging activity in one CICS session.

If you use two data sets, make both data sets large enough to contain the longest
logical unit of work (LUW) (allow a safety margin). This is sufficient to enable
backout of in-flight LUWs during emergency restart.

By using two data sets, you can also cater for errors such as an I/O error on the
data set in use.

Preserving the system log (automatic archiving)
If you want to preserve the log (or any other journal) for forward recovery, batch
backout utilities, audit trail, analysis, or other purposes, use the automatic archiving
option (JOUROPT=AUTOARCH) in the DFHJCT TYPE=ENTRY macro. This
simplifies the operation of logging, offers greater security, and reduces the delays
caused by archiving just before you use a utility.

Automatic archiving is a more secure method of retaining log records than:

 Copyright IBM Corp. 1982, 1999 65

� Coding JOUROPT=PAUSE in the DFHJCT TYPE=ENTRY macro, to give the
operator time to ensure that the other data set has been archived to tape by an
offline procedure

� Using the user-replaceable DFHXJCO and DFHXJCC modules for controlled
log archiving.

Whenever a journal data set is closed for output, a VSE archiving job is created.
The job is submitted for execution to POWER. CICS cannot reuse the data set
until the archive job has completed.

The journal archive control data set (DFHJACD) controls the submission of archive
jobs and the reuse of journal data sets. The DFHJACD also contains the current
status of journal data sets.

The CICS Operations and Utilities Guide describes the use of the DFHJACDU
utility to determine the status of a log. You can also use CEMT or EXEC CICS
commands to inquire about the status of the data sets. If the journals are switching
when you use CEMT, an appropriate message is displayed.

The process of extracting and preserving forward recovery information from the
system log needs tight controls. If emergency restart has backed out local DL/I
database changes on DFHJ01A, that data set will be needed for forward recovery
of those changes in addition to updates to VSAM files.

Implementing the system log on tape
The system log can be implemented on tape using one tape drive (where the file
name is DFHJ01A), or two tape drives (where the file names are DFHJ01A and
DFHJ01B).

One or two tape drives?
If you use only one tape drive for the system log and the tape becomes full, online
tasks must wait while the tape rewinds and a new tape is mounted. You can avoid
this problem by using two tape drives.

Note: CICS Transaction Server for VSE/ESA does not use any of the facilities
provided by standard label tapes, and therefore does not control the use of
the tapes for the system log, or any other journal. The operations staff
must control the use of tape volumes manually.

Journals for forward recovery
For forward recovery, you can journal after-images to the system log
(JOURNALID=1) or to any user journal (JOURNALID=2 through 99). For ease of
administration, use the system log to reduce the number of online journals and
archived copies. For speed of recovery, direct after-images for particular data sets
to separate user journals; this enables a forward recovery utility to find the relevant
information more quickly. For the definition of automatic journaling of after-images,
see “Implementing recoverability of files” on page 74. (For DL/I VSE forward
recovery, after-images are written only to the system log.)

If you choose to implement your own forward recovery strategy, you must provide
procedures to extract and preserve forward recovery information either:

66 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

� From a completed journal or system log, before it is overwritten or preformatted
for the next session; or

� From a copy of the journal or system log.

Note: As long as a disk journal is needed for a possible forward recovery, it
should be archived before it is overwritten. Automatic archiving is the most efficient
way to archive journals.

 Defining journals
Use the DFHJCT TYPE=ENTRY macro to define user journals. This is similar to
defining the system log.

Instead of specifying JFILEID=SYSTEM, you specify JFILEID=nn (where nn is in
the range 2 through 99) to identify the journal. When you define a file as forward

3 recoverable, you specify the number of the journal where after-images for forward
3 recovery are recorded using the FWDRECOVLOG option of the RDO FILE
3 resource definition. Likewise, an EXEC CICS WRITE JOURNALNUM command in

an application program must specify the journal number.

You may also specify deferred opening of a journal (but not if you are using journal
archiving), as described in “Deferred opening of journals” on page 69.

The positioning within a journal data set at startup, when two disk data sets are
used, is explained in Table 4 on page 24.

 Keypointing
The AKPFREQ system initialization parameter specifies the number of consecutive
write operations that CICS makes to the system log between activity keypoints. Set
the AKPFREQ value so that at least three activity keypoints are taken per disk log
data set—more on tape log data sets.

Do not set AKPFREQ to zero— otherwise emergency restart will be impossible.
The AKPFREQ value should not be greater than 2000—otherwise the time taken
by an emergency restart might be excessive.

You can use the XAKUSER global user exit if you need to recover data not
normally recovered by CICS itself (such as the common work area (CWA)). The
exit would usually be associated with journaling, post-initialization program(s), and
the XRCINPT transaction backout exit.

Using XAKUSER, you can record your own data as part of the periodic system
activity keypoint data sent to the system log during normal CICS operation (see
“System activity keypoints” on page 21). Whenever a system activity keypoint is
written to the system log, the XAKUSER global user exit is invoked. The exit
program can record application-dependent information on the system log, using the
EXEC CICS WRITE JOURNALNUM(1) command.

At emergency restart, log records written by the exit program are presented to the
XRCINPT global user exit. Only records written during the last complete activity
keypoint of the current CICS execution are presented. Those written during
uncompleted or earlier activity keypoints are not presented.

 Chapter 8. Logging and journaling 67

For programming information about these global user exits, see the CICS
Customization Guide.

 Dynamic log
The journal control program places dynamic log records in the dynamic buffer
above the 16MB line. If that buffer becomes full, the overflow records are also
placed above the 16MB line (see “Dynamic log (for dynamic transaction backout)”
on page 19).

The DBUFSZ (dynamic buffer size) system initialization parameter influences the
initial maximum size of the dynamic log buffer area by means of an algorithm.
Choose the allocation for each transaction. If the value specified for DBUFSZ is
too small, this may impair performance by forcing the overflow mechanism to be
used too often. A value that is too large may allow excessive use of virtual storage
by some transactions. For further information about the effects of DBUFSZ, see
the CICS Performance Guide.

 Explicit journaling
You can use using explicit journal commands (as opposed to system logging, or
automatic journaling requested through file definition options). Explicit journaling is
available to application programs to support requirements such as:

� Recording information for an audit trail

� Recording recovery-and restart-related information for resources not protected
by CICS, such as:

– Common work area (CWA) or tables in main storage
– Extrapartition transient data
– Messages from non-VTAM terminals.

� Support for your own recovery functions, such as forward recovery routines.

Explicit journal commands
Explicit journal commands (EXEC CICS WRITE JOURNALNUM and EXEC CICS
WAIT JOURNALNUM) can be used to direct output to the system log (journal 1) or
to any other journal. If you direct output to a journal other than the system log,
note that:

� The records are not available during emergency restart except by using
postinitialization (PLTPI) programs (see “Using initialization (PLTPI) programs”
on page 84 for further information).

� If the transaction abends, you might need to use a user exit in the dynamic
backout program (DFHDBP) to write journal records to reverse the effects of
those written by the failed LUW.

Journal commands can cause immediate or deferred output to the journal; the
identification of the journal must be specified, and a journal type identifier can be
given to distinguish journal record types. If you write a journal record to the system
log, the journal record type identifier (according to the setting of the high-order bit)
also causes recovery control to copy the records to the restart data set during its
backward scan of the log:

68 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

� For in-flight tasks only (high-order bit off)
� For all records encountered until the scan terminates (high-order bit on).

Programming information on the commands for explicit journaling (EXEC CICS
WRITE JOURNALNUM and EXEC CICS WAIT JOURNALNUM) is in the CICS
Application Programming Reference manual.

Note: You can use CEMT INQUIRE and SET JOURNALNUM or EXEC CICS
INQUIRE and SET JOURNALNUM commands to display the status of the
current data set and, if defined, the alternate (secondary) data sets. If the
journal is switching when CEMT is used, an appropriate message is given.
For information about CEMT commands, see the CICS-Supplied
Transactions manual; for programming information about equivalent EXEC
CICS commands, see the CICS System Programming Reference manual.

 Defining journals
Define each journal in the JCT with a DFHJCT macro. You can use the OPEN
option to specify when to open the journal:

� By CICS during system initialization
� Deferred until an explicit OPEN request is made.

The latter case is discussed in “Deferred opening of journals.” For more
information on the DFHJCT macro, see the CICS Resource Definition Guide.

Deferred opening of journals
You can specify deferred opening for any journal except the system log or journals
specified with automatic archiving, by coding OPEN=DEFERRED in the DFHJCT
TYPE=ENTRY macro.

Possible reasons for taking this option are security and resource use:

� For security reasons, you may not want to enable certain transactions outside
specified hours. You do not, therefore, need to open an associated journal
until the transactions are enabled.

� From a resource viewpoint, if a tape journal is not always needed, it makes
sense not to mount it until necessary. This frees one or two tape drives for
other uses.

Reading journal data sets offline
If you are designing your own recovery systems (for forward recovery, for example),
you will need to write offline programs to read journal data sets. CICS can help
you do this; for programming information about journaling, see the CICS
Customization Guide.

Processing of journaled information at emergency restart
The journaled records and the activity keypoint records are presented at the
XRCINPT exit of DFHUSBP during emergency restart.

 Chapter 8. Logging and journaling 69

70 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

 Chapter 9. Recovering resources

This chapter describes in the following sections, data design considerations and the
recoverability of resources:

� “Protecting data files and databases”
� “Implementing recoverability of files” on page 74
� “Implementing recoverability of temporary storage” on page 79
� “Implementing recoverability of intrapartition transient data” on page 80
� “Specifying message-protection options for VTAM terminals” on page 81
� “Recovering extrapartition transient data” on page 83

Recovery of DL/I VSE resources is described in Chapter 19, “Recovery in a DL/I
VSE environment” on page 139.

Protecting data files and databases
A CICS file is a logical view of a physical data set, defined to CICS in the file

3 control table (FCT) with an 7-character file name. A CICS file is associated with a
3 VSAM or DAM data set by one of the following:

4 � The DSNAME parameter in the RDO FILE resource definition
4 � The DSNAME parameter of an EXEC CICS CREATE FILE command

� A CEMT SET FILE DSNAME(name) command
� An EXEC CICS SET FILE DSNAME(name) command
� A DLBL statement specifying a DSNAME

More than one file can refer to the same data set.

A data set is defined to be the physical object residing on DASD. It has a
3 44-character DSNAME. A VSAM data set, for example, is defined using
3 VSE/VSAM IDCAMS utility. For more information, see the VSE/VSAM Commands

manual.

 Data design
The main concern in data design is to ensure that, whatever the access method for
the system’s databases, they are protected from corruption and can recover from
accidental damage.

Unless you use existing databases, you must select the access method for each
database; what you select might well depend on the recovery and restart factors
described below.

 VSAM files
Recovery and restart factors, which vary according to the choice of access method,
are discussed below in relation to:

VSAM Key-sequenced data sets (KSDS)
VSAM Relative record data sets (RRDS)
VSAM Entry-sequences data sets (ESDS)

Sharing data sets: Sharing data sets between online CICS update transactions
and batch update programs using VSAM share options (where available) or job
control sharing is not recommended. It introduces the risk that the data sets will be

 Copyright IBM Corp. 1982, 1999 71

logically damaged and that application programs will not function correctly. Such
damage can occur, for example, if a CICS LUW updates a record that is later
updated by a non-CICS job while the CICS LUW is still running. If the CICS LUW
abends, dynamic transaction backout (DTB) backs out the record to the value it had
at the start of the CICS LUW, destroying the update from the non-CICS job.

Forward recovery: For VSAM files, you can use a forward recovery and batch
backout utility when online backout processing has failed. For forward recovery,
you need to:

� Create backup copies of data sets

� Record after-images of file changes (see “Implementing recoverability of files”
on page 74)

� Archive filled journal data sets, to preserve records that might be necessary for
forward recovery

� Prepare the job to run a forward recovery utility, and keep control of backup
data sets and journals that might be needed as input.

Backward recovery: To ensure that VSAM files can be backward recoverable,
certain points should be considered:

� Key-sequenced data sets (VSAM-KSDS) and relative record data sets
(VSAM-RRDS):

– If the files referring to VSAM-KSDS or RRDS data sets are designated as
recoverable, dynamic transaction backout and transaction backout during
emergency restart can back out any updates, additions, and deletions
made by an interrupted LUW.

– For errors that can occur during backout, see Chapter 11, “User exits for
transaction backout during emergency restart” on page 91 and “Global
user exits in DFHDBP” on page 88.

� Entry-sequenced data sets (VSAM-ESDS):

– New records are added to the end of a VSAM-ESDS. After they have been
added, a record cannot be physically deleted. A logical deletion can be
made only by modifying data in the record; for example, by flagging the
record with a “logically deleted” flag.

– As described on page 37, backout (performed during emergency restart or
by DTB) operates on files referring to VSAM-ESDS data sets thus:

- Each record that was updated (including a flagged deletion) is restored
in place to its before-image; flagged deletions are reversed.

- Records that were added to the file cannot be deleted by CICS. Such
records must be either detected and ignored, or flag-deleted by code in
exits available in DFHDBP and the transaction backout programs (see
“Global user exits in DFHDBP” on page 88 and Chapter 11, “User
exits for transaction backout during emergency restart” on page 91.)

� For all types of VSAM data set:

– A backout utility enables you to run backout offline against files where
normal backout procedures have failed. It uses:

- The data set containing the uncommitted updates that could not be
backed out

72 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

- Before-images from the archived system log(s)

- A user-supplied job to run the utility, with the failed data set and the
archived log(s) as input.

Direct access method (DAM)
3 For DAM files, there is no support for forward recovery via the DFHFCT macro
3 operands. You can implement your own forward recovery support using automatic

journaling options.

Backout for DAM data sets is the same as for ESDS data sets in that you cannot
delete records from the data set (see the previous section).

Presenting large quantities of data
Decide how to present and access large quantities of data. Possibilities include:

� Selection of particular elements of data
� Scrolling on a video display
� Displaying on a printer
� Paging to a video display.

This information is needed for internal design purposes (see “Implications of
presenting large amounts of data to the user” on page 108).

Access to data by two or more users
Decide, for each data resource, whether it is possible for two or more users to
access the data concurrently. If several users need frequent update access to the
same data resource (such as a record that keeps a running total):

� Task deadlock is possible, and must be catered for by the internal design.
(This is one of the factors to consider when choosing file access methods; see
“Data design” on page 71.)

� Response times may be longer than desirable because all the tasks will be
enqueuing on the one resource.

� Multiple path updating of VSAM files can cause forward recovery problems (see
“Implementing forward recovery with existing utilities” on page 78).

If these characteristics are recognized in the external design, applications can be
designed to avoid multiple tasks depending on access to one resource.

Protecting files against processing failure
Decide which files to protect—that is, which CICS files refer to data sets that need
to be backed out if an updating task is interrupted. Generally, all files should be
candidates for backward recovery. Making read-only files recoverable does not
incur any overhead.

Protecting against data set failure
Decide the procedures for taking backup copies of data sets and for recording
changed records so that forward recovery is possible in the event of a data set
becoming unusable.

VSAM files may be taken offline for backup. Recovery is always performed offline.

 Chapter 9. Recovering resources 73

Physical damage to disk or tape occurs infrequently, but it must be considered.
Identify the data sets that need to be backed up, and the journals that need to be
journaled and archived.

How often you take backup copies in readiness for forward recovery depends on
the importance of restart speed (see “Question 8: How long can the business
tolerate being unable to use the application in the event of a failure?” on page 58).
Backup copies may be taken, for example:

� Before processing each set of batch updates. During batch updating of VSAM
files CICS takes no record of the updates made, so you should consider taking
a backup copy before and after the batch run. If the batch processing fails, the
backup provides a clean base either for the batch updates to be run again, or
for CICS processing.

� Before or after each CICS session.

� Once a day.

� Once a week.

� Once a month.

For successful forward recovery, it is necessary to have procedures that are clearly
documented and well tested, and which the operations staff can use without
having to consult the data management staff.

Decide which data sets are critical for the business and therefore require special
recovery precautions so that they can be quickly recovered in the event of physical
damage. To protect critical data sets, consider:

� Recording recovery information in duplicate on different journals. The amount
of programming to do this should be balanced against the business risks
involved.

� Taking duplicate backup copies of key data sets at intervals and storing them
off-site. Note that the CICS catalogs and the CICS system definition file (which
is treated like any other CICS file) are also vital to your CICS system, and you
should consider how to safeguard against their failure.

Implementing recoverability of files
This section describes how to define the recovery characteristics of files using the
CEDA transaction.

 Defining files
With the CEDA DEFINE FILE command, you can specify support for both forward
and backward recovery. The necessary parameters are RECOVERY and
FWDRECOVLOG. A CEDA command to support a batch backout and forward
recovery utility is:

74 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

CEDA DEFINE FILE(name) GROUP(groupname)

 DSNAME(data-set name)

 .

 .

 RECOVERY(ALL)

 FWDRECOVLOG(number)

 .

 .

Notes:

1. RECOVERY(ALL) means that before-images for updates made to this file are
recorded on the system log (journal 01), and after-images are recorded on the
journal specified by FWDRECOVLOG.

2. RECOVERY(ALL), plus FWDRECOVLOG, provides forward recovery support
for VSAM files. Note that FWDRECOVLOG contains journal records
incompatible with previous releases of CICS, as follows:

� WRITE_ADD_COMPLETE, written when a record is added to the file. It is
journaled after the I/O operation.

� WRITE_DELETE, written to the FWDRECOVLOG when a record is deleted
from the VSAM file.

� WRITE_UPDATE, written to the FWDRECOVLOG when a record in the
VSAM file is updated.

Forward recovery support supplied by RECOVERY(ALL) and FWDRECOVLOG
is totally independent of any automatic journaling options set. Existing forward
recovery utilities can still use automatic journaling options instead of
RECOVERY(ALL) and FWDRECOVLOG.

You may use the following options in CEDA to provide information for a utility of
your own, perhaps for forward recovery. The following example provides support
for backout, with after-images for forward recovery supplied by automatic journaling
options:

CEDA DEFINE FILE(name) GROUP(groupname)

 .

 .

 RECOVERY(BACKOUTONLY)

 JOURNAL(number)

 JNLUPDATE(YES)

 JNLADD(BEFORE)

 .

 .

Notes:

1. RECOVERY(BACKOUTONLY) is equivalent to LOG=YES on the DFHFCT
macro for DAM files. JNLUPDATE(YES) combined with JNLADD(BEFORE) is
equivalent to JREQ=(WU,NU) on the DFHFCT macro, providing the necessary
images for forward recovery to a journal specified by JOURNAL.

2. An automatic journaling option, JNLADD(AFTER), journals the addition of a
record after the I/O is completed rather than before. Existing forward recovery
utilities will, however, work only with JNLADD(BEFORE), because the
JNLADD(AFTER) produces a record with a different JCRSTRID identifier.

For information about defining files, see the CICS Resource Definition Guide.

 Chapter 9. Recovering resources 75

The CICS system definition (CSD) file is defined by means of system initialization
parameters. Parameters equivalent to RECOVERY and FWDRECOVLOG are
provided together with default automatic journaling options. See the CICS System
Definition Guide for further information.

Backout of changes to files
3 To make files backward recoverable, use RECOVERY(ALL|BACKOUTONLY) on
3 the RDO FILE resource definition or LOG=YES in the DFHFCT macro. For

backing out changes to such files:

1. If there is a transaction failure , CICS uses information from the dynamic log.
DFHDBP requires exit code to handle the special case of flag deletions to DAM
and VSAM-ESDS data sets (see “Global user exits in DFHDBP” on page 88).

2. At emergency restart , CICS uses information from the system log. DFHFCBP
requires exit code to handle the special case of DAM and VSAM-ESDS flag
deletions (see Chapter 11, “User exits for transaction backout during
emergency restart” on page 91).

RECOVERY(ALL|BACKOUTONLY) or LOG=YES specify that the file is to be
backward recoverable, and control the recording of before-images on the system
log (for emergency restart). Recoverability of files affects implicit enqueuing as
described under “Enqueuing in application programs” on page 113. Note that
CICS enqueues read-for-update, write, and delete requests for files designated with
RECOVERY(ALL|BACKOUTONLY) or LOG=YES.

If you want only backout, and not forward recovery, use
RECOVERY(BACKOUTONLY) rather than RECOVERY(ALL). This avoids the
overhead of logging after-images that are not going to be used.

Trapping file and data set recovery inconsistencies
Always ensure consistency of recovery attributes between files referring to the
same base data set cluster or its paths. File opens that detect an inconsistency in
the settings for the file and those for the associated data set, will fail.

