

CICS Transaction Server for VSE/ESA IBM

Shared Data Tables Guide
Release 1

 SC33-1668-00

CICS Transaction Server for VSE/ESA IBM

Shared Data Tables Guide
Release 1

 SC33-1668-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page 97.

First Edition (June 1999)

This edition applies to Release 1 of CICS Transaction Server for VSE/ESA, program number 5648-054, and to all subsequent
versions, releases, and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.

The CICS for VSE/ESA Version 2.3 edition remains applicable and current for users of CICS for VSE/ESA Version 2.3.

This book is based on the Data Tables Guide.

Order publications through your IBM representative or the IBM branch office serving your locality.

At the back of this publication is a page entitled “Sending your comments to IBM”. If you want to make any comments, please use
one of the methods described there.

 Copyright International Business Machines Corporation 1992, 1998. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Preface . v
What this book is about . v
Who should read this book . v
What you need to know to understand this book v

Notes on terminology . vi
Road map . viii

Chapter 1. Introduction . 1
The concept of shared data tables . 1
Description of data tables . 2
Data table sharing environment . 2
Source data set . 3
Data space . 3
Global user exits . 3
Benefits of shared data tables . 3
How a remote file is accessed . 4
How a data table is shared . 5

Chapter 2. CICS-maintained data table . 9
CMT application programming . 9
CMT resource definition . 9
CMT operations . 10

Chapter 3. User-maintained data table . 11
UMT application programming . 11
UMT resource definition . 11
UMT operations . 12

Chapter 4. Planning to use data tables . 15
Performance benefits of using data tables . 15
Selecting files for use as data tables . 16
Security checking . 23
SDT support on different releases of CICS . 23
Preparing to use SDT support . 24

Chapter 5. Application programming for shared data tables 27
Application programming for a CICS-maintained data table 27
Application programming for a user-maintained data table 28
Using cross-memory services . 30
Differences between function-shipping and cross-memory services 31
Differences between SDT services and VSAM 33

Chapter 6. Managing SDT resource definitions 35
Defining an SDT . 36
Using EXEC CICS commands to manage SDT definitions 39
Using CEMT commands to manage SDT definitions 40

Chapter 7. Using the CICS-supplied global user exits 41
Activating user exits . 41
Communicating between CICS and exit programs 42

 Copyright IBM Corp. 1992, 1998 iii

XDTRD user exit . 44
XDTAD user exit . 45
XDTLC user exit . 46

Chapter 8. Using shared data tables services 47
Opening a data table . 47
Closing a data table . 48
Interpreting data table statistics . 48

Chapter 9. Investigating problems . 59
Using trace information . 59
Analyzing errors from the SVC . 63
Analyzing errors from cross-memory services 66
Using dump information . 66

Appendix A. Sample user exit programs . 69
Sample XDTRD exit program . 70
Sample XDTAD exit program . 79
Sample XDTLC exit program . 85

Bibliography . 91
Books from VSE/ESA 2.4 base program libraries 92
Books from VSE/ESA 2.4 optional program libraries 94

Notices . 97
Trademarks and service marks . 98
Programming interface information . 98

Index . 99

iv CICS Transaction Server for VSE/ESA Shared Data Tables Guide

 Preface

What this book is about
This book gives information about CICS shared data table services.

Who should read this book
This book is for anyone who is involved with CICS shared data tables in one or
more of the following areas:

 � Planning
 � Application programming
 � Resource definition
 � Customization
 � Operations
 � Problem determination

What you need to know to understand this book
You need to have a good understanding of the area of CICS that you are
responsible for.

You should understand how the following terms are used in this book:

Browse request
A STARTBR, RESETBR, ENDBR, READNEXT, or READPREV application
programming command.

Gap
When records are omitted from a CICS-maintained data table but are present
in the source data set, the range of omitted keys is referred to as a “gap” in the
key sequence.

Imprecise key
A record key that is specified with the GENERIC or GTEQ option in an
application programming command.

Precise key
A record key that is specified without the GENERIC or GTEQ option in an
application programming command.

Update request
A WRITE, DELETE, READ UPDATE, or REWRITE application programming
command.

 Copyright IBM Corp. 1992, 1998 v

Notes on terminology
The terms listed in Table 1 are commonly used in the CICS Transaction Server for
VSE/ESA Release 1 library. See the CICS Glossary for a comprehensive definition
of terminology.

Table 1 (Page 1 of 2). Commonly used words and abbreviations in CICS Transaction
Server for VSE/ESA Release 1

Term Definition (and abbreviation if
appropriate)

$(the dollar symbol) In the programming examples in this
book, the dollar symbol ($) is used as a
national currency symbol. In countries
where the dollar is not the national
currency, the local currency should be
used.

BSM BSM is used to indicate the basic security
management supplied as part of the
VSE/ESA product. It is
RACROUTE-compliant, and provides the
following functions:

 � Signon security
� Transaction attach security

C The C programming language

CICSplex A CICSplex consists of two or more
regions that are linked using CICS
intercommunication facilities. Typically, a
CICSplex has at least one
terminal-owning region (TOR), more than
one application-owning region (AOR), and
may have one or more regions that own
the resources accessed by the AORs

CICS Data Management Facility The new CICS Transaction Server for
VSE/ESA Release 1 facility to which all
statistics and monitoring data is written,
generally referred to as “DMF”

CICS/VSE The CICS product running under the
VSE/ESA operating system, frequently
referred to as simply “CICS”

COBOL The COBOL programming language

DB2 for VSE/ESA Database 2 for VSE/ESA which was
previously known as “SQL/DS”.

vi CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Table 1 (Page 2 of 2). Commonly used words and abbreviations in CICS Transaction
Server for VSE/ESA Release 1

Term Definition (and abbreviation if
appropriate)

ESM ESM is used to indicate a
RACROUTE-compliant external security
manager that supports some or all of the
following functions:

 � Signon security
� Transaction attach security

 � Resource security
 � Command security
 � Non-terminal security
� Surrogate user security
� MRO/ISC security (MRO, LU6.1 or

LU6.2)
 � FEPI security.

FOR (file-owning region)—also known as
a DOR (data-owning region)

A CICS region whose primary purpose is
to manage VSAM and DAM files, and
VSAM data tables, through function
provided by the CICS file control program.

IBM C for VSE/ESA The Language Environment version of the
C programming language compiler.
Generally referred to as “C/VSE”.

IBM COBOL for VSE/ESA The Language Environment version of the
COBOL programming language compiler.
Generally referred to as “COBOL/VSE”.

IBM PL/I for VSE/ESA The Language Environment version of the
PL/I programming language compiler.
Generally referred to as “PL/I VSE”.

IBM Language Environment for VSE/ESA The common runtime interface for all
LE-conforming languages. Generally
referred to as “LE/VSE”.

PL/I The PL/I programming language

VSE/POWER Priority Output Writers Execution
processors and input Readers. The
VSE/ESA spooling subsystem which is
exploited by the report controller.

VSE/ESA System Authorization Facility The new VSE facility which enables the
new security mechanisms in CICS TS for
VSE/ESA R1, generally referred to as
“SAF”

VSE/ESA Central Functions component The new name for the VSE Advanced
Function (AF) component

VSE/VTAM “VTAM”

 Preface vii

 Road map
Table 2. Getting started road map

If you want to... Refer to...

Obtain an overview of shared data tables Chapter 1, “Introduction” on page 1

Learn specifically about CICS-maintained
data tables

Chapter 2, “CICS-maintained data table”
on page 9

Learn specifically about user-maintained
data tables

Chapter 3, “User-maintained data table”
on page 11

Find out how to plan for shared data
tables

Chapter 4, “Planning to use data tables”
on page 15

Start application programming for shared
data tables and learn about cross-memory
services and SDT services

Chapter 5, “Application programming for
shared data tables” on page 27

Define your data tables Chapter 6, “Managing SDT resource
definitions” on page 35

Use the shared data table sevices user
exits

Chapter 7, “Using the CICS-supplied
global user exits” on page 41

Find out about the operational aspects of
shared data tables

Chapter 8, “Using shared data tables
services” on page 47

Understand shared data tables trace and
dump information

Chapter 9, “Investigating problems” on
page 59

Study the sample user exit programs Appendix A, “Sample user exit programs”
on page 69

viii CICS Transaction Server for VSE/ESA Shared Data Tables Guide

 Chapter 1. Introduction

The CICS Shared Data Table (SDT) facility is an extension of the CICS file
management services.

This chapter introduces shared data tables under these headings:

� “The concept of shared data tables”
� “Description of data tables” on page 2
� “Data table sharing environment” on page 2
� “Source data set” on page 3
� “Data space” on page 3
� “Global user exits” on page 3
� “Benefits of shared data tables” on page 3
� “How a remote file is accessed” on page 4
� “How a data table is shared” on page 5

The concept of shared data tables
Shared data tables improve performance by:

� Using VSE/ESA cross-memory services instead of CICS function shipping to
share a file of data between two or more CICS systems that are running in
different partitions under the same VSE/ESA operating system.

� Accessing data from memory instead of from DASD.

� Accessing a file of data from memory using services integrated within CICS file
management instead of using VSAM services and a local shared resource
(LSR) pool.

SDT completely replaces and extends the original data table services that were
provided as part of the base product in CICS/VSE Versions 2.2 and 2.3. Under
SDT, all files that are defined as data tables can potentially be shared using
cross-memory services. No changes are required to the file definitions for existing
data tables.

The use of cross-memory services is one of the major enhancements to data table
services that are included in the SDT facility. This enhancement improves the
performance of applications that currently use function shipping and makes file
sharing feasible for applications that cannot accept the performance overhead of
function shipping.

The other major enhancement is that nearly all read requests are supported for use
with data tables. This enhancement extends the use of data tables to applications
that include:

 � Browse requests
� Read requests that use an imprecise key

See “What you need to know to understand this book” on page v for the definition
of application programming terms used in this book.

 Copyright IBM Corp. 1992, 1998 1

Description of data tables
A CICS file is a representation of a data set on DASD. If you specify that the file is
to use data table services, CICS copies the contents of the data set into a
VSE/ESA data space when the file is opened and uses that copy whenever
possible.

Because of the way that the data table services access the records, they can be
used only with a VSAM key-sequenced data set (KSDS). The KSDS is called the
source data set. The copy in memory is called the data table. The process of
copying the records is called loading the data table.

When the file is read by a CICS application, the record is normally retrieved from
the data table. When the file is updated by a CICS application, the effect depends
on the type of data table that you have defined for the file.

CICS data table services support two types of data table:

� CICS-maintained data table (CMT)
� User-maintained data table (UMT)

CICS-maintained data table
The records of a CMT are automatically reflected in the source data set; when you
update the file, CICS changes both the source data set and the data table.

A CMT is easy to implement—you need to know little about the data table services,
you do not need to change your existing application programs, and full recovery
support of the file is retained. CMTs are discussed in more detail in Chapter 2,
“CICS-maintained data table” on page 9.

User-maintained data table
The records of a UMT are not automatically reflected in the source data set; when
you update the file, CICS changes only the data table.

A UMT lets you optimize the benefits of using a data table by allowing you to
eliminate activity on the source data set, for update requests as well as read
requests.

A small number of file operations are not supported for UMTs. Thus, you might
need to make minor changes to existing application programs. Also, recovery of
the file is supported after a transaction failure, but not a system failure. UMTs are
discussed in more detail in Chapter 3, “User-maintained data table” on page 11.

Data table sharing environment
The environment for sharing a data table is the same as for any CICS file: one
CICS region, known as a file-owning region (FOR), owns the data table. Any other
CICS region that uses the data table is known as an application-owning region
(AOR). In the FOR, the file is known as a local file and, in the AOR, the file is
known as a remote file.

In the context of shared data tables, the FOR is also known as a server and the
AOR is also known as a requester.

2 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

The same region can be both an FOR for some data tables and an AOR for others.

For information about these intercommunication concepts, see the CICS
Intercommunication Guide.

Source data set
The source data set must be a base VSAM KSDS, not an alternate index.
However, updates made to the KSDS using an alternate index are reflected in a
CMT.

The VSAM definition of the KSDS supplies the values for maximum record length
and key length.

 Data space
The data table records are stored in a VSE/ESA data space, whether the data table
is to be shared by more than one CICS region or not. A separate data space is
used for each VSE partition; it is obtained when the first file that is defined as a
data table is opened in the partition; it is used by all CICS data tables that are
owned by that partition; and it is retained until the shutdown of CICS in the
partition.

The data space storage that is used by the data table is freed when the file is
closed in the FOR. This storage is made available for reuse in such a way that the
integrity of any AOR that was using the data table is protected.

Global user exits
Three global user exits are provided to extend the normal processing done by data
table services:

� XDTRD, to select the records that are copied to the data table during loading
when the file is opened. For a UMT, it can also be used to modify the records.

� XDTAD, to select the records that are copied to the data table when new
records are added to the file.

� XDTLC, to perform processing at the end of the loading operation.

These user exits are fully described in Chapter 7, “Using the CICS-supplied global
user exits” on page 41.

Benefits of shared data tables
SDT offers many additional benefits over the data table services that were included
as part of CICS/VSE 2.2 and 2.3. For example:

� Very large reductions in path length can be achieved for remote accesses
because function shipping is avoided for most read and browse requests.

� When cross-memory services are used, the requests are processed by the
AOR, thus freeing the FOR to process other requests. This increases
multiprocessor exploitation.

 Chapter 1. Introduction 3

� Increased security of data is provided because the record information in shared
data tables is stored outside the CICS region and is not included in CICS
system dumps (either formatted or unformatted).

� For CMTs, all forms of non-update, keyed access (including browse requests
and imprecise-key read requests) are processed by reference to the data table.

� For UMTs, all forms of non-update, keyed access (including browse requests
and imprecise-key read requests) are supported.

� Any number of files referring to the same source data set that are open at the
same time can retrieve data from the one CMT.

� An enhancement to the XDTRD user exit allows you to skip over a range of
records while loading the data table.

How a remote file is accessed
This section illustrates the differences between using function shipping and using
shared data table services to access a CICS file in another CICS region.

Using function shipping
Figure 1 shows the use of function shipping to access a data set owned by another
CICS region.

CICS CICS
APPLICATION- function FILE- VSAM VSAM
OWNING OWNING SERVICES KSDS
REGION shipping REGION
(AOR) (FOR)

Figure 1. Data access using function shipping

Using shared data table services
Figure 2 on page 5 shows how a number of AORs can use cross-memory services
to execute reads or browses, using shared data table services in an FOR to access
the data table. (Function shipping is used for update requests and for any request
that needs to access the source data set, in the same way as shown in Figure 1.)

4 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

DATA
SPACE data

table

cross
memory
services shared data

table services
CICS

APPLICATION- CICS
OWNING FILE-
REGIONS OWNING

REGION

Figure 2. Data access using shared data table services. This diagram shows read-only
access only.

How a data table is shared
SDT performs two operations—LOGON and CONNECT—in order to establish a
data table for sharing.

 LOGON
When the first file that is defined as a data table is opened in an FOR, the FOR
attempts to register itself as an SDT server. This operation is performed
automatically and is known as an SDT LOGON. The opening of the file can be
caused by the FOR or by the AOR that first accesses the file.

Regardless of whether the LOGON is successful or not, the file is opened and the
data table is loaded. If the LOGON is successful, all other CICS regions in the
VSE/ESA operating system are notified that the data table is available.

� If the LOGON fails because of a permanent condition (such as cross-memory
services not being available to this CICS region), no further LOGON attempts
are made during the CICS run.

� If the LOGON fails because of a potentially transient condition, another LOGON
attempt is made the next time that a file that is defined as a data table is
opened. This type of condition includes:

– Failing a security check
– Failing to obtain storage
– Failing to load a program

� If a CICS region’s LOGON requests are rejected because they failed a security
check, security violation messages might be issued each time a file that is
defined as a data table is opened.

After an FOR logs on successfully, it remains in that state for the rest of the CICS
run; no more LOGON requests are issued.

 Chapter 1. Introduction 5

 CONNECT
When an AOR with SDT issues a read request (or starts a browse sequence) for a
remote file, SDT attempts to establish a connection to a data table for that file. If
the FOR is registered as an SDT server, SDT establishes a cross-memory link from
the AOR to the FOR (subject to security checks) and calls the SDT server to ask
whether there is an available data table for the file. If there is, a connection is
made between the AOR and the data table. This operation is performed
automatically, and is known as an SDT CONNECT.

If the CONNECT is successful, cross-memory services are used, whenever
possible, to access the file while the connection exists.

If the CONNECT fails, the file request is function shipped exactly as it would have
been in the absence of SDT. The action taken for subsequent remote file requests
depends on the type of failure:

� If the CONNECT fails because of a permanent condition (such as
cross-memory services not being available to this CICS region), no further
CONNECT attempts are made during the CICS run.

� If the CONNECT fails because of a potentially transient condition that is not
under the control of the file owner, another CONNECT attempt is made for the
next suitable request after approximately ten minutes have elapsed. This type
of condition includes:

– Failing a security check
– Failing to obtain storage
– Failing to load a program

� If a region’s CONNECT requests are rejected because they failed a security
check, the related security violation messages might be issued at 10-minute
intervals.

� If the CONNECT fails because of a potentially transient condition that is under
the control of the file owner, another CONNECT attempt is made for the next
suitable request following notification that at least one new file is available for
shared access on the VSE system. This type of condition includes:

– File owner is not logged on as a server
– File is not associated with a data table
– File is disabled, although associated with a data table
– File is closed, although defined as a data table

After an AOR connects to a remote file successfully, it remains connected
unless one of the following events occurs:

– The AOR deletes its remote file definition.

In this event, the connection is broken immediately.

– The FOR closes or disables the file.

In this event, the disconnection is scheduled at the next non-update request
and occurs after all current browse sequences have terminated, as
described in “Disconnection” on page 30.

If these events are later reversed, a valid connection is established in the same
way as before.

6 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Notification that a new file is available for shared access
When a data table is opened by an FOR, it becomes available for CONNECT
attempts at the start of loading for a CMT, or at the completion of loading of a
UMT. Other CICS regions are notified that a data table has become available.
Notification is also made when a data table (or a file that uses a CMT) is enabled,
having been previously disabled.

 Security
To provide security for a data table when cross-memory services are used, SDT
must ensure that:

� The FOR cannot be impersonated. This is prevented by checking at LOGON
time that the FOR is allowed to log on with the specified generic applid of the
CICS system.

� An AOR cannot gain access to data that it is not supposed to see. This is
prevented by checking at CONNECT time that the AOR is allowed access to
the FOR and, if file security is in force, that the AOR is allowed access to the
requested file.

These security checks are performed by using the system authorization facility
(SAF) to invoke the security manager.

Note: A CICS region is still able to use data tables locally even if it does not have
authority to act as a shared data table server.

SDT reproduces the main characteristics of function-shipping security that operate
at the region level, but the following differences should be noted:

� SDT does not provide any mechanism for the FOR to perform security checks
at the transaction level (the equivalent of ATTACHSEC(IDENTIFY) or
ATTACHSEC(VERIFY)). Therefore, if you consider that the transaction-level
checks performed by the AOR are inadequate for some files, you must ensure
that those files are not associated with data tables in the FOR.

� SDT does not support preset security.

� SDT does not pass any installation parameter list (INSTLN) information to the
security user exits.

For a description of the steps required to implement SDT security, see the CICS
Security Guide.

 Chapter 1. Introduction 7

8 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Chapter 2. CICS-maintained data table

If a file is defined as a CMT, the source data set and the data table are treated by
CICS as a single entity. This means that:

� Changes to the file are made to both the source data set and the data table.

� If another file is defined to use the same source data set, changes that are
made by that file to the source data set are also made to the data table.

� If another file is defined to use the same source data set, records can be
retrieved by that file from the data table.

This chapter discusses CMTs under:

� “CMT application programming”
� “CMT resource definition”
� “CMT operations” on page 10

CMT application programming
All CICS file control commands can be used in applications that access a CMT.
This means that the benefits of data tables can be obtained immediately without
any changes to existing applications.

CICS uses the data table to perform most read requests. Other requests might
need to access the source data set. See Chapter 5, “Application programming for
shared data tables” on page 27 for more information.

CMT resource definition
You define a file as a CMT by one of the following methods:

� CEDA DEFINE FILE command
 � DFHFCT macro

Also, you can change the definition of an existing file by:

� EXEC CICS SET FILE command
� CEMT SET FILE command

Only the base VSAM cluster can have a CMT based on it. Read requests using
alternate index paths do not use the data table, but changes to the source data set
using alternate index paths are reflected in the data table.

After a file that is defined as a CMT has been opened, any other non-UMT file
(whether defined as a CMT or not) that names the same source data set in its
definition automatically uses the same data table. If any of these other files are
defined as CMTs, message DFHFC0934 is issued to the console when they are
opened. This is not an error situation; the files are opened and use the existing
data table whenever possible.

Either fixed-or variable-length record format can be specified for a CMT. The
maximum record length that is supported by SDT is 32KB. This length exceeds
that supported by CICS file management, which thus imposes the actual limit. See

 Copyright IBM Corp. 1992, 1998 9

the topic dealing with lengths of areas passed to CICS commands in the CICS
Application Programming Guide. The maximum number of records that is
supported is 16 777 215.

For more information, see Chapter 6, “Managing SDT resource definitions” on
page 35.

 VSAM SHAREOPTION
If you use VSAM sharing to share a source data set, there is a risk that it could be
updated by a partition other than the FOR. If this happened, the data table would
no longer match the source data set. To minimize this risk, the VSAM
SHAREOPTION should be set to 1 or 2.

1 either one requester can have update access to the data set or many
requesters can have read-only access.

2 one requester can have update access to the data set and, at the same time,
many requesters can have read-only access.

A warning message is issued if the cross-region SHAREOPTION is 3 or 4, or if it is
2 but the CMT has read-only access (which means another partition might be able
to update the data set).

 Data integrity
A file that uses a CMT can be defined as a recoverable resource. The source data
set is recovered in the normal way after a system or transaction failure:

� After a system failure, the data table is reloaded from the recovered source
data set when the file is reopened.

