

CICS Transaction Server for VSE/ESA IBM

Front End Programming Interface User’s
Guide
Release 1

 SC33-1662-00

CICS Transaction Server for VSE/ESA IBM

Front End Programming Interface User’s
Guide
Release 1

 SC33-1662-00

First Edition (June 1999)

This edition applies to Release 1 of CICS Transaction Server for VSE/ESA, program number 5648-054, and to all subsequent versions,
releases, and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

This softcopy version is based on the printed version of the Front End Programming Interface User’s Guide for CICS Transaction Server for
VSE/ESA Release 1. Formatting amendments have been made to make this information more suitable for softcopy.

Order publications through your IBM representative or the IBM branch office serving your locality.

At the end of this publication is a topic titled “Sending your comments to IBM”. If you want to make any comments, please use one of the
methods described there.

 Copyright International Business Machines Corporation 1992, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

About this book . vii
Who this book is for . vii
What you need to know to understand this book vii
How to use this book . vii
CICS syntax notation used in this book . viii

Notes on terminology . ix
Road map . xi

Part 1. Concepts and facilities . 1

Chapter 1. Introducing FEPI . 3
Problems FEPI can solve . 3
How FEPI fits into your system . 4
Planning for FEPI . 5

Chapter 2. Functions and services . 7
Introducing FEPI functions . 7
Programming commands . 8
Setup and resources . 9
CICS FEPI application programs . 10
Terminals supported . 11
Security . 11
Problem determination, customization, and performance 12

Part 2. Installation and administration . 13

Chapter 3. Planning for FEPI . 15
Analysis and planning . 15
Organizing your pools and property sets . 17
Planning FEPI storage . 19

Chapter 4. Getting started . 21
The installation process . 21

Chapter 5. Configuring FEPI . 23
CICS configuration . 23
VTAM configuration . 24
Back-end system configuration . 26
FEPI configuration . 27

Chapter 6. FEPI operation . 37
Controlling FEPI resources . 37
Performance . 39
Shutdown . 40
Using FEPI with XRF . 41
Using FEPI with VTAM persistent sessions . 44

Chapter 7. Operator control . 47
CEMT—master terminal transaction . 47
CEMT DISCARD . 48
CEMT INQUIRE FECONNECTION . 49
CEMT INQUIRE FENODE . 51
CEMT INQUIRE FEPOOL . 52
CEMT INQUIRE FEPROPSET . 53
CEMT INQUIRE FETARGET . 54

 Copyright IBM Corp. 1992, 1999 iii

CEMT SET FECONNECTION . 55
CEMT SET FENODE . 56
CEMT SET FEPOOL . 57
CEMT SET FETARGET . 58
CETR—trace control transaction . 59
VTAM commands . 59

Chapter 8. Customizing FEPI . 61
Global user exits . 61
Journaling . 65

Chapter 9. System programming reference . 67
General information about the FEPI SPI commands 67
FEPI ADD POOL . 69
FEPI DELETE POOL . 70
FEPI DISCARD NODELIST . 70
FEPI DISCARD POOL . 71
FEPI DISCARD PROPERTYSET . 71
FEPI DISCARD TARGETLIST . 71
FEPI INQUIRE CONNECTION . 72
FEPI INQUIRE NODE . 74
FEPI INQUIRE POOL . 75
FEPI INQUIRE PROPERTYSET . 77
FEPI INQUIRE TARGET . 79
FEPI INSTALL NODELIST . 80
FEPI INSTALL POOL . 81
FEPI INSTALL PROPERTYSET . 82
FEPI INSTALL TARGETLIST . 84
FEPI SET CONNECTION . 85
FEPI SET NODE . 86
FEPI SET POOL . 87
FEPI SET TARGET . 88
FEPI SP NOOP . 89
Transient data queue records . 89

Chapter 10. Problem determination . 91
Debugging FEPI applications . 91
FEPI dump . 91
FEPI trace . 94
FEPI messages . 95
FEPI abends . 95
Reporting a FEPI problem to IBM . 96

Part 3. Application programming . 99

Chapter 11. Basics . 101
Communication and conversations . 101
Structure and design . 102

Chapter 12. Key stroke and screen-image applications 105
General sequence of commands . 105
Sending key stroke data . 106
Receiving field-by-field . 107
Multiple attentions . 108
Sending screen-image data . 109
Receiving screen-image data . 110
Extracting field data . 111
CONVERSE . 112

iv CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

Chapter 13. Data stream applications . 113
When to use the data stream interface . 113
General sequence of commands . 114
Receiving . 114
Sending . 116
CONVERSE . 117
SLU2 mode considerations . 117
SLU P mode considerations . 118

Chapter 14. Application design . 119
Programs . 119
Application organization . 121
Signon security . 125
Error handling . 126
System considerations . 128

Chapter 15. Specialized functions . 133
Set and test sequence number (STSN) . 133
DRx responses . 133
SNA commands . 134

Chapter 16. Application programming reference 135
General information about the FEPI API commands 135
FEPI ALLOCATE PASSCONVID . 136
FEPI ALLOCATE POOL . 137
FEPI AP NOOP . 138
FEPI CONVERSE DATASTREAM . 138
FEPI CONVERSE FORMATTED . 141
FEPI EXTRACT CONV . 144
FEPI EXTRACT FIELD . 145
FEPI EXTRACT STSN . 146
FEPI FREE . 147
FEPI ISSUE . 148
FEPI RECEIVE DATASTREAM . 149
FEPI RECEIVE FORMATTED . 150
FEPI REQUEST PASSTICKET . 152
FEPI SEND DATASTREAM . 153
FEPI SEND FORMATTED . 154
FEPI START . 155
Start data . 156
Data formats . 157
Ending status . 158

Part 4. Appendixes . 159

Appendix A. Sample programs . 161
What you get . 161
Installing the samples . 163
Using the samples . 163
Description of the samples . 166

Appendix B. CVDA and RESP2 values . 181
CVDAs and numeric values in alphabetic sequence 181
CVDAs and numeric values in numeric sequence . 182
RESP2 values . 183

Glossary . 185

Bibliography . 191

 Contents v

Books from VSE/ESA 2.4 base program libraries . 192
Books from VSE/ESA 2.4 optional program libraries 194

Notices . 197
Programming interface information . 198
Trademarks and service marks . 198

Index . 199

vi CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

About this book

This book describes the Front End Programming Interface (FEPI) of CICS Transaction
Server for VSE/ESA Release 1. It contains:

� Part 1, “Concepts and facilities” on page 1: An introduction to FEPI.

� Part 2, “Installation and administration” on page 13: Overview, guidance, and reference
information for the system programmer and administrator.

� Part 3, “Application programming” on page 99: Overview, guidance, and reference
information for the application programmer.

� Part 4, “Appendixes” on page 159: Descriptions of the supplied sample programs, and
lists of CVDA and RESP2 values returned by FEPI commands.

Who this book is for
This book is intended primarily for CICS system programmers and administrators responsible
for installing and configuring FEPI, and for application programmers responsible for writing
FEPI “front-end” application programs.

What you need to know to understand this book
To install FEPI, you need to be familiar with the tasks involved in installing CICS itself; in
particular, you should have experience of the VSE operating system, and the Maintain
System History Program (MSHP) used to install CICS.

To configure FEPI, you need to be familiar with all aspects of CICS administration (such as
system definition, resource definition, customization, and operations) and the programming
interface to CICS. Information about CICS system definition is in the CICS System Definition
Guide. Information about defining resources to CICS is in the CICS Resource Definition
Guide. Programming information about customizing CICS is in the CICS Customization
Guide. Programming information about EXEC CICS commands is in the CICS Application
Programming Reference and the CICS System Programming Reference manuals. You
should also be familiar with the ACF/VTAM telecommunication access method.

To write FEPI “front-end” applications, you need to know how to write programs in at least
one of the programming languages that CICS supports. More importantly, you also need
knowledge of data communication and protocols.

How to use this book
Read “Part 1, Concepts and facilities”, as an introduction to FEPI. Other parts and chapters
are self-contained. Use an individual part or chapter when performing the task described in
it.

 Copyright IBM Corp. 1992, 1999 vii

CICS syntax notation used in this book
Throughout this book, the syntax of CICS commands is presented in a standard way.

The “EXEC CICS” that always precedes each command’s keyword is not included; nor is the
“END_EXEC” statement used in COBOL or the semicolon (;) used in PL/I and C/370 that
you must code at the end of each CICS command. In the C/370 language, a null character
can be used as an end-of-string marker, but CICS does not recognize this; you must never,
therefore, have a comma or period followed by a space (X'40') in the middle of a coding
line.

You interpret the syntax by following the arrows from left to right. The conventions are:

Symbol Action

55─ ──┬ ┬─A─ ────5%
 ├ ┤─B─
 └ ┘─C─

A set of alternatives—one of which you must code.

55─ ──┬ ┬─── ────5%
 ├ ┤─A─
 ├ ┤─B─
 └ ┘─C─

A set of alternatives—one of which you may code.

 ┌ ┐───────
55─ ───

6
┴┬ ┬─── ──5%

 ├ ┤─A─
 ├ ┤─B─
 └ ┘─C─

A set of alternatives—any of which you may code.

 ┌ ┐─A─
55─ ──┼ ┼─── ────5%
 └ ┘─B─

Alternatives where A is the default.

55──┤ Name ├──5%

Name:
├──A─ ──┬ ┬─── ───┤
 └ ┘─B─

Use with the named section in place of its name.

Punctuation and
uppercase
characters

Code exactly as shown.

Lowercase
characters

Code your own text, as appropriate (for example, name).

viii CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

Notes on terminology
The terms listed in Table 1 are commonly used in the CICS Transaction Server for
VSE/ESA Release 1 library. See the CICS Glossary for a comprehensive definition of
terminology.

Table 1 (Page 1 of 2). Commonly used words and abbreviations in CICS Transaction Server for
VSE/ESA Release 1

Term Definition (and abbreviation if appropriate)

$(the dollar symbol) In the character sets and programming
examples given in this book, the dollar symbol
($) is used as a national currency symbol and
is assumed to be assigned the EBCDIC code
point X'5B'. In some countries a different
currency symbol, for example the pound
symbol (£), or the yen symbol (¥), is assigned
the same EBCDIC code point. In these
countries, the appropriate currency symbol
should be used instead of the dollar symbol.

BSM BSM is used to indicate the basic security
management supplied as part of the VSE/ESA
product. It is RACROUTE-compliant, and
provides the following functions:

 � Signon security
� Transaction attach security

C The C programming language

CICSplex A CICSplex consists of two or more regions
that are linked using CICS intercommunication
facilities. Typically, a CICSplex has at least
one terminal-owning region (TOR), more than
one application-owning region (AOR), and may
have one or more regions that own the
resources accessed by the AORs

CICS Data Management Facility The new CICS Transaction Server for
VSE/ESA Release 1 facility to which all
statistics and monitoring data is written,
generally referred to as “DMF”

CICS/VSE The CICS product running under the VSE/ESA
operating system, frequently referred to as
simply “CICS”

COBOL The COBOL programming language

DB2 for VSE/ESA Database 2 for VSE/ESA which was previously
known as “SQL/DS”.

ESM ESM is used to indicate a
RACROUTE-compliant external security
manager that supports some or all of the
following functions:

 � Signon security
� Transaction attach security

 � Resource security
 � Command security
 � Non-terminal security
� Surrogate user security
� MRO/ISC security (MRO, LU6.1 or LU6.2)

 � FEPI security.

FOR (file-owning region)—also known as a
DOR (data-owning region)

A CICS region whose primary purpose is to
manage VSAM and DAM files, and VSAM data
tables, through function provided by the CICS
file control program.

 About this book ix

Table 1 (Page 2 of 2). Commonly used words and abbreviations in CICS Transaction Server for
VSE/ESA Release 1

Term Definition (and abbreviation if appropriate)

IBM C for VSE/ESA The Language Environment version of the C
programming language compiler. Generally
referred to as “C/VSE”.

IBM COBOL for VSE/ESA The Language Environment version of the
COBOL programming language compiler.
Generally referred to as “COBOL/VSE”.

IBM PL/I for VSE/ESA The Language Environment version of the PL/I
programming language compiler. Generally
referred to as “PL/I VSE”.

IBM Language Environment for VSE/ESA The common runtime interface for all
LE-conforming languages. Generally referred
to as “LE/VSE”.

PL/I The PL/I programming language

VSE/POWER Priority Output Writers Execution processors
and input Readers. The VSE/ESA spooling
subsystem which is exploited by the report
controller.

VSE/ESA System Authorization Facility The new VSE facility which enables the new
security mechanisms in CICS TS for VSE/ESA
R1, generally referred to as “SAF”

VSE/ESA Central Functions component The new name for the VSE Advanced Function
(AF) component

VSE/VTAM “VTAM”

x CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Road map

The following terms have different meanings for FEPI, CICS, and VTAM:

application FEPI uses application in the normal sense of a program or suite of
programs that do work. VTAM uses application for programs that
communicate directly using VTAM; in a FEPI environment, this
means the back-end systems on one hand, and FEPI on the other.

conversation A FEPI conversation is analogous to a CICS APPC conversation. It
is not related to CICS conversational mode.

inbound, input In FEPI and CICS usage, these describe data received by a
program from elsewhere. From the point-of-view of the back-end
system, this data is outbound or output to a terminal.

message VTAM uses message to refer to any data transmission, and not just
to data displayed for a user’s attention.

node In VTAM, a node is a named point in a network. In FEPI, nodes
are those points (VTAM nodes) that are the secondary LU terminals
simulated by FEPI.

outbound, output In FEPI and CICS usage, these describe data sent by a program to
somewhere else. From the point-of-view of the back-end system,
this data is inbound or input from a terminal.

secondary In VTAM, secondary describes one of the partners of an LU-LU
pair; the terminals simulated by FEPI are secondary LUs. This is
not the same as the CICS usage of secondary.

Table 2. Getting started road map

If you want to... Refer to...

Read an overview of FEPI Part 1, “Concepts and facilities” on page 1

Learn how to configure and control FEPI Part 2, “Installation and administration” on
page 13

Learn how to write FEPI applications Part 3, “Application programming” on page 99

Look at some sample FEPI programs “Appendixes” on page 159

Check technical terms used in this manual “Glossary” on page 185

 About this book xi

xii CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

Part 1. Concepts and facilities

Table 3. Concepts road map

If you want to... Refer to...

Know what FEPI is and what it can be used for Chapter 1, “Introducing FEPI” on page 3

Know what kinds of function FEPI supports Chapter 2, “Functions and services” on page 7

 Copyright IBM Corp. 1992, 1999 1

2 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Introducing FEPI

 Chapter 1. Introducing FEPI

This chapter explains what the CICS Transaction Server for VSE/ESA Front End
Programming Interface (FEPI) is, what problems it solves, what it does, and how it can help
you; it also describes some planning considerations.

The Front End Programming Interface is an integral part of CICS. The function is called a
front-end programming interface because it enables you to write CICS application programs
that access other CICS or IMS programs. In other words, it provides a front end to those
programs. The interface simulates the terminals that the other programs use.

The chapter contains the following topics:

� “Problems FEPI can solve”
� “How FEPI fits into your system” on page 4
� “Planning for FEPI” on page 5.

Problems FEPI can solve
Many users have CICS and IMS applications that they want to use differently; for example,
to extend their use by incorporating them into other applications. But they cannot change
the way the applications are used because they cannot change the application programs.

FEPI allows existing CICS and IMS application programs to be used in different ways, in
different combinations, in different environments, and on different systems, without changing
them, because it provides a simple integrated interface to these programs.

FEPI also lets you write new programs that add function to old programs.

There are many reasons why existing application programs can’t be changed. Perhaps the
application was bought in a package, so that you don’t have the source. Perhaps someone
else owns the application; perhaps it runs on someone else’s system. Perhaps the source
has been lost, and there’s no one around who knows the program well enough. Perhaps the
program logic is so complex that any changes are considered too dangerous.

Or perhaps it is an application that was written for one specific environment, such as IBM
3270 information display systems, and you want to use it for another, or you want to extend
its function. You don’t want to change the application, because it must still work with the
3270s.

To get around this, you can run the existing application unchanged and provide a front-end
program to interface to it. Using FEPI, a front-end program can simulate a terminal. This
means the program can gain access to applications written to support that terminal. That
program can then use the existing applications, and the existing application is unaware that
anything has changed.

Therefore, the existing application can be used differently without being changed in any way.
The changes are in the simulating program. For example, newly written applications can
collect data from several existing applications. The existing applications can be on the same
system as the simulating program, or on a different system.

Advantages over alternative solutions
There are other ways of accessing existing programs differently, but they all have their
drawbacks.

Can CICS multiregion operation (MRO) or intersystem communication (ISC) be used to
access remote applications?

Yes, but using MRO or ISC often requires some changes to the existing
application—for example, to change the type of terminal supported or to provide an
interface that uses a communication area.

 Copyright IBM Corp. 1992, 1999 3

 Introducing FEPI

Can VTAM program-to-program support be used?
Yes, if your programmers can write an access program to issue the appropriate VTAM
calls. But these VTAM calls cannot be part of a CICS application program.

How FEPI fits into your system
Figure 1 shows the relationship between FEPI and other components of your system. Note,
particularly, the unchanged applications in the lower part of the figure, and the new CICS
FEPI application near the top. To an existing application, the front-end application looks like
a terminal.

n e w
a p p l i c a t i o n

s e t u p
f u n c t i o nC I C S

C I C S F E P I

V T A M

f r o n t e n d

b a c k e n d

3 2 7 0

S i m u l a t e d
t e r m i n a l s

V T A M

I M S

U N C H A N G E D
a p p l i c a t i o n A

U N C H A N G E D
a p p l i c a t i o n B

C I C S

V T A M

K e y :

C o n c e p t u a l
d a t a f l o w

U s e r - s u p p l i e d
p r o g r a m

I B M - s u p p l i e d
p r o g r a m

3 2 7 0

Figure 1. Structure of FEPI and application programs

Now some definitions: the front end is the system on which the CICS FEPI application runs,
and the back end is the system on which the existing application runs. (They may be the
same system.)

FEPI allows CICS front-end application programs to communicate with unchanged back-end
applications running on CICS or IMS systems that are local or remote. The back-end
applications continue to work just as if they are being accessed from the type of terminal
they were originally written for.

A CICS FEPI application is a CICS application that is designed to use FEPI to communicate
with existing back-end applications. It is also known as a terminal front-end program.

4 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Introducing FEPI

Planning for FEPI
This section explains what hardware and software you need to use the CICS Transaction
Server for VSE/ESA Front End Programming Interface (FEPI), what VSE system integrity is
involved, what resources you need, and what to consider when installing FEPI and
customizing your system.

Hardware and software requirements
There are different requirements for the front-end and the back-end.

 Front-end
For front-end systems, FEPI is a part of CICS.

Other hardware and software requirements are the same as for CICS Transaction Server for
VSE/ESA.

Extra 37x5 controllers and network control programs (NCPs) may be needed to provide the
necessary intersystem connections.

 Back-end
Applications running on the following, and subsequent compatible releases, are supported:

� CICS/VSE Version 2 Release 2
� CICS/VSE Version 2 Release 3
� CICS Transaction Server for VSE/ESA
� CICS/MVS Version 2 Release 1 Modification 2
� CICS/ESA Version 3 Release 1
� CICS/ESA Version 3 Release 3
� CICS/ESA Version 4
� CICS Transaction Server for OS/390
� IMS/VS Version 2 Release 2
� IMS/ESA Version 3
� IMS/ESA Version 4
� IMS/ESA Version 5

FEPI provides simulation for two very common classes of terminals on these systems:

� 3270-types for CICS and IMS applications (using LU 2 protocol)

� A family of programmable terminals, including the 4700, accessed through an LU 0
protocol (called SLU P), for IMS applications.

 System integrity
All application programs that use FEPI run in problem-program mode in user-key storage.
No part of FEPI needs to be authorized to run.

IBM accepts authorized program analysis reports (APARs) where the installation of the FEPI
function introduces an exposure to the system integrity of VSE.

 Storage
Some storage below the 16MB line is required, but the bulk resides above the 16MB line in
storage managed by CICS. For details, see “Planning FEPI storage” on page 19.

There are no inherent resource limits in FEPI. It is limited only by what is configured and the
available system storage.

 Chapter 1. Introducing FEPI 5

 Introducing FEPI

 Configuration
You need to configure your system specifically for CICS FEPI, for new application programs,
and possibly for existing applications. See Chapter 3, “Planning for FEPI” on page 15 and
Chapter 5, “Configuring FEPI” on page 23 for more information.

For the CICS FEPI function itself
You may need to adapt your VTAM setup, your CICS system, and CICS FEPI to use the
interface effectively.

The CICS system initialization parameter and override, FEPI=YES|NO (default NO), controls
whether FEPI is available or not. If it is, it runs as a system transaction that is started
automatically when CICS starts; it does not need to be started (or stopped) independently.

FEPI itself is configured with the resources that it can use, by issuing commands from a
front-end application program; FEPI does not use a configuration file or CICS RDO. The
system programmer should provide a setup program to configure FEPI using these requests;
the program can get the configuration data from a file or from whatever source it identifies.

For CICS FEPI applications
CICS FEPI applications must be defined to CICS in the normal way.

For back-end systems
It may be necessary to define simulated terminals for FEPI to use.

6 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Functions and services

Chapter 2. Functions and services

This chapter contains the following topics:

� “Introducing FEPI functions”
� “Programming commands” on page 8
� “Setup and resources” on page 9
� “CICS FEPI application programs” on page 10
� “Terminals supported” on page 11
� “Security” on page 11
� “Problem determination, customization, and performance” on page 12.

Introducing FEPI functions
The CICS Front End Programming Interface (FEPI) provides access, by means of simulated
terminals, to CICS and IMS applications available through a communication network. An
application program using FEPI can provide a front end to other CICS or IMS applications.
Because this is done by simulating a terminal in session with the non-FEPI application, that
application does not have to be changed in any way.

Thus you can write FEPI applications that provide a single integrated interface to previously
disparate applications. The scope and usability of your CICS and IMS applications can be
extended by using them in combination, in different environments, or on different systems.

Because a FEPI application communicates with other applications that may run in different
systems, it is necessary to distinguish between systems and identify the direction of data
flows. The convention is:

Front-end The front-end system is the one in which the FEPI application runs.

Back-end Back-end identifies the system in which the other CICS or IMS applications run.
(This is equivalent to “partner” system, used elsewhere by CICS.)

Outbound Identifies data sent by the FEPI application to the back-end application.

Inbound Identifies data received by the FEPI application from the back-end application.

FEPI provides a programming interface. Its functions can be invoked only through that
interface, which is an extension to the EXEC CICS programming interface. All FEPI
requests are made by issuing EXEC CICS FEPI commands; all the commands have the
qualifier FEPI. The languages supported by the EXEC CICS programming interface
(Assembler, COBOL, C, PL/I) can be used. For educational and initial development
purposes, you could simply use CECI, rather than formally writing a program.

All functions are available in the normal way to all applications, except that some functions
are intended for system programmers, and their use can be restricted. All the other facilities
that you can use with CICS applications, such as the execution diagnostic facility (EDF) and
the command interpreter transaction, CECI, are available.

 Samples
To help you develop your own CICS FEPI applications, and to show you what FEPI can do,
FEPI includes detailed samples. They form an integrated set, and include a program that
sets up the FEPI configuration needed to run the other samples. The samples are supplied
in source format. Their names have the form DFH0xZyy. Z shows that the sample is a
FEPI sample and x identifies the source language of the sample (A for Assembler language,
C for C, P for PL/I, and V for COBOL), and yy identifies the specific program. See
Appendix A, “Sample programs” on page 161.

 Copyright IBM Corp. 1992, 1999 7

 Functions and services

 Programming commands
EXEC CICS FEPI commands provide several ways of developing CICS FEPI applications.
The commands are at three logical levels:

High-level: a straightforward interface for normal 3270 applications

Data stream-level: for use with IMS SLU P applications and more complicated 3270
applications

Specialized-level: for access to complex VTAM communication functions and events,
designed for use by vendors and experienced CICS FEPI application developers.

High-level FEPI commands
The high-level front-end programming interface consists of two interfaces for everyday use:
key stroke and screen-image, collectively known as formatted data. They allow
programmers to build their own CICS FEPI applications in a straightforward manner.
However, the programmer must understand data communication and protocols.

See Chapter 12, “Key stroke and screen-image applications” on page 105 for details.

The key stroke interface
The key stroke interface allows programmers writing in any of the CICS-supported
languages, to specify the keys that an operator might press while using an existing
application. The key strokes are specified using easily coded mnemonics; no hexadecimal
values are required.

The screen-image interface
The screen-image interface allows programmers writing in any language supported by CICS,
to define the contents of a 3270 screen, using a data structure appropriate to the
programming language. It uses a buffer with one byte for each screen position (for example,
1920 bytes for a 24 × 80 character screen). This buffer can be defined in any way that suits
the application program and the programming language. It is passed as a complete screen
buffer to the back-end application.

In both cases, key stroke and screen-image, the data received from the back-end application
is presented as a screen image.

 Data-stream-level commands
For many applications, the key stroke and screen-image interfaces should be quite
adequate. However, where they are not, FEPI data-stream-level commands give an
application complete control of the 3270 data stream. These commands are also needed for
SLU P applications, which can use only this interface. FEPI does not buffer or interpret the
data stream; it is presented as it arrives from the back-end application, and the front-end
application must be prepared to handle whatever is presented. Similarly, data sent by the
front-end application is transmitted without verification.

A detailed knowledge of data communication and protocols and of data stream format is
required.

See Chapter 13, “Data stream applications” on page 113 for details.

 Specialized-level commands
These are some of the specialized functions that can be accessed through FEPI:

STSN for SLU P applications: Set and test sequence number (STSN) is a communication
protocol used to check and control transmissions. FEPI normally handles all
necessary STSN processing automatically. However, FEPI also provides access to
STSN information for those applications that need to control sequence number data.

8 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Functions and services

Application access to definite responses: When a flow is received, the receiving LU can
choose what response to return to the sending LU. FEPI normally handles this
automatically, but also provides facilities for applications to determine this flow.

Other VTAM facilities: Some applications use a VTAM facility known as CLSDST(PASS);
this can be used in more sophisticated CICS FEPI application programming.

See Chapter 15, “Specialized functions” on page 133 for details.

List of commands
All the logical levels use more or less the same set of commands, though the options used
may vary. The EXEC CICS FEPI application programming commands are:

ALLOCATE Establishes communication with a back-end application
FREE Frees communication with a back-end application
SEND Sends data from a CICS FEPI application to a back-end application
RECEIVE Receives data into a CICS FEPI application from a back-end application
CONVERSE Sends data to and receives data from a back-end application
ISSUE Sends control data to a back-end application
EXTRACT Gets field data and attributes, set-and-test-sequence-number (STSN)

data, or conversation status
START Schedules a CICS transaction to handle inbound data.

Setup and resources
Besides the application programming functions that communicate with back-end applications,
FEPI also provides system programming functions that define and inquire about FEPI
resources and perform control functions. Defining and configuring FEPI resources is called
setup program. The EXEC CICS FEPI commands that provide these functions are:

INSTALL, ADD Sets up communication resources
DISCARD, DELETE Discards communication resources
INQUIRE Queries FEPI resource status
SET Controls FEPI resources.

The setup functions are usually performed by a customer-written transaction that is started
from a second-phase program list table post initialization (PLTPI) program. See “FEPI
configuration” on page 27.

FEPI resources can be controlled, like other CICS resources, using the CEMT SET and
INQUIRE functions. CECI can also be used. See Chapter 7, “Operator control” on
page 47.

 FEPI resources
There are four types of FEPI resource—pool, property set, target, and node. The
relationship between them is illustrated below. The resources are further explained in
Chapter 5, “Configuring FEPI” on page 23 and the more complex relationships possible
between them are illustrated in “Sample FEPI configuration” on page 30.

 Pool

Property set

Target 1
Target 2
...

Node 1
Node 2
...

A collection of nodes and targets

Defines the characteristics of a pool

Back-end systems

Simulated terminals

 Chapter 2. Functions and services 9

 Functions and services

A FEPI pool can have one or more nodes and one or more targets. The same nodes and
targets can be in any number of pools, except that the same node-target pair (a connection)
cannot occur in more than one pool.

A CICS FEPI application can reach a target only by specifying a pool, which defines the set
of nodes that can be used to make the connection, and the characteristics of the
communication.

A target and an open node in the same pool are ‘connected’; when bound, they are ‘in
session’. To bind means to establish a session on a connection, to make it ready to allow
communication.

The process of communicating with a back-end system is called a conversation; it is the
fundamental entity that a FEPI application deals with. Only one conversation can use a
connection at one time, although any number can do so consecutively. For efficiency, the
session on the connection is kept bound between conversations, unless you choose
otherwise. Furthermore, a conversation is owned by the task that establishes it; no other
task can use it.

Note: The use of the term conversation does not mean that the back-end or front-end
application has to be conversational, in the CICS meaning of the term.

CICS FEPI application programs
A CICS FEPI application comprises several distinct logical functions:

Access programs:
Communicate with the back-end applications

Begin-session handler:
Handles begin-session processing

End-session handler:
Handles end-session processing

STSN handler:
Assists message synchronization

Unsolicited-data handler:
Handles unsolicited inbound data

Monitor:
Handles unexpected events such as the loss of a session or errors in setup.

These functions can be in separate programs, or contained in one program. The need for
each function depends on the requirements of the application; in many cases default
processing is all that you need. You might need several styles of each function, again
depending on the requirements of your application.

The application programmer always writes the access programs. The system programmer
usually writes the monitors to handle the unexpected events that FEPI reports to transient
data queues such as CSZX. As for the other functions, sometimes the system programmer
writes them providing, perhaps, just one instance of each, so that they are common to
everyone. (This approach has the advantage that adherence to standard procedures—for
such things as signon and signoff—is enforced.) In other installations, the application
programmers provide them.

In many cases, writing a CICS FEPI application is straightforward. However, some
applications need more sophisticated programming. The programmer not only has to
understand all the displays and protocols of the back-end application and system (CICS or
IMS), but must also understand the detailed data-stream protocols. For further information,
see Chapter 14, “Application design” on page 119.

10 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Functions and services

 Terminals supported
To access back-end applications, FEPI has VTAM secondary logical unit (SLU) support, so
that CICS FEPI applications can simulate certain logical unit (LU) types. FEPI uses VTAM
program-to-program support to provide this function, and to communicate between front-end
and back-end applications.

Note: FEPI cannot send VTAM logon data.

FEPI provides simulation support for two families of terminals. The names SLU2 and
SLU P are used to identify the two types of support:

SLU2 for the 3270 family of terminals, used in many CICS and IMS applications. See the
3270 Data Stream Programmer’s Reference.

SLU P for a family of programmable terminals, including the 4700, accessed through an LU
0 protocol, for IMS applications. This protocol is defined in the IMS/VS Programming
Guide for Remote SNA Systems (for IMS/VS Version 2) or the IMS/ESA
Customization Guide (for IMS/ESA Version 3 and later).

Data-stream-level and specialized-level commands can be used with both families of
terminals, but the high-level commands, which use formatted data, are only for SLU2.

The mode of a conversation must be either SLU2 or SLU P; it cannot be mixed. For SLU2
conversations, formatted data or data stream data can be used, but cannot be mixed in the
same conversation. The mode and data type are controlled by the pool used, which is set
up by the system programmer.

These terminals are supported only when they are used to communicate with CICS or IMS
systems.

 Security
This section introduces FEPI security.

 Signon security
Because FEPI is a terminal emulator, the back-end system “sees” the front-end as a terminal
rather than a system; it cannot differentiate between FEPI emulation and a real device.
Thus, CICS bind, link, and attach-time security are not applicable to FEPI connections. If
security is enabled in the back-end system, in order for your FEPI application to access
protected resources the emulated terminal must be signed on to the back-end. The
alternative is that you do not use CICS security with FEPI—that is, you make all the
back-end transactions accessed by FEPI available to the CICS default user. This option is
clearly unacceptable; it means that you must either run a security risk or deprive your FEPI
applications of access to sensitive data.

When signing on to a back-end system, FEPI applications can ask the external security
manager (ESM) to supply a password substitute, or PassTicket.

Note: The use of PassTickets is dependent on the ESM installed on the back-end system.
See the ESM documentation for guidance.

Using PassTickets to sign on means that FEPI applications do not need to store user
passwords (which is risky), or ask users to reenter them (which is irritating). For information
about implementing signon security, see page 125.

 Chapter 2. Functions and services 11

 Functions and services

 Command security
You can restrict access to the FEPI system programming commands by defining operator
profiles to your ESM. For details of how to do this, see “Command-level security” on
page 22. All application programming commands are generally available.

Problem determination, customization, and performance

 Problem determination
Determining the source of an error involves the use of debugging tools, trace, dump routines,
and messages. These topics are described in Chapter 10, “Problem determination” on
page 91.

 Customization
Two CICS global user exits are available. They are described in “Global user exits” on
page 61.

Data that flows to and from CICS FEPI applications can be journaled for audit trails. For
details, see “Journaling” on page 65.

 Performance
You can use CICS monitoring and statistics data to help you tune FEPI applications, and to
control the resources that they use. For details, see “Using CICS monitoring and statistics”
on page 40.

12 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

Part 2. Installation and administration

Table 4. Administration road map

If you want to... Refer to...

Plan to use FEPI on your network Chapter 3, “Planning for FEPI” on page 15

Make FEPI operative Chapter 4, “Getting started” on page 21

Configure CICS, VTAM, and back-end systems
for FEPI

Chapter 5, “Configuring FEPI” on page 23

Control FEPI Chapter 6, “FEPI operation” on page 37

Check the operator commands used to control
FEPI

Chapter 7, “Operator control” on page 47

Customize FEPI by writing global user exit
programs or specifying journaling options

Chapter 8, “Customizing FEPI” on page 61

Check the system programming commands
available to control FEPI

Chapter 9, “System programming reference”
on page 67

Solve FEPI problems Chapter 10, “Problem determination” on
page 91

 Copyright IBM Corp. 1992, 1999 13

14 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Planning

Chapter 3. Planning for FEPI

This chapter is about planning your system and FEPI configuration. To understand it, you
need to be familiar with the basic FEPI concepts and terminology described in Part 1,
Concepts and facilities. You must also be familiar with all aspects of CICS administration
and operations; if you plan to use IMS, you also need to be familiar with IMS administration
and operations.

The chapter contains the following topics:

� “Analysis and planning”
� “Organizing your pools and property sets” on page 17
� “Planning FEPI storage” on page 19.

Analysis and planning
First, you need to consider the following:

� Details of the back-end applications and systems
� Names of nodes and targets
� Operator control requirements

 � Journaling requirements
� Signon and signoff procedures
� Special event handling
� Pools required for control reasons
� Pools required for functional reasons
� Number of nodes
� Setup program organization.

Then you can decide how to organize your pools, their properties, and the connections.

These are now discussed in turn.

Back-end applications and systems
You need to know whether the back-end systems are CICS or IMS, the terminal types they
use, and the timing and volume of transactions expected. Also, are there any restrictions on
the use of the terminals? For example:

� Is a specific terminal required, or can any terminal be used?

� Is a specific LU or terminal type defined in the target application—for example, a 3278
model 3?

Names of nodes and targets
How do you decide on names for your FEPI nodes and targets?

 Nodes
Decide which VTAM node names are available for use by FEPI as simulated terminals.
(Remember that FEPI nodes are VTAM APPL definitions, not logical units (LUs).) Do not
use names starting with “DFH”.

 Targets
The back-end system already has defined VTAM primary PLU names (applids) which you
must use. However, you can define your own local target names to associate with these
applids. This means that FEPI applications are not affected if an applid is changed; you
simply associate the local name with the new back-end target name. Do not use names
starting with “DFH”.

 Copyright IBM Corp. 1992, 1999 15

 Planning

Operator control requirements
The CEMT INQUIRE and SET master terminal transactions can be used to view and amend
the state of FEPI resources. CEMT DISCARD can be used to remove resources from FEPI.
This is described in Chapter 7, “Operator control” on page 47. If you decide you need extra
functions for operators, you will need to write appropriate programs.

 Journaling requirements
Journaling is available if you need it. Among the reasons for using FEPI journaling are:

� To create audit trails
� To monitor performance
� To control message security.

For further information, see “Journaling” on page 65.

Signon and signoff procedures
You need to know if there are any specific requirements for signon and signoff to back-end
systems. Central control may be required, or applications may perform signon and signoff
individually.

Special event handling
In addition to signon and signoff, you need to consider what should be done in the following
circumstances, and whether they are to be handled by central functions or by applications
individually:

� The receipt of unsolicited data
 � Unexpected events
� Beginning a session
� Ending a conversation or session
� Shutdown of the front-end CICS system.

If some sort of enforcement is required, or you want central provision for convenience,
commonality, or the upholding of conventions and standards, you must supply a set of
standard handlers. Otherwise, the application programs must handle each event. If you
need special back-end processing when CICS shuts down, you need an end-session
handler.

Unexpected events (including errors in setup) are reported to a transient data (TD) queue, so
that a monitoring transaction can be triggered to handle them; they also send a message to
the FEPI message log CSZL. You must decide how to handle these events, and which
queues to use.

For more detailed information about the design and structure of applications, including
information about using the various event handlers, see Chapter 14, “Application design” on
page 119.

If you want central control over the range of FEPI commands that applications are permitted
to issue, you can use the XSZBRQ global user exit, which is described in “Global user exits”
on page 61.

Using pools for control reasons
You can use pools for a number of control purposes. For example, you could define them
so as to:

� Restrict users and applications to particular targets or nodes, or restrict access to some
targets to particular times of day.

� Force specific begin-session and end-session effects.

� Split resources among different types of back-end requests, according to (for example)
priority, or to the department issuing the request. By doing this, you can ensure that

16 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Planning

there is always a set of connections to a target for time-sensitive requests, while other
connections handle long-running requests that are not time-sensitive.

� Ration the use of connections, especially for long-running requests, so that each set of
users has access to only a limited number of connections.

� Ease signon considerations.

Using pools for functional reasons
Pools determine the data format and special event handlers used by your FEPI applications.
These attributes may be specified by the application programmer, or they may be imposed
by the system programmer for central control, especially of signon and signoff.

If you need several types of special event handling, you might need to define your own
pool-specific transient data queues, as well as the default queues.

Number of nodes
The number of nodes required depends on:

� How the pools are structured
� How much storage is available
� How many concurrent sessions are required to a particular target.

The number of concurrent sessions to a particular target may depend on the volumes of data
to be transmitted and the speed of the network.

Although a node can have only one session with a particular target at a time, it can
communicate with several different targets concurrently, and several nodes can communicate
with the same target concurrently.

Setup program organization
You must decide:

� How many programs you need—for example, should your setup program consist of a
single module, or a set of related modules?

� Whether your programs should take replaceable parameters, or fixed values. (You
might use mainly fixed programs, with a flexible program for one-off changes.)

� When programs are to be run—started from a second-phase PLTPI program, under
operator control, or at set times of the day.

� Where the definitions required by the setup program are to be obtained—from panel
entry, from a file, or by other means.

Organizing your pools and property sets
When you have done the analysis work described in the previous section, you can decide
how to organize your pools, their properties, and the connections between nodes and
targets.

 Organizing pools
There are several ways of organizing your pools:

� If possible, restrict each pool to a single target, but specify as many nodes as you
believe you need to satisfy concurrent access to the target. The reasons for taking this
approach are:

– It avoids the need for the front-end application to specify a target.

– It makes it easier to avoid duplicate connection definitions.

 Chapter 3. Planning for FEPI 17

 Planning

– Because a connection is created for every node-target combination within a pool,
having large numbers of both nodes and targets within the same pool may generate
more resources than are actually required.

– The overhead associated with a pool is very small. Therefore there is no reason
not to define many pools.

– The expected concurrent usage of each target may be different. If you have more
than one target in the pool, it becomes difficult to estimate the number of nodes
required.

� You can define a pool containing only one node and one target. This lets a FEPI
application allocate a specific session, which is necessary if the target system
associates any special qualities with a particular terminal ID. You can use the XSZBRQ
global user exit to control access to the pool.

� You can define pools that use different nodes to reference the same target. By making
each pool available to a different group of users, you can eliminate competition for
resources. Alternatively, you could use each pool to support a different set of
properties, according to application requirements.

� If you plan to use the VTAM CLSDST(PASS) command, other considerations might
apply. See “Handling CLSDST(PASS)” on page 35.

Do not use names starting with “DFH” for pools.

Organizing property sets
Property sets allow you to define the properties of pools (such as the data format and
special functions they use) separately from the definition of the pool itself. You can use a
single property set to define any number of pools. You must define as many property sets
as you need to satisfy every unique pool requirement. Because the overhead associated
with a property set is very small, there is no reason why you should not define a large
number of them.

The properties are:

Device attributes
This specifies which family the simulated terminal belongs to, SLU2 or SLU P. For
SLU2, it also determines the presentation size of the display (24 x 80, 32 x 80, and so
on), and whether it supports extended attributes such as color.

Many back-end applications can be run with any terminal type, so you can use the
default device type (SLU2, 3278 model 2). But if you have applications that demand
particular terminal types, you need to define pools with the appropriate device types.

Data handling
This specifies which command level to use (high-level with formatted data, or data
stream), how much data can be handled, and how contention is to be handled.

High-level is simpler to use and suits many front-end applications; applications that
require sophisticated functions or use SLU P, and those performing a simple
pass-through, need the more complex data-stream-level. In most cases the default data
size of 4096 is adequate; increase it only if you know there are large amounts of data to
send and receive in a single command. Set contention handling so that the front end
wins—as for a real terminal—unless you have some particular reason for not doing so.

Session management
This specifies whether begin-session and end-session are to be handled by special
transactions, and whether initial inbound data is expected. For SLU P, it also includes
whether message resynchronization (“set and test sequence number” (STSN)) is to be
handled.

The use of event handlers was introduced on page 16; it is generally preferable to use
specially-written transactions for session management, rather than to leave it to be
handled individually by applications.

18 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Planning

If a back-end system sends initial data (a “good morning” message) you must specify
this as a property of the pool, so that FEPI waits for the data to arrive and ensures that
the front-end application receives it; otherwise the results will be unpredictable. For
SLU2, IMS always sends initial data; CICS might or might not do so, depending on your
system definition.

FEPI does all the necessary STSN handling automatically, but you can specify a
transaction to handle it yourself.

Unexpected events
This specifies how unsolicited data and other unexpected events (including setup errors)
are to be handled.

General considerations of the need for transactions and queues have been discussed
earlier in this chapter. If you choose not to handle unsolicited data in your own
transaction, you can tell FEPI how to handle it for you—positively or negatively; if the
back-end system is IMS, you must specify that FEPI should respond positively. All
unexpected events are logged in the FEPI message log (CSZL), even if you specify no
unexpected event queue.

Journaling
This specifies what sort of data journaling is required, and which journal to use.

Do not use names starting with “DFH” for property sets.

Planning FEPI storage
FEPI does not require any additional storage beyond that recommended for basic CICS
Transaction Server for VSE/ESA. As for dynamic storage, the storage used by FEPI is
allocated exclusively from CDSA and ECDSA; CDSA usage is only that required to support
VTAM processing. The following information allows you to estimate the storage
requirements of a particular FEPI configuration.

Table 5. Dynamic storage requirements (in bytes)

Item ECDSA CDSA

Basic 80K

For each node 288 180

For each node that is currently available
for communication

192

For each target 236

For each pool 272
+ 64 x (number of nodes in pool)
+ 64 x (number of targets in pool)

For each property set 176

For each connection (note 1) 432 if using data stream data
688 if using formatted data

For each connection that is currently
available for communication

384
+ additional value from Table 6 on
page 20 if using formatted data

For each current conversation 128

For each command in progress 2.5K
+ size of user data (Note 2)

Notes:

1. The number of connections is (number of nodes in pool) x (number of targets in pool) for
each pool.
2. This is the data that is to be sent and received, or used for defining resources. If global
user exits are used, twice the data size is needed; similarly if journaling is used.

 Chapter 3. Planning for FEPI 19

 Planning

For each connection that is currently available for communication and that uses formatted
data, additional ECDSA storage is required; the amount depends on the device-type and
capabilities defined, as shown in Table 6 on page 20.

You should add some contingency (say 10%) to your final estimate.

Table 6. Connection storage requirements (in bytes) by device type and function

Device type Basic Additional for
color support

Additional for
extended data
stream
support

Maximum

327x model 2 3840 1920 5760 11520

327x model 3 5120 2560 7680 15360

327x model 4 6880 3440 10320 20640

327x model 5 7128 3564 10692 21384

20 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Getting started

 Chapter 4. Getting started

FEPI is installed automatically when you install CICS. However, to make it operative you
need to install some additional resources.

The installation process
The process comprises the following tasks:

� Updating CICS resource definitions
� Installing FEPI resource definitions

 � Starting CICS.

A note about loading FEPI modules into the SVA
Any of the FEPI modules can be loaded in the VSE shared virtual are (SVA). However, as
with CICS modules in general, it is not recommended that you do so. (For information about
installing modules in the SVA, see the CICS System Definition Guide.)

Updating CICS definitions
The RDO group DFHFEPI, which is on the product tape, contains definitions of the following
resources:

� The FEPI programs (identified by the prefix DFHSZ)
� The FEPI transaction CSZI.

DFHFEPI is included in the default startup group list, DFHLIST. No additional RDO
definitions are required (other than those for your FEPI application programs).

Transient data queues
Define the following transient data (TD) queues in the destination control table (DCT):

CSZL
The FEPI message log. You can define CSZL as an intrapartition, extrapartition, or
indirect destination. Note that CSZL must be defined as non-recoverable
(DESTRCV=NO).

It is recommended that you define CSZL as an indirect destination, pointing to CSSL.

CSZX
The destination for information about unexpected events (including setup errors) that do
not relate to specific pools. You can define CSZX as an intrapartition, extrapartition, or
indirect destination. Note, however, that it must be defined as non-recoverable
(DESTRCV=NO).

It is recommended that you define CSZX as an intrapartition destination, with a trigger
level of 1, so that each event is processed immediately it is reported. (You must also,
of course, write and install the event-handling transaction that is to be triggered.)

Any pool-specific TD queues that you require
Such queues receive information about events that affect specific pools. They can be
defined as intrapartition, extrapartition, or indirect destinations. Note, however, that they
must be defined as non-recoverable (DESTRCV=NO).

It is recommended that you define pool-specific queues as intrapartition destinations,
with trigger levels of 1, so that each event is processed immediately it is reported.

For information about defining transient data queues, see the CICS Resource Definition
Guide. Sample definitions for the FEPI TD queues are given in DFH0IZRQ in the samples
library.

 Copyright IBM Corp. 1992, 1999 21

 Getting started

System initialization parameter, FEPI=YES|NO
Code FEPI=YES, to specify that FEPI is available. (The default is FEPI=NO.) For
information about setting system initialization parameters, see the CICS System Definition
Guide.

 Command-level security
If your installation uses CICS command security, you can restrict access to the EXEC CICS
FEPI system programming commands (and to the equivalent commands that you can issue
with the CEMT master terminal transaction) by defining access authorizations to your
external security manager (ESM). The commands you can protect in this way are those
listed in Chapter 9, “System programming reference” on page 67 and in the CEMT section
of Chapter 7, “Operator control” on page 47. You cannot restrict access to the FEPI
application programming commands (as listed in Chapter 16, “Application programming
reference” on page 135).

For details on protecting these FEPI commands, see the CICS Security Guide.

Installing FEPI resource definitions
Ensure that the RDO group DFHFEPI is in your startup group list. (DFHFEPI is in the
DFHLIST startup group list, so this should have been done automatically when you installed
CICS.)

 Starting CICS
Start your CICS region. This is described in the CICS System Definition Guide.

22 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Configuration

 Chapter 5. Configuring FEPI

Having done the planning work described in Chapter 3, “Planning for FEPI” on page 15, you
can now carry out the configuration tasks. These are:

� Defining your FEPI applications to CICS
� Defining nodes to VTAM
� Defining simulated terminals to back-end systems
� Writing the following for FEPI itself:

– A setup program, to install your FEPI resources
– A monitoring program, to handle unexpected events

 – If required:
- Global user exit programs

 - Common functions
- Transactions for operator control and administration.

To configure FEPI, you need to be familiar with all aspects of CICS administration (such as
system definition, customization, resource definition, and operations) and the programming
interface to CICS. Programming information is in the CICS Application Programming
Reference and the CICS System Programming Reference manuals. You should also be
familiar with VTAM and, if you are accessing IMS back-end systems, with IMS
administration.

The chapter contains the following topics:

 � “CICS configuration”
� “VTAM configuration” on page 24
� “Back-end system configuration” on page 26
� “FEPI configuration” on page 27.

 CICS configuration
Chapter 4, “Getting started” on page 21 covers everything that FEPI itself requires: the RDO
group DFHFEPI in the startup group list; definitions of the transient data queues CSZL and
CSZX; and any required security access controls.

Now you have to define your FEPI applications to CICS in the usual way. This includes the
setup programs, any common functions, and any additional transient data queues that you
need for handling pool-specific events.

Define transactions that are to be started by FEPI (the event handlers and
pseudoconversational access programs) as CICS started tasks, with SPURGE=NO and
TPURGE=NO to prevent them from being accidentally canceled by CICS. See page 21 for
details about the queues. Before starting, you should ensure that your CICS system has
enough storage available to support your FEPI configuration: for details, see “Planning FEPI
storage” on page 19.

Note that, in an intercommunication environment, FEPI itself must be run in the
application-owning region (AOR) and all transactions that FEPI may start must run locally.
This is because FEPI commands cannot be function shipped.

Setup-initialization program in PLT
The setup transaction that installs your FEPI nodes, targets, and pools is typically started by
a program list table (PLT) program. This process is described in “Running setup programs”
on page 28. If you use this method, you need to include your PLT program in the second
part of the program list table post initialization (PLTPI) list.

For information about coding entries in the PLTPI list, see the CICS Resource Definition
Guide.

 Copyright IBM Corp. 1992, 1999 23

 VTAM configuration

 VTAM configuration
For FEPI to communicate with the network, some information must be defined to VTAM.
This is described here. For information about configuring VTAM, see the VTAM Network
Implementation Guide and the VTAM Resource Definition Reference.

Defining FEPI nodes to VTAM
Each FEPI node (simulated secondary LU terminal) must have a VTAM application minor
node definition. The name of this minor node must be the same as the node name specified
on the FEPI INSTALL NODELIST command.

For example, the FEPI node called ‘FEPI0001’ would require the following application minor
node definition in VTAM:

DG4FEPI1 APPL ACBNAME=FEPIððð1

The important points to note are:

� If your network uses a naming convention to manage network resources, you can allow
a network-independent name to be used by specifying it on the ACBNAME keyword of
the VTAM APPL statement. If this is not the case, you can simplify the definition of the
VTAM application minor node by omitting the ACBNAME keyword (which means that the
margin-name—DG4FEPI1 in the example—must be the same as the FEPI node name).

� FEPI does not impose any additional restrictions on the naming of nodes, other than
that the names should not begin with “DFH”; apart from this, any values acceptable to
VTAM are acceptable to FEPI.

If you require password protection of the minor nodes, you can use the PRTCT keyword of
the VTAM APPL statement to specify a password of 1–8 characters. The password must
then be specified on the corresponding FEPI INSTALL NODELIST command.

VTAM application minor node definition statements are stored collectively as one or more
members of a VSE sub-library, accessed by VTAM in the VTAM startup JCL. If you are
defining multiple FEPI nodes, you may choose to place them all in a single member (also
known as a VTAM application major node) or in several members. They may also be added
to an existing VTAM application major node. How you choose to organize the VTAM
definitions may depend on how your installation manages its network resources, or how you
plan to manage the FEPI configuration.

Availability of network resources
For FEPI to communicate with the network using a node, both the application minor node
and the defining major node must be active, and the minor node must be in a connectable
condition.

If FEPI is initialized before VTAM, and is instructed to acquire this node, it retries the VTAM
OPEN request several times. Similarly, if a target application is unavailable, FEPI makes
another attempt at session initiation. After this, the operator will need to intervene to
establish connectivity.

Selection of FEPI session parameters
When FEPI establishes a session with a back-end system, it searches the VTAM LOGON
mode (logmode) table for an entry that corresponds to the simulated device type specified on
the FEPI INSTALL PROPERTYSET command used to define the pool to which the
node-target connection belongs. If it finds such an entry, it uses it to set the parameters for
the session. Suitable mode table entries for FEPI are in the LOGON mode table ISTINCLM.
Table 7 on page 25 shows how entries in ISTINCLM correspond to FEPI device types.

24 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 VTAM configuration

If ISTINCLM is defined as your default LOGON mode table, no additional definitions are
required, and FEPI sessions use the characteristics that these entries specify. If you have
defined a different default table, which does not contain the supplied entries, or if you want
to associate a different set of characteristics with the names listed above (for example,
class-of-service or pacing specifications), then you must provide the required entries in a
customized mode table. This must be associated with the node via the MODETAB keyword
of the VTAM APPL statement used to define the node to VTAM. For example:

DG4FEPI1 APPL ACBNAME=FEPIððð1,MODETAB=mode-table-name

Notes:

1. If you choose to define your own mode table, it needs to contain only those entries that
differ from the set supplied in the default mode table (for example, ISTINCLM). If VTAM
cannot find a given entry in the node-specific mode table, it automatically searches the
system default table for an entry of the same name.

2. FEPI establishes the presentation space size of a terminal, based on the session
parameters received in response to the session request, not on any fixed dimension
implied by the device type specified for the pool (although the device type does
establish a default value when a default BIND is received).

3. An externally initiated session (one started by the primary LU or by the operator through
the VARY LOGON command) can specify any entry name in the mode table. If you
expect to make use of external session initiation, it is advisable to specify the
DLOGMOD keyword on the APPL statement used to define the node in question. This
keyword identifies the mode table entry to be used in those cases where the session
initiation request did not specify session parameters. It can be specified regardless of
whether the MODETAB keyword is used. For example:

DG4FEPI1 APPL ACBNAME=FEPIððð1,

 MODETAB=mode-table-name,DLOGMOD=mode-table-entry-name

4. If you define your own mode entries, ensure that all the parameters in an entry are
appropriate. These logmode entries should be explicitly named in the APPL statements
as described in step 3.

Table 7. Relation of FEPI device-types to ISTINCLM mode table entries

DEVICE CVDA on
FEPI INSTALL
PROPERTYSET

Mode table entry in
ISTINCLM

Session parameters

T3278M2 D4A32782 LU2 3278 model 2

T3278M3 D4A32783 LU2 3278 model 3

T3278M4 D4A32784 LU2 3278 model 4

T3278M5 D4A32785 LU2 3278 model 5

T3279M2 SNX32702 LU2 3279 model 2

T3279M3 SNX32703 LU2 3279 model 3

T3279M4 SNX32704 LU2 3279 model 4

T3279M5 SNX32705 LU2 3279 model 5

TPS55M2 SNX32702 LU2 PS/55, 24 lines

TPS55M3 SNX32703 LU2 PS/55, 32 lines

TPS55M4 SNX32703 LU2 PS/55, 43 lines

LUP IBM3600 Secondary LU P (IMS protocol LU 0)

Note: The mode entries are fixed by FEPI; you cannot use any other entries.

 Chapter 5. Configuring FEPI 25

 back-end configuration

Pacing of FEPI sessions
The pacing values used for FEPI sessions should be consistent with whatever installation
standards are in effect for other LU2 and SLU P sessions in the network.

Back-end system configuration
No special configuration is needed for back-end systems, except that you must provide and
manage LUs (simulated terminals) for FEPI use. These terminals are defined to the
back-end CICS or IMS system just like real terminals. They can be explicitly defined or
auto-installed as required. They do not need to be defined to VTAM in the back-end system,
to which they appear as real terminals on that system. VTAM uses the various network
definitions to determine how and where to route data; it can be routed locally, cross-domain,
or cross-network. The LU name corresponds to the front-end node name. (Similarly, the
VTAM applid of the back-end system corresponds to the applid in the FEPI target definition.)
The diagram of the sample configuration in Figure 2 on page 30 illustrates these
relationships.

If your back-end systems use the extended recovery facility (XRF), you must use their
generic applids, rather than specific ones, in your FEPI target definitions. See “Using FEPI
with XRF” on page 41.

 CICS
For CICS back-end systems, acceptable terminal definitions (TYPETERMs) are:

 � DFHLU2E2
 � DFHLU2E3
 � DFHLU2E4
 � DFHLU2E5
 � DFHLU2M2
 � DFHLU2M3
 � DFHLU2M4
 � DFHLU2M5

These definitions match the VTAM mode table entries shown in Table 7 on page 25. You
must create your own TYPETERMs for 3279 model 5 and PS/55 devices, if required,
because no such definitions are supplied by CICS. If the back-end system is using
CICS/MVS Version 2, you must create all your own TYPETERMs or copy them from the
front-end system. For information about defining terminals to CICS, see the CICS Resource
Definition Guide.

 IMS
For terminals to be used by FEPI, the following settings are required in the TERMINAL
system definition macro:

� NAME must match the NODE name specified to and used by FEPI.
� MODETBL must specify the correct LOGMODE.

The following non-default settings are recommended . (FEPI will support the default settings
as well.)

� Specify OPTIONS=OPTACK for more efficient communication.

� Specify OPTIONS=FORCRESP so transactions are run in response mode. (If you let
this default, you might get non-response mode regardless of how the transactions are
defined.)

� Specify OPTIONS=NORELRQ to make IMS ignore external requests for the node.

For further information, see “IMS considerations” on page 128.

26 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI configuration

 FEPI configuration
You must write:

� A setup program to define your FEPI nodes, targets, property sets, and pools.

You may also need to write:

� A monitoring program to handle unexpected events (including setup errors)
� Any common functions not provided by individual FEPI applications
� One or more global user exit programs
� Some specialized operator transactions, to simplify the control of FEPI resources.

See Appendix A, “Sample programs” on page 161 for details of the samples that are
provided.

Writing configuration programs
FEPI programs are CICS applications, and so all aspects of CICS programming apply. For
guidance about writing CICS application programs, see the CICS Application Programming
Guide. For programming information, (including command formats, argument values, details
on the translation of programs, and language considerations), see the CICS Application
Programming Reference manual. Particularly relevant are the chapters in the Application
Programming Guide about designing efficient applications and dealing with exception
conditions.

The FEPI system programming commands are an extension of the EXEC CICS commands.
They have similar names and similar functions. The FEPI commands also have similar
keywords, but they are distinguished by having “FEPI” as a prefix. For system programming,
the commands are:

Definition:
EXEC CICS FEPI INSTALL Define communication resources
EXEC CICS FEPI ADD Add resources to a pool
EXEC CICS FEPI DELETE Remove targets or nodes from a pool
EXEC CICS FEPI DISCARD Remove communication resources completely from FEPI.

Operations:
EXEC CICS FEPI INQUIRE Query FEPI status and resources
EXEC CICS FEPI SET Control FEPI resources.

Note that, when translating your programs, you must specify the FEPI option, which instructs
the translator to process FEPI commands, but you do not need the SP option.

Your FEPI configuration programs can be AMODE(24) or AMODE(31)—that is, they can
issue FEPI commands in either 24- or 31-bit addressing mode, and reside above or below
the 16MB line.

 Exception conditions
As with all CICS commands, FEPI commands may produce exception conditions that you
can check using the RESP option, or capture using HANDLE CONDITION. Most FEPI
command errors return INVREQ. The particular error in each case is uniquely identified by
the RESP2 value. All the FEPI exception conditions and RESP2 values are listed in
Chapter 9, “System programming reference” on page 67. There are copy books that
contain declarations for the RESP2 values:

� DFHSZAPA for Assembler language
� DFHSZAPO for COBOL
� DFHSZAPP for PL/I
� DFHSZAPC for C.

For the system programming commands, errors are reported as unexpected events to the
CSZX or other transient data queue, and to the FEPI message log CSZL, as well as by
exception conditions on the command.