The first file open for the base data set determines the base data set recovery
attributes.

To look at the recovery attributes, use the CEMT or EXEC CICS INQUIRE
DSNAME command on the base cluster to which the file refers. If all files are
consistent, the recovery attributes on the file will be the same as on the base
cluster.

Using the XFCNREC global user exit
CICS provides a global user exit, XFCNREC, to enable you to continue processing
regardless of any inconsistencies in the backout setting for files associated with the
same data set. If XFCNREC is used to suppress open failures that are a result of
inconsistencies in the backout settings, a warning message will be issued to alert
the user that the integrity of the data set can no longer be guaranteed.

Any CEMT or EXEC CICS INQUIRE DSNAME RECOVSTATUS command from
this point onward will return NOTRECOVABLE regardless of the recovery attribute
that CICS has previously enforced on the base cluster. This condition will remain

76 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

until the next CEMT SET or EXEC CICS SET DSNAME REMOVE command, or
COLD START the CICS system.

It may survive a cold start if the associated data set is in a backout-failed state,
because backout failed is treated as a special case on cold start with some data
set information recovered from the CICS global catalog.

The order in which files are opened for the same base data set will determine the
content of the message received on suppression of an open failure using
XFCNREC. If the base cluster block is set as unrecoverable and a mismatch has
been allowed, access to the data set could be allowed via an unrecoverable file
before the data set is fully recovered.

See the CICS Customization Guide for programming information about the
XFCNREC global user exit.

CICS responses to file open requests
CICS file control uses the backout setting from the file definition to decide whether
to do logging for a file request.

CICS takes the actions shown in the following list when opening a file for update
3 processing (that is, ADD(YES), DELETE(YES), or UPDATE(YES) on the RDO FILE
3 resource definition. If you set only READ(YES) and/or BROWSE(YES), CICS does
3 not make these consistency checks). These checks are not made at resource

definition or install time.

3 � If an FCT entry refers to an alternate index (AIX) path and RECOVERY is
3 ALL or BACKOUTONLY on the RDO FILE resource definition, or LOG=YES on
3 the DFHFCT TYPE=FILE macro, the AIX must be in the upgrade set for the

base. This means that any changes made to the base data set are also
reflected in the AIX. If the AIX is not in the upgrade set, the attempt to open
the FCT entry for this AIX path fails.

� If an FCT entry is the first to be opened against a base cluster after the last
cold start, the recovery attributes of the FCT entry are copied into the base
cluster block.

� If an FCT entry is not the first to be opened for update against a base cluster
after the last cold start, the recovery attributes in the FCT entry are checked
against those copied into the base cluster block at first open. There are the
following possibilities:

3 – Base cluster has RECOVERY(NONE) or LOG=NO:

3 - FCT entry defined with RECOVERY(NONE) or LOG=NO: the open
3 proceeds.

3 - FCT entry defined with RECOVERY(BACKOUTONLY) or LOG=YES:
the attempt to open the file fails unless the user is making use of the
XFCNREC global user exit to allow inconsistencies in backout settings
for files associated with the same base data set.

- FCT entry defined with RECOVERY(ALL): the open fails.

3 – Base cluster has RECOVERY(BACKOUTONLY) or LOG=YES:

3 - FCT entry defined with RECOVERY(NONE) or LOG=NO: the attempt
3 to open the file fails unless the user is making use of the XFCNREC

 Chapter 9. Recovering resources 77

global user exit to allow inconsistencies in backout settings for files
associated with the same base data set.

3 - FCT entry defined with RECOVERY(BACKOUTONLY) or LOG=YES:
3 the open proceeds.

- FCT entry defined with RECOVERY(ALL): the open fails.

– Base cluster has RECOVERY(ALL):

3 - FCT entry defined with RECOVERY(NONE) or LOG=NO: the open
3 fails.

3 - FCT entry defined with RECOVERY(BACKOUTONLY) or LOG=YES:
the open fails.

- FCT entry defined with RECOVERY(ALL): the open proceeds unless
the setting of FWDRECOVLOG is different from the base cluster
setting, in which case the open fails.

Any failure to open a data set for an FCT entry results in a message to the
operator. If necessary, the recovery options must be changed. To change the
recovery attributes (held in the base cluster block) of a VSAM data set, you can
use the CEMT or EXEC CICS SET DSNAME REMOVE commands. These delete
the base cluster block, so CICS has no record of prior recovery settings for the this
VSAM data set. The next file to open against this data set causes a new base
cluster block to be built and, if the file is opened for update, the data set takes on
the recovery attributes of this file.

The base cluster block, together with its recovery attributes, and the inconsistency
condition that may be set if you are using XFCNREC, is preserved even when all
the files relating to it are closed, and across warm and emergency restarts. It will
also survive a cold start if the associated data set is in a backout-failed state
because backout failed is treated as a special case on cold start with some
information recovered from the catalog.

Implementing forward recovery with existing utilities
3 If you use your own forward recovery programs, make sure that all files referring to
5 the same data set have the same settings for the following options on the RDO
5 FILE resource definition, or the equivalent DFHFCT TYPE=FILE macro operands:

5 JOURNAL
3 JNLREAD
3 JNLSYNCREAD
3 JNLUPDATE
3 JNLADD
3 JNLSYNCWRITE

It is possible that two or more CICS files relate to a single VSAM base data set.
Such files may refer directly to the base, or to an alternate index path defined over
the base. If you are updating records in a single data set via multiple files, forward
recovery of the data set must take account of all the journal records for the data
set, which must be merged and reapplied in the correct chronological order.

After-images to be used by forward recovery are recorded on the journal with FCT
file entry names. To enable journal records for a given base data set to be related,
before any updates are made through a particular FCT entry name, the

78 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

44-character data set name associated with that FCT entry (which may be a VSAM
path or the base itself) and the data set name of the corresponding base are
written to the journal.

If you use dynamic allocation of data set names, the file name included in the
journal to reflect changes to the file will not uniquely identify the data set being
updated. To allow your forward recovery procedures to make the association
between the FCT file name and the operating system data set name, a special
record is written to the journal whenever the data set allocation changes. This
record contains the FCT name and the data set name.

For programming information about the format of log and journal records, see the
CICS Customization Guide.

Implementing recoverability of temporary storage
This section deals with both backward and forward recovery of temporary storage.

 Backward recovery
Temporary storage queues that are to be recoverable by CICS must be on auxiliary
temporary storage.

You must identify temporary storage queues as recoverable in the temporary
storage table (TST), as shown in the following outline:

DFHTST TYPE=RECOVERY,

 DATAID=(DF,\\,

 $$(,character-string)...)

The DATAID DF makes the temporary storage queues used by CICS recoverable.

The DATAIDs **, and $$ make those temporary storage queues used by BMS
recoverable.

The DATAID character-string represents the leading characters of each temporary
storage queue identifier that you want to be recoverable. For example,
DATAID=(R,ZIP) makes recoverable all temporary storage queues that have
identifiers starting with the character “R” or the characters “ZIP.”

For more information on allocation and space requirements, see the CICS
Operations and Utilities Guide.

 Forward recovery
If an unrecoverable input/output error or physical failure occurs on the temporary
storage data set during emergency restart (indicated by message DFHTS1302),
CICS abends, and you can do one of the following:

1. If you want forward recovery of temporary storage, you should record the
changes made to temporary storage during the current CICS run; you must
provide application programs to do this. At emergency restart time, you can
then delay the emergency restart (by using PLTPI, for example) and, again
using application programs, rebuild as much as possible of the temporary
storage data using the records previously read.

 Chapter 9. Recovering resources 79

2. Repeat the emergency restart but with the system initialization parameters
amended to cold-start temporary storage (TS=(COLD)). Note, however, that
this loses the contents of the entire temporary storage data set.

Implementing recoverability of intrapartition transient data
This section deals with both backward and forward recovery of intrapartition
transient data.

 Backward recovery
CICS can only recover intrapartition transient data. For extrapartition transient
data considerations, see “Recovering extrapartition transient data” on page 83.

You need to specify the name of every intrapartition transient data destination that
is to be recoverable. For each name that you specify as recoverable, the data,
trigger level, transaction identifier, and terminal identifier are recovered. You
specify each name in the destination control table (DCT) as follows:

DFHDCT TYPE=INTRA,

 DESTID=name,

 DESTRCV=LG|PH

DESTRCV=LG denotes logical recovery. This means that changes to transient
data get/put pointers for an interrupted LUW are backed out. In general, you
should use the LG option. If, for example, you make related changes to a set of
resources, including transient data, and you want to commit or back out all the
changes, you will require logical recovery.

DESTRCV=PH specifies physical recoverability; this is unique to transient data
and is implemented only at emergency restart. If the interrupted LUW was reading
from the transient data destination, the get pointer is reset to the last record read.
The put pointer never changes.

After a CICS failure, you might choose to restart CICS as quickly as possible, and
then look for the cause of the failure. By specifying destinations such as CSMT as
intrapartition and physically recoverable, the messages produced just before the
failure can be recovered and are therefore available to help you diagnose the
problem.

The intrapartition data set is a VSAM-ESDS data set, with file name DFHNTRA.
(For more information about allocation and space requirements, see the CICS
System Definition Guide.)

 Forward recovery
If you want forward recovery of your intrapartition transient data, you have to
provide application programs to record in a journal the changes to the contents of
your transient data while CICS is running. The information journaled must include:

� Each PUT, including the data that is written

 � Each GET

� Each deletion of a queue

� For logically-recoverable queues, each backout, syncpoint, or syncpoint
rollback.

80 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

When an unrecoverable input/output error or physical failure occurs on the
intrapartition transient data (indicated by messages DFHTD0360I through
DFHTD0363I), restart CICS with START=AUTO (which will resolve to an
emergency restart). For the restart, you must amend the DCT system initialization
parameter to DCT=(xx,COLD) to cold-start transient data, thus purging all the
transient data queues.

You must provide the application program to rebuild the data by reading the
journaled information and applying that information to the transient data. Your
application program could run in the PLT phase or after emergency restart. Until
the data set is fully recovered, you must not PUT to the queue, because that would
probably result in wrongly-ordered data, and a GET might not provide valid data or
any data at all. For these reasons, running the recovery program in the PLT phase
is probably preferable to running it after the restart.

If you do not have such a recovery strategy and you cold start a corrupted
intrapartition data set, you lose the contents of the intrapartition data set.

Specifying message-protection options for VTAM terminals
For VTAM terminals, the message protection options are part of the CEDA DEFINE
PROFILE command:

CEDA DEFINE PROFILE MSGINTEG(YES)|PROTECT(YES)

Select the options by altering the specification of MSGINTEG or PROTECT.

For non-VTAM terminals, install the DFHSTAND group.

Message integrity (MSGINTEG) option
The results of specifying the MSGINTEG option are:

1. All output messages from the transaction come with a request for a definite
response. (Note that this increases the traffic on the network compared with a
request for a response only when there is an exception.)

CICS transmits each output message when the transaction:

� Issues a terminal wait request
� Issues a SYNCPOINT command

 � Ends.

2. CICS preserves the contents of the terminal input/output area (TIOA) if it does
not receive a definite response, so that it can retry the operation. The contents
of the TIOA are lost if:

� The session with the terminal terminates
� A retry is successful

 � CICS terminates.

3. CICS does not write the messages to the system log.

The MSGINTEG option can be useful in the following situations:

� When the transaction sends data to a device such as a 3270 printer. Here, a
temporary fault such as “out-of-paper” can be cleared in a short time and the
output operation retried, using the message preserved in the TIOA.

 Chapter 9. Recovering resources 81

� When you have your own NEP processors. The NEP processor has access,
through the TIOA, to the message that did not transmit successfully.

If exception response requested was used, any message that did not transmit
successfully would not definitely be preserved in the TIOA because it might
have been overwritten by a later message.

Protection (PROTECT) option
The results of specifying the PROTECT option are:

1. All output messages from the transaction come with a request for a definite
response. (Note that this increases the traffic on the network compared with
exception response requested, which is the default.)

CICS defers the transmission of each output message until the transaction:

� Issues a terminal wait request
� Issues a SYNCPOINT command

 � Ends.

2. CICS preserves the contents of the terminal input/output area (TIOA) if it does
not receive a definite response so that it can retry the operation. The contents
of the TIOA are lost if:

� The session with the terminal terminates
� A retry is successful

 � CICS terminates.

3. All input and output messages (and their SNA sequence numbers) are logged.

4. The first input message for an LUW is recorded on the dynamic log, and is
available to the user input exit in dynamic transaction backout (see “Global user
exits in DFHDBP” on page 88).

5. During an emergency restart, logged messages from the system log are
copied:

a. To the restart data set, where they are available to the input exit in the
transaction backout program (see Chapter 11, “User exits for transaction
backout during emergency restart” on page 91).

b. To message caches in temporary storage: one cache for each terminal
(see Chapter 15, “Using message caches after emergency restart” on
page 123).

6. If the controller for the VTAM terminal supports the SNA
set-and-test-sequence-number (STSN) command, and if the resynchronization
and resend programs are included:

a. During an emergency restart, the most recently committed output message
for that terminal is copied to a resend slot in temporary storage, to be
saved for retransmission if necessary.

b. After emergency restart, when the terminal network is initialized, CICS
participates in an exchange of sequence numbers with the terminal
controller. If the sequence numbers do not match, CICS retransmits the
message in the resend slot (see “Resynchronization and re-presentation of
VTAM messages” on page 41).

For this to happen, the program(s) in the controller must be able to record
4 the sequence numbers sent to and received from CICS. The

82 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

4 CICS/DOS/VS IBM 3790/3730/8100 Guide and other subsystem guides
give further information on sequence numbers and resynchronization.

Using the PROTECT option causes a considerable increase in the amount of data
written to the system log, which can increase response times. Use the PROTECT
option, therefore, only for transactions that update recoverable resources. (With
transactions that do not update recoverable resources, logical data integrity is not
at risk if messages get lost or duplicated.)

Recovering extrapartition transient data
CICS does not recover extrapartition data sets. If you depend on extrapartition
data, you must develop procedures to recover data for continued execution on
restart following either a controlled or an uncontrolled shutdown of CICS.

There are two areas to consider in recovering extrapartition data sets:

� Input extrapartition data sets
� Output extrapartition data sets.

Input extrapartition data sets
The main information required on restart is the number of records processed up to
the time the system ended. This can be recorded during processing using CICS
journaling, as described in the following paragraphs.

Each application program that reads records from extrapartition input destinations
should first enqueue exclusive access to those destinations. This will prevent
interleaved access to the same destinations by other concurrently executing tasks.

The application programs then issue EXEC CICS READQ TD commands to read
and process extrapartition input records. In this way, they accumulate the total of
input records read and processed during execution for each destination. The total
number of EXEC CICS READQ operations is written to a journal data set, together
with the relevant destination identifications. This journaling should be done
immediately before EXEC CICS RETURN or SYNCPOINT commands.

Following output of the journal record, each application program dequeues itself
from the extrapartition input destinations to permit other application programs to
access those extrapartition input destinations.

If uncontrolled shutdown occurs before this journaling, no records will appear on the
journal data set for that logical unit of work. The effect of that in-flight task is,
therefore, automatically backed out on emergency restart. However, if the journal
record is written before uncontrolled shutdown, this completed input data set
processing will be recognized on emergency restart.

An uncontrolled shutdown does not permit a tape journal data set to close normally.
The tape journal can close using the CICS tape end-of-file utility program
(DFHTEOF) before executing the recovery program.

On emergency restart following uncontrolled shutdown or on a warm start following
a controlled shutdown, use the following procedure, which will reposition the
extrapartition input data sets to reflect the input and processing of their records
during previous CICS operation.

 Chapter 9. Recovering resources 83

You can identify an extrapartition input recovery program in the PLT for execution
during the initialization phase. This program reads the journal data set forward.
Each journaled record indicates the number of EXEC CICS READQ TD operations
performed on the relevant extrapartition input data set during previous execution of
application programs. The same number of EXEC CICS READQ TD commands is
issued again by the recovery program, to the same input destination that was
referenced previously.

On reaching the end of the journal data set, the extrapartition input data sets are
positioned at the same point they had reached before the initiation of tasks that
were in-flight at uncontrolled shutdown. The result is the logical recovery of these
input data sets with in-flight task activity backed out.

Output extrapartition data sets
The recovery of output extrapartition data sets is somewhat different from the
recovery of input data sets.

For a tape output data set, use a new output tape on restart. You can then use the
previous output tape if it is necessary to recover information recorded before
termination.

To avoid losing data in tape output buffers on termination, it may be desirable to
write unblocked records. Alternatively, write the data to an intrapartition disk
destination (recovered by CICS on a warm start or emergency restart) and
periodically copy it to the extrapartition tape destination by an automatically initiated
task. In the event of termination, the data is still available to be recopied on restart.

If a controlled shutdown of CICS occurs, the previous output tape closes correctly
and writes a tape mark. However, on an uncontrolled shutdown such as a power
failure or machine check, a tape mark is not written to indicate the end of the tape.

For a line printer output data set, you can choose just to carry on from where
printing stopped when the system stopped. However, if you want to continue
output from a defined point such as at the beginning of a page, you may need to
use a journal data set. As each page is completed during normal CICS operation,
write a record to a journal data set.

On restart, the page that was being processed at the time of failure can be
identified from the journal data set, and that page can be reprocessed to reproduce
the same output. Alternatively, use an intermediate intrapartition destination (as
previously described) for tape output buffers.

Using initialization (PLTPI) programs
You can use initialization (PLTPI) programs:

� As part of the processing required to recover extrapartition transient data.

� To ENABLE exits required during recovery.

There are two PLTPI phases. The first phase occurs before the system
initialization task is attached, and should not use CICS resources because
initialization is incomplete. The first phase is intended solely to enable exits that
are needed during recovery processing. The second phase occurs after CICS

84 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

initialization is complete and, at this point, you may use PLT programs to customize
the environment.

For information on how to code the PLT, see the CICS Resource Definition Guide.
For programming information about the special conditions that apply to PLT
programs, see the CICS Customization Guide.

 Chapter 9. Recovering resources 85

86 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Chapter 10. Dynamic transaction backout (DTB)

In transaction backout, CICS restores the resources specified as recoverable to the
state they were in at the beginning of the task. This chapter discusses dynamic
transaction backout in the following topics:

 � “Specifying DTB”
� “Specifying automatic transaction restart”
� “Global user exits in DFHDBP” on page 88
� “Editing the transaction restart program (DFHREST)” on page 89

This chapter contains Product-sensitive Programming Interface information.

 Specifying DTB
“Dynamic transaction backout (DTB)” on page 47 describes the way that DTB
works for various resources. The specification of basic recovery and restart
facilities is described on page 57. In addition, you should note the following:

� DTB is the default for all transactions. For other resources, you must decide
whether to make a resource recoverable. For files, for example, you need to
specify RECOVERY(ALL|BACKOUTONLY) if you are using RDO to define the
file, or LOG=YES in the DFHFCT macro.

� For DTB, you must specify a journal control table in the system initialization
parameters, because the journal control program writes records to the dynamic
log. The dummy journal control program is not adequate.

� If DFHDBP is to back out changes to files referring to DAM or VSAM-ESDS
data sets, you must prepare your own code for the file error exit from DFHDBP
(see “Global user exits in DFHDBP” on page 88).

� To avoid the risk of CICS abending when it runs short-on-storage, you should
make resident the version of DFHDBP (suffix 1$, 2$, or xx) that you choose.

3 You do this by changing the RDO PROGRAM resource definition of the
3 program to RESIDENT(YES). If DFHDBP is not resident, and CICS cannot

load it when an abend occurs in a short-on-storage situation, another abend will
occur which will terminate CICS.

Specifying automatic transaction restart
To specify automatic transaction restart:

1. Ensure that you define your resources for recovery.

2. Specify RESTART(YES) in the RDO TRANSACTION resource definition for the
transactions that are to be candidates for automatic restart (see “Definitions for
transactions and programs” on page 61).

3. Check the logic of those transactions for any additional resources that need to
be made recoverable. For example:

� Any temporary storage or transient data (intrapartition) queues used by a
transaction that may be automatically restarted should be made
recoverable (see “Implementing recoverability of temporary storage” on

 Copyright IBM Corp. 1982, 1999 87

page 79, and “Implementing recoverability of intrapartition transient data”
on page 80).

