
CICS Transaction Server for z/OS

CICS Diagnosis Reference
Version 3 Release 1

GC34-6899-03

���

CICS Transaction Server for z/OS

CICS Diagnosis Reference
Version 3 Release 1

GC34-6899-03

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
1571.

This edition applies to Version 3 Release 1 of CICS Transaction Server for z/OS, program number 5655-M15, and
to all subsequent versions, releases, and modifications until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

© Copyright IBM Corporation 1997, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface . xlix
What this book is about . xlix
Who this book is for . xlix
What you need to know to use this book . xlix
Notes on terminology . xlix

Summary of changes . li
Changes for CICS Transaction Server for z/OS Version 3 Release 1 li
Changes for CICS Transaction Server for z/OS, Version 2 Release 2 li
Changes for CICS Transaction Server for z/OS, Version 2 Release 1 li

Part 1. Introduction . 1

Chapter 1. CICS domains . 3
Domain gates . 4
Functions provided by gates . 5
Specific gates, generic and call-back gates . 5
Domain call formats . 5
Ownership of formats . 6
Tokens . 6
Responses . 6

Chapter 2. Application domain . 7

Part 2. CICS components . 9

Chapter 3. Autoinstall for terminals, consoles and APPC connections 11
Design overview . 11

Autoinstall of a terminal logon flow . 11
Autoinstall of APPC device logon flow . 13
Autoinstall of consoles install flow . 14
Sign-on to consoles flow . 14
Disconnection flow for terminals (LU-initiated) . 15
Deletion of autoinstalled APPC devices. 16
Deletion of autoinstalled consoles . 17
Shipping a TCTTE for transaction routing. 17

Modules . 18
DFHZATDX . 19
DFHZATDY . 19

Diagnosing autoinstall problems . 19
Diagnosing APPC autoinstall problems . 20

Diagnosing console autoinstall problems . 20
VTAM exits . 21
Trace . 21

Chapter 4. Autoinstall terminal model manager . 23
Functions provided by the autoinstall terminal model manager 23

AIIN format, START_INIT function . 23
AIIN format, COMPLETE_INIT function . 23
AIIQ format, LOCATE_TERM_MODEL function . 24
AIIQ format, UNLOCK_TERM_MODEL function . 24
AIIQ format, INQUIRE_TERM_MODEL function . 24

© Copyright IBM Corp. 1997, 2011 iii

AIIQ format, START_BROWSE function . 25
AIIQ format, GET_NEXT function . 25
AIIQ format, END_BROWSE function . 25
AITM format, ADD_REPL_TERM_MODEL function 26
AITM format, DELETE_TERM_MODEL function . 26

Modules . 27
Exits . 27
Trace . 27

Chapter 5. Basic mapping support . 29
Design overview . 29

Message routing . 30
Terminal paging . 31
Device independence . 31

Control blocks. 31
Modules . 33

DFHDSB (data stream build) . 36
DFHIIP (non-3270 input mapping) . 36
DFHMCP (mapping control program) . 37
DFHML1 (LU1 printer with extended attributes mapping) 40
DFHM32 (3270 mapping) . 41
DFHPBP (page and text build). 42
DFHPHP (partition handling program) . 44
DFHRLR (route list resolution program) . 45
DFHTPP (terminal page processor) . 46
DFHTPQ (undelivered messages cleanup program) 48
DFHTPR (terminal page retrieval program) . 48
DFHTPS (terminal page scheduling program) . 50

Copy books . 50
Exits . 50
Trace . 51

Chapter 6. Builders . 53
Design overview . 53

What is a builder (DFHBS*)? . 53
Builder parameter set (BPS) . 53
TCTTE creation and deletion . 53
Component overview . 54
DFHZCQ and TCTTE generation. 55
Patterns, hierarchies, nodes, and builders . 59
The DELETE process . 61
Completing the process description . 63
The hierarchy and its effect upon the creation process 64
ROLLBACK . 67
Catalog records and the CICS global catalog data set 67

Control blocks. 69
Terminal storage acquired by the builders . 69
TCTTE layout . 70
Terminal definition . 70

Modules . 70
Module entry . 71
Subroutine entry . 71
Subroutine exit (return to module entry) . 71
Patterns . 72
Calling sequence of builders for a 3277 remote terminal 72
Builder parameter list . 73

iv CICS TS for z/OS: CICS Diagnosis Reference

When the builders are called . 73
Diagnosing problems with the builders . 75
Exits . 75
Trace . 75
Messages . 76

Message sets . 76
How messages show up in a trace . 76

Chapter 7. Built-in functions . 77
Design overview . 77

Field edit (DEEDIT). 77
Phonetic conversion . 77

Modules . 77
Exits . 77
Trace . 78

Chapter 8. CICS-DB2 Attachment Facility . 79
Design overview . 79

CICS Initialization . 79
CICS-DB2 Attachment startup . 80
CICS-DB2 attachment shutdown . 80
CICS-DB2 mainline processing . 81

Control blocks. 84
DFHD2SS (CICS-DB2 static storage) . 84
DFHD2GLB (CICS-DB2 global block) . 84
DFHD2ENT (CICS-DB2 DB2ENTRY block) . 84
DFHD2TRN (CICS-DB2 DB2TRAN block) . 84
DFHD2CSB (CICS-DB2 connection block) . 84
DFHD2GWA (CICS-DB2 global work area) . 85
DFHD2LOT (CICS-DB2 life of task block) . 85

Modules . 85
Exits . 85
Trace . 86
Statistics. 86

Chapter 9. Command interpreter . 87
Design overview . 87
Modules . 87
Exits . 87
Trace . 87

Chapter 10. CSD utility program (DFHCSDUP) . 89
Design overview . 89
Modules . 90
Exits . 90
Trace . 90
Statistics. 90

Chapter 11. Database control (DBCTL) . 93
Design overview . 93

The connection process . 94
The interface layer . 98
DBCTL system definition . 101
DBCTL PSB scheduling. 101
Database calls . 101
DBCTL PSB termination . 101

Contents v

System termination . 101
Control blocks . 101
Modules . 102
Exits . 102

Chapter 12. Data interchange program . 105
Design overview . 105
Modules . 106
Exits . 106
Trace . 106

Chapter 13. Distributed program link . 107
Modules . 108
Exits . 108
Trace . 108

Chapter 14. Distributed transaction processing . 109
Design overview . 109

Distributed transaction processing with MRO and LU6.1 109
Mapped and unmapped conversations (LU6.2) . 109

Modules . 111
DFHEGL . 111
DFHETC and DFHETL . 111
DFHZARL . 112
DFHZARM . 113
DFHZARQ . 115
DFHZARR . 115
DFHZERH . 116
DFHZISP . 117
DFHZSTAP . 117

Exits . 117
Trace . 117

Chapter 15. DL/I database support . 119
Design overview . 119

The router component (DFHDLI) . 120
Control blocks . 120

DL/I interface block (DIB) . 121
DL/I interface parameter list (DLP) . 121
User interface block (UIB) . 121

Modules . 122
Exits . 122
Trace . 123

Chapter 16. Dump utility program (DFHDU640) . 125
Design overview . 125

Data sets . 125
Processing . 125

Modules . 126
Copy books . 126
Exits . 126
Trace . 126

Chapter 17. Dynamic allocation sample program (IBM 3270 only) 127
Design overview . 127
Control blocks . 128

vi CICS TS for z/OS: CICS Diagnosis Reference

Modules . 128
Exits . 129
Trace . 129
External interfaces . 129

Chapter 18. ECI over TCP/IP . 131
Design Overview . 131

Listener task, CIEP . 131
Mirror task, CPMI . 132
PING . 132
Notes . 133
Modules . 133

Chapter 19. EXEC interface . 135
Design overview . 135
Control blocks . 135
Modules . 137

DFHEIP . 146
Method of calling processor modules . 148

Exits . 148
Trace . 149

Chapter 20. Execution diagnostic facility (EDF) . 151
Design overview . 151
Modules . 151

CEBR transaction (DFHEDFBR) . 151
EDF display (DFHEDFD) . 151
EDF map set (DFHEDFM). 152
EDF control program (DFHEDFP) . 152
EDF response table (DFHEDFR) . 153
EDF task switch program (DFHEDFX) . 153

Exits . 153
Trace . 153

Chapter 21. Extended recovery facility (XRF) . 155
Design overview . 155
Control blocks . 155
Modules . 155
Exits . 156
Trace . 156

Chapter 22. External CICS interface . 157
Design overview . 157

The programming interfaces . 157
Modules . 159
Exits . 160
Trace . 160

Chapter 23. Field engineering program . 161
Design overview . 161
Modules . 161
Exits . 161
Trace . 161

Chapter 24. File control . 163
Design overview . 163

Contents vii

Deblocking services for BDAM data sets . 163
Concurrency control . 163
Sequential retrieval . 164
Read Integrity . 164
Backout logging . 165
Forward Recovery Logging . 165
Automatic journaling and logging . 165
Use of concurrent tasks. 165
Shared Data table services . 165
Coupling facility data tables server. 166
How CICS processes file control requests . 166
Processing using VSAM . 166
Processing using Data Tables . 166
General request processing . 166

Control blocks . 173
Access method control block (ACB) . 176
Data control block (DCB) . 176
Data set name block (DSNB). 177
File browse work area (FBWA) . 177
File control static storage (FC static) . 178
File control quiesce receive element (FCQRE) . 178
File control quiesce send element (FCQSE) . 178
File control coupling facility data table pool element (FCPE) 178
File control coupling facility data table pool wait element (FCPW) 179
File control table entry (FCTE) . 179
File control table entry (FCPW) . 180
File control coupling facility data tables UOW pool block (FCUP) 180
File input/output area (FIOA) . 180
File lasting access block (FLAB) . 180
File control locks locator blocks (FLLBs) . 181
File request anchor block (FRAB) . 182
File request thread elements (FRTEs) . 182
Keypoint list element (KPLE) . 183
Shared resources control (SHRCTL) block . 183
VSAM work area (VSWA) . 183

Modules . 184
DFHEIFC (file control EXEC interface module) . 186
DFHFCAT (file control catalog manager) . 186
DFHFCBD (file control BDAM request processor) 187
DFHFCCA (file control RLS control ACB manager) 188
DFHFCDL (file control CFDT load program) . 188
DFHFCDN (file control DSN block manager) . 188
DFHFCDO (file control CFDT open/close program). 190
DFHFCDR (file control CFDT request processor) 191
DFHFCDTS (file control shared data table request program) 191
DFHFCDTX (file control shared data table function ship program) 191
DFHFCDU (file control CFDT UOW calls program). 191
DFHFCDW (file control CFDT RMC program) . 191
DFHFCDY (file control CFDT resynchronization program) 191
DFHFCES (file control ENF servicer) . 191
DFHFCFL (file control FRAB and FLAB processor). 191
DFHFCFR (file control file request handler) . 191
DFHFCFS (file control file state program) . 193
DFHFCIN1 (file control initialization program 1) . 195
DFHFCIN2 (file control initialization program 2) . 196
DFHFCIR (file control initialize recovery) . 197

viii CICS TS for z/OS: CICS Diagnosis Reference

DFHFCL (file control shared resources pool processor) 197
DFHFCLF (file control log failures handler). 198
DFHFCLJ (file control logging and journaling program 198
DFHFCMT (file control table manager) . 199
DFHFCN (file control open/close program) . 201
DFHFCNQ (file control non-RLS lock handler) . 204
DFHFCOR (file control offsite recovery completion) 205
DFHFCQI (file control RLS quiesce initiation) . 205
DFHFCQR (file control quiesce receive transaction) 205
DFHFCQS (file control RLS quiesce send transaction) 205
DFHFCQT (file control RLS quiesce common system transaction) 205
DFHFCQU (file control RLS quiesce processor) . 206
DFHFCQX (file control RLS quiesce exit) . 206
DFHFCRC (file control recovery control program) 206
DFHFCRD (file control RLS cleanup transaction) 208
DFHFCRF (file control function shipping interface module) 208
DFHFCRL (file control share control block manager) 209
DFHFCRO (file control RLS open/close program) 210
DFHFCRP (file control restart program) . 210
DFHFCRR (file control RLS restart) . 212
DFHFCRS (file control RLS record management processor) 212
DFHFCRV (file control RLS VSAM interface processor) 212
DFHFCSD (file control shutdown program). 212
DFHFCST (file control statistics program) . 213
DFHFCVR (file control VSAM interface program) 214
DFHFCVS (file control VSAM request processor) 215

Parameter lists . 216
FCCA CHECK function . 216
FCCA COLD_START_RLS function . 217
FCCA DRAIN_CONTROL_ACB function . 217
FCCA INQUIRE_RECOVERY function . 218
FCCA LOST_LOCKS_COMPLETE function . 218
FCCA QUIESCE_COMPLETE function . 218
FCCA QUIESCE_REQUEST function . 219
FCCA REGISTER_CONTROL_ACB function . 220
FCCA RELEASE_LOCKS function. 220
FCCA RESET_NONRLS_BATCH function . 221
FCCA RETAIN_DATASET_LOCKS function . 221
FCCA RETAIN_UOW_LOCKS function . 221
FCCA UNREGISTER_CONTROL_ACB function. 222
FCCI INQUIRE function. 222
FCCR POINT function . 222
FCCR HIGHEST function . 223
FCCR READ function . 223
FCCR READ_DELETE function . 224
FCCR UNLOCK function . 225
FCCR LOAD function . 225
FCCR WRITE function . 226
FCCR REWRITE function . 227
FCCR DELETE function . 228
FCCR DELETE_MULTIPLE function . 229
FCCT OPEN function . 230
FCCT CLOSE function . 232
FCCT DELETE function . 232
FCCT SET function . 233
FCCT EXTRACT_STATISTICS function . 234

Contents ix

FCCU PREPARE function . 234
FCCU RETAIN function . 235
FCCU COMMIT function . 235
FCCU BACKOUT function . 236
FCCU INQUIRE function . 236
FCCU RESTART function . 237
FCDS EXTRACT_CFDT_STATS function . 238
FCDS DISCONNECT_CFDT_POOLS function . 239
FCDU PREPARE function . 239
FCDU RETAIN function . 240
FCDU COMMIT function . 240
FCDU BACKOUT function . 241
FCDU INQUIRE function . 242
FCDU RESTART function . 243
FCDY RESYNC_CFDT_POOL function . 244
FCDY RESYNC_CFDT_LINK function . 244
FCDY RETURN_CFDT_ENTRY_POINTS function 244
FCFL END_UOWDSN_BROWSE function . 245
FCFL FIND_RETAINED function . 245
FCFL FORCE_INDOUBTS function . 246
FCFL GET_NEXT_UOWDSN function . 246
FCFL RESET_BFAILS function . 247
FCFL RETRY function . 247
FCFL START_UOWDSN_BROWSE function . 247
FCFL TEST_USER function . 248
FCLJ FILE_OPEN function . 248
FCLJ FILE_CLOSE Function . 248
FCLJ READ_ONLY Function . 249
FCLJ READ_UPDATE Function. 249
FCLJ WRITE_UPDATE Function . 250
FCLJ WRITE_ADD Function . 251
FCLJ WRITE_ADD_COMPLETE Function . 251
FCLJ WRITE_DELETE Function . 252
FCLJ SYNCHRONIZE_READ_UPDATE Function 253
FCLJ TAKE_KEYPOINT Function . 253
FCLJ DATASET_COPY Function . 254
FCQI INITIATE_QUIESCE Function . 254
FCQI INQUIRE_QUIESCE Function . 255
FCQI COMPLETE_QUIESCE Function . 255
FCQR RECEIVE_QUIESCES Function . 256
FCQS SEND_QUIESCES Function . 256
FCQU PROCESS_QUIESCE Function . 257
FCRR RESTART_RLS Function . 259
FCRR RESOURCE_AVAILABLE function . 260
FCRR LOST_LOCKS_RECOVERED function . 260

File Control’s call back gates . 261
Exits . 262
Trace . 262

Chapter 25. Front end programming interface (FEPI) 263
Design overview . 263

FEPI as a CICS transaction . 263
Application flows . 263
The FEPI Resource Manager work queues . 266

Control blocks . 266
Dump . 267

x CICS TS for z/OS: CICS Diagnosis Reference

The static area . 268
The common area. 269
Property sets . 269
Pools . 269
Nodes . 270
Targets . 270
Connections . 271
Conversations . 272
DQEs . 272

FEPI and VTAM . 272
VTAM control blocks . 272
VTAM exits . 273

Modules . 273

Chapter 26. Function shipping . 277
Design overview . 277

Application programming functions with CICS function shipping 277
Local and remote names . 278
Mirror transactions . 278
Initialization of CICS for CICS function shipping . 278
Communication with a remote system . 279
Protocols . 279
CICS function shipping environment . 280
CICS function shipping—handling of EXEC CICS commands 281
CICS function shipping—handling of DL/I requests 285
Terminal control support for CICS function shipping 287
NOCHECK option function handling . 289

Exits . 289
Trace . 289

Chapter 27. “Good morning” message program 291
Design overview . 291
Modules . 291
Exits . 291
Trace . 291

Chapter 28. Interregion communication (IRC). 293
Design overview . 293
Control blocks . 293

Terminal control layer . 293
DFHIR layer . 296
Terminal control layer and DFHIR layer . 297
MRO ECB summary . 298

Modules . 299
Interregion programs . 299
CICS address space modules . 300

Exits . 302
Trace . 303

Chapter 29. Intersystem communication (ISC) . 305

Chapter 30. Interval control. 307
Design overview . 307

Time of day . 307
Time-dependent task synchronization. 307
Automatic time-ordered transaction initiation . 307

Contents xi

Time-of-day control . 307
Control blocks . 308
Modules . 308
Exits . 308
Trace . 308

Chapter 31. Language Environment interface. 309
Design overview . 309

Establishing the connection . 310
Storage for the transaction. 311
Storage acquisition . 311

Control blocks . 312
Modules . 312
Exits . 312
Trace . 312
External interfaces . 313

Language Environment interface parameter lists. 313
Work areas . 316
PGMINFO2 . 317
Program termination block . 318

Chapter 32. Master terminal program . 319
Design overview . 319
Modules . 319
Exits . 319
Trace . 319

Chapter 33. Message generation program . 321
Design overview . 321
Modules . 321
Exits . 321
Trace . 321

Chapter 34. Message switching . 323
Design overview . 323
Control blocks . 324
Modules . 324
Exits . 324
Trace . 324
External interfaces . 324

Chapter 35. Multiregion operation (MRO) . 325

Chapter 36. Node abnormal condition program . 327
Design overview . 327
Control blocks . 329
Modules . 329
Exits . 329
Trace . 329
Statistics . 330

Chapter 37. Node error program . 331
Design overview . 331
Modules . 331
Exits . 331
Trace . 331

xii CICS TS for z/OS: CICS Diagnosis Reference

Chapter 38. Program control . 333
Design overview . 333

Services in response to requests . 333
Modules . 333

DFHEPC . 333
Exits . 335
Trace . 335

Chapter 39. Program error program . 337
Design overview . 337
Control blocks . 337
Modules . 337
Exits . 337
Trace . 337

Chapter 40. Program preparation utilities . 339
Design overview . 339
Modules . 339
Exits . 339
Trace . 339

Chapter 41. Remote DL/I . 341
Design overview . 341

System definition . 341
DL/I PSB scheduling . 341
Database calls . 341
DL/I PSB termination. 341

Control blocks . 341

Chapter 42. Resource definition online (RDO) . 343
Design overview . 343
Modules . 343
Exits . 345
Trace . 345

Chapter 43. SAA Communications and Resource Recovery interfaces 347
Design overview . 347

The SAA Communications interface . 347
The SAA Resource Recovery interface . 348

Functions provided by the CPI component . 349
CPIN format, START_INIT function . 349
CPIN format, COMPLETE_INIT function . 350
CPSP format, SYNCPOINT_REQUEST function 350

Modules . 350
Exits . 350
Trace . 351

Chapter 44. Statistics utility program (DFHSTUP) 353
Design overview . 353

DFHSTUP operation . 354
Modules . 355

Chapter 45. Storage control macro-compatibility interface 357
Design overview . 357
Modules . 357
Exits . 357

Contents xiii

Trace . 357

Chapter 46. Subsystem interface . 359
Functional overview . 359

Subsystem definition . 359
Design overview . 359

Console message handling . 359
Control Blocks . 360
Modules . 361
Exits . 362
Trace . 362
External interfaces . 362

Chapter 47. Subtask control . 363
Design overview . 363

DFHSKM (subtask manager program) . 363
DFHSKC (subtask control program) . 364
DFHSKE (subtask exit program) . 364

Control blocks . 365
Modules . 365
Exits . 366
Trace . 366
External interfaces . 366

Chapter 48. Syncpoint program . 367
Design overview . 367

Task-related user exit resynchronization . 367
Control blocks . 368

Deferred work element (DWE) . 368
Modules . 368

DFHSPP . 368
DFHDBP . 369
DFHAPRC . 369

Exits . 369
Trace . 369

Chapter 49. System dump formatting program . 371
Design overview . 371
Modules . 371
Exits . 373
Trace . 373
External interfaces . 373

Chapter 50. System recovery program . 375
Design overview . 375

System recovery table . 375
Recovery initialization . 376
Error handling . 376
DFHSRLIM interface . 378
System dump suppression. 379

Modules . 379
Exits . 379
Trace . 379

Chapter 51. System spooler interface . 381
Design overview . 381

xiv CICS TS for z/OS: CICS Diagnosis Reference

System spooler interface modules . 381
Normal flow . 381
Abnormal flow . 381

Modules . 382
Exits . 382
Trace . 382

Chapter 52. Table manager . 383
Design overview . 383

Hash table . 383
Range table and getnext chain . 383
Secondary indexes . 384
Functions of the table manager . 384
Read locks . 385
Browse token . 385
Quiesce state . 386
Finding FCT, or TCT entries in a partition dump . 386

Control blocks . 387
Modules . 387
Exits . 387
Trace . 387
Statistics . 388

Chapter 53. Task-related user exit control . 389
Functional overview . 389
Design overview . 390

Task-related user exit implementation . 391
Processors . 392

Control blocks . 393
Modules . 394
Exits . 394
Trace . 395
External interfaces . 395

Chapter 54. Task-related user exit recovery . 397
Design overview . 397

The two-phase commit process . 397
The single-phase commit process . 398

Modules . 399
Exits . 399
Trace . 399
External interfaces . 399

Chapter 55. Terminal abnormal condition program 401
Design overview . 401
Modules . 403
Exits . 403
Trace . 403

Chapter 56. Terminal control . 405
Design overview . 405

Terminal control services . 406
Terminal error recovery . 407
Testing facility—BSAM . 407
Terminal control modules (DFHZCP, DFHTCP) . 407
Defining terminals to CICS . 415

Contents xv

Autoinstall . 419
QUERY function (DFHQRY) . 419

Control blocks . 420
Modules . 422
Exits . 424
Trace . 424

Chapter 57. Terminal error program . 425
Design overview . 425
Modules . 425
Exits . 425
Trace . 425

Chapter 58. Trace control macro-compatibility interface 427
Design overview . 427
Modules . 427
Exits . 428
Trace . 428

Chapter 59. Trace formatting . 429
Design overview . 429

Segmented entries on GTF . 431
Control blocks . 431
Modules . 431
Exits . 433

Chapter 60. Transaction Failure program . 435
Design overview . 435
Modules . 437
Exits . 437
Trace . 437

Chapter 61. Transaction restart program . 439
Design overview . 439
Control blocks . 439
Modules . 440
Exits . 440
Trace . 440
Statistics . 440

Chapter 62. Transaction routing . 441
Design overview . 441

Overview of operation in the application-owning region for APPC transaction routing 442
Overview of operation in the terminal-owning region for APPC transaction routing 449
Transformer program (DFHXTP) . 452

Control blocks . 457
Relay transaction control blocks. 457
User transaction control blocks . 457

Modules . 458
Exits . 458
Trace . 459

Chapter 63. Transient data control . 461
Design overview . 461

Intrapartition queues . 461
Extrapartition queues . 462

xvi CICS TS for z/OS: CICS Diagnosis Reference

Indirect queues . 462
Automatic transaction initiation . 462
Transient data services . 462
Transient data . 463

Modules . 465
Exits . 466
Trace . 466

Chapter 64. User exit control . 467
Design overview . 467

User exit control modules . 468
Control blocks . 470
Modules . 471
Exits . 471
Trace . 471

Chapter 65. VTAM generic resource . 473
Design Overview . 473
Generic resource and LU6.1/LU6.2 . 473

LU6.2 GR to GR connections . 473
LU6.2 GR to non-GR connections . 474
LU6.1 . 475

Ending affinities. 475
Generic resource and ATI . 475
Modules . 475

DFHZBLX . 475
DFHZGCH . 476
DFHZGIN . 476

Problem solving for generic resource . 477
Generic resource status byte (TCTV_GRSTATUS) 477
Generic resource flag byte (TCSEI_GR). 477
Trace . 478
Waits . 478

Chapter 66. VTAM LU6.2 . 479
Design overview . 479

Session management . 479
LU6.2 session states. 481
LU6.2 SEND and RECEIVE processing . 481
Limited resources . 481

Modules . 482
DFHZRVL. 482
DFHZRLP. 483
DFHZSDL. 484
DFHZSLX . 485
DFHZRLX. 485
DFHCLS3 . 485
DFHZLS1 . 486
DFHZGCN . 486
DFHZGCA . 488

Exits . 488
Trace . 488

Chapter 67. VTAM persistent sessions . 489
Design overview . 489

Persistent Sessions Restart flow . 490

Contents xvii

Modules . 495
Diagnosing Persistent Sessions Problems . 496
Persistent Sessions status byte (TCTE_PRSS) . 498
Bid status byte (TCTE_BID_STATUS) . 500
Summary of persistent session waits . 501
VTAM exits . 502
Trace . 502
Statistics . 502

Chapter 68. WTO and WTOR . 503
Design overview . 503
Modules . 503
Exits . 503
Trace . 503

Chapter 69. CICS Web support and the CICS business logic interface 505
Design overview . 505
Control blocks . 505
Modules . 507

Initialization, DFHWBIP . 507
Web attach processing, DFHWBXN . 507
Default analyzer program, DFHWBAAX . 507
Alias transaction, DFHWBA . 507
Web error program, DFHWBEP . 508
HTTP client processing, DFHWBCL . 508
CICS business logic interface, DFHWBBLI. 508
CICS Web support for 3270 display applications 509
Unescaping function, DFHWBUN . 509

Exits . 509
Trace . 509

Part 3. CICS domains . 511

Chapter 70. Application domain (AP) . 513
Application domain’s specific gates . 513

ABAB gate, CREATE_ABEND_RECORD function 515
ABAB gate, UPDATE_ABEND_RECORD function 517
ABAB gate, START_ABEND function . 518
ABAB gate, INQUIRE_ABEND_RECORD function 518
ABAB gate, TAKE_TRANSACTION_DUMP function 520
APAP gate, TRANSFER_SIT function . 520
APCR gate, ESTIMATE_ALL function . 520
APCR gate, ESTIMATE_CHANGED function . 521
APCR gate, EXPORT_ALL function . 522
APCR gate, EXPORT_CHANGED function . 523
APCR gate, IMPORT_ALL function . 524
APCR gate, IMPORT_CHANGED function . 526
APEX gate, INVOKE_USER_EXIT function . 527
APID gate, PROFILE function . 527
APID gate, QUERY_NETNAME function . 528
APIQ gate, INQ_APPLICATION_DATA function . 528
APJC gate, WRITE_JOURNAL_DATA function . 529
APLH gate, ESTABLISH_LANGUAGE function . 529
APLH gate, START_PROGRAM function . 530
APLH gate, NOTIFY_REFRESH function . 531
APLI gate, ESTABLISH_LANGUAGE function . 532

xviii CICS TS for z/OS: CICS Diagnosis Reference

||

||
||

||
||
||
||
||
||

APLI gate, START_PROGRAM function. 533
APLJ gate, ESTABLISH_LANGUAGE function . 534
APLJ gate, START_PROGRAM function . 535
APLJ gate, PIPI_INIT_SUB_DP function . 536
APLJ gate, PIPI_CALL_SUB function. 537
APLJ gate, PIPI_TERM function . 537
APRT gate, ROUTE_TRANSACTION function . 538
APTC gate, CANCEL function . 539
APTC gate, CLOSE function . 539
APTC gate, EXTRACT_PROCESS function . 539
APTC gate, ISSUE_NOTIFY function. 540
APTC gate, LISTEN function . 540
APTC gate, OPEN function . 540
APTC gate, RECEIVE function . 541
APTC gate, SEND function . 541
APTC gate, SET_SESSION function . 541
APTD gate, WRITE_TRANSIENT_DATA function 542
APTD gate, READ_TRANSIENT_DATA function. 543
APTD gate, DELETE_TRANSIENT_DATA function 543
APTD gate, RESET_TRIGGER_LEVEL function. 544
APTD gate, INITIALISE_TRANSIENT_DATA function 544
APXM gate, TRANSACTION_INITIALIZATION function 545
APXM gate, TRANSACTION_INITIALIZATION function 545
APXM gate, RMI_START_OF_TASK function . 545
APXM gate, TRANSACTION_TERMINATION function 546
BRAI gate, INQUIRE_AUTOINSTALL function . 546
BRAI gate, SET_AUTOINSTALL function . 546
BRAI gate, INSTALL_BRIDGE_FACILITY function 546
BRAI gate, DELETE_BRIDGE_FACILITY function 547
BRAT gate, ATTACH function. 547
BRFR gate, ALLOCATE_BRIDGE_FACILITY function. 548
BRFR gate, REALLOCATE_BRIDGE_FACILITY function 548
BRFR gate, DETACH_BRIDGE_FACILITY function 549
BRFR gate, SET_BRIDGE_FACILITY function . 549
BRFR gate, INQUIRE_BRIDGE_FACILITY function 549
BRFR gate, STARTBR_BRIDGE_FACILITY function 550
BRFR gate, GET_NEXT_BRIDGE_FACILITY function 550
BRFR gate, ENDBR_BRIDGE_FACILITY function 550
BRFR gate, GARBAGE_COLLECT function . 550
BRIQ gate, INQUIRE_CONTEXT function . 551
BRLK gate, START_BRIDGE function . 551
BRLK gate, CONTINUE_BRIDGE function . 552
BRLK gate, ABEND_BRIDGE function . 552
BRME gate, API_EMULATOR function . 552
BRMF gate, FORMATTER function . 552
BRMG gate, ALLOCATE_MESSAGE function . 553
BRMG gate, REALLOCATE_MESSAGE function 553
BRMG gate, OUTPUT_MESSAGE function . 554
BRMG gate, RESEND_MESSAGE function . 554
BRMG gate, DELETE_MESSAGE function . 554
BRMG gate, READ_VECTOR function . 554
BRMG gate, ALLOCATE_VECTOR function . 555
BRMG gate, ERASE_OUTPUT_VECTORS function 555
BRNS gate, INITIALISE_NUMBER function . 555
BRNS gate, CONNECT_NUMBER function . 555
BRNS gate, DISCONNECT_NUMBER function . 556

Contents xix

BRNS gate, ALLOCATE_NUMBER function . 556
BRNS gate, RELEASE_NUMBER function. 557
ICXM gate, INQUIRE_FACILITY function . 557
LILI gate, INITIALIZE_LANGUAGES function . 557
LILI gate, TERMINATE_LANGUAGES function . 558
LILI gate, FIND_PROGRAM_ATTRIBUTES function 558
LILI gate, GO_TO function. 559
TFXM gate, INIT_XM_CLIENT function . 559
TFXM gate, BIND_XM_CLIENT function . 560
MRXM gate, INIT_XM_CLIENT function. 560
MRXM gate, BIND_XM_CLIENT function . 560
62XM gate, INIT_XM_CLIENT function . 561
62XM gate, BIND_XM_CLIENT function. 561
RTSU gate, COMMIT_SURROGATE function. 561
RTSU gate, FREE_SURROGATE function . 562
RTSU gate, GET_RECOVERY_STATUS function 562
RTSU gate, PREPARE_SURROGATE function . 562
RTSU gate, RESET_SURROGATE function . 563
SAIQ gate, INQUIRE_SYSTEM function . 563
SAIQ gate, SET_SYSTEM function . 564
TDOC gate, OPEN_TRANSIENT_DATA function 565
TDOC gate, CLOSE_TRANSIENT_DATA function 565
TDOC gate, CLOSE_ALL_EXTRA_TD_QUEUES function 566
TDTM gate, ADD_REPLACE_TDQUEUE function 566
TDTM gate, INQUIRE_TDQUEUE function . 568
TDTM gate, START_BROWSE_TDQDEF function 569
TDTM gate, GET_NEXT_TDQDEF function . 570
TDTM gate, END_BROWSE_TDQDEF function . 571
TDTM gate, SET_TDQUEUE function . 572
TDTM gate, DISCARD_TDQDEF function . 572
TDTM gate, COMMIT_TDQDEFS function . 573
TDXM gate, BIND_FACILITY function . 573
TDXM gate, BIND_SECONDARY_FACILITY function 573
TDXM gate, RELEASE_FACILITY function. 574
TDXM gate, INQUIRE_FACILITY function . 574
TFAL gate, ALLOCATE function . 574
TFAL gate, CANCEL_AID function . 575
TFAL gate, CANCEL_AIDS_FOR_CONNECTION function 575
TFAL gate, CANCEL_AIDS_FOR_TERMINAL function 576
TFAL gate, CHECK_TRANID_IN_USE function . 576
TFAL gate, DISCARD_AIDS function . 577
TFAL gate, FIND_TRANSACTION_OWNER function 577
TFAL gate, GET_MESSAGE function. 577
TFAL gate, INITIALIZE_AID_POINTERS function 578
TFAL gate, INQUIRE_ALLOCATE_AID function . 578
TFAL gate, LOCATE_AID . 579
TFAL gate, LOCATE_REMDEL_AID . 579
TFAL gate, LOCATE_SHIPPABLE_AID . 580
TFAL gate, MATCH_TASK_TO_AID function . 580
TFAL gate, PURGE_ALLOCATE_AIDS . 580
TFAL gate, RECOVER_START_DATA . 581
TFAL gate, REMOTE_DELETE . 581
TFAL gate, REMOVE_EXPIRED_AID . 582
TFAL gate, REMOVE_EXPIRED_REMOTE_AID 582
TFAL gate, REMOVE_MESSAGE . 583
TFAL gate, REMOVE_REMOTE_DELETES . 583

xx CICS TS for z/OS: CICS Diagnosis Reference

TFAL gate, REROUTE_SHIPPABLE_AIDS. 584
TFAL gate, RESCHEDULE_BMS . 584
TFAL gate, RESET_AID_QUEUE . 585
TFAL gate, RESTORE_FROM_KEYPOINT . 585
TFAL gate, RETRIEVE_START_DATA . 585
TFAL gate, SCHEDULE_BMS . 586
TFAL gate, SCHEDULE_START . 586
TFAL gate, SCHEDULE_TDP . 587
TFAL gate, SLOWDOWN_PURGE. 588
TFAL gate, TAKE_KEYPOINT . 588
TFAL gate, TERM_AVAILABLE_FOR_QUEUE . 589
TFAL gate, TERMINAL_NOW_UNAVAILABLE . 589
TFAL gate, UNCHAIN_AID . 589
TFAL gate, UPDATE_TRANNUM_FOR_RESTART. 590
TFBF gate, BIND_FACILITY function . 590
TFIQ gate, INQUIRE_TERMINAL_FACILITY function 591
TFIQ gate, SET_TERMINAL_FACILITY function. 591
TFIQ gate, INQUIRE_MONITOR_DATA function. 592

Application domain’s generic gates . 593
Application domain’s generic formats . 593

APUE format, SET_EXIT_STATUS function . 594
Control blocks . 594
Modules . 595
Exits . 596
Trace . 596

Chapter 71. AP domain initialization program. 597
Modules . 597
Exits . 597
Trace . 597

Chapter 72. AP domain KC subcomponent. 599
Design overview . 599

DFHKC macro calls . 599
Control blocks . 599
Modules . 599
Exits . 600
Trace . 600
Dumps . 600
External interfaces . 600
Statistics . 600

Chapter 73. AP domain termination program . 601
Design overview . 601
Modules . 602
Exits . 602
Trace . 602

Chapter 74. Business Application Manager domain (BAM) 603
Business application manager domain’s specific gate 603

BATT gate, ADD_REPLACE_PROCESSTYPE function 604
BATT gate, INQUIRE_PROCESSTYPE function. 604
BATT gate, START_BROWSE_PROCESSTYPE function 605
BATT gate, GET_NEXT_PROCESSTYPE function 605
BATT gate, END_BROWSE_PROCESSTYPE function 605
BATT gate, SET_PROCESSTYPE function . 606

Contents xxi

BATT gate, DISCARD_PROCESSTYPE function 606
BATT gate, COMMIT_PROCESSTYPE_TABLE function 606
BAXM gate, INIT_ACTIVITY_REQUEST function 607
BAXM gate, BIND_ACTIVITY_REQUEST function 607
BAPR gate, ADD_PROCESS function . 607
BAPR gate, RUN_PROCESS function . 608
BAPR gate, LINK_PROCESS function . 608
BAPR gate, ACQUIRE_PROCESS function . 609
BAPR gate, CANCEL_PROCESS function . 609
BAPR gate, SUSPEND_PROCESS function . 610
BAPR gate, RESUME_PROCESS function . 610
BAPR gate, CHECK_PROCESS function . 610
BAPR gate, REST_PROCESS function . 611
BAAC gate, ADD_ACTIVITY function . 611
BAAC gate, RUN_ACTIVITY function. 612
BAAC gate, LINK_ACTIVITY function . 612
BAAC gate, CANCEL_ACTIVITY function . 613
BAAC gate, SUSPEND_ACTIVITY function . 613
BAAC gate, RESUME_ACTIVITY function . 614
BAAC gate, CHECK_ACTIVITY function . 614
BAAC gate, RESET_ACTIVITY function. 615
BAAC gate, RETURN_END_ACTIVITY function . 615
BAAC gate, DELETE_ACTIVITY function . 615
BAAC gate, ACQUIRE_ACTIVITY function . 616
BAAC gate, ADD_TIMER_REQUEST function . 616
BAAC gate, ADD_REATTACH_ACQUIRED function 616
BABR gate, STARTBR_ACTIVITY function. 617
BABR gate, GETNEXT_ACTIVITY function . 617
BABR gate, ENDBR_ACTIVITY function . 618
BABR gate, INQUIRE_ACTIVITY function . 618
BABR gate, STARTBR_CONTAINER function . 619
BABR gate, GETNEXT_CONTAINER function . 619
BABR gate, ENDBR_CONTAINER function . 620
BABR gate, INQUIRE_CONTAINER function . 620
BABR gate, STARTBR_PROCESS function . 621
BABR gate, GETNEXT_PROCESS function . 621
BABR gate, ENDBR_PROCESS function . 621
BABR gate, INQUIRE_PROCESS function. 622
BABR gate, INQUIRE_ACTIVATION function . 622
BABR gate, COMMIT_BROWSE function . 623
BACR gate, DELETE_CONTAINER function . 623
BACR gate, GET_CONTAINER_INTO function . 623
BACR gate, GET_CONTAINER_LENGTH function 624
BACR gate, GET_CONTAINER_SET function . 624
BACR gate, PUT_CONTAINER function. 625
BACM gate, MOVE_CONTAINER function . 625
BAGD format, INQUIRE_DATA_LENGTH function 626
BAGD format, DESTROY_TOKEN function . 626
BAGD format, ADDRESS_DATA function . 627
BAGD format, RELEASE_DATA function . 627

Business application manager domain’s generic gates 628
Modules . 628
Exits . 631
Trace . 631

Chapter 75. CICS catalog domains (CC/GC) . 633

xxii CICS TS for z/OS: CICS Diagnosis Reference

CICS catalog domains’ specific gate . 633
CCCC gate, ADD function . 633
CCCC gate, DELETE function . 634
CCCC gate, GET function . 634
CCCC gate, WRITE function . 634
CCCC gate, GET_UPDATE function . 635
CCCC gate, PUT_REPLACE function . 635
CCCC gate, START_BROWSE function. 636
CCCC gate, GET_NEXT function . 636
CCCC gate, END_BROWSE function . 636
CCCC gate, TYPE_PURGE function . 636
CCCC gate, START_WRITE function . 637
CCCC gate, WRITE_NEXT function . 637
CCCC gate, END_WRITE function. 637

CICS catalog domains’ generic gate . 638
Modules . 638
Exits . 639
Trace . 639

Chapter 76. Directory manager domain (DD) . 641
Directory manager domain’s specific gates. 641

DDDI gate, CREATE_DIRECTORY function . 641
DDDI gate, ADD_ENTRY function . 641
DDDI gate, DELETE_ENTRY function . 642
DDDI gate, REPLACE_DATA function . 642
DDLO gate, LOCATE function . 643
DDBR gate, START_BROWSE function . 643
DDBR gate, GET_NEXT_ENTRY function . 643
DDBR gate, END_BROWSE function. 644

Directory manager domain’s generic gates . 644
Exits . 645
Trace . 645

Chapter 77. Document Handler domain (DH) . 647
Document Handler domain’s specific gates . 647

DHDH gate, CREATE_DOCUMENT function . 647
DHDH gate, INSERT_DATA function . 648
DHDH gate, INSERT_BOOKMARK function . 649
DHDH gate, REPLACE_DATA function . 650
DHDH gate, DELETE_DOCUMENT function . 651
DHDH gate, DELETE_DATA function . 651
DHDH gate, DELETE_BOOKMARK function . 652
DHDH gate, RETRIEVE_WITH_CTLINFO function 652
DHDH gate, RETRIEVE_WITHOUT_CTLINFO function 653
DHDH gate, INQUIRE_DOCUMENT function . 653
DHSL gate, SET_SYMBOL_VALUE_BY_API function. 653
DHSL gate, SET_SYMBOL_VALUE_BY_SSI function. 654
DHSL gate, ADD_SYMBOL_LIST function . 654
DHSL gate, EXPORT_SYMBOL_LIST function . 655
DHSL gate, IMPORT_SYMBOL_LIST function . 655
DHTM gate, INITIALIZE_DOCTEMPLATES function 655
DHTM gate, ADD_REPLACE_DOCTEMPLATE function 656
DHTM gate, READ_TEMPLATE function . 656
DHTM gate, INQUIRE_DOCTEMPLATE function 657
DHTM gate, INQUIRE_TEMPLATE_STATUS function. 657
DHTM gate, DELETE_DOCTEMPLATE function. 657

Contents xxiii

DHTM gate, START_BROWSE function. 658
DHTM gate, GET_NEXT function . 658
DHTM gate, END_BROWSE function . 658
DHRP gate, RECOVER_DEFINITIONS function . 659

Document Handler domain’s generic gates. 659
Modules . 660
Exits . 661
Trace . 661

Chapter 78. Domain manager domain (DM) . 663
Domain manager domain’s specific gates . 663

DMEN gate, LISTEN function . 663
DMEN gate, DELETE function . 664
DMEN gate, NOTIFY_SMSVSAM_OPERATIONAL function 664
DMDM gate, ADD_DOMAIN function . 665
DMDM gate, QUIESCE_SYSTEM function. 665
DMDM gate, SET_PHASE function . 665
DMDM gate, WAIT_PHASE function . 666
DMIQ gate, START_BROWSE function . 666
DMIQ gate, GET_NEXT function . 667
DMIQ gate, END_BROWSE function . 667
DMIQ gate, INQ_DOMAIN_BY_NAME function . 668
DMIQ gate, INQ_DOMAIN_BY_TOKEN function 668
DMIQ gate, INQ_DOMAIN_BY_ID function . 668

Domain manager domain’s generic gates . 669
Domain manager domain’s generic formats . 669

DMDM format, PRE_INITIALIZE function . 669
DMDM format, INITIALIZE_DOMAIN function. 670
DMDM format, QUIESCE_DOMAIN function . 670
DMDM format, TERMINATE_DOMAIN function . 671

Modules . 671
Exits . 672
Trace . 672

Chapter 79. Debugging profile domain (DP) . 673
Debugging profile domain’s specific gates . 673

DPFM gate, GET_DEBUG_PROFILE function . 673
DPFM gate, SAVE_DEBUG_PROFILE function . 674
DPFM gate, DELETE_DEBUG_PROFILE function 676
DPFM gate, ACTIVATE_DEBUG_PROFILE function 676
DPFM gate, INACTIVATE_DEBUG_PROFILE function 677
DPFM gate, REPLACE_DEBUG_PROFILE function 677
DPFM gate, START_PM_BROWSE function . 678
DPFM gate, READNEXT_PM_PROFILE function 679
DPFM gate, END_PM_BROWSE function . 680
DPIQ gate, INQUIRE_PARAMETERS function . 680
DPIQ gate, SET_PARAMETERS function . 680
DPIQ gate, INQUIRE_DEBUG_TASK function . 680
DPIQ gate, SET_DEBUG_PROFILE function . 681
DPLM gate, STARTBR_DEBUG_PROFILES function 681
DPLM gate, READNEXT_DEBUG_PROFILE function. 682
DPLM gate, READNEXT_INPUT function . 683
DPLM gate, ENDBR_DEBUG_PROFILES function. 684
DPLM gate, RESTARTBR_DEBUG_PROFILES function. 684
DPLM gate, UPDATE_PROFILE_IN_LIST function 685
DPPM gate, PATTERN_MATCH_TASK function . 685

xxiv CICS TS for z/OS: CICS Diagnosis Reference

DPPM gate, PATTERN_MATCH_PROFILE function 686
DPUM gate, GET_USER_DEFAULTS function . 687
DPUM gate, SAVE_USER_DEFAULTS function . 688
DPWD gate, PROCESS_PAGE function . 689
DPWD gate, PROCESS_SUBMIT function . 689
DPWE gate, PROCESS_PAGE function. 690
DPWE gate, PROCESS_SUBMIT function . 690
DPWJ gate, PROCESS_PAGE function . 691
DPWJ gate, PROCESS_SUBMIT function . 691
DPWL gate, PROCESS_PAGE function . 692
DPWL gate, PROCESS_SUBMIT function . 692
DPXM gate, INIT_XM_CLIENT function . 693
DPXM gate, BIND_XM_CLIENT function . 693
DPXM gate, RELEASE_XM_CLIENT function . 694

Debugging profile domain’s generic gates . 694
Exits . 694
Trace . 694

Chapter 80. Dispatcher domain (DS) . 697
Dispatcher domain’s specific gates . 697

DSAT gate, ATTACH function. 697
DSAT gate, CHANGE_MODE function . 698
DSAT gate, CLEAR_MATCH function. 700
DSAT gate, CHANGE_PRIORITY function . 700
DSAT gate, SET_PRIORITY function . 700
DSAT gate, CANCEL_TASK function . 701
DSAT gate, FREE_SUBSPACE_TCBS function . 701
DSAT gate, DELETE_SUBSPACE_TCBS function 701
DSAT gate, TCB_POOL_MANAGEMENT function 702
DSAT gate, RELEASE_OPEN_TCB function . 702
DSAT gate, SET_TRANSACTION_TOKEN function 702
DSBR gate, START_BROWSE function . 703
DSBR gate, END_BROWSE function. 703
DSBR gate, GET_NEXT function . 703
DSBR gate, INQUIRE_TASK function . 704
DSBR gate, SET_TASK function . 705
DSBR gate, INQUIRE_TCB function . 705
DSBR gate, SET_TCB function . 706
DSIT gate, INQUIRE_DISPATCHER function . 706
DSIT gate, SET_DISPATCHER function . 707
DSIT gate, ACTIVATE_MODE function . 707
DSIT gate, ADD_TCB function . 708
DSIT gate, DELETE_TCB function. 709
DSIT gate, DELETE_ OPEN_TCB function . 709
DSIT gate, DELETE_ALL_OPEN_TCBS function 710
DSIT gate, FREE_TCB function. 710
DSIT gate, PROCESS_DEAD_TCBS function . 710
DSSR gate, ADD_SUSPEND function . 710
DSSR gate, DELETE_SUSPEND function . 711
DSSR gate, SUSPEND function. 711
DSSR gate, RESUME function . 712
DSSR gate, WAIT_MVS function . 713
DSSR gate, WAIT_OLDW function . 714
DSSR gate, WAIT_OLDC function . 715

Dispatcher domain’s generic gates. 716
Dispatcher domain’s generic formats . 717

Contents xxv

DSAT format, TASK_REPLY function . 717
DSAT format, PURGE_INHIBIT_QUERY function 718
DSAT format, FORCE_PURGE_INHIBIT_QUERY function 718
DSAT format, NOTIFY_DELETE_TCB function . 718

Modules . 718
Exits . 719
Trace . 719

Chapter 81. Dump domain (DU) . 721
Design overview . 721
Dump domain’s specific gates . 721

DUDT gate, ADD_TRAN_DUMPCODE function . 722
DUDT gate, DELETE_TRAN_DUMPCODE function 723
DUDT gate, INQUIRE_TRAN_DUMPCODE function 724
DUDT gate, SET_TRAN_DUMPCODE function . 725
DUDT gate, STARTBR_TRAN_DUMPCODE function 726
DUDT gate, GETNEXT_TRAN_DUMPCODE function. 726
DUDT gate, ENDBR_TRAN_DUMPCODE function. 728
DUDT gate, ADD_SYSTEM_DUMPCODE function. 728
DUDT gate, DELETE_SYSTEM_DUMPCODE function 729
DUDT gate, INQUIRE_SYSTEM_DUMPCODE function 730
DUDT gate, SET_SYSTEM_DUMPCODE function 731
DUDT gate, STARTBR_SYSTEM_DUMPCODE function 732
DUDT gate, GETNEXT_SYSTEM_DUMPCODE function 732
DUDT gate, ENDBR_SYSTEM_DUMPCODE function 733
DUDU gate, TRANSACTION_DUMP function. 734
DUDU gate, SYSTEM_DUMP function . 736
DUSR gate, CROSS_SYSTEM_DUMP_AVAIL function 738
DUSR gate, DUMPDS_OPEN function . 739
DUSR gate, DUMPDS_CLOSE function. 739
DUSR gate, DUMPDS_SWITCH function . 739
DUSR gate, INQUIRE_CURRENT_DUMPDS function 740
DUSR gate, INQUIRE_DUMPDS_OPEN_STATUS function 741
DUSR gate, INQUIRE_DUMPDS_AUTOSWITCH function 741
DUSR gate, SET_DUMPDS_AUTOSWITCH function 741
DUSR gate, INQUIRE_INITIAL_DUMPDS function 741
DUSR gate, SET_INITIAL_DUMPDS function . 742
DUSR gate, SET_DUMPTABLE_DEFAULTS function 742
DUSR gate, INQUIRE_SYSTEM_DUMP function 743
DUSR gate, SET_SYSTEM_DUMP function . 743
DUSR gate, INQUIRE_RETRY_TIME function . 743
DUSR gate, SET_RETRY_TIME function . 744
Miscellaneous process flows . 744

Dump domain’s generic gates . 745
DMDM PRE_INITIALIZE function . 746
DMDM INITIALIZE_DOMAIN function . 746
DMDM QUIESCE_DOMAIN function . 746
DMDM TERMINATE_DOMAIN function . 746
APUE SET_EXIT_STATUS function . 747
STST COLLECT_STATISTICS function . 747
STST COLLECT_RESOURCE_STATS function . 747

Control blocks . 748
Modules . 749

Transaction dump formatting routines. 750
Copy books . 750
Exits . 750

xxvi CICS TS for z/OS: CICS Diagnosis Reference

Trace . 750
Dumps . 751

Chapter 82. Enterprise Java domain (EJ) . 753
EJ domain's specific gates . 753

EJBB gate, START_BROWSE Function . 754
EJBB gate, GET_NEXT Function . 755
EJBB gate, END_BROWSE Function. 756
EJBG gate, ADD_BEAN function . 756
EJBG gate, ADD_BEAN_STATS function . 757
EJBG gate, CONFIRM_ALL_BEANS Function . 758
EJBG gate, DELETE_ALL_BEANS Function . 758
EJBG gate, DELETE_BEAN Function . 759
EJBG gate, GET_BEAN_DD Function . 759
EJBG gate, INQUIRE_BEAN Function . 760
EJBG gate, RESET_BEAN_STATS function . 760
EJCB gate, START_BROWSE function . 761
EJCB gate, GET_NEXT function . 761
EJCB gate, END_BROWSE function . 762
EJCG gate, ACTION_CORBASERVER function . 763
EJCG gate, ADD_CORBASERVER function . 763
EJCG gate, AMEND_CORBASERVER function . 764
EJCG gate, DELETE_CORBASERVER function. 765
EJCG gate, ESTABLISH function . 766
EJCG gate, INQUIRE_CORBASERVER function 766
EJCG gate, RELINQUISH function. 767
EJCG gate, RESOLVE_CORBASERVER function 767
EJCG gate, SET_ALL_STATE function . 768
EJCG gate, WAIT_FOR_CORBASERVER function 768
EJCP gate, DISCARD_DJAR function . 769
EJCP gate, INSTALL_DJAR function . 769
EJCP gate, PRE_INSTALL_DJAR function. 770
EJCP gate, PUBLISH_CORBASERVER function 770
EJCP gate, PUBLISH_DJAR function . 771
EJCP gate, RETRACT_CORBASERVER function 771
EJCP gate, RETRACT_DJAR function . 771
EJDB gate, START_BROWSE function . 772
EJDB gate, GET_NEXT function . 772
EJDB gate, END_BROWSE function . 773
EJDG gate, ACTION_DJAR function . 773
EJDG gate, ADD_DJAR function . 774
EJDG gate, AMEND_DJAR function . 775
EJDG gate, COUNT_FOR_CS function . 775
EJDG gate, DELETE_DJAR function . 776
EJDG gate, DELETE_ALL_DJARS function . 777
EJDG gate, INQUIRE_DJAR function . 777
EJDG gate, SET_ALL_STATE function . 778
EJDG gate, WAIT_FOR_DJAR function . 778
EJDG gate, WAIT_FOR_USABLE_DJARS function 779
EJDI gate, ADD_ENTRY Function . 779
EJDI gate, INITIALIZE Function . 780
EJDI gate, LOOKUP_ENTRY Function . 780
EJDI gate, REMOVE_ENTRY Function . 781
EJDU gate, DUMP_DATA Function . 781
EJDU gate, DUMP_STACK Function . 782
EJDU gate, INQUIRE_TRACE_FLAGS Function 782

Contents xxvii

EJGE gate, INITIALIZE Function . 782
EJGE gate, QUIESCE Function . 783
EJGE gate, TERMINATE Function . 783
EJIO gate, RESOLVE Function . 784
EJIO gate, RESOLVE_CSERVERS Function . 784
EJIO gate, RESOLVE_DJARS Function . 784
EJJO gate . 785
EJMI gate, ADD_BEAN Function . 785
EJMI gate, ADD_METHOD Function . 785
EJMI gate, DISCARD_METHOD_INFO Function 786
EJMI gate, GET_METHOD_INFO Function . 786
EJMI gate, INITIALIZE Function. 787
EJOB gate, END_BROWSE_OBJECT Function . 787
EJOB gate, GET_NEXT_OBJECT Function . 787
EJOB gate, INQUIRE_OBJECT Function . 788
EJOB gate, INQUIRE_STORES Function . 789
EJOB gate, RETRIEVE_STATISTICS Function . 789
EJOB gate, START_BROWSE_OBJECT Function 790
EJOS gate, ACTIVATE_OBJECT Function . 790
EJOS gate, CLOSE_OBJECT_STORE Function 791
EJOS gate, OPEN_OBJECT_STORE Function . 791
EJOS gate, REMOVE_OBJECT Function . 792
EJOS gate, REMOVE_STORE Function . 792
EJOS gate, STORE_OBJECT Function . 793
EJSO gate, INQUIRE_CORBASERVER function 794
EJSO gate, AMEND_CORBASERVER function . 795

EJ domain's generic gates. 797
Modules . 797
Exits . 797
Trace . 798

Chapter 83. Event manager domain (EM) . 799
Event manager domain’s specific gates . 799