 Chapter 5. Configuring FEPI 27

 FEPI configuration

If there is an error, the command does nothing, and output values are not changed. Some
commands operate on a list of resources; an error in one resource does not prevent the
command from operating on the other resources in the list.

You can use EDF and CECI to debug FEPI programs. Because FEPI commands can be
quite long, you will probably find the NAME field of CECI useful.

All resource names used by FEPI are a fixed length of 8 characters; they must be padded
with blanks if necessary. For commands that use lists, make sure that the list field is a
multiple of 8 characters long and that the number option is set correctly; neither the
translator nor CECI checks these and you could get unpredictable results if they are wrong.

Writing setup programs
There are many considerations in designing setup programs, and so there is no single
recommended way of writing them. On the distribution tape, there is:

� An Assembler language sample setup program with filename DFH0AZXS
� A COBOL sample setup program with filename DFH0VZXS
� A C sample setup program with filename DFH0CZXS.

These programs install resources to make FEPI function with the other sample programs.
They show you one way of writing setup programs. See “Setup” on page 166.

Your setup programs must:

� Install all node names that are available for FEPI.

� Install all targets that FEPI is permitted to access.

� Install properties. See “Organizing property sets” on page 18 for guidance on what
choices to make. In defining the properties of connections in pools, the following
options must be set:

Device attributes DEVICE
Data handling FORMAT, MAXFLENGTH, CONTENTION
Session management BEGINSESSION, ENDSESSION, INITIALDATA, STSN
Unexpected events EXCEPTIONQ, UNSOLDATA, UNSOLDATACK
Journaling MSGJRNL, FJOURNALNUM

 � Install pools

� Associate nodes and targets with the pools to define connections.

Note that, by default, FEPI resources are available for use as soon as they are installed or
associated with a pool. For control, performance, or other reasons, you might want to
override this; if so, you must provide a further program (or operations procedure) to bring the
resources into service when you require them.

Many of the FEPI commands used by your setup program can use lists; using lists helps to
improve performance. If some items in a list fail, errors (both programming errors and
resource problems) are reported to your monitoring program, not to the setup program. If
you want to track the errors in the setup program itself, without using the monitoring
program, restrict your lists to a single item. Errors are then reported on the command itself.

In addition to a setup program, you may need a corresponding program to deal with deleting
and discarding resources.

Running setup programs
The setup program is typically initiated by a program list table (PLT) program. Using this
method, the setup program is run automatically at every CICS startup, including an XRF
takeover. The steps are:

1. Write your setup program.

2. Define it to CICS, using RDO, and associate it with a transaction.

28 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI configuration

Note: You can define your setup program statically, or allow it to be installed
automatically (autoinstalled) when it is invoked. For details of the CICS autoinstall
facility for programs, see the CICS Resource Definition Guide.

3. Write a PLT program containing the command

EXEC CICS START TRANSID(tranid) INTERVAL(1)

where tranid is the ID of your setup transaction. (For programming information about
writing PLT programs, see the CICS Customization Guide.)

4. Define your PLT program to CICS, and include it in the second part of the program list
table post initialization (PLTPI) list. (For information about coding entries in the PLTPI
list, see the CICS Resource Definition Guide.)

There may be a good reason for you to decide not to use the PLT to start the setup
transaction. For example, you may want to have several, time-sensitive, setup programs,
each having a corresponding discard program. If you decide not to use the PLT, you must
arrange to start the setup transactions manually.

You should restrict access to the setup programs, because they are of a sensitive nature.

Varying the resources installed by the setup program
Unless your setup program contains some conditional logic, you always get the same set of
FEPI resources installed. This may be exactly what you require, but if not, here are a few
techniques that might prove useful.

Checking startup type
Your setup program can determine how the CICS system started by issuing an EXEC CICS
INQUIRE SYSTEM STARTUP command. It could use this to install different sets of FEPI
resources for warm and cold starts.

Recording the status of resources
If you install all your FEPI resources at CICS startup, and then alter their accessibility,
consider writing a non-terminal transaction that runs frequently and uses the FEPI INQUIRE
commands to determine the status of each FEPI resource. Write these to a recoverable
temporary storage file. (You could, for example, use an XSZARQ global user exit program
to log changes to FEPI resources.) At restart time, your setup program can read the file to
determine the required access settings.

Using timed actions
You could take advantage of CICS automatic transaction initiation (ATI) at specified times to
control FEPI resources. If you want to terminate FEPI access to another system at a
specific time each day, schedule a transaction to run at the required time. When this
transaction runs it can either make the required FEPI resources unavailable for access, or
discard them. Because FEPI resources remain available for use by current tasks in this
circumstance, this has no effect on existing FEPI users.

You could use timed initiation in a similar way to make FEPI resources available.

Using event handlers
Another way of controlling FEPI resources is to use the begin-session and end-session event
handlers. (See “Other functions” on page 36.)

These handlers get invoked when a conversation starts and ends. Although they are
primarily designed to handle signon and signoff to the back-end systems, you can take
advantage of the fact that all FEPI functions are available to them. So you can use them to
control access to back-end systems by either installing or discarding FEPI resources.

For example, suppose you want to ensure that no FEPI application is waiting for a
connection to a back-end system. In the handlers, you issue FEPI INQUIRE POOL
commands, and look at the WAITCONVNUM option, which returns the number of FEPI
applications waiting for a connection. If this option exceeds a certain trigger value, issue

 Chapter 5. Configuring FEPI 29

 FEPI configuration

FEPI commands to increase the number of connections (that is, add nodes, define new
pools, and so on).

This technique can be extended to provide tuning of FEPI access to back-end systems.

Sample FEPI configuration
A sample configuration is given in Table 8 on page 31. Next, the target lists and node lists
used in the sample are given. Then there are the definitions used to achieve the sample
configuration. Figure 2 is a diagrammatic representation of the sample configuration.

N 1 0

N 1 1

N 1 2

N 2 0

N 1 0

N 1 1

N 1 2

N 2 0

N 3 0

N 1 0

N 1 1

N 1 2

N 2 0

N 3 0

V T A M

A P P L I D

C 1

V T A M

A P P L I D

I 1

V T A M

A P P L I D

I 2

N 1 0

N 1 1

N 1 2

N 2 0

N 3 0

F E P I d e f i n i t i o n s

T A R G E T (C I C S A)

A P P L I D (C 1)

T A R G E T (I M S A)

A P P L I D (I 1)

T A R G E T (I M S B)

A P P L I D (I 2)

V T A M

a p p l i c a t i o n

m i n o r n o d e s

A C B N A M E

= F E P I

n o d e n a m e

C I C S S y s t e m

w i t h F E P I

C I C S S y s t e m

I M S S y s t e m

I M S S y s t e m

c o n n e c t i o n s i n p o o l G R P F

c o n n e c t i o n s i n p o o l G R P E

c o n n e c t i o n s i n p o o l G R P D

c o n n e c t i o n s i n p o o l G R P C

c o n n e c t i o n s i n p o o l G R P B

B a c k e n dF r o n t e n d L U sC o n n e c t i o n s

G R P F

G R P F

G R P F

G R P D

G R P D

G R P D

G R P E

G R P C

G R P B

G R P B

G R P B

G R P E

G R P C

G R P F

Figure 2. The sample FEPI configuration—a diagrammatic representation

30 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI configuration

Note that this is not the configuration the sample programs use; it illustrates as many
aspects of configuration as possible.

Table 8. A sample FEPI configuration

Pool name GRPB GRPC GRPD GRPE GRPF

Property set SLUP SLU2M3I SLU2M3I SLU2M2I SLU2M2C

Target names IMSB IMSA
IMSB

IMSA IMSA
IMSB

CICSA

Node names N10 N11
N12

N30 N10 N11
N12

N20 N10 N11
N12 N20

Device type LUP T3278M3 T3278M3 T3278M2 T3278M2

Logmode name IBM3600 D4A32783 D4A32783 D4A32782 D4A32782

Exceptional events
queue name

IEXEPTP IEXEPT2 IEXEPT2 IEXEPT2 CEXEPT2

Unsolicited-data
transaction name or
response

IUP IU2 IU2 IU2 Negative

Begin-session
transaction name

ISIP ISI2 ISI2 ISI2 CSI2

End-session
transaction name

none IXI2 IXI2 IXI2 CXI2

STSN transaction name ISTP n/a n/a n/a n/a

Initial inbound data No Yes Yes Yes Yes

 Sample lists
Here are the target lists and node lists used in the sample configuration, padded to eight
bytes per item.

TLIST 'CICSA IMSA IMSB '

TLISTA 'IMSA '

TLISTB 'CICSA '

TLISTC 'IMSA IMSB '

TLISTD 'IMSB '

NLIST 'N1ð N11 N12 N2ð N3ð '

NLISTA 'N1ð N11 N12 '

NLISTB 'N2ð '

NLISTC 'N3ð '

NLISTD 'N1ð N11 N12 N2ð '

The following is the list of VTAM application names of the back-end CICS and IMS systems
with which FEPI applications will communicate.

PLIST 'C1 I1 I2 '

 Sample definitions
The following definitions illustrate the various possibilities when defining FEPI resources.

Define the back-end subsystems you want FEPI to access: This defines the logical
names (targets) that FEPI uses to refer to back-end systems (in this case CICSA, IMSA, and
IMSB as given in TLIST), and relates them to their VTAM names (C1, I1, and I2 as given in
PLIST).

EXEC CICS FEPI INSTALL TARGETLIST(TLIST) TARGETNUM(3)

 APPLLIST(PLIST)

 Chapter 5. Configuring FEPI 31

 FEPI configuration

Define the VTAM minor nodes available to FEPI: The names are N10, N11, N12, N20,
and N30, as given in NLIST.

EXEC CICS FEPI INSTALL NODELIST(NLIST) NODENUM(5)

Define properties: This defines the characteristics of the connections.

 SLU P connections:

EXEC CICS FEPI INSTALL PROPERTYSET(SLUP)

LUP /\ Device type (SLU P) \/

BEGINSESSION(ISIP) /\ Begin session handler \/

STSN(ISTP) /\ STSN transaction \/

EXCEPTIONQ(XPTP) /\ Exception report TD queue \/

UNSOLDATA(IUP) /\ Unsolicited-data transaction \/

NOTINBOUND /\ No "good morning" message \/

SLU2 24 x 80 connections to IMS

EXEC CICS FEPI INSTALL PROPERTYSET(SLU2M2I)

T3278M2 /\ Device type (3278 model 2, 24 x 8ð) \/

BEGINSESSION(ISI2) /\ Begin session handler \/

EXCEPTIONQ(XPT2) /\ Exception report TD queue \/

UNSOLDATA(IU2) /\ Unsolicited-data transaction \/

INBOUND /\ Initial data \/

ENDSESSION(IXI2) /\ End session handler \/

SLU2 32 x 80 connections to IMS:

EXEC CICS FEPI INSTALL PROPERTYSET(SLU2M3I)

T3278M3 /\ Device type (3278 model 3, 32 x 8ð) \/

BEGINSESSION(ISI2) /\ Begin session handler \/

EXCEPTIONQ(XPT2) /\ Exception report TD queue \/

UNSOLDATA(IU2) /\ Unsolicited-data transaction \/

INBOUND /\ Initial data \/

ENDSESSION(IXI2) /\ End session handler \/

SLU2 24 x 80 connections to CICS:

EXEC CICS FEPI INSTALL PROPERTYSET(SLU2M2C)

T3278M2 /\ Device type (3278 model 2, 24 x 8ð) \/

BEGINSESSION(CSI2) /\ Begin session handler \/

EXCEPTIONQ(CEXEPT2) /\ Exception report TD queue \/

EXCEPTIONQ(CPTP) /\ Exception report TD queue \/

NEGATIVE /\ Response to unsolicited data \/

INBOUND /\ "Good morning" message \/

ENDSESSION(CXI2) /\ End session handler \/

Define the pools of connections: The pools define connections between targets and
nodes; they specify which nodes can be used to access which target, and what properties
the connection has.

EXEC CICS FEPI INSTALL POOL(GRPB) PROPERTYSET(SLUP)

 TARGETLIST(TLISTD) TARGETNUM(1)

 NODELIST(NLISTA) NODENUM(3)

EXEC CICS FEPI INSTALL POOL(GRPC) PROPERTYSET(SLU2M3I)

 TARGETLIST(TLISTC) TARGETNUM(2)

 NODELIST(NLISTC) NODENUM(1)

EXEC CICS FEPI INSTALL POOL(GRPD) PROPERTYSET(SLU2M3I)

 TARGETLIST(TLISTA) TARGETNUM(1)

 NODELIST(NLISTA) NODENUM(3)

EXEC CICS FEPI INSTALL POOL(GRPE) PROPERTYSET(SLU2M2I)

 TARGETLIST(TLISTC) TARGETNUM(2)

 NODELIST(NLISTB) NODENUM(1)

EXEC CICS FEPI INSTALL POOL(GRPF) PROPERTYSET(SLU2M2C)

 TARGETLIST(TLISTB) TARGETNUM(1)

 NODELIST(NLISTD) NODENUM(4)

32 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI configuration

Writing monitoring programs
You need a monitoring program to handle:

� Unexpected events reported by FEPI
� Errors in FEPI system programming commands.

FEPI reports these events by writing a record to a transient data (TD) queue. You can
define pool-specific TD queues for FEPI, where information about events that relate to
specific pools is reported. (There is also a common FEPI TD queue, CSZX, where events
that do not relate to specific pools are reported.) Note that, if a pool-specific event occurs,
and you have not defined a corresponding queue, information about the event is lost. Also,
FEPI TD queues must be defined as ‘not recoverable’; if a queue is ‘recoverable’, FEPI does
not write to it, and discards any information about unexpected events.

Typically, you would arrange for the monitoring program to be triggered whenever an item is
placed in a TD queue. (Define the queue with TRIGLEV=1.) A single monitoring program
can service several queues, by using EXEC CICS ASSIGN QNAME to check which queue
triggered it. According to the nature of the event, the monitoring program might simply write
a message, log the event, or embark on a full conversation.

For example, using this method, whenever a session is lost, the monitoring program is
invoked. The TD queue data provides information about what happened. Your monitoring
program can obtain this in the usual way with EXEC CICS READQ TD. The following copy
books describe the structure of the data:

� DFHSZAPA for Assembler language
� DFHSZAPO for COBOL
� DFHSZAPP for PL/I
� DFHSZAPC for C.

Your program may then choose to reestablish the lost session, to reinitialize, and so on. It
may also set indicators for the application programs if contact with a target has been lost
altogether.

Monitoring programs are written using the techniques and commands discussed in Part 3,
“Application programming” on page 99. See also the overview of the sample monitoring
program in “Monitor and unsolicited data-handler” on page 167.

Handling unexpected events
This section suggests some actions your monitoring program could take after various types
of unexpected event. The type of event is indicated by the EVENTTYPE area in the TD
queue record. In most cases, the EVENTVALUE area gives specific details of the failure;
the values are the same as the RESP2 values listed in “RESP2 values” on page 183.

Events in CSZX TD queue records
INSTALLFAIL

A FEPI resource has failed to be installed. This is probably because you are
trying to install a duplicate name. This may indicate either a logic error or a
possible security violation.

Recommended action: Report possible application logic error, for
investigation.

DISCARDFAIL
A FEPI resource has not been discarded. This is probably because you are
trying to discard a nonexistent object. This may indicate a logic error.

Recommended action: Report possible application logic error, for
investigation.

SETFAIL
A FEPI resource has rejected a SET request. This is probably because you are
trying to manipulate a resource that does not exist. However, there is also the

 Chapter 5. Configuring FEPI 33

 FEPI configuration

possibility of rejection due to VTAM considerations. So SETFAIL may indicate
either a logic error or a network failure.

Recommended action: Schedule a transaction to repeat the operation (if not
a logic error).

ACQFAIL
A FEPI resource has failed to be acquired. This is probably because of a
network failure, and so FEPI automatically retries the acquire request several
times at intervals; the count in EVENTDATA shows whether there will be any
more retries. However, there is also the possibility of an error in either the
VTAM definition or the back-end system definition of the object.

Recommended action: After FEPI stops retrying, suggest investigating the
condition of the resource from a VTAM viewpoint. The VTAM sense code
describing the problem is in EVENTDATA. See the appropriate VTAM manual
for more information. For nodes, this is the VTAM Programming manual; for
connections, VTAM Messages and Codes. Further information is in the SNA
Formats manual.

SESSION
An unsolicited bind was received, probably because of a CLSDST(PASS). See
“Handling CLSDST(PASS)” on page 35.

Events in pool-specific TD queue records
SESSIONLOST

An active connection has failed. This is probably due to the back-end system
failing. However, this error is also generated if an operator cancels an active
connection.

Recommended action: Suggest that the operator:

� Investigate the condition of the connection from a VTAM viewpoint. The
VTAM sense code that describes the problem is in EVENTDATA. See the
VTAM Messages and Codes and SNA Formats manuals for more details.

� See whether the back-end system is still running.

� Check that the back-end system has not “closed” the FEPI simulated
terminal.

SESSIONFAIL
A connection has failed to start. This is probably due to a setup inconsistency
or to a failure of the back-end system, and so FEPI automatically retries the
acquire request several times at intervals; the count in EVENTDATA shows
whether there will be any more retries. However, this failure is also generated if
an operator has canceled the connection.

Recommended action: After FEPI stops retrying, suggest the operator:

� Investigate the condition of the connection from a VTAM viewpoint. The
VTAM sense code that describes the problem is in EVENTDATA. See the
VTAM Messages and Codes and SNA Formats manuals for more details.

� See whether the back-end system is still running.

� Check that the back-end system has not “closed” the FEPI simulated
terminal.

� Check that the terminal type definition in the back-end matches the FEPI
device type.

ADDFAIL
An attempt to add a target or node to a pool has failed. The probable cause of
this error is an attempt to add a resource that is already in the pool. This
indicates a possible logic error.

Recommended action: Report possible application logic error, for
investigation.

34 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI configuration

DELETEFAIL
An attempt to delete a target or node from a pool has failed. This is probably
caused by an attempt to delete a resource that is not in the pool, indicating a
possible logic error.

Recommended action: Report possible application logic error, for
investigation.

 Handling CLSDST(PASS)
A back-end system can end a network session with a VTAM CLSDST(PASS) request. This
indicates that the back-end will reestablish a session with the front-end using a different PLU
name (a third-party PLU). The front-end system detects reestablishment of the session by
receiving an unsolicited bind request; so when the back-end system ends a session, it is
important for it to indicate that an unsolicited bind is to be expected.

Note: To determine whether a lost session was caused by a CLSDST(PASS) request, a
FEPI application can issue a FEPI INQUIRE CONNECTION command. If the value of
LASTACQCODE is X'32020000', the back-end system issued a CLSDST(PASS) to unbind
the session.

The three most likely scenarios are described in the following sections.

Unsolicited bind not expected
FEPI unconditionally rejects the bind request.

Third-party PLU name known and unsolicited bind expected
The prospective PLU names must be defined to FEPI as targets. You might need to restrict
access to the pools that include these targets to make sure the connection is not already in
use when the CLSDST(PASS) takes place. The simplest way to configure this is to define a
pool containing the node and all the targets it can be placed in session with. Install all
connections except the initial one with an ACQSTATUS of RELEASED so the back-end
system can successfully acquire the session. No other special processing is required and no
TD queue record is written in this case.

Third-party PLU name not known and unsolicited bind expected
The necessary resource definitions must be managed dynamically.

Note: Managing the resource definitions dynamically (described under “Conversation in
progress”) is the only method that allows the conversation to persist across the
CLSDST(PASS).

When FEPI receives the unsolicited bind, it writes a record to the CSZX TD queue, with an
EVENTTYPE of SESSION, and with the third-party PLU name in the TARGET area. At this
point the bind has not been accepted or rejected. A VTAM display for either the back-end or
the front-end system would show the connection to be in a PSESST/B state. You are
responsible for managing these TD queue records and making the necessary FEPI
configuration updates so that processing can continue. If no action is taken, the session
remains in this state until a VTAM V NET,TERM command is issued to terminate the session
request.

There are two cases, according to whether or not there is a conversation in progress on the
connection when the CLSDST(PASS) occurs. (This can be determined from the STATE
option of the FEPI INQUIRE CONNECTION command.) In both cases, you need to
determine which pool has the connection that the CLSDST(PASS) applies to, because the
TD queue record does not report either the pool or the old target name. If the node is used
in only one pool, the old target name can be found easily by browsing connections using
FEPI INQUIRE CONNECTION; if not, use some other technique, such as the USERDATA
option of the FEPI SET commands.

Conversation in progress: Nodes for which this kind of processing is required should be
defined in pools containing only the node and the initial target, because of the nature of the
processing involved.

 Chapter 5. Configuring FEPI 35

 FEPI configuration

The monitor program should:

1. Install a new pool with the same properties as the current one.

2. Install a new target whose PLU name is the third-party PLU name given in the TARGET
area of the TD queue record.

3. Add the target to the new pool. This should be the only target in that pool.

4. Delete the node identified in the TD queue record from the pool in which it currently
exists. If necessary, to ensure continuity, the monitor program can add another node to
the pool before deleting the old node.

5. Add the node to the newly created pool. The new connection is now established.

When the session ends, the connection reverts to a RELEASED state. If necessary, use an
end-session handler to perform any necessary cleanup, such as reversing the process
described above.

The front-end application must also anticipate CLSDST(PASS) processing. See “Lost
session” on page 127 for more details.

Conversation not in progress: The CLSDST(PASS) occurred as a result of trying to
acquire a connection. The monitor program should:

1. Install a new target whose PLU name is the third-party PLU name given in the TARGET
area of the TD queue record.

2. Add the target to the pool, specifying a desired connection acquire status of
ACQUIRED. The new connection is now established.

If necessary, use an end-session handler to cleanup the dynamically defined targets. These
connections always become RELEASED when the session ends and can be left for reuse, if
required.

Writing operator transactions
You might find it useful to write some specialized operator transactions of your own to
control FEPI resources. For more information, see “Controlling FEPI resources” on page 37.

 Other functions
The other functions you might need to write for FEPI itself are the begin-session,
end-session, and unsolicited-data handlers. These are extensions of the FEPI application
programs, and are described in Part 3, “Application programming” on page 99. If you write
them as common functions, you need to know what the application programs do.
Alternatively, the application programmer may write them.

Global user exit programs
Two CICS global user exits are provided:

XSZBRQ Invoked before a FEPI command is executed
XSZARQ Invoked after a FEPI command is executed.

XSZBRQ is passed the parameters input to the command, and can be used to monitor
commands, to bypass commands that violate installation conventions, or to change the
parameters of a command, subject to the rules applying to global user exits. XSZARQ is
passed the parameters output from the command.

For details of the FEPI global user exits, see “Global user exits” on page 61. For
programming information about writing and using global user exit programs, see the CICS
Customization Guide.

36 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Controlling FEPI

 Chapter 6. FEPI operation

This chapter describes how FEPI operates. It includes information on controlling FEPI
resources, performance, and shutdown. It also describes using FEPI with XRF and VTAM
persistent sessions.

The chapter contains the following topics:

� “Controlling FEPI resources”
� “Performance” on page 39
� “Shutdown” on page 40
� “Using FEPI with XRF” on page 41
� “Using FEPI with VTAM persistent sessions” on page 44.

Controlling FEPI resources
The FEPI INQUIRE and SET functions can be carried out by a program, or by using the
master terminal transaction, CEMT. You may find it useful to write some specialized
operator transactions of your own.

The FEPI INQUIRE command (and its CEMT equivalent) tells you what resources are
defined and their statuses. The only thing you cannot do directly is determine which nodes
and targets are in a particular pool. Do this using CEMT to inquire about the connections in
a particular pool:

CEMT I FECONNECTION POOL(poolname)

To do this from an application program, browse all connections and select those in the pool
you want.

Here are the resource statuses of most interest:

 SERVSTATUS
SERVSTATUS is used with connections, nodes, pools, and targets. It specifies the service
status of the resource—that is, whether it can be used for a conversation. The service
status can be set to INSERVICE to allow usage, or to OUTSERVICE to stop usage for any new
conversation. Note that setting OUTSERVICE does not end any existing conversations that are
using the resource; the status is GOINGOUT until the existing conversations end.

 ACQSTATUS
ACQSTATUS is used with connections and nodes. It specifies the “acquire status” of the
resource. For a connection, this means whether it should have a session established
(bound) or ended (unbound). For a node, it means whether the VTAM ACB for the node
should be opened or closed. The acquire status can be set to ACQUIRED (a status of
ACQUIRING indicates that the acquisition has not yet been completed), or to RELEASED.

Setting RELEASED does not end any existing conversations that are using the resource; the
acquire status is RELEASING until the existing conversations end. However, for connections, a
conversation that is unowned and in a “pending” state (see “STATE” on page 39) is ended
immediately if the acquire state is set to RELEASED; this means that connections being used
by a failed application can be recovered.

ACQUIRING and RELEASING are shown as BEING ACQUIRED and BEING RELEASED by
CEMT.

Network and other problems can cause connections to become stuck in a RELEASING or
ACQUIRING state, in which case the operator might need to intervene using VTAM operator
commands.

 Copyright IBM Corp. 1992, 1999 37

 Controlling FEPI

If a FEPI connection remains in a RELEASING state for longer than expected, try the
following:

1. Note the node and target associated with the connection; use CEMT INQUIRE
FETARGET to find the VTAM application name that the target represents.

2. Issue the VTAM command

D NET,E,ID=nodename

to find out the state of network session associated with the connection.

3. Note the session status. See the VTAM Programming manual for an explanation of the
status. If no session exists and a subsequent INQUIRE of the connection status using
CEMT shows the state still as BEING RELEASED, there has been a system failure; you
should collect diagnostic information.

4. If the session is in ‘session takedown processing’, you can use the VTAM command

D NET,SESSION

to find out what signals are needed to complete processing.

5. If you can resolve the problem using commands on the back-end system, attempt to do
so.

6. If there is no other way to resolve the session status, you can use the VTAM command

V NET,TERM

to end the network procedure in progress. FEPI will then be able to complete
processing.

It is not so easy to find out when an ACQUIRING state has persisted for too long. However,
if you cannot determine why the session has not been established, follow the procedure
described above. If no session is active for the connection, FEPI is currently waiting for the
retry interval to expire. The system log should contain VTAM messages explaining why the
session cannot be established. The LACQCODE option of CEMT INQUIRE
FECONNECTION gives the reason code VTAM provided for the last session failure.

Also be sure to check that the node on which the connection depends is properly acquired; if
not, resolve whatever problem is indicated by the LACQCODE option for the node.

Note that, under normal circumstances, after a FEPI FREE RELEASE command has been
issued the session does not remain in RELEASED state, because FEPI automatically tries to
reacquire the session. However, if a FEPI SET CONNECTION ACQSTATUS(RELEASED)
command is issued before the FREE RELEASE, the session remains in RELEASED state.

 LASTACQCODE
The INQUIRE CONNECTION or INQUIRE NODE commands can use the option
LASTACQCODE (LACQCODE in CEMT), which returns the result of the last acquire
request. This is the sense code from the last VTAM operation, where zero indicates
success. For a full explanation of VTAM sense codes, see the appropriate VTAM manual:
for nodes, this is VTAM Programming; for connections, VTAM Messages and Codes.
Further information is in the SNA Formats manual.

 INSTLSTATUS
INSTLSTATUS is used with connections, nodes, pools, and targets. It specifies whether the
resource is installed, or is in the process of being discarded, waiting for the conversations
that are using it to end.

38 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Performance

 WAITCONVNUM
WAITCONVNUM shows how many conversations are currently waiting to start using a
connection or pool. If WAITCONVNUM is nonzero for significant periods of time, it might
mean that you need to allocate extra resources to meet the demand. Or it might mean that
applications are holding on to resources for too long.

 STATE
STATE is used with connections. It shows the state of the conversation that is using a
connection. See page 50 for the values that STATE can have.

If any of the “pending” states (PENDSTSN, PENDBEGIN, PENDDATA, PENDSTART,
PENDFREE, PENDRELEASE, PENDUNSOL, or PENDPASS) is shown, it indicates that the
conversation is unowned, pending the event or task shown. If a “pending” state persists, it is
likely that the application has failed in some way; you should consider resetting the
connection by issuing a FEPI SET CONNECTION RELEASED command.

 Performance
You cannot tune FEPI itself—it is already optimized for speed of response. However, you
can influence the performance of FEPI application programs.

FEPI runs under a separate CICS task control block (TCB) and CICS permits only one
application program to issue a FEPI command at a time. This is a major influence on FEPI
performance. Although many application programs can have FEPI commands being
processed at any time, only one application can issue a FEPI command.

In a lightly loaded system, this means that CICS does not run FEPI until a command is
issued. Thus, performance is impacted by the overhead of starting up the TCB so that the
FEPI command can be processed. In a heavily loaded system, this overhead is not present,
because the TCB is already active processing earlier FEPI commands. This is in contrast to
a traditional CICS system, where a lightly loaded system may perform better than a heavily
loaded one.

FEPI tries to minimize this overhead by issuing timer requests that ensure that the TCB is
not inactive for more than one second.

There are three main principles that should be used in FEPI applications to provide the best
performance:

1. Each FEPI command generates a CICS WAIT even if no network transmission is
involved, and so the number of commands issued should be minimized.

2. Data transmission should be kept to a minimum.

3. Session disconnection should be avoided.

Techniques to use in application programs in support of these principles are given in
“Performance” on page 130.

As to FEPI system programming, command usage can be reduced by using lists of
resources on a command where possible. However, when a command using a list results in
a VTAM operation, you could:

� Flood VTAM by requesting too many operations at once
� Flood the back-end system with requests for session initiation
� Flood the front-end system with started begin- or end-session transactions.

So you must carefully evaluate the benefits of using lists.

 Chapter 6. FEPI operation 39

 Shutdown

Using CICS monitoring and statistics
CICS monitoring and statistics data can help with performance tuning and resource planning
for applications that use FEPI.

 Monitoring data
By default, CICS performance class monitoring records include the following data about the
user task:

� The number and type of requests made to FEPI
� The time spent waiting for requests to FEPI to complete
� The number of requests to FEPI that are timed out.

For detailed information about the FEPI-related fields in performance class monitoring
records, see the CICS Performance Guide. For information about using the DFHMCT
TYPE=RECORD macro to control which FEPI fields are monitored, see the CICS Resource
Definition Guide.

 Statistics data
The standard CICS statistics reports contain data about usage of:

 � FEPI pools
 � FEPI connections
 � FEPI targets.

To obtain the current statistics for a FEPI pool, connection, or target, a utility program can
issue an EXEC CICS COLLECT STATISTICS command. For example, the command EXEC

CICS COLLECT STATISTICS SET(pointer) POOL(GRPD) returns the current statistics for the
'GRPD' pool. To map the returned statistics, your utility program should include the
appropriate CICS-supplied copybook:

DFHA22DS FEPI pool statistics
DFHA23DS FEPI connection statistics
DFHA24DS FEPI target statistics.

The copybooks are supplied in COBOL, PL/I, and assembler language.

To cause all FEPI statistics to be written immediately to the SMF statistics data set, you can
use either the EXEC CICS or the CEMT version of the PERFORM STATISTICS RECORD
FEPI command.

For details of the CEMT COLLECT STATISTICS and PERFORM STATISTICS RECORD
commands, see the CICS-Supplied Transactions manual; for programming information about
the equivalent EXEC CICS commands, see the CICS System Programming Reference
manual.

To format and print FEPI-related statistics in the DFHSTATS data set, you can use the
CICS-supplied utility program, DFHSTUP. To print only the FEPI statistics, specify the
command parameter SELECT TYPE=FEPI. For information about how to use the DFHSTUP
program, see the CICS Operations and Utilities Guide. For detailed information about fields
in the FEPI statistics records, see the CICS Performance Guide.

 Shutdown
FEPI shutdown is triggered as part of CICS shutdown—you cannot shut down FEPI alone.
There are three forms of shutdown:

 � Normal
 � Immediate
 � Forced.

40 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Using FEPI with XRF

 Normal shutdown
A normal shutdown of CICS causes FEPI to shut down normally—active transactions are
allowed to terminate. When all active conversations have ended, and all FEPI resources
have been discarded, FEPI shuts down. While FEPI is shutting down, no new conversations
can be started, but existing owned conversations continue. However, these cannot use the
FEPI START or FEPI FREE PASS commands. Existing unowned conversations are ended
immediately. Any FEPI transactions that you want to be able to start during CICS shutdown
must be defined in the transaction list table (XLT).

If an end-session handler is invoked at the end of conversations, it is told that the session is
to be ended because of CICS shutdown. The handler can choose to perform additional
back-end operations that might be needed because of the shutdown. If you require this
function, make sure the end-session handler transaction is defined in the transaction list
table (XLT), and that it does not adversely affect the performance of CICS shutdown. (For
details of how to define entries in the XLT, see the CICS Resource Definition Guide.)

CICS normal shutdown waits until FEPI shutdown has completed before continuing
processing. So if you know when CICS shutdown is to occur, you should initiate FEPI
DISCARD operations before starting CICS termination. Removing FEPI resources as they
become inactive allows existing FEPI conversations to continue, but prevents new ones from
starting. You could achieve the same effect by setting the status of FEPI resources to
OUTSERVICE,RELEASED.

If shutdown is not proceeding, then before you force it to continue, consider carefully
whether the problem is due to:

� A back-end system taking a long time to respond. In this case, do not attempt to speed
things up—you may generate integrity errors in the back-end system.

� A FEPI failure. In this case, issue the following commands, pausing after each step to
see whether CICS is still waiting:

1. CEMT DISCARD FExxxx(*), to remove all FEPI resources

2. CEMT SET FECONNECTION(*) OUTSERVICE RELEASED, to end any waiting
conversations

3. CEMT SET TASK(nnn) FORCE, to end any running FEPI transactions

4. Attempt to issue VTAM VARY NET,INACT,FORCE commands from the system
console to terminate connections.

If CICS shutdown still does not proceed, you cannot perform a warm shutdown. Try issuing
a CEMT P SHUT IMMEDIATE command. If this fails, you must cancel CICS.

 Immediate shutdown
An immediate shutdown of CICS immediately terminates FEPI. There is nothing you can do
to influence this process.

 Forced shutdown
A forced shutdown of CICS immediately terminates FEPI. There is nothing you can do to
influence this process.

Using FEPI with XRF
This section discusses FEPI in a CICS extended recovery facility (XRF) environment. To
understand it, you need to have read the CICS XRF Guide, and to be familiar with CICS
XRF VTAM USERVAR processing—the VTAM Programming manual contains relevant
material.

 Chapter 6. FEPI operation 41

 Using FEPI with XRF

The effect of an XRF takeover of a CICS back-end system with which FEPI is in
communication is described. Although IMS XRF processing is not discussed here, the same
considerations apply.

XRF and VTAM
FEPI uses VTAM secondary LU support for communication and the simulated terminals
defined to the back-end CICS system behave in a different way to real devices.

In an XRF environment, the simulated terminals in the back-end system behave like VTAM
class 2 terminals. Consequently, CICS XRF facilities are provided by the tracking
mechanisms that are explained in the CICS XRF Guide.

When a FEPI connection is acquired, the back-end CICS generates a TCTTE (if one is not
present already) using autoinstall. At this point, in a CICS XRF environment, the active
CICS informs the alternate that a terminal has been defined. If the active is then taken over,
the alternate knows which terminals are defined, and can take actions to recover the links.

As part of takeover processing, a VTAM BIND is issued to reestablish the session with each
simulated terminal. However, FEPI also has detected that the connection has ended, and
attempts to contact the (new active) back-end system by issuing a similar bind. This results
in a bind race . The outcome of this bind race depends on the circumstances of the
exchange. However, the bind issued by the new active CICS will probably be rejected, and
the FEPI bind accepted. This results in DFHZCxxxx messages being produced during the
takeover (see “Connections with a conversation—with data flow” on page 44). If FEPI
reestablishes the connection, these messages can be ignored. You can remove these bind
races by defining the back-end CICS terminal so it behaves as a VTAM class 3 terminal (no
XRF support). To define the simulated terminals as class 3, specify RECOVOPTION=NONE
in CICS, or BACKUP=NO in IMS.

FEPI resource definition and XRF
In an XRF environment, the applid specified on the FEPI INSTALL TARGETLIST command
must be the generic applid of the back-end system. Specifying either the primary or
secondary applid of the target results in processing errors. If you use the generic applid,
FEPI is able to cater for the back-end system undergoing an XRF takeover.

However, you can define a pool that contains the specific applids of both the active and
alternate systems. In this case, the alternate targets cannot be contacted until an XRF
takeover has been performed. Similarly, the active targets cannot be contacted after
takeover. If you define pools in this way (perhaps to provide backup support without XRF),
you should manage the ACQUIRED–RELEASED status yourself, to minimize FEPI retry
processing.

XRF takeover of front-end system
This section describes what happens when the CICS system running FEPI undergoes an
XRF takeover.

Effect on back-end transactions
Each back-end transaction is abended, due to the loss of the simulated terminal—which is
usually the principal facility for the task. Consequently, the ATNI (or equivalent) abend
processing is unable to send the usual message indicating a transaction abend to the
principal facility.

Transactions that attempt to handle terminal control errors should already be written to cope
with this circumstance, and you should not need to alter them.

42 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Using FEPI with XRF

Effect on back-end terminals
FEPI is acting as the “terminal”, so an XRF takeover of the FEPI system results in the loss
of the “terminal” in the back-end system. CICS takes the usual actions for the loss of a
(real) terminal. There are three cases to consider:

“Terminals” without a conversation: If you are using autoinstall, the TCTTEs
representing these “terminals” are deleted after a delay; if the delay is long enough, the
alternate front-end CICS may reestablish the sessions before the TCTTEs are deleted.

“Terminals” with a conversation—no data flow: If you are using autoinstall, the TCTTEs
representing these “terminals” are deleted after a delay; if the delay is long enough, the
alternate front-end CICS may reestablish the sessions before the TCTTEs are deleted.

“Terminals” with a conversation—with data flow: These “terminals” are usually running
a transaction when the “terminal” is lost. This results in the transaction being abended with
the normal CICS abend code for a terminal failure (usually ‘ATNI’). The abend is usually
accompanied by a DFHZCxxxx message indicating that the “terminal” has suffered an
unrecoverable failure.

You may have to modify your node error program to prevent retry loops, but normally the
default action (not to retry) is taken. When node error processing ends, if autoinstall is used,
the “terminal” is deleted.

Effect on the alternate FEPI CICS system
The alternate FEPI CICS takes over operation of the failed CICS in the normal fashion.
However, FEPI resources are not recovered automatically after an XRF takeover.

FEPI restarts at a late stage of takeover, after all RDO resources have been reinstalled.
Nevertheless, when the second phase of the PLTPI list is entered, FEPI is ready to receive
commands. Therefore, if you follow the recommendation to start your FEPI setup
transaction from a PLTPI program, FEPI resources are reinstalled as part of the takeover. If
you do not run your setup transaction in this way, then after a takeover you must arrange for
it to be run manually, so that your FEPI resources are reinstalled.

However you handle resource definition in an XRF-environment, you must be prepared to
cope with the possibility that FEPI resources have been manipulated in the failed CICS, so
that the environment after takeover is not the same as that immediately before takeover. For
example, resources may have been installed or deleted, or SERVSTATUS or ACQSTATUS
values altered, after your setup transaction was run in the failed CICS.

XRF takeover of back-end system
This section describes what happens when the CICS back-end system with which FEPI is
communicating undergoes an XRF takeover.

Effect on FEPI application programs
FEPI application programs are unable to distinguish between a loss of session due to an
XRF takeover of the back-end system, and one due to a FEPI failure. In both cases, a
typical RESP2 value of ‘215’ (‘Session lost’) is returned on the next FEPI command issued
after the takeover has started. Alternatively, the application may get an indication of a state
error, meaning that the command cannot be issued because the connection is not active.
The application should immediately issue a FEPI FREE command to free the conversation.

If an end-session handler is active, it gets invoked, even though the conversation has ended.

If the application program believes that the back-end is undergoing an XRF takeover, it
should reissue a FEPI ALLOCATE command for the back-end. When the takeover is
complete, and FEPI has reestablished contact, the FEPI ALLOCATE completes successfully
(together with any specified begin-session processing). If the TIMEOUT option is used,
consider its setting in relation to how long you expect the alternate back-end system to take
to complete takeover.

 Chapter 6. FEPI operation 43

 Using FEPI with VTAM persistent sessions

It is the responsibility of the application program to perform any processing in the new active
back-end system necessitated by the XRF takeover.

Effect on FEPI connections
In general, FEPI successfully copes with the XRF takeover of a back-end system with which
it is communicating. However, when the new active back-end system attempts to establish
its terminal sessions, communication with FEPI may result in some strange terminal control
messages. You should ignore these until FEPI has had time to contact the back-end
system.

While FEPI is attempting to reestablish contact with the back-end system:

� Connections are in ACQUIRING state, with a last acquire code of (probably)
X'320C0000'.

� Message DFHSZ4155I may be produced, with reason codes (typically X'320C0000' or
X'81062900') showing that FEPI is attempting to reestablish contact with the back-end
system.

There are three cases to consider:

Connections without a conversation: These connections reestablish contact with the new
active back-end when the back-end’s ACB is opened.

Connections with a conversation—no data flow: These connections reestablish contact
with the new active back-end when the back-end’s ACB is opened. You may get some
messages in the back-end system indicating that the TCTTE was deleted and reinstalled.

Connections with a conversation—with data flow: These connections generate errors in
the back-end system when it attempts to reestablish contact with the “terminal”. You may
see messages DFHZC3492E, DFHZC2411E, DFHZC3422E, DFHZC3437I, or DFHZC3462I
being generated—all of which say that the standby back-end could not reestablish contact
with the “terminal”. However, as long as the conversation that was running on the
connection has been freed, FEPI subsequently reestablishes contact and reinstalls the
“terminal”.

Using FEPI with VTAM persistent sessions
When creating FEPI applications, you need to be aware of the possible effects of the use of
VTAM persistent sessions in the front- or back-end systems. For information about support
for VTAM persistent session in CICS Transaction Server for VSE/ESA Release 1, see the
CICS Recovery and Restart Guide.

Restart of front-end system using persistent sessions
Using persistent sessions in the front-end does not give FEPI any additional recoverability
benefits. FEPI is always cold started; thus, to FEPI, the effect of restarting a front-end
system for which persistent sessions support is enabled is indistinguishable from a cold start
of CICS.

Restart of back-end system using persistent sessions
In the back-end system, there are terminal definitions that are used when the FEPI simulated
terminals establish sessions with the target. These definitions may be hard-coded, or may
be autoinstall model definitions. If the terminal definitions have been set up to use persistent
session support, and the back-end system is restarted within the persistent session delay
interval, the terminal sessions are recovered.

44 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Using FEPI with VTAM persistent sessions

Effect on FEPI application programs
It is likely that FEPI application programmers have little say in the way that persistent
session support is used in the back-end system. They therefore need to be aware of the
different ways in which terminal sessions can be recovered, so that their applications cater
for all possibilities. If the back-end (target) is a CICS Transaction Server for VSE/ESA
Release 1 system, the way in which a session is recovered depends on the setting of the
RECOVOPTION and RECOVNOTIFY options of the RDO TYPETERM resource definition.

RECOVOPTION(SYSDEFAULT)
On restart within the persistent session delay interval, CICS selects the optimum
procedure to recover a session.

For LU2, if the session is busy and CICS is in send mode, CICS sends an end bracket.
If the session is busy and CICS is not in send mode, CICS sends an SNA CLEAR
request to reset the conversation state.

If a FEPI conversation is in progress when the target system terminates, your
application could see one of the following:

� A timeout on a RECEIVE, CONVERSE, or START command, while it waits for the
target to restart.

Deal with this in the normal way for a timeout.

� A FEPI RECEIVE or CONVERSE command completes as a result of the end
bracket sent by CICS. The RU on this data flow may be empty or may contain a
user-defined message, depending on the value of the RECOVNOTIFY option.

Your application may need to perform some backout processing.

� An INVREQ response with a RESP2 value of 230 on a FEPI SEND, RECEIVE,
CONVERSE, ISSUE, or START command, indicating that an SNA CLEAR was
received.

Your application may need to perform some backout processing.

You must also consider the value specified for RECOVNOTIFY:

RECOVNOTIFY(MESSAGE)
A message (defined in the BMS maps DFHXRC1 and DFHXRC2) is sent to the
“terminal”. Your FEPI application must contain logic to deal with this data flow.

If there is no active conversation at the time of restart, the flow is received as
unsolicited data at the FEPI front-end.

RECOVNOTIFY(TRANSACTION)
A transaction is initiated in the target. The default is the Good Morning transaction.
Your application must contain logic to deal with this data flow.

If there is no active conversation at the time of restart, the flow is received as
unsolicited data at the FEPI front-end.

RECOVNOTIFY(NONE)
The “terminal” is not notified that a restart has occurred. Your application need take
no special action.

RECOVOPTION(CLEARCONV)
On restart within the persistent session delay interval, CICS sends an SNA CLEAR
request to reset the conversation states. The CLEAR is sent only if the session was
busy at the time of system restart. If a FEPI conversation is in progress when the target
system terminates, your application could see one of the following:

� A timeout on a RECEIVE, CONVERSE, or START command, while it waits for the
target to restart.

Deal with this in the normal way for a timeout.

 Chapter 6. FEPI operation 45

 Using FEPI with VTAM persistent sessions

� An INVREQ response with a RESP2 value of 230 on a FEPI SEND, RECEIVE,
CONVERSE, ISSUE, or START command, indicating that an SNA CLEAR was
received.

Your application may need to perform some backout processing.

You must also consider the value specified for RECOVNOTIFY. The possible values
are as described above, for RECOVOPTION(SYSDEFAULT).

RECOVOPTION(RELEASESESS)
On restart within the persistent session delay interval, CICS sends an UNBIND request
to release an active session. The request is sent only if the session was busy at the
time of system restart.

If a FEPI conversation is in progress when the target system terminates, your
application could see one of the following:

� A timeout on a RECEIVE, CONVERSE, or START command, while it waits for the
target CICS to restart.

Deal with this in the normal way for a timeout.

� An INVREQ response with a RESP2 value of 215 on any FEPI command, indicating
a 'session lost' condition.

Deal with this in the normal way for a session loss.

RECOVOPTION(UNCONDREL)
On restart within the persistent session delay interval, CICS sends an UNBIND request
to release an active session. The request is sent whether or not the session was busy
at the time of system restart.

If a FEPI conversation is in progress when the target system terminates, your
application could see either of the symptoms described for
RECOVOPTION(RELEASESESS).

RECOVOPTION(NONE)
Even if the system is restarted within the persistent session delay interval, the session is
not recovered—it has no persistent session support.

Deal with this in the normal way for a session loss.

46 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Operator control

 Chapter 7. Operator control

Two CICS-supplied transactions, CEMT and CETR, are extended to provide operator control
of FEPI: you can use the CEMT INQUIRE, SET, and DISCARD commands to control FEPI
resources such as nodes, targets, and pools; and the CETR transaction to control FEPI
trace. You can also use VTAM commands to manage communication with target systems.

FEPI application programs, and the CICS resources they use, are controlled just like other
CICS applications and resources.

The chapter contains the following topics:

� “CEMT—master terminal transaction”
� “CETR—trace control transaction” on page 59
� “VTAM commands” on page 59.

CEMT—master terminal transaction
The CEMT transaction is extended by a range of commands that support FEPI. These
commands, which are described below, work exactly like the CEMT commands described in
the CICS-Supplied Transactions manual—for example, in supporting resource selection by
families (AB*, for example), lists (AB,CD,EF, for example), and by subdefining groups. Note
that 4-character option names are used in the display.

See “Controlling FEPI resources” on page 37 for more information.

 Copyright IBM Corp. 1992, 1999 47

 CEMT DISCARD

 CEMT DISCARD

Function: DISCARD removes targets, nodes, pools, or property sets completely from FEPI.

 Syntax

Press the Clear key to clear the screen. Type CEMT DISCARD (the minimum abbreviation is CEMT DISC), followed by any one of:

 FENODE(nodename)
 FEPOOL(poolname)
 FEPROPSET(propsetname)
 FETARGET(targetname).

For example, cemt disc fen(fepnode1) removes the node fepnode1 from FEPI.

Typing ? at the beginning of either the first or second line gives a syntax prompt.

55──CEMT DISCard─ ──┬ ┬──FENode(nodename) ────── ─5%
├ ┤──FEPOol(poolname) ──────
├ ┤──FEPRopset(propsetname)
└ ┘──FETarget(targetname) ──

 Options

FENode(nodename)
The name of the FEPI node to be discarded.

FEPOol(poolname)
The name of the FEPI pool to be discarded.

FEPRopset(propsetname)
The name of the FEPI property set to be discarded.

FETarget(targetname)
The name of the FEPI target to be discarded.

48 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 CEMT INQUIRE FECONNECTION

CEMT INQUIRE FECONNECTION

Function: Display information about FEPI connections.

Description: INQUIRE FECONNECTION displays information about the state of FEPI connections. A connection is
identified by specifying the target and node. The results are given in order of target within the node. Family selection can be
used for TARGET and NODE, but list selection cannot be used.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

� Type CEMT INQUIRE FECONNECTION (the minimum abbreviation is CEMT I FEC). You get a display that lists the current
status.

� Type CEMT INQUIRE FECONNECTION (CEMT I FEC) followed by as many of the other attributes as are necessary to limit the
range of information that you require. For example, if you enter cemt i fec p(pool5) acq, the resulting display will show
you the details of all FEPI connections in pool5 on which sessions are bound.

You can tab to the highlighted fields and overtype them with new values.

 ┌ ┐─ALl──
55──CEMT Inquire FEConnection─ ──┼ ┼── ──┬ ┬──────────────── ─────────5
 └ ┘──┬ ┬──────────────── ──┬ ┬──────────────────── └ ┘──Pool(poolname)

└ ┘──NODe(nodename) └ ┘──Target(targetname)

5─ ──┬ ┬────────────── ──┬ ┬──────────── ──┬ ┬────────── ──┬ ┬────────────── ──┬ ┬──────────────────── ───────────────5
├ ┤─INSTalled──── ├ ┤─INSErvice── ├ ┤─ACquired─ └ ┘──State(value) └ ┘──Waitconvnum(value)

 └ ┘─NOTinstalled─ └ ┘─Outservice─ └ ┘─Released─

5─ ──┬ ┬───────────────── ─5%
└ ┘──Lacqcode(value)

ALl
is the default. Information about all connections is given,
unless you specify a selection.

NODe(nodename)
is the 8-character name of a node. Information is
restricted to connections of which this node forms part.

Target(targetname)
is the 8-character name of a target. Information is
restricted to connections of which this target forms part.

 Sample screen

à ð
CEMT IN FEC

STATUS: RESULTS - OVERTYPE TO MODIFY

 Node(NODE1) Targ(TARGETA) Pool(POOL5) Inst Inse Rele
Stat(NOCONV) Wait(ððððð) Lacq(X'ð857ððð2')

 Node(NODE1) Targ(TARGETB) Pool(POOL5) Inst Inse Rele
Stat(NOCONV) Wait(ððððð) Lacq(X'ð857ððð2')

 Node(NODE1) Targ(TARGET3) Pool(POOL3) Inst Inse Rele
Stat(NOCONV) Wait(ððððð) Lacq(X'ð857ððð2')

Figure 3. CEMT INQUIRE FECONNECTION screen

 Displayed fields

Node(value)
displays the 8-character name of a node identifying a
connection.

Target(value)
displays the 8-character name of a target identifying a
connection.

Pool(poolname)
displays the 8-character name of a pool of connections.

Inst alled|Noti nstalled
displays a value identifying the install state of the
connection. The values are:

Inst alled The connection is in a pool that has been
defined by INSTALL and is available for
use.

Noti nstalled The connection is in a pool, or involves a
node or target that is being discarded, but
is still in use.

Inse rvice|Outs ervice
displays a value identifying the service state of the
connection. The values are:

Inse rvice The connection is in service and can be
used in a conversation. If OUTSERVICE
state has been requested but has not yet
completed, a ‘GOING OUT’ message is
shown.

Outs ervice The connection is out of service and
cannot be used for any conversation.

 Chapter 7. Operator control 49

 CEMT INQUIRE FECONNECTION

Acquired|Released
displays a value identifying whether a session on the
connection is bound. The values are:

Acquired A session is bound on the connection. If
RELEASED state has been requested but
has not yet completed, a ‘BEING
RELEASED’ message is shown. If this
persists, you might need to use VTAM
commands to recover the connection.

Released Sessions involving the connection have
been unbound. If ACQUIRED state has
been requested but has not yet
completed, a ‘BEING ACQUIRED’
message is shown. If this persists, you
might need to use VTAM commands to
recover the connection.

State(value)
displays a 12-character value identifying the state of the
conversation using the connection. The values are:

APPLICATION A normal application task owns
the conversation

BEGINSESSION A begin-session handling task
owns the conversation

FREE An end-session handling task
owns the conversation, following a
FEPI FREE command

NOCONV No conversation is active on the
connection

PENDBEGIN A begin-session handling task has
been scheduled

PENDDATA FEPI is waiting for inbound data,
following a FEPI START
command

PENDFREE An end-session handling task has
been scheduled, following a FEPI
FREE command

PENDPASS The conversation is unowned,
following a FEPI FREE PASS
command

PENDRELEASE An end-session handling task has
been scheduled, following an
unbind request

PENDSTART Inbound data having arrived, a
task specified by FEPI START has
been scheduled

PENDSTSN An STSN-handling task has been
scheduled

PENDUNSOL An unsolicited-data handling task
has been scheduled

RELEASE An end-session handling task
owns the conversation, following
an unbind request

STSN An STSN-handling task owns the
conversation

UNSOLDATA An unsolicited-data handling task
owns the conversation.

The “pending” states indicate the conversation is
unowned, pending the event or task indicated. If a
“pending” state persists, it is likely that the application
has failed in some way; you should consider resetting
the connection by issuing a CEMT SET
FECONNECTION RELEASED command.

Waitconvnum(value)
displays a value identifying the number of conversations
that are waiting to start using a connection. (If a
conversation could use any one of several connections,
it is counted as waiting on each one.)

Lacq code(value)
displays a hexadecimal value indicating the result of the
last acquire request for the node; that is, the sense code
from the last VTAM REQSESS, a zero indicating
success. For information about VTAM sense codes, see
either the VTAM Messages and Codes or the SNA
Formats manual.

50 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 CEMT INQUIRE FENODE

CEMT INQUIRE FENODE

Function: Display information about a FEPI node.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

� Type CEMT INQUIRE FENODE (the minimum abbreviation is CEMT I FEN). You get a display that lists the current status.

� Type CEMT INQUIRE FENODE (CEMT I FEN) followed by as many of the other attributes as are necessary to limit the range of
information that you require. For example, if you enter cemt i fen inst, the resulting display will show you the details of
all FEPI nodes that have been installed and are ready for use.

You can tab to the highlighted fields and overtype them with new values.

 ┌ ┐─ALl────────
55──CEMT Inquire FENode─ ──┼ ┼──────────── ──┬ ┬────────────── ──┬ ┬──────────── ──┬ ┬────────── ───────────────────5
 └ ┘──(nodename) ├ ┤─INSTalled──── ├ ┤─INSErvice── ├ ┤─ACquired─
 └ ┘─Notinstalled─ └ ┘─Outservice─ └ ┘─Released─

5─ ──┬ ┬───────────────── ─5%
└ ┘──Lacqcode(value)

ALl
is the default. Information about all nodes is given,
unless you specify a node.

nodename
is the 8-character name of the node to be queried.

 Sample screen

à ð
CEMT IN FEN

STATUS: RESULTS - OVERTYPE TO MODIFY

 Feno(NODE1) Inst Inse Acqu Lacq(X'ðððððððð')
 Feno(NODE2) Inst Inse Acqu Lacq(X'ðððððððð')
 Feno(NODE3) Inst Inse Acqu Lacq(X'ðððððððð')
 Feno(NODE4) Inst Inse Acqu Lacq(X'ðððððððð')

Figure 4. CEMT INQUIRE FENODE screen

 Displayed fields

Feno
indicates that this panel relates to an FENODE inquiry.

(value)
displays the 8-character name of a node.

Inst alled|Noti nstalled
displays a value identifying the install state of the node.
The values are:

Inst alled The node has been defined by INSTALL
and is available for use.

Noti nstalled The node is being discarded, but is still in
use.

Inse rvice|Outs ervice
displays a value identifying the service state of the node.
The values are:

Inse rvice The node is in service and can be used in
a conversation. If OUTSERVICE state
has been requested but has not yet
completed, a ‘GOING OUT’ message is
shown.

Outs ervice The node is out of service and cannot be
used for any conversation.

Acqu ired|Released
displays a value identifying whether the state of the
VTAM ACB for the node. The values are:

Acqu ired The VTAM ACB for the node is open and
the VTAM ‘set logon start’ command has
completed. If RELEASED state has been
requested but has not yet completed, a
‘BEING RELEASED’ message is shown.
If this persists, you might need to use
VTAM commands to recover the node.

Released The VTAM ACB is closed. If ACQUIRED
state has been requested but has not yet
completed, a ‘BEING ACQUIRED’
message is shown. If this persists, you
might need to use VTAM commands to
recover the node.

Lacq code(value)
displays a hexadecimal value indicating the result of the
last acquire request for the node; that is, the sense code
from the last VTAM OPEN ACB, a zero indicating
success. For information about VTAM sense codes, see
either the VTAM Messages and Codes or the SNA
Formats manual.

 Chapter 7. Operator control 51

 CEMT INQUIRE FEPOOL

CEMT INQUIRE FEPOOL

Function: Display information about the state of FEPI pools of connections.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

� Type CEMT INQUIRE FEPOOL (the minimum abbreviation is CEMT I FEPO). You get a display that lists the current status.

� Type CEMT INQUIRE FEPOOL (CEMT I FEPO) followed by as many of the other attributes as are necessary to limit the range
of information that you require. For example, if you enter cemt i fepo inse, the resulting display will show you the details
of all FEPI pools that are in service and can be used by conversations.

You can tab to the highlighted ‘service state’ field and overtype it with a new value.

 ┌ ┐─All────────
55──CEMT Inquire FEPOol─ ──┼ ┼──────────── ──┬ ┬────────────── ──┬ ┬──────────── ──┬ ┬─────────────── ──────────────5

└ ┘──(poolname) ├ ┤─INSTalled──── ├ ┤─INSErvice── └ ┘──Device(value)
 └ ┘─Notinstalled─ └ ┘─Outservice─

5─ ──┬ ┬──────────────────── ─5%
└ ┘──Waitconvnum(value)

All is the default. Information about all pools is given,
unless you specify a pool to be queried.

poolname
specifies the name of a pool of connections.

 Sample screen

à ð
CEMT IN FEPO

STATUS: RESULTS - OVERTYPE TO MODIFY

 Fepo(POOL3) Inst Inse Devi(T3278M4) Wait(ððððð)
 Fepo(POOL5) Inst Inse Devi(T3278M2) Wait(ððððð)

Figure 5. CEMT INQUIRE FEPOOL screen

 Displayed fields

Fepo
indicates that this panel relates to an FEPOOL inquiry.

(value)
displays the 8-character name of a pool of connections.

Inst alled|Noti nstalled
displays a value identifying the install state of the pool.
The values are:

Inst alled The pool has been defined by INSTALL
and is available for use.

Noti nstalled The pool is being discarded, but is still in
use.

Inse rvice|Outs ervice
displays a value identifying the service state of the pool.
The values are:

Inse rvice The pool is in service and can be used in
a conversation. If OUTSERVICE state
has been requested but has not yet
completed, a ‘GOING OUT’ message is
shown.

Outs ervice The pool is out of service and cannot be
used for any conversation.