� If an EXEC CICS START FROM command is used to create a restartable
task, the initial data should be protected by, for example, a DFHTST
TYPE=RECOVERY,DATAID=xx macro, where the DATAID parameter
corresponds to the REQID parameter in the START FROM command.

4. Be aware of the conditions necessary for automatic transaction restart. The
default transaction restart program does not request a restart if the transaction
abends in the second or subsequent LUW or if terminal traffic has occurred for
this task.

If you want automatic restart to occur under different conditions, you can edit
the CICS-supplied transaction restart program (DFHREST), as described in
“Editing the transaction restart program (DFHREST)” on page 89.

Global user exits in DFHDBP
DFHDBP has four global user exit points:

 1. XDBINIT
 2. XDBIN
 3. XDBDERR
 4. XDBFERR.

You can write programs to be executed at any of these exits if the default action is
not required or if you want to perform some processing in addition to the default
action, such as:

� Examining log records (with the possibility of special action for certain types of
record)

� Handling file and database error conditions

� Deciding whether backout is to continue or to be suppressed (either completely
or for certain resources).

For programming information on the parameters passed to the exit programs, the
XPI calls, and the return codes used by the exit programs, see the CICS
Customization Guide.

The return codes that can be returned by the exit program are as follows:

UERCNORM The default return code. If UERCNORM is returned, the data set
associated with the file is flagged as “backout failed”. The data set is no
longer available to applications and, following a quiesce of activity
against the base data set, you may run a batch backout utility. For
more information about flagging backout errors, see Chapter 16,
“Backout failure” on page 129. If you are not using a batch backout
utility or some other means of coping with backout failures, and data
integrity is at risk, abend CICS from your exit program, and perform an
emergency restart to preserve data integrity.

UERCBYP Indicates that the error is ignored and backout continues. The file is not
flagged as “backout failed”.

88 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

UERCRTRY Return code UERCRTRY has two meanings:

1. For the DBFEWA error type, the record that has been marked by
the exit program as “logically deleted”, and which is held in the area
pointed to by UEPFDATA, will be reapplied to the data set

2. For other error types, the file control request is retried.

UERCPURG Return code UERCPURG can also be issued by an exit program that
has invoked the XPI (exit programming interface).

Coding DFHDBP global user exits
You may modify recoverable resources in DFHDBP global user exits, but note the
following:

� Dynamic transaction backout exits must be quasi-reentrant. They may use the
exit programming interface (XPI) and issue EXEC CICS commands. If EXEC
CICS commands are included in the exit program, the program must be
compiled with the NOEDF option to avoid the risk of an abend in the CEDF
facility if dynamic backout of a transaction occurs while CEDF is active.

� In the XDBINIT exit, avoid changes to recoverable transient data and temporary
storage because they will back out immediately.

� In the XDBIN exit, you can set a return code to ignore a file-related record if,
for example, backout for a particular file is to be suppressed for some reason.

� A file control EXEC CICS READ UPDATE command should be properly
unlocked, either implicitly or explicitly, or backout may be locked out. In fact, it
is unwise to issue any file control requests when backing out file resources.

� The current DL/I PSB should be left scheduled; it should not be terminated.

� File control operations are performed by DFHDBP and changes made to files
(including those performed in user exits) will be recorded in the system log by
the file control program (DFHFCVS).

Editing the transaction restart program (DFHREST)
When planning to replace the default DFHREST, check to see if the logic of any of
your transactions is inappropriate for restart.

� Transactions that execute as a single logical unit of work are safe. Those that
execute a loop and, on each pass, read one record from a recoverable
destination, update other recoverable resources, and close with a syncpoint,
are also safe.

� Two types of transaction need to be modified to avoid erroneously repeating
work done in the logical units of work that precede an abend:

1. A transaction in which the first and subsequent logical units of work change
different resources

2. A transaction where the contents of the input data area are used in several
logical units of work.

For programming information about DFHREST and guidance to help determine if
transaction restart is to happen, see the CICS Customization Guide.

 Chapter 10. Dynamic transaction backout (DTB) 89

90 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Chapter 11. User exits for transaction backout during
emergency restart

This chapter describes the opportunities for including your own logic in global exit
programs that run in the transaction backout programs—DFHFCBP, DFHUSBP,
DFHTCBP, and DFHDLBP—at emergency restart time. The way these programs
work is described in “Backout processing” on page 36. Transient data and
temporary storage backout do not have any exits.

This chapter contains Product-sensitive Programming Interface information. For
additional programming information on global user exits, see the CICS
Customization Guide.

Where you can add your own code
At emergency restart, you can add your own code in postinitialization programs that
you nominate in the program list table (described on page 84).

You can include functions in global exit programs that run during emergency restart
to:

� Deal with flag deletions (in the XRCFCER exit of DFHFCBP)
� Handle file error conditions that arise during emergency restart
� Process journaled records (in the XRCINPT exit of DFHUSBP).

4 The transaction backout programs have five global user exit points:

1. XRCINIT—initialization and termination exit
4 2. XRCINPT—input exit (only for DFHFCBP, DFHUSBP or DFHTCBP)

3. XRCFCER—file error exit (only for DFHFCBP)
4. XRCOPER—open error exit (only for DFHFCBP).
5. XRCDBER—DL/I backout error exit (only for DFHDLBP)

You can use any of these exits to add your own processing if you do not want the
default action. To use these exits, you must either enable them in PLT programs in
the first stage of PLT processing, or specify them in system initialization parameters

4 with TBEXITS=(name1,name2,name3,name4,name5), where name1, name2,
4 name3, name4, and name5 are the names of your programs for XRCINIT,
4 XRCINPT, XRCFCER, XRCOPER, and XRCDBER.

Figure 3 on page 92 shows which programs the user exits are invoked in, and the
order in which they are invoked.

 Copyright IBM Corp. 1982, 1999 91

DFHFCBP DFHUSBP DFHTCBP DFHDLBP
| | | |

Initialization/termination
exit - XRCINIT

Input exit - XRCINPT

Open error DL/I error
exit - XRCOPER exit - XRCDBER

File error
exit - XRCFCER

Initialization/termination
exit - XRCINIT

Figure 3. Global user exits for backout at recovery

Global user exit details
For programming information about the following, see the CICS Customization
Guide.

� The identity of the invoking program
� The exit for initialization and termination
� The time of invocation, as indicated to the exit programs by parameters
� Writing exit programs
� Details of the input parameters
� Return codes for each exit

You must not set the UERCPURG return code for these exits, because the exit
tasks cannot be purged.

 XRCINIT exit
This is the initialization and termination exit. It gains control when:

1. Each of DFHUSBP, DFHFCBP, DFHTCBP, and DFHDLBP is first invoked
2. Each of these programs ends.

The XRCINIT exit code must always end with a return code of UERCNORM. No
choice of processing options is available to this exit.

The XRCINIT exit can, however, set the no-action flags in the following:

� The file backout table (FBO)
� The DL/I backout table (DBO)
� The message backout table (MBO)

These tables are created on the restart data set during emergency restart. The
XRCINIT exit is the only exit that can set these no-action flags.

92 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

For file backout, the FBO is described by the DFHFBODS copybook. The entries
in the FBO are verified against the files that have been defined and marked as
“absent” and “no action” if unmatched. Before giving control to the exit, DFHFCBP
lists the absent file IDs to the console operator.

For DL/I backout, the DBO is described by the DFHDBODS copybook. The entries
in the DBO are verified against the loaded DL/I DMB and PSB directories and
marked as “absent” and “no action” if unmatched. Before giving control to the exit,
DFHDLBP lists, to the console operator, the PSB and DMB names that either
cannot be found or cannot be scheduled.

For any task in which DL/I VSE backout processing is stopped in this way, CICS
safeguards DL/I VSE data integrity thus:

1. CICS identifies the PSB that was in use by the task, and then “stops” all those
databases updated by in-flight tasks using that PSB. “Stopping” the databases
means flagging them so that future tasks cannot schedule PSBs that refer to
any of those databases.

2. CICS continues emergency restart processing.

For message backout, the MBO is described by the DFHMBODS copybook. The
entries in the MBO are verified against the loaded terminal control table and
marked as “absent” and “no action” if unmatched.

For backout of user entries in the system log, the transaction backout table (TBO),
described in the DFHTBODS copybook, is relevant to distinguish between those
records written by inflight-LUWs and those written by completed LUWs. Because
of the absence of no-action flags in the TBO, the records of each type are
presented at the XRCINPT user exit regardless of action taken at the XRCINIT exit.
The processing made possible by this exit is described on page 38.

Note: Records for completed tasks are copied to the restart data set, even though
backout processing ignores them. These records are presented to the
XRCINIT exit. Completed tasks are those for which recovery control
encounters records written with the high-order bit set on in the JTYPEID
operand of the EXEC CICS WRITE JOURNALNUM command.

 XRCINPT exit
This is the input exit. It is given control each time a record (other than a DL/I
record) is read from the restart data set. (The record is copied to the restart data
set from the system log.)

The default actions at this exit are:

User journaled records
No action.

Automatically journaled records
No action.

Logged records applying to files or terminals flagged for no action
No action.

Logged read-updates
Reapply the before-image of the record to the file.

 Chapter 11. User exits for transaction backout during emergency restart 93

Logged write-add
For DAM and VSAM-ESDS files, the XRCFCER file error exit (see
below) is given control. For VSAM KSDS/RRDS files, the default action
is to delete the record.

Logged temporary storage PUT(Q)-REPLACE
Reapply the before-image of the record to temporary storage.

Logged terminal messages
Save the records in the temporary storage resend slot or message
cache, or both as appropriate.

If you want to ignore the log record, return with return code UERCBYP. This frees
the record area immediately and reads a new record from the restart data set.
Take care that this action does not put data integrity at risk.

 XRCFCER exit
This is the file error exit. It is given control when an error condition is returned from
the file control program during the backout processing, or if an error is detected by
DFHFCBP itself. Error conditions include:

 � Input/output errors
� Logical errors caused by attempting inconsistent file operations.

The return codes are:

UERCNORM If the default return code, UERCNORM is set, the data set associated
with the file is flagged as “backout failed”. Its backout status is set as
failed in the base cluster block, the backout-failed record is logged, and
all files open against the base are closed. The data set is no longer
available to applications, and you may run a backout utility. For more
information about flagging backout errors, see Chapter 16, “Backout
failure” on page 129.

If you are not using a backout utility or some other means of coping with
backout failures, and data integrity is at risk, you should abend CICS
from your exit program, correct the source of the failure, and perform
another emergency restart to preserve data integrity.

UERCBYP Indicates that the error is ignored and backout continues. The data set
is not flagged as “backout failed”.

UERCRTRY Return code UERCRTRY has two meanings:

1. For the TBFEWA error type, the updated record is reapplied to the
data set

2. For other error types, the file control request is retried.

 XRCOPER exit
This is the open error exit, for program DFHFCBP only. It assists in file control
backout.

This exit gains control if an error occurs while opening a file. If the open error has
been caused by a backout failure, the exit gains control without reference to the
operator. If the open error is caused by anything else, a message is written to
CSMT and to the console operator with a “GO” or “CANCEL” option. In that case,
the exit only gains control if the “GO” option is selected, and backout failure control
preserves data integrity. If CANCEL IS SELECTED, CICS abends. The default

94 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

action is to continue normally, and will include backout failure processing code.
Upon return from the exit, the file backout table entry is marked “no action” by
DFHFCBP.

Coding transaction backout exits
You have access to all CICS services, except terminal control services, during exit
execution. However, the following restrictions should be considered:

� Transaction backout exits must be written in assembler code.

� Transaction backout exits must be quasi-reentrant. They may use the exit
programming interface (XPI) and issue EXEC CICS commands.

� If an exit acquires an area as a result of a file control request, it is the
responsibility of the exit to release that area.

� An exit must not attempt to make any file control requests to a file referring to a
VSAM data set with a string number of 1, unless no action is specified for that
file during the initialization exit.

� Task-chained storage acquired in an exit is released at the completion of
emergency restart processing. However, the exit should attempt to release the
storage as soon as its contents are no longer needed.

� No exit should reset either the absent or no-action indicators set by DFHFCBP.

� If an exit is not used, the default actions are taken.

� We strongly recommend that emergency restart exit code does not change any
recoverable resource. If you do try to use temporary storage, transient data,
file control, or DL/I, these resources may also be in a state of recovery and
therefore “not open for business”. Access to these services will, therefore, at
best cause serialization of the recovery tasks and, at worst, cause a deadlock.

 Chapter 11. User exits for transaction backout during emergency restart 95

96 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Chapter 12. Handling communication errors

This chapter describes communication design and provides guidance on aspects of
coding the following error programs:

� Node error program (NEP)
� Terminal error program (TEP).

The process is discussed in the following topics:

 � “Communication design”
� “Node error program (DFHZNEP)—VTAM logical units” on page 98
� “Terminal error program (DFHTEP)—non-VTAM terminals” on page 100

For information about how these programs work, and some design considerations
for them, see Chapter 6, “Communication error processing” on page 53.

For programming information to complement the information in this book, see the
CICS Customization Guide, which contains advice on writing these error programs.

 Communication design
Communication design is discussed under the following headings:

� “Communications-related programming considerations”
� “Journaling of messages” on page 98
� “Handling communication breaks” on page 98.

Communications-related programming considerations
To tell a user that requested updates have been successfully applied, the
application program usually sends a confirmation message after the updates are
complete.

Assuming (1) that the transaction issues only one EXEC CICS SEND (or SEND
MAP) command within an LUW, and (2) that the chosen command does not cause
an immediate (not deferred) transmission (such as the EXEC CICS CONVERSE
command), the output transmission is deferred until after syncpoint processing at
the end of the LUW. That is, the confirmation message is not sent until the
updates are committed. Using multiple SEND commands interleaved with file or
database updates in the same LUW is not recommended because, if failure occurs,
updates that the user believes to be complete may be backed out.

Notes:

1. A WAIT request associated with a SEND command destroys message integrity
by forcing immediate transmission of the message. If the task then fails,
updates to recoverable files are backed out, but the message cannot be
recalled.

2. The DEFRESP option of an EXEC CICS SEND command to a VTAM terminal
indicates that a definite response is required when the output operation has
been completed. For programming information about EXEC CICS commands,
see the CICS Application Programming Reference manual.

3. Specify maximum protection (for VTAM messages) by PROTECT(YES) on the
RDO TRANSACTION resource definition. Output messages are preserved in

 Copyright IBM Corp. 1982, 1999 97

the TIOA (see 2 above). Input and output messages (with SNA sequence
numbers) and the SNA responses are logged. This logging enables CICS to
create message caches and resend slots during emergency restart (see
“Specifying message-protection options for VTAM terminals” on page 81).

Journaling of messages
The application designer may wish to record input and output messages. Reasons
for doing so include:

� Creating an audit trail of messages sent and received could assist in problem
determination

� Logging messages for non-VTAM terminals to provide a similar function to that
provided by CICS for VTAM terminals

� Gathering data for performance or stress tests, or for message reprocessing.

Handling communication breaks
The main reasons why you might want to tailor the supplied NEP or TEP are listed
below. However, you are advised to use the default program for a while, getting
experience of communication error handling before deciding what error handling
best suits your needs.

� If CICS cannot deliver an output message that contains confidential information
(and so cannot be rerouted) and if the communication error is not transitory,
consider forcing the user off the system (so that a signon is required to
continue).

For VTAM terminals, code in the NEP could achieve this by setting flags that
cause CICS to close destination and terminate the session with the terminal.

� If a message cannot be delivered and it relates to critical updates, it may be
necessary to code the NEP or TEP to send a message to another terminal (for
example, to the master terminal operator).

� If a message is sent to a 3270 printer and no printer is available, NEP or TEP
code could reroute the message to another printer.

� If CICS attempts to send output (for example, an error message) to an
input-only terminal that is to be used by the application, NEP or TEP code
could reroute the message to another terminal.

� If too much error information is being printed, NEP or TEP code could reduce it
to manageable proportions.

Node error program (DFHZNEP)—VTAM logical units
The VTAM node error program (NEP) is invoked by the node abnormal condition
program (DFHZNAC) after it has prepared to issue error messages and has set
flags appropriate to the type of error that has occurred. Chapter 6,
“Communication error processing” on page 53 introduces the NEP, and “Handling
communication breaks” offers some design ideas.

The NEP can be:

� The default NEP
� The CICS sample NEP
� Your own NEP or series of NEP processors.

98 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

The NEP can change the flag settings or perform other actions. When control
returns to DFHZNAC, the flag settings control actions such as:

� Printing control blocks and areas associated with the error (for example, TIOA,
VTAM RPL, TCTTE)

� Terminating VTAM send or receive requests, and abending the associated task

� Closing the session with the terminal.

You can handle some errors in your application program by using the TERMERR
error condition. If you do handle errors in your own programs, you simplify
recovery and restart design, because you will be able to determine a course of
action (logging data or backing out, for example) in the application itself.

The default NEP
The default node error program is pregenerated. It performs no processing and
leaves the flags set by DFHZNAC unchanged.

Because VTAM and the network control program (NCP) attempt to recover from
error conditions, new CICS users are recommended to use the default NEP rather
than generating the CICS sample NEP or writing special-purpose NEP processors.
Until you understand the interactions of applications and network management, you
can change the node status by using CEMT and VTAM commands.

The CICS sample NEP
The CICS sample NEP can provide extended error handling for 3270 logical units
and interactive logical units. It can also provide a framework for your own NEPs.

You use the DFHSNEP macros to generate the sample NEP; there is programming
information about this in the CICS Customization Guide.

Your own NEP processors
The implementation of terminal error processing for VTAM-supported terminals is
such that any error is normally routed to the node abnormal condition program
(DFHZNAC). Depending on the type of error, DFHZNAC sets error and action flags
and hands over control to the appropriate node error program. This may be the
CICS sample NEP or your own version(s) of that program.

Interactions between the applications and VTAM can depend upon the
characteristics of the transaction and the installation. For this reason, CICS
provides the framework for you to write NEP processors to handle different network
error conditions.

CICS gives you the opportunity of providing, in table form, an interface module and
a separate error routine for each of a number of transaction classes. The function
of the interface module is to allow a particular transaction (or group of transactions):

� To have its own error processing procedure
� To determine which class of transaction is attached to the terminal
� To link from DFHZNAC to the appropriate node error program.

On completion of the action in the transaction class error routine, control returns to
DFHZNAC from the NEP, using the EXEC CICS RETURN command.

 Chapter 12. Handling communication errors 99

Terminal error program (DFHTEP)—non-VTAM terminals
The terminal error program (TEP) is invoked by the terminal abnormal condition
program (DFHTACP) when an abnormal condition associated with a non-VTAM
terminal or line occurs. Chapter 6, “Communication error processing” on page 53
introduces the TEP, and “Handling communication breaks” on page 98 offers some
design ideas.

The TEP can be:

� The CICS sample TEP
� Your own TEP.

The CICS sample TEP
4 The CICS sample TEP is supplied in the VSE/ESA sublibrary PRD1.BASE. The

sample program and table supply default processing for terminal errors, with a
maximum of 10 terminal error blocks (TEBs). If you use the sample, CICS can
handle no more than 10 terminal errors concurrently. If you want to define your
own error processing, use the DFHTEPM and DFHTEPT macros to generate an
error program and a table that includes your error routines.

You obtain the required program definition by installing the DFHSTAND group from
the CICS system definition (CSD) file.

Because the nature of communication errors is unpredictable, you are advised to
use the sample TEP at first to gain experience of network operations in your
environment. By studying CICS statistics about communication errors over a period
of time, you can then decide how or if to change the sample TEP.

Your own TEP code
The implementation of terminal error processing for non-VTAM terminals is such
that any error is normally routed to the terminal abnormal condition program
(DFHTACP). Depending on the type of error, DFHTACP issues messages, sets
error flags, places the terminal out of service, and hands over control to the
terminal error program, DFHTEP, a sample version of which is supplied by CICS
(DFHXTEP in source code form). After any necessary action by DFHTEP, control
returns to DFHTACP.

There are some situations in which CICS may attempt to send a message to an
input-only terminal; for example, an invalid transaction identification message, or a
message erroneously sent by an application program. You can provide a terminal
error program to reroute these messages to a system destination such as CSMT or
CSTL or other destinations by means of transient data or interval control facilities.

100 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Chapter 13. Recovery coding in application programs

This chapter describes how you can include recovery facilities in your application
design. It covers the following topics:

 � “Application design”
� “Program design” on page 103
� “Coping with transaction and system failures” on page 109
� “Enqueuing in application programs” on page 113.