EMEM gate, ADD_SUBEVENT function . 799
EMEM gate, CHECK_TIMER function . 799
EMEM gate, DEFINE_ATOMIC_EVENT function 800
EMEM gate, DEFINE_COMPOSITE_EVENT function. 800
EMEM gate, DEFINE_TIMER function . 801
EMEM gate, DELETE_EVENT function . 801
EMEM gate, DELETE_TIMER function . 802
EMEM gate, FIRE_EVENT function . 802
EMEM gate, FORCE_TIMER function . 802
EMEM gate, INQUIRE_STATUS function . 803
EMEM gate, REMOVE_SUBEVENT function . 803
EMEM gate, RETRIEVE_REATTACH_EVENT function 804
EMEM gate, RETRIEVE_SUBEVENT function . 804
EMEM gate, TEST_EVENT function . 804
EMBR gate, INQUIRE_EVENT function . 805
EMBR gate, START_BROWSE_EVENT function 805
EMBR gate, GET_NEXT_EVENT function . 806
EMBR gate, END_BROWSE_EVENT function . 806
EMBR gate, INQUIRE_TIMER function . 806
EMBR gate, START_BROWSE_TIMER function. 807
EMBR gate, GET_NEXT_TIMER function . 807
EMBR gate, END_BROWSE_TIMER function . 808

Event manager domain’s generic gates . 808

xxviii CICS TS for z/OS: CICS Diagnosis Reference

Modules . 808
Exits . 809
Trace . 809

Chapter 84. IP ECI (IE) domain . 811
IE domain's generic gates . 811
IE domain's specific gates . 811

IEIE gate, PROCESS_ECI_FLOW function. 811
IEIE gate, RECEIVE function. 812
IEIE gate, SEND function . 812
IEIE gate, SEND_ERROR function . 813

Control blocks . 814
Modules . 814
Exits . 814
Trace . 814

Chapter 85. IIOP domain (II) . 815
IIOP domain’s specific gates . 815

IILS gate, ADD_LOGICAL_SERVER function . 815
IILS gate, DELETE_LOGICAL_SERVER function 816
IILS gate, PUBLISH_LOGICAL_SERVER function 816
IILS gate, RETRACT_LOGICAL_SERVER function 816
IIMM gate, ADD_REPLACE_RQMODEL function 817
IIMM gate, DELETE_RQMODEL function . 817
IIMM gate, COMMIT_RQMODELS function . 817
IIRH gate, FIND_REQUEST_STREAM function . 818
IIRH gate, PARSE function . 818
IIRP gate, GET_INITIAL_DATA function . 819
IIRP gate, RECEIVE_REQUEST function . 820
IIRP gate, INVOKE function . 820
IIRP gate, RECEIVE_REPLY function . 821
IIRP gate, SEND_REPLY function . 822
IIRP gate, INITIALISE function . 822
IIRP gate, TERMINATE function . 823
IIRQ gate, INQUIRE_RQMODEL function . 823
IIRQ gate, START_BROWSE function . 824
IIRQ gate, GET_NEXT function . 824
IIRQ gate, END_BROWSE function . 824
IIRQ gate, MATCH_RQMODEL function. 825
IIRR gate, PROCESS_REQUESTS function . 825
IIRS gate, HANDLE_SECURITY_CONTEXT function 826
IIRS gate, DESTROY_VAULT function . 827

IIOP domain’s generic gates . 827
Modules . 828
Exits . 829
Trace . 829

Chapter 86. Kernel domain (KE) . 831
Kernel domain’s specific gates . 831

KEAR gate, DEREGISTER function . 832
KEAR gate, READY function . 832
KEAR gate, REGISTER function . 833
KEAR gate, WAITPRED function . 833
KEDD gate, ADD_DOMAIN function . 833
KEDD gate, INQUIRE_DOMAIN_BY_TOKEN function 833
KEDD gate, INQUIRE_DOMAIN_BY_NAME function 834

Contents xxix

KEDD gate, SET_ANCHOR function . 834
KEDD gate, INQUIRE_ANCHOR function . 834
KEDD gate, ADD_GATE function . 835
KEDD gate, DELETE_GATE function. 835
KEDD gate, INQUIRE_GLOBAL_TRACE function 835
KEDD gate, SET_GLOBAL_TRACE function . 836
KEDD gate, INQUIRE_DOMAIN_TRACE function 836
KEDD gate, SET_DOMAIN_TRACE function . 836
KEDD gate, INQUIRE_TASK_TRACE function . 837
KEDD gate, SET_TASK_TRACE function . 837
KEDD gate, PERFORM_SYSTEM_ACTION function 838
KEDD gate, SET_TRAP_OFF function . 838
KEDD gate, SET_TRAP_ON function . 838
KEDD gate, SET_DEFAULT_RECOVERY function 838
KEDS gate, ABNORMALLY_TERMINATE_TASK function 839
KEDS gate, CREATE_TASK function . 839
KEDS gate, CREATE_TCB function . 840
KEDS gate, DETACH_TERMINATED_OWN_TCBS function 841
KEDS gate, END_TASK function . 841
KEDS gate, FREE_TCBS function . 841
KEDS gate, PUSH_TASK function . 841
KEDS gate, POP_TASK function . 841
KEDS gate, READ_TIME function . 842
KEDS gate, RESET_RUNAWAY_TIMER function 842
KEDS gate, RESET_TIME function . 842
KEDS gate, STOP_RUNAWAY_TIMER function . 842
KEDS gate, START_RUNAWAY_TIMER function 843
KEDS gate, RESTORE_STIMER function . 843
KEDS gate, SEND_DEFERRED_ABEND function 843
KEDS gate, START_PURGE_PROTECTION function. 843
KEDS gate, STOP_PURGE_PROTECTION function 844
KEDS gate, START_FORCEPURGE_PROTECTION function 844
KEDS gate, STOP_FORCEPURGE_PROTECTION function 844
KEDS gate, PROCESS_KETA_ERROR function 845
KEGD gate, INQUIRE_KERNEL function . 845
KEGD gate, SET_KERNEL function . 846
KETI gate, RESET_LOCAL_TIME function. 846
KETI gate, REQUEST_NOTIFY_OF_A_RESET function. 846
KETI gate, SET_DATE_FORMAT function . 847
KETI gate, INQUIRE_DATE_FORMAT function . 847
KETI gate, INQ_LOCAL_DATETIME_DECIMAL function. 847
KETI gate, CONVERT_TO_DECIMAL_TIME function 847
KETI gate, CONVERT_TO_STCK_FORMAT function 848
KEXM gate, TRANSACTION_INITIALISATION function 848

Kernel domain’s generic formats . 848
KEDS format, TASK_REPLY function. 849
KEDS format, TCB_REPLY function . 849
KETI format, NOTIFY_RESET function . 849

Control blocks . 849
Modules . 851
Exits . 852
Trace . 852

Chapter 87. Loader domain (LD) . 853
Loader domain’s specific gate . 853

LDLD gate, ACQUIRE_PROGRAM function . 854

xxx CICS TS for z/OS: CICS Diagnosis Reference

##

LDLD gate, RELEASE_PROGRAM function . 855
LDLD gate, REFRESH_PROGRAM function . 855
LDLD gate, DEFINE_PROGRAM function . 856
LDLD gate, INQUIRE_PROGRAM function . 857
LDLD gate, DELETE_PROGRAM function . 858
LDLD gate, START_BROWSE function . 858
LDLD gate, GET_NEXT_PROGRAM function. 859
LDLD gate, GET_NEXT_INSTANCE function . 859
LDLD gate, END_BROWSE function . 860
LDLD gate, IDENTIFY_PROGRAM function . 861
LDLD gate, SET_OPTIONS function . 862
LDLD gate, INQUIRE_OPTIONS function . 862
LDLD gate, CATALOG_PROGRAMS function. 863

Loader domain’s generic gates . 863
Modules . 864
Exits . 865
Trace . 865

Chapter 88. Log manager domain (LG) . 867
Log manager domain’s specific gates . 867

LGBA gate, BROWSE_ALL_GET_NEXT function 868
LGBA gate, END_BROWSE_ALL function . 868
LGBA gate, START_BROWSE_ALL function . 869
LGCB gate, CHAIN_BROWSE_GET_NEXT function 869
LGCB gate, END_CHAIN_BROWSE function. 869
LGCB gate, START_CHAIN_BROWSE function . 869
LGCC gate, SYSINI function . 870
LGCC gate, CREATE_CHAIN_TOKEN function . 870
LGCC gate, RELEASE_CHAIN_TOKEN function 870
LGCC gate, RESTORE_CHAIN_TOKEN function 870
LGCC gate, START_BROWSE_CHAINS function 870
LGCC gate, BROWSE_CHAINS_GET_NEXT function 871
LGCC gate, END_BROWSE_CHAINS function . 871
LGCC gate, DELETE_ALL function . 871
LGCC gate, SET_HISTORY function . 871
LGCC gate, DELETE_HISTORY function . 872
LGCC gate, SET_KEYPOINT_FREQUENCY function. 872
LGCC gate, INQUIRE_KEYPOINT_FREQUENCY function 872
LGCC gate, SET_DEFER_INTERVAL function . 872
LGCC gate, INQUIRE_DEFER_INTERVAL function 873
LGCC gate, INQUIRE_KEYPOINT_STATS function 873
LGCC gate, RESET_KEYPOINT_STATS function 873
LGGL gate, OPEN function . 873
LGGL gate, WRITE function . 874
LGGL gate, FORCE function . 875
LGGL gate, CLOSE function . 875
LGGL gate, WRITE_JNL function . 875
LGGL gate, FORCE_JNL function . 876
LGGL gate, UOW_TIME function . 877
LGGL gate, INITIALIZE function. 877
LGJN gate, INQUIRE function . 877
LGJN gate, START_BROWSE function . 878
LGJN gate, GET_NEXT function . 878
LGJN gate, END_BROWSE function . 879
LGJN gate, SET function . 879
LGJN gate, DISCARD function . 880

Contents xxxi

LGJN gate, EXPLICIT_OPEN function . 880
LGJN gate, IMPLICIT_OPEN function . 881
LGJN gate, INITIALIZE function. 882
LGJN gate, STREAM_FAIL function . 882
LGJN gate, PROCESS_STATISTICS function . 882
LGLB gate, CONNECT function. 883
LGLB gate, DISCONNECT function . 883
LGLB gate, GL_WRITE function . 883
LGLB gate, GL_FORCE function . 884
LGLB gate, DISCONNECT_ALL function . 884
LGLD gate, INQUIRE function . 884
LGLD gate, START_BROWSE function . 885
LGLD gate, GET_NEXT function . 885
LGLD gate, END_BROWSE function . 886
LGLD gate, MATCH function . 886
LGLD gate, INSTALL function . 886
LGLD gate, DISCARD function . 887
LGLD gate, INITIALIZE function. 887
LGMV gate, MOVE_CHAIN function . 887
LGPA gate, INQUIRE_PARAMETERS function . 887
LGPA gate, SET_PARAMETERS function . 888
LGSR gate, LOGSTREAM_STATS function . 888
LGST gate, INQUIRE function . 888
LGST gate, START_BROWSE function . 889
LGST gate, GET_NEXT function . 889
LGST gate, END_BROWSE function . 889
LGST gate, CONNECT function. 890
LGST gate, DISCONNECT function . 890
LGST gate, INITIALIZE function. 890
LGWF gate, FORCE_DATA function . 891
LGWF gate, WRITE function . 891

Log manager domain’s generic gates. 892
Log manager domain’s call back gates . 892
Log manager domain’s call back format . 892

LGGL gate, ERROR function . 893
Modules . 893
Exits . 895
Trace . 895

Chapter 89. Lock manager domain (LM) . 897
Lock manager domain’s specific gate. 897

LMLM gate, ADD_LOCK function . 897
LMLM gate, LOCK function . 897
LMLM gate, UNLOCK function . 898
LMLM gate, TEST_LOCK_OWNER function . 898
LMLM gate, DELETE_LOCK function. 899

Lock manager domain’s generic gates . 899
Modules . 900
Exits . 900
Trace . 900

Chapter 90. Message domain (ME) . 901
Message domain’s specific gates . 901

MEBM gate, RETRIEVE_MESSAGE function. 901
MEBM gate, INQUIRE_MESSAGE_LENGTH function 902
MEBM gate, INQUIRE_MESSAGE_DEFINITION function 902

xxxii CICS TS for z/OS: CICS Diagnosis Reference

MEME gate, SEND_MESSAGE function . 902
MEME gate, CONVERSE function . 903
MEME gate, RETRIEVE_MESSAGE function. 904
MEME gate, INQUIRE_MESSAGE_LENGTH function 905
MEME gate, VALIDATE_LANGUAGE_CODE function 906
MEME gate, VALIDATE_LANGUAGE_SUFFIX function 907
MEME gate, INQUIRE_MESSAGE function . 908
MESR gate, SET_MESSAGE_OPTIONS function 908

Message domain’s generic gate. 909
Modules . 909
Exits . 910
Trace . 910

Chapter 91. Monitoring domain (MN) . 911
Monitoring domain’s specific gates . 911

MNMN gate, EXCEPTION_DATA_PUT function . 911
MNMN gate, PERFORMANCE_DATA_PUT function 912
MNMN gate, INQUIRE_MONITORING_DATA function 912
MNMN gate, MONITOR function . 912
MNMN gate, INQUIRE_RESOURCE_DATA function 913
MNMN gate, ACCUMULATE_RMI_TIME function 913
MNSR gate, SET_MCT_SUFFIX function . 913
MNSR gate, SET_MONITORING function . 914
MNSR gate, INQ_MONITORING function . 915
MNXM gate, TRANSACTION_INITIALIZATION function 916
MNXM gate, TRANSACTION_TERMINATION function 916

Monitoring domain’s generic gates . 917
Modules . 918
Exits . 919
Trace . 919

Chapter 92. Enqueue Domain (NQ) . 921
Enqueue domain's specific gates . 921

NQNQ gate, CREATE_ENQUEUE_POOL function 922
NQNQ gate, DEACTIVATE function . 924
NQNQ gate, REACQUIRE_ENQUEUE function . 924
NQNQ gate, SET_NQRNAME_LIST function . 925
NQED gate, ENQUEUE function . 926
NQED gate, DEQUEUE function . 927
NQIB gate, INQUIRE_ENQUEUE function . 928
NQIB gate, START_BROWSE_ENQUEUE function 929
NQIB gate, GET_NEXT_ENQUEUE function . 930
NQIB gate, END_BROWSE_ENQUEUE function 931
NQRN gate, ENQUEUE function . 932
NQRN gate, ADD_REPLACE_ENQMODEL function 932
NQRN gate, DISCARD_ENQMODEL function . 933
NQRN gate, INQUIRE_ENQMODEL function . 934
NQRN gate, SET_ENQMODEL function. 934
NQIE gate, INTERPRET_ENQUEUE function . 935

Enqueue domain’s generic gates . 936
Modules . 937
Exits . 937
Trace . 937

Chapter 93. Object Transaction Service domain (OT) 939
Object Transaction Service domain’s specific gates 939

Contents xxxiii

OTTR gate, IMPORT_TRAN function. 939
OTTR gate, BEGIN_TRAN function . 940
OTTR gate, COMMIT_ONE_PHASE function . 940
OTTR gate, PREPARE function . 940
OTTR gate, COMMIT function . 940
OTTR gate, SET_ROLLBACK_ONLY function . 941
OTSU gate, ADD_SUBORDINATE function . 941
OTSU gate, SET_VOTE function . 941
OTSU gate, FORGET function . 942
OTSU gate, RESYNC function . 942
OTCO gate, SET_COORDINATOR function . 942
OTCO gate, FORGET function . 943

Modules . 943
Exits . 943
Trace . 943

Chapter 94. Parameter manager domain (PA) . 945
Parameter manager domain’s specific gate . 945

PAGP gate, FORCE_START function. 945
PAGP gate, GET_PARAMETERS function . 945
PAGP gate, INQUIRE_START function . 946

Parameter manager domain’s generic gate . 946
Modules . 947
Exits . 947
Trace . 947

Chapter 95. Program manager domain (PG) . 949
Program manager domain’s specific gates . 949

PGAQ gate, INQUIRE_AUTOINSTALL function . 950
PGAQ gate, SET_AUTOINSTALL function . 951
PGCH gate, BIND_CHANNEL function . 951
PGCH gate, COPY_CHANNEL function . 952
PGCH gate, CREATE_CHANNEL function . 952
PGCH gate, DELETE_CHANNEL function . 953
PGCH gate, DELETE_OWNED_CHANNELS function. 954
PGCH gate, DETACH_CHANNEL function . 954
PGCH gate, INQUIRE_BOUND_CHANNEL function 955
PGCH gate, INQUIRE_CHANNEL function. 955
PGCH gate, INQUIRE_CHANNEL_BY_TOKEN function 956
PGCH gate, INQUIRE_CURRENT_CHANNEL function 957
PGCH gate, RENAME_CHANNEL function . 958
PGCH gate, SET_CURRENT_CHANNEL function 958
PGCP gate, COPY_CONTAINER_POOL function 959
PGCP gate, CREATE_CONTAINER_POOL function 959
PGCP gate, DELETE_CONTAINER_POOL function 960
PGCP gate, INQUIRE_CONTAINER_POOL function 960
PGCR gate, COPY_CONTAINER function . 961
PGCR gate, DELETE_CONTAINER function . 961
PGCR gate, ENDBR_CONTAINER function . 962
PGCR gate, GET_CONTAINER_INTO function . 963
PGCR gate, GET_CONTAINER_LENGTH function. 964
PGCR gate, GET_CONTAINER_SET function . 965
PGCR gate, GETNEXT_CONTAINER function . 967
PGCR gate, INQUIRE_BROWSE_CONTEXT function 968
PGCR gate, INQUIRE_CONTAINER function . 968
PGCR gate, INQUIRE_CONTAINER_BY_TOKEN function 969

xxxiv CICS TS for z/OS: CICS Diagnosis Reference

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

PGCR gate, MOVE_CONTAINER function . 970
PGCR gate, PUT_CONTAINER function . 971
PGCR gate, SET_CONTAINER function . 972
PGCR gate, STARTBR_CONTAINER function . 973
PGCR gate, TRACE_CONTAINERS function . 973
PGDD gate, DEFINE_PROGRAM function. 974
PGDD gate, DELETE_PROGRAM function . 976
PGEX gate, INITIALIZE_EXIT function . 976
PGEX gate, TERMINATE_EXIT function . 977
PGHM gate, SET_CONDITIONS function . 978
PGHM gate, INQ_CONDITION function . 978
PGHM gate, IGNORE_CONDITIONS function . 979
PGHM gate, SET_AIDS function . 979
PGHM gate, INQ_AID function . 980
PGHM gate, SET_ABEND function . 981
PGHM gate, INQ_ABEND function. 981
PGHM gate, PUSH_HANDLE function . 982
PGHM gate, POP_HANDLE function . 982
PGHM gate, FREE_HANDLE_TABLES function . 983
PGHM gate, CLEAR_LABELS function . 983
PGIS gate, INQUIRE_PROGRAM function. 983
PGIS gate, INQUIRE_CURRENT_PROGRAM function 986
PGIS gate, SET_PROGRAM function . 989
PGIS gate, START_BROWSE_PROGRAM function 990
PGIS gate, GET_NEXT_PROGRAM function . 991
PGIS gate, END_BROWSE_PROGRAM function 993
PGIS gate, REFRESH_PROGRAM function . 994
PGLD gate, LOAD_EXEC function. 994
PGLD gate, LOAD function . 995
PGLD gate, RELEASE_EXEC function . 996
PGLD gate, RELEASE function . 996
PGLE gate, LINK_EXEC function . 997
PGLK gate, LINK function . 998
PGLK gate, LINK_PLT function . 999
PGLU gate, LINK_URM function . 999
PGPG gate, INITIAL_LINK function . 1000
PGRE gate, PREPARE_RETURN_EXEC function 1001
PGXE gate, PREPARE_XCTL_EXEC function . 1001
PGXM gate, INITIALIZE_TRANSACTION function 1002
PGXM gate, TERMINATE_TRANSACTION function 1002

Program manager domain’s generic gates . 1003
Initialize domain . 1003
Quiesce domain . 1003
Terminate domain . 1004

Modules . 1004
Exits . 1005
Trace . 1005

Chapter 96. Pipeline Manager Domain (PI) . 1007
Pipeline Manager Domain's specific gates . 1007

PIAT gate, CREATE_CONTEXT function . 1008
PIAT gate, CREATE_CONTEXT_RESP function 1008
PIAT gate, CREATE_NON_TERMINAL_MSG function 1009
PIAT gate, CREATE_REGISTER_REQUEST function 1010
PIAT gate, CREATE_REGISTER_RESP function 1010
PIAT gate, CREATE_TERMINAL_MSG function 1011

Contents xxxv

||
||
||
||
||

PIAT gate, PROCESS_CONTEXT function . 1011
PIAT gate, PROCESS_CONTEXT_RESP function 1012
PIAT gate, PROCESS_MSG function . 1013
PICC gate, FIND_SIGNATURE function . 1013
PICC gate, HANDLE_PARSE_EVENT function. 1014
PICC gate, PERFORM_XML_PARSE function . 1015
PIII gate, PARSE_ICM function . 1016
PIIW gate, INVOKE_WEBSERVICE function . 1016
PIPL gate, ADD_PIPELINE function . 1017
PIPL gate, COMPLETE_PIPELINE function . 1018
PIPL gate, DISCARD_PIPELINE function . 1019
PIPL gate, END_BROWSE_PIPELINE function 1019
PIPL gate, ESTABLISH_PIPELINE function . 1020
PIPL gate, GET_NEXT_PIPELINE function . 1020
PIPL gate, INQUIRE_PIPELINE function . 1021
PIPL gate, PERFORM_PIPELINE function . 1022
PIPL gate, RELINQUISH_PIPELINE function . 1023
PIPL gate, RESOLVE_PIPELINE function . 1023
PIPL gate, SET_PIPELINE function . 1024
PIPL gate, START_BROWSE_PIPELINE function. 1024
PIPM gate, INVOKE_PROGRAM function . 1025
PIPM gate, INVOKE_STUB function . 1026
PIPM gate, START_PIPELINE function . 1026
PIRE gate, PERFORM_RESYNC function . 1028
PISC gate, DYN_CREATE_WEBSERVICE function 1028
PISC gate, UPDATE_WEBSERVICE function . 1028
PISF gate, SOAPFAULT_ADD function . 1029
PISF gate, SOAPFAULT_CREATE function . 1030
PISF gate, SOAPFAULT_DELETE function . 1030
PISN gate, SOAP_11 function . 1031
PISN gate, SOAP_12 function . 1031
PITG gate, SEND_REQUEST function . 1032
PITG gate, SEND_RESPONSE function . 1032
PITG gate, CONVERSE function . 1033
RECEIVE_REQUEST . 1033
PITG gate, SEND_ERROR_RESPONSE function. 1034
PITL gate, PROCESS_SOAP_REQUEST function 1034
PIWR gate, CREATE_WEBSERVICE function . 1035
PIWR gate, DECREMENT_USE_COUNT function 1036
PIWR gate, DISCARD_WEBSERVICE function 1036
PIWR gate, END_BROWSE_WEBSERVICE function 1036
PIWR gate, GET_NEXT_WEBSERVICE function 1037
PIWR gate, INCREMENT_USE_COUNT function 1038
PIWR gate, INITIALISE_WEBSERVICE function 1039
PIWR gate, INQUIRE_WEBSERVICE function . 1039
PIWR gate, RESOLVE_ALL_WEBSERVICES function 1041
PIWR gate, SET_WEBSERVICE function. 1041
PIWR gate, START_BROWSE_WEBSERVICE function 1042

Pipeline Manager domain's generic gates. 1043
Modules . 1043
Exits . 1044
Trace . 1044

Chapter 97. Partner resource manager . 1045
Functions provided by the partner resource manager 1045

PRCM format, INQUIRE_PARTNER function . 1045

xxxvi CICS TS for z/OS: CICS Diagnosis Reference

PRCM format, START_PARTNER_BROWSE function 1045
PRCM format, GET_NEXT_PARTNER function 1046
PRCM format, END_PARTNER_BROWSE function 1046
PRFS format, LOCATE_AND_LOCK_PARTNER function 1046
PRIN format, START_INIT function . 1047
PRIN format, COMPLETE_INIT function . 1047
PRPT format, ADD_REPLACE_PARTNER function 1047
PRPT format, DELETE_PARTNER function . 1048

Modules . 1048
Exits . 1048
Trace . 1048

Chapter 98. Partner domain (PT) . 1051
Partner domain’s specific gates . 1051

PTTW gate, CREATE_POOL function . 1051
PTTW gate, DESTROY_POOL function . 1052
PTTW gate, QUERY_POOL function . 1052
PTTW gate, START_POOL_BROWSE function 1053
PTTW gate, GET_NEXT_POOL function . 1053
PTTW gate, END_POOL_BROWSE function . 1053
PTTW gate, CREATE_PARTNERSHIP function 1054
PTTW gate, DESTROY_PARTNERSHIP function 1054
PTTW gate, SET_USER_TOKEN function . 1054
PTTW gate, INQUIRE_USER_TOKEN function 1055
PTTW gate, MAKE_PARTNERSHIP function . 1055
PTTW gate, BREAK_PARTNERSHIP function . 1056
PTTW gate, TRIGGER_PARTNER function . 1056
PTTW gate, WAIT_FOR_PARTNER function . 1057
PTTW gate, QUERY_PARTNERSHIP function . 1058
PTTW gate, SET_GARBAGE_INTERVAL function 1058
PTTW gate, INQUIRE_GARBAGE_INTERVAL function. 1059

Modules . 1059
Exits . 1060
Trace . 1060

Chapter 99. Recovery Manager Domain (RM) . 1061
Recovery Manager Domain’s specific gates . 1061

RMUW gate, CREATE_UOW function . 1062
RMUW gate, INQUIRE_UOW_ID function . 1062
RMUW gate, INQUIRE_UOW_TOKEN function 1062
RMUW INQUIRE_UOW function . 1063
RMUW gate, SET_UOW function. 1064
RMUW gate, COMMIT_UOW function . 1065
RMUW gate, FORCE_UOW function . 1065
RMUW gate, START_UOW_BROWSE function 1066
RMUW gate, GET_NEXT_UOW function . 1066
RMUW gate, END_UOW_BROWSE function . 1067
RMUW gate, BACKOUT_UOW function . 1067
RMUW gate, BIND_UOW_TO_TXN function . 1068
RMUW gate, REATTACH_REPLY function . 1068
RMLN gate, ADD_LINK function . 1068
RMLN gate, DELETE_LINK function . 1069
RMLN gate, INQUIRE_LINK function . 1070
RMLN gate, SET_LINK function . 1071
RMLN gate, ISSUE_PREPARE function . 1072
RMLN gate, INBOUND_FLOW function . 1073

Contents xxxvii

RMLN gate, INITIATE_RECOVERY function. 1073
RMLN gate, SET_RECOVERY_STATUS function 1074
RMLN gate, REPORT_RECOVERY_STATUS function 1075
RMLN gate, TERMINATE_RECOVERY function 1075
RMLN gate, SET_MARK function. 1076
RMLN gate, START_LINK_BROWSE function . 1076
RMLN gate, GET_NEXT_LINK function . 1077
RMLN gate, END_LINK_BROWSE function . 1078
RMNM gate, INQUIRE_LOGNAME function . 1078
RMNM gate, SET_LOGNAME function. 1079
RMNM gate, CLEAR_PENDING function . 1079
RMCD gate, REGISTER function. 1080
RMCD gate, SET_GATE function. 1080
RMCD gate, INQUIRE_CLIENT_DATA function 1081
RMCD gate, SET_CLIENT_DATA function . 1081
RMDM gate, INQUIRE_STARTUP function . 1081
RMDM gate, SET_STARTUP function . 1082
RMDM gate, SET_LOCAL_LU_NAME function. 1082
RMDM gate, SET_PARAMETERS function . 1082
RMKD gate, KEYPOINT_DATA function . 1083
RMRE gate, APPEND function. 1083
RMRE gate, FORCE function . 1084
RMRE gate, REMOVE function . 1084
RMRE gate, AVAIL function . 1085
RMRE gate, REQUEST_FORGET function . 1085
RMSL gate, TAKE_ACTIVITY_KEYPOINT function 1086
RMWT gate, INQUIRE_WORK_TOKEN function 1086
RMWT gate, START_WORK_TOKEN_BROWSE function. 1086
RMWT gate, GET_NEXT_WORK_TOKEN function 1087
RMWT gate, END_WORK_TOKEN_BROWSE function 1087

Recovery Manager domain’s generic gates . 1087
Recovery Manager domain’s call back formats . 1088

RMRO gate, PERFORM_COMMIT function . 1088
RMRO gate, PERFORM_PREPARE function . 1089
RMRO gate, START_BACKOUT function . 1089
RMRO gate, DELIVER_BACKOUT_DATA function 1089
RMRO gate, END_BACKOUT function. 1090
RMRO gate, PERFORM_SHUNT function . 1090
RMRO gate, PERFORM_UNSHUNT function . 1091
RMDE gate, START_DELIVERY function . 1091
RMDE gate, DELIVER_RECOVERY function . 1091
RMDE gate, END_DELIVERY function. 1092
RMDE gate, DELIVER_FORGET function . 1092
RMKP gate, TAKE_KEYPOINT function . 1092
RMLK gate, PERFORM_PRELOGGING function 1092
RMLK gate, PERFORM_PREPARE function . 1093
RMLK gate, REPLY_DO_COMMIT function . 1093
RMLK gate, SEND_DO_COMMIT function . 1094
RMLK gate, PERFORM_COMMIT function . 1094
RMLK gate, PERFORM_SHUNT function. 1095
RMLK gate, PERFORM_UNSHUNT function . 1096

Modules . 1096
Exits . 1099
Trace . 1099

Chapter 100. RRMS domain (RX) . 1101

xxxviii CICS TS for z/OS: CICS Diagnosis Reference

RRMS domain's specific gates . 1101
RXDM gate, INQUIRE_RRS function . 1101
RXDM gate, SET_PARAMETERS function . 1101
RXUW gate, PUT_CLIENT_REQUEST function 1102
RXUW gate, GET_CLIENT_REQUEST function 1102
RXUW gate, INQUIRE function . 1103

Modules . 1103
Exits . 1103
Trace . 1103

Chapter 101. RequestStream domain (RZ) . 1105
RequestStream domain’s specific gates . 1105

RZSO gate, CREATE function . 1105
RZSO gate, SEND_REQUEST function . 1106
RZSO gate, RECEIVE_REPLY function . 1107
RZSO gate, LEAVE function . 1108
RZSO gate, JOIN function . 1108
RZSO gate, IS_ID_LOCAL function . 1109
RZTA gate, RECEIVE_REQUEST function . 1109
RZTA gate, SEND_REPLY function . 1110
RZTA gate, GET_SERVER_DATA function . 1111
RZTA gate, GET_PUBLIC_ID function . 1111
RZTA gate, GET_CURRENT function . 1112
RZTA gate, GET_JOIN_DATA function . 1112
RZTA gate, TERMINATE function . 1112
RZRT gate, SET_EXIT_PROGRAM function. 1113
RZRJ gate, PERFORM_JOIN function . 1113

RequestStream domain’s generic gates . 1114
RequestStream domain formats . 1114

LSTN gate, REGISTER function . 1114
LSTN gate, LISTEN function . 1115
LSTN gate, CANCEL function . 1116
LSTN gate, DEREGISTER function . 1116
NOTI gate, NOTIFY function . 1117

Modules . 1117
Exits . 1118
User-replaceable programs . 1118
Trace . 1118

Chapter 102. Scheduler Services domain (SH) . 1119
Scheduler services domain’s specific gate . 1119

SHPR gate, ADD_PENDING_REQUEST function 1119
SHPR gate, DELETE_PENDING_REQUEST function 1119
SHPR gate, SET_BOUND_REQUEST function. 1120
SHRT gate, SET_EXIT_PROGRAM function . 1120
SHRT gate, INQUIRE_EXIT_PROGRAM function 1120
SHRQ gate, PERFORM_RESTART_DREDGE function. 1121
SHRQ gate, PERFORM_REGULAR_DREDGE function 1121
SHRQ gate, PERFORM_SHUTDOWN function 1121
SHRR gate, ROUTE_REQUEST function . 1121
SHRR gate, RECEIVE_REQUEST function . 1122
SHRR gate, RETRY_REQUEST function . 1122

Scheduler service domain’s generic gates . 1123
Modules . 1124
Exits . 1125
Trace . 1125

Contents xxxix

Chapter 103. JVM domain (SJ) . 1127
SJ domain: Design overview . 1127
SJ domain’s specific gates . 1128

SJCC gate, START_CLASSCACHE function . 1129
SJCC gate, STOP_CLASSCACHE function . 1129
SJCC gate, RELOAD_CLASSCACHE function . 1130
SJCC gate, NOTIFY_CLASSCACHE function . 1130
SJCC gate, ADD_TO_ACTIVE_JVMSET function 1130
SJCC gate, REMOVE_FROM_JVMSET function 1131
SJIN gate, INVOKE_JAVA_PROGRAM function 1131
SJIS gate, INQUIRE_JVMPOOL function . 1131
SJIS gate, SET_JVMPOOL function . 1132
SJIS gate, INQUIRE_JVM function . 1133
SJIS gate, START_BROWSE_JVM function . 1133
SJIS gate, GET_NEXT_JVM function . 1134
SJIS gate, END_BROWSE_JVM function . 1134
SJIS gate, INQUIRE_CLASSCACHE function . 1134
SJIS gate, SET_CLASSCACHE function . 1135
SJIS gate, INQUIRE_JVMPROFILE function . 1135
SJIS gate, START_BROWSE_JVMPROFILE function 1136
SJIS gate, GET_NEXT_JVMPROFILE function. 1136
SJIS gate, END_BROWSE_JVMPROFILE function 1136
SJIS gate, SET_JVMPROFILEDIR function . 1137
SJIS gate, DELETE_INACTIVE_JVMS function 1137

SJ domain’s generic gates . 1137
SJ domain: Control blocks . 1138
SJ domain: Modules . 1140
SJ domain: Exits . 1140
SJ domain: Trace . 1140

Chapter 104. Storage manager domain (SM). 1143
Storage manager domain’s specific gates. 1143

SMAD gate, ADD_SUBPOOL function . 1143
SMAD gate, DELETE_SUBPOOL function . 1144
SMAD gate, START_SUBPOOL_BROWSE function 1145
SMAD gate, GET_NEXT_SUBPOOL function . 1145
SMAD gate, END_SUBPOOL_BROWSE function. 1145
SMAD gate, INQUIRE_SUBPOOL function . 1145
SMAR gate, ALLOCATE_TRANSACTION_STG function 1146
SMAR gate, RELEASE_TRANSACTION_STG function. 1146
SMCK gate, CHECK_STORAGE function. 1147
SMCK gate, RECOVER_STORAGE function . 1147
SMGF gate, GETMAIN function . 1148
SMGF gate, FREEMAIN function . 1148
SMGF gate, INQUIRE_ELEMENT_LENGTH function 1149
SMMC gate, INQUIRE_ELEMENT_LENGTH function 1150
SMMC gate, INQUIRE_TASK_STORAGE function 1150
SMMC gate, INITIALIZE function . 1151
SMMC gate, GETMAIN function . 1151
SMMC gate, FREEMAIN function. 1152
SMMC gate, FREEMAIN_ALL_TERMINAL function 1152
SMSR gate, INQUIRE_ISOLATION_TOKEN function 1153
SMSR gate, INQUIRE_REENTRANT_PROGRAM function 1153
SMSR gate, INQUIRE_SHORT_ON_STORAGE function 1154
SMSR gate, INQUIRE_DSA_SIZE function . 1154
SMSR gate, SET_STORAGE_RECOVERY function 1154

xl CICS TS for z/OS: CICS Diagnosis Reference

SMSR gate, SET_TRANSACTION_ISOLATION function 1155
SMSR gate, SWITCH_SUBSPACE function . 1155
SMSR gate, INQUIRE_DSA_LIMIT function . 1155
SMSR gate, SET_DSA_LIMIT function . 1156
SMSR gate, SET_STORAGE_PROTECT function 1156
SMSR gate, INQUIRE_STORAGE_PROTECT function. 1157
SMSR gate, INQUIRE_ACCESS function . 1157
SMSR gate, SET_REENTRANT_PROGRAM function 1157
SMSR gate, INQUIRE_ACCESS_TOKEN function 1158
SMSR gate, UPDATE_SUBSPACE_TCB_INFO function 1158

Storage manager domain’s generic gates . 1159
Storage manager domain’s generic formats . 1159

Format SMNT, STORAGE_NOTIFY function. 1160
Format SMNT, MVS_STORAGE_NOTIFY function 1160

Modules . 1161
Exits . 1162
Trace . 1162

Chapter 105. Sign-on component . 1163
Sign-on component’s subroutines. 1163

DFHSNAS subroutine, SIGNON_ATI_SESSION function 1164
DFHSNAS subroutine, SIGNOFF_ATI_SESSION function. 1165
DFHSNPU subroutine, SIGNON_PRESET_USERID function 1165
DFHSNPU subroutine, SIGNOFF_PRESET_USERID function 1166
DFHSNSG subroutine, SIGNOFF_SURROGATE function 1167
DFHSNSU subroutine, SIGNON_SESSION_USERID function 1167
DFHSNSU subroutine, SIGNOFF_SESSION_USERID function 1168
DFHSNTU subroutine, SIGNON_TERMINAL_USER function 1169
DFHSNTU subroutine, SIGNOFF_TERMINAL_USER function 1170
DFHSNUS subroutine, SIGNON_ATTACH_HEADER function 1171
DFHSNUS subroutine, SIGNOFF_ATTACH_HEADER function 1172

Modules . 1173
Exits . 1173
Trace . 1173

Chapter 106. Socket domain (SO) . 1175
Socket domain’s specific gates. 1175

SOCK gate, SEND function . 1175
SOCK gate, SEND_SSL_DATA function . 1176
SOCK gate, RECEIVE function . 1176
SOCK gate, RECEIVE_SSL_DATA function . 1177
SOCK gate, CLOSE function . 1177
SOCK gate, LISTEN function . 1178
SORD gate, REGISTER function . 1178
SORD gate, DEREGISTER function. 1179
SORD gate, IMMCLOSE function. 1180
SOIS gate, SET_PARAMETERS function . 1180
SOIS gate, INITIALIZE_ENVIRONMENT function 1181
SOIS gate, INQUIRE function . 1181
SOIS gate, SET function . 1182
SOIS gate, INQUIRE_STATISTICS function . 1182
SOIS gate, VERIFY function . 1183
SOIS gate, EXPORT_CERTIFICATE_DATA function 1183
SOIS gate, IMPORT_CERTIFICATE_DATA function 1184
SOIS gate, DELETE_CERTIFICATE_DATA function 1184
SOAD gate, ADD_REPLACE_TCPIPSERVICE function 1185

Contents xli

SOAD gate, DELETE_TCPIPSERVICE function 1185
SOTB gate, INQUIRE_TCPIPSERVICE function 1186
SOTB gate, START_BROWSE function . 1186
SOTB gate, GET_NEXT function . 1187
SOTB gate, END_BROWSE function . 1187
SOTB gate, SET_TCPIPSERVICE function . 1188
SOSE gate, INITIALIZE_SSL function . 1188
SOSE gate, SECURE_SOC_INIT function . 1189
SOSE gate, SECURE_SOC_READ function. 1189
SOSE gate, SECURE_SOC_WRITE function . 1190
SOSE gate, SECURE_SOC_CLOSE function . 1190
SOSE gate, SECURE_SOC_RESET function . 1190
SOSE gate, TERMINATE_SSL function . 1191
SOSE gate, EXPORT_CERTIFICATE_DATA function 1191
SOSE gate, IMPORT_CERTIFICATE_DATA function. 1192
SOSE gate, DELETE_CERTIFICATE_DATA function 1192

Socket domain’s generic gates. 1193
Modules . 1193
Exits . 1194

Chapter 107. Statistics domain (ST) . 1195
Statistics domain’s specific gate . 1195

STST gate, INQ_STATISTICS_OPTIONS function 1195
STST gate, SET_STATISTICS_OPTIONS function 1195
STST gate, REQUEST_STATISTICS function . 1196
STST gate, RECORD_STATISTICS function. 1196
STST gate, STATISTICS_COLLECTION function 1197
STST gate, DISABLE_STATISTICS function . 1197

Statistics domain’s generic gates . 1198
Statistics domain’s generic format . 1198

STST format, COLLECT_STATISTICS function. 1199
STST format, COLLECT_RESOURCE_STATS function. 1199

Modules . 1200
Exits . 1200
Trace . 1200

Chapter 108. Timer domain (TI) . 1201
Timer domain’s specific gate . 1201

TISR gate, REQUEST_NOTIFY_INTERVAL function 1201
TISR gate, REQUEST_NOTIFY_TIME_OF_DAY function 1202
TISR gate, CANCEL function . 1202
TISR gate, INQUIRE_EXPIRATION_TOKEN function 1203

Timer domain’s generic gate . 1203
Timer domain’s generic format . 1203

TISR format, NOTIFY function . 1204
Modules . 1204
Exits . 1204
Trace . 1204

Chapter 109. Trace domain (TR) . 1205
Design overview . 1205

TRACE_PUT handling. 1205
Locking . 1206
Selectivity . 1206
Domain calls . 1206
Subroutine calls . 1209

xlii CICS TS for z/OS: CICS Diagnosis Reference

DFHTRAO functions . 1210
Trace domain’s specific gates . 1210

TRPT gate, TRACE_PUT function . 1211
TRSR gate, SET_INTERNAL_TABLE_SIZE function. 1211
TRSR gate, START_INTERNAL_TRACE function. 1212
TRSR gate, STOP_INTERNAL_TRACE function 1212
TRSR gate, INQUIRE_INTERNAL_TRACE function 1212
TRSR gate, START_AUXILIARY_TRACE function 1213
TRSR gate, STOP_AUXILIARY_TRACE function 1213
TRSR gate, PAUSE_AUXILIARY_TRACE function 1213
TRSR gate, SET_AUX_TRACE_AUTOSWITCH function 1213
TRSR gate, SWITCH_AUXILIARY_EXTENTS function 1214
TRSR gate, INQUIRE_AUXILIARY_TRACE function. 1214
TRSR gate, START_GTF_TRACE function . 1215
TRSR gate, STOP_GTF_TRACE function . 1215
TRSR gate, INQUIRE_GTF_TRACE function . 1215
TRSR gate, ACTIVATE_TRAP function. 1215
TRSR gate, DEACTIVATE_TRAP function . 1216

Trace domain’s generic gates . 1216
Control blocks . 1217
Modules . 1218
Copy books. 1218
Exits . 1218
Trace . 1218
Dumps . 1218

Chapter 110. Temporary storage domain (TS) . 1221
Temporary storage domain’s specific gates . 1221

TSQR gate, WRITE function . 1221
TSQR gate, REWRITE function . 1222
TSQR gate, READ_INTO function . 1223
TSQR gate, READ_SET function . 1223
TSQR gate, READ_NEXT_INTO function . 1224
TSQR gate, READ_NEXT_SET function . 1225
TSQR gate, DELETE function . 1225
TSQR gate, ALLOCATE_SET_STORAGE function 1226
TSPT gate, PUT function. 1226
TSPT gate, PUT_REPLACE function . 1227
TSPT gate, GET function. 1227
TSPT gate, GET_SET function . 1228
TSPT gate, GET_RELEASE function . 1228
TSPT gate, GET_RELEASE_SET function . 1228
TSPT gate, RELEASE function . 1229
TSSH gate, INITIALIZE function . 1229
TSSH gate, INQUIRE_POOL_TOKEN function. 1229
TSSH gate, WRITE function . 1229
TSSH gate, REWRITE function . 1230
TSSH gate, READ_INTO function . 1231
TSSH gate, READ_SET function . 1231
TSSH gate, READ_NEXT_INTO function . 1232
TSSH gate, READ_NEXT_SET function . 1232
TSSH gate, DELETE function . 1233
TSSH gate, INQUIRE_SYSID_TABLE_TOKEN function 1233
TSSB gate, START_BROWSE function . 1233
TSSB gate, GET_NEXT function . 1233
TSSB gate, END_BROWSE function . 1234

Contents xliii

TSSB gate, INQUIRE_QUEUE function . 1234
TSSR gate, SET_START_TYPE function . 1235
TSSR gate, SET_BUFFERS function . 1235
TSSR gate, SET_STRINGS function . 1235
TSBR gate, INQUIRE_QUEUE function . 1235
TSBR gate, START_BROWSE function . 1236
TSBR gate, GET_NEXT function . 1236
TSBR gate, END_BROWSE function . 1237
TSBR gate, CHECK_PREFIX function . 1237
TSIC gate, DELIVER_IC_RECOVERY_DATA function 1237
TSIC gate, INQUIRE_QUEUE function. 1237
TSIC gate, SOLICIT_INQUIRES function . 1237

Temporary storage domain’s generic gates . 1238
Modules . 1238
Exits . 1240
Trace . 1240

Chapter 111. User domain . 1241
User domain’s specific gates . 1241

USAD gate, ADD_USER_WITH_PASSWORD function 1241
USAD gate, ADD_USER_WITHOUT_PASSWORD function 1243
USAD gate, DELETE_USER function . 1244
USAD gate, INQUIRE_USER function . 1245
USAD gate, INQUIRE_DEFAULT_USER function 1246
USAD gate, VALIDATE_USERID function. 1246
USFL gate, FLATTEN_USER function . 1247
USFL gate, TAKEOVER function . 1247
USFL gate, UNFLATTEN_USER function . 1248
USIS gate, SET_USER_DOMAIN_PARMS function 1249
USXM gate, ADD_TRANSACTION_USER function 1249
USXM gate, DELETE_TRANSACTION_USER function 1250
USXM gate, END_TRANSACTION function . 1250
USXM gate, FLATTEN_TRANSACTION_USER function 1250
USXM gate, INIT_TRANSACTION_USER function 1251
USXM gate, INQUIRE_TRANSACTION_USER function 1251
USXM gate, TERM_TRANSACTION_USER function 1253
USXM gate, UNFLATTEN_TRANSACTION_USER function 1253

User domain’s generic gates . 1254
Modules . 1255
Exits . 1255
Trace . 1255

Chapter 112. Web domain (WB). 1257
Web domain’s specific gates . 1257

WBAP gate, START_BROWSE function . 1257
WBAP gate, READ_NEXT function . 1258
WBAP gate, END_BROWSE function . 1259
WBAP gate, GET_MESSAGE_BODY function . 1259
WBAP gate, GET_HTTP_RESPONSE function 1259
WBAP gate, SEND_RESPONSE function. 1260
WBAP gate, READ_HEADER function . 1260
WBAP gate, WRITE_HEADER function . 1261
WBAP gate, INQUIRE function . 1261
WBCL gate, PARSE_URL function . 1261
WBCL gate, OPEN_SESSION function . 1262
WBCL gate, WRITE_HEADER function . 1262

xliv CICS TS for z/OS: CICS Diagnosis Reference

||
||
||

WBCL gate, WRITE_REQUEST function . 1262
WBCL gate, READ_RESPONSE function. 1263
WBCL gate, READ_HEADER function . 1263
WBCL gate, START_BROWSE_HEADERS function 1264
WBCL gate, READ_NEXT_HEADER function . 1264
WBCL gate, END_BROWSE_HEADERS function. 1264
WBCL gate, INQUIRE_SESSION function . 1264
WBCL gate, CLOSE_SESSION function . 1265
WBRP gate, CATALOG_URIMAP function . 1265
WBRP gate, DELETE_URIMAP function . 1265
WBRP gate, CATALOG_HOST function . 1265
WBRP gate, DELETE_HOST function . 1266
WBRP gate, RECOVER_DEFINITIONS function 1266
WBSR gate, RECEIVE function . 1266
WBSR gate, SEND function. 1267
WBSR gate, SEND_STATIC_RESPONSE function 1267
WBUR gate, URIMAP attributes . 1268
WBUR gate, INITIALIZE_URIMAPS function . 1268
WBUR gate, ADD_REPLACE_URIMAP function 1268
WBUR gate, DELETE_URIMAP function . 1269
WBUR gate, LOCATE_URIMAP function . 1269
WBUR gate, INQUIRE_URIMAP function . 1269
WBUR gate, SET_URIMAP function . 1269
WBUR gate, START_BROWSE_URIMAP function 1270
WBUR gate, GET_NEXT_URIMAP function . 1270
WBUR gate, END_BROWSE_URIMAP function 1270
WBUR gate, INQUIRE_HOST function. 1270
WBUR gate, SET_HOST function . 1271
WBUR gate, START_BROWSE_HOST function 1271
WBUR gate, GET_NEXT_HOST function . 1271
WBUR gate, END_BROWSE_HOST function . 1271

Web domain’s generic gates . 1272
Modules . 1272
Exits . 1273
Trace . 1273

Chapter 113. Transaction manager domain (XM) 1275
Transaction manager domain’s specific gates . 1275

XMAT gate, ATTACH function . 1276
XMBD gate, START_BROWSE_TRANDEF function 1277
XMBD gate, GET_NEXT_TRANDEF function . 1277
XMBD gate, END_BROWSE_TRANDEF function 1279
XMCL gate, ADD_REPLACE_TCLASS function 1280
XMCL gate, ADD_TCLASS function . 1280
XMCL gate, INQUIRE_TCLASS function . 1281
XMCL gate, INQUIRE_ALL_TCLASSES function 1281
XMCL gate, SET_TCLASS function . 1282
XMCL gate, DELETE_TCLASS function . 1282
XMCL gate, START_BROWSE_TCLASS function. 1283
XMCL gate, GET_NEXT_TCLASS function . 1283
XMCL gate, END_BROWSE_TCLASS function 1283
XMCL gate, REGISTER_TCLASS_USAGE function 1284
XMCL gate, DEREGISTER_TCLASS_USAGE function. 1284
XMCL gate, LOCATE_AND_LOCK_TCLASS function 1285
XMCL gate, UNLOCK_TCLASS function . 1285
XMDD gate, DELETE_TRANDEF function . 1285

Contents xlv

||
||
||
||
||
||
||
||
||
||
||
||
||

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

||

XMER gate, SET_DEFERRED_MESSAGE function 1286
XMER gate, INQUIRE_DEFERRED_MESSAGE function 1286
XMER gate, SET_DEFERRED_ABEND function 1286
XMER gate, INQUIRE_DEFERRED_ABEND function 1287
XMER gate, REPORT_MESSAGE function . 1287
XMER gate, ABEND_TRANSACTION function . 1288
XMFD gate, FIND_PROFILE function . 1288
XMIQ gate, INQUIRE_TRANSACTION function 1288
XMIQ gate, SET_TRANSACTION function . 1291
XMIQ gate, START_BROWSE_TRANSACTION function 1292
XMIQ gate, GET_NEXT_TRANSACTION function 1292
XMIQ gate, END_BROWSE_TRANSACTION function 1294
XMIQ gate, START_BROWSE_TXN_TOKEN function 1295
XMIQ gate, GET_NEXT_TXN_TOKEN function 1295
XMIQ gate, END_BROWSE_TXN_TOKEN function 1295
XMIQ gate, INQUIRE_TRANSACTION_TOKEN function 1296
XMIQ gate, SET_TRANSACTION_TOKEN function 1296
XMIQ gate, PURGE_TRANSACTION function . 1297
XMLD gate, LOCATE_AND_LOCK_TRANDEF function 1297
XMLD gate, UNLOCK_TRANDEF function . 1298
XMSR gate, INQUIRE_MXT function . 1298
XMSR gate, SET_MXT function . 1299
XMSR gate, INQUIRE_DTRTRAN function . 1299
XMSR gate, SET_DTRTRAN function . 1299
XMXD gate, ADD_REPLACE_TRANDEF function 1300
XMXD gate, SET_TRANDEF function . 1302
XMXD gate, INQUIRE_TRANDEF function . 1303
XMXD gate, INQUIRE_REMOTE_TRANDEF function 1305
XMXE gate, GET_TXN_ENVIRONMENT function. 1307
XMXE gate, FREE_TXN_ENVIRONMENT function 1307

Transaction manager domain’s generic gates . 1308
Transaction manager domain’s generic format . 1308

Format XMNT, MXT_NOTIFY function . 1309
Format XMNT, MXT_CHANGE_NOTIFY function 1309
Format XMDN, TRANDEF_NOTIFY function . 1309
Format XMDN, TRANDEF_DELETE_QUERY function 1310
Format XMPP, FORCE_PURGE_INHIBIT_QUERY function 1310

Modules . 1311
Exits . 1312
Trace . 1312

Chapter 114. Security manager domain . 1313
Security manager domain’s specific gates . 1313

XSAD gate, ADD_USER_WITH_PASSWORD function 1313
XSAD gate, ADD_USER_WITHOUT_PASSWORD function 1315
XSAD gate, DELETE_USER_SECURITY function 1316
XSAD gate, INQUIRE_USER_ATTRIBUTES function 1317
XSAD gate, VALIDATE_USERID function. 1319
XSFL gate, FLATTEN_USER_SECURITY function 1320
XSFL gate, UNFLATTEN_USER_SECURITY function 1320
XSFL gate, UNFLATTEN_ESM_UTOKEN function 1321
XSIS gate, INQUIRE_REGION_USERID function 1322
XSIS gate, INQ_SECURITY_DOMAIN_PARMS function 1323
XSIS gate, SET_SECURITY_DOMAIN_PARMS function 1325
XSIS gate, SET_NETWORK_IDENTIFIER function 1327
XSIS gate, SET_SPECIAL_TOKENS function . 1327

xlvi CICS TS for z/OS: CICS Diagnosis Reference

XSIS gate, INQUIRE_REALM_NAME function . 1328
XSLU gate, GENERATE_APPC_BIND function 1328
XSLU gate, GENERATE_APPC_RESPONSE function 1329
XSLU gate, VALIDATE_APPC_RESPONSE function 1329
XSPW gate, CREATE_PASSTICKET function . 1330
XSPW gate, INQUIRE_PASSWORD_DATA function 1331
XSPW gate, UPDATE_PASSWORD_DATA function 1332
XSPW gate, INQUIRE_CERTIFICATE_USERID function 1333
XSPW gate, REGISTER_CERTIFICATE_USER function 1333
XSRC gate, CHECK_CICS_RESOURCE function 1334
XSRC gate, CHECK_CICS_COMMAND function 1335
XSRC gate, CHECK_SURROGATE_USER function 1336
XSRC gate, CHECK_NON_CICS_RESOURCE function 1336
XSRC gate, REBUILD_RESOURCE_CLASSES function 1337
XSXM gate, ADD_TRANSACTION_SECURITY function 1337
XSXM gate, DEL_TRANSACTION_SECURITY function 1338
XSXM gate, END_TRANSACTION function . 1338

Security manager domain’s generic gates . 1339
Modules . 1339
Exits . 1340
Trace . 1340
External interfaces . 1340

Part 4. CICS modules . 1341

Chapter 115. CICS directory . 1343
Classification of elements . 1343

Name . 1343
Type . 1343
Library . 1343

Optional listings . 1344
Contents of the distribution tapes. 1344

Chapter 116. CICS executable modules . 1449

Part 5. Appendixes . 1507

Bibliography . 1509
The CICS Transaction Server for z/OS library . 1509

The entitlement set . 1509
PDF-only books . 1509

Other CICS books . 1511
Determining if a publication is current . 1511

Accessibility . 1513

Index . 1515

Notices . 1571
Trademarks. 1571

Sending your comments to IBM . 1573

Contents xlvii

xlviii CICS TS for z/OS: CICS Diagnosis Reference

Preface

What this book is about
When the term ”CICS” is used without any qualification in this book, it refers to the CICS® element of
CICS Transaction Server for z/OS®.

”MVS” is used for the operating system, which is an element of z/OS.

This book gives a detailed description of the various components that make up a CICS system. It also
provides reference tables of CICS source modules and executable modules.