Device(value)
displays a value identifying the mode of conversation
and the type of device. The values are:

T3278M2 SLU2 mode, 3278 Model 2

T3278M3 SLU2 mode, 3278 Model 3

T3278M4 SLU2 mode, 3278 Model 4

T3278M5 SLU2 mode, 3278 Model 5

T3279M2 SLU2 mode, 3279 Model 2B

T3279M3 SLU2 mode, 3279 Model 3B

T3279M4 SLU2 mode, 3279 Model 4B

T3279M5 SLU2 mode, 3279 Model 5B

TPS55M2 SLU2 mode, PS/55, 24 lines

TPS55M3 SLU2 mode, PS/55, 32 lines

TPS55M4 SLU2 mode, PS/55, 43 lines

LUP SLU P mode, all cases

Waitconvnum(value)
displays a value identifying the number of conversations
that are waiting to start using a connection in the pool.

52 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 CEMT INQUIRE FEPROPSET

CEMT INQUIRE FEPROPSET

Function: Display information about a set of FEPI properties.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

� Type CEMT INQUIRE FEPROPSET (the minimum abbreviation is CEMT I FEPR). You get a display that lists all FEPI property
sets that are currently installed.

� Type CEMT INQUIRE FEPROPSET (CEMT I FEPR) followed by the name of a particular property set. For example, if you enter
cemt i fepr (feprop1), the resulting display will show you whether or not the FEPI property set feprop1 is installed. (If it
is not installed, you get a 'NOT FOUND' response.)

 ┌ ┐─All───────────
55──CEMT Inquire FEPRopset─ ──┼ ┼─────────────── ─5%

└ ┘──(propsetname)

All is the default. Information about all property sets is
given, unless you specify a particular one.

propsetname
is the name of the property set to be queried.

 Sample screen

à ð
CEMT IN FEPR

STATUS: RESULTS

 Fepr(PROP1)

 Fepr(PROP2)

 Fepr(PROP3)

 Fepr(PROP4)

Figure 6. CEMT INQUIRE FEPROPSET screen

 Displayed fields

Fepr
indicates that this panel relates to an FEPROPSET
inquiry.

(value)
displays the 8-character name identifying a property set.

 Chapter 7. Operator control 53

 CEMT INQUIRE FETARGET

CEMT INQUIRE FETARGET

Function: Display information about the state of FEPI targets.

Input: Press the Clear key to clear the screen. There are two ways of commencing this transaction:

� Type CEMT INQUIRE FETARGET (the minimum abbreviation is CEMT I FET). You get a display that lists the current status.

� Type CEMT INQUIRE FETARGET (CEMT I FET) followed by as many of the other attributes as are necessary to limit the range
of information that you require. For example, if you enter cemt i fet inse, the resulting display will show you the details
of all FEPI targets that are in service.

You can tab to the highlighted ‘service state’ field and overtype it with a new value.

 ┌ ┐─ALl──────────
55──CEMT Inquire FETarget─ ──┼ ┼────────────── ──┬ ┬──────────────── ──┬ ┬────────────── ──┬ ┬──────────── ─5%

└ ┘──(targetname) └ ┘──APpl(applname) ├ ┤─INSTalled──── ├ ┤─INSErvice──
 └ ┘─Notinstalled─ └ ┘─Outservice─

ALl
is the default. Information about all targets is given,
unless you specify the target to be queried.

targetname
is the name of the target to be queried.

 Sample screen

à ð
CEMT IN FET

STATUS: RESULTS - OVERTYPE TO MODIFY

 Feta(TARGETA) Appl(APPL5) Inst Inse
 Feta(TARGETB) Appl(APPL6) Inst Inse
 Feta(TARGET1) Appl(APPL1) Inst Inse
 Feta(TARGET2) Appl(APPL2) Inst Inse
 Feta(TARGET3) Appl(APPL3) Inst Inse
 Feta(TARGET4) Appl(APPL4) Inst Inse

Figure 7. CEMT INQUIRE FETARGET screen

 Displayed fields

Feta
indicates that this panel relates to an FETARGET
inquiry.

(value)
displays the 8-character name identifying a target.

Appl(applname)
displays the 8-character VTAM application name of the
back-end system that the target represents.

Inst alled|Noti nstalled
displays a value identifying the install state of the target.
The values are:

Inst alled The target has been defined by INSTALL
and is available for use.

Noti nstalled The target is being discarded, but is still
in use.

Inse rvice|Outs ervice
displays a value identifying the service state of the
target. The values are:

Inse rvice The target is in service and can be used
in a conversation. If OUTSERVICE state
has been requested but has not yet
completed, a ‘GOING OUT’ message is
shown.

Outs ervice The target is out of service and cannot be
used for any conversation.

54 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 CEMT SET FECONNECTION

CEMT SET FECONNECTION

Function: Change the state of FEPI connections. Family selection can be used for TARGET and NODE, but list selection
cannot be used.

 Syntax

Press the Clear key to clear the screen. There are two ways of commencing this transaction:

� Type CEMT SET FECONNECTION (the minimum abbreviation is CEMT S FEC) with either TARGET(targetname) NODE(nodename)
or ALL. You get a display that lists the current status, similar to that obtained by CEMT INQUIRE FECONNECTION. You
can tab to the highlighted fields and overtype them with new values.

� Type CEMT SET FECONNECTION (CEMT S FEC) with either TARGET(targetname) NODE(nodename) or ALL, followed by one or
more attribute settings that you want to change. For example, cemt s fec al ac causes sessions to be bound for all FEPI
connections.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect
immediately.

55──CEMT Set FEConnection─ ──┬ ┬──Target(targetname) ──NODe(nodename) ──┬ ┬──────────── ──┬ ┬────────── ─5%
 └ ┘─ALl──────────────────────────────── ├ ┤─INSErvice── ├ ┤─ACquired─
 └ ┘─Outservice─ └ ┘─Released─

 Options

ACquired
specifies that the connection is to have a session
established (that is, ‘bound’). The state is ACQUIRING
until this is completed.

ALl
specifies that any change you request is made to all
connections that you are authorized to access.

INSErvice
specifies that the connection is in service and can be
used in a conversation.

NODe(nodename)
specifies the 8-character name of the node identifying a
connection.

Outservice
specifies that the connection is to be put out of service
and not to be used for any new conversations, though
existing conversations are unaffected. The service state
is GOINGOUT until these conversations end.

Released
specifies that the connection is to have its session ended
(that is, ‘unbound’), when usage of the connection by all
owned conversations ends. (An unowned conversation
on the connection is ended immediately.) The state is
RELEASING until this is completed.

Target(targetname)
specifies the 8-character name of the target identifying a
connection.

 Chapter 7. Operator control 55

 CEMT SET FENODE

CEMT SET FENODE

Function: Change the state of FEPI nodes.

 Syntax

Press the Clear key to clear the screen. There are two ways of commencing this transaction:

� Type CEMT SET FENODE (the minimum abbreviation is CEMT S FEN) with either a nodename or ALL. You get a display that
lists the current status, similar to that obtained by CEMT INQUIRE FENODE. You can tab to the highlighted fields and
overtype them with new values.

� Type CEMT SET FENODE (CEMT S FEN) with either a nodename or ALL, followed by one or more attribute settings that you
want to change. For example, cemt s fen al ac causes the VTAM ACBs for all FEPI nodes to be opened, and ‘set logon
start’ to be done.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect
immediately.

55──CEMT Set FENode─ ──┬ ┬──(nodename) ──┬ ┬──────────── ──┬ ┬────────── ─5%
 └ ┘─ALl──────── ├ ┤─INSErvice── ├ ┤─ACquired─
 └ ┘─Outservice─ └ ┘─Released─

 Options

ACquired
specifies that the VTAM ACB for the node should be
opened, and ‘set logon start’ is to be done. The state is
ACQUIRING until this is completed.

ALl
specifies that any change you request is made to all
nodes that you are authorized to access.

INSErvice
specifies that the node is in service and can be used in
a conversation.

(nodename)
specifies the 8-character name of the node whose state
is to be changed.

Outservice
specifies that the node is to be put out of service and
not to be used for any new conversations, though
existing conversations are unaffected. The service state
is GOINGOUT until these conversations end.

Released
specifies that the VTAM ACB for the node is to be
closed, when usage of the node by any conversation
ends. The state is RELEASING until this is completed.

56 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 CEMT SET FEPOOL

CEMT SET FEPOOL

Function: Change the state of FEPI pools of connections.

 Syntax

Press the Clear key to clear the screen. There are two ways of commencing this transaction:

� Type CEMT SET FEPOOL (the minimum abbreviation is CEMT S FEPO) with either a poolname or ALL. You get a display that
lists the current status, similar to that obtained by CEMT INQUIRE FEPOOL. You can tab to the highlighted ‘service state’
field and overtype it with a new value.

� Type CEMT SET FEPOOL (CEMT S FEPO) with either a poolname or ALL, followed by a service state setting. For example,
cemt s fepo fepool1 i specifies that the fepool1 pool is in service and available for use by a conversation.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect
immediately.

55──CEMT Set FEPOol─ ──┬ ┬──(poolname) ──┬ ┬──────────── ─5%
 └ ┘─All──────── ├ ┤─INSErvice──
 └ ┘─Outservice─

 Options

All specifies that any change you request is made to all
pools that you are authorized to access.

INSErvice
specifies that the pool is in service and can be used in a
conversation.

Outservice
specifies that the pool is to be put out of service and not
be used for any new conversations, though existing
conversations are unaffected. The service state is
GOINGOUT until these conversations end.

(poolname)
specifies the pool of connections to be changed.

 Chapter 7. Operator control 57

 CEMT SET FETARGET

CEMT SET FETARGET

Function: Change the state of FEPI targets.

 Syntax

Press the Clear key to clear the screen. There are two ways of commencing this transaction:

� Type CEMT SET FETARGET (the minimum abbreviation is CEMT S FET) with either a targetname or ALL. You get a display that
lists the current status, similar to that obtained by CEMT INQUIRE FETARGET. You can tab to the highlighted ‘service
state’ field and overtype it with a new value.

� Type CEMT SET FETARGET (CEMT S FET) with either a targetname or ALL, followed by a service state setting. For example,
cemt s fet fetarg1 i specifies that the fetarg1 target is in service and available for use by a conversation.

Typing ? at the beginning of either the first or second line gives a syntax prompt. Resetting the values takes effect
immediately.

55──CEMT Set FETarget─ ──┬ ┬──(targetname) ──┬ ┬──────────── ─5%
 └ ┘─All────────── ├ ┤─INSErvice──
 └ ┘─Outservice─

 Options

All specifies that any change you request is made to all
targets that you are authorized to access.

INSErvice
specifies that the target is in service and can be used in
a conversation.

Outservice
specifies that the target is out of service and cannot be
used for any new conversations, though existing
conversations are unaffected. The service state is
GOINGOUT until these conversations end.

(targetname)
specifies the 8-character name of the target to be
changed.

58 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

CETR—trace control transaction
You use the CETR transaction to control FEPI trace. The
FEPI component code (on the CETR “Component Trace
Options” panel) is ‘SZ’. Specify ‘SZ 1’ to turn on FEPI
tracing.

For detailed information about the syntax of the CETR
transaction, see the CICS-Supplied Transactions manual.
For information about using CETR in problem determination,
see the CICS Problem Determination Guide.

 VTAM commands

In addition to the resource control facilities provided by FEPI,
you can use specific VTAM commands to manage
communication with target systems. They are particularly
useful where there are problems in acquiring or releasing
sessions; see “ACQSTATUS” on page 37.

These commands are fully described in the VTAM
Operations manual, but are summarized here. You can:

� Use the VTAM D NET command to inquire about the
status of the FEPI nodes (acting as SLUs) and the target
systems. It should normally be necessary to use this

command only when you experience problems in
communicating with a particular target. Note that to
understand the displays you require some knowledge of
how VTAM operates. VTAM messages are explained in
the VTAM Messages and Codes manual.

� Use the VTAM V NET command to control the
availability of resources within the network. In the case
of FEPI, you can use it to force the closure of a node
regardless of whether it is being used in an active
conversation. This is achieved by making the VTAM
node inactive. However, any pending request to change
to a state of RELEASED or OUTSERVICE is able to
complete. A subsequent V NET ACTIVE command
makes the node available for use again (if its state is still
INSERVICE).

� Use the VTAM V NET TERM command to terminate
individual connections—that is, to end the session
between a particular PLU (target) and SLU (FEPI) pair.

� Use the VTAM D NET SESSIONS command to
diagnose problems in establishing sessions. To use this
command, you require an understanding of VTAM
session processing.

 Chapter 7. Operator control 59

60 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Customizing FEPI � Exit XSZBRQ

 Chapter 8. Customizing FEPI

This chapter outlines the customization features of FEPI. It contains:

� “Global user exits”
� “Journaling” on page 65.

It assumes that you are aware of the customization features of CICS (programming
information about these is in the CICS Customization Guide and the CICS System
Programming Reference manual).

This chapter contains Product-sensitive Programming Interface information.

Global user exits
This section describes the two FEPI global user exits, XSZBRQ and XSZARQ. These exits
behave in exactly the same manner as standard CICS global user exits.

XSZBRQ Invoked before a FEPI command is executed (but after the syntax of the
command has been validated, and therefore after EDF processing).

XSZARQ Invoked immediately after a FEPI command has completed (before EDF
processing).

Note that both the FEPI application programming and system programming commands
cause XSZBRQ and XSZARQ to be invoked, but the latter do not provide the exit programs
with any meaningful information.

You cannot use exit programming interface (XPI) calls or EXEC CICS commands in
programs invoked from these exits.

The exits allow you to monitor the FEPI commands and data being processed; you can
inhibit commands, and modify specific command options. You could use them for:

� Monitoring the issue of FEPI commands
 � Load balancing
� External security on application programming commands.

 XSZBRQ
XSZBRQ is invoked before a FEPI command is executed; the input parameters for the
command are passed to the exit program. The majority of the information passed is
read-only, but specific parameters can be updated. In addition, your exit program can
decide whether the request is to be processed or bypassed. You could use XSZBRQ, for
example, to log commands, to bypass commands that violate the conventions of your
installation, or to reroute commands by changing their specified targets or pools.

XSZBRQ parameters you can modify
Your exit program can modify the settings of some of the parameters passed to it. However,
if it does so, FEPI does not check the validity of the new value. The following parameters
can be modified; no others can.

UEPSZSTT The ID of the transaction that is to continue a FEPI conversation (as supplied
on the FEPI START command).

UEPSZSTM The ID of the terminal that is to continue a FEPI conversation (as supplied on
the FEPI START command). (Set UEPSZSTM=X'00000000' to run
non-terminal.)

UEPSZTIM The TIMEOUT value for FEPI ALLOCATE, RECEIVE, CONVERSE, and
START commands.

UEPSZALP The POOL name supplied on the FEPI ALLOCATE or FEPI CONVERSE
command.

 Copyright IBM Corp. 1992, 1999 61

 Exit XSZBRQ

UEPSZALT The TARGET name supplied on the FEPI ALLOCATE or FEPI CONVERSE
command.

Together, UEPSZALP and UEPSZALT contain the information necessary to initiate a
conversation.

Table 9 (Page 1 of 2). Exit XSZBRQ

Invoked by FEPI before a FEPI command is executed (but after syntax and
semantic checking).

Exit-specific
parameters

UEPSZACT
A 2-byte field that identifies the command. The values are given in
Table 11 on page 64.

UEPSZCNV
An 8-character field containing the conversation ID (CONVID) for the
command. Applicable on FEPI ALLOCATE, SEND, RECEIVE,
CONVERSE, EXTRACT, ISSUE, START, and FREE commands.

For an EXEC CICS FEPI ALLOCATE command without PASSCONVID,
this field is set to nulls; if PASSCONVID is used, it contains the
CONVID.

UEPSZALP
An 8-character field containing the name of the pool (POOL). Modifiable
and applicable on FEPI ALLOCATE and CONVERSE commands.

UEPSZALT
An 8-character field containing the name of the target (TARGET).
Modifiable and applicable on FEPI ALLOCATE and CONVERSE
commands.

UEPSZTIM
Fullword binary field containing the time-out value (TIMEOUT).
Modifiable and applicable on FEPI ALLOCATE, RECEIVE, CONVERSE,
and START commands.

UEPSZSND
Address of the ‘send’ data-area (FROM). Applicable on FEPI
CONVERSE and SEND commands.

UEPSZSNL
Fullword binary field containing the length of the ‘send’ data
(FROMFLENGTH, FLENGTH). Applicable on FEPI CONVERSE and
SEND commands.

UEPSZSTT
A 4-character field containing the transaction ID (TRANSID). Modifiable
and applicable on FEPI START commands.

UEPSZSTM
A 4-character field containing the terminal ID (TERMID). Modifiable and
applicable on FEPI START commands.

62 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Exit XSZARQ

Table 9 (Page 2 of 2). Exit XSZBRQ

 UEPSZSNK
A 1-bit flag field indicating whether data is in key stroke format
(KEYSTROKE). Applicable on FEPI CONVERSE FORMATTED and
SEND FORMATTED commands. It can contain the following values:

UEPSZSNK_OFF Not key stroke format.
UEPSZSNK_ON Key stroke format.

UEPSZSNE
A 1-character field containing the key stroke escape character
(ESCAPE). Applicable on FEPI CONVERSE FORMATTED and SEND
FORMATTED commands.

Return codes UERCNORM Continue processing.

UERCBYP Do not process the request; return INVREQ to the application.

Note: Your exit program cannot bypass events (like CICS
shutdown or end-of-task).

XPI calls Do not use any XPI calls .

API and SPI
calls

Do not use any API or SPI calls .

 XSZARQ
XSZARQ is invoked immediately after a FEPI command has been executed; the exit
program is passed the parameters that are output from the command. All of the information
passed is read-only.

Table 10. Exit XSZARQ

Invoked by FEPI immediately after a FEPI command has been processed.

Exit-specific
parameters

UEPSZACN
A 2-byte field that identifies the command. The values are given in
Table 11 on page 64.

UEPSZCON
An 8-character field containing the conversation ID (CONVID) for the
command. Applicable on FEPI ALLOCATE, SEND, RECEIVE,
CONVERSE, EXTRACT, ISSUE, START, and FREE commands.

UEPSZRP2
Fullword containing the response code for the command (RESP2).

UEPSZRVD
Address of the ‘receive’ data-area (INTO). Applicable on FEPI
RECEIVE, CONVERSE, and EXTRACT FIELD commands.

UEPSZRVL
Fullword binary data field containing the length of the receive data
(FLENGTH, TOFLENGTH). Applicable on FEPI RECEIVE, CONVERSE,
and EXTRACT FIELD commands.

Return code UERCNORM Continue processing.

XPI calls Do not use any XPI calls .

API and SPI
calls

Do not use any API or SPI calls .

 Chapter 8. Customizing FEPI 63

 UEPSZACT and UEPSZACN parameters

The UEPSZACT and UEPSZACN exit-specific parameters
Both XSZBRQ and XSZARQ are passed a parameter (UEPSZACT for XSZBRQ, and
UEPSZACN for XSZARQ) indicating the command or event being processed. Table 11.
relates the hexadecimal values passed in UEPSZACT and UEPSZACN to the FEPI
commands they represent.

Table 11. Settings of UEPSZACT for exit XSZBRQ and UEPSZACN for exit XSZARQ

Name Setting (hex) FEPI command or event

UEPSZNOA 820E AP NOOP
UEPSZOAL 8210 ALLOCATE
UEPSZOCF 8212 CONVERSE FORMATTED
UEPSZOCD 8214 CONVERSE DATASTREAM
UEPSZOXC 8216 EXTRACT CONV
UEPSZOXF 8218 EXTRACT FIELD
UEPSZOXS 821A EXTRACT STSN
UEPSZOFR 821C FREE
UEPSZOSU 821E ISSUE
UEPSZORF 8220 RECEIVE FORMATTED
UEPSZORD 8222 RECEIVE DATASTREAM
UEPSZOSF 8224 SEND FORMATTED
UEPSZOSD 8226 SEND DATASTREAM
UEPSZOST 8228 START
UEPSZSDN 8402 CICS normal shutdown .1/
UEPSZSDI 8404 CICS immediate shutdown .1/
UEPSZSDF 8406 CICS forced shutdown .1/
UEPSZEOT 8408 CICS end-of-task .1/
UEPSZNOS 840E SP NOOP
UEPSZOQY 8422 INQUIRE PROPERTYSET
UEPSZOIY 8428 INSTALL PROPERTYSET
UEPSZODY 8430 DISCARD PROPERTYSET
UEPSZOQN 8442 INQUIRE NODE
UEPSZOTN 8444 SET NODE
UEPSZOIN 8448 INSTALL NODELIST
UEPSZOAD 844A ADD POOL
UEPSZODE 844C DELETE POOL
UEPSZODN 8450 DISCARD NODELIST
UEPSZOQP 8462 INQUIRE POOL
UEPSZOTP 8464 SET POOL
UEPSZOIP 8468 INSTALL POOL
UEPSZODP 8470 DISCARD POOL
UEPSZOQT 8482 INQUIRE TARGET
UEPSZOTT 8484 SET TARGET
UEPSZOIT 8488 INSTALL TARGETLIST
UEPSZODT 8490 DISCARD TARGETLIST
UEPSZOQC 84A2 INQUIRE CONNECTION
UEPSZOTC 84A4 SET CONNECTION

Note:

.1/ These events are generated internally by CICS; you cannot bypass them.

64 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Journaling

Using XMEOUT to control message output
You can use the XMEOUT global user exit, in the CICS message domain, to suppress or
reroute FEPI messages. Note, however, that error conditions that generate a message also
generate a transient data queue record. It is more efficient to handle such events using a
monitoring program, through the TD queue, than by duplicating a message and then acting
on it. See “Writing monitoring programs” on page 33.

For programming information about the XMEOUT exit, see the CICS Customization Guide.

 Journaling
This section describes the format of FEPI journal records, and how to print them. For
background information about CICS journaling, you should refer to the CICS Operations and
Utilities Guide; for programming information, see the CICS Customization Guide.

FEPI journal operation
You can request FEPI to write inbound, outbound, or both inbound and outbound data to a
specified CICS user journal; you cannot write to the system journal. This is done using the
MSGJRNL and FJOURNALNUM options in your property set definitions.

Of the various reasons for using CICS journaling, the following are particularly relevant to
FEPI processing:

� Creating audit trails
 � Monitoring performance
� Controlling message security.

Table 12 shows the types of FEPI data that can be journaled.

The records journaled by FEPI are identified in the usual way by module and function
identifiers. These are listed in Table 13.

In order to identify the conversation for which the data was journaled, FEPI provides a
system prefix area in the journal record.

Table 12. FEPI journaled data

FEPI command Data flow Type

SEND Outbound Data stream
Formatted, screen image
Formatted, key stroke

RECEIVE Inbound Data stream
Formatted, screen image

CONVERSE Outbound Data stream
Formatted, screen image
Formatted, key stroke

CONVERSE Inbound Data stream
Formatted, screen image

EXTRACT FIELD Inbound Extract field data

Table 13. FEPI journal record identifiers

Identifier-type Name Value Type of data

Module identifier MODIDFEP X'5D' Identifies FEPI records in the journal

Function
identifiers

FIDFEPIN
FIDFEPOU

X'F0'
X'F1'

Identifies FEPI inbound data
Identifies FEPI outbound data

 Chapter 8. Customizing FEPI 65

 Journaling

Printing FEPI journal records
You can manipulate FEPI journal records in any of the ways described in the CICS
Operations and Utilities Guide; programming information about this is in the CICS
Customization Guide. The following examples show ways in which you can use the
CICS-supplied utility program, DFHJUP, to select FEPI records for printing.

Print all FEPI records
OPTION PRINT OFFSET=6,FLDTYP=X,VALUE=5D,FLDLEN=1,COND=E

Print all FEPI inbound records
OPTION PRINT OFFSET=5,FLDTYP=X,VALUE=F05D,FLDLEN=2,COND=E

Print all FEPI outbound records
OPTION PRINT OFFSET=5,FLDTYP=X,VALUE=F15D,FLDLEN=2,COND=E

Print all FEPI outbound records with data starting 'CEOT'
OPTION PRINT OFFSET=5,FLDTYP=X,VALUE=F15D,FLDLEN=2,COND=M
OPTION PRINT OFFSET=63,FLDTYP=C,VALUE=CEOT,FLDLEN=4,COND=E

Print all FEPI records to/from pool 'PPPPPPPP'
OPTION PRINT OFFSET=6,FLDTYP=X,VALUE=5D,FLDLEN=1,COND=M
OPTION PRINT OFFSET=35,FLDTYP=C,VALUE=PPPPPPPP,FLDLEN=8,COND=E

Print all FEPI inbound records from target 'TTTTTTTT'
OPTION PRINT OFFSET=5,FLDTYP=X,VALUE=F05D,FLDLEN=2,COND=M
OPTION PRINT OFFSET=43,FLDTYP=C,VALUE=TTTTTTTT,FLDLEN=8,COND=E

66 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 System programming reference

Chapter 9. System programming reference

This chapter describes the FEPI system programming
commands that you use for FEPI configuration and
operation. (Application programming commands such as
ALLOCATE, CONVERSE, and EXTRACT are described in
Chapter 16, “Application programming reference” on
page 135.)

The chapter contains the following topics:

� “General information about the FEPI SPI commands”
� “Transient data queue records” on page 89.

General information about the FEPI SPI
commands

The FEPI system programming commands are:

 ADD POOL
 DELETE POOL
 DISCARD NODELIST
 DISCARD POOL
 DISCARD PROPERTYSET
 DISCARD TARGETLIST
 INQUIRE CONNECTION
 INQUIRE NODE
 INQUIRE POOL
 INQUIRE PROPERTYSET
 INQUIRE TARGET
 INSTALL NODELIST
 INSTALL POOL
 INSTALL PROPERTYSET
 INSTALL TARGETLIST
 SET CONNECTION
 SET NODE
 SET POOL
 SET TARGET
 SP NOOP

These commands are an addition to the system
programming group of EXEC CICS commands (programming
information about these is in the CICS System Programming
Reference manual) and have the same features and
properties. To use these commands, you should be familiar
with:

� The format of EXEC CICS commands
� Input and output values, and CVDAs
� The use of the RESP, RESP2, and NOHANDLE options

 � Security checking
� The use of INQUIRE and SET commands

 � Browsing.

Brief notes on some of these topics are included here. For
programming information about system programming
commands, see the CICS System Programming Reference.

 Command format

The general format of a command is:

EXEC CICS FEPI command option(argument)...

where:

command Is the command name (for example, ADD)
option Is an option name (for example, POOL)
argument Is the source or destination for data, as required

for the specified option, that is passed to or
returned from the command.

The way that you terminate the command is determined by
the programming language that you use—COBOL, for
example, requires an END-EXEC statement.

Arguments and data types

The text used to identify arguments in this book indicates the
type of data represented by the argument and whether it is a
value used by the command, or an area in which the
command returns data. For example:

POOL(8-character data-value) says that the argument
is, or identifies, a string of eight characters, and that the
string is passed to the command as an input value.

ACQNUM(fullword binary data-area) says that the
argument is a user-defined fullword data area in which
the command can return a binary number as an output
value.

Exceptionally, arguments that are lists have to be data areas,
even though they are input values.

Errors and exception conditions

All FEPI commands support the RESP and RESP2 options
to signal successful completion or an exception condition.
Alternatively, you can use HANDLE CONDITION to trap
errors.

Most FEPI command errors give the ‘INVREQ’ exception
condition. The particular error in each case is uniquely
identified by the RESP2 value.

Both RESP and RESP2 take, as an argument, the name of a
user-defined fullword binary data area. Possible values of
the RESP2 option are given in the description of each of the
commands and a full list is given in “RESP2 values” on
page 183. The following copy books provide declarations for
the RESP2 values:

� DFHSZAPA for assembler language
� DFHSZAPO for COBOL
� DFHSZAPP for PL/I
� DFHSZAPC for C/370.

 Copyright IBM Corp. 1992, 1999 67

 System programming reference

The following conditions and RESP2 values can occur for
any system programming command:

If there is an error, the command does nothing, and the
output arguments are not changed.

By their nature, some commands (for example, FEPI SET
NODE INSERVICE) initiate a function and return before the
function has completed. Errors in the execution of the
function cannot be reported as an exception condition on the
command. Such errors are reported by writing a record to a
transient data (TD) queue and a message to the message
log CSZL. See “Transient data queue records” on page 89
for details.

List processing: Commands that operate on a list of
resources can fail for some of the resources in the list, but
succeed for others. If this happens, a ‘list error’ is returned
on the command. A record is written to a TD queue for each
of the resources for which the command failed.

Even if the command fails for all of the resources in the list, it
may still be partially successful if other parameters are valid.
For example, a FEPI INSTALL POOL command installs a valid

pool even if the array of node names specified on the
NODELIST parameter does not exist.

 Syntax notation

The notation used in this book to show the syntax of FEPI
commands is the same as that used in the CICS System
Programming Reference manual. See “CICS syntax notation
used in this book” on page viii for details.

 Translator options
Unlike other CICS system programming commands, the FEPI
system programming commands do not need the ‘SP’
translator option. However, you do need to specify the
‘FEPI’ translator option.

INQUIRE and SET commands

The FEPI INQUIRE and SET commands work in the same
way as other CICS INQUIRE and SET commands. They
allow you to look at named FEPI resource definitions, browse
sets of related definitions, and modify some of the defined
values.

 Other points
� FEPI commands can be issued in either 24-bit or 31-bit

addressing mode, by programs that reside either above
or below the 16MB line.

� No information is passed through the EXEC interface
block (EIB) except that, as for all CICS commands, the
EIBRESP, EIBRESP2, EIBFN, and EIBRCODE fields
are set.

Condition RESP2 Meaning
INVREQ 10 Command bypassed by user exit.
INVREQ 11 FEPI not installed, or not active.
INVREQ 12 CICS shutting down, command not

allowed.
INVREQ 13 FEPI unavailable.
INVREQ 14 FEPI busy or cannot get storage.
INVREQ 15 Unknown command.
INVREQ 16 Internal error.
INVREQ 17 FEPI cannot get storage for user exit.
INVREQ 18 Command failed through operator or

system action.
NOTAUTH 100 Not authorized for this command.

68 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI ADD POOL

FEPI ADD POOL

Function: FEPI ADD POOL adds targets or nodes, or both, to an existing pool, thereby creating new connections in the
pool. The targets or nodes must not be in the pool already. You can specify initial service and acquire states for these new
connections. The command completes when the resources have been added to the pool but without waiting for the requested
states to be achieved.

 Syntax

 ┌ ┐─ACQUIRED────────
55──FEPI ADD─ ──POOL(data-value) ──┼ ┼───────────────── ──┬ ┬── ─────────5

├ ┤──ACQSTATUS(cvda) └ ┘──NODELIST(data-area) ──NODENUM(data-value)
 └ ┘─RELEASED────────

 ┌ ┐─INSERVICE────────
5─ ──┼ ┼────────────────── ──┬ ┬── ─5%

├ ┤──SERVSTATUS(cvda) └ ┘──TARGETLIST(data-area) ──TARGETNUM(data-value)
 └ ┘─OUTSERVICE───────

Conditions:
 INVREQ, NOTAUTH

 Options

ACQSTATUS(cvda)
specifies the initial acquire state of the connections being
created. All the new connections have the same state.
The relevant CVDA values are:

ACQUIRED The connections are to have sessions
established (that is, be ‘bound’).

RELEASED The connections are not to have
sessions established (that is, be left
‘unbound’).

NODELIST(data-area)
specifies a contiguous array of 8-character node names
to be added to the pool. They must already be defined
by FEPI INSTALL NODELIST, but can have any service
state.

NODENUM(fullword binary data-value)
specifies the number of names in the NODELIST, in the
range 0–256.

POOL(8-character data-value)
specifies the name of the pool to which the targets or
nodes, or both, are being added.

SERVSTATUS(cvda)
specifies the initial service state of the connections being
created. All the new connections have the same state.
The relevant CVDA values are:

INSERVICE The connections are to be in service, and
so can be used in a conversation.

OUTSERVICE The connections are to be out of service
and cannot be used for any conversation.

TARGETLIST(data-area)
specifies a contiguous array of 8-character target names
to be added to the pool. They must already be defined

by FEPI INSTALL TARGETLIST, but can be in any
service state.

TARGETNUM(fullword binary data-value)
specifies the number of names in TARGETLIST, in the
range 0–256.

 Conditions

Condition RESP2 Meaning
INVREQ 110 SERVSTATUS value not valid.
INVREQ 111 ACQSTATUS value not valid.
INVREQ 115 POOL name unknown.
INVREQ 116 TARGET name unknown.
INVREQ 117 NODE name unknown.
INVREQ 119 The command failed for one or more

items in the list.
INVREQ 130 TARGETNUM value is out of range.
INVREQ 131 NODENUM value is out of range.
INVREQ 173 NODE name already exists in the

specified pool.
INVREQ 174 TARGET name already exists in the

specified pool.
INVREQ 175 Connection already exists.

 Chapter 9. System programming reference 69

 FEPI DELETE POOL � FEPI DISCARD NODELIST

FEPI DELETE POOL

Function: FEPI DELETE POOL removes targets or nodes, or both, from a specified pool, thereby removing connections
from the pool. The targets or nodes must be in the pool already. The command completes immediately, without waiting for the
necessary deletions to be achieved. When the connections are deleted, they are no longer defined to FEPI.

 Syntax

55──FEPI DELETE─ ──POOL(data-value) ──┬ ┬── ───────────────────────────5
 └ ┘──NODELIST(data-area) ──NODENUM(data-value)

5─ ──┬ ┬── ─5%
 └ ┘──TARGETLIST(data-area) ──TARGETNUM(data-value)

Conditions:
 INVREQ, NOTAUTH

 Options

NODELIST(data-area)
specifies a contiguous array of 8-character node names
that are to be deleted from the pool.

NODENUM(fullword binary data-value)
specifies the number of names in the NODELIST, in the
range 0–256.

POOL(8-character data-value)
specifies the name of the pool from which targets or
nodes are to be removed.

TARGETLIST(data-area)
specifies a contiguous array of 8-character target names
that are to be deleted from the pool.

TARGETNUM(fullword binary data-value)
specifies the number of names in TARGETLIST, in the
range 0–256.

 Conditions

Condition RESP2 Meaning
INVREQ 115 POOL name unknown.
INVREQ 116 TARGET name unknown.
INVREQ 117 NODE name unknown.
INVREQ 119 The command failed for one or more

items in the list.
INVREQ 130 TARGETNUM value out of range.
INVREQ 131 NODENUM value out of range.

FEPI DISCARD NODELIST

Function: FEPI DISCARD NODELIST removes nodes completely from FEPI. The state of each node to be discarded is set
to OUTSERVICE RELEASED (see “FEPI SET NODE” on page 86). When this state is achieved, the node is deleted from any
pool that it is in. The nodes are then discarded so that they are no longer defined to FEPI. The command completes
immediately without waiting for the necessary service and acquire states to be achieved.

 Syntax

55──FEPI DISCARD─ ──NODELIST(data-area) ──NODENUM(data-value) ─5%

Conditions:
 INVREQ, NOTAUTH

 Options

NODELIST(data-area)
specifies a contiguous array of 8-character node names
that are to be discarded.

NODENUM(fullword binary data-value)
specifies the number of names in NODELIST, in the
range 1–256.

 Conditions

Condition RESP2 Meaning
INVREQ 117 NODE name unknown.
INVREQ 119 The command failed for one or more

items in the list.
INVREQ 131 NODENUM value out of range.

70 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI DISCARD POOL � FEPI DISCARD TARGETLIST

FEPI DISCARD POOL

Function: FEPI DISCARD POOL removes a pool of connections completely from FEPI. The state of the connections in the
pool is set to OUTSERVICE RELEASED (see “FEPI SET CONNECTION” on page 85), and the state of the pool is set to
OUTSERVICE (see “FEPI SET POOL” on page 87). When these states have been achieved, the pool and its connections are
discarded, so that they are no longer defined to FEPI. The command completes immediately, without waiting for the necessary
service and acquire states to be achieved.

 Syntax

55──FEPI DISCARD─ ──POOL(data-value) ─5%

Conditions:
 INVREQ, NOTAUTH

 Options

POOL(8-character data-value)
specifies the name of the pool to be discarded.

 Conditions

Condition RESP2 Meaning
INVREQ 115 POOL name unknown.

FEPI DISCARD PROPERTYSET

Function: FEPI DISCARD PROPERTYSET removes a set of properties. The properties are discarded immediately so that
they are no longer defined to FEPI, but any pool that was installed using the properties is not affected.

 Syntax

55──FEPI DISCARD─ ──PROPERTYSET(data-value) ─5%

Conditions:
 INVREQ, NOTAUTH

 Options

PROPERTYSET(8-character data-value)
specifies the name of the set of properties to be
discarded.

 Conditions

Condition RESP2 Meaning
INVREQ 171 PROPERTYSET name unknown.

FEPI DISCARD TARGETLIST

Function: FEPI DISCARD TARGETLIST removes targets completely from FEPI. The state of the targets to be discarded is
set to OUTSERVICE (see “FEPI SET TARGET” on page 88). When this state has been achieved, the targets are deleted
from any pool they are in, and are then discarded, so that they are no longer defined to FEPI. The command completes
immediately, without waiting for the necessary service and acquire states to be achieved.

 Syntax

55──FEPI DISCARD─ ──TARGETLIST(data-area) ──TARGETNUM(data-value) ─5%

Conditions:
 INVREQ, NOTAUTH

 Options

TARGETLIST(data-area)
specifies a contiguous array of 8-character target names
that are to be discarded.

TARGETNUM(fullword binary data-value)
specifies the number of names in TARGETLIST, in the
range 1–256.

 Conditions

Condition RESP2 Meaning
INVREQ 116 TARGET name unknown.
INVREQ 119 The command failed for one or more

items in the list.
INVREQ 130 TARGETNUM value out of range.

 Chapter 9. System programming reference 71

 FEPI INQUIRE CONNECTION

FEPI INQUIRE CONNECTION

Function: FEPI INQUIRE CONNECTION returns information about a FEPI connection. A connection is identified by
specifying its target and node.

 Syntax

55──FEPI INQUIRE CONNECTION─ ──NODE(data-value) ──TARGET(data-value) ──┬ ┬─────────────────── ──────────────────5
└ ┘──ACQNUM(data-area)

5─ ──┬ ┬───────────────── ──┬ ┬──────────────────── ──┬ ┬─────────────────── ──┬ ┬──────────────────────── ─────────5
└ ┘──ACQSTATUS(cvda) └ ┘──CONVNUM(data-area) └ ┘──INSTLSTATUS(cvda) └ ┘──LASTACQCODE(data-area)

5─ ──┬ ┬───────────────── ──┬ ┬────────────────── ──┬ ┬───────────── ──┬ ┬───────────────────── ────────────────────5
└ ┘──POOL(data-area) └ ┘──SERVSTATUS(cvda) └ ┘──STATE(cvda) └ ┘──USERDATA(data-area)

5─ ──┬ ┬──────────────────────── ─5%
└ ┘──WAITCONVNUM(data-area)

Conditions:
END, ILLOGIC, INVREQ, NOTAUTH

The following commands allow you to browse all FEPI
connections. Read the information about browsing earlier in
this book before using the browsing commands.

FEPI Browse CONNECTION

FEPI INQUIRE CONNECTION START

FEPI INQUIRE CONNECTION NEXTNODE|NEXTTARGET

NODE(8-character data-area)

TARGET(8-character data-area)

[The options are as for FEPI INQUIRE CONNECTION]

FEPI INQUIRE CONNECTION END

Conditions: INVREQ, NOTAUTH

The next connection for which information is returned
depends on whether NEXTNODE or NEXTTARGET is
specified. If NEXTNODE is specified, the information
returned is for:

� The next node connected to the current target
� If there are no more nodes connected to the current

target, then the first node connected to the next target.

If NEXTTARGET is specified, the information returned is for:

� The next target connected to the current node
� If there are no more targets connected to the current

node, then the first target connected to the next node.

 Options

ACQNUM(fullword binary data-area)
returns the number of times that the connection has been
acquired.

ACQSTATUS(cvda)
returns the acquire state; that is, whether a session on
the connection is bound or not. The relevant CVDA
values are:

ACQUIRED The session is bound.

ACQUIRING A state of ACQUIRED has been requested
but binding a session has not yet been
completed.

RELEASED No session is bound.

RELEASING A state of RELEASED has been requested
but unbinding the session has not yet
been completed.

If ACQUIRING or RELEASING persist, the operator might
need to intervene using VTAM commands to recover the
connection.

CONVNUM(fullword binary data-area)
returns the number of conversations that have used the
connection.

INSTLSTATUS(cvda)
returns the install state of the connection. The relevant
CVDA values are:

INSTALLED The connection is in a pool defined by
INSTALL and is available for use.

NOTINSTALLED The connection is in a pool, or involves
a node or target that is being
discarded but is still in use.

LASTACQCODE(fullword binary data-area)
returns the result of the last acquire request for the
connection; that is, the sense code from the last VTAM
REQSESS, zero indicating success. For details of VTAM
sense codes, see the VTAM Messages and Codes
manual, or SNA Formats manual.

Note: CLSDST(PASS)—X'32020000'—can be returned
in this field. This is the unbind flow received by CICS
during CLSDST(PASS) processing.

NODE(8-character data-value/8-character data-area)
is the node identifying the connection.

POOL(8-character data-area)
returns the name of the pool that defines the connection.

72 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI INQUIRE CONNECTION

SERVSTATUS(cvda)
returns the service state of the connection. The relevant
CVDA values are:

INSERVICE The connection is in service and can be
used in a conversation.

OUTSERVICE The connection is out of service and
cannot be used for any new
conversation, but a conversation using
the connection is unaffected. The
service state is GOINGOUT until any such
conversation ends.

GOINGOUT A state of OUTSERVICE has been
requested but the connection is still being
used by some conversation.

STATE(cvda)
returns the state of the conversation using the
connection. The relevant CVDA values are:

NOCONV No conversation is active on the
connection.

PENDSTSN An STSN-handling task has been
scheduled.

STSN An STSN-handling task owns the
conversation.

PENDBEGIN A begin-session handling task has
been scheduled.

BEGINSESSION A begin-session handling task owns
the conversation.

APPLICATION A normal application task owns the
conversation.

PENDDATA FEPI is waiting for inbound data,
following a FEPI START command.

PENDSTART Inbound data having arrived, a task
specified by FEPI START has been
scheduled.

PENDFREE An end-session handling task has
been scheduled, following a FEPI
FREE command.

FREE An end-session handling task owns the
conversation, following a FEPI FREE
command.

PENDRELEASE An end-session handling task has
been scheduled, following an unbind
request.

RELEASE An end-session handling task owns the
conversation, following an unbind
request.

PENDUNSOL An unsolicited-data handling task has
been scheduled.

UNSOLDATA An unsolicited-data handling task owns
the conversation.

PENDPASS The conversation is unowned,
following a FEPI FREE PASS
command.

The ‘pending’ states indicate that the conversation is
unowned, pending the event or task indicated; the state
ceases to be pending when a task issues a FEPI
ALLOCATE PASSCONVID command. If a ‘pending’
state persists, it is likely that the application has failed in
some way; you should consider resetting the connection
by issuing FEPI SET CONNECTION RELEASED.

TARGET(8-character data-value/8-character data-area)
is the target identifying the connection.

USERDATA(64-character data-area)
returns the user data for the connection. If no user data
has been set, nulls are returned.

WAITCONVNUM(fullword binary data-area)
returns the number of conversations that are waiting to
start using the connection. Note that, if a conversation
could use any one of several connections, it is counted
as waiting on each one.

 Conditions

Condition RESP2 Meaning
ILLOGIC 1 For START: browse of this resource type

is already in progress.
For NEXT or INQUIRE: END was not
issued.

END 2 For NEXT: all resource definitions have
been retrieved.

INVREQ 116 TARGET name unknown.
INVREQ 117 NODE name unknown.
INVREQ 118 Connection unknown (TARGET and

NODE names known, but not in a
common pool).

 Chapter 9. System programming reference 73

 FEPI INQUIRE NODE

FEPI INQUIRE NODE

Function: FEPI INQUIRE NODE returns information about a FEPI node.

 Syntax

55──FEPI INQUIRE─ ──NODE(data-value) ──┬ ┬─────────────────── ──┬ ┬───────────────── ──┬ ┬─────────────────── ─────5
└ ┘──ACQNUM(data-area) └ ┘──ACQSTATUS(cvda) └ ┘──INSTLSTATUS(cvda)

5─ ──┬ ┬──────────────────────── ──┬ ┬────────────────── ──┬ ┬───────────────────── ─5%
└ ┘──LASTACQCODE(data-area) └ ┘──SERVSTATUS(cvda) └ ┘──USERDATA(data-area)

Conditions:
END, ILLOGIC, INVREQ, NOTAUTH

The following commands allow you to browse all FEPI NODE
definitions. Read the information on browsing earlier in this
book before using the browsing commands.

FEPI Browse NODE

FEPI INQUIRE NODE START

FEPI INQUIRE NODE(8-character data-area) NEXT

[The options are as for FEPI INQUIRE NODE]

FEPI INQUIRE NODE END

 Options

ACQNUM(fullword binary data-area)
returns the number of times that the node has been
acquired.

ACQSTATUS(cvda)
returns the acquire state—that is, whether the VTAM
ACB is opened or closed. The relevant CVDA values
are:

ACQUIRED The VTAM ACB for the node is open and
‘set logon start’ has completed.

ACQUIRING A state of ACQUIRED has been requested
but opening the VTAM ACB for the node
and issuing ‘set logon start’ has not yet
been completed.

RELEASED Sessions on any connections involving
the node have been unbound and the
VTAM ACB has been closed.

RELEASING A state of RELEASED has been requested
but closing the VTAM ACB for the node
has not yet been completed.

If ACQUIRING or RELEASING persist, the operator might
need to intervene using VTAM commands to recover the
node.

INSTLSTATUS(cvda)
returns the install state of the node. The relevant CVDA
values are:

INSTALLED The node has been defined by
INSTALL and is available for use.

NOTINSTALLED The node is being discarded, but is still
in use.

LASTACQCODE(fullword binary data-area)
returns the result of the last acquire request for the node;
that is, the return code from the last VTAM OPEN ACB,
zero indicating success. For details of VTAM return
codes, see the VTAM Programming manual.

NODE(8-character data-value/8-character data-area)
is the name of the node.

SERVSTATUS(cvda)
returns the service state of the node. The relevant CVDA
values are:

INSERVICE The node is in service and can be used
in a conversation.

OUTSERVICE The node is out of service and cannot be
used for any conversation.

GOINGOUT A state of OUTSERVICE has been
requested but the node is still being used
by a conversation.

USERDATA(64-character data-area)
returns the user data for the node. If no user data has
been set, nulls are returned.

 Conditions

Condition RESP2 Meaning
ILLOGIC 1 For START: browse of this resource type

is already in progress.
For NEXT or END: START was not
issued.

END 2 For NEXT: all resource definitions have
been retrieved.

INVREQ 117 NODE name unknown.

74 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI INQUIRE POOL

FEPI INQUIRE POOL

Function: FEPI INQUIRE POOL returns information about a FEPI pool of connections.

 Syntax

55──FEPI INQUIRE─ ──POOL(data-value) ──┬ ┬───────────────────────── ──┬ ┬────────────────── ──┬ ┬────────────── ───5
└ ┘──BEGINSESSION(data-area) └ ┘──CONTENTION(cvda) └ ┘──DEVICE(cvda)

5─ ──┬ ┬─────────────────────── ──┬ ┬─────────────────────── ──┬ ┬──────────────────────── ──┬ ┬────────────── ─────5
└ ┘──ENDSESSION(data-area) └ ┘──EXCEPTIONQ(data-area) └ ┘──FJOURNALNUM(data-area) └ ┘──FORMAT(cvda)

5─ ──┬ ┬─────────────────── ──┬ ┬─────────────────── ──┬ ┬─────────────────────── ──┬ ┬─────────────── ─────────────5
└ ┘──INITIALDATA(cvda) └ ┘──INSTLSTATUS(cvda) └ ┘──MAXFLENGTH(data-area) └ ┘──MSGJRNL(cvda)

5─ ──┬ ┬──────────────────────── ──┬ ┬────────────────── ──┬ ┬───────────────── ──┬ ┬────────────────────── ────────5
└ ┘──PROPERTYSET(data-area) └ ┘──SERVSTATUS(cvda) └ ┘──STSN(data-area) └ ┘──UNSOLDATA(data-area)

5─ ──┬ ┬─────────────────── ──┬ ┬───────────────────── ──┬ ┬──────────────────────── ─5%
└ ┘──UNSOLDATACK(cvda) └ ┘──USERDATA(data-area) └ ┘──WAITCONVNUM(data-area)

Conditions:
END, ILLOGIC, INVREQ, NOTAUTH

The following commands allow you to browse all FEPI POOL
definitions. You should read the information on browsing
earlier in this book before using the browsing commands.

FEPI Browse POOL

FEPI INQUIRE POOL START

FEPI INQUIRE POOL(8-character data-area) NEXT

[The options are as for FEPI INQUIRE POOL]

FEPI INQUIRE POOL END

 Options

BEGINSESSION(4-character data-area)
returns the name of the transaction performing
begin-session processing, or blanks if no transaction was
specified.

CONTENTION(cvda)
returns a value that specifies what happens when a FEPI
SEND command is issued and there is inbound data with
‘begin bracket’. The relevant CVDA values are:

LOSE FEPI SEND command fails; a FEPI
RECEIVE must be issued to get the inbound
data.

WIN FEPI SEND command succeeds; inbound
data is rejected with a negative response.

DEVICE(cvda)
returns a value that identifies the mode of conversation
and the type of device. Defined values are:

T3278M2 SLU2 mode, 3278 Model 2
T3278M3 SLU2 mode, 3278 Model 3
T3278M4 SLU2 mode, 3278 Model 4
T3278M5 SLU2 mode, 3278 Model 5
T3279M2 SLU2 mode, 3279 Model 2B
T3279M3 SLU2 mode, 3279 Model 3B
T3279M4 SLU2 mode, 3279 Model 4B
T3279M5 SLU2 mode, 3279 Model 5B

TPS55M2 SLU2 mode, PS/55, 24 lines
TPS55M3 SLU2 mode, PS/55, 32 lines
TPS55M4 SLU2 mode, PS/55, 43 lines
LUP SLU P mode, all cases.

ENDSESSION(4-character data-area)
returns the name of the transaction performing
end-session processing, or blanks if no transaction was
specified.

EXCEPTIONQ(4-character data-area)
returns the name of the TD queue to which exceptional
events are notified, or blanks if no queue was specified.

FJOURNALNUM(fullword binary data-area)
returns the number of the journal where data is to be
logged.

FORMAT(cvda)
returns a value that identifies the data format. The
relevant CVDA values are:

FORMATTED Formatted operation

DATASTREAM Data stream operation

NOTAPPLIC Option is not applicable for the specified
pool.

INITIALDATA(cvda)
returns a value indicating whether initial inbound data is
expected when a session is started. The relevant CVDA
values are:

NOTINBOUND No inbound data expected

INBOUND Inbound data expected.

INSTLSTATUS(cvda)
returns the install state of the pool. The relevant CVDA
values are:

INSTALLED The pool has been defined by
INSTALL and is available for use.

 Chapter 9. System programming reference 75

 FEPI INQUIRE POOL

NOTINSTALLED The pool is being discarded, but is still
in use.

MAXFLENGTH(fullword binary data-area)
returns the maximum length of data that can be returned
on any FEPI RECEIVE, CONVERSE, or EXTRACT
FIELD command for a conversation, or that can be sent
by any FEPI SEND or CONVERSE command for a
conversation.

MSGJRNL(cvda)
returns a value indicating whether journaling is performed
for inbound and outbound data. The relevant CVDA
values are:

NOMSGJRNL No journaling is to be performed.

INPUT Inbound data is journaled.

OUTPUT Outbound data is journaled.

INOUT Inbound and outbound data are
journaled.

POOL(8-character data-value/8-character data-area)
is the name of the pool.

PROPERTYSET(8-character data-area)
returns the name of the set of properties with which the
pool was installed.

SERVSTATUS(cvda)
returns the service state of the pool. The relevant CVDA
values are:

INSERVICE The pool is in service and can be used in
a conversation.

OUTSERVICE The pool is out of service and cannot be
used for any conversation.

GOINGOUT A state of OUTSERVICE has been
requested but the pool is still being used
by some conversation.

STSN(4-character data-area)
returns the name of the transaction handling STSN data,
or blanks if no transaction was specified.

UNSOLDATA(4-character data-area)
returns the name of the transaction handling unsolicited
data (data received outside a conversation), or blanks if
no transaction was specified.

UNSOLDATACK(cvda)
if there is no unsolicited data processing, this indicates
what acknowledgment FEPI gives to a BID. The relevant
CVDA values are:

NEGATIVE Negative response X'0813', BID not
accepted

POSITIVE Positive response, BID accepted and
subsequent data is accepted and
discarded

NOTAPPLIC Option is not applicable for the specified
pool.

USERDATA(64-character data-area)
returns the user data for the pool. If no user data has
been set, nulls are returned.

WAITCONVNUM(fullword binary data-area)
returns the number of conversations that are waiting to
start using a connection in the pool.

 Conditions

Condition RESP2 Meaning
ILLOGIC 1 For START: browse of this resource type

is already in progress.
For NEXT or END: START was not
issued.

END 2 For NEXT: all resource definitions have
been retrieved.

INVREQ 115 POOL name unknown.

76 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI INQUIRE PROPERTYSET

FEPI INQUIRE PROPERTYSET

Function: FEPI INQUIRE PROPERTYSET returns information about a FEPI property set.

 Syntax

55──FEPI INQUIRE─ ──PROPERTYSET(data-value) ──┬ ┬───────────────────────── ──┬ ┬────────────────── ──────────────5
└ ┘──BEGINSESSION(data-area) └ ┘──CONTENTION(cvda)

5─ ──┬ ┬────────────── ──┬ ┬─────────────────────── ──┬ ┬─────────────────────── ──┬ ┬──────────────────────── ─────5
└ ┘──DEVICE(cvda) └ ┘──ENDSESSION(data-area) └ ┘──EXCEPTIONQ(data-area) └ ┘──FJOURNALNUM(data-area)

5─ ──┬ ┬────────────── ──┬ ┬─────────────────── ──┬ ┬─────────────────────── ──┬ ┬─────────────── ──────────────────5
└ ┘──FORMAT(cvda) └ ┘──INITIALDATA(cvda) └ ┘──MAXFLENGTH(data-area) └ ┘──MSGJRNL(cvda)

5─ ──┬ ┬───────────────── ──┬ ┬────────────────────── ──┬ ┬─────────────────── ─5%
└ ┘──STSN(data-area) └ ┘──UNSOLDATA(data-area) └ ┘──UNSOLDATACK(cvda)

Conditions:
END, ILLOGIC, INVREQ, NOTAUTH

The following commands allow you to browse all FEPI
PROPERTYSET definitions. You should read the information
on browsing earlier in this book before using the browsing
commands.

FEPI Browse PROPERTYSET

FEPI INQUIRE PROPERTYSET START

FEPI INQUIRE PROPERTYSET(8-character data-area) NEXT

[The options are as for FEPI INQUIRE PROPERTYSET]

FEPI INQUIRE PROPERTYSET END

 Options

BEGINSESSION(4-character data-area)
returns the name of the transaction performing
begin-session processing, or blanks if no transaction was
specified.

CONTENTION(cvda)
returns a value that specifies what happens when a FEPI
SEND command is issued and there is inbound data with
‘begin bracket’. The relevant CVDA values are:

LOSE FEPI SEND command fails; a FEPI
RECEIVE must be issued to get the inbound
data.

WIN FEPI SEND command succeeds; inbound
data is rejected with a negative response.

DEVICE(cvda)
returns a value that identifies the mode of conversation
and the type of device. Defined values are:

T3278M2 SLU2 mode, 3278 Model 2
T3278M3 SLU2 mode, 3278 Model 3
T3278M4 SLU2 mode, 3278 Model 4
T3278M5 SLU2 mode, 3278 Model 5
T3279M2 SLU2 mode, 3279 Model 2B
T3279M3 SLU2 mode, 3279 Model 3B
T3279M4 SLU2 mode, 3279 Model 4B

T3279M5 SLU2 mode, 3279 Model 5B
TPS55M2 SLU2 mode, PS/55, 24 lines
TPS55M3 SLU2 mode, PS/55, 32 lines
TPS55M4 SLU2 mode, PS/55, 43 lines
LUP SLU P mode, all cases.

ENDSESSION(4-character data-area)
returns the name of the transaction performing
end-session processing, or blanks if no transaction was
specified.

EXCEPTIONQ(4-character data-area)
returns the name of the TD queue to which exceptional
events are notified, or blanks if no queue was specified.

FJOURNALNUM(fullword binary data-area)
returns the number of the journal where data is to be
logged.

FORMAT(cvda)
returns a value that identifies the data format. The
relevant CVDA values are:

FORMATTED Formatted operation

DATASTREAM Data stream operation

NOTAPPLIC Option is not applicable for the specified
pool.

INITIALDATA(cvda)
returns a value indicating whether initial inbound data is
expected when a session is started. The relevant CVDA
values are:

NOTINBOUND No inbound data expected

INBOUND Inbound data expected.

MAXFLENGTH(fullword binary data-area)
returns the maximum length of data that can be returned
on any FEPI RECEIVE, CONVERSE, or EXTRACT
FIELD command for a conversation, or that can be sent
by any FEPI SEND or CONVERSE command for a
conversation.

 Chapter 9. System programming reference 77

 FEPI INQUIRE PROPERTYSET

MSGJRNL(cvda)
returns a value indicating whether journaling is performed
for inbound and outbound data. The relevant CVDA
values are:

NOMSGJRNL No journaling is to be performed.

INPUT Inbound data is journaled.

OUTPUT Outbound data is journaled.

INOUT Inbound and outbound data are
journaled.

PROPERTYSET(8-character data-value/8-character
data-area)
is the name of the set of properties.

STSN(4-character data-area)
returns the name of the transaction handling STSN data
(SLU P mode only), or blanks if no transaction was
specified.

UNSOLDATA(4-character data-area)
returns the name of the transaction handling unsolicited
data (data received outside a conversation), or blanks if
no transaction was specified.

UNSOLDATACK(cvda)
indicates what acknowledgment FEPI gives to a BID, if
there is no unsolicited-data processing. The relevant
CVDA values are:

NEGATIVE Negative response X'0813', BID not
accepted

POSITIVE Positive response, BID accepted and
subsequent data is accepted and
discarded

NOTAPPLIC Option is not applicable for the specified
pool.

 Conditions

Condition RESP2 Meaning
ILLOGIC 1 For START: browse of this resource type

is already in progress.
For NEXT or END: START was not
issued.

END 2 For NEXT: all resource definitions have
been retrieved.

INVREQ 171 PROPERTYSET name unknown.

78 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI INQUIRE TARGET

FEPI INQUIRE TARGET

Function: FEPI INQUIRE TARGET returns information about a FEPI target.

 Syntax

55──FEPI INQUIRE─ ──TARGET(data-value) ──┬ ┬───────────────── ──┬ ┬─────────────────── ──┬ ┬────────────────── ────5
└ ┘──APPL(data-area) └ ┘──INSTLSTATUS(cvda) └ ┘──SERVSTATUS(cvda)

5─ ──┬ ┬───────────────────── ─5%
└ ┘──USERDATA(data-area)

Conditions:
END, ILLOGIC, INVREQ, NOTAUTH

The following commands allow you to browse all FEPI
TARGET definitions. Read the information on browsing
earlier in this book before using the browsing commands.

FEPI Browse TARGET

FEPI INQUIRE TARGET START

FEPI INQUIRE TARGET(8-character data-area) NEXT

[The options are as for FEPI INQUIRE TARGET]

FEPI INQUIRE TARGET END

 Options

APPL(8-character data-area)
returns the VTAM application name of the back-end
system that the target system represents.

INSTLSTATUS(cvda)
returns the install state of the target. The relevant CVDA
values are:

INSTALLED The target has been defined by
INSTALL and is available for use.

NOTINSTALLED The target is being discarded but is
still in use.