Before you proceed, note the terms used in this section:

Application
In this context, application refers to a set of one or more application units of
work designed to fulfill a particular need (or needs) of the user organization.

Application unit of work
This refers to a set of actions within an application which the designer chooses
to regard as an entity. It is for the designer to decide how (if at all) to
subdivide an application into application units of work, and whether any
application unit of work should consist of just one or many CICS logical units of
work (LUWs). (A logical unit of work (LUW) is a CICS term that refers to a
sequence of processing where recoverable resources are protected against
double updating, and changes to recoverable resources are backed out if the
LUW is interrupted.)

Typically, but not exclusively, an application unit of work would correspond to a
CICS LUW.

An order-entry application might comprise all the actions needed to process one
order from a customer. It might be designed as a set of application units of work,
as follows: (1) check customer’s name and address and allocate an order number,
(2) record details of ordered items and update inventory files, and (3) print invoices
and shipping documents. According to the agreed recovery requirements
statement, noting details of ordered items and updating files might be implemented
as either one large application unit of work or many application units of work—one
for each item within the order.

 Application design
This section tells you how to design your applications so that they take advantage
of the CICS recovery facilities.

Splitting the application into application units of work
Specify how to subdivide the application into application units of work. Name each
application unit of work, and describe its function in terms that the user can
understand.

Consider also the inclusion of supplementary application units of work to provide
such functions as:

� Progress transaction, to check on progress through the application. Such a
function could be used after a transaction failure or after emergency restart, as
well as at any time during normal operation.

 Copyright IBM Corp. 1982, 1999 101

� Catch-up function, for entering data that the user may have been forced to
accumulate by other means during a system failure.

Files accessed by each transaction
For each application unit of work, specify the files and databases that can be
accessed.

Of the files and databases that can be accessed, specify those that are to be
updated (as distinct from those that are only to be read).

Updates performed by each application unit of work
For those files and databases updated by an application unit of work, specify how
to apply the updates; factors to consider here are the synchrony and the immediacy
of updates.

Synchrony of updates: Specify which (if any) updates must happen in step with
each other to ensure integrity of data. For example, in an order-entry application, it
may be necessary to ensure that a quantity subtracted from the inventory file is, at
the same time, added to the to-be-shipped file.

Immediacy of updates: Specify when newly entered data must or can be applied
to the files or databases. Possibilities include:

� The application unit of work updates the files and databases as soon as the
data is accepted from the user.

� The application unit of work accumulates updates for later processing, for
example:

– By a later application unit of work within the same application.

– By a batch application that runs overnight. (If you choose this option, make
sure that there is enough time for the batch work to complete the number
of updates.)

Use the above information when deciding on the internal design of application units
of work.

Relationships between application units of work
Specify what data needs to be passed from one application unit of work to another.

For example, in an order-entry application, one application unit of work may
accumulate order items. Another, separate, application unit of work may update
the inventory file. Clearly, there is a need here for the data accumulated by the
first application unit of work to be passed to the other application unit of work.

This information is needed when deciding what resources are needed by each
application unit of work (see “Mechanisms for passing data between transactions”
on page 105).

102 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

 SAA-compatible applications
The resource recovery element of the Systems Application Architecture (SAA)
common programming interface (CPI) provides an alternative to the standard CICS
application program interface (API) if you need to implement SAA-compatible
applications. The resource recovery facilities provided by the CICS implementation
of the SAA resource recovery interface are the same as those provided by CICS
API. So, if you are an existing CICS/VSE user, you need to change from CICS
API to SAA resource recovery commands only if your application needs to be
SAA-compatible.

To use the SAA resource recovery interface, you need to include SAA resource
recovery commands in your applications in place of EXEC CICS SYNCPOINT
commands. This book refers only to CICS API resource recovery commands; for
information about the SAA resource recovery interface, see the CPI Resource
Recovery Reference manual.

 Program design
This section tells you how to design your programs to use the CICS recovery
facilities effectively.

Dividing transactions into logical units of work
When deciding how to implement application units of work in terms of transactions,
logical units of work (LUWs), and programs, consider the following:

� In programs that support a dialog with the user, consider implementing each
LUW to include only a single terminal read and a single terminal write. This
can simplify the user restart procedures (see also “Processing dialogs with
users” on page 104).

Short LUWs are recommended for several reasons:

– Data resources are enqueued for a shorter time. This reduces the chance
of other tasks having to wait for the resource to be freed.

– Backout processing time (in dynamic transaction backout or emergency
restart) is shortened.

– The user has less to reenter when a transaction restarts after a failure.

In applications for which little or no rekeying is feasible (discussed under
“Question 9: How is the user to continue or restart entering data after a
failure?” on page 58), short LUWs are essential so that all entered data is
committed as soon as possible.

� Consider the recovery/restart implications when deciding whether to divide a
transaction into many LUWs. CICS functions such as dynamic transaction
backout, message recovery, and transaction restart work most efficiently for
transactions that have only one LUW. But there can be situations in which
multiple-LUW transactions are necessary, for example if a set of file or
database updates must be irrevocably committed in one LUW, but the
transaction is to continue with one or more LUWs for further processing.

The decision to have one LUW, or multiple LUWs, in a given transaction should
be made only after carefully considering the recovery and restart implications.

 Chapter 13. Recovery coding in application programs 103

� Where file or database updates must be kept in step, make sure that your
application does them in the same LUW (see “Updates performed by each
application unit of work” on page 102). This ensures that those updates will all
be committed together or—in the event of the LUW being interrupted—will back
out together to a consistent state.

Processing dialogs with users
An application may require several interactions (input and output) with the user.
The following basic techniques for program design are available in CICS for use in
such situations:

 � Conversational processing
 � Pseudoconversational processing.

 Conversational processing
With conversational processing, the transaction continues to run as a task across
all terminal interactions—including the time it takes for the user to read output and
enter input. While it runs, the task retains resources that may be needed by other
tasks. For example:

� The task occupies storage and enqueues database records for a considerable
period of time. Also, in the event of a failure and subsequent backout, all the
updates to files and databases made up to the moment of failure have to be
backed out (unless the transaction has been subdivided into LUWs).

� If the transaction uses DL/I VSE, and the number of scheduled PSBs reaches
the maximum allowed, tasks needing to schedule further PSBs have to wait.

Conversational processing is not generally favored, but may be required where
multiple file or database updates made by multiple interactions with the user must
be related to each other—that is, they must all be committed together, or all backed
out together, in order to maintain data integrity.

 Pseudoconversational processing
With pseudoconversational processing, successive terminal interactions with the
user are processed as separate tasks—usually consisting of one LUW each. (This
approach can result in a need to communicate between tasks or transactions (see
“Mechanisms for passing data between transactions” on page 105) and the
application programming can be a little more complex than for conversational
processing.)

However, at the end of each task, the updates are committed, and the resources
associated with the task are released for use by other tasks. For this reason, the
pseudoconversational technique is generally preferred to the conversational
technique.

When multiple terminal interactions with the user are related to each other, data for
updates should accumulate on a recoverable resource (see “CICS recoverable
resources for communication between transactions” on page 105), and then be
applied to the database in a single task (for example, in the last interaction of a
conversation). In the event of a failure, emergency restart or dynamic transaction
backout would need to back out only the updates made during that individual step;
the application would be responsible for restarting at the appropriate point in the
conversation. This may involve re-creating a screen format.

104 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Bear in mind, however, that other tasks may try to update the database between
the time when update information is accepted, and the time when it is applied to
the database. Design your application to ensure that no other application can
update the database at a time when it would corrupt your updating.

Mechanisms for passing data between transactions
In those applications where one transaction needs to access working data created
by a previous transaction, consider what mechanism should carry that data over.
The possible mechanisms are discussed under two broad headings:

� Main storage areas for communication between transactions
� CICS recoverable resources for communication between transactions.

See also “Implications of interval control START requests” on page 107.

Main storage areas for communication between transactions
Main storage areas that can be used to pass data between transactions include:

� The communication area (COMMAREA)
� The common work area (CWA)
� Temporary storage (main)
� The terminal control table user area (TCTUA).

CICS does not log changes to these areas (except as noted later in this section).
Therefore, in the event of an uncontrolled shutdown, data stored in any of these
areas is lost, which makes them unsuitable for applications needing to retain data
between transactions across an emergency restart.

The advantages of main storage areas are realized only where recovery is not
important, or when passing data between programs servicing the same task.

Note: Programs should be designed so that they do not rely on the presence or
absence of data in the COMMAREA to indicate whether or not control has
been passed to the program for the first time (for example, by testing for a
data length of zero). Consider the abend of a transaction where dynamic
transaction backout and automatic restart are specified. After the abend, a
COMMAREA could be passed to the next transaction from the terminal,
even though the new transaction is unrelated. Similar considerations apply
to the terminal control table user area (TCTUA).

CICS recoverable resources for communication between
transactions
Resources recoverable by backout for communication between transactions
include:

� Temporary storage (auxiliary) queues
� Transient data queues
� User files and DL/I databases.

CICS can return all these to their status at the beginning of an in-flight LUW in the
event of an abnormal task termination.

Temporary storage (auxiliary) queues: A temporary storage item can be used
for communication between transactions. (For this purpose, the temporary storage
item needs to be unique to the terminal ID. If the terminal becomes unavailable,

 Chapter 13. Recovery coding in application programs 105

the transaction sequence is interrupted until the terminal is again available.) The
temporary storage queue-name (QUEUE option on EXEC CICS TS commands)
can be read and reread, but the application program must delete it when it is no
longer needed for communication between a sequence of transactions.

Transient data queues: Transient data (intrapartition) is similar to temporary
storage (auxiliary) for communicating between transactions, the main difference
being that each record in the queue can be read only once. Transient data must
be specified as logically recoverable (in the destination control table) to achieve
backout to the start of any in-flight LUW.

User files and DL/I databases: You can dedicate files or database segments to
communicating data between transactions.

Transactions can record the completion of certain functions on the dedicated file or
database segment. A progress transaction (whose purpose is to tell the user what
updates have and have not been performed) can examine the dedicated file or
segment.

In the event of physical damage, user VSAM files, and DL/I databases can be
forward recovered.

Designing to avoid transaction deadlock
To avoid transaction deadlock (see “Possibility of transaction deadlock” on
page 119), consider the following techniques:

� Arrange for all transactions to access files in a sequence agreed in advance.
This could be a suitable subject for installation standards. Be extra careful if
you allow updates through multiple paths. More information is at the end of
this section.

� Enforce explicit installation enqueueing standards so that all applications:

– Enqueue by the same character string
– Use those strings in the same sequence.

� Always access records within a file in the same sequence. For example, where
multiple file or database records are updated, ensure that you access them in
ascending sequence.

Ways of doing this include the following:

– The terminal operator always enters data in the existing data set sequence.

This method requires special terminal operator action, which may not be
practical within the constraints of the application. (For example, orders may
be taken by telephone in random product number sequence.)

– The application program first sorts the input transaction contents so that the
sequence of data items matches the sequence on the data set.

This method requires additional application programming, but imposes no
external constraints on the terminal operator or the application.

– The application program issues an EXEC CICS SYNCPOINT command
after processing each data item entered in the transaction.

This method requires less additional programming than the second method.
However, issuing a synchronization point implies that previously processed
data items in the transaction are not to be backed out if a system or

106 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

transaction failure occurs before the entire transaction ends. This may not
be valid for the application, and raises the question as to which data items
in the transaction were processed and which were backed out by CICS. If
the entire transaction must be backed out, synchronization points should
not be issued, or only one data item should be entered per transaction.

Of the three methods, the second (sorting data items into an ascending
sequence by programming) is most widely accepted.

Note that, if you allow updates on a data set through the base and one or more
AIX paths, or through multiple AIX paths, sequencing multiple record updates
may not provide protection against transaction deadlock. You are not protected
because the different base key sequences will probably not all be in ascending
(or descending) order. If you do allow updates through multiple paths, and if
you need to perform multiple record updates, always use a single path or the
base. Such a procedure should be defined by installation standards.

Implications of interval control START requests
Interval control EXEC CICS START requests initiate another task—for example, to
perform updates accumulated by the START-issuing task; this allows the user to
continue accumulating data without waiting for the updates to be applied.

The PROTECT option on a EXEC CICS START request ensures that, if the task
issuing the START fails during the LUW, the new task will not be initiated, even
though its start time may have passed.

Consider also the possibility of a started task that fails. Unless you include abend
processing in the program, only the master terminal will know about the failure.
The abend processing should analyze the cause of failure as far as possible, and
restart the task if appropriate. Ensure that either the user or master terminal
operator can take appropriate action to repeat the updates. You can, for example,
allow the user to reinitiate the task.

An alternative solution is for the started transaction to issue an EXEC CICS START
command specifying its own TRANSID. Immediately before issuing the EXEC
CICS RETURN command, the transaction should cancel the START command.
The effect of this will be that, if a started task fails, it will automatically restart. (If
the interval specified in the START command is too short, the transaction could be
invoked again while the first invocation is still running. Ensure that the interval is
long enough to prevent this.)

Implications of automatic task initiation (transient data trigger level)
Specifying the TRANSID operand in the DCT for an intrapartition transient data
destination starts the named transaction when the trigger level is reached.
Designate such a destination as logically recoverable. This ensures that the
transient data records are committed before the task executes and uses those
records.

 Chapter 13. Recovery coding in application programs 107

Implications of presenting large amounts of data to the user
Ideally, a transaction that updates files or databases should defer confirmation (to
the user) until such updates are committed (by user syncpoint or end of task).

In cases where the application requires the reply to consist of a large amount of
data that cannot all be viewed at one time (such as data required for browsing),
several techniques are available, including:

� Terminal paging through BMS
� Using transient data queues.

Terminal paging through BMS
The application program (using the EXEC CICS SEND PAGE BMS commands)
builds pages of output data on a temporary storage queue for subsequent display
using operator page commands. (Such queues should, of course, be specified as
recoverable, as described in “Implementing recoverability of temporary storage” on
page 79.)

The application program should then send a committed output message to the user
to say that the task is complete, and that the output data is available in the form of
terminal pages.

If an uncontrolled termination occurs while the user is viewing the pages of data,
those pages are not lost (assuming that temporary storage for BMS is designated
as recoverable). After emergency restart, the user can resume terminal paging by
using the CSPG CICS-supplied transaction and terminal paging commands. (For
more information about CSPG, see the CICS-Supplied Transactions manual.)

Using transient data queues
When a number of tasks direct large amounts of data to a single terminal (for
example, a printer receiving multipage reports initiated by the users), it may be
necessary to queue the data (on disk) until the terminal is ready to receive it.

Such queuing can be done on a transient data queue associated with a terminal. A
special transaction, triggered when the terminal is available, can then format and
present the data.

For recovery and restart purposes:

� The transient data queue should be specified as logically recoverable by the
DESTRCV=LG operand of the DFHDCT TYPE=INTRA macro.

� If the transaction that presents the data fails, dynamic transaction backout is
called.

If the terminal that the transaction runs at is a printer, however, dynamic
transaction backout (and a restart of the transaction by whatever means) may
cause a partial duplication of output—a situation that might require special user
procedures. The best solution is to ensure that each LUW corresponds to a
printer page or form.

108 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Coping with transaction and system failures
To cope with transaction failures and uncontrolled shutdown of the system, a
number of facilities are available to help ensure that:

1. Files and databases remain in a coordinated and consistent state
2. Diagnostic and warning information is produced if a program fails
3. Communication between transactions is not affected by the failure

These facilities are discussed under the following headings:

 � Transaction failures
 � System failures

The actions taken by CICS are described under Chapter 5, “Abend processing” on
page 45 and “Processing of operating system abends and program checks” on
page 51.

 Transaction failures
When a transaction fails, the following CICS facilities can be invoked during and
after the abend process:

� CICS condition handling
� EXEC CICS HANDLE ABEND commands, and user exit code
� The EXEC CICS SYNCPOINT ROLLBACK command
� Dynamic transaction backout (DTB)
� Transaction restart after DTB
� The program error program (DFHPEP)

These facilities can be used individually or together. During the internal design
phase, specify which facilities to use and determine what additional (application or
systems) programming may be involved.

The RESP option on a command returns a condition ID that can then be tested.
Alternatively, an EXEC CICS HANDLE CONDITION command is used in the local
context of a transaction program to name a label where control is passed if certain
conditions occur.

For example, if file input and output errors occur (where the default action is merely
to abend the task), you may wish to inform the master terminal operator who may
decide to terminate CICS, especially if the file(s) are critical to the application.

Your installation may have standards relating to the use of RESP options or EXEC
CICS HANDLE CONDITION commands. Review these for each new application.

HANDLE ABEND commands
As described in “How CICS handles transaction abends” on page 45, a HANDLE
ABEND command can pass control to a routine within a transaction or a separately
compiled program when the task abends.

The kind of things you might do in abend-handling code include:

� Capturing diagnostic information (in addition to that provided by CICS) before
the task abends, and sending messages to the master terminal and end user.

 Chapter 13. Recovery coding in application programs 109

� Executing cleanup actions, such as canceling start requests (if the PROTECT
option has not been used).

� Writing journal records to reverse the effects of explicit journaling performed
before the abend.

See “Explicit journaling” on page 68.

Your installation may have standards relating to the use of EXEC CICS HANDLE
ABEND commands; review these for each new application.

EXEC CICS SYNCPOINT ROLLBACK command
Before using ROLLBACK, you should understand its potential effects on your
application.

ROLLBACK might be useful within your transaction if, for instance, the transaction
discovers logically inconsistent input after some database updates have been
initiated, but before they are committed by the syncpoint.

Before deciding to use it, however, consider the following:

� Rollback backs out updates to recoverable resources performed in the current
LUW only —not the task as a whole.

� The EXEC CICS SYNCPOINT command (with or without the ROLLBACK
option) causes a new LUW to start.

� If you have a transaction abend, and you do not want the transaction to
continue processing, issue an EXEC CICS ABEND and allow dynamic
transaction backout to recover the updates and ensure data integrity. Use
rollback only if you want the application to regain control after nullifying the
effects of a unit of work.

For programming information about the SYNCPOINT command, see the CICS
Application Programming Reference manual.

Dynamic transaction backout (DTB)
DTB occurs for all transactions and cannot be overridden by CEDA. (The actions
of DTB are described under “Dynamic transaction backout (DTB)” on page 47.)

Remember that:

� For transactions that access a recoverable resource, DTB helps to preserve
logical data integrity.

� Resources that are to be updated should be made recoverable.

� DTB takes place only after program level abend exits (if any) have attempted
cleanup or logical recovery.

If you want to obtain DTB support, see Chapter 10, “Dynamic transaction backout
(DTB)” on page 87.

110 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Transaction restart after DTB
For each transaction where DTB is specified, consider also specifying automatic
transaction restart. For example, for transactions that access DL/I databases (and
are subject to program isolation deadlock), automatic transaction restart is usually
specified. If you want to obtain support for automatic transaction restart, see
“Specifying automatic transaction restart” on page 87.

Even if transaction restart is specified, a task will restart automatically only under
certain default conditions (listed under “Abnormal termination of a task” on
page 47). These conditions can be changed, if absolutely necessary, by editing
the restart program DFHREST. Such editing must be done with care, as described
in “Editing the transaction restart program (DFHREST)” on page 89.

Use of the program error program (DFHPEP)
Decide whether or not to include your own functions, examples of which are given
in “Program error program (DFHPEP)” on page 121. (DFHPEP is invoked during
abnormal task termination as described at “Abnormal termination of a task” on
page 47.)

 System failures
Specify how an application is to be restarted after an emergency restart.

Depending on how far you want to automate the restart process, application and
system programming could achieve the following functions:

� User exits for transaction backout processing to handle:

– The logical deletion of records added to DAM or VSAM-ESDS files. (See
Chapter 11, “User exits for transaction backout during emergency restart”
on page 91 for further information).

– File errors during transaction backout.

– Journal records transferred from the system log to the restart data set
(DFHRSD) during emergency restart.

� A progress transaction to help the user discover what updates have and have
not been performed. For this purpose, application code can be written to
search existing files or databases for the latest record or segment of a
particular type.

Handling abends and program level abend exits
Chapter 5, “Abend processing” on page 45 describes how CICS processes abend
requests and executes program level abend exit code.

Information that is available to a program-level exit routine or program includes the
following:

 Chapter 13. Recovery coding in application programs 111

Notes:

1. If an abend occurs during the invocation of a CICS service, issuing a further
request for the same service may cause unpredictable results because the
reinitialization of pointers and work areas and the freeing of storage areas in
the exit routine may not have been completed.