This book is intended to help you in diagnosing problems with CICS.

Who this book is for
This book provides a basis for communication between the system programmer and the IBM® support
representative whenever a problem with CICS code is suspected.

What you need to know to use this book
You should have system programming experience and a good working knowledge of CICS and of the
functions used in your system to support CICS applications.

Before using this book, you should have read the CICS Problem Determination Guide to learn about the
general approach to CICS problem-solving and the procedures to use when diagnosing and reporting
system problems. You should already be familiar with the general layout of CICS traces and dumps.

In addition, you may need to refer to the following books in the CICS library while diagnosing what
appears to be a system problem:

v The CICS Data Areas manual for details of the layout and contents of CICS data areas

v The CICS Messages and Codes manual for information about the messages and abend codes that can
be issued by a running CICS system

Notes on terminology
The following abbreviations are used throughout this book:

Term Meaning
CICS When used without qualification in the book, refers to the CICS element of

IBM CICS Transaction Server for z/OS
ESA IBM Enterprise Systems Architecture/370 (ESA/370)
MVS™ The IBM operating system, which can be either an element of OS/390®, or

MVS/Enterprise System Architecture System Product (MVS/ESA SP)
VTAM® IBM Advanced Communications Function/Virtual Telecommunications

Access Method (ACF/VTAM)
VTAM/NCP IBM Virtual Telecommunications Access Method/Network Control Program

(VTAM/NCP)
IMS™ IMS
DL/I The DL/I facilities of IMS
FEPI Front End Programming Interface

© Copyright IBM Corp. 1997, 2011 xlix

l CICS TS for z/OS: CICS Diagnosis Reference

Summary of changes

This book is based on the CICS Diagnosis Reference for CICS Transaction Server for z/OS, Version 2
Release 1, LY33-6088-31. Changes from that edition are marked by vertical bars in the left margin.

This part lists the changes that have been made for the following recent releases:

Changes for CICS Transaction Server for z/OS Version 3 Release 1
The more significant changes for this edition are:

Technical changes

v

Structural changes

v Part 3, “CICS domains,” on page 511 is new, and contains information about CICS domain
interfaces. This information was previously in Part 2, “CICS components,” on page 9.

Changes for CICS Transaction Server for z/OS, Version 2 Release 2
The more significant changes for this edition are:

Technical changes

v The following have been added:
Chapter 93, “Object Transaction Service domain (OT),” on page 939
Chapter 18, “ECI over TCP/IP,” on page 131
Chapter 84, “IP ECI (IE) domain,” on page 811

v There is new and changed information in:
Chapter 70, “Application domain (AP),” on page 513
Chapter 113, “Transaction manager domain (XM),” on page 1275
Chapter 8, “CICS-DB2 Attachment Facility,” on page 79
Chapter 80, “Dispatcher domain (DS),” on page 697
Chapter 82, “Enterprise Java domain (EJ),” on page 753
Chapter 85, “IIOP domain (II),” on page 815
Chapter 103, “JVM domain (SJ),” on page 1127
Chapter 88, “Log manager domain (LG),” on page 867
Chapter 95, “Program manager domain (PG),” on page 949
Chapter 114, “Security manager domain,” on page 1313
Chapter 44, “Statistics utility program (DFHSTUP),” on page 353
Chapter 111, “User domain,” on page 1241

Structural changes

v Information about trace entries have been moved to CICS Trace Entries.

v Chapter 31, “Language Environment interface,” on page 309 has moved to its present position,
to reflect its new title; the term Language Environment is now used in place of CICS-AD/Cycle
Language Environment/370.

Changes for CICS Transaction Server for z/OS, Version 2 Release 1
The main changes are as follows:

v New chapters on the new domain components of CICS were added:
– Log manager domain, starting on page 867.
– VTAM generic resources, starting on page 473.
– Recovery manager domain, starting on page 1061.

© Copyright IBM Corp. 1997, 2011 li

v The file control chapter has been amended to show new function within file control.

v The following chapters have been deleted:

– Asynchronous processing.

– Dynamic backout programming.

– Emergency restart.

– Journaling chapters and system log/journaling utilities - this is largely replaced by the Log manager
domain.

– Local DL/I.

– Shared databases.

– Time of day control.

– Volume control.

lii CICS TS for z/OS: CICS Diagnosis Reference

Part 1. Introduction

This book describes the functional areas (or components) into which CICS is divided. To understand more
about a particular functional area, use the contents list and the index to find the appropriate information.

If you are using this book to diagnose a system problem, to find out whether a function is working as
designed, you should also consult the special topic, administration, or programming books in the CICS
Transaction Server for z/OS library.

In this and other CICS books, the word “component” is used in a general way to refer to any unit of code
that performs an identifiable set of functions and manages a certain type of data.

Some CICS components are shipped as object code only (OCO). If the component causing a problem is
OCO, it is the responsibility of IBM to diagnose the problem further. If the component is not OCO, you can
refer to the source code on microfiche, and use the detailed information in this book to identify more
specifically the cause of the problem. The Chapter 115, “CICS directory,” on page 1343 shows which CICS
object modules are regarded as OCO; no source code is available for these modules.

© Copyright IBM Corp. 1997, 2011 1

2 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 1. CICS domains

At the top level, CICS is organized into domains. With the exception of the application domain, which
contains several components, each domain is a single major component of CICS. Domains never
communicate directly with each other. Calls between domains are routed through kernel linkage routines.
Calls can be made only to official interfaces to the domains, and they must use the correct protocols. This
structure is shown in Figure 1.

Each domain manages its own data. No domain accesses another domain’s data directly. If a domain
needs data belonging to another domain, it must call that domain, and that domain then passes the data
back in the caller’s parameter area.

The following table lists the CICS domains alphabetically by domain identifier. For each domain, the table
also shows whether or not the domain is OCO, and gives a page reference to the section describing the
interfaces to the domain.

Domain ID Domain OCO? See page

AP Application See note 513
BA Business Application Manager Yes 603
CC Local catalog Yes 633
DD Directory manager Yes 641
DH Document handler Yes 647
DM Domain manager Yes 663
DP Debugging profile domain Yes 673
DS Dispatcher Yes 697
DU Dump No 721
EJ Enterprise Java™ No 753
EM Event manager Yes 799
GC Global catalog Yes 633
IE IP ECI Yes 811
II IIOP No 815
KE Kernel Yes 831

Domain

Domain

Domain

Domain

Domain

Domain

Domain

Domain

Kernel

linkage

routines

Figure 1. CICS organization—domains

© Copyright IBM Corp. 1997, 2011 3

Domain ID Domain OCO? See page

LD Loader Yes 853
LG Log manager Yes 867
LM Lock manager Yes 897
ME Message Yes 901
MN Monitoring Yes 911
NQ Enqueue Yes 921
OT Object transaction service No 939
PA Parameter manager Yes 945
PT Partner Yes 1051
PG Program manager Yes 949
RM Recovery manager Yes 1061
RX Resource recovery service Yes 1101
RZ Request Stream No 1105
SH Scheduler services Yes 1119
SJ JVM Domain No 1275
SM Storage manager Yes 1143
SO Sockets Domain No 1175
ST Statistics Yes 1195
TI Timer Yes 1201
TR Trace No 1205
TS Temporary storage Yes 1221
US User Yes 1241
WB Web No 1257
XM Transaction manager Yes 1275
XS Security manager Yes 1313

Note: The application domain is mainly non-OCO, but it contains these OCO components:
v CICS data table services
v RDO for VSAM files and LSR pools
v Some EXEC CICS system programming functions
v Autoinstall terminal model manager
v Partner resource manager
v SAA Communications and Resource Recovery
v Some of the file control functions
v Recovery manager connectors interfaces.

The offline statistics utility program (DFHSTUP) and the system dump formatting routines are also treated
as OCO.

Domain gates
A domain gate is an entry point or interface to a domain. It can be called by any authorized caller who
needs to use some function provided by the domain.

A number of domain functions are available through the exit programming interface (XPI). For details, see
the CICS Customization Guide.

In practice, every domain has several gates. Each gate has a 4-character identifier; the first two characters
are the identifier of the owning domain, and the second two characters differentiate between the functions
of the domain’s gates. Here, for example, are two of the dispatcher (DS) domain’s gates:

DSAT
DSSR

4 CICS TS for z/OS: CICS Diagnosis Reference

Functions provided by gates
An individual gate can provide many functions. The required function is determined by the parameters
included on the call. The DSSR gate of the DS domain, for example, provides all these functions:

ADD_SUSPEND
DELETE_SUSPEND
INQUIRE_SUSPEND_TOKEN
RESUME
SUSPEND
WAIT_MVS
WAIT_OLDC
WAIT_OLDW.

Specific gates, generic and call-back gates
It is useful to distinguish between specific gates, generic gates and callback gates:

v A specific gate gives access to a set of functions that are provided by that domain alone. The functions
are likely to be requested by many different callers.

DS domain, for example, has a specific gate (DSAT) that provides CHANGE_MODE and
CHANGE_PRIORITY functions (among other functions). Only the DS domain provides those functions,
but they can be requested by many different callers.

v A generic gate gives access to a set of functions that are provided by several domains.

Most domains provide a QUIESCE_DOMAIN function, for example, so that they can be quiesced when
CICS is shutting down normally. They each have a generic gate that provides this function. DM domain
makes a generic call to that gate in any domain that is to be quiesced.

v A call-back gate also gives access to a set of functions that can be provided by several domains. Unlike
a generic gate where the call is broadcast to all domains that have provided a gate a call-back is
restricted to specific domains but uses a format owned by the calling domain.

For example the Recovery Manager calls the domains that have registered an interest in syncpoint
processing using the PERFORM_PREPARE function format that it owns.

Domain call formats
Any module calling a domain gate must use the correct format for the call. The format represents the
parameter list structure. It describes the parameters that must be provided on the call (the input
parameters), and the parameters that are returned to the caller when the request has been processed (the
output parameters).

For example, Table 1 lists the input and output parameters for the ATTACH function of the DS domain’s
DSAT gate.

Table 1. Domain call formats
Input parameters Output parameters

PRIORITY
USER_TOKEN
[TIMEOUT]
TYPE
[MODE]
[TASK_REPLY_GATE_INDEX]
[SPECIAL_TYPE]

TASK_TOKEN
RESPONSE
[REASON]

Parameters not shown in brackets are mandatory, and are always interpreted in trace entries. Parameters
shown in brackets are optional, and are in trace entries only if values have been set. An exception to this
rule is that, regardless of whether REASON is mandatory or optional for a particular function, its value is
included in a trace entry only for a non-‘OK’ response.

Chapter 1. CICS domains 5

The domain call formats described are in the sections dealing with the domains that own them, as
discussed in “Ownership of formats.”

Ownership of formats
Every format is ‘owned’ by a domain:

v The formats for specific calls are owned by the domain being called. DS domain, for example, owns the
format for the CHANGE_MODE and CHANGE_PRIORITY calls. This book uses the term specific
format to refer to such formats.

v The formats for generic calls and call-back calls are owned by the calling domain. DM domain, for
example, owns the format for calls to (generic) gates providing the QUIESCE_DOMAIN function in other
domains. This book uses the term generic format to refer to such formats.

Tokens
Tokens are passed as parameters on many domain calls. They identify uniquely objects that are operands
of domain functions.

Here are some examples:
TASK_TOKEN uniquely identifies a task to be used as the operand of a function.
DOMAIN_TOKEN uniquely identifies a domain to be used as the operand of a function.
SUSPEND_TOKEN uniquely identifies a task for the purpose of a suspend or resume dialog.

Responses
On all domain calls, one of the output parameters is the domain’s response to the call. It can have any
one of these values:
OK When a domain call succeeds, a response of ‘OK’ is given and the

REASON code is not set. The requested function has been completed
successfully.

EXCEPTION Processing of the function could not be completed for the reason specified
in the REASON field. The domain state remains unchanged if such an
error occurs.

DISASTER The domain could not complete the request because of some
irrecoverable system problem. If there is a major error in the domain, this
is reported.

INVALID The parameter list is not valid. If a call is used incorrectly, this is reported.
KERNERROR The kernel was unable to call the required function gate.
PURGED A purge has been requested for the task making the domain call.

6 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 2. Application domain

Application programs are run in the application (AP) domain, which contains several major components, as
shown in Figure 2.

Most application domain CICS functions are either provided by modules that are part of the CICS nucleus,
that is to say they are an integral part of the system and are loaded at system initialization time, or they
are system application programs, which are loaded as needed in the same way as user application
programs.

AP domain

Application
services

Basic mapping support System reliability
Built-in functions
Command interpreter Abnormal condition
Data interchange program program
Execution diagnostic Dynamic backout
facility Emergency restart

Keypoint programs
Node abnormal

Extended recovery condition program
facility Node error program

Program error program
Retry program
System recovery program

Intercommunication Task-related user
facilities exit recovery

Terminal abnormal
Distributed transaction condition program
processing Terminal error program
Function shipping
Interregion communication
Transaction routing
Recovery manager connectors
VTAM LU6.1
VTAM LU6.2

System control

AP domain initialization System services
AP domain termination
DL/I and DBCTL support Dynamic allocation
EXEC interface program Field engineering
File control program
Interval control "Good morning" message

program
Master terminal program
Massage switching
Operator terminal
Resource definition
Signon and sign-off
System spooling interface
Time-of-day control

Resource recovery manager
Storage compatibility
Syncpoint program
Table manager
Task-related user exit control
Temporary-storage control
Terminal control
Trace compatibility
Transient data control
User exit control

Figure 2. AP domain—major components

© Copyright IBM Corp. 1997, 2011 7

8 CICS TS for z/OS: CICS Diagnosis Reference

Part 2. CICS components

This part describes the major components of a CICS system that do not use a domain interface. Offline
utilities, such as the statistics utility program, are also covered.

Sections are ordered alphabetically by component name for quick reference.

© Copyright IBM Corp. 1997, 2011 9

10 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 3. Autoinstall for terminals, consoles and APPC
connections

Autoinstall for terminals provides the ability to log on to CICS from a logical unit (LU), known to VTAM but
not previously defined to CICS, and to make a connection to a running CICS system.

A new connection is created and installed automatically if autoinstall for connections is enabled, and either
of the following occurs:

v An APPC BIND request or CINIT request is received for an APPC service manager (SNASVCMG)
session that does not have a matching CICS CONNECTION definition

v A BIND is received for a single session that does not have a matching CICS CONNECTION definition.

A new console is created and installed automatically if autoinstall for consoles is enabled and a CIB
(Command Input Buffer sent from MVS) is received by CICS (DFHZCNA) and the console TCTTE does
not already exist.

For an introduction to autoinstall, and information about how to implement it, see the CICS Resource
Definition Guide.

The CICS Customization Guide gives information about implementing the autoinstall user program. The
CICS-supplied programs are:
v DFHZATDX, which provides autoinstall for terminals only
v DFHZATDY, which provides autoinstall for terminals and APPC connections.

These programs are user-replaceable, because you may need to tailor the basic function to suit your CICS
environment.

Design overview
Before a VTAM device can communicate with CICS, a VTAM session must be established between the
device and CICS. The sequence of operations is LOGON, Open Destination (OPNDST), and Start Data
Traffic (SDT). CICS can also initiate the LOGON by using a SIMLOGON.

The session can be requested by:

v Specifying AUTOCONNECT when the terminal is defined to CICS

v A VTAM master terminal command requesting a LOGON to CICS for a given terminal; for example,
V NET,LOGON=CICSA,ID=L3277C1

v An individual terminal operator issuing a LOGON request (LOGON APPLID(CICSA))

v A CICS master terminal command requesting LOGON for a given terminal (CEMT SET
TERMINAL(xxxx) INSERVICE ACQUIRED)

v CICS internally requesting a LOGON; for example, to process an ATI request

v LOGAPPL=CICS in the LU statement.

Consoles are not VTAM resource but they usse a similar mechanism to autoinstall the TCTTE.

Autoinstall of a terminal logon flow
This section describes the flow of control for a terminal that is to be logged on by autoinstall.

1. When a terminal or single session APPC device attempts to log on, VTAM drives the logon exit. The
CICS logon exit is DFHZLGX (load module DFHZCY).

In the following circumstances, an LU is a candidate for autoinstall:

v If it is not already defined to CICS (using RDO)

© Copyright IBM Corp. 1997, 2011 11

v If neither CICS nor VTAM is quiescing

v If the autoinstall user program (specified by the AIEXIT system initialization parameter) exists

v If the VTAM RPL is present

v If it is not an LU6.1 session or an LU6.2 parallel session

v If it is an LU6.2 single session terminal and the ISC=YES system initialization parameter is specified

v If the maximum number of concurrent logon requests (specified by the AIQMAX system initialization
parameter) has not been exceeded.

DFHZLGX searches for the terminal in the terminal control table (TCT) by comparing the NETNAME
passed by VTAM with the NETNAME found in the NIB descriptor for each installed terminal.

If a match is not found and AUTOINSTALL is enabled (TCTVADEN is set), CICS verifies that the
terminal is eligible for autoinstall. Processing then consists of:

v Building an autoinstall work element (AWE) by issuing an MVS GETMAIN for subpool 1

v Copying the CINIT RU into the AWE

v Adding the AWE to the end of the AWE chain, which is chained from the TCT prefix.

If a match is found showing that this autoinstall terminal already exists, a postponed work element
(PWE) is created and the terminal is reinstalled after deletion of the TCTTE (TCTEDZIP is ON) or if
AILDELAY=0. If, however, AILDELAY¬=0 but TCTEDZIP is not ON (that is, the TCTTE deletion is
pending), the TCTTE is reused after cleanup.

2. Later, the work element (AWE) is actioned by DFHZACT attaching transaction CATA. For every AWE
on the AWE chain, the DFHZATA autoinstall program is dispatched, passing to DFHZATA the AWE’s
address.

3. The DFHZATA program:

a. Validates the BIND image in the CINIT RU. If the image is not valid, issue message DFHZC6901.

b. If VTAM Model Terminal Support (MTS) is being used (ACF/VTAM 3.3 or later), and the name of a
CICS model has been supplied in a X'2F' MTS control vector, DFHZATA checks that the model
exists by using the AIIQ subroutine interface of the AITM manager (see Chapter 4, “Autoinstall
terminal model manager,” on page 23). If the model does not exist, issue message DFHZC6936.

DFHZATA compares the BIND image contained in the MTS model with the BIND image passed in
the CINIT RU. If there is a mismatch, issue message DFHZC6937.

This validated MTS model is the only model passed to the autoinstall control program.

c. In the absence of an MTS model name, DFHZATA browses the autoinstall terminal model (AITM)
table using the AIIQ subroutine interface of the AITM manager. These models must have been
installed, with appropriate TYPETERM definitions, either at system initialization or by a CEDA
INSTALL command.

Compare the BIND image contained in each model with the BIND image passed in the CINIT RU,
and build a list of suitable models to be passed to the autoinstall control program.

For autoinstall of an LU to be successful, the following must match:

v CINIT BIND image, taken from the VTAM LOGMODE entry specified for the LU in the VTAMLST

v Autoinstall terminal model BIND image, built according to the specifications in the TYPETERM
and TERMINAL definitions.

(Both versions of the BIND image should accurately define the characteristics of the device.) If the
model BIND matches the CINIT BIND, the model is added to the list of candidate entries.

If the list is empty (no matching models are found), the request is rejected and message
DFHZC6987 is written to the CADL log.

d. On completion of the model search, if any, DFHZATA links to the autoinstall control program (the
CICS-supplied default is DFHZATDX).

e. Issue DFHZCP_INSTALL to create the TCTTE. DFHZATA uses information from the model
selected by the exit program and the associated TYPETERM entry to build the TCTTE.

Autoinstall for terminals and APPC connections

12 CICS TS for z/OS: CICS Diagnosis Reference

f. If the install was successful, commit the TCTTE and queue it for LOGON processing. The new
TCTTE is queued for OPNDST processing, then later the “good morning” message is written.

g. Free the AWE.

Autoinstall of APPC device logon flow
This section describes the flow of control for an APPC parallel session device (or single session via a
BIND) that is to be logged on by autoinstall.

1. When an APPC device attempts to logon, VTAM drives the logon exit DFHZLGX if a CINIT is received,
or the SCIP exit DFHZBLX if a BIND is received.

Note that DFHZBLX is a new VTAM exit module that is called by DFHZSCX if an LU62 BIND has been
received.

In the following circumstances, an APPC LU is a candidate for autoinstall.

v If the connection is not already defined to CICS.

v If the connection is not already installed.

v If the autoinstall user program (specified by the AIEXIT system initialization parameter) exists and
caters for functions 2-4 as well as functions 0-1.

v If the VTAM ACB is open.

v If it is an APPC parallel session connection.

v If it is an APPC single session connection with an incoming BIND (as opposed to CINIT - which
uses terminal autoinstall).

v If ISC=YES is specified in the SIT.

v If the maximum number of concurrent logon requests (specified by AIQMAX) has not been
exceeded.

v If the customer has installed the correct 'template' connection that is to be 'cloned' (or copied) to
create the new connection.

DFHZLGX or DFHZBLX searches for the connection in the terminal control table (TCT) by comparing
the NETNAME passed by VTAM with the NETNAME found in the NIB descriptor for each installed
session.

If a match is found and AUTOINSTALL is enabled (TCTVADEN is set), CICS verifies that the terminal
is eligible for autoinstall. Processing then consists of:

v Building an autoinstall work element (AWE) by issuing an MVS GETMAIN for subpool 1.

v Copying the CINIT RU (DFHZLGX) or BIND (DFHZBLX) into the AWE.

v Adding the AWE to the end of the AWE chain, which is chained from the TCT prefix.

If a match is found showing that this connection already exists then the logon proceeds as for a
defined connection.

2. Later, the AWE is actioned by DFHZACT attaching transaction CATA. For every AWE on the AWE
chain, the DFHZATA autoinstall program is dispatched, passing to DFHZATA the AWE's address.

3. The DFHZATA program:

a. Validates the BIND image passed in the AWE. If the image is not valid, issue message
DFHZC6901.

b. Calls DFHZGAI Function(CREATE_CLONE_BPS) to create a Builder Parameter Set from which to
create the new connection ('clone'). This is done by calling the customer supplied autoinstall user
exit program (which can be based on DFHZATDY) in which the customer chooses which 'template'
connection the new connection should be copied from.

If at any point DFHZGAI finds a problem it issues message DFHZC6920 or DFHZC6921 or
DFHZC6922 with an exception trace entry which will explain the reason for failure.

c. Issue DFHZCP function(INSTALL) to create the CONNECTION, MODEGROUP and SESSIONs,
based on the attributes of the template connection.

Autoinstall for terminals and APPC connections

Chapter 3. Autoinstall for terminals, consoles and APPC connections 13

d. For parallel sessions with an incoming BIND, chose the SNASVCMG secondary session and call
DFHZGAI (SET_TCTTE_FOR_OPNDST). This mimics code in DFHZBLX to check the session
against the incoming BIND.

If at any point DFHZGAI finds a problem it issues message DFHZC6923 with an exception trace
entry which explains the reason for failure.

e. For parallel session with an incoming CINIT, chose the SNASVCMG primary session.

f. If the install was successful, commit the CONNECTION and queue it for logon processing. The new
CONNECTION is queued for OPNDST processing.

g. Free the AWE.

Autoinstall of an APPC Generic Resource connection
If this system is registered as a generic resource and a bind is received from another generic resource
then VTAM exit DFHZBLX will initiate an autoinstall if there is no generic or member name connection
available for use.

An AWE is created with extra parameters such as the generic resource name and member name of the
partner and possibly a suggested template.

Autoinstall then continues as for normal APPC and the extra parameters are reflected into the TCSE and
TCTTE via the BPS.

Autoinstall of consoles install flow
1. The modify command comes into DFHZCNA via a CIB (Command Input Buffer) from MVS when a

user types a console command for CICS.

2. DFHZCNA scans the Console Control Elements for a matching console name. If no CCE is found and
autoinstall for consoles is enabled then an Autoinstall Work Element is created and added to the AWE
queue.

3. DFHZACT scans the AWE queue and attached the CATA transaction.

4. The CATA transaction calls DFHZATA which sees the AWE is fir a console (sometimes called a
Console Work Element) and calls DFHZATA2.

5. DFHZATA2 does the following:

a. Finds the console models (AICONS is supplied in group DFHTERMC).

b. If SIT AICONS(YES) is specified the models are passed to the autoinstall user-replaceable
program which returns the termid. The default autoinstall user-replaceable program returns the last
4-characters of the consolename.

c. If SIT AICONS(AUTO) is specified DFHZGBM is called to get a name in the console bitmap in the
form ^AAA. The autoinstall user-replaceable program is not called.

d. Calls DFHZCP FUNCTION(INSTALL).

e. Issues EXEC CICS SYNCPOINT.

f. Signs on if using preset security of USERID=*EVERY|*FIRST specified in the AI model
TYPETERM.

g. Geta a TIOA to hold the data specified in the command, e.g. if /f jobname,CEMT I TE was typed at
the console then CEMT I TE is put into the TIOA.

h. Call DFHZATT to attach the transaction specified in the MODIFY command (e.g. CEMT).

Sign-on to consoles flow
If a CIB is received with the same console name but with a different USERID then the autoinstall program
DFHZATA2 is called to sign off the original USERID and sign on to the new USERID as follows:

1. DFHZCNA receives the modify and

a. Finds the CCE

Autoinstall for terminals and APPC connections

14 CICS TS for z/OS: CICS Diagnosis Reference

b. Finds that the USERID is different and is already signed on

c. Creates an AWE for signoff/on

d. Chains the AWE for DFHZACT.

2. DFHZACT attaches CATA

3. CATA calls DFHZATA which calls DFHZATA2 for signoff/on

4. DFHZATA2 issues preset security sign off for the original USERID followed by sign on for the new
USERID

5. DFHZATA2 then gets a TIOA for the modify command data and calls DFHZATT to attach the
transaction as for normal autoinstall for consoles.

Disconnection flow for terminals (LU-initiated)
This section describes the flow of control when a request is made to disconnect an autoinstalled terminal
(for example, by entering a CESF LOGOFF command), ultimately causing an EXEC CICS ISSUE
LOGOFF command to be issued.

1. First the following functions are performed:

v Set on the CLSDST flag in the TCTTE.

v Put the TCTTE on the activate chain for DFHZACT to dispatch.

2. Control is then passed to the Close destination program, DFHZCLS, which performs the following
functions:

v Set on the SHUTDOWN_IN_PROGRESS flag in the TCTTE.

v Set on the REQUEST_SHUTDOWN flag in the TCTTE.

3. The Send asynchronous commands program, DFHZDSA is then called to send a VTAM SHUTD
command to the LU (autoinstalled terminal) to be disconnected. The DFHZDSA program removes the
TCTTE from the activate chain, pending completion of the SHUTD command.

4. When the VTAM SHUTD command has completed, VTAM calls the asynchronous send exit,
DFHZSAX, which performs the following functions:

v Set off the REQUEST_SHUTDOWN flag in the TCTTE.

v Set on the SHUTDOWN_SEND flag in the TCTTE.

v Put the TCTTE back on the activate chain for DFHZACT to dispatch.

5. VTAM then drives the asynchronous receive exit, DFHZASX, with the SHUTC (“shutdown complete”)
command sent by the LU to be disconnected. DFHZASX performs the following functions:

v Ensures that the NODE_QUIESCED_BY_CICS, SHUTDOWN_IN_PROGRESS, and CLSDST flags
are still on.

v Puts the TCTTE back on the activate chain for DFHZACT to dispatch.

6. Control is then passed to the Close_Destination program, DFHZCLS. The DFHZCLS program
performs the following functions:

v Set on the PENDING_DELETE flag in the TCTTE to prevent VTAM exits scheduling requests for the
device.

v Issue UNBIND (CLSDST POST=RESP) for the device.

7. The Close destination exit, DFHZCLX, is driven. If the CLSDST request is successful (that is, there is
a positive response from UNBIND), the following functions are performed:

v Set on the SESSION_CLOSED flag in the TCTTE.

v Flag the TCTTE for deletion.

v Enqueue the TCTTE to DFHZNAC.

8. Control is passed to the DFHZNAC program, which performs the following functions:

v Set on the DELETE_REQUIRED flag in the TCTTE.

v Put the TCTTE on the activate chain for DFHZACT to dispatch.

v Issue message DFHZC3462 (session terminated).

Autoinstall for terminals and APPC connections

Chapter 3. Autoinstall for terminals, consoles and APPC connections 15

9. On the delete request, the DFHZNCA copybook of DFHZNAC checks the value of the system
initialization parameter AILDELAY.

v If AILDELAY is zero, the TCTTE is queued via DFHZACT with the address of the TCTTE as input.
Its function is to perform cleanup operations, the principal operation being to ask DFHZCQ to delete
the TCTTE.

v If AILDELAY is not zero, DFHZNCA initiates CATD using the delay specified and passes the address
of the TCTTE.

Up to three attempts are made to delete the TCTTE. This is because the reason for the failure may be
the existence of a transient condition, such as the TCTTE being on the DFHZNAC queue to output a
message to CSMT. If the initial delete attempt fails, it is attempted again after one second; if this fails,
another attempt is made after a further 5 seconds. If the third attempt fails, it is assumed that the
failure is a hard failure, which will not disappear until the device is reconnected; in this case, message
DFHZC6943 is issued, a syncpoint is taken, and the TCTTE delete status is reset to make the TCTTE
reusable.

If the deletion is successful, the delete is committed, the autoinstall control program is invoked to
permit any specific cleanup operations to take place, and message DFHZC6966 is issued.

If a PWE exists for this TCTTE, the PWE is requeued onto the AWE chain.

Disconnection of an autoinstalled terminal can also be requested by CICS shutdown, terminal time-out,
and terminal errors. In these cases the flow is slightly different.

Deletion of autoinstalled APPC devices.
This section describes the flow of control when an APPC sync level 1 device has its last session released.
This can occur as a result of unbind flows from the partner or a RELEASE command being issued against
the connection in this system.

Only synclevel 1 autoinstalled connections are deleted in this way. They will have had
TCSE_IMPLICIT_DELETE set by the builders from zx_delete_x in the BPS (set by DFHZGAI).

TCSE_CATLG_NO indicates that the connection is not to be written to the catalogue (SIT Parameter
AIRDELAY=0).

1. After DFHZCLS, the CLSDST program, issues DFHTCPLR TIDYUP TCSEDDP and
TCSE_DELETE_SCHEDULE are set and CATD is initiated with a delay of AILDELAY.

2. CATD runs DFHZATD which sets TCSE_DELETE_STARTED and calls DFHZCP FUNCTION=DELETE
to delete the sessions, modegroup and connection.

If a SIMLOGON or BIND occur before the delete actually starts (TCSE_DELETE_SCHEDULED) then the
connection delete is aborted and the connection reused.

If a SIMLOGON occurs during the actual delete (TCSE_DELETE_STARTED) then the delete is vetoed
and the connection is reacquired.

If a BIND occurs during the actual delete (TCSE_DELETE_STARTED) then the delete goes ahead and the
PWE that was created is turned into an AWE and the logon will create a new connection.

If TCSE_DELETE_AT_RESTART is set then DFHZATR will delete the connection if it has not been used
after restart with a delay specified in the SIT AIRDELAY parameter.

Disconnection flow (APPC devices)
These connections are not deleted at LOGOFF time, so the disconnection flow is the same as for a
defined connection.

Autoinstall for terminals and APPC connections

16 CICS TS for z/OS: CICS Diagnosis Reference

Deletion of autoinstalled consoles
Consoles are deleted after a certain period of inactivity. The default is 60 minutes but this can be
overridden in the autoinstall user-replaceable program.

1. The delete time is saved in the CCE during install in TCTCE_TIMEOUT_TIME.

2. DFHCESC runs at certain intervals

3. DFHCESC checks the CCEs for any console whose delete time has expired

4. For each expired CCE DFHCESC does the following

a. Attaches CATD to do the delete

b. CATD calls DFHZATD as for a terminal

Shipping a TCTTE for transaction routing
For transaction routing, a terminal can be defined by an entry in the terminal-owning region (TOR) with the
SHIPPABLE=YES attribute. In this case, the terminal definition is shipped to any application-owning region
(AOR) when the terminal user invokes a transaction owned by (and defined to) that region. Definitions for
advanced program-to-program communication (APPC) devices always have the SHIPPABLE=YES
attribute set.

(The entry in the TOR could have been installed using CEDA INSTALL, the GRPLIST at system
initialization, or autoinstall.)

The first time a transaction is invoked
For non-APPC devices (see Figure 3 on page 18), the following processing is performed:

v In the AOR, look for an existing skeleton TCTTE (TCTSK) whose REMOTENAME is the same as the
local name in the TOR. If found, skip the following steps; otherwise:

v Issue ZC_INQUIRE to the TOR.

v In the TOR:

– Send a builder parameter set (BPS) representing the TCTTE to the AOR.

– Set on the SHIPPED flag (TCTEMROP) in the TCTTE.

– Set on the SHIPPED flag (TCSEMROP) in the TCTSE for the AOR system.

– Rewrite each entry to the catalog.

v In the AOR:

– Use the existing name from the TOR.

– INSTALL the terminal (DFHZATS does the remote install).

– Set on the SHIPPED flag (TCTSKSHI) in the TCTSK.

– Set on the SHIPPED flag (TCSEMROG) in the TCTSE for the TOR system.

– Rewrite each entry to the catalog.

Autoinstall for terminals and APPC connections

Chapter 3. Autoinstall for terminals, consoles and APPC connections 17

For APPC devices:

v In the AOR, look for an existing skeleton TCTTE (TCTSK) whose REMOTENAME is the same as the
local name in the TOR. If found, skip the following steps; otherwise:

v INSTALL the terminal (DFHZATS does the remote install).

v Set on the SHIPPED flag (TCTSKSHI) in the TCTSK.

v Set on the SHIPPED flag (TCSEMROG) in the TCTSE for the TOR system.

v Rewrite each entry to the catalog.

When an autoinstalled TCTTE in a TOR is deleted
If this CICS is linked to a Pre CICS/ESA 4.1 system then the following occurs.

v If the deleted entry is flagged (TCTEMROP or TCSERDLR for APPC devices) as having been shipped,
notify all remote systems that have received shipped definitions (TCSEMROP) that this terminal is being
deleted.

v Determine from the TCTSK in the AOR whether a definition for this terminal has been shipped
(TCTSKSHI). If so, call ZC_DELETE in the AOR.

If this CICS is linked to CICS/ESA 4.1 or above then relevant shipped terminals are deleted using a
separate timing mechanism.

Modules
ZC (terminal control) together with the following:

Module Function

DFHZATA Autoinstall program
DFHZATA2 Console autoinstall program linkedits with DFHZATA
DFHZATD Autoinstall delete program
DFHZATDX Autoinstall control program
DFHZATDY Sample autoinstall user exit
DFHZATR Autoinstall restart program
DFHZATS Remote autoinstall|delete program
DFHZCTRI Trace interpretation for DFHZGAI
DFHZGAI APPC-specific autoinstall functions

TERM TOR AOR

TCTTE TCTSE TCTSE

TCTEMROP TCSEMROP TCSEMROG

ZC_INQUIRE

TCTSK
DFHAPRT ZC_INSTALL

MODEL

TCTSKSHI

SURROGATE

Figure 3. Transaction-routing flow for non-APPC devices

Autoinstall for terminals and APPC connections

18 CICS TS for z/OS: CICS Diagnosis Reference

DFHZATDX
The DFHZATDX module provides user input to autoinstall processing. This module is a component of ZCP,
and is the default autoinstall user program (that is, it is used if you choose not to provide your own). For
further information about the DFHZATDX sample program, see the CICS Customization Guide.

DFHZATDX is also called when creating and deleting shipped terminals (skeletons).

DFHZATDY
DFHZATDY is a sample autoinstall user-replaceable program, which you must modify before you can use
it. Its main function is to choose a template connection which is to be used in creating the new autoinstall
connection clone. It also has to chose a name for the new connection. For further information about the
DFHZATDY sample program see the CICS Customization Guide.

DFHZATDY is also called when creating and deleting shipped terminals (skeletons).

Diagnosing autoinstall problems
When diagnosing problems with autoinstall, consult the following list. If you have a problem with autoinstall
of APPC devices, and the following list does not resolve the problem, see “Diagnosing APPC autoinstall
problems” on page 20.

v The autoinstall model table (AMT) in an SDUMP

v CEMT INQUIRE AUTINSTMODEL—showing which models are installed

v TC level-1 trace, point ID AP FC8A—showing the CINIT RU contained in the AWE on entry to
DFHZATA

v CADL, CSMT, and CSNE logs:
– Autoinstall messages (DFHZC69xx)
– Builder messages (DFHZC59xx, DFHZC62xx, and DFHZC63xx)
– Terminal error messages
– Information produced by DFHZNAC

v Dump taken in the user install program (the CICS-supplied default is DFHZATDX).

Most autoinstall problems can be grouped into three categories:

1. CICS rejects the LOGON request (message DFHZC2411 on the CSNE log).

2. The device rejects the actual BIND parameters (message DFHZC2403 on the CSNE log).

3. DFHZATA diagnoses a problem (message DFHZC69xx on the CADL log).

The first category of problem is caused by CICS being in the wrong state to accept an autoinstall, for
example, CICS is shutting down or AUTOINSTALL is disabled (message DFHZC2433).

The second category of problem arises when the two BIND images match, but the BIND is rejected by the
actual device (message DFHZC2403). For information about valid BIND parameters, consult the 3274
Control Unit Description and Programmer’s Guide, GA23-0061.

The BIND image is contained in the CINIT RU passed to the LOGON exit. This is shown in trace point ID
AP FC8A.

The reason for the third category of problem should be shown in the contents of the associated
DFHZC69xx message on the CADL log. For example, message DFHZC6987 shows a BIND image
mismatch between the incoming CINIT and the best available model (unlikely).

Autoinstall for terminals and APPC connections

Chapter 3. Autoinstall for terminals, consoles and APPC connections 19

The length of each BIND image is found in the halfword preceding the image. A comparison is made for
the smaller of the two length values, but not exceeding X'19' (decimal 25) bytes. The comparison is
accomplished by an XC (exclusive OR) of the two BIND images into a work area. The result is ANDed
with a mask that defines the required settings.

Additional bits are reset if the LU type, found in byte 14 of the BIND image, is 1, 2, 3, or 4. The final result
in the work area must be 256 bytes of X'00'; any other value causes DFHZATA to reject the LOGON and
write message DFHZC6987 to the CADL log.

For autoinstall to function correctly, three items must match:

1. The CINIT BIND image taken from the LOGMODE entry specified for the LU in the VTAMLST

2. The CICS MODEL BIND image built according to the specifications in the TYPETERM and TERMINAL
entries

3. Device characteristics.

Diagnosing APPC autoinstall problems
When diagnosing APPC autoinstall problems, first refer to “Diagnosing autoinstall problems” on page 19.
Most of points in that section apply to APPC autoinstall problems except for points that refer to autoinstall
models.

Any APPC autoinstall problem should be accompanied by message DFHZC6920 to 23. These messages
each have exception trace entries which should trace enough information to allow you to diagnose the
problem.

There are three autoinstall instances of DFHZC2411:

v 4 System termination - CSASTIM tested.

v 5 VTAM termination - TCTVVTQS tested.

v 6 ISC=NO specified in the SIT.

There are two additional instances of DFHZC2433:

v 3 Autoinstall disabled - TCTVADEN tested in DFHZBLX.

v 4 Autoinstall temporarily disabled - TCTVADIN tested in DFHZBLX.

There are two additional instances of DFHZC3482:

v 3 No MVS storage for DFHZBLX to obtain MVS AWE storage.

v 4 No MVS storage for reporting a failure in a dummy work element.

Diagnosing console autoinstall problems
Much of the autoinstall for terminal advice is relevant. However, the following points should also be helpful.

1. Information about autoinstalled consoles is contained in:

v The AWE (CWE)

v The TCT prefix in the console BITMAP

v The CCE

v The SNEX

v The interface to the autoinstall user-replaceable program.

2. When DFHZCNA is called with a modify command trace point AP FCF0 is issued and traces the CIB
and CIB extension.

3. Trace point AP FCA7 shows the AWE/CWE created by DFHZCNA and passed to DFHZATA2.

4. DISCARD (used via CEMT or EXEC CICS) is useful whilst testing autoinstall for consoles.

Autoinstall for terminals and APPC connections

20 CICS TS for z/OS: CICS Diagnosis Reference

5. CEMT INQUIRE TERMINAL is useful for seeing what consoles are installed and what their console
names are.

6. The console names can vary depending on how the modify command was issued:

v /f jobname,CEMT I TE from a TSO SDSF panel gives a console name of the USERID or the
console name if changed using option 8 of SDSF.

v f jobname,CEMT I TE from a TSO console gives a console name of the TSO USERID.

v M/F jobname, CEMT I TE from the TSO SDSF panel gives a console name of MASTnn where nn is
the names of the system. If SEC=YES is specified in the SIT then the user must first sign on with
m/f jobname,CESN.

v // MODIFY jobname,CEMT I TE from a job stream gives a console names of INTERNAL. If
SEC=YES is specified in the SIT then the user must first sign on with m/f jobname,CESN.

7. The console name BITMAP is dumped in the TCP section of system dumps.

8. The extended control blocks are dumped if present when a system dump is taken.

VTAM exits
A VTAM exit is a special-purpose user-written routine that is scheduled by VTAM when the requested
operation is complete. VTAM creates a trace record when the exit is given control.

RE entries represent RPL exits except SEND, RECEIVE, OPNDST, and CLSDST. UE entries represent
non-RPL and asynchronous exits SCIP, LOGON, and LOSTERM.

See the OS/390 eNetwork Communications Server: SNA Programming manual, SC31-8573, for general
VTAM exit information.

Trace
The following point IDs are provided for the autoinstall programs (DFHZATA, DFHZATD, DFHZATR, and
DFHZATS), as part of terminal control:

v AP FC80 through AP FC8C, for which the trace levels are TC 1 and TC 2.

The following point IDs are provided for APPC autoinstall:

v AP FA00 to FA21, for which the trace levels are TC1 and TC2.

The following point IDs are provided for console autoinstall:

v AP FCF0

v AP FCA3 to FCA7

RE and UE trace points are recorded when the VTAM trace API option is requested by:
F NET,TRACE,TYPE=VTAM,OPTION=API,MODE=EXT

GTF must have been started with the USR option.

Each VTAM exit routine in CICS sets an ID byte in the TCTTE exit trace field (TCTEEIDA).

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Autoinstall for terminals and APPC connections

Chapter 3. Autoinstall for terminals, consoles and APPC connections 21

22 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 4. Autoinstall terminal model manager

The autoinstall terminal model manager (an OCO component of the AP domain) is responsible for
managing all operations involving the autoinstall terminal model table. Autoinstall terminal models are used
during the autoinstall logon process (see step 3 on page 12). They are installed either at system
initialization or using CEDA INSTALL (see Chapter 42, “Resource definition online (RDO),” on page 343),
and can be discarded using either the CEMT transaction or EXEC CICS commands.

The acronym AITM is often used for “autoinstall terminal model” in the contexts of both the manager and
the associated table; it is also the name of one of the subroutine call formats.

The AITM manager is implemented as a set of subroutine interfaces.

Functions provided by the autoinstall terminal model manager
Table 2 summarizes the external subroutine interfaces provided by the autoinstall terminal model manager.
It shows the subroutine call formats, the level-1 trace point IDs of the modules providing the functions for
these formats, and the functions provided.

Table 2. Autoinstall terminal model manager’s subroutine interfaces

Format Trace Function

AIIN AP 0F10
AP 0F11

START_INIT
COMPLETE_INIT

AIIQ AP 0F18
AP 0F19

LOCATE_TERM_MODEL
UNLOCK_TERM_MODEL
INQUIRE_TERM_MODEL
START_BROWSE
GET_NEXT
END_BROWSE

AITM AP 0F08
AP 0F09

ADD_REPL_TERM_MODEL
DELETE_TERM_MODEL

AIIN format, START_INIT function
The START_INIT function of the AIIN format is used to attach a CICS task to perform initialization of the
AITM manager.

Input parameters
None.

Output parameters
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|DISASTER|KERNERROR

AIIN format, COMPLETE_INIT function
The COMPLETE_INIT function of the AIIN format is used to wait for the initialization task attached by the
START_INIT function to complete processing.

Input parameters
None.

Output parameters
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|DISASTER|KERNERROR

© Copyright IBM Corp. 1997, 2011 23

AIIQ format, LOCATE_TERM_MODEL function
The LOCATE_TERM_MODEL function of the AIIQ format is used to obtain the attributes of a named
autoinstall terminal model, and obtain a read lock on that entry in the AITM table in virtual storage.

Input parameters
TERM_MODEL_NAME specifies the name of the autoinstall terminal model to be located.
BPS identifies a buffer into which the attributes of the autoinstall terminal model

are to be placed.

Output parameters
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible

values are:

RESPONSE Possible REASON values

DISASTER TM_LOCATE_FAILED

EXCEPTION TERM_MODEL_NOT_FOUND

AIIQ format, UNLOCK_TERM_MODEL function
The UNLOCK_TERM_MODEL function of the AIIQ format is used to release a read lock on a previously
located entry from the AITM table in virtual storage.

Input parameters
TERM_MODEL_NAME specifies the name of the autoinstall terminal model to be unlocked.

Output parameters
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible

values are:

RESPONSE Possible REASON values

DISASTER TM_UNLOCK_FAILED

EXCEPTION TERM_MODEL_NOT_FOUND

AIIQ format, INQUIRE_TERM_MODEL function
The INQUIRE_TERM_MODEL function of the AIIQ format is used to obtain the attributes of a named
autoinstall terminal model. (No read lock is retained.)

Input parameters
TERM_MODEL_NAME specifies the name of the autoinstall terminal model to be located.
BPS identifies a buffer into which the attributes of the autoinstall terminal model

are to be placed.

Output parameters
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible

values are:

Autoinstall terminal model manager

24 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER TM_LOCATE_FAILED
TM_UNLOCK_FAILED

EXCEPTION TERM_MODEL_NOT_FOUND

AIIQ format, START_BROWSE function
The START_BROWSE function of the AIIQ format is used to initiate a browse of the AITM table. The
browse starts at the beginning of the table.

Input parameters
None.

Output parameters
BROWSE_TOKEN is a token used to refer to this browse session on subsequent browse

requests.
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. It has this value:

START_BROWSE_FAILED

AIIQ format, GET_NEXT function
The GET_NEXT function of the AIIQ format is used to obtain the name and attributes of the next
autoinstall terminal model in the AITM table for the specified browse session.

Input parameters
BROWSE_TOKEN is the token identifying this browse session.
BPS identifies a buffer to receive the attributes of the next entry in the AITM

table.

Output parameters
TERM_MODEL_NAME is the name of the next entry in the AITM table.
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible

values are:

RESPONSE Possible REASON values

DISASTER TM_GET_NEXT_FAILED
TM_UNLOCK_FAILED

EXCEPTION END_OF_MODELS

AIIQ format, END_BROWSE function
The END_BROWSE function of the AIIQ format is used to terminate a browse of the AITM table.

Input parameters
BROWSE_TOKEN is the token identifying this browse session.

Output parameters
RESPONSE is the subroutine’s response to the call. It can have either of these values:

OK|KERNERROR

Autoinstall terminal model manager

Chapter 4. Autoinstall terminal model manager 25

AITM format, ADD_REPL_TERM_MODEL function
The ADD_REPL_TERM_MODEL function of the AITM format is used to add or update an entry in the
AITM table in virtual storage, and record the entry on the CICS catalog.

Input parameters
TERM_MODEL_NAME specifies the name of the autoinstall terminal model to be added or

updated.
BPS specifies the attributes of the named autoinstall terminal model.
SYSTEM_STATUS specifies the status of the CICS system at the time of the call. It can have

any one of these values:
COLD_START|WARM_START|ONLINE

where ONLINE means during execution.

Output parameters
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible

values are:

RESPONSE Possible REASON values

DISASTER NOT_INITIALISED
ADD_REPL_FAILED

EXCEPTION TERM_MODEL_IN_USE

AITM format, DELETE_TERM_MODEL function
The DELETE_TERM_MODEL function of the AITM format is used to remove an entry from the AITM table
in virtual storage and the CICS catalog.

Input parameters
TERM_MODEL_NAME specifies the name of the autoinstall terminal model to be added or

updated.
SYSTEM_STATUS specifies the status of the CICS system at the time of the call. It can have

any one of these values:
COLD_START|WARM_START|ONLINE

where ONLINE means during execution.

Output parameters
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible

values are:

RESPONSE Possible REASON values

DISASTER NOT_INITIALISED
DELETE_FAILED

EXCEPTION TERM_MODEL_IN_USE
TERM_MODEL_NOT_FOUND

Autoinstall terminal model manager

26 CICS TS for z/OS: CICS Diagnosis Reference

Modules

Module Function

DFHAIDUF Formats the AITM manager control blocks in a CICS system dump

DFHAIIN1 Handles the following requests:
START_INIT
COMPLETE_INIT

DFHAIIN2 Runs as a CICS task to perform initialization of the AITM manager

DFHAIIQ Handles the following requests:
LOCATE_TERM_MODEL
UNLOCK_TERM_MODEL
INQUIRE_TERM_MODEL
START_BROWSE
GET_NEXT
END_BROWSE

DFHAIRP Initializes the AITM table at CICS startup

DFHAITM Handles the following requests:
ADD_REPL_TERM_MODEL
DELETE_TERM_MODEL

DFHAPTRN Interprets AITM manager trace entries

Exits
No global user exit points are provided for this component.

Trace
The following point IDs are provided for the AITM manager:
v AP 0F00 through AP 0F1F, for which the trace levels are AP 1 and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Autoinstall terminal model manager

Chapter 4. Autoinstall terminal model manager 27

28 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 5. Basic mapping support

Basic mapping support (BMS) allows the CICS application programmer to have access to input and output
data streams without including device-dependent code in the CICS application program.

BMS provides the following services:
Message routing This allows application programs to send output messages to one or more

terminals not in direct control of the transaction.
Terminal paging This allows the user to prepare a multipage output message without

regard to the physical size of the output terminal; the output can then be
retrieved by page number in any order.

Device independence This allows the user to prepare output without regard to the control
characters required for a terminal; CICS automatically inserts the control
characters and eliminates trailing blanks from each line.

Most of the BMS programs are resident in the CICS nucleus.

Design overview
BMS is an interface between CICS and its application programs. BMS formats input and output display
data in response to BMS commands in programs. To do this, it uses device information from CICS system
tables, and formatting information from maps that you have prepared for the program.

BMS enables an application program to read in device-dependent data and convert it to a
device-independent standard form, or to generate device-dependent output data from this
device-independent standard form. In both cases, the structure of the device-independent standard form,
and the layout of the data on the display terminal, are determined by a user-defined map. Related
maps—for example, maps used in the same application program—are grouped together into a map set.
See the CICS Application Programming Guide for further information about the definition and use of maps
and map sets.

On some terminals (such as the IBM 8775 display terminal and the IBM 3290 information panel), the
available display area may be divided into a set of related “logical” screens called partitions. The layout
and properties of the set of partitions that can be simultaneously displayed on a terminal are defined by
the BMS user in a partition set. See the CICS Application Programming Guide for further details about
the definition and use of partition sets.

Maps, map sets, and partition sets are assembled offline using CICS macros. The user defines and names
fields and groups of fields that can be written to and read from the devices supported by BMS. The
assembled maps contain all the device-dependent control characters necessary for the proper
manipulation of the data stream.

Associated with each map is a table of field names which is copied into each application program that
uses the map. Data is passed to and from the application program under these field names. The
application program is written to manipulate the data under the various field names so that alteration of a
map format does not necessarily lead to changes in program logic. New fields can be added to a map
format without making it necessary to reprogram existing applications.

Output data can be supplied from the application program by placing the data in the table under the
appropriate field name. As an alternative, output maps can contain field default data that is sent when data
is not supplied by an application program. This facility permits the specification of titles, headers, and so
on, for output maps.

© Copyright IBM Corp. 1997, 2011 29

Optionally, the display of all the default data can be suppressed by the application program for any output
map. Each time a map is used, the application program can temporarily modify the attributes of any
named field in the output map. The extended attributes can also be modified if maps are defined with the
DSATTS operand.

Output map fields with no field names can contain default data, but the application program cannot replace
the default data or modify the attributes of unnamed fields.

For input, the user assembles a map defining the fields that can be written to and received from a
particular device. Any data received for a particular field is moved across using the field name in the
symbolic storage definition for the map. Light-pen-detectable fields defined in an input map are flagged as
detected if present in an IBM 3270 Information Display System input stream. An input map for a particular
case can specify a subset of the fields potentially receivable; any fields received and not represented in
that map are discarded. This permits the number of fields from a map that can be typed or selected to be
changed, without making it necessary to reprogram applications that currently receive data from the map.

Maps are stored in the CICS program load library. When a map is required by BMS, a copy is
automatically retrieved by CICS from the program load library without application program action. Multiple
users of a map contained in the program load library share a single copy in main storage.

BMS permits any valid combination of field attributes to be specified by the user when generating maps.
Inclusion of BMS in CICS is a system generation option and does not prevent the application program
from accessing a particular device in native mode (without using BMS). Intermixing BMS and native mode
support for a terminal from the same application program may yield unpredictable results. When using
mixed mode support, it is the user’s responsibility to ensure the correct construction and interpretation of
native mode data streams.

BMS permits the application program to pass a native mode data stream that has already been read in,
and (if, for a terminal of the IBM 3270 Information Display System, the screen has been formatted) to
interpret this data stream according to a given input map. This facility allows data entered with the initial
reading of a transaction to be successfully mapped using BMS.

BMS provides the following services:
v Message routing
v Terminal paging
v Device independence.

Message routing
Message routing permits the application program to send an output message to one or more terminals not
in direct control of the transaction. The message is automatically sent to a terminal if the terminal status
allows reception of the message. If a terminal is not immediately eligible to receive the message, the
message is preserved for that terminal until a change in terminal status allows it to be sent. The message
routing function is used by the CICS message-switching transaction.

A BMS map that specifies extended attributes can be used for terminals that do not support extended
attributes. When sending data to a variety of terminals, some of the terminals may support extended
attributes and others may not. When a BMS ROUTE request is processed, BMS looks at the TCTTEs for
all specified terminals and constructs a set of all the supported attributes.

A data stream is produced by BMS using this set of attributes, and the data stream and set of attributes
for each page are written to a temporary-storage record. When the page is later read from temporary
storage, the data stream for each terminal is modified, if necessary, to delete attributes not supported by
that terminal.

Basic mapping support

30 CICS TS for z/OS: CICS Diagnosis Reference

Terminal paging
Terminal paging allows the user to prepare more output than can be conveniently or physically displayed
at the receiving terminal. The output can then be retrieved by pages in any order; that is, in the order in
which they were prepared or by skipping forward or backward in the output pages.

Terminal paging also provides the ability to combine several small areas into one area, which is then sent
to the terminal. This enables the user to prepare output without regard for the record size imposed by the
output terminal.

CICS provides the terminal operator with a generalized page retrieval facility that can be used to retrieve
and dispose of pages.

Device independence
Device independence allows the user to prepare output without regard for the control characters required
for message heading, line separation, and so on. Input to device independence consists of a data string
with optional new-line characters.

Device independence divides the data string into lines no longer than those defined for the particular
terminal. If new-line characters appear occasionally in the data string to further define line lengths, they
are not ignored. CICS inserts the appropriate leading characters, carriage returns, and idle characters, and
eliminates trailing blanks from each line. If the device does not support extended attributes, the extended
attributes are ignored.

CICS allows the user to set horizontal and vertical tabs on those devices that support the facility (for
example, the IBM 3767 Communication Terminal, and the IBM 3770 Data Communication System). For
such devices, CICS supports data compression inbound and data compression outbound, based on the
tab characteristics in the data stream under the control of the appropriate maps.

Control blocks
BMS makes use of the following control blocks (see Figure 4 on page 33):

DSECT Function

DFHMAPDS Defines a physical map. It contains overlays for map set data, map data, and field data. The
physical map set is stored in the CICS program library and requires a resource definition
when loaded into main storage by BMS.