� After a transaction failure, changes that are made to the source data set by
dynamic transaction backout are also made to the data table.

Automatic journaling is supported (in the same way as for any other file) for file
operations that access the source data set. File operations that do not access the
source data set are not journaled.

 CMT operations
CICS loads a data table by copying each record from the source data set when the
file is opened. A global user exit, XDTRD, can be invoked for each record before it
is copied. The user-written exit program can reject records that are not to be
copied. If you are using this user exit, you should ensure that the user exit is
activated before the file is opened.

For information about writing user exits, see Chapter 7, “Using the CICS-supplied
global user exits” on page 41. For information about activating user exits, see
“Activating user exits” on page 41.

10 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Chapter 3. User-maintained data table

If a file is defined as a UMT, the source data set and the data table are treated by
CICS as separate entities. After a UMT has been loaded, it is independent of its
source data set; the source data set is not updated when the data table is updated.
Thus, a UMT is particularly suited to applications that make frequent updates to
data that is of a transitory nature.

If the data table and source data set are updated separately, by defining them as
different files, changes to one are not automatically reflected in the other.

This chapter discusses UMTs under:

� “UMT application programming”
� “UMT resource definition”
� “UMT operations” on page 12

UMT application programming
If a request cannot be satisfied from a UMT, CICS does not access the source data
set (as it would for a CMT); instead it returns an exceptional-condition response.

Records that were in the source data set when the data table was opened might be
absent from the data table because they were not copied during loading. This
could be due to suppression by the user exit XDTRD or some abnormal event such
as the data table becoming full.

Some application programming requests are not supported for a UMT. They
include, for example, read requests that use the UPDATE option with an imprecise
key. You might need to change existing applications to avoid these requests or to
handle the exceptional conditions returned by CICS. For more information, see
“Application programming for a user-maintained data table” on page 28.

You can use the user exits in data table services to put only the records that you
need to access in the data table; there is no possibility of the source data set being
accessed for those that you do not load.

You can also use the user exit XDTRD to modify each record (by selecting only a
subset of its fields, for example) when it is loaded.

UMT resource definition
You define a file as a UMT by one of the following methods:

� CEDA DEFINE FILE command
 � DFHFCT macro

You can also change the definition of an existing file by the:

� EXEC CICS SET FILE command
� CEMT SET FILE command

 Copyright IBM Corp. 1992, 1998 11

You can load multiple UMTs from the same source data set by using a separate
command or macro to define each data table and making all the definitions refer to
that data set.

Although a data table must be loaded from a VSAM KSDS, an application can then
copy records to a UMT from any data source that is accessible from the CICS
address space. This could be a remote CICS file owned by another region. The
KSDS that is used as the source data set for the data table can be empty; it is
needed only to define the maximum record length and the key length and position.

Variable-length record format must be specified for a UMT
The maximum record length that is supported by SDT is 32KB. This length
exceeds that supported by CICS file management, which imposes the actual limit.
See the topic dealing with lengths of areas passed to CICS commands in the CICS
Application Programming Guide. The maximum number of records supported is
16 777 215.

For more information, see Chapter 6, “Managing SDT resource definitions” on
page 35.

 Data integrity
A UMT can be defined as a recoverable resource. However, changes to the data
table are not recorded in the system log. Thus the data table can be recovered
after a transaction failure (by dynamic backout) but not after a system failure.

After a system failure, the data table is reloaded from the source data set when the
file is reopened. Remember that, at the time of failure, the contents of the source
data set and data table would not have been the same unless you had ensured
that either:

� No change is made to either, or
� Any change is made to both.

Automatic journaling is supported only for requests that access the source data set
during loading. The records that are accessed by the loading process are
journaled before user exit XDTRD, and the records that are accessed due to
application requests are journaled after user exit XDTRD.

 UMT operations
Like a CMT, a UMT is loaded when the file is opened. However, unlike a CMT, the
global user exit XDTRD can be used to both select and modify the records from the
source data set that are included in the data table.

The user exit XDTAD can be used to select the records that are added to the table
after initial loading. This user exit cannot modify the records because, as the
records are written by the application, it is assumed that they are already in the
format used in the data table.

If you are using these user exits, you should ensure that the user exits are
activated before the file is opened.

12 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

For information about writing user exits, see Chapter 7, “Using the CICS-supplied
global user exits” on page 41. For information about activating user exits, see
“Activating user exits” on page 41.

 Chapter 3. User-maintained data table 13

14 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Chapter 4. Planning to use data tables

The sole reason for using data tables is to take advantage of the performance
benefits that they offer. This chapter discusses:

� “Performance benefits of using data tables”
� “Selecting files for use as data tables” on page 16
� “Security checking” on page 23
� “SDT support on different releases of CICS” on page 23
� “Preparing to use SDT support” on page 24

Performance benefits of using data tables
This section contains Diagnosis, Modification, or Tuning Information.

Performance of a CICS-maintained data table
If all the data and index records of a file are completely contained in a local shared
resource (LSR) pool, defining the file as a CMT does not reduce DASD I/O activity.
There is, however, considerable potential for reduction in processor consumption.
Also, you might be able to reduce the number of buffers in the LSR pool.

If the file is not completely contained in an LSR pool, using a CMT could result in
reductions in both DASD I/O activity and processor consumption.

The saving of processor consumption for a CMT, compared with a VSAM KSDS
resident in an LSR pool, depends on the application usage.

Performance of a user-maintained data table
After the loading of a UMT, DASD I/O activity is eliminated from all data table
operations, so the saving of CPU consumption compared with a VSAM KSDS
resident in an LSR pool is considerable.

 Storage use
Shared data tables provide efficient use of data in memory. This means that
considerable performance benefits are achieved at the cost of some additional use
of storage.

This overview of the use of storage assumes that you understand the distinction
between various types of storage, such as real and virtual storage, and address
space and data space storage.

SDT uses virtual storage as follows:

� Record data is stored in a data space, which is virtual storage separate from
address space virtual storage. The total record data storage at loading time is
basically the total size of all records (without keys, which are stored in
table-entry storage) plus a small amount of control information. Data space
storage is acquired in units of 2MB, and then allocated to individual tables in
increments of 128KB.

 Copyright IBM Corp. 1992, 1998 15

If many records are increased in length after loading, or new records are added
randomly throughout a large part of the file, the amount of storage will be
increased, possibly up to twice the original size.

� Table-entry storage is allocated from VSE storage above the 16MB line in the
address space of the CICS FOR. It is allocated in increments of 32KB.

There is one entry for each record in the table, plus one entry for each gap in
the key sequence. The size of each entry is the keylength + 9 bytes, rounded
up to the next multiple of 8 bytes.

� Index storage is also allocated from VSE storage above the 16MB line in the
address space of the CICS FOR. It is allocated in increments of 32KB.

The size of this area depends on the distribution and format of the key values
as well as the actual number of records, as indicated in Table 3.

� System GETVIS storage is used for some small control blocks that need to be
accessed by all regions that share data tables.

Converting a file into a shared data table could lead to an increased use of real
storage, but the use of real storage for VSAM LSR buffers might be reduced if few
updates are made. Also, an application that currently achieves high performance
by replicating read-only tables in each CICS region might be able to make large
storage savings by sharing a single copy of each table.

Table 3. Key distribution and format

Key distribution Key format Bytes per record

Dense (all keys are
consecutive)

binary
decimal
alphabetic

5.1
8.5
19

Sparse (no keys are
consecutive)

decimal
alphabetic

44
51

Worst possible case - 76

Selecting files for use as data tables
It is not possible to lay down any exact rules about whether a file will benefit from
conversion to a shared data table. Many factors need to be taken into
consideration, and an analysis of the potential uses of shared data tables support
should ideally be undertaken by someone with a knowledge of how the files are
used by the various applications, and of the configuration of the CICS regions.

Additional sources of information that could help you to select the files include:

� File statistics. “Using statistics to select data tables” on page 18 describes how
you can use statistics information as one of the inputs to the selection task.

� The LSR pool statistics.

 � Trace entries.

 � Monitoring data.

However, the most beneficial input to the selection process is a thorough
understanding of the applications and the way in which they use the files.

16 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

If your installation is using data tables for the first time, here are some general
principles to help you select files for defining as data tables.

� You should consider using CMTs first, as these are easier to implement. If you
use a CMT, no changes are required to the applications. If you use a UMT,
some changes might be required.

� Use a CMT if you need to ensure the integrity of the data table across a CICS
restart.

� Use a CMT if you require journaling of updates. If you require journaling of all
access requests, the file is not suitable as a data table.

� The EXEC interface user exits XEIIN and XEIOUT, and the file control user
exits XFCREQ and XFCREQC are not invoked in the file-owning region if a
request to access a data table is satisfied by cross-memory services. When
selecting a file, you should ensure that successful operation of your application
does not depend on any activity performed at these user exits.

� You should be aware of the security implications of sharing a data table, as
described in “Security checking” on page 23.

� If a file is frequently accessed from another CICS region, or if it is accessed by
many other CICS regions, or if the accesses are predominantly read requests,
then the benefits of making it a data table can be very large. Remember that
the performance gain for a remote file is greater than for a local file (see
“Performance benefits of using data tables” on page 15).

� For a CMT, select files that have a reasonably high proportion of requests that
will access only the data table (see Chapter 5, “Application programming for
shared data tables” on page 27). From among those, select the files with the
highest usage of these requests, in order to maximize the performance gains.

Information on file usage can be found in the CICS statistics for file control,
which are described in the CICS Performance Guide. Not all read requests can
take advantage of the data table, so you should check the data table
information in the CICS statistics report afterward to verify that the data table is
being used effectively. See “Interpreting data table statistics” on page 48 for
more information.

� For a UMT, select files that have a large proportion of update activity but do not
require the updates to be recovered across a CICS restart (see “Data integrity”
on page 12).

� Select one or two files with the best estimates. Give preference to a small file
over a large file when the estimated savings are similar, because a small file
will probably use less real storage.

� Monitor your real storage consumption. If your system is already real-storage
constrained, using a large data table could increase your page-in rates. This in
turn could adversely affect CICS system performance. Use your normal
performance tools to look at real-storage usage and paging rates.

� Consider reducing the number of buffers in the LSR pool because the use of
data tables could reduce the number of times that the LSR pool is used.

� You can use the user exit XDTRD to select the records included in the data
table. In addition, for a UMT, you can use user exit XDTRD to modify the
records. Thus you can optimize the use of virtual and real storage by storing in
the data table only the data that you need.

 Chapter 4. Planning to use data tables 17

� A very large data table might require more virtual storage than your usual limit.
In this case, you can either increase the virtual storage, or use the user exit
XDTRD to suppress some records. To increase the virtual storage limit,
increase the VSIZE value specified at IPL time. You might also have to
increase the storage allocated to data spaces by specifying a larger value on
the SYSDEF DSPACE DSIZE control statement.

Using statistics to select data tables
This section covers just one of the possible inputs to the selection task—the
information available from the file statistics.

Figure 3 on page 19, Figure 4 on page 20, and Figure 5 on page 21 show some
extracts from a hypothetical set of file statistics, which are used in the following
discussion to demonstrate how CICS statistics can aid the selection process. The
statistics are displayed as they would be reported by the CICS Transaction Server
for VSE/ESA offline formatting utility program, DFHSTUP. Requested file statistics
are shown, but Interval or End of Day statistics would be equally suitable. The
section of File “Performance Information” statistics, which reports use of VSAM
strings and buffers, is not shown here.

The numbers shown in the figures are purely for the purposes of illustration, and
you should not expect the statistics at your installation to resemble them at all
closely. Similarly, the configuration of CICS regions and files has been chosen to
highlight certain points; it is not suggested that this is either a typical or a desirable
configuration.

“Interpreting data table statistics” on page 48 discusses the statistics that are
reported for files that have been defined as data tables, which you can use to
assess the benefits being obtained.

18 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Requested Statistics Report Collection Date-Time 12/25/99-11:51:51 Last Reset ð9:ðð:ðð Applid CICFOR Jobname SDTGSTF1

FILES - Resource Information

File Dataset Name Dataset DT Time Time Remote Remote Lsrpool

Name Base Dataset Name (If Applicable) Type Indicator Opened Closed Name Sysid ID

 __

 APPLE CICð1.CICOWN.APPLES K ð7:44:12 OPEN 1

 BANANA CICð1.CICOWN.BANANAS K ð9:45:ð8 OPEN 1

 ORANGE CICð1.CICOWN.CITRUS K 1ð:51:1ð OPEN 2

 PEAR CICð1.CICOWN.PEARS K ð7:3ð:14 OPEN 3

 __

Requested Statistics Report Collection Date-Time 12/25/99-11:51:51 Last Reset ð9:ðð:ðð Applid CICFOR Jobname SDTGSTF1

FILES - Requests Information

File Get Get Upd Browse Update Add Delete VSAM EXCP Requests

Name Requests Requests Requests Requests Requests Requests Data Index

APPLE 2317265 1ð2ð ð 1ð19 21 1 115ð3 31ð

BANANA 536452 1674 2ð344 1674 9ð8 ð 2651 7ð

ORANGE 2ð69454 9856ð 17831 98327 4543 2563 8511 481

PEAR 45871 65493 6512 65493 3ð1ð9 362 3773 231

 \TOTALS\ 4969ð42 166747 44687 166513 35581 2926

Requested Statistics Report Collection Date-Time 12/25/99-11:51:51 Last Reset ð9:ðð:ðð Applid CICFOR Jobname SDTGSTF1

FILES - Data Table Requests Information

File Close Read Recs ¬ Adds from Add Adds rejected Adds rejected Rewrite Delete Highest Storage

Name Type Requests in Table Reads Requests - Exit - Table Full Requests Requests Table Size Alloc(K)

DFHSTð223 I There are no data table statistics to report.

Figure 3. CICFOR requested file statistics

 Chapter 4. Planning to use data tables 19

Requested Statistics Report Collection Date-Time 12/25/99-11:51:38 Last Reset ð9:ðð:ðð Applid CICAOR1 Jobname SDTGSTA1

FILES - Resource Information

File Dataset Name Dataset DT Time Time Remote Remote Lsrpool

Name Base Dataset Name (If Applicable) Type Indicator Opened Closed Name Sysid ID

 __

APPLE REMOTE CLOSED CLOSED APPLE CIF1 N

BANANA REMOTE CLOSED CLOSED BANANA CIF1 N

ORANGE REMOTE CLOSED CLOSED ORANGE CIF1 N

ZUCCINI REMOTE CLOSED CLOSED COURGET CIA2 N

 __

Requested Statistics Report Collection Date-Time 12/25/99-11:51:38 Last Reset ð9:ðð:ðð Applid CICAOR1 Jobname SDTGSTA1

FILES - Requests Information

File Get Get Upd Browse Update Add Delete VSAM EXCP Requests

Name Requests Requests Requests Requests Requests Requests Data Index

APPLE 11587ð1 532 ð 531 11 1 ð ð

BANANA 3ð5641 ð 19ð67 ð ð ð ð ð

ORANGE 587ð9 32854 4265 32621 1ð18 1ðð1 ð ð

ZUCCINI 78914 ð 14765 ð ð ð ð ð

 \TOTALS\ 16ð1965 33386 38ð97 33152 1ð29 1ðð2

Requested Statistics Report Collection Date-Time 12/25/99-11:51:38 Last Reset ð9:ðð:ðð Applid CICAOR1 Jobname SDTGSTA1

FILES - Data Table Requests Information

File Close Read Recs ¬ Adds from Add Adds rejected Adds rejected Rewrite Delete Highest Storage

Name Type Requests in Table Reads Requests - Exit - Table Full Requests Requests Table Size Alloc(K)

DFHSTð223 I There are no data table statistics to report.

Figure 4. CICAOR1 requested file statistics

20 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Requested Statistics Report Collection Date-Time 12/25/99-11:49:31 Last Reset ð9:ðð:ðð Applid CICAOR2 Jobname SDTGSTA2

FILES - Resource Information

File Dataset Name Dataset DT Time Time Remote Remote Lsrpool

Name Base Dataset Name (If Applicable) Type Indicator Opened Closed Name Sysid ID

 __

 COURGET CICð2.CICOWN.COURGET K ð8:22:15 OPEN 1

LEMON REMOTE CLOSED CLOSED ORANGE CIF1 N

 __

Requested Statistics Report Collection Date-Time 12/25/99-11:49:31 Last Reset ð9:ðð:ðð Applid CICAOR2 Jobname SDTGSTA2

FILES - Requests Information

File Get Get Upd Browse Update Add Delete VSAM EXCP Requests

Name Requests Requests Requests Requests Requests Requests Data Index

COURGET 78914 27469 14765 27469 336472 ð 8212 481

LEMON 2ð1ð745 657ð6 13566 657ð6 3525 1562 ð ð

 \TOTALS\ 2ð89659 93175 28331 93175 339997 1562

Requested Statistics Report Collection Date-Time 12/25/99-11:49:31 Last Reset ð9:ðð:ðð Applid CICAOR2 Jobname SDTGSTA2

FILES - Data Table Requests Information

File Close Read Recs ¬ Adds from Add Adds rejected Adds rejected Rewrite Delete Highest Storage

Name Type Requests in Table Reads Requests - Exit - Table Full Requests Requests Table Size Alloc(K)

DFHSTð223 I There are no data table statistics to report.

Figure 5. CICAOR2 requested file statistics

The examples use a hypothetical configuration of three CICS regions. Most of the
files used by CICS applications are owned by the file-owning region CICFOR, and
the applications mostly run in the AORs CICAOR1 and CICAOR2. This discussion
assumes that each of the data sets shown in the statistics reports is a VSAM base
KSDS (as indicated by the Dataset Type of K), so any of them can be defined as
data tables.

The CICS statistics also show you which file names in one CICS region are defined
to access which file names in another CICS region. The Remote Sysid is the name
given on the connection between the two CICS regions. In the examples, the
SYSID of CICFOR is CIF2 and that of CICAOR2 is CIA2.

A file with a high read-to-update ratio
The file APPLE is used by applications that run on the application-owning region
CICAOR1. It is defined in CICAOR1 as a remote file, and the file definition points
to the file APPLE owned by CICFOR. This file would benefit from being redefined
in CICFOR as a CICS-maintained data table because it has a high ratio of remote
reads (1158701 Get Requests in the time period covered by the reports) to remote
updates (11 adds, 1 delete and 531 updates) as seen in Figure 4 on page 20.

See the CICS Performance Guide for guidance on the meanings of the “FILES -
Requests Information” section of a statistics report.

 Chapter 4. Planning to use data tables 21

A file with a high proportion of remote reads
The file BANANA is updated and read on CICFOR, but is also accessed by
CICAOR1. Because all the remote accesses are reads and browses, with no
updates, the applications running in CICAOR1 would probably see large benefits if
BANANA was defined as a data table, and the applications on CICFOR would also
benefit by reading from the local data table.

A file shared by several CICS regions
From a study of the statistics in Figure 4 on page 20 it might appear that
ORANGE is not an especially suitable data table candidate, as the numbers of
remote retrievals from CICAOR1 (58709 Get Requests and 4265 Browse Requests)
are relatively low. However, the remote file LEMON in CICAOR2 also points to
ORANGE in CICFOR, so defining ORANGE in CICFOR as a shared CMT would
probably benefit the performance of the applications in both AORs.

A good UMT candidate
The file COURGET owned by CICAOR2 is accessed using the file name ZUCCINI
in CICAOR1. CICAOR1 only reads or browses the file; any updating is issued by
the file-owning region. Also, it is known that these updates are relevant only to the
day’s CICS run and do not need to be retained permanently (in fact, they are
deleted at shutdown). The file is therefore an excellent candidate for defining as a
UMT. Then, all the updates can be made to the data table without any VSAM I/O
activity, and all the remote retrievals can be made without function shipping.

Note that COURGET could not be defined as a UMT if CICAOR2 were not a CICS
system with SDT support (that is, a CICS Transaction Server for VSE/ESA Release
1 system) because browse requests are issued to that file and browsing of a UMT
is supported only by SDT. Also, the statistics do not show whether any of the Get
requests specify the GENERIC or GTEQ options; these also are supported for a
UMT only by SDT.

A rather poor candidate
The file PEAR would probably not benefit much from shared data tables support
because it is not accessed remotely and has many update and browse requests.
Local browsing does not offer as much benefit as either local reading or any form
of remote retrieval, because VSAM browsing (apart from processing of the
STARTBR command) is very efficient. This analysis, of course, does not consider
the relative importance of the various file accesses: the reading might be done by
critical applications, but the time taken for updates might not be important.

Other possible candidates
The preceding examples illustrate only a small sample of the possible
configurations and uses of files that could benefit from shared data tables support.

You could also use shared data tables support to avoid the need to duplicate files
or data tables in each CICS region. And, in addition to looking at existing files, you
could consider moving files from an AOR to an FOR where this was not practical
before because of the cost of file accesses using function shipping.

22 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

 Security checking
The security checking that is performed by the SDT LOGON and SDT CONNECT
operations is introduced in “How a data table is shared” on page 5. You should
consider the implications of the security checks before sharing a file that is
associated with a data table.

For information about VSE/ESA security, function-shipping security, and
implementing security checking for shared data tables, see the CICS Security
Guide.

LOGON security check
To minimize the risk that an AOR might accept counterfeit data records from a FOR
which is in fact an impostor, LOGON processing includes a security check to verify
that the FOR is authorized to act as a server with the specified application name.
This check is always performed, even when SEC=NO is specified at system
initialization.

CONNECT security checks
The security checks performed at CONNECT time provide two levels of security:

� Bind security allows an FOR that runs without CICS file security to be able to
restrict shared access to selected AORs. (Running without file security
minimizes run-time overheads and the number of security definitions.)

� File security can be activated in the FOR if you need a finer granularity of
security checking. Then, SDT implements those checks that apply to the AOR
as a whole.

SDT provides no way of implementing those security checks that an FOR makes at
the transaction level when ATTACHSEC(IDENTIFY) or ATTACHSEC(VERIFY) is
used with function shipping.