2. Some, but not all, ASPx abends, which are task abends while in syncpoint
processing, do not cause entry to a user specified routine that handles abends.

In program-level abend exit code, you may wish to perform actions such as the
following (it is recommended, however, that you keep abend exit code to a
minimum):

� Record application-dependent information relating to that task in case it
terminates abnormally.

If you want to initiate a dump, do so in the exit code at the same program level
as the abend. If you initiate the dump at a program level higher than where the
abend occurred, you may lose valuable diagnostic information.

� Attempt local recovery, and then continue running the program.

� Send a message to the terminal operator if, for example, you believe that the
abend is due to bad input data.

For transactions that are to be dynamically backed out if an abend occurs, beware
of writing exit code that ends with an EXEC CICS RETURN command. This would
indicate to CICS that the transaction had ended normally and would therefore
prevent dynamic transaction backout (and automatic transaction restart where
applicable). (See the description of program level abend processing in “How CICS
handles transaction abends” on page 45.)

Exit programs can be coded in any supported language, but exit routines must be
in the same language as the program of which they are a part.

See the VSE/ESA Messages and Codes Volume 3 for the transaction abend codes
for abnormal terminations that CICS initiates, their meanings, and the
recommended actions.

EXEC CICS command Information provided

ADDRESS TWA The address of the TWA

ASSIGN ABCODE The current CICS abend code

ASSIGN ABPROGRAM The name of the failing program for the latest abend

ASSIGN ASRAINTRPT The PSW interrupt data for the latest ASRA or ASRB
abend

ASSIGN ASRAKEY The execution key at the time of the last ASRA, ASRB,
AICA, or AEYD abend, if any

ASSIGN ASRAPSW The PSW for the latest ASRA or ASRB abend

ASSIGN ASRAREGS The general-purpose registers for the latest ASRA or
ASRB abend

ASSIGN ASRASTG The type of storage being addressed at the time of the
last ASRA or AEYD abend, if any

ASSIGN ORGABCODE Original abend code in cases of repeated abends

112 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Programming information relating to the coding of program-level exit code (such as
addressability and use of registers) is in the CICS Application Programming
Reference manual. For background information, see the CICS Application
Programming Guide.

Processing the IOERR condition
Any program that attempts to process an IOERR condition for a recoverable
resource must not issue an EXEC CICS RETURN or SYNCPOINT command, but
must be terminated by issuing an EXEC CICS ABEND command. A RETURN or
SYNCPOINT command would delete the dynamic log records, and commit changes
to recoverable resources.

START TRANSID commands
In a transaction that uses the START TRANSID command to start other
transactions, observe the following points to maintain logical data integrity:

1. Always use the PROTECT option of the START TRANSID command. This
ensures that if the start-issuing task is backed out, the new task does not start.

2. Designate the temporary storage DATAID used for passing data to the started
transaction as recoverable (see “Implementing recoverability of temporary
storage” on page 79).

This ensures that data passing to another task does not inadvertently stay on
the temporary storage queue in the event of the start-issuing task being backed
out.

� If REQID is not used, the default DATAID is ‘DFRxxx’.

� If REQID is used, that REQID is the DATAID designated as recoverable in
the TST.

Use of a recoverable DATAID also ensures that, if a system failure occurs after the
start-issuing task has completed its syncpoint, the transaction starts as soon as
CICS has emergency started when the expiry time is reached and the terminal
requested by TERMID (if specified) is available. Note that a DATAID is relevant
only if data is being passed to the started transaction. Data is passed if FROM or
FMH or RTRANSID or RTERMID or QUEUE is specified on the START command.

Enqueuing in application programs
This section describes enqueuing functions implicitly performed by CICS when
transactions change:

 � Recoverable files
� Recoverable transient data destinations
� Recoverable temporary storage destinations on auxiliary storage

 � DL/I databases.

(The explicit enqueuing functions are described in “Explicit enqueuing (by the
application programmer)” on page 118.)

Note: Enqueuing (implicit or explicit) on data resources protects data integrity in
the event of a failure, but can affect performance if several tasks attempt to
operate on the same data resource at the same time. The effect of
enqueuing on performance, however, is minimized by implementing

 Chapter 13. Recovery coding in application programs 113

applications with short LUWs, as discussed under “Dividing transactions into
logical units of work” on page 103.

Implicit enqueuing on files
This section first describes the implicit enqueuing (exclusive control) provided while
nonrecoverable files are being updated. It then describes the extended enqueuing
actions when recoverable files are being updated.

 Nonrecoverable files
3 For DAM files that are nonrecoverable (that is, LOG=NO is not specified on the
3 DFHFCT macro entry), CICS itself provides no exclusive control over records that

are being updated. You may specify the use of DAM exclusive control, in which
3 case CICS will specify exclusive control on an EXEC CICS READ UPDATE
3 request, and release control either on the associated EXEC CICS REWRITE or
5 UNLOCK command, or at syncpoint.

For nonrecoverable VSAM files, VSAM locks the control interval during an update.

Figure 4 illustrates the extent of exclusive control for nonrecoverable files. Two
tasks are shown updating the same record or control interval. Task A is given

5 exclusive control of the record or control interval between the READ UPDATE and
5 REWRITE commands. During this period, task B waits.

Figure 5 illustrates two tasks updating the same record or control interval. Task A
is given exclusive control of the record until the update is committed (at the end of
the LUW). During this period, task B waits.

READ REWRITE
UPDATE

==Exclusive control==
during update

Task A

SOT SP
READ REWRITE
UPDATE

===Wait=== =Exclusive control=
during update

Task B

SOT SP
Abbreviations:
SOT: Start of task
SP: Syncpoint

Figure 4. Exclusive control during updates to nonrecoverable files

114 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

READ REWRITE
UPDATE

Exclusive control extends to end of LUW
===

Task A

SOT
REWRITE

READ
UPDATE

Exclusive
===============Wait============== ===control until===

end of LUW
Task B

SOT SP SP
Abbreviations:
SOT: Start of task
SP: Syncpoint

Figure 5. Enqueuing (exclusive control) during updates to recoverable files

 Recoverable files
For VSAM or DAM files designated as recoverable, CICS extends the duration of
its enqueuing action as shown in Figure 5. For VSAM files, the extended
enqueuing is on the updated record only, not the whole control interval.

The extended period of exclusive control is needed to avoid an update committed
by one task being backed out by another task. Consider what could happen if the
nonextended exclusive control shown in Figure 4 on page 114 was used when
updating a recoverable file. If task A abends just after task B has reached
syncpoint and has thus committed its changes, the subsequent backout of task A
returns the file to the state it was in at the beginning of task A, and task B’s
committed update is lost.

To avoid this problem, whenever a transaction issues a command that changes a
recoverable file (or reads from a recoverable file prior to update), CICS
automatically enqueues the task to the updated record until the change is
committed (that is, until the end of the LUW). Thus in the above example, Task B
would not be able to access the record until Task A had committed its change at
the end of the LUW. Hence, it becomes impossible for Task B’s update to be lost
by a backout of Task A.

The file control EXEC CICS commands that invoke automatic enqueuing in this way
are:

� READ (for UPDATE)
 � WRITE
 � DELETE

 Chapter 13. Recovery coding in application programs 115

Notes:

1. Enqueuing as described above can lead to transaction deadlock (see
“Possibility of transaction deadlock” on page 119).

2. The spheres of CICS exclusive control are the physical block for DAM data sets
and the VSAM record for VSAM data sets.

If a transaction requests a record for update that is within the sphere of control
of another record being updated, the second task is queued until the first
update is complete.

3. VSAM exclusive control. The CICS enqueuing action on recoverable files,
which always lasts until the end of the LUW, does not, of course, affect
VSAM’s exclusive control actions. When a transaction issues an EXEC CICS
READ UPDATE command (for any file, recoverable or not), VSAM maintains its
exclusive control of the control interval containing the record until an EXEC
CICS REWRITE (or UNLOCK or DELETE or SYNCPOINT) command is issued.
Two READ UPDATE commands for records in the same control interval without
an intervening REWRITE command will raise the INVREQ condition.

4. For recoverable files, do not use unique key alternate indexes (AIXs) to allocate
unique resources (represented by the alternate key). If you do, backout may
fail in the following set of circumstances:

a. A task deletes or updates a record (through the base or another AIX) and
the AIX key is changed.

b. Before the end of the first task’s LUW, a second task inserts a new record
with the original AIX key, or changes an existing AIX key to that of the
original one.

c. The first task fails and backout is attempted.

The backout fails because a duplicate key is detected in the AIX. There is no
locking on the AIX key to prevent the second task taking it before the end of
the first task’s LUW. If there is an application requirement for this sort of
operation, you should use the CICS enqueue mechanism to reserve the key
until the end of the LUW.

5. To ensure that the data being read is up to date, the application program
should issue a READ UPDATE command (rather than a simple READ), thus
enqueuing on the data until the end of the LUW.

Implicit enqueuing on logically recoverable transient data destinations
CICS provides an enqueuing protection facility for logically recoverable (as distinct
from physically recoverable) transient data destinations in a similar way to that for
recoverable files. There is one minor difference, however — CICS regards each
recoverable destination as two separate recoverable resources—one for writing and
one for reading.

Transient data control commands that invoke implicit enqueuing are:

� EXEC CICS WRITEQ TD
� EXEC CICS READQ TD
� EXEC CICS DELETEQ TD

Thus, for example:

116 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

� If a task issues an EXEC CICS WRITEQ TD command to a particular
destination, the task is enqueued upon that write destination until the end of the
task (or LUW). While the task is thus enqueued:

– Another task attempting to write to the same destination is suspended.

– Another task attempting to read from the same destination is allowed to
read only committed data (not data being written in a currently incomplete
LUW).

� If a task issues an EXEC CICS READQ TD command to a particular
destination, the task is enqueued upon that read destination until the end of
task (or LUW). While the task is thus enqueued:

– Another task attempting to read from the same destination is suspended.

– Another task attempting to write to the same destination is allowed to do so
and will itself enqueue on that write destination until end of task (or LUW).

Implicit enqueuing on recoverable temporary storage queues
CICS provides the enqueuing protection facility for recoverable temporary storage
queues in a similar way to that for recoverable files on VSAM data sets. There is
one minor difference, however: CICS enqueuing is not invoked for EXEC CICS
READQ TS commands, thereby making it possible for one task to read a temporary
storage queue record while another is updating the same record. To avoid this,
use explicit enqueuing on temporary storage queues where concurrently executing
tasks can read and change queues with the same temporary storage identifier.
(See “Explicit enqueuing (by the application programmer)” on page 118.)

Temporary storage control commands that invoke implicit enqueuing are:

� EXEC CICS WRITEQ TS
� EXEC CICS DELETEQ TS

Implicit enqueuing on DL/I VSE databases
There are two distinct cases—program isolation scheduling and intent scheduling.
Each is discussed separately in the sections that follow.

Program isolation scheduling
When a task accesses a segment by a DL/I VSE database call, it implicitly
enqueues on all segments in the same database record as the accessed segment.
The duration of enqueuing depends on the access method being used:

� Direct methods (HDAM, HIDAM) —If an ISRT, DLET, or REPL call is issued
against a segment, that segment, with all its child segments (and, for a DLET
call, its parent segments as well), remains enqueued upon until a DL/I TERM
call is issued. The task dequeues from all other segments in the database
record by accessing a segment in a different database record.

� Sequential methods (HSAM, HISAM, SHISAM) —If the task issues an ISRT,
DLET, or REPL call against any segment, the entire database record remains
enqueued upon until a DL/I TERM call is issued. If no ISRT, DLET, or REPL
call is issued, the task dequeues from the database record by accessing a
segment in a different database record.

The foregoing rules for program isolation scheduling can be overridden using the
‘Q’ command code in a segment search argument (this command extends

 Chapter 13. Recovery coding in application programs 117

enqueuing to the issue of a DL/I TERM call), or by using PROCOPT=EXCLUSIVE
in the PCB (this macro gives exclusive control of specified segment types
throughout the period that the task has scheduled the PSB).

 Intent scheduling
When a task issues a DL/I VSE scheduling call, it is interpreted as intending to
update all the segments it is possible to update under the specified PSB.
Therefore, until a DL/I VSE TERM call is issued, no other task is allowed to
schedule a PSB that would permit updating of any of the segments scheduled for
update by the first task.

Application programming note
This section describes the DL/I VSE TERM call, but you are advised to use EXEC
CICS SYNCPOINT or EXEC CICS RETURN commands instead of DL/I VSE TERM
calls. These make the program logic clearer.

A DL/I VSE TERM call commits DL/I VSE updates and ends implicit enqueuing as
described above. It also causes an implicit SYNCPOINT command to be issued.
This terminates the LUW, and thus commits all non-DL/I VSE updates as well. An
explicit EXEC CICS SYNCPOINT command (or EXEC CICS RETURN command in
the last or only LUW of a task) would have exactly the same effect for both DL/I
VSE and non-DL/I VSE resources.

The application programmer must be aware of the implications of issuing a DL/I
VSE TERM call. It signals end-of-LUW to CICS. This means that not only all DL/I
VSE updates but all related updates to non-DL/I VSE resources are regarded as
logically complete. Therefore, they are not eligible for backout if CICS or the
transaction should subsequently abend.

Even if the programmer recognizes this and writes a correct program, the possibility
remains that the logic may not be understood by a different programmer
maintaining the code.

Explicit enqueuing (by the application programmer)
CICS provides the following explicit enqueuing commands:

� EXEC CICS ENQ RESOURCE
� EXEC CICS DEQ RESOURCE

These commands can be useful in certain applications when, for example, you
want to:

� Protect data written into the common work area (CWA), which is not
automatically protected by CICS

� Prevent transaction deadlock by enqueuing on records that might be updated
by more than one task concurrently

� Protect a temporary storage queue from being read and updated concurrently.

To be effective, however, all transactions must adhere to the same convention. A
transaction that accesses the CWA without using the agreed ENQ and DEQ
commands is not suspended, and protection is violated.

After a task has issued an EXEC CICS ENQ RESOURCE(data-area) command,
any other task that issues an ENQ RESOURCE command with the same data-area

118 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

parameter is suspended until the task issues a matching EXEC CICS DEQ
RESOURCE(data-area) command, or until the LUW ends.

Note: The concurrent use of enqueues against more than one resource introduces
the possibility of transaction deadlock.

Possibility of transaction deadlock
The enqueuing and program isolation scheduling mechanisms, which protect
resources against double updating, can cause a situation known as transaction
deadlock. 5

As shown in Figure 6, transaction deadlock means that two (or more) tasks cannot
proceed because each task is waiting for the release of a resource that is
enqueued upon by the other. (The enqueuing or DL/I program isolation scheduling
action protects resources until the next synchronization point is reached.)

TASK A TASK B
. .
. .
Update resource 1 .
. Update resource 2
. .
. .
Update resource 2 .
. (Wait) Update resource 1
. (Wait) .
. .
. .
Syncpoint Syncpoint

Figure 6. Transaction deadlock (generalized)

If transaction deadlock occurs, one task abends and the other proceeds. Which
deadlocked task abends depends primarily on the resource types involved in the
deadlock:

� If both resources are CICS resources (that is, non-DL/I), the task whose
DTIMOUT period elapses first is abended. (It is possible for both tasks to time
out simultaneously.) If neither task has a DTIMOUT period specified, they both
remain suspended indefinitely unless the master terminal operator cancels one
of them.

� If one resource is a DL/I database and the other is a CICS resource, the task
using the CICS resource abends after its DTIMOUT period has elapsed. If
DTIMOUT is not specified for the task using the CICS resource, both tasks
remain suspended indefinitely unless one is canceled by the master terminal
operator.

� If the resources are both DL/I databases (and program isolation scheduling is
being used), DL/I itself detects the potential deadlock as a result of the tasks
issuing their scheduling calls, and abends the task that has less update activity.

The abended task may then be backed out by dynamic transaction backout, as
described in “Dynamic transaction backout (DTB)” on page 47. (Under certain

5 Transaction deadlock is sometimes known as enqueue deadlock , enqueue interlock , or deadly embrace .

 Chapter 13. Recovery coding in application programs 119

conditions, the transaction can be automatically restarted, as described under
“Abnormal termination of a task” on page 47. Alternatively, the terminal operator
may restart the abended transaction.)

For more information, see “Designing to avoid transaction deadlock” on page 106.

120 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Chapter 14. Using a program error program (DFHPEP)

This chapter describes aspects of coding the program error program (DFHPEP).
The way this program works, and some design considerations for it, are described
in “Actions taken at abnormal task termination” on page 50.

This chapter contains Product-sensitive Programming Interface information. For
programming information to complement the information in this book, see the CICS
Customization Guide, which contains detailed advice on writing these error
programs.

Program error program (DFHPEP)
As described on page 50, the program error program (PEP) gains control after all
program-level ABEND exit code has executed and after dynamic transaction
backout has been performed. The PEP can be:

 � Omitted entirely
� The CICS-supplied PEP
� Your own PEP created by editing the CICS-supplied version.

Omitting the PEP
The CICS-supplied PEP is included in the pregenerated system. The CICS
abnormal condition program, however, will not link to it if no program resource
definition for DFHPEP is installed. If CICS cannot link to DFHPEP (for this or any
other reason), it sends a DFHAC2259 message to CSMT.

The CICS-supplied PEP
If the PEP is included in your system, use the CEDA INSTALL command to install
the CICS-supplied group, DFHMISC, which contains the PEP.

The CICS-supplied PEP performs no processing. The only effect of including
DFHPEP is to suppress the DFHAC2259 message when you link to the PEP.

Your own PEP
During the early phases of operation with CICS, the master terminal commands can
put abending transactions into disabled status while the cause of the abend is
being investigated and corrected.

Where a program needs to handle this process, or where associated programs or
transactions should also be disabled, you may decide to incorporate your own PEP.
This will depend on the importance of the applications being served.

The program error program is a command-level program that can be written in any
of the languages that CICS supports. The CICS abnormal condition program
passes, to the PEP, a COMMAREA containing information about the abend. Add
code to take actions appropriate to your installation.

 Copyright IBM Corp. 1982, 1999 121

Functions you might consider including in a program error program include:

� Disabling a particular transaction identifier (to prevent other users using it)
pending diagnostic and corrective actions. This would avoid the need for a
master terminal operator command and the risk of several more abends in
quick succession.

� Disabling other transactions or programs that depend on the satisfactory
operation of a particular program.

� Keeping a count of errors by facility type (transaction or file).

� Abending CICS after a transaction abend. Conditions for this might be:

– If the abended transaction was working with a critical file.

– If the abended transaction was critical to system operation.

– If the abend was such that continued use of the application would be
pointless, or could endanger data integrity.

– If the error count for a particular facility type (transaction or file) reached a
predetermined level. (An alternative to abending CICS in this context
would be to disable the facility, which would keep the system running
longer.)

Note: CEMT SET TRDUMPCODE or EXEC CICS SET TRANDUMPCODE is a
simpler way of doing this.

If a task terminates abnormally (perhaps because of a program check or an
ABEND command), code in a program-level exit or the PEP can flag the
appropriate transaction code entry in the installed transaction definition as disabled.
CICS will reject any further attempt by terminals or programs to use that transaction
code until it is enabled again. Consequently, the effect of program checks can be
minimized, so that every use of the offending transaction code does not result in a
program check. Only the first program check is processed. If the PEP indicates
that the installed transaction definition is to be disabled, CICS will not accept
subsequent uses of that transaction code.

Following correction of the error, the master terminal operator can enable the
relevant installed transaction definition for the transaction code to allow terminals to
use it. The master terminal operator can also disable transaction codes when
transactions are not to be accepted for application-dependent reasons, and can
enable them again later. The CICS-Supplied Transactions manual tells you more
about the master terminal operator functions.

If logic within DFHPEP determines that it is unsafe to continue CICS execution, you
can force a CICS abend by issuing an operating system ABEND macro. If
DFHPEP abends (transaction abend), CICS produces message DFHAC2263.

122 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Chapter 15. Using message caches after emergency restart

This chapter describes how an inquiry program that is run after an emergency
restart can use the contents of message caches. A message cache is a temporary
storage queue with a DATAID of DFHMXXXX, where XXXX is the identification of
the logical unit. The inquiry program should be able to help a terminal operator
determine whether the last piece of work before system failure completed, or if it
backed out during emergency restart.

Note: The information in this chapter relates only to transactions that work with
VTAM terminals and have the PROTECT option specified. See “Specifying
message-protection options for VTAM terminals” on page 81 for details of
this option.