DFHMCAD Defines a mapping control area (MCA). MCAs are used in DFHM32 and DFHML1 to merge
(both) and sort (DFHML1 only) fields in different maps in the chain of map copies. The MCA
contains field position, flags, and pointers to map and application data structure relating to
this field.

DFHMCBDS Defines the message control block (MCB). MCBs are built and referenced by DFHTPR. There
is one MCB per level of page chaining. The MCBs are chained together, with the head of the
chain anchored off the TCTTE BMS extension. The MCB contains a copy of the MCR, with
additional working data.

DFHMCRDS Defines the message control record (MCR). MCRs are held in CICS temporary storage.
There is one MCR per BMS message in temporary storage. The MCR contains data such as
the number of pages in this message, the list of target terminals for this message, data on
which pages are for which LDCs or partitions, and so on. The MCR is written to temporary
storage by DFHMCP. It is read and purged by DFHTPR, DFHTPS, and DFHTPQ.

Basic mapping support

Chapter 5. Basic mapping support 31

DSECT Function

DFHOSPWA Defines the output services processor work area (OSPWA). This is the main BMS control
block. For standard and full-function BMS, there is an OSPWA that is chained off the TCA
and is built by DFHMCP on the first BMS command in a transaction. It contains a copy of the
BMS TCA request bytes, together with the BMS status and working area. DFHTPR has its
own private OSPWA. This overlays the TWA for DFHTPR unless SEND PAGE RETAIN is
used. If SEND PAGE RETAIN is used, DFHTPR obtains an additional OSPWA, and chains
the base OSPWA off the new OSPWA. This avoids DFHTPR damaging the base OSPWA.
The OSPWA is deleted during task termination.

A shorter version of the OSPWA is used by DFHMCPE (part of both the minimum-function
BMS mapping control program DFHMCPE$ and also the BMS fast-path module DFHMCX). It
is built in DFHMCPE’s LIFO storage, and includes space for the request information from the
TCA. The DFHMCPE OSPWA is defined within DFHMCPE.

DFHPGADS Defines a page control area (PGA). DFHTPP builds a PGA at the end of the device data
stream in the terminal input/output area (TIOA) (addressed as ADDR(TIOADBA) + TIOATDL)
for the SET and PAGING disposition. The PGA contains the 3270 write control character
(WCC), flags about the type of TC write required, and the extended features used in this
page of data stream.

DFHPSDDS Defines a physical partition set. The partition set is stored in the CICS program library and
requires a resource definition when loaded into main storage by BMS.

DFHTTPDS Defines the terminal type parameter (TTP). This contains information for a terminal type. Note
that BMS builds pages on a TTP basis. For standard and full-function BMS, DFHRLR builds
TTPs as follows:

1. A “direct TTP” is built for the transaction terminal. If this supports partitions or LDCs, a
further direct TTP is built for each referenced LDC or partition. This contains data for that
LDC or partition. These direct TTPs are chained together, and the head of the chain is
contained in the OSPWA. Direct TTPs are deleted by DFHMCP on a SEND PAGE,
PURGE MESSAGE, or SEND PARTNSET command.

2. If routing is in effect, there is a chain of routed TTPs, with one TTP per terminal type in
the route list. Routed TTPs are deleted by DFHMCP on a SEND PAGE or PURGE
MESSAGE command.

Most of BMS uses the TTP rather than the TCTTE to determine terminal-related information.

TCTTETTE The TCTTETTE DSECT in the DFHTCTZE macro defines the TCTTE BMS extension. It is
chained off the TCTTE (TCTTETEA field).

DFHTPE Defines the BMS partition extension. This is chained off the TCTTE BMS extension if the
terminal supports partitions.

See the CICS Data Areas manual for a detailed description of these control blocks.

Basic mapping support

32 CICS TS for z/OS: CICS Diagnosis Reference

Modules
BMS makes use of the following modules (see Figure 5 on page 35):

Module Function

DFHDSB Addresses the page buffer, which was composed by the page and text build program
(DFHPBP).

DFHEMS The EXEC interface processor for BMS commands.

DFHIIP Called in response to requests for BMS services involving terminals other than IBM 3270
Information Display Systems.

TCA TCTTE

x'08' TCAFCAAA x'78' TCTTETEA
Address of facility Address of TCTTE

extension

x'158' TCAOSPWA
Address of BMS work area TCTTE extension

x'20' TCTTEPGM
Address of first MCB

OSPWA
MCB

x'A8' OSPCTTP
Address of current TTP x'04' MCBNEXT

Address of next MCB or 0
x'AC' OSPDTTP

Address of direct TTP
Direct TTP

x'B0' OSPTTP
Address of first
routing TTP x'24' TTPPGBUF

Address of page buffer

x'C0' OSPTIOA
Address of original TIOA x'2C' TTPMLA

Address of loaded map set

x'D0' OSPDWE x'30' TTPMAPA
Address of DWE Address of map

(within map set)

Routing TTP (see note 2) x'34' TTPMMFCP
Address of modified map

x'20' TTPCHAIN
Address of next Route list area (RLA)
routing TTP or zero (see note 1)

Route list area Map set

Routing TTP (see note 2) MAP

x'20' TTPCHAIN Page buffer
0

Route list area MAP (copy)

x'08' TTPRLCHA
Address of next RLA x'04' BMSMDA
or zero Address of data (TIOA)

x'2A' BMSMCA
RLA extension Address of next map or 0

User TIOA

Notes: | MAP and TIOA (copy)
1. The route list area (RLA)

is not used in the direct
TTP. x'04' BMSMDA

Address of data (TIOA)
2. Each routing TTP has the

same format as the direct x'2A' BMSMCA 0
TTP.

TIOA (copy)

Figure 4. Control blocks associated with basic mapping support (BMS)

Basic mapping support

Chapter 5. Basic mapping support 33

Module Function

DFHMCP The interface between application programs and the modules that perform mapping, message
switching, page and text building, device-dependent output preparation, and message
disposition to terminals, temporary-storage areas, or the application program.

DFHMCX The BMS fast path module for standard and full-function BMS, and the program for minimum
BMS support. It is called by DFHMCP if the request satisfies one of the following conditions:
v It is a non-cumulative direct terminal send map or receive map issued by a command-level

program.
v It is for a 3270 display or an LU3 printer which does not support outboard formatting. If the

terminal supports partitions, it is in the base state.
v The CSPQ transaction has been started.
v The message disposition has not changed.

DFHM32 Called in response to requests for BMS services involving terminals of the 3270 Information
Display System.

DFHPBP Processes all BMS output requests (SEND MAP, SEND PAGE, and SEND TEXT). It performs
the following functions:

v Positions the data in the page, either by actually placing it in a buffer, or by copying it and
adjusting the map for an IBM 3270 Information Display System (SEND MAP ACCUM)

v Places the data into the page buffer (SEND TEXT ACCUM)

v Inserts device-dependent control characters for other than 3270 Information Display
System devices, removing extended attributes.

DFHPHP Processes terminal operations that involve partitions.

DFHRLR Builds terminal type parameters (TTPs), which are the main blocks for building and writing
out data in BMS.

DFHTPP Directs completed pages to a destination specified in the BMS output request: SEND TEXT
sends to the originating terminal; SEND MAP PAGING or SEND TEXT PAGING directs to
temporary storage; and SEND MAP SET or SEND TEXT SET directs to a list of completed
pages that are returned to the application program).

DFHTPQ Checks the chain of automatic initiate descriptors (AIDs) to detect and delete AIDs that have
been on the chain for an interval exceeding the purge delay time interval specified by the
PRGDLAY system initialization parameter, if this has a nonzero value.

DFHTPR Processes messages built by BMS and placed in temporary storage.

DFHTPS Invoked for each terminal type to which a BMS logical message built with SEND MAP
PAGING or SEND TEXT PAGING is to be sent. For each terminal designated by the
originating application program, DFHTPR is scheduled to display the first page of the logical
message if the terminal is in paging status, or the complete message if it is in autopage
status.

Basic mapping support (BMS) is provided by means of a number of modules, each of which interfaces
with other BMS modules, CICS control components, and application programs. The maps that are handled
by BMS may be new maps, created to utilize BMS mapping capabilities. The interrelationships of CICS
programs requesting mapping services are summarized in Figure 5 on page 35. Further details for specific
programs within BMS are given on pages that follow.

One of three versions (MINIMUM, STANDARD, or FULL) of basic mapping support can be selected by the
system initialization parameter BMS (see the CICS System Definition Guide). Where the generated
versions of a BMS module differ according to the level of function provided, a suffix identifies the version
as follows:
v E$ for minimum function
v A$ for standard function
v 1$ for full function.

Basic mapping support

34 CICS TS for z/OS: CICS Diagnosis Reference

In the module lists that follow, an asterisk (*) after a module name shows that the module is suffixed in this
way. Elsewhere in this book, however, the BMS modules are usually referenced by their unsuffixed names
with no distinction made between the minimum, standard, and full-function versions.

The module used by all three versions of BMS (minimum, standard, and full-function) is:

v DFHMCP* (mapping control program).

Additional modules used by both standard and full-function versions of BMS are:
v DFHDSB* (data stream build)
v DFHIIP* (non-3270 input mapping)
v DFHMCX (fast path module)
v DFHML1 (LU1 printer mapping)
v DFHM32* (3270 mapping)
v DFHPBP* (page build program)
v DFHPHP (partition handling program)
v DFHRLR* (route list resolution)
v DFHTPP* (terminal page processor).

Additional modules used only by full-function BMS are:
v DFHTPQ (terminal page cleanup)
v DFHTPR (terminal page retrieval)
v DFHTPS (terminal page scheduling).

A detailed description of each of these modules follows in alphabetic order of module name.

CICS BMS

DFHRLR DFHMCP DFHMCX
Route list Mapping Fast-path module
resolution control program
program

Non-3270 input

CSPS

DFHIIP DFHTPS
Non-3270 input Terminal page
mapping program scheduling

program
Retain/release (LINK)

3270 Input neither (SCHEDULE)

Schedule

3270 Output DFHPBP DFHTPR
Page build program Terminal page

retrieval program

Output
Non-3270 for LU1 First Time
Output Printer (IC INITIATE)

with
Extended
Attributes CSPQ

DFHM32 DFHDSB DFHML1 DFHTPQ
3270 mapping Data stream LU1 printer with Terminal page
program build program extended attributes cleanup program

mapping program

through through
DFHPBP DFHPBP Program delay

(IC INITIATE)

through DFHPBP DFHTPP
Terminal page
processor
program

Figure 5. Modules associated with basic mapping support (BMS)

Basic mapping support

Chapter 5. Basic mapping support 35

DFHDSB (data stream build)
The data stream build program addresses the page buffer, composed by the page and text build program
(DFHPBP). The page buffer contains lines of output data that are to be written to a terminal other than an
IBM 3270 Information Display System. The number of lines is contained in the TTPLINES field. The data
stream build program performs the following functions on the data in the page buffer:

v Truncates trailing blanks within data lines

v Substitutes strings of physical device control characters for logical new-line characters that terminate
each line of data

v Provides a format management header (FMH) for some VTAM-supported devices

v Allows horizontal and vertical tab processing.

Figure 6 shows the relationships between the components of data stream build.

Notes:

1. DFHDSB is entered from the page build program to process the page buffer.

2. For SEND TEXT commands with the NOEDIT option specified, page buffer compression is skipped
and control returns to DFHPBP, which calls the terminal page processor (DFHTPP).

3. For SEND TEXT commands without the NOEDIT option, the appropriate device control characters for
the target device are selected for substitution.

4. The page buffer containing the data to be compressed is located through the address stored at
TTPPGBUF.

5. After compression of the page buffer data, control returns to DFHPBP, which calls DFHTPP to provide
disposition of the page.

DFHIIP (non-3270 input mapping)
The non-3270 input mapping program (DFHIIP) is called in response to requests for BMS services
involving terminals other than IBM 3270 Information Display Systems.

Figure 7 on page 37 shows the relationships between the components of non-3270 input mapping.

TCA

TCAOSPWA 1 Page and text
Data stream build
build (DFHPBP)
(DFHDSB)

OSPWA 2 5

OSPTRT
Terminal
page processor

OSPCTTP (DFHTPP)

TTP
3 Device

TTPPGBUFF control
TTPDS characters
TTPLINES
TTPCOL6
TTPLDCTT
TTPDCCAD

Page buffer

Data to be
output 4

Figure 6. Data stream build interfaces

Basic mapping support

36 CICS TS for z/OS: CICS Diagnosis Reference

Notes:

1. A RECEIVE MAP request by an application program, communicating with other than an IBM 3270
Information Display System, passes information through the TCA through the mapping control program
(DFHMCP) to DFHIIP.

2. The map required for an operation is either passed by the application program or loaded by DFHMCP.

3. DFHIIP communicates with storage control to obtain and release buffers for mapping operations.

DFHMCP (mapping control program)
The mapping control program (DFHMCP) is the interface between application programs and the modules
that perform mapping, message switching, page and text building, device-dependent output preparation,
and message disposition to terminals, temporary-storage areas, or the application program.

Figure 8 on page 38 shows the relationships between the components of mapping control.

Application
program
EXEC CICS....

1

Mapping
control
program
(DFHMCP)

1
DFHOSPWA

2 Non-3270 input
mapping
(DFHIIP)

DFHTTPDS

2 3 Storage
manager

DFHMAPDS

2

Figure 7. Non-3270 input mapping interfaces

Basic mapping support

Chapter 5. Basic mapping support 37

Notes:

1. This program is entered when an application program issues a request for basic mapping support
services.

2. It may also be called by task control to process a deferred work element (DWE) if an application
program terminates and there are partial pages in storage, or the message control record (MCR)
created during execution of the task has not been placed in temporary storage.

3. The following information is returned to the requester: error codes, page overflow information, and (for
a SEND MAP SET or SEND TEXT SET command) a list of completed pages.

4. DFHMCP communicates with temporary storage control to put the MCR for routed or stored
messages, if a ROUTE command, or SEND MAP PAGING or SEND TEXT PAGING command is
issued. A DELETEQ TS command is issued to request that a message be purged from temporary
storage if a PURGE MESSAGE command is issued.

5. DFHMCP communicates with storage control to:

Application Task
program control
EXEC CICS... program

2
3 1

TCAMSRC1 DWE
TCAMSOC

2
TCAMSRC1-3
TCAMSRI1 4
TCAMSPGN
TCAMSOCN
TCAMSRLA Mapping

control
TCAFCAAA program 5 Terminal
TCAOSPWA (DFHMCP) control

program

BMS work area (OSPWA)

6 Temporary
OSPTTP storage

control
program

TCTTE

TCTTETI 7 Storage
TCTTEDA manager

CSA
8 Interval

CSAUNQID control
CSAOPFLA program

Optional features list (CSAOPFL)
9 Transient

data
CSABMS control

program

10 Route
3270 13 list
mapping resolution
(DFHM32) (DFHRLR)

11 Non-3270
Page and 14 input
text build mapping
(DFHPBP) (DFHIIP)

12 Fast
Partition 15 path
handling (DFHMCX)
program
(DFHPHP)

Figure 8. Mapping control program interfaces

Basic mapping support

38 CICS TS for z/OS: CICS Diagnosis Reference

v Acquire and free storage in which the MCR is built (a SEND MAP command after a SEND MAP
PAGING, SEND TEXT PAGING, or ROUTE command)

v Acquire and free storage in which to copy the message title (a ROUTE command with the TITLE
option specified)

v Acquire storage to build automatic initiate descriptors (AIDs) for non-routed messages, or routed
messages to be delivered immediately (a SEND PAGE command)

v Acquire a BMS work area (OSPWA) at the time of the initial BMS request

v Acquire and free an area used for user request data if a SEND PAGE command must be simulated
before processing the user’s request

v Free the returned page list (a DELETEQ TS command)

v Free map copies if SEND PAGE command was issued and pages were being built in response to
SEND PAGE commands

v Free terminal type parameters (TTPs) (SEND PAGE command).

6. DFHMCP communicates with program manager to:

v Load and delete map sets

v Link to the terminal page retrieval program (DFHTPR) to process one or more pages of a message
if a SEND PAGE command is issued with the RETAIN or RELEASE option specified

v Abnormally terminate tasks that incur errors that cannot be corrected.

7. DFHMCP communicates with interval control to:

v Initiate transaction CSPQ

v Obtain the current time of day, which is then used to time stamp AIDs for routed messages

v Initiate transaction CSPS for messages to be delivered later.

8. DFHMCP communicates with task control to schedule transaction CSPQ for every terminal that is to
receive a routed message to be delivered immediately.

9. Transient data control is used to send error and information messages to the master terminal.

10. Route list resolution (DFHRLR) is used to collect terminals from a user-supplied route list or from the
entire TCT by terminal type, and build a terminal type parameter (TTP), which controls message
building, for each terminal type. It is also used to build a single-element TTP for the originating
terminal.

11. Non-3270 input mapping (DFHIIP) is used to process RECEIVE MAP requests for a terminal other
than an IBM 3270 Information Display System.

12. The mapping control program calls DFHMCX if the request is eligible for the BMS fast-path module.

13. 3270 mapping (DFHM32) is used to process RECEIVE MAP requests for an IBM 3270 Information
Display System.

14. Page and text build (DFHPBP) processes the following output requests:

15. Page and text build program (DFHPBP) processes all BMS output requests
SEND MAP
SEND MAP PAGING
SEND MAP SET
SEND PAGE
SEND TEXT
SEND TEXT PAGING
SEND TEXT SET.

For 3270 output, DFHM32 is called; for other output, DFHML1 is called.

16. The partition handling program (DFHPHP) is called when the data is in an inbound structured field.
DFHPHP extracts the partition ID, device AID, and cursor address.

Basic mapping support

Chapter 5. Basic mapping support 39

DFHML1 (LU1 printer with extended attributes mapping)
The LU1 printer with extended attributes mapping program, DFHML1, is called in response to requests for
BMS services involving terminals of the 3270 Information Display System. Figure 9 shows how the
DFHML1 program responds to these requests.

Notes:

1. The following types of requests, by application programs communicating with LU1 printer mapping,
pass information through the mapping control program (DFHMCP), and the page and text build
program (DFHPBP), to DFHML1:

SEND MAP ACCUM
SEND MAP SET
SEND TEXT
SEND TEXT ACCUM
SEND TEXT SET

For one page of output, DFHML1 acquires an area and formats it into a chain of control blocks known
as map control areas (MCAs). Each MCA corresponds to one map on the page and contains
information about chaining down the maps and processing the fields in each map. DFHML1 then builds
the data stream directly from the maps and the TIOAs.

2. Maps are either passed by the application program or loaded by DFHMCP.

3. The address of a terminal input/output area (TIOA) is supplied by the application program for all
requests.

Application
program
EXEC CICS...

1

Mapping
control
program
(DFHMCP)

1

Page and text 5 Terminal
build program page processor
(DFHPBP) (DFHTPP)

1

DFHOSPWA

User data area
2 LU1 printer 3

with extended
attributes
mapping program
(DFHML1)

DFHTTPDS

2

DFHMAPDS

2 4 Storage
manager

Figure 9. LU1 printer with extended attributes mapping program interfaces

Basic mapping support

40 CICS TS for z/OS: CICS Diagnosis Reference

4. DFHML1 communicates with storage control to obtain and release storage for MCAs and for the
mapped data.

5. All requests (see note 1 on page 40) are sent to a designated destination by the terminal page
processor (DFHTPP), after the return of control to DFHPBP.

DFHM32 (3270 mapping)
The 3270 mapping program (DFHM32) is called in response to requests for BMS services involving
terminals of the 3270 Information Display System. Figure 10 shows how the 3270 mapping program
responds to these requests.

Notes:

1. The following types of requests by an application program communicating with an IBM 3270
Information Display System passes information through the TCA by way of the mapping control
program (DFHMCP) and the page and text build program (DFHPBP) to DFHM32:

SEND MAP ACCUM
SEND MAP PAGING
SEND MAP SET
SEND TEXT
SEND TEXT ACCUM
SEND TEXT PAGING
SEND TEXT SET

For one page of output, DFHM32 acquires an area and formats it into a chain of control blocks known
as map control areas (MCAs). Each MCA corresponds to one map on the page and contains
information for chaining down the maps and processing the fields in each map. DFHM32 then builds
the data stream directly from the maps and the TIOAs.

2. A RECEIVE MAP or RECEIVE MAP FROM request by an application program communicating with an
IBM 3270 Information Display System passes information through the TCA through the message
control program (DFHMCP) to DFHM32.

3. Maps are either passed by the application program or loaded by DFHMCP.

Application
program
EXEC CICS...

Mapping 1
control
program
(DFHMCP)

2

DFHOSPWA Page and text
build program
(DFHPBP)

3 3270 1
Mapping
program
(DFHM32)

5
DFHTTPDS

3
Terminal
page processor
(DFHTPP)

DFHMAPDS

3 4 Storage
manager

Figure 10. 3270 mapping program interfaces

Basic mapping support

Chapter 5. Basic mapping support 41

4. DFHM32 communicates with storage control to obtain and release storage for MCAs and for the
mapped data.

5. All output requests (see note 1 on page 41) are sent to a designated destination by the terminal page
processor (DFHTPP) after control is returned to DFHPBP.

DFHPBP (page and text build)
The page and text build program (DFHPBP) processes all BMS output requests

SEND MAP
SEND MAP PAGING
SEND MAP SET
SEND PAGE
SEND TEXT
SEND TEXT PAGING
SEND TEXT SET.

It performs the following functions:

v Positions the data in the page, either by actually placing it in a buffer, or by copying it and adjusting the
map for an IBM 3270 Information Display System (SEND MAP ACCUM)

v Places the data into the page buffer (SEND TEXT ACCUM)

v Inserts device-dependent control characters for other than 3270 Information Display System devices,
removing extended attributes.

Figure 11 on page 43 shows the relationships between the components of page and text build.

Basic mapping support

42 CICS TS for z/OS: CICS Diagnosis Reference

Notes:

1. DFHPBP is entered from the mapping control program, DFHMCP, to process all BMS output requests.
It is called once for each terminal type parameter (TTP) on the TTP chain pointed to by OSPTTP. The
current TTP in the chain is pointed to by OSPCTTP.

2. DFHPBP returns control to DFHMCP when request processing is complete, or when the page must be
written out before a SEND MAP ACCUM request can be processed and an OFLOW=symbolic address
operand was specified.

3. OSPTR2, OSPTR3, ..., OSPTR7 contain request data from the DFHBMS macro expansion. OSPRC1
and OSPRC3 contain return codes to be examined by DFHMCP.

4. For a SEND MAP ACCUM request for an IBM 3270 Information Display System, the map is copied
and chained to the TTP. For a SEND TEXT ACCUM request for an IBM 3270 Information Display
System, a dummy map is created and chained to the TTP. When a page is complete, control is given
to 3270 mapping (DFHM32), which combines the map copies chained to the TTP and maps the data.

For a SEND MAP ACCUM request for an LU1 printer with extended attributes, the map is copied and
chained to the TTP. For a SEND TEXT ACCUM request, a dummy map is created and chained to the
TTP. When a page is complete, control is given to the LU1 printer mapping program (DFHML1), which
combines the map copies chained to the TTP and maps the data.

5. DFHPBP communicates with storage control to:

TCA
Mapping control
program

TCAOSPWA
(DFHMCP)

1,2
BMS work area (OSPWA)

OSPTR2 to OSPTR7
OSPRC1 Page and text 5 Storage manager
OSPRC3 3 build program

(DFHPBP)
OSPWCC
OSPCTTP

1 OSPCP

Terminal type parameter (TTP)

6 Program manager

TTPMMFCP
TTPPGBUF

Terminal page
Page buffer processor

(DFHTPP)

4

4,7,8

Copied map

3270 mapping
DFHMSD, DFHMDI, (DFHM32) or LU1

BMSMDA and DFHMDF macros printer with
for dummy map for extended
SEND TEXT ACCUM attributes
for 3270 or LU1 mapping (DFHML1)

Dummy map for printer with
3270 or LU1 extended mapping
printer with attributes
extended mapping
attributes
mapping

BMSMDA

TIOA

8

Figure 11. Page and text build program interfaces

Basic mapping support

Chapter 5. Basic mapping support 43

v Acquire and free buffers in which pages are built

v Acquire storage for copies of maps for SEND MAP ACCUM or SEND TEXT ACCUM

v Acquire storage for a copy of the user’s data for SEND MAP ACCUM or SEND TEXT ACCUM.

6. DFHPBP requests program manager to terminate a transaction abnormally (ABEND) if certain errors
occur that cannot be corrected.

7. A SEND TEXT ACCUM request for an IBM 3270 Information Display System causes a map set
consisting of one dummy map to be passed to 3270 mapping (DFHM32). The map has one field with
attributes FREEKB and FRSET.

SEND TEXT ACCUM requests for an LU1 printer cause a map set consisting of one dummy map to be
passed to the LU1 printer mapping program (DFHML1). The map has one field with attributes FREEKB
and FRSET.

8. If the page is being constructed for an IBM 3270 Information Display System, control is given to
DFHM32 to map the data and then to DFHTPP to output the page.

If the page is being constructed for an LU1 printer, control is given to DFHML1 to map the data, and
then to DFHTPP to output the page. Otherwise, control is given to DFHDSB to add device
dependencies to the page, and then to the terminal page processor (DFHTPP) to output the page.

DFHPHP (partition handling program)
The partition handling program (DFHPHP) processes terminal operations that involve partitions. DFHPHP
has one entry point, and starts with a branch table that passes control to the required routine according to
the request. It consists of routines that perform the following functions:

v PHPPSI tests whether there is a partition set in storage. If there is and it is not the required partition
set, that partition set is deleted. When no partition set is in storage, an attempt is made to load the
appropriate partition set.

v PHPPSC builds a data stream to destroy any partitions that may already be loaded on the terminal,
creates the partition set designated by the application partition set, and sets the name of the partition
set in the TCTTE to be the name of the application partition set.

v PHPPIN extracts the AID, cursor address, and partition ID. The AID and cursor address are put in the
TCTTE, and the partition ID is converted to a partition name and returned to the caller. A check is made
that the partition ID is a member of the application partition set.

v PHPPXE sends a data stream to a terminal to activate the appropriate partition and sends an error
message to any error message partition if input arrived from an unexpected partition.

Figure 12 on page 45 shows the relationships between the components of partition handling.

Basic mapping support

44 CICS TS for z/OS: CICS Diagnosis Reference

Notes:

1. DFHPHP is called by the mapping control program (DFHMCP) and by the terminal output macro
(DFHTOM).

2. PHPPSI refers to OSPWA to check whether a partition set is loaded.

3. PHPPSI communicates with program manager to load the partition set.

4. PHPPSI puts the name of the partition set in TPE (terminal partition extension) as the application
partition set.

5. PHPPSC calls storage control to acquire a TIOA in which to build and free the original TIOA.

6. PHPPSC sets a slot in the TCTTE to be the partition set data stream concatenated with the terminal
partition set name if the terminal is not in the base state.

7. PHPPIN places the AID and the cursor address in the TCTTE.

8. PHPPXE calls storage control to get a TIOA, retrieves the error message text by calling the message
domain, fills the TIOA with data, transmits the data, and frees the TIOA.

9. PHPPSC references the partition set object to build the partition creation data stream.

DFHRLR (route list resolution program)
The route list resolution program (DFHRLR) builds terminal type parameters (TTPs), which are the main
blocks for building and writing out data in BMS.

Figure 13 on page 46 shows the route list resolution program interfaces.

Mapping control Terminal output
program macro
(DFHMCP) (DFHTOM)

1 1

DFHOSPWA

2 Partition handling 3 Program manager
program (DFHPHP) domain

DFHTPE

4 5,8 Storage manager

DFHTIOA

5,8

DFHTCTTE

6,7

DFHPSDDS

9

Figure 12. Partition handling program interfaces

Basic mapping support

Chapter 5. Basic mapping support 45

Notes:

1. DFHRLR is called by the mapping control program (DFHMCP) to determine the grouping of terminal
destinations.

2. If data is to be routed, DFHRLR groups the terminals in the user’s route list by terminal type and builds
a routing TTP for each type. For each TTP, the supported attributes of the corresponding terminals are
accumulated. The address of the first routing TTP in the chain of TTPs is placed in OSPTTP.

3. If data is not to be routed, a direct TTP is built for the originating terminal and its address is placed in
OSPDTTP.

4. DFHRLR communicates with storage control to acquire storage for the TTP.

5. Program manager services are requested by means of an ABEND command if errors occur that cannot
be corrected.

DFHTPP (terminal page processor)
The terminal page processor (DFHTPP) directs completed pages to a destination specified in the BMS
output request:

v SEND MAP or SEND TEXT sends to the originating terminal

v SEND MAP PAGING or SEND TEXT PAGING directs to temporary storage

v SEND MAP SET or SEND TEXT SET directs to a list of completed pages that are returned to the
application program.

Mapping
TCA control program

TCAOSPWA
TCAMSRLA
TCAFCAAA
TCASCSA

1

TCTTE

TCTTETI
TCTTETT Route list 4 Storage
TCTTEOI resolution manager
TCTTEOCL program
TCTTEPGL (DFHRLR)
TCTTEPGC
TCTTEDDS
TCTTEMSS
TCTEAPGL
TCTEAPGC
TCTE32SF
TCTEDSCC 5 Program
TCTEDSCL control
TCTEASCC program
TCTEASCL

User's route list

URLTRMID

URLOPID

URLTSF

BMS work area (OSPWA)

OSPTTP

OSPDTTP 2,3

OSPOCN

Terminal type parameter (TTP)

TTPCHAIN
...
TTP Data
...

Next TTP

Figure 13. Route list resolution program interfaces

Basic mapping support

46 CICS TS for z/OS: CICS Diagnosis Reference

Figure 14 shows the relationships between the terminal page processor and other components in response
to BMS output requests.

Notes:

1. DFHTPP is entered from DFHPBP after processing by 3270 mapping (DFHM32) for 3270s, by LU1
printer with extended attributes mapping (DFHML1) for those LU1 printers, and by data stream build
(DFHDSB) for other devices.

2. DFHTPP communicates with storage control to obtain:

v The return list (to store the address of completed pages to be returned to the program)

v Deferred work elements (DWEs), which ensure that message control information is written to disk,
even if the program neglects to issue a SEND PAGE request

v Storage for a list that correlates pages on temporary storage with the logical device codes for which
they are destined.

3. Temporary-storage control is used to store pages and the message control record (MCR) for messages
stored on temporary storage.

4. The terminal type parameter (TTP) controls the formatting of a message for a particular terminal type
(for example, an IBM 2741 Communication Terminal). TTPPGBUF contains the address of a completed
page.

5. The terminal output macro (DFHTOM) is issued to provide an open subroutine assembled within
DFHTPP that puts a completed page out to the terminal. If the data stream contains extended
attributes, and the terminal does not support extended attributes, the extended attributes are deleted.

LU1 printer
3270 mapping with extended Data stream build
(DFHM32) attributes mapping (DFHDSB)

(DFHML1)

DFHPBP

1
TCA

TCAOSPWA 2 Storage
TCATSDI Terminal page manager
TCATSRN processor

(DFHTPP)

OSPWA

OSPTR4
OSPTR5 3 Temporary
OSPDWE storage
OSPINDO1 control program

OSPRETPG
OSPRC1
OSPRC2

OSPCTTP
5 Terminal output

TTP macro (DFHTOM)

TTPPGBUF
TTPMSUFX 4

Data to be output

Page control area

List of
returned pages

Figure 14. Terminal page processor interfaces

Basic mapping support

Chapter 5. Basic mapping support 47

DFHTPQ (undelivered messages cleanup program)
The undelivered messages cleanup program (DFHTPQ) checks the chain of automatic initiate descriptors
(AIDs) to detect and delete AIDs that have been on the chain for an interval exceeding the purge delay
time interval specified by the PRGDLAY system initialization parameter, if this has a nonzero value.

Figure 15 shows the undelivered messages cleanup program interfaces.

Notes:

1. DFHTPQ is initiated the first time by the mapping control program (DFHMCP), by interval control, or by
the transaction CSPQ. Thereafter, it reinitiates itself (see note 5).

2. DFHTPQ communicates with the allocation program (DFHALP) to locate and unchain AIDs.

3. DFHTPQ communicates with storage control to free AIDs that have been purged and to acquire
storage for notification messages.

4. Transient data control is used to send notification messages.

5. Interval control is used to obtain the current time and to reinitiate this task (DFHTPQ).

6. DFHTPQ communicates with temporary-storage control to retrieve and replace message control
records (MCRs) and to purge messages.

DFHTPR (terminal page retrieval program)
The terminal page retrieval program (DFHTPR) processes messages built by BMS and placed in
temporary storage.

Figure 16 on page 49 shows the relationships between the components of page retrieval.

Program
control program

1

CSA

Undelivered 2 Terminal
CSAAIDBA messages allocation

cleanup program program (DFHALP)
(DFHTPQ)

3 Storage
manager

AID

4 Transient data
control program

5 Interval
control program

6 Temporary
storage
control program

TCA

TCAICRT

Figure 15. Undelivered messages cleanup program interfaces

Basic mapping support

48 CICS TS for z/OS: CICS Diagnosis Reference

Notes:

1. DFHTPR can be initiated as a stand-alone transaction (CSPG), or by a user-defined paging
command (for example, P/, or 3270 PA/PF keys), or linked to from a BMS conversational operation
(SEND PAGE request with CTRL=RETAIN or RELEASE).

DFHTPR performs the following functions:

v Displays the first page of a routed message

v Displays subsequent pages of a message at a terminal for which a SEND PAGE request with
CTRL=AUTOPAGE was specified

v Processes paging commands from a terminal

v Processes the CSPG transaction when it is entered at the terminal

v Purges a message displayed at the terminal if the terminal is in display status and other than a
paging command is entered at the terminal.

2. DFHTPR is entered from the BMS mapping control program (DFHMCP) to display the first page of a
message originated at the terminal if CTRL=RETAIN was specified in the BMS request. DFHTPR
reads from the terminal and processes paging commands until other than a paging command is
entered.

3. DFHTPR uses storage control to:

Program Mapping
control program control program

1 2
System initialization
table (SIT)

Terminal 3
Paging commands page retrieval Storage

managerprogram
(DFHTPR)

CSA

4
CSATCNDT
CSATODB
CSAAIDBA

Temporary
storage
control
program

TCA
5

TCATSDI

Basic
mapping
support

TCAOSPWA

TCAFCAAA

BMS work area (OSPWA) 6 Task
control
program

OSPTR4
OSPTR7

7 Interval
TCTTE control

program

TCTTETI
TCTTEPGB 8 Terminal
TCTTEPGM control
TCTTEPGL program
TCTTEPGC
TCTEAPGL
TCTEAPGC
TCTE32SF

9 Transient
data
control
program

AID

10 Terminal
output
macro
(DFHTOM)

Figure 16. Page retrieval program interfaces

Basic mapping support

Chapter 5. Basic mapping support 49

v Acquire and free message control blocks (MCBs)

v Free message control record (MCR) storage

v Acquire storage for information and error messages to be sent to the destination terminal and the
master terminal

v Free an automatic initiate descriptor (AID) taken off the AID chain

v Acquire and free storage for a route list constructed in response to a COPY command entered at a
terminal

v Acquire a TIOA into which to place a device-independent page when performing the COPY
function.

4. Temporary-storage control is used to retrieve and replace MCRs and to retrieve and purge pages.

5. Basic mapping support is used to display error and information messages at a requesting terminal,
and to send a page to the destination terminal in the COPY function.

6. Task control is used to retain exclusive control of an MCR while it is being updated.

7. DFHTPR communicates with interval control during error processing when a temporary-storage
identification error is returned while attempting to retrieve an MCR. Up to four retries (each consisting
of a one-second wait followed by another attempt to read the MCR) are performed. (The error may be
due to the fact that an MCR has been temporarily released because another task is updating it. If so,
the situation may correct itself, and a retry is successful.)

8. Terminal control is used to read in the next portion of terminal input after a page or information
message is sent to the terminal when a SEND PAGE request with CTRL=RETAIN was specified.

9. Transient data control is used to send error or information messages to the master terminal.

10. The terminal output macro (DFHTOM) is issued to provide an open subroutine that puts a completed
page out to the terminal.

DFHTPS (terminal page scheduling program)
The terminal page scheduling program (DFHTPS) is invoked for each terminal type to which a BMS logical
message built with SEND MAP PAGING or SEND TEXT PAGING is to be sent. For each terminal
designated by the originating application program, DFHTPR is scheduled to display the first page of the
logical message if the terminal is in paging status, or the complete message if it is in autopage status.

Copy books

Copy book Function

DFHBMSCA Defines constants for field attribute values, flags returned by BMS, and character attribute
types and values for SEND TEXT. It is usually copied into BMS application programs.

DFHMCPE Included in the minimum-function BMS mapping control program DFHMCPE$, and also forms
the BMS fast-path module DFHMCX used by both standard and full-function BMS. It is a
small, fast, self-contained, limited-function BMS for 3270 displays and printers.

DFHMCPIN Included in the standard and full-function versions of the BMS mapping control program,
DFHMCPA$ and DFHMCP1$ respectively. It contains the code for input mapping.

DFHMIN Included in the DFHM32 and DFHMCPE programs. It contains input mapping code for 3270
terminals.

DFHMSRCA Defines constants for MSR control. This is usually copied into BMS application programs.

Exits
No global user exit points are provided for this function.

Basic mapping support

50 CICS TS for z/OS: CICS Diagnosis Reference

Trace
The following point IDs are provided for basic mapping support, all with a trace level of BM 1:
v AP 00CD, for temporary-storage errors
v AP 00CF, for exit trace
v AP 00FA, for entry trace.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Basic mapping support

Chapter 5. Basic mapping support 51

52 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 6. Builders

The builder modules:

v Make the autoinstall process possible (that is, build a terminal control table terminal entry (TCTTE)
dynamically).

v Allows new TCT entries to be added on a running CICS system.

v Allow the TCT to be dynamically updated on a running CICS system.

v Allow TCT entries to be deleted on a running CICS system.

v Reduce emergency restart times for those systems that use the autoinstall function. These systems
have to take the time to restore and recover only those terminals that were autoinstalled at the time of
termination.

v Reduce warm start times for those systems that use auto-install. No auto-installed terminals (except
LU6.2 parallel systems are recovered at warm start).

v Reduce shutdown times for those systems using auto-install. Auto-install catalog entries are deleted but
the entry in storage is not destroyed during shutdown.

In this section, the term TCTTE is used in a general way to refer to the terminal control table entries for
connections (TCT system entries, TCTSEs), mode groups (TCT modegroup entries, TCTMEs), sessions
(session TCT terminal entries, TCTTEs), skeletons (TCTSKs), and models.

To build or delete a control block for a particular device, a set of builders is called. The set of builders is
specified by a tree structure of patterns, each pattern specifying one builder.

The builder modules (DFHBS*) are link-edited together into the DFHZCQ load module.

On microfiche, the individual DFHBS* modules are listed separately.

Design overview

What is a builder (DFHBS*)?
A builder is responsible for all the actions that can occur on a particular subcomponent of the TCTTE. The
term subcomponent means a separately obtained area of storage which is referenced from the TCTTE or
a collection of fields in the TCTTE that are logically associated with one another. General terms sometimes
used instead of subcomponent are object or node. For example, the NIB descriptor, LUC extension, and
BMS extension are all considered to be subcomponents.

Builder parameter set (BPS)
Each time a calling module invokes DFHZCQ for INSTALL, it supplies a builder parameter set (BPS). The
BPS describes the device to be defined. The device-type is determined by matching attributes in the BPS
with a table of definitions, DFHTRZYT, in module DFHTRZYP.

A BPS consists of a fixed-length prefix, a bit map preceded by its own length, an area for fixed-length
parameters preceded by its own length, and three variable-length parameters, BIND, USERID, and
PASSWORD. Each variable-length parameter has a 1-byte length field.

TCTTE creation and deletion
This section starts by describing the structure of the main components involved in the process of creating
and deleting TCTTEs. Figure 17 on page 54 is in two halves: the top half shows those components that
can initiate the process of collecting all the necessary data or parameters that go toward fully defining a
TCTTE, and the bottom half is concerned with how to go about creating the TCTTE after it has the full set
of parameters. Thus, all the processes are aiming for the same common interface. This section deals first

© Copyright IBM Corp. 1997, 2011 53

with the top-level processes that are activated to create or delete TCTTEs; for the time being, assume that
after returning from the DFHZCQ interface a TCTTE has been created. (For a more detailed description,
see “DFHZCQ and TCTTE generation” on page 55.)

Component overview

DFHTCRP
The DFHTCRP program is responsible for reestablishing the TCTTEs that were in existence in the
previous run. There are conceptually three stages of processing in this module:

1. Initialize DFHZCQ. Initialize DFHAPRD. If START=COLD, terminate.

2. Reestablish TCTTEs that were saved on the CICS catalog. If START=WARM, terminate.

3. Call DFHAPRDR to forward-recover in-flight TCTTEs from the system log, if an emergency restart is
being performed.

DFHAMTP
The DFHAMTP program is used as part of INSTALL processing. It calls DFHTOR, then DFHZCQ.

DFHZATA and the CATA transaction
CATA is a transaction that is initiated by the logon exit and causes DFHZATA to run. It is passed the CINIT
which is used to deduce the parameters which must be passed to DFHZCQ in order to create a TCTTE.

DFHZTSP
The terminal sharing program, DFHZTSP, is used by transaction routing for devices of all types,
exclusively so for non-APPC devices.

DFHZCQ
The DFHZCQ program supports the INSTALL and DELETE interface that results in the TCTTE being
created or deleted. It relies on its callers to supply the complete set of parameters that are to be used to
create the TCTTE; that is, it is not responsible for determining parameters for the TCTTE.

Warm & emer Cold CEDA AUTOINSTALL Transaction
start start INSTALL logon exit routing

DFHTCRP DFHAMTP DFHZATA DFHZTSP

- - - - - -

DFHZCQ

(syncpoint processing)

DFHTBSS

DFHTBS DFHBS*

DFHAPRDRDFHZGTA DFHTONR

Figure 17. Top-level view of the components participating in TCTTE creation

Builders

54 CICS TS for z/OS: CICS Diagnosis Reference

DFHBS* builder programs
The builders are responsible for creating the TCTTE. The parameters given to DFHZCQ are passed on to
the builders. They extract the parameters and set the relevant fields in the TCTTE.

DFHTBS
The DFHTBS program is an interpreter that uses a pattern given to it by DFHZCQ to drive the whole
TCTTE creation or deletion process according to certain rules.

DFHAPRDR
The DFHAPRDR program is the orchestrator of the commitment of TCTTE creation or deletion. It is
responsible for driving DFHTBSS and DFHTONR for syncpoints, during cold start and also for recovering
in-flight creates or deletes from the system log during emergency restart. It is called by the Recovery
Manager, DFHTCRP and DFHAMTP during start-up and directly from DFHTBS (to roll-back an atom).

DFHTBSS
The DFHTBSS program is responsible for logging forward recovery records and for updating the catalog
as a result of the request initiated by DFHZCQ and actioned by DFHTBS. It is driven by DFHAPRDR.

DFHTONR
The DFHTONR program is responsible for logging forward recovery records and for updating the catalog
for install or delete requests for TYPETERMS. It is driven by DFHAPRDR.

DFHZGTA
DFHZGTA is the module called by DFHBS* and DFHZTSP (for remote system entry sessions) to add or
delete index entries for TCTTE entries. It maintains locks on terminal namespaces, and handles calls to
TMP to add, quiesce, delete, unlock and unquiesce entries. It is driven at syncpoint or rollback for an atom
by DFHAPRDR.

DFHZCQ and TCTTE generation
This section describes how a TCTTE gets built and deleted. You need to understand at least one method
by which a builder parameter set (BPS) is created; for example, CEDA INSTALL or AUTOINSTALL. A BPS
contains all the values necessary for the creation of a TCTTE.

Figure 18 gives a more detailed view of the main components involved in the INSTALL process.

DFHZCQ

D F H Z C Q R T

DFHZCQIS

DFHTBS

RRAB

DFHTBSB DFHBS*

Syncpoint processing

DFHTBSS

DFHAPRDR

Figure 18. Major active components in the INSTALL process

Builders

Chapter 6. Builders 55

The four-stage process
In summary, the process consists of four stages:

1. Collecting the parameters together.

2. Creating the storage for the TCTTE and copying the parameters. Note however, that at the end
of this stage, a TCTTE has effectively been built. It is still unknown to the rest of the CICS
system, that is, the TCTTE name has not been exposed. The modules involved here are
DFHTBSB and DFHBS*.

3. Producing a recovery record. This is done at syncpoint processing time in the DFHTBSS
module. This stage is usually called Phase 1 syncpoint.

4. Writing or updating the catalog. Again, this is done in DFHTBSS and is called Phase 2
syncpoint. It is at about this stage that the TCTTE name becomes exposed and known to the rest
of CICS.

What is DFHZCQRT?
DFHZCQRT is an array of “patterns” where each pattern defines a list of builders that need to be called in
order to create this particular type of TCTTE, that is, a pattern is equivalent to a type of terminal. The
array entry consists of two parts: information that is private to DFHZCQ, and the pattern that is interpreted
by DFHTBS.

What does DFHTBSBP do?
The pattern entry is passed to DFHTBSBP (via DFHTBSB) after it has been found by DFHZCQIS.
DFHTBSBP calls each builder identified by the pattern in sequence to create the object for which the
builder is responsible. Note that DFHTBSBP knows nothing about the TCTTE; DFHTBSBP merely follows
a set of simple rules. It keeps an audit trail of each builder that is called.

What is the RRAB used for?
The audit trail kept by DFHTBSBP is implemented by obtaining a Resource definition Recovery Anchor
Block (RRAB) that has some user storage attached to it. As DFHTBSBP calls each builder to perform an
action, it adds an “action element” to the RRAB. (See “What is syncpointing?” on page 57) The address of
the RRAB for a UOW is held in the ‘APRD’ recovery manager slot, which ensures that DFHAPRDR will be
called at syncpoint. The RRAB stores the action blocks in two types of chains, one for actions that are not
part of a named resource definition 'atom' and one for actions that are part of a named atom. This later
type are chained off a Resource definition Action Name block (RABN). Also held in the RRAB is an
indicator set by DFHTOR if DFHTONR should be called at syncpoint (if a typeterm has been installed),
and a chain of Resource Definition Update Blocks (RDUB).

What is a resource definition 'atom'?
Certain resource definitions must be installed or deleted as a single set. These definitions are called a
resource definition 'atom'. CICS installs the members of a RDO group as individual resource definitions,
which can fail without causing the other resources to fail except for these atoms, which bear the name of
the logical set of definitions. For example:

A connection and its associated sessions
is named for the connection

A pool of terminals
is named for the pool of terminals

What is a Resource definition Atom Name block (RABN)?
The RABN is only created for those atoms of resource recovery that are named. It holds the name of the
atom, a chain of action elements for the atom, and the recovery outcome of the atom (whether it failed and
was backed out, or succeeded and should be committed). DFHTBSB uses the RABN to decide if a
session definition should not be installed because the install of the parent connection has already failed,

Builders

56 CICS TS for z/OS: CICS Diagnosis Reference

for example. In our auto-install example, if the definition being installed is a parallel connection, there will
be a RABN for it from which the action elements are chained.

What is a Resource Definition Update Block (RDUB)?
The RDUB is a record of locks held by a UOW against names in three namespaces:
1. Termids and Sysids
2. Netnames
3. Unique ids (Composed of the Netname of a Terminal Owning Region followed by a period ‘.’ followed

by the Termid or Sysid in that TOR)

During the installation, deletion, or replacement of a TCTTE definition the builders DFHBS* obtain locks by
calling DFHZGTA. These locks guarantee exclusive or shared access to names in these namespaces.
Exclusive access is used to prevent another task from installing another definition with the same name,
netname or unique-id while this UOW is trying to install or delete (an action which may have to be
reversed). Shared access is used to block another task from deleting an entry that a definition that this
task is updating (for example, a system definition name may be locked by a remote terminal definition that
refers to it).

RDUBs also exist on a global chain so that other UOWs can easily find out if a particular lock is held.

What is syncpointing?
When DFHTBSBP has exhausted the list of builders, it returns to its caller. Similarly, DFHZCQIS returns to
its caller, which could have been autoinstall. However, there is still an audit trail that is attached to the
RRAB. It is only when the calling task terminates or issues DFHSP USER or EXEC CICS SYNCPOINT
that the next two stages occur.

Syncpoint processing consists of two phases. The first phase (prepare phase) requires the resource
manager to write a forward-recovery record to the log. Thus, if the second phase (commit phase) fails to
write to the catalog, this recovery record can be used to forward-recover the action on an emergency
restart.

DFHTBS
The DFHTBS program is an interpreter that uses a pattern given to it by DFHZCQ to drive the whole
TCTTE installation or deletion process according to certain rules.

DFHAPRDR
DFHAPRDR is invoked by recovery manager if the ‘APRD’ RM slot is non-zero. This slot contains the
address of the RRAB for this UOW if any resource definition has taken place. It is also called by DFHTBS
directly if an atom needs to be rolled-back or to commit an atom during Cold Start. DFHAPRDR examines
the RRAB and chooses whether to call DFHTBSS, DFHTONR and DFHZGTA for each phase of syncpoint
or individual atom commitment.

If either DFHTBSS or DFHTONR have records to log/catalog, DFHAPRDR calls the recovery manager to
request that a record is written to the catalog noting that a forget record will be written once syncpoint
completes. The purpose of this call is that if CICS should fail between the start of syncpoint phase 2 and
the end, on an emergency restart recovery manager will call DFHAPRDR with the log records for this
UOW so that they can be re-applied to the catalog, and the TCTTE entry or entries can be re-built.

DFHTBSS
The DFHTBSS program is responsible for performing the correct recovery actions for each atom and UOW
at syncpoint (or during the rollback of an individual atom). It writes forward recovery records to the system
log and updates the catalog during phase 1 and phase 2 of syncpoint respectively. It is directly driven by
DFHAPRDR.

The purpose of the builder (DFHBS*) modules is to build a TCTTE, TCTSE, and TCTME and its
associated control blocks. A TCTTE is built for terminals only; a TCTSE and TCTME are built for both
LU6.1 with MRO and LU6.2 single sessions; all three are built for LU6.2 parallel sessions. DFHTBSS is

Builders

Chapter 6. Builders 57

invoked by DFHAPRDR with a parameter list that indicates whether this call is for an individual atom or for
syncpoint and which phase is in force. For phase 1, it uses the action blocks audit-trail to recall each
builder. It asks each builder to supply the address and length of the subcomponent so that it can create a
single record containing a copy of each component as a list; that is, the first part of the record contains a
copy of the object created by the first builder in the sequence, the second part contains a copy of the
object created by the second builder, and so on until the audit trail list is finished. This record is then
written to the system log as a forward recovery record.

When DFHTBSS is reentered for the second phase (again a parameter on the call by DFHAPRDR), it
uses the record created in the first phase as the record that is written to the catalog. During this stage,
each builder is called to tidy up after the object for which it is responsible; for example, for the TCTTE
itself, it puts the TCTTE in service.

Again note, DFHTBSS only implements a set of rules.

DFHTONR
DFHTONR is responsible for writing catalog records for TYPETERMs. It is called by DFHAPRDR.

DFHZGTA
DFHZGTA is the module that is called by DFHBS* modules to add index entries for TCTTE entries so that
they can be located quickly either by DFHZLOC, DFHZGTI or in VTAM exit code. It calls DFHTMP
services. It obtains and releases locks using the RDUB blocks, and at syncpoint is responsible for
releasing all TMP locks and unquiescing any TMP entries that were quiesced by DFHBS* modules.

Summary
v In overview, the process consists of four stages: parameter collection, obtaining and initializing, phase 1

recovery record and logging, and phase 2 catalog record.

v A builder contains TCTTE specific code.

v DFHTBS* modules implement the abstract rules for creating generic “objects”.

v DFHZCQRT contains patterns that define what builders are to be used to build the TCTTE.

v Syncpoint processing consists of two stages (prepare and commit).

v DFHAPRDR is responsible for orchestrating the syncpoint process for all of resource definition recovery.

v DFHTBSS is driven by DFHAPRDR using the audit trail produced by DFHTBSB.

v DFHTONR is driven by DFHAPRDR if any TYPETERMs were installed.

v DFHZGTA is driven by DFHAPRDR if any locks need to be released.

Example of an autoinstall
Consider the following: a terminal operator has logged on to the system and is being autoinstalled. The
CATA transaction is responsible for collecting together the parameters required for the DFHZCQ INSTALL.

The process continues from the point where the DFHZCQ INSTALL is issued from CATA:

1. A call has been made to cause an install to occur. DFHZCQ ensures that other related modules are
already loaded.

2. DFHZCQ calls the install-specific module (given in the parameter block passed to DFHZCQ)

3. DFHZCQIS performs various checks on the parameters passed by the caller of DFHZCQ.

4. DFHZCQIS finds a pattern in DFHZCQRT that matches with information given in the parameters.

5. DFHZCQIS calls DFHTBS with the pattern and parameters.

6. DFHTBS routes the request to DFHTBSB; it is omitted from further discussions.

7. DFHTBSB checks that a valid pattern has been passed.

8. DFHTBSB creates the RRAB which gets attached to the APRD Recovery Manager slot.

9. DFHTBSB calls the next builder as defined by the pattern.

10. Each builder (DFHBS*) creates its section of the TCTTE.

Builders

58 CICS TS for z/OS: CICS Diagnosis Reference

11. DFHTBSB adds an action element to the RRAB giving information about this particular builder.

12. Steps 9 on page 58, 10 on page 58, and 11 are repeated until the pattern is finished.

13. DFHTBSB tidies up the RRAB and returns.

14. DFHTBS returns.

15. If the return code was 'OK', DFHZCQIS returns the address of the hidden TCTTE.

16. DFHZCQ returns.

17. The caller continues until DFHSP USER is issued or the task terminates.

18. DFHAPRDR invokes DFHTBSS with the RRAB indicating phase 1.

19. DFHTBSS examines the RRAB to determine phase.

20. Using the action elements created in step 11, DFHTBSS recalls each builder asking for information to
be saved on the recovery log.

21. Each builder (DFHBS*) returns the address of the object built in step 10 on page 58.

22. Using these addresses, DFHTBSS builds the recovery record.

23. DFHTBSS writes the recovery record to the system log.

24. DFHTBSS saves the stored version for the next phase.

25. DFHTBSS returns.

26. Recovery Manager calls all other resource managers that have a part to play in the process; it knows
this because there are addresses in the RM slots for this UOW.

27. DFHTBSS is called for phase 2. It reuses the in-storage version of the recovery record to write to the
catalog.

28. DFHTBSS returns.

Patterns, hierarchies, nodes, and builders
Patterns were introduced in the previous section. This section examines in detail what they look like. To
achieve this, several terms have to be explained.

What is a hierarchy?
In this context, “hierarchy” is another word for tree. The structure of the TCTTE can be thought of as a
tree: at the top node is the TCTTE itself, containing pointers to lower-level nodes.

Figure 19 shows the master node as the TCTTE, with subnodes connected to it (BMS extension, special
features extension, and so on).

As a result of this structure, it can be seen that the creation process must follow several rules. For
example, the storage for the master node has to be obtained before pointers to subnodes are saved in it.

What is a pattern?
The objective of a pattern is to reflect or represent the hierarchy as described above. Figure 20 outlines
the shape of a pattern. For each of the nodes in Figure 19, there is a pattern. Starting with the TCTTE
(the master node), there is a master pattern. B1offset references the subpattern for the BIND image
node; B2offset references the subpattern for the BMS extension node; B3offset and B4offset reference the
subpatterns for user area and SNTTE subnodes respectively. In total, there are five patterns: the master

TCTTE

+
BMS extension Special features LUC systems NIB descriptor

extension extension extension

Figure 19. TCTTE structure

Builders

Chapter 6. Builders 59

pattern and four subpatterns—so what is meant by pattern above was really a collection of patterns.