SERVSTATUS(cvda)
returns the service state of the target. The relevant
CVDA values are:

INSERVICE The target is in service and can be used
in a conversation.

OUTSERVICE The target is out of service and cannot
be used for any conversation.

GOINGOUT A state of OUTSERVICE has been
requested but the target is still being
used by some conversation.

TARGET(8-character data-value/8-character data-area)
is the name of the target.

USERDATA(64-character data-area)
returns the user data for the target. If no user data has
been set, nulls are returned.

 Conditions

Condition RESP2 Meaning
ILLOGIC 1 For START: browse of this resource type

is already in progress.
For NEXT or END: START was not
issued.

END 2 For NEXT: all resource definitions have
been retrieved.

INVREQ 116 TARGET name unknown.

 Chapter 9. System programming reference 79

 FEPI INSTALL NODELIST

FEPI INSTALL NODELIST

Function: FEPI INSTALL NODELIST defines new nodes to FEPI. You may specify initial service and acquire states for
these new nodes. A node cannot be used for a conversation until it has been acquired, put in service, and added to a pool so
that it is connected to a target. The command completes when the nodes have been defined without waiting for the requested
states to be achieved.

 Syntax

 ┌ ┐─ACQUIRED────────
55──FEPI INSTALL─ ──NODELIST(data-area) ──NODENUM(data-value) ──┼ ┼───────────────── ───────────────────────────5

├ ┤──ACQSTATUS(cvda)
 └ ┘─RELEASED────────

 ┌ ┐─INSERVICE────────
5─ ──┬ ┬───────────────────────── ──┼ ┼────────────────── ─5%

└ ┘──PASSWORDLIST(data-area) ├ ┤──SERVSTATUS(cvda)
 └ ┘─OUTSERVICE───────

Conditions:
 INVREQ, NOTAUTH

 Options

ACQSTATUS(cvda)
specifies the initial acquire state of the nodes being
defined. All nodes in the list have the same state. The
relevant CVDA values are:

ACQUIRED The VTAM ACB for the node is to be
opened and ‘set logon start’ is to be
done.

RELEASED The VTAM ACB for the node is not to be
opened.

NODELIST(data-area)
specifies a contiguous array of 8-character node names
(that is, VTAM application minor node names in the
front-end) to be defined. Names must not contain null
characters (X'00'), leading blanks, or embedded blanks.

NODENUM(fullword binary data-value)
specifies the number of names in NODELIST, in the
range 1–256.

PASSWORDLIST(data-area)
specifies a contiguous array of 8-character passwords.
They correspond one-to-one with the node names in
NODELIST. The passwords are those that VTAM
requires to access the application minor nodes. They are
not required if passwords are not used. You can use a
value of 8 null characters (X'00') to indicate ‘no
password’.

SERVSTATUS(cvda)
specifies the initial service state of the nodes being
defined. All nodes in the list have the same state. The
relevant CVDA values are:

INSERVICE The nodes are in service and can be
used in a conversation.

OUTSERVICE The nodes are out of service and cannot
be used for any conversation.

 Conditions

Condition RESP2 Meaning
INVREQ 110 SERVSTATUS value not valid.
INVREQ 111 ACQSTATUS value not valid.
INVREQ 119 The command failed for one or more

items in the list.
INVREQ 131 NODENUM value out of range.
INVREQ 163 NODE name not valid.
INVREQ 173 NODE name already exists.
INVREQ 176 The VTAM OPEN ACB failed.

80 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI INSTALL POOL

FEPI INSTALL POOL

Function: FEPI INSTALL POOL defines a new pool of connections to FEPI. Any targets and nodes specified in the
command are added to it, thereby creating new connections in the pool. You may specify an initial service state for the pool,
and initial service and acquire states for any new connections. A pool cannot be used for a conversation until it has been put
in service. The command completes when the pool has been created and any resources added; it does not wait for the
requested states to be achieved.

 Syntax

 ┌ ┐─ACQUIRED────────
55──FEPI INSTALL─ ──POOL(data-value) ──PROPERTYSET(data-value) ──┼ ┼───────────────── ──────────────────────────5

├ ┤──ACQSTATUS(cvda)
 └ ┘─RELEASED────────

 ┌ ┐─INSERVICE────────
5─ ──┬ ┬── ──┼ ┼────────────────── ─────────────────────────────────────5
 └ ┘──NODELIST(data-area) ──NODENUM(data-value) ├ ┤──SERVSTATUS(cvda)
 └ ┘─OUTSERVICE───────

5─ ──┬ ┬── ─5%
 └ ┘──TARGETLIST(data-area) ──TARGETNUM(data-value)

Conditions:
 INVREQ, NOTAUTH

 Options

ACQSTATUS(cvda)
specifies the initial acquire state of the connections being
created. All the new connections have the same state.
The relevant CVDA values are:

ACQUIRED The connections are to have sessions
established (that is, ‘bound’).

RELEASED The connections are not to have
sessions established (that is, left
‘unbound’).

NODELIST(data-area)
specifies a contiguous array of 8-character node names.
They must already be defined by FEPI INSTALL
NODELIST.

NODENUM(fullword binary data-value)
specifies the number of names in NODELIST, in the
range 0–256.

POOL(8-character data-value)
specifies the name of the pool to be defined. The name
must not contain null characters (X'00'), leading blanks,
or embedded blanks.

PROPERTYSET(8-character data-value)
specifies the name of the set of properties for the pool,
which must have been installed already.

SERVSTATUS(cvda)
specifies the initial service state of the pool being defined
and of the connections being created. All the new
connections have the same state. The relevant CVDA
values are:

INSERVICE The pool and any connections are in
service and can be used in a
conversation.

OUTSERVICE The pool and any connections are out of
service and cannot be used for any
conversation.

TARGETLIST(data-area)
specifies a contiguous array of 8-character target names.
They must already be defined by FEPI INSTALL
TARGETLIST.

TARGETNUM(fullword binary data-value)
specifies the number of names in TARGETLIST, in the
range 0–256.

 Conditions

Condition RESP2 Meaning
INVREQ 110 SERVSTATUS value not valid.
INVREQ 111 ACQSTATUS value not valid.
INVREQ 116 TARGET name unknown.
INVREQ 117 NODE name unknown.
INVREQ 119 The command failed for one or more

items in the list.
INVREQ 130 TARGETNUM value out of range.
INVREQ 131 NODENUM value out of range.
INVREQ 162 POOL name not valid.
INVREQ 171 PROPERTYSET name unknown.
INVREQ 172 POOL name already exists.
INVREQ 175 The connection already exists.

 Chapter 9. System programming reference 81

 FEPI INSTALL PROPERTYSET

FEPI INSTALL PROPERTYSET

Function: FEPI INSTALL PROPERTYSET defines a new set of properties to FEPI, which can be applied to any
subsequently defined pool.

 Syntax

 ┌ ┐─LOSE─────────────
55──FEPI INSTALL─ ──PROPERTYSET(data-value) ──┬ ┬────────────────────────── ──┼ ┼────────────────── ─────────────5

└ ┘──BEGINSESSION(data-value) ├ ┤──CONTENTION(cvda)
 └ ┘─WIN──────────────

 ┌ ┐─T3278M2──────
5─ ──┼ ┼────────────── ──┬ ┬──────────────────────── ──┬ ┬──────────────────────── ───────────────────────────────5

├ ┤──DEVICE(cvda) └ ┘──ENDSESSION(data-value) └ ┘──EXCEPTIONQ(data-value)
 ├ ┤─T3278M3──────
 ├ ┤─T3278M4──────
 ├ ┤─T3278M5──────
 ├ ┤─T3279M2──────
 ├ ┤─T3279M3──────
 ├ ┤─T3279M4──────
 ├ ┤─T3279M5──────
 ├ ┤─TPS55M2──────
 ├ ┤─TPS55M3──────
 ├ ┤─TPS55M4──────
 └ ┘─LUP──────────

 ┌ ┐─FORMATTED──── ┌ ┐─NOTINBOUND────────
5─ ──┬ ┬───────────────────────── ──┼ ┼────────────── ──┼ ┼─────────────────── ──┬ ┬──────────────────────── ───────5

└ ┘──FJOURNALNUM(data-value) ├ ┤──FORMAT(cvda) ├ ┤──INITIALDATA(cvda) └ ┘──MAXFLENGTH(data-value)
 └ ┘─DATASTREAM─── └ ┘─INBOUND───────────

 ┌ ┐─NOMSGJRNL─────
5─ ──┼ ┼─────────────── ──┬ ┬────────────────── ──┬ ┬─────────────────────── ─5%

├ ┤──MSGJRNL(cvda) └ ┘──STSN(data-value) ├ ┤──UNSOLDATA(data-value)
 ├ ┤─INPUT───────── ├ ┤─NEGATIVE──────────────

├ ┤─OUTPUT──────── ├ ┤──UNSOLDATACK(cvda) ────
 └ ┘─INOUT───────── └ ┘─POSITIVE──────────────

Conditions:
 INVREQ, NOTAUTH

 Options

Note: Specifying a blank value for BEGINSESSION,
ENDSESSION, EXCEPTIONQ, STSN, or UNSOLDATA has
the same effect as omitting the option.

BEGINSESSION(4-character data-value)
specifies the name of the transaction to perform
begin-session processing, immediately after a session
has been established (‘bound’). If omitted, there is to be
no user-supplied begin-session processing.

CONTENTION(cvda)
specifies what happens when a FEPI SEND command is
issued and there is inbound data with begin-bracket. The
relevant CVDA values are:

LOSE The FEPI SEND command fails; a FEPI
RECEIVE must be issued to get the inbound
data.

WIN The FEPI SEND command succeeds;
inbound data is rejected with a negative
response.

DEVICE(cvda)
specifies the LU mode and device type that is to be
simulated. The relevant CVDA values are:

T3278M2 SLU2 mode, 3278 Model 2
T3278M3 SLU2 mode, 3278 Model 3
T3278M4 SLU2 mode, 3278 Model 4
T3278M5 SLU2 mode, 3278 Model 5
T3279M2 SLU2 mode, 3279 Model 2B
T3279M3 SLU2 mode, 3279 Model 3B
T3279M4 SLU2 mode, 3279 Model 4B
T3279M5 SLU2 mode, 3279 Model 5B
TPS55M2 SLU2 mode, PS/55, 24 lines
TPS55M3 SLU2 mode, PS/55, 32 lines
TPS55M4 SLU2 mode, PS/55, 43 lines
LUP SLU P mode, all cases.

ENDSESSION(4-character data-value)
specifies the name of the transaction to perform
end-session processing, when a conversation is ended
(by a FEPI FREE command) or when a session is to be
ended (‘unbound’). If omitted, there is to be no
user-supplied end-session processing.

82 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI INSTALL PROPERTYSET

EXCEPTIONQ(4-character data-value)
specifies the name of the TD queue to which
pool-specific exceptional events are to be notified. If
EXCEPTIONQ is omitted, there is to be no user-supplied
exceptional event processing.

FJOURNALNUM(fullword binary data-value)
specifies the number of the journal where data is to be
logged, in the range 2 through 99. If the value is zero or
omitted, no journaling is done.

FORMAT(cvda)
specifies, for SLU2 mode, the data mode to be used.
The relevant CVDA values are:

FORMATTED Formatted operation. Character
attributes are not supported on outbound
data and ignored on inbound data.

DATASTREAM Data stream operation.

This option is not valid for SLU P operation.

INITIALDATA(cvda)
specifies whether initial inbound data is expected when a
session is started. The relevant CVDA values are:

NOTINBOUND No inbound data is expected.

INBOUND Inbound data is expected.

If the target is a back-end IMS system, you should
specify INBOUND. See page 120.

MAXFLENGTH(fullword binary data-value)
specifies the maximum length of data that can be
returned on any FEPI RECEIVE, CONVERSE, or
EXTRACT FIELD command for a conversation, or that
can be sent by any FEPI SEND or CONVERSE
command for a conversation. This value helps FEPI use
storage more efficiently, so should be set no larger than
is necessary. It must be in the range 128–1 048 576. If
MAXFLENGTH is not specified, 4096 is used.

MSGJRNL(cvda)
specifies the required journaling of data to and from the
back-end system. The relevant CVDA values are:

NOMSGJRNL No journaling

INPUT Journal inbound data

OUTPUT Journal outbound data

INOUT Journal inbound and outbound data.

PROPERTYSET(8-character data-value)
specifies the name of the set of properties to be defined.
The name must not contain null characters (X'00'),
leading blanks, or embedded blanks.

STSN(4-character data-value)
specifies the name of the transaction to be started to
handle ‘set and test sequence number’ (STSN), for SLU
P mode only. If omitted, there is to be no user-supplied
STSN-handling; FEPI handles STSN automatically.

UNSOLDATA(4-character data-value)
specifies the name of the transaction to handle
unsolicited data (data received outside a conversation).
If omitted, there is to be no user-supplied unsolicited-data
processing; FEPI treats unsolicited data as specified by
UNSOLDATACK.

UNSOLDATACK(cvda)
if there is to be no unsolicited-data processing, this
specifies what acknowledgment FEPI is to give to a BID.
The relevant CVDA values are:

NEGATIVE Negative response X'0813', BID not
accepted

POSITIVE Positive response, BID accepted and
subsequent data is accepted and
discarded.

 Conditions

Condition RESP2 Meaning
INVREQ 140 DEVICE value not valid.
INVREQ 141 CONTENTION value not valid.
INVREQ 142 INITIALDATA value not valid.
INVREQ 143 UNSOLDATACK value not valid.
INVREQ 144 MSGJRNL value not valid.
INVREQ 150 FORMAT value not valid or is unsuitable

for the LU mode and device type
specified by the DEVICE value.

INVREQ 153 STSN name not valid or STSN is not
allowed for the LU mode and device type
specified by the DEVICE value.

INVREQ 154 BEGINSESSION name not valid.
INVREQ 155 UNSOLDATA name not valid.
INVREQ 156 EXCEPTIONQ name not valid.
INVREQ 157 FJOURNALNUM value not valid.
INVREQ 158 MAXFLENGTH value not valid.
INVREQ 159 ENDSESSION name not valid.
INVREQ 160 PROPERTYSET name not valid.
INVREQ 170 PROPERTYSET name already exists.

 Chapter 9. System programming reference 83

 FEPI INSTALL TARGETLIST

FEPI INSTALL TARGETLIST

Function: FEPI INSTALL TARGETLIST defines new targets to FEPI. You can specify an initial service state for these new
targets. A target cannot be used for a conversation until it has been put in service, and has been added to a pool so that it is
connected to a node. The command completes when the targets have been installed without waiting for the requested states
to be achieved.

 Syntax

55──FEPI INSTALL─ ──TARGETLIST(data-area) ──APPLLIST(data-area) ──TARGETNUM(data-value) ───────────────────────5

 ┌ ┐─INSERVICE────────
5─ ──┼ ┼────────────────── ─5%

├ ┤──SERVSTATUS(cvda)
 └ ┘─OUTSERVICE───────

Conditions:
 INVREQ, NOTAUTH

 Options

APPLLIST(data-area)
specifies a contiguous array of 8-character primary logical
unit (PLU) names. These are the VTAM application
names (APPLID) of the back-end CICS or IMS systems
with which FEPI applications are to communicate; they
correspond one-to-one with the target names in
TARGETLIST. The names must not contain null
characters (X'00'), leading blanks, or embedded blanks.
Each name must be unique within the list; duplicate
names result in an INVREQ condition being returned.

SERVSTATUS(cvda)
specifies the initial service state of the targets being
defined. All the targets in the list have the same state.
The relevant CVDA values are:

INSERVICE The target is in service and can be used
in a conversation.

OUTSERVICE The target is out of service and cannot
be used for any conversation.

TARGETLIST(data-area)
specifies a contiguous array of 8-character target names
to be defined. A target name is the logical FEPI
front-end name of a back-end system. The names must
not contain null characters (X'00'), leading blanks, or
embedded blanks. Each name must be unique within the
list; duplicate names result in an INVREQ condition being
returned.

TARGETNUM(fullword binary data-value)
specifies the number of names in TARGETLIST, in the
range 1–256.

 Conditions

Condition RESP2 Meaning
INVREQ 110 SERVSTATUS value not valid.
INVREQ 119 The command failed for one or more

items in the list.
INVREQ 130 TARGETNUM value out of range.
INVREQ 164 TARGET name not valid.
INVREQ 167 Application name not valid.
INVREQ 174 TARGET name already exists.
INVREQ 177 Application name already exists.

84 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI SET CONNECTION

FEPI SET CONNECTION

Function: FEPI SET CONNECTION controls the use of FEPI connections. Lists may be used to set more than one
connection at a time; all connections in the list are set to the same state. The command completes immediately, although the
requested settings may not be achieved until later.

 Syntax

55──FEPI SET CONNECTION─ ──┬ ┬──NODE(data-value) ──────────────────────── ─────────────────────────────────────5
 └ ┘──NODELIST(data-area) ──NODENUM(data-value)

5─ ──┬ ┬──TARGET(data-value) ────────────────────────── ──┬ ┬───────────────── ──┬ ┬────────────────── ────────────5
 └ ┘──TARGETLIST(data-area) ──TARGETNUM(data-value) ├ ┤──ACQSTATUS(cvda) ├ ┤──SERVSTATUS(cvda)
 ├ ┤─ACQUIRED──────── ├ ┤─INSERVICE────────
 └ ┘─RELEASED──────── └ ┘─OUTSERVICE───────

5─ ──┬ ┬────────────────────── ─5%
└ ┘──USERDATA(data-value)

Conditions:
 INVREQ, NOTAUTH

 Options

ACQSTATUS(cvda)
specifies the acquire state of the connection; that is,
whether a session should be established (‘bound’) or not
(‘unbound’). The relevant CVDA values are:

ACQUIRED The connection is to have a session
established (that is, ‘bound’). The state
is ACQUIRING until this is completed.

RELEASED The connection is to have its session
ended (that is, ‘unbound’), when usage of
the connection by all owned
conversations ends. (An unowned
conversation on the connection is ended
immediately. See the STATE option of
FEPI INQUIRE CONNECTION on page
73.) The state is RELEASING until this is
completed.

If this option is not coded, the acquire state is not
changed.

NODE(8-character data-value)
specifies the node name that identifies a connection.

NODELIST(data-area)
specifies a contiguous array of 8-character node names
identifying connections.

NODENUM(fullword binary data-value)
specifies the number of node names in NODELIST, in the
range 1–256.

SERVSTATUS(cvda)
specifies the service state of the connection; that is,
whether the connection can be used for a conversation or
not. The relevant CVDA values are:

INSERVICE Allows usage of the connection in a
conversation.

OUTSERVICE Stops usage of a connection for any new
conversation, although existing
conversations are unaffected. The
service state is GOINGOUT until these
conversations end.

If this option is not coded, the service state is not
changed.

TARGET(8-character data-value)
Specifies the target name that identifies a connection.

TARGETLIST(data-area)
specifies a contiguous array of 8-character target names
identifying a connection or connections.

TARGETNUM(fullword binary data-value)
specifies the number of target names in TARGETLIST, in
the range 1–256.

USERDATA(64-character data-value)
Specifies optional user data relating to the connections; it
is not used by FEPI. It replaces any previous user data
that was set.

 Conditions

Condition RESP2 Meaning
INVREQ 110 SERVSTATUS value not valid.
INVREQ 111 ACQSTATUS value not valid.
INVREQ 116 TARGET name unknown.
INVREQ 117 NODE name unknown.
INVREQ 118 Unknown connection (TARGET and

NODE names are known but not
connected in any pool).

INVREQ 119 The command failed for one or more
items in the list.

INVREQ 130 TARGETNUM value out of range.
INVREQ 131 NODENUM value out of range.

 Chapter 9. System programming reference 85

 FEPI SET NODE

FEPI SET NODE

Function: FEPI SET NODE controls the use of FEPI nodes. Lists may be used to set more than one node at a time; all
nodes in the list are set to the same state. The function completes immediately, although the requested settings may not be
achieved until later.

 Syntax

55──FEPI SET─ ──┬ ┬──NODE(data-value) ──────────────────────── ──┬ ┬───────────────── ──┬ ┬────────────────── ─────5
 └ ┘──NODELIST(data-area) ──NODENUM(data-value) ├ ┤──ACQSTATUS(cvda) ├ ┤──SERVSTATUS(cvda)
 ├ ┤─ACQUIRED──────── ├ ┤─INSERVICE────────
 └ ┘─RELEASED──────── └ ┘─OUTSERVICE───────

5─ ──┬ ┬────────────────────── ─5%
└ ┘──USERDATA(data-value)

Conditions:
 INVREQ, NOTAUTH

 Options

ACQSTATUS(cvda)
specifies the acquire state of the node; that is, whether
its VTAM ACB should be opened or closed. The relevant
CVDA values are:

ACQUIRED The VTAM ACB for the node is to be
opened and ‘set logon start’ is to be
done. The state is ACQUIRING until this is
completed.

RELEASED The VTAM ACB for the node is to be
closed when usage of the node by any
conversation ends. The state is
RELEASING until this is completed.

If this option is not coded, the acquire state is not
changed.

NODE(8-character data-value)
specifies the node to be set.

NODELIST(data-area)
specifies a contiguous array of 8-character node names
to be set.

NODENUM(fullword binary data-value)
specifies the number of node names in NODELIST, in the
range 1–256.

SERVSTATUS(cvda)
specifies the service state of the node; that is, whether
the node can be used for a conversation or not. The
relevant CVDA values are:

INSERVICE Allows usage of the node in a
conversation.

OUTSERVICE Stops usage of a node for any new
conversation, although existing
conversations are unaffected. The
service state is GOINGOUT until these
conversations end.

If this option is not coded, the service state is not
changed.

USERDATA(64-character data-value)
Specifies optional user data relating to the nodes; it is not
used by FEPI. It replaces any previous user data that
was set.

 Conditions

Condition RESP2 Meaning
INVREQ 110 SERVSTATUS value not valid.
INVREQ 111 ACQSTATUS value not valid.
INVREQ 117 NODE name unknown.
INVREQ 119 The command failed for one or more

items in the list.
INVREQ 131 NODENUM value is out of range.
INVREQ 174 The VTAM OPEN ACB failed.

86 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI SET POOL

FEPI SET POOL

Function: FEPI SET POOL controls the use of FEPI pools. Lists may be used to set more than one pool at a time; all pools
in the list are set to the same state. The function completes immediately, although the requested settings may not be achieved
until later.

 Syntax

55──FEPI SET─ ──┬ ┬──POOL(data-value) ──────────────────────── ──┬ ┬────────────────── ──────────────────────────5
 └ ┘──POOLLIST(data-area) ──POOLNUM(data-value) ├ ┤──SERVSTATUS(cvda)
 ├ ┤─INSERVICE────────
 └ ┘─OUTSERVICE───────

5─ ──┬ ┬────────────────────── ─5%
└ ┘──USERDATA(data-value)

Conditions:
 INVREQ, NOTAUTH

 Options

POOL(8-character data-value)
specifies the pool to be set.

POOLLIST(data-area)
specifies a contiguous array of 8-character pool names to
be set.

POOLNUM(fullword binary data value)
specifies the number of pool names in POOLLIST, in the
range 1–256.

SERVSTATUS(cvda)
specifies the service state of the pool; that is, whether the
pool can be used for a conversation or not. The relevant
CVDA values are:

INSERVICE Allows usage of the pool in a
conversation.

OUTSERVICE Stops usage of a pool for any new
conversation, although existing
conversations are unaffected. The
service state is GOINGOUT until these
conversations end.

If this option is not coded, the service state is not
changed.

USERDATA(64-character data-value)
Specifies optional user data relating to the pools; it is not
used by FEPI. It replaces any previous user data that
was set.

 Conditions

Condition RESP2 Meaning
INVREQ 110 SERVSTATUS value not valid.
INVREQ 115 POOL name unknown.
INVREQ 119 The command failed for one or more

items in the list.
INVREQ 132 POOLNUM value is out of range.

 Chapter 9. System programming reference 87

 FEPI SET TARGET

FEPI SET TARGET

Function: FEPI SET TARGET controls the use of FEPI targets. Lists may be used to set more than target at a time; all
targets in the list are set to the same state. The function completes immediately, although the requested settings may not be
achieved until later.

 Syntax

55──FEPI SET─ ──┬ ┬──TARGET(data-value) ────────────────────────── ──┬ ┬────────────────── ──────────────────────5
 └ ┘──TARGETLIST(data-area) ──TARGETNUM(data-value) ├ ┤──SERVSTATUS(cvda)
 ├ ┤─INSERVICE────────
 └ ┘─OUTSERVICE───────

5─ ──┬ ┬────────────────────── ─5%
└ ┘──USERDATA(data-value)

Conditions:
 INVREQ, NOTAUTH

 Options

SERVSTATUS(cvda)
specifies the service state of the target; that is, whether
the target can be used for a conversation or not. The
relevant CVDA values are:

INSERVICE Allows usage of the target in a
conversation.

OUTSERVICE Stops usage of a target for any new
conversation, although existing
conversations are unaffected. The
service state is GOINGOUT until these
conversations end.

If this option is not coded, the service state is not
changed.

TARGET(8-character data-value)
specifies the name of the target to be set.

TARGETLIST(data-area)
specifies a contiguous array of 8-character target names
to be set.

TARGETNUM(fullword binary data-value)
specifies the number of target names in TARGETLIST, in
the range 1–256.

USERDATA(64-character data-value)
Specifies optional user data relating to the targets; it is
not used by FEPI. It replaces any previous user data
that was set.

 Conditions

Condition RESP2 Meaning
INVREQ 110 SERVSTATUS value not valid.
INVREQ 116 TARGET name unknown.
INVREQ 119 The command failed for one or more

items in the list.
INVREQ 130 TARGETNUM value is out of range.

88 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI SP NOOP � TD queue records

FEPI SP NOOP

Function: FEPI SP NOOP has no effect.

 Syntax

55──FEPI SP NOOP──5%

Conditions:
 INVREQ, NOTAUTH

 Options: None.

Conditions: None specific to this command.

Transient data queue records
In response to various unexpected events, FEPI writes a
record, describing the event and its circumstances, to a
transient data (TD) queue. Such events include:

� Errors in functions initiated by a system programming
command

� Errors for items in a list on a system programming
command

� Events unrelated to any command.

If the event relates to a specific pool, the record is written to
the queue specified by EXCEPTIONQ for that pool; if
EXCEPTIONQ was not specified, no record is written. If the
event does not relate to a specific pool, the record is written
to queue CSZX. In all cases, if the appropriate TD queue
does not exist or if it is not defined as non-recoverable, the
record is lost.

The format of the record is as follows. The copy books
DFHSZAPA, DFHSZAPO, DFHSZAPC, and DFHSZAPP
(according to your programming language) provide
declarations for this record structure.

 Fields

CONVID(8-character data-area)
the conversation ID for which the event occurred; null if
not applicable.

DATATYPE(fullword binary data-area)
identifies the type and structure of the data. A value of 2
indicates FEPI TD queue data.

DEVICE(cvda)
the device type of the conversation for which the event
occurred (the values are as for FEPI INQUIRE POOL);
zero if not applicable.

EVENTDATA(8-character data-area)
contains data about the event:

If the count is nonzero, it indicates the number of times
the node acquire or session start has failed; it will be
tried again. A zero count indicates that several failures
have occurred and that there will be no further attempts
to acquire the node or start the session.

Event Data
ACQFAIL 2 fullword binary numbers:

� VTAM reason code
 � Count

SESSIONFAIL 2 fullword binary numbers:

� VTAM reason code
 � Count

SESSIONLOST 2 fullword binary numbers:

� VTAM reason code
 � Count

Others Nulls

DATATYPE Fullword binary data-area
EVENTTYPE CVDA
EVENTVALUE Fullword binary data-area
EVENTDATA 8-character data-area
spare 4-character data-area
POOL 8-character data-area
TARGET 8-character data-area
NODE 8-character data-area
CONVID 8-character data-area
DEVICE CVDA
FORMAT CVDA
spare 8-character data-area.

 Chapter 9. System programming reference 89

 TD queue records

EVENTTYPE(cvda)
indicates what the event was.

Exceptional events queued to common TD queue CSZX:

Exceptional events queued to pool-specific TD queue:

EVENTVALUE(fullword binary data area)
provides further information about the event. Values are:

FORMAT(cvda)
the data format of the conversation for which the event
occurred (the values being as for FEPI INQUIRE POOL);
zero if not applicable.

NODE(8-character data-area)
the name of the node for which the event occurred; nulls
if not applicable.

POOL(8-character data-area)
the name of the pool for which the event occurred; nulls if
not applicable.

TARGET(8-character data-area)
the name of the target for which the event occurred; nulls
if not applicable. For the SESSION event, it is the VTAM
application name of the back-end system, rather than the
FEPI target name.

spare
nulls.

ACQFAIL A node could not be acquired (its VTAM
ACB could not be opened).

DISCARDFAIL A resource in a list could not be discarded
by FEPI DISCARD.

INSTALLFAIL A resource in a list could not be installed by
FEPI INSTALL.

SESSION An unsolicited bind was received.
SETFAIL A connection or resource in a list could not

be set by FEPI SET or FEPI INSTALL.

ADDFAIL A connection in a list could not be added to
the pool by FEPI ADD.

DELETEFAIL A connection in a list could not be deleted
from the pool by FEPI DELETE.

SESSIONFAIL Session could not be started.
SESSIONLOST Active session was lost.

Event Value
ACQFAIL 0
ADDFAIL The RESP2 value describing the failure, as

given in the description of the FEPI ADD
command

DELETEFAIL The RESP2 value describing the failure, as
given in the description of the FEPI
DELETE command

DISCARDFAIL The RESP2 value describing the failure, as
given in the description of the FEPI
DISCARD command

INSTALLFAIL The RESP2 value describing the failure, as
given in the description of the FEPI
INSTALL command

SESSION 0
SESSIONFAIL The RESP2 value describing the

communication failure; it can be any of the
RESP2 values in the range 182–199.

SESSIONLOST The RESP2 value describing the
communication failure; it can be any of the
RESP2 values in the range 182–199.

SETFAIL The RESP2 value describing the failure, as
given in the description of the FEPI SET
command

90 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Problem determination

 Chapter 10. Problem determination

This chapter contains information to help you identify the source of errors that affect your
FEPI applications. For information about using CICS debugging tools, trace, and dump, see
the CICS Problem Determination Guide.

This chapter contains Diagnosis, Modification or Tuning information. It contains the following
topics:

� “Debugging FEPI applications”
 � “FEPI dump”
� “FEPI trace” on page 94
� “FEPI messages” on page 95
� “FEPI abends” on page 95
� “Reporting a FEPI problem to IBM” on page 96.

Debugging FEPI applications
The CICS execution diagnostic facility (EDF) helps users of the EXEC CICS interface to step
through the EXEC CICS commands of an application program. EDF can be used in just the
same way to debug programs that use the EXEC CICS FEPI commands.

 FEPI dump
CICS dump routines are available for FEPI. These routines are under the control of the
usual CICS selection mechanisms.

You generate interpretation of the FEPI areas of a CICS dump by specifying the SZ keyword
to the INFO/ANA dump formatting facility, DFHPD410. SZ can take the following values:

SZ value What is printed

0 No FEPI areas are interpreted.

1 All FEPI areas are interpreted, excluding the stacks.

2 All FEPI areas are interpreted, including the stacks.

If you are looking at a FEPI problem, first ensure the SZ TCB is active, and the FEPI
Resource Manager is running. Look at the kernel and dispatcher prints to verify their
presence.

If the SZ TCB is present, and the FEPI Resource Manager is running, the problem is
probably caused by a wait or an abend. In the case of a wait, the dispatcher and kernel
prints should show where it is located.

After looking at any FEPI trace entries, you should direct your attention to the output of the
‘SZ=2,IND’ dump command. This displays all known FEPI control blocks and some of their
interconnections. If you think a storage violation has occurred, use the dump storage
manager options to display the contents of the FEPI storage subpools.

Here are some things that might help you identify a problem when you read the dump:

� Were any errors reported during interpretation? If so, this may indicate a corrupt
address pointer or a broken chain.

� Follow all the pointers to associated control blocks (such as the conversation pointed to
by the connection). Is this pointer correct? If not, this probably indicates corruption.

� Are there the expected numbers of nodes, targets, property sets, and pools? If not, this
can indicate a broken chain or an unauthorized deletion.

 Copyright IBM Corp. 1992, 1999 91

 Problem determination

� Does each pool contain the expected number of connections (that is, the number of
nodes multiplied by the number of targets)? If not, this may indicate the failure of a
FEPI ADD command.

� Has each node been successfully acquired? If not, there is the possibility of VTAM
definition errors. The ACB and RPL may contain VTAM sense information—perhaps a
VTAM major node is inactive.

� Is there successful communication with a target? If not, have APPLID and PASSWORD
been correctly specified? If they are correct, is the back-end system running?

� Are there any queued ALLOCATE commands? If so, this indicates that there are not
enough connections for the pool to process FEPI conversations without queuing. This
may be acceptable, or not, depending on your configuration.

� Are the event handlers being run? If not, have they been correctly defined to CICS
using RDO?

� Are the event handlers being recursively invoked? If so, this indicates a problem with a
FEPI FREE command, a storage violation, or an internal logic error.

� Is information being correctly sent to the specified transient data queues? If not, are the
queues defined as unrecoverable? Investigation of the DCT may help here.

� Are transactions being triggered from the TDQs? If not, are the transactions correctly
defined to CICS?

� Is there a current conversation? If so, this conversation may be causing the error. Is
the data correct? Is there any VTAM sense information in the RPL?

� Are the surrogate terminals correct? If not, the links between the nodes, pools, and
targets may have become corrupted.

� Are FEPI SEND or FEPI RECEIVE commands failing due to state errors? If so, look at
the conversation and see if the states are correct. If they are not, the conversation has
become out of step with the VTAM flow.

� Is unexpected data being sent or received in formatted conversations? If so, there may
be corrupt FEPI data. Look at FEPI’s internal terminal character buffer.

� Look at the queues. Are there any requests that look as if they have got stuck? If so,
the FEPI work chains may be corrupt. However, it may be simply that the flow to satisfy
the requests has not yet happened. If you think it should have happened, there may be
communication problems.

� Look at the FREE queue. The last VTAM event may be shown. If so, does it
correspond with what you expected?

� Is the behavior of a pool correct? If not, it is possible that the property set used to
define the pool is incorrect. However, if the property set is shown, it could have been
re-created since the pool was defined—treat property set definitions with care.

� Are there any outstanding timer events that should have run? If so, this may indicate a
chaining failure.

� Has a timer-dependent action been delayed? If so, this could indicate that the
TIMEOUT parameter on the command was incorrect.

� Are you receiving all the data you expect? If not, have you set the correct end-of-flow
condition on the FEPI RECEIVE (or CONVERSE) command?

� Are there many transactions waiting on FEPI? If so, either back-end systems are not
responding, or the FEPI Resource Manager has failed.

� Has a VTAM dump been taken? If so, this may indicate a failure in one of the VTAM
exits.

92 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Problem determination

Using CICS dump facilities to investigate FEPI problems
This section describes how FEPI relates to the rest of CICS, and how its presence is
revealed by the other CICS dump formatting commands.

The problem determination process for FEPI is driven from the usual CICS dump
interpretation routines. The following sections describe what to look for in the major CICS
areas.

 Dispatcher
You should see a task (CSZI) running under the SZ task control block. (However, note that
CSZI can run under the QR TCB while executing certain CICS functions, such as starting
transactions and writing to transient data queues.) If CSZI is not present, then either FEPI is
not in the system, or the FEPI Resource Manager has failed.

Application programs waiting for responses from the FEPI Resource Manager are shown as
waiting on FEPI. (For details of FEPI waits, see the CICS Problem Determination Guide.)

 Interval control
Any transactions that have been started by the FEPI Resource Manager, but not yet run,
appear in the interval control section.

 Kernel
In the kernel, you should find a running task named KETCB SZ representing the SZ TCB
VSE/ESA sub-task that FEPI uses. If KETCB SZ is not present, then either FEPI is not in
the system, or the TCB has abended.

You should find the CSZI task either running or waiting. If CSZI is not present, then either
FEPI is not in the system, or the FEPI Resource Manager has failed.

If an abend has occurred, the usual information is available. The location of the abend is
indicated by the failing module, as follows:

DFHESZ The application programming EXEC stub
DFHEIQSZ The system programming EXEC stub
DFHSZATR The FEPI adapter
DFHSZRMP The FEPI Resource Manager.

 Storage manager
Table 14 on page 94 lists the CICS storage subpools used by FEPI. You can use the
storage manager dump facilities to display the contents of these subpools. If you suspect a
storage violation, a comparison of the contents of these subpools with the areas interpreted
by a FEPI dump may show where the corruption has occurred.

 Chapter 10. Problem determination 93

 Problem determination

Table 14. FEPI storage subpools

Name Type Chained Above or
below 16MB

line?

Usage

SZSPFCAC Fixed Yes Below ACBs

SZSPFCCD Fixed Yes Any Connections

SZSPFCCM Fixed Yes Any Common area

SZSPFCCV Fixed Yes Any Conversations

SZSPVUDA VAR Yes Any Various data areas

SZSPFCDS Fixed Yes Any Device support
extensions

SZSPFCDT Fixed Yes Any Device-type control
areas

SZSPFCNB Fixed Yes Any NIBs

SZSPFCND Fixed Yes Any Nodes

SZSPFCPD Fixed Yes Any Pools

SZSPFCPS Fixed Yes Any Property sets

SZSPFCRP Fixed Yes Any RPLs

SZSPFCRQ Fixed Yes Any Requests

SZSPFCSR Fixed Yes Any Surrogates

SZSPFCTD Fixed Yes Any Targets

SZSPFCWE Fixed Yes Any DQEs

 FEPI trace
There are appropriate trace entries in the CICS trace table which are under the control of the
usual CICS mechanisms. FEPI trace entries are listed in the CICS Diagnosis Reference.

FEPI generates exception and event trace entries—the latter under control of the ‘SZ’
component code. Points X'1200' through X'16FF' are defined for use by FEPI, although
not all of these are used.

Taking trace entries
You control the taking of FEPI trace entries with the CETR SZ transaction, or the SET
TRACETYPE SZ command. FEPI supports only one level of tracing—either all or nothing.
At CICS initialization, you can specify the default levels of standard and special tracing by
means of the STNTR, SPCTR, STNTRSZ, and SPCTRSZ system initialization parameters,
which are described in the CICS System Definition Guide. Exception trace entries are
always taken.

You can use the selection features of the CETR transaction to limit tracing to specific
transactions. This is described in the CICS-Supplied Transactions manual. If you do this,
you can control the tracing of application programs, but the FEPI Resource Manager,
running as the CSZI transaction, is unaffected, because trace selection is applied only at
transaction start.

If you are using DFHTRAP under the guidance of IBM support, note that the FEPI Resource
Manager runs under the SZ TCB. Therefore, do not do anything that could force a VSE task
switch to any other TCB.

94 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Problem determination

Interpreting FEPI trace entries
The first thing to consider is whether there are any exception trace entries. Their presence
indicates that a problem has been detected, and (perhaps) that the appropriate action has
been taken. Exception trace entries are either initialization errors or storage management
errors.

Initialization errors result from checks made when CSZI starts, to prevent a second instance
of the FEPI Resource Manager. Storage errors result from GETMAIN or FREEMAIN errors,
and are usually caused by a lack of CICS storage.

The other trace entries are the usual module entry and exit traces, together with a few points
indicating that important processing events have occurred (such as the FEPI Resource
Manager becoming idle).

 FEPI messages
Messages produced by FEPI have exactly the same format (DFHSZ...) as other CICS
messages. They are all sent to the FEPI message log (the CSZL transient data queue);
some are also sent to the operator.

FEPI messages are documented in the VSE/ESA Messages and Codes Volume 3 manual.

 FEPI abends
FEPI does not (deliberately) issue either CICS transaction abends or VSE abends.
However, an unexpected failure can occur in the following places:

� In a FEPI application program when INVREQ is returned
� In the EXEC stubs
� In the FEPI adapter
� In the FEPI Resource Manager transaction (CSZI) code
� In a VTAM exit routine.

These abends have different results, as shown in Table 15.

Table 15. Types of abend issued by FEPI

Point of failure Result

Application The usual transaction abend for the error condition.

EXEC stubs The usual transaction abend for a failure within CICS management
modules. An example of this is an ‘operation’ program check, which
generates a CICS AKEA abend, which in turn generates an ASRA abend.

FEPI adapter The usual transaction abend for a failure within CICS management
modules. An example of this is an ‘operation’ program check, which
generates a CICS AKEA abend, which in turn generates an ASRA abend.

FEPI Resource
Manager

No direct effect on the application program, because the abend occurs
under the CSZI Resource Manager task. This probably results in a
DFHSZ4099E message (see “Message DFHSZ4099E” on page 96), and
the failure of the Resource Manager. An example of this is an ‘operation’
program check, which generates a CICS AKEA abend, which in turn
generates an ASRA abend. Any CICS FEPI transactions are left waiting
on the FEPI_RQE resource (for details of FEPI waits, see the CICS
Problem Determination Guide).

VTAM exit A VTAM abend; a VTAM dump is taken. Because the exit lies within the
FEPI Resource Manager, the CICS abend handling routines are activated
to process a “normal” failure in the Resource Manager.

 Chapter 10. Problem determination 95

 Problem determination

 Restart
An abend in an application program, an EXEC stub, or the FEPI adapter affects only the
active CICS task that issued the FEPI command; other FEPI programs continue as normal.

If an abend affects the SZ TCB, CICS makes that TCB unavailable for use, while keeping
the other CICS TCBs active and accessible. This means that FEPI functions can be
restored only by restarting the CICS system.

 Message DFHSZ4099E
This message indicates that the abend exit routine within the FEPI adapter has trapped an
abend within the FEPI Resource Manager.

As soon as an abend within the Resource Manager is detected, the FEPI state (in the FEPI
static area) is set to ‘Failed’. If possible, message DFHSZ4099E is issued, to indicate that
FEPI has failed. However, in some circumstances it is not possible to issue DFHSZ4099E,
and a system dump is generated instead.

Any FEPI transactions are left waiting on the FEPI_RQE resource (for details of FEPI waits,
see the CICS Problem Determination Guide). These waits never get posted, so the
transactions suspend. You must issue a CEMT FORCEPURGE command to remove these
suspended transactions from the system.

Warning: It is strongly recommended that the CSZI transaction is initiated only as part of
CICS system initialization. Do not attempt to restart the CSZI transaction after a failure,
other than by restarting CICS.

 Message DFHSZ4155I
This message indicates that a connection has ended, and gives a reason code taken from
the VTAM control blocks. The reason code may be returned in the LASTACQCODE option
of a CEMT or FEPI INQUIRE command, depending on the operation which generated
DFHSZ4155I.

DFHSZ4155I does not always indicate a problem; if you took positive action to end the
connection, DFHSZ4155I merely confirms that VTAM did as you requested. However, if the
connection ended unexpectedly, the reason code tells you why.

To determine what the reason code means, refer to the VTAM Programming manual.

Reporting a FEPI problem to IBM
When reporting a problem to IBM Support, you need the following details of the CICS
system in which FEPI is installed:

� All listings from the CICS job, including the CICS job log and JCL

� A print of all reports sent to the CSZL transient data queue

� A full system dump (including the SVA and system GETVIS)

� Any relevant transaction dumps

� All trace entries (you may need to recreate the problem with SZ trace active)

� A listing of the application program that detected the problem

� Listings of the programs used to configure your FEPI system

� Listings of any active CICS global user exit programs (not only the FEPI ones)

� Prints of user journals, if FEPI journaling was active when the problem occurred.

The following materials might also be required:

� A VTAM trace showing the data flows

96 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Problem determination

� A trace of the back-end system showing what data streams were received from FEPI
application programs

� A VTAM status display showing the status of FEPI connections

� Any dumps or logs produced by the back-end system.

 Chapter 10. Problem determination 97

 Problem determination

98 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Part 3. Application programming

Table 16. Application programming road map

If you want to... Refer to...

Understand the fundamentals of writing FEPI
programs

Chapter 11, “Basics” on page 101

Write FEPI applications that use a high-level
data interface

Chapter 12, “Key stroke and screen-image
applications” on page 105

Write FEPI applications that use a low-level
data interface

Chapter 13, “Data stream applications” on
page 113

Read some general advice on designing FEPI
applications

Chapter 14, “Application design” on page 119

Handle some of the specialized control
functions that are normally handled by FEPI

Chapter 15, “Specialized functions” on
page 133

Check the syntax of the FEPI API commands Chapter 16, “Application programming
reference” on page 135

 Copyright IBM Corp. 1992, 1999 99

100 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Basics

 Chapter 11. Basics

This chapter introduces FEPI programming and the FEPI commands that you can use.
Before reading this chapter you should be familiar with the FEPI concepts and facilities
described in Chapter 1, “Introducing FEPI” and Chapter 2, “Functions and services.”

To write FEPI front-end applications, you need to know how to write programs in at least one
of the programming languages that CICS supports. More importantly, you also need
knowledge of data communication and protocols. And, if you will be accessing IMS
back-end systems, you must also be familiar with using IMS and writing IMS applications.

The applications that you write using FEPI are normal CICS transactions with the familiar
EXEC CICS commands. These FEPI applications use the FEPI subset of EXEC CICS
application programming commands to:

� Allocate a connection from a pool
� Communicate with a back-end application using this connection
� Free the connection when finished.

The chapter contains the following topics:

� “Communication and conversations”
� “Structure and design” on page 102.

Communication and conversations
Note: The highlighted terms in this section are defined in Chapter 2, “Functions and
services” on page 7.

A FEPI application runs in a front-end CICS system and accesses applications in a
back-end CICS or IMS system. FEPI lets it do this by simulating a terminal connected to
the back-end system; this means that it has to act just like a real terminal and terminal
operator.

The back-end systems are known as targets and the connections to them are arranged in
pools that define the properties controlling communication. Targets, pools, and properties
are defined by your system programmer, who can tell you which targets and pools to use
and what properties they have.

When a connection has been established, on successful completion of a bind, the
connection is in session and it can be allocated by FEPI for a conversation with the
back-end system.

Conversations are the basis of all FEPI applications and, depending upon the needs of your
application, may be used in several ways (see Chapter 14, “Application design” on
page 119):

� A single conversation for all transactions on a back-end system
� A different conversation for each transaction or associated series of transactions
� A special conversation to handle unusual events.

The task that started the conversation owns it and other tasks cannot issue commands for it;
however, the owning task can transfer ownership to another task. You can have as many
conversations as you like at a time with various targets: they can be consecutive or, much
more usefully, interleaved.

FEPI simulates a 3270-type terminal (SLU2 mode) for both CICS and IMS systems; it also
supports the SLU P mode that is used by IMS for programmable terminals such as the 4700
family. The mode to be used, SLU2 or SLU P, is a property of the pool being used. Your
application cannot change the mode of a conversation.

 Copyright IBM Corp. 1992, 1999 101

 Basics

The data that you send and receive can be formatted or data stream and, as with mode,
the data type is a property of the pool being used:

Formatted A high-level data interface for SLU2 mode. The data sent by the FEPI
application can be either key stroke format or screen-image format; data
received by the application is in screen-image format.

Data stream A low-level data interface for more sophisticated SLU2 mode applications
and for use with SLU P mode. The data sent and received by the FEPI
application is the data stream; applications using this format have access to
some very specialized VTAM communication functions.

The same basic set of FEPI commands is used for all modes and data types and protocols,
but the command options and keywords are generally different.

Structure and design
In addition to your main access program that handles communication with the back-end
system, you may need to provide programs for other functions:

Begin session Handle begin-session processing.

Unsolicited data Handle unsolicited inbound data that arrives when there is no
conversation.

End session Handle end of conversation and end of session processing.

These functions could be combined in one program or implemented in separate programs
with individual transaction names. There may be any number of each function, again
according to your requirements and preferences. Suggestions about the various possibilities
are given later.

As the application programmer, you will always write the main access programs. Sometimes
the system programmer provides any special functions that are required; otherwise you
would be responsible for these. Even if you are writing only the main access program, you
need to be aware of what these special functions do and how they affect how you
communicate with the back-end system. Because the use of these special functions is
controlled by the pools that you use, you need to liaise with the system programmers or
administrators who set them up.

Several different styles of access program are possible:

One-out one-in conversational
One program performs the complete conversation with the target and each
conversation has a single transmission to and from the back-end system.

Conversational
One program performs the complete conversation with the target with multiple
transmissions to and from the back-end system, waiting each time for the inbound
data.

Pseudoconversational
Here, one program sends data to the target and requests CICS to start another
program when the inbound data arrives.

The section beginning with Chapter 12, “Key stroke and screen-image applications” on
page 105 and ending with Chapter 15, “Specialized functions” on page 133 describes the
various features of writing application programs. A set of sample programs is available to
help you to get started; these are supplied as source code on the distribution tape. For
details, see Appendix A, “Sample programs” on page 161.

102 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Basics

 Programming
FEPI programs are CICS applications, so all aspects of CICS programming apply. For
general information about writing CICS application programs, see the CICS Application
Programming Guide. For programming information (including command formats, argument
values, details on the translation of programs, and language considerations), see the CICS
Application Programming Reference manual. Particularly relevant are the chapters in the
Application Programming Guide about designing efficient applications and dealing with
exception conditions.

The FEPI application programming commands are an extension of the EXEC CICS
commands. They have similar names and similar functions. The FEPI commands also have
similar keywords, but they are distinguished by having FEPI as a prefix. For application
programming the commands are:

EXEC CICS FEPI ALLOCATE Starts a conversation with a back-end system.

EXEC CICS FEPI FREE Ends the conversation with a back-end system.

EXEC CICS FEPI REQUEST PASSTICKET
Requests the external security manager to supply a
password substitute.

EXEC CICS FEPI SEND Sends data to the back-end system.

EXEC CICS FEPI RECEIVE Receives data from the back-end system.

EXEC CICS FEPI CONVERSE Sends data to and receives data from the back-end
system.

EXEC CICS FEPI ISSUE Sends control data to the back-end system.

EXEC CICS FEPI EXTRACT Gets field data and attributes, set-and-test sequence
number (STSN) data, or information about a conversation.

EXEC CICS FEPI START Schedules a CICS transaction to handle inbound data.

Note that, when translating your programs, you must specify the FEPI option; this instructs
the translator to process FEPI commands.

Your FEPI application programs can be AMODE(24) or AMODE(31)—that is, they can issue
FEPI commands in either 24- or 31-bit addressing mode, and reside above or below the
16MB line.

 Exception conditions
As with all CICS commands, FEPI commands may produce exception conditions that you
can check using the RESP option, or capture using HANDLE CONDITION. Most FEPI
command errors return INVREQ. The particular error in each case is uniquely identified by
the RESP2 value. All the FEPI exception conditions and RESP2 values are listed in
Chapter 16, “Application programming reference” on page 135. There are copy books that
contain declarations for the RESP2 values:

� DFHSZAPA for Assembler language
� DFHSZAPO for COBOL
� DFHSZAPP for PL/I
� DFHSZAPC for C/370.

If there is an error, the command does nothing, and output values are not changed. Note,
however, that commands such as FEPI SEND may have transferred data before the
condition is recognized.

You can use EDF and CECI to debug FEPI programs. Because FEPI commands can be
quite long, you will probably find the NAME field of CECI useful.

 Chapter 11. Basics 103

 Basics

104 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Key stroke and screen-image

Chapter 12. Key stroke and screen-image applications

This chapter discusses the key stroke and screen-image data interfaces for FEPI
applications. The examples given in this chapter are confined to simple conversational
applications. However, you can use this data interface whatever the application structure.
See Chapter 14, “Application design” on page 119 for further possibilities together with full
details of conversations, error handling, and system considerations.

The key stroke and screen-image data interface is suitable for a wide range of applications,
and is simpler to use than the alternative data stream interface. However, there are certain
types of application for which you cannot use screen-image data. For more details, see
Chapter 13, “Data stream applications” on page 113.

You can send both key stroke and screen-image data in the same conversation. The
inbound data format is the same for both: a screen-image, that you can also access
field-by-field.

You must have general knowledge of data communication and protocols.

The chapter contains the following topics:

� “General sequence of commands”
� “Sending key stroke data” on page 106
� “Receiving field-by-field” on page 107
� “Multiple attentions” on page 108
� “Sending screen-image data” on page 109
� “Receiving screen-image data” on page 110
� “Extracting field data” on page 111
� “CONVERSE” on page 112.

General sequence of commands
The following diagram illustrates the general sequence of FEPI commands that you use with
key stroke and screen-image data. That is, a FEPI SEND, multiple FEPI RECEIVES that
complete when all the data has been received, followed by another FEPI SEND.

FEPI SEND without attention As many as you want, or NONE
to build up data to send
Screen Image: AID=x'00'
Key stroke: No final attention key

FEPI SEND with attention Exactly ONE, to send the
data

FEPI RECEIVE Get the data

What ENDSTATUS? You must loop until you
eventually receive all the
data. This often comes

Other EB CD with the first FEPI RECEIVE

 Copyright IBM Corp. 1992, 1999 105

 Key stroke and screen-image

Note: The diagram does not show any processing of the data, nor where you might enter,
or leave, the loop. This information is explained more fully in Chapter 14, “Application
design” on page 119.

Sending key stroke data
Sending key strokes is the easiest way of sending data.

Your program acts in the same way as the keyboard operator, with FEPI letting the program
“press keys” just as the operator does.

A sample program illustrates the techniques used; see “Key stroke CONVERSE” on
page 170.

The data can contain any combination of data characters together with manipulative, special,
and attention key values representing almost every keyboard key. Data characters are
represented as themselves. Manipulative, special, and attention key values are represented
by escape sequences, comprising an escape character followed by a 2-character code. For
example, using '&' for the escape character, you might send the following sequence to
insert AB in one field, type IJKL into another field, and press PF7 to complete the input
operation:

 &HO&T2&R1&INAB&RS&N4IJKL&EF&ð7

 Home

 Tab, twice

 Cursor right

 Insert

 AB

 Reset

Newline, 4 times

 IJKL

 Erase—EOF

 PF7

If the sequence were in a character string named KEY-SCRIPT, you would send it with:

EXEC CICS FEPI SEND FORMATTED

 CONVID(....)

 KEYSTROKES

 FROM(KEY-SCRIPT)

 FLENGTH(3ð)

In full, the escape sequences are:

You can choose an alternative escape character.

Data characters must have values ≥X'40', so nulls (X'00') are not supported as such,
although they can be generated using the erase or delete keys. Key strokes following an
attempt to type into a protected field are ignored until RESET is keyed.

Manipulative keys Special keys Attention keys
&HO home
&Ln cursor left, n times
&Rn cursor right, n times
&Un cursor up, n times
&Dn cursor down, n times
&Tn tab, n times
&Bn backtab, n times
&Nn newline, n times

(n = 1–9)

&IN insert
&DL delete
&RS reset
&EF erase to end of field
&EI erase input
&FM field mark
&DU DUP
&ES escape character
&SO shift out
&SI shift in
&MS start secure MSR

&AT attention
&An PAn (n = 1–3)
&nn PFnn (nn = 01–24, any

leading 0 must be
specified)

&CL clear
&CS cursor select (light pen)
&EN enter
&ME end secure MSR

106 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Key stroke and screen-image

For magnetic stripe reader support, the sequence &MS...data...&ME represents passing a
secure magnetic stripe card through the reader. Nonsecure cards have to be simulated by
entering the data in the normal way.

The cursor position is set by your key strokes, rather than specifying where the cursor is
placed. If your first key stroke is always the HOME key (&HO), you will have the cursor in a
known starting position.

You can choose to send all the data with one command, or to use several commands to
build up the data. The last (or only) command should have an attention key as its final key
stroke, to actually send the data. There should be no other attention keys.

Alternatively, if you are not interested in the received data, you can ignore it by sending key
strokes with multiple attention keys, as described in “Multiple attentions” on page 108.

 Errors
Apart from communication errors caused externally, there are two likely sorts of error that
you might get:

� Bad command sequencing; that is, you have issued a FEPI SEND when one was not
expected. A FEPI SEND must not follow a FEPI SEND with a final attention key, or a
FEPI RECEIVE that did not indicate ‘change direction’.

� Incorrect data; that is, your key strokes are improper. You may have:

– Sent data, characters, or escape sequences that are not valid
– Got into an ‘input inhibited’ situation and not reset it
– Broken the rules for double-byte character set (DBCS) data
– Failed a validation test, if there are fields with one of the validation attributes.

Many of these data errors cannot be detected until the data is actually processed, because
they depend on the previous data. This means that any key strokes preceding the error will
already have taken effect—they cannot be removed by FEPI.

The FEPI SEND can also fail if, following end bracket, the back-end sends BID to send more
data and your pool has CONTENTION(LOSE). You must then receive the new back-end
data first.

 Receiving field-by-field
Receiving data field-by-field is the easiest way of receiving data.

In the simplest case you would issue a FEPI RECEIVE command without specifying an
INTO data area. FEPI gets the data from the back-end system and builds the resulting
screen image internally. The cursor position is returned by the CURSOR option. Information
about the number of lines, columns, and fields in the screen image is returned by the LINES,
COLUMNS, and FIELDS options.

To get the data, you issue the FEPI EXTRACT FIELD command for each individual field that
you want. As well as the data, you can find out the attribute settings for the field, and its
length and position. The attribute values are defined in the DFHBMSCA copy book, as is
used with BMS. You can issue as many FEPI EXTRACT FIELD commands as you need,
for whichever fields you want. You can issue more than one for each field, for example, if
you want to get the data and attributes separately. It is generally preferable to use the
FIELDLOC option rather than FIELDNUM. There may be spurious attributes between each
displayed field which make determining field numbers difficult.

A sample program illustrates the techniques used; see “Screen image RECEIVE and
EXTRACT FIELD” on page 173.

 Chapter 12. Key stroke and screen-image applications 107

 Key stroke and screen-image

 Command completion
The FEPI RECEIVE command completes on ‘end of chain’. This normally coincides with
‘change direction’ or ‘end bracket’, meaning that all data has been received. In some cases,
however, back-end applications may send data to you in several sections (chains), each
causing a screen update, so you must keep on receiving data until ‘change direction’ or ‘end
bracket’ is indicated.

In all cases, the ENDSTATUS option is set to indicate what the completion conditions were.
Where several conditions occur together, ENDSTATUS shows the most significant one. The
values of ENDSTATUS and their associated meanings are shown in Table 17.

When ‘end bracket’ is received, the session is in contention state, and either end may try to
transmit data next. Some back-end systems use ‘end bracket’ in the middle of a series of
transmissions to allow the terminal to break in if it wants, and they may use ‘end bracket’
instead of ‘change direction’ at the end of the flow. This is particularly true of IMS. CICS
usually sends ‘change direction’ eventually, although it may send ‘end bracket’ indicators
intermediately.

Using your knowledge of the back-end application and system, you must check the data that
you have already received, to determine whether more data is to be expected or the
transmission is complete. If more data is expected, you should issue another FEPI
RECEIVE command; if the transmission is complete, it is the front-end application’s turn to
send data.

You should always use the TIMEOUT option on a FEPI RECEIVE command; see
“Time-outs” on page 126.

Table 17. ENDSTATUS values and associated meanings for formatted data

ENDSTATUS Conditions Next command
expectedEnd bracket Change

direction
End of chain

EB Y - Y Any

CD - Y Y FEPI SEND or
CONVERSE

LIC - - Y FEPI RECEIVE

Note: Y=Condition indicated.

 Errors
Apart from communication errors caused externally, the most likely error you may get is due
to bad command sequencing. That is, you have issued a FEPI RECEIVE when a FEPI
SEND is expected. A FEPI RECEIVE must not follow a FEPI SEND without attention, or a
FEPI RECEIVE that indicated ‘change direction’.

Another likely error is ‘previous SEND failed’. This may be an external communication error,
or it may be that the back-end system has responded negatively—as IMS does, for example,
if you try to run an unknown transaction. The sense data which you can get using FEPI
EXTRACT CONV tells you which error it is, and, where the back-end system has responded
negatively, you simply issue another FEPI RECEIVE to get the data.