Using message caches after emergency restart is discussed under the following
headings:

� “Logic of inquiry program”
� “Interpreting the contents of a message cache” on page 124
� “Message cache records” on page 127

Logic of inquiry program
The inquiry program should inspect the message cache6 for the inquiring terminal
by issuing a READQ TS command, using the queue name DFHMXXXX, where
XXXX is the 4-character identifier of the inquiring terminal. When an INQUIRY
program is run:

� If the terminal had no in-flight task at the time of uncontrolled shutdown, a
QIDERR error condition is returned to the program. (For programming
information, see the CICS Application Programming Reference manual.)

� If the terminal does have an in-flight task, one or more temporary storage
records will be returned to the program from the message cache.

The contents of the temporary storage records from the message cache will
depend on when the uncontrolled shutdown occurred in relation to message logging
(see “Interpreting the contents of a message cache” on page 124).

If a record contains an input message, the inquiry program should present that
input message and associated information to the terminal operator. The terminal
operator can then decide whether to request CICS to reprocess the transaction.

The inquiry program should allow a request for reprocessing to proceed only if the
2 terminal operator has the necessary authority (based on CICS transaction attach
2 security or operator class of the signed-on user). Processing could then take place

as if the transaction request had just been entered.

6 During emergency restart, logged messages are copied from the restart data set into message caches, as described on page 38.

 Copyright IBM Corp. 1982, 1999 123

Notes:

1. To identify the type of message in a message cache, see “Message cache
records” on page 127.

2. Assuming that the message cache temporary storage queues are recoverable,
there may be messages for more than one task in the cache. It is
recommended that you delete a message cache immediately after use — you
can do this with an EXEC CICS DELETEQ TS command in the inquiry
program.

If there are records for more than one task in the message cache, the inquiry
program should check the JCSPTASK field (DSECT DFHJCRDS), which
contains the task number. (For programming information about journal fields,
see the CICS Customization Guide.)

3. If the input message is associated with a VTAM programmable controller, the
inquiry program can be automatically initiated by the controller after message
resynchronization and recovery have completed. The in-flight input message
(transmitted back to the controller by the inquiry program) may be presented
automatically to the relevant terminal operator for a decision whether or not to
reprocess. Alternatively, if application and security considerations permit, the
controller may automatically make the decision whether or not to reprocess,
and notify the inquiry program.

2 4. For further information about operator classes and CICS transaction attach
2 security, see the CICS Security Guide.

Interpreting the contents of a message cache
This section describes the CICS message protection mechanism to help you
interpret the contents of a message cache after emergency restart. For example:

� Table 7 on page 125 shows the main actions performed by CICS during the
execution of a single-LUW message-protected transaction. After an output
message has been logged in the syncpoint records, the output message is said
to be committed—that is, CICS preserves the message in case the system
fails. A committed output message is said to be in doubt until a positive
response to the message has been received and logged.

� Table 8 on page 126 shows the result of emergency restart processing (in
terms of what can appear in a message cache) following an uncontrolled
shutdown at different points during the task’s execution. The step numbers in
the first column of this figure refer to the step numbers in the previous figure.

These figures show that a message cache (if there is one) can contain either an
input message or an in-doubt output message. These, and other combinations of
records that can appear in a message cache after emergency restart are listed
below—together with a possible interpretation of each one. (These interpretations,
plus the message texts, should enable you to design programs that resume
processing and communication.)

Case 1: A single initial input message: This indicates that:

� The task that received the input message was in-flight at the time of the
uncontrolled shutdown. Therefore, the interrupted LUW backed out during the
emergency restart processing.

124 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

� The task that received the input message:

– Was executing its first LUW; or

– Had completed a prior LUW from which there was no committed output
message; this is typical of input-only tasks with multiple LUWs.

Resynchronization (see “Resynchronization and re-presentation of VTAM
messages” on page 41) uses the sequence numbers established before the input
message was received. These are the sequence numbers pertaining after the
successful completion of a prior LUW in this task or of an earlier
message-protected task working with the same logical unit.

Table 7. CICS actions during execution of a single-LUW message-protected task

Application Action CICS Action

 Step 1: Receive first input message

 Step 2: Initiate task
Start
 .
 . Step 3: Log first input message (on system log)
Read input message
 .
 .
 .
Write output message Step 4: Defer transmission of output message until syncpoint records

are written on system log
 .
 .
 .
 .
End Step 5: Process CICS-supplied syncpoint

 Step 6: Put syncpoint records (including text on output message) on

system log. (Output message is now committed but in doubt.)

 Step 7: Transmit output message with definite response requested

 Step 8: Receive definite response to output message

 Step 9: Record definite response on system log. (Committed output

message is now not in doubt.)

 Chapter 15. Using message caches after emergency restart 125

Table 8. Contents of message cache after emergency restart for a single-LUW message-protected task

Time of uncontrolled shutdown CICS emergency restart action on message cache

Before first input message is logged (before step 2 is
complete).

No action

After first input message is logged and before
syncpoint records are logged (before step 6 is
complete).

CICS puts first input message into the message
cache. See case 1 on page 124.

After syncpoint records are logged and before definite
response to output message is logged (before step 9
is complete).

CICS puts output message into the message cache
with in-doubt indicator on in the system prefix. See
case 2.

 After definite response to output message is logged
(after step 9 is complete).

No action

Case 2: A single committed, but in-doubt, output message: This indicates
that:

1. A positive response to the output message has not been logged. This means
that, at the time of the uncontrolled termination, the output message may or
may not have been delivered.

2. The LUW that issued the message has completed, and is therefore not subject
to backout.

� If the LUW was the last (or only) LUW of the task, the task is known to be
complete.

� If the LUW was not the last LUW of the task, the task will not have started
a new LUW. (It will have been waiting for the positive response to the
output message before proceeding.)

Resynchronization uses the sequence numbers established when the output
message was originally sent. This message is also copied to the resend slot, and
CICS uses it if, after resynchronization, the VTAM terminal has not received the
message.

Case 3: An initial input message followed by a committed not-in-doubt
output message: This indicates that:

1. The task that received the input message was in-flight at the time of the
uncontrolled shutdown. Therefore, the interrupted LUW backed out during the
emergency restart processing.

2. The task had completed a prior LUW that issued an output message whose
delivery had been confirmed.

Resynchronization uses the sequence numbers established at the time when the
response to the committed output message was logged.

Case 4: A single committed not-in-doubt output message: This indicates that:

1. A positive response to the output message has been logged. Delivery of the
output message is thus confirmed.

2. The LUW that issued the message has completed, and is therefore not subject
to backout.

126 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

3. The task that issued the message has not completed and might have started a
new LUW. Further:

� The work (if any) of this new LUW will have been backed out.

� The new LUW has not requested any terminal input; this is typical of
output-only tasks with multiple LUWs.

Resynchronization uses the sequence numbers established when the positive
response to the committed output message was logged.

Message cache records
Records copied to the message cache have the same layout as journal records.

Input and output messages in a message cache have different values in the 2-byte
JCRSTRID field:

� For input messages , the value of JCRSTRID is X'C110' or X'C510'.

� For output messages , the value of JCRSTRID is X'F110' or X'F210'.

If an output message in the message cache is in doubt, the JCSPMIDT flag is
set on.

The names JCRSTRID and JCSPMIDT refer to the DSECT called DFHJCRDS.

For programming information about the layout of journal records, see the CICS
Customization Guide.

 Chapter 15. Using message caches after emergency restart 127

128 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

 Chapter 16. Backout failure

This chapter describes the actions that occur after a backout failure.

CICS handles backout failure in the same way, whether the failure occurs during
DTB or during backout processing in emergency restart.

When the backing out of uncommitted changes to a data set fails, CICS:

� Sets the backout status field in the CICS base cluster block (one for each base
cluster) to “failed”.

� Stores a backout-failed log record on the system log, to enable a backout utility
to start and stop its scan of the log in the correct places, and to locate the
relevant before-images.

� Sets a backout-failed status record in the global catalog.

In these ways, CICS can maintain the backout-failed status across all types of start,
including a cold start. CICS issues a backout-failing log record (BOFLGREC) the
first time a backout failure is detected. This BOFLGREC indicates that this is the
first combination of file and task to detect a backout failure. CICS issues
subsequent BOFLGRECs if the same task suffers a backout failure via a different
file or if a different task suffers a backout failure. There is therefore a BOFLGREC
for each combination of file and task that has failed backout. A BOFLGREC is also
issued when all files relating to the failure have been closed.

In addition, to preserve data integrity, CICS closes all files that are open against the
base cluster, and protects files in the following ways:

� If a transaction using a file referring to the data set attempts an update after the
base cluster has been flagged as backout failed, CICS abends the transaction.

� For transactions trying to become new users of a file referring to the data set,
CICS returns a NOTOPEN response code.

� If an attempt is made using CEMT to explicitly open a file referring to the data
set, CICS returns a backout-failed response. For EXEC CICS SET FILE OPEN
requests, it returns an INVREQ response with a RESP2 value of 15.

When CICS informs the operator of a backout failure, the operator should check,
using CEMT INQUIRE DSNAME FAILED, that no other backout-failure processing
is in progress. When all current backout failure processing is complete, the
operator must switch the system log and archive the now-inactive log data set, so
that it may be used by a backout utility. (Automatic archiving makes archiving
easier and less prone to error—see “Preserving the system log (automatic
archiving)” on page 65.)

A backout utility may now be run, using the archived log (or logs), the failed data
set and user-provided JCL. The operator can find out the data set names to insert
in the JCL by using the CEMT INQUIRE DSNAME FAILED command. It is
essential to keep good records of the archived log data sets, so that there is no
delay in creating the JCL and running a backout utility.

 Copyright IBM Corp. 1982, 1999 129

After the backout utility has been run, the operator must reset the status of the data
set by using the CEMT SET DSNAME NORMAL transaction (see the
CICS-Supplied Transactions manual).

130 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

 Chapter 17. Operations

This chapter describes operations activities related to recovery and restart.

Time required for forward recovery and emergency restart
Estimate the time likely to be needed for forward recovery of the largest data set
and an emergency restart. Compare this period with the allowed amount of
downtime discussed under “Question 8: How long can the business tolerate being
unable to use the application in the event of a failure?” on page 58.

By ensuring that the user has standby procedures (see “Question 9: How is the
user to continue or restart entering data after a failure?” on page 58), it may be
possible to negotiate a longer downtime for exceptional conditions.

Daily and weekly schedules
Specify the planned timetable of systems use (online and offline operations).

If the system is active for almost 24 hours a day, allow sufficient time for offline
housekeeping operations needed for recovery, such as taking backup copies,
checking their usability, extracting forward recovery information from CICS journals
and logs, and merging such information with similar information from other sources.

If the system is active for 24 hours per day, consider the need to take data sets
offline to make backup copies, or else schedule housekeeping operations for a day
when the system is not in use.

Check the above timetable again when more detailed design work has been done.

 Offline recovery
VSAM data sets and DL/I VSE databases may be taken offline for recovery
activities while CICS continues to run. In this way, unaffected CICS users can
continue to work normally. For information about the VSAM recovery utilities, see
Chapter 16, “Backout failure” on page 129 and, for DL/I dynamic allocation
support, see Chapter 19, “Recovery in a DL/I VSE environment” on page 139.
Operators should be well-practiced in offline procedures so that recovery is not
delayed.

 Copyright IBM Corp. 1982, 1999 131

132 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Chapter 18. Report controller recovery

The report controller is a separately orderable feature of CICS Transaction Server
for VSE/ESA. Before you read this chapter about recovery, you should have read
the information about the report controller in the CICS Report Controller Planning
Guide.

The recovery processing described in this chapter is provided by CICS. You make
choices concerning recovery in the EXEC CICS spool commands, and by operator
actions, for example, switching from a failed printer.

If you use the interface to POWER, without the report controller, you have logical
recovery only (as explained below). However, with the report controller, you have
the ability to specify further recovery options, as described in this chapter.

A terminal error causes a link to the user-replaceable node error program (NEP) or
terminal error program (TEP) running for that terminal. If the transaction CEPW is
running on that terminal, a link is then made to the report controller NEP or TEP.
This report controller code attempts to prevent CEPW from being abended, and the
terminal being put out of service. The report controller code is not replaceable.

Failures may occur during report creation or during report printing. Most of these
failures are detected, and you may be able to recover from them. In this chapter,
first the types of failure are considered, and then, on page 134, a description is
given of how recovery from those failures is achieved.

Types of report controller failure
The main areas of concern are:

� CICS printer failures
� CICS transaction abends and CICS abends

 � POWER abends
� VSE system abends.

CICS printer failures
CICS printers may be initiated from POWER or CICS, and in both cases printer
errors are handled by CICS.

Printing failures may be due to such things as:

 � Printer faults
� Access method failures
� Report data stream errors
� Operator intervention requesting that printing be stopped while a report is still

printing.

The recovery restart action depends upon the type of failure and the recovery
options specified for the report.

 Copyright IBM Corp. 1982, 1999 133

CICS transaction abends and CICS abends
If CICS abends, the XPCC link is broken, and POWER sets the status of any open
report on its queues to indicate an error situation. CICS may modify this status
during emergency restart. If CICS is cold started, the status of any report is not
modified. For both CICS abends and transaction abends, the recovered report
status depends on the operation in progress at the time of failure, and on the report
options used:

� During report creation, the type of recovery specified (LOGICAL or PHYSICAL)
determines the state of the unfinished report.

� During report processing, the PRINTFAIL option specifies that further action is
required by an operator before processing can continue.

For information about XPCC and POWER dispositions, see the VSE/POWER
Administration and Operation manual.

 POWER abend
In the case of a POWER abend, two situations must be considered:

� CICS running under POWER
� CICS not running under POWER.

In the first case, the failure of POWER causes CICS to abend at the same time.

In the second case, CICS remains operational, but the report controller is disabled.

Note: POWER must be warm started for reports to be maintained on the POWER
queue.

VSE system abend
A VSE system abend brings down CICS and POWER. The actions taken at the
restart of VSE, POWER, and CICS depend on system parameters and operator
action.

To initiate recovery, both POWER warm start and CICS emergency restart should
be utilized.

Recovering from failures
The report controller uses the EXEC CICS SYNCPOINT command, in conjunction
with POWER checkpointing and report options, to effect recovery during report
creation and printing.

To provide full protection against a CICS or VSE/ESA abend while printing a report,
you must ensure that any disk journal is large enough to cover the time taken to
print the largest report.

134 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Recovery from failures during report creation
On the EXEC CICS SPOOLOPEN REPORT command, you can specify either
LOGICAL or PHYSICAL recovery, with or without the PRINTFAIL option:

With LOGICAL recovery, the report is created in LUWs.

� You must issue an EXEC CICS SPOOLCLOSE REPORT command to commit
a report to the POWER queue, or issue an EXEC CICS SYNCPOINT command
which implies an EXEC CICS SPOOLCLOSE REPORT command. If you issue
a EXEC CICS SPOOLCLOSE RESUME REPORT command before the EXEC
CICS SYNCPOINT command, you can issue an EXEC CICS SPOOLOPEN
RESUME REPORT command after the EXEC CICS SYNCPOINT command, to
continue writing the report.

� If the transaction writing the report fails, the report lines are backed out to the
last EXEC CICS SPOOLCLOSE REPORT command.

For the different types of report, the logical recovery characteristics are shown in
Table 9.

With PHYSICAL recovery, every line written is committed to the report. The more
frequent checkpointing is an overhead to be weighed against the enhanced
recovery provided.

For the different types of report, the physical recovery characteristics are shown in
Table 10 on page 136.

Table 9. LOGICAL recovery from failures during report creation

Time of failure Standard Resumable Log

Before report is
closed or before
syncpoint.

Report is deleted. Records added to
report since last
SPOOLCLOSE
RESUME REPORT
are deleted and report
is closed with
DISP=A. If no
previous
SPOOLCLOSE
RESUME REPORT,
the report is deleted.

N/A

After report syncpoint. All records written are
committed to report
and report closed with
DISP=D.

All records written are
committed to report
and report closed with
DISP=D.

N/A

 Chapter 18. Report controller recovery 135

Table 10. PHYSICAL recovery from failures during report creation

Time of failure Standard Resumable Log

Before report is
closed or before
syncpoint.

All records written
are committed to
report. If failure
due to user
transaction abend,
report closed with
DISP=D. If failure
due to CICS
abend, report
closed with
DISP=X.

All records written
are committed to
report. If failure
due to user
transaction abend,
report closed with
DISP=D. If failure
due to CICS
abend, report
closed with
DISP=X.

All records written
are committed to
report. If failure
due to user
transaction abend,
report stays open.
If failure due to
CICS abend,
report closed with
DISP=X.

After report
syncpoint.

All records written
are committed to
report and report
closed with
DISP=D.

All records written
are committed to
report and report
closed with
DISP=D.

All records written
are committed to
report. If failure
due to user
transaction abend,
report stays open.
If failure due to
CICS abend,
report closed with
DISP=X.

Recovery from failures during printing
Printing failures are categorized as either:

� Severe failures - which cause the CEPW transaction (also called the report
writer task) to terminate and thus affect all reports

� Less severe failures - which affect only one report or which can be corrected by
simple operator intervention.

 Severe failures
On detection of a severe printing failure, if the CEPW transaction is not forced to
abend immediately, the report controller sends a message to the transient data
queue CSPW, and, because further processing by the CEPW transaction is
pointless, abends the CEPW task. Processing of other reports by this printer are
suspended until CEPW is restarted.

When specified on a report, the PRINTFAIL option specifies that CICS cannot
attempt recovery during emergency restart or dynamic transaction backout, but is to
leave the report in an ERRPRT status (DISP=Y). After CEPW is restarted,
operator intervention is required before printing of the report can continue. If
PRINTFAIL is not specified, the report is reset to its original disposition.

You can use the PRINTFAIL option to avoid the risk of printing a document (such
as an invoice) twice.

Note: When you use the EXEC CICS SPOOLOPEN INPUT command to read a
report, recovery depends on the options specified at report creation. If PRINTFAIL
is specified, the report is set to DISP=Y. If PRINTFAIL is not specified, the report
is reset to its original disposition.

136 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

The end user can usually recover from such a failure by redirecting the inflight
report to an alternative printer.

Less severe failures
For nonsevere printing failures:

� Printing of the report may continue after the error is cleared.

For errors such as “out-of-paper”, when printing may eventually continue, the
condition is detected and CEPW is suspended with a message sent to the
transient data queue CSPW. Operator intervention is required to clear the
error, after which the operator resumes CEPW. Recovery in this instance
means that the print run restarts at the correct page, and that the correct
number of copies is printed.

� Printing of the report may not continue.

For errors which prevent printing from continuing, CEPW logs the failure to
CSPW. An example of such an error is the sending of a report to a CICS
terminal printer that fails a CICS security check. The report is held with an
ERRPRT status (DISP=Y) on the POWER report list. Processing of other
reports continues.

For more information about security for RCF, see the CICS Report Controller
Planning Guide.

Note: If you have multiple printers for a destination, and one printer produces
faulty reports, or fails to produce reports at all, you can look at the audit trail on the
transient data queue CSPA. CSPA tells you which reports were printed (or should
have been printed) by each printer.

ESCAPE format report processing failure
The processing of ESCAPE reports requires an escape routine to receive control at
print time.

CEPW reads the report into a temporary storage queue, places the temporary
storage queue name into the communication area, and links to the escape routine.
The communication area is 80 bytes in length, with the queue name in the first 8
bytes. CEPW expects a return code in byte 0. The remaining 79 bytes may be
used to pass a message to transient data queue CSPW.

With a return code of 0, the report is held or deleted according to the report status.
If the return code is not 0, or if the escape routine is not available at processing
time, an error message is sent to transient data queue CSPW. The report is held
with ERRPRT status (DISP=Y) on the POWER report list. In either event,
processing of other reports continues.

An abend in the escape routine abends CEPW.

MAP format report processing failure
The processing of MAP reports requires that BMS maps, specified in the reports,
are available.

If the map is not available at processing time, an error message is sent to the
transient data queue CSPW. The report is held with ERRPRT status (DISP=Y) on
the POWER report list. Processing of other reports continues.

 Chapter 18. Report controller recovery 137

 Other failures
Some other types of report failure are not handled by CICS. Two examples are
described below.

JCL format processing failure
JCL type reports are held and processed on the POWER reader queue as jobs to
VSE. Failure of this type of report results in normal VSE job error handling.