Note that each pattern contains the address of a builder, so we could represent the TCTTE structure as:

The purpose of the builders
The purpose of the builders is to centralize the major functional code for creation and deletion of the
nodes associated with the TCTTE. Figure 20 and Figure 21 show how the patterns refer to the builders;
the pattern is exploited by the DFHTBS* code to activate the relevant builder function. For example,
DFHTBSBP, when given a pattern, extracts the address of the builder and invokes the BUILD function
belonging to the builder.

How does DFHTBSBP do its work?
First, you must examine more closely the structure of a builder in Figure 22 on page 61.

Pattern name

Builder address

B1offset

B2offset

Bnoffset

Figure 20. Pattern structure

Master pattern

DFHBStz

Master builder

Subpatterns

DFHBStzb DFHBStb DFHBSto DFHBStc DFHBSts

Sub-builders

Figure 21. Patterns and subpatterns

Builders

60 CICS TS for z/OS: CICS Diagnosis Reference

Remember that the pattern references a builder. In fact, it references a stub, the first word of which points
to a table (BSH_EP_TABLE), and is followed by code that is responsible for enacting the entry as required
by the caller. For example, if the caller wanted to call BUILD, a call would be made to the stub with value
1. The stub would extract the offset to the build code from the BSH_EP_TABLE, and perform the call.

Thus, making a call from DFHTBS* to DFHBS* is relatively simple: all that is needed is the function
number (1 for BUILD, 2 for DESTROY, ...), a call to the stub, and the pattern.

Summary

v The TCTTE is structured as a hierarchy with a master node (the TCTTE itself) and subnodes
(BIND image, BMS extension, and so on).

v Patterns mimic this hierarchy and consist of a master pattern which refers to subpatterns.

v In turn, each pattern points to a builder: the master pattern refers to the master builder and the
subpatterns refer to the sub-builders.

v Builders centralize the major creation and deletion functions associated with the node for which
they are responsible.

v The invocation (or activation) of the builder functions is performed under the strict control of the
DFHTBS* modules.

v The order of invocation is totally determined by the structuring of the patterns.

The DELETE process
By examining the hierarchy (see Figure 19 on page 59), you can see that there are certain rules that have
to be established. Firstly, you should check that the TCTTE and its subcomponents are quiesced, that is,

Pattern

DFHBS*

save registers;
call;
return

BSH_EP_TABLE

build destroy

ready unready

connect flatten

unflatt find1st

findnxt makekey

Build specific code
(GETMAIN)

Destroy specific code
(FREEMAIN)

..............

Figure 22. The builder stub

Builders

Chapter 6. Builders 61

there is no activity in progress. And secondly, and perhaps more obviously, the top node must not be the
first object to be freed. From this, you can derive two basic rules, or “functions”, that must be supplied by
any DFHBS*:

UNREADY
For all nodes associated with the master node. Ensures that no activity is occurring; for example,
that a CLSDST is not in progress. It must also achieve exclusive ownership of the object; for
example, ZGTA QUIESCE ensures no locates on the given TCTTE succeed and that no other
UOWs can install another similarly named object until syncpoint. Further, it initiates the ZGTA
DELETE which does a TMP DELETE to remove the entry.

DESTROY
Lower objects first. (See “What about the “lower objects first” rule?”:) Frees the storage belonging
to the node.

What about the “lower objects first” rule?
Figure 23 tries to add meaning to the descriptions of the UNREADY and DESTROY functions. As each
builder is called (as determined by the master pattern), DFHTBSD records an audit trail of called builders.
However, the audit trail is managed slightly differently for the delete process, to guarantee order of
processing by DFHTBSS at phase 2 time. For further information, see “Completing the process
description” on page 63.

Example of a reinstall
1. CEDA reads the CSD and converts the definition into a builder parameter set (BPS).

2. CEDA issues a DFHZCP INSTALL passing the BPS.

3. Using the resource type code in the BPS, DFHZCQIS searches the DFHZCQRT table for the
associated pattern.

4. DFHZCQIS calls DFHTBSB passing the BPS and the pattern.

5. DFHTBSB checks the pattern and creates a resource definition recovery action block (RRAB) for the
audit trail.

6. Using the pattern, DFHTBSB calls the CHECKSET entry point of the associated builder.

7. The master builder does a DFHZGTI LOCATE to check whether the TCTTE already exists.

8. A TCTTE is found to exist, so the builder issues DFHZCP DELETE passing the address of the old
TCTTE.

DFHZCQ TCTTE

(TCTTERTK)

D F H Z C Q R T

DFHZCQDL

DFHTBS

DFHBS*

RRAB
Unready

DFHTBSD

Syncpoint DFHAPRDR

Destroy
DFHTBSSP

Figure 23. Major active components in the DELETE process

Builders

62 CICS TS for z/OS: CICS Diagnosis Reference

9. When a TCTTE is created, its position within the DFHZCQRT table is saved in the TCTTE.
DFHZCQDL uses this value to find the pattern associated with this TCTTE.

10. DFHZCQDL calls DFHTBSD passing the object to be deleted and the pattern.

11. DFHTBSD extends the audit trail so that information about this delete can be recorded.

12. DFHTBSD calls the UNREADY entry of each builder.

13. Each builder (DFHBS*) checks whether its part of the TCTTE is being used (and vetoes the
UNREADY if it is). It calls ZGTA QUIESCE and ZGTA DELETE to lock and remove the index entries.

14. DFHTBSD updates the audit trail for each called builder.

15. DFHTBSD returns.

16. DFHZCQDL returns.

17. The master builder checks the return code (that is, that no builder vetoed the UNREADY).

18. The master builder returns.

19. DFHTBSB checks the return code and recalls each builder at the BUILD entry point passing the BPS.

20. Each builder obtains some storage and copies the parameters from the BPS. It uses ZGTA ADD calls
to lock and add index entries

21. DFHTBSB tidies up the RRAB and returns.

22. DFHZCQIS records the position within DFHZCQRT that enables DFHZCQDL to find the pattern.

23. DFHZCQIS Returns.

24. CEDA checks the return code and issues DFHSP USER.

Note: At this stage there are two TCTTEs: the old one that was UNREADY and the new one.

25. CEDA calls: DFHTBSS is entered for the first time (phase 1). The audit trail consists of two parts (A
and B). Part A contains the list of builders involved with the UNREADY; part B contains the list of
builders that created the new TCTTE.

26. CEDA writes a recovery record to the system log for Part A indicating that a delete is about to take
place in phase 2.

27. CEDA creates a recovery record from Part B which represents the new TCTTE to be built.

28. CEDA calls each builder asking for its subcomponent (FLATTEN).

29. DFHZQIX returns an address and length.

30. CEDA concatenates each subcomponent into the recovery record.

31. CEDA writes the recovery record to the system log.

32. CEDA returns (end of phase 1).

33. CEDA reenter for phase-2 processing.

34. CEDA processes Part A, calling the DESTROY entry for each builder.

35. Each builder frees its part of the old TCTTE.

36. CEDA processes Part B of the audit trail.

37. CEDA writes the recovery record to the catalog.

38. CEDA calls the READY entry point for each builder on the audit trail.

39. Each builder does any tidying up that needs to be done.

40. CEDA returns.

Completing the process description
To complete the description of the creation and deletion process, two further functions must be described:
CONNECT and READY.

Builders

Chapter 6. Builders 63

CONNECT
Figure 19 on page 59 shows the TCTTE hierarchy. All that has happened at build time is that the separate
parts of the TCTTE have been obtained. Access to these subcomponents is achieved by referencing
pointers that are held in the TCTTE. So the CONNECT builder entry point is used to join the
subcomponent to the TCTTE.

READY
The READY builder entry point is provided to enable any final tidying up that may be required at the end
of the build process. For example, if the TCTTE has the AUTOCONNECT option, a SIMLOGON is initiated
from this entry point. In general, this entry point is rarely used.

The creation/deletion state machine
Figure 24 shows the symmetry between the various builder functions.

The starting point can be either state 5 (installing a TCTTE) or state 1 (deleting a TCTTE). Thus, if several
TCTTEs had been successfully built, but the last one resulted in an error, we would end up in state 4. If it
were not for the last one, we would have ended up in state 3. So the caller is returned an error response,
and issues a DFHSP ROLLBACK. This causes DFHTBSS to call the DESTROY function of the builders for
all elements on the audit trail—even for those that were “successfully” built in this atom, or UOW. Thus, an
install of a atom can be perceived as one complete unit. During the DESTROY process, if the atom is
being rolled-back, the builders call ZGTA QUIESCE and ZGTA DELETE to remove index entries for the
new TCTTE. Likewise during the READY process, if a delete is being rolled back, the builders call ZGTA
ADD to re-instate index entries for the TCTTE.

The hierarchy and its effect upon the creation process

Summary so far

v Object creation is a four-stage process.

v It is controlled by a pattern.

v Each pattern refers to a builder.

v Each builder is responsible for a subcomponent of the TCTTE.

v Builders have a number of procedural entry points:
– BUILD
– CONNECT
– DESTROY
– READY
– UNREADY.

v These entry points are called under the control of the DFHTBS components.

UNREADY
State 2 -

TCTTE hidden and
vetoed

READY

UNREADY DESTROY
State 1 - State 3 - State 5 -

TCTTE visible TCTTEs hidden NOTHING

READY BUILD
+ CONNECT

DESTROY
State 4 -

(Partial) TCTTEs
and vetoed

BUILD

Figure 24. Create/delete state diagram

Builders

64 CICS TS for z/OS: CICS Diagnosis Reference

This section now looks in greater detail at how the control of the builder calling process is implemented. To
do that, you need to understand in greater detail the structure of the hierarchy, and the way the DFHTBS
components interpret that structure.

Figure 25 shows a more general hierarchy. Node 1 can be considered as a master node: it is at the top of
the tree and has two subnodes (2 and 3). However, you could say that node 2 and its subnodes are also a
tree: node 2 is the master node, and nodes 4, 5, and 6 are the subnodes. Similarly, with node 3: it has
subnodes 7, 8, 9, and 10.

The DFHTBS components exploit the idea that a tree consists of a node with trees below it. In fact,
DFHTBSBP uses recursion to access the tree of patterns.

Recursion
This section demonstrates how recursion is used to process a much simpler structure than that given in
Figure 25. The example shown in Figure 26 on page 66 is for the DFHTBSP program, which has the
following parameters:
Input: PATTERN, HIGHERNODE, and BUILDER
Inout: AUDITTRAIL
Output: NODE and RESPONSE.

The following list outlines the flow in DFHTBSBP. The step references refer to steps in this list.

1. Add and initialize an action to the AUDITTRAIL (this is used later in steps 5 and 11).

2. Using parameter PATTERN, find the address of the associated builder.

3. Call the builder stub with function number 1 (for BUILD) with the following parameters:
Input: HIGHERNODE and BUILDER
Output: NODE.

The builder uses the BUILDER parameters to create its specific object. Storage is obtained and the
parameters are copied into it.

4. Check that the response from the build is ‘OK’.

5. Copy the address of the output parameter NODE into the AUDITTRAIL action.

6. Process all the subpatterns that may be attached to your pattern

7. Get the next subpattern Pn.

8. Call DFHTBSBP with the following parameters:
Input: Pn, NODE, and BUILDER
Inout: AUDITTRAIL
Output: SUBNODE and SUBRESPONSE

Note: In this step, you call yourself again, passing NODE. At the next level of recursion, this appears
as HIGHERNODE.

9. Stop when the last pattern is processed.

10. Call the builder stub with function number 5 (for CONNECT) with the following parameters:
Input parameters: NODE

1

2 3

4 5 6 7 8 9 10

Figure 25. A general hierarchy

Builders

Chapter 6. Builders 65

Inout parameters: HIGHERNODE

The builder’s CONNECT entry point now places the address as given by NODE into an offset of
HIGHERNODE.

11. Finally, place the address of the pattern into the AUDITTRAIL action.

Simple recursion example

Consider the following simplified version of the hierarchy as given in Figure 26. The step references refer
to steps in the list in the section “Recursion” on page 65.

1. Start with pattern P1. Call its associated builder (step 3 on page 65). This creates node N1.

2. All the patterns below P1 are processed, the first of which is P2.

3. Call DFHTBSBP passing P2, N1, BUILDER parameters, and others:

a. Using the passed pattern (now P2), call the builder. This creates node N2.

b. Process all patterns below P2; there are no subpatterns, so steps 6 through 9 on page 65 are not
performed.

c. Call the CONNECT entry of the builder, passing higher node N1 and the node just created, N2.
This makes N1 point to N2.

d. Return to caller.

4. Get the next pattern, P3.

5. Call DFHTBSBP passing P3, N1, BUILDER parameters, and others:

a. Using the passed pattern (now P3), call the builder. This creates node N3.

b. Process all patterns below P3; there are no subpatterns, so steps 6 through 9 on page 65 are not
performed.

c. Call the CONNECT entry of the builder passing in higher node N1 and the node just created N3.
This makes N1 point to N3.

d. Return to caller.

6. Last pattern processed (step 10 on page 65).

TBSB

Create audit P1 (Builder B1)
trail

Call TBSBP
P2 P3

(B2) (B3)
TBSBP Simple hierarchy

Builder B1

(Step 3) Build

Connect

TBSBP
(Step 8) Builder B3
(Step 10) TBSBP

Builder B2

(Step 3) Build

Connect

(Step 10)

Figure 26. Simple example showing recursion

Builders

66 CICS TS for z/OS: CICS Diagnosis Reference

7. Call the builder associated with P1 to connect node N1 to HIGHERNODE. (This is zero because there
is no higher node. Usually, a master builder’s CONNECT function either does nothing or adds the
TCTTE name and address into the table management tables.)

ROLLBACK
What happens when an error occurs during the install process? An example of this would be when one
TCTTE within a group is still in service when a CEDA COPY command is being processed for the group
with the REPLACE option specified. “Example of a reinstall” on page 62 shows such a replace operation.
The builders for the existing TCTTE are called (UNREADY) in order to check that the DELETE
(FREEMAIN) can proceed. Thus, the audit trail refers to all called builders.

If the “total vote” from all the UNREADY builder calls indicates OK, the build proceeds for the new TCTTE
that is to replace the existing one. Thus, at the end of the process, the audit trail consists of a list of
references to builders associated with the old TCTTE, and a list of references to builders for the new
TCTTE (lists A and B).

Consider the case when the group contains definitions for three TCTTEs, and a VETO occurs for the last
one. This means that there is an audit trail for A1, B1, A2, B2 for which there was success, and list A3 for
the unsuccessful UNREADY for the third TCTTE.

The failure condition is returned to the caller (CEDA), which then issues a DFHSP ROLLBACK.

Recovery Manager invokes DFHAPRDR which in turn invokes the DFHTBSS module, with a parameter
that indicates a rollback is required. Thus, the “A” lists are processed, and all the READY entry points of
the builders are called. Then the “B” lists are processed, and the DESTROY builder entry is called to free
the storage obtained for the supposedly new TCTTEs.

To summarize, the rollback operation for UNREADY is READY, and the one for BUILD is DESTROY.

Catalog records and the CICS global catalog data set

Overview
The fourth stage of the process is to produce a catalog record that is written to the CICS global catalog
data set. This record is used on a subsequent restart to recreate the TCTTE, but in a different way from
the “Build” process described above. A CEDA INSTALL means that the TCTTE lives across CICS restarts,
avoiding the necessity of rerunning the install.

A RESTORE from the CICS catalog is a faster operation than a CEDA INSTALL because there is no
conversion of the CSD definition to a builder parameter set, and less I/O involved.

In summary, a catalog record is produced by recalling each of the builders asking for the address of the
data that they want to be recorded on the catalog. Each subcomponent of the TCTTE is then copied and
concatenated into one record, which is then written to the catalog. This process is known as FLATTEN.

A CATALOG call is made when significant events change the state of a TCT entry which would be needed
on a subsequent emergency restart. An example is the recording of the membername of a generic VTAM
resource connection when a bind has occurred for the first time.

On the restart, the record is read from the catalog, and presented back to each of the original builders.
Each builder performs a GETMAIN, and copies its section of the recovery record into the acquired storage.
This process is known as UNFLATTEN.

At shutdown, auto-installed entries are removed from the catalog with an UNCATALOG call (if they were
cataloged because AIRDELAY¬=0). This drives DFHTBS and the builders to produce similar records to

Builders

Chapter 6. Builders 67

those for a DELETE call, but only to take action to delete the catalog record. This is significantly more
efficient than calling the builders to DELETE each entry, as the copy in storage is left untouched.

The key and the recovery record
When the build process in DFHTBSBP has finally finished, this module makes a call to the master builder
at the MAKEKEY entry point. The builder produces a key that is used to index the associated recovery
record. (See Figure 27.)

This information is placed on the audit trail so that it can be picked up by DFHTBSS. It consists of two
parts:
1. Information that allows access to the catalog
2. The recovery record header.

More about the audit trail
Figure 28 on page 69 shows the layout of an audit trail. Internally it is known as an action block, which
consists of action elements. As each builder is invoked by DFHTBSBP or DFHTBSDP, an action element
is appended to the action block. Each element has a reference to a pattern (PATT). This is to allow
DFHTBSS to enter the associated builder at the READY or DESTROY entry points.

CCRECP contains the address of the recovery record header. Only one of these is produced as a direct
result of the MAKEKEY call to the master builder. All other action elements have their CCRECP set to
zero.

12 34 Overall length

Token length

token

Total length of recovery record

length of pattern name

Pattern

Length of key

Key

Figure 27. The recovery record

Builders

68 CICS TS for z/OS: CICS Diagnosis Reference

DFHTBSS and the FLATTEN process
During phase-1 syncpoint processing, DFHTBSS searches the action elements for a nonzero CCRECP.
On detection, it calls DFHTBSLP, passing the reference to the pattern as given in the action element.

The storage “segments” are returned to DFHTBSSP which extracts the address and length from each
segment and copies them into the recovery record.

The RESTORE process
The recovery record header contains the pattern name which is used to find the master pattern in
DFHZCQRT. This is then passed to DFHTBSR to drive the recovery process by calling each builder’s
UNFLATTEN entry.

Each segment is extracted from the recovery record and is passed to the associated builder’s
UNFLATTEN entry point. These routines usually obtain some storage and copy the segment into it.

Control blocks
Builder modules all use both LIFO and a builder parameter set (BPS), which are passed between the
CSECTs (DFHBS* modules). See “Builder parameter set (BPS)” on page 53 for further information about
the BPS.

Terminal storage acquired by the builders
The following terminal storage is acquired by the builders:
Control block Description Storage manager subpool
field
TCTSE Terminal control table ZCTCSE

system entry
TCTME Terminal control table ZCTCME

mode entry
TCTTE Terminal control table ZCTCTTEL (large TCTTEs)

terminal entry ZCTCTTEM (medium TCTTEs)
ZCTCTTES (small TCTTEs)

TCTENIBA NIB descriptor ZCNIBD
TCTEBIMG BIND image ZCBIMG
TCTTECIA User area ZCTCTUA
TCTTESNT Signon extension ZCSNEX

BS_ACTION_
PLM

NEXT

PREV

REQSTG

BS_ACTION_ELEMENT
ARRAY(1) PATT

NODE

CCRECP

ADD
CCWR

ARRAY(2) CCDEL
CCONLY

:
:
:

Figure 28. Action block and action elements (audit trail)

Builders

Chapter 6. Builders 69

TCTELUCX LUC extension ZCLUCEXT
TCTTETEA BMS extension ZCBMSEXT
TCTTETPA Partition extension ZCTPEXT
TCTTECCE Console control element ZCCCE

TCTTE layout

Formatted dumps give the TCTTE first, followed by its supporting control blocks.

Terminal definition
CEDA DEFINE puts a definition on the CSD. The definition is in the form of a CEDA command.

CEDA INSTALL reads the definition from the CSD, calls the builders and builds the definition in CICS
DSA, and updates the CICS global catalog data set for future recovery.

EXEC CICS CREATE builds the same record that would be obtained from the CSD and then calls the
builders just like CEDA INSTALL.

EXEC CICS DISCARD calls the builders with a pointer to the TCTTE entry that is to be deleted. The
builders then freemain the TCTTE, remove index entries and the catalog record.

Modules
DFHZCQ handles all requests for the dynamic add and delete of terminal control resources. It contains the
following CSECTs:
DFHBSIB3 DFHBSSZM DFHBSTP3 DFHBSTZ1
DFHBSIZ1 DFHBSSZP DFHBSTS DFHBSTZ2
DFHBSIZ3 DFHBSSZR DFHBSTT DFHBSTZ3
DFHBSMIR DFHBSSZS DFHBSTZ DFHBSXGS
DFHBSMPP DFHBSSZ6 DFHBSTZA DFHBSZZ
DFHBSM61 DFHBST DFHBSTZB DFHBSZZS
DFHBSM62 DFHBSTB DFHBSTZC DFHBSZZV
DFHBSS DFHBSTBL DFHBSTZE DFHZCQCH
DFHBSSA DFHBSTB3 DFHBSTZH DFHZCQDL
DFHBSSF DFHBSTC DFHBSTZL DFHZCQIN
DFHBSSS DFHBSTD DFHBSTZO DFHZCQIQ
DFHBSSZ DFHBSTE DFHBSTZP DFHZCQIS
DFHBSSZB DFHBSTH DFHBSTZR DFHZCQIT
DFHBSSZG DFHBSTI DFHBSTZS DFHZCQRS
DFHBSSZI DFHBSTM DFHBSTZV DFHZCQRT
DFHBSSZL DFHBSTO DFHBSTZZ DFHZCQ00

Note: The term “node” refers either to a TCTTE or to one of its subsidiary parts, such as the NIB
descriptor.

Subroutines that are found in the builders:
BSEBUILD BUILD: Create the node. For example, obtain the shared storage for the

node.

TCTTE

NIBD LUC
extn

SNTTE

Partition
support

BIND BMS
extn

User
area

Figure 29. TCTTE layout

Builders

70 CICS TS for z/OS: CICS Diagnosis Reference

BSECON CONNECT: Connect the higher node to the lower. For example, make the
TCTTE point to the NIB descriptor.

BSEDESTR DESTROY: Abolish a deleted node. For example, free the storage
removed from TMP’s chains.

BSEFINDF FINDFIRST: Find the first subsidiary node of a higher node. For example,
BSFINDF(TCTTE) returns the NIBD being built.

BSEFINDN FINDNEXT: Find the next subsidiary node of the one just found. For
example, return the address of the next model TCTTE.

BSEFLAT FLATTEN: Build the catalog or log record segment for each part of the
TCTTE. This is passed back to the caller to create a complete “flattened”
TCTTE.

BSEMAKEY MAKEKEY: Create a key that is used to write out the new node to the
global catalog.

BSENQIRE ENQUIRE: The converse of BUILD, it creates a BPS from a TCTTE. The
BPS can then be shipped to another system.

BSEREADY READY: Make a node ready to use. For example, add to TMP’s chains.
BSERESET RESET: Build the TCTTE from the CICS global catalog. (RESET is a

cut-down version of UNFLATTEN.)
BSEUNFLA UNFLATTEN: Build the TCTTE from the CICS global catalog.
BSEUNRDY UNREADY: Check that a node can be deleted. For example, ensure that

no AIDs are queued on a TCTTE before deleting.

Not all subroutines are found in all builders. Certain subroutines are required, but do nothing other than
return to the caller. The subroutine names are the same in each builder.

Module entry
Consider a module entry to be a router that does some housekeeping and then branches to the
appropriate subroutine:

v Enter the builder at offset X'18'.

v The first X'17' bytes are taken up by the standard DFHVM macro expansion.

v Save DFHTBS’s registers (DFHTBS calls each builder).

v Save the first two entries in the parameter list:
1. The address of LIFO storage
2. The index number of the subroutine to call.

v Increase the value of register 1 by 8 to get past the first two entries.

v Branch to the appropriate subroutine of the builder using the index number passed.

v Return from the builder subroutine.

v Restore registers.

v Return to DFHTBS.

Subroutine entry
v Register 1 points to the parameter list.

v Store Register 14 (return address) at Register 2 + X'nn' (varies by entry point).

v Store the parameter list into Register 2 + X'nn' (varies by entry point).

v The length of the parameter list varies.

Subroutine exit (return to module entry)
v Exit from the subroutine only through an “official” exit point.

v The exit point is usually the end of the subroutine.

v The end of the subroutine is indicated with “*end; /*BUILD */”.

Builders

Chapter 6. Builders 71

v In some cases, the end of the subroutine branches back to the exit point somewhere within the
subroutine.

v Return (BR R14) from within the subroutine.

v Reload Register 14 from Register 2 + X'nn' and return to caller.

Patterns
In DFHZCQRT, a series of patterns define the flow through the builder modules. (See Figure 30.) For each
kind of terminal, there is a different pattern.

If installing, DFHZCQIS selects the pattern and calls DFHTBS (table builder service). If deleting,
DFHZCQDL does the selection.

DFHTBS interprets the pattern and calls each builder that the pattern calls out. DFHTBS knows nothing
about the terminal or whether you are installing or deleting. It simply does what the pattern tells it to do.

DFHTBS passes a BPS as it calls each builder. The BPS allows one builder to be used for many different
kinds of terminals. For example, DFHBSTC obtains the user area for all terminal types. The BPS contains
the length to be obtained.

Calling sequence of builders for a 3277 remote terminal
1. DFHZCQRT contains a series of comments followed by the patterns. The comment appears as:

/* * * * * * * * * * * * */
/* 3277 REMOTE */
/* * * * * * * * * * * * */

2. Shortly afterwards is a Declare (DCL) followed by a level-1 name:
DCL 1 P145002 STATIC

This is the name of the pattern that drives the build process for a 3277 remote terminal.

v DFHBSTZ is indicated to be the first builder called.

v One pattern is used to drive the building process.

v 18 subpatterns are to be used.

v Three of these 18 subpatterns each call one additional pattern.

v The terms “pattern” and “builder” mean the same thing. Therefore:
DFHBSTZ + DFHBSxx + DFHBSxx = 22

(1) + (18) + (3) = 22
pattern + sub- + sub-sub- = 22

patterns patterns

Thus we have to go through 22 builder modules to build a 3277 remote terminal.

3. Go to the cross-reference at the back of the dump and find where P145002 is defined in assembler
language. Go to that address.

4. This states that the first builder to be called is DFHBSTZ. This is the main one.

5. Drop down to the 2-byte fields that follow: these state the names of the builders that are to be called,
in sequence (18 should be listed).

6. The first one is IAATZ1 which does not sound familiar:

|DFHZCQIS DFHZCQRT|

| DFHTBS |

| BSTZ BSTZ1 |. . . |BSZZV BSTZ3|

Figure 30. Calling sequence of builders (determined by patterns)

Builders

72 CICS TS for z/OS: CICS Diagnosis Reference

v Go to the cross-reference at the back of the dump, look up IAATZ1, and go to where it is defined.

v You see that this is DFHBSTZ1.

v You can also see a close resemblance between IAATZ1 and DFHBSTZ1, but do not count on this
to be always true.

7. Now you know that the second builder to be called is DFHBSTZ1.

8. The next two builders to be called are IAATCV (DFHBSTV) and IAATCB (DFHBSTB).

9. The fifth builder to be called according to the pattern needs to be looked at:

v The pattern says that IACTZ3 should be called.

v When you go to where IACTZ3 is defined, you find that this is DFHBSIZ3.

v You also see that DFHBSIZ3 calls IAATM.

v Look up IAATM and you see that it is DFHBSTM.

v This is a sub to a subpattern, and this is how nesting of builder calls occurs.

v Thus, DFHBSIZ3 calls DFHBSTM when building a local 3277.

v DFHBSTM accounts for one of the “other” three mentioned in step 2.

10. If you continue through this pattern, you can identify the names of the 22 builders that would be
called to build a 3270 local TCTTE.

Here is the complete list, in order, of the builders that are called:
1 DFHBSTZ 12 DFHBSTH
2 DFHBSTZ1 13 DFHBSTI
3 DFHBSTZV 14 DFHBSTS
4 DFHBSTZB 15 DFHBSTT
5 DFHBSIZ3 16 DFHBSTZA
6 DFHBSTM 17 DFHBSTP3
7 DFHBSTB 18 DFHBSZZ
8 DFHBSIB3 19 DFHBSTB3
9 DFHBSTO 20 DFHBSTZE
10 DFHBSTC 21 DFHBSZZV
11 DFHBSTE 22 DFHBSTZ3

A look at “Pattern Trace” supports this flow. Note that the first ZCP TBSB(P) BUILD and its matching
return (the return has no builder suffix) should be ignored.

Builder parameter list
As each builder is called by DFHTBS, a parameter list is passed. Unique data is passed to enable one
builder module to be called for a variety of terminal types. The length of the builder parameter list is fixed
for each kind of subroutine; for example, the parameter list passed to BSEBUILD is always X'23' bytes
long, regardless of the builder involved.
Subroutine Length of parameter list

(hexadecimal)
BSEBUILD 23
BSECON 13
BSEDESTR 7
BSEMAKEY B
BSEREADY 3
BSEUNRDY 17
BSEFINDF F
BSEFINDN B
BSEFLAT B
BSEUNFLA 27
BSENQIRE 7

When the builders are called
Builders are called during:
v Cold start
v Warm start
v Emergency restart

Builders

Chapter 6. Builders 73

v After emergency restart
v Autoinstall logon and logoff
v APPC autoinstall
v CEDA INSTALL
v EXEC CICS CREATE
v EXEC CICS DISCARD
v Transaction routing
v Non-immediate shutdown.

Cold start
v Read information from the CSD and call builders to build RDO-defined terminals.

v Load in DFHTCT for non-VTAM terminals. Builders are not called.

Warm start

Note: A warm start is identical to an emergency restart from the builders perspective. The only difference
is that Recovery Manager has no forward-recovery records to pass to DFHAPRDR.

v Read information from the global catalog and call builders to restore RDO-defined terminals.

v Load in DFHTCT for non-VTAM terminals. Builders are not called.

Emergency restart
v Read information from the global catalog and call builders to restore RDO-defined terminals.

Note: Auto-installed terminals will not have a catalog entry if AIRDELAY=0

v Recovery Manager calls DFHAPRDR which calls the builders to restore in-flight terminals installs from
the system log.

v Load in DFHTCT for non-VTAM resources. Builders are not called.

After emergency restart
Delete autoinstalled terminals after the time period has expired as specified in the AIRDELAY parameter (if
the user has not logged back on before then).

APPC autoinstall
v Inquire on the model supplied by the autoinstall user program

v Install an APPC connection created from the above inquire.

Autoinstall logon and logoff
v Logon: Install terminal entry using model entry in the AMT.

v Logoff: Delete terminal entry.

CEDA INSTALL
Install VTAM terminal resources. (There is no builder process for CEDA DEFINE or ALTER.)

EXEC CICS CREATE
Install VTAM terminal resources.

EXEC CICS DISCARD
Delete VTAM terminal resources.

Transaction routing
If a TCTTE is defined as shippable, its definition is shipped to the remote system and installed there. The
definition is obtained by an INQUIRE call to the builders in the Terminal Owning Region and built with an
INSTALL call in the Application Owning Region.

Builders

74 CICS TS for z/OS: CICS Diagnosis Reference

Shutdown
Delete autoinstalled terminals from the catalog (if they had entries, and are not LU6.2 parallel
connections). On a warm start, therefore, autoinstalled terminals are not recovered.

Diagnosing problems with the builders
When working on a problem associated with a builder (for example, abend or loop), it may be helpful to
ask yourself the following questions:

v Why am I in a DFHBS* module? Am I doing CEDA GRPLIST install, CEDA GROUP install, autoinstall,
logon, logoff, catalog, uncatalog, create or discard?

v What is the termid/sysid of the terminal I am working with (the one I am installing, deleting, cataloging
or uncataloging)?

v Is this resource part of an resource definition atom?

v How is this terminal defined?

v Are there any messages associated with this terminal?

Exits
No global user exit points are provided for this function.

Trace
The following point IDs are provided for the DFHZCQxx modules:

v AP FCB0 - FCBF, for which the trace level is 1.

The following point IDs are provided for the DFHTBSx modules:

v AP FCC0 - FCC9, for which the trace level is 1.

The following point IDs are provided for the DFHTBSxP modules:

v AP 0630 - 0644, exception trace.

v AP FCD0 - FCD9, for which the trace level is 1.

v AP FCDA - FCDB, for which the trace level is 2.

The following point IDs are provided for the DFHTBSS module:

v AP 0620 - 0621, for which the trace level is 1.

v AP 0622 - 062E, and 0645 exception trace.

The following point IDs are provided for the DFHTONR module:

v AP 0648 - 0649, for which the trace level is 1.

v AP 064A - 064C, exception trace.

The following point IDs are provided for the DFHAPRDR module:

v AP 0601 - 0602, for which the trace level is 1.

v AP 0603 - 061E, exception trace.

The following point IDs are provided for the DFHZGTA module:

v AP FA80 - FA81, for which the trace level is 1.

v AP FA82 - FA9A, exception trace.

The following point ID is provided for message set production:

v AP FCDD, exception trace.

Builders

Chapter 6. Builders 75

The following point ID is provided for DFHBSTZA:

v AP FCDE, exception trace.

See the CICS Trace Entries for further information.

Messages
Builder modules issue messages in the DFHZC59xx, DFHZC62xx, and DFHZC63xx series.

Message sets
If a builder finds an error, it adds a message to a message set. This set is then printed by the caller; for
example:
DFHTCRP Cold start (local system entry

and error console only)
DFHAMTP CEDA, EXEC CICS CREATE
DFHEIQSC EXEC CICS DISCARD CONNECTION
DFHEIQST EXEC CICS DISCARD TERMINAL
DFHZATA Autoinstall
DFHZATD Autoinstall delete
DFHZATS Install and delete transaction routed terminals

How messages show up in a trace
If a message is issued from a builder module (that is, those with a prefix of DFHZC59xx, DFHZC62xx, or
DFHZC63xx), it appears in the trace as a table builder services message trace entry with the following
point ID:

v AP FCDD, exception trace.

This trace entry is produced when a message is added to the message set and indicates there was a
problem in building or deleting a terminal or connection.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Builders

76 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 7. Built-in functions

CICS provides the application programmer with two commonly used functions: field edit and phonetic
conversion.

These are functions that generally used to be coded as separate subroutines by the programmer. They are
referred to as built-in functions.

The field edit function is provided by the BIF DEEDIT command of the CICS application programming
interface.

The phonetic conversion function is provided as a subroutine that can be called by CICS application
programs, and also by any offline programs.

Design overview
The built-in functions component includes field edit and phonetic conversion, both of which are available to
a CICS application program. Also, the phonetic conversion subroutine can be used offline.

Field edit (DEEDIT)
The field edit function allows the application program to pass a field containing EBCDIC digits (0 through
9) intermixed with other values, and receive a result with all non-numeric characters removed.

For further details of this function, see the CICS Application Programming Reference.

Phonetic conversion
This facility allows the user to organize a file according to name (or similar alphabetic key), and access the
file using search arguments that may be misspelled.

The phonetic conversion subroutine (DFHPHN) converts a name into a partial key, which can then be
used to access a database file. The generated key is based upon the sound of the name. This means that
names sounding similar, but spelled differently, generally produce identical keys. For example, the names
SMITH, SMYTH, and SMYTHE all produce a phonetic key of S530. Likewise, the names ANDERSON,
ANDRESEN, and ANDRESENN produce a phonetic key of A536. The encoding routine ignores embedded
blanks in a name, so you can write names prefixed by ‘Mc’ with or without a blank between the prefix and
the rest of the name, for example, ‘McEWEN’ or ‘Mc EWEN’.

For details of how to code a CALL statement for the DFHPHN subroutine according to the language of the
application program, see the CICS Application Programming Guide.

Modules

Module Description

DFHEBF EXEC interface processor for BIF DEEDIT command
DFHPHN Phonetic conversion subroutine

Exits
No global user exit points are provided for these functions.

© Copyright IBM Corp. 1997, 2011 77

Trace
No tracing is performed for the phonetic conversion subroutine.

The following point ID is provided for DFHEBF:
v AP 00FB, for which the trace level is BF 1.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Built-in functions

78 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 8. CICS-DB2 Attachment Facility

The CICS-DB2® Attachment facility allows applications programs to access and update data held in DB2
tables managed by the DB2 for OS/390 product. It also allows applications to send operator commands to
a DB2 subsystem.

Design overview
The CICS-DB2 Attachment facility allows connection to a DB2 subsystem using the CICS resource
manager interface (RMI), which is also known as the task related user exit interface. The Attachment
facility interfaces to DB2 through a series of requests to three components of DB2, each of which
processes specific types of requests:

v Subsystem Support Subcomponent (SSSC) for thread and system control requests

v Advanced Database Management Facility (ADMF) for SQL requests

v Instumentation Facility Component (IFC) for IFI requests

There no are DB2 release dependencies within the attachment facility, it can connect to a DB2 subsystem
running any supported level of DB2.

The architecture of the CICS-DB2 interface is described in CICS DB2 Guide:

v For DB2 for OS/390 Version 6 or later, the attachment facility exploits the open transaction environment
(OTE) and uses CICS-managed open TCBs.

v For DB2 for OS/390 Version 5 or earlier, the attachment facility manages its own set of subtask TCBs
on which it builds threads to access DB2.

CICS Initialization
During CICS Initialization the following modules are invoked:

CICS-DB2 initialization gate DFHD2IN1
DFHD2IN1 first receives control from DFHSII1 duiring CICS initialization by means of a DFHROINM
INITIALISE call. When invoked with this function DFHD2IN1 attaches a system task CSSY to run program
DFHD2IN2.

DFHD2IN1 is invoked a second time later by DFHSII1 by means of a DFHROINM
WAIT_FOR_INITIALIZATION call for which DFHD2IN1 issues a CICS wait to wait for DFHD2IN2
processing to complete.

CICS-DB2 recovery task DFHD2IN2
DFHD2IN2 runs under CICS system task CSSY attached by DFHD2IN1. DFHD2IN2 links to program
DFHD2RP, the CICS-DB2 restart program. On return from DFHD2RP, DFHD2IN2 posts the ecb waited on
by DFHD2IN1 so that CICS Initialization can continue.

CICS-DB2 restart program DFHD2RP
DFHD2RP runs under system task CSSY during CICS initialization. DFHD2RP performs the following
functions:

v Adds storage manager subpools for the DFHD2ENT, DFHD2TRN and DFHD2CSB control blocks.

v Issues lock manager domain ADD_LOCK requests to add the necessary locks required by the
CICS-DB2 Attachment facility to manage the dynamic chains of DFHD2LOT and DFHD2CSB control
blocks, plus locks to manipulate the DFHD2GLB, DFHD2ENT and DFHD2TRN control blocks.

v Loads CICS-DB2 modules DFHD2CC, DFHD2CO, DFHD2D2, DFHD2STR, DFHD2STP and DFHD2TM

v Activates the DFHD2TM gate with the kernel.

v For cold and Initial CICS starts:

© Copyright IBM Corp. 1997, 2011 79

– Purges the Global catalog of DFHD2GLB, DFHD2ENT and DFHD2TRN control blocks

v For warm and emergency CICS starts:

– Installs DFHD2GLB, DFHD2ENT and DFHD2TRN blocks found on the global catalog

CICS-DB2 Attachment startup
The CICS-DB2 Attachment facility can be started using one of the following methods:

v specifying program DFHD2CM0 in PLTPI

v specifying SIT parameter DB2CONN=YES

v Issuing the DSNC STRT command

v Issuing the CEMT or EXEC CICS SET DB2CONN CONNECTED command

All of the above ways result in an EXEC CICS SET DB2CONN CONNECTED command being issued and
the CICS-DB2 startup program DFHD2STR getting control.

CICS-DB2 startup program DFHD2STR
The startup program starts by reading a temporary storage queue to obtain any parameters passed if a
DSNC STRT command has been issued. It also retrieves any parameters specified via the INITPARM SIT
parameter by linking to program DFHD2INI.

Next DFHD2STR must ensure the necessary DFHD2GLB block is installed. If a DFHD2GLB is already
installed, representing an installed DB2CONN, then it is checked to make sure interface is currently shut
before startup can proceed.

The remainder of DFHD2STR processing is as follows:

v Initialise the DFHD2GLB and set the state to 'connecting'

v MVS load the DB2 program request handler

v Attach a CICS system task to run the CICS DB2 service task CEX2

v Call DFHD2CO to connect to DB2 and obtain indoubts

v Enable the CICS-DB2 TRUE DFHD2EX1

v If connected to DB2 for OS/390 Version 5 or earlier, then issue an MVS Attach for the CICS-DB2
master subtask program DFHD2MSB and wait for DFHD2MSB initialization processing to complete

v Set the status of the connection to 'connected'

v Post CEX2 to process any indoubts passed from DB2

v Update state in the temporary storage queue to pass back to a DSNC STRT command

CICS-DB2 attachment shutdown
The CICS-DB2 Attachment facility can be stopped using one of the following methods:

v Issuing the DSNC STOP command

v Issuing the CEMT or EXEC CICS SET DB2CONN NOT CONNECTED command

v Running the CDBQ or CDBF transactions

v Shutting down CICS

All of the above ways result in an EXEC CICS SET DB2CONN NOTCONNECTED command being issued
and the CICS-DB2 shutdown program DFHD2STP getting control.

CICS-DB2 shutdown program DFHD2STP
Processing in DFHD2STP is as follows:

v If CDB2SHUT is set in the dump table, take a system dump (serviceability aid)

v If a CDB2SHUT dump has not been taken, and the CICS-DB2 master subtask program DFHD2MSB
has unexpectedly abended, then a system dump is taken with a dumpcode of MSBABEND.

CICS-DB2 Attachment Facility

80 CICS TS for z/OS: CICS Diagnosis Reference

v post CICS-DB2 service task CEX2 to terminate all subtasks then terminate itself. Wait for service task
to complete.

v If present, post master subtask DFHD2MSB to terminate. Wait for it to terminate, then detach master
subtask TCB.

v Call DFHD2CO to disconnect from DB2

v Call DFHD2CC to write out shutdown statistics

v If the CICS-DB2 attachment is to go into 'standbymode':

– Re-initialise the DFHD2GLB, set the state to 'connecting'

– Post any tasks who are waiting for shutdown to complete

– Issues 'Waiting for DB2 attach' message

v If the CICS-DB2 attachment is not to go into 'standbymode':

– Disable the CICS-DB2 TRUE DFHD2EX1

– MVS delete the program request handler

– Re-initialise the DFHD2GLB, set the state to 'shut'

– Issue the shutdown complete message and post any tasks who are waiting for shutdown to complete

CICS-DB2 mainline processing

CICS-DB2 task related user exit (TRUE) DFHD2EX1
Control is passed to the TRUE via the CICS RMI. The TRUE manages the relationship between a CICS
task (represented by a LOT control block), and a CICS-DB2 thread (represented by a CSB control block).
DFHD2EX1 uses parameters set in the DB2CONN and DB2ENTRY definitions to manage use of the CICS
DB2 threads, each thread running under a thread TCB.

v When connected to DB2 for OS/390 Version 5 or earlier, the thread TCB is a subtask managed by the
CICS DB2 attachment facility. It is the subtask running program DFHD2EX3 which issues requests to
DB2 on behalf of a CICS task. A wait/post protocol is executed between the CICS task running in the
CICS-DB2 TRUE, and the subtask in program DFHD2EX3.

v When connected to DB2 for OS/390 Version 6 or later, the thread TCB is a CICS open TCB (L8 mode).
Program DFHD2D2 is called under the open TCB, and issues the requests to DB2. In this case, both
DFHD2EX1 and DFHD2D2 run under the L8 TCB.

The CICS-DB2 TRUE DFHD2EX1 gets invoked by the RMI for the following events:

v EXEC SQL commands and DB2 IFI commands from application programs

v syncpoint

v end of task

v INQUIRE EXITPROGRAM commands for the DB2 TRUE with the CONNECTST or QUALIFIER
keywords (RMI SPI calls)

v EDF - when EDFing EXEC SQL commands

v CICS shutdown

CICS-DB2 coordinator program DFHD2CO
The coordinator program runs under the CICS Resource owning (RO) TCB, and handles the overall
connection between CICS and a DB2 subsystem. It is called :

v by DFHD2STR during startup of the attachment facility to issue the coordinator identify to DB2, that is to
establish connection to DB2. Once established, it passes DB2 an ECB to be posted should DB2
terminate, and it also obtains from DB2 a list of units of work (UOWs) that DB2 is indoubt about. This
list is anchored off the CICS-DB2 global block (DFHD2GLB) for processing later in startup.

v by DFHD2STP during shutdown of the attachment facility to terminate the identify to DB2 and so
disconnect.

CICS-DB2 Attachment Facility

Chapter 8. CICS-DB2 Attachment Facility 81

v by the CICS-DB2 TRUE DFHD2EX1 during resync processing to pass the resolution of a indoubt unit of
work to DB2. Indoubt resolution has to be done under the same TCB that issued the coordinator identify
to DB2.

CICS-DB2 master subtask program DFHD2MSB
When operating with DB2 for OS/390 Version 5 or earlier, the DFHD2MSB TCB is attached by DFHD2STR
during startup of the Attachment facility. It runs as a 'daughter' of the main CICS TCB. It is 'mother' to all
the subtask TCBs which process the DB2 work. The DFHD2MSB TCB is detached by DFHD2STP during
CICS-DB2 Attachment shutdown.

The main functions of DFHD2MSB are:

v To attach thread subtasks as required

v To detach thread subtasks as required

v To provide a recovery routine to cleanup if a thread subtask fails

CICS-DB2 subtask program DFHD2EX3
When operating with DB2 for OS/390 Version 5 or earlier, a CICS-DB2 subtask TCB is attached by
DFHD2MSB when required by DFHD2EX1. It runs as a daughter of the DFHD2MSB TCB and a
granddaughter of the main CICS TCB. A CICS-DB2 subtask TCB normally remains active for the lifetime
of the CICS Attachment facility and terminates as part of CICS-DB2 Attachment facility shutdown.
Exception conditions that cause a subtask TCB to be detached are:

v if the DB2CONN TCBLIMIT parameter is lowered

v if a CICS task is forcepurged whilst its associated subtask is active in DB2

v If a failure occurs during syncpoint processing during the indoubt window requiring the thread to be
released.

The DFHD2EX3 program issues requests to DB2 using the DB2 SSSC, ADMF and IFC interfaces
communicating via the DB2 program request handler DSNAPRH. In order to process DB2 requests a TCB
first has to IDENTIFY to DB2, secondly it has to SIGNON to DB2 to establish authorization ids to DB2.
Thirdly a thread has to be created. Once a thread has been created API and syncpoint requests can flow
to DB2. Subsequent SIGNON requests can occur for a thread to change authorization ids to DB2 or for
the purposes of DB2 cutting accounting records (partial SIGNON) When a thread is nolonger required it is
terminated. The TCB remains identified and signed on to DB2 and awaits another request requiring it to
create a thread again.

Each DB2 subtask runs an instance of program DFHD2EX3 and each is represented by a DFHD2CSB
control block. A CSB control block is anchored to one of three CSB chains depending on its state (an
active thread within a UOW, a thread waiting for work, or an identified, signed on TCB with no thread). The
CICS-DB2 TRUE DFHD2EX1 manages the CSB chains.

CICS-DB2 thread processor DFHD2D2
The thread processor program DFHD2D2 is used only when operating with DB2 for OS/390 Version 6 and
above, when the CICS-DB2 Attachment Facility uses CICS open TCBs (L8 TCBs) rather than privately
managed subtask TCBs. In the Open Transaction environment (OTE), the CICS-DB2 TRUE DFHD2EX1 is
invoked under an L8 TCB. Instead of posting a subtask, DFHD2EX1 calls DFHD2D2 under the L8 TCB.
DFHD2D2 performs the same functions as performed by subtask program DFHD2EX3 in a non OTE
environment, that is issuing the identify, signon, create thread, terminate thread calls to DB2, plus the api
and syncpoint calls to DB2.

DFHD2D2 is called via a subroutine domain call on which the address of the relevant connection control
block (DFHD2CSB) is passed. On the first call of a unit of work, DB2 is called to "associate" the
connection with the calling L8 TCB. Once this is done, calls to DB2 can proceed as normal. When a DB2
thread is released from a CICS transaction (typically at syncpoint), the connection is "dissociated" from the
L8 TCB. Hence a connection control block (DFHD2CSB) has an affinity to an L8 TCB whilst is associated.
With DB2 for OS/390 Version 5 and below a connection has a permanent affinity to its subtask TCB.

CICS-DB2 Attachment Facility

82 CICS TS for z/OS: CICS Diagnosis Reference

CICS-DB2 service task program DFHD2EX2
The CICS-DB2 service task program DFHD2EX2 runs as a CICS system task under transaction CEX2. Its
mains functions are:

v To wait for DB2 to startup if DB2 is down when connection is attempted if
STANDBYMODE=RECONNECT or CONNECT is specified in the DB2CONN.

v To initiate shutdown of the CICS-DB2 Attachment facility if posted to do so.

v To perform the protected thread purge cycle.

v To issue EXEC CICS RESYNC to process DB2 indoubts.

v For DB2 for OS/390 Version 5 or earlier, to terminate all subtasks during CICS-DB2 Attachment facility
shutdown.

CICS-DB2 PLTPI program DFHD2CM0
Used in PLTPI or as a result of DB2CONN=YES being set in the SIT. It issues an EXEC CICS SET
DB2CONN CONNECTED command to start up the CICS DB2 Attachment facility.

CICS-DB2 comand processor DFHD2CM1
DFHD2CM1 processes commands issues via the DSNC command. The following commands are
processed:

v DSNC STRT - EXEC CICS SET DB2CONN CONNECTED command issued

v DSNC STOP - EXEC CICS SET DB2CONN NOTCONNECTED command issued

v DSNC MODIFY DEST - EXEC CICS SET DB2CONN MSGQUEUEn command issued

v DSNC MODIFY TRAN - EXEC CICS SET DB2CONN THREADLIMIT or EXEC CICS SET DB2ENTRY
THREADLIMIT command issued.

v DSNC DISC - call passed to DFHD2CC to disconnect threads

v DSNC DISP PLAN - call passed to DFHD2CC to display information on threads for a particular DB2
plan

v DSNC DISP TRAN - call passed to DFHD2CC to display information on threads for a transaction.

v DSNC DISP STAT - call passed to DFHD2CC to write out statistics

v DSNC -db2command - DB2 IFI ccommand issued to send operator command to the connected DB2
subsystem.

CICS-DB2 shutdown quiesce program DFHD2CM2
Runs under transaction CDBQ. Issues an EXEC CICS SET DB2CONN NOTCONNECTED WAIT
command to shutdown the CICS-DB2 Attachment facility.

CICS-DB2 shutdown force program DFHD2CM3
Runs under transaction CDBF. Issues an EXEC CICS SET DB2CONN NOTCONNECTED FORCE
command to shutdown the CICS-DB2 Attachment facility.

CICS-DB2 table manager DFHD2TM
Handles installs, discards, inquire and set requests for the DFHD2GLB, DFHD2ENT and DFHD2TRN
control blocks representing the DB2CONN, DB2ENTRY and DB2TRAN resources. Callers of DFHD2TM
are:

v DFHAMD2 - for CEDA install and EXEC CICS CREATE

v DFHD2EX1 - to complete disablement of a DB2ENTRY or to complete Attachment facility shutdown

v DFHD2RP - to install objects from the Global Catalog during CICS restart

v DFHEIQD2 - for EXEC CICS INQUIRE,SET and DISCARD of DB2 objects

v DFHESE - for inquiry during EXEC CICS QUERY SECURITY processing.

CICS DB2 statistics program DFHD2ST
Called by AP domain statistics program DFHAPST to process CICS-DB2 statistics for EXEC CICS
COLLECT STATISTICS and EXEC CICS PERFORM STATISTICS commands.

CICS-DB2 Attachment Facility

Chapter 8. CICS-DB2 Attachment Facility 83

CICS DB2 connection control program DFHD2CC
DFHD2CC proceses the following requests:

v Start_db2_attachment - request routed on to DFHD2STR

v Stop_db2_attachment - request routed on to DFHD2STP

v Write_db2_statistics - statistics collected from control blocks and are written out to the terminal, to
transient data or to SMF.

v disconnect_threads - CSB control blocks searched and marked so that threads are terminated when
they are next released.

v display_plan and display_tran - thread information collected from control blocks and output to the
terminal.

CICS DB2 EDF processor DFHD2EDF
Receives control from CICS-DB2 TRUE DFHD2EX1 when the TRUE is invoked for an EDF request.
DFHD2EDF uses the RMI provided parameters to format the screen to be output by EDF before and after
an EXEC SQL request is issued.

Control blocks

DFHD2SS (CICS-DB2 static storage)
CICS-DB2 static storage (D2SS) is acquired by DFHSIB1 and anchored off field SSZDB2 in the static
storage address list DFHSSADS. The static storage is initialized by the CICS-DB2 restart program
DFHD2RP. Its lifetime is that of the CICS region. CICS-DB2 static storage holds information such as
storage manager, lock manager and directory manager tokens acquired during restart processing before
any other CICS-DB2 control blocks are installed.

DFHD2GLB (CICS-DB2 global block)
The DFHD2GLB block represents an installed DB2CONN definition. It is getmained by DFHD2TM when a
DB2CONN is installed and freemained by DFHD2TM when a DB2CONN is discarded. It holds CICS-DB2
state data global to the connection and also the state data for pool threads and commands threads. The
pool and command sections of the DFHD2GLB are mapped by a common type definition DFHD2RCT
which is also used to map the DFHD2ENT control block.

The DFHD2GLB block is anchored off CICS-DB2 static storage in field D2S_DFHD2GLB.

DFHD2ENT (CICS-DB2 DB2ENTRY block)
The DFHD2ENT block represents an installed DB2ENTRY definition. It is getmained by DFHD2TM when a
DB2ENTRY is installed and freemained by DFHD2TM when a DB2ENTRY is discarded. It uses a type
definition DFHD2RCT in common with the pool and command sections of the DFHD2GLB block to achieve
a common layout for all three areas. A DFHD2ENT block is located using a directory manager index that is
keyed off the RDO name of the DB2ENTRY.

DFHD2TRN (CICS-DB2 DB2TRAN block)
The DFHD2TRN block represents an installed DB2TRAN definition. It is getmained by DFHD2TM when a
DB2TRAN is installed and freemained by DFHD2TM when a DB2TRAN is discarded. A DB2TRAN can be
located in two ways. Firstly by a directory manager index keyed off the RDO name of the DB2TRAN.
Secondly by a directory manager index keyed off the transaction id associated with the DB2TRAN.

DFHD2CSB (CICS-DB2 connection block)
The DFHD2CSB block represents a CICS-DB2 connection, with or without a thread. A DFHD2CSB is
created by DFHD2EX1 prior being passed to DFHD2EX3 or DFHD2D2. A DFHD2CSB is freed by
DFHD2EX1 after the DFHD2EX3 program has returned to MVS, or when DFHD2D2 indicates it should be

CICS-DB2 Attachment Facility

84 CICS TS for z/OS: CICS Diagnosis Reference

freed. A DFHD2EX3 block is anchored off one of several CSB chains from a DB2ENTRY or the
DFHD2GLB depending on the state of the connection and the DB2 thread.

DFHD2GWA (CICS-DB2 global work area)
The DFHD2GWA block is the global work area of the CICS-DB2 task related user exit (TRUE)
DFHD2EX1. It is getmained when the TRUE is enabled, and freemained when the TRUE is disabled. The
D2GWA holds a chain of LOT control blocks representing the tasks currently using the CICS-DB2
interface.

DFHD2LOT (CICS-DB2 life of task block)
The DFHD2LOT block is the task local work area of the CICS-DB2 task related user exit (TRUE)
DFHD2EX1. It is getmained by DFHERM when a task first calls the CICS-DB2 TRUE. It is freemained by
DFHERM at end of task. Its address is passed to DFHD2EX1 by DFHERM in parameter UEPTAA in the
DFHUEPAR RMI parameter list.