 Multiple attentions
In certain circumstances you might not have any interest in the immediate result of the data
you send, but only in a later result, after you have sent more data. If this is the case, you
can construct a single key stroke sequence, comprising all the sets of data to send, each
with its own attention key, and then send the whole lot in one operation.

108 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Key stroke and screen-image

At each attention key, FEPI sends your data to the back-end system and receives the results
internally, until ‘change direction’ or ‘end bracket’ is indicated. Then FEPI sends the next set
of key strokes. Using multiple attentions improves performance but, if the intermediate
results are not what you expect, FEPI has no way of knowing this and carries on sending
your key strokes. This can lead to unexpected effects, or to the failure of the command with
a data error. In the latter case, all the key strokes and back-end system interactions
preceding the error have already taken effect and you may find it difficult to determine the
state of the back-end system. Further, no time-out can be specified for the intermediate
receives, and so, if there is a communication problem, your application may be suspended
indefinitely.

If the last set of key strokes ends with an attention key, you must issue a FEPI RECEIVE
command to get the final result. If the last set of key strokes does not end with an attention
key, you can issue another FEPI SEND command, with yet more key strokes.

Sending screen-image data
Sending screen-image data is an alternative to sending key stroke data. In general, this
would be the screen image that you received modified to reflect the changes that would be
the result of an operator action. A sample COBOL program, DFH0VZTS, illustrates the
techniques used; see “Screen image SEND and START” on page 171.

The data is exactly what you would expect: an image of the screen that you want to send.
That is, 24 rows of 80 bytes (or whatever your screen size is) of data, corresponding
byte-for-byte with the screen. For example, in a COBOL program containing this data
description:

 ð1 SCREEN-IMAGE PIC X(192ð).

ð1 SCREEN-FIELDS REDEFINES SCREEN-IMAGE.

 ð5 LINE-1 PIC X(8ð).

 ð5 FILLER REDEFINES LINE-1.

 1ð FILLER PIC X(2ð).

 1ð CUST-NO PIC X(12).

 1ð FILLER PIC X(48).

 ð5 LINE-2 PIC X(8ð).

 ð5 LINE-3 PIC X(8ð).

 ð5 LINE-4 PIC X(8ð).

 ð5 FILLER REDEFINES LINE-4.

 1ð FILLER PIC X(12).

 1ð CUST-NAME PIC X(32).

 1ð FILLER PIC X(36).

you would put the required data into the fields and send the screen image using:

EXEC CICS FEPI SEND FORMATTED

 CONVID(....)

 FROM(SCREEN-IMAGE) FLENGTH(192ð)

 AID(PF2)

where AID specifies which attention key was pressed on the simulated terminal.

Data bytes are represented as themselves; you must set any nulls (X'00') that are needed
to fill a field. In a protected field, the data bytes must be the same as in the current,
simulated terminal buffer that FEPI holds. In the case of attribute bytes, it does not matter
what values you put, because you have no control over their positions or settings, any more
than a terminal operator does. However, if the value is X'01', FEPI sets the modified data
tag (MDT) for the field, even if its data has not changed. (If the data has changed, FEPI
sets the MDT automatically.)

You do not have to send a complete screen image. If your changes are confined to the first
few lines, you need only send those few lines. The data you send is taken as starting from
the top left position of the screen.

 Chapter 12. Key stroke and screen-image applications 109

 Key stroke and screen-image

Note: If you are using the C/370 programming language, remember that a screen image
probably contains null characters. Take care if you are handling the screen image as a
string.

The cursor position can be set using the CURSOR option.

You can choose to send all the data with one command, or to use several commands to
build up the data. The last (or only) command must have an attention identifier (AID)
specified, using the AID option, to send the data. The other commands must have an AID
value of X'00'. Definitions for the AID values are in the DFHAID copy book, as is used with
BMS.

Note: The COBOL and assembler versions of the DFHAID copybook are different.
Therefore, you cannot simply copy unmodified SEND commands from the DFH0VZTS
sample program, which is supplied in COBOL only, to a user-written assembler program.

 Errors
The errors you can get are similar to those for key stroke data. Your screen-image data has
other ways of being incorrect. In place of escape sequences not being valid, or ‘input
inhibited’, you might have cursor or AID settings not valid, or changed data in a protected
field. Many of these data errors cannot be detected until the data is actually processed.
This means that some of the changes will have taken effect already—they cannot be
removed by FEPI.

Receiving screen-image data
If you specify an INTO data area on a FEPI RECEIVE command, the data you receive is the
screen image; 24 rows of 80 bytes (or whatever your screen size is) corresponding
byte-for-byte with the screen. Data bytes are represented as themselves. In positions
corresponding to attribute bytes, X'FF' appears.

You need only get the first few lines of the screen if that is all that you are interested in.

After you have processed the data, you will probably use the same screen image, modified
as required, on a subsequent screen-image send.

Even though you got a screen image, you can use the FEPI EXTRACT FIELD command as
well if you want, for any particular fields that you require, just as described in “Receiving
field-by-field” on page 107. In particular, the FEPI EXTRACT FIELD command is the only
way you can determine the value of the field attributes.

A sample program illustrates the techniques you can use; see “Key stroke CONVERSE” on
page 170.

Note: If you are using the C/370 programming language, remember that a screen image
probably contains null characters. Take care if you are handling the screen image as a
string.

Command completion and errors
As far as completion and errors are concerned, a FEPI RECEIVE command with an INTO
data area is just like one without. So, if you do not get ‘change direction’ or ‘end bracket’,
you have to issue another FEPI RECEIVE command before you can send your screen
image back, and even ‘end bracket’ might require further FEPI RECEIVE commands.

110 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Key stroke and screen-image

Extracting field data
It is not only after a FEPI RECEIVE command that you can issue a FEPI EXTRACT FIELD
command. You can issue this command anywhere in the conversation to find out about the
current screen image that FEPI holds for the simulated terminal.

This can be particularly useful where a FEPI SEND command has failed or given
unexpected results, to discover what happened.

 Chapter 12. Key stroke and screen-image applications 111

 Key stroke and screen-image

 CONVERSE
FEPI CONVERSE can be used instead of a FEPI SEND with attention and the first (or only)
FEPI RECEIVE. It is more efficient than issuing two separate commands and is allowed
anywhere that FEPI SEND is allowed. The effects are exactly as if the two commands had
been issued.

The ending conditions are identical to those for FEPI RECEIVE, unless you use the POOL
option to get a temporary conversation. In this case, it ends on the first to occur of:

� ‘Change direction’ indicated
� ‘End bracket’ indicated,

and does not end at ‘end of chain’ alone.

 Errors
You need to take into consideration which command is expected next:

� If the receive part of the FEPI CONVERSE command fails, the send will have already
been done, and so a FEPI RECEIVE command is expected next.

� If the send part fails, the receive is not done, and, if the initial send was expected, a
FEPI SEND or CONVERSE command is expected next.

112 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Data stream applications

Chapter 13. Data stream applications

This chapter discusses the low-level data stream interface for FEPI applications. The
examples it contains are confined to simple conversational applications. However, you can
use this data interface whatever the application structure; see Chapter 14, “Application
design” for all the possibilities, together with details of conversations, error handling, and
system considerations.

The chapter contains the following topics:

� “When to use the data stream interface”
� “General sequence of commands” on page 114
� “Receiving” on page 114
� “Sending” on page 116
� “CONVERSE” on page 117
� “SLU2 mode considerations” on page 117
� “SLU P mode considerations” on page 118SLU P.

When to use the data stream interface
You need, or should use the data stream interface for the following types of applications:

� With pass-through; that is, where the application passes data through, usually to the
user’s terminal, without doing anything to it

 � With SLU P

� Where the formatted interface does not provide the detailed function that you need

� For handling non-3270 LU2 devices

� With non-response mode IMS transactions.

The 3270 data stream interface is especially useful when creating FEPI applications that
require to do little or no manipulation of the inbound (screen) data, because it is already in a
form suitable for sending to a real terminal. If interpretation or reformatting of the inbound
data is required, however, it can be significantly more difficult to operate on a 3270 data
stream.

An example of an application suited to the 3270 data stream interface is a pass-through
program, as illustrated by the sample program “3270 data stream pass-through” on
page 174. Such programs can also be used to determine the flows and screen layouts of
back-end systems when you are developing FEPI applications that, for example, drive signon
or menu selection sequences and manipulate screens or dialogs.

You must be fully conversant with the data stream and data stream protocols as detailed in
the books in the following list, and with how the back-end system uses them:

� 3270 Data Stream Programming Reference
 � SNA Formats
 � VTAM Programming
� IMS/ESA Programming Guide for Remote SNA Systems
� IMS/VS Version 2 Programming Guide for Remote SNA Systems.

The application program is entirely responsible for the integrity of the data stream that uses
this interface. FEPI performs no checking or interpretation on the data stream that is sent to
or received from the back-end system, and makes no attempt to manipulate data into RU
sizes that the sender or receiver can handle; the application program must be prepared to
handle whatever data is presented to it. For example, with SLU2 mode, it must be prepared
to handle READ commands, and WRITE STRUCTURED FIELD commands, in addition to
the normal WRITE commands.

 Copyright IBM Corp. 1992, 1999 113

 Data stream applications

General sequence of commands
The following diagram illustrates the general sequence of FEPI commands that you use with
data stream. That is, a FEPI SEND, multiple FEPI RECEIVE commands that complete when
all the data has been received, followed by another FEPI SEND.

FEPI SEND without INVITE As many as you want, or
NONE, to build up data
to send

FEPI SEND with INVITE Exactly ONE, to send the
data

FEPI RECEIVE Get the data: The FEPI
RECEIVEs can have different
endings requested each time

What ENDSTATUS? You must loop until you
eventually receive all the
data

Other EB CD

Note: The diagram does not show any processing of the data, nor where you might enter,
or leave, the loop. This information is explained more fully in Chapter 14, “Application
design” on page 119.

 Receiving
You can choose whether to process data in small segments or all at once. Your choice
depends upon various factors including:

 � Processing convenience

� The amount of data that you expect

� The size of the data area that you can use

� What you are doing with the data

� How the back-end application operates

� Whether you want to handle responses (see Chapter 15, “Specialized functions” on
page 133 for this feature).

The data is a standard inbound data stream, exactly as is sent to the simulated terminal from
VTAM. It is quite possible that there will be occasions on which you will receive no data; for
example, when the back-end system needs to set a protocol indicator.

 Command completion
FEPI RECEIVE can be specified, or defaulted, to end in one of the following ways:

RU
On the first to occur of:
� INTO data area full
� End of request unit.

114 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Data stream applications

CHAIN
On the first to occur of:
� INTO data area full
� End of chain.

UNTILCDEB
On the first to occur of:
� INTO data area full
� End of chain with definite response request
� ‘Change direction’ indicated
� ‘End bracket’ indicated.

Note: Using UNTILCDEB is not recommended, because you may have the difficult task
of splitting data back into its constituent chains in order to process it.

In all cases, the ENDSTATUS option is set to indicate what the completion conditions were.
Where several conditions occur together, ENDSTATUS shows the most significant one. The
values of ENDSTATUS and their associated meanings are shown in Table 18.

Table 18. ENDSTATUS values and associated meanings for data stream

ENDSTATUS Command options Conditions Next command
expected

End
bracket

Change
direction

End
chain

End RU INTO
area full

EB RU, CHAIN, UNTILCDEB Y - Y Y - Any

CD RU, CHAIN, UNTILCDEB - Y Y Y - FEPI SEND or
CONVERSE

LIC RU, CHAIN, UNTILCDEB - - Y Y - FEPI RECEIVE

RU RU - - - Y - FEPI RECEIVE

MORE RU, CHAIN, UNTILCDEB - - - - Y FEPI RECEIVE

Note: Y=Condition indicated.

FEPI RECEIVE commands must continue to be issued until ‘change direction’ or ‘end
bracket’ is indicated. You cannot start sending data until all inbound data has been
received. If an ENDSTATUS of MORE is indicated, the data stream is not necessarily
self-contained and should not be processed until the remainder of the information is
received. The value returned for REMFLENGTH may indicate how much more information is
to come.

When ‘end bracket’ is received, the session is in contention state, and either end may try to
transmit data next. Some back-end systems use ‘end bracket’ in the middle of a series of
transmissions to allow the terminal to break in if it wants, and they may use ‘end bracket’
instead of ‘change direction’ at the end of the flow. This is particularly true of IMS. CICS
usually sends ‘change direction’ eventually, although it may send ‘end bracket’ indicators
intermediately.

Using your knowledge of the back-end application and system, you must check the data that
you have already received, to find out whether more data is to be expected or the
transmission is complete. If more data is expected, you should issue another FEPI
RECEIVE command; if the transmission is complete, it is the front-end application’s turn to
send data.

A problem arises where the application is the pass-through type, because it does not look at
the received data. There are various ways of handling this:

1. Request data conditionally from both ends–which cannot generally be done, and
particularly not in the most typical case where the pass-through is directly to a front-end
terminal.

2. Wait for data from both ends at once. This can be done where the pass-through is
directly to a front-end terminal and the transaction is pseudoconversational for both
CICS and FEPI. See “Started tasks” on page 122.

 Chapter 13. Data stream applications 115

 Data stream applications

3. Ask each end at intervals if there is data waiting (for the back-end system by using FEPI
RECEIVE with TIMEOUT); this is often not possible, as in the case where the
pass-through is directly to a front-end terminal.

4. Forego a strict pass-through technique and check the data.

5. Assume that a transmission with ‘end bracket’ and no data means that more data is to
come.

6. Issue another FEPI RECEIVE with TIMEOUT in case more data is to come, which has
the disadvantage of introducing a delay.

Note: The last two cases involve an element of risk because the wrong assumptions can
be made.

You should always use the TIMEOUT option on a FEPI RECEIVE command; see
“Time-outs” on page 126.

 Errors
Apart from VTAM and back-end communication errors caused externally or, more probably,
by errors in the outbound data stream that you sent previously, the most likely cause of an
error condition is an incorrect sequence of commands. That is, you have issued a FEPI
RECEIVE when a FEPI SEND is expected. A FEPI RECEIVE must not follow a FEPI SEND
without INVITE, or a FEPI RECEIVE that indicated ‘change direction’.

Another likely error is ‘previous SEND failed’. This may be an external communication error,
or it may be that the back-end system has responded negatively–as IMS does, for example,
if you try to run an unknown transaction. The sense data which you can get using FEPI
EXTRACT CONV tells you which error it is, and in the latter case you simply issue another
FEPI RECEIVE to get the data.

See “3270 data stream pass-through” on page 174 and “SLU P pseudoconversational” on
page 177 for sample programs illustrating some of the programming techniques.

 Sending
You can choose to send an entire stream of data, or you can break it up into smaller units,
finishing with a FEPI SEND with INVITE. INVITE indicates that this is the last data to send,
and that inbound data should be expected next. The data is sent with ‘last in chain’ and
‘change direction’. Otherwise, further FEPI SENDS are to be expected. It is the application
program’s responsibility to ensure that the amount of data sent on a request does not
exceed the capacity of the receiving LU.

 Errors
Apart from VTAM errors caused, most probably, by errors in the outbound data stream that
you sent previously, the most likely cause of an error condition is an incorrect sequence of
commands. That is, you have issued a FEPI SEND when one was not expected. A FEPI
SEND must not follow a FEPI SEND with INVITE, or a FEPI RECEIVE that did not indicate
‘change direction’.

The FEPI SEND can also fail if, following ‘end bracket’, the back-end system sends BID to
send more data and your pool has CONTENTION(LOSE). You must then receive the new
back-end data first.

See “3270 data stream pass-through” on page 174 and “SLU P pseudoconversational” on
page 177 for sample programs illustrating some of the programming techniques.

116 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Data stream applications

 CONVERSE
FEPI CONVERSE can be used instead of a FEPI SEND with INVITE and the first (or only)
FEPI RECEIVE. It is more efficient than issuing two separate commands and is allowed
anywhere that FEPI SEND is allowed. The effects are exactly as if the two commands had
been issued.

The ending conditions are identical to those for FEPI RECEIVE, unless you use the POOL
option to get a temporary conversation. In this case, it ends on the first to occur of:

� INTO data area full
� ‘Change direction’ indicated
� ‘End bracket’ indicated,

and not at ‘end of chain’ alone. Further, if there is any residual data to receive, it is lost.

With regard to errors, you need to take into consideration which command is expected next:

� If the receive part of the FEPI CONVERSE command fails, the send will have already
been done, and so a FEPI RECEIVE command is expected next.

� If the send part fails, the receive is not done, and, if the initial send was expected, a
FEPI SEND or CONVERSE command is expected next.

SLU2 mode considerations
It is necessary, when sending outbound 3270 data streams, to ensure that a three-byte
prefix containing the attention identifier (AID) and cursor address is inserted at the front of
the data. Similarly, the first two bytes of inbound data typically contain the 3270 command
code and write control character (WCC). The lengths supplied or returned on the FEPI
SEND, RECEIVE, or CONVERSE DATASTREAM commands include the length of the prefix.

AID values are the same as the CICS values and, in pass-through applications, can be taken
from EIBAID. The cursor address however is a buffer address and cannot be taken from
EIBCPOSN. 3270 buffer addresses can be 12-, 14-, or 16-bit addresses depending on the
device. Twelve-bit addressing is the most difficult to convert to or from, but it is very
common; an address conversion table and an algorithm are contained in the 3270
Information Display System 3274 Control Unit Reference Summary manual.

The inbound 3270 command is most likely to be a WRITE or ERASE WRITE and is,
therefore, followed by a WCC then orders and data. However, this is not guaranteed and
the inbound command should be inspected to determine what it is, what, if anything, should
follow it, and how it should be handled. For example, the application may choose to perform
an EXEC CICS SEND TEXT from the inbound data and may, therefore, require to know
whether to append the ERASE keyword. The various READ commands (such as READ
BUFFER and READ MODIFIED) and all the WRITE STRUCTURED FIELD commands (a
common one being READ PARTITION with QUERY) need special handling.

If you receive more than one chain (using the UNTILCDEB option), you have to find each
inbound command yourself, so this is not recommended unless you know that the back-end
system only sends a single chain.

For further information, refer to the 3270 Information Display System Data Stream
Programmer’s Reference manual.

 Chapter 13. Data stream applications 117

 Data stream applications

SLU P mode considerations
Two sample programs illustrate some of the programming techniques for SLU P mode. For
details, see “SLU P pseudoconversational” on page 177 and “SLU P one-out one-in” on
page 176.

118 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Application design

 Chapter 14. Application design

This chapter describes the programs comprising a FEPI application and the basic design
aspects. It also discusses signon security, error handling, and system considerations,
including performance.

The chapter contains the following topics:

 � “Programs”
� “Application organization” on page 121
� “Signon security” on page 125
� “Error handling” on page 126
� “System considerations” on page 128.

 Programs
The programs comprising a FEPI application are:

 � Access
 � Begin-session handler
 � Unsolicited-data handler
 � End-session handler.

 Access program
The main purpose of an access program is to:

� Start a conversation, using FEPI ALLOCATE

� Communicate with the back-end application using FEPI SEND and RECEIVE or FEPI
CONVERSE

� End the conversation using FEPI FREE.

It must also be able to handle exception cases such as edit errors, transactions that are not
valid, or security violations, and it may need to manage signon/signoff sequences. It may
also need to handle begin-session and end-session requirements, if special handlers are not
provided. The SESSNSTATUS option of FEPI ALLOCATE tells you if a new session has
been started, or if you are reusing an existing session.

For many FEPI applications, particularly where formatted data is used, the access program
is not complex. However, you do need to be fully conversant with everything that the
back-end application might do. Your application must behave just like the real terminal and
operator, and you must send and receive data in the correct sequence. Within a
conversation, any data received is passed to the application that owns the conversation;
FEPI cannot determine whether it is the data or screen image that was expected or, for
example, a message reporting an abnormal end. Although the FEPI application needs to
handle these cases, the access program need not test for all possibilities. The suggested
method is to test only for the expected data or screen image and use a special
error-handling program if the test fails.

Other applications may require more sophisticated programming. In some cases, you not
only have to understand all the displays and protocols of the back-end application, but must
also be conversant with the detailed data stream protocols. Applications may have to be
custom-written for each device and type of target that is to be supported.

Syncpoints are not needed and not applicable in FEPI because communication environments
do not provide any recoverable units of work. It is up to you to provide the syncpoints and
any recovery of data that you need. For particularly critical operations with the back-end
applications, you may find that using “definite responses” is helpful; see “DRx responses” on
page 133.

 Copyright IBM Corp. 1992, 1999 119

 Application design

 Begin-session handler
The begin-session handler transaction is started by FEPI when a connection is acquired.
This transaction handles any functions that are required to initialize the session. Typical
tasks are:

� Handling device queries
� Handling any initial inbound data, or “good morning” message, following the bind
� Signing on to the back-end system.

Device queries are sent by the back-end system (particularly CICS) if the terminal definitions
so demand. You would normally reply ‘null’ (as illustrated by the begin-session sample
program), or with some particular terminal properties that you want. Note, if you want to
match the terminal properties to those of the real front-end terminal that an application is
using, you cannot use a begin-session handler; each application will have to do its own
begin-session handling.

When a back-end system sends a message after a successful bind, the connection should
be in a pool where the INITIALDATA property is set to INBOUND. For SLU2, IMS always
sends such a message; CICS may or may not do so depending on the way your system is
defined. This extends the process of acquiring a connection to include receiving the data.
Note that, if INBOUND is specified, the begin-session handler (or each application program,
if there is no begin session handler) must issue a FEPI RECEIVE command to get the data
and then send a suitable reply to the back-end system.

Remember that handling this initial data is just like handling any other back-end data: you
must cope with whatever the back-end system may send, and handle and reply to it
accordingly.

Security requirements in the back-end system might make it more appropriate for sign-on to
be part of the access program. (Information about implementing signon security is on page
125.)

There is a sample begin-session handler program; see “Begin session” on page 169.

 Unsolicited-data handler
The unsolicited-data handler transaction is started by FEPI if inbound data arrives on a
connection for which there is no current conversation.

Unsolicited data can occur when:

� A target sends more data than the application expected.
� The access program times out, or the conversation is ended, before the data arrives.
� Asynchronous IMS output such as:

– Message from previous input that could not be processed at the time of receipt by
IMS

– Reassignment of a logical terminal that has a message queued.

With IMS, this type of unsolicited data does not usually occur in SLU2 mode because
IMS only sends messages in reply to explicit requests from the terminal.

� Asynchronous CICS output such as that sent by ATI.

The unsolicited data should all be received by the handler, even if it is only to be discarded.
Otherwise, although FEPI eventually discards the data, it also ends and restarts the session,
which is inefficient.

There is a sample unsolicited-data handler program; see “Monitor and unsolicited
data-handler” on page 167.

120 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Application design

 End-session handler
The end-session handler transaction is started by FEPI when a conversation ends or a
session is to be unbound. This could be used as follows:

� To set the session to a known state, perhaps by signing off from the back-end system,
ready for the next conversation

� When the conversation ends, to force (or prevent) unbind and the subsequent starting of
a new session (overriding what the access program specified)

� To perform special action on CICS shutdown in the front-end system.

There is a sample end-session handler program; see “End-session handler” on page 175.

 Application organization
This section discusses application styles, started tasks, and conversations.

The three application styles can be mixed as desired. If there are enough connections
available, you can have as many conversations as you like at a time with various targets:
they can be consecutive or, much more usefully, interleaved. For example, if you need data
from four different applications, you could overlap the processing by sending all four requests
for data before you start waiting for a response.

 Application style

One-out one-in conversational
One transaction performs the complete conversation with the back-end application in a single
send and receive operation. This is the simplest style, if the required data can be obtained
from the back-end application in this way. The transaction can be reduced to a single FEPI
CONVERSE command using a temporary conversation.

By freeing the connection between transmissions, the capacity of the connection is
increased. However, this style only works where no setup is needed to run the back-end
transaction and it does not depend on any prior communication. This is because, unless you
have a very strict pool regime, you cannot generally guarantee which simulated terminal
FEPI will use–it may not be the same one as in a previous conversation–or that you were
the last user of the terminal. Further, if you receive unexpected results from the back-end
transaction, you may not be able to recover. Therefore, you should only use this style where
it does not matter if the back-end transaction runs or not, for example, for a simple inquiry.
A one-out one-in conversational program is unlikely to be suitable for accessing CICS
transactions or IMS conversational transactions.

See the sample program “SLU P one-out one-in” on page 176.

 Conversational
One transaction performs the complete conversation with the back-end application using
multiple send and receive operations and waiting for the inbound data to arrive. This style is
used for a back-end application that requires several transmissions or complex setup. This
style is simple, and if the network performance is good, the time spent waiting for inbound
data may not be a problem.

See the sample program “Key stroke CONVERSE” on page 170.

 Pseudoconversational
One transaction sends data to the back-end application, identifies another transaction that is
to be started when the inbound data arrives, and ends. When inbound data arrives, FEPI
starts the specified transaction which then receives the data. A typical technique is to have
a transaction that, when started to receive inbound data, receives the data, sends the next
piece of outbound data, issues FEPI START to start itself, and then ends.

 Chapter 14. Application design 121

 Application design

The pseudoconversational style (use of FEPI START commands) results in significant CPU
overheads in the front-end region. Further, since the use of FEPI START generates
additional flows to and from the real terminal, response times are also significantly increased.
As a consequence, FEPI START should be used sparingly when, for example. the receipt of
the data from the back-end application takes a long time.

See the sample programs “Screen image SEND and START” on page 171 and “Screen
image RECEIVE and EXTRACT FIELD” on page 173.

 Started tasks
In the pseudoconversational case, the ‘receive’ program is started by FEPI as a CICS
started task, with a start code of 'SZ' (for FEPI) which can be checked using EXEC CICS
ASSIGN STARTCODE.

FEPI supplies start data that identifies the reason for starting the task and gives information
about the FEPI resources, such as the node-target connection, the data mode and format,
and the conversation ID involved. The program that processes the transaction issues EXEC
CICS RETRIEVE to get this data (the CICS rules relating to transactions and start data
apply; in particular, you must retrieve all of the start data to prevent multiple initiations).
Copy books DFHSZAPA, DFHSZAPO, DFHSZAPC, and DFHSZAPP contain declarations of
the start data structure. You can provide your own data to be included in the start data, so
that your programs can communicate with each other about their processing state and so on.

The first thing such a program must do is get ownership of the conversation using the
conversation ID from the start data; it should then use FEPI RECEIVE to get the actual data
from the back-end. Then it can do whatever it likes: end the conversation, send more data
to the back-end system (and start itself or a new task to receive the reply), and so on.

In addition to inbound data arriving, anything else that would cause a FEPI RECEIVE
command to complete causes the ‘receive program’ to be started. This includes a ‘previous
SEND failed’ error, and a response from the back-end system without any data. The FEPI
RECEIVE that you issue shows these cases, as if FEPI START had not been used.

The program is also started if the time limit set by the FEPI START command expires, or if
the session is lost. These cases are indicated by the value of EVENTTYPE, in the start
data, being TIMEOUT or SESSIONLOST rather than DATA. They should be handled as if a
FEPI RECEIVE command had caused the error.

If your ‘send’ program is associated with a front-end terminal, your FEPI START command
would normally specify that the ‘receive’ program uses the same terminal. You should be
aware that it is not possible for FEPI to guarantee that another transaction will not use the
terminal while the inbound data is awaited. In the majority of cases, this does not happen or
does not matter. If it does happen and it is critical (perhaps for security reasons), you can
prevent user input at the terminal by issuing an EXEC CICS SET TERMINAL command
specifying NEXTTRANSID(itran) before issuing FEPI START; remember to reset
NEXTTRANSID to blank in the started task. itran is the name of a transaction that you
provide which simply rejects any user input, and sets NEXTTRANSID(itran) again. If this is
unacceptable, you must avoid using pseudoconversational applications.

The handlers mentioned on pages 120, 120 and 121 —begin-session, unsolicited data,
end-session—are also CICS started tasks. Again, the start data (obtained with EXEC CICS
RETRIEVE) tells you why the task was started and the identity of the conversation. The
started task must get ownership of the conversation so that it can continue the conversation
and so that FEPI knows that the event is being handled.

122 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Application design

 Conversations
Your entire communication with a particular back-end transaction should be contained in a
single FEPI conversation. This means that you remain in control of the communication; no
other program can break in and you keep using the same simulated terminal. Only the task
that started the conversation with FEPI ALLOCATE can use the conversation. It “owns” it
and no other task can issue any command for it, not even FEPI EXTRACT CONV.

 Conversational applications
In the simplest case, an access program starts a conversation with a FEPI ALLOCATE
command specifying the pool of connections that is to be used. The command returns an
identifier, the conversation ID, that is used to refer to the conversation subsequently. The
program then issues a series of FEPI SEND, RECEIVE (and possibly other) commands for
the conversation, each specifying the identifier, so that FEPI knows which conversation—and
therefore which connection and target —the command is for. Finally, it ends the
conversation with a FEPI FREE command. If it does not, the conversation is ended by FEPI
when the task ends.

The FEPI FREE command should normally specify the HOLD option, so that the connection
remains ready for use by another conversation. If the RELEASE option is used, or you
leave the conversation to be freed by FEPI at the end of task, the session is ended, and a
new one must be started for the next conversation; this is inefficient and, therefore, not
recommended.

 Started tasks
If the access program is pseudoconversational, after sending data it issues a FEPI START
command to name the transaction that FEPI is to start when inbound data arrives. At this
point the conversation becomes “unowned” and the first task can no longer use it. However,
the conversation does not end; when data arrives, the conversation ID is passed to the
started task and that task issues FEPI ALLOCATE with the PASSCONVID option to get
ownership of the conversation. Only then can the started task use the conversation to
receive the inbound data.

While the conversation is unowned, it can be acquired by any task that knows the
conversation ID. Acquiring the connection cancels the pending start request, and the task
that acquired ownership has to continue the conversation as if no FEPI START had been
issued. This technique is useful in a pass-through application to a front-end terminal to
handle contention between inbound data and terminal input. The application issues a FEPI
START command, specifying the front-end terminal, and then returns to CICS specifying a
‘next’ transaction. Inbound data arriving first causes FEPI to start the transaction on the
front-end terminal, which causes CICS to cancel its wait for terminal input; if terminal input
arrives first, the application, after using EXEC CICS ASSIGN STARTCODE to determine why
it was started, issues FEPI ALLOCATE with PASSCONVID which cancels the FEPI START
request.

Getting ownership also applies to the tasks started by the various handlers. The
conversation may have been started by some access program (end-session), or by FEPI
itself (begin-session, unsolicited-data). Either way, you must still issue a FEPI ALLOCATE
command with PASSCONVID, quoting the conversation ID, to get ownership and continue
the conversation.

When a handler has finished processing, it must tell FEPI by issuing a FEPI FREE command
for the conversation. For the begin-session handler, this should specify the HOLD option to
indicate that the session is ready to be used; if RELEASE is used, the session is ended.
The end-session and unsolicited-data handlers can use any of the options according to
requirements.

 Chapter 14. Application design 123

 Application design

 Passing conversations
Besides using FEPI START to have a task for receiving data, any program or handler can
explicitly give up ownership of its conversations so that another task can use them. You do
this with the FEPI FREE command and the PASS option. Any task can then get ownership
by using FEPI ALLOCATE with PASSCONVID and, if it maintains the command sequence,
continue the conversation (for example, if the first task has issued a FEPI SEND with
INVITE, the second task would have to issue a FEPI RECEIVE or, perhaps, a FEPI START).
It is up to the two tasks to communicate between themselves, using the standard CICS
methods (TS queue, COMMAREA, and so on), about the state of the conversation and its
ID. FEPI does not offer any application programming facilities for this except that the new
task can use FEPI EXTRACT CONV to determine details such as the data format.

If you do not employ a method of passing and saving the conversation across invocations of
a pseudoconversational front-end transaction, and instead issue the default FREE command,
you lose your connection to the back-end transaction, making it possible for another program
to start a conversation and effectively “break into” the active transaction. This can cause the
back-end application to abnormally end.

The only other method that can be used to ensure a unique relationship between front-end
and back-end transactions, is to have FEPI pools containing a single FEPI node for each
user. This ensures that you always get connected to the back-end transaction on the same
terminal (FEPI node) to continue your conversation. However, this method can cause
administrative problems where there are a large number of end users.

 Temporary conversations
In a one-out one-in conversational application you can use a single FEPI CONVERSE
command that combines an ALLOCATE–SEND–RECEIVE–FREE command sequence. This
combination is selected by using the POOL option of FEPI CONVERSE rather than the
CONVID option. In this case, the conversation is a temporary conversation that lasts only
for the duration of the FEPI CONVERSE command. No conversation ID is returned by FEPI
and no other commands can be issued for the conversation; you cannot even use FEPI
EXTRACT FIELD to process the returned data.

As with all one-out one-in conversational applications, temporary conversations should be
used with care. If more data is received than can be returned on the FEPI CONVERSE
command (because, for example, the data is not what you expect), the excess is discarded
and cannot be retrieved by the application. Data may be lost if the command fails and,
because you cannot receive any more data or guarantee that your next conversation will use
the same simulated terminal, it may be difficult to determine the state of the back-end
system.

Notes:

1. Every conversation started with FEPI ALLOCATE has a unique conversation ID, as does
every conversation started for a handler, except in the case of end-session when started
after a FEPI FREE. In this case, the ID is the same as in the task issuing the FEPI
FREE.

A task started when inbound data arrives gets the same conversation ID as the task that
issued the FEPI START command.

2. The state of a conversation (whether, for example, it is owned by an access program, in
a begin-session handler, waiting for inbound data, or being passed) is shown by the
STATE option of the CEMT INQUIRE FECONNECTION command (page 50) or the
FEPI INQUIRE CONNECTION command (page 72). This may be useful when you are
debugging applications.

3. If your programs are written in C/370, do not handle conversation identifiers as strings;
they may contain null characters.

124 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Application design

 Signon security
When signing on to a back-end system, FEPI applications can ask the external security
manager (ESM) to supply a password substitute, or PassTicket. (For an explanation of why
PassTickets are necessary, see page 11.)

How to use PassTickets
This section is an overview of how PassTickets work, and describes what you need to do to
use them. For detailed information about PassTickets, refer to your external security
manager documentation.

1. To process PassTickets, the ESM uses keys, known as Secure Signon keys, that are
shared by the front- and back-end systems. You must define a Secure Signon key for
each target system with which FEPI communicates.

2. The end-user is verified by signing on to the front-end CICS in the usual way.

3. When he or she runs a transaction that uses FEPI, your application issues a FEPI
REQUEST PASSTICKET command to obtain a PassTicket1 . A PassTicket is a secure
representation of a password that can be used to sign on to the back-end system. It is
valid for one use only, and is time-stamped. The userid for which the PassTicket is
generated is that of the currently signed-on user. Your FEPI application can use an
EXEC CICS ASSIGN command to check the userid of the currently signed-on user.

4. Your FEPI application uses the PassTicket and userid to perform a sign-on in the
back-end system, just as if it were sending a password and userid. For example:

EXEC CICS FEPI SEND FORMATTED

CONVID(convid) FROM(CESN userid PassTicket)

 FROMLENGTH(length_of_data)

It is the application’s responsibility to provide the signon processing, because CICS
cannot know either the type of back-end (CICS or IMS) or the back-end program being
used for signon processing.

5. The back-end system uses an unchanged interface to perform the sign-on. Thus, a
CICS system receiving a userid and a PassTicket can use its existing procedures to
sign on the userid. The ESM takes care of the fact that a PassTicket, rather than a
password, is passed to it.

Note: If the PassTicket times out (because, for example, of a session failure), your
application should generate another and try to sign on again. If signon continues to fail and
the front- and back-ends are in different systems, check that the TOD clocks are suitably
synchronized. Too many failed signon attempts could result in the userid being revoked.

 Benefits
The advantages of using PassTickets are that:

� They provide a secure way of signing on to back-end systems. This is because:

– They are valid for one use only and are timestamped—therefore, the potential
damage caused by their being intercepted is minimal.

– Passwords are not transmitted across the network.

� FEPI applications do not have to store passwords (or ask users to reenter them) in
order to sign on to back-end systems.

� No changes are required in the CICS or IMS back-end systems.

1 If EDF is being used the PassTicket is not displayed.

 Chapter 14. Application design 125

 Application design

 Requirements
� The front-end must be a CICS Transaction Server for VSE/ESA Release 1 system. The

back-end can be an earlier-level CICS or IMS system.

� An external security manager that supports PassTickets, on both the front- and
back-end systems.

� End-users must use the same userid in the back-end systems as in the front-end
system.

 Error handling
This section gives some general guidance on how to handle various error conditions, for
example:

 � Time-outs
 � Session loss
� Previous send failed

 � Communication errors
� Bypass by user exit
� Unknown conversation ID

 � Operator/system action
 � CICS shutdown.

FEPI does not recover any user data when an error condition is raised—data recovery, if
needed, must be performed by the application program. In addition, the output option values
on a command are not set if the command fails; your program should not be using these
values in such cases.

The recommended way is that errors raised by FEPI commands should be handled by your
application rather than letting CICS terminate the transaction abnormally. Errors and
exceptions can be detected by using the RESP and RESP2 command options, or trapped
using HANDLE CONDITION.

 Time-outs
You should use time-outs with FEPI commands. If there is a problem with the connection to
the back-end application, a program without time-outs may wait for ever, you may stop other
applications running, and operator intervention may be needed.

Time-outs can be used with FEPI ALLOCATE, RECEIVE, START, and CONVERSE
commands. In all cases, the timing applies only to the period that FEPI waits for a reply
from the back-end system. As soon as anything is received from the back-end, FEPI stops
the timer, and then waits for as long as is necessary to receive all the data that is required to
complete the command. You cannot specify a time-out for FEPI SEND, because the
command always completes immediately, without waiting for any data to be transmitted. Any
delay or other problem is handled by the following FEPI RECEIVE command. The action to
take on a time-out depends on the command that was used:

� For FEPI ALLOCATE, you could retry the initial command and then retry using a
different pool or target before going into your error-handling routine.

� For FEPI RECEIVE, you can retry the command and, if that fails, handle the error as if
the session with the back-end application had been lost.

� For FEPI START, the time-out is reported to the started task, and not as an error on the
command. In other respects, however, it is the same as a FEPI RECEIVE time-out.

� For FEPI CONVERSE with a previously allocated conversation, it is exactly as if a FEPI
SEND command and then a FEPI RECEIVE command were issued. That is, the
time-out that you specify applies only to the ‘receive’ part of the command, and is
treated and handled just like that for a FEPI RECEIVE.

126 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Application design

For a temporary conversation, it is as if the command were preceded by a FEPI
ALLOCATE and followed by a FEPI FREE, so in this case the time-out is applied to
both the ‘allocate’ and ‘receive’ parts of the command. In this situation, if a time-out
occurs, there is no indication as to which part caused it.

 Lost session
If a FEPI application loses the session with the back-end application, it should free the
conversation. Having done that, the application can take whatever action is required. A
typical action would be to recover any data and restore the initial state before retrying the
conversation or sending a message to the user.

The loss of a session can also occur because of CLSDST(PASS) processing (as discussed
in “Handling CLSDST(PASS)” on page 35). If this is the case, you can find out when the
session has been reestablished using the FEPI EXTRACT CONV command. You can then
continue processing as required.

Previous SEND failed
This occurs on a FEPI RECEIVE and is indicated by RESP2=216. It may be an external
communication error, or it may be that the back-end system has responded negatively (as
IMS does, for example, if you try to run an unknown transaction). Use the FEPI EXTRACT
CONV command to get the sense data describing the failure. If this indicates a negative
response, you should reissue the FEPI RECEIVE to get the data. If it was not a negative
response, it is equivalent to a lost session and the session cannot be recovered.

 Communication errors
It is simplest to treat communication and network errors as a lost session, which avoids the
need for detailed SNA error protocol handling. However, sophisticated applications may
want to handle certain recoverable conditions, for example, SNA CLEAR received
(RESP2=230).

Bypass by user exit
A command can be rejected by the FEPI global user exits (RESP2=10). Typically this would
be because it violates the rules imposed by your system programmer. Check the rules with
your system programmer.

Unknown conversation ID
Besides specifying the ID incorrectly, this is probably caused by the task that issued the
command not owning the conversation, because:

� The conversation has been ended
� The conversation has been passed to another task
� FEPI ALLOCATE with PASSCONVID has not been issued.

If the error occurs on a FEPI ALLOCATE command with PASSCONVID, the conversation
was probably not “unowned”. Where the CONVID was obtained from FEPI start data, it is
possible that between FEPI scheduling the task and it actually starting, a resource used by
the conversation has been discarded, or CICS has started shutdown.

 Operator/system action
An operator/system error occurs when the operator tries to cancel a FEPI transaction. If, as
is likely, it is waiting for a FEPI command to be processed, it is the ‘wait’ for FEPI processing
that is canceled, not the transaction.

When a FEPI command fails with an ‘operator action’ error (RESP2=18), first end all the
active conversations and then end the transaction as soon as possible.

 Chapter 14. Application design 127

 Application design

 Shutdown
A normal CICS shutdown waits for currently active tasks to end, but does not allow new
tasks to start. FEPI allows existing conversations to continue within a task but does not
allow them to be passed to another task (because that task would never be started), nor
does it allow new conversations to be started. Conversations that are “unowned” are ended
immediately, because the tasks that would subsequently handle them would never be
started. Therefore, FEPI START or FREE PASS commands issued during shutdown fail
(RESP2=214); in this case the error-handling routine, after doing whatever housekeeping is
required, should issue FEPI FREE to end the conversation. FEPI ALLOCATE commands
issued during shutdown fail with RESP2=12.

You might need to take special action on the back-end system, for example, signing off,
when the front-end application is going to shut down. For this reason, when conversations
end during shutdown, the end-session handler is invoked with SHUTDOWN indicated in the
EVENTVALUE field of the start data, so that the back-end system can be restored to a
known state before FEPI ends; the FEPI FREE issued by the handler is treated as if
RELEASE is specified. If you require this function, make sure the end-session handler is
defined in the transaction list table (XLT), so that it can be started, and so that it does not
adversely affect the performance of CICS shutdown. (The XLT is described in the CICS
Resource Definition Guide.) Using an end-session handler is the only way to perform
special processing on shutdown, because no notification of shutdown is given to normal
active transactions and conversations.

An immediate CICS shutdown ends all conversations immediately, and commands in
progress fail. No further FEPI commands can be issued, and no end-session handlers are
started.

 System considerations
You can think of FEPI as a “pipe” through which users access back-end transactions; any
peculiarities that exist in the back-end system have to be allowed for in the FEPI application.
IMS has special considerations and these are explained in the following text.

This section concludes with some notes about performance.

 IMS considerations
It is essential that you are familiar with using IMS and writing IMS applications.

When designing access programs that have IMS as a target back-end system, careful
consideration must be given to the differences between CICS and IMS under certain
circumstances:

 � Message protocols.
� Use of response mode.
� Beginning and end of session.
� Effects of IMS restart and recovery features in a FEPI environment. (Because IMS is

almost totally recoverable, this can present problems in the design of the FEPI
application and some event handlers.)

 Message protocols
� In SLU2 mode, IMS sends messages only in reply to explicit requests from the terminal.

Therefore, unsolicited data will not usually occur; rather it will be available for the next
FEPI conversation to receive. At the start of a FEPI conversation, you should first
dequeue all such messages. However, unsolicited data can occur when requested data
arrives after a FEPI conversation has been ended by, for example, a time-out.

� Take care if you use the IMS /SET command to preset a destination or put the
transaction ID in the SPA to specify which IMS transaction to use next.

� If you are using Message Format Services (MFS), consider the following:

128 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Application design

– Physical paging or operator logical paging:

- Whether paged output is deleted automatically by an input message or not.

- for SLU2 mode, sending PA1 to request additional pages of paged output, and
sending PA2 to remove paged output from the queue.

– Unlocking the keyboard after MFS bypass.

 Response mode
You are recommended to run all your back-end IMS transactions in response mode where
messages to IMS from the (simulated) terminal are handled synchronously; that is, each
message from the terminal is processed by IMS and the reply is queued before a further
message from the terminal is allowed. This lets your front-end application be much simpler
because data received will be the reply to the data just sent, and because the data stream
flows from IMS are more straightforward; further, a separate FEPI conversation can be used
for each IMS transaction and this allows much better use of the network (of course, you
must use the same FEPI conversation throughout an IMS conversational transaction).

If you use non-response mode, the data stream flows may be more complex. If you send
multiple messages to IMS, the application has to handle asynchronous messages from IMS
and, to keep the same simulated terminal, has to use the same FEPI conversation all the
time.

Check with your system programmer that the transactions to be used by FEPI are defined to
run in response mode. This requires the terminals for FEPI to be defined either to force
response mode or to use the setting for the transaction (which in turn should be defined as
response mode).

Beginning of session
For SLU2, there is always initial data. You should:

� Dequeue all output messages by sending CLEAR and PA1 after each FEPI RECEIVE,
until there are no more messages (there may be ‘unsolicited’ data as well as the initial
data).

� If there is an IMS error message, end the session using FEPI FREE with the RELEASE
option.

End of session
Application programs must be designed such that when a session is ended:

� An IMS conversation is not left active.
� An IMS /RCLSDST command is issued if appropriate.
� An IMS MFS bypass application is not left in bypass mode.
� Any preset destination has been reset.
� Any used test mode has been ended.
� No paged output message is left on the IMS message queue.
� All messages have been received.

Physically paged messages are removed from the queue automatically when the last page
has been sent and, if they are recoverable, acknowledged. Operator logically-paged
messages are not removed and require a PA2 (for SLU2 mode) or a
NEXTMSG/NEXTMSGP control function (for SLU P mode) to be sent to IMS to remove the
message from the queue if no input message is due.

 IMS recovery
After a system failure, IMS recovers following a restart from the last checkpoint it took. This
means that, if the failure occurs when IMS has committed a message to the input queue
then, on restart, IMS requeues that message and schedules a transaction to process it.
Similarly, IMS will requeue all output messages that it has committed to its output queues
and not successfully sent.

 Chapter 14. Application design 129

 Application design

When IMS fails, all sessions between FEPI and IMS are ended. This is reported to the FEPI
application as a command error (‘session lost’). A FEPI application should check this so that
it can tidy up before ending and take the appropriate action (such as informing the operator).

FEPI attempts to regain lost connections and, therefore, when IMS restarts, any previously
acquired connections are reestablished. If IMS has committed an input or output message,
eventually there is going to be an output message to send. With the connection reacquired,
IMS attempts to recover its position and ultimately to send any queued output messages to
the FEPI node that carried the original FEPI conversation. The process of recovery in this
situation is different for each of the two modes:

 � SLU P recovery
When IMS tries to recover SLU P connections, it uses ‘set and test sequence numbers’
(STSN) in an attempt to resynchronize failed conversations. The STSN flow from IMS
carries its version of the sequence numbers for the node being resynchronized. If there
is an STSN handler specified, it is started. If not, FEPI responds POSITIVE, which
effectively tells IMS that FEPI is satisfied with the sequence numbers sent. On receiving
this, IMS sends all messages queued for the node. FEPI receives the messages,
discards them and responds to IMS, completing the resynchronization.

 � SLU2 recovery
The queued message is sent by IMS until there is a request from a front-end
application, that application will receive the message as unexpected data interleaved
with the data that it expects to receive. This problem can be handled in either of two
ways:

1. By the application issuing a FEPI RECEIVE, with TIMEOUT, before starting its
intended task or by dequeuing all output messages using CLEAR and PA1.

2. By the begin-session handler.

This situation becomes more complex if the back-end transaction is IMS conversational,
because the front-end transaction has no way of knowing this, and the IMS conversation will
still be active in the back-end system awaiting input.

The potential therefore exists for a front-end FEPI application to allocate a FEPI conversation
on a node where an IMS conversation still exists on the back-end system. Any data flowing
on this FEPI conversation is viewed by the front-end application as an exchange with a new
back-end transaction, but it is viewed by IMS as the next input message to the existing
conversation. To prevent this situation occurring, you can use the begin-session handler to
issue the IMS /EXIT command, which has the effect of ending an active IMS conversation.

Where the possibility exists of a number of nodes with active IMS conversations following a
restart, it is possible to use FEPI to obtain a connection to IMS and control the cleanup
operation, from a single point. You do this by issuing, again from the appropriate handler:

� An IMS /DISPLAY command to display all active conversations
� The IMS /EXIT command to end all those attached to FEPI nodes.

In the event of a failure that unbinds all the FEPI connections to IMS, the recovery procedure
is identical to that described here.

 Performance
Use the following techniques to get the best performance from your FEPI applications; the
main principles are to minimize the number of commands issued and the amount of data
transmitted. Remember, however, that some of these techniques have drawbacks (as have
been explained elsewhere), and some conflict with each other; you must choose the best
balance to meet your needs.

130 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Application design

 General
� Use data area sizes that allow a send or receive to be completed with a single FEPI

command.

� Use FEPI CONVERSE where possible. But remember that the send part of
CONVERSE can fail for various reasons, so be sure to write your program so that it can
issue a subsequent FEPI RECEIVE if necessary.

� The pseudoconversational style (use of FEPI START commands) results in significant
CPU overheads in the front-end region. Further, since the use of FEPI START
generates additional flows to and from the real terminal, response times are also
significantly increased. As a consequence, FEPI START should be used sparingly
when, for example, the receipt of the data from the back-end application takes a long
time.

� Avoid ending sessions unnecessarily. Use the begin-session and end-session handlers
to manage usage of the connections.

� Try to avoid operator dependency in exchanges with a back-end system.

 Formatted data
� Unformatted screens (where the terminal character buffer contains no field attributes)

require more processing than formatted screens. Where possible use formatted screens
from the back-end systems.

� Not clearing a screen results in unnecessary data being transmitted to the back-end
system.

� If, when data is received, only a small portion of the resultant screen is of interest, use
FEPI EXTRACT FIELD to minimize the amount of data that needs to be transferred to
the application.

� When using key stroke data, avoid issuing a FEPI CONVERSE, SEND, or RECEIVE for
each attention operation; combine all the operations into one long string.

� When using key stroke data with an unformatted screen, use the HOME and
ERASE-EOF keys to clear the screen rather than CLEAR, because the latter requires a
network transmission.

� Use key stroke rather than screen-image data where possible, because much less data
needs transferring from the application.

 Chapter 14. Application design 131

 Application design

132 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Specialized functions

 Chapter 15. Specialized functions

This chapter describes specialized control functions that are handled by FEPI but can be
taken over by a FEPI application. It contains the following topics:

� “Set and test sequence number (STSN)”
 � “DRx responses”
� “SNA commands” on page 134.

Set and test sequence number (STSN)
In SLU P mode, message sequence numbers are available in the data stream to allow
message resynchronization. This can be demanded by a ‘Set and Test Sequence Number’
(STSN) request when a session is started.

The response that IMS requires, and that FEPI supplies if the system programmer has not
defined a transaction to handle the STSN request, depends upon whether the STSN request
showed ‘SET’ or ‘TEST and SET’:

SET The response is always ‘TEST POSITIVE’.

TEST and SET The response is ‘TEST POSITIVE’ or ‘TEST NEGATIVE’.

Any other response to STSN will cause the session to be unbound.

If an STSN handler is defined, it is started when session resynchronization is requested by
the back-end system through an SNA STSN or SDT command. The back-end system sends
an SNA STSN command indicating whether the last inbound message was in doubt or not;
that is, whether a message had been sent by the back-end system but it had not logged the
receipt of a response. The back-end system does not send an SNA STSN command if no
traffic has been on the session since the latest cold start of the back-end system, but sends
an SNA SDT command directly.

Like other handlers, the STSN handler is a CICS started task that uses EXEC CICS
RETRIEVE to get the start data and FEPI ALLOCATE with PASSCONVID to get ownership
of the conversation identified in that data. The STSN handler, which can use the FEPI
EXTRACT STSN command to determine what response is needed, must use the FEPI
ISSUE command to respond to the STSN.

FEPI normally does all the necessary STSN handling automatically, so an STSN handler is
required only where you need to handle the sequence number information yourself. The
FEPI SEND, FEPI RECEIVE, and FEPI CONVERSE commands return the current sequence
numbers for you.

A sample program illustrates the techniques used. See “STSN handler” on page 178.

 DRx responses
In all cases except those mentioned in the next paragraph, FEPI automatically gives a
positive DRx response when the inbound data indicates that a response is required. This
response flows on the next FEPI command (SEND, RECEIVE, CONVERSE, FREE, or
START).

The automatic response is not issued if the next command for a conversation is a FEPI
ISSUE CONTROL or a FEPI FREE PASS.

Thus, if you want to send your own response, perhaps for added certainty or confirmation of
particularly sensitive changes, you would do so using FEPI ISSUE CONTROL. The
response type that is required can be determined from the RESPSTATUS option of FEPI
RECEIVE and FEPI CONVERSE.

 Copyright IBM Corp. 1992, 1999 133

 Specialized functions

You can send your own responses with either formatted data or data stream. But do not use
the following because they can cause FEPI to send responses automatically:

� Key stroke formatted data containing an attention key that is not the final key stroke
� FEPI CONVERSE with the POOL option to use a temporary conversation.

If you respond negatively a back-end CICS system will discard the data but an IMS system
will resend it.

 SNA commands
The FEPI ISSUE command allows you to send various other SNA commands yourself. You
should do this only if you have a particular requirement.

134 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Application programming reference

Chapter 16. Application programming reference

This chapter defines the FEPI application programming
commands. (System programming commands such as
INSTALL, INQUIRE, and SET are defined in Chapter 9,
“System programming reference” on page 67.) The chapter
contains the following topics:

� “General information about the FEPI API commands”
� “Start data” on page 156
� “Data formats” on page 157
� “Ending status” on page 158.

General information about the FEPI API
commands

The FEPI application programming commands are:

 ALLOCATE
 AP NOOP
 CONVERSE
 EXTRACT
 FREE
 ISSUE
 RECEIVE
 REQUEST PASSTICKET
 SEND
 START

These commands are additions to the set of EXEC CICS
commands that are available to application programmers,
and they have the same features and properties as those
commands. Some brief notes of these features and
properties appear below; for details, refer to the programming
information on the following subjects in the CICS Application
Programming Reference manual:

 � Command format

� Argument values, including programming-language
considerations, and CVDA values

� RESP, RESP2, and NOHANDLE options

 � LENGTH options.

 Command format

The general format of a command is:

EXEC CICS FEPI command option(argument)...

where:

command Is the command name (for example,
ALLOCATE).

option Is an option name (for example, POOL).

argument Is the source or destination for data, as required
for the specified option, that is passed to or
returned from the command.

The way that you end the command is determined by the
programming language that you are using: COBOL, for
example, requires an END-EXEC statement.

Arguments and data types

The text used to identify arguments in this book indicates the
type of data represented by the argument and whether it is a
value used by the command, or an area in which the
command returns data. For example:

POOL(8-character data-value) says that the argument
is, or identifies, a string of eight characters and that the
string is passed to the command as an input value.

SIZE(fullword binary data-area) says that the
argument is a user-defined fullword data area in which
the command can return a binary number as an output
value.

Errors and exception conditions

All FEPI commands support the RESP and RESP2 options
to signal successful completion or an exception condition.
Alternatively, you can use HANDLE CONDITION to trap
errors.

Most FEPI command errors give the ‘INVREQ’ exception
condition. The particular error in each case is uniquely
identified by the RESP2 value.

If there is an error, the command does nothing and the
output arguments are not changed. Note, however, that
commands such as FEPI SEND may have transferred data
before the condition is recognized.

Both RESP and RESP2 take, as an argument, the name of a
user-defined fullword binary data area. Possible values of
the RESP2 option are given in the description of each of the
commands and a full list is given in “RESP2 values” on
page 183. The following copy books provide declarations for
the RESP2 values:

� DFHSZAPA for Assembler language
� DFHSZAPO for COBOL
� DFHSZAPP for PL/I
� DFHSZAPC for C/370.

 Copyright IBM Corp. 1992, 1999 135

 FEPI ALLOCATE PASSCONVID

The following conditions and RESP2 values can occur for
any application programming command:

 Syntax notation

The notation used in this book to show the syntax of FEPI
commands is the same as that used in the CICS System
Programming Reference. See “CICS syntax notation used in
this book” on page viii for details.

 Translator options

You must specify the ‘FEPI’ translator option when you use
FEPI commands.

 Other points
� FEPI commands can be issued in either 24-bit or 31-bit

addressing mode, by programs that reside either above
or below the 16MB line.

� No information is passed through the EXEC interface
block (EIB) except that, as for all CICS commands, the
EIBRESP, EIBRESP2, EIBFN, and EIBRCODE fields
are set.

Condition RESP2 Meaning
INVREQ 10 Command bypassed by user exit.
INVREQ 11 FEPI not installed, or not active.
INVREQ 12 CICS shutting down, command not

allowed.
INVREQ 13 FEPI unavailable.
INVREQ 14 FEPI busy or cannot get storage.
INVREQ 15 Unknown command.
INVREQ 16 Internal error.
INVREQ 17 FEPI cannot get storage for user exit.
INVREQ 18 Command failed through operator or

system action.

FEPI ALLOCATE PASSCONVID

Function: FEPI ALLOCATE PASSCONVID acquires ownership of an existing unowned conversation.

 Syntax

55──FEPI ALLOCATE─ ──PASSCONVID(data-value) ─5%

Conditions:
 INVREQ

 Options

PASSCONVID(8-character data-value)
specifies the ID of the conversation.

 Conditions

Condition RESP2 Meaning
INVREQ 216 Error occurred on previous FEPI SEND.
INVREQ 240 Unknown conversation ID.

136 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI ALLOCATE POOL

FEPI ALLOCATE POOL

Function: FEPI ALLOCATE POOL establishes a new FEPI conversation with a target application, acquiring a session from
the named pool to use for the conversation. The conversation has the properties, particularly the mode (SLU2 or SLU P) and
data format (data stream or formatted), specified for the pool that is used: some of the properties can be queried using FEPI
EXTRACT CONV.

The command completes immediately if, in the named POOL, a suitable session has been established and is not in use.
Otherwise the request waits for a session to become available. A time limit can be set for this wait.

 Syntax

55──FEPI ALLOCATE─ ──POOL(data-value) ──CONVID(data-area) ──┬ ┬──────────────────── ──┬ ┬───────────────────── ───5
└ ┘──TARGET(data-value) └ ┘──TIMEOUT(data-value)

5─ ──┬ ┬───────────────────── ──┬ ┬────────────────────── ──┬ ┬─────────────────── ─5%
└ ┘──SEQNUMIN(data-area) └ ┘──SEQNUMOUT(data-area) └ ┘──SESSNSTATUS(cvda)

Conditions:
 INVREQ

 Options

CONVID(8-character data-area)
returns a unique identifier for the new conversation; this
is the ID that must be quoted on all subsequent
commands for the conversation.

POOL(8-character data-value)
specifies the name of the pool containing the target for
the conversation.

SEQNUMIN(fullword binary data-area)
in SLU P mode, returns the current sequence number for
inbound data. (SEQNUMIN has no significance in SLU2
mode.)

SEQNUMOUT(fullword binary data-area)
in SLU P mode, returns the current sequence number for
outbound data. (SEQNUMOUT has no significance in
SLU2 mode.)

SESSNSTATUS(cvda)
returns a value that indicates whether the session being
used for the conversation was newly-bound or not. The
relevant CVDA values are:

 NEWSESSION

 OLDSESSION

TARGET(8-character data-value)
specifies the name of the target. TARGET can be
omitted if there is only one target in the pool or if all
targets are suitable for the desired conversation.

TIMEOUT(fullword binary data-value)
specifies the maximum time in seconds that the
command is to wait for a suitable session to become
available. If TIMEOUT is not specified or the specified
time is zero, the command is not timed out.