Failure with non-CICS printers
Reports printed on VSE/POWER system printers are not controlled or monitored by
CICS. System print failures are handled by VSE/POWER.

138 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Chapter 19. Recovery in a DL/I VSE environment

This chapter describes how to implement DL/I VSE recovery and some of the
processes that handle the relationship between CICS and DL/I VSE.

The information is divided as follows:

� “Use of DL/I VSE”
 � “Design factors”
� “Implementing recoverability of DL/I VSE databases” on page 140
� “DL/I VSE error processing” on page 141.

You should consult your IBM representative on the availability in your area of
relevant IBM System Center documents. Like all System Center documents, they
are written by people with experience of the situations you are likely to encounter.

For information about DL/I VSE database I/O error handling within a CICS
environment, see the DL/I DOS/VS Version 1 Release 11 Release Guide. The
DLIOER system initialization parameter is described in the CICS System Definition
Guide.

Use of DL/I VSE
DL/I VSE offers the following advantages:

� DL/I VSE has benefits when databases are to be accessed by more than one
application; data does not need to appear several times in the database even
though the data might need to be retrieved in several different ways for various
applications.

� DL/I VSE enables online database information to be shared by batch programs.

� When data resources are all on DL/I VSE, and assuming that program isolation
scheduling is used, CICS and DL/I VSE combine to handle transaction
deadlocks automatically.

� CICS and DL/I VSE automatically record both before- and after-images without
the need for user journaling. DL/I VSE provides forward recovery utilities.

 Design factors
A design factor relating to recovery and restart is the choice of scheduling method:
program isolation scheduling or intent scheduling.

With program isolation scheduling, protection against multiple updating applies to
specific occurrences of a segment type; with intent scheduling, protection applies to
all segments of a given segment type. With both types of scheduling, protection
against multiple updating lasts until the end of the LUW that issued the scheduling
call.

Program isolation scheduling is the method usually chosen because it can lead to
faster scheduling, better throughput, and faster response times.

 Copyright IBM Corp. 1982, 1999 139

DL/I VSE provides the facility to detect impending deadlock between DL/I VSE
requests. A request that would result in a deadlock causes one of the tasks to
abend.

Assuming that program isolation scheduling is to be used:

� Any transaction that accesses DL/I VSE resources might result in a program
isolation deadlock. For this reason, you are advised to make all such
transactions capable of dynamic transaction backout (DTB). You can also
make them start automatically after DTB, in which case, they should:

1. Contain only one LUW.

2. Not perform any terminal activity until all database accesses and updates
within the LUW have completed. This ensures that the default conditions
required for automatic transaction restart are not violated.

� A request from a program to terminate a DL/I VSE PSB implies an EXEC CICS
SYNCPOINT, which commits both DL/I and non-DL/I VSE changes.

� Transactions that update both DL/I VSE and non-DL/I VSE resources should
always access the resources in the same sequence. In this way you avoid the
possibility of a transaction deadlock between DL/I VSE and non-DL/I VSE
resources.

For application programming considerations, see “Implicit enqueuing on DL/I VSE
databases” on page 117.

If batch programs and online programs are to use a DL/I VSE database
3 concurrently (by means of Multiple Partition Support (MPS), make checkpoint

requests at appropriate intervals (seconds, rather than minutes). Frequent
checkpoints:

� Minimize the risk that the DL/I VSE enqueue pool will fill and cause failure
� Help avoid unnecessary delays in response to users.

Batch programs must be able to restart from a checkpoint. (See the DL/I DOS/VS
Recovery/Restart Guide, for information about writing restartable programs.)

Implementing recoverability of DL/I VSE databases
DL/I VSE writes both before- and after-images of changed segments to the CICS
system log, thus providing records to support either forward or backward recovery.
For this reason, good operational control of the system log files is vital. Loss or
destruction of a system log file could jeopardize database integrity.

The logging for DL/I VSE is handled by CICS, and not directed to a separate DL/I
VSE log.

To achieve this, the last 2 bits (bits 6 and 7) of the UPSI byte in the JCL must be
set to 0. When the UPSI byte is not supplied, or is not needed for other reasons,
bits 6 and 7 default to 0.

140 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Backward recovery of DL/I VSE databases
Transaction backout (by DTB during a task abend, or by emergency restart after a
system failure) causes backout of DL/I VSE database changes.

If a failure occurs while backing out DL/I VSE database changes, the XRCDBER
exit of DFHDLBP, or the XDBDERR exit of DFHDBP, should be used to cancel
CICS so that data integrity is maintained. (See Chapter 11, “User exits for
transaction backout during emergency restart” on page 91 and “Global user exits in
DFHDBP” on page 88.)

Forward recovery of DL/I databases
You may use forward recovery to recover lost or damaged files. DL/I VSE provides
utilities for forward recovery of DL/I VSE databases. During implementation, it is
necessary to establish procedures for the integration of the system log files
produced during execution of CICS with those produced by execution of a
non-MPS batch job. These procedures are needed to ensure a coherent and
complete set of forward recovery information.

If a CICS abnormal termination has occurred, you must perform emergency restart
after completion of forward recovery. Emergency restart then backs out the effects
of tasks that were in flight at the time of failure.

Notes:

1. When the CICS system log is implemented on disk, ensure that each system
log file is copied to tape before it is overwritten; otherwise, forward recovery
information collected on the system log will be lost. Consider the use of the
PAUSE option to prevent loss of information.

2. Similarly, when the CICS system log is implemented on tape, ensure that tapes
are not reused until their forward recovery information is no longer needed.

Program isolation or intent scheduling
You specify program isolation or intent scheduling by the PI=YES|NO operand in
the DL/I VSE application control table (ACT).

DL/I VSE error processing
When using CICS with DL/I VSE, error conditions can arise which may indicate that
the integrity of the databases is at risk.

DL/I VSE pseudoabends causing transaction failure
Error conditions within DL/I VSE may be of a type that can be transformed into a
transaction abend. Errors of this type do not damage the databases and do not
prevent the continued execution of CICS. Examples of this type of error are
program isolation deadlock, or no space in the database for an insertion. See
“Transaction abend processing” on page 45.

 Chapter 19. Recovery in a DL/I VSE environment 141

DL/I VSE abends causing CICS failure
In situations where the DL/I VSE-detected error is sufficiently serious, the CICS
system is abended to allow diagnosis of the error and database recovery actions to
be taken.

This type of error causes a user abend of CICS. It is possible to detect and
attempt recovery of this type of error using the system recovery table and system
recovery program (although this is not recommended). See “Processing of
operating system abends and program checks” on page 51.

DL/I VSE backout failure during DTB or emergency restart
If a failure occurs during the backout of DL/I VSE databases, a message is sent to
the operator to show that an error has occurred.

� If this happens during an emergency restart, the default action is to give the
system console operator the option to cancel CICS, or to allow emergency
restart to continue. (For more information, see Figure 7 on page 143.)

There is also a user exit, XRCDBER, which gives you the choice of ignoring the
error, or of asking the operator whether CICS should continue or be canceled.
You may also cancel CICS from the user exit.

Note: If you are concerned about data integrity, you are recommended to
cancel CICS by user code in the exit.

With CICS terminated, the DL/I VSE database utilities can be run.

� If the DL/I VSE backout error occurs during dynamic transaction backout (DTB),
the message does not give the operator the option to cancel CICS.

Therefore, for DL/I VSE data integrity, CICS should be canceled by user code
in the XDBDERR exit of DFHDBP; see “Global user exits in DFHDBP” on
page 88.

Figure 7 on page 143 shows that if DL/I VSE data integrity is to be maintained
after DL/I VSE backout failure, CICS must be canceled by the operator.

142 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

E m e r g e n c y r e s t a r t
p r o c e s s i n g
(b y D F H D L B P)
i n p r o g r e s s

D L / I D O S / V S
b a c k o u t f a i l u r e
o c c u r s

C I C S a s k s o p e r a t o r
f o r G O / C A N C E L
d e c i s i o n

G O / C A N C E L
C A N C E L G O

C I C S t e r m i n a t e s
w i t h a n o p e r a t i n g
s y s t e m r e q u e s t e d
t y p e o f s h u t d o w n

C I C S i g n o r e s t h e
b a c k o u t e r r o r a n d
D F H D L B P
c o n t i n u e s
b a c k i n g o u t D L / I
r e s o u r c e s

Figure 7. CICS/VSE processing of a DL/I VSE backout failure during emergency restart

 Chapter 19. Recovery in a DL/I VSE environment 143

144 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

 Bibliography

CICS Transaction Server for VSE/ESA Release 1 library

Evaluation and planning

Release Guide GC33-1645
Migration Guide GC33-1646
Report Controller Planning Guide GC33-1941

General

Master Index SC33-1648
Trace Entries SC34-5556
User’s Handbook SC34-5555
Glossary (softcopy only) GC33-1649

Administration

System Definition Guide SC33-1651
Customization Guide SC33-1652
Resource Definition Guide SC33-1653
Operations and Utilities Guide SC33-1654
CICS-Supplied Transactions SC33-1655

Programming

Application Programming Guide SC33-1657
Application Programming Reference SC33-1658
Sample Applications Guide SC33-1713
Application Migration Aid Guide SC33-1943
System Programming Reference SC33-1659
Distributed Transaction Programming Guide SC33-1661
Front End Programming Interface User’s Guide SC33-1662

Diagnosis

Problem Determination Guide GC33-1663
5 Messages and Codes Vol 3 (softcopy only)5 SC33-6799

Diagnosis Reference LY33-6085
Data Areas LY33-6086
Supplementary Data Areas LY33-6087

Communication

Intercommunication Guide SC33-1665
CICS Family: Interproduct Communication SC33-0824
CICS Family: Communicating from CICS on System/390 SC33-1697

Special topics

Recovery and Restart Guide SC33-1666
Performance Guide SC33-1667
Shared Data Tables Guide SC33-1668
Security Guide SC33-1942
External CICS Interface SC33-1669
XRF Guide SC33-1671
Report Controller User’s Guide GC33-1940

CICS Clients

CICS Clients: Administration SC33-1792
CICS Universal Clients Version 3 for OS/2: Administration SC34-5450
CICS Universal Clients Version 3 for Windows: Administration SC34-5449
CICS Universal Clients Version 3 for AIX: Administration SC34-5348
CICS Universal Clients Version 3 for Solaris: Administration SC34-5451
CICS Family: OO programming in C++ for CICS Clients SC33-1923
CICS Family: OO programming in BASIC for CICS Clients SC33-1671
CICS Family: Client/Server Programming SC33-1435
CICS Transaction Gateway Version 3: Administration SC34-5448

 Copyright IBM Corp. 1982, 1999 145

5 Books from VSE/ESA 2.4 base program libraries

5 VSE/ESA Version 2 Release 4

5 Book title5 Order number

5 Administration5 SC33-6705

5 Diagnosis Tools5 SC33-6614

5 Extended Addressability5 SC33-6621

5 Guide for Solving Problems5 SC33-6710

5 Guide to System Functions5 SC33-6711

5 Installation5 SC33-6704

5 Licensed Program Specification5 GC33-6700

5 Messages and Codes Volume 15 SC33-6796

5 Messages and Codes Volume 25 SC33-6798

5 Messages and Codes Volume 35 SC33-6799

5 Networking Support5 SC33-6708

5 Operation5 SC33-6706

5 Planning5 SC33-6703

5 Programming and Workstation Guide5 SC33-6709

5 System Control Statements5 SC33-6713

5 System Macro Reference5 SC33-6716

5 System Macro User’s Guide5 SC33-6715

5 System Upgrade and Service5 SC33-6702

5 System Utilities5 SC33-6717

5 TCP/IP User's Guide5 SC33-6601

5 Turbo Dispatcher Guide and Reference5 SC33-6797

5 Unattended Node Support5 SC33-6712

5 High-Level Assembler Language (HLASM)

5 Book title5 Order number

5 General Information5 GC26-8261

5 Installation and Customization Guide5 SC26-8263

5 Language Reference5 SC26-8265

5 Programmer’s Guide5 SC26-8264

146 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

5 Language Environment for VSE/ESA (LE/VSE)

5 Book title5 Order number

5 C Run-Time Library Reference5 SC33-6689

5 C Run-Time Programming Guide5 SC33-6688

5 Concepts Guide5 GC33-6680

5 Debug Tool for VSE/ESA Fact Sheet5 GC26-8925

5 Debug Tool for VSE/ESA Installation and Customization Guide5 SC26-8798

5 Debug Tool for VSE/ESA User’s Guide and Reference5 SC26-8797

5 Debugging Guide and Run-Time Messages5 SC33-6681

5 Diagnosis Guide5 SC26-8060

5 Fact Sheet5 GC33-6679

5 Installation and Customization Guide5 SC33-6682

5 LE/VSE Enhancements5 SC33-6778

5 Licensed Program Specification5 GC33-6683

5 Programming Guide5 SC33-6684

5 Programming Reference5 SC33-6685

5 Run-Time Migration Guide5 SC33-6687

5 Writing Interlanguage Communication Applications5 SC33-6686

5 VSE/ICCF

5 Book title5 Order number

5 Adminstration and Operations5 SC33-6738

5 User’s Guide5 SC33-6739

5 VSE/POWER

5 Book title5 Order number

5 Administration and Operation5 SC33-6733

5 Application Programming5 SC33-6736

5 Networking Guide5 SC33-6735

5 Remote Job Entry User’s Guide5 SC33-6734

5 VSE/VSAM

5 Book title5 Order number

5 Commands5 SC33-6731

5 User’s Guide and Application Programming5 SC33-6732

 Bibliography 147

5 VTAM for VSE/ESA

5 Book title5 Order number

5 Customization5 LY43-0063

5 Diagnosis5 LY43-0065

5 Data Areas5 LY43-0104

5 Messages and Codes5 SC31-6493

5 Migration Guide5 GC31-8072

5 Network Implementation Guide5 SC31-6494

5 Operation5 SC31-6495

5 Overview5 GC31-8114

5 Programming5 SC31-6496

5 Programming for LU6.25 SC31-6497

5 Release Guide5 GC31-8090

5 Resource Definition Reference5 SC31-6498

Books from VSE/ESA 2.4 optional program libraries

C for VSE/ESA (C/VSE)

Book title Order number

C Run-Time Library Reference SC33-6689

C Run-Time Programming Guide SC33-6688

Diagnosis Guide GC09-2426

Installation and Customization Guide GC09-2422

Language Reference SC09-2425

Licensed Program Specification GC09-2421

Migration Guide SC09-2423

User’s Guide SC09-2424

COBOL for VSE/ESA (COBOL/VSE)

Book title Order number

Debug Tool for VSE/ESA Fact Sheet GC26-8925

Debug Tool for VSE/ESA Installation and Customization Guide SC26-8798

Debug Tool for VSE/ESA User’s Guide and Reference SC26-8797

Diagnosis Guide SC26-8528

General Information GC26-8068

Installation and Customization Guide SC26-8071

Language Reference SC26-8073

Licensed Program Specifications GC26-8069

Migration Guide GC26-8070

Migrating VSE Applications To Advanced COBOL GC26-8349

Programming Guide SC26-8072

148 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

DB2 Server for VSE

Book title Order number

Application Programming SC09-2393

Database Administration GC09-2389

Installation GC09-2391

Interactive SQL Guide and Reference SC09-2410

Operation SC09-2401

Overview GC08-2386

System Administration GC09-2406

 DL/I VSE

Book title Order number

Application and Database Design SH24-5022

Application Programming: CALL and RQDLI Interface SH12-5411

Application Programming: High-Level Programming Interface SH24-5009

Database Administration SH24-5011

Diagnostic Guide SH24-5002

General Information GH20-1246

Guide for New Users SH24-5001

Interactive Resource Definition and Utilities SH24-5029

Library Guide and Master Index GH24-5008

Licensed Program Specifications GH24-5031

Low-level Code and Continuity Check Feature SH20-9046

Library Guide and Master Index GH24-5008

Messages and Codes SH12-5414

Recovery and Restart Guide SH24-5030

Reference Summary: CALL Program Interface SX24-5103

Reference Summary: System Programming SX24-5104

Reference Summary: HLPI Interface SX24-5120

Release Guide SC33-6211

PL/I for VSE/ESA (PL/I VSE)

Book title Order number

Compile Time Messages and Codes SC26-8059

Debug Tool For VSE/ESA User’s Guide and Reference SC26-8797

Diagnosis Guide SC26-8058

Installation and Customization Guide SC26-8057

Language Reference SC26-8054

Licensed Program Specifications GC26-8055

Migration Guide SC26-8056

Programming Guide SC26-8053

Reference Summary SX26-3836

 Bibliography 149

Screen Definition Facility II (SDF II)

Book title Order number

VSE Administrator's Guide SH12-6311

VSE General Introduction SH12-6315

VSE Primer for CICS/BMS Programs SH12-6313

VSE Run-Time Services SH12-6312

150 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

 Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the products,
services, or features discussed in this document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing,
to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in
your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other country where such provisions
are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore this statement
may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without
notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of
information between independently created programs and other programs (including this one) and (ii) the mutual use
of the information which has been exchanged, should contact IBM United Kingdom Laboratories, MP151, Hursley
Park, Winchester, Hampshire, England, SO21 2JN. Such information may be available, subject to appropriate terms
and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under
terms of the IBM Customer Agreement, IBM International Programming License Agreement, or any equivalent
agreement between us.

 Copyright IBM Corp. 1982, 1999 151

Trademarks and service marks

The following terms, used in this publication, are trademarks or service marks of IBM Corporation in the United States
or other countries:

CICS, CICS/VSE, DB2 for VSE/ESA, &DL1,
IBM, VSE/ESA, VSE/VSAM, VSE/POWER

152 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

 Index

A
abend handling 51, 111
abend, transaction

See transaction abend processing
abnormal condition program (ACP) 50
abnormal task termination (see task termination,

abnormal)
activity keypoints

description 21
during emergency restart 38

AILDELAY system initialization parameter 62
AIRDELAY system initialization parameter 40, 62
AIX (alternate index) 78, 107
AKPFREQ system initialization parameter

keypointing 67
nonzero value 62
specifying N for CSKP 21

alternate index (AIX) 78, 107
application programming note 118
application unit of work

definition 101
designing 101

applications
division into logical units of work 103

APPLID system initialization parameter 62
archiving

journals 65
system log 65

ASRA abend 51
AUTO option, START= 31
AUTOARCH option

in JOUROPT operand, DFHJCT 21
autoinstalled programs

recovering 40
autoinstalled terminals

at restart 34, 40
recovering 40

automatic archiving
summary 65

automatic journaling 23
automatic journalling options

JNLADD 78
JNLREAD 78
JNLSYNCREAD 78
JNLSYNCWRITE 78
JNLUPDATE 78

automatic transaction initiation (ATI)
implications 107
trigger level recovery after emergency restart 41

automatic transaction restart
after DTB 87

automatic transaction restart (continued)
using DFHREST 47

B
backout

error exit for DL/I VSE 142
for data tables 37
for DL/I VSE 37, 141
for files 37, 76
for message-protected tasks 38
for temporary storage 36, 79
for transient data 36, 80
for user messages on system log 38
in backward recovery 72
list of recoverable resources 8
offline backout for VSAM backout failure 129
overview 7

backout failure
indications 129
log record 129

backup copies of data sets 73
backward recovery 79

backout recovery mechanism 7
for VSAM files 72
on intrapartition transient data 80

basic mapping support (BMS)
DTB recovery 50
terminal paging 108
warm start information 34

batch backout utility 48
DLZBACK0 34

BMS (see basic mapping support)

C
cache (see message cache)
catalogs

failure 17
global catalog contents 17
local and global 17
local catalog contents 18
recording on 17
use of in normal shutdown 28

CEDA transaction
definitions for transactions and programs 61
file definition consistency checking 76
for message protection options 81
for program definition 61
for program error program 121
for terminal error program 100
recovery of definitions during emergency restart 39

 Copyright IBM Corp. 1982, 1999 153

CEMT SET TASK PURGE/FORCEPURGE 45
CEMT transaction

recovery of changes during emergency restart 41
CEPW transaction (writer task) 136
cold start 32
COLDACQ operand, use after emergency restart 41
COMMAREA (communication area) 105
commit immediate 39
communication between transactions

use of resources 105
communication failure overview 12
communication with terminals