SDT support on different releases of CICS
To benefit from the cross-memory support provided by SDT, you must be running
with SDT support in both the requesting and serving CICS systems.

If only the requesting CICS system has SDT support, there is no effect apart from
the very small overhead of occasional attempts to determine whether the server
system supports sharing. All requests continue to be function shipped.

If only the serving CICS system has SDT support, all requests continue to be
function-shipped by the requester. The requester does, however, obtain the
benefits of local data table accesses made by the server.

 Chapter 4. Planning to use data tables 23

Preparing to use SDT support
To use SDT support, you must perform the following tasks. Some of them will
already have been done for an installation that currently uses function shipping
and/or data tables.

� Ensure that DFHDTSVC, DFHDTSAN, and DFHCSEOT are in the Shared
Virtual Area (SVA).

� Define security authorization so that FORs can act as SDT servers and AORs
can access files owned by servers, depending on the level of security required.
In a single VSE image:

– Any number of FORs can act as SDT servers

– A single AOR can use any number of these FORs

– A single FOR can serve any number of AORs

– A CICS region can act as an AOR for one data table and as an FOR for a
different data table

� If, for some reason, two FORs have the same APPLID, at any given time SDT
ensures that only one of these FORs is used as an SDT server. However,
there is nothing to prevent one FOR acting as an SDT server and another
FOR, with the same APPLID, being used for function shipped requests. You
should check that your operational procedures do not allow this because there
is a risk that data table requests that use SDT services will not be directed to
the same CICS region as requests that use function shipping.

� Define those files in the FOR which are to be data tables as either CMTs or
UMTs.

� Create additional remote file definitions in the AOR if required. No changes are
needed to existing remote file definitions.

� For any AOR that is to share data tables, specify ISC=YES as a system
initialization parameter and define MRO or ISC links to the relevant FORs.

� Before using shared data tables, you might have to change some of your JCL
statements, modify your operational procedures, or increase the size of the
data space available in the VSE system.

The data space for SDTs is acquired in units of 2MB. You must ensure that
the VSIZE value specified at IPL time allows for at least this amount of virtual
storage, in addition to all the other address space and data space
requirements. The DSIZE value specified in the SYSDEF DSPACE statement
must allow for at least this amount of data space, in addition to all the other
data space requirements. For information about specifying these values, see
the VSE/ESA System Control Statements manual.

24 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

 Load modules
Table 4 shows the load modules that you must install in your CICS system from
the VSE/ESA production sublibrary PRD1.BASE so that you can use SDT.

Table 4. Load modules in SDT

Load module How loaded Description

DFHDTINS CICS load above the 16MB line Initialization

DFHDTSVC SVA mandatory Performs all functions that need
VSE/ESA authorization

DFHDTFOR VSE LOAD above the 16MB line Data table FOR module

DFHDTAM VSE LOAD into subpool 252
storage above the 16MB line

Data table access manager. It
includes code that is executed in
cross-memory mode from an
AOR

DFHDTAOR VSE LOAD above the 16MB line Data table AOR module

DFHDTCV VSE LOAD into System GETVIS Connection validation (AOR)

DFHDTXS VSE LOAD into System GETVIS Connection security checking
(FOR)

DFHCSEOT SVA mandatory CICS EOJ clean up routine

DFHDTSAN SVA mandatory System anchor block

 Storage occupancy
The total size of the modules that occupy storage above the 16MB line is about
41KB. For modules that are in System GETVIS, about 1.5KB are required for each
logged-on FOR, and about 0.5KB for each AOR.

The modules are all eligible for inclusion in the SVA, but only DFHDTFOR,
DFHDTAM, DFHDTAOR, and possibly DFHDTCV are used sufficiently frequently to
be worth considering. DFHDTSVC, DFHDTSAN, and DFHCSEOT are mandatory
for the SVA.

 Chapter 4. Planning to use data tables 25

26 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Chapter 5. Application programming for shared data tables

This chapter contains General-use Programming Interface and Associated
Guidance Information.

This chapter describes application programming for shared data tables:

� “Application programming for a CICS-maintained data table”

� “Application programming for a user-maintained data table” on page 28

� “Using cross-memory services” on page 30

� “Differences between function-shipping and cross-memory services” on
page 31

� “Differences between SDT services and VSAM” on page 33

You access a data table with the same EXEC CICS file control commands that you
use with any normal CICS file. These commands can be used fully with a
CICS-maintained data table and with some restrictions with a UMT. General
information about using these commands is in the CICS Application Programming
Guide. For programming information, see the CICS Application Programming
Reference.

Application programming for a CICS-maintained data table
CICS handles a CMT and its source data set as a single entity. After the data
table has been loaded, CICS automatically keeps the contents of the data table and
the source data set consistent; any changes that an application makes to the file
are reflected in both.

All file control commands and options can be used and the use of a data table is
transparent to the application programmer. The following information is provided to
allow you to get the maximum benefits from your data tables.

Some commands are performed by access only to the data table (using
cross-memory services for shared files), some by access only to the source data
set (using function shipping for shared files), and some by access to both.

The following commands usually access only the data table:

� READ commands without the UPDATE or RBA options

� STARTBR, RESETBR, READNEXT, and READPREV commands without the
RBA option

The following commands access only the source data set:

� READ commands with the UPDATE or RBA options

� STARTBR, RESETBR, READNEXT, and READPREV commands with the RBA
option

� ENDBR command for a browse sequence that has accessed the source data
set

The following commands might access both the data table and the source data set:

 Copyright IBM Corp. 1992, 1998 27

� READ and browse commands (which would usually access only the data table)
that find a gap in the sequence of records in the data table. This gap might
indicate that one or more records are missing from the data table because:

– Records have been suppressed by a user exit.
– The maximum number of records has been reached.
– Insufficient virtual storage is available for the data table.
– Some abnormal event has occurred.

� READ, READNEXT, and READPREV commands for records that are currently
being processed by a WRITE, REWRITE, or DELETE command. These
commands need to first access the data table to determine that this situation
exists.

� WRITE, REWRITE, and DELETE commands. These commands are always
executed in the FOR, where they first update the source data set. If
successful, a corresponding change to the data table is attempted, using local
SDT services in the FOR. In the case of a WRITE command, the addition of
the record to the data table might be rejected by the XDTAD user exit or might
fail because the data table is full or insufficient virtual storage is available.

Using a CMT during loading
It is possible to use a CMT while it is being loaded. If the required record has
already been loaded, processing of the request is handled in the normal way. If the
record has not yet been loaded, the following is done:

� For a READ command, the record is read from the source data set and
returned to the application program. It is added to the data table when the
normal loading sequence reaches it.

� For a WRITE command, the record is added to the source data set and the
data table (if not suppressed by the user exit XDTAD).

� For a REWRITE or DELETE command, the change is applied to the source
data set which is then reflected in the data table by the normal loading process.

Application programming for a user-maintained data table
CICS handles a UMT and its source data set as separate entities. When loading is
complete, all file control commands that access the file name are performed only
on the data table.

There are some restrictions on which commands and options can be used. There
are also some exceptional conditions that are unique to UMTs. These restrictions
and conditions are described below.

The following commands are not supported; they return the INVREQ condition and
a value of 44 in the EIBRESP2 field:

� Commands with the RBA option

� WRITE commands with the MASSINSERT option

� DELETE commands with the GENERIC option

� READ commands with the UPDATE option plus either the GENERIC or GTEQ
options

28 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

The following commands are supported (using cross-memory services for remote
accesses):

� READ commands with neither the RBA option nor the UPDATE option. If the
record does not exist in the data table, the NOTFND condition is returned.

� STARTBR, RESETBR, READNEXT, and READPREV commands without the
RBA option.

 � ENDBR commands.

The following commands are supported (using function shipping for remote
requests):

� WRITE commands without the RBA or MASSINSERT options. The record is
added to the data table (if not suppressed by the XDTAD user exit).

The NOSPACE condition is returned if:

– There is not enough virtual storage to add the record to the data table.

– The data table already contains the maximum number of records that is
specified in the file definition.

The SUPPRESSED condition is returned if the user exit XDTAD suppresses
the addition of the record to the data table.

� REWRITE commands without the RBA option. The record is updated in the
data table. The NOSPACE condition is returned if there is insufficient virtual
storage for the updated record.

� DELETE commands without the GENERIC or RBA options. The record is
deleted from the data table. The NOTFND condition is returned if the record
does not exist in the data table. The NOSPACE condition is returned if the
data table is recoverable and there is insufficient virtual storage for the
information that CICS writes about the deleted record.

Using a user-maintained data table during loading
A UMT can be accessed only by the FOR during loading. All remote requests are
function shipped to the FOR, which processes them in the same way as for a local
request, as described below.

While a UMT is being loaded, you can use only non-update read requests with
precise keys. If the record has already been loaded, processing of the request is
handled in the normal way. If the record has not yet been loaded, the record is
read from the source data set and submitted to the user exit XDTRD (if activated):

� If it is not suppressed by XDTRD, the record is added to the data table and
also returned to the application program.

� If it is suppressed by XDTRD, the NOTFND condition is returned.

The LOADING condition is returned for other requests that would have been valid
had loading been complete.

 Chapter 5. Application programming for shared data tables 29

Using cross-memory services
Cross-memory services are used to satisfy an application programming command
when all of the following conditions have been met:

� CICS must retrieve the SYSID of the target system from the file’s resource
definition in the AOR. This condition is met when the application programming
command either specifies no explicit SYSID or specifies a SYSID which is that
of the AOR itself, and the SYSID given in the file resource definition is that of
the FOR.

Within a single browse sequence, an application should not change between
specifying an explicit SYSID and not specifying one, as this is likely to lead to
unpredictable results.

� The serving system has logged on; that is, it has registered itself as a shared
data table owner.

� The requesting system has connected to the server for the files specified on
the application programming command.

� The file supports the requested function.

Note: Function shipping a request might result in “daisy chaining”; that is, the
request passes through one or more intermediate CICS nodes between the region
issuing the request (an AOR) and the region owning the resource (the FOR). In
such cases, use of shared data tables cross-memory services is limited to the final
link (from the last intermediate system to the FOR).

 Connection
Commands cannot use cross-memory services until the SDT connection is made
between the AOR and the remote data table. Also, if a browse sequence starts
before the connection is made, all subsequent requests in the sequence use
function shipping services. This is likely to occur if the connection cannot be
established at the STARTBR command because the data table is not open, and the
command causes the data table to be implicitly opened. The connection is then
made on the next new request to the data table, but the original browse sequence
continues to use function shipping services.

 Disconnection
A connection remains in force until either the AOR deletes its remote file definition
or the FOR closes or disables the file. The effects of close or disable are
described below.

� If the FOR closes the file (with or without the FORCE option), disconnection is
scheduled at the next non-update request that is issued for the file (that is, the
next request to attempt to use cross-memory services to access the data
table).

The disconnection takes place as soon as all outstanding browse sequences (if
any) against the file have terminated. Each browse sequence terminates either
at the next browse request (and the transaction is abended with code AFCH
unless the request is an ENDBR command) or when the transaction terminates.

After the disconnection is scheduled, all requests (except any outstanding
browse requests, as described above) are function shipped until a connection is
re-established.

30 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

� If the FOR disables the file without the FORCE option, disconnection is
scheduled at the next non-update READ or STARTBR command issued for the
file, unless the FOR re-enables the file before then.

If scheduled, disconnection takes place as soon as all outstanding browse
sequences (if any) against the file have ended. Such browse sequences
continue normally; they are unaffected by the disabling unless a browse of the
source data set is started in the FOR in order to satisfy a request in the browse
sequence (see “Disabling a data table”).

� If the FOR disables the file with the FORCE option, the effect is the same as
when a file is closed except that, if the FOR re-enables the file before the AOR
issues the next non-update request for the file, the disabling is not observed by
the AOR and so disconnection is not scheduled.

Differences between function-shipping and cross-memory services
You should be aware of the following differences between the way requests are
handled, depending on whether function-shipping or cross-memory services are
used to access the data table.

Closing a data table
When function shipping is used for a browse sequence of a remote file, the file
cannot be closed (except by using the FORCE option) until after the browse
sequence ends.

When cross-memory services are used, it is possible for the file to be closed during
the browse sequence. In this case, the transaction is ended with abend code
AFCH at the next request for that file. If your applications or operational
procedures rely on the quiescing of browse activity either when closing a file or at
the normal shutdown of an FOR, you should review them before using a shared
data table for the file.

Disabling a data table
When function shipping is used for a browse sequence of a remote file, the browse
sequence, once started, can continue normally even if the file is then disabled
(unless the FORCE option is used).

When cross-memory services are used, the effect is the same unless, during the
browse sequence, it is necessary to function ship a STARTBR command to the
FOR. This can happen if, for example, a gap in a CMT makes it necessary to
browse the VSAM source data set to retrieve records. The function-shipped
STARTBR command fails if the file is then disabled by a request that was issued
by the FOR after the browse sequence started in the AOR. In this case, the
browse sequence is unable to continue normally, so the transaction in the AOR is
abended with code AFCH.

If the FORCE option is used with the disable request, all function-shipped browse
requests are always terminated. If the file is re-enabled, it is possible for browse
requests that use cross-memory services to continue unaffected. See the
information about FORCE in “Disconnection” on page 30.

 Chapter 5. Application programming for shared data tables 31

 User exits
For function-shipped requests, the EXEC interface user exits XEIIN and XEIOUT,
and the file control user exits XFCREQ and XFCREQC are invoked in both the
AOR and FOR.

For cross-memory requests, these user exits are invoked only in the AOR.

 Security checking
For function-shipped requests, security checking in the FOR is invoked for the first
request that refers to a given file in each unit of work. Thus transaction-level
security checks can be performed in the FOR.

For cross-memory requests, security checking is invoked only at CONNECT time.
Thus transaction-level security checks cannot be performed in the FOR.

Read request failure
If a read request using function shipping fails, the input area is unchanged.

If a read request using cross-memory services fails, there is a chance that the input
area will be altered although no record was retrieved. You should not therefore rely
on the input area being unchanged, although you can be sure that the key will not
have been changed.

EXEC interface block
You might notice that read requests using cross-memory services return a value in
the EIBRESP2 field. Function-shipped read requests do not return a value in the
EIBRESP2 field, so your applications should not be dependent on this field being
set by read requests.

 Key length
For function-shipped requests, you must specify the correct key length either in the
remote-file definition in the AOR or explicitly on the file request (to match the key
length in the VSAM definition in the FOR). If you do not, the INVREQ condition is
returned for any request that accesses the file. This applies to any file, not just one
that is defined as a data table.

For cross-memory requests, the key length in the AOR is not used; requests can
complete successfully even if the key length is not specified in the AOR, or if the
key length specified in the AOR does not match that in the FOR. However, your
applications should not depend on this because some of the requests might be
function shipped.

32 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Differences between SDT services and VSAM
Because SDT services replace VSAM for many data table requests, you should be
aware of the following differences in the way that certain requests are implemented.

Read while updating (different transactions)
In the case of a READ command for a data table record following a READ
UPDATE issued for that record by another transaction and preceding the
associated update request, when SDT services are used, the READ command is
processed immediately.

When VSAM is used, the READ command waits until the update request is
complete.

Read while updating (same transaction)
In the case of a READ command for a data table record following a READ
UPDATE issued for that record by the same transaction and preceding the
associated update request, when SDT services are used, the READ command is
processed immediately.

When VSAM is used, the transaction incurs a deadlock abend AFCG.

Delete during browse
When SDT services are used for a STARTBR or RESETBR command for a data
table record, it is possible for the record to be deleted before the associated
READNEXT or READPREV command is issued.

When VSAM is used, the record cannot be deleted before the associated
READNEXT or READPREV command is issued.

Thus, when SDT services are used, if a STARTBR or RESETBR command is
issued with a key other than the special ‘last record’ key, X'FF....', and the record
selected is deleted before the READNEXT command, the READNEXT command
reads the succeeding record.

If there is no succeeding record, the ENDFILE condition is returned. If the EQUAL
option was used on the STARTBR or RESETBR, the key of the record that is read
might not match the key specified.

If a STARTBR or RESETBR command is issued with the special ‘last record’ key,
and the selected record is deleted before the READPREV command, the
READPREV command reads the preceding record, or returns the ENDFILE
condition if there is none.

Write during browse
When SDT services are used, if a browse reads to the end of a file, raising the
ENDFILE condition, and a new record is then inserted beyond the end of the file, a
subsequent READNEXT will be able to read the new record.

When VSAM is used, the subsequent READNEXT may not be able to find the new
record, but will instead report the ENDFILE condition again.

 Chapter 5. Application programming for shared data tables 33

Delete while updating (same transaction)
When SDT services are used for a DELETE command which specifies RIDFLD for
a data table record after a READ UPDATE has been issued for that record by the
same transaction and before the associated update request, the DELETE command
is processed successfully, and the associated update request receives a NOTFND
condition.

34 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Chapter 6. Managing SDT resource definitions

You define a data table in the same way as a CICS file except that you need to
specify in addition:

� Which type of data table is to be used
� The maximum number of records that can be held in the data table

Note: The VSAM KSDS definition supplies the maximum record length and
the key length.

You can define a file as a data table by the:

� CEDA DEFINE FILE command (the recommended method, see “Defining an
SDT” on page 36)

� DFHFCT macro (see the CICS Resource Definition Guide)

Also, you can use:

� The EXEC CICS SET FILE or CEMT SET FILE command to change the data
table attributes of an existing file

� The EXEC CICS INQUIRE FILE or CEMT INQUIRE FILE command to check
the data table attributes of an existing file

See:

� “Using EXEC CICS commands to manage SDT definitions” on page 39

� “Using CEMT commands to manage SDT definitions” on page 40

 Copyright IBM Corp. 1992, 1998 35

Defining an SDT
Figure 6 shows the CEDA panel for the CEDA DEFINE FILE command including
the data table parameters.

à ð
 File ==>
 Group ==>
 DEScription ==> ...

 VSAM PARAMETERS

 DSNAme ==> ..

Password ==> PASSWORD NOT SPECIFIED

 Lsrpoolid ==> ð1 ð1-15 | None

 Catname ==>

DSNSharing ==> Noreqs Noreqs | Allreqs | Modifyreqs

STRings ==> ðð1 1 - 255

 Nsrgroup ==>

SHr4access ==> Key Key | Rba

 REMOTE ATTRIBUTES

REMOTESystem ==>

 REMOTEName ==>

RECORDSize ==> 1 - 32767

 Keylength ==> ... 1 - 255

 INITIAL STATUS

STAtus ==> Enabled Enabled | Disabled | Unenabled

Opentime ==> Firstref Firstref | Startup

 BUFFERS

DAtabuffers ==> 2 - 32767

Indexbuffers ==> 1 - 32767

 DATATABLE PARAMETERS

Table ==> No No | Cics | User

Maxnumrecs ==> 16 - 16777215

 DATA FORMAT

RECORDFormat ==> V V | F

 OPERATIONS

Add ==> No No | Yes

Browse ==> No No | Yes

DELete ==> No No | Yes

REAd ==> Yes Yes | No

Update ==> No No | Yes

 AUTO JOURNALING

JOurnal ==> No No | 1 - 99

JNLRead ==> None None | Updateonly | Readonly | All

JNLSYNCRead ==> No No | Yes

 JNLUpdate ==> No No | Yes

JNLAdd ==> None None | Before | AFter |ALl

JNLSYNCWrite ==> Yes Yes | No

 RECOVERY PARAMETERS

RECOVery ==> None None | Backoutonly | All

Fwdrecovlog ==> No No | 1-99

á ñ

Figure 6. CEDA DEFINE FILE panel

Full details of how to use the CEDA DEFINE FILE command to define files are
given in the CICS Resource Definition Guide. Only the parameters that relate to
data tables are described in this chapter.

ADD(NO|YES), BROWSE(NO|YES), DELETE(NO|YES), READ(YES|NO), and
UPDATE(NO|YES)
Specify which of these file operations can be requested for the data table.

CATNAME(name)
Specify the filename of the catalog in which the source data set resides.

36 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

DSNAME(name)
Specify the name of the VSAM KSDS that is to be used as the source data set.

FILE(name)
Specify the name of the file.

For a CMT, this name is used to refer to both the data table and the source
data set, which are treated as a single entity by CICS.

For a UMT, this name is used to refer to only the data table.

LSRPOOLID(number|1)
Specify the number of the VSAM local shared resource (LSR) pool that is to be
used by the data table. CICS uses the LSR integrity function to prevent
concurrent reading and updating of the same record by multiple users, so you
must specify an LSRPOOL number, in the range 1 through 15. The default is
LSRPOOLID(1) .

MAXNUMRECS(value)
Specify the maximum number of records that can be contained in the data
table, in the range 16 through 16 777 215.

OPENTIME({FIRSTREF|STARTUP})
Specify when the file is to be opened, either on first reference or immediately
after startup by the automatically-initiated transaction CSFU.
OPENTIME(FIRSTREF) is assumed by default.

Remember that the data table is loaded when the file is opened, so, if you are
using the user exit XDTRD, make sure that the user exit is activated before the
file is opened (see “Activating user exits” on page 41).

RECORDFORMAT({V|F})
Specify the format of the records in the file—either RECORDFORMAT(V) for
variable-length records or RECORDFORMAT(F) for fixed-length records.

RECORDFORMAT(V) is assumed by default. A UMT must have
variable-length records.

RECOVERY({NONE|BACKOUTONLY|ALL})
Specify the type of recovery support that is required for the data table. The
default is RECOVERY(NONE).

For a UMT, only dynamic transaction backout is supported by CICS, so
RECOVERY(BACKOUTONLY) and RECOVERY(ALL) have the same
meaning.

For a CMT, the RECOVERY parameter applies to the source data set; it must
be consistent with any other file definition for the same data set.

TABLE({NO |CICS|USER})
Specify TABLE(CICS) to define the table as a CMT.

Specify TABLE(USER) to define the table as a UMT.