 Conditions

Condition RESP2 Meaning
INVREQ 30 POOL name unknown.
INVREQ 31 POOL name out of service.
INVREQ 32 TARGET name unknown.
INVREQ 33 TARGET name out of service.
INVREQ 34 TARGET name required but not

specified.
INVREQ 36 No suitable session available and in

service.
INVREQ 213 Command timed out.
INVREQ 241 TIMEOUT value negative or not valid.

 Chapter 16. Application programming reference 137

 FEPI AP NOOP � FEPI CONVERSE DATASTREAM

FEPI AP NOOP

Function: FEPI AP NOOP has no effect.

 Syntax

55──FEPI AP NOOP──5%

Conditions:
 INVREQ

 Options: None

Conditions: None specific to this command.

FEPI CONVERSE DATASTREAM

Function: FEPI CONVERSE DATASTREAM sends application data to and receives a reply from a target. The data
supplied by the application must be a currently valid data stream appropriate to the mode of the conversation (SLU2 or
SLU P); the data received into the application’s data area is also data stream. Full details about the data are given in “Data
formats” on page 157.

The conversation with the target can be one of two types:

Previously allocated
The conversation is specified by the CONVID option; it must be one that uses data-stream-type data. By default, the
command completes when a whole chain of data has been received, although other ending conditions can be requested.

Temporary
The conversation is allocated from the pool specified by the POOL option and exists only for the duration of the command.
The pool must be one that uses data-stream-type data.

The command first waits for a suitable session to become available (if there is not already one); then, after sending the
data, it completes when ‘change direction’ or ‘end bracket’ is received.

A time limit can be set for this command. For more details of ending conditions, see “Ending status” on page 158.

Syntax: The syntax for each type of conversation is shown separately.

Previously allocated conversation

55──FEPI CONVERSE DATASTREAM─ ──CONVID(data-value) ──FROM(data-value) ──┬ ┬───────────────────────── ───────────5
└ ┘──FROMFLENGTH(data-value)

 ┌ ┐─CHAIN─────
5─ ──┼ ┼─────────── ──┬ ┬───────────────── ──┬ ┬───── ──┬ ┬───────────────── ───────────────────────────────────────5

├ ┤─RU──────── └ ┘──ENDSTATUS(cvda) └ ┘──FMH └ ┘──FMHSTATUS(cvda)
 └ ┘─UNTILCDEB─

5─ ──┬ ┬─── ────────────────────────────5
 └ ┘── ──INTO(data-area) ──┬ ┬──────────────────────── ──┬ ┬──────────────────────

└ ┘──MAXFLENGTH(data-value) └ ┘──TOFLENGTH(data-area)

5─ ──┬ ┬─────────────────────── ──┬ ┬────────────────── ──┬ ┬───────────────────── ──┬ ┬────────────────────── ─────5
└ ┘──REMFLENGTH(data-area) └ ┘──RESPSTATUS(cvda) └ ┘──SEQNUMIN(data-area) └ ┘──SEQNUMOUT(data-area)

5─ ──┬ ┬───────────────────── ─5%
└ ┘──TIMEOUT(data-value)

Conditions:
 INVREQ

138 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI CONVERSE DATASTREAM

 Temporary conversation

55──FEPI CONVERSE DATASTREAM─ ──POOL(data-value) ──┬ ┬──────────────────── ──FROM(data-value) ──────────────────5
└ ┘──TARGET(data-value)

 ┌ ┐─UNTILCDEB─
5─ ──┬ ┬───────────────────────── ──┴ ┴─────────── ──┬ ┬───────────────── ──┬ ┬───── ──┬ ┬───────────────── ──────────5

└ ┘──FROMFLENGTH(data-value) └ ┘──ENDSTATUS(cvda) └ ┘──FMH └ ┘──FMHSTATUS(cvda)

5─ ──┬ ┬─── ────────────────────────────5
 └ ┘── ──INTO(data-area) ──┬ ┬──────────────────────── ──┬ ┬──────────────────────

└ ┘──MAXFLENGTH(data-value) └ ┘──TOFLENGTH(data-area)

5─ ──┬ ┬─────────────────────── ──┬ ┬────────────────── ──┬ ┬───────────────────── ──┬ ┬────────────────────── ─────5
└ ┘──REMFLENGTH(data-area) └ ┘──RESPSTATUS(cvda) └ ┘──SEQNUMIN(data-area) └ ┘──SEQNUMOUT(data-area)

5─ ──┬ ┬───────────────────── ─5%
└ ┘──TIMEOUT(data-value)

Conditions:
 INVREQ

 Options

CHAIN
specifies that the command should complete when a
whole chain has been received. CHAIN is not allowed if
the POOL option is specified.

CONVID(8-character data-value)
specifies the ID of the conversation to use. The
conversation must be owned by the task issuing the
command.

ENDSTATUS(cvda)
returns a value that indicates the ending status for the
received data. The relevant CVDA values are:

For more details of ending status and how additional data
is handled, see “Ending status” on page 158.

FMH
indicates that the data to send includes a function
management header.

FMHSTATUS(cvda)
returns a value that indicates whether the received data
contains a function management header. The relevant
CVDA values are:

 FMH

 NOFMH

FROM(data-value)
specifies the data to send to the back-end application.
Its length is specified by the FROMFLENGTH option.

FROMFLENGTH(fullword binary data-value)
specifies the length of the data to send; that is, the length
of the data area identified by the FROM option. It must

not be zero or more than the maximum length allowed for
the pool.

INTO(data-area)
specifies the data area in which the received data is to
be returned. The length of the area is specified by the
MAXFLENGTH option, and the actual length of data
written into the area is returned by the TOFLENGTH
option.

MAXFLENGTH(fullword binary data-value)
specifies the maximum amount of data that can be
returned; that is, the length of the data area identified by
the INTO option. It must not be more than the maximum
length allowed for the pool.

POOL(8-character data-value)
specifies the name of the pool containing the target for
the conversation. Specifying POOL means that the
conversation is a temporary one, that exists only for the
duration of the FEPI CONVERSE. The CHAIN and RU
options are not allowed, and the command completes
when ‘change direction’ or ‘end bracket’ is received. If
there is more data to receive than fits into the data area
identified by the INTO option, the additional data is
discarded.

REMFLENGTH(fullword binary data-area)
returns the length, if known, of data remaining after filling
the data area identified by the INTO option.

RESPSTATUS(cvda)
returns a value that indicates the type of response that is
required at the back-end system. The relevant CVDA
values are:

Value Meaning
CD ‘Change direction’ received.
EB ‘End bracket’ received.
LIC ‘Last in chain’ received.
RU RU received.
MORE The data area identified by the INTO option was

too small to receive all the requested data.

Value Meaning
DEFRESP1 Definite response 1 required.
DEFRESP2 Definite response 2 required.
DEFRESP3 Definite response 1 and definite response 2

required.
NONE No response required.

 Chapter 16. Application programming reference 139

 FEPI CONVERSE DATASTREAM

RU
specifies that the command should complete when a
request unit has been received. RU is not allowed if the
POOL option is specified.

SEQNUMIN(fullword binary data-area)
in SLU P mode, returns the current sequence number for
inbound data, as at the completion of the command.
(SEQNUMIN has no significance in SLU2 mode.)

SEQNUMOUT(fullword binary data-area)
in SLU P mode, returns the current sequence number for
outbound data, as at the completion of the command.
(SEQNUMOUT has no significance in SLU2 mode.)

TARGET(8-character data-value)
specifies the name of the target. TARGET can be
omitted if there is only one target in the pool or if all
targets are suitable for the desired conversation.

TIMEOUT(fullword binary data-value)
specifies the maximum time in seconds that the
command is to wait for the requested data to begin to
arrive. If TIMEOUT is not specified or the specified time
is zero, the command is not timed out.

TOFLENGTH(fullword binary data-area)
returns the actual length of data received in the data area
identified by the INTO option.

UNTILCDEB
specifies that the command should complete when
‘change direction’ or ‘end bracket’ is received.

 Conditions

Condition RESP2 Meaning
INVREQ 213 Command timed out.
INVREQ 215 Session lost.
INVREQ 216 Error occurred on previous FEPI SEND.
INVREQ 220 FEPI CONVERSE not allowed at this

point in the conversation.
INVREQ 224 Only FEPI ISSUE or FEPI FREE

commands allowed at this point in the
conversation.

INVREQ 230 SNA CLEAR command received.2
INVREQ 231 SNA CANCEL command received.2
INVREQ 232 SNA CHASE command received.2
INVREQ 233 Exception response received.
INVREQ 234 Exception request received.
INVREQ 240 Conversation ID not owned by this task.
INVREQ 241 TIMEOUT value negative or not valid.

Condition RESP2 Meaning
INVREQ 30 POOL name unknown.
INVREQ 31 POOL name out of service.
INVREQ 32 TARGET name unknown.
INVREQ 33 TARGET name out of service.
INVREQ 34 TARGET name required but not

specified.
INVREQ 35 POOL name is unsuitable for temporary

conversations. (It has
CONTENTION(LOSE) or it has
INITIALDATA(INBOUND) and no
begin-session handler.)

INVREQ 36 No suitable session available and in
service.

INVREQ 40 FROMFLENGTH value negative, zero, or
more than the maximum allowed for the
current pool.

INVREQ 50 Inbound data with ‘begin bracket’ to be
received.

INVREQ 58 VTAM SEND failed.
INVREQ 60 MAXFLENGTH value negative, zero, or

more than the maximum allowed for the
current pool.

INVREQ 71 VTAM RECEIVE failed.
INVREQ 212 Conversation has wrong data format.

2 For an explanation of this SNA command, see the SNA Formats manual.

140 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI CONVERSE FORMATTED

FEPI CONVERSE FORMATTED

Function: The command is for SLU2 mode only.

FEPI CONVERSE FORMATTED sends application data to and receives a reply from a target. The data supplied by the
application must be formatted data, as key strokes (with a final attention character) or a screen image; the data received into
the application’s data area is a screen image. Full details about the data are given in “Data formats” on page 157.

The conversation with the target can be one of two types:

Previously allocated
The conversation is specified by the CONVID option; it must be one that uses formatted data. The command completes
when ‘last in chain’, ‘end bracket’, or ‘change direction’ is received.

Temporary
The conversation is allocated from the pool specified by the POOL option and exists only for the duration of the command.
The pool must be one that uses formatted data. In addition, the data must be sent in key stroke format.

The command first waits for a suitable session to become available (if there is not already one); it does not complete until
‘end bracket’ or ‘change direction’ is indicated.

A time limit can be set for this command. For more details of ending conditions, see “Ending status” on page 158.

Syntax: The syntax for each type of conversation is shown separately.

Previously allocated conversation

55──FEPI CONVERSE FORMATTED─ ──CONVID(data-value) ──FROM(data-value) ──┬ ┬───────────────────────── ────────────5
└ ┘──FROMFLENGTH(data-value)

5─ ──┬ ┬──AID(data-value) ──┬ ┬──────────────────────── ──5
│ │└ ┘──FROMCURSOR(data-value)

 └ ┘ ──KEYSTROKES ──┬ ┬──────────────────── ─────────
└ ┘──ESCAPE(data-value)

5─ ──┬ ┬─── ──┬ ┬─────────────────── ─────5
 └ ┘── ──INTO(data-area) ──┬ ┬──────────────────────── ──┬ ┬────────────────────── └ ┘──ALARMSTATUS(cvda)

└ ┘──MAXFLENGTH(data-value) └ ┘──TOFLENGTH(data-area)

5─ ──┬ ┬──────────────────── ──┬ ┬───────────────── ──┬ ┬─────────────────── ──┬ ┬────────────────── ───────────────5
└ ┘──COLUMNS(data-area) └ ┘──ENDSTATUS(cvda) └ ┘──FIELDS(data-area) └ ┘──LINES(data-area)

5─ ──┬ ┬────────────────── ──┬ ┬───────────────────── ──┬ ┬───────────────────── ─5%
└ ┘──RESPSTATUS(cvda) └ ┘──TIMEOUT(data-value) └ ┘──TOCURSOR(data-area)

Conditions:
 INVREQ

 Chapter 16. Application programming reference 141

 FEPI CONVERSE FORMATTED

 Temporary conversation

55──FEPI CONVERSE FORMATTED─ ──POOL(data-value) ──┬ ┬──────────────────── ──FROM(data-value) ───────────────────5
└ ┘──TARGET(data-value)

5─ ──┬ ┬───────────────────────── ─KEYSTROKES─ ──┬ ┬──────────────────── ──5
└ ┘──FROMFLENGTH(data-value) └ ┘──ESCAPE(data-value)

5─ ──┬ ┬─── ──┬ ┬─────────────────── ─────5
 └ ┘── ──INTO(data-area) ──┬ ┬──────────────────────── ──┬ ┬────────────────────── └ ┘──ALARMSTATUS(cvda)

└ ┘──MAXFLENGTH(data-value) └ ┘──TOFLENGTH(data-area)

5─ ──┬ ┬──────────────────── ──┬ ┬───────────────── ──┬ ┬─────────────────── ──┬ ┬────────────────── ───────────────5
└ ┘──COLUMNS(data-area) └ ┘──ENDSTATUS(cvda) └ ┘──FIELDS(data-area) └ ┘──LINES(data-area)

5─ ──┬ ┬────────────────── ──┬ ┬───────────────────── ──┬ ┬───────────────────── ─5%
└ ┘──RESPSTATUS(cvda) └ ┘──TIMEOUT(data-value) └ ┘──TOCURSOR(data-area)

Conditions:
 INVREQ

 Options

AID(1-character data-value)
specifies the attention identifier value to send with the
data. Specifying AID also indicates that the data to send
is in screen-image format, as described in “Data formats”
on page 157. The value must not be null (X'00'). AID,
and therefore screen-image format data, is not allowed if
POOL is specified.

Symbolic names for the AID values are available for the
supported languages in the language-specific DFHAID
copybooks.

ALARMSTATUS(cvda)
returns a value that indicates whether the received data
sounded the alarm. The relevant CVDA values are:

 ALARM

 NOALARM

COLUMNS(fullword binary data-area)
returns the number of columns in the screen image.

CONVID(8-character data-value)
specifies the ID of the conversation to use. The
conversation must be owned by the task issuing the
command.

ENDSTATUS(cvda)
returns a value that indicates the ending status for the
received data. The relevant CVDA values are:

For more details of ending status and how additional data
is handled, see “Ending status” on page 158.

ESCAPE(1-character data-value)
for send data in key stroke format, specifies the escape
character used to indicate character combinations
representing special keys. You can use any value in the
range X'40' through X'FE'. The default escape
character is & (X'50').

FIELDS(fullword binary data-area)
returns the number of fields in the screen image.

FROM(data-value)
specifies the data to send to the back-end application.
Its length is specified by the FROMFLENGTH option.
For send data in screen-image format, if the length is
more than the screen image, the additional data is
ignored; if it is less, the data is the first part of the screen
image, and the last part of the screen image is not
changed.

FROMCURSOR(fullword binary data-value)
for send data in screen-image format, specifies the
position of the cursor, expressed as an offset from the
start of the screen image; offset zero is the top left-hand
corner of the screen. If FROMCURSOR is not specified,
the cursor remains where it was positioned by the last
inbound data.

FROMFLENGTH(fullword binary data-value)
specifies the length of the data to send; that is, the length
of the data area identified by the FROM option. It must
not be zero or more than the maximum length allowed for
the pool.

INTO(data-area)
specifies the data area in which the received data is to
be returned. The length of the area is specified by the
MAXFLENGTH option, and the actual length of data
written into the area is returned by the TOFLENGTH
option.

KEYSTROKES
specifies that the data to send is a sequence of key
strokes (see “Data formats” on page 157).

LINES(fullword binary data-area)
returns the number of lines in the screen image.

MAXFLENGTH(fullword binary data-value)
specifies the maximum amount of data that can be
returned; that is, the length of the data area identified by
the INTO option. It must not be more than the maximum
length allowed for the pool.

Value Meaning
CD ‘Change direction’ received
EB ‘End bracket’ received
LIC ‘Last in chain’ received.

142 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI CONVERSE FORMATTED

POOL(8-character data-value)
specifies the name of the pool containing the target for
the conversation. Specifying POOL means that the
conversation is a temporary one, that exists only for the
duration of the FEPI CONVERSE. You must also specify
the KEYSTROKES option. If the length of the data area
identified by the INTO option is less than the size of the
screen image, the additional data is discarded.

RESPSTATUS(cvda)
returns a value that indicates the type of response that is
required at the back-end system. The relevant CVDA
values are:

TARGET(8-character data-value)
specifies the name of the target. TARGET can be
omitted if there is only one target in the pool or if all
targets are suitable for the desired conversation.

TIMEOUT(fullword binary data-value)
specifies the maximum time in seconds that the
command is to wait for the requested data to begin to
arrive. If TIMEOUT is not specified or the specified time
is zero, the command is not timed out.

TOCURSOR(fullword binary data-area)
returns the position of the cursor in the received screen
image, expressed as an offset from the start of the
screen image; offset zero is the top left-hand corner of
the screen.

TOFLENGTH(fullword binary data-area)
returns the actual length of data received in the data area
identified by the INTO option.

Note: On a FEPI CONVERSE FORMATTED command,
if MAXFLENGTH is less than the presentation space
size, TOFLENGTH returns the value defined in
MAXFLENGTH. If MAXFLENGTH is greater than the
presentation space size, TOFLENGTH returns the
presentation space size.

 Conditions

Condition RESP2 Meaning
INVREQ 30 POOL name unknown.
INVREQ 31 POOL name out of service.
INVREQ 32 TARGET name unknown.
INVREQ 33 TARGET name out of service.
INVREQ 34 TARGET name required but not

specified.
INVREQ 35 POOL name is unsuitable for temporary

conversations. (It has
CONTENTION(LOSE) or it has
INITIALDATA(INBOUND) and no
begin-session handler.)

INVREQ 36 No suitable session available and in
service.Value Meaning

DEFRESP1 Definite response 1 required. INVREQ 40 FROMFLENGTH value negative, zero, or
more than the maximum allowed for the
current pool.

DEFRESP2 Definite response 2 required.
DEFRESP3 Definite response 1 and definite response 2

required. INVREQ 41 ESCAPE value not valid.
NONE No response required. INVREQ 50 Inbound data with ‘begin bracket’ to be

received.
INVREQ 51 AID value not valid.
INVREQ 52 Cursor position not valid.
INVREQ 53 Character values in send data not valid.
INVREQ 54 Attribute positions or values in send data

not valid.
INVREQ 55 Key stroke escape sequence in send

data is not valid.
INVREQ 56 Field validation (mandatory fill, mandatory

enter, trigger) failed.
INVREQ 57 Input inhibited.
INVREQ 58 VTAM SEND failed.
INVREQ 59 DBCS data rules violated.
INVREQ 60 MAXFLENGTH value negative, zero, or

more than the maximum allowed for the
current pool.

INVREQ 71 VTAM RECEIVE failed.
INVREQ 72 RECEIVE FORMATTED processing

found invalid, or unexpected data while
interpreting the 3270 data steam for a
WRITE, ERASE/WRITE, ERASE/WRITE
ALTERNATE, or WRITE STRUCTURED
FIELD command code.

INVREQ 210 Command not allowed for SLU P mode.
INVREQ 212 Conversation has wrong data format.
INVREQ 213 Command timed out.
INVREQ 215 Session lost.
INVREQ 216 Error occurred on previous FEPI SEND.
INVREQ 220 FEPI CONVERSE not allowed at this

point in the conversation.
INVREQ 221 Data cannot be received because no AID

or final attention key stroke specified.
INVREQ 224 Only FEPI ISSUE or FEPI FREE

commands allowed at this point in the
conversation.

INVREQ 230 SNA CLEAR command received.3
INVREQ 231 SNA CANCEL command received.3
INVREQ 232 SNA CHASE command received.3
INVREQ 233 Exception response received.
INVREQ 234 Exception request received.
INVREQ 240 Conversation ID not owned by this task.
INVREQ 241 TIMEOUT value negative or not valid.

3 For an explanation of this SNA command, see the SNA Formats manual, GA27-3136.

 Chapter 16. Application programming reference 143

 FEPI EXTRACT CONV

FEPI EXTRACT CONV

Function: FEPI EXTRACT CONV gets general information about a conversation.

 Syntax

55──FEPI EXTRACT CONV─ ──CONVID(data-value) ──┬ ┬────────────── ──┬ ┬────────────── ──┬ ┬───────────────── ────────5
└ ┘──DEVICE(cvda) └ ┘──FORMAT(cvda) └ ┘──POOL(data-area)

5─ ──┬ ┬─────────────────── ──┬ ┬───────────────── ──┬ ┬────────────────────── ─5%
└ ┘──TARGET(data-area) └ ┘──NODE(data-area) └ ┘──SENSEDATA(data-area)

Conditions:
 INVREQ

 Options

CONVID(8-character data-value)
specifies the ID of the conversation for which information
is wanted. The conversation must be owned by the task
issuing the command.

DEVICE(cvda)
returns a value that identifies the mode of conversation
and the type of device. The relevant CVDA values are:

FORMAT(cvda)
in SLU2 mode, returns a value that identifies the data
mode. The relevant CVDA values are:

 DATASTREAM

 FORMATTED

NODE(8-character data-area)
returns the node name.

POOL(8-character data-area)
returns the pool name.

SENSEDATA(fullword binary data-area)
returns the sense data associated with the last FEPI
SEND, FEPI RECEIVE, or FEPI CONVERSE command
for the conversation. If there is no sense data, zero is
returned.

TARGET(8-character data-area)
returns the target name.

 Conditions

Condition RESP2 Meaning
INVREQ 215 Session lost.
INVREQ 240 Conversation ID not owned by this task.

Value Meaning
T3278M2 SLU2 mode, 3278 Model 2
T3278M3 SLU2 mode, 3278 Model 3
T3278M4 SLU2 mode, 3278 Model 4
T3278M5 SLU2 mode, 3278 Model 5
T3279M2 SLU2 mode, 3279 Model 2B
T3279M3 SLU2 mode, 3279 Model 3B
T3279M4 SLU2 mode, 3279 Model 4B
T3279M5 SLU2 mode, 3279 Model 5B
TPS55M2 SLU2 mode, PS/55, 24 lines
TPS55M3 SLU2 mode, PS/55, 32 lines
TPS55M4 SLU2 mode, PS/55, 43 lines
LUP SLU P mode, all cases.

144 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI EXTRACT FIELD

FEPI EXTRACT FIELD

Function: The command is for SLU2 mode only, and for formatted data only.

FEPI EXTRACT FIELD gets information about a field in the current character buffer of the simulated terminal. It can be issued
at any point in the conversation. More than one FEPI EXTRACT FIELD command can be issued for a given field.

For information about field attributes and their values see the 3270 Data Stream Programmer’s Reference manual. Symbolic
names for the various attribute values are available in the DFHBMSCA copybook.

 Syntax

55──FEPI EXTRACT FIELD─ ──CONVID(data-value) ──┬ ┬──FIELDLOC(data-value) ──────────────────────────────────────5
└ ┘──FIELDNUM(data-value)

5─ ──┬ ┬─── ──┬ ┬─────────────────────── ───5
 └ ┘── ──INTO(data-area) ──┬ ┬──────────────────────── ──┬ ┬──────────────────── └ ┘──BACKGROUND(data-area)

└ ┘──MAXFLENGTH(data-value) └ ┘──FLENGTH(data-area)

5─ ──┬ ┬────────────────── ──┬ ┬────────────────────── ──┬ ┬──────────────────── ──┬ ┬───────────────────────── ────5
└ ┘──COLOR(data-area) └ ┘──FIELDATTR(data-area) └ ┘──HILIGHT(data-area) └ ┘──INPUTCONTROL(data-area)

5─ ──┬ ┬─────────── ──┬ ┬──────────────────── ──┬ ┬───────────────────── ──┬ ┬─────────────── ──┬ ┬─────────────── ───5
└ ┘──MDT(cvda) └ ┘──OUTLINE(data-area) └ ┘──POSITION(data-area) └ ┘──PROTECT(cvda) └ ┘──PS(data-area)

5─ ──┬ ┬───────────────── ──┬ ┬───────────────────────── ──┬ ┬─────────────────────── ─5%
└ ┘──SIZE(data-area) └ ┘──TRANSPARENCY(data-area) └ ┘──VALIDATION(data-area)

Conditions:
 INVREQ

 Options

BACKGROUND(1-character data-area)
returns the background color attribute of the field.

COLOR(1-character data-area)
returns the foreground color attribute of the field.

CONVID(8-character data-value)
specifies the ID of the conversation for which information
is wanted. The conversation must be owned by the task
issuing the command.

FIELDATTR(1-character data-area)
returns the 3270 field attribute of the field.

FIELDLOC(fullword binary data-value)
specifies the location of the required field expressed as
an offset from the start of the screen image; offset zero is
the top left-hand corner of the screen. The location can
refer to any character position in the field, including its
attribute byte.

FIELDNUM(fullword binary data-value)
specifies the location of the required field expressed as a
field number counting from the top left-hand corner of the
screen. The first field is number 1, and starts at the
top-left hand corner of the screen, whether or not there is
an attribute in that position. The last field ends at the
bottom right-hand corner of the screen, and does not
wrap back to the top.

FLENGTH(fullword binary data-area)
returns the actual length of data received in the data area
identified by the INTO option.

HILIGHT(1-character data-area)
returns the extended highlighting attribute of the field.

INPUTCONTROL(1-character data-area)
returns the DBCS input control attribute of the field.

INTO(data-area)
specifies the data area in which the data in the field is to
be returned. The length of the area is specified by the
MAXFLENGTH option, and the actual length of data
written into the area is returned by the FLENGTH option.

MAXFLENGTH(fullword binary data-value)
specifies the maximum amount of data that can be
returned; that is, the length of the data area identified by
the INTO option. It must not be more than the maximum
length allowed for the pool.

MDT(cvda)
returns a value that identifies the state of the modified
data tag for the field. The relevant CVDA values are:

 NOMDT

 MDT

OUTLINE(1-character data-area)
returns the field outlining attribute of the field.

POSITION(fullword binary data-area)
returns the position of the field expressed as the offset of
the first data byte from the start of the screen image;
offset zero is the top left-hand corner of the screen.

 Chapter 16. Application programming reference 145

 FEPI EXTRACT STSN

PROTECT(cvda)
returns a value that indicates whether or not the field is
protected. The relevant CVDA values are:

 UNPROTECTED

 PROTECTED

PS(1-character data-area)
returns the character set attribute of the field.

SIZE(fullword binary data-area)
returns the size of the field on the screen, excluding the
field attribute byte, expressed as a number of bytes.

TRANSPARENCY(1-character data-area)
returns the transparency attribute of the field.

VALIDATION(1-character data-area)
returns the field validation attribute of the field.

 Conditions

Condition RESP2 Meaning
INVREQ 60 MAXFLENGTH value negative, zero, or

more than the maximum allowed for the
current pool.

INVREQ 70 FIELDLOC or FIELDNUM value negative
or not valid.

INVREQ 210 Command not allowed for SLU P mode.
INVREQ 212 Conversation has wrong data format.
INVREQ 224 Only FEPI ISSUE or FEPI FREE

commands allowed at this point in the
conversation.

INVREQ 240 Conversation ID not owned by this task.

FEPI EXTRACT STSN

Function: The command is for SLU P mode only.

FEPI EXTRACT STSN gets sequence number status information for a conversation.

 Syntax

55──FEPI EXTRACT STSN─ ──CONVID(data-value) ──┬ ┬───────────────────── ──┬ ┬────────────────────── ──────────────5
└ ┘──SEQNUMIN(data-area) └ ┘──SEQNUMOUT(data-area)

5─ ──┬ ┬────────────────── ─5%
└ ┘──STSNSTATUS(cvda)

Conditions:
 INVREQ

 Options

CONVID(8-character data-value)
specifies the ID of the conversation for which information
is wanted. The conversation must be owned by the task
issuing the command.

SEQNUMIN(fullword binary data-area)
returns the current sequence number for inbound data.

SEQNUMOUT(fullword binary data-area)
returns the current sequence number for outbound data.

STSNSTATUS(cvda)
returns the current sequence-number set and test status.
The relevant CVDA values are:

 Conditions

Value Meaning
NOSTSN No ‘set’ or ‘test and set’ issued.
STSNSET ‘Set’ sequence number issued.
STSNTEST ‘Test and set’ sequence number issued.

Condition RESP2 Meaning
INVREQ 211 Command not allowed for SLU2 mode.
INVREQ 240 Conversation ID not owned by this task.

146 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI FREE

 FEPI FREE

Function: FEPI FREE ends a task’s use and ownership of a conversation. The conversation may be ended completely, or
may be passed to another task. The action depends on the processing state of the conversation:

� Begin session handler
 � STSN handler
 � Access program
� End session handler

 � Unsolicited-data handler.

 Syntax

 ┌ ┐─HOLD────
55──FEPI FREE─ ──CONVID(data-value) ──┼ ┼───────── ─5%
 ├ ┤─RELEASE─
 ├ ┤─FORCE───
 └ ┘─PASS────

Conditions:
 INVREQ

 Options

CONVID(8-character data-value)
specifies the ID of the conversation to free. The
conversation must be owned by the task issuing the
command.

FORCE
tells FEPI what action to take.

For all processing states of the conversation, FORCE
instructs FEPI to end the conversation unconditionally,
and to take the connection that it was using out of
service immediately and, if possible, reset it.

HOLD
tells FEPI what action to take.

For the access program and the unsolicited-data handler,
HOLD instructs FEPI to end the conversation and to
retain the session for use by another conversation.
However, this is subject to any end-session processing.

For the begin-session handler and the STSN handler,
HOLD tells FEPI that begin-session or STSN processing
has ended, and that the conversation is ready for the
next processing state.

For the end-session handler, HOLD tells FEPI that
end-session processing has ended, and instructs FEPI to
end the conversation and to retain the session for use by
another conversation. (If CICS shutdown is in progress,
HOLD is the same as RELEASE.)

PASS
tells FEPI what action to take.

For all the processing states of the conversation, PASS
specifies that the task is relinquishing ownership of the
conversation so that another task can acquire it. There is
no change in the processing state of the conversation.
(PASS is not allowed if CICS shutdown is in progress.)

RELEASE
tells FEPI what action to take.

For the access program and the unsolicited-data handler,
RELEASE instructs FEPI to end the conversation, and to
release and unbind the session that it was using, thereby
forcing a new session to be started next time the
connection is used. However, this is subject to any
end-session processing.

For the begin-session handler and the STSN handler,
RELEASE tells FEPI that begin-session or STSN
processing has ended, and instructs FEPI to end the
conversation without proceeding to the next processing
state, and to release and unbind the session that it was
using, thereby forcing a new session to be started next
time the connection is used. However, this is subject to
any end-session processing.

For the end-session handler, RELEASE tells FEPI that
end-session processing has ended, and instructs FEPI to
end the conversation, and to release and unbind the
session that it was using, thereby forcing a new session
to be started next time the connection is used.

Note that, under normal circumstances, after a FEPI
FREE RELEASE command has been issued the session
does not remain in RELEASED state, because FEPI
automatically tries to reacquire the session. However, if
a FEPI SET CONNECTION ACQSTATUS(RELEASED)
command is issued before the FREE RELEASE, the
session remains in RELEASED state.

 Conditions

Condition RESP2 Meaning
INVREQ 214 CICS shutting down, conversation should

be ended.
INVREQ 240 Conversation ID not owned by this task.

 Chapter 16. Application programming reference 147

 FEPI ISSUE

 FEPI ISSUE

Function: FEPI ISSUE sends control data, such as standard responses and sense data, to the target system.

The command completes as soon as the corresponding VTAM SEND has been accepted.
 Syntax

55──FEPI ISSUE─ ──CONVID(data-value) ──CONTROL(cvda) ──┬ ┬─────────────────────── ──┬ ┬───────────── ─5%
└ ┘──SENSEDATA(data-value) └ ┘──VALUE(cvda)

Conditions:
 INVREQ

 Options

CONTROL(cvda)
specifies what type of control data to send. The relevant
CVDA values depend upon the data type and the mode
of the conversation:

For all modes:

For data stream only:

For SLU P mode only:

CONVID(8-character data-value)
specifies the ID of the conversation to use. The
conversation must be owned by the task issuing the
command.

SENSEDATA(fullword binary data-value)
specifies sense data to send to the target when the
CONTROL is LUSTAT or EXCEPTRESP.

VALUE(cvda)
specifies the response type associated with the control
data. The relevant CVDA values are determined by what
is specified for the CONTROL option:

For EXCEPTRESP and NORMALRESP:

For STSN:

For other controls:

None; the VALUE option is not used with the other
controls.

 Conditions

Value Meaning
DEFRESP1OR2 Send definite response 1 or 2 as required.

Value Meaning DEFRESP1 Send definite response 1.
NORMALRESP Send a normal response, as specified by

the VALUE option.
DEFRESP2 Send definite response 2.
DEFRESP3 Send definite response 1 and definite

response 2.EXCEPTRESP Send an exception response, as specified
by the VALUE option, and with the sense
data specified by the SENSEDATA option.

ATTENTION Send an attention (SNA ‘signal’ command
X'00010000').

LUSTAT Send an SNA ‘LUSTAT’ command with
the sense data specified by the
SENSEDATA option.

Value Meaning
POSITIVE Send STSN positive response.
NEGATIVE Send STSN negative response.
INVALID Send STSN response not valid (this

unbinds the session).
RESET Send STSN reset response (this unbinds

the session).
Value Meaning DEFRESP2 Send definite response 2.
CANCEL Send an SNA ‘cancel’ command. DEFRESP3 Send definite response 1 and definite

response 2.

Value Meaning
STSN Send an SNA ‘set and test sequence

number’ command.
RTR Send an SNA ‘ready to receive’

command.

Condition RESP2 Meaning
INVREQ 80 CONTROL value not valid.
INVREQ 81 VALUE value not valid: omitted when

required, specified when not required, or
unsuitable for the specified CONTROL
value.

INVREQ 82 SENSEDATA value omitted when
required or specified when not required.

INVREQ 90 Definite response type did not match
what was required.

INVREQ 91 Only NORMALRESP or EXCEPTRESP
are allowed at this point in the
conversation.

INVREQ 92 Response to STSN SET was not
POSITIVE.

148 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI RECEIVE DATASTREAM

Condition RESP2 Meaning Condition RESP2 Meaning
INVREQ 93 Only FEPI ISSUE CONTROL(STSN)

allowed at this point in the conversation.
INVREQ 216 Error occurred on previous FEPI SEND.
INVREQ 230 SNA CLEAR command received.

INVREQ 94 Only FEPI ISSUE CONTROL(STSN) or
FEPI ISSUE CONTROL(NORMALRESP)
allowed at this point in the conversation.

INVREQ 231 SNA CANCEL command received.
INVREQ 232 SNA CHASE command received.
INVREQ 233 Exception response received.

INVREQ 95 CONTROL value not allowed at this point
in the conversation.

INVREQ 234 Exception request received.
INVREQ 240 Conversation ID not owned by this task.

INVREQ 211 Option not allowed for SLU2 mode.
INVREQ 215 Session lost.

FEPI RECEIVE DATASTREAM

Function: FEPI RECEIVE DATASTREAM receives data from a target and places the received data stream into the
application’s data area. Full details about the data are given in “Data formats” on page 157.

By default, FEPI RECEIVE DATASTREAM completes when a whole chain of data has been received. A time limit can be set
for this command. For more details of ending conditions, see “Ending status” on page 158.

 Syntax

 ┌ ┐─CHAIN─────
55──FEPI RECEIVE DATASTREAM─ ──CONVID(data-value) ──┼ ┼─────────── ──┬ ┬───────────────── ──┬ ┬───────────────── ──5

├ ┤─RU──────── └ ┘──ENDSTATUS(cvda) └ ┘──FMHSTATUS(cvda)
 └ ┘─UNTILCDEB─

5─ ──┬ ┬─── ──┬ ┬─────────────────────── ───5
 └ ┘── ──INTO(data-area) ──┬ ┬──────────────────────── ──┬ ┬──────────────────── └ ┘──REMFLENGTH(data-area)

└ ┘──MAXFLENGTH(data-value) └ ┘──FLENGTH(data-area)

5─ ──┬ ┬────────────────── ──┬ ┬───────────────────── ──┬ ┬────────────────────── ──┬ ┬───────────────────── ─5%
└ ┘──RESPSTATUS(cvda) └ ┘──SEQNUMIN(data-area) └ ┘──SEQNUMOUT(data-area) └ ┘──TIMEOUT(data-value)

Conditions:
 INVREQ

 Options

CHAIN
specifies that the command should complete when a
whole chain has been received.

CONVID(8-character data-value)
specifies the ID of the conversation to use. The
conversation must be owned by the task issuing the
command.

ENDSTATUS(cvda)
returns a value that indicates the ending status for the
received data. The relevant CVDA values are:

For more details of ending status and how additional data
is handled, see “Ending status” on page 158.

FLENGTH(fullword binary data-area)
returns the actual length of data received in the data area
identified by the INTO option.

FMHSTATUS(cvda)
returns a value that indicates whether the received data
contains a function management header. The relevant
CVDA values are:

 FMH

 NOFMH

INTO(data-area)
specifies the data area in which the received data is to
be returned. The length of the area is specified by the
MAXFLENGTH option, and the actual length of data
written into the area is returned by the FLENGTH option.

MAXFLENGTH(fullword binary data-value)
specifies the maximum amount of data that can be
returned; that is, the length of the data area identified by
the INTO option. It must not be more than the maximum
length allowed for the pool.

REMFLENGTH(fullword binary data-area)
returns the length, if known, of data remaining after filling
the data area identified by the INTO option.

Value Meaning
CD ‘Change direction’ received.
EB ‘End bracket’ received
LIC ‘Last in chain’ received.
RU RU received.
MORE The data area identified by the INTO option

was too small to receive all the requested
data.

 Chapter 16. Application programming reference 149

 FEPI RECEIVE FORMATTED

RESPSTATUS(cvda)
returns a value that indicates the type of response that is
required at the back-end system. The relevant CVDA
values are:

RU
specifies that the command should complete when a
request unit has been received.

SEQNUMIN(fullword binary data-area)
in SLU P mode, returns the current sequence number for
inbound data, as at the completion of the command.
(SEQNUMIN has no significance in SLU2 mode.)

SEQNUMOUT(fullword binary data-area)
in SLU P mode, returns the current sequence number for
outbound data, as at the completion of the command.
(SEQNUMOUT has no significance in SLU2 mode.)

TIMEOUT(fullword binary data-value)
specifies the maximum time in seconds that the
command is to wait for the requested data to begin to

arrive. If TIMEOUT is not specified or the specified time
is zero, the command is not timed out.

UNTILCDEB
specifies that the command should complete when
‘change direction’ or ‘end bracket’ is received.

 Conditions

Value Meaning
DEFRESP1 Definite response 1 required.
DEFRESP2 Definite response 2 required.
DEFRESP3 Definite response 1 and definite response 2

required. Condition RESP2 Meaning
INVREQ 60 MAXFLENGTH value negative or more

than maximum allowed for the current
pool.

NONE No response required.

INVREQ 71 VTAM RECEIVE failed.
INVREQ 212 Conversation has wrong data format.
INVREQ 213 Command timed out.
INVREQ 215 Session lost.
INVREQ 216 Error occurred on previous FEPI SEND.
INVREQ 221 FEPI RECEIVE not allowed at this point

in the conversation.
INVREQ 224 Only FEPI ISSUE or FEPI FREE

commands allowed at this point in the
conversation.

INVREQ 230 SNA CLEAR command received.
INVREQ 231 SNA CANCEL command received.
INVREQ 232 SNA CHASE command received.
INVREQ 233 Exception response received.
INVREQ 234 Exception request received.
INVREQ 240 Conversation ID not owned by this task.
INVREQ 241 TIMEOUT value negative or not valid.

FEPI RECEIVE FORMATTED

Function: This command is for SLU2 mode only.

FEPI RECEIVE FORMATTED receives data from a target. The data received into the application’s data area is a screen
image. Full details about the data are given in “Data formats” on page 157.

FEPI RECEIVE FORMATTED completes after receiving the inbound data with ‘last in chain’, ‘end bracket’ or ‘change direction’
indicated. A time limit can be set for this command. For more details of ending conditions, see “Ending status” on page 158.

 Syntax

55──FEPI RECEIVE FORMATTED─ ──CONVID(data-value) ──5

5─ ──┬ ┬─── ──┬ ┬─────────────────── ───────5
 └ ┘── ──INTO(data-area) ──┬ ┬──────────────────────── ──┬ ┬──────────────────── └ ┘──ALARMSTATUS(cvda)

└ ┘──MAXFLENGTH(data-value) └ ┘──FLENGTH(data-area)

5─ ──┬ ┬──────────────────── ──┬ ┬─────────────────── ──┬ ┬───────────────── ──┬ ┬─────────────────── ──────────────5
└ ┘──COLUMNS(data-area) └ ┘──CURSOR(data-area) └ ┘──ENDSTATUS(cvda) └ ┘──FIELDS(data-area)

5─ ──┬ ┬────────────────── ──┬ ┬────────────────── ──┬ ┬───────────────────── ─5%
└ ┘──LINES(data-area) └ ┘──RESPSTATUS(cvda) └ ┘──TIMEOUT(data-value)

Conditions:
 INVREQ

150 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI RECEIVE FORMATTED

 Options

ALARMSTATUS(cvda)
returns a value that indicates whether the received data
sounded the alarm. The relevant CVDA values are:

 ALARM

 NOALARM

COLUMNS(fullword binary data-area)
returns the number of columns in the screen image.

CONVID(8-character data-value)
specifies the ID of the conversation to use. The
conversation must be owned by the task issuing the
command.

CURSOR(fullword binary data-area)
returns the position of the cursor in the received screen
image, expressed as an offset from the start of the
screen image; offset zero is the top left-hand corner of
the screen.

ENDSTATUS(cvda)
returns a value that indicates the ending status for the
received data. The relevant CVDA values are:

For more details of ending status and how additional data
is handled, see “Ending status” on page 158.

FIELDS(fullword binary data-area)
returns the number of fields in the screen image.

FLENGTH(fullword binary data-area)
returns the actual length of data received in the data area
identified by the INTO option.

INTO(data-area)
specifies the data area in which the received data is to
be returned. The length of the area is specified by the
MAXFLENGTH option, and the actual length of data
written into the area is returned by the FLENGTH option.

LINES(fullword binary data-area)
returns the number of lines in the screen image.

MAXFLENGTH(fullword binary data-value)
specifies the maximum amount of data that can be
returned; that is, the length of the data area identified by

the INTO option. It must not be more than the maximum
length allowed for the pool.

RESPSTATUS(cvda)
returns a value that indicates the type of response that is
required at the back-end system. The relevant CVDA
values are:

TIMEOUT(fullword binary data-value)
specifies the maximum time in seconds that the
command is to wait for the requested data to begin to
arrive. If TIMEOUT is not specified or the specified time
is zero, the command is not timed out.

 Conditions

Value Meaning
DEFRESP1 Definite response 1 required.
DEFRESP2 Definite response 2 required.
DEFRESP3 Definite response 1 and definite response 2

required.
NONE No response required.

Condition RESP2 Meaning
INVREQ 60 MAXFLENGTH value negative or more

than the maximum allowed for the current
pool.

Value Meaning INVREQ 71 VTAM RECEIVE failed.
CD ‘Change direction’ received. INVREQ 72 RECEIVE FORMATTED processing

found invalid, or unexpected data while
interpreting the 3270 data steam for a
WRITE, ERASE/WRITE, ERASE/WRITE
ALTERNATE, or WRITE STRUCTURED
FIELD command code.

EB ‘End bracket’ received.
LIC ‘Last in chain’ received.

INVREQ 210 Command not allowed for SLU P mode.
INVREQ 212 Conversation has wrong data format.
INVREQ 213 Command timed out.
INVREQ 215 Session lost.
INVREQ 216 Error occurred on previous FEPI SEND.
INVREQ 221 FEPI RECEIVE not allowed at this point

in the conversation.
INVREQ 224 Only FEPI ISSUE or FEPI FREE

commands allowed at this point in the
conversation.

INVREQ 230 SNA CLEAR command received.
INVREQ 231 SNA CANCEL command received.
INVREQ 232 SNA CHASE command received.
INVREQ 233 Exception response received.
INVREQ 234 Exception request received.
INVREQ 240 Conversation ID not owned by this task.
INVREQ 241 TIMEOUT value negative or not valid.

 Chapter 16. Application programming reference 151

 FEPI REQUEST PASSTICKET

FEPI REQUEST PASSTICKET

Function: FEPI REQUEST PASSTICKET requests an external security manager (ESM) to build a PassTicket. The
PassTicket is a password substitute that your application can use to sign on to the back-end system associated with the
conversation. For an explanation of how to use PassTickets to make your FEPI applications more secure, see “How to use
PassTickets” on page 125.

 Syntax

55─ ──FEPI REQUEST PASSTICKET(data-area) ──CONVID(data-value) ──┬ ┬──────────────────── ────────────────────────5
└ ┘──ESMRESP(data-area)

5─ ──┬ ┬────────────────────── ─5%
└ ┘──ESMREASON(data-area)

Conditions:
 INVREQ

 Options

CONVID(8-character data-value)
specifies the ID of the conversation with the back-end
system for which a PassTicket is required.

ESMREASON(fullword binary data-area)
returns the reason code from the ESM.

ESMRESP(fullword binary data-area)
returns the response code from the ESM. For an
explanation of the response and reason codes returned,
see the documentation for your ESM.

PASSTICKET(8-character data-area)
returns the PassTicket generated by the ESM.

 Conditions

Condition RESP2 Meaning
INVREQ 240 Conversation ID not owned by this task.
INVREQ 250 Passticket not built successfully.
INVREQ 251 CICS ESM interface not initialized.
INVREQ 252 Unknown return code in ESMRESP from

the ESM.
INVREQ 253 Unrecognized response from CICS

security modules.
INVREQ 254 Function unavailable.

152 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI SEND DATASTREAM

FEPI SEND DATASTREAM

Function: FEPI SEND DATASTREAM sends application data to a target. The data supplied by the application must be
currently valid data stream appropriate to the mode of the conversation (SLU2 or SLU P). Full details about the data are given
in “Data formats” on page 157.

The command completes as soon as the (first) VTAM SEND has been accepted.

 Syntax

55──FEPI SEND DATASTREAM─ ──CONVID(data-value) ──FROM(data-value) ──┬ ┬───────────────────── ──┬ ┬──────── ───────5
└ ┘──FLENGTH(data-value) └ ┘──INVITE

5─ ──┬ ┬───── ──┬ ┬───────────────────── ──┬ ┬────────────────────── ─5%
└ ┘──FMH └ ┘──SEQNUMIN(data-area) └ ┘──SEQNUMOUT(data-area)

Conditions:
 INVREQ

 Options

CONVID(8-character data-value)
specifies the ID of the conversation to use. The
conversation must be owned by the task issuing the
command.

FMH
indicates that the data to send includes a function
management header.

FLENGTH(fullword binary data-value)
specifies the length of the data to send; that is, the length
of the data area identified by the FROM option. It must
not be zero or more than the maximum length allowed for
the pool.

FROM(data-value)
specifies the data to send to the back-end application.
Its length is specified by the FLENGTH option.

INVITE
requests FEPI to send ‘last in chain’ and ‘change
direction’ at the end of the data. This indicates that the
data is complete, and that inbound data is expected next.

SEQNUMIN(fullword binary data-area)
in SLU P mode, returns the current sequence number for
inbound data, as at the completion of the command.
(SEQNUMIN has no significance in SLU2 mode.)

SEQNUMOUT(fullword binary data-area)
in SLU P mode, returns the current sequence number for
outbound data, as at the completion of the command.
(SEQNUMOUT has no significance in SLU2 mode.)

 Conditions

Condition RESP2 Meaning
INVREQ 40 FLENGTH value negative, zero, or more

than maximum allowed for the current
pool.

INVREQ 50 Inbound data with ‘begin bracket’ to be
received.

INVREQ 58 VTAM SEND failed.
INVREQ 212 Conversation has wrong data format.
INVREQ 215 Session lost.
INVREQ 216 Error occurred on previous FEPI SEND.
INVREQ 220 FEPI SEND not allowed at this point in

the conversation.
INVREQ 224 Only FEPI ISSUE or FEPI FREE

commands allowed at this point in the
conversation.

INVREQ 230 SNA CLEAR command received.
INVREQ 231 SNA CANCEL command received.
INVREQ 232 SNA CHASE command received.
INVREQ 233 Exception response received.
INVREQ 234 Exception request received.
INVREQ 240 Conversation ID not owned by this task.

 Chapter 16. Application programming reference 153

 FEPI SEND FORMATTED

FEPI SEND FORMATTED

Function: This command is for SLU2 mode only.

FEPI SEND FORMATTED sends application data to a target. The data supplied by the application must be formatted data, as
key strokes or as a screen image. Full details about the data are given in “Data formats” on page 157.

The command completes as soon as the (first) VTAM SEND has been accepted.

 Syntax

55──FEPI SEND FORMATTED─ ──CONVID(data-value) ──FROM(data-value) ──┬ ┬───────────────────── ────────────────────5
└ ┘──FLENGTH(data-value)

5─ ──┬ ┬──AID(data-value) ──┬ ┬──────────────────── ─5%
│ │└ ┘──CURSOR(data-value)

 └ ┘ ─KEYSTROKES─ ──┬ ┬──────────────────── ─────
└ ┘──ESCAPE(data-value)

Conditions:
 INVREQ

 Options

AID(1-character data-value)
specifies the attention identifier value to send with the
data. Specifying AID also indicates that the data to send
is in screen-image format, as described in “Data formats”
on page 157. A value of null (X'00') may be specified
to indicate that no attention is to be sent, and that a
further FEPI SEND is to follow.

Symbolic names for the AID values are available for the
supported languages in the language-specific DFHAID
copybooks.

CONVID(8-character data-value)
specifies the ID of the conversation to use. The
conversation must be owned by the task issuing the
command.

CURSOR(fullword binary data-value)
for send data in screen-image format, specifies the
position of the cursor, expressed as an offset from the
start of the screen image; offset zero is the top left-hand
corner of the screen. If CURSOR is not specified, the
cursor remains where it was positioned by the last
inbound data.

ESCAPE(1-character data-value)
for send data in key stroke format, specifies the escape
character used to indicate character combinations
representing special keys. You can use any value in the
range X'40' through X'FE'. The default escape
character is & (X'50').

FLENGTH(fullword binary data-value)
specifies the length of the data to send; that is, the length
of the data area identified by the FROM option. It must
not be zero or more than the maximum length allowed for
the pool.

FROM(data-value)
specifies the data to send to the back-end application.
Its length is specified by the FLENGTH option. For send
data in screen-image format, if the length is more than
the screen image, the additional data is ignored; if it is
less, the data is the first part of the screen image, and
the last part of the screen image is not changed.

KEYSTROKES
specifies that the data to send is in key stroke format, a
sequence of key strokes, as described in “Data formats”
on page 157.

 Conditions

Condition RESP2 Meaning
INVREQ 40 FLENGTH value negative, zero, or more

than the maximum allowed for the current
pool.

INVREQ 41 ESCAPE value not valid.
INVREQ 50 Inbound data with ‘begin bracket’ to be

received.
INVREQ 51 AID value not valid.
INVREQ 52 Cursor position not valid.
INVREQ 53 Character values in send data not valid.
INVREQ 54 Attribute positions or values in send data

not valid.
INVREQ 55 Key stroke escape sequence in send

data not valid.
INVREQ 56 Field validation (mandatory fill, mandatory

enter, trigger) failed.
INVREQ 57 Input inhibited.
INVREQ 58 VTAM SEND failed.
INVREQ 59 DBCS data rules violated.
INVREQ 210 Command not allowed for SLU P mode.
INVREQ 212 Conversation has wrong data format.
INVREQ 215 Session lost.
INVREQ 220 FEPI SEND not allowed at this point in

the conversation.
INVREQ 224 Only FEPI ISSUE or FEPI FREE

commands allowed at this point in the
conversation.

154 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 FEPI START

Condition RESP2 Meaning
INVREQ 230 SNA CLEAR command received.
INVREQ 231 SNA CANCEL command received.
INVREQ 232 SNA CHASE command received.
INVREQ 233 Exception response received.
INVREQ 234 Exception request received.
INVREQ 240 Conversation ID not owned by this task.

 FEPI START

Function: FEPI START is used to relinquish control of a conversation and to specify a new transaction to be started when
the next inbound data arrives. Up to 128 characters of user data can be passed to the transaction as part of the start data, as
described in “Start data” on page 156 below.

 Syntax

55──FEPI START─ ──CONVID(data-value) ──TRANSID(data-value) ──┬ ┬──────────────────── ───────────────────────────5
└ ┘──TERMID(data-value)

5─ ──┬ ┬─── ──┬ ┬───────────────────── ─5%
 └ ┘── ──USERDATA(data-value) ──┬ ┬───────────────────── └ ┘──TIMEOUT(data-value)

└ ┘──FLENGTH(data-value)

Conditions:
 INVREQ

 Options

CONVID(8-character data-value)
specifies the ID of the conversation to suspend. The
conversation must be owned by the task issuing the
command.

FLENGTH(fullword binary data-value)
specifies the length of the optional user data to pass to
the transaction that is started; that is, the length of the
data area identified by the USERDATA option. The
FLENGTH value must not be greater than 128.

TERMID(4-character data-value)
specifies the name of the terminal, if any, to be
associated with the transaction that is started.

TIMEOUT(fullword binary data-value)
specifies the maximum time in seconds that FEPI is to
wait for inbound data to begin to arrive before starting the
transaction. If TIMEOUT is not specified or the specified
time is zero, the command is not timed out.

TRANSID(4-character data-value)
specifies the name of the transaction that is to be started
when the next inbound data arrives.

USERDATA(data-value)
specifies optional user data to pass to the transaction
that is started, in addition to control information passed
by FEPI. Its length is specified by the FLENGTH option.

 Conditions

Condition RESP2 Meaning
INVREQ 61 FLENGTH value negative or too large.
INVREQ 62 TRANSID name not valid.
INVREQ 63 TERMID name not valid.
INVREQ 214 CICS shutting down, conversation should

be ended.
INVREQ 215 Session lost.
INVREQ 216 Error occurred on previous FEPI SEND.
INVREQ 223 FEPI START not allowed at this point in

the conversation.
INVREQ 224 Only FEPI ISSUE or FEPI FREE

commands allowed at this point in the
conversation.

INVREQ 230 SNA CLEAR command received.
INVREQ 231 SNA CANCEL command received.
INVREQ 232 SNA CHASE command received.
INVREQ 233 Exception response received.
INVREQ 234 Exception request received.
INVREQ 240 Conversation ID not owned by this task.
INVREQ 241 TIMEOUT value negative or not valid.

 Chapter 16. Application programming reference 155

 Start data
For various events, FEPI invokes a transaction, as a CICS
started task, to handle the event. This may be in response
to FEPI START, or to handle STSN, begin-session,
end-session, or unsolicited-data. The transactions have a
start code of ‘SZ’, as can be determined with the EXEC
CICS ASSIGN command. FEPI provides start data which
describes the event, and the conversation which is to be
used to handle it. All of this data must be retrieved by the
transaction using EXEC CICS RETRIEVE. The transaction
can then gain access to the conversation identified in the
data by using FEPI ALLOCATE PASSCONVID.

The structure for start data is shown below; the copy books
DFHSZAPA, DFHSZAPO, DFHSZAPC, and DFHSZAPP
(according to your programming language) provide
declarations for this structure.

 Fields

CONVID(8-character data-area)
the ID of the conversation for which the event occurred
(this is the CONVID that should be used in FEPI
ALLOCATE PASSCONVID).

DATATYPE(fullword binary data-area)
Type and structure of data. Value is 1 for FEPI start
data.

DEVICE(cvda)
the device type of conversation for which the event
occurred, values being as for FEPI EXTRACT CONV.

EVENTDATA(8-character data-area)
always nulls.

EVENTTYPE(cvda)
Indicates why the transaction was started. Values are:

EVENTVALUE(cvda)
A CVDA giving further information about event types
FREE and RELEASE.

Values for FREE:

The EVENTVALUE value is zero for all other event types.

FLENGTH(fullword binary data-area)
the length of the data in USERDATA.

FORMAT(cvda)
the data format of conversation for which the event
occurred, values being as for FEPI EXTRACT CONV.

NODE(8-character data-area)
the name of the node for which the event occurred.

POOL(8-character data-area)
the name of the pool for which the event occurred.

TARGET(8-character data-area)
the name of the target for which the event occurred.

USERDATA(128-character data-area)
user data as specified on the FEPI START command.

spare
nulls.

Value Event
BEGINSESSION Begin-session to be handled.
DATA Inbound data arrived, following a FEPI

START command.
FREE End-session transaction started to handle

end of conversation as a result of a FEPI
FREE request.

SESSIONLOST Active session lost while waiting for inbound
data to arrive following a FEPI START
command.

STSN Set and test sequence number (STSN) to
be handled.

TIMEOUT Timed out waiting for inbound data to arrive
following a FEPI START command.

UNSOLDATA Inbound data arrived outside a
conversation.

DATATYPE Fullword binary data-area
EVENTTYPE CVDA
EVENTVALUE CVDA
EVENTDATA 8-character data-area
spare 4-character data-area
POOL 8-character data-area
TARGET 8-character data-area
NODE 8-character data-area FORCE A FEPI FREE FORCE command was

issued.CONVID 8-character data-area
DEVICE CVDA HOLD A FEPI FREE HOLD command was issued.
FORMAT CVDA RELEASE A FEPI FREE RELEASE command was

issued.*spare* 8-character data-area
FLENGTH Fullword binary data-area SHUTDOWN CICS is shutting down.
USERDATA 128-character data area. TASK Conversation being freed by end-of-task.

156 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Data formats

 Outbound data
Data stream

The data is a standard outbound data stream, exactly as
would be sent from the simulated terminal to VTAM.

Screen-image format, SLU2 mode
The data replaces, byte for byte, the data in the character
buffer of the simulated terminal. Any data value is
allowed. Data that goes into positions within a protected
field must be identical to that in the field; data for
positions occupied by an attribute byte is ignored. MDTs
can be set forcibly for fields by setting the value in the
attribute position to X'01'. (FEPI will set MDT
automatically if data has changed.)

Key stroke format, SLU2 mode
The data can contain any combination of data characters
together with manipulative, special, and attention key
values. Data characters are represented by their
EBCDIC code values in the range X'40'–X'FE', or by
their DBCS code values of pairs of bytes in the range
X'41'–X'FE', plus X'4040'. Manipulative, special, and
attention key values are represented by escape
sequences, comprising the escape character specified by
the ESCAPE option and a 2-character code. Using ‘&’
for the escape character, the escape sequences are:

Manipulative keys

Special keys

Attention keys

Keys not listed and data characters below X'40' are not
supported. Thus, nulls (X'00') are excluded—nulls can
be generated by use of the erase or delete keys. Key
strokes following an attempt to enter into a protected field
are ignored until ‘reset’ is keyed.

For magnetic stripe reader support, the sequence
&MS...data...&ME represents passing a secure magnetic
stripe card through the reader. Nonsecure cards have to
be simulated by using the corresponding key strokes.

Zero, one, or more than one, attention keys may be
used. If an attention key is followed by data characters,
FEPI does an implicit receive operation for each one until
the back-end application unlocks the keyboard and sends
‘change direction’ or ‘end bracket’ (and FEPI responds
positively to any definite response requests); then the
subsequent key strokes are sent.

 Inbound data
Data stream

The data is a standard inbound data stream, exactly as
would be sent to the simulated terminal from VTAM.
Note that the received data is not complete if the
command that received the data returned an
ENDSTATUS of MORE.

Formatted, SLU2 mode
The data is the contents of the simulated terminal
character buffer that FEPI holds. Data characters are
represented by their EBCDIC or DBCS code values;
positions corresponding to field attributes contain X'FF'.