The DFHD2LOT holds CICS-DB2 state information for a CICS task using the CICS-DB2 interface.

Modules

Module Description

DFHD2CC CICS-DB2 connection control program
DFHD2CO CICS-DB2 coordinator program
DFHD2CM0 CICS-DB2 PLTPI startup program
DFHD2CM1 CICS-DB2 command processor
DFHD2CM2 CICS-DB2 quiesce shutdown program
DFHD2CM3 CICS-DB2 force shutdown program
DFHD2D2 CICS-DB2 thread processor
DFHD2EDF CICS-DB2 EDF processor
DFHD2EX1 CICS-DB2 task related user exit (TRUE)
DFHD2EX2 CICS-DB2 service task program
DFHD2EX3 CICS-DB2 subtask program
DFHD2INI CICS-DB2 Initparm processor
DFHD2IN1 CICS-DB2 initialization gate
DFHD2IN2 CICS-DB2 recovery task
DFHD2MSB CICS-DB2 master subtask program
DFHD2RP CICS-DB2 restart program
DFHD2STP CICS-DB2 shutdown program
DFHD2STR CICS-DB2 startup program
DFHD2ST CICS-DB2 statistics program
DFHD2TM CICS-DB2 table manager
DSNCUEXT CICS-DB2 sample dynamic plan exit

Exits
There are no Global user exits provided by the CICS DB2 Interface.

The CICS DB2 interface does however provide a dynamic plan 'exit' in the form of a user-replaceable
program. A sample default exit is provided called DSNCUEXT. A dynamic plan exit allows the name of the
plan to chosen dynamically at execution time. For further information about dynamic plan exits see the
CICS DB2 Guide.

CICS-DB2 Attachment Facility

Chapter 8. CICS-DB2 Attachment Facility 85

Trace
The CICS-DB2 Attachment facility outputs trace entries in the range AP 3100 to AP 33FF. Trace output
from the CICS-DB2 TRUE (DFHD2EX1) and the thread processor (DFHD2D2), and GTF trace from the
CICS-DB2 subtask is controlled by the RI (RMI) trace flag. Trace from the rest of the attachment and other
CICS-DB2 modules is controlled by the FC (File Control) trace flag.

Statistics
A limited set of CICS-DB2 statistics can be obtained by issuing the DSNC DISP STAT command, which
will output the statistics to a CICS terminal. The same format of statistics is output to a nominated
transient data queue when the CICS-DB2 Attachment facility is shut down For more information see the
CICS DB2 Guide.

A more comprehensive set of CICS-DB2 statistics can be obtained by issuing an EXEC CICS PERFORM
STATISTICS RECORD command with the DB2 keyword, or by issuing the EXEC CICS COLLECT
STATISTICS command with the DB2CONN or DB2ENTRY keywords. CICS-DB2 Global statistics are
mapped by DSECT DFHD2GDS. CICS-DB2 resource statistics are mapped by DSECT DFHD2RDS. For
more information see the CICS Performance Guide.

CICS-DB2 Attachment Facility

86 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 9. Command interpreter

The command interpreter demonstrates to the application programmer the syntax of CICS commands and
the effects of their execution. It can also be used to perform simple one-off tasks whose nature does not
justify the writing of a permanent application.

Design overview
The command interpreter is invoked by the CECI transaction and is an interactive, display-oriented tool
that checks the syntax of CICS commands and executes them. Another transaction, CECS, performs only
syntax checking.

The user enters a command that is analyzed in the same way as it would be by the command translator,
which processes it as if it were part of an application program. The results of this analysis, including any
messages, an indication of defaults assumed, and the entire syntax of the command, are then displayed.

When the command is syntactically valid, the user can request its execution. The interpreter calls DFHEIP,
passing a parameter list precisely as would be passed during the execution of a program that contained
the command.

The interpreter does all this using the same command-language tables as are used by the command
translator. These tables contain data that define the syntax of CICS commands and the contents of the
parameter lists required by DFHEIP to execute them.

Modules

Module Function

DFHECIP Invoked by CECI. Checks that the terminal is suitable. Obtains and initializes working
storage. Loads the language tables. Links to DFHECID

DFHECSP Same as DFHECIP, but invoked by CECS

DFHECID Receives data from the terminal and sends back a display. Analyzes commands. Constructs
parameter lists for DFHEIP, which it calls. Deals with PF keys

DFHEITAB Command-language table (application programmer commands)

DFHEITBS Command-language table (system programmer commands).

Exits
No global user exit points are provided for this function.

Trace
No trace points are provided for this function.

© Copyright IBM Corp. 1997, 2011 87

88 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 10. CSD utility program (DFHCSDUP)

The CSD utility program, DFHCSDUP, provides offline services for you to list and modify the resource
definitions in the CICS system definition (CSD) file. DFHCSDUP can be invoked as a batch program, or
from a user-written program running either in batch mode or under TSO. The second method provides a
more flexible interface to the utility, allowing for the specification of up to five user exit routines to be called
at various points during DFHCSDUP processing.

Further information about using DFHCSDUP is given in CICS Operations and Utilities Guideand CICS
Customization Guide.

The following commands can be used with DFHCSDUP:
ADD
ALTER
APPEND
COPY
DEFINE
DELETE
EXTRACT
INITIALIZE
LIST
MIGRATE
PROCESS
REMOVE
SCAN
SERVICE
UPGRADE
USERDEFINE
VERIFY

These commands are described in the CICS Operations and Utilities Guide.

Design overview
When DFHCSDUP is invoked, control passes to the utility command processor (DFHCUCP), which
validates commands and invokes the appropriate routine to execute the requested function. Unless
DFHCSDUP has been invoked from a user program specifying a get-command exit, DFHCUCP takes a
command from the input data set, using DFHCUCB to obtain the command and DFHCUCAB to analyze
and parameterize it. When supplied, the get-command exit is invoked from the point during DFHCUCB’s
processing where commands would otherwise be read from SYSIN (or an alternatively named input data
set when DFHCSDUP is invoked from a user program).

Some syntax errors are diagnosed and reported by DFHCUCAB, and further contextual validation takes
place in DFHCUCV. Valid commands are then passed to the relevant service routine for execution; for
example, a MIGRATE command is handled by DFHCUMIG. If command execution is successful, the next
command is processed.

All commands are validated, but the execution of commands from the input data set stops when an
incorrect command is encountered, and execution of subsequent commands is also suppressed if an error
of severity 8 or higher occurs when the command is executed. When commands are supplied by a
get-command exit, however, DFHCSDUP attempts to execute all commands, even if an error is detected
in the command syntax or during processing (unless the error is serious enough to warrant an ABEND).

If errors occur while processing commands, error messages in the DFH51xx, DFH52xx, DFH55xx, and
DFH56xx series are written to SYSPRINT (or an alternatively named output data set when DFHCSDUP is
invoked from a user program).

© Copyright IBM Corp. 1997, 2011 89

An ESTAE environment is established by DFHCUCP shortly after the start of DFHCSDUP processing. If
an operating system abend subsequently occurs, control passes to the ESTAE exit routine, which then
returns to MVS requesting a dump and scheduling a retry routine to get control. This retry routine attempts
cleanup processing before returning to the caller of DFHCSDUP with a return code of ‘16’.

To protect the integrity of the CSD, DFHCUCP issues a STAX macro to defer the handling of any attention
interrupts that may occur in a TSO environment until all processing associated with the current command
has been completed.

DFHCSDUP uses batch versions of RDO routines from the parameter utility program (DFHPUP) and the
CSD management program (DFHDMP) to read, write, and update resource definitions on the CSD file. All
CSD control functions use the batch environment adapter (DFHDMPBA), which performs
environment-dependent VSAM operations on the CSD file. DFHDMPBA also processes all interactions
with operating system services.

Modules
DFHCSDUP is link-edited from a number of object modules, including batch versions of routines from
DFHPUP and DFHDMP.

Exits
When invoked as a conventional batch program, DFHCSDUP supports only one user exit: the EXTRACT
exit, which is invoked at various stages during the processing of an EXTRACT command. The name of the
user-written program to get control must be specified by the USERPROGRAM keyword of the EXTRACT
command. Details of selected CSD objects are passed to the user exit program so that users can analyze
the contents of their CSD in any way they may choose.

When invoked from a user program, DFHCSDUP supports the following five user exits, the addresses of
which can be specified in the EXITS parameter of DFHCSDUP’s entry linkage:
1. Initialization exit—invoked by DFHCUCP
2. Termination exit—invoked by DFHCUCP
3. EXTRACT exit—invoked by DFHCULIS
4. Get-command exit—invoked by DFHCUCB
5. Put-message exit—invoked by DFHBEP.

Note: A user exit routine specified by the USERPROGRAM keyword of an EXTRACT command is used in
preference to any EXTRACT exit routine specified on the entry linkage.

For further information about these user exits, see the CICS Customization Guide.

Trace
Trace points are not applicable to offline utilities.

Statistics
The following statistics are maintained by DFHCSDUP, and are written, when appropriate, to SYSPRINT
(or alternatively named output data set):
CMDSEXOK Commands executed OK
CMDSINER Commands in error
CMDSNOTX Commands not executed
CMDSWARN Commands with warning messages.

All the above statistics are kept in DFHCUCP’s static storage and are always output at the end of
processing.

CSD utility program (DFHCSDUP)

90 CICS TS for z/OS: CICS Diagnosis Reference

All the following statistics are kept in DFHCUMIG’s static storage and the appropriate statistics are also
output to SYSPRINT (or its replacement). For example, if a user migrates an FCT, only TOTFILE and
TOTLSRP are output.
TOTCONS Total connections migrated
TOTFILE Total files migrated
TOTLSRP Total LSR pools migrated
TOTMAPS Total map sets migrated
TOTPGMS Total programs migrated
TOTPRFG Total profiles generated
TOTPRFM Total profiles migrated
TOTPSTS Total partition sets migrated
TOTSESS Total sessions migrated
TOTTRAS Total transactions migrated
TOTTRMS Total terminals migrated
TOTTYPS Total typeterms migrated

CSD utility program (DFHCSDUP)

Chapter 10. CSD utility program (DFHCSDUP) 91

CSD utility program (DFHCSDUP)

92 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 11. Database control (DBCTL)

An overall description of DL/I database support is given in Chapter 15, “DL/I database support,” on page
119. This section gives information that is specific to database control (DBCTL).

Design overview
The CICS support that enables connection to DBCTL, via the database resource adapter (DRA), is based
on the CICS resource manager interface (RMI), also known as the task-related user exit interface.
However, because it is necessary to provide compatibility with the existing CICS-DL/I implementation (in
terms of link-edit stubs, API return codes, and so on), a limited amount of support within CICS itself is
provided, but there are no DBCTL release dependencies within the CICS modules.

The main components of the CICS-DBCTL interface are shown in Figure 31:

v The connection process (CICS-DBCTL)
CICS-DBCTL connection and disconnection programs

These programs are used for establishing and terminating the
connection with the DRA.

CICS-DBCTL control program
This program is responsible for resolving in-doubt units of work after a
CICS or DBCTL failure. It also outputs messages when DBCTL notifies
CICS of a change in the status of the CICS-DBCTL interface.

When the CICS disconnects from DBCTL, the control program is
responsible for invoking the disable program which performs cleanup.

DRA control exit This exit is invoked by the DRA, when connection has been established
with the DBCTL address space, to initiate the resynchronization
process, that is, to initiate the resolution of in-doubt units of work. It is
also invoked to handle cases where connection to DBCTL cannot be
achieved or when the connection has failed.

DBCTL user-replaceable program
This program is invoked whenever CICS successfully connects to
DBCTL and whenever CICS disconnects from DBCTL.

Disable program This program is invoked when CICS disconnects from DBCTL.

CICS address space

MENU, CONN, DISC,
INQ, CONTROL TRANS

USER DL/I
TRANSACTIONS

RMI
STUB

CICS

R
M
I

A
D
A
P
T
E
R

(A/T)

D
R
A

LOG

EXITS

IMS/ESA address space

D
B
C
T
L

D
L
/
I

D
B
R
C

I
R
L
M

LOG

Figure 31. The major components of the CICS-DBCTL interface

© Copyright IBM Corp. 1997, 2011 93

v The DBCTL call processor program

The function of this program is to issue an RMI call to DBCTL and to maintain compatibility with the
existing CICS-DL/I interface in areas such as application program return codes, and so on.

v The interface layer
The adapter The adapter’s primary responsibility is interfacing the RMI and DRA

parameter lists. Other responsibilities include the issuing of DRA
initialization and termination calls, when invoked by the CICS
connection and disconnection programs, and the management of CICS
tasks, in order to effect an orderly shutdown of the CICS-DBCTL
interface.

DRA suspend and resume exits
These exits are invoked by the DRA in order to suspend and resume a
CICS task while a DL/I call is processed by DBCTL.

Adapter exits There are four exits for use by the adapter:
– The statistics exit
– The token exit
– The monitoring exit
– The status exit.

Details of these components are described in the following sections.

Note: CICS documentation uses the term “connecting and disconnecting from DBCTL”. The DRA
documentation refers to “initializing and terminating the CICS-DBCTL interface”. In general, these
two terms are synonymous.

The connection process

Connection and disconnection programs
In order to initialize, terminate, and inquire on the status of the interface, a set of four programs is
available:
1. Menu program
2. Connection program
3. Disconnection program
4. Inquiry program.

Menu program (DFHDBME): This permits a terminal user to display a menu, which offers the option of
connecting and disconnecting from DBCTL.

The menu program passes control to either the connection or the disconnection program, as appropriate,
using the COMMAREA to pass any overrides and parameters.

In the case of connection, it offers the ability to supply the suffix of the DRA startup parameter table and
the name of the DBCTL region. The DRA startup parameter table contains various parameters, mostly
relating to the initialization of the CICS-DBCTL interface, including the name of the DBCTL region and the
minimum and maximum number of CICS-DBCTL threads. It also contains the length of time in seconds
that the DRA waits after an unsuccessful attempt to connect to DBCTL, before attempting to connect
again.

For disconnection, it offers the ability to specify whether an orderly or immediate disconnection from
DBCTL is required.

The menu program is intended for use by CICS operators or network controllers, that is, users with special
privileges.

Database control (DBCTL)

94 CICS TS for z/OS: CICS Diagnosis Reference

BMS maps are used for both the menu and the inquiry programs. It should be noted that the bottom half
of the menu screen includes all the items which appear on the inquiry screen, and the values are
displayed on entry to the menu program, if they are known. The DRA startup table suffix is not included on
the inquiry screen because the DRA startup table contains the application group name which is used for
security checking.

After a connection request has been issued, it is possible to issue a disconnection request (orderly or
immediate) from the menu program while the connection process is still in progress. After an orderly
disconnection request has been issued, it is also possible to issue an immediate disconnection request
while the orderly disconnection process is in progress. This has the effect of upgrading the orderly
disconnection to an immediate disconnection.

Connection program (DFHDBCON): This program invokes the adapter requesting connection to
DBCTL.

This program can be invoked either from the menu program or from the CICS PLT. It issues an ATTACH
request of the CICS control program that later carries out resynchronization of in-doubt units of work with
DBCTL. The control program then issues a WAIT request.

The connection program continues by loading, activating (using the EXEC CICS ENABLE command), and
then calling the adapter (using a DFHRMCAL request). A set of parameters is passed to the adapter which
includes:
v The CICS applid
v The DRA startup parameter table suffix (optional)
v The DBCTL ID (optional)
v A set of exit addresses.

As a result of the DFHRMCAL request issued from the connection program, the adapter loads the DRA
startup/router module from the CICS STEPLIB library and passes control to it, supplying it with various
parameters including the CICS applid, DRA startup parameter table suffix, and DBCTL ID. The DRA
startup/router module loads the DRA startup table. It then initiates the processes required to establish the
DRA and then returns control to the adapter which, in turn, returns control to the connection program
which then terminates. Until this point is reached, any DBCTL requests issued from CICS tasks are
rejected by the CICS RMI stub (the DBCTL call processor).

The DRA startup/router module is responsible for establishing the DRA environment, using the parameters
specified in the DRA startup table in the CICS STEPLIB library, overridden by any parameters passed to it.

The DRA establishes contact with the DBCTL address space and then invokes the control exit to initiate
the resynchronization process.

Disconnection program (DFHDBDSC): This program invokes the adapter requesting disconnection from
DBCTL.

The disconnection program is used to terminate the DRA environment. Two types of disconnection are
available:
Orderly disconnection All existing CICS tasks using DBCTL are allowed to run to completion.
Immediate disconnection Existing DL/I requests are allowed to complete but no further DL/I

requests are accepted.

In both cases a DBCTL U113 abend is avoided. (DBCTL can issue a U113 abend if CICS terminates while
there is an active DL/I thread running on its behalf in DBCTL. The thread remains active for the duration of
the PSB schedule, but DBCTL would issue a U113 abend if the thread is doing something for the CICS
task.)

Database control (DBCTL)

Chapter 11. Database control (DBCTL) 95

The disconnection program calls the adapter, using DFHRMCAL, supplying a parameter to indicate the
type of termination required.

In the case of immediate disconnection, the adapter issues a DRA TERM call and returns to the
disconnection program only when all existing DL/I threads have completed. In the case of orderly
disconnection, the adapter assumes responsibility for managing CICS tasks, that is, it continues to accept
requests for current tasks using DBCTL until they terminate, but does not allow new CICS tasks to use
DBCTL. When the adapter detects that the count of permitted tasks has reached zero, it issues a DRA
TERM call.

The disconnection program finally posts the control program to notify it of the fact that the CICS-DBCTL
interface has been terminated. The control program then terminates after starting the disable program. The
disable program issues a DISABLE command for the adapter, and performs cleanup.

It should be noted that the terminal used to invoke the disconnection program is released after the input to
the menu screen has been validated, enabling the terminal operator to use other programs. Any further
messages from the disconnection process are generated centrally.

Inquiry program (DFHDBIQ): This program enables the user to inquire on the status of the interface. It
is intended for a wider audience than the menu program; for example, application programmers.

Control program (DFHDBCT)
The control program is invoked in the following circumstances:

v When the control exit is invoked by the adapter on behalf of the DRA

v When a CEMT FORCEPURGE command is issued for a CICS task executing in DBCTL

v When the disconnection program has received a response from the adapter as a result of a
CICS-DBCTL interface termination request.

Its function in all cases is to issue messages. It then issues a WAIT after every invocation. Also, it has
some special functions in three cases:

1. When contact has been made with DBCTL and resynchronization of in-doubts is required.

In this case, the control program issues the command:
EXEC CICS RESYNC ENTRYNAME(adapter)
IDLIST(DBCTL's in-doubts) ...

This causes CICS to create tasks for each in-doubt unit of work. Each task performs resynchronization
and then informs the adapter via the CICS syncpoint manager as to whether the task has committed or
backed out. The adapter then notifies the DRA on a task basis.

The following is a list of the possible calls to the adapter from the CICS syncpoint manager:
v Prepare to commit
v Commit unconditionally1

v Backout1

v Unit of recovery is lost to CICS cold start2

v DBCTL should not be in-doubt about this unit of recovery2.

Notes:
1 These items can be issued as a result of a RESYNC request.
2 These items can be issued as a result of a RESYNC request only.

2. When /CHECKPOINT FREEZE has been requested.

In this case, the control program invokes the disconnection program requesting an orderly
disconnection from DBCTL. Generally, an orderly disconnection from DBCTL allows CICS tasks
already using DBCTL to continue until task termination. However, when a /CHECKPOINT FREEZE has

Database control (DBCTL)

96 CICS TS for z/OS: CICS Diagnosis Reference

been requested, DBCTL prevents any PSB schedules from taking place. Thus, in this case, some
tasks might be terminated before end of task is reached with a ‘DBCTL not available’ return code, if
they issue a subsequent PSB schedule request.

3. When the disconnection program invokes the control program.

In this case, the control program starts the disable program.

DRA control exit (DFHDBCTX)
The control exit is invoked in the DRA environment in the following circumstances:

v When contact has been established with the DBCTL address space, in order to initiate
resynchronization.

The control exit is invoked in the DRA environment whenever contact has been established with
DBCTL, whether invoked by the user or due to the DRA automatically reestablishing contact after a
DBCTL failure. The control exit receives an input parameter list that includes the DBCTL ID, DBCTL’s
list of in-doubt units of work, and the DBCTL RSE name. The control exit posts the control program,
which actually performs the resynchronization.

v When the MVS subsystem interface (SSI) rejects the IDENTIFY request to DBCTL, thereby causing the
IDENTIFY to fail.

This could occur if the DRA was trying to issue an IDENTIFY request to a DBCTL subsystem that was
not running. In this case the control exit sets a response code of ‘0’. The first time in a connection
attempt that the DRA receives a ‘0’ response after an MVS SSI failure, the DRA outputs message
DFS690A inviting the operator to reply WAIT or CANCEL. On subsequent failures when a response
code of ‘0’ is returned, the DRA waits for the length of time specified in the DRA startup table before
attempting the IDENTIFY request again.

v When DBCTL rejects the IDENTIFY request to DBCTL; for example, incorrect application group name
(AGN) supplied.

In this case, the control exit asks the DRA to terminate.

v When the operator replies CANCEL to the DFS690A message during DRA initialization, because
contact cannot be established with DBCTL.

In this case, the control exit notifies the DRA to terminate immediately.

v When DBCTL abnormally terminates.

In this case, the control exit invokes the control program and then it asks the DRA to issue an
IDENTIFY request to DBCTL.

v When the DRA abnormally terminates.

In this case, it is not possible to access DBCTL from the same CICS session without initializing the
CICS-DBCTL interface using the menu program.

v When a /CHECKPOINT FREEZE request has been issued to DBCTL.

Note that /CHECKPOINT FREEZE is the command used to close down a DBCTL subsystem. In this
case the control exit invokes the control program which, in turn, invokes the disconnection program
requesting an orderly disconnection from DBCTL. The control exit notifies the DRA to wait for a
termination request.

DBCTL user-replaceable program (DFHDBUEX)
The DBCTL user-replaceable program, DFHDBUEX, is invoked whenever CICS successfully connects or
disconnects from DBCTL. It provides the opportunity for the customer to supply code to enable and
disable CICS-DBCTL transactions at these times.

The program runs as a CICS application and can thus issue EXEC CICS requests. The program is
invoked with a CICS COMMAREA containing the following parameters:

v Request type: CONNECT | DISCONNECT

v Reason for disconnection: MENU DISCONNECTION | /CHECKPOINT FREEZE | DRA FAILURE |
DBCTL FAILURE

Database control (DBCTL)

Chapter 11. Database control (DBCTL) 97

v DRA startup table suffix

v DBCTL ID.

See the CICS Customization Guide for information about the DFHDBUEX program.

Disable program (DFHDBDI)
The disable program, DFHDBDI, is invoked when CICS disconnects from DBCTL. It performs cleanup,
which includes disabling the adapter.

The DBCTL call processor program (DFHDLIDP)
Among the functions of the DBCTL call processor program, DFHDLIDP, are:

Issuing DFHRMCAL requests to the adapter: DL/I requests issued from application programs that have
been routed to this module are passed on to the adapter. The DBCTL call processor constructs a register
1 parameter list that includes the DL/I parameter list and a thread token. It then issues a DFHRMCAL
request.

It is the responsibility of this module to generate the thread token required by the DRA.

Maintaining return code compatibility: If any calls are made to the RMI before the first part of the
connection process has completed, that is, before the DFHDBCON program has received a “successful”
response code from the DRA via the adapter, error return codes are set in the task control area (TCA) to
indicate that DBCTL is unavailable. These codes are put in the user interface block (UIB) by the DL/I call
router program, DFHDLI.

Similarly, the DBCTL call processor informs application programs when DBCTL is no longer available; for
example, after a DBCTL abend.

Another function of the call processor is to set up the TCA fields, TCADLRC and TCADLTR, with response
and reason codes respectively for the call. This ensures that the application program continues to receive
responses indicating normal response, NOTOPEN, and INVREQ conditions, with the appropriate response
and reason codes in the corresponding UIB fields, UIBFCTR and UIBDLTR, after NOTOPEN and INVREQ
conditions have been raised.

Initiating PC abends: If an ‘unsuccessful’ return code is passed back to CICS as a result of a DBCTL
request, indicating that the CICS thread must be abended, the DBCTL call processor issues a PC ABEND,
which invokes syncpoint processing to back out changes made to recoverable resources. Various abend
codes can be issued. Note that, in the case of a deadlock abend (abend code ADCD) it may be possible
to restart the program.

Exception trace entries are output in the case of transaction abends.

Writing CICS messages: For any thread abend in DBCTL, a CICS message is written indicating the
abend code passed back to CICS in the field PAPLRETC. Similarly, for any scheduling failures, where the
application program receives the UIBRCODE field (UIBFCTR and UIBDLTR fields combined) set to
X'0805', the scheduling failure subcode is contained in a CICS message.

The interface layer

Adapter (DFHDBAT)
Control is passed to the adapter via the CICS RMI. It is the responsibility of the adapter to construct the
DRA INIT, DRA TERM, and DRA THREAD parameter lists from the RMI parameter list passed to it. It must
also transform the DRA parameter list passed back after a DL/I call to the format expected by CICS.

Part of the DRA parameter list requires two tokens to be generated by CICS:
1. A thread token

Database control (DBCTL)

98 CICS TS for z/OS: CICS Diagnosis Reference

2. A recovery token.

The thread token is generated by the DBCTL call processor, and enables a CICS unit of work to be
related to a DBCTL unit of work. It is used by the asynchronous RESUME exit to identify the CICS thread
to be resumed after a DL/I call.

The 16-byte recovery token is constructed by concatenating an 8-byte unique CICS subsystem name (the
CICS applid) with the 8-byte CICS RMI recovery token (also known as the unit of work ID).

A further responsibility of the adapter is to manage CICS tasks when an orderly termination of the
CICS-DRA interface has been requested by means of the CICS termination program. In this case, it
continues to accept DL/I requests from CICS tasks currently using DBCTL, but does not allow new CICS
tasks to use DBCTL. When the adapter detects that the count of current tasks has reached zero, it issues
a DRA TERM call to shut down the interface.

Table 3 summarizes the types of invocations of the adapter code from CICS, and how the adapter reacts
to the individual invocation.

Table 4 summarizes the types of invocations of the adapter code from the DRA, and how the adapter
reacts to each individual invocation.

Table 5 on page 100 summarizes the cases when the adapter invokes the adapter exits.

Table 3. CICS-adapter request summary

Invocation Invoker Adapter action

Initialize Connection program Issues DRA INIT

Terminate-Orderly Disconnection program Issues DRA TERM after waiting for
CICS-DBCTL tasks to quiesce

Terminate-Fast Disconnection program Issues DRA TERM

PSB Schedule DBCTL call processor Issues THREAD SCHED

DL/I request DBCTL call processor Issues THREAD DLI

Prepare CICS syncpoint manager Issues THREAD PREP

Commit CICS syncpoint manager Issues THREAD COMTERM

Abort CICS syncpoint manager Issues THREAD ABTTERM

Lost To CICS cold start CICS syncpoint manager Issues COLD request

DBCTL should not be in doubt CICS syncpoint manager Issues UNKNOWN request

Task is terminating CICS task manager Issues TERMTHRD

Force Purge Task Control program Issues PURGE THREAD

Orderly CICS Term CICS termination Issues DRA TERM after waiting for
CICS-DBCTL tasks to quiesce

Immediate CICS Term CICS termination Issues DRA TERM

CICS is abending CICS termination Issues DRA TERM

CICS has been canceled CICS termination Returns to CICS

Table 4. DRA-adapter request summary

Invocation from the DRA Adapter action

CICS-DBCTL connection is complete Invoke the control exit

MVS SSI has rejected the IDENTIFY request to DBCTL Invoke the control exit

DBCTL has rejected the IDENTIFY request Invoke the control exit

Database control (DBCTL)

Chapter 11. Database control (DBCTL) 99

Table 4. DRA-adapter request summary (continued)

Invocation from the DRA Adapter action

Operator has replied CANCEL to message DFS690A Invoke the control exit

DBCTL has terminated abnormally Invoke the control exit

DRA has terminated abnormally Invoke the control exit

/CHECKPOINT FREEZE has been issued Invoke the control exit

PSB schedule, DL/I, syncpoint, thread termination, thread
purge, or interface termination request is to be suspended

Invoke the suspend exit

PSB schedule, DL/I, syncpoint, thread termination, thread
purge, or interface termination request is to be resumed

Invoke the resume exit

Table 5. Adapter exit summary

Circumstances Adapter action

Successful completion of THREAD SCHED request Invoke the monitoring exit

Completion of THREAD COMTERM or THREAD
ABTTERM request

Invoke the monitoring exit

DRA thread failure Invoke the status exit

Resynchronization request issued from CICS recovery
manager

Invoke the token exit

CICS orderly or immediate term Invoke the token exit

CICS ABEND Invoke the token exit

Completion of DRA TERM issued as a result of a
termination request from disconnection program

Invoke the statistics exit

Completion of DRA TERM issued as a result of a CICS
orderly termination request

Invoke the statistics exit

Suspend exit (DFHDBSPX)
The suspend exit is invoked by the adapter on behalf of the DRA so that a CICS thread can be suspended
during the processing of a DL/I call. The suspend exit outputs a trace entry immediately before issuing a
WAIT, and a trace entry immediately after it is posted by the resume exit.

The suspend exit is also invoked by the adapter when a disconnection request from the menu is being
processed.

Resume exit (DFHDBREX)
The resume exit is invoked asynchronously by the adapter on behalf of the DRA, and it is executed in the
DRA environment. It handles both normal resume and abnormal resume after an abend of the thread. The
resume exit issues an MVS POST.

When a thread fails, the resume exit is invoked and an ‘unsuccessful’ return code is passed back to the
DBCTL call processor, indicating that CICS must issue an abend for that thread (task).

Adapter exits
The following sections describe the adapter exits.

The adapter statistics exit (DFHDBSTX): The statistics exit is invoked by the adapter when the
CICS-DBCTL interface has been terminated by the CICS operator using the menu program to request
disconnection from DBCTL. The exit is also invoked by the adapter when CICS is terminated in an orderly
way.

Database control (DBCTL)

100 CICS TS for z/OS: CICS Diagnosis Reference

The function of the exit is to invoke the CICS statistics domain supplying the data that has been returned
from the DRA relating to the individual CICS-DBCTL session.

For a /CHECKPOINT FREEZE command, the exit is not invoked, but the statistics domain is called by
DFHCDBCT.

The adapter token exit (DFHDBTOX): The token exit is invoked by the adapter when a task is
encountered which has not been allocated a thread token, that is, it has not been through the DBCTL call
processor module. This occurs for resynchronization tasks and for the CICS termination invocation.

The adapter monitoring exit (DFHDBMOX): The monitoring exit is invoked by the adapter when
monitoring data has been returned by DBCTL as a result of a PSB schedule request, and a CICS
SYNCPOINT or DLI TERM request. The exit passes the data on to the CICS monitoring domain to update
the tasks monitoring information.

The adapter status exit (DFHDBSSX): The status exit is invoked by the adapter in the event of a DRA
thread failure, so that resources owned by the failing thread can be transferred to CICS, which then
releases the transferred resources during syncpoint processing.

DBCTL system definition
DBCTL system definition is described in the IMS System Definition Reference.

DBCTL PSB scheduling
When a CICS task requests the scheduling of a DL/I PSB by means of an EXEC DLI SCHEDULE request
or DL/I PCB call, and the request is for a DBCTL PSB, control is passed to DFHDLIDP.

Database calls
For DBCTL, DFHDLIDP invokes the CICS RMI to pass control to DBCTL.

DBCTL PSB termination
DBCTL PSB termination is performed during the syncpoint when the resource manager interface (RMI)
communicates with DBCTL.

System termination
Support is provided to close down the CICS-DBCTL interface during CICS termination. This should avoid
the possibility of causing DBCTL to terminate with a U113 abend because of CICS terminating while DL/I
threads are running on its behalf in DBCTL.

To provide the support, there is an extension to the RMI to invoke active adapters at CICS termination.

If CICS termination hangs because the CICS-DBCTL interface does not close down, the operator should
type in a /DISPLAY ACTIVE command on the DBCTL console and identify the threads corresponding to
the CICS system being terminated. This is possible because the threads’ recovery tokens, which are
displayed, start with the CICS applid. The operator should then issue /STOP THREAD requests for each
thread.

Control blocks
The following diagram shows the major control blocks used to support the CICS-DBCTL interface:

Database control (DBCTL)

Chapter 11. Database control (DBCTL) 101

The DL/I interface parameter list (DLP) is described in “DL/I interface parameter list (DLP)” on page 121.

The DBCTL global block (DGB) is acquired, from storage above the 16MB line, when the CICS-DBCTL
interface is first initialized. It lasts for the remainder of the CICS execution.

The DBCTL scheduling block (DSB) is acquired, from storage above the 16MB line, when a task issues a
PSB schedule request to DBCTL; that is, the PSB used does not appear in the remote PDIR. The DSB is
freed at task termination.

See the CICS Data Areas manual for a detailed description of these control blocks.

Modules

Module Description

DFHDBAT Adapter
DFHDBCON Initialization program
DFHDBCT Control program
DFHDBCTX Control exit
DFHDBDI Disable program
DFHDBDSC Termination program
DFHDBIE Inquiry screens
DFHDBIQ Inquiry program
DFHDBME Menu program
DFHDBMOX Monitoring exit
DFHDBNE Menu screens
DFHDBREX Resume exit
DFHDBSPX Suspend exit
DFHDBSSX Status exit
DFHDBSTX Statistics exit
DFHDBTOX Token exit
DFHDBUEX DBCTL user exit
DFHDLI DL/I router program
DFHDLIDP DBCTL call processor

Exits
The following global user exit points are provided for DBCTL:
v In DFHDBCR: XXDFB and XXDTO
v In DFHDBCT: XXDFA.

CSADLI
DLP

DLPDLI
DLPEDPEP
DLPDPEP
DLPDGB

TCADSBA DSB

DGB

Entry point for DFHDLI
Entry point for DFHEDP
Entry point for DFHDLIDP

Figure 32. Some control blocks used for DBCTL support

Database control (DBCTL)

102 CICS TS for z/OS: CICS Diagnosis Reference

For further information about these exit points, see the CICS Customization Guide and the CICS IMS
Database Control Guide.

Database control (DBCTL)

Chapter 11. Database control (DBCTL) 103

104 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 12. Data interchange program

The data interchange program (DFHDIP) supports the batch controller functions of the IBM 3790
Communication System and the IBM 3770 Data Communication System. Support is provided for the
transmit, print, message, user, and dump data sets of the 3790 system.

Design overview
The data interchange program is designed as a function manager for Systems Network Architecture (SNA)
devices. It is invoked via DFHEDI for command-level requests, or internally by the basic mapping support
(BMS) routines using the DFHDI macro. DFHDIP performs the following actions:

1. Determines whether a new output destination has been specified (it retains information about the
previous destinations in the data interchange control block) and, if so, builds appropriate FMHs to
select the new destination, and outputs these FMHs to the SNA device via terminal control.

2. Invokes the appropriate subroutine to perform the desired function:

ADD Builds ADD FMH, transmits it and the user data

REPLACE
Builds REPLACE FMH, transmits it and the user data

ERASE
Builds ERASE FMH and RECID FMH and transmits them

NOTE Builds NOTE FMH, transmits it, and returns the reply to the user

QUERY
Builds QUERY FMH, transmits it, and outputs END FMH

SEND Outputs user data

WAIT Waits for completion of the I/O

END Builds END FMH and transmits it

ABORT
Builds ABORT FMH and transmits it

ATTACH
Removes FMH from initial input

DETACH
Frees the storage used by DFHDIP

RECEIVE
Reads a complete record from the logical device.

3. Sets the appropriate return code.

Figure 33 on page 106 shows the data interchange program interfaces.

© Copyright IBM Corp. 1997, 2011 105

Notes:

1. The application program invokes DFHEDI (via DFHEIP) which then communicates with DFHDIP by
setting fields in the TCA.

2. DFHDIP receives control.

3. If no storage has been obtained for the data interchange block (DIB), storage control is invoked. The
storage is chained to the TCTTE. Significant status information, such as the currently selected
destination, is remembered in the data interchange block, which is freed at the end of task processing.

4. A trace entry is made.

5. If logging is present (protected task and message integrity) and if a destination change or function
change occurs on output, temporary-storage control is invoked to write the DIB to recoverable
temporary storage.

6. Terminal control is invoked to output any built FMH and also to output the user data. (DFHTC
TYPE=WRITE is issued.) For input requests, DFHTC TYPE=READ requests are issued to obtain a
non-null input record.

7. Any errors obtained from the device are decoded and placed in the TCA return code slot. If no errors
were detected, a return code of ‘0’ (zero) is returned.

Modules
DFHEDI, DFHDIP

Exits
No global user exit points are provided for this function.

Trace
The following point ID is provided for the data interchange program:
v AP 00D7, for which the trace level is DI 1.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

1
Application 2 Data interchange 3 Storage
program program control
EXEC CICS (DFHDIP)
...

4 Trace
control

5 Temporary
storage
control

7 6 Terminal
control

Figure 33. Data interchange program interfaces

Data interchange program

106 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 13. Distributed program link

Distributed program link enables a program (the client program) in one CICS region to issue an EXEC
CICS LINK command to link to a program (the server program) running in another CICS region (the
resource region). The link can be through intermediate CICS regions.

The communication in distributed program link processing is, from the CICS side, synchronous, which
means that it occurs during a single invocation of the client program, and that requests and replies
between two programs can be directly correlated.

The CICS Intercommunication Guide includes information about distributed program link processing.

Figure 34 gives an overview of distributed program link operation.

The DFHEIP module is described in Chapter 19, “EXEC interface,” on page 135. This routes all program
control requests to DFHEPC. DFHEPC passes all remote LINK requests to the program manager domain
(PGLE_LINK_EXEC request). For local programs, program manager links to the program and, on return, it
returns to DFHEPC. For remote programs, program manager returns to DFHEPC with and exception
response, with a reason code indicating “remote program”, and DFHEPC passes the request to the
intersystems program, DFHISP. The operation of DFHISP for distributed program link is the same as for
function shipping, but only the DFHXFP transformations are used. (See Chapter 26, “Function shipping,”
on page 277.) The operation of DFHPEP is described in Chapter 38, “Program control,” on page 333; the
interface to DFHPGLE LINK_EXEC is described in Chapter 95, “Program manager domain (PG),” on page
949.

CICS handles session failures and systems failures for distributed program link processing by returning a
TERMERR condition to the program that issued the LINK request.

SYSTEM A

Application program

LINK
command

DFHXFP
DFHEIP

DFHEPC

DFHPGLE Request to
system B

DFHISP
Response to
application
program

DFHXFP
DFHEIP

DFHEPC

DFHPGLE

DFHISP

SYSTEM B

DFHMIRS

DFHEIP

DFHEPC
DFHXFP

DFHPGLE

Server program

Response
DFHMIRS to

system A
DFHEIP

DFHEPC
DFHXFP

DFHPGLE

Figure 34. Overview of program link

© Copyright IBM Corp. 1997, 2011 107

If the server program terminates abnormally and does not handle the abend itself, DFHMIRS returns the
abend code to the program that issued the LINK request. This code is the last abend code to occur in the
server program, which may have handled other abends before terminating.

A client program using distributed program link can specify that a SYNCPOINT is to be taken in the
resource region on successful completion of the server program. That is, any resources updated by the
server program (or any associated program) are treated as if they are a separate unit of work.

Modules
The following modules are involved in the distributed program link:

DFHEIP
EXEC interface (see Chapter 19, “EXEC interface,” on page 135)

DFHEPC
DFHEIP program control interface (see Chapter 38, “Program control,” on page 333)

DFHISP
ISC converse (see Chapter 26, “Function shipping,” on page 277)

DFHMIRS
Mirror transaction (see Chapter 26, “Function shipping,” on page 277)

DFHPGLE
PG domain - link exec function (see Chapter 95, “Program manager domain (PG),” on page 949)

DFHXFP
Online data transformation program (see page 1489)

Exits
There are two global user exit points in DFHEPC: XPCREQ and XPCREQC.

Trace
No trace points are provided for this function.

Distributed program link

108 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 14. Distributed transaction processing

Distributed transaction processing enables a CICS transaction to communicate with a transaction running
in another system. The transactions are designed and coded explicitly to communicate with each other,
and thereby to use the intersystem link with maximum efficiency.

The communication in distributed transaction processing is, from the CICS side, synchronous, which
means that it occurs during a single invocation of the CICS transaction and that requests and replies
between two transactions can be directly correlated.

The CICS Intercommunication Guide tells you about multiregion operation and intersystem communication,
and also includes some information about distributed transaction processing. Guidance information about
designing and developing distributed applications is given in the CICS Distributed Transaction
Programming Guide.

Design overview
CICS handles session failures and systems failures for distributed transaction processing in the same way
as for CICS function shipping. See the relevant sections in Chapter 26, “Function shipping,” on page 277
for further information.

Distributed transaction processing with MRO and LU6.1
Figure 35 gives an overview of the modules involved with distributed transaction processing for MRO and
LU6.1 ISC.

The DFHEIP module is described in Chapter 19, “EXEC interface,” on page 135. This routes all terminal
control requests to DFHETC. DFHETC handles BUILD_ATTACH, EXTRACT, and POINT_TC requests
itself. It routes all other requests (SEND, WAIT, CONVERSE, RECEIVE (with journal)), to DFHZARQ,
except for FREE_TC and ALLOCATE_TC requests, which are routed to DFHZISP. If the request requires
that the user conversation state be returned, DFHETC calls DFHZSTAP. All these modules are described
in detail under “Modules” on page 111.

Mapped and unmapped conversations (LU6.2)
In mapped conversations, the data passed to and received from the LU6.2 application programming
interface (API) is simply user data. Mapped conversations use the normal CICS API. Application programs
and function shipping requests written for LU6.1 operate using mapped conversations when transferred to
LU6.2.

Figure 36 on page 110 gives an overview of the modules involved with the processing of mapped
conversations in LU6.2. ISC.

DFHEIP

BUILD_ATTACH DFHETC DFHZSTAP
EXTRACT
POINT_TC

DFHZARQ SEND DFHZISP FREE_TC
WAIT ALLOCATE_TC
CONVERSE
RECEIVE (with journal)

Figure 35. Distributed transaction processing for MRO and LU6.1

© Copyright IBM Corp. 1997, 2011 109

The DFHEIP module is described in Chapter 19, “EXEC interface,” on page 135. This routes all terminal
control requests to DFHETC. DFHETC routes all requests relating to an LU6.2 session to DFHETL except
for ALLOCATE_TC requests, which are routed to DFHZISP.

In turn, DFHETL calls DFHZARL to process most requests; it calls DFHZISP to handle FREE_TC
requests, and DFHZARM to handle the receipt of unrecognized or unsupported IDs. If the request requires
that the user conversation state be returned, DFHETL calls DFHZSTAP.

DFHZARL’s processing depends on the type of request; for example, it calls DFHZISP to allocate a
TCTTE, DFHZARR to receive data, and DFHZERH for outbound or inbound FMH7 processing. If the
request needs to be transaction routed, DFHZARL calls DFHZXRL to route the request to the
terminal-owning region (see Chapter 62, “Transaction routing,” on page 441).

With the exception of DFHZXRL, all these modules are described in detail under “Modules” on page 111.

Unmapped conversations (also known as basic conversations), are used principally for communication
with device-level products that do not support mapped conversations, and which possibly do not have an
API open to the user. In unmapped conversations, the data passed to and received from the LU6.2 API
contains GDS headers.

Figure 37 gives an overview of the modules involved with the processing of unmapped conversations in
LU6.2 ISC.

The DFHEIP module is described in Chapter 19, “EXEC interface,” on page 135. This passes control to
DFHEGL to process GDS commands. DFHEGL routes all GDS conversation-related commands directly to
DFHZARL. Some validation of application-provided parameters is performed, and errors are reflected back
to the application. If the request requires that the user conversation state be returned, DFHEGL calls
DFHZSTAP.

DFHEIP

DFHETC

LU6.2 ALLOCATE_TC
only

FREE_TC only
DFHETL DFHZSTAP DFHZISP

DFHZARL DFHZARM

DFHZISP DFHZARR DFHZERH DFHZXRL

Figure 36. Distributed transaction processing for mapped conversations in LU6.2

DFHEIP

DFHEGL DFHZSTAP

DFHZARL

DFHZISP DFHZARR DFHZERH DFHZXRL

Figure 37. Distributed transaction processing for unmapped conversations in LU6.2

Distributed transaction processing

110 CICS TS for z/OS: CICS Diagnosis Reference

DFHZARL’s processing depends on the type of request; for example, it calls DFHZISP to allocate a
TCTTE, DFHZARR to receive data, and DFHZERH for outbound or inbound FMH7 processing. If the
request needs to be transaction routed, DFHZARL calls DFHZXRL to route the request to the
terminal-owning region (see Chapter 62, “Transaction routing,” on page 441).

With the exception of DFHZXRL, all these modules are described in detail in the next section.

Modules

DFHEGL
DFHEGL processes GDS commands. It is an EXEC interface processor module, and receives control
directly from DFHEIP. The TCTTE for the session is located and checked for validity. All GDS
conversation-related commands are mapped into a DFHLUC macro call and routed directly to DFHZARL.
There is no mapping or unmapping of data, state indicators are not maintained, and there are no FMHs to
process.

DFHETC and DFHETL
DFHEIP routes all terminal control requests to DFHETC (the EXEC interface processor for terminal
control). DFHETC handles BUILD_ATTACH, EXTRACT, and POINT_TC requests itself. It routes all other
requests relating to an MRO or LU6.1 session to DFHZARQ except for FREE_TC and ALLOCATE_TC
requests, which are routed to DFHZISP. It routes all other requests relating to an LU6.2 session to
DFHETL except for ALLOCATE_TC, which is routed to DFHZISP.

DFHETL performs the following actions:

1. Maps an application request into a form suitable for the DFHZCP and DFHZCC application request
modules. This includes mapping application data into GDS records.

2. Detects errors and returns error codes to the application.

3. Unmaps data from GDS records.

4. Maintains state indicators.

For ISSUE CONFIRMATION, CONNECT PROCESS, EXTRACT PROCESS, ISSUE ERROR, ISSUE
ABEND, and ISSUE SIGNAL commands, DFHETL:

1. Maps application requests into DFHLUC macro calls.

2. Updates state indicators in the TCTTE (for example, the TCTTE indicator that shows that a CONNECT
PROCESS command has been issued).

For SEND and CONVERSE commands, DFHETL:

1. Obtains storage for the processing of outbound application data.

2. Creates attach FMHs, if appropriate.

3. Calls DFHZARL to transmit data.

For RECEIVE commands, DFHETL:

1. Obtains storage for the processing of inbound data.

2. Calls DFHZARL to receive inbound data.

3. Extracts inbound FMHs, as appropriate.

4. Unmaps inbound data.

5. Validates LLs and rejects them if not valid.

6. Manages the passing of data back to the application.

Distributed transaction processing

Chapter 14. Distributed transaction processing 111

7. If the application issues a RECEIVE NOTRUNCATE request in order to receive only part of the chain,
retains the residual data for subsequent RECEIVE requests. DFHETL receives one complete chain of
data at a time from DFHZARL.

For WAIT commands, DFHETL calls DFHZARL.

For FREE commands, DFHETL:

1. Checks that the terminal is in the correct state to be freed.

2. Frees the storage used to hold RECEIVE data and the ETCB.

3. Calls DFHZISP to free the session.

DFHZARL
DFHZARL is always invoked via the DFHLUC macro. The DFHLUCDS DSECT maps a parameter list that
is set up to pass information to and return information from DFHZARL. DFHZARL manages data in
buffers, not in TIOAs. SEND commands cause data to be assembled by DFHZARL into a buffer until a
WAIT, or other event, causes the data in the buffer to be transmitted.

DFHZARL invokes DFHZSDL to send data to VTAM, by placing requests on the activate chain. However,
for optimization, DFHZARL can invoke DFHZSDL directly. Receive requests are handled by DFHZARR.

DFHZARL invokes DFHZUSR to manage the conversation state. The LU6.2 states for each session are
stored in the TCTTE for that session.

If the request needs to be transaction routed, DFHZARL calls DFHZXRL to route the request to the
terminal-owning region (see Chapter 62, “Transaction routing,” on page 441).

Details of DFHZARL’s processing for the principal functions of the DFHLUC macro that is used to invoke
DFHZARL are given below.

INITIAL_CALL function
This function is requested by DFHZSUP. DFHZARL acquires LU6.2 send and receive buffers. If the
transaction is being started as a result of an ATTACH request received from a remote system, DFHZARL
transfers any data received with the attach header from the TIOA into the receive buffer.

ALLOCATE function
DFHZARL performs the following actions:

1. If the request passed the address of a profile entry, puts this address in the TCA. If the request passed
the name of a profile, calls transaction manager to locate the entry and then puts the address of the
entry in the TCA.

2. If the request passed a netname rather than a specific sysid, calls DFHZLOC to locate the TCTTE for
the netname and then puts the sysid into the DFHLUC parameter list (as if the caller had the specified
sysid).

3. Copies the DFHLUC parameter list to LIFO storage.

4. Calls DFHZISP to allocate a TCTTE.

5. Addresses the TCTTE allocated.

6. Acquires LU6.2 send and receive buffers.

7. Sets the user state machine (DFHZUSRM), request = ALLOCATE_RESOURCE.

8. Returns results to the caller.

SEND function
DFHZARL performs the following actions:

1. Checks the user state machine (DFHZUSRM).

Distributed transaction processing

112 CICS TS for z/OS: CICS Diagnosis Reference

2. Checks the LL count and maintains a record of the outstanding LL count.

3. If the command is SEND LAST, INVITE, or CONFIRM, and the outstanding LL count is nonzero,
issues an error message.

4. Sets the user state machine (DFHZUSRM).

5. Issues RECEIVE IMMEDIATE requests, as required, to pick up any negative responses sent by the
partner program.

The caller must specify WAIT in the request to force the data to be sent immediately. SEND CONFIRM
has an implicit WAIT, and control is not returned until a response has been received, when the state
machine is set.

For a SEND request with WAIT, DFHZARL then:

1. Sets the user state machine (DFHZUSRM), request=WAIT.

2. Invokes DFHZSDL for transmission of the data in application area or send buffer.

For a SEND request without WAIT, DFHZARL then:

1. If there is sufficient space in the send buffer for all the data, transfers the data from the application
area to the send buffer, and returns control to the caller.

2. Saves the INVITE and LAST indicators.

3. If the send buffer cannot hold all the data, invokes DFHZSDL for an implicit SEND.

If data or a CONFIRM command was sent (or both), DFHZARL then:

1. Checks for a signal received.

2. Checks for exception (negative) response received. If found, calls DFHZERH to handle the error. On
return, sets the state machine.

3. Returns results to the caller.

When an implicit send is required, DFHZARL passes the data to DFHZSDL for transmission, passing the
address of the data in the send buffer and in the application buffer. The total length of data passed to
DFHZSDL is a multiple of the request unit size. On return to DFHZARL, the remaining data is transferred
to the send buffer. The parameters passed to DFHZARL, such as INVITE and LAST, are not transmitted
by DFHZSDL.

RECEIVE function
DFHZARL passes the DFHLUC parameter list, specifying the type of receive required, to DFHZARR for
processing (see “DFHZARR” on page 115).

ISSUE ERROR or ABEND function
DFHZARL is called as a result of an ISSUE ERROR or ISSUE ABEND command, and performs the
following actions:
1. Sets the user state machine
2. Calls DFHZERH.

DFHZARM
DFHETL may invoke DFHZARM to provide service functions. DFHZARQ passes control to DFHZARM
instead of initiating DFHZSDS, DFHZRVS, and so on, if DFHZARQ finds that it is an LU6.2 session. This
applies to the SEND, WAIT, RECEIVE, and SIGNAL commands. The same applies to DFHZISP for the
FREE command.

DFHZARM translates the data stream to and from a format suitable for invoking DFHZARL. In particular:

v An LU6.2 attach FMH may have to be requested.

v Data must be passed in GDS record format (structured fields preceded by an LLID).

Distributed transaction processing

Chapter 14. Distributed transaction processing 113

DFHZARM is invoked via the DFHLUCM macro, which has seven executable options:
DFHLUCM TYPE =
– SEND
– RECEIVE
– WAIT
– SIGNAL
– FREE
– INVALID_ID

DFHLUCM TYPE=STORAGE defines the storage in LIFO for passing primary input and output. The
DSECT name is DFHLUMDS. TCTTE contains the secondary input and output. The principal functions are
described in the following sections.

SEND function
DFHZARM performs the following actions:

1. Maps the data into GDS record format. The IDs used are:
v X'12F1'
v X'12F2'
v X'12FF'.

2. Examines bits set in the TCTTE by DFHZARL to determine which DFC to apply.

3. Invokes DFHZARL (using a DFHLUC TYPE=SEND,LIST=... macro call) to pass the GDS records and
DFC indicators.

4. Updates the state bits in TCTTE as necessary.

5. Interrogates the LU6.2 ATTACH_FMH_BUILT bit in the TCTTE, which was set by DFHZSUP or
DFHETL. This bit indicates whether this is first SEND. If an LU6.2 attach header has not already been
built as a result of a CONNECT PROCESS command, DFHZARM issues CONNECT_PROCESS to
DFHZARL, assuming synclevel 2, before sending the data.

RECEIVE function
DFHZARM performs the following actions:

1. Calls DFHZARL using TYPE=BUFFER. Two calls are made. On the first call, the first 4 bytes (LLID)
are retrieved into LIFO. These are examined and the LL is used to determine the TIOA size and to
specify the length required in the second call.

2. On the second call, retrieves the remainder of the data directly into the TIOA. If the LL indicates
concatenated data, a series of calls is made to retrieve all the data.

FREE function
The FREE function is used, for example, by DFHZISP to ensure that I/O has completed and CEB sent,
using null data if necessary.

INVALID_ID function
The INVALID_ID function is used by DFHETL and DFHZARM itself. It handles the receipt of unrecognized
or unsupported IDs. DFHZARM calls DFHZARL with ISSUE_ERROR (X'0889010x'), and sends a record
with ID X'12F4' followed by the unrecognized ID. If the remote system responds, DFHZARM turns the
flows around so that the local system can try again.

LU6.1 chains
An LU6.1 chain corresponds to one SEND command. LU6.2 chains are bigger, so:

v For outbound data, DFHZARM maps one SEND into one structured field (concatenated if necessary).

v For inbound data, DFHZARM retrieves one (possibly concatenated) field and calls it a chain, thus
preserving compatibility.

Distributed transaction processing

114 CICS TS for z/OS: CICS Diagnosis Reference

DFHZARQ
DFHETC routes SEND, WAIT, CONVERSE, and some RECEIVE commands to DFHZARQ. RECEIVE
commands are passed to DFHZARQ if input journaling is in effect. Otherwise, the call is routed to
DFHZARL directly.

DFHZARQ passes control to DFHZARM instead of initiating DFHZSDS, DFHZRVS, and so on, if
DFHZARQ finds that it is an LU6.2 session. This applies to the SEND, WAIT, RECEIVE, and SIGNAL
commands.

Reasons for calling DFHZARQ are:

v To avoid duplication of existing code

v So that DFHZCP performs journaling of outbound data

v To perform an implicit CONNECT PROCESS if SEND or CONVERSE is the next session-related
command after ALLOCATE

v To enable the SNA change direction (CD) and end bracket (EB) indicators to flow with the data.

DFHZARR
DFHZARR is called by DFHZARL to handle receive requests. Details of the processing follow.

RECEIVE function
This function must be able to handle receipt of the following:
v Application data
v FMH7s and ER1s (negative responses)
v PS_headers (Prepares, Request_commits)
v Indicators such as CD, CEB, and RQD2
v Signal.

Figure 38 gives an overview of the modules involved with the processing of receive requests. These
modules are described in Chapter 116, “CICS executable modules,” on page 1449.

DFHZARL passes the DFHLUC parameter list, specifying the type of receive required, to DFHZARR.