If you specify TABLE(NO) , or do not specify the TABLE parameter, the file is
not defined as a data table.

 Chapter 6. Managing SDT resource definitions 37

Example of a CMT definition
The following example shows the definition of a CMT. Only the relevant
parameters are shown.

à ð
 File ==> APPLE
 Group ==> FRUIT
 DEScription ==> ...

 VSAM PARAMETERS

 DSNAme ==> CICð1.CICOWN.APPLES

Password ==> PASSWORD NOT SPECIFIED

 Lsrpoolid ==> 2 1-15 | None

 Catname ==>

DSNSharing ==> Allreqs Noreqs | Allreqs | Modifyreqs

STRings ==> ðð5 1 - 255

 Nsrgroup ==>

SHr4access ==> Key Key | Rba

 INITIAL STATUS

STAtus ==> Enabled Enabled | Disabled | Unenabled

Opentime ==> STARTUP Firstref | Startup

 DATATABLE PARAMETERS

Table ==> CICS No | Cics | User

Maxnumrecs ==> 1ðððððð 16 - 16777215

 DATA FORMAT

RECORDFormat ==> F V | F

 OPERATIONS

Add ==> YES No | Yes

Browse ==> No No | Yes

DELete ==> YES No | Yes

REAd ==> YES Yes | No

Update ==> YES No | Yes

 RECOVERY PARAMETERS

RECOVery ==> ALL None | Backoutonly | All

Fwdrecovlog ==> 1ð No | 1-99

á ñ

Figure 7. Defining a CICS-maintained data table

38 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Example of a UMT definition
The following example shows the definition of a UMT. Only the relevant
parameters are shown.

à ð
 File ==> COURGET
 Group ==> VEGS
 DEScription ==> ...

 VSAM PARAMETERS

 DSNAme ==> CICð2.CICOWN.COURGET

Password ==> PASSWORD NOT SPECIFIED

 Lsrpoolid ==> 5 1-15 | None

 Catname ==>

DSNSharing ==> Allreqs Noreqs | Allreqs | Modifyreqs

STRings ==> ðð5 1 - 255

 Nsrgroup ==>

SHr4access ==> Key Key | Rba

 INITIAL STATUS

STAtus ==> Enabled Enabled | Disabled | Unenabled

Opentime ==> FIRSTREF Firstref | Startup

 DATATABLE PARAMETERS

Table ==> USER No | Cics | User

Maxnumrecs ==> 2ððððð 16 - 16777215

 DATA FORMAT

RECORDFormat ==> V V | F

 OPERATIONS

Add ==> YES No | Yes

Browse ==> YES No | Yes

DELete ==> No No | Yes

REAd ==> YES Yes | No

Update ==> YES No | Yes

 RECOVERY PARAMETERS

RECOVery ==> BACKOUTONLY None | Backoutonly | All

Fwdrecovlog ==> No No | 1-99

á ñ

Figure 8. Defining a user-maintained data table

Using EXEC CICS commands to manage SDT definitions
This section contains General-use Programming Interface and Associated Guidance
Information.

You can use the EXEC CICS SET FILE command to change the definition of an
existing SDT, and the EXEC CICS INQUIRE FILE command to check the definition
of an existing SDT. For programming information, including details of how to use
these commands and the parameters described here, see the CICS System
Programming Reference manual. The parameters that are relevant to data tables
are described below.

EXEC CICS SET FILE command
The following parameters are relevant to data tables; you can use them only when
the file is closed and disabled. You can specify a data table attribute of a file in a
CICS-value data area (cvda):

TABLE(cvda)
Specify a cvda value of CICSTABLE to define the file as a CMT.

Specify a cvda value of USERTABLE to define the file as a UMT.

 Chapter 6. Managing SDT resource definitions 39

Specify a cvda value of NOTTABLE to indicate that the file is not a data table.

EXEC CICS INQUIRE FILE command
The following parameters are relevant to data tables. You can request that each
data table attribute of a file is returned in a CICS-value data area (cvda) by
specifying:

TABLE(cvda)
If the value CICSTABLE is returned, the file has been defined as a CMT.

If the value USERTABLE is returned, the file has been defined as a UMT.

If the value NOTTABLE is returned, the file is not currently defined as a data
table.

If the value NOTAPPLIC is returned, the option is not applicable because the
file is a remote file.

Using CEMT commands to manage SDT definitions
You can use the CEMT SET FILE command to change the definition of an existing
SDF, and the CEMT INQUIRE FILE command to check the definition of an existing
SDF. Full details of how to use these commands, including the parameters
described here, are given in CICS-Supplied Transactions manual. The parameters
that are relevant to data tables are described below.

CEMT SET FILE command
The following parameters are relevant to data tables; you can use them only when
the file is closed and disabled.

{CICSTABLE|USERTABLE|NOTTABLE}
Specify CICSTABLE to define the file as a CMT.

Specify USERTABLE to define the file as a UMT.

Specify NOTTABLE to indicate that the file is not a data table.

MAXNUMRECS(value)
Specify the maximum number of records that can be contained in the data
table, in the range 16 through 16 777 215.

CEMT INQUIRE FILE command
The following parameters are relevant to data tables.

Data table
If the value CICSTABLE is returned, the file has been defined as a CMT.

If the value USERTABLE is returned, the file has been defined as a UMT.

If the value NOTTABLE is returned, the file is not currently defined as a data
table.

MAXNUMRECS(value)
The value returned indicates the maximum number of records that can be
contained in the data table. The value is zero if no value has been set
previously.

40 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Chapter 7. Using the CICS-supplied global user exits

This chapter contains Product-sensitive Programming Interface and Associated
Guidance Information.

This chapter describes the three global user exit points that are included in data
table services. You can supply one or more assembler-language programs to be
executed at each of these points in order to extend or modify the function provided
by CICS.

The chapter is divided into:

� Activating user exits, which provides information on activating user exits.

� “Communicating between CICS and exit programs” on page 42, which provides
general information.

� “XDTRD user exit” on page 44. XDTRD is invoked for each record that is read
from the source data set (normally when the file is being loaded). You can
then select whether to load the record into the data table or not. For a UMT,
you can also modify the record.

� “XDTAD user exit” on page 45. XDTAD is invoked for each record that is
added to the source data set. You can then select whether to add the record
to the data table or not.

� “XDTLC user exit” on page 46. XDTLC is invoked when loading of the data
table is complete, whether successful or not.

Activating user exits
To activate the data table user exits, you need to perform the following steps:

1. Decide which user exits you want to use. A description of each user exit is
included in this chapter.

2. Write the user exit programs. Examples are included in Appendix A, “Sample
user exit programs” on page 69.

3. Define the user exit programs to CICS, using the CEDA DEFINE PROGRAM
command (see the CICS Resource Definition Guide).

4. Activate the user exits, using the EXEC CICS ENABLE command (for
programming information about this command, see the CICS System
Programming Reference manual). If required, you can later deactivate the user
exits, using the EXEC CICS DISABLE command.

Unless you control the opening of a data table explicitly, with a CEMT or EXEC
CICS command, you should probably activate the user exits during CICS startup.
Otherwise loading of the data table might begin before the user exits are activated.
To activate the user exits during startup, you need to:

1. Write one or more program list table postinitialization (PLTPI) programs that
include the EXEC CICS ENABLE commands to activate the user exits (for
programming information about PLTPI programs, see the CICS Customization
Guide).

 Copyright IBM Corp. 1992, 1998 41

2. Define a program list table (PLT) with an entry for each of those PLTPI
programs, as described in the CICS Resource Definition Guide.

3. Specify the PLTPI=suffix parameter for system initialization, as described in
the CICS System Definition Guide. Use the suffix of the PLT that was defined
in the previous step. This causes the PLTPI programs to be executed in the
second stage of initialization, before any files are opened.

You can use PLT shutdown (PLTSD) programs in a similar way to disable the user
exits during CICS shutdown.

In addition:

� Samples of exit programs are shown in Appendix A, “Sample user exit
programs” on page 69.

� Programming information about global user exits and how to use them is given
in the CICS Customization Guide.

The EXEC interface user exits XEIIN and XEIOUT and the file control user exits
XFCREQ and XFCREQC are not invoked in the file-owning region if a request to
access a data table is satisfied by cross-memory services.

Communicating between CICS and exit programs
A parameter list is used to pass information between CICS and the data table exit
programs. CICS Transaction Server for VSE/ESA Release 1 supplies a copybook,
named DFHXDTDS, which contains a DSECT to define this parameter list. You
should include a COPY DFHXDTDS statement in each of your exit programs. The
DSECT is shown in Figure 9 on page 43.

The field names used in this DSECT are referenced in the user exit descriptions
that follow the figure.

42 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

\\\

\ \

\ Data Table Parameter List for User Exits XDTRD, XDTAD and XDTLC. \

\ \

\ Some of the parameters are only used by one or two of the exits. \

\ This is indicated in the comments for those parameters. \

\ The comments also indicate whether the field is used for input \

\ (In), output (Out), or both (In/Out). \

\ \

\ NOTE that this definition could be used by exit programs running \

\ both on CICS regions which have shared data tables support \

\ (SDT) installed and on ones which do not, providing the UEPDTSDT \

\ flag is used to test whether SDT is installed, and that the \

\ parameters which are unique to SDT are only used when it is set. \

\ \

\\\

DT_UE_PLIST_DSECT DSECT ,

DT_UE_PLIST DS ðXL84 Data Table User Exits X

 Parameter List

UEPDTNAM DS CL8 Data table name (In)

UEPDTFLG DS ðCL1 Flags (In):

 DS BL1

UEPDTSDT EQU X'8ð' Exit invoked by SDT support

\---\

\ The remaining flags are available only to exits which \

\ have been invoked by shared data tables support \

\---\

UEPDTCMT EQU X'4ð' Table is CICS-maintained

UEPDTOPT EQU X'2ð' Exit invoked by table loader, X

so optimization by skipping X

may be requested - XDTRD only

\ EQU X'1F' Reserved

UEPDTORC DS AL1 Data table load return code - X

XDTLC only, values below (In)

 DS BL2 Reserved

Figure 9 (Part 1 of 2). Data table user exit parameter list

 Chapter 7. Using the CICS-supplied global user exits 43

UEPDTRA DS A Data record address - XDTRD X

and XDTAD only (In)

UEPDTRBL DS F Data buffer length - XDTRD and X

XDTAD only (In)

UEPDTRL DS F Data table record length - X

XDTRD and XDTAD only, XDTRD X

can return new length in here X

if it amends record (only X

allowed for UMT) (In/Out)

UEPDTKA DS A Key address - XDTRD and XDTAD X

 only (In)

UEPDTKL DS F Key length - XDTRD and XDTAD X

 only (In)

\---\

\ The following fields are only available to exits which \

\ have been invoked by shared data tables support \

\---\

UEPDTDSL DS F Length of data set name (In)

UEPDTDSN DS CL44 Source data set name (In)

UEPDTSKA DS A Address of skip-key area: exit X

should return a key of length X

UEPDTKL in this area if it has X

requested optimization of load X

by skipping - XDTRD only (In)

\---\

\ Values for UEPDTORC (supplied to XDTLC exit only) \

\---\

UEPDTLCS EQU ð load completed successfully

UEPDTLFL EQU 128 load failed

Figure 9 (Part 2 of 2). Data table user exit parameter list

The user exits should set a return code in register 15. The return code values are
supplied by the DFHUEXIT macro. The valid values for each user exit are given in
the following descriptions.

If you want your exit programs to work for both basic and shared data tables
support, you can check UEPDTFLG to find out which version of data tables support
invoked the exit program. For SDT, this flag byte also indicates which type of data
table is being used and whether the exit program is being invoked during loading.

The exit program should use either the filename (field UEPDTNAM) or the name of
the source data set (see fields UEPDTDSN and UEPDTDSL) to determine whether
this is a file for which any action is to be taken.

You can enable several exit programs at the same exit point, each of which, for
example, takes action for a particular file or data set.

XDTRD user exit
The XDTRD user exit is invoked just before CICS attempts to add to the data table
a record that has been retrieved from the source data set.

This normally occurs when the loading process retrieves a record during the
sequential copying of the source data set. However, it can also occur when an
application retrieves a record that is not in the data table and:

44 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

� For a user-maintained data table, loading is still in progress, or

� For a CICS-maintained data table, loading terminated before the end of the
source data set was reached (because, for example, the data table was full).

The record retrieved from the source data set is passed as a parameter to the user
exit program—see fields UEPDTRA and UEPDTRL. This program can choose
(depending, for example, on the key value—see fields UEPDTKA and UEPDTKL)
whether to include the record in the data table or not.

Alternatively, the exit program can request that all subsequent records up to a
specified key are skipped—see field UEPDTSKA; these records are not passed to
the exit program. This facility is available only during loading. You can specify the
key as a complete key, or you can specify just the leading characters by padding
the skip-key area with binary zeros.

The action required is indicated by setting the return code. Depending on the
return code value, the following action is taken by CICS:

For a UMT, the program can also modify the data in the record to reduce the
storage needed for the data table. Application programs that use the data table
must be aware of any changes made to the record format by the exit program. If
the record length is changed, the exit program must set the new length in the
parameter list—see field UEPDTRL. The new length must not exceed the data
buffer length—see field UEPDTRBL.

Table 5. Return codes for XDTRD user exit. A value of UERCPURG should be
returned if the exit program has received a PURGED response to a call that it has
issued.

Return code Action

UERCDTAC Include the record in the data table. This is the default if the exit is
not activated.

UERCDTRJ Do not include the record in the data table.

UERCDTOP Skip over this record and the following records until a key is found
that is equal to or greater than the key specified in the skip-key area.

XDTAD user exit
The XDTAD user exit is invoked when a write request is issued to a data table.

� For a UMT, the user exit is invoked once—before the record is added to the
data table.

� For a CMT, the user exit is invoked twice—before the record is added to the
source data set and then again before the record is added to the data table.

The record written by the application is passed as a parameter to the user exit
program—see fields UEPDTRA and UEPDTRL. This program can choose
(depending on the key value, for example—see fields UEPDTKA and UEPDTKL)
whether to include the record in the data table or not. This decision is indicated by
setting the return code.

Depending on the return code value, the following action is taken by CICS:

 Chapter 7. Using the CICS-supplied global user exits 45

The XDTAD exit must not modify the data in the record. If you used XDTRD to
truncate the data records when the user-maintained data table was loaded, you
must code your application so that it only tries to write records of the correct format
for the data table.

Table 6. Return codes for XDTAD user exit. A value of UERCPURG should be
returned if the exit program has received a PURGED response to a call that it has
issued.

Return code Action

UERCDTAC Add the record to the data table. This is the default if the exit is not
activated.

UERCDTRJ Do not add the record to the data table.

XDTLC user exit
The XDTLC user exit is invoked at the completion of data table loading—whether
successful or not. The user exit is not invoked if the data table is closed for
any reason before loading is complete.

The exit program is informed if the loading did not complete successfully—see field
UEPDTORC. This could occur, for example, if the maximum number of records
was reached or there was insufficient virtual storage. In this case, the exit program
can request that the file is closed immediately, by setting the return code.

Depending on the return code value, the following action is taken by CICS:

Table 7. Return codes for XDTLC user exit. A value of UERCPURG should be
returned if the exit program has received a PURGED response to a call that it has
issued.

Return code Action

UERCDTOK No action; the file remains open. This is the default if the exit is not
activated.

UERCDTCL Close the file.

46 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Chapter 8. Using shared data tables services

This chapter describes these operational aspects of data tables:

� “Opening a data table”
� “Closing a data table” on page 48
� “Interpreting data table statistics” on page 48

Opening a data table
A data table must be opened before it can be used by an application. This is done
in the same way as for any CICS file, by one of the following methods:

� Automatically, by the CICS-supplied transaction CSFU, at the end of CICS
startup, if the data table is defined with OPENTIME(STARTUP) or
FILSTAT=OPENED.

� Explicitly, by a CEMT or EXEC CICS request issued by the user.

� Implicitly, on first reference to the data table, if the data table is defined with
OPENTIME(FIRSTREF) or FILSTAT=CLOSED. The first remote access to a
closed data table implicitly opens it.

All the rules and options for opening a CICS file also apply to a file that is defined
as a data table. In addition, the loading of the data table is initiated.

For a large data table, loading could take a significant time. Chapter 5,
“Application programming for shared data tables” on page 27 discusses the
application programming commands that can be used with a UMT, and the way
that performance gains that can be achieved with a CMT are limited until loading is
completed.

During the opening of the file:

1. The access method control block (ACB) for the VSAM source data set is
opened under a separate VSE subtask. This step is the same as for any CICS
file.

2. For the first data table used by a region, CICS:

� Creates VSE storage subpools for use by SDT
� Creates a VSE/ESA data space for use by this region’s data tables
� Attempts a LOGON operation as a server

3. A special CICS transaction, CSSY, is attached to load the data table into the
data space.

4. The transaction that issued the request to open the data table can now
continue processing.

5. CICS issues a message DFHFC0940 to indicate that loading has started. The
message is sent to the CSFL transient data queue.

6. The transaction that loads the data table reads the source data set
sequentially. Under the optional control of the user exit XDTRD, the
transaction copies the records into the data space. It also constructs an index
in address-space storage to facilitate subsequent access to the records.

 Copyright IBM Corp. 1992, 1998 47

7. CICS issues a message to indicate the result of the loading. The message
number is:

� If loading is successful—DFHFC0941

� If loading fails—DFHFC0942, DFHFC0943, DFHFC0945, DFHFC0946,
DFHFC0947, or DFHFC0948.

The message is sent to the CSFL transient data queue. Also, if loading fails,
the message is sent to the console. For descriptions of these messages, see
the VSE/ESA Messages and Codes Volume 3 manual.

8. When loading is complete (whether successful or not), the user exit XDTLC is
invoked if it is active. If the loading was not completed successfully, the exit
program can request that the data table is closed.

9. For a UMT, the ACB for the source data set is closed when loading is
complete. The data set is deallocated if it was originally dynamically allocated
and no other ACBs are open for it.

Note: During an emergency restart, any file that requires backout action is
reopened. However, if the file is defined as a data table, loading is not initiated at
that time; instead, it is initiated by the CSFU transaction at the end of the
emergency restart. This gives an opportunity for any user exits that control the
copying of records to the data table during loading to be activated at any stage of
PLTPI processing.

Closing a data table
A data table is closed in the same way as for any CICS file, by one of the following
methods:

� Explicitly, by a CEMT or EXEC CICS request issued by the user
� Implicitly, when CICS is shutdown normally

All the rules and options for closing a CICS file also apply to a data table. In
particular:

� The rules about the quiescing of current users of the file apply (except that the
file can be closed even when a transaction that is running in an AOR is in the
middle of a browse sequence).

� If a UMT is defined as recoverable, all units of work that have changed the
data table must complete before the data table can be closed.

The data space storage that is used for the data table records, and the
address-space storage that is used for the associated table-entry and index storage
is freed as part of the close operation. If a file is reopened after it has been closed,
the processing is the same as if the file had not been previously opened.

Interpreting data table statistics
This section describes the statistics information that is produced by CICS to help
you monitor the activity on your data tables.

You can use the information contained in a CICS statistics report to evaluate the
benefits of using data table services. The information that is recorded for a data
table is shown in Table 8 on page 49.

48 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

The statistics for data tables are included in the FILES section of the statistics
report. Four sections of FILE information are produced:

� The “FILES - Resource Information” shows information such as the filename,
source data set name, data set type (which is always K for a data table,
because the source must be a VSAM KSDS) and a DT indicator that is
explained below.

� The “FILES - Requests Information” shows the statistics for accesses to the
source data set. For a loaded UMT, this contains only zeros.

� The “FILES - Data Table Requests Information” shows statistics for accesses to
the data table. The meanings of the column headings are given in Table 8.

� The “FILES - Performance Information” shows the use of VSAM strings and
buffers, and is only of interest for a data table in that it relates to the source
data set.

A request to a data table that is owned by another region is recorded in the
statistics report for both the requesting and file-owning regions.

The DT Indicator is a single character that can have the values:

T The statistics report contains data table information because the file has
been opened as a data table.

R The statistics report contains information for a remote file that has
accessed a data table using shared data tables cross-memory services.

Table 8. Data tables statistics

Heading Description

Close Type Type of data table close (only appears in the statistics collected
when a data table is closed).

Read Requests Number of attempts to read records from data table or, in the
AOR statistics, the number of read requests that had to be
function shipped.

Recs ¬ in Table Number of attempts to read records from source data set
because the record was not found in data table. (For a
user-maintained data table, this happens only during loading.)

Adds from Reads Number of attempts to copy records from source data set to data
table during loading process (including read requests from
applications during loading).

Add Requests Number of attempts to write records to data table.

Adds Rejected -
Exit

Number of records suppressed by XDTRD and XDTAD user
exits.

Adds Rejected -
Table Full

Number of records that were not included because the table was
full.

Rewrite Requests Number of attempts to rewrite records in data table.

Delete Requests Number of attempts to delete records from data table.

Highest Table Size Peak number of records held in data table.

Storage Alloc(K) Number of KB allocated to data table.

 Chapter 8. Using shared data tables services 49

S The statistics report contains data table information for the accesses
made by this file to an associated data table (which has the same
source data set).

X The statistics report contains information for an alternate index file, and
reports data table information for the update of the data table associated
with a file in the same upgrade set.

The field is blank if data table statistics are not present for the file.

The Close Type is a single character that appears in the statistics only for the
closing of a data table. The possible values indicate the type of close:

C Close of a CMT.

P Partial close of a CMT. There are still other files using the data table,
so the data table itself has not been closed, only the file.

S Close of the source data set for a UMT. This happens at the end of
loading of the data table.

U Close of a UMT.

A total value for the storage allocated is not included in the TOTALS line.

To find out how to obtain a statistics report, using the statistics utility program
DFHSTUP, see the CICS Operations and Utilities Guide. For a description of the
data contained in a statistics report, see the CICS Performance Guide.