&AT attention
&An PAn (n = 1–3)
&nn PFnn (where nn = 01–24, leading 0

must be specified)
&CL clear
&CS cursor select (light pen)
&EN enter
&ME end secure MSR

&HO home
&Ln cursor left, n times
&Rn cursor right, n times
&Un cursor up, n times
&Dn cursor down, n times
&Tn tab, n times
&Bn backtab, n times
&Nn newline, n times

(where n = 1–9)

&IN insert
&DL delete
&RS reset
&EF erase to end of field
&EI erase input
&FM field mark
&DU DUP
&ES escape character
&MS start secure MSR
&SO shift out
&SI shift in

 Chapter 16. Application programming reference 157

 Ending status

This describes in detail the conditions under which FEPI
CONVERSE and FEPI RECEIVE commands complete, and
how the completion condition is reported to the application.

The completion conditions for each command are:

FEPI CONVERSE DATASTREAM using a temporary
conversation

On the first to occur of:

� INTO data area full
� ‘change direction’ indicated
� ‘end bracket’ indicated.

It does not end at ‘end of chain’ alone; if a definite
response request is indicated on a chain, FEPI responds
positively and continues receiving data.

FEPI CONVERSE DATASTREAM using a previously
allocated conversation

As for FEPI RECEIVE DATASTREAM.

FEPI CONVERSE FORMATTED using a temporary
conversation

on the first to occur of:

� ‘change direction’ indicated
� ‘end bracket’ indicated.

It does not end at ‘end of chain’ alone; if a definite
response request is indicated on a chain, FEPI responds
positively and continues receiving data.

FEPI CONVERSE FORMATTED using a previously
allocated conversation

As for FEPI RECEIVE FORMATTED.

FEPI RECEIVE DATASTREAM
This can be specified or defaulted to end in one of the
following ways:

RU
on the first to occur of:
� INTO data area full
� end of request unit.

CHAIN
on the first to occur of:
� INTO data area full
� ‘end of chain’.

UNTILCDEB
on the first to occur of:
� INTO data area full
� ‘end of chain’ with definite response request
� ‘change direction’ indicated
� ‘end bracket’ indicated.

FEPI RECEIVE FORMATTED
At end of chain.

In all cases, ENDSTATUS is set to indicate the completion
conditions and RESPSTATUS is set to indicate whether a
response is required and, if so, the type of response. Where
several conditions occur together, ENDSTATUS shows the
most significant. The values and their meanings are shown
in Table 19.

Table 19. ENDSTATUS values and associated meanings

ENDSTATUS Commands Conditions Next command
expected (except
after CONVERSE
with POOL)

RECEIVE CONVERSE
without
POOL

CONVERSE
with
POOL

End
bracket

Change
direc-
tion

End
chain

End RU INTO
area full

DS FM DS FM DS FM

EB X X X X X X Y - Y Y - Any

CD X X X X X X - Y Y Y - FEPI SEND or
CONVERSE

LIC X X X X - - - - Y Y - FEPI RECEIVE

RU R - R - - - - - - Y - FEPI RECEIVE

MORE X - X - X - - - - - Y FEPI RECEIVE

Note:

 DS=Datastream
 FM=Formatted

X=Possible with command
R=Possible with RU option of command

 Y=Condition indicated.

158 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Part 4. Appendixes

Table 20. Appendixes road map

If you want to... Refer to...

Look at some sample FEPI programs Appendix A, “Sample programs” on page 161

Check a FEPI CVDA or RESP2 value Appendix B, “CVDA and RESP2 values” on
page 181

Check technical terms used in this book “Glossary” on page 185

 Copyright IBM Corp. 1992, 1999 159

160 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Sample programs

 Appendix A. Sample programs

The VSE/ESA sublibrary PRD1.BASE contains a set of sample programs (in source form),
including two back-end application programs, that show many of the principles and
techniques discussed in this book. Although the samples are copyrighted, you may use and
copy them freely for educational purposes to help you write FEPI applications. This
appendix gives an overview of these programs. It contains the following topics:

� “What you get”
� “Installing the samples” on page 163
� “Using the samples” on page 163
� “Description of the samples” on page 166.

What you get
A subset of the sample programs is available in each of the supported programming
languages. The programs and their names are given in Table 21.

There are also some sample resource definitions:

Table 21. Sample programs and their names
Description Transaction

name
COBOL Assembler PL/I C

Programs:
Setup CZXS DFH0VZXS DFH0AZXS DFH0CZXS
Monitor and unsolicited data
handler

CZUX DFH0VZUX

Begin-session handler CZUC DFH0VZUC
3270 data stream pass-through CZTD DFH0VZTD DFH0AZTD
Key stroke CONVERSE CZTK DFH0VZTK DFH0PZTK DFH0CZTK
Screen image SEND and
START

CZTS DFH0VZTS

Screen image RECEIVE and
EXTRACT

CZTR DFH0VZTR

End-session handler CZUU DFH0VZUU
SLU P, one-out, one-in CZPS DFH0VZPS DFH0AZPS
SLU P, pseudoconversational CZPA DFH0VZPA DFH0AZPA
STSN handler CZQS DFH0VZQS DFH0AZQS
Back-end CICS CZBC DFH0AZBC
Back-end IMS CZBI DFH0AZBI

Copy books:
Customization data DFH0BZCO DFH0BZCA DFH0BZCP DFH0BZCC
Messages and other text DFH0BZMO DFH0BZMA DFH0BZMP DFH0BZMC
Key stroke map DFH0BZ1O DFH0BZ7P DFH0BZ6C
Send/receive map DFH0BZ2O
Back-end CICS map DFH0BZ3A
SLU P, one-out, one-in map DFH0BZ4O DFH0BZ8A
SLU P, pseudoconversational
map

DFH0BZ5O DFH0BZ9A

Maps:
Key stroke DFH0MZ1 DFH0MZ7 DFH0MZ6
Send/receive DFH0MZ2
SLU P, one-out, one-in DFH0MZ4 DFH0MZ8
SLU P, pseudoconversational DFH0MZ5 DFH0MZ9
Back-end CICS DFH0MZ3

Front-end CICS DFH0IZRD
Back-end CICS DFH0IZRC
Back-end IMS DFH0IZRI
CICS TD queues DFH0IZRQ

 Copyright IBM Corp. 1992, 1999 161

 Sample programs

Table 22 shows you which samples illustrate which functions.

Table 22. Functional cross-reference for sample programs

Functions Samples (Last two letters of sample program name. See notes.)

TD TK TS TR PA PS QS UC UU UX XS

SLU2 X X X X X X X

SLU P X X X X X X

Data stream X X X X X X

Screen-image X X X X

Key stroke X X

ALLOCATE X X X X

ALLOCATE with
PASSCONVID

X X X X X X X

EXTRACT STSN X

EXTRACT FIELD X X

SEND X X

START X X

RECEIVE X X X X

CONVERSE X X X

CONVERSE with
POOL

X

ISSUE X

FREE X X X X X X X X

FREE with PASS X X

INSTALL X

ADD X

Start data X X X X X

TD queue data X

One-out one-in X

Conversational X X

Pseudo-
conversational

X X X

Assembler
language

X X X X X

COBOL X X X X X X X X X X X

C X X

PL/I X

Notes:

TD Data stream
TK Key stroke
TS Screen image send/start
TR Screen image receive
PA SLU P pseudoconversational
PS SLU P one-out, one-in
QS STSN
UC Begin session
UU End session
UX Monitor, unsolicited data
XS Setup

FEPI EXTRACT CONV, SET/INQUIRE/browse, and DELETE/DISCARD commands are not
illustrated in the sample programs.

162 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Sample programs

Installing the samples

The CICS front-end samples
All you have to do to get the samples running is customize them for your system. This
means that you need to change at most three things:

� The customization data copy book, DFH0BZCx
� The setup program, DFH0xZXS
� The resource definitions, DFH0IZRx.

Then compile or assemble and link-edit all the samples (and their maps) that you want, as
you would do for any CICS application program. Define them to your front-end system,
using the examples in DFH0IZRD for the resource definitions that are needed; they are in
the form required as input to the DFHCSDUP utility. Note that there is a separate resource
group for each language because the transaction names used are the same for each
programming language. You should have defined the necessary transient data (TD) queues
when you installed FEPI itself. However, DFH0IZRQ provides sample definitions for them.

The CICS and IMS back-end samples
You need to assemble, link-edit, define, and install the appropriate back-end program and
maps on your back-end system. For CICS, sample resource definitions are in DFH0IZRC.
For IMS, sample resource definitions are in DFH0IZRI.

Note: When using the IMS back-end samples, ensure that you link-edit the back-end
program with the IMS version of ASMTDLI (or the appropriate language module), and that
you specify RMODE and AMODE as 24. (If you use the CICS version of ASMTDLI, the
program will abend when executed in the IMS environment.)

Using the samples
The samples form an integrated set. The setup program provides the FEPI resource
definitions that the other samples use. The monitor and the various handlers support and
complement the access programs, to form a complete FEPI communication package, just as
you need to provide. Remember, however, that these are samples designed for illustration
purposes. Although they give a great deal of help, and include suggestions about writing
FEPI programs, for any particular circumstance you must consider exactly what your
requirements are.

The two back-end programs (one for CICS and one for IMS) provide applications for the
front-end programs to access. The back-end CICS program is for access by the front-end
SLU2 mode programs, and the back-end IMS program is for access by the front-end SLU P
mode programs; no SLU2 mode access to IMS is provided. Although the back-end
programs are supplied in source form, it is not necessary for you to understand the internal
logic—only the external operations, as is the case for a “real” existing back-end application.

The FEPI sample front-end and back-end transactions assume that the datastream sent from
the back-end application is received unaltered by the front-end application. For example,
FEPI samples may perform unexpectedly if the datastreams are compressed after having
been sent from the back-end application.

The back-end CICS program
This program is the CICS back-end application used by the FEPI sample programs.

Module name: DFH0AZBC

Transaction name: CZBC

Abend code: USZA

 Appendix A. Sample programs 163

 Sample programs

Map name: DFH0MZ3

 Screen

à ð
 CZBC Customer Inquiry

 Please type a customer number in the range 1 to 9999, then Enter.

 Customer Number

Name :

Balance. . . . :

Address. . . . :

 Last Transaction Date . :

F3=EXIT to CICS

á ñ

Figure 8. CZBC transaction: customer inquiry

 Overview
On the first invocation of the transaction, a map is sent to the terminal.

When there is input from the terminal, CICS invokes the transaction again. The customer
data for the customer number from the input is found and sent to the terminal, and further
input is awaited. PF3 or CLEAR ends the transaction.

Certain customer numbers cause special processing such as abends and delays, to show
how a front-end application could manage such events. The valid customer numbers are:

0001-0005 Normal
0006 Delayed response
0007 Abend before send
0008 Abend after send.

164 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Sample programs

 Program logic
 Main procedure:

Set up exception condition handling:

Map error - SEND_NEW_MAP

CLEAR/PF3 - END_PROG

 Test COMMAREA

If transaction not previously invoked

 Call SEND_NEW_MAP

 RECEIVE map

If customer number not valid

 SEND message

 RETURN

If customer type is 'ABEND before MAP'

 ABEND

Build map with customer data

If customer type is 'LONG DELAY'

 DELAY

 SEND map

If customer type is 'ABEND after MAP'

 ABEND

 RETURN

 SEND_NEW_MAP routine:

SEND new map

 RETURN

 END_PROG routine:

 Clear terminal

 RETURN

The back-end IMS program
This program is the IMS back-end application used by the FEPI sample programs.

Module name: DFH0AZBI

Transaction name: CZBI

 Overview
This is a simple IMS back-end response mode program that is driven by input from a
front-end FEPI application. It modifies the time stamp in the input message and returns the
message to the front-end application.

IMS schedules this transaction when an input message is queued for it. It addresses the I/O
PCB, DLI call function, and I/O area to build the parameter list for the GU call to retrieve the
queued input message.

The time field of the input message is updated and the program then issues an ISRT call to
place the message on the output queue. IMS then sends the output message to the
front-end FEPI application.

Output messages from this program are all prefixed with a 5-byte function management
header.

If any errors occur, the program ends with a nonzero return code.

 Program logic
GETMAIN storage areas for reentrancy

 Address PCB

Issue GU call to get input message

Use TIME to obtain system time

Update I/O area

Issue ISRT call to send output message

 RETURN

 Appendix A. Sample programs 165

 Sample programs

Description of the samples

 Setup
This program installs the resources—property sets, nodes, targets, and pools—that are used
by the FEPI sample programs.

Module names: DFH0VZXS, DFH0AZXS, DFH0CZXS

Transaction name: CZXS

 Overview
The definitions of each of these resources are organized so that they can easily be changed.
They are kept separate from the processing that does the installation, and there is no
hard-coding of values in the CICS commands. There are four main tables, holding details of
each resource type. This enables the resources to be changed by repeating sets of
definitions which are in an easy-to-understand form. If desired, the program could be
changed to obtain the resource definitions from a file.

The resources defined are:

 Pool Property set Nodes Targets

 POOL1 PROPSET1 NODE1 NODE2 NODE3 TARGET1

 NODE4 NODE5

 POOL2 PROPSET2 NODE6 NODE7 NODE8 TARGET1

 NODE9 NODE1ð

 POOL3 PROPSET3 NODE1 NODE2 NODE3 TARGET2

 NODE4 NODE5

You must customize these definitions to match the requirements of your system. If you do,
you may also need to change the definitions in the sample customization constants copy
book DFH0BZCx. You do not need to change any other samples—you need simply
recompile them.

Each table is processed in turn. Nodes and targets are organized into lists for reasons of
efficiency. Details of resource installation are written to the CICS log automatically by FEPI.

On completion, a message is sent. The setup program would typically be started by a PLT
program, in which case the message goes to the CICS log. It can, however, be invoked
from a terminal and, in this case, the message is sent to the terminal.

For clarity, error checking is minimal. In particular, the FEPI INSTALL commands do not
check errors at all, because FEPI reports any errors that occur to the FEPI transient data
queue, and they are then recorded by the sample monitor program.

 Program logic
For each property set in table

FEPI INSTALL PROPERTYSET

For each node in table

Add node to list

FEPI INSTALL NODELIST

For each target in table

Add target to list

FEPI INSTALL TARGETLIST

For each pool in table

Start new lists of nodes and targets

For each entry within pool definition

If node, add details to node list

If target, add details to target list

FEPI INSTALL POOL with NODELIST and TARGETLIST

Send completion message

RETURN

166 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Sample programs

Monitor and unsolicited data-handler
This program monitors unexpected events and handles unsolicited data for the FEPI sample
programs.

Module name: DFH0VZUX

Transaction name: CZUX

TS queue name: MONITOR

 Overview
This transaction handles:

� Unexpected events that are reported by FEPI to a TD queue, which triggers this
transaction

� Unsolicited data from a back-end system, for which FEPI starts this transaction.

Because the event descriptions provided by FEPI and the processing required is basically
the same for both cases, this common program is used.

ASSIGN STARTCODE is used to determine how the transaction was started, and ASSIGN
QNAME to determine what TD queue triggered it. Details of the event are in the start data
or the TD queue record as the case may be.

For illustrative purposes, all events are handled similarly by simply reporting their details to a
TS queue named MONITOR, which can be browsed using CEBR. In practice, for any of the
events you can do whatever extra or different processing you require, or (except for
unsolicited data) you can ignore the event.

For unsolicited data, the conversation started by FEPI must be accessed so that FEPI knows
that the data is being handled. The data itself should be received, or else FEPI ends and
restarts the session. For illustration purposes, this program simply discards the data; in
practice, you will probably want to process the data in some way.

However, if you did simply want to discard such data, you should specify no unsolicited-data
handling and use the UNSOLDATACK property to tell FEPI what action to take, as is done
for SLU P mode by these samples.

The general format of the TS queue records is:

date time CZUX description

 Event type..ACQFAIL Pool........POOLNAME

 Target......TGTNAME Node........NODENAME

 Device......T3278M2 Event data..X'ðððððððð'

 Format......ð Event value.176

The actual details for each event vary. Events with similar details are grouped together for
processing. The groups are:

� Unknown event—an event that is not recognized
 � Unsolicited data
 � Session lost
� Standard events—all other events.

The groups also determine any additional processing needed. Only unsolicited data needs
any processing.

If any errors occur, they are reported to the TS queue.

 Appendix A. Sample programs 167

 Sample programs

 Program logic
 Main procedure:

Determine how transaction was started using ASSIGN

If started with data by FEPI

RETRIEVE start data

If triggered by TD queue

READ the queue record

 Otherwise

Report start code

 RETURN

 TD-LOOP:

Locate event type

Locate device type

Build description of event: event type, device type,

format, event value, date/time, transaction

Call UNKNOWN-EVENT, UNSOLDATA, STANDARD-EVENT, or

SESSION-LOST according to event group

If triggered by TD queue

READ the next queue record

If one exists, loop to TD-LOOP

 RETURN

 UNKNOWN-EVENT routine:

Write event details to TS queue: description and

 event value

 UNSOLDATA routine:

Write event details to TS queue: description, event

type, pool, target, and node

Access conversation using FEPI ALLOCATE with PASSCONVID

FEPI RECEIVE unsolicited data

 Free conversation

Handle data as required

 STANDARD-EVENT routine:

Write event details to TS queue: description, event

type, pool, target, node, device, event data,

format, and event value

 SESSION-LOST routine:

Write event details to TS queue: description, event

type, pool, target, node, device, and format

168 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Sample programs

 Begin session
This program prepares sessions for use by the FEPI sample application programs.

Module name: DFH0VZUC

Transaction name: CZUC

TS queue name: SESSION

 Overview
This transaction is started by FEPI when it begins a new session.

The conversation started by FEPI must be accessed so that FEPI knows that the event is
being handled. The processing required depends on the data mode and type that the
session uses (this is obtained from the start data), and whether the back-end system is IMS
or CICS.

For SLU P mode (necessarily IMS), processing depends entirely on local requirements, and
is typically used for handling security applications. For illustration purposes, this program
simply gets and discards the initial data. Note that the setup for these samples does not
specify a begin-session transaction for SLU P mode.

For SLU2 mode with CICS using formatted data, there is a CICS “good morning” message
waiting. The message is received, and the back-end screen is cleared and left ready for a
transaction ID to be entered.

For SLU2 mode with CICS using data stream, there may be a “read partition” request waiting
which requires a reply—for example, if your pool has device T3279Mx or TPS55Mx
specified, or if the logon mode table being used has “extended data stream” specified).
Then there is a CICS “good morning” message to be received. A reply is sent to any “read
partition” query request, the “good morning” message is received, and the back-end screen
is cleared and left ready for a transaction ID to be entered.

For SLU2 mode with IMS, no processing is illustrated.

After the processing, the conversation is freed with the HOLD option, which leaves it ready
for use by applications. A report is written to a TS queue named SESSION, which can be
browsed using CEBR. The format of the TS queue records is:

date time CZUC Begin session completed

 RESP........ð RESP2.......ð

 Target......TGTNAME Node........NODENAME

 Pool........POOLNAME

If any errors occur, a report is written to the TS queue, and the conversation is freed with the
RELEASE option, so that the session is ended.

 Appendix A. Sample programs 169

 Sample programs

 Program logic
 Main procedure:

RETRIEVE start data

Access conversation using FEPI ALLOCATE with PASSCONVID

Call PROCESS-LUP, PROCESS-FORMATTED, or

PROCESS-DATASTREAM according to data mode and type

Free conversation, keeping session

Write event details to TS queue

 RETURN

 PROCESS-LUP routine:

FEPI RECEIVE initial data

Handle data as required

 PROCESS-FORMATTED routine:

FEPI RECEIVE initial data

Clear back-end screen and make ready for transaction ID

to be entered, using FEPI CONVERSE

 PROCESS-DATASTREAM routine:

 FEPI RECEIVE

If 'read partition' query

FEPI CONVERSE query reply and get acknowledgement

FEPI RECEIVE initial data

Clear back-end screen and make ready for transaction ID

to be entered, using FEPI CONVERSE

Key stroke CONVERSE
This sample program demonstrates using FEPI to obtain information from a back-end
transaction using the key stroke data format.

Module names: DFH0VZTK, DFH0PZTK, DFH0CZTK

Transaction name: CZTK

Map names: DFH0MZ1, DFH0MZ6, DFH0MZ7

 Screen

à ð
 CZTK Customer Name and Address Inquiry

 Please type a customer number in the range 1 through 9999, then Enter.

 Customer Number

Name :

Address. . . . :

F3=EXIT to CICS

á ñ

Figure 9. CZTK transaction: customer name and address inquiry

 Overview
On the first invocation of the transaction, a map is sent to the front-end terminal.

When there is input from the front-end terminal, CICS invokes the transaction again. The
customer number from the input is built into a key stroke sequence which runs a transaction
at the back-end. The key strokes are sent and the results received using a FEPI
ALLOCATE-CONVERSE-FREE command sequence. Information is extracted from the
results and sent to the front-end terminal. Further input is then awaited.

When PF3 or CLEAR is received from the front-end terminal, the transaction ends. If there
is an error, the front-end map is reset. These situations are detected using HANDLE
CONDITION.

If the back-end sends a CICS message, it is sent on to the front-end terminal, and the
transaction ends.

For clarity, error checking is minimal except for the FEPI commands. Note that the key
stroke sequence used involves several attention keys, so that if the intermediate responses

170 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Sample programs

are not what is expected, the effects are unpredictable. According to your requirements, it
may be advisable to send each attention sequence individually and to check each time that
the results are as expected.

 Program logic
 MAIN procedure:

 Test COMMAREA

If transaction not previously invoked

 Call SEND-NEW-MAP

Set up exception condition handling:

Map error - SEND-NEW-MAP

CLEAR/PF3 - END-PROG

RECEIVE MAP from front-end terminal

Build key stroke sequence to:

clear back-end screen

 type transaction ID

 ENTER

type the customer number

 ENTER

FEPI ALLOCATE conversation with back-end

FEPI CONVERSE to send key strokes to back-end and get

the resulting screen image

FEPI FREE conversation with back-end

If CICS message received from back-end

SEND message to front-end terminal

 RETURN

Get customer information from back-end screen image

Build data for front-end terminal map

SEND map data to front-end terminal

RETURN TRANSID(CZTK) with COMMAREA

 SEND-NEW-MAP routine:

SEND new map to front-end terminal

RETURN TRANSID(CZTK) with COMMAREA

 END-PROG routine:

Clear front-end terminal

 RETURN

Screen image SEND and START
This sample program demonstrates using FEPI to send formatted data to a back-end
transaction, and requesting a transaction to be started when the reply to the data arrives.

Module name: DFH0VZTS

Transaction name: CZTS

Map name: DFH0MZ2

 Screen

à ð
 CZTS Customer Name and Balance Inquiry

 Please type a customer number in the range 1 through 9999, then Enter.

 Customer number

Name :

Balance. . . . :

F3=EXIT to CICS

á ñ

Figure 10. CZTS transaction: customer name and balance inquiry

 Appendix A. Sample programs 171

 Sample programs

 Overview
This program is the SEND part of a SEND-RECEIVE pair of programs, the RECEIVE part
being DFH0VZTR.

On the first invocation of this send transaction, a map is sent to the front-end terminal.

When there is input from the front-end terminal, CICS invokes this send transaction again.
The customer number is extracted from the input. Using FEPI ALLOCATE a conversation is
started with the back-end system. Then FEPI SEND with screen image data is used to start
a back-end transaction. FEPI START is issued to specify that the receive transaction is to
be started when the back-end system replies.

In due course, the receive transaction is started and XCTLs to this send transaction. The
customer number can now be sent to the back-end using FEPI SEND with screen image
data. FEPI START is again issued.

The receive transaction gets the results from the back-end transaction and sends them on to
the front-end terminal.

When there is more input from the front-end terminal, CICS invokes this transaction again.
FEPI ALLOCATE with PASSCONVID is issued to gain ownership of the conversation and
the customer number is sent to the back-end as before. The cycle continues until PF3 or
CLEAR is received. These are passed on to the receive transaction (using the FEPI
START user data) and to the back-end transaction to indicate that it is to end.

 Program logic
 MAIN procedure:

 Test COMMAREA

If transaction not previously invoked

 Call SEND-MAP

If first customer number to process

 Call CONTINUE-CONVERSATION

Set up exception condition handling:

Map error - SEND-MAP

PF3/CLEAR - CONTINUE-CONVERSATION

RECEIVE MAP from front-end terminal

If conversation not started

 Call INITIATE-CONVERSATION

 Else

 Call CONTINUE-CONVERSATION

 SEND-MAP routine:

SEND new map to front-end terminal

RETURN TRANSID(CZTS) with COMMAREA

 INITIATE-CONVERSATION routine:

FEPI ALLOCATE conversation with back-end

Build screen image to invoke back-end transaction

FEPI SEND screen image to back-end

FEPI START the receive transaction

 RETURN

 CONTINUE-CONVERSATION routine:

Unless first customer number

Reaccess conversation with FEPI ALLOCATE PASSCONVID

Build screen image to send customer number

FEPI SEND screen image to back-end

FEPI START the receive transaction

 RETURN

172 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Sample programs

Screen image RECEIVE and EXTRACT FIELD
This sample program demonstrates using FEPI to get formatted data from a back-end
transaction.

Module name: DFH0VZTR

Transaction name: CZTR

Map name: DFH0MZ2

 Screen
See Figure 10 on page 171.

 Overview
This program is the RECEIVE part of a SEND-RECEIVE pair of programs, the SEND part
being DFH0VZTS.

This transaction is started by CICS either when data is received from the back-end
transaction or if no data is received in the time set in the send transaction, as is determined
from the start data obtained with RETRIEVE. The user data in the start data indicates
whether the conversation is starting, continuing, or finishing.

A FEPI RECEIVE obtains the screen image from the back-end transaction and FEPI
EXTRACT FIELD is used to obtain specific fields.

If the conversation is starting, control is passed to the send transaction using XCTL to allow
an inquiry to be sent to the back-end transaction.

If the conversation is continuing, the results from the back-end are sent on to the front-end
terminal. Access to the conversation is relinquished, and control is returned to CICS
specifying that the send transaction is to be invoked when there is next user input.

If the conversation has finished, a message to that effect is sent to the front-end terminal.
The conversation is freed and the transaction ends.

 Program logic
 MAIN procedure:

RETRIEVE start data

Reaccess conversation with FEPI ALLOCATE PASSCONVID

If time out

 Call REPORT-PROBLEM

FEPI RECEIVE back-end screen image

If conversation ending (PF3 or CLEAR indicated)

 Call REPORT-PROBLEM

If back-end problem

(CICS message or back-end transaction message)

 Call REPORT-PROBLEM

If conversation starting (user data has customer number)

XCTL to program DFHðVZTS

If conversation continuing

Get interesting fields from back-end data using

FEPI EXTRACT FIELD

Build and send map to front-end terminal

Release conversation using FEPI FREE PASS

RETURN TRANSID(CZTS) with COMMAREA

 REPORT-PROBLEM routine:

SEND message to front-end terminal

FEPI FREE conversation

 RETURN

 Appendix A. Sample programs 173

 Sample programs

3270 data stream pass-through
This sample program demonstrates using FEPI to pass-through 3270 data stream between a
back-end application and a front-end terminal.

Module names: DFH0VZTD, DFH0AZTD

Transaction name: CZTD

 Overview
On the first invocation of the transaction, a request is sent to the back-end system to start a
transaction there. The response is sent on to the front-end terminal.

When there is input from the front-end terminal, CICS reinvokes the transaction. This input
is sent on to the back-end system, using the FEPI CONVERSE command, and the resulting
response is returned to the front-end terminal.

If there is an error, or the back-end system sends a CICS message, or PF3 is received from
the front-end terminal, the transaction ends.

 Program logic
Test COMMAREA

If transaction not previously invoked

Build data stream request to start back-end transaction

FEPI ALLOCATE conversation with back-end system

FEPI CONVERSE data stream to and from back-end system

SEND returned data stream to the front-end terminal

Else

RECEIVE data stream from the front-end terminal

Prepare data stream to send on to back-end system

Reaccess conversation with FEPI ALLOCATE PASSCONVID

FEPI CONVERSE data stream to and from back-end system

SEND data stream to the front-end terminal

If error during processing

SEND explanatory message

If continuing

Release conversation using FEPI FREE PASS

RETURN TRANSID(CZTD) with COMMAREA

Else (error, CICS message, or PF3)

FEPI FREE conversation

 RETURN

174 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Sample programs

 End-session handler
This program cleans up sessions after use by FEPI sample application programs.

Module name: DFH0VZUU

Transaction name: CZUU

TS queue name: SESSION

 Overview
This transaction is started by FEPI when an application ends a conversation or when a
session is released.

The conversation passed by FEPI must be accessed so that FEPI knows that the event is
being handled. The processing required depends entirely on local requirements. For
illustration purposes, this program simply keeps the session for use by another conversation
or lets it end, depending on the event type.

For end of conversation (EVENTTYPE=FREE in start data), processing could typically
involve setting the session back to a known state (such as a clear back-end screen ready to
accept a new transaction name), or handling security, or overriding the type of FREE used.
Such processing would depend on the data mode and type that the session uses (which is
obtained from the start data), whether the back-end system is CICS or IMS, and the type of
FREE used (also obtained from the start data).

For end of session (EVENTTYPE=FREE and EVENTVALUE=RELEASE in start data),
processing could typically involve handling security.

For both cases, there could be an indication (in EVENTVALUE in the start data) that CICS is
shutting down, which might require alternative special processing. This transaction would
have to be in the XLT to allow it to be started during shutdown.

After the processing, a report is written to a TS queue named SESSION, which can be
browsed using CEBR. The format of the TS queue records is:

date time CZUU End-session handling completed

 RESP........ð RESP2.......ð

 Target......TGTNAME Node........NODENAME

 Pool........POOLNAME

 Program logic
 Main procedure:

RETRIEVE start data

Access conversation using FEPI ALLOCATE with PASSCONVID

Call PROCESS-RELEASE or PROCESS-FREE as appropriate

Write event details to TS queue

 RETURN

 PROCESS-RELEASE routine:

Handle as required

Free conversation, ending session

 PROCESS-FREE routine:

Handle as required

Free conversation, keeping session

 Appendix A. Sample programs 175

 Sample programs

SLU P one-out one-in
This sample program demonstrates using FEPI to obtain information from a back-end IMS
system, using SLU P mode and the FEPI CONVERSE command with the POOL option.

Module names: DFH0VZPS, DFH0AZPS

Transaction name: CZPS

Map names: DFH0MZ4, DFH0MZ8

 Screen

à ð
 CZPS SLU P Sample Program.

 IMS SLU P conversational sample program

 This transaction will process a FEPI CONVERSE command to obtain time

and date from a back-end IMS system.

 DATE : ð2/ð4/98

 TIME : 1ð:57:1ð

 STATE : Not started

 F3=EXIT to CICS ENTER=obtain time and date stamp from IMS

á ñ

Figure 11. CZPS transaction: SLU P sample program

 Overview
On the first invocation of the program, a map is sent to the front-end terminal.

When there is input from the front-end terminal, CICS reinvokes the program. A simple
inquiry is made to the back-end system—for illustration purposes, it asks the time—and the
answer is displayed on the front-end terminal. Because the inquiry requires only a one-out
one-in exchange with the back-end system, a temporary conversation can be used, so the
FEPI CONVERSE command with the POOL option is used.

When PF3 or CLEAR is received from the front-end terminal, the transaction ends. If there
is an error, the front-end map is reset. These situations are detected using HANDLE
CONDITION.

If the back-end system sends an IMS message, it is sent on to the front-end terminal and the
transaction ends.

For clarity, error checking is minimal except for the FEPI commands.

 Program logic
 MAIN procedure:

 Test COMMAREA

If transaction not previously invoked

 Call SEND-NEW-MAP

Set up exception condition handling:

Map error - SEND-NEW-MAP

CLEAR/PF3 - END-PROG

RECEIVE MAP from front-end terminal

Build SLU P data stream to request time from back-end IMS

 system

FEPI CONVERSE to send data stream to the back-end and get

the message containing the time

If IMS message received from back-end system

SEND message to front-end terminal

 RETURN

Build data for front-end terminal map

SEND map data to front-end terminal

RETURN TRANSID(CZPS) with COMMAREA

 SEND-NEW-MAP routine:

SEND new map

RETURN TRANSID(CZPS) with COMMAREA

 END-PROG routine:

Clear front-end terminal

 RETURN

176 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Sample programs

SLU P pseudoconversational
This sample program demonstrates using FEPI to obtain data from an IMS back-end
transaction. It is in pseudoconversational style, using the FEPI START command to
schedule itself when the results arrive.

Module names: DFH0VZPA, DFH0AZPA

Transaction name: CZPA

Map names: DFH0MZ5, DFH0MZ9

 Screen

à ð
 CZPA SLUP Sample Program.

 IMS SLUP Pseudoconversational sample program

 This transaction will process SEND/START/RECEIVE requests with MFS

specified, to a back-end IMS system.

 DATE : ð2/ð4/98

 TIME : 1ð:58:5ð

 STATE : Not Started

 F3=EXIT to CICS ENTER=obtain time and date stamp from IMS

á ñ

Figure 12. CZPA transaction: SLU P pseudoconversational sample program

 Overview
On the first invocation of the program, a map is sent to the front-end terminal.

When there is input from the front-end terminal, CICS invokes the program again. After
establishing a conversation, an inquiry is sent to the back-end system. FEPI START is
issued to start this program again when the results arrive. Meanwhile it returns to CICS, so
releasing resources.

When the results arrive, FEPI starts the program again. The results are obtained using FEPI
RECEIVE, and sent on to the front-end terminal. The conversation is freed and the program
returns to CICS to await more input. If the back-end system sends an IMS message, it is
sent on to the front-end terminal and the transaction ends.

When PF3 or CLEAR is received from the front-end terminal, the transaction ends. If there
is an error, the front-end map is reset. These situations are detected using HANDLE
CONDITION.

For clarity, error checking is minimal except for the FEPI commands.

 Appendix A. Sample programs 177

 Sample programs

 Program logic
 MAIN procedure:

If started from terminal

 Test COMMAREA

If transaction not previously invoked

 Call SEND-NEW-MAP

Set up exception condition handling:

Map error - SEND-NEW-MAP

CLEAR/PF3 - END-PROG

RECEIVE map from front-end terminal

FEPI ALLOCATE conversation with back-end system

Build SLU P data stream to request time

FEPI SEND data stream to back-end system

FEPI START transaction

 RETURN

If started by FEPI

RETRIEVE start data

Reaccess conversation using FEPI ALLOCATE PASSCONVID

If EVENTTYPE = data received

FEPI RECEIVE data stream from back-end system

FEPI FREE conversation

If IMS message received

SEND message to front-end terminal

 RETURN

Build data for front-end terminal map

SEND map to front-end terminal

RETURN TRANSID(CZPA) with COMMAREA

Otherwise (timeout or session loss)

SEND map with message to front-end terminal

RETURN (freeing conversation implicitly)

 SEND-NEW-MAP routine:

SEND new map

RETURN TRANSID(CZPA) with COMMAREA

 END-PROG routine:

Clear front-end terminal

 RETURN

 STSN handler
This program handles STSN processing for the FEPI sample application programs.

Module name: DFH0AZQS

Transaction name: CZQS

TS queue name: SESSION

 Overview
This transaction is started by FEPI when a request for message resynchronization (‘set and
test sequence number’, STSN) or a ‘start data traffic’ indication is received from a back-end
IMS system.

The conversation passed by FEPI must be accessed so that FEPI knows that the event is
being handled. The processing required depends on the STSN status, which is obtained
using FEPI EXTRACT STSN.

For STSNSTATUS=NOSTSN, the transaction was started because ‘start data traffic’ arrived.
A DR1 normal response must be sent.

For STSNSTATUS=STSNSET, a positive STSN response must be sent.

For STSNSTATUS=STSNTEST, processing would typically involve comparing saved
sequence numbers with those received from the back-end IMS system to determine what
response to send. The IMS Customization Guide gives advice on the appropriate action.

178 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Sample programs

After the processing, the response is sent using FEPI ISSUE. A report is written to a TS
queue named SESSION, which can be browsed using CEBR. The general format of the TS
queue records is:

date time CZQS STSN processing completed

 Target......TGTNAME Node........NODENAME

 Seqnumin....nnnn Seqnumout...nnnn

 STSN status.XXXXXXX Response....XXXXXXXX

 Program logic
 Main procedure:

RETRIEVE start data

Access conversation using FEPI ALLOCATE with PASSCONVID

Get STSN status using FEPI EXTRACT STSN

Call NOSTSN, STSNSET, or STSNTEST

according to STSN status

Send response using FEPI ISSUE CONTROL

Write event details to TS queue

Free conversation, keeping session

 RETURN

 NOSTSN routine:

Build DR1 normal response

 STSNSET routine:

Build STSN positive response

 STSNTEST routine:

Handle as required

Build required response

 Appendix A. Sample programs 179

 Sample programs

180 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 CVDA values

Appendix B. CVDA and RESP2 values

This appendix lists the CVDA and RESP2 values returned by
FEPI commands. It contains:

� “CVDAs and numeric values in alphabetic sequence”

� “CVDAs and numeric values in numeric sequence” on
page 182

� “RESP2 values” on page 183.

CVDAs and numeric values in alphabetic
sequence

The following table lists the CVDA values used or returned
by the FEPI commands. (See Table 24 on page 182 for the
same values in numeric sequence.) For programming
information about other CICS CVDA values, see the CICS
System Programming Reference manual.

Table 23. CVDA values in
alphabetic sequence

NOMSGJRNL 531
NONE 496
NORMALRESP 522
NOSTSN 487
NOTINBOUND 546
NOTINSTALLED 551
OLDSESSION 486
OUTPUT 227
OUTSERVICE 74
PENDBEGIN 558
PENDDATA 560
PENDFREE 86
PENDPASS 565
PENDRELEASE 562
PENDSTART 561
PENDSTSN 557
PENDUNSOL 564
POSITIVE 529
PROTECTED 504
RELEASE 563
RELEASED 70

Table 23. CVDA values in
alphabetic sequence

RELEASING 549
RESET 290
RTR 527

ACQFAIL 515
RU 494

ACQUIRED 69
SESSION 372

ACQUIRING 71
SESSIONFAIL 517

ADDFAIL 519
SESSIONLOST 516

ALARM 501
SETFAIL 514

APPLICATION 559
SHUTDOWN 288

ATTENTION 524
STSN 509

BEGINSESSION 510
STSNSET 488

CANCEL 526
STSNTEST 489

CD 491
TASK 233

DATA 508
TIMEOUT 511

DATASTREAM 543
TPS55M2 552

DEFRESP1 497
TPS55M3 553

DEFRESP1OR2 528
TPS55M4 554

DEFRESP2 498
T3278M2 533

DEFRESP3 499
T3278M3 534

DELETEFAIL 520
T3278M4 535

DISCARDFAIL 513
T3278M5 536

EB 490
T3279M2 537

EXCEPTRESP 523
T3279M3 538

FMH 502
T3279M4 539

FORCE 342
T3279M5 540

FORMATTED 542
UNPROTECTED 505

FREE 85
UNSOLDATA 521

GOINGOUT 172
WIN 545

HOLD 163
INBOUND 547
INOUT 532
INPUT 226
INSERVICE 73
INSTALLED 550
INSTALLFAIL 512
INVALID 359
LIC 493
LOSE 544
LUP 541
LUSTAT 525
MDT 506
MORE 492
NEGATIVE 530
NEWSESSION 485
NOALARM 500
NOCONV 556
NOFMH 503
NOMDT 507

 Copyright IBM Corp. 1992, 1999 181

 CVDA values

CVDAs and numeric values in numeric
sequence

The following table lists the CVDA values used or returned
by the FEPI commands. (See Table 23 on page 181 for the
same values in alphabetic sequence.) For programming
information about other CICS Transaction Server for
VSE/ESA Release 1 CVDA values, see the CICS System
Programming Reference manual.

Table 24. CVDA values in
numeric sequence

528 DEFRESP1OR2
529 POSITIVE
530 NEGATIVE
531 NOMSGJRNL
532 INOUT
533 T3278M2
534 T3278M3
535 T3278M4
536 T3278M5
537 T3279M2
538 T3279M3

Table 24. CVDA values in
numeric sequence

539 T3279M4
540 T3279M5
541 LUP 69 ACQUIRED
542 FORMATTED 70 RELEASED
543 DATASTREAM 71 ACQUIRING
544 LOSE 73 INSERVICE
545 WIN 74 OUTSERVICE
546 NOTINBOUND 85 FREE
547 INBOUND 86 PENDFREE
549 RELEASING163 HOLD
550 INSTALLED172 GOINGOUT
551 NOTINSTALLED226 INPUT
552 TPS55M2227 OUTPUT
553 TPS55M3233 TASK
554 TPS55M4288 SHUTDOWN
556 NOCONV290 RESET
557 PENDSTSN342 FORCE
558 PENDBEGIN359 INVALID
559 APPLICATION372 SESSION
560 PENDDATA485 NEWSESSION
561 PENDSTART486 OLDSESSION
562 PENDRELEASE487 NOSTSN
563 RELEASE488 STSNSET
564 PENDUNSOL489 STSNTEST
565 PENDPASS490 EB

491 CD
492 MORE
493 LIC
494 RU
496 NONE
497 DEFRESP1
498 DEFRESP2
499 DEFRESP3
500 NOALARM
501 ALARM
502 FMH
503 NOFMH
504 PROTECTED
505 UNPROTECTED
506 MDT
507 NOMDT
508 DATA
509 STSN
510 BEGINSESSION
511 TIMEOUT
512 INSTALLFAIL
513 DISCARDFAIL
514 SETFAIL
515 ACQFAIL
516 SESSIONLOST
517 SESSIONFAIL
519 ADDFAIL
520 DELETEFAIL
521 UNSOLDATA
522 NORMALRESP
523 EXCEPTRESP
524 ATTENTION
525 LUSTAT
526 CANCEL
527 RTR

182 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 RESP2 values

 RESP2 values

Table 25 gives, in general terms, the meaning of the RESP2
values used by FEPI. These values are used in the
EVENTVALUE area of FEPI transient data queue records
and returned by the RESP2 option of FEPI commands. For
details of the error conditions and related RESP2 values for
each FEPI command, see the FEPI command definitions in
Chapter 9, “System programming reference” and
Chapter 16, “Application programming reference.”

Declarations for the RESP2 values are provided in the
following copy books:

� DFHSZAPA for Assembler language
� DFHSZAPO for COBOL
� DFHSZAPP for PL/I
� DFHSZAPC for C/370.

Table 25 (Page 1 of 2). RESP2 values

Table 25 (Page 1 of 2). RESP2 values

1 INQUIRE START, NEXT, or END command not valid here:

START Browse of this resource type already in progress
NEXT INQUIRE START not issued
END INQUIRE START not issued.

2 All resource definitions have been retrieved.
10 Command bypassed by user exit.
11 FEPI not installed or not active.
12 CICS shutting down, command not allowed.
13 FEPI not available.
14 FEPI busy or cannot get storage.
15 Unknown command.
16 Internal problem.
17 FEPI cannot get storage for user exit parameters.
18 Command failed because of operator or system action.
30 POOL name not known.
31 POOL name out of service.
32 TARGET name not known.
33 TARGET name out of service.
34 TARGET name required but not specified.
35 Pool name is unsuitable for temporary conversations. It has

CONTENTION(LOSE) or INITIALDATA(INBOUND) but no
begin-session handler.

36 No suitable session available and in service.
40 [FROM]FLENGTH value is negative, zero, or more than

MAXFLENGTH value for pool.
41 ESCAPE value not valid.
50 Inbound data with ‘begin bracket’ to be received.
51 Attention identifier (AID) not valid.
52 Cursor position not valid.
53 Code points in formatted data not valid.
54 Attribute positions or values in send data not valid.
55 Key stroke escape sequence in send data not valid.
56 Field validation (mandatory fill, mandatory enter, trigger) failed.
57 Input is inhibited.
58 VTAM SEND failed.
59 DBCS data rules violated.
60 MAXFLENGTH value negative, or greater than MAXFLENGTH

value for pool.
61 FLENGTH value negative or greater than 128.
62 TRANSID name not valid.
63 TERMID name not valid.
70 FIELDLOC or FIELDNUM value negative or not valid.
71 VTAM RECEIVE failed.
72 RECEIVE FORMATTED processing found invalid, or

unexpected data while interpreting the 3270 data steam for a
WRITE, ERASE/WRITE, ERASE/WRITE ALTERNATE, or
WRITE STRUCTURED FIELD command code.

80 CONTROL value not valid.
81 VALUE not valid: omitted when required; included when not

required; or unsuitable for specified CONTROL.

 Appendix B. CVDA and RESP2 values 183

 RESP2 values

Table 25 (Page 2 of 2). RESP2 values Table 25 (Page 2 of 2). RESP2 values

82 SENSEDATA option omitted when required, or specified when
not required.

210 Option not valid for SLU P.
211 Option not valid for SLU2.

90 Definite response type did not match what was required. 212 Wrong data format for conversation.
91 Only NORMALRESP or EXCEPTRESP allowed at this point in

conversation.
213 Command has timed out.
214 CICS shutting down, conversation should be ended.

92 Response to STSN SET was not positive. 215 Session lost.
93 Only STSN allowed at this point in conversation. 216 Error occurred on previous SEND command.
94 Only STSN or NORMALRESP allowed at this point in

conversation.
220 SEND or CONVERSE command not allowed at this point in

conversation.
95 CONTROL value not allowed at this point in conversation. 221 RECEIVE command not allowed at this point in conversation.

100 Not authorized to issue command. 223 START command not allowed at this point in conversation.
110 SERVSTATUS value not valid. 224 Only ISSUE or FREE allowed at this point in conversation.
111 ACQSTATUS value not valid. 230 SNA CLEAR command received.
115 POOL name not known. 231 SNA CANCEL command received.
116 TARGET name not known. 232 SNA CHASE command received.
117 NODE name not known. 233 Exception response received.
118 Unknown connection (TARGET and NODE names known, but

not in a common POOL).
234 Exception request received.
240 Conversation ID unknown or not owned by task.

119 Request failed for one or more items in list. Detailed errors
reported to TD queue for monitor to handle.

241 TIMEOUT value negative or not valid.
250 Passticket not built successfully.

130 TARGETNUM value negative, zero, or not valid. 251 CICS ESM interface not initialized.
131 NODENUM value negative, zero, or not valid. 252 Unknown return code in ESMRESP from the ESM.
132 POOLNUM value negative, zero, or not valid. 253 Unrecognized response from CICS security modules.
140 DEVICE value not valid. 254 Function unavailable.
141 CONTENTION value not valid. 259 No signed-on user.
142 INITIALDATA value not valid.
143 UNSOLDATACK value not valid.
144 MSGJRNL value not valid.
150 FORMAT value not valid or unsuitable for specified device.
153 STSN name not valid or STSN unsuitable for specified device.
154 BEGINSESSION value not valid.
155 UNSOLDATA value not valid.
156 EXCEPTIONQ value not valid.
157 FJOURNALNUM value not valid.
158 MAXFLENGTH value not valid.
159 ENDSESSION name not valid.
160 PROPERTYSET name not valid.
162 POOL name not valid.
163 NODE name not valid.
164 TARGET name not valid.
167 APPL name not valid.
170 PROPERTYSET name already exists.
171 PROPERTYSET name not known.
172 POOL name already exists.
173 NODE name already exists.
174 TARGET name already exists.
175 Connection already exists.
176 VTAM OPEN NODE failed.
177 VTAM APPLID already known.
182 Session unbound, unrecoverable.
183 Session unbound, recoverable.
184 Session unbound, error.
185 Session unbound, bind coming.
186 Session unbound.
187 Lost terminal.
188 CLEANUP, abnormal.
189 CLEANUP.
190 UNBIND error.
191 SETUP error.
192 SSCP error.
193 SLU error.
194 PLU error.
195 BIND error.
196 CINIT error.
197 REQSESS error.
198 REQSESS inhibited.
199 REQSESS not available.

184 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Glossary

This glossary describes terms and abbreviations used in this
book and words used with other than their everyday
meaning. In some cases, a definition may not be the only
one applicable to a term, but it gives the particular sense in
which the word is used in this book.

This glossary includes only the most common 3270 and SNA
terms. For other 3270 terms, refer to the glossary in 3270
Data Stream Programmer’s Reference. For other SNA
terms, refer to the glossary in SNA Technical Overview.

This glossary includes terms and definitions from the IBM
Dictionary of Computing, published by McGraw-Hill. If you
do not find the term you are looking for, refer to the index or
the Dictionary of Computing.

A
ACB . In VTAM, an access method control block that links
an application to VTAM.

access program . A user-provided part of a FEPI
application that handles the main communications with
application programs in CICS or IMS systems.

AID. (1) Attention identifier. (2) In CICS, automatic initiate
descriptor.

APAR . Authorized program analysis report.

application . A program or suite of programs that do work.
If an application uses FEPI, it is a FEPI application (also
known as a terminal front-end program). In VTAM,
application means programs that communicate directly using
VTAM; in a FEPI environment, this means the back-end
systems on one hand, and FEPI on the other.

application programming interface . The set of commands
by which an application accesses CICS services.

attention identifier (AID) . (1) A code in the inbound data
stream that identifies the source or type of data that follows.
(2) A character in a data stream indicating that the user has
pressed a key, such as ENTER, that requests an action by
the system.

ATI. Automatic transaction initiation.

authorized program analysis report (APAR) . A report of a
problem caused by a suspected defect in a current, unaltered
release of a program.

automatic transaction initiation (ATI) . The initiation of a
CICS transaction by an internally generated request, for
example, the issue of an EXEC CICS START command or
the reaching of a transient data trigger level. See the CICS
Application Programming Guide manual.

B
back-end (system) . The CICS or IMS system in which
existing applications run. Equivalent to partner system.
(See also front-end (system) .)

begin-session handler . A user-provided part of a FEPI
application that handles begin-session processing.

begin bracket . See bracket .

between brackets . See bracket and contention mode .

bind . In SNA, to activate a session between logical units.

bind race . In SNA, a situation where two or more logical
units (LUs) send bind requests to each other at the same
time.

bracket . In SNA, one or more chains of request units (RUs)
and their responses, which are exchanged between two
LU-LU half-sessions and represent a transaction between
them. A bracket must be completed before another bracket
can start. Examples of brackets are data base inquiries and
replies, update transactions, and remote job entry output
sequences to work stations.

The duration of a bracket is shown by the begin-bracket and
end-bracket indicators in the request headers of the first and
last requests in the bracket. When a bracket is not in
progress, the session is between brackets and is in
contention mode .

buffer address . In 3270 data stream, the address of a
location in the character buffer (screen image).

C
CECI. Command-level interpreter.

CEMT. A CICS-supplied transaction that invokes all the
master terminal functions. These functions include inquiring
and changing the value of parameters used by CICS, altering
the status of system resources, terminating tasks, and
shutting down CICS. See the CICS-Supplied Transactions
manual.

chain . In SNA, a group of one or more logically linked
records (request units) that are transferred over a
communication line. The ends of the chain are shown by the
first-in-chain and last-in-chain indicators in the request
headers of the first and last requests in the chain.

change direction protocol . In SNA, a data flow control
protocol in which the sending logical unit (LU) stops sending
normal-flow requests, signals this fact to the receiving LU
using the change-direction indicator (in the request header of

 Copyright IBM Corp. 1992, 1999 185

the last request of the last chain), and prepares to receive
requests.

CICS. Customer Information Control System.

command-level interpreter (CECI CECS) . Enables CICS
commands to be entered, syntax-checked, and executed
interactively at a 3270 screen. See the CICS Application
Programming Guide manual.

connection . A target-node pair in the same pool, between
which a session can be established (bound), and which can
then be used for communication.

contention mode . In data communication, a mode of
transmission in which any station may transmit whenever the
line is available. This occurs when a session is between
brackets. If stations transmit simultaneously, protocols
determine who wins the contention.

conversation . (1) In FEPI, a sequence of related data
transmissions between a FEPI application and a particular
back-end system. This is analogous to a CICS APPC
conversation, but it is not the same as an IMS conversation,
and it is not related to CICS conversational mode. (2) In
distributed transaction processing, a sequence of exchanges
over a session, delimited by SNA brackets. (3) A dialog
between two programs in which each program alternately
sends and receives data. (4) A dialog between CICS and a
terminal user in which CICS alternately accepts input and
responds.

Customer Information Control System (CICS) . An IBM
licensed program that enables transactions entered at remote
terminals to be processed concurrently by user-written
application programs. It includes facilities for building, using,
and maintaining databases.

D
data stream . A continuous stream of data elements being
transmitted, or intended for transmission, in character or
binary-digit form, using a defined format.

DBCS. Double-byte character set.

DCT. Destination control table.

definite response . In SNA, a value on the
form-of-response-requested field of the request header. The
value directs the receiver of the request to return a response
unconditionally, whether positive or negative, to that request.

destination control table (DCT) . A table containing an
entry for each extrapartition, intrapartition, and indirect
transient data destination used in the system, or in
connected CICS systems.

double-byte character set (DBCS) . A set of characters in
which each character is represented by two bytes.
Languages, such as Japanese, which contain more symbols
than can be represented by 256 code points require DBCS.

DRx response . Same as definite response .

E
EDF. Execution diagnostic facility.

end bracket . See bracket .

end session handler . A user-provided part of a FEPI
application that handles end of conversation and end of
session processing.

ESM. External security manager.

execution diagnostic facility (EDF) . A CICS facility used
for testing application programs interactively online, without
making any modifications to the source program or to the
program preparation procedure.

Extended Recovery Facility (XRF) . A facility that increases
the availability of CICS transaction processing, as seen by
the end users. Availability is improved by having a second
CICS system (the alternate system) ready to continue
processing the workload, if and when particular failures that
disrupt user services occur on the first system (the active
system).

external security manager (ESM) . A program that
performs security checking for CICS users and resources.

F
FEPI. Front End Programming Interface.

FMH. Function management header.

formatted data interface . In FEPI, a collective name for
the keystroke and screen-image interfaces.

front-end (system) . The CICS system in which the Front
End Programming Interface (FEPI) runs to provide access to
applications running on other systems. (See also back-end
(system) .)

Front End Programming Interface (FEPI) . An interface
that enables you to write CICS application programs that
access other CICS or IMS programs, providing a front end to
those programs. The interface simulates the terminals that
the other programs use.

function management header (FMH) . In SNA, one or
more headers, optionally present in the leading request units
(RUs) of a chain, that contain control information.

186 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

G
global user exit . An event in CICS at which CICS can pass
control to a user-supplied program and then resume control
after the user program finishes. The exit is invoked on every
occurrence of the event in CICS.

H
handler . In the CICS/VSE Front End Programming Interface
(FEPI), a transaction initiated to handle specified events.

I
Information Management System (IMS) . A data base/data
communication system capable of managing complex data
bases and terminal networks.

inbound . In FEPI and CICS, data received by a program
from elsewhere. From the point-of-view of the back-end
system, this data is outbound or output to a terminal.

initial data . A type of inbound data that arrives when a new
session is bound. This is commonly called a “good morning”
message.

ISC. CICS intersystem communication.

K
key stroke interface . The part of the Front End
Programming Interface that allows a front-end application to
specify a sequence of key stroke-like commands, used to
define input to a back-end application.

L
last in chain . See chain .

LIC. Last in chain. See chain .

logical unit (LU) . In SNA, a port through which an end user
accesses the SNA network in order to communicate with
another end user and through which the end user accesses
the functions provided by system services control points.

LU. See Logical unit (LU) .

M
modified data tag (MDT) . (1) An indicator, associated with
each input or output/input field in a displayed record, that is
set ON when data is keyed into the field. The modified data
tag is maintained by the display device and can be used by
the program using the field. (2) In 3270, a bit in each input
field that, when set, causes that field to be transferred to the
host system.

monitor . A user-provided program that handles unexpected
events reported by FEPI.

MRO. CICS multiregion operation.

N
node . In VTAM, a named point in a network. In FEPI, a
point (VTAM node) that is a secondary LU terminal simulated
by FEPI. In other words, a node in FEPI is a simulated
terminal.

non-response mode . In IMS, a mode of terminal operation
that allows asynchronous operations between the terminal
operator and the application program. Contrast with
response mode .

no response . In SNA, a value in the
form-of-response-requested field of the request header (RH)
indicating that no response is to be returned to the request,
whether or not the request is received and processed
successfully.

O
outbound . In FEPI and CICS, data sent by a program to
somewhere else. From the point-of-view of the back-end
system, this data is inbound or input from a terminal.

P
partner . In CICS intercommunication, a transaction
communicating with a remote transaction or system. In
FEPI, this is equivalent to back-end system .

PLT. In CICS, the program list table.

PLTPI. In CICS, program list table post initialization.

PLU. Primary logical unit.

pool . In the CICS/VSE Front End Programming Interface
(FEPI), a collection of nodes and targets .

presentation space . A portion of the device’s buffer
storage, allocated to a partition, that contains only display
data that CICS sends to that partition.

primary logical unit (PLU) . In SNA, the logical unit that
contains the primary half-session. In a FEPI environment,
the back-end systems are the PLUs.

program list table . In CICS, a list of programs to be
executed at a specific phase of system initialization or
termination.

Program Temporary Fix (PTF) . A temporary solution or
bypass of a problem diagnosed by IBM field engineering as
the result of a defect in a current, unaltered release of the
program. See authorized program analysis report (APAR).

 Glossary 187

property set . In the CICS/VSE Front End Programming
Interface (FEPI), the definition of the characteristics of a
pool .

PTF. Program temporary fix.

R
RDO. In CICS, resource definition online.

request header (RH) . In SNA, control information preceding
a request unit.

request unit (RU) . In SNA, a message unit that contains
control information such as a request code, or function
management headers (FMHs), end-user data, or both.
Synonymous with request. Each request unit belongs to a
chain.

resource definition online (RDO) . A method of defining
resources to CICS, in which resource definitions are created
interactively with the CEDA transaction, or by using the CICS
utility DFHCSDUP.

response . In SNA, a message that acknowledges receipt of
a request.

response mode . (1) A mode in which a system can
communicate with an end-user. (2) In IMS, a mode of
terminal operation that synchronizes operations between the
terminal operator and the application program. Contrast with
non-response mode .

RU. Request unit.

S
screen-image interface . The part of the Front End
Programming Interface that has a buffer with one byte for
each screen position.

secondary logical unit (SLU) . In SNA, the logical unit that
contains the secondary half-session. In a FEPI environment,
the FEPI system is the SLU, and the back-end CICS or IMS
system is the PLU.

session . In SNA, that period during which programs or
devices can communicate with each other.

set and test sequence number (STSN) . In SNA, a
communication protocol whereby transmissions can be
checked.

setup program . A user-provided program that defines and
inquires about FEPI resources, and performs housekeeping
for the sessions.

SIT. System initialization table.

SLU. Secondary logical unit.

SLU P. An LU0 protocol defined by IMS as a protocol to
communicate between a programmable workstation, such as
a 4700, and IMS. IMS is the Primary Logical Unit (PLU) and
the workstation is the Secondary Logical Unit (SLU) in the
connection.

SLU2. An SLU using LU2 protocols, that is, the 3270
datastream protocol.

SNA. Systems Network Architecture.

STSN. Set and test sequence number.

STSN handler . A user-provided part of a FEPI application
that handles STSN requests.

system initialization table (SIT) . A CICS table that
contains information to initialize and control system functions,
module suffixes for selection of user-specified versions of
CICS modules and tables, and information used to control
the initialization process. You can generate several SITs,
using the resource definition macro DFHSIT, and then use
the SIT system initialization parameter to select the one that
best meets your current requirements at initialization time.

system programming interface . A subset of the CICS
application programming interface that accesses special
system-oriented CICS services.

T
target . In the CICS/VSE Front End Programming Interface
(FEPI), the back-end CICS or IMS system to which FEPI
appears as a secondary logical unit.

TCTTE. terminal control table terminal entry.