DFHZARR then performs the following actions:

1. Checks that request is valid; if not, returns error codes.

2. Initializes the application and LU6.2 receive buffers (by calls to DFHZARRA and the DFHZARR0
subroutine of DFHZARR respectively).

3. Calls DFHZARRC to determine what to process next.

4. Depending on DFHZARRC’s response, calls the relevant subroutine.

5. If “enough” (or all that can be) has not been received, loops back to step 3; otherwise step 6.

DFHZARL

DFHZARR

DFHZARRA DFHZARRC DFHZARER DFHZARRF

DFHZERH

DFHZRVL

DFHZUSR

Figure 38. Distributed transaction processing of LU6.2 receive requests

Distributed transaction processing

Chapter 14. Distributed transaction processing 115

6. Tests for (and returns) signal when it has been received.

The results of the receive are passed back to the caller in the DFHLUC parameter list.

To control this processing, DFHZARR uses the variables receive_type and what_next, as follows.

receive_type can have the following values:
RECEIVE_WAIT Request was a receive and wait.
RECEIVE_IMMEDIATE Request was a receive immediate.
LOOK_AHEAD All the allowed user data has been received, but only one receive

immediate call to the DFHZARR1 subroutine of DFHZARR is permitted to
attempt to pick up indicators such as CD, CEB, or a PS_header.

NO_MORE_RECEIVES No more calls to DFHZARR1 are permitted, but processing may continue
with what has already been received.

NO_RECEIVE_LOOK_AHEAD
All the allowed user data has been received. An attempt must be made to
pick up indicators such as CD, CEB, or a PS_header without a call to
DFHZARR1. This value is only required for a receive immediate request.

RECEIVE_COMPLETE Receive processing is finished.

The first two values are possible initial values of receive_type, and the other four are used as the receive
progresses.

what_next is an output of DFHZARRC, and represents what is next to be processed. It can have the
following values:
DATA_RECORD Application data
FMH_RECORD FMH7 in the buffer
PS_HEADER_RECORD Prepare or Request_commit
PARTIAL_LL First byte of a logical record only, therefore cannot tell whether it is a

DATA_RECORD or PS_HEADER_RECORD
CD Change Direction
CEB Conditional End Bracket
RQD2 RQD2 without CD or CEB
RQD2_CD RQD2 with CD
RQD2_CEB RQD2 with CEB
ER1 Negative response
EMPTY_BUFFER Nothing available to receive.

DFHZERH
DFHZERH is called by DFHZARL or DFHZARRF, when it is required to transmit error information or when
error information has been received.

Outbound errors
For outbound errors, DFHZERH is invoked by DFHZARL following an ISSUE_ERROR, ISSUE_ABEND, or
SYNC_ROLLBACK request.

An FMH7 must be transmitted, but can only be transmitted if the session is in the send state.

If the session is in the receive state, DFHZERH:
1. Sends a negative response
2. Purges the remaining data to end of chain.

In all cases, DFHZERH then:
1. Checks that the session is still in bracket
2. Clears the send buffers
3. Calls DFHZARL to send the FMH7.

Distributed transaction processing

116 CICS TS for z/OS: CICS Diagnosis Reference

Inbound errors
For inbound errors, DFHZERH is invoked by DFHZARL or DFHZARRF when a process-level exception
response or an FMH7 has been received.

If an exception response is received while in the send state, DFHZERH purges the present output buffer
and sends ‘LIC,CD,RQE1’ to put the conversation into receive state—so that the following FMH7 can be
received.

If an FMH7 is received, DFHZERH examines the associated sense code and any GDS error log data, then
returns to its caller.

DFHZISP
DFHZISP is called by DFHETC to perform ALLOCATE_TC requests. (ALLOCATE commands are passed
to DFHZISP because DFHETC cannot check the session type until the session is allocated.)

DFHZISP is also called to perform FREE_TC requests.

DFHZSTAP
DFHZSTAP provides a means of determining the conversation state of an MRO or LU6.2 session from the
application side. This function is required if the application issues an EXEC CICS EXTRACT ATTRIBUTES
command with the STATE option, or a conversation-based command with the STATE option.

For MRO, modules that invoke MVS services via the DFHTC macro also update the conversation state
information with a DFHZCNVM TYPE=PUT macro call. When an application requires the conversation
state of a session, DFHETC calls DFHZSTAP using a DFHZSTAM TYPE=GETCURRSTATE macro, which
returns a value representing the conversation state of the session.

For LU6.2, DFHZUSR is called to maintain the user conversation state machine. (See Chapter 66, “VTAM
LU6.2,” on page 479 for further details.) When an application requires the conversation state of a session,
DFHETL (mapped) or DFHEGL (unmapped) calls DFHZSTAP using a DFHZSTAM
TYPE=GETCURRSTATE macro. DFHZSTAP examines the DFHZUSR state machine and maps the
information into a value representing the conversation state of the session.

Exits
No global user exit points are provided for this function.

Trace
The following point IDs are provided for distributed transaction processing:

v AP FDxx, for which the trace level is TC 1

v AP FExx (LU6.2 application receive requests), for which the trace levels are TC 2 and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Distributed transaction processing

Chapter 14. Distributed transaction processing 117

118 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 15. DL/I database support

Facilities for accessing DL/I databases and database control (DBCTL) support are available only with IMS.

Within a single CICS system, the following types of support can be available:

v DBCTL support present. For specific information about DBCTL, see Chapter 11, “Database control
(DBCTL),” on page 93.

v Remote DL/I and DBCTL support present (the PDIR system initialization parameter is specified). For
specific information about remote DL/I, see Chapter 41, “Remote DL/I,” on page 341.

The rest of this section covers DL/I database support in general.

Design overview
The following types of DL/I requests can be made by a CICS system:

v EXEC DLI statements (converted into standard CALL DLI statements by DFHEDP)

v CALL DLI statements.

CICS support for DL/I is provided as follows:

1. A router component

This component determines whether the call is using a remote or DBCTL PSB, and passes control to
the appropriate call processor. This component is described in more detail later in this section.

2. A DL/I call processor

This component is subdivided into:
v A remote DL/I call processor
v A DBCTL DL/I call processor.

Each call processor deals with a specific interface that is described in the appropriate section of this
book for the remote DL/I function and the DBCTL function.

Figure 39 shows the relationships between the components of the CICS-DL/I interface.

Notes:

1. When DL/I functions are requested by an application program or a CICS control module through
execution of a CALL or CALLDLI macro, DFHDLI sets the required fields in the TCA. EXEC DLI
statements are converted into standard CALL DLI statements by DFHEDP.

CICS-DL/I
interface
(DFHDLI,
DFHDLIRP,
DFHDLIDP)

Application
program

CALL DLI
EXEC DLI

TCA

RMI DBCTL

1

Figure 39. CICS-DL/I interfaces

© Copyright IBM Corp. 1997, 2011 119

If the request is for a remote database, DFHDLI passes control to DFHDLIRP. If the request is for a
DBCTL database, DFHDLI passes control to DFHDLIDP.

In addition to processing DL/I input/output requests, the DL/I interface, on request, schedules and
terminates DL/I program specification blocks (PSBs).

The remainder of this section is concerned with the router component.

The router component (DFHDLI)
The router component receives a request in standard CALL DLI parameter lists. At schedule time, it
determines whether the request is a remote or DBCTL request.

Amongst the functions of the router are the following:

Deciding where to process a request
At PSB schedule time, the router determines whether the DL/I requests issued from the application
program should be routed to DBCTL or another CICS system (remote). The presence (or absence) of the
PSB used in the PDIR determines where the call gets routed.

If no PDIR exists (that is, the PDIR=NO system initialization parameter is specified or is allowed to
default), the request is routed to the DBCTL call processor.

If a PDIR has been specified, the router module scans the PDIR. All entries in the PDIR have a SYSIDNT
option specified. If the PSB is not found in the PDIR, or if the PDIR entry specifies a SYSIDNT that is the
SYSIDNT of the CICS system that is currently running, the request is routed to the DBCTL call processor.
Otherwise, the request is routed to the remote call processor.

All DL/I requests are routed to the same DL/I call processor as the corresponding PSB schedule request in
the same unit of work.

Initiating synchronization processing
The router provides special handling of the DL/I TERM call. When the router detects a TERM call, it forces
a syncpoint, causing CICS to carry out syncpoint processing for the task.

Generating CICS trace records
The router module generates CICS trace records at DL/I call entry and DL/I call exit.

Control blocks
DL/I database support uses the control blocks DIB, DLP, and UIB, which are shown in Figure 40 on page
121.

DL/I database support

120 CICS TS for z/OS: CICS Diagnosis Reference

DL/I interface block (DIB)
When an application program issues EXEC DLI requests, it uses the user DL/I interface block (DIB)
instead of the user interface block (UIB). On return, DFHEDP extracts data from the UIB to place in the
DIB. The storage for the user DIB is part of the application program. The definition of the user DIB is
automatically inserted by the CICS translator for an EXEC DLI application program.

DL/I interface parameter list (DLP)
The DL/I interface parameter list (DLP) is a global DL/I interface control block that lasts for the duration of
a CICS session, and contains information relating to the type of DL/I support present in the CICS system.
The DLP is created during CICS startup and is addressed by CSADLI in the CSA optional features list.

See CICS Data Areas for a detailed description of this control blocks.

User interface block (UIB)
The user interface block (UIB) is the control block used by the CALL and CALL DL/I interfaces to pass
response codes and the PCB address list to application programs using CALL DL/I services. The UIB is
acquired when a task issues its first PSB schedule request specifying that it requires a UIB. The UIB is
freed at task termination. TCADLIBA points to the UIB.

See the CICS Data Areas manual for a detailed description of these control blocks.

Application
program

EXEC DLI
DFHEDP
DFHDLI
DFHDLIDP
DFHDLIRP

DLP

Application
program

CALL DLI

DIB

UIB

Figure 40. Control blocks for DL/I database support

DL/I database support

Chapter 15. DL/I database support 121

Modules
Figure 41 shows the module flow of DL/I requests to the DL/I call processors. DL/I requests from
application programs made using CALL or CALL DL/I are handled by DFHEIP. Requests made using
EXEC DLI are passed from DFHEIP, to the RMI, to DFHEDP. Next, three main CICS-DL/I interface
modules process the requests. The first module, DFHDLI, determines what sort of DL/I request is being
made and then passes control to one of two call processors. These are the DBCTL DL/I call processor,
DFHDLIDP, and the remote call processor, DFHDLIRP. DFHDLIDP routes the requests to the RMI, then
DFHDBAT, to IMS/ESA® modules. DFHDLIRP routes the request to DFHISP.

The common CICS-DL/I interface modules consist of the following:

v DFHDLI—contains the code for routing requests to DFHDLIRP and DFHDLIDP

v DFHDLIDP—contains the code for DBCTL requests.

v DFHDLIRP—contains the code for remote DL/I requests

Exits
The following global user exit points are provided in DFHDLI: XDLIPRE and XDLIPOST. For further
information about these, see the CICS Customization Guide and the CICS IMS Database Control Guide.

DFHEIP DFHEIP

RMI

DFHEDP

DFHDLI

CALL or CALLDLI EXEC DLI

Application

DFHDLIRP

DFHISP

(remote DL/I)

DFHDLIDP

RMI

DFHDBAT

IMS/ESA
modules

(DBCTL)

Figure 41. Module flow of DL/I requests to the DL/I call processors

DL/I database support

122 CICS TS for z/OS: CICS Diagnosis Reference

Trace
The following point ID is provided for DL/I and DBCTL:
v AP 03xx, for which the trace levels are FC 1, FC 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

DL/I database support

Chapter 15. DL/I database support 123

124 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 16. Dump utility program (DFHDU640)

The dump utility program (DFHDU640) runs offline (in batch mode) to produce a printout of the CICS
transaction dumps from a CICS transaction dump data set (DFHDMPA or DFHDMPB).

Design overview
DFHDU640 operates in batch mode while one of the dump data sets is closed. Each area, program, and
table entry is identified, formatted, and printed separately, with both actual and relative addresses to
facilitate analysis. You can select single or double spacing of dumps when the dump utility program is
executed.

The CICS dump data set (DFHDMPA or DFHDMPB) contains a number of CICS transaction dumps.
These are produced as the result of a transaction abend or a user-application EXEC CICS DUMP
TRANSACTION request.

DFHDU640 runs as a stand-alone program in batch mode to format and print the contents of a transaction
dump data set. Parameters specified on the SYSIN data set can be used to print only selected dumps or
an index of the dumps in the data set.

For further details about DFHDU640, see the CICS Operations and Utilities Guide.

Data sets
There are three sources of data for DFHDU640:
Parameters on JCL EXEC statement

A character string of keywords that can be specified to control the layout
and format of the dumps.

SYSIN Records specifying the criteria to be used in selecting which of the dumps
on the data set are to be printed.

DFHDMPDS The transaction dump data set.

There are two output files:
DFHPRINT The print file for the formatted transaction dump.
DFHTINDX The print file for the index of dumps on the data set.

Processing
Figure 42 shows the dump utility program interfaces.

The overall flow of the processing within DFHDU640 is as follows. Unless otherwise indicated, all
processing is performed by DFHDUPR, the main component of DFHDU640.

1. Process the EXEC parameters if they are present.

2. Call DFHDUPP to open the print data set DFHPRINT.

(EXEC PARAMETERS) (DFHDMPDS) (SYSIN)

DFHDUnnn DFHDUPS

DFHDUPH DFHDUPP DFHDUPM

(DFHTINDX) (DFHPRNT)

Figure 42. Dump utility program interfaces

© Copyright IBM Corp. 1997, 2011 125

3. Open the dump data set DFHDMPDS.

4. Read the dumps from DFHDMPDS. For each dump there are four categories of records:
Dump header record Call DFHDUPS to see whether this dump is required for printing. On

the first time through, DFHDUPS reads the selective print information
from SYSIN. DFHDUPS also calls DFHDUPH to add the dump to the
dump index data set DFHTINDX. DFHDUPH opens DFHTINDX on its
first invocation.

Module index records DFHDUPM is called to accumulate the module index information in a
table in main storage.

Other data records The data is formatted into print lines and DFHDUPP is invoked to write
them to DFHPRINT.

Dump trailer record DFHDUPM is invoked to sort and format the module index records.
DFHDUPP is called to write them to DFHPRINT.

5. When the end of the dump data set is encountered:

a. DFHDUPP is called to close DFHPRINT.

b. DFHDUPH is called to close DFHTINDX.

c. DFHDUPR closes DFHDMPDS.

6. DFHDU640 terminates.

Modules

Module Function

DFHDUPR Controlling routine, responsible for reading information from the dump data set DFHDMPDS.

DFHDUPS Receives the address of a dump header record from the dump data set, and decides whether
this dump fulfils the criteria for printing. On first entry, reads and stores the selective print
parameters from SYSIN.

DFHDUPP Is responsible for all access to the print file DFHPRINT, namely for OPEN, CLOSE, and PUT
requests.

DFHDUPH Writes line to dump index for each dump header record encountered. On first entry, opens
the index file DFHTINDX.

DFHDUPM Invoked for each module index entry found to save information. Invoked when dump trailer
record found to format and print the complete module index.

Copy books

Copy book Function

DFHDUPSC Contains the definition of the parameter list passed to DFHDUPS.

DFHDUPMC Contains the definition of the parameter list passed to DFHDUPM.

DFHDUPPC Contains the definition of the parameter list passed to DFHDUPP.

Exits
Global user exit points are not applicable to offline utilities.

Trace
Trace points are not applicable to offline utilities.

Dump utility program (DFHDU640)

126 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 17. Dynamic allocation sample program (IBM 3270
only)

Any data set defined to file control can be allocated to CICS dynamically when the file is opened, rather
than at CICS job initiation time. This allocation takes place automatically if job control statements for the
data set are not included in the CICS job stream, and if both the data set name and the disposition have
been specified in the file control table when the data set is opened.

The dynamic allocation sample program provides an alternative way to perform dynamic allocation. When
used with a terminal of the IBM 3270 Information Display System, it gives the user access to the functions
of DYNALLOC (SVC 99) in MVS. This can be used, in conjunction with master terminal functions and
suitable operating procedures, to allocate and deallocate any file that CICS can dynamically open and
close.

Design overview
The program runs as a CICS transaction, using CICS functions at the command level wherever possible. It
does not modify any CICS control blocks. Only the DYNALLOC function is available through the program;
any manipulation of the environment before or after the DYNALLOC request must be done by other
means.

CICS supplies sample resource definitions for the program load module, DFH99, and the transaction,
ADYN, that invokes it. These definitions are in the group DFH$UTIL. Note that DFH99 must be defined
with EXECKEY(CICS).

The flow in a normal invocation is as follows. The main program, DFH99M, receives control from CICS,
and carries out initialization. This includes determining the screen size and allocating input and output
buffer sections, and issuing initial messages. It then invokes DFH99GI to get the input command from the
terminal. Upon return, if the command was null, the main program terminates, issuing a final message.

The command obtained has its start and end addresses stored in the global communication area, COMM.
The main program allocates storage for tokenized text, and calls DFH99TK to tokenize the command. If
errors were detected at this stage, further analysis of the command is bypassed.

Following successful tokenizing, the main program calls DFH99FP to analyze the verb keyword. DFH99FP
calls DFH99LK to look up the verb keyword in the table, DFH99T. DFH99LK calls DFH99MT if an
abbreviation is possible. Upon finding the matching verb, DFH99FP puts the address of the operand
section of the table into COMM, and puts the function code into the DYNALLOC request block.

The main program now calls DFH99KO to process the operand keywords. Each keyword in turn is looked
up in the table by calling DFH99LK, and the value coded for the keyword is checked against the attributes
in the table. DFH99KO then starts off a text unit with the appropriate code, and, depending on the
attributes the value should have, calls a conversion routine

v For character and numeric strings, DFH99CC is called. It validates the string, and puts its length and
value into the text unit.

v For binary variables, DFH99BC is called. It validates the value, converts it to binary of the required
length, and puts its length and value into the text unit.

v For keyword values, DFH99KC is called. It looks up the value in the description part of the keyword
table using DFH99LK, and puts the coded equivalent value and its length into the text unit.

When a keyword specifying a returned value is encountered, DFH99KO makes an entry on the returned
value chain, which is anchored in COMM. This addresses the keyword entry in DFH99T, the text unit

© Copyright IBM Corp. 1997, 2011 127

where the value is returned, and the next entry. In this case the conversion routine is still called, but it only
reserves storage in the text unit, setting the length to the maximum and the value to zeros.

When all the operand keywords have been processed, DFH99KO returns to the main program, which calls
DFH99DY to issue the DYNALLOC request.

DFH99DY sets up the remaining parts of the parameter list, and if no errors too severe have been
detected, a subtask is attached to issue the DYNALLOC SVC. A WAIT EVENT is then issued against the
subtask termination ECB. When the subtask ends, and CICS dispatches the program again, the
DYNALLOC return code is captured from the subtask ECB, with the error and reason codes from the
DYNALLOC request block, and a message is issued to give these values to the terminal.

DFH99DY then returns to the main program, which calls DFH99RP to process returned values. DFH99RP
scans the returned value chain, and for each element issues a message containing the keyword and the
value found in the text unit. If a returned value corresponds to a keyword value, DFH99KR is called to look
up the value in the description, and issue the message.

Processing of the command is now complete, and the main program is reinitialized for the next one, and
loops back to the point where it calls DFH99GI.

Messages are issued at many places, using macros. The macro expansion ends with a call to DFH99MP,
which ensures that a new line is started for each new message, and calls DFH99ML, the message editor.
Input to the message editor is a list of tokens, and each one is picked up in turn and converted to
displayable text. For each piece of text, DFH99TX is called, which inserts the text into the output buffer,
starting a new line if necessary. This ensures that a word is never split over two lines.

When the command has been processed, the main program calls DFH99MP with no parameters, which
causes it to send the output buffer to the terminal, and initialize it to empty.

Control blocks
The sample program does not have any control blocks.

Modules

Module Function

DFH99BC Convert to binary target
DFH99CC Character and number string conversion
DFH99DY Issue SVC 99 and analyze result
DFH99FP Process function keyword
DFH99GI Format display and get input
DFH99KC Keyword value conversion
DFH99KH List keywords for help
DFH99KO Process operator keywords
DFH99KR Convert returned value to keyword
DFH99LK Search key set for given token
DFH99ML Build message text from token list
DFH99MM Main control program (entry point DFH99M)
DFH99MP Message filing routine
DFH99MT Match abbreviation with keyword
DFH99RP Process returned values
DFH99T Table of keywords
DFH99TK Tokenize input command
DFH99TX Text display routine
DFH99VH List description for help

Dynamic allocation sample program

128 CICS TS for z/OS: CICS Diagnosis Reference

Exits
No global user exit points are provided for this function.

Trace
This sample program makes no entries in the trace, over and above the normal entries one would see for
a CICS user transaction.

External interfaces
SVC 99—MVS DYNALLOC SVC.

Dynamic allocation sample program

Chapter 17. Dynamic allocation sample program (IBM 3270 only) 129

130 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 18. ECI over TCP/IP

The IP ECI (IE) domain processes external call interface (ECI) requests that arrive from a CICS client that
is connected to CICS by a TCP/IP network. It attaches a mirror task to issue the appropriate program link
request, and returns the results to the client.

Design Overview
The CICS code that processes external call interface (ECI) requests that arrive from a TCP/IP network via
the Sockets Domain (SO) is mostly contained within the IP ECI (IE) domain. Some code that is logically
part of the function runs in AP domain. This is because SO domain works by attaching a listener task
(CIEP for IPECI) to handle incoming data, and IE domain attaches a mirror task (CPMI) to issue the
program link request and return any resulting output.

There are five logically separate pieces of code for this function:

v IE domain initialisation and termination code in DFHIEDM. See Chapter 84, “IP ECI (IE) domain,” on
page 811 for more information.

v The AP domain part of the listener task, in program DFHIEP.

v The IE domain part of the listener task, in the PROCESS_ECI_FLOW function of program DFHIEIE.
See Chapter 84, “IP ECI (IE) domain,” on page 811 for more information.

v The AP domain part of the mirror task, in programs DFHMIRS and DFHIEXM.

v The IE domain part of the mirror task, in the SEND, RECEIVE and SEND_ERROR functions of program
DFHIEIE. See Chapter 84, “IP ECI (IE) domain,” on page 811 for more information.

Listener task, CIEP
The CIEP task is attached by SO domain when it receives data on the port specified in the IPECI
TCPIPSERVICE. The CIEP transaction handles control flows directly, or attaches a mirror task to issue the
ECI program link request.

The valid flows that may be received by CIEP are:

v Attach FMH for CCIN INSTALL

The initial flow from a client is an attach for the CCIN transaction to install the client. No attach is done
as IE domain handles the install processing internally.

v Attach FMH for CCIN UNINSTALL

A client can terminate its connection with CICS by sending a CCIN UNINSTALL transaction request. No
attach is done as IE domain handles the install processing internally.

v Attach FMH for some other transid, assumed to be a mirror

v FMH7 indicating the client wishes to abend a conversation.

v Connection level PING request/reply

v Conversation level PING request/reply

v Connection status 01, last transmission from client (equivalent to UNINSTALL)

v User data in extended conversation (Link request or SYNCPOINT RU)

All other flows are rejected by CIEP; conversation errors with an FMH7, control errors by closing the
socket.

The different flows are distinguished by testing various fields in the flow headers, including the SNA format
RH.

© Copyright IBM Corp. 1997, 2011 131

Request header settings
Response headers are never sent. All flows have request headers. Errors are returned by sending FMH7
with CEB.

All flows are OIC,RQE1.

The link requests to a long running mirror are packaged as FMH43s but, because they are within a GDS,
should not cause the RH FMH bit to be set on.

Direction Type of flow Request header flags

in CCIN INSTALL FMH5 BB OIC CD RQE1 FMH

out CCIN INSTALL reply CEB OIC RQE1

in CCIN UNINSTALL request BB CEB OIC RQE1 FMH

in Mirror FMH5 + link request BB OIC CD RQE1 FMH

out Non long-running mirror link reply CEB OIC RQE1

out Long-running mirror link reply OIC CD RQE1

in Long-running mirror link request OIC CD RQE1

in Long-running mirror sync flow OIC CD RQE1

out Long-running mirror sync reply CEB OIC RQE1

out Conversation failure (FMH7) CEB OIC RQE1 FMH

in FMH7 CEB OIC RQE1 FMH

Mirror task, CPMI
A mirror task is attached by the listener task to handle a particular client conversation. The transaction
attach callback module for IE mirrors is DFHIEXM. It sets the IECCB (IP ECI Conversation Control Block)
to be the mirror task's facility token and establishes security context for the mirror task, using userid and
password sent from the client where required.

The mirror task main program, DFHMIRS, issues the IEIE RECEIVE for the available data, and then
performs the same functions as it does for ECI requests received in other environments. It then issues the
IEIE SEND to return the output from the linked program to the client. For a conversation marked by the
client as 'extended', the mirror then issues another IEIE RECEIVE which causes it to be suspended,
waiting for more data. For a non-extended conversation, the mirror terminates after the SEND.

PING
CICS TS 2.2 supports full connection and conversation level PING as architected for the CICS family. This
consists of defined flows to allow CICS to determine whether specified connections, or particular
conversations on a connection, should still be considered active. CICS TS sends a PING request if the
RTIMOUT interval is exceeded when waiting for data from a client:

v Send conversation level PING if the client install indicated this was supported.

v Send connection level PING otherwise.

v If it is a conversation PING that has timed out abend the task after sending a connection level PING to
see if the client is still active.

v If a connection level PING times out, uninstall the client.

132 CICS TS for z/OS: CICS Diagnosis Reference

Notes
1. The socket is full duplex, so SENDs and RECEIVEs can be issued in any order, and asynchronously

by different CICS tasks. This is necessary for multiple conversations on the same socket, and means
that the CIEP task can issue a SOCK RECEIVE as soon as it has attached the mirror. The SOCK
SEND will be done under the mirror task.

2. Sending tasks ENQ on the socket to prevent the data from multiple conversations being interleaved.
The ENQ is issued by SO domain.

3. The SO socket token is the second part of the user token but is never required in the CIEP task. The
sends and receives issued from CIEP use the socket implicit in the task's state.

4. If the connection is lost or closed by TCP/IP and there are long running mirrors waiting on receives,
SO domain is notified, attaches CIEP and returns a bad response on the SO receive issued by CIEP.

Modules
DFHIEP

The initial program for the IP ECI listener transaction, CIEP.

DFHIEXM
The IPECI mirror transaction attach callback module.

Sets the IECCB to be the mirror task's facility token.

Establishes security context for the mirror task, using userid and password sent from client where
required.

Chapter 18. ECI over TCP/IP 133

134 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 19. EXEC interface

The EXEC interface provides the support for application programs containing EXEC CICS commands.

Design overview
The relevant parts of the EXEC interface are:

v The main EXEC interface module, DFHEIP, which is called when an EXEC CICS command is executed
in a user application program.

A parameter list is passed, in which the first argument (referred to as arg-zero) contains a group code
and a function code as the first 2 bytes.

– The group code in general indicates the CICS component associated with the command being
executed. In subsequent processing it is this code alone which determines which EXEC processor
module (see below) is called from DFHEIP.

– The function code identifies the actual command being executed.

Note: DFHEIP is link-edited with other modules to form the application interface program (DFHAIP)
load module. DFHEIPA (next to be described) is one of these modules.

v The DFHEIPA module, which handles the allocation and freeing of dynamic storage (mapped by
DFHEISTG) for assembler-language application programs in response to DFHEIENT and DFHEIRET
calls respectively.

v A set of EXEC processor modules, each of which is called from DFHEIP, and which performs the first
level of analysis of the command being executed. The processor then calls the appropriate CICS
domain to complete the execution of the command.

v A set of EXEC stubs, one for each of the application languages: COBOL, PL/I, C, and assembler
language. The appropriate stub must be link-edited at the front of each CICS application program, and
provides the mechanism for getting to the correct entry points in DFHEIP.

v The DFHAPLI module, which is called at the initialization and termination of each application program.

Control blocks
The control blocks associated with the EXEC interface are as follows:
EXEC interface block (EIB) (DSECT name: DFHEIBLK).

Each task in a command-level environment has a control block called the
EXEC interface block (EIB) associated with it. The EIB is used for direct
communication between command-level programs and CICS.

The EIB contains information that is useful during the execution of an
application program, such as the transaction identifier, the time and date
(initially when the task is started, and subsequently, if updated by the
application program), and the cursor position on a display device. The EIB
also contains information that is helpful when a dump is being used to
debug a program. DFHEIBLK defines the layout of an EIB, and is included
automatically in the application program, giving access to all of the fields
in the EIB by name.

A further EIB, known as the “system” EIB, exists for each task. The
system EIB has the same format as the “user” (or “application”) EIB. It is
intended for use mainly by CICS system code. In general, application
programs have addressability to the user EIB only, which is a copy taken
of the system EIB at appropriate times. However, any service programs
translated with the SYSEIB option have addressability to the system EIB
also, so that they can issue EXEC CICS commands without causing the

© Copyright IBM Corp. 1997, 2011 135

user EIB to be updated. (See the CICS Application Programming Guide
for further information about the SYSEIB translator option.)

Figure 43 shows the format of an EIB.

EXEC interface communication area (DSECT name: DFHEICDS).
The EXEC interface communication area describes the storage that is
used to pass the COMMAREA from one command-level transaction to
another using an EXEC CICS RETURN command with the TRANSID,
COMMAREA, and LENGTH options.

Figure 44 shows the format of the EXEC interface communication area.

EXEC interface storage (EIS) (DSECT name: DFHEISDS).
The EXEC interface storage is used by DFHEIP as the interface between
the application program and CICS control blocks. It contains a system

DSECT: DFHEIBLK
Register: DFHEIBR

x'00' EIBTIME EIBDATE
0HHMMSS 00YYDDD

x'08' EIBTRNID EIBTASKN
Transaction identifier Task number

x'10' EIBTRMID EIBRSVD1 EIBPOSN
Terminal identifier Reserved Cursor position

x'18' EIBCALEN EIBAID EIBFN EIBRCODE
COMMAREA length 3270 Last function Last response code

AID requested returned

x'20' EIBRCODE EIBDS
Continued Last data set referenced

x'28' EIBDS EIBREQID
Continued Last identifier assigned by CICS

to an interval control request

x'30' EIBREQID EIBRSRCE
Continued Resource name

x'38' EIBRSRCE EIBSYNC EIBFREE EIBRECV EIBSEND EIBATT
Continued Sync Term Data Attach

point free RECV Reserved data
req'sted req'sted req'sted exists

x'40' EIBEOC EIBFMH EIBCOMPL EIBSIG EIBCONF EIBERR EIBERRCD
Data Data Data Signal Confirm Error Error code
complete contains complete received req'sted received received

FMH

x'48' EIBCONF EIBERR EIBERRCD EIBRESP
Confirm Error Error code Condition number
req'sted received received

x'50' EIBRESP2 EIBRLDBK EIBLENG
More details on condition Rolled

back

Figure 43. EXEC interface block (EIB)

DFHEICDS

x'00' EIC_COMMAREA_ADDRESS COMMAREA
Address of COMMAREA

x'04' EIC_ Reserved
SUBPOOL

x'08' Reserved

x'0C' EICLL EICBB
Length of
COMMAREA

Note:
EIC_SUBPOOL is a flag indicating the storage subpool
used by the COMMAREA.

Note: EIC_SUBPOOL is a flag indicating the storage subpool used by the COMMAREA.

Figure 44. EXEC interface communication area (EIC)

EXEC interface

136 CICS TS for z/OS: CICS Diagnosis Reference

area used by DFHEIP only. EIS is storage acquired by the DFHAPXM
module (part of the transaction manager), along with other task-lifetime
storage such as the TCA and both system and user EIBs. There is one
EIS per transaction (not per program), and it is addressed by TCAEISA in
the TCA. (See Figure 45.)

See the CICS Data Areas manual for a detailed description of these control blocks.

Modules
The EXEC interface comprises the following modules:
v The main interface module (DFHEIP)
v Prologue and epilogue code for assembler-language programs (DFHEIPA)
v 55 EXEC interface processors
v 4 EXEC stubs.

Of the EXEC interface processors, 16 are coded in Assembler language; the other modules are coded in
other languages. All are CICS nucleus modules.

These processor modules (together with DFHEIP) support the EXEC CICS commands listed in Table 6.

DFHEIP also supports EXEC DLI commands, by passing them through the external resource manager
interface program, DFHERM, on their way to DFHEDP for conversion to standard CALL parameter lists
acceptable to DL/I.

The following tables list all the EXEC CICS commands, showing the class of each command (basic or
special), its group and function codes, also the name and language of the associated EXEC interface
processor. Table 6 is ordered by command name. Chapter 82, “Enterprise Java domain (EJ),” on page 753
is ordered by group/function code.

The group and function codes used by the Front End Programming Interface (FEPI) feature are not listed
in these tables. However, the EXEC CICS FEPI commands use group codes of 82 (API-type commands)
and 84 (SPI-type commands). For details about the EXEC CICS FEPI commands, see the CICS Front
End Programming Interface User's Guide.

Note: An asterisk (*) after a command name in the tables shows that the command is intended for CICS
internal use only.

Table 6. EXEC CICS commands ordered by command name

Command Class Gp/fn code Module DFH... Lang

ABEND B 0E 0C EPC A
ACQUIRE TERMINAL S 86 02 EIACQ O
ADDRESS B 02 02 EEI A
ADDRESS SET B 02 10 EEI A
ALLOCATE B 04 20 ETC A
ASKTIME B 10 02 EIIC O

TCA

DFHEISDS
x'190' TCAEISA

x'08' EIS_USER_EIB_
ADDRESS EIB
Address of EIB

Figure 45. EXEC interface storage (EIS)

EXEC interface

Chapter 19. EXEC interface 137

Table 6. EXEC CICS commands ordered by command name (continued)

Command Class Gp/fn code Module DFH... Lang

ASKTIME ABSTIME B 4A 02 EIDTI O
ASSIGN B 02 08 EEI A
BIF DEEDIT B 20 02 EBF A
BUILD ATTACH B 04 26 ETC A
CANCEL B 10 0C EIIC O
CHANGE TASK B 5E 06 EIQSK O
COLLECT STATISTICS S 70 08 EIQMS O
CONNECT PROCESS B 04 32 ETC A
CONVERSE B 04 06 ETC A
CREATE CONNECTION S 30 0E EICRE O
CREATE FILE S 30 14 EICRE O
CREATE JOURNALMODEL S 30 1E EICRE O
CREATE LSRPOOL S 30 16 EICRE O
CREATE MAPSET S 30 04 EICRE O
CREATE PARTITIONSET S 30 06 EICRE O
CREATE PARTNER S 30 18 EICRE O
CREATE PROFILE S 30 0A EICRE O
CREATE PROGRAM S 30 02 EICRE O
CREATE SESSIONS S 30 12 EICRE O
CREATE TDQUEUE S 30 1C EICRE O
CREATE TERMINAL S 30 10 EICRE O
CREATE TRANCLASS S 30 1A EICRE O
CREATE TRANSACTION S 30 08 EICRE O
CREATE TYPETERM S 30 0C EICRE O
DELAY B 10 04 EIIC O
DELETE B 06 08 EIFC O
DELETEQ TD B 08 06 ETD A
DELETEQ TS B 0A 06 ETS A
DEQ B 12 06 EKC A
DISCARD AUTINSTMODEL S 42 10 EIQTM O
DISCARD FILE S 4C 10 EIQDS O
DISCARD JOURNALMODEL S 92 10 EIQSL O
DISCARD JOURNALNAME S 60 10 EIQSJ O
DISCARD PARTNER S 44 10 EIQPN O
DISCARD PROFILE S 46 10 EIQPF O
DISCARD PROGRAM S 4E 10 EIQSP O
DISCARD TRANSACTION S 50 10 EIQSX O
DISABLE B 22 04 UEM A
DUMP B 1C 02 EDC A
DUMP SYSTEM B 7E 04 EDCP O
DUMP TRANSACTION B 7E 02 EDCP O
ENABLE B 22 02 UEM A
ENDBR B 06 12 EIFC O
ENQ B 12 04 EKC A
ENTER TRACEID B 1A 04 ETR A
ENTER TRACENUM B 48 02 ETRX O
EXTRACT ATTACH B 04 28 ETC A
EXTRACT ATTRIBUTES B 04 3E ETC A
EXTRACT EXIT B 22 06 UEM A
EXTRACT LOGONMSG B 04 3C ETC A
EXTRACT PROCESS B 04 2E ETC A
EXTRACT TCT B 04 2A ETC A

EXEC interface

138 CICS TS for z/OS: CICS Diagnosis Reference

Table 6. EXEC CICS commands ordered by command name (continued)

Command Class Gp/fn code Module DFH... Lang

FORMATTIME B 4A 04 EIDTI O
FREE B 04 22 ETC A
FREEMAIN B 0C 04 ESC A
GDS ALLOCATE B 24 02 EGL A
GDS ASSIGN B 24 04 EGL A
GDS CONNECT PROCESS B 24 0C EGL A
GDS EXTRACT ATTRIBUTES B 24 1C EGL A
GDS EXTRACT PROCESS B 24 06 EGL A
GDS FREE B 24 08 EGL A
GDS ISSUE ABEND B 24 0A EGL A
GDS ISSUE CONFIRMATION B 24 0E EGL A
GDS ISSUE ERROR B 24 10 EGL A
GDS ISSUE PREPARE B 24 1A EGL A
GDS ISSUE SIGNAL B 24 12 EGL A
GDS RECEIVE B 24 14 EGL A
GDS SEND B 24 16 EGL A
GDS WAIT B 24 18 EGL A
GETMAIN B 0C 02 ESC A
HANDLE ABEND B 0E 0E EPC A
HANDLE AID B 02 06 EEI A
HANDLE CONDITION B 02 04 EEI A
IGNORE CONDITION B 02 0A EEI A
INQUIRE AUTINSTMODEL S 42 02 EIQTM O
INQUIRE AUTOINSTALL S 68 12 EIQVT O
INQUIRE CONNECTION S 58 02 EIQSC O
INQUIRE DCE S 8E 02 EIQDE O
INQUIRE DSNAME S 7A 02 EIQDN O
INQUIRE DUMPDS S 66 02 EIQDU O
INQUIRE EXITPROGRAM S 88 02 EIQUE O
INQUIRE FILE S 4C 02 EIQDS O
INQUIRE IRC S 6E 02 EIQIR O
INQUIRE JOURNALMODEL S 92 02 EIQSL O
INQUIRE JOURNALNAME S 60 12 EIQSJ O
INQUIRE JOURNALNUM S 60 02 EIQSJ O
INQUIRE MODENAME S 5A 02 EIQSM O
INQUIRE MONITOR S 70 12 EIQMS O
INQUIRE NETNAME S 52 06 EIQST O
INQUIRE PARTNER S 44 02 EIQPN O
INQUIRE PROFILE S 46 02 EIQPF O
INQUIRE PROGRAM S 4E 02 EIQSP O
INQUIRE REQID S 8A 02 EIQRQ O
INQUIRE STATISTICS S 70 02 EIQMS O
INQUIRE STREAMNAME S 92 12 EIQSL O
INQUIRE SYSDUMPCODE S 66 22 EIQDU O
INQUIRE SYSTEM S 54 02 EIQSA O
INQUIRE TASK S 5E 02 EIQSK O
INQUIRE TCLASS S 5E 12 EIQSK O
INQUIRE TDQUEUE S 5C 02 EIQSQ O
INQUIRE TERMINAL S 52 02 EIQST O
INQUIRE TRACEDEST S 78 02 EIQTR O
INQUIRE TRACEFLAG S 78 12 EIQTR O
INQUIRE TRACETYPE S 78 22 EIQTR O

EXEC interface

Chapter 19. EXEC interface 139

Table 6. EXEC CICS commands ordered by command name (continued)

Command Class Gp/fn code Module DFH... Lang

INQUIRE TRANDUMPCODE S 66 12 EIQDU O
INQUIRE TRANSACTION S 50 02 EIQSX O
INQUIRE TSQUEUE S 0A 08 EIQTS O
INQUIRE VTAM S 68 02 EIQVT O
ISSUE ABEND B 04 30 ETC A
ISSUE ABORT B 1E 08 EDI A
ISSUE ADD B 1E 02 EDI A
ISSUE CONFIRMATION B 04 34 ETC A
ISSUE COPY B 04 0A ETC A
ISSUE DISCONNECT B 04 14 ETC A
ISSUE END B 1E 0C EDI A
ISSUE ENDFILE B 04 1A ETC A
ISSUE ENDOUTPUT B 04 16 ETC A
ISSUE EODS B 04 08 ETC A
ISSUE ERASE B 1E 04 EDI A
ISSUE ERASEAUP B 04 18 ETC A
ISSUE ERROR B 04 36 ETC A
ISSUE LOAD B 04 0E ETC A
ISSUE NOTE B 1E 10 EDI A
ISSUE PASS B 04 3A ETC A
ISSUE PREPARE B 04 38 ETC A
ISSUE PRINT B 04 1C ETC A
ISSUE QUERY B 1E 0A EDI A
ISSUE RECEIVE B 1E 0E EDI A
ISSUE REPLACE B 1E 06 EDI A
ISSUE RESET B 04 12 ETC A
ISSUE SEND B 1E 14 EDI A
ISSUE SIGNAL B 04 1E ETC A
ISSUE WAIT B 1E 12 EDI A
LINK B 0E 02 EPC A
LOAD B 0E 06 EPC A
MONITOR B 48 04 ETRX O
PERFORM RESETTIME S 72 02 EIPRT O
PERFORM SECURITY S 64 02 EIPSE O
PERFORM SHUTDOWN S 76 02 EIPSH O
PERFORM STATISTICS S 70 06 EIQMS O
POINT B 04 24 ETC A
POP B 02 0E EEI A
POST B 10 06 EIIC O
PURGE MESSAGE B 18 0A EMS A
PUSH B 02 0C EEI A
QUERY SECURITY B 6A 02 ESE O
READ B 06 02 EIFC O
READNEXT B 06 0E EIFC O
READPREV B 06 10 EIFC O
READQ TD B 08 04 ETD A
READQ TS B 0A 04 ETS A
RECEIVE B 04 02 ETC A
RECEIVE MAP B 18 02 EMS A
RECEIVE PARTN B 18 0E EMS A
RELEASE B 0E 0A EPC A
RESETBR B 06 14 EIFC O

EXEC interface

140 CICS TS for z/OS: CICS Diagnosis Reference

Table 6. EXEC CICS commands ordered by command name (continued)

Command Class Gp/fn code Module DFH... Lang

RESYNC B 16 04 ESP A
RETRIEVE B 10 0A EIIC O
RETURN B 0E 08 EPC A
REWRITE B 06 06 EIFC O
ROUTE B 18 0C EMS A
SEND B 04 04 ETC A
SEND CONTROL B 18 12 EMS A
SEND MAP B 18 04 EMS A
SEND PAGE B 18 08 EMS A
SEND PARTNSET B 18 10 EMS A
SEND TEXT B 18 06 EMS A
SET AUTOINSTALL S 68 14 EIQVT O
SET CONNECTION S 58 04 EIQSC O
SET DCE S 8E 04 EIQDE O
SET DSNAME S 7A 04 EIQDN O
SET DUMPDS S 66 04 EIQDU O
SET FILE S 4C 04 EIQDS O
SET IRC S 6E 04 EIQIR O
SET JOURNALNAME S 60 14 EIQSJ O
SET JOURNALNUM S 60 04 EIQSJ O
SET MODENAME S 5A 04 EIQSM O
SET MONITOR S 70 14 EIQMS O
SET NETNAME S 52 08 EIQST O
SET PROGRAM S 4E 04 EIQSP O
SET STATISTICS S 70 04 EIQMS O
SET SYSDUMPCODE S 66 24 EIQDU O
SET SYSTEM S 54 04 EIQSA O
SET TASK S 5E 04 EIQSK O
SET TCLASS S 5E 14 EIQSK O
SET TDQUEUE S 5C 04 EIQSQ O
SET TERMINAL S 52 04 EIQST O
SET TRACEDEST S 78 04 EIQTR O
SET TRACEFLAG S 78 14 EIQTR O
SET TRACETYPE S 78 24 EIQTR O
SET TRANDUMPCODE S 66 14 EIQDU O
SET TRANSACTION S 50 04 EIQSX O
SET VTAM S 68 04 EIQVT O
SIGNOFF B 74 04 ESN O
SIGNON B 74 02 ESN O
SPOOLCLOSE B 56 10 EPS O
SPOOLOPEN B 56 02 EPS O
SPOOLREAD B 56 04 EPS O
SPOOLWRITE B 56 06 EPS O
START B 10 08 EIIC O
STARTBR B 06 0C EIFC O
SUSPEND B 12 08 EKC A
SYNCPOINT B 16 02 ESP A
TRACE B 1A 02 ETR A
UNLOCK B 06 0A EIFC O
WAIT CONVID B 04 2C ETC A
WAIT EVENT B 12 02 EKC A
WAIT EXTERNAL B 5E 22 EIQSK O

EXEC interface

Chapter 19. EXEC interface 141

Table 6. EXEC CICS commands ordered by command name (continued)

Command Class Gp/fn code Module DFH... Lang

WAIT JOURNALNAME B 14 08 EJC A
WAIT JOURNALNUM B 14 04 EJC A
WAIT SIGNAL B 04 10 ETC A
WAIT TERMINAL B 04 0C ETC A
WAITCICS B 5E 32 EIQSK O
WRITE FILE B 06 04 EIFC O
WRITE JOURNALNAME B 14 06 EJC A
WRITE JOURNALNUM B 14 02 EJC A
WRITE OPERATOR B 6C 02 EOP O
WRITEQ TD B 08 02 ETD A
WRITEQ TS B 0A 02 ETS A
XCTL B 0E 04 EPC A
Abbreviations:

Class of command: B = basic S = special
Language of module: A = assembler O = other

Table 7. EXEC CICS commands ordered by group/function code

Command Class Gp/fn code Module DFH... Lang

ADDRESS B 02 02 EEI A
HANDLE CONDITION B 02 04 EEI A
HANDLE AID B 02 06 EEI A
ASSIGN B 02 08 EEI A
IGNORE CONDITION B 02 0A EEI A
PUSH B 02 0C EEI A
POP B 02 0E EEI A
ADDRESS SET B 02 10 EEI A
RECEIVE B 04 02 ETC A
SEND B 04 04 ETC A
CONVERSE B 04 06 ETC A
ISSUE EODS B 04 08 ETC A
ISSUE COPY B 04 0A ETC A
WAIT TERMINAL B 04 0C ETC A
ISSUE LOAD B 04 0E ETC A
WAIT SIGNAL B 04 10 ETC A
ISSUE RESET B 04 12 ETC A
ISSUE DISCONNECT B 04 14 ETC A
ISSUE ENDOUTPUT B 04 16 ETC A
ISSUE ERASEAUP B 04 18 ETC A
ISSUE ENDFILE B 04 1A ETC A
ISSUE PRINT B 04 1C ETC A
ISSUE SIGNAL B 04 1E ETC A
ALLOCATE B 04 20 ETC A
FREE B 04 22 ETC A
POINT B 04 24 ETC A
BUILD ATTACH B 04 26 ETC A
EXTRACT ATTACH B 04 28 ETC A
EXTRACT TCT B 04 2A ETC A
WAIT CONVID B 04 2C ETC A
EXTRACT PROCESS B 04 2E ETC A
ISSUE ABEND B 04 30 ETC A
CONNECT PROCESS B 04 32 ETC A

EXEC interface

142 CICS TS for z/OS: CICS Diagnosis Reference

Table 7. EXEC CICS commands ordered by group/function code (continued)

Command Class Gp/fn code Module DFH... Lang

ISSUE CONFIRMATION B 04 34 ETC A
ISSUE ERROR B 04 36 ETC A
ISSUE PREPARE B 04 38 ETC A
ISSUE PASS B 04 3A ETC A
EXTRACT LOGONMSG B 04 3C ETC A
EXTRACT ATTRIBUTES B 04 3E ETC A
READ B 06 02 EIFC O
WRITE FILE B 06 04 EIFC O
REWRITE B 06 06 EIFC O
DELETE B 06 08 EIFC O
UNLOCK B 06 0A EIFC O
STARTBR B 06 0C EIFC O
READNEXT B 06 0E EIFC O
READPREV B 06 10 EIFC O
ENDBR B 06 12 EIFC O
RESETBR B 06 14 EIFC O
WRITEQ TD B 08 02 ETD A
READQ TD B 08 04 ETD A
DELETEQ TD B 08 06 ETD A
WRITEQ TS B 0A 02 ETS A
READQ TS B 0A 04 ETS A
DELETEQ TS B 0A 06 ETS A
INQUIRE TSQUEUE S 0A 08 EIQTS O
GETMAIN B 0C 02 ESC A
FREEMAIN B 0C 04 ESC A
LINK B 0E 02 EPC A
XCTL B 0E 04 EPC A
LOAD B 0E 06 EPC A
RETURN B 0E 08 EPC A
RELEASE B 0E 0A EPC A
ABEND B 0E 0C EPC A
HANDLE ABEND B 0E 0E EPC A
ASKTIME B 10 02 EIIC O
DELAY B 10 04 EIIC O
POST B 10 06 EIIC O
START B 10 08 EIIC O
RETRIEVE B 10 0A EIIC O
CANCEL B 10 0C EIIC O
WAIT EVENT B 12 02 EKC A
ENQ B 12 04 EKC A
DEQ B 12 06 EKC A
SUSPEND B 12 08 EKC A
WRITE JOURNALNUM B 14 02 EJC A
WAIT JOURNALNUM B 14 04 EJC A
SYNCPOINT B 16 02 ESP A
RESYNC B 16 04 ESP A
RECEIVE MAP B 18 02 EMS A
SEND MAP B 18 04 EMS A
SEND TEXT B 18 06 EMS A
SEND PAGE B 18 08 EMS A
PURGE MESSAGE B 18 0A EMS A
ROUTE B 18 0C EMS A

EXEC interface

Chapter 19. EXEC interface 143

Table 7. EXEC CICS commands ordered by group/function code (continued)

Command Class Gp/fn code Module DFH... Lang

RECEIVE PARTN B 18 0E EMS A
SEND PARTNSET B 18 10 EMS A
SEND CONTROL B 18 12 EMS A
TRACE B 1A 02 ETR A
ENTER TRACEID B 1A 04 ETR A
DUMP B 1C 02 EDC A
ISSUE ADD B 1E 02 EDI A
ISSUE ERASE B 1E 04 EDI A
ISSUE REPLACE B 1E 06 EDI A
ISSUE ABORT B 1E 08 EDI A
ISSUE QUERY B 1E 0A EDI A
ISSUE END B 1E 0C EDI A
ISSUE RECEIVE B 1E 0E EDI A
ISSUE NOTE B 1E 10 EDI A
ISSUE WAIT B 1E 12 EDI A
ISSUE SEND B 1E 14 EDI A
BIF DEEDIT B 20 02 EBF A
ENABLE B 22 02 UEM A
DISABLE B 22 04 UEM A
EXTRACT EXIT B 22 06 UEM A
GDS ALLOCATE B 24 02 EGL A
GDS ASSIGN B 24 04 EGL A
GDS EXTRACT PROCESS B 24 06 EGL A
GDS FREE B 24 08 EGL A
GDS ISSUE ABEND B 24 0A EGL A
GDS CONNECT PROCESS B 24 0C EGL A
GDS ISSUE CONFIRMATION B 24 0E EGL A
GDS ISSUE ERROR B 24 10 EGL A
GDS ISSUE SIGNAL B 24 12 EGL A
GDS RECEIVE B 24 14 EGL A
GDS SEND B 24 16 EGL A
GDS WAIT B 24 18 EGL A
GDS ISSUE PREPARE B 24 1A EGL A
GDS EXTRACT ATTRIBUTES B 24 1C EGL A
CREATE PROGRAM S 30 02 EICRE O
CREATE MAPSET S 30 04 EICRE O
CREATE PARTITIONSET S 30 06 EICRE O
CREATE TRANSACTION S 30 08 EICRE O
CREATE PROFILE S 30 0A EICRE O
CREATE TYPETERM S 30 0C EICRE O
CREATE CONNECTION S 30 0E EICRE O
CREATE TERMINAL S 30 10 EICRE O
CREATE SESSIONS S 30 12 EICRE O
CREATE FILE S 30 14 EICRE O
CREATE LSRPOOL S 30 16 EICRE O
CREATE PARTNER S 30 18 EICRE O
CREATE TRANCLASS S 30 1A EICRE O
CREATE TDQUEUE S 30 1C EICRE O
CREATE JOURNALMODEL S 30 1E EICRE O
INQUIRE AUTINSTMODEL S 42 02 EIQTM O
DISCARD AUTINSTMODEL S 42 10 EIQTM O
INQUIRE PARTNER S 44 02 EIQPN O

EXEC interface

144 CICS TS for z/OS: CICS Diagnosis Reference

Table 7. EXEC CICS commands ordered by group/function code (continued)

Command Class Gp/fn code Module DFH... Lang

DISCARD PARTNER S 44 10 EIQPN O
INQUIRE PROFILE S 46 02 EIQPF O
DISCARD PROFILE S 46 10 EIQPF O
ENTER TRACENUM B 48 02 ETRX O
MONITOR B 48 04 ETRX O
ASKTIME ABSTIME B 4A 02 EIDTI O
FORMATTIME B 4A 04 EIDTI O
INQUIRE FILE S 4C 02 EIQDS O
SET FILE S 4C 04 EIQDS O
DISCARD FILE S 4C 10 EIQDS O
INQUIRE PROGRAM S 4E 02 EIQSP O
SET PROGRAM S 4E 04 EIQSP O
DISCARD PROGRAM S 4E 10 EIQSP O
INQUIRE TRANSACTION S 50 02 EIQSX O
SET TRANSACTION S 50 04 EIQSX O
DISCARD TRANSACTION S 50 10 EIQSX O
INQUIRE TERMINAL S 52 02 EIQST O
SET TERMINAL S 52 04 EIQST O
INQUIRE NETNAME S 52 06 EIQST O
SET NETNAME S 52 08 EIQST O
INQUIRE SYSTEM S 54 02 EIQSA O
SET SYSTEM S 54 04 EIQSA O
SPOOLOPEN B 56 02 EPS O
SPOOLREAD B 56 04 EPS O
SPOOLWRITE B 56 06 EPS O
SPOOLCLOSE B 56 10 EPS O
INQUIRE CONNECTION S 58 02 EIQSC O
SET CONNECTION S 58 04 EIQSC O
INQUIRE MODENAME S 5A 02 EIQSM O
SET MODENAME S 5A 04 EIQSM O
INQUIRE TDQUEUE S 5C 02 EIQSQ O
SET TDQUEUE S 5C 04 EIQSQ O
INQUIRE TASK S 5E 02 EIQSK O
SET TASK S 5E 04 EIQSK O
CHANGE TASK B 5E 06 EIQSK O
INQUIRE TCLASS S 5E 12 EIQSK O
SET TCLASS S 5E 14 EIQSK O
WAIT EXTERNAL B 5E 22 EIQSK O
WAITCICS B 5E 32 EIQSK O
INQUIRE JOURNALNUM S 60 02 EIQSJ O
SET JOURNALNUM S 60 04 EIQSJ O
INQUIRE JOURNALNAME S 60 12 EIQSJ O
SET JOURNALNAME S 60 14 EIQSJ O
PERFORM SECURITY S 64 02 EIPSE O
INQUIRE DUMPDS S 66 02 EIQDU O
SET DUMPDS S 66 04 EIQDU O
INQUIRE TRANDUMPCODE S 66 12 EIQDU O
SET TRANDUMPCODE S 66 14 EIQDU O
INQUIRE SYSDUMPCODE S 66 22 EIQDU O
SET SYSDUMPCODE S 66 24 EIQDU O
INQUIRE VTAM S 68 02 EIQVT O
SET VTAM S 68 04 EIQVT O

EXEC interface

Chapter 19. EXEC interface 145

Table 7. EXEC CICS commands ordered by group/function code (continued)

Command Class Gp/fn code Module DFH... Lang

INQUIRE AUTOINSTALL S 68 12 EIQVT O
SET AUTOINSTALL S 68 14 EIQVT O
QUERY SECURITY B 6A 02 ESE O
WRITE OPERATOR B 6C 02 EOP O
CICSMESSAGE * S 6C 12 EOP O
INQUIRE IRC S 6E 02 EIQIR O
SET IRC S 6E 04 EIQIR O
INQUIRE STATISTICS S 70 02 EIQMS O
SET STATISTICS S 70 04 EIQMS O
PERFORM STATISTICS S 70 06 EIQMS O
COLLECT STATISTICS S 70 08 EIQMS O
INQUIRE MONITOR S 70 12 EIQMS O
SET MONITOR S 70 14 EIQMS O
PERFORM RESETTIME S 72 02 EIPRT O
SIGNON B 74 02 ESN O
SIGNOFF B 74 04 ESN O
PERFORM SHUTDOWN S 76 02 EIPSH O
INQUIRE TRACEDEST S 78 02 EIQTR O
SET TRACEDEST S 78 04 EIQTR O
INQUIRE TRACEFLAG S 78 12 EIQTR O
SET TRACEFLAG S 78 14 EIQTR O
INQUIRE TRACETYPE S 78 22 EIQTR O
SET TRACETYPE S 78 24 EIQTR O
INQUIRE DSNAME S 7A 02 EIQDN O
SET DSNAME S 7A 04 EIQDN O
DUMP TRANSACTION B 7E 02 EDCP O
DUMP SYSTEM B 7E 04 EDCP O
INQUIRE JOURNALMODEL S 92 02 EIQSL O
INQUIRE STREAMNAME S 92 12 EIQSL O
Abbreviations:

Class of command: B = basic S = special
Language of module: A = assembler O = other

DFHEIP
The EXEC interface program, DFHEIP, has several entry points associated with initialization and
termination. Note, however, that DFHEIPAN is in the DFHEIPA module.