Sample data table statistics
Figure 10 on page 51, Figure 11 on page 52, and Figure 12 on page 53 show
extracts from the file statistics for a hypothetical configuration similar to that
discussed in “Using statistics to select data tables” on page 18, following
conversion of the files into data tables. These figures are used to discuss how to
interpret the information about data tables which is provided by the CICS statistics.

50 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Requested Statistics Report Collection Date-Time 12/25/99-23:55:41 Last Reset 21:ðð:ðð Applid CICFOR Jobname SDTGSTF1

FILES - Resource Information

File Dataset Name Dataset DT Time Time Remote Remote Lsrpool

Name Base Dataset Name (If Applicable) Type Indicator Opened Closed Name Sysid ID

 __

 APPLE CICð1.CICOWN.APPLES K T 22:12:ð4 OPEN 1

 BANANA CICð1.CICOWN.BANANAS K T 22:53:56 OPEN 1

 ORANGE CICð1.CICOWN.CITRUS K T 2ð:51:25 OPEN 2

 PLUM CICð1.CICOWN.PLUMS K T 21:3ð:1ð OPEN 4

 POTATO CICð1.CICOWN.POTATOES K T 2ð:3ð:1ð OPEN 8

 VICTORI CICð1.CICOWN.PLUMS K S 21:56:23 OPEN 4

 __

Requested Statistics Report Collection Date-Time 12/25/99-23:55:41 Last Reset 21:ðð:ðð Applid CICFOR Jobname SDTGSTF1

FILES - Requests Information

File Get Get Upd Browse Update Add Delete VSAM EXCP Requests

Name Requests Requests Requests Requests Requests Requests Data Index

 APPLE 1 495 76ððð1 495 12 ð 1456ð 1321

 BANANA ð 18ð3 486ð3 18ð3 951 ð 8212 481

ORANGE 1ð87 1ð2677 1ð4 1ð7897 47ð9 188ð 2518ð 1947

PLUM ð 1ð 2ðð1 ð 2ð 1ð 58ð 3

POTATO ð ð 24173 ð ð ð 4513 2

VICTORI ð 3 ð ð 5 3 5 1

\TOTALS\ 1ð88 1ð4988 834882 11ð195 5697 1893

Requested Statistics Report Collection Date-Time 12/25/99-23:55:41 Last Reset 21:ðð:ðð Applid CICFOR Jobname SDTGSTF1

FILES - Data Table Requests Information

File Close Read Recs ¬ Adds from Add Adds rejected Adds rejected Rewrite Delete Highest Storage

Name Type Requests in Table Reads Requests - Exit - Table Full Requests Requests Table Size Alloc(K)

 APPLE 11ð5241 1 76ðððð 12 ð ð 495 ð 76ðð12 951ð4

BANANA 652195 ð 486ð2 951 2 ð 18ð3 ð 49551 112ðð

 ORANGE 1473 1191 ð 47ð9 ð ð 1ð7897 188ð 6ð4167 266658

 PLUM 227 1 2ððð 2ð ð ð ð 1ð 2ð25 256

 POTATO 967ð 24173 24165 ð ð 24165 ð ð 1ððð 176ð

 VICTORI 3ð63 1 ð 5 ð ð ð 3 2ð25 256

 \TOTALS\ 1771869 25367 834767 5697 2 24165 11ð195 1893 76ðð12

Figure 10. CICFOR requested file statistics

 Chapter 8. Using shared data tables services 51

Requested Statistics Report Collection Date-Time 12/25/99-23:56:58 Last Reset 21:ðð:ðð Applid CICAOR1 Jobname SDTGSTA1

FILES - Resource Information

File Dataset Name Dataset DT Time Time Remote Remote Lsrpool

Name Base Dataset Name (If Applicable) Type Indicator Opened Closed Name Sysid ID

 __

APPLE REMOTE R CLOSED CLOSED APPLE CIF1 N

BANANA REMOTE R CLOSED CLOSED BANANA CIF1 N

ORANGE REMOTE R CLOSED CLOSED ORANGE CIF1 N

POTATO REMOTE R CLOSED CLOSED POTATO CIF1 N

ZUCCINI REMOTE R CLOSED CLOSED COURGET CIA2 N

 __

Requested Statistics Report Collection Date-Time 12/25/99-23:56:58 Last Reset 21:ðð:ðð Applid CICAOR1 Jobname SDTGSTA1

FILES - Requests Information

File Get Get Upd Browse Update Add Delete VSAM EXCP Requests

Name Requests Requests Requests Requests Requests Requests Data Index

APPLE 1 52ð ð 52ð 5 ð ð ð

BANANA ð ð ð ð ð ð ð ð

ORANGE 214 38735 14 371ð5 1311 63ð ð ð

POTATO ð ð 24173 ð ð ð ð ð

ZUCCINI ð ð ð ð ð ð ð ð

\TOTALS\ 215 39255 24187 38625 1316 63ð

Requested Statistics Report Collection Date-Time 12/25/99-23:56:58 Last Reset 21:ðð:ðð Applid CICAOR1 Jobname SDTGSTA1

FILES - Data Table Requests Information

File Close Read Recs ¬ Adds from Add Adds rejected Adds rejected Rewrite Delete Highest Storage

Name Type Requests in Table Reads Requests - Exit - Table Full Requests Requests Table Size Alloc(K)

APPLE 13ð4214 ð ð ð ð ð ð ð ð

BANANA 441349 ð ð ð ð ð ð ð ð

ORANGE 63384 228 ð ð ð ð ð ð ð

POTATO 4835 24173 ð ð ð ð ð ð ð

ZUCCINI 97867 ð ð ð ð ð ð ð ð

\TOTALS\ 1911649 244ð1 ð ð ð ð ð ð ð

Figure 11. CICAOR1 requested file statistics

52 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Requested Statistics Report Collection Date-Time 12/25/99-23:59:59 Last Reset 21:ðð:ðð Applid CICAOR2 Jobname SDTGSTA2

FILES - Resource Information

File Dataset Name Dataset DT Time Time Remote Remote Lsrpool

Name Base Dataset Name (If Applicable) Type Indicator Opened Closed Name Sysid ID

 __

 COURGET CICð2.CICOWN.COURGET K T 22:35:ð2 OPEN 1

LEMON REMOTE ? CLOSED CLOSED ORANGE CIF1 N

 __

Requested Statistics Report Collection Date-Time 12/25/99-23:59:59 Last Reset 21:ðð:ðð Applid CICAOR2 Jobname SDTGSTA2

FILES - Requests Information

File Get Get Upd Browse Update Add Delete VSAM EXCP Requests

Name Requests Requests Requests Requests Requests Requests Data Index

COURGET ð ð ð ð ð ð ð ð

LEMON 946 63942 299 7ð792 3398 125ð ð ð

\TOTALS\ 946 63942 299 7ð792 3398 125ð

Requested Statistics Report Collection Date-Time 12/25/99-23:59:59 Last Reset 21:ðð:ðð Applid CICAOR2 Jobname SDTGSTA2

FILES - Data Table Requests Information

File Close Read Recs ¬ Adds from Add Adds rejected Adds rejected Rewrite Delete Highest Storage

Name Type Requests in Table Reads Requests - Exit - Table Full Requests Requests Table Size Alloc(K)

 COURGET 27656 ð ð 38659ð ð ð 27656 ð 1ð1232 1616ð

LEMON 324ð872 1245 ð ð ð ð ð ð ð

 \TOTALS\ 3268528 1245 ð 38659ð ð ð 27656 ð 1ð1232

Figure 12. CICAOR2 requested file statistics

The main changes that are seen in the statistics when a file is redefined as a data
table are:

1. Data table statistics appear in both the owning and requesting regions showing
the use of the data table.

2. Values appear in the owning region showing the activity of loading the data
table.

3. Except during loading, the counts of Get Requests and Browse Requests in the
“FILES - Requests Information” statistics are much reduced (often to zero)
because such requests can now be satisfied from the data table.

4. The Recs ¬ in Table figure indicates the degree to which benefit from shared
data tables support has been prevented. In an AOR it shows how many
retrieval requests have had to be function shipped. In an FOR it shows how
many records have had to be fetched from the source data set.

You should use the statistics to get an overall feel for the behavior of your data
tables, rather than attempt to explain the individual values.

 Chapter 8. Using shared data tables services 53

The examples demonstrate a number of points about the statistics. These points
are discussed in the rest of this section.

 Normal loading
Adds from Reads usually shows the number of attempts to add a record during
loading1. Because the loading process involves browsing the source data set until
the end of the file, the number of Browse Requests (in the “FILES - Requests
Information”) equals Adds from Reads + 1 if loading completed successfully and
there have been no other browses on the source data set. The statistics for
APPLE in Figure 10 on page 51 illustrate this point.

In the CICFOR statistics shown, APPLE, BANANA, and PLUM were opened after
the last statistics reset, but ORANGE and POTATO were opened before, so the
latter do not display the load-time statistics. It is generally better to assess
statistics from a time interval that has not been distorted by loading, but you should
remember that the loading process incurs an overhead that has to be recovered by
the number of data table accesses.

Optimization of loading
The statistics for BANANA in Figure 10 on page 51 show an example in which
only a range of key values from the middle of the source data set is required in the
data table. Here, the XDTRD exit has been used to skip over any keys that are not
in this range. For information about the exit, see “XDTRD user exit” on page 44.

Adds rejected - Exit shows the number of times the exit returned a non-zero
return code, and is 2 in this case: 1 for when the first record in the source data set
was presented, and the exit requested the load to skip on to the first key in the
desired range, and 1 for when the first key beyond this range was presented, and
the exit requested the load to skip over all remaining records to the end of the
source data set.

In a case like this, you would usually use the XDTAD exit to reject any records that
are written with keys outside the desired range. Then, the number of Adds
rejected - Exit would include the number of such records that had been written to
the file.

The number of Adds from Reads contains the number of records that were loaded
into the data table plus the two that were rejected. As for all the file and data table
statistics, this figure shows the number of attempted, rather than the number of
successful, writes.

Loading a UMT
When the loading of a UMT completes, the source data set is closed and an
unsolicited statistics record is written that reports the number of records that are
browsed from the source and written to the data table (or rejected by the XDTRD
exit). Therefore, these figures do not appear in any later statistics reports, such as
that for COURGET in Figure 12 on page 53. A Close Type of S identifies such
statistics.

1 If loading has completed, but the load failed to read to the end of the source data set, the count for a CMT might also show
attempts to add records that have been read from the source data set because they were not originally loaded.

54 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Implicit open from the requesting region
If the file is not open in the FOR when the AOR issues the first read to it, then no
connection exists and the read is function shipped. This appears as one file Get
Request in the AOR statistics. The implicit open and subsequent loading of the
data table is triggered in the FOR.

This first read attempt from the new data table is counted in the Read Requests in
the FOR data table statistics, but as the record is not found in the data table at this
stage, it is added to the count of Recs ¬ in Table (which records the number of
times a record could not be obtained from the data table). The record is fetched
from VSAM, so the number of file Get Requests is incremented by 1. The statistics
from CICAOR1 and CICFOR for APPLE illustrate this point.

 Update requests
All update requests (writes, rewrites, and deletes) are processed by the owning
region, which also controls loading and other maintenance of the data table.
Because of this, the data table statistics of Adds from Reads, Add Requests, Adds

rejected, Rewrite Requests, Delete Requests, Highest Table Size, and Storage

Alloc are always zero on the remote requesting regions.

Updates are always reflected in both the data table and the source data set for a
CMT, so matching numbers are often seen in the file statistics and the data table
statistics for Add Requests and Delete Requests, and also for Update Requests in
the file statistics compared with Rewrite Requests in the data table statistics. The
statistics for APPLE and ORANGE illustrate this point.

These numbers might not match if not all records in the source data set are loaded
into the data table, or if some error occurs when the source data set is updated.
For example, an attempt to write a record with a duplicate key to the source data
set is counted in the file Add Requests but no attempt is made to write the record to
the data table, so the count of data table Add Requests is less.

In the case of a UMT, access after loading is complete is always to the data table,
so the line of file statistics always contains zeros. The statistics for COURGET in
Figure 12 on page 53 illustrate this point.

Data table high water mark
The Highest Table Size shows the largest number of records that was present in
the data table at any one time. For APPLE, from which no records have been
deleted, this is the number of records originally loaded, plus the number of data
table Add Requests. For BANANA, the XDTRD user exit accepts only records that
are of interest during loading, and XDTAD performs the same task when records
are written; so the number is given by Adds from Reads plus Add Requests minus
Adds rejected - Exit.

Total storage allocated
Storage Alloc gives the number of Kilobytes that have been allocated to the data
table. This includes both address space and data space storage.

 Chapter 8. Using shared data tables services 55

Reading and browsing
The number of data table Read Requests includes browses that are satisfied by the
data table. Thus for ORANGE in Figure 11 on page 52 and LEMON in Figure 12
on page 53 the numbers of file Browse Requests are very small (and in most cases
they would be zero). But the number of data table Read Requests is of a similar
magnitude to the total number of Get and Browse requests that were made before
conversion of the file to a data table.

Failure to access records using the data table
The set of figures for ORANGE and LEMON show an effect that is sometimes seen
when there is much update activity on a CMT. In this case, some of the read
requests from remote regions might find that the record in the data table is being
updated, so these requests are function shipped to the FOR.

For example, LEMON shows 1245 Recs ¬ in Table, of which 946 are Get
Requests and 299 are Browse Requests. The function-shipped reads and browses
attempt to access the data table in CICFOR (as shown by the 1473 Read Requests

for ORANGE), by which time some of the reads can be satisfied from the data
table, but the remainder use the source data set (as shown by the number under
Recs ¬ in Table).

POTATO shows what can happen if an unsuitable choice of candidate is made.
Because the data table size specified in the file definition is much less than the
number of records in the source data set, only a small part of the file is loaded.
However, the file is accessed remotely by an application that browses many
records that lie beyond those that were loaded.

All those browse requests have to be function shipped to CICFOR (as shown by
the high number of Recs ¬ in Table seen in Figure 11 on page 52 for that file)
and then, on CICFOR, the source data set has to be accessed (as shown by the
number of Browse Requests in Figure 10 on page 51). An attempt is made to add
the records to the data table (see count of Adds from Reads) but as the data table
is still at its maximum number of records, they have to be rejected (see Adds
rejected - Table Full). Incidentally, the statistics record that contains the loading
figures for the file includes 1 under Adds rejected - Table Full for the record that
caused the load to terminate because the data table had reached its maximum
size.

The values of Read Requests, Recs ¬ in Table, Browse Requests, Adds from

Reads, and Adds rejected - Table Full are not all equal (as might have been
expected) because some browses reach the end of the source data set (in which
case there is no record to attempt to add to the data table) and also because often
no attempt is made to access the data table when browsing over a range of
records that is known to be missing from the data table.

Although this is an extreme example, it does illustrate the importance in certain
situations of having a good understanding of the applications. A user exit should
have been used to select the range of records on which most of the browsing
occurs.

56 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Multiple files with a single source
The file VICTORI in CICFOR is included to show that when a second file is defined
with the same source data set as a file that is open as a data table (PLUM) then it
can take advantage of the data table for non-update reads and browses (regardless
of which file is opened first). In the Resource Information for VICTORI, a DT
Indicator of S means that the line of data table statistics shows how the data table
has been used by this associated file; for example, 3063 reads or browses have
been satisfied from the data table.

The same Storage Alloc and Highest Table Size statistics are reported for both
PLUM and VICTORI because the data table is associated with both files. Because
of this, the data table TOTALS line does not include a value for the total storage
allocated. The load-time statistics are reported only for the file that initiated the
data table; that is, the file whose open caused the current instance of the data table
to be built.

Additional statistics fields
Some additional statistics about shared data tables are collected when file statistics
are gathered, but they are not formatted in a statistics report. You can write a
program to extract these additional statistics from the statistics record. For
programming information about CICS statistics, see the CICS Customization Guide.

This section describes the fields that are related to shared data tables and are part
of the DFHA17 statistics record but are not displayed in a statistics report.

A17_DT_SIZE_CURRENT: a fullword at offset 160 (X'A0') containing the current
count of records in the data table.

A17_DT_IN_USE_TOTAL a fullword at offset 168 (X'A8') containing the total
amount of storage (in KB) currently in use for the data
table.

A17_DT_ALLOC_ENTRY a fullword at offset 172 (X'AC') containing the amount
of storage (in KB) currently allocated from the server’s
address space to hold table entries for this data table.

A17_DT_IN_USE_ENTRY a fullword at offset 176 (X'B0') containing the amount
of storage (in KB) in the server’s address space
currently being used by table entries for this data table.

A17_DT_ALLOC_INDEX a fullword at offset 180 (X'B4') containing the amount
of storage (in KB) currently allocated from the server’s
address space to the index for this data table.

A17_DT_IN_USE_INDEX a fullword at offset 184 (X'B8') containing the amount
of storage (in KB) in the server’s address space
currently being used by the index for this data table.

A17_DT_ALLOC_DATA a fullword at offset 188 (X'BC') containing the amount
of storage (in KB) currently allocated from the data
space for the data portion of the records in this data
table.

A17_DT_IN_USE_DATA a fullword at offset 192 (X'C0') containing the amount
of storage (in KB) in the data space currently being
used to hold record data for this data table.

 Chapter 8. Using shared data tables services 57

A17_DT_REREADS a fullword at offset 196 (X'C4') containing a count of
the number of times a read from a requesting region
has retried a part of the data table section of the
request processing because the data table changed in
some way after the start of that section.

These fields are also displayed in the X'0B22' exit trace for a statistics call
amongst the fourteen statistics fullwords, which are (in the order they appear in the
trace):

Adds from Reads during load

Adds rejected - Exit during load

Adds rejected - Table Full during load

Highest Table Size

Current record count

Storage Alloc (K) or Total storage allocated

Total storage in-use

Entry storage allocated

Entry storage in-use

Index storage allocated

Index storage in-use

Data storage allocated

Data storage in-use

Rereads

Because these are internal fields, the traced values do not always correspond
exactly to those in a statistics record.

58 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

 Chapter 9. Investigating problems

This chapter contains Diagnosis, Modification, or Tuning Information.

It describes the trace and dump information that is produced by CICS to help you
determine the cause of a problem with data tables under these headings:

� “Using trace information”
� “Analyzing errors from the SVC” on page 63
� “Analyzing errors from cross-memory services” on page 66
� “Using dump information” on page 66

Explanations of the diagnostic messages and abend codes produced by SDT
services are contained in the VSE/ESA Messages and Codes Volume 3 manual.

Using trace information
The trace table produced by CICS helps you to determine the cause of a problem.
It shows the flow of control through the CICS modules. This section describes the
entries included in the trace table by data table services. For information on the
contents of the trace table and how to obtain it, see the CICS Diagnosis Reference
manual.

There are two types of trace point:

� Entry and exit trace points for each of the services provided by SDT services.
File control level-2 tracing must be on to obtain these trace points.

� Exception trace points.

Both of these types are listed separately below.

Entry and exit trace points
The following entry and exit trace points are provided by SDT services:

0B13 Entry to Remote Read service
0B14 Exit from Remote Read service
0B1B Entry to Initialize Data Table Support service
0B1C Exit from Initialize Data Table Support service
0B1D Entry to Logon service
0B1E Exit from Logon service
0B1F Entry to Load service
0B20 Exit from Load service
0B21 Entry to Open, Close, Set Enablement and Statistics services
0B22 Exit from Open, Close, Set Enablement and Statistics services
0B23 Entry to local read services
0B24 Exit from local read services
0B25 Entry to update (add record, add, replace, delete) services
0B26 Exit from update services
0B2D Entry to Connect and Disconnect services
0B2E Exit from Connect and Disconnect services

The format of each of these trace points is described in the CICS Trace Entries.

 Copyright IBM Corp. 1992, 1998 59

Function and qualifier flags
Each entry and exit trace point contains a function field, and most of them contain a
qualifier flags field. The function field is a byte that identifies the function that was
being performed; the qualifier flags field is a byte that contains flags that qualify
some of the functions. The values of these fields are:

Table 9 (Page 1 of 2). Function and qualifier flags and values

Function Qualifier flags

X'00' Initialize X'00' as shared data table server
X'80' as shared data table requester

X'02' Add entry from source X'00' add issued as a result of a data
set to table read request
X'40' add issued by load transaction

X'03' Write entry to table X'00' completed write
X'80' pre-write for CMT

X'04' Rewrite entry in table X'00' completed rewrite
X'80' pre-rewrite for CMT

X'05' Delete entry in table X'00' completed delete
X'80' pre-delete for CMT

X'06' Commit user-maintained data table
updates made by this unit of work

X'07' Roll back user-maintained data
table updates made by this unit of work

X'08' Load data table (on exit trace only) X'00' load OK
X'80' source file is empty

X'09' Point at a record X'80' equal match
X'40' greater than match
X'20' less than match
(the above can be in various
combinations)
X'10' test if data table is enabled

X'0A' Retrieve record by key X'80' equal match
X'40' greater than match
X'20' less than match
(the above can be in various
combinations)
X'10' test if data table is enabled

X'0B' Retrieve record by token X'80' equal match (internal fastpath for a
sequence of records)
X'40' greater than match
X'20' less than match
(the above can be in various
combinations)
X'10' test if data table is enabled

X'0C' Logon as a server

X'0E' Open a data table

X'0F' Close a data table

X'10' Collect statistics

60 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Table 9 (Page 2 of 2). Function and qualifier flags and values

Function Qualifier flags

X'11' Set enablement state X'00' enable data table
X'80' disable data table
X'40' force disablement (always
combined with disable)

X'15' Connect to a shared data table

X'16' Break connection to a shared data
table

X'17' Process the completion of loading

 Response codes
Each exit trace point contains a two-byte response-code and reason-code field.
The first byte is the response code, for which the possible values are:

X'01' Successful
X'02' Exception
X'03' Disaster
X'04' Invalid
X'06' Purged

 Reason codes
Each exit trace point contains a two-byte response-code and reason-code field.
The second byte is the reason code, for which the possible values are:

X'01' Record not in data table
X'02' Duplicate (record already in data table)
X'03' Data table full (already contains the maximum number of records)
X'04' Record rejected by user exit
X'05' Failed to get storage2

X'06' Record not in data table (and table is known to be complete)
X'07' Data table service failed2

X'08' Not authorized to connect to file2

X'09' Resource is not a data table
X'0A' Remote system has not logged on as a server
X'0B' Load request failed2

X'0C' Data table is disabled
X'0D' Add request (from DASD) deliberately not processed
X'0E' Record too long
X'0F' Data table token invalid
X'10' Record not in data table (but might be in source data set)
X'11' Data table not closed as other files are still using it
X'12' Reserved
X'13' Record is in data table but not currently valid
X'14' File cannot be closed as it is disabled
X'15' Protocol error2

X'16' CICS is not a VSE subsystem
X'17' Not authorized to connect to this file2

2 This reason code might have accompanying error code information. The error code is a four-byte field that is also reported in
either an error message or an exception trace point. The possible values are described in the VSE/ESA Messages and Codes
Volume 3 manual and in “Analyzing errors from the SVC” on page 63.