TD. Transient data.

temporary conversation . A FEPI conversation allocated
from the pool specified by the POOL option that exists only
for the duration of a FEPI CONVERSE command.

terminal control table terminal entry (TCTTE) . In the
CICS terminal control table (TCT), an entry for each terminal
known to CICS.

terminal front-end program (FEPI application) . A CICS
application designed to use the front end programming
interface (FEPI) to communicate with existing back-end
applications.

transaction list table (XLT) . CICS control table containing
a list of transaction identifications. Depending on a system
initialization specification that can be changed during system
termination, the transactions in a particular XLT can be
initiated from terminals during the first quiesce stage of
system termination. During CICS execution the suffix of an
XLT can be entered at the master terminal; the transactions
in that XLT can then be enabled or disabled as a group.

188 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

transient data (TD) . A CICS facility for temporarily saving
data in the form of queues, called destinations. A TD
destination is held either as a queue in a VSE/VSAM data
set managed by CICS (intrapartition TD), or as a QSAM data
set outside the CICS region.

U
unbind . In SNA, to deactivate a session between logical
units.

unsolicited data . A type of inbound data that arrives on a
connection where no FEPI conversation is active.

unsolicited-data handler . A user-provided part of a FEPI
application that handles unsolicited inbound data.

V
Virtual Telecommunications Access Method (VTAM) . A
set of programs that maintain control of the communication
between terminals and application programs.

W
write control character (WCC) . (1) A control character that
follows a write command in the 3270 data stream and
provides control information for executing display and printer
functions. (2) A character used with a write-type command
to specify that a particular operation, or combination of
operations, is to be performed at a display station or printer.

X
XLT. Transaction list table.

XRF. Extended Recovery Facility.

Numeric
3270 data stream . (1) The commands, control codes,
orders, attributes, and data or structured fields for 3270
devices that are transmitted between an application program
and a terminal. (2) Data being transferred from or to an
allocated primary or tertiary device, or to the host system, as
a continuous stream of data and 3270 Information Display
System control elements in character form.

 Glossary 189

190 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Bibliography

CICS Transaction Server for VSE/ESA Release 1 library

Evaluation and planning

Release Guide GC33-1645
Migration Guide GC33-1646
Report Controller Planning Guide GC33-1941

General

Master Index SC33-1648
Trace Entries SC34-5556
User’s Handbook SC34-5555
Glossary (softcopy only) GC33-1649

Administration

System Definition Guide SC33-1651
Customization Guide SC33-1652
Resource Definition Guide SC33-1653
Operations and Utilities Guide SC33-1654
CICS-Supplied Transactions SC33-1655

Programming

Application Programming Guide SC33-1657
Application Programming Reference SC33-1658
Sample Applications Guide SC33-1713
Application Migration Aid Guide SC33-1943
System Programming Reference SC33-1659
Distributed Transaction Programming Guide SC33-1661
Front End Programming Interface User’s Guide SC33-1662

Diagnosis

Problem Determination Guide GC33-1663
Messages and Codes Vol 3 (softcopy only) SC33-6799
Diagnosis Reference LY33-6085
Data Areas LY33-6086
Supplementary Data Areas LY33-6087

Communication

Intercommunication Guide SC33-1665
CICS Family: Interproduct Communication SC33-0824
CICS Family: Communicating from CICS on System/390 SC33-1697

Special topics

Recovery and Restart Guide SC33-1666
Performance Guide SC33-1667
Shared Data Tables Guide SC33-1668
Security Guide SC33-1942
External CICS Interface SC33-1669
XRF Guide SC33-1671
Report Controller User’s Guide GC33-1940

CICS Clients

CICS Clients: Administration SC33-1792
CICS Universal Clients Version 3 for OS/2: Administration SC34-5450
CICS Universal Clients Version 3 for Windows: Administration SC34-5449
CICS Universal Clients Version 3 for AIX: Administration SC34-5348
CICS Universal Clients Version 3 for Solaris: Administration SC34-5451
CICS Family: OO programming in C++ for CICS Clients SC33-1923
CICS Family: OO programming in BASIC for CICS Clients SC33-1671
CICS Family: Client/Server Programming SC33-1435
CICS Transaction Gateway Version 3: Administration SC34-5448

 Copyright IBM Corp. 1992, 1999 191

Books from VSE/ESA 2.4 base program libraries

VSE/ESA Version 2 Release 4

Book title Order number

Administration SC33-6705

Diagnosis Tools SC33-6614

Extended Addressability SC33-6621

Guide for Solving Problems SC33-6710

Guide to System Functions SC33-6711

Installation SC33-6704

Licensed Program Specification GC33-6700

Messages and Codes Volume 1 SC33-6796

Messages and Codes Volume 2 SC33-6798

Messages and Codes Volume 3 SC33-6799

Networking Support SC33-6708

Operation SC33-6706

Planning SC33-6703

Programming and Workstation Guide SC33-6709

System Control Statements SC33-6713

System Macro Reference SC33-6716

System Macro User’s Guide SC33-6715

System Upgrade and Service SC33-6702

System Utilities SC33-6717

TCP/IP User's Guide SC33-6601

Turbo Dispatcher Guide and Reference SC33-6797

Unattended Node Support SC33-6712

High-Level Assembler Language (HLASM)

Book title Order number

General Information GC26-8261

Installation and Customization Guide SC26-8263

Language Reference SC26-8265

Programmer’s Guide SC26-8264

192 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

Language Environment for VSE/ESA (LE/VSE)

Book title Order number

C Run-Time Library Reference SC33-6689

C Run-Time Programming Guide SC33-6688

Concepts Guide GC33-6680

Debug Tool for VSE/ESA Fact Sheet GC26-8925

Debug Tool for VSE/ESA Installation and Customization Guide SC26-8798

Debug Tool for VSE/ESA User’s Guide and Reference SC26-8797

Debugging Guide and Run-Time Messages SC33-6681

Diagnosis Guide SC26-8060

Fact Sheet GC33-6679

Installation and Customization Guide SC33-6682

LE/VSE Enhancements SC33-6778

Licensed Program Specification GC33-6683

Programming Guide SC33-6684

Programming Reference SC33-6685

Run-Time Migration Guide SC33-6687

Writing Interlanguage Communication Applications SC33-6686

 VSE/ICCF

Book title Order number

Adminstration and Operations SC33-6738

User’s Guide SC33-6739

 VSE/POWER

Book title Order number

Administration and Operation SC33-6733

Application Programming SC33-6736

Networking Guide SC33-6735

Remote Job Entry User’s Guide SC33-6734

 VSE/VSAM

Book title Order number

Commands SC33-6731

User’s Guide and Application Programming SC33-6732

 Bibliography 193

VTAM for VSE/ESA

Book title Order number

Customization LY43-0063

Diagnosis LY43-0065

Data Areas LY43-0104

Messages and Codes SC31-6493

Migration Guide GC31-8072

Network Implementation Guide SC31-6494

Operation SC31-6495

Overview GC31-8114

Programming SC31-6496

Programming for LU6.2 SC31-6497

Release Guide GC31-8090

Resource Definition Reference SC31-6498

Books from VSE/ESA 2.4 optional program libraries

C for VSE/ESA (C/VSE)

Book title Order number

C Run-Time Library Reference SC33-6689

C Run-Time Programming Guide SC33-6688

Diagnosis Guide GC09-2426

Installation and Customization Guide GC09-2422

Language Reference SC09-2425

Licensed Program Specification GC09-2421

Migration Guide SC09-2423

User’s Guide SC09-2424

COBOL for VSE/ESA (COBOL/VSE)

Book title Order number

Debug Tool for VSE/ESA Fact Sheet GC26-8925

Debug Tool for VSE/ESA Installation and Customization Guide SC26-8798

Debug Tool for VSE/ESA User’s Guide and Reference SC26-8797

Diagnosis Guide SC26-8528

General Information GC26-8068

Installation and Customization Guide SC26-8071

Language Reference SC26-8073

Licensed Program Specifications GC26-8069

Migration Guide GC26-8070

Migrating VSE Applications To Advanced COBOL GC26-8349

Programming Guide SC26-8072

194 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

DB2 Server for VSE

Book title Order number

Application Programming SC09-2393

Database Administration GC09-2389

Installation GC09-2391

Interactive SQL Guide and Reference SC09-2410

Operation SC09-2401

Overview GC08-2386

System Administration GC09-2406

 DL/I VSE

Book title Order number

Application and Database Design SH24-5022

Application Programming: CALL and RQDLI Interface SH12-5411

Application Programming: High-Level Programming Interface SH24-5009

Database Administration SH24-5011

Diagnostic Guide SH24-5002

General Information GH20-1246

Guide for New Users SH24-5001

Interactive Resource Definition and Utilities SH24-5029

Library Guide and Master Index GH24-5008

Licensed Program Specifications GH24-5031

Low-level Code and Continuity Check Feature SH20-9046

Library Guide and Master Index GH24-5008

Messages and Codes SH12-5414

Recovery and Restart Guide SH24-5030

Reference Summary: CALL Program Interface SX24-5103

Reference Summary: System Programming SX24-5104

Reference Summary: HLPI Interface SX24-5120

Release Guide SC33-6211

PL/I for VSE/ESA (PL/I VSE)

Book title Order number

Compile Time Messages and Codes SC26-8059

Debug Tool For VSE/ESA User’s Guide and Reference SC26-8797

Diagnosis Guide SC26-8058

Installation and Customization Guide SC26-8057

Language Reference SC26-8054

Licensed Program Specifications GC26-8055

Migration Guide SC26-8056

Programming Guide SC26-8053

Reference Summary SX26-3836

Screen Definition Facility II (SDF II)

 Bibliography 195

Book title Order number

VSE Administrator's Guide SH12-6311

VSE General Introduction SH12-6315

VSE Primer for CICS/BMS Programs SH12-6313

VSE Run-Time Services SH12-6312

196 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or
features discussed in this document in other countries. Consult your local IBM representative for information on the products
and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service
that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other country where such provisions are
inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information
herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in
the product(s) and/or the program(s) described in this publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information
between independently created programs and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM United Kingdom Laboratories, MP151, Hursley Park, Winchester, Hampshire,
England, SO21 2JN. Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of
the IBM Customer Agreement, IBM International Programming License Agreement, or any equivalent agreement between us.

 Copyright IBM Corp. 1992, 1999 197

Programming interface information

This book is intended to help you use the CICS/VSE Front End Programming Interface. This book primarily documents
General-use Programming Interface and Associated Guidance Information provided by CICS.

General-use programming interfaces allow the customer to write programs that obtain the services of CICS.

However, this book also documents Product-sensitive Programming Interface and Associated Guidance Information and
Diagnosis, Modification or Tuning Information provided by CICS.

Product-sensitive programming interfaces allow the customer installation to perform tasks such as diagnosing, modifying,
monitoring, repairing, tailoring, or tuning of CICS. Use of such interfaces creates dependencies on the detailed design or
implementation of the IBM software product. Product-sensitive programming interfaces should be used only for these
specialized purposes. Because of their dependencies on detailed design and implementation, it is to be expected that
programs written to such interfaces may need to be changed in order to run with new product releases or versions, or as a
result of service.

Product-sensitive Programming Interface and Associated Guidance Information is identified where it occurs, by an introductory
statement to a chapter or section.

Diagnosis, Modification or Tuning Information is provided to help you diagnose problems with CICS.

Warning: Do not use this Diagnosis, Modification or Tuning Information as a programming interface.

Diagnosis, Modification or Tuning Information is identified where it occurs, by an introductory statement to a chapter or section.

Trademarks and service marks

The following terms, used in this publication, are trademarks or service marks of IBM Corporation in the United States or other
countries:

Other company, product, and service names may be trademarks or service marks of others.

ACF/VTAM CICS
CICS/ESA CICS/MVS
CICS/VSE C/370
IBM IMS/ESA
VTAM

198 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

 Index

Numerics
16MB line, AMODE setting for FEPI 27
3270 data stream

data formats 117
data-stream-level commands 8
glossary entry 189
pass-through sample program 174

3278 device type 75
3279 device type 75

A
abends 95
access program 10, 119

glossary entry 185
ACQFAIL event 34
ACQNUM option

FEPI INQUIRE CONNECTION 72
FEPI INQUIRE NODE 74

ACQSTATUS option
FEPI ADD 69
FEPI INQUIRE CONNECTION 72
FEPI INQUIRE NODE 74
FEPI INSTALL NODELIST 80
FEPI INSTALL POOL 81
FEPI SET CONNECTION 85
FEPI SET NODE 86

ACQSTATUS, resource status 37
Acquired

CEMT INQUIRE FECONNECTION 50
CEMT INQUIRE FENODE 51

ACQUIRED option
CEMT SET FECONNECTION 55
CEMT SET FENODE 56

ACQUIRED resource status 37
ACQUIRING, resource status 37
ADD POOL command 69
ADDFAIL event 34
addressing mode 27, 103
AID (attention identifier), screen-image data 110
ALARMSTATUS option

FEPI CONVERSE FORMATTED 142
FEPI RECEIVE FORMATTED 151

ALL option
CEMT SET FECONNECTION 55
CEMT SET FENODE 56
CEMT SET FEPOOL 57
CEMT SET FETARGET 58

ALLOCATE command 136
conversation 123
PASSCONVID 136
POOL 137

ALLOCATE POOL 137
AMODE setting

application programs 103
system programs 27

analysis and planning 15
AP NOOP 138
APAR (Authorized Program Analysis Report) 5

glossary entry 185
Appl

CEMT INQUIRE FETARGET 54
APPL option

FEPI INQUIRE TARGET 79
application minor nodes, VTAM 24
application programming 99

commands 8, 135
components of FEPI programs 10, 119
conversational 121, 123
CVDA values 181, 182
data stream integrity 113
design 119
error handling

See error handling
FEPI use of ‘application’ xi
general sequence of commands 105
IMS considerations 128
IMS response mode 129
interface, glossary entry 185
one-out one-in conversational 121
performance considerations 39, 130
pseudoconversational 121
RESP2 values 183
writing FEPI programs 103

APPLLIST option
FEPI INSTALL TARGETLIST 84

assembler language
copybook 27, 135
sample programs 161

ATI (automatic transaction initiation)
controlling FEPI resources 29
glossary entry 185
unsolicited data 120

attention
general sequence of commands 105
keys 106, 157
multiple attentions 108
sending screen-image data 109

authorized program analysis report (APAR)
See APAR (authorized program analysis report)

automatic transaction initiation (ATI)
See ATI (automatic transaction initiation)

availability
See also XRF (extended recovery facility)
of network resources 24

 Copyright IBM Corp. 1992, 1999 199

B
back-end system 4

CICS sample program 163
configuration of 26
glossary entry 185
hardware and software requirements 5
IMS considerations 128
IMS sample programs 165
initial data 120
message sent after a bind 120
planning 15
sample configuration 31
XRF takeover 43

BACKGROUND option
FEPI EXTRACT FIELD 145

begin-session handler 10
application design 120
defining to FEPI 18, 29
glossary entry 185
IMS considerations 129
sample program 169

BEGINSESSION option
FEPI INQUIRE POOL 75
FEPI INQUIRE PROPERTYSET 77
FEPI INSTALL PROPERTYSET 82

BEING ACQUIRED status 37
BEING RELEASED status 37
bind

back-end system message after a bind 120
communication and conversations 101
device query 120
glossary entry 185
handling unsolicited binds with CLSDST(PASS) 34, 35
introduction to FEPI resources 10
removing bind races 42
selection of FEPI session parameters 25
XRF takeover 42

bind race, glossary entry 185
bracket

glossary entry 185
bypass

handling in application 127
using in user exit 36

C
C/370 language

copybook 27, 135
nulls in screen image 110
sample programs 161

card reader, sending key stroke data 106
CDSA storage requirements 19
CECI transaction

debugging FEPI programs 28, 103
glossary entry 185

CEMT transaction 47
after FEPI failure 41
DISCARD 48
glossary entry 185
INQUIRE FECONNECTION 49
INQUIRE FENODE 51
INQUIRE FEPOOL 52
INQUIRE FEPROPSET 53
INQUIRE FETARGET 54
SET FECONNECTION 55
SET FENODE 56
SET FEPOOL 57
SET FETARGET 58

CETR transaction 59, 94
CHAIN option

FEPI CONVERSE DATASTREAM 139
FEPI RECEIVE DATASTREAM 149

chain, receiving a 117
CICS (Customer Information Control System) 186

back-end
sample program 163
terminal definitions 26

CICS-supplied transactions 47
default startup group list, DFHLIST 21, 22
EXEC CICS command format 67, 135
front-end, configuration of 23
ISC and MRO considerations 3
RDO group DFHFEPI 21
shutdown 40
startup procedure 22
updating definitions 21, 23

CLSDST(PASS) 35
COBOL language

copybook 27, 135
example of sending screen-image data 109
sample programs 161

COLLECT STATISTICS command 40
COLOR option

FEPI EXTRACT FIELD 145
color support

device attributes 18
getting colors 145
storage requirements 20
VTAM configuration 24

COLUMNS option
FEPI CONVERSE FORMATTED 142
FEPI RECEIVE FORMATTED 151

command-level interpreter (CECI)
See CECI transaction

command-level security 12, 22
commands

application programming reference section 135
CEMT DISCARD 48
copy books for RESP2 values 27, 135
CVDA values 181, 182
data-stream-level 8, 113

200 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

commands (continued)
errors and exception conditions 27, 103
format 67, 135
formatted data 8
general sequence 105, 114
high-level FEPI 8
introduction to FEPI commands 8
key stroke interface 8, 105
list of FEPI commands 9
performance considerations 39
RESP2 values 183
screen-image interface 8, 105
SNA 134
specialized-level 8, 133
storage requirements 19
system programming 27, 67
VTAM-level 8

communication
error handling 127
general considerations 101
resources 101

conditions
error and exception 67, 135

configuration
16MB line 27
AMODE setting 27
example of 30
of back-end CICS and IMS systems 26
of CICS 23
of FEPI

coding of programs 27
global user exits 36
monitoring program 33
sample 30
setup program 28
writing operator transactions 37

of VTAM
application minor nodes 24
ISTINCLM mode table 24
session pacing values 26
session parameters 24

planning 15
programs, design of 27
sample programs 30, 166

connection 10
acquiring and releasing 37
controlling waits with event handlers 29
determining contents of a pool 37
glossary entry 186
INQUIRE CONNECTION command 72
sample configuration 32
SET CONNECTION command 85
storage requirements 19
waiting in RELEASING state 37

contention mode 108, 115
glossary entry 186

CONTENTION option
FEPI INQUIRE POOL 75
FEPI INQUIRE PROPERTYSET 77
FEPI INSTALL PROPERTYSET 82

CONTROL option
FEPI ISSUE 148

conventions used by FEPI
node names 24
pool names 18
property set names 19
syntax notation used in this book viii
systems and data flow 7

conversation ID 123
conversation identifier 123
conversations 101, 123

design of conversational applications 121
glossary entry 186
ownership of 123
passing conversations 124
previously allocated 138, 141
state of 38
storage requirements 19
temporary 124, 138, 141
terminology xi
unknown conversation ID, error handling 127

CONVERSE
data stream applications 117
DATASTREAM 138
FORMATTED 140
key stroke and screen image applications 112

CONVID field
start data 156
TDQ record 89

CONVID option
FEPI ALLOCATE POOL 137
FEPI CONVERSE DATASTREAM 139
FEPI CONVERSE FORMATTED 142
FEPI EXTRACT CONV 144
FEPI EXTRACT FIELD 145
FEPI EXTRACT STSN 146
FEPI FREE 147
FEPI ISSUE 148
FEPI RECEIVE DATASTREAM 149
FEPI RECEIVE FORMATTED 151
FEPI REQUEST PASSTICKET 152
FEPI SEND DATASTREAM 153
FEPI SEND FORMATTED 154
FEPI START 155

CONVNUM option
FEPI INQUIRE CONNECTION 72

CSZL transient data queue
command errors 27, 68
defining 21

CSZX transient data queue
command errors 27, 90
defining 21

 Index 201

CSZX transient data queue (continued)
record format 89
reporting unexpected events 33

CURSOR option
FEPI RECEIVE FORMATTED 151
FEPI SEND FORMATTED 154

cursor setting 107, 110
Customer Information Control System

See CICS (Customer Information Control System)
customization

global user exits 61
journaling 65

CVDA values 181
CZBC transaction 163
CZBI transaction 165
CZPA transaction 177
CZPS transaction 176
CZQS transaction 178
CZTD transaction 174
CZTK transaction 170
CZTR transaction 173
CZTS transaction 171
CZUC transaction 169
CZUU transaction 175
CZUX transaction 167
CZXS transaction 166

D
data formats

inbound data 157
journaling 65
start data 156
TD queue records 89

data handling, using property set for 18, 28
data stream applications 8

3270 pass-through sample program 174
converse 117
data formats 157
data stream integrity 113
FEPI commands 8
glossary entry 186
receiving 114
sending 116
SLU P mode 118
SLU2 mode 117
writing 113

DATATYPE field
start data 156
TDQ record 89

DBCS (double-byte character set)
errors sending key stroke data 107
formatted, SLU2 mode 157
glossary entry 186
key stroke format 157

DCT (destination control table)
defining transient data queues 21
glossary entry 186

debugging 28, 91
See also error handling

default CICS startup group list, DFHLIST 21, 22
definite responses 119, 133
definitions

for sample programs 161
sample 31
updating CICS 21

DELETE POOL command 70
DELETEFAIL event 35
design

access program 119
application organization 121
begin-session handler 120
end-session handler 121
programs 119
unsolicited-data handler 120

destination control table (DCT)
See DCT (destination control table)

Device
CEMT INQUIRE FEPOOL 52

device attributes, using property set for 18, 28
DEVICE field

start data 156
TDQ record 89

DEVICE option
FEPI EXTRACT CONV 144
FEPI INQUIRE POOL 75
FEPI INQUIRE PROPERTYSET 77
FEPI INSTALL PROPERTYSET 82

device query 120
device-type, VTAM logon mode table entries 24
DFHFEPI, RDO group 21, 22
DFHLIST, default CICS startup group list 21, 22
DFHSIT

See SIT (system initialization table)
DFHSZ4099E message 96
DFHSZ4155I message 96
DFHSZAPA, copy book 27, 135
DFHSZAPC, copy book 27, 135
DFHSZAPO, copy book 27, 135
DFHSZAPP, copy book 27, 135
DISCARD command

NODELIST 70
POOL 71
PROPERTYSET 71
TARGETLIST 71

DISCARDFAIL event 33
distributed program link, shipping FEPI applications 23
double-byte character set

See DBCS (double-byte character set)
DRx responses 119, 133

202 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

dumps
FEPI 91

E
ECDSA storage requirements 19
EDF (Execution Diagnostic Facility)

debugging FEPI programs 28, 103
FEPI problem determination aids 91
glossary entry 186

EIB (EXEC interface block) 68, 136
end-session handler 10

application design 121
defining to FEPI 18, 29
glossary entry 186
IMS considerations 129
sample program 175

ENDSESSION option
FEPI INQUIRE POOL 75
FEPI INQUIRE PROPERTYSET 77
FEPI INSTALL PROPERTYSET 82

ENDSTATUS option
data stream 115
FEPI CONVERSE DATASTREAM 139
FEPI CONVERSE FORMATTED 142
FEPI RECEIVE DATASTREAM 149
FEPI RECEIVE FORMATTED 151
formatted data 108

environmental requirements 5
error handling 126

See also exception conditions
application programming commands 135
bad command sequencing 116
bypass by user exit 127
CONVERSE 112
general guidance 126
list of resources 28, 68
operator/system action 127
receiving data 108
receiving screen-image data 110
SEND failure 127
sending data

key stroke data 107
screen-image data 110

session loss 127
shutdown 128
system programming commands 68
time-outs 126
unknown conversation ID 127

ESCAPE option
FEPI CONVERSE FORMATTED 142
FEPI SEND FORMATTED 154

escape sequences 106, 157
ESM (external security manager)

general security considerations 22
glossary entry 186

ESM (external security manager) (continued)
PassTickets 11, 125

ESMREASON option
FEPI REQUEST PASSTICKET 152

ESMRESP option
FEPI REQUEST PASSTICKET 152

EVENTDATA field
start data 156
TDQ record 89

events, handling unexpected
See error handling
See unexpected events

EVENTTYPE field
start data 156
TDQ record 90

EVENTVALUE field
start data 156
TDQ record 90

example of FEPI configuration 30
exception conditions

See also error handling
application programs 103, 135
configuration programs 27
general considerations 27, 103
system programs 27, 67

exception queues
See transient data queues

exceptional events, handling
See unexpected events

EXCEPTIONQ option
FEPI INQUIRE POOL 75
FEPI INQUIRE PROPERTYSET 77
FEPI INSTALL PROPERTYSET 82

EXEC CICS command format
application programming 135
system programming 67

EXEC interface block (EIB) 68, 136
execution diagnostic facility (EDF)

See EDF (Execution Diagnostic Facility)
exit programming interface (XPI) 61

with XSZARQ global user exit 63
with XSZBRQ global user exit 62

exits, global user
See global user exits

extended data stream
device attributes 18, 28
getting attributes 107, 110
storage requirements 20
VTAM configuration 24

extended recovery facility (XRF)
See XRF (extended recovery facility)

external security manager (ESM)
See ESM (external security manager)

EXTRACT command
CONV 144
extracting field data 107, 111

 Index 203

EXTRACT command (continued)
FIELD 145
STSN 146

F
Feno

CEMT INQUIRE FENODE 51
FENODE option

CEMT DISCARD command 48
FEPI

applications 119
CICS-supplied transactions 47
commands 67, 135
configuration 23
environmental requirements 5
functions and services 7
hardware requirements 5
how it fits into your system 4
installation 21
introduction 3
operator control 47
planning 5, 15
programming interface 7
resources 9
sample programs 161
setup program

sample program 166
software requirements 5
storage requirements 5
system integrity 5
translator option 68, 136

FEPI commands
ADD POOL 69
ALLOCATE 136
ALLOCATE POOL 137
AP NOOP 138
application programming commands 135
CONVERSE DATASTREAM 138
CONVERSE FORMATTED 140
DELETE POOL 70
DISCARD NODELIST 70
DISCARD POOL 71
DISCARD PROPERTYSET 71
DISCARD TARGETLIST 71
EXTRACT CONV 144
EXTRACT FIELD 145
EXTRACT STSN 146
FREE 147
INQUIRE CONNECTION 72
INQUIRE NODE 74
INQUIRE POOL 75
INQUIRE PROPERTYSET 77
INQUIRE TARGET 79
INSTALL NODELIST 80
INSTALL POOL 81

FEPI commands (continued)
INSTALL PROPERTYSET 82
INSTALL TARGETLIST 84
ISSUE 148
RECEIVE DATASTREAM 149
RECEIVE FORMATTED 150
REQUEST PASSTICKET 152
SEND DATASTREAM 153
SEND FORMATTED 154
SET CONNECTION 85
SET NODE 86
SET POOL 87
SET TARGET 88
SP NOOP 89
START 155
system programming commands 67

FEPI configuration
coding of programs 27

addressing mode 27
exception conditions 27
system programming commands 27
translator option 27

debugging programs 28
example configuration 30
global user exits 36
monitoring program

sample program 167
triggering of 33
writing of 33

planning 15
sample configuration 30
setup program

optional functions 28
required functions 28
running of 28
sample 166

writing operator transactions 37
FEPI=YES|NO, system initialization parameter 22
FEPIRESOURCE, resource identifier for ESM 22
Fepo

CEMT INQUIRE FEPOOL 52
FEPOOL option

CEMT DISCARD 48
Fepr

CEMT INQUIRE FEPROPSET 53
FEPROPSET option

CEMT DISCARD 48
CEMT INQUIRE FEPROPSET 53

Feta
CEMT INQUIRE FETARGET 54

FETARGET option
CEMT DISCARD 48

FIELDATTR option
FEPI EXTRACT FIELD 145

FIELDLOC option
FEPI EXTRACT FIELD 145

204 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

FIELDNUM option
FEPI EXTRACT FIELD 145

FIELDS option
FEPI CONVERSE FORMATTED 142
FEPI RECEIVE FORMATTED 151

fields, getting data and attributes 107, 110
FJOURNALNUM option

FEPI INQUIRE POOL 75
FEPI INQUIRE PROPERTYSET 77
FEPI INSTALL PROPERTYSET 83

FLENGTH field
start data 156

FLENGTH option
FEPI EXTRACT FIELD 145
FEPI RECEIVE DATASTREAM 149
FEPI RECEIVE FORMATTED 151
FEPI SEND DATASTREAM 153
FEPI SEND FORMATTED 154
FEPI START 155

FMH option
FEPI CONVERSE DATASTREAM 139

FMHSTATUS option
FEPI CONVERSE DATASTREAM 139
FEPI RECEIVE DATASTREAM 149

FORCE option
FEPI FREE 147

forced shutdown 41
FORMAT field

start data 156
TDQ record 90

format of data
See data formats

FORMAT option
FEPI EXTRACT CONV 144
FEPI INQUIRE POOL 75
FEPI INQUIRE PROPERTYSET 77
FEPI INSTALL PROPERTYSET 83

formatted data 8
performance 131
programming 105
RECEIVE and EXTRACT field sample program 173
SEND and START sample program 171

FREE 147
FROM option

FEPI CONVERSE DATASTREAM 139
FEPI CONVERSE FORMATTED 142
FEPI SEND DATASTREAM 153
FEPI SEND FORMATTED 154

FROMCURSOR option
FEPI CONVERSE FORMATTED 142

FROMFLENGTH option
FEPI CONVERSE DATASTREAM 139
FEPI CONVERSE FORMATTED 142

front-end system 4
configuration 23
glossary entry 186

front-end system (continued)
hardware and software requirements 5
XRF takeover 42

function identifiers, journaling 65
function shipping, restrictions on 23
functions and services provided by FEPI 7

G
global user exits 61

glossary entry 187
introduction 36, 61
XSZARQ

exit-specific parameters 63
overview 63
return codes 63
UEPSZACN parameter 64
XPI calls 63

XSZBRQ
exit-specific parameters 62
modifiable parameters 61
overview 61
return codes 62
UEPSZACT parameter 64
XPI calls 62

glossary of terms and abbreviations 185
GOINGOUT status 37
good morning message 19, 120

H
handler, glossary entry 187
handling unexpected events

See error handling
See exception conditions
See unexpected events

hardware requirements 5
HILIGHT option

FEPI EXTRACT FIELD 145
HOLD option

FEPI FREE 147

I
immediate shutdown 41
IMS (Information Management System)

considerations for application design 128
end of session 129
glossary entry 187
message protocols 128
recovery 129
response mode 129
SLU P conversational sample program 176
SLU P recovery 130
SLU2 recovery 130
STSN handling 18, 133

sample program 178

 Index 205

IMS (Information Management System) (continued)
terminal definitions 26
unsolicited-data handler 120
using MFS 128

inbound data
3270 data stream considerations 117
data format 157
initial data 19, 120
journaling 65
terminology xi, 7

INITIALDATA option
FEPI INQUIRE POOL 75
FEPI INQUIRE PROPERTYSET 77
FEPI INSTALL PROPERTYSET 83

INPUTCONTROL option
FEPI EXTRACT FIELD 145

INQUIRE command
CONNECTION 72
NODE 74
POOL 75

use in event handlers 29
PROPERTYSET 77
TARGET 79

INQUIRE, CEMT
FECONNECTION 49
FENODE 51
FEPOOL 52
FEPROPSET 53
FETARGET 54

Inservice
CEMT INQUIRE FECONNECTION 49
CEMT INQUIRE FENODE 51
CEMT INQUIRE FEPOOL 52
CEMT INQUIRE FETARGET 54

INSERVICE option
CEMT SET FECONNECTION 55
CEMT SET FENODE 56
CEMT SET FEPOOL 57
CEMT SET FETARGET 58

INSERVICE status 37
INSTALL command

NODELIST 80
POOL 81
PROPERTYSET 82
TARGETLIST 84

Installed
CEMT INQUIRE FECONNECTION 49
CEMT INQUIRE FENODE 51
CEMT INQUIRE FEPOOL 52
CEMT INQUIRE FETARGET 54

INSTALLED status 38
INSTALLFAIL event 33
installing FEPI

defining security profiles 22
loading modules in the SVA 21
overview 21

installing FEPI (continued)
RDO definitions 22
sample programs 163
starting CICS 22
updating CICS definitions

PLTPI list 23
supplied RDO group, DFHFEPI 21
system initialization parameter, FEPI=YES|NO 22
transient data queues 21

INSTLSTATUS option
FEPI INQUIRE CONNECTION 72
FEPI INQUIRE NODE 74
FEPI INQUIRE POOL 75
FEPI INQUIRE TARGET 79

INSTLSTATUS, resource status 38
integrity of FEPI system 5
INTO option

FEPI CONVERSE DATASTREAM 139
FEPI CONVERSE FORMATTED 142
FEPI EXTRACT FIELD 145
FEPI RECEIVE DATASTREAM 149
FEPI RECEIVE FORMATTED 151

INVITE option
command sequence 114
FEPI SEND DATASTREAM 153

ISC (intersystem communication) 3
glossary entry 187
hardware requirements 5

ISSUE 148
sending SNA commands 134

ISTINCLM, LOGON mode table 24

J
journaling 12, 65

use of property set for 19, 28

K
key stroke and screen-image applications 8

CONVERSE 112
data formats 157
extracting field data 111
general sequence of commands 105
glossary entry 187
multiple attentions 108
performance considerations 131
receiving field-by-field 107
receiving screen-image data 110
sample programs

key stroke converse 170
screen image RECEIVE and EXTRACT 173
screen image SEND and START 171

sending key stroke data 106
sending screen-image data 109
writing 105

206 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

KEYSTROKES option
FEPI CONVERSE FORMATTED 142
FEPI SEND FORMATTED 154

L
Lacqcode

CEMT INQUIRE FECONNECTION 50
CEMT INQUIRE FENODE 51

LACQCODE option
resource status 38

LASTACQCODE option
FEPI INQUIRE CONNECTION 72
FEPI INQUIRE NODE 74

LINES option
FEPI CONVERSE FORMATTED 142
FEPI RECEIVE FORMATTED 151

list of resources
benefits of using 39
errors 28, 68

list processing 68
logical unit (LU)

See LU (logical unit)
LOGON mode table, VTAM 24
LU (logical unit)

See also SLU P
See also SLU2
See also terminal
glossary entry 187

M
magnetic stripe reader, sending key stroke data to 106
managing sessions, use of property set for 18, 28
manipulative keys 106, 157
MAXFLENGTH option

FEPI CONVERSE DATASTREAM 139
FEPI CONVERSE FORMATTED 142
FEPI EXTRACT FIELD 145
FEPI INQUIRE POOL 76
FEPI INQUIRE PROPERTYSET 77
FEPI INSTALL PROPERTYSET 83
FEPI RECEIVE DATASTREAM 149
FEPI RECEIVE FORMATTED 151

MDT (modified data tag) setting 109, 157
MDT option

FEPI EXTRACT FIELD 145
Message Format Services (MFS) 128
message protocols (IMS) 128
messages

format of FEPI messages 95
handling unexpected events 16
IMS protocols 128
message log, CSZL

See CSZL transient data queue
produced during XRF takeover 42

messages (continued)
resynchronizing with STSN 133
terminology xi

MFS (Message Format Services) 128
mode table, VTAM 24
modified data tag (MDT) setting 109, 157
module identifiers, journaling 65
monitoring program

glossary entry 187
handling CLSDST(PASS) 36
sample program 167
triggering of 33
writing of 33

monitoring, CICS
performance class records

FEPI-related fields 40
MRO (multiregion operation)

AOR considerations for FEPI 23
general considerations 3

MSGJRNL option
FEPI INQUIRE POOL 76
FEPI INQUIRE PROPERTYSET 77
FEPI INSTALL PROPERTYSET 83

multiple attentions 108

N
naming conventions

network resources 24
nodes 15, 24
pools 18
property sets 19
sample programs 7
targets 15
VTAM 24

network availability 24
no response, glossary entry 187
node

acquiring and releasing 37
CEMT INQUIRE FECONNECTION 49
CEMT INQUIRE FENODE 51
defining to VTAM 24
definition of 9
determining contents of a pool 37
glossary entry 187
INQUIRE NODE command 74
name restrictions 24
number of nodes 17
sample node lists 31
SET NODE command 86
setup sample program 166
storage requirements 19
terminology xi

NODE field
start data 156
TDQ record 90

 Index 207

NODE option
CEMT SET FECONNECTION 55
FEPI EXTRACT CONV 144
FEPI INQUIRE CONNECTION 72
FEPI INQUIRE NODE 74
FEPI SET CONNECTION 85
FEPI SET NODE 86

NODELIST option
FEPI ADD 69
FEPI DELETE 70
FEPI DISCARD NODELIST 70
FEPI INSTALL NODELIST 80
FEPI INSTALL POOL 81
FEPI SET CONNECTION 85
FEPI SET NODE 86

nodename option
CEMT SET FENODE 56

NODENUM option
FEPI ADD 69
FEPI DELETE 70
FEPI DISCARD NODELIST 70
FEPI INSTALL NODELIST 80
FEPI INSTALL POOL 81
FEPI SET CONNECTION 85
FEPI SET NODE 86

non-response mode, glossary entry 187
normal shutdown 41
notation, syntax viii
Notinstalled

CEMT INQUIRE FECONNECTION 49
CEMT INQUIRE FENODE 51
CEMT INQUIRE FEPOOL 52
CEMT INQUIRE FETARGET 54

NOTINSTALLED status 38

O
one-out one-in conversational applications

application design 121
sample program 176

operator control
commands 47
FEPI trace 59
operator/system action error 127
transactions, user-written 37
VTAM commands 59

operator/system action error 127
order of FEPI commands 105, 114
organizing pools 17
organizing property sets 18
outbound data

3270 data stream considerations 117
data formats 157
journaling 65
terminology xi, 7

OUTLINE option
FEPI EXTRACT FIELD 145

Outservice
CEMT INQUIRE FECONNECTION 49
CEMT INQUIRE FENODE 51
CEMT INQUIRE FEPOOL 52
CEMT INQUIRE FETARGET 54

OUTSERVICE option
CEMT SET FECONNECTION 55
CEMT SET FENODE 56
CEMT SET FEPOOL 57
CEMT SET FETARGET 58

OUTSERVICE status 37

P
pacing of FEPI sessions 26
partner system

See back-end system
PASS option

FEPI FREE 147
pass-through

contention state handling 115
problem with received data 115
sample program 174

PASSCONVID option
FEPI ALLOCATE PASSCONVID 136
getting ownership of conversations 124

passing conversations 124
PASSTICKET option

FEPI REQUEST PASSTICKET 152
PassTickets, for signon security 11, 125
PASSWORDLIST option

FEPI INSTALL NODELIST 80
PERFORM STATISTICS RECORD command 40
performance

application programs 39
formatted data 131
key stroke and screen-image applications 131
optimization through application design 130
tuning using CICS monitoring data 40
tuning using CICS statistics data 40

performance class monitoring records 40
persistent sessions, VTAM

use of with FEPI 44
PL/I language

copybook 27, 135
sample programs 161

planning
back-end applications 15
configuration 15
general considerations 5, 15
grouping of connections, for functional purposes 17
handling special events 16
journaling requirements 16
names of nodes and targets 15

208 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

planning (continued)
number of nodes 17
operator control requirements 16
organizing pools 17
organizing property sets 18
pools

using for control purposes 16
using for functional purposes 17

signon and signoff procedures 16
storage 19

PLT (program list table) 23, 28
glossary entry 187
post initialization (PLTPI) 23

PLTPI (program list table post initialization)
configuring CICS for FEPI 23
glossary entry 187
running setup programs 29

PLU (primary logical unit)
See also back-end system
glossary entry 187

Pool
CEMT INQUIRE FECONNECTION 49
CEMT INQUIRE FEPOOL 52

POOL field
start data 156
TDQ record 90

POOL option
FEPI ADD 69
FEPI ALLOCATE POOL 137
FEPI CONVERSE DATASTREAM 139
FEPI CONVERSE FORMATTED 143
FEPI DISCARD POOL 71
FEPI EXTRACT CONV 144
FEPI INQUIRE CONNECTION 72
FEPI INQUIRE POOL 76
FEPI INSTALL POOL 81
FEPI SET POOL 87

POOLLIST option
FEPI SET POOL 87

POOLNUM option
FEPI SET POOL 87

pools
connections in 37
definition of 9
determining contents of a pool 37
glossary entry 187
INQUIRE POOL command 75
INSTALL POOL command 81
name restrictions 18
organizing pools 17
sample configuration 30
SET POOL command 87
setup sample program 166
storage requirements 19
transient data queues 21, 33
using for control reasons 16

pools (continued)
using for functional reasons 17

POSITION option
FEPI EXTRACT FIELD 145

prerequisites, hardware and software 5
presentation space 187

glossary entry 187
previously allocated conversation 138, 141
primary logical unit (PLU)

See also back-end system
glossary entry 187

problem determination
See also error handling
See also exception conditions
abends 95
debugging 91
functions provided by FEPI 12
handling unexpected events 33
messages 95
reporting problems to IBM 96
shutdown not proceeding 41
trace 94
using CICS dumps 93
using FEPI dumps 91

program list table (PLT)
See PLT (program list table)

program list table post initialization (PLTPI)
See PLTPI (program list table post initialization)

Program Temporary Fix (PTF)
glossary entry 187

programming commands
See commands

property set
data handling 18, 28
definition of 9
device attributes 18, 28
DISCARD PROPERTYSET command 71
glossary entry 187
INQUIRE PROPERTYSET command 77
INSTALL PROPERTYSET command 82
journaling 19, 28
name restrictions 19
organizing 18
sample configuration 32
session management 18, 28
setup sample program 166
storage requirements 19
unexpected events 19, 28

PROPERTYSET option
FEPI DISCARD PROPERTYSET 71
FEPI INQUIRE POOL 76
FEPI INQUIRE PROPERTYSET 78
FEPI INSTALL POOL 81
FEPI INSTALL PROPERTYSET 83

PROTECT option
FEPI EXTRACT FIELD 146

 Index 209

PS option
FEPI EXTRACT FIELD 146

PS/55
FEPI device type 75
TYPETERM 26

pseudoconversational applications
application design 121
sample program 177

PTF (Program Temporary Fix)
glossary entry 188

Q
query, device 120
queue, transient data

See transient data queues

R
RDO (resource definition online)

definitions for sample programs 161
glossary entry 188
updating CICS definitions for FEPI 21
XRF considerations 42

RECEIVE command
completion 108, 114
DATASTREAM 149
error handling 108, 116
FORMATTED 150

receiving data
data stream applications 114
field-by-field 107
screen-image 110

reference section
application programming 135
operator commands 47
system programming 67

RELEASE option
FEPI FREE 147

Released
CEMT INQUIRE FECONNECTION 50
CEMT INQUIRE FENODE 51

RELEASED option
CEMT SET FECONNECTION 55
CEMT SET FENODE 56

RELEASED resource status 37
RELEASING, resource status 37
REMFLENGTH option

FEPI CONVERSE DATASTREAM 139
FEPI RECEIVE DATASTREAM 149

reporting FEPI problems to IBM 96
REQUEST PASSTICKET command 152
request unit (RU)

glossary entry 188
receiving 114

requirements, hardware and software 5
resource definition online (RDO)

See RDO (resource definition online)
resources

benefits of using list of resources 39
configuring 29
definitions 9
diagram showing relationship 9
sample configuration 30
status 37

RESP2 values
application programming commands 135
system programming commands 67
table of 183

response mode 129
response mode, glossary entry 188
responses

DRx responses 133
RESPSTATUS option

FEPI CONVERSE DATASTREAM 139
FEPI CONVERSE FORMATTED 143
FEPI RECEIVE DATASTREAM 150
FEPI RECEIVE FORMATTED 151

restriction on use of DFH
in node names 24
in pool names 18
in property set names 19

return codes
application programming 135
system programming 68
user exits 62, 63
VTAM 38

RU option
FEPI CONVERSE DATASTREAM 140
FEPI RECEIVE DATASTREAM 150

S
sample FEPI configuration 30
sample programs 161

3270 data stream pass-through 174
begin session 169
CICS back-end 163
end-session handler 175
FEPI configuration 30
IMS back-end 165
installing of 163
introduction 7
key stroke CONVERSE 170
monitor and unsolicited data handler 167
naming conventions 7
one-out one-in 176
program descriptions and code 161
pseudoconversational 177
screen image RECEIVE and EXTRACT FIELD 173
screen image SEND and START 171

210 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

sample programs (continued)
setup 166
SLU P one-out one-in 176
SLU P pseudoconversational 177
STSN handler 178
using the samples 163

sample resource definitions 31
screen-image applications

See key stroke and screen-image applications
screen-image interface 8, 188

See also key stroke and screen-image applications
data formats 157
RECEIVE and EXTRACT field sample program 173
SEND and START sample program 171

secondary logical unit (SLU)
glossary entry 188
terminals supported by FEPI 11

security
command-level 12, 22
handling violations with access program 119
restricting access to system programming commands 22
signoff 16
signon 11, 16, 119, 125
using an ESM 22
using PassTickets 11, 125

SEND command
DATASTREAM 153
error handling 127
errors 107, 108, 116
FORMATTED 154

sending data
data stream applications 116
key stroke data 106
screen image 109

sense data 127
SENSEDATA option

FEPI EXTRACT CONV 144
FEPI ISSUE 148

SEQNUMIN option
FEPI ALLOCATE POOL 137
FEPI CONVERSE DATASTREAM 140
FEPI EXTRACT STSN 146
FEPI RECEIVE DATASTREAM 150
FEPI SEND DATASTREAM 153

SEQNUMOUT option
FEPI ALLOCATE POOL 137
FEPI CONVERSE DATASTREAM 140
FEPI EXTRACT STSN 146
FEPI RECEIVE DATASTREAM 150
FEPI SEND DATASTREAM 153

sequence number handling 133
sequence of FEPI commands 105, 114
SERVSTATUS option

FEPI ADD 69
FEPI INQUIRE CONNECTION 73
FEPI INQUIRE NODE 74

SERVSTATUS option (continued)
FEPI INQUIRE POOL 76
FEPI INQUIRE TARGET 79
FEPI INSTALL NODELIST 80
FEPI INSTALL POOL 81
FEPI INSTALL TARGETLIST 84
FEPI SET CONNECTION 85
FEPI SET NODE 86
FEPI SET POOL 87
FEPI SET TARGET 88

SERVSTATUS, resource status 37
session 188

begin-session
See begin-session handler

end-session
See end-session handler

loss of 127
management using property sets 18, 28
pacing values 26
parameters, selection of 24

SESSION event 34
SESSIONFAIL event 34
SESSIONLOST event 34
set and test sequence number (STSN)

See STSN (set and test sequence number)
SET command

CONNECTION 85
NODE 86
POOL 87
TARGET 88

SET, CEMT
FECONNECTION 55
FENODE 56
FEPOOL 57
FETARGET 58

SETFAIL event 33
setup program, for FEPI resources 9, 17, 166

glossary entry 188
sample program 166

shutdown
error handling 128
of CICS 41
of FEPI 41

signon security 11, 16, 119, 125
SIT (system initialization table)

glossary entry 188
SIT parameter, FEPI=YES|NO 22

SIZE option
FEPI EXTRACT FIELD 146

SLU P 11
begin-session sample 169
data stream applications 118
glossary entry 188
IMS recovery 130
one-out one-in sample program 176
pseudoconversational sample program 177

 Index 211

SLU P (continued)
sample configuration 32
sample programs 161
STSN request 133

SLU (secondary logical unit)
glossary entry 188
terminals supported by FEPI 11

SLU P
device attributes 18

SLU2 11
begin-session sample 169
data stream applications 117
device attributes 18
glossary entry 188
IMS recovery 130
key stroke format 157
sample configuration 32
sample programs 161

SNA (Systems Network Architecture)
glossary entry 188
sending commands 134

software requirements 5
special keys 106, 157
specialized functions

DRx responses 133
SNA commands 134
STSN 133

START command 155
failure during shutdown 128

start data 122, 156
started tasks 122
State

CEMT INQUIRE FECONNECTION 50
STATE option

FEPI INQUIRE CONNECTION 73
STATE, resource status 39
statistics, CICS

FEPI-related
COLLECT STATISTICS command 40
PERFORM STATISTICS RECORD command 40

storage planning 19
stripe reader, sending key stroke data 106
STSN (set and test sequence number) 10

general considerations 133
glossary entry 188
sample program 178

STSN handler
defining to FEPI 28
glossary entry 188

STSN option
FEPI INQUIRE POOL 76
FEPI INQUIRE PROPERTYSET 78
FEPI INSTALL PROPERTYSET 83

syncpoints, use of in FEPI 119
syntax notation viii, 68, 136

system initialization table (SIT)
See SIT (system initialization table)

system programming commands 27, 67
Systems Network Architecture (SNA)

See SNA (Systems Network Architecture)
SZ, dump control keyword 91

T
takeover, XRF

See XRF (extended recovery facility)
target

CEMT INQUIRE FECONNECTION 49
definition of 9
determining contents of a pool 37
glossary entry 188
INQUIRE TARGET command 79
naming conventions 15
sample target lists 31
SET TARGET command 88
setup sample program 166
storage requirements 19

TARGET field
start data 156
TDQ record 90

TARGET option
CEMT SET FECONNECTION 55
FEPI ALLOCATE POOL 137
FEPI CONVERSE DATASTREAM 140
FEPI CONVERSE FORMATTED 143
FEPI EXTRACT CONV 144
FEPI INQUIRE CONNECTION 73
FEPI INQUIRE TARGET 79
FEPI SET CONNECTION 85
FEPI SET TARGET 88

TARGETLIST option
FEPI ADD 69
FEPI DELETE 70
FEPI DISCARD TARGETLIST 71
FEPI INSTALL POOL 81
FEPI INSTALL TARGETLIST 84
FEPI SET CONNECTION 85
FEPI SET TARGET 88

TARGETNUM option
FEPI ADD 69
FEPI DELETE 70
FEPI DISCARD TARGETLIST 71
FEPI INSTALL POOL 81
FEPI INSTALL TARGETLIST 84
FEPI SET CONNECTION 85
FEPI SET TARGET 88

tasks, started 122
TD queue

See transient data queues
temporary conversation 124

glossary entry 188

212 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

TERMID option
FEPI START 155

terminal
back-end definitions 26
simulated terminal usage 121
SLU P

See SLU P
SLU2

See SLU2
storage requirements 19
VTAM logon mode table entries 24
XRF environment 42

time-outs, error handling 126
TIMEOUT option

FEPI ALLOCATE POOL 137
FEPI CONVERSE DATASTREAM 140
FEPI CONVERSE FORMATTED 143
FEPI RECEIVE DATASTREAM 150
FEPI RECEIVE FORMATTED 151
FEPI START 155

TOCURSOR option
FEPI CONVERSE FORMATTED 143

TOFLENGTH option
FEPI CONVERSE DATASTREAM 140
FEPI CONVERSE FORMATTED 143

trace control 59
trace points 94
transaction list table (XLT)

See XLT (transaction list table)
transactions

CEMT
See CEMT transaction

CETR 59, 94
CZBC 163
CZBI 165
CZPA 177
CZPS 176
CZQS 178
CZTD 174
CZTK 170
CZTR 173
CZTS 171
CZUC 169
CZUU 175
CZUX 167
CZXS 166

TRANSID option
FEPI START 155

transient data queues
command errors 27
CSZL, for FEPI messages 21
CSZX, for unexpected events 21
defining to CICS 21
handling 33
planning 16
pool-specific 21, 33

transient data queues (continued)
records 89
sample program 167
unexpected event reporting 33

translator options
application programming commands 136
FEPI option 27, 136
system programming commands 68

TRANSPARENCY option
FEPI EXTRACT FIELD 146

TYPETERMs for CICS back-end systems 26

U
UEPSZACN, exit-specific parameter for XSZARQ 64
UEPSZACT, exit-specific parameter for XSZBRQ 64
unbind, glossary entry 189
unexpected events 21

See also error handling
in CSZX TD queue 33
in pool-specific TD queue 16, 34
using event handlers 29
using property set for 19, 28

unknown conversation ID, error handling 127
UNSOLDATA option

FEPI INQUIRE POOL 76
FEPI INQUIRE PROPERTYSET 78
FEPI INSTALL PROPERTYSET 83

UNSOLDATACK option
FEPI INQUIRE POOL 76
FEPI INQUIRE PROPERTYSET 78
FEPI INSTALL PROPERTYSET 83

unsolicited data-handler
sample program 167

unsolicited-data handler 10
application design 120
defining to FEPI 19, 28
glossary entry 189

UNTILCDEB option
FEPI CONVERSE DATASTREAM 140
FEPI RECEIVE DATASTREAM 150

user exits
See global user exits

USERDATA field
start data 156

USERDATA option
FEPI INQUIRE CONNECTION 73
FEPI INQUIRE NODE 74
FEPI INQUIRE POOL 76
FEPI INQUIRE TARGET 79
FEPI SET CONNECTION 85
FEPI SET NODE 86
FEPI SET POOL 87
FEPI SET TARGET 88
FEPI START 155

 Index 213

V
VALIDATION option

FEPI EXTRACT FIELD 146
VALUE option

FEPI ISSUE 148
VSE

Integrity Programming Announcement 5
VTAM (Virtual Telecommunications Access Method)

APPL statement 24
application minor nodes 24
BIND during XRF takeover 42
CLSDST(PASS) 35
commands 59
configuration of 24
D NET command 59
D NET SESSIONS command 59
FEPI commands 8
ISTINCLM, supplied mode table 24
LOGON mode table 24
minor nodes, sample configuration 32
naming conventions 24
password protection 24
persistent sessions 44
program-to-program support 4
releasing a connection 37
session pacing values 26
session parameters 24
V NET command 59
V NET TERM command 59
XRF considerations 42

VTAM persistent sessions
use of with FEPI 44

W
Waitconvnum

CEMT INQUIRE FECONNECTION 50
CEMT INQUIRE FEPOOL 52

WAITCONVNUM option
event handlers 29
FEPI INQUIRE CONNECTION 73
FEPI INQUIRE POOL 76

WAITCONVNUM resource status 39
WCC (write control character)

handling 117
writing application programs 103

See also application programming

X
XLT (transaction list table)

application programming 128
glossary entry 189
operations 41

XPI (exit programming interface) 61
with XSZARQ global user exit 63
with XSZBRQ global user exit 62

XRF (extended recovery facility) 41
See also availability
back-end system configuration 26
FEPI resource definition 42
glossary entry 189
takeover of back-end CICS 43, 44

effect on applications 43
effect on FEPI connections 44

takeover of FEPI CICS 42, 43
effect on alternate CICS 43
effect on back-end terminals 43
effect on back-end transactions 42

varying setup resources 29
VTAM considerations 42

XSZARQ, global user exit
exit-specific parameters 63
overview 63
return codes 63
UEPSZACN parameter 64
XPI calls 63

XSZBRQ, global user exit
exit-specific parameters 62
modifiable parameters 61
overview 61
return codes 62
UEPSZACT parameter 64
XPI calls 62

214 CICS Transaction Server for VSE/ESA Front End Programming Interface User’s Guide

Sending your comments to IBM
CICS Transaction Server for VSE/ESA 

Front End Programming Interface User’s Guide

SC33-1662-00

If you want to send to IBM any comments you have about this book, please use one of the methods
listed below. Feel free to comment on anything you regard as a specific error or omission in the subject
matter, and on the clarity, organization or completeness of the book itself.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

 � By mail:

IBM UK Laboratories
 Information Development

Mail Point 095
 Hursley Park

Winchester, SO21 2JN
 England

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: HURSLEY(IDRCF)
 – Email: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

IBM

Program Number: 5648-054

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1662-ðð

Spine information:

IBM CICS TS for VSE/ESA Front End Programming Interface User’s Guide Release 1

	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book
	CICS syntax notation used in this book
	Notes on terminology
	Road map

	Part 1. Concepts and facilities
	Chapter 1. Introducing FEPI
	Problems FEPI can solve
	How FEPI fits into your system
	Planning for FEPI

	Chapter 2. Functions and services
	Introducing FEPI functions
	Programming commands
	Setup and resources
	CICS FEPI application programs
	Terminals supported
	Security
	Problem determination, customization, and performance

	Part 2. Installation and administration
	Chapter 3. Planning for FEPI
	Analysis and planning
	Organizing your pools and property sets
	Planning FEPI storage

	Chapter 4. Getting started
	The installation process

	Chapter 5. Configuring FEPI
	CICS configuration
	VTAM configuration
	Back-end system configuration
	FEPI configuration

	Chapter 6. FEPI operation
	Controlling FEPI resources
	Performance
	Shutdown
	Using FEPI with XRF
	Using FEPI with VTAM persistent sessions

	Chapter 7. Operator control
	CEMT—master terminal transaction
	CEMT DISCARD
	CEMT INQUIRE FECONNECTION
	CEMT INQUIRE FENODE
	CEMT INQUIRE FEPOOL
	CEMT INQUIRE FEPROPSET
	CEMT INQUIRE FETARGET
	CEMT SET FECONNECTION
	CEMT SET FENODE
	CEMT SET FEPOOL
	CEMT SET FETARGET
	CETR—trace control transaction
	VTAM commands

	Chapter 8. Customizing FEPI
	Global user exits
	Journaling

	Chapter 9. System programming reference
	General information about the FEPI SPI commands
	FEPI ADD POOL
	FEPI DELETE POOL
	FEPI DISCARD NODELIST
	FEPI DISCARD POOL
	FEPI DISCARD PROPERTYSET
	FEPI DISCARD TARGETLIST
	FEPI INQUIRE CONNECTION
	FEPI INQUIRE NODE
	FEPI INQUIRE POOL
	FEPI INQUIRE PROPERTYSET
	FEPI INQUIRE TARGET
	FEPI INSTALL NODELIST
	FEPI INSTALL POOL
	FEPI INSTALL PROPERTYSET
	FEPI INSTALL TARGETLIST
	FEPI SET CONNECTION
	FEPI SET NODE
	FEPI SET POOL
	FEPI SET TARGET
	FEPI SP NOOP
	Transient data queue records

	Chapter 10. Problem determination
	Debugging FEPI applications
	FEPI dump
	FEPI trace
	FEPI messages
	FEPI abends
	Reporting a FEPI problem to IBM

	Part 3. Application programming
	Chapter 11. Basics
	Communication and conversations
	Structure and design

	Chapter 12. Key stroke and screen-image applications
	General sequence of commands
	Sending key stroke data
	Receiving field-by-field
	Multiple attentions
	Sending screen-image data
	Receiving screen-image data
	Extracting field data
	CONVERSE

	Chapter 13. Data stream applications
	When to use the data stream interface
	General sequence of commands
	Receiving
	Sending
	CONVERSE
	SLU2 mode considerations
	SLU P mode considerations

	Chapter 14. Application design
	Programs
	Application organization
	Signon security
	Error handling
	System considerations

	Chapter 15. Specialized functions
	Set and test sequence number (STSN)
	DRx responses
	SNA commands

	Chapter 16. Application programming reference
	General information about the FEPI API commands
	FEPI ALLOCATE PASSCONVID
	FEPI ALLOCATE POOL
	FEPI AP NOOP
	FEPI CONVERSE DATASTREAM
	FEPI CONVERSE FORMATTED
	FEPI EXTRACT CONV
	FEPI EXTRACT FIELD
	FEPI EXTRACT STSN
	FEPI FREE
	FEPI ISSUE
	FEPI RECEIVE DATASTREAM
	FEPI RECEIVE FORMATTED
	FEPI REQUEST PASSTICKET
	FEPI SEND DATASTREAM
	FEPI SEND FORMATTED
	FEPI START
	Start data
	Data formats
	Ending status

	Part 4. Appendixes
	Appendix A. Sample programs
	What you get
	Installing the samples
	Using the samples
	Description of the samples

	Appendix B. CVDA and RESP2 values
	CVDAs and numeric values in alphabetic sequence
	CVDAs and numeric values in numeric sequence
	RESP2 values

	Glossary
	Bibliography
	Books from VSE/ESA 2.4 base program libraries
	Books from VSE/ESA 2.4 optional program libraries

	Notices
	Programming interface information
	Trademarks and service marks

	Index