BMS
dynamic transaction backout processing 50
warm start information 34

communication breaks 98
errors/failures

CICS processing 53
extensions to error handling 99

external design considerations 60
internal design considerations 97
message-protected tasks

dynamic transaction backout processing 49
emergency restart processing 38
use of message caches 123

node error program (NEP) coding 98, 99
terminal error program (TEP) coding 100
VTAM messages

message caches, use of 123
message-protection options in CEDA DEFINE

PROFILE 81
node error program (NEP) coding 98
recovery after emergency restart 123
resynchronization after emergency restart 41

comparison of restart types 41
condition handling 109
controlled shutdown

warm keypoints 28
conversational processing 104
CSD (CICS system definition) file

defining 75
CSDFRLOG system initialization parameter 62
CSDRECOV system initialization parameter 62
CSPA transient data queue 137
CSPW transient data queue 136

D
DAM files

backout of 73
during emergency restart 37
dynamic transaction backout 48

data integrity 4
data sets, extrapartition

input 83
output 84

data tables
backout 37
emergency restart processing 37
recoverable resource 8

databases
definition 71
external design considerations

presenting large quantities of data 73
protection of data 73
use of application data 71

internal design considerations 71
large quantities of data to be presented 73
non-DL/I files

access methods 71
backward recovery 76
DAM 73
definition of 74
design considerations 71
FCT entries 74
multiple path updating 78
VSAM recoverability considerations 71

VSAM design considerations 71
VSAM file definition consistency checking 76

databases and files
See also VSAM, DAM, and DL/I
application requirements questions 57
basic recovery options 60
DL/I VSE recovery 140
dynamic transaction backout processing 48
emergency restart processing 37
enqueuing 113
exclusive control 113
used for intertransaction communication 106

DATAID operand
of DFHTST macro 63

DBP system initialization parameter 62
DBUFSZ system initialization parameter 62
DCT (destination control table)

definition of 63
deadlock, transaction

avoiding 106, 119
effect of DTIMOUT 61, 119

deadly embrace (see deadlock)
deferred transmission of output messages 97
definition of CICS

for recovery 60
destination control table (DCT)

definition of 63
DESTRCV operand

 DFHDCT 63
DFHAKP group 61
DFHBACK group 61
DFHDCT

TYPE=INTRA macro 63
DFHDLBP (DL/I backout program)

exits 91

154 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

DFHDLI group 61
DFHFCBP (file control backout program)

exits 91, 94
DFHJRNL group 61
DFHPEP (see program error program)
DFHPLT macro 63
DFHREST (transaction restart program)

description 47
extending use of 89

DFHRSEND group 61
DFHRSPLG group 61
DFHSNEP macros for sample NEP 99
DFHSRT (see system recovery table)
DFHSTAND RDO group 61
DFHTCBP (terminal control backout program)

exits 91
DFHTEP (see terminal error program)
DFHTST macro

TYPE=RECOVERY 79
using TSAGE and DATAID 63

DFHUSBP (user backout program)
exits 91

DFHUSBP program
backout recovery 20
processing restart data set 38

DFHVTAM group 61
DFHXJCC user replaceable module 66
DFHXJCO user replaceable module 66
DFHXLT macro 63
DFHXTEP/DFHXTEPT 54, 100
DFHZNEP (see node error program)
DL/I

application requirements 58
emergency restart processing 34
information recorded on dynamic log 19
intertransaction communication 106
SIT options 62

DL/I system initialization parameter 62
DL/I VSE

abends causing CICS failure 142
advantages 139
application programming note
application requirements 139
backout 37, 141
backout error exit in DFHDLBP 142
backout failure 142

during dynamic transaction backout 142
during emergency restart 142

backout processing for DL/I VSE databases 39
basic recovery options 61
database recovery 139
design considerations 139
dynamic transaction backout 48
emergency restart processing 37

backout processing for DL/I VSE databases 39
error processing 140, 141

DL/I VSE (continued)
forward recovery 141
implicit enqueuing upon 117
isolation deadlock detection 140
logging for recovery 17
program isolation scheduling
scheduling 139

intent scheduling 118
program isolation scheduling 117

terminate call 140
DLZBACK0 IMS utility 34
documenting recovery and restart programs 63
DTB (see dynamic transaction backout)
DTIMOUT option of CEDA DEFINE

TRANSACTION 61
dump data sets

printing 30
dump options

reapplied at emergency restart 36
recovered at warm start 34

dump table entries
lost at cold start 32
recovered at warm start 34

dynamic changes to tables
how retrieved during CICS initialization 43

dynamic changes to transient data queue attributes
recovering 41

dynamic log
allocation 19
recording on, for DTB 19
size and overflow considerations 68

dynamic transaction backout
basic mapping support 50
decision to use 110
description 19
DL/I VSE databases 48
files 48
global user exits 88
resource recovery 48
specify use of 87
temporary storage 49
terminal messages 49
transaction restart 89
transient data 48
VTAM terminal messages 49

E
emergency restart

backout processing 36
backout processing for DL/I VSE databases 39
message resynchronization 41
process 34
recovery of ATI trigger levels 41
recovery of file states 38, 39
restart data set 36

 Index 155

enqueue interlock (see deadlock)
enqueuing

explicit enqueuing by application program 118
implicit enqueuing on DL/I VSE databases 117
implicit enqueuing on nonrecoverable files 114
implicit enqueuing on recoverable files 115
implicit enqueuing on temporary storage

queues 117
implicit enqueuing on transient data

destinations 116
in application programs 113

ESDS (entry-sequenced data set), VSAM
backout of

during emergency restart 37
dynamic transaction backout 48

exclusive control, VSAM
(see also enqueuing) 114

exit code
program-level abend exit 46

EXTA option
in JOUROPT operand, DFHJCT 21
information on system log

where logging begins (on disk) 22
extrapartition data set recovery

input data sets 83
output data sets 84

F
FCT system initialization parameter 62
file control table (FCT)

basic recovery options 60
file error exit

for transaction backout 94
file states

recovery after emergency restart 38, 39
files

definition 71
external design considerations

presenting large quantities of data 73
protection of data 73
use of application data 71

internal design considerations 71
large quantities of data to be presented 73
non-DL/I files

access methods 71
backward recovery 76
DAM 73
definition of 74
design considerations 71
FCT entries 74
multiple path updating 78
VSAM recoverability considerations 71

VSAM design considerations 71
VSAM file definition consistency checking 76

FORCEPURGE option
CEMT SET TASK 45
EXEC CICS SET TASK 45

forward recovery
DL/I VSE 141
intrapartition transient data 80
journals for 66
overview 11
temporary storage 79
VSAM 131

G
global user exit XAKUSER 67
global user exits

dynamic transaction backout 88
emergency restart 91
transaction backout 91

group commit 39
groups of programs 61

H
HANDLE ABEND command 109, 111
HANDLE CONDITION command 109

I
immediate shutdown 29
in-doubt window after syncpoint failure 54
in-flight tasks

dynamic transaction backout processing 47
emergency restart processing 35

initialization
cold start 32
emergency restart 34
options 31
partial warm start 34
warm start 32

initialization (PLT) programs
defining 63
running 43
use of 84

initialization and termination exit
for transaction backout 92

input data sets 83
input exit

for transaction backout 93
installing groups of programs 61
integrity of data 4
intent scheduling, DL/I VSE 118, 139
interlock, transaction (see deadlock)
internal design phase 109
intertransaction communication

mechanisms 105
use of COMMAREA 105

156 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

intertransaction communication (continued)
use of resources 105

interval control START requests 107
intrapartition transient data

backout 36, 80
DTB 48
forward recovery 80
implicit enqueuing upon 116
recoverability 80

IOERR condition processing 113

J
JCT (journal control table)

defining the system log 65
system initialization parameter 62

journal archive control data set 25
journals

See also system log
archiving 65
basic definition 62
CEMT identifies current data set 69
deferred opening of data sets 69
defining 67, 69
explicit commands to 68
explicit journaling 68
for extrapartition transient data set recovery 83
for forward recovery 66
for recording messages 98
offline programs for reading 69
recording of recovery information 23
recovery during startup 31
start of logging 22, 23

JSTATUS system initialization parameter 62

K
keypoints

AKPFREQ parameter 67
warm 28, 35

L
link pack area (SVA) 34
logical levels, application program 46
LOGICAL option

SPOOLOPEN command 134, 135
logical unit of work (see LUW)
LOGTERM START override 27, 31
LRU option

in JOUROPT operand, DFHJCT 21
LUW (logical unit of work)

multiple sends not recommended 97
overview 8
short LUWs preferred 103
subdividing into 101

M
mapset definition 61
message cache

created during emergency restart 38
definition 123
input message 124
inquiry program for 123
interpreting contents 124
output message 126
records 127

message protected tasks
backout 38

message protection
basic recovery concepts 11
CEDA DEFINE PROFILE for 81

messages, VTAM (see VTAM messages)
monitoring status

at emergency restart 36
at warm start 34

MSGINTEG option
of CEDA DEFINE PROFILE 81

N
NEWSIT system initialization parameter 62
node error program (NEP)

DFHZNEP 53
generating the default 99
reasons for writing your own 98
sample 99

normal shutdown 27

O
open error exit 94
operating practices 131
operating system requested shutdown 29
operating-system abend handling 51
operations

overview 131
output data sets 84
output messages

committed and not-in-doubt 126
committed but in-doubt 126
programming for integrity 97

P
partial warm start 34
PAUSE option

in JOUROPT operand, DFHJCT 21
PEP (see program error program)
PERFORM SHUTDOWN command 27
PERFORM SHUTDOWN IMMEDIATE command 29
persistent sessions, VTAM 5

 Index 157

PGAICTLG system initialization parameter 40, 62
PGAIEXIT system initialization parameter 62
PGAIPGM system initialization parameter 62
PHYSICAL option

SPOOLOPEN command 134, 135
PLT (program list table)

definition of 63
PLTPI system initialization parameter 62
postinitialization (PLT) programs

(initialization programs)
defining 63
use of 84

running 43
POWER subsystem 133
printer recovery 98
PRINTFAIL option

SPOOLOPEN command 134, 135
printing failure

report controller 136
profile definition

for message protection 81
for recovery 61

program check handling 51
program definitions

for recovery 61
program error program (PEP)

CICS- or user-supplied 121
design considerations 111
editing 121
omitting 121
task termination 50

program isolation scheduling 117
program list table (see PLT)
program-level user exits

execution of 46
exit code at program levels 46

PROTECT operand
in START TRANSID request 49

PROTECT option
of CEDA DEFINE PROFILE 81

PSDINT system initialization parameter 62
pseudoconversational processing 104
PURGE option

CEMT SET TASK 45
EXEC CICS SET TASK 45

Q
quiesce stages of normal shutdown 27

R
recording of recovery information

disk system log 21
on dynamic log 19
on journals 2-99 23

recording of recovery information (continued)
on tape drives 23
storing 17

records
message cache 127

recoverable resources
backout overview 8

recovery
backward 7, 72, 79, 80

recovery control processing 36
report controller recovery 133
report printing failure

ESCAPE format reports 137
JCL format reports 138
MAP format reports 137
non-CICS printers 138

representation of messages
after emergency restart 41

resource definition information
how retrieved during CICS initialization 43

resource definition online (RDO)
See CEDA transaction

resource definitions
dynamically added, recovery 39

resource managers, non-CICS
at warm start 34

resource recovery
SAA compatibility 103

resources, recovery of 48
RESP option 109
restart 59
restart data set (RSD)

copying from the system log 36
use 19
used at emergency restart 35

RESTART option of CEDA DEFINE
TRANSACTION 61

restart transaction after DTB
description 47

restart types
comparison 41

resynchronization of messages
after emergency restart 41

ROLLBACK
considerations for use 110

S
SAA resource recovery interface 103
scheduling, DL/I VSE 139
security considerations

for message cache inquiry program 123
for restart 60

SERIES=PURGE system initialization option 41
SET TASK PURGE/FORCEPURGE command 45

158 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

shared virtual area (SVA) 32, 36
shutdown

immediate 29
normal 27
requested by operating system 29
uncontrolled 30

SIT (system initialization table)
options and overrides for recovery and restart 62

SPOOLOPEN command 135
SPURGE option of CEDA DEFINE TRANSACTION 61
SRT (see system recovery table)
SRT system initialization parameter 62
standby procedures 59
STANDBY start option 31
START option 62
START requests

DTB recovery 49
START specification 31
START TRANSID command 113
statistics status

at emergency restart 36
at warm start 34

SVA (see shared virtual area)
synchronization point (see syncpoint)
syncpoint

during emergency restart 38
general description 8
in-doubt window after failure 54
rollback 110

SYSIDNT system initialization parameter 62
system abend extensions 51
system activity keypoints

description 21
system failures

designing for restart 111
overview 13

system initialization parameters 62
system log

See also journals
archiving 65
backout-failure record 129
basic definition 62
CEMT identifies current data set 66
considerations for use 65
defining 65
disk, characteristics 21
for backout 20
implementation 65
information recorded on 20
recovery 31
size of disk data sets 65
start of logging 22, 23
tape, characteristics 23

system or abend exit creation 51
system recovery table (SRT)

definition of 60

system recovery table (SRT) (continued)
user extensions to 51

system warm keypoints 28

T
tables

for recovery 60
task termination, abnormal

DFHDBP execution 47
DFHREST execution 47
program ACP 50
task termination, abnormal 47

task termination, normal 46
TBEXITS system initialization parameter 62
temporary storage

backout 36, 79
DTB 49
forward recovery 79
implicit enqueuing upon 117
recoverability 79
used for intertransaction communication 105

temporary storage table (TST)
definition of 63

terminal error handling
installing groups for 61

terminal error program (TEP)
reasons for writing your own 98
sample 54, 100
user coding 100

terminal error recovery 53
terminal I/O errors, recovery

terminal error program immediate shutdown 29
terminal paging through BMS 108
termination (see shutdown)
termination and initialization exit

for transaction backout 92
testing recovery and restart programs 63
trace status

at emergency restart 36
transaction abend processing

ASRA abend code 51
DFHDBP execution 47
DFHPEP execution 50
DFHREST execution 47
dynamic transaction backout (DTB) 47, 88
program ACP 50
program error program (PEP) 121
program-level exit code 46
restart facility 89
task termination, abnormal 47
task termination, normal 46
transaction restart 89
user coding 121

transaction backout during emergency restart 36
XRCFCER (file error) exit 94

 Index 159

transaction backout during emergency restart
(continued)

XRCINIT (initialization and termination) exit 92
XRCINPT (input) exit 93
XRCOPER (open error) exit 94

transaction backout, dynamic 47
transaction deadlock (see deadlock)
transaction definition 61
transaction failure

facilities to be invoked 109
overview 13

transaction list table (XLT)
definition of 63
in shutdown 28

transaction recovery and restart
messages, with VTAM terminals 41

transaction restart
decision to use after DTB 111

transaction restart program (DFHREST)
description 47
extending use of 89

transactions allowed during normal shutdown 28
TRANSID operand

use of 107
transient data queue attributes

recovering dynamic changes to 41
transient data queues

CSPA 137
CSPW 136
for large amounts of data 108

transient data trigger level 107
transient data, extrapartition

recovery 83
transient data, intrapartition

backout 36, 80
DTB 48
forward recovery 80
implicit enqueuing upon 116
recoverability 80
used for intertransaction communication 106

TSAGE operand
of DFHTST macro 63

TST (temporary storage table)
definition of 63

U
uncontrolled shutdown 30
unit of recovery (see LUW (logical unit of work))
unit of recovery descriptor (URD)

at warm start 34
URD (unit of recovery descriptor)

at warm start 34
user abend exit creation 121
user exits

emergency restart 94

user exits (continued)
transaction backout 94

user journals (see journals)
user messages on system log

backout 38

V
VSAM exclusive control 116
VSAM files

definition of 74
design considerations 71
forward recovery considerations 72
implementing recoverability 74

VSAM files, backout of
during DTB 48
during emergency restart 37

VTAM messages
basic recovery concepts 11
dynamic transaction backout of 49
emergency restart processing (backout) 38
message caches, use of 123
message-protection options in CEDA DEFINE

PROFILE 81
node error program (NEP) coding 98
recovery after emergency restart 123
representation after emergency restart 41
resynchronization after emergency restart 41

W
warm keypoints

information from 32
warm start 32
warm start (partial) 34

X
XAKUSER 67
XLT (transaction list table) 28

definition of 63
XPCC link 134
XRCDBER, DL/I VSE backout error exit 142
XRCFCER global user exit 94
XRCINIT global user exit 92
XRCINPT global user exit 38, 67, 69, 93
XRCOPER global user exit 94
XRF (extended recovery facility)

STANDBY start option for the alternate 31

160 CICS Transaction Server for VSE/ESA Recovery and Restart Guide

Sending your comments to IBM
CICS Transaction Server for VSE/ESA 

Recovery and Restart Guide

SC33-1666-00

If you want to send to IBM any comments you have about this book, please use one of the methods
listed below. Feel free to comment on anything you regard as a specific error or omission in the subject
matter, and on the clarity, organization or completeness of the book itself.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

 � By mail:

IBM UK Laboratories
 Information Development

Mail Point 095
 Hursley Park

Winchester, SO21 2JN
 England

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: HURSLEY(IDRCF)
 – Email: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

IBM

Program Number: 5648-054

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1666-ðð

Spine information:

IBM CICS TS for VSE/ESA Recovery and Restart Guide Release 1

	Preface
	Book structure
	Notes on terminology

	Part 1. Overview
	Chapter 1. Introduction to recovery and restart
	Faults and their effects
	Recovery requirements in an online system
	The role of CICS
	VTAM persistent sessions considerations
	Backward recovery (backout)
	Forward recovery
	Recovery of VTAM messages
	Failures that require CICS recovery processing

	Part 2. Recovery and restart processes
	Chapter 2. Recording of recovery information
	Recording on the catalogs
	Restart data set
	Dynamic log (for dynamic transaction backout)
	System log (journal 1)
	Journals 2 through 99
	Journal archive control data set

	Chapter 3. CICS shutdown
	Normal shutdown processing (PERFORM SHUTDOWN)
	Immediate shutdown processing (PERFORM SHUTDOWN IMMEDIATE)
	Shutdown requested by the operating system
	Uncontrolled termination

	Chapter 4. CICS startup
	Types of initialization
	Recovery of system log and user journals
	Cold start
	Warm start
	Emergency restart
	Comparison of the types of restart
	User programs at initialization

	Chapter 5. Abend processing
	Requests for an abend
	Transaction abend processing
	Processing of operating system abends and program checks

	Chapter 6. Communication error processing
	Node error program (DFHZNEP)
	Terminal error program (DFHTEP)
	The in-doubt window

	Part 3. Implementing your recovery and restart strategy
	Chapter 7. Starting to specify recovery and restart facilities
	Questions relating to recovery requirements
	Validate the recovery requirements statement
	Designing the end user's restart procedure
	Communications between application and user
	Security
	Definitions for recovery functions
	Documentation and test plans

	Chapter 8. Logging and journaling
	System log
	Journals for forward recovery
	Keypointing
	Dynamic log
	Explicit journaling

	Chapter 9. Recovering resources
	Protecting data files and databases
	Implementing recoverability of files
	Implementing recoverability of temporary storage
	Implementing recoverability of intrapartition transient data
	Specifying message-protection options for VTAM terminals
	Recovering extrapartition transient data

	Chapter 10. Dynamic transaction backout (DTB)
	Specifying DTB
	Specifying automatic transaction restart
	Global user exits in DFHDBP
	Editing the transaction restart program (DFHREST)

	Chapter 11. User exits for transaction backout during emergency restart
	Where you can add your own code
	Global user exit details
	Coding transaction backout exits

	Chapter 12. Handling communication errors
	Communication design
	Node error program (DFHZNEP)—VTAM logical units
	Terminal error program (DFHTEP)—non-VTAM terminals

	Chapter 13. Recovery coding in application programs
	Application design
	Program design
	Coping with transaction and system failures
	Enqueuing in application programs

	Chapter 14. Using a program error program (DFHPEP)
	Program error program (DFHPEP)

	Chapter 15. Using message caches after emergency restart
	Logic of inquiry program
	Interpreting the contents of a message cache
	Message cache records

	Chapter 16. Backout failure
	Chapter 17. Operations
	Chapter 18. Report controller recovery
	Types of report controller failure
	Recovering from failures

	Chapter 19. Recovery in a DL/I VSE environment
	Use of DL/I VSE
	Design factors
	Implementing recoverability of DL/I VSE databases
	DL/I VSE error processing

	Bibliography
	Books from VSE/ESA 2.4 base program libraries
	Books from VSE/ESA 2.4 optional program libraries

	Notices
	Trademarks and service marks

	Index