 Chapter 9. Investigating problems 61

X'18' CICS cannot use cross-memory services
X'19' Interface parameter block format not recognized

UMT and other flags
This flag byte is included in the entry trace point on OPEN. The significant bits at
open time are:

B'1.......' CMT
B'01......' Recoverable UMT
B'00......' Nonrecoverable UMT

Exception trace points
The following exception trace points are provided by SDT:

AP 0B0A Unrecognized function on call to DFHDTRE

AP 0B0B Unrecognized function on call to DFHDTRR

AP 0B0C Unrecognized function on call to DFHDTUP

AP 0B0D Unrecognized function on call to DFHDTST

AP 0B0E Unrecognized function on call to DFHDTSS

AP 0B0F Unrecognized function on call to DFHDTRC

AP 0B10 Error on initializing record management

AP 0B11 Error on record manager OPEN

AP 0B12 Error on record manager CLOSE

AP 0B15 Unexpected error on call to retrieval PC

AP 0B19 Error calling data tables SVC

AP 0B1A Error calling data tables SVC

AP 0B27 CLOSE could not find table block

AP 0B28 CLOSE could not find file block

AP 0B29 Error calling data tables SVC

AP 0B2A Error calling data table SVC

AP 0B2B XDTRD exit returned invalid record length (that is, it changed the length
for a CMT, or increased the length for a UMT)

AP 0B2C Connect index exceeds maximum supported size

AP 0B2F Disastrous error when acquiring storage to pass parameters to loading
transaction

The format of each of these trace points is described in the CICS Trace Entries.
The following two sections contain guidance on interpreting some of the information
that is traced.

62 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Analyzing errors from the SVC
Following an error from a call to the data tables SVC, an exception trace point is
always made, which includes an error code field identifying the reason for the error.
There are three categories of SVC error:

1. Conditions that are expected to occur, such as the remote file on a connect
attempt not being a data table, or the remote system not having logged on as a
shared data tables server. CICS takes the appropriate action for such
conditions, and no diagnostic information is needed.

2. Errors that could be caused by problems in the environment, which it might be
possible to correct. For these errors, a message is issued in which the reason
code for the error is reported. The explanation of the reason code is included
in the explanation of the message in the VSE/ESA Messages and Codes
Volume 3 manual.

3. Errors that indicate some sort of logic problem, or a misuse of the routines,
possibly in an attempt to circumvent integrity or security checks. These errors
are treated by CICS file control as disastrous errors, resulting in a system dump
(if you have enabled such dumping) and, in most cases, in the transaction
being abended with an AFCZ ABEND. For these, the value of the response
and reason field is normally X'0215'.

 Error codes
This section explains the error codes for the third category of errors that is
described above. These error codes are seen only in the exception trace entry.
The format of the error code is X'ffaaaaaa', in which ff identifies the type of failure,
and aaaaaa is additional information provided for some of the failures. The
possible values of ff for each trace point are described below.

Values for all trace points
The following error codes can occur for the 0B12, 0B19, 0B1A, 0B29, and 0B2A
exception trace points:

X'01' A function was specified that requires the caller to be authorized using
the CICS AFCB (authorized function control block), but the caller was
not authorized.

X'0A' The caller passed an invalid function code.

X'0B' The caller specified an invalid format of SVC call.

X'0C' An invalid parameter list address was passed to the SVC.

X'0D' A function was specified that requires the value passed in register 1 to
be 0, but it was not. The additional information contains the low-order
three bytes of the value passed.

X'12' A function was specified that requires the caller to be in Key 0
supervisor state, but the caller was not.

 Chapter 9. Investigating problems 63

Values for 0B12 trace point
The 0B12 exception trace point is issued if an error is returned by the SVC on
adding or deleting an access list entry when a shared data table is being closed. In
addition to the errors that can occur at all trace points, the following are possible:

X'02' The CICS region has not yet performed SDT initialization (an anchor
block for the region has not been created).

X'0E' The specified data space STOKEN is invalid or the caller is not
authorized to use it.

X'0F' The CICS region has not completed initialization as a server.

X'13' An attempt to delete an access list entry failed because the specified
entry was not created by the data tables SVC.

All other errors result in a message being issued that contains the error code.

Values for 0B19 trace point
The 0B19 exception trace point is issued if an error is returned by the SVC on
initializing as a shared data table server. In addition to the errors that can occur at
all trace points, the following are possible:

X'02' An attempt was being made to add an access list entry before the CICS
region had performed SDT initialization (an anchor block for the region
had not yet been created).

X'0E' The specified data space STOKEN is invalid or the caller is not
authorized to use it.

X'0F' An attempt was being made to add an access list entry before the CICS
region had completed server initialization.

All other errors result in a message being issued that contains the error code.

Values for 0B1A trace point
The 0B1A exception trace point is issued if an error is returned by the SVC on
initializing as a shared data table requester. In addition to the errors that can occur
at all trace points, the following are possible:

X'05' The CICS region has already initialized as a shared data table
requester, but is now running under a different request block from that
under which it originally initialized.

All other errors result in a message being issued that contains the error code.

Values for 0B29 trace point
The 0B29 exception trace point is issued if an error is returned by the SVC on
logging on as a shared data table server. In addition to the errors that can occur at
all trace points, the following are possible:

X'02' The CICS region that is attempting to register (logon) as a server has
not yet been initialized (an anchor block for the region has not been
created).

X'04' This CICS region has already registered (logged on) as a shared data
tables server.

X'0F' The CICS region has not completed server initialization.

64 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

X'14' The AFCS anchor block does not exist.

X'15' The CICS security block does not exist.

All other errors result in a message being issued that contains the error code.

Values for 0B2A trace point
If the function code field contains X'15' then the 0B2A exception trace point
indicates an error on CONNECT (that is, on attempting to establish a connection to
a remote file). In addition to the errors that can occur at all trace points, the
following are possible:

X'02' The requesting region has not performed SDT initialization (an anchor
block for the region has not been created).

X'03' The requesting region has not completed initialization as a shared data
tables requester.

X'05' The CICS region is running under a different request block (RB) from
when it initialized as a data table requester. The additional information
part of the error code contains the RB address under which the call was
made.

X'72' The LINK to the user-replaceable DFHACEE module to find the home
address space’s security userid has failed. The additional information
part of the error code contains two bytes of the ABEND code from the
LINK. The response and reason field accompanying this error is
X'020B'.

All other errors result in a message being issued that contains the error code.

If the function code field contains X'16' then the 0B2A exception trace point
indicates an error on DISCONNECT (that is, on attempting to break the connection
to a remote file). In addition to the errors that can occur at all trace points, the
following are possible:

X'02' The requesting region has not performed SDT initialization (an anchor
block for the region has not been created).

X'03' The requesting region has not completed initialization as a shared data
tables requester.

X'05' The CICS region is running under a different request block (RB) from
when it initialized as a data table requester. The additional information
part of the error code contains the RB address under which the call was
made.

X'07' The caller has supplied an invalid index into the vector of file
connections. The additional information part of the error code contains
the low-order three bytes of the caller’s index.

X'10' The specified connection was broken previously and no longer exists.
The additional information part of the error code contains the low-order
three bytes of the caller’s index into the vector of file connections.

All other errors result in a message being issued that contains the error code.

 Chapter 9. Investigating problems 65

Analyzing errors from cross-memory services
Following an unexpected error from data tables cross-memory services, an
X'0B15' exception trace entry is made. It includes the response and reason
codes and an error code field identifying the cause of the error. Such errors are all
caused either by a corruption of the routines or of the system, or by a possible
misuse of the routines.

For a response and reason of X'0215', the format of the error code is
X'ffaaaaaa', in which ff identifies the type of failure and aaaaaa is additional
information provided for some of the failures. The possible values of ff are:

X'01' An attempt to locate the CICS AFCB (authorized function control block)
made by either the cross-memory retrieval routine or the connect vector
lookup routine has failed.

X'02' The requesting CICS region has not yet performed SDT initialization (an
anchor block for the region has not yet been created and set up).

X'03' The requesting region has not completed initialization as a shared data
tables requester.

X'05' The retrieval request was issued under a request block different from
the one that performed initialization as an SDT requester.

X'06' The connect vector entry for the remote file does not contain the correct
linkage index.

X'07' The index of the connect vector entry for the remote file is beyond the
end of the connect vector.

X'08' The connect vector entry for the remote file is not marked as being in
use.

X'09' The cross-memory retrieval routine has not been called using the correct
mechanism.

A response and reason of X'0400' means that the function code passed to the
record management code running in the server region was an unrecognized value.

Using dump information
Information relevant to data tables is included in a CICS system dump to help you
determine the cause of a problem. For information on the contents of dumps and
how to obtain them, see the CICS Problem Determination Guide.

The major control blocks that are used by SDT are included in the FILE CONTROL
area of a formatted dump of the FOR. These control blocks are:

� Data Table Global Area.

This is also known as the SDT Header Block and it uses the eye-catcher
DFHDTHEADER.

� Data Table Base Area.

This is also known as the SDT Table Block and it uses the eye-catcher
DFHDTTABLE.

� Data Table Path Area.

66 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

This is also known as the SDT File Block and it uses the eye-catcher
DFHDTFILE.

The data table contents are not included in the CICS system dump because the
data space in which the data table resides is not part of the CICS address space.
If you want to see the contents of the data table, ask the system operator to use
the VSE DUMP command to request a dump of the data space DFHDT001 owned
by the appropriate CICS startup job.

The operator command QUERY DSPACE,partition displays summary information,
including the DSPNAMEs, of data spaces owned by that partition. The VSE DUMP
command can be used to dump the contents of the data space to either a printer or
tape device.

The DUMP command has the format:

DUMP DSPACE,dspname,partition,cuu

where

� dspname is the data space name (DFHDT001 for shared data tables)
� partition is the partition in which the CICS file-owning region is running
� cuu is the output device

For more information on the VSE DUMP command, see the VSE/ESA System
Control Statements manual.

 Chapter 9. Investigating problems 67

68 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Appendix A. Sample user exit programs

This appendix contains Product-sensitive Programming Interface and Associated
Guidance Information.

This appendix describes, by means of samples of coding and data definition
sequences, the conventions used in user exit programs that are used with SDT in:

� “Sample XDTRD exit program” on page 70
� “Sample XDTAD exit program” on page 79
� “Sample XDTLC exit program” on page 85

These samples are intended only as general guidance and do not define a
programming interface.

The exit programs are supplied with CICS in the VSE/ESA production sublibrary,
PRD1.BASE.

Copybook DFHXDTDS defines the data tables user exit parameter list, which is
used in each of the following samples. DFHXDTDS is shown in Figure 9 on
page 43.

 Copyright IBM Corp. 1992, 1998 69

Sample XDTRD exit program

TITLE 'DFH$DTRD - Sample XDTRD Global User Exit Program'

\\\

\ \

\ MODULE NAME = DFH$DTRD \

\ \

\ DESCRIPTIVE NAME = CICS/VSE Shared Data Tables Sample XDTRD Exit \

\ \

\ FUNCTION = \

\ The program selects records for inclusion in a data table. \

\ \

\ --- \

\ NOTE that this program is intended only to DEMONSTRATE the use \

\ of the data tables user exit XDTRD, and to show the sort of \

\ information that can be obtained from the exit parameter list. \

\ IT SHOULD BE TAILORED BEFORE BEING USED IN A PRODUCTION ENVIRONMENT \

\ --- \

\ \

\ This global user exit program is invoked, if enabled, when a \

\ record which has been fetched from the source data set is about \

\ to be added to the data table. \

\ \

\ The program can be used both on CICS systems that are using \

\ Shared Data Tables support and those that are not. \

\ It uses a flag that is passed via the data tables parameter list \

\ to determine whether the exit has been invoked by shared data \

\ tables support. \

\ \

\ The purpose of the program is to demonstrate the use of the \

\ option to optimize the data table load by skipping over ranges of \

\ key values that are to be excluded from the table. This option \

Figure 13 (Part 1 of 9). Sample XDTRD user exit program

70 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

\ is allowed only for shared data tables, but the program also \

\ illustrates that individual records can be rejected when the exit \

\ is not invoked by the data table loading transaction, or when \

\ shared data tables support is not in use. \

\ \

\ If the program has been invoked by shared data tables support \

\ it checks whether the source data set name passed to it is the \

\ one defined by the constant EXITDSN. If so, and the exit has \

\ been invoked from the loading transaction, the skip-during-load \

\ option is used to skip (not attempt to load) any records except \

\ those whose keys start with the two characters in EXITKEY. \

\ \

\ If the program has not been invoked by shared data tables, it \

\ uses the data table name rather than the source DSname to check \

\ whether this is the file from which records are to be rejected. \

\ If the table name matches the constant EXITFILE, only records \

\ whose keys start with the two characters in EXITKEY are accepted \

\ for inclusion in the table. \

\ \

\ A number of the actions taken are for illustrative purposes only, \

\ rather than being the recommended way in which to code an XDTRD \

\ exit program - for example, the program demonstrates how the \

\ keylength passed to the exit can be used to avoid having to know \

\ the keylength of the source data set, whereas in practice this \

\ might well be known; and the program chooses to reject any \

\ records which are not presented to it by the loading transaction, \

\ whereas it would be more realistic to accept all records in the \

\ desired range of keys. \

\ \

\ It should also be noted that there are other useful things which \

\ can be done with the XDTRD exit, such as amending the contents of \

\ the records as they are loaded into a user-maintained data table. \

\ \

\ The trace flag passed to the exit is set ON if File Control (FC) \

\ level 1 tracing is enabled. \

\ \

\ NOTES : \

\ DEPENDENCIES = S/39ð \

\ DFH$DTRD, or an exit program which is based on this \

\ sample, must be defined on the CSD as a program \

\ (with DATALOCATION(ANY)). \

\ RESTRICTIONS = \

\ This program is designed to run on CICS Transaction \

\ Server for VSE/ESA Release 1. \

\ It needs the DFHXDTDS copybook to be available at \

\ assembly time. \

\ REGISTER CONVENTIONS = see code \

\ MODULE TYPE = Executable \

\ PROCESSOR = Assembler \

\ ATTRIBUTES = Read only, AMODE 31, RMODE ANY \

\ \

\---\

Figure 13 (Part 2 of 9). Sample XDTRD user exit program

 Appendix A. Sample user exit programs 71

\ \

\ ENTRY POINT = DFH$DTRD \

\ \

\ PURPOSE = \

\ Described above \

\ \

\ LINKAGE = \

\ Called by the user exit handler \

\ \

\ INPUT = \

\ Standard user exit parameter list DFHUEPAR, \

\ addressed by R1 and containing a pointer to the \

\ Data Tables parameter list \

\ \

\ OUTPUT = \

\ Return code placed in R15 \

\ When skipping is requested, a skip-key is returned in an \

\ area whose address is passed in the parameter list \

\ \

\ EXIT-NORMAL = \

\ Return code in R15 can be \

\ UERCDTAC = accept record (include it in the table) \

\ UERCDTRJ = reject record (omit it from the table) \

\ UERCDTOP = optimize load by skipping on to specified key \

\ (only possible with shared data tables support) \

\ \

\ EXIT-ERROR = \

\ None \

\ \

\---\

\ \

\ EXTERNAL REFERENCES : \

\ ROUTINES = None \

\ DATA AREAS = None \

\ CONTROL BLOCKS = \

\ User Exit Parameter list for XDTRD: DFHUEPAR \

\ Data Tables User Exit Parameter List: DT_UE_PLIST \

\ GLOBAL VARIABLES = None \

\ \

\ TABLES = None \

\ \

\ MACROS = \

\ DFHUEXIT to generate the standard user exit parameter list \

\ with the extensions for the XDTRD exit point \

\ DFHUEXIT to declare the XPI (exit programming interface) \

\ DFHTRPTX XPI call to issue a user trace entry \

\ \

\---\

Figure 13 (Part 3 of 9). Sample XDTRD user exit program

72 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

\ \

\ DESCRIPTION of the program structure: \

\ \

\ 1) Standard entry code for a global user exit that uses the XPI: \

\ The program sets up any definitions required, saves the \

\ caller's registers, establishes addressability, and \

\ addresses the parameter lists. \

\ 2) Initial section of code: \

\ The program gets the key address and length from the data \

\ table parameter list, tests whether the exit is invoked \

\ from shared data table code and, if not, branches to the \

\ non-SDT section of code. \

\ 3a) SDT code - Skipping: \

\ If the source data set is the one from which records are to \

\ be selected, and if the exit has been called by the data \

\ table load, the program compares the record key with a \

\ value that defines the range included in the data table, \

\ and sets return codes which will cause the data table load \

\ to skip over any other keys. \

\ 3b) SDT code - Tracing: \

\ If FC level 1 tracing is enabled, the program issues a user \

\ trace point X'ð128', branches to set R15 and returns. \

\ 4a) non-SDT code - choosing whether to accept record: \

\ If the file name is the one for which records are to be \

\ selected, the program rejects the record if it does not \

\ match the value which defines the range to be included in \

\ the data table. \

\ 4b) non-SDT code - Tracing: \

\ If FC level 1 tracing is enabled, the program issues a user \

\ trace point X'ð118'. \

\ 5) Set R15 and return: \

\ The program sets a return code in R15 and performs \

\ standard exit code for a global user exit (restores \

\ caller's registers, and returns to the address that was in \

\ R14 when the exit program was called). \

\ \

\\\

 EJECT ,

DFHUEXIT TYPE=EP,ID=XDTRD Standard UE parameters for XDTRD

DFHUEXIT TYPE=XPIENV Exit programming interface (XPI)

 EJECT ,

COPY DFHXDTDS Additional data table UE params

 EJECT ,

 COPY DFHTRPTY Trace definitions

 EJECT ,

Figure 13 (Part 4 of 9). Sample XDTRD user exit program

 Appendix A. Sample user exit programs 73

\\\

\ REGISTER USAGE : \

\ Rð - \

\ R1 - address of DFHUEPAR on input, and used by XPI calls \

\ R2 - address of standard user exit parameter list, DFHUEPAR \

\ R3 - record length \

\ R4 - address of data set name (SDT) or data table name (non-SDT) \

\ R5 - address of storage for XPI parameters \

\ R6 - address of data tables parameter list, DT_UE_PLIST \

\ R7 - final return code to be set in R15 \

\ R8 - address of the record key \

\ R9 - key length \

\ R1ð- address of the skip-key area (SDT only) \

\ R11- base register \

\ R12- address of data table flags byte, UEPDTFLG \

\ R13- address of kernel stack prior to XPI CALLS \

\ R14- used by XPI calls \

\ R15- return code and used by XPI calls \

\ (The register equates are declared by the DFHUEXIT call above) \

\\\

 SPACE 2

DFH$DTRD CSECT

DFH$DTRD AMODE 31

DFH$DTRD RMODE ANY

STM R14,R12,12(R13) Save callers registers

LR R11,R15 Set up base register

 USING DFH$DTRD,R11

LR R2,R1 Address standard parameters

 USING DFHUEPAR,R2

L R6,UEPDTPL Address data table parameters

 USING DT_UE_PLIST,R6

 L R8,UEPDTKA Key address

 L R9,UEPDTKL Key length

\\\

\ Test whether the exit was invoked from shared data tables support \

\\\

TM UEPDTFLG,UEPDTSDT Were we invoked from SDT?

BZ NOTSDT Branch to non-SDT code if not

 EJECT ,

\\\

\ Invoked from SDT, so can use skip optimization \

\\\

L R1ð,UEPDTSKA Get skip-key area address

\\\

\ Determine whether the source data set is the one on which \

\ optimization by skipping is to be performed. \

\ If it is not, just accept all records. \

\\\

 CLC UEPDTDSN,EXITDSN

 BNE SDTACC

Figure 13 (Part 5 of 9). Sample XDTRD user exit program

74 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

\\\

\ Only keys in the range defined by the initial two characters in \

\ EXITKEY are to be accepted, any other ranges of key values \

\ are to be skipped. \

\ First check whether skipping is valid - skipping can only be used \

\ when the call has been issued by the loading transaction (which is \

\ indicated by the UEPDTOPT flag being set). \

\\\

TM UEPDTFLG,UEPDTOPT Can we skip?

BZ SDTREJ Just reject rec if not (although \

in a production version it would \

make more sense to check whether \

the record key is in the desired \

range, and accept it if so)

\\\

\ EXITKEY is currently set to 'AD', so that the effect of \

\ the exit will be: \

\ - If the key is less than 'AD....' then skip to a skip-key of \

\ 'AD' padded with ððs. \

\ - If it starts with 'AD' then accept it. \

\ - If it is greater than 'AD' then skip to a skip-key of 'FF's \

\ If the value of the constant EXITKEY is altered, the program causes \

\ the new range it defines to be selected for inclusion in the table. \

\ Note that if a different length of EXITKEY is needed to define the \

\ range to be accepted, the code also needs amendment, as it \

\ currently assumes a length of 2. \

\\\

CLC ð(2,R8),EXITKEY Is key below or above 'AD' ?

BE SDTACC If equal then just accept

BH HIGHER Above so skip to end of file

 SPACE 1

LOWER DS ðH Skip forwards to 'AD...'

MVC ð(2,R1ð),EXITKEY Set skip-key value

LR R15,R9 Keylength for padding

SH R15,=H'3' minus 2 for 'AD' and 1 for XC

EX R15,XCSKP Clear out rest of skip key

 LA R7,UERCDTOP Indicate skipping

 B SDTTR

 SPACE 1

HIGHER DS ðH Skip on to end of file

MVI ð(R1ð),X'FF' Set 'FF' in start of skip key

LR R15,R9 Get length of skip-key

BCTR R15,ð Decrement for pad length

BCTR R15,ð Decrement for MVC

EX R15,MVCSKP Propagate 'FF' through skip-key

 LA R7,UERCDTOP Indicate skipping

 B SDTTR

 SPACE 1

Figure 13 (Part 6 of 9). Sample XDTRD user exit program

 Appendix A. Sample user exit programs 75

\\\

\ Store return code in R7 for accept or reject \

\\\

SDTACC DS ðH

 LA R7,UERCDTAC Indicate accept

 B SDTTR

SDTREJ DS ðH

 LA R7,UERCDTRJ Indicate reject

 EJECT ,

\\\

\ Tracing when SDT support is in use \

\\\

SDTTR L R15,UEPTRACE

TM ð(R15),UEPTRON Is trace on?

BZ NOSDTTR No - do not issue trace then

L R5,UEPXSTOR Prepare for XPI call

 USING DFHTRPT_ARG,R5

 L R13,UEPSTACK

\\\

\ Trace source data set name, key, record length, flags, and skip-key \

\ Some of these fields are available only with SDT support \

\\\

LA R4,UEPDTDSN Point at data set name

LA R3,UEPDTRL Address of record length for trace

LA R12,UEPDTFLG Point at the data table flags

 DFHTRPTX CALL, \

 CLEAR, \

 IN, \

 FUNCTION(TRACE_PUT), \

 POINT_ID(RDTRACE2), \

 DATA1((R4),UEPDTDSL), \

 DATA2((R8),(R9)), \

 DATA3((R3),4), \

 DATA4((R12),1), \

 DATA5((R1ð),(R9)), \

 OUT, \

 RESPONSE(\), \

 REASON(\)

NOSDTTR DS ðH

B FINISH Go and return from exit

 EJECT ,

Figure 13 (Part 7 of 9). Sample XDTRD user exit program

76 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

\\\

\ Exit was NOT invoked by shared data tables support \

\\\

NOTSDT DS ðH

\\\

\ Determine whether this data table is the one from which records \

\ are to be rejected. If it is not, just accept all records. \

\\\

 CLC UEPDTNAM,EXITFILE

 BNE ACC

CLC ð(2,R8),EXITKEY Does key start with 'AD' ?

BE ACC Yes, so accept it

REJ DS ðH

 LA R7,UERCDTRJ Indicate reject

B TRACE Go and issue trace

ACC DS ðH

 LA R7,UERCDTAC Indicate accept

 SPACE 2

\\\

\ Tracing when SDT support is not in use \

\\\

TRACE L R15,UEPTRACE

TM ð(R15),UEPTRON Is trace on?

BZ NOTRACE No - do not issue trace then

L R5,UEPXSTOR Prepare for XPI call

 USING DFHTRPT_ARG,R5

 L R13,UEPSTACK

\\\

\ Trace data table name, key, record length, and flags \

\\\

LA R4,UEPDTNAM Point at data table name

LA R3,UEPDTRL Address of reclen for trace

LA R12,UEPDTFLG Point at the data table flags

 DFHTRPTX CALL, \

 CLEAR, \

 IN, \

 FUNCTION(TRACE_PUT), \

 POINT_ID(RDTRACE1), \

 DATA1((R4),8), \

 DATA2((R8),(R9)), \

 DATA3((R3),4), \

 DATA4((R12),1), \

 OUT, \

 RESPONSE(\), \

 REASON(\)

Figure 13 (Part 8 of 9). Sample XDTRD user exit program

 Appendix A. Sample user exit programs 77

NOTRACE DS ðH

 EJECT ,

\\\

\ Code to set R15 return code and return control \

\\\

FINISH DS ðH

LR R15,R7 Pick up exit return code

L R13,UEPEPSA Standard GLUE ending code

 L R14,12(R13)

 LM Rð,R12,2ð(R13)

 BR R14

 SPACE 2

\\\

\ Constants and executed instructions \

\\\

EXITDSN DC CL44'CFV23.CSYSW1.SOURCED'

EXITFILE DC CL8'CICD'

EXITKEY DC C'AD'

 SPACE 1

RDTRACE1 DC XL2'118'

RDTRACE2 DC XL2'128'

 SPACE 1

MVCSKP MVC 1(\-\,R1ð),ð(R1ð) Executed to propagate X'FF's

XCSKP XC 2(\-\,R1ð),2(R1ð) Executed to clear to X'ðð's

 SPACE 1

 END DFH$DTRD

Figure 13 (Part 9 of 9). Sample XDTRD user exit program

78 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Sample XDTAD exit program

TITLE 'DFH$DTAD - Sample XDTAD Global User Exit Program'

\\\

\ \

\ MODULE NAME = DFH$DTAD \

\ \

\ DESCRIPTIVE NAME = CICS/VSE Shared Data Tables Sample XDTAD Exit \

\ \

\ FUNCTION = \

\ The program selects records for inclusion in a shared data table. \

\ \

\ --- \

\ NOTE that this program is intended only to DEMONSTRATE the use \

\ of the data tables user exit XDTAD, and to show the sort of \

\ information that can be obtained from the exit parameter list. \

\ IT SHOULD BE TAILORED BEFORE BEING USED IN A PRODUCTION ENVIRONMENT \

\ --- \

\ \

\ This global user exit program is invoked, if enabled, when a \

\ WRITE request is issued to a data table. \

\ \

\ The program can be used both on CICS systems that are using \

\ Shared Data Tables support, and those that are not. \

\ It uses a flag that is passed via the data tables parameter list \

\ to determine whether the exit has been invoked by shared data \

\ tables support. \

\ \

\ The purpose of the program is to demonstrate the use of the XDTAD \

\ global user exit to select only certain records for inclusion in \

\ a data table. In this example, the selection is made on the \

\ basis of key values. If shared data tables support is being \

\ used, and the source data set for the data table is that \

\ specified by the constant EXITDSN, the program selects particular \

\ keys for inclusion in the data table, and reject others. For all \

\ other source data sets, or if shared data table support is not in \

\ use, all records are accepted. \

\ \

\ The record selection is made on the basis of the value of the 6th \

\ character in the record key. This is for illustrative purposes \

\ only, as it is unlikely to be the criterion for selection in a \

\ realistic environment. For example, for a shared CICS-maintained \

\ data table, it might be desirable to select a group of records \

\ which are known to be very frequently read by applications \

\ running in other CICS regions in the MVS system. \

\ \

\ The trace flag passed to the exit is set ON if File Control (FC) \

\ level 1 tracing is enabled. \

\ \

Figure 14 (Part 1 of 6). Sample XDTAD user exit program

 Appendix A. Sample user exit programs 79

\ NOTES : \

\ DEPENDENCIES = S/39ð \

\ DFH$DTAD, or an exit program that is based on this \

\ sample, must be defined on the CSD as a program \

\ (with DATALOCATION(ANY)). \

\ RESTRICTIONS = \

\ This program is designed to run on CICS Transaction \

\ Server for VSE/ESA Release 1. \

\ It needs the DFHXDTDS copybook to be available at \

\ assembly time. \

\ REGISTER CONVENTIONS = see code \

\ MODULE TYPE = Executable \

\ PROCESSOR = Assembler \

\ ATTRIBUTES = Read only, AMODE 31, RMODE ANY \

\ \

\---\

\ \

\ ENTRY POINT = DFH$DTAD \

\ \

\ PURPOSE = \

\ Described above \

\ \

\ LINKAGE = \

\ Called by the user exit handler \

\ \

\ INPUT = \

\ Standard user exit parameter list DFHUEPAR, \

\ addressed by R1 and containing a pointer to the \

\ Data Tables parameter list \

\ \

\ OUTPUT = \

\ Return code placed in R15 \

\ \

\ EXIT-NORMAL = \

\ Return code in R15 can be \

\ UERCDTAC = accept record (include it in the table) \

\ UERCDTRJ = reject record (omit it from the table) \

\ \

\ EXIT-ERROR = \

\ None \

\ \

\---\

\ \

\ EXTERNAL REFERENCES : \

\ ROUTINES = None \

\ DATA AREAS = None \

\ CONTROL BLOCKS = \

\ User Exit Parameter list for XDTAD: DFHUEPAR \

\ Data Tables User Exit Parameter List: DT_UE_PLIST \

\ GLOBAL VARIABLES = None \

\ \

\ TABLES = None \

\ \

Figure 14 (Part 2 of 6). Sample XDTAD user exit program

80 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

\ MACROS = \

\ DFHUEXIT to generate the standard user exit parameter list \

\ with the extensions for the XDTAD exit point \

\ DFHUEXIT to declare the XPI (exit programming interface) \

\ DFHTRPTX XPI call to issue a user trace entry \

\ \

\---\

\ \

\ DESCRIPTION of the program structure: \

\ \

\ 1) Standard entry code for a global user exit that uses the XPI: \

\ The program sets up any definitions required, saves the \

\ caller's registers, establishes addressability, and \

\ addresses the parameter lists. \

\ 2) Initial section of code: \

\ The program gets the key address and length from the data \

\ table parameter list, and tests whether the exit was \

\ invoked from shared data table code. If not, it branches \

\ to the non-SDT section of code. \

\ 3a) SDT code - Tracing: \

\ If FC level 1 tracing is enabled, the program issues a user \

\ trace point X'ð129', and branches to choose whether to \

\ accept the record for inclusion in the table. \

\ 3b) non-SDT code - Tracing: \

\ If FC level 1 tracing is enabled, the program issues a user \

\ trace point X'ð119', accepts the record, and exits. \

\ 4) SDT code - choosing whether to accept record: \

\ If the source data set is the one that records are selected \

\ from, the program, if the key contains a numeric character \

\ in the sixth byte, sets the return code so that the record \

\ is accepted. If the key contains an alphabetic character \

\ in the sixth byte, the program sets a return code to reject \

\ the record. \

\ 5) Standard exit code for a global user exit that uses the XPI: \

\ The program restores users registers, and returns to the \

\ address that was in R14 when the exit program was called. \

\ \

\\\

 EJECT ,

DFHUEXIT TYPE=EP,ID=XDTAD Standard UE parameters for XDTAD

DFHUEXIT TYPE=XPIENV Exit programming interface (XPI)

 EJECT ,

COPY DFHXDTDS Additional data table UE params

 EJECT ,

 COPY DFHTRPTY Trace definitions

 EJECT ,

Figure 14 (Part 3 of 6). Sample XDTAD user exit program

 Appendix A. Sample user exit programs 81

\\\

\ REGISTER USAGE : \

\ Rð - \

\ R1 - address of DFHUEPAR on input, and used by XPI calls \

\ R2 - address of standard user exit parameter list, DFHUEPAR \

\ R3 - \

\ R4 - address of source data set name \

\ R5 - address of storage for XPI parameters \

\ R6 - address of data tables parameter list, DT_UE_PLIST \

\ R7 - address of the trace flag \

\ R8 - address of the record key \

\ R9 - key length \

\ R1ð- address of the data table name \

\ R11- base register \

\ R12- address of data table flags byte, UEPDTFLG \

\ R13- address of kernel stack prior to XPI CALLS \

\ R14- used by XPI calls \

\ R15- return code, and used by XPI calls \

\ (The register equates are declared by the DFHUEXIT call above) \

\\\

 SPACE 2

DFH$DTAD CSECT

DFH$DTAD AMODE 31

DFH$DTAD RMODE ANY

STM R14,R12,12(R13) Save callers registers

LR R11,R15 Set up base register

 USING DFH$DTAD,R11

LR R2,R1 Address standard parameters

 USING DFHUEPAR,R2

L R6,UEPDTPL Address data table parameters

 USING DT_UE_PLIST,R6

\\\

\ Save some fields from the parameter list that are to be traced or \

\ used in selecting records \

\\\

 L R8,UEPDTKA Key address

 L R9,UEPDTKL Key length

LA R1ð,UEPDTNAM Data table name

\\\

\ Test whether the exit was invoked from shared data tables support \

\\\

TM UEPDTFLG,UEPDTSDT Were we invoked from SDT?

BZ NOTSDT Branch to non-SDT code if not

 EJECT ,

\\\

\ Invoked from SDT, so can use SDT fields in parameter list. \

\ Issue trace, then check data set name, and select records. \

\\\

L R7,UEPTRACE Address of trace flag

TM ð(R7),UEPTRON Is trace on?

BZ NOSDTTR No - do not issue trace then

L R5,UEPXSTOR Prepare for XPI call

 USING DFHTRPT_ARG,R5

 L R13,UEPSTACK

Figure 14 (Part 4 of 6). Sample XDTAD user exit program

82 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

\\\

\ Trace key, data table name, source data set name, and flags. \

\ The last two fields are only meaningful for SDT support. \

\\\

LA R4,UEPDTDSN Point at the source data set name

LA R12,UEPDTFLG Point at the data table flags

 DFHTRPTX CALL, \

 CLEAR, \

 IN, \

 FUNCTION(TRACE_PUT), \

 POINT_ID(ADTRACE2), \

 DATA1((R8),(R9)), \

 DATA2((R1ð),8), \

 DATA3((R4),UEPDTDSL), \

 DATA4((R12),1), \

 OUT, \

 RESPONSE(\), \

 REASON(\)

NOSDTTR B CHOOSE Go and choose whether to accept rec

 EJECT ,

\\\

\ Exit has not been invoked from SDT \

\ Issue trace then accept the record. \

\\\

NOTSDT L R7,UEPTRACE Address of trace flag

TM ð(R7),UEPTRON Is trace on?

BZ NOTRACE No - do not issue trace then

L R5,UEPXSTOR Prepare for XPI call

 USING DFHTRPT_ARG,R5

 L R13,UEPSTACK

\\\

\ Trace key and data table name \

\\\

 DFHTRPTX CALL, \

 CLEAR, \

 IN, \

 FUNCTION(TRACE_PUT), \

 POINT_ID(ADTRACE1), \

 DATA1((R8),(R9)), \

 DATA2((R1ð),8), \

 OUT, \

 RESPONSE(\), \

 REASON(\)

 SPACE 1

Figure 14 (Part 5 of 6). Sample XDTAD user exit program

 Appendix A. Sample user exit programs 83

NOTRACE DS ðH

B ACC Go and accept the record

 EJECT ,

\\\

\ Is this the data set from which records are to be selected? \

\ If not, just accept record and end. \

\\\

CHOOSE DS ðH

 CLC UEPDTDSN,EXITDSN

 BNE ACC

\\\

\ \

\ If the sixth character in the key is numeric, accept the record; \

\ if it is alphabetic, reject the record. \

\ This assumes that numerics have EBCDIC value >= Fð \

\ and that alphabetics have value < Fð \

\ \

\\\

CLI 5(R8),X'Fð' Is sixth character >= Fð ?

BL REJ If no, then go and reject record

ACC LA R15,UERCDTAC If yes, set RC to ACCEPT

 B GLUEND and end

REJ LA R15,UERCDTRJ Set RC to REJECT

 SPACE 3

GLUEND DS ðH Standard GLUE ending code

 L R13,UEPEPSA

 L R14,12(R13)

 LM Rð,R12,2ð(R13)

 BR R14

 SPACE 2

\\\

\ Constants \

\\\

EXITDSN DC CL44'CFV23.CSYSW1.SOURCED'

 SPACE 1

ADTRACE1 DC XL2'119'

ADTRACE2 DC XL2'129'

 SPACE 2

 END DFH$DTAD

Figure 14 (Part 6 of 6). Sample XDTAD user exit program

84 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Sample XDTLC exit program

TITLE 'DFH$DTLC - Sample XDTLC Global User Exit Program'

\\\

\ \

\ MODULE NAME = DFH$DTLC \

\ \

\ DESCRIPTIVE NAME = CICS/VSE Shared Data Tables Sample XDTLC Exit \

\ \

\ FUNCTION = \

\ The program rejects a data table if its load did not complete OK. \

\ \

\ --- \

\ NOTE that this program is intended only to DEMONSTRATE the use \

\ of the data tables user exit XDTLC, and to show the sort of \

\ information that can be obtained from the exit parameter list. \

\ IT SHOULD BE TAILORED BEFORE BEING USED IN A PRODUCTION ENVIRONMENT \

\ --- \

\ \

\ This global user exit program is invoked, if enabled, when the \

\ load of a data table has completed. \

\ \

\ The program can be used both on CICS systems that are using \

\ Shared Data Tables support, and those that are not. \

\ It uses a flag that is passed via the data tables parameter list \

\ to determine whether the exit has been invoked by shared data \

\ tables support. \

\ \

\ The program issues a user trace entry if tracing is enabled, and \

\ checks the setting of the load completion indicator. \

\ If this shows that loading failed to complete successfully, the \

\ exit program sets a return code that rejects the table by \

\ requesting that it is closed. \

\ \

\ The trace flag passed to the exit is set ON if File Control (FC) \

\ level 1 tracing is enabled. \

\ \

\ NOTES : \

\ DEPENDENCIES = S/39ð \

\ DFH$DTLC, or an exit program that is based on this \

\ sample, must be defined on the CSD as a program \

\ (with DATALOCATION(ANY)). \

\ RESTRICTIONS = \

\ This program is designed to run on CICS Transaction \

\ Server for VSE/ESA Release 1.

\ It needs the DFHXDTDS copybook to be available at \

\ assembly time. \

\ REGISTER CONVENTIONS = see code \

\ MODULE TYPE = Executable \

\ PROCESSOR = Assembler \

\ ATTRIBUTES = Read only, AMODE 31, RMODE ANY \

\ \

\---\

Figure 15 (Part 1 of 5). Sample XDTLC user exit program

 Appendix A. Sample user exit programs 85

\ \

\ ENTRY POINT = DFH$DTLC \

\ \

\ PURPOSE = \

\ Described above \

\ \

\ LINKAGE = \

\ Called by the user exit handler \

\ \

\ INPUT = \

\ Standard user exit parameter list DFHUEPAR, \

\ addressed by R1 and containing a pointer to the \

\ Data Tables parameter list \

\ \

\ OUTPUT = \

\ Return code placed in R15 \

\ \

\ EXIT-NORMAL = \

\ Return code in R15 can be \

\ UERCDTOK = accept table \

\ UERCDTCL = reject table (close it) \

\ \

\ EXIT-ERROR = \

\ None \

\ \

\---\

\ \

\ EXTERNAL REFERENCES : \

\ ROUTINES = None \

\ DATA AREAS = None \

\ CONTROL BLOCKS = \

\ User Exit Parameter list for XDTLC: DFHUEPAR \

\ Data Tables User Exit Parameter List: DT_UE_PLIST \

\ GLOBAL VARIABLES = None \

\ \

\ TABLES = None \

\ \

\ MACROS = \

\ DFHUEXIT to generate the standard user exit parameter list \

\ with the extensions for the XDTLC exit point \

\ DFHUEXIT to declare the XPI (exit programming interface) \

\ DFHTRPTX XPI call to issue a user trace entry \

\ \

\---\

\ \

\ DESCRIPTION of the program structure: \

\ \

\ 1) Standard entry code for a global user exit that uses the XPI: \

\ The program sets up any definitions required, saves the \

\ caller's registers, establishes addressability, and \

\ addresses the parameter lists. \

Figure 15 (Part 2 of 5). Sample XDTLC user exit program

86 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

\ 2) Tracing (only executed if FC level 1 tracing is enabled): \

\ The program tests whether it was invoked from shared data \

\ table code. If so, it issues a user trace point X'ð126' \

\ including fields from the data table parameter list that \

\ are supplied only by shared data table support. If not, it \

\ issues a X'ð116' trace point, containing parameters which \

\ are supplied by any level of data table support. \

\ 3) Choosing whether to accept the table: \

\ The program tests the return code from the load. If the \

\ load failed to complete, it sets UERCDTCL in R15, which \

\ requests that the table is closed. If the load completed \

\ successfully, it sets UERCDTOK in R15 to keep the table \

\ open. \

\ 4) Standard exit code for a global user exit that uses the XPI: \

\ The program restores users registers, and returns to the \

\ address that was in R14 when the exit program was called. \

\ \

\\\

 EJECT ,

DFHUEXIT TYPE=EP,ID=XDTLC standard UE parameters for XDTLC

DFHUEXIT TYPE=XPIENV exit programming interface (XPI)

 EJECT ,

COPY DFHXDTDS Additional data table UE params

 EJECT ,

 COPY DFHTRPTY Trace definitions

 EJECT ,

\\\

\ Register usage : \

\ Rð - \

\ R1 - address of DFHUEPAR on input, and used by XPI calls \

\ R2 - address of standard user exit plist, DFHUEPAR \

\ R3 - \

\ R4 - address of source data set name \

\ R5 - address of storage for XPI parameters \

\ R6 - address of data tables parameter list, DT_UE_PLIST \

\ R7 - address of the trace flag, UEPTRACE \

\ R8 - address of data table name \

\ R9 - address of loading completion indicator, UEPDTORC \

\ R1ð- \

\ R11- base register \

\ R12- address of data table flags byte, UEPDTFLG \

\ R13- address of kernel stack prior to XPI calls \

\ R14- used by XPI calls \

\ R15- return code, and used by XPI calls \

\ (The register equates are declared by the DFHUEXIT call above) \

\\\

Figure 15 (Part 3 of 5). Sample XDTLC user exit program

 Appendix A. Sample user exit programs 87

 SPACE 2

DFH$DTLC CSECT

DFH$DTLC AMODE 31

DFH$DTLC RMODE ANY

STM R14,R12,12(R13) Save caller's registers

 LR R11,R15 Establish base

 USING DFH$DTLC,R11

LR R2,R1 Address standard parameters

 USING DFHUEPAR,R2

L R6,UEPDTPL Address data table parameters

 USING DT_UE_PLIST,R6

 SPACE 1

LA R8,UEPDTNAM Address data table name

LA R9,UEPDTORC Address load return code

\\\

\ Issue Trace (if tracing is enabled) \

\\\

L R7,UEPTRACE Get trace flag address

TM ð(R7),UEPTRON Is trace on?

BZ CHOOSE Skip tracing if not

\\\

\ Test whether the exit was invoked from shared data tables support \

\\\

TM UEPDTFLG,UEPDTSDT Were we invoked from SDT?

BZ NOTSDT Branch if not

 EJECT ,

\\\

\ Exit has been invoked from SDT \

\\\

L R5,UEPXSTOR Set up XPI trace call

 USING DFHTRPT_ARG,R5

 L R13,UEPSTACK

\\\

\ Trace data table name, load return code, source dsname, and flags. \

\ The last two fields are only meaningful for SDT support. \

\\\

LA R4,UEPDTDSN Get source data set name

LA R12,UEPDTFLG Get data table flags

 DFHTRPTX CALL, \

 CLEAR, \

 IN, \

 FUNCTION(TRACE_PUT), \

 POINT_ID(LCTRACE2), \

 DATA1((R8),8), \

 DATA2((R9),1), \

 DATA3((R4),UEPDTDSL), \

 DATA4((R12),1), \

 OUT, \

 RESPONSE(\), \

 REASON(\)

B CHOOSE Go and test if load completed OK

 EJECT ,

Figure 15 (Part 4 of 5). Sample XDTLC user exit program

88 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

\\\

\ Exit has not been invoked from SDT \

\\\

NOTSDT L R5,UEPXSTOR Set up XPI trace call

 USING DFHTRPT_ARG,R5

 L R13,UEPSTACK

\\\

\ Trace data table name and load return code \

\\\

 DFHTRPTX CALL, \

 CLEAR, \

 IN, \

 FUNCTION(TRACE_PUT), \

 POINT_ID(LCTRACE1), \

 DATA1((R8),8), \

 DATA2((R9),1), \

 OUT, \

 RESPONSE(\), \

 REASON(\)

 EJECT ,

\\\

\ If load completed successfully, keep table open. \

\ If not, ask for it to be closed \

\\\

CHOOSE DS ðH

CLI ð(R9),UEPDTLFL Did load fail?

 BNE LOADOK

LA R15,UERCDTCL Set RC for table to be closed

 B GLUEND

LOADOK LA R15,UERCDTOK Set RC to keep table

 SPACE 3

GLUEND DS ðH Standard GLUE exit code

 L R13,UEPEPSA

 L R14,12(R13)

 LM Rð,R12,2ð(R13)

 BR R14

 SPACE 2

\\\

\ Constant Declarations \

\\\

LCTRACE1 DC XL2'116'

LCTRACE2 DC XL2'126'

 SPACE 1

 END DFH$DTLC

Figure 15 (Part 5 of 5). Sample XDTLC user exit program

 Appendix A. Sample user exit programs 89

90 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

 Bibliography

CICS Transaction Server for VSE/ESA Release 1 library

Evaluation and planning

Release Guide GC33-1645
Migration Guide GC33-1646
Report Controller Planning Guide GC33-1941

General

Master Index SC33-1648
Trace Entries SC34-5556
User’s Handbook SC34-5555
Glossary (softcopy only) GC33-1649

Administration

System Definition Guide SC33-1651
Customization Guide SC33-1652
Resource Definition Guide SC33-1653
Operations and Utilities Guide SC33-1654
CICS-Supplied Transactions SC33-1655

Programming

Application Programming Guide SC33-1657
Application Programming Reference SC33-1658
Sample Applications Guide SC33-1713
Application Migration Aid Guide SC33-1943
System Programming Reference SC33-1659
Distributed Transaction Programming Guide SC33-1661
Front End Programming Interface User’s Guide SC33-1662

Diagnosis

Problem Determination Guide GC33-1663
Messages and Codes Vol 3 (softcopy only) SC33-6799
Diagnosis Reference LY33-6085
Data Areas LY33-6086
Supplementary Data Areas LY33-6087

Communication

Intercommunication Guide SC33-1665
CICS Family: Interproduct Communication SC33-0824
CICS Family: Communicating from CICS on System/390 SC33-1697

Special topics

Recovery and Restart Guide SC33-1666
Performance Guide SC33-1667
Shared Data Tables Guide SC33-1668
Security Guide SC33-1942
External CICS Interface SC33-1669
XRF Guide SC33-1671
Report Controller User’s Guide GC33-1940

CICS Clients

CICS Clients: Administration SC33-1792
CICS Universal Clients Version 3 for OS/2: Administration SC34-5450
CICS Universal Clients Version 3 for Windows: Administration SC34-5449
CICS Universal Clients Version 3 for AIX: Administration SC34-5348
CICS Universal Clients Version 3 for Solaris: Administration SC34-5451
CICS Family: OO programming in C++ for CICS Clients SC33-1923
CICS Family: OO programming in BASIC for CICS Clients SC33-1671
CICS Family: Client/Server Programming SC33-1435
CICS Transaction Gateway Version 3: Administration SC34-5448

 Copyright IBM Corp. 1992, 1998 91

Books from VSE/ESA 2.4 base program libraries

VSE/ESA Version 2 Release 4

Book title Order number

Administration SC33-6705

Diagnosis Tools SC33-6614

Extended Addressability SC33-6621

Guide for Solving Problems SC33-6710

Guide to System Functions SC33-6711

Installation SC33-6704

Licensed Program Specification GC33-6700

Messages and Codes Volume 1 SC33-6796

Messages and Codes Volume 2 SC33-6798

Messages and Codes Volume 3 SC33-6799

Networking Support SC33-6708

Operation SC33-6706

Planning SC33-6703

Programming and Workstation Guide SC33-6709

System Control Statements SC33-6713

System Macro Reference SC33-6716

System Macro User’s Guide SC33-6715

System Upgrade and Service SC33-6702

System Utilities SC33-6717

TCP/IP User's Guide SC33-6601

Turbo Dispatcher Guide and Reference SC33-6797

Unattended Node Support SC33-6712

High-Level Assembler Language (HLASM)

Book title Order number

General Information GC26-8261

Installation and Customization Guide SC26-8263

Language Reference SC26-8265

Programmer’s Guide SC26-8264

92 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Language Environment for VSE/ESA (LE/VSE)

Book title Order number

C Run-Time Library Reference SC33-6689

C Run-Time Programming Guide SC33-6688

Concepts Guide GC33-6680

Debug Tool for VSE/ESA Fact Sheet GC26-8925

Debug Tool for VSE/ESA Installation and Customization Guide SC26-8798

Debug Tool for VSE/ESA User’s Guide and Reference SC26-8797

Debugging Guide and Run-Time Messages SC33-6681

Diagnosis Guide SC26-8060

Fact Sheet GC33-6679

Installation and Customization Guide SC33-6682

LE/VSE Enhancements SC33-6778

Licensed Program Specification GC33-6683

Programming Guide SC33-6684

Programming Reference SC33-6685

Run-Time Migration Guide SC33-6687

Writing Interlanguage Communication Applications SC33-6686

 VSE/ICCF

Book title Order number

Adminstration and Operations SC33-6738

User’s Guide SC33-6739

 VSE/POWER

Book title Order number

Administration and Operation SC33-6733

Application Programming SC33-6736

Networking Guide SC33-6735

Remote Job Entry User’s Guide SC33-6734

 VSE/VSAM

Book title Order number

Commands SC33-6731

User’s Guide and Application Programming SC33-6732

 Bibliography 93

VTAM for VSE/ESA

Book title Order number

Customization LY43-0063

Diagnosis LY43-0065

Data Areas LY43-0104

Messages and Codes SC31-6493

Migration Guide GC31-8072

Network Implementation Guide SC31-6494

Operation SC31-6495

Overview GC31-8114

Programming SC31-6496

Programming for LU6.2 SC31-6497

Release Guide GC31-8090

Resource Definition Reference SC31-6498

Books from VSE/ESA 2.4 optional program libraries

C for VSE/ESA (C/VSE)

Book title Order number

C Run-Time Library Reference SC33-6689

C Run-Time Programming Guide SC33-6688

Diagnosis Guide GC09-2426

Installation and Customization Guide GC09-2422

Language Reference SC09-2425

Licensed Program Specification GC09-2421

Migration Guide SC09-2423

User’s Guide SC09-2424

COBOL for VSE/ESA (COBOL/VSE)

Book title Order number

Debug Tool for VSE/ESA Fact Sheet GC26-8925

Debug Tool for VSE/ESA Installation and Customization Guide SC26-8798

Debug Tool for VSE/ESA User’s Guide and Reference SC26-8797

Diagnosis Guide SC26-8528

General Information GC26-8068

Installation and Customization Guide SC26-8071

Language Reference SC26-8073

Licensed Program Specifications GC26-8069

Migration Guide GC26-8070

Migrating VSE Applications To Advanced COBOL GC26-8349

Programming Guide SC26-8072

94 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

DB2 Server for VSE

Book title Order number

Application Programming SC09-2393

Database Administration GC09-2389

Installation GC09-2391

Interactive SQL Guide and Reference SC09-2410

Operation SC09-2401

Overview GC08-2386

System Administration GC09-2406

 DL/I VSE

Book title Order number

Application and Database Design SH24-5022

Application Programming: CALL and RQDLI Interface SH12-5411

Application Programming: High-Level Programming Interface SH24-5009

Database Administration SH24-5011

Diagnostic Guide SH24-5002

General Information GH20-1246

Guide for New Users SH24-5001

Interactive Resource Definition and Utilities SH24-5029

Library Guide and Master Index GH24-5008

Licensed Program Specifications GH24-5031

Low-level Code and Continuity Check Feature SH20-9046

Library Guide and Master Index GH24-5008

Messages and Codes SH12-5414

Recovery and Restart Guide SH24-5030

Reference Summary: CALL Program Interface SX24-5103

Reference Summary: System Programming SX24-5104

Reference Summary: HLPI Interface SX24-5120

Release Guide SC33-6211

PL/I for VSE/ESA (PL/I VSE)

Book title Order number

Compile Time Messages and Codes SC26-8059

Debug Tool For VSE/ESA User’s Guide and Reference SC26-8797

Diagnosis Guide SC26-8058

Installation and Customization Guide SC26-8057

Language Reference SC26-8054

Licensed Program Specifications GC26-8055

Migration Guide SC26-8056

Programming Guide SC26-8053

Reference Summary SX26-3836

 Bibliography 95

Screen Definition Facility II (SDF II)

Book title Order number

VSE Administrator's Guide SH12-6311

VSE General Introduction SH12-6315

VSE Primer for CICS/BMS Programs SH12-6313

VSE Run-Time Services SH12-6312

96 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

 Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the products,
services, or features discussed in this document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing,
to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in
your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other country where such provisions
are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore this statement
may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without
notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of
information between independently created programs and other programs (including this one) and (ii) the mutual use
of the information which has been exchanged, should contact IBM United Kingdom Laboratories, MP151, Hursley
Park, Winchester, Hampshire, England, SO21 2JN. Such information may be available, subject to appropriate terms
and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under
terms of the IBM Customer Agreement, IBM International Programming License Agreement, or any equivalent
agreement between us.

 Copyright IBM Corp. 1992, 1998 97

Trademarks and service marks

The following terms, used in this publication, are trademarks or service marks of IBM Corporation in the United States
or other countries:

Programming interface information

This book is intended to help you set up and use CICS shared data tables. This book also documents General-use
Programming Interface and Associated Guidance Information, Product-sensitive Programming Interface and
Associated Guidance Information, and Diagnosis, Modification, or Tuning Information that is provided by CICS.

General-use programming interfaces allow the customer to write programs that obtain the services of CICS.

Programming Interface and Associated Guidance Information is identified where it occurs by an introductory statement
to a chapter or section.

Product-sensitive programming interfaces allow the customer installation to perform tasks such as diagnosing,
modifying, monitoring, repairing, tailoring, or tuning of CICS. Use of such interfaces creates dependencies on the
detailed design or implementation of the IBM software product. Product-sensitive programming interfaces should be
used only for these specialized purposes. Because of their dependencies on detailed design and implementation, it is
to be expected that programs written to such interfaces may need to be changed in order to run with new product
releases or versions, or as a result of service.

Product-Sensitive Programming Interface and Associated Guidance Information is identified where it occurs by an
introductory statement to a chapter or section.

Diagnosis, Modification, or Tuning Information is provided to help you diagnose problems and tailor your CICS system.

Warning: Do not use this Diagnosis, Modification, or Tuning Information as a programming interface.

Diagnosis, Modification, or Tuning Information is identified where it occurs by an introductory statement to a chapter or
section.

CICS CICS/VSE
IBM
VSE/ESA

98 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

 Index

A
abend codes

AFCH 30, 31
AFCZ 63

activation of user exits 41
AFCH abend code 30, 31
AFCZ abend code 63
alternate indexes 3, 9
AOR (application-owning region)

CONNECT operation 6
definition 2

application programming
extensions for SDT 1
for a CMT

description 27
overview 9

for a UMT
description 28
overview 11

automatic journaling 10, 12

B
benefits

of data tables 3, 15
of SDT 23

BIND security 23
browse requests

comparison with function shipping 31
comparison with VSAM 33
definition v
for a CMT 27
for a UMT 29

C
CEDA DEFINE FILE command

description 36
example for CMT 38
example for UMT 39
parameters 36

CEMT
INQUIRE command 40
SET command 39, 40

CICS-maintained data table
browse requests 27
data integrity 10
definition of 35
description 9
journaling 10
overview 2
performance 15

CICS-maintained data table (continued)
read requests 27, 28
update requests 28
use during loading 28

closing a data table 31, 48
communication

between CICS and user exits 42
CONNECT

by AOR 6, 30
security checking 23

cross-memory services
advantages 1
analyzing errors 66
commands supported 27
comparison with function shipping 4, 31
use by application 30

CSFU transaction 47, 48
CSSY transaction 47
customization using user exits 41

D
daisy chaining 30
data integrity

of a CMT 10
of a UMT 12

data space
dump of contents 67
use by data tables 3, 15

data tables
application programming 27
availability 1
benefits 3
benefits of 23
CICS load modules required 25
closing 31, 48
comparison with VSAM 33
concepts 1
customization 41
disabling 31
dump information 66
enhancements 1
opening 47
operations 47
planning 15
problem determination 59
read requests 2, 27, 29
resource definition 35
selecting files 16
sharing 2
statistics information 48
trace information 59

 Copyright IBM Corp. 1992, 1998 99

data tables (continued)
update requests 2, 28, 29
use of data space 3

delete requests
comparison with VSAM 34

DFH$DTAD sample program 79
DFH$DTLC sample program 85
DFH$DTRD sample program 70
DFHFCT macro 35
DFHXDTS copybook 42
disabling a data table 31
disconnection

of AOR and data table 6, 30
DSECT

for user exit parameter list 42
dump information for data tables 66
dynamic transaction backout 12, 37

E
EIBRESP2 field 28, 32
enabling of user exits 41
EXEC interface

user exits 42

F
file

used as a data table 1, 16
file control

commands
overview for CMT 9, 27
overview for UMT 11, 28
supported by cross-memory services 27

user exits 42
file management

using cross-memory services 4
using function shipping 4

file security 23
FOR (file-owning region)

definition 2
LOGON operation 5

function
for trace points 60

G
gap 16, 28, 31

definition v

I
imprecise keys

definition v
initial state of data table

defining by CEDA 37

INQUIRE FILE command
description 40
MAXNUMRECS parameter 40
TABLE parameter 40

installation
VSE considerations 24

installation parameter list 7
INSTLN parameter 7
integrity

of CMT data 10
of UMT data 12

interface
for user exits 42
product-sensitive programming 42, 69

INVREQ condition 28

J
journaling 10

K
key length

comparison with function shipping 32
KSDS (key-sequenced data set)

used as source data set 2, 3
with a UMT 12

L
load modules

required for data tables 25
loading

use of CMT during 28
use of UMT during 29

LOADING condition 29
local file

definition 2
LOGON

by FOR 5
security check 23

M
messages

at end of loading 47
at start of loading 47

multiple files
with same source data set 9

N
NOSPACE condition 29
NOTFND condition 29
notification

for CONNECT operations 7

100 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

O
opening a data table 47
operations for data tables 47

P
parameter list

for user exits 42
performance

benefits of data tables 3, 15
of a CMT 15
of a UMT 15

planning
for use of data tables 15

precise keys
definition v

problem determination for data tables 59
product-sensitive programming interface 42, 69

Q
qualifier flags

for trace points 60

R
read requests

comparison with function shipping 32
comparison with VSAM 33
for a CMT 27, 28
for a UMT 29

reason codes
in trace points 61

recovery of data tables
defining by CEDA 37
during emergency restart 48

remote file
definition 2

requester
definition 2

resource definition
CEDA DEFINE FILE command 36
description 35
overview for a CMT 9
overview for a UMT 11

response codes
in trace points 61

S
SAF (system authorization facility)

used for security checking 7
sample XDTAD exit program 79
sample XDTRD exit program 70
SDT

overview 1

SDT (continued)
replacing existing services 1
security 7
using 24

security checking
at AOR connect 23
at FOR logon 23
comparison with function shipping 7, 32
for data tables 7, 23
use of SAF 7

selecting files
for use as data tables 16

server
definition 2

SET FILE command
description 39, 40
MAXNUMRECS parameter 37, 40
TABLE parameter 39, 40

SHAREOPTION, VSAM 10
sharing

CONNECT operation 6
LOGON operation 5
SDT operations 4, 5

size of data table
defining by CEDA 37
defining by SET command 37, 40
finding by INQUIRE command 40

smple XDTLC exit program 85
source data set

for data tables 2
independent of UMT 11
must be KSDS 3
used with CMT 9
with multiple files 9

statistics
additional fields 57
samples for data tables 50
to evaluate data tables 48
to select data tables 18

storage use
description 15

SUPPRESSED condition 29
SVC errors 63
SYSID parameter 30
system dump information 66

T
trace information

entry and exit points 59
exception points 62
for data tables 59
function and qualifier flags 60
reason codes 61
response codes 61

 Index 101

transient data queues
used for messages 47

type of data table
defining by CEDA 37
defining by SET command 39, 40
finding by INQUIRE command 40

U
update requests

definition v
for a CMT 28
for a UMT 29

user exits
activating 41
at end of loading 46
communication with CICS 42
definition 41
description 41
DSECT for parameter list 42
during loading 44
enabling 41
exit program samples 69
for EXEC interface 32, 42
for file control 32, 42
overview 3
parameter list 42
when adding records 45
XDTAD exit 45
XDTLC exit 46
XDTRD exit 44

user-maintained data table
browse requests 29
data integrity 12
definition of 35
description 11
journaling 12
overview 2
performance 15
read requests 29
update requests 29
use during loading 29

V
VSAM

access method control block 47, 48
alternate indexes 3, 9
base cluster 9
comparison with data tables 33
SHAREOPTION 10

VSE considerations 24

X
XDTAD user exit

description 45
exit program sample 79

XDTLC user exit
description 46
exit program sample 85

XDTRD user exit
description 44
exit program sample 70

102 CICS Transaction Server for VSE/ESA Shared Data Tables Guide

Sending your comments to IBM
CICS Transaction Server for VSE/ESA 

Shared Data Tables Guide

SC33-1668-00

If you want to send to IBM any comments you have about this book, please use one of the methods
listed below. Feel free to comment on anything you regard as a specific error or omission in the subject
matter, and on the clarity, organization or completeness of the book itself.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

 � By mail:

IBM UK Laboratories
 Information Development

Mail Point 095
 Hursley Park

Winchester, SO21 2JN
 England

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: HURSLEY(IDRCF)
 – Email: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

IBM

Program Number: 5648-054

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1668-ðð

Spine information:

IBM CICS TS for VSE/ESA Shared Data Tables Guide Release 1

	Preface
	What this book is about
	Who should read this book
	What you need to know to understand this book
	Notes on terminology
	Road map

	Chapter 1. Introduction
	The concept of shared data tables
	Description of data tables
	Data table sharing environment
	Source data set
	Data space
	Global user exits
	Benefits of shared data tables
	How a remote file is accessed
	How a data table is shared

	Chapter 2. CICS-maintained data table
	CMT application programming
	CMT resource definition
	CMT operations

	Chapter 3. User-maintained data table
	UMT application programming
	UMT resource definition
	UMT operations

	Chapter 4. Planning to use data tables
	Performance benefits of using data tables
	Selecting files for use as data tables
	Security checking
	SDT support on different releases of CICS
	Preparing to use SDT support

	Chapter 5. Application programming for shared data tables
	Application programming for a CICS-maintained data table
	Application programming for a user-maintained data table
	Using cross-memory services
	Differences between function-shipping and cross-memory services
	Differences between SDT services and VSAM

	Chapter 6. Managing SDT resource definitions
	Defining an SDT
	Using EXEC CICS commands to manage SDT definitions
	Using CEMT commands to manage SDT definitions

	Chapter 7. Using the CICS-supplied global user exits
	Activating user exits
	Communicating between CICS and exit programs
	XDTRD user exit
	XDTAD user exit
	XDTLC user exit

	Chapter 8. Using shared data tables services
	Opening a data table
	Closing a data table
	Interpreting data table statistics

	Chapter 9. Investigating problems
	Using trace information
	Analyzing errors from the SVC
	Analyzing errors from cross-memory services
	Using dump information

	Appendix A. Sample user exit programs
	Sample XDTRD exit program
	Sample XDTAD exit program
	Sample XDTLC exit program

	Bibliography
	Books from VSE/ESA 2.4 base program libraries
	Books from VSE/ESA 2.4 optional program libraries

	Notices
	Trademarks and service marks
	Programming interface information

	Index