Entry point
Function

DFHEIPNA
Formal main entry point

DFHEIPAN
Get or free dynamic storage for assembler-language prologue or epilogue

DFHEIPGM
Get dynamic storage for COBOL initialization

DFHEIPFM
Free dynamic storage for COBOL

EXEC interface

146 CICS TS for z/OS: CICS Diagnosis Reference

DFHEIPTT
Take run-unit token routine for COBOL initialization.

DFHEIP has these entry points associated with executing a command issued from an application program:

Entry point
Function

DFHEIPRN
EXEC RMI calls

DFHEIPCN
EXEC CICS calls

DFHEIPDN
xxxTDLI calls.

It also has many return and entry points for common functions that are called from those processor
modules residing in the nucleus:

Entry point
Function

EIPNORML
Normal return on completion of command

Error point
Function

EIPERROR
Condition occurred (code in EIBRCODE)

EIPCONDN
Condition occurred (code in EIBRESP)

EICCER99
Unsupported function, abend AEY9

EICCDF00
Subroutine to invoke EDF

Several length-checking routines (EICCLCnn):

Error point Function
EICCLC30 Input check, V format only
EICCLC94 LENGERR flag check

Several program control routines (EICCPCnn):

Error point Function
EICCPC00 Process terminating PL/I program
EICCPC40 HANDLE ABEND processing

Several storage control routines (EICCSCnn):

Error point Function
EICCSC10 FREEMAIN
EICCSC20 GETMAIN shared storage
EICCSC30 GETMAIN terminal storage
EICCSC70 GETMAIN user storage init. X'00'
EICCFM10 FREEMAIN for COMMAREAs

EXEC interface

Chapter 19. EXEC interface 147

Method of calling processor modules
All processor modules reside in the CICS nucleus, and the same calling method is used regardless of the
language in which the processor is coded.

CICS initialization puts the address of each module in the CSA optional features list (CSAOPFL), in a table
of addresses starting at CSAEXECS, and at an offset corresponding to its group code.

The calling method for the processor modules at execution time uses a table (at label EICC71T in
DFHEIP), known as the EXEC command processor module call table. DFHEIP uses this table, and the
table of addresses in CSAOPFL.

The EXEC command processor module call table is indexed by the 1-byte group code, which identifies the
way that the processor is called:

Call type Description
A Has a vector of offsets at its entry point. This vector is indexed by the

command function code to locate the actual entry point, to which DFHEIP
does an unconditional branch.

Return is to label EIPNORML, EIPCONDN, or EIPERROR.
B Has a single entry point, for which DFHEIP issues a DFHAM TYPE=LINK

call.

The appropriate return address in DFHEIP is set in register 14, an
unconditional branch is made to the DFHEIP, which tests the response in
EIBRESP.

C Has a single entry point, for which DFHEIP issues a DFHEIEIM call
(through the kernel).

Return is to the next instruction, where DFHEIP tests the response in
EIBRESP.

D Has a single entry point, for which DFHEIP uses a BALR R14,R15
instruction; this type is used only for GDS.

The appropriate return address in DFHEIP is set in register 14, an
unconditional branch is made to the DFHEIP, the response in the user’s
RETCODE field.

Exits
The following global user exit points are provided in DFHEIP:

XEIIN

XEIOUT

XEISPIN

XEISPOUT

For further information, see the CICS Customization Guide.

EXEC interface

148 CICS TS for z/OS: CICS Diagnosis Reference

Trace
The following point ID is provided for DFHEIP:

v AP 00E1, for which the trace level is EI 1.

The following point IDs are provided for DFHEISR:

v AP E110 (entry), for which the trace level is EI 2.

v AP E111 (exit), for which the trace level is EI 2.

Trace entries are made before and after the execution of a command by its EXEC interface processor
module.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

EXEC interface

Chapter 19. EXEC interface 149

150 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 20. Execution diagnostic facility (EDF)

The execution diagnostic facility (EDF) allows users of the CICS command-level programming interface to
step through the CICS commands of an application program. This program can be part of a local or
remote transaction. At each step, the user can check the validity of each command and make temporary
modifications to the program.

Design overview
EDF enables an application programmer to test a command-level application program online without
making any modifications to the source program or the program preparation procedure. EDF intercepts
execution of the application program at certain points and displays relevant information about the program
at these points.

There are seven places in the EXEC interface program (DFHEIP) where the EDF can be called:

1. When program initialization has been done, just before control is passed to the application entry point

2. When program termination is being done, just after control has been received from the application

3. Before a normal EXEC command is passed to its processor module

4. When a normal EXEC command has returned to DFHEIP

5. Before an EXEC CICS GDS command is passed to its processor module

6. When an EXEC CICS GDS command has returned to DFHEIP

7. Before an EXEC CICS FEPI command is passed to its processor module

8. When an EXEC CICS FEPI command has returned to DFHEIP

9. At the end of a PL/I program.

Modules

CEBR transaction (DFHEDFBR)
The temporary-storage browse transaction (CEBR) allows the user to browse, copy, or delete items in a
queue. CEBR invokes DFHEDFBR to execute the required action.

EDF display (DFHEDFD)
The EDF display program, DFHEDFD, provides the following functions:

v To display the user program status

v To allow the user to modify argument values and responses

v To allow the user to display and modify the EXEC interface block (EIB) and program working storage

v To allow the user to display any hexadecimal location in the partition user screen

v To allow the user to suppress EDF displays until specified conditions are met.

Method
1. Data describing user status is passed to DFHEDFD in the TWA.

2. Initialize exception and abend handling.

3. If TS queue for user terminal already exists, read control information; otherwise create control
information about TS queue.

4. Check for security violation.

5. If necessary, remember user screen.

6. Build required display by calling DFHEDFS.

7. Send display to EDF screen.

© Copyright IBM Corp. 1997, 2011 151

8. Extract modified information by calling DFHEDFS.

9. Analyze request.

10. Set up build information for next display.

11. Go and build required display.

12. When no further displays are required:

a. Save function display

b. If necessary, restore user screen

c. Update control information

d. If transaction is defined as remote, purge TS queue and any shared storage associated with the
EDF task

e. Return to DFHEDFP.

EDF map set (DFHEDFM)
The EDF map set, DFHEDFM, consists of three maps:

DFHEDFM
To display status information at the various EDF interception points

DFHEDFN
To display the EDF stop conditions

DFHEDFP
To display a dump of storage.

All maps are (24,80). The first two lines of each map contain the transaction ID, program name, status,
and so on. The format of these two lines must be identical for all maps. A menu is displayed with each
map, and includes a message line and a reply field. The format of the menu must be identical for all maps.
The cursor is positioned by symbolic cursor positioning.

EDF control program (DFHEDFP)
The EDF control program, DFHEDFP, provides the CEDF transaction for starting EDF, and is used in two
different ways:
1. To control the debugging task
2. To set debug mode on or off.

Input
Input to the DFHEDFP program is provided as follows:
To control the debugging task

Information describing the user task status is written into the debug
linkage area (DLA) of CEDF by DFHEDFX.

To set debug mode on or off The user enters a CEDF request at the debug display terminal using the
following syntax:

CEDF termid,ON|OFF

Alternatively, a PF key may be used to switch single-terminal debug mode
on.

Note: To use EDF for a remote transaction, only single-terminal mode is
available.

Output
Output from the DFHEDFP program is as follows:
To control the debugging task

DFHEDFD displays user program status.

Execution diagnostic facility (EDF)

152 CICS TS for z/OS: CICS Diagnosis Reference

To set debug mode on or off Switches the debug mode bit either in the user terminal TCTTE or, if an
EXEC task is running, in the user task EIS. For two-terminal debugging,
creates temporary-storage queue element to connect user terminal with
display terminal.

Method
To control the program for debugging a task

If the task is attached by DFHEDFX and if only one terminal is being used
for debugging, link to DFHEDFD to display program status. If two
terminals are being used for debugging, start CEDF at the display
terminal, restore that terminal to the user, resume the user task, then
return to CICS.

To set debug mode on or off If invoked by using a PF key, set the debug mode on for single-terminal
debugging in the user TCTTE. If invoked by a CEDF request, extract the
user terminal ID (default is display terminal), and extract the debug mode
(default is on). If the user terminal ID does not exist, output a diagnostic
message. If the EXEC task is running and the task is in debug mode,
output a diagnostic message; otherwise switch the debug bit in EIS, or
switch the debug bit in TCTTE. Create a temporary-storage queue
element naming the debug terminal.

EDF response table (DFHEDFR)
The EDF response table, DFHEDFR, is a table used by DFHEDFD to interpret the responses obtained by
EXEC commands.

EDF task switch program (DFHEDFX)
The EDF task switch program, DFHEDFX, is used to attach the debugging task, provide it with all
necessary information about the status of the user task, and suspend the user task until the debugging
task allows it to resume.

Method
1. Extract information describing the user task status and copy it into the DLA for the attached task

2. Issue wait on user terminal

3. Attach CEDF

4. Suspend the user task

5. When the user task is resumed by EDF, check if EDF has not abended

6. If the user requests an abend, abend the user task; otherwise, return to caller.

Exits
No global user exit points are provided for this function.

Trace
No trace points are provided for this function.

Execution diagnostic facility (EDF)

Chapter 20. Execution diagnostic facility (EDF) 153

154 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 21. Extended recovery facility (XRF)

The extended recovery facility (XRF) enables you to achieve a high level of availability. You can run an
alternate CICS system that monitors your active CICS system, and takes over automatically or by operator
control if the active system fails. You can also plan and execute a takeover yourself when you want to do
maintenance on an active system.

Problems in the active system can be detected and isolated as soon as they occur. The alternate system
can recover and restart quickly, like an emergency restart, and the time for reconnection of terminals is
reduced.

Design overview
A detailed overview of this function is given in the CICS/ESA 3.3 CICS XRF Guide.

Control blocks
A command list table (CLT) is used by an alternate system when it takes over the running of CICS from an
active system. It holds the ID data for the JES system in use, data used to verify its authority to take over,
and routing information. If there is more than one active system in two CECs, the CLT also holds VTAM
MODIFY commands, and messages to the operator (WTO) to complete the takeover. It is loaded during
takeover, and deleted when processed.

See the CICS Data Areas manual for a detailed description of this control block.

Modules
Figure 46 on page 156 shows the modules for XRF.

© Copyright IBM Corp. 1997, 2011 155

Exits
There is one global user exit point in DFHXRA: XXRSTAT. For further information about this, see the CICS
Customization Guide.

Trace
The following point IDs are provided for the CAVM services:
v AP 00C4, AP 00C5, AP 00C6, and AP 00C7, for which the trace level is AP 1.

The following point IDs are provided for the XRF takeover signon/sign-off function:
v AP 0Axx, for which the trace levels are AP 1, AP 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Catch-up
transaction
(DFHCXCU)

‘CICS’
catch-up
transaction
(DFHZXCU)

DBCRL
catch-up
transaction
(DFHDXCU)

DBCTL
surveillance
transaction
(DFHDBCR)

Switch
transaction
(DFHXTCI)

CEPT
transaction
(DFHXRCP)

CAVM
state
management

Surveillance
transaction
(DFHXRSP)

PUTMSG
service
(DFHWMP1)

GETMSG
service
(DFHWMG1)

CAVM
message
management
(DFHWMS)

CAVM
surveillance

CAVM
interface
support
(DFHXRA)

Extended
recovery
facility
support

Figure 46. Extended recovery facility support

Extended recovery facility

156 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 22. External CICS interface

The external CICS interface (EXCI) is an integral part of CICS Transaction Server for z/OS, Version 3
Release 1. The function is called an external CICS interface because it enables non-CICS application
programs (client programs) running in MVS to call programs (server programs) running in a CICS
Transaction Server for z/OS, Version 3 Release 1 region and to pass and receive data by means of a
communications area.

Design overview
This section provides an overview of the design of the external CICS interface. For more information about
the external CICS interface, see the CICS External Interfaces Guide.

The external CICS interface is an application programming interface that enables a non-CICS program (a
client program) running in MVS to call a program (a server program) running in a CICS Transaction Server
for z/OS, Version 3 Release 1 region and to pass and receive data by means of a communications area.
The CICS application program is invoked as if linked-to by another CICS application program.

This programming interface allows a user to allocate and open sessions (or pipes1) to a CICS region, and
to pass distributed program link (DPL) requests over them. The multiregion operation (MRO) facility of
CICS interregion communication (IRC) facility supports these requests, and each pipe maps onto one
MRO session.

Unless the CICS region is running in a sysplex under MVS/ESA 5.1 and therefore able to use
cross-system MRO (XCF/MRO), the client program and the CICS server region (the region where the
server program runs or is defined) must be in the same MVS image. Although the external CICS interface
does not support the cross-memory access method, it can use the XCF access method provided by
XCF/MRO in CICS Transaction Server for z/OS, Version 3 Release 1. See the CICS Intercommunication
Guide for information about XCF/MRO.

A client program that uses the external CICS interface can operate multiple sessions for different users
(either under the same or separate TCBs) all coexisting in the same MVS address space without
knowledge of, or interference from, each other.

Where a client program attaches another client program, the attached program runs under its own TCB.

The programming interfaces
The external CICS interface provides two forms of programming interface: the EXCI CALL interface and
the EXEC CICS interface.
The EXCI CALL interface This interface consists of six commands that allow you to:

v Allocate and open sessions to a CICS system from non-CICS programs
running under MVS

v Issue DPL requests on these sessions from the non-CICS programs
v Close and deallocate the sessions on completion of the DPL requests.

The six EXCI commands are:
1. Initialize_User
2. Allocate_Pipe
3. Open_Pipe
4. DPL call

1. pipe. A one-way communication path between a sending process and a receiving process. In an external CICS interface
implementation, each pipe maps onto one MRO session, where the client program represents the sending process and the CICS
server region represents the receiving process.

© Copyright IBM Corp. 1997, 2011 157

5. Close_Pipe
6. Deallocate_Pipe

The processing of an EXCI CALL-level command is shown in Figure 47.
The EXEC CICS interface The external CICS interface provides a single, composite

command–EXEC CICS LINK PROGRAM– that performs all six commands
of the EXCI CALL interface in one invocation. The processing of an EXEC
CICS LINK command is shown in Figure 48 on page 159.

This command takes the same form as the distributed program link
command of the CICS command-level application programming interface.

API restrictions for server programs
A CICS server program invoked by an external CICS interface request is restricted to the DPL subset
of the CICS application programming interface. This subset (the DPL subset) of the API commands is
the same as for a CICS-to-CICS server program.

For details about the DPL subset for server programs, see the CICS Application Programming Guide.

Batch program DFHXCPRH
2

DFHXCSTB

1
DFHIRP

3
CICS

CALL DFHXCIS (...)

Notes:

1. An EXCI CALL API request is issued, and invokes the DFHXCIS entry point in the EXCI stub,
DFHXCSTB.

2. DFHXCSTB locates DFHXCPRH, and invokes it to process the EXCI request. If DFHXCPRH is not
found, DFHXCSTB loads DFHXCPRH before invoking it.

3. DFHXCPRH sets up the control blocks needed for the EXCI request. For a DPL request, DFHXCPRH
invokes DFHIRP to pass control to CICS.

Figure 47. External CICS interface, CALL-level API

External CICS interface

158 CICS TS for z/OS: CICS Diagnosis Reference

Modules

Module Function

DFHXCALL EXEC-level API macro. Invoked by the CICS translator when processing EXCI EXEC-level
requests.

DFHXCDMP dump services. Calls the CICS SVC to issue SDUMP macro requests, to take an SDUMP of
the EXCI address space.

DFHXCSTB stub link-edited with applications that want to use EXCI.

DFHXCEIP EXEC-level API handler. The main EXCI module that processes EXCI EXEC-level requests.

DFHXCO options macro for generating the DFHXCOPT options table.

DFHXCOPT options table to customize the EXCI environment.

DFHXCPLD Assembler-language parameter list definitions. Copybook defining the parameters for use with
the EXCI APIs.

DFHXCPLH C parameter list definitions. Copybook defining the parameters for use with the EXCI APIs.

DFHXCPLL PL/I parameter list definitions. Copybook defining the parameters for use with the EXCI APIs.

DFHXCPLO COBOL parameter list definitions. Copybook defining the parameters for use with the EXCI
APIs.

DFHXCPRH program request handler The main EXCI module that processes EXCI CALL-level requests.

DFHXCRCD Assembler-language return code definitions. Copybook defining the return codes for use with
the EXCI APIs.

DFHXCRCH C return code definitions. Copybook defining the return codes for use with the EXCI APIs.

DFHXCRCL PL/I return code definitions. Copybook defining the return codes for use with the EXCI APIs.

DFHXCRCO COBOL return code definitions. Copybook defining the return codes for use with the EXCI
APIs.

DFHXCSVC SVC services. Invoked by the CICS SVC to issue an SDUMP macro to take an SDUMP of
the EXCI address space.

DFHXCTAB language table. Copybook defining the syntax of the EXCI EXEC language for use by the
CICS translator.

Batch program DFHXCEIP (3) DFHXCPRH
2

DFHXCSTB DFHXCSTB
4

1
Init User
Allocate Pipe CICS
Open Pipe

EXEC CICS LINK ... DPL
Close Pipe
Deallocate Pipe

Notes:

1. An EXCI EXEC API request is issued, and invokes the DFHXCEI entry point in the EXCI stub,
DFHXCSTB.

2. DFHXCSTB locates DFHXCEIP, and invokes it to process the EXCI request. If DFHXCEIP is not
found, DFHXCSTB loads DFHXCEIP before invoking it.

3. DFHXCEIP converts the EXCI EXEC-level request into a series of EXCI CALL-level requests.

4. The CALL-level requests result in calls to the EXCI stub, DFHXCSTB (as in Figure 47 on page 158).

Figure 48. External CICS interface, EXEC-level API

External CICS interface

Chapter 22. External CICS interface 159

Module Function

DFHXCTRA global trap program. The EXCI equivalent of the DFHTRAP module, providing the service
with ability to collect extra diagnostic information.

DFHXCTRD local trap parameter list definition. Defines the parameter list passed to DFHXCTRA and all
EXCI trace points used by DFHXCTRA.

DFHXCTRP trace services. Writes EXCI trace entries to the EXCI internal trace table.

DFHXCTRI trace initialization. Initializes EXCI trace services.

DFHXCURM User-replaceable program that allows the user to modify the applid of the CICS region to
which the EXCI request is to be issued.

Exits
There are no exit points for the EXCI.

Trace
The EXCI has its own internal trace table in the EXCI address space where the client program is running.
EXCI trace entries can also be written to the MVS GTF trace data set.

EXCI trace point IDs are EXxxxx, with a trace level of 1, 2, or Exc.

For more information about EXCI tracing, see the CICS External Interfaces Guide.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

External CICS interface

160 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 23. Field engineering program

The field engineering program (DFHFEP) is a CICS system service function primarily designed for an IBM
field engineer to use when installing new terminals. When CICS is running, this program (invoked by the
CSFE transaction) transmits a set of characters to the requesting terminal. In addition, the program can be
used to echo a message; that is, it repeats exactly what is keyed at the terminal.

This program also supports some general debugging functions.

Design overview
When used for testing terminals, DFHFEP first prepares for device-dependent conditions. It then issues a
storage control FREEMAIN, followed by a GETMAIN for storage for the ENTER message, which it writes
using terminal control WRITE, READ, and WAIT macros. Finally, if print was requested, the character set
is printed; if end was requested, the completion message is issued; otherwise the input is echoed.

DFHFEP performs all the requests made by the CSFE transaction. In addition to the terminal test function,
CSFE can request the activation or deactivation of:
v System spooling interface trace
v Terminal builder trace
v Storage freeze
v Storage violation trap
v Global trap/trace exit.

See the CICS Supplied Transactions manual for details of the command syntax and functions provided.

Modules
DFHFEP

Exits
No global user exit points are provided for this function.

Trace
No trace points are provided for this function.

© Copyright IBM Corp. 1997, 2011 161

162 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 24. File control

File control provides a facility for accessing data sets, files, and data tables, using keyed or
relative-byte-address (RBA) access through the virtual storage access method (VSAM), the basic direct
access method (BDAM), shared data table services and the coupling facility data tables server. VSAM
data sets can be accessed in either RLS or non-RLS mode. RLS mode allows sharing of data sets across
a parallel sysplex. File control allows updates, additions, deletions, random retrieval, and sequential
retrieval (browsing) of logical data in the data sets. If VSAM is used, access to logical data can be via a
VSAM alternate index path, as well as through the base data set.

File control reads from, and writes to, user-defined data sets and data tables, gathers statistics, and
acquires dynamic storage for I/O operations. File control uses control information defined by the user in
the file control table (FCT). This table describes the physical characteristics of all the data sets, and any
logical relationships that may exist between them.

Design overview
File control provides the following services and features:

v Random record retrieval

v Random record update

v Random record addition

v Random record deletion (VSAM only)

v Sequential record retrieval

v BDAM deblocking

v Enabling and disabling of files, making them accessible to applications

v Opening and closing of files for the access method

v Exclusive control of records during update operations

v Mass record insertion (VSAM only)

v Automatic journaling and logging.

Deblocking services for BDAM data sets
CICS provides deblocking of logical records on a direct-access (BDAM) data set. This service is provided
for both fixed-length and variable-length records. The data set must have been created according to
standard System/370 record-formatting conventions.

Concurrency control
Protection is provided against the concurrent updating (adding, deleting or changing) of a data set record
by two or more transactions (or strictly speaking, two or more units of work; a transaction may optionally
consist of a sequence of units of work). This protection is in most cases achieved using locking. If a
second unit of work attempts to update a record which has been locked by another unit of work, the
second unit of work is normally queued until the first releases its lock. If the lock has been converted into
a retained lock (this is done if a syncpoint failure occurs) then the second unit of work gets an error
response rather than being queued. An optimized alternative to locking is used to achieve concurrency
control for coupling facility data tables. This is described in the section 'Concurrency control for coupling
facility data tables'.

For a VSAM data set being accessed in non-RLS mode, CICS acquires locks (or enqueues) using the NQ
domain that prevent the same record from being updated by more than one unit of work at a time. If the
file is recoverable, then the lock is not released until syncpoint (that is, the end of the unit of work),
otherwise it is released when the request thread completes. A request thread consists, for example, of a
read update followed by a rewrite. In non-RLS mode, VSAM also provides a form of concurrency control

© Copyright IBM Corp. 1997, 2011 163

known as exclusive control. The sphere of exclusive control is the control interval (CI), and this means
that two different records cannot be concurrently updated if they are both within the same CI. Exclusive
control is only maintained while a record is being updated, and is released as soon as the operation is
complete.

For a VSAM data set being accessed in RLS mode, VSAM acquires locks at the record level to prevent
the same record from being updated by more than one unit of work within the sysplex at a time. If the data
set is recoverable, then the lock is not released until syncpoint, otherwise it is released when the request
sequence completes. There is no CI locking with RLS mode.

For a recoverable BDAM file, CICS acquires locks using the NQ domain that prevent the same record
from being updated by more than one unit of work at a time.

Concurrency control for coupling facility data tables
Concurrency control for coupling facility data tables is provided by using one of two update models
provided by coupling facility data tables support (CFDT support).

The default is the locking update model, in which the CFDT server acquires locks at the record level to
prevent the same record from being updated by more than one unit of work within the sysplex at a time. If
the data set is recoverable, then the lock is not released until syncpoint, otherwise it is released when the
request sequence completes.

The contention update model is an optimized alternative to using locking to achieve update integrity
(concurrency control). With this model, which can be specified on a per-data table basis, no locks are
acquired when a record is read for update, but if another unit of work subsequently changes or deletes this
record, then the first unit of work will be informed that the record has changed (or been deleted) when it
comes to rewrite or delete the record itself. The occurrence of such a contention is detected by the CFDT
server, and the contention update model is only available for coupling facility data tables.

Sequential retrieval
A facility supported by CICS file control is the sequential retrieval of records from the database. This
facility is known as browsing. To initiate a browse operation, the user provides either a specific or generic
(partial) record reference (key) for the point at which sequential retrieval is to begin. Each subsequent get
request by the user initiates retrieval of the next sequential record. The application, while in browse mode,
can issue random get for update requests to a different data set, without interrupting the browse operation.
For VSAM files accessed in RLS mode, the application can update the records that it is browsing. For
VSAM files accessed in non-RLS mode, and BDAM files, in order to update a record of the same data set,
the application must first terminate the browse operation. The same application can concurrently browse
several different data sets and browse the same data set with multiple tasks.

With VSAM data sets, the application can skip forward during a browse operation to bypass unwanted
data.

All types of CICS data tables (CICS-maintained, user-maintained and coupling facility) can be browsed.

Read Integrity
When a file is accessed in RLS mode, three levels of read integrity are supported:

v UNCOMMITTED read integrity is the same level of read integrity as is supported for non-RLS requests.
With this level of read integrity, read requests can return data which has not yet been committed, and
which might subsequently be backed out.

v CONSISTENT read integrity. With this level of read integrity, read requests are serialized with
concurrent update activity for the record, so that a read request will wait until data which is being
updated has been committed (or until the update has completed, for a non-recoverable data set). This
means that read requests will always see commit-consistent data.

File control

164 CICS TS for z/OS: CICS Diagnosis Reference

v REPEATABLE read integrity. With this level of read integrity, additional locking is used so that in
addition to waiting for updates to be committed, records that have been read within a unit of work
cannot be updated until the unit of work completes. This means that if a read is repeated within a unit of
work, the same data will be returned.

Backout logging
File control will perform automatic logging of file operations which update recoverable files. This logging is
written to the CICS system log stream. In the event of either a system or a transaction failure, the
information can subsequently be used to restore the recoverable data set as though the current
transaction had never run.

For coupling facility data tables, the CFDT server performs its own logging, and is responsible for backing
out updates in the event of a failure.

Forward Recovery Logging
If a file (non-RLS VSAM) or data set (RLS or non-RLS VSAM) is defined to be forward recoverable, then
CICS will perform automatic logging of file operations which update it. This logging is written to the forward
recovery log stream specified on the file definition or data set. In the event of a failure, the information can
be used to forward recover from a backup copy of the data set.

Forward recovery support is not provided for user-maintained data tables or coupling facility data tables.

Automatic journaling and logging
Except in the case of user-maintained data tables and coupling facility data tables, CICS provides optional
automatic journaling and logging facilities for records that are updated, deleted from, or added to a file
control data set. Automatic journaling is specified in the file control table, by the user, for each data set
affected. For a specified data set, a record read for update, a new record added, or an existing record
deleted is automatically written to the specified journal. To allow journaled records to be associated with
the appropriate data set (instead of with the CICS file name), a special record is journaled showing the
current data set allocation whenever it changes.

Use of concurrent tasks
The file control non-RLS VSAM interface program (DFHFCVR) uses a change-mode request to the
dispatcher to allow VSAM I/O requests and VSAM UPAD exit code to run under a concurrent task. This
provides overlapping of processing in a multiprocessor environment.

RLS requests use a different mechanism: SMSVSAM assigns each request its own SRB, allowing MVS to
concurrently schedule requests in an analogous way to that provided by subtasking for non-RLS.

Shared Data table services
Shared data tables (that is, CICS-maintained and user-maintained data tables) are managed by a set of
OCO modules, referred to in this book as “data table services”. The services are invoked by a
branch-and-link interface passing a parameter block.

Services provided include the following:
v Initialization
v Open, close, and load of tables
v Retrieval and update of table records
v Backout and commit of table changes
v Statistics.

For files that are defined by the user as CICS-maintained or user-maintained data tables, file control
invokes these services at appropriate points in the processing of application requests.

File control

Chapter 24. File control 165

Coupling facility data tables server
Coupling facility data tables are managed by a OCO modules within the CICS address space, along with a
separate address space, referred to as the "Coupling Facility Data Tables Server". The CFDT server
provides access to coupling facility data tables residing in a coupling facility data tables pool, so that they
can be shared by CICS regions across a parallel sysplex. Refer to the CICS Supplied Transactions for
more details about CFDT servers.

For files that are defined by the user as accessing coupling facility data tables, file control makes calls to
the CFDT server at appropriate points in the processing of application requests.

How CICS processes file control requests
CICS receives file control requests from applications through the EXEC interface. This section describes
only the mainstream processing for such requests. It does not describe exceptional conditions. For
guidance about exceptional conditions, see the CICS Application Programming Guide. For general-use
programming interface information about exceptional conditions, see the CICS Application Programming
Reference manual. This section also does not provide details about the specific processing for requests to
any kind of data table.

Processing using VSAM
For VSAM data sets, this section describes the processing followed when the file is being accessed in
non-RLS mode. For RLS mode, the processing is broadly similar, although it differs in some of the
interfaces used to VSAM, and the locking mechanisms are very different.

Note: File control processing is constrained by the availability of buffers, CICS strings and (for local
shared resource (LSR) files) LSR strings. Tasks can get suspended during the execution of any file
control request if there are not enough strings or buffers available for the immediate processing that
is to be done.

With VSAM RLS, a task waiting for buffers will be suspended in VSAM rather than in CICS.

Processing using Data Tables
For shared data tables (CICS-maintained and user-maintained data tables), processing is broadly similar
to that for non-RLS VSAM. The main differences are that, for remote files, non-update requests may be
processed locally instead of being function shipped, and that, in cases where a request cannot be satisfied
from a data table, it may be converted into a non-RLS or RLS VSAM request to be processed by
DFHFCVS or DFHFCRS, or function shipped via DFHFCDTX.

For coupling facility data tables, processing is also broadly similar to that for non-RLS VSAM. The main
difference is that instead of issuing the request to VSAM, a call or calls are made to entry points within the
CFDT server, which then processes the request and returns the results. A task accessing a coupling
facility data table may occasionally be suspended in the CFDT server.

Note that the following processing sections do not describe data table processing explicitly.

General request processing
All file requests, whatever the request and whatever the file access method, follow the same general
sequence of steps:

1. User exit XFCREQ is called.

2. The request is converted from EXEC parameter list form to FCFR interface form.

3. If this is the first file access request by the transaction, a FRAB is obtained and its address stored in
Recovery Manager's FC Token. The FRAB provides the anchor for file request state for this
transaction.

File control

166 CICS TS for z/OS: CICS Diagnosis Reference

4. If this is the first request to this file by the transaction, a FLAB is obtained and the file control table
entry is located. If the file is remote or an explicit SYSID has been specified on the request, the FLAB
is marked with a remote indicator. If this is not the first request to the file, then the FLAB is located
that repressents accesses made to the file by this transaction.

5. If this is the first, or only, request of a request sequence, a FRTE is obtained. If this is not the first
request in a request sequence, the FRTE that represents the sequence is located. rather than being
function shipped.

6. If the request is to a local file, and if resource security is active, the security check is made, unless a
check has already been made within the current UOW for this file.

7. If the request is to a local file and the file is not already open, it is opened and its access method
dependent attributes are saved in its file control table entry.

8. The SERVREQ attributes of the file are checked.

9. For READ and browse requests, SET storage is released and/or obtained, as necesssary.

10. The access method specific request processor is called as follows:

v DFHFCVS for non-RLS VSAM files

v DFHFCRS for RLS VSAM files

v DFHFCBD for BDAM files

v DFHFCDR for coupling facility data tables

v DFHFCDTS for user-maintained data tables

v DFHFCDTS for non-update requests to CICS maintained data tables

v DFHFCVS for update requests to CICS maintained data tables

v DFHFCRF for requests that are to be shipped to a remote region

11. CICS has checked whether the file is defined as local or remote. If it is remote, the request is
function-shipped to the file-owning region, where CICS processes the request as if it had originated
locally.

There is an exception for CICS-maintained and user-maintained data tables, for which non-update
requests are treated as local rather than being function shipped.

Note that RLS support and coupling facility data tables support both provided shared access within a
parallel sysplex without the use of function shipping. Files which use either of these types of sharing
will be defined as local on all systems which wish to share the data set (in the case of RLS support)
or data table (CFDT support).

12. SET storage is obtained for BDAM files or below the line READ requests.

13. The FRTE is released if the request sequence has ended and the file is closed if a close is pending,
this FRTE is the last user and the FLAB indicates that the file can be closed.

14. The FCFR responsed are converted to EXEC parameter list responses. In particular, the EIBRCODE
and RESP2 values are constructed.

15. User exit XFCREQC is called.

READ request processing
The course of READ request processing depends on the access method, and whether or not the UPDATE
option is specified on the request:

VSAM processing:

1. The supplied keylength is validated.

2. A VSAM work area (VSWA) is created. This includes the request parameter list (RPL) that will be
passed to VSAM.

The processing that follows depends on whether the UPDATE option was specified on the READ
request.

UPDATE option not specified:

a. The RPL is completed, and a call made to VSAM to get the record.

File control

Chapter 24. File control 167

b. If the request specifies INTO and the record is too large for the user-specified area, the request is
reissued specifying a work area large enough to hold the record. The record is then copied to the
user-specified area in truncated form, and the LENGERR condition is raised.

c. The VSWA is freed.

d. The read is journaled if specified in the FCT entry.

UPDATE option specified:

a. The UPDATE flag is set in the RPL.

b. An attempt is made to read the record by issuing the VSAM request. READ UPDATE requires
exclusive control of the control interval (CI) containing the record. VSAM manages the locking
mechanism for control intervals. If the CI is already locked, VSAM returns an error and the
requesting task is forced to wait on resource type FCXCWAIT.

c. CICS file control acquires a record lock on the record just read, using a CICS ENQUEUE request.
The record lock prevents any other transaction from updating the record before the owning
transaction has reached a syncpoint (for recoverable files), or before the REWRITE, DELETE,
UNLOCK or syncpoint that completes the request sequence (non-recoverable files).

d. Exclusive control of the CI is retained until the REWRITE, DELETE, or UNLOCK request that
follows the READ UPDATE has been completed, or until the next syncpoint.

The CICS record lock (if any) is retained until the next syncpoint, in case the transaction updating
the record abends and dynamic transaction backout processing is necessary.

e. If the file is recoverable the request is logged. If required, the request is also recorded in a
user-specified journal.

BDAM processing:

a. A file I/O area (FIOA) is obtained.

b. If the UPDATE option has been specified:

1) The address of the RIDFLD is saved in the FIOA.

2) If the data set is recoverable, the RIDFLD is ENQUEUEd on to lock the record against other
updates. The ENQUEUE is retained until the next syncpoint.

c. The KEYLENGTH is checked for validity.

d. The key field is converted from character string format (TTTTTTRR) to binary format (TTR), if
necessary.

e. A BDAM READ request is issued. If the READ is successful, the required block is returned in the
FIOA.

f. The key field returned by BDAM is converted from binary format to character string format, if
necessary.

g. If the file is recoverable and UPDATE has been specified, the request is logged. If required, the
request is also recorded in a user-specified journal.

h. If deblocking is required, the required record is located in the block that has been returned by
BDAM:

1) If DEBREC has been specified, the record number is used to locate the record.

2) If DEBKEY has been specified, the embedded key is used to locate the record.

WRITE request processing
The course of WRITE request processing depends on the access method, and for VSAM access on
whether the file is a data table: VSAM processing:

1. The KEYLENGTH is checked for validity. If it is incorrect, the INVREQ condition is raised.

2. A VSAM work area (VSWA) is created. This includes the request parameter list (RPL) that will be
passed to VSAM.

Different paths are now followed depending on the type of file.

ESDS file:

File control

168 CICS TS for z/OS: CICS Diagnosis Reference

a. If the file is recoverable or writes are to be journaled then

1) If this is not the first write of a sequence and the ESDS write lock is being waited for by
another transaction, then release the lock and end this sequence, logging the completion if
recoverable.

2) If this is (or has become) the first write of a sequence, acquire the ESDS write lock for the data
set.

b. If the file is recoverable, the WRITE ADD request is recorded in the CICS system log.

c. If required, the WRITE ADD request is recorded in a user-specified journal.

d. Any fields in the RPL not supplied when the VSWA was created are completed.

e. The RPL is set to point to the user-specified data area. If the user specified a record that is too
large for the file, the length in the RPL is set to the maximum length, so that the record is
truncated.

f. A VSAM PUT request is issued to write the record.

g. If the file is recoverable, a CICS record lock is obtained for the record that has just been written.
The record lock will be retained until the next syncpoint, in case the transaction writing the record
abends and dynamic transaction backout processing has to be performed.

h. If the file is recoverable, the after-image of the record is logged for forward recovery and a write
complete record is written on the system log.

i. If not a MASSINSERT the ESDS write lock is released, if held.

KSDS or RRDS file:

a. For KSDS requests, the RIDFLD key specified in the request is checked against the key field in the
record to be written. (The record is currently in the application FROM data area.) If it does not
match, the INVREQ condition is raised.

b. If the file is recoverable and not in load mode:

1) A CICS lock is obtained on the record that is to be written, and an attempt is made to read the
record (by means of a VSAM GET request) to discover whether it already exists in the file. If it
does, the DUPREQ condition will be raised on the write to VSAM.

2) If the file is a KSDS, and if this request is part of a MASSINSERT, or if a MASSINSERT is in
progress, the read is issued with GTEQ to find the next record in the base data set. A lock is
created, using the key of this next record, to prevent other transactions from inserting records
into the empty range.

3) If there is no existing record with the given key, the WRITE ADD request to VSAM is recorded
in the CICS system log and, if required, in a user-specified journal.

c. If the file is not recoverable or in load mode, the WRITE request is recorded, if required, in the
user-specified journal, and if recoverable a record lock is obtained and the write logged.

d. Any fields in the RPL not supplied when the VSWA was created are completed.

e. If a data table is associated with the base cluster (the data table will be a CICS-maintained table,
as user-maintained and coupling facility data tables follow a separate processing path which is not
described here). a data table pre-add is issued to place the record in the table as a not-yet-valid
entry. If the file is recoverable, a record lock is already held; if not, a lock is acquired before the
data table service is called.

f. A VSAM request is issued to write the record.

g. If the file is recoverable, the after-image of the record is logged for forward recovery.

h. If required, the after-image is recorded in a user-specified journal.

i. If the file is a data table, a data table request is issued to complete the add to the data table by
validating the record. If a record lock was obtained for a non-recoverable file, it is released.

3. If the MASSINSERT option has not been specified on the WRITE request, the VSWA for the operation
is released.

File control

Chapter 24. File control 169

If MASSINSERT has been specified, the VSWA is not released, because it is likely to be needed for
subsequent WRITE operations. In this case, the end of MASSINSERT processing is notified to VSAM
by the CICS UNLOCK function. (See “UNLOCK request processing” on page 171.)

Specifying MASSINSERT causes exclusive control of the CI to be acquired. Exclusive control is
released by issuing an UNLOCK request. To avoid deadlocks, this should be done immediately after
the last WRITE MASSINSERT request.

BDAM processing:

1. The KEYLENGTH is checked for validity. If it is incorrect, the INVREQ condition is raised.

2. The WRITE command input is checked to ensure that MASSINSERT has not been specified—BDAM
does not support MASSINSERT processing. If it has, condition INVREQ is raised.

3. A file I/O area (FIOA) is obtained.

4. If the file is recoverable, the record to be written is ENQUEUEd on. The lock is retained until the next
syncpoint.

5. The record to be written is copied from the user-supplied data area to the FIOA. If the record is too
large, it is truncated.

6. If the file is recoverable, the request is logged. If required, the request is also recorded in a
user-specified journal.

7. The key field is converted from character string format to binary format, if necessary, and the BDAM
I/O request issued.

8. The key returned by BDAM is converted from binary format to character string format, if necessary,
and passed to the application.

9. A supervisor call (SVC 53) is issued to release BDAM exclusive control, if necessary.

10. The FIOA is FREEMAINed.

REWRITE request processing
The REWRITE request is used to write a record back to a file following a READ UPDATE request. VSAM
processing:

1. The RPL is set to point to the user-specified data area. If the user specified a record that is too large
for the file, the length in the RPL is set to the maximum length, so that the record is truncated.

2. The RPL is completed.

3. If there is a data table associated with the base cluster (this will be a CICS-maintained table, as
user-maintained tables follow data table processing):

a. If the file is nonrecoverable, a record lock is obtained. (If the file is recoverable, a lock is already
held).

b. A data table request is issued to invalidate the record in the table before the VSAM update.

4. VSAM is called to PUT(UPDATE) the record. Exclusive control of the CI, which was obtained for the
preceding READ UPDATE request, is released, but the CICS record lock (for recoverable files) is
retained until the next syncpoint, in case the transaction abends and dynamic transaction backout
processing is necessary.

5. If there is a data table associated with the data set, the table record is updated and its validity is
reinstated, by issuing a call to data table services. If the file is nonrecoverable, the record lock is
released.

6. If the file is recoverable, and if the record is successfully rewritten, the after-image is written to the log
for forward recovery.

7. The VSWA for the operation is released.

Note: When a record is updated by way of a path, the corresponding alternate index is updated by
VSAM to reflect the change. However, if the record is updated directly by way of the base, or by
a different path, the AIX® will only be updated by VSAM if it has been defined to VSAM (when
created) to belong to the upgrade set of the base data set.

File control

170 CICS TS for z/OS: CICS Diagnosis Reference

BDAM processing:

1. The FIOA that was used in the corresponding READ UPDATE request is located, and the modified
record read into it from the user-specified area. If the record is too long, it is truncated.

2. A FREEMAIN call is issued to release the FWA.

3. If the file is recoverable, the request is logged. If required, the request is also recorded in a
user-specified journal.

4. The key field is converted from character string format to binary format, if necessary, and the BDAM
I/O request issued.

5. The key returned by BDAM is converted from binary format to character string format, if necessary,
and passed to the application.

6. A supervisor call (SVC 53) is issued to release BDAM exclusive control, if necessary.

7. A FREEMAIN call is issued to release the FIOA.

UNLOCK request processing
The UNLOCK request is used to release exclusive control obtained during a READ UPDATE (VSAM or
BDAM) or WRITE MASSINSERT (VSAM only) request.

VSAM processing (including CICS-maintained data tables):

1. The VSWA for the operation is released, together with associated storage.

2. An ENDREQ request is sent to VSAM. This releases exclusive control of the CI, if it is held, and frees
any VSAM strings.

BDAM processing:

1. A supervisor call (SVC 53) is issued to release BDAM exclusive control, if necessary.

2. A FREEMAIN call is issued to release the FIOA.

DELETE request processing
The course of DELETE request processing depends on whether a RIDFLD has been specified. The
processing for user-maintained data tables differs from that for CICS-maintained data tables. DELETE
requests are not valid for VSAM ESDS or for BDAM files.

VSAM processing (including CICS-maintained data tables):

1. If a RIDFLD has been specified:

a. If a KEYLENGTH has been specified, it is checked for validity.

b. If the GENERIC option has been specified, and the file is not a KSDS, condition INVREQ is
raised.

c. A VSWA is created.

2. If no RIDFLD was specified, the SERVREQ attribute of the file is checked to ensure that DELETE
requests are valid for this file. If not, the INVREQ condition is raised.

If a RIDFLD has been specified, the cycle of actions described below is performed once if GENERIC
has not been specified, or is repeated until there are no more records containing the generic key, if
GENERIC has been specified.

Start of cycle:

3. VSAM is requested to GET for UPDATE a record with the specific or generic key. GET UPDATE
processing requires exclusive control of the CI. The record is read into an internal buffer.

The generic key value, if supplied, is checked against the key contained in the record. If it does not
match, there are no more records containing the generic key in the file.

4. If the file is recoverable:

a. A CICS record lock is obtained for the record. This will be held until the next syncpoint.

b. The VSAM GET UPDATE request is recorded synchronously on the system log.

File control

Chapter 24. File control 171

c. A CICS range lock is obtained for the record to be deleted if a MASSINSERT is in progress. This
is to prevent an end-of-range record from being deleted while the range is in use for a
MASSINSERT sequence.

5. If there is a data table (which will be CICS-maintained) associated with the base cluster, a record lock
is acquired if the file is nonrecoverable, and a data table pre-update call is issued to invalidate the
record before the VSAM update.

6. A VSAM ERASE request is issued, to delete the record from the file.

7. If there is a data table associated with the base cluster, the record is deleted from the table by issuing
a call to data table services. If the file is nonrecoverable, the record lock is released.

8. If a range lock was acquired, it is released.

9. If the file is recoverable, a WRITE DELETE record is written in the system log for forward recovery.

10. If required, a WRITE DELETE record is written to a user-specified journal.

End of cycle.

11. The VSWA is released.

STARTBR and RESETBR request processing
STARTBR and RESETBR request processing are very similar, and are described together.

VSAM processing:

1. A VSWA is created if STARTBR.

2. The user key is recorded in the VSWA for use in subsequent BROWSE processing.

3. A call is made to VSAM to point to the record, and to acquire shared control of the CI.

BDAM processing:

1. An FIOA is obtained and initialized if STARTBR.

2. The initial key is saved in the FIOA, converting the key from character string format to binary format if
necessary.

3. If deblocking is required, the deblocking indicator (DEBREC or DEBKEY) is saved in the FIOA.

READNEXT and READPREV request processing
READNEXT and READPREV request processing are very similar, and are described together.

VSAM processing:

1. A check is made that READPREV with a generic key was not requested. If it was, condition INVREQ is
raised.

2. If KEYLENGTH was specified, it is checked for validity. If it is incorrect, the INVREQ condition is
raised.

3. The RPL options are set.

4. If SET is specified, an internal work area is obtained and the RPL is set to point to the work area. The
area is either above or below the 16MB line, depending on the requirements of the application.

5. If INTO is specified, the RPL is set to point to the user-specified area.

6. A VSAM request is issued to read the record. Shared control of the CI is needed, and the request will
not succeed if some other task already has exclusive control. In such a case, a call is made to VSAM
to reestablish the correct position in the file. The task then waits until VSAM informs CICS that the CI
is available to the task. CICS resumes the task, which can now acquire shared control and obtain the
required record.

7. If SET is specified, the SET pointer points to the work area.

8. If INTO is specified, a check is made to see if the record is too large to fit into the user-specified area.
If it is too large, the request is reissued using an internal work area, the data is copied from the work
area into the user-specified area and truncated, and the LENGERR condition is raised.

9. If required, the request is recorded in a user-specified journal.

File control

172 CICS TS for z/OS: CICS Diagnosis Reference

BDAM processing—READNEXT requests:

1. A check is made that READPREV was not issued. If it was, condition INVREQ is raised.

2. The FIOA that was created on STARTBR is located.

3. If a new block is required, a BDAM I/O request is issued to get it.

4. If deblocking is required, the required record is located in the block that has been returned by BDAM:

a. If DEBREC has been specified, the record number is used to locate the record.

b. If DEBKEY has been specified, the embedded key is used to locate the record.

5. If INTO is specified, the record or block is moved from the FIOA to the user-specified area. If the
record is longer than the user-specified area, it is truncated, and the LENGERR condition is raised.

6. If SET is specified, the SET pointer points to the record in the FIOA.

7. The RIDFLD of the record is returned to the application.

8. The current browse position is recorded in the FIOA.

ENDBR request processing
The ENDBR request is used to end a browse session on a file. To avoid deadlocks, ENDBR must be
issued when the browse session is complete.

VSAM processing:

1. An ENDREQ request is sent to VSAM. This frees any VSAM strings that are held, and relinquishes
shared control of the CI.

2. The VSWA for the operation is released.

BDAM processing:

v The FIOA that was used for the browse session is FREEMAINed.

Control blocks
Figure 49 on page 174 shows the major control blocks associated with file control. Control blocks which
are not shown in this diagram include those relating to coupling facility data tables support.

File control

Chapter 24. File control 173

FRAB

Recovery Manager UOW
representation

FLAB

FRTE

FC work token

APEF work token

FRAB_NEXT_FRAB_ADDRESS

FRAB_PREV_FRAB_ADDRESS

FRAB_FLAB_CHAIN_ADDRESS

FRAB_FLLB_CHAIN_ADDRESS

FRTE_NEXT_FRTE_ADDRESS

FRT_NEXT_IN_FILE_CHAIN

FRT_SET_CONTROL

FRT_WORK_AREA_ADDRESS

FLLB

FFLE

FLLB_DSNB_ADDRESS

FLLB_NEXT_IN_DSNB_CHAIN

FFL_NEXT_FILE

FLLB_NEXT_IN_FRAB_CHAIN

FFL_AFCTE_ADDRESS

FLAB_NEXT_FLAB_ADDRESS

FLAB_FCTE_ADDRESS

FLAB_FRTE_CHAIN_ADDRESS

FLAB_SET_CONTROL

X’10’

X’00’

X’10’

X’00’

X’14’

X’20’

X’08’

X’18’

X’28’

X’14’

X’1C’

X’30’

X’30’

DSNAME BLOCK

FCTBC_FLLB_CHAIN

VSWA

VSWAACB
Address of ACB

VSWAFC
Address of FCT entry

X’28’

X’54’

FIOA

FCFIODCB
Address of DCB

FCFIOFCT
Address of FCT entry

FIOADBA
Data area

X’0C’

X’34’

X’60’

FCT ENTRY (FCTE)

FCTDSID

FCTDSDP

FCTDSBCP

X’00’

X’5C’

X’60’

Figure 49. Control blocks associated with file control (Part 1 of 2)

File control

174 CICS TS for z/OS: CICS Diagnosis Reference

Note: The pointer to the DSNAME block, FCTDSDP, is different from the pointer to the base cluster
DSNAME block, FCTDSBCP, only when the FCT entry does not represent a base. DSNAME blocks
that do not correspond to bases do not have the base cluster information, although the space is
allocated.

These control blocks are described in the Sections “Access method control block (ACB)” on page 176
through “VSAM work area (VSWA)” on page 183.

SHARE CONTROL BLOCK

C’LSRPOOL3’

Pool requirement values

Statistics

X’00’

Quiesce receive element

FCQRE

Quiesce send element

FCQSE

DSNAME information

Base cluster information

FCTBCVSC
Anchor for VSWA chain

FCTDSID
File name

FCTDSDP
Address of DSNAME block

FCTDSBCP
Address of DSNAME block
for base cluster

FCT entry (FCTE)

CSAFCSBA
Address of file control
static storage

CSA

X’12C’

File control static storage
DFHFCSDS

FC_SHRCTL_VECTORS (8)
Pointers to SHRCTL blocks

Pointer to SHRCTL block 3

FC_QUIESCE_DATA
FC_FCQSE_FIRST

FCQRE_FIRST

X’B0’

X’B8’

X’24C’

X’25C’

DSNAME block
DFHDSNDS

DSNAME block
DFHDSNDS

DSNAME information
(see note)

X’00’

X’50’

X’54’

X’54’

Note:
For a file accessing a base data set,
FCTDSDP and FCTDSBCP are identical.
For a file accessing a path data set,
FCTDSDP points to the DSNAME
information for the path data set, while
FCTDSBCP points to the DSNAME
information for the base data set.
The DSNAME information for a base
data set includes base cluster information,
including such fields as FCTBCVSC.

Figure 49. Control blocks associated with file control (Part 2 of 2)

File control

Chapter 24. File control 175

Access method control block (ACB)
The ACB identifies to VSAM the file associated with this VSAM request. It is passed to VSAM by
DFHFCRV, for RLS, or DFHFCVR, for non-RLS (it is actually the RPL, which points to the ACB, that is
passed) to initiate a VSAM request. The ACB lasts as long as the associated CICS file is open; that is, it is
created at file open time and deleted at file close time by DFHFCN for non-RLS or DFHFCRO for RLS.

The ACB is addressable through a pointer in the associated FCT entry. In addition, a 4-byte field
appended (by CICS) to the ACB structure points back to this FCTE.

Note that the ACB is a VSAM control block.

At open time, storage is obtained from a subpool above the 16MB line. A VSAM GENCB macro is issued
to generate the ACB with attributes obtained from the FCT entry. At open time, VSAM fills in more
information in the ACB. Some of this is subsequently copied back into the FCTE.

The storage for the ACB is freed when the file is closed.

There is one ACB per VSAM FCT entry.

The layout of the ACB is defined by the VSAM IFGACB structure, and also by a DSECT of the same
name.

ACBs are not cataloged and are not restored across WARM or emergency starts. The ACB is rebuilt every
time a CICS file is opened.

A special type of ACB, known as a base cluster ACB, is created by DFHFCM to allow for the implicit
opening of a base cluster, when required by a non-RLS file access through an alternate index path. In this
case, the 4-byte field appended to the ACB structure points to the associated DSNAME block for the base
cluster.

A second special type of ACB, known as a control ACB is required for VSAM RLS processing. Storage
for the control ACB is obtained by DFHFCCA and filled in using the GENCB macro before registering the
control ACB. The storage is freed when the control ACB is unregistered by DFHFCCA. The control ACB is
passed to VSAM on calls issued by DFHFCCA. It is used for all requests that are not associated with a
specific file.

Data control block (DCB)
The DCB identifies to BDAM the file associated with this BDAM request. It is passed to BDAM by
DFHFCBD to initiate a BDAM request, and lasts for the lifetime of the CICS run.

The DCB is addressable through a pointer in the associated FCT entry. In addition, a 4-byte field
appended (by CICS) to the DCB structure points back to this FCTE.

Note that the DCB is a BDAM control block.

There is one DCB per BDAM FCT entry.

The layout of the DCB is defined by the generalized structure IHADCB. The structure is qualified with a
parameter stating that a BDAM DCB is required. There is also a DSECT of the same name.

The DCB is assembled as part of the FCT. (Note that there is no RDO for BDAM files.) DFHFCRP
acquires storage for the DCB below the 16MB line and copies the DCB into it (only on cold start). The
DCB is cataloged and restored across a warm and emergency start. Thus, unlike an ACB, a DCB is only
built once.

File control

176 CICS TS for z/OS: CICS Diagnosis Reference

Data set name block (DSNB)
The DSNB represents a physical VSAM or BDAM data set that is being accessed through one or more
CICS files. It is used by file control to hold information relevant to the data set and not only to the CICS
file. Also, it provides a single “anchor block” to control many requests accessing this data set through
many different CICS files.

After it has been created, a DSNB survives the lifetime of a CICS run unless the user deletes it by means
of an EXEC CICS SET DSNAME REMOVE command or its CEMT equivalent.

The DSNB is addressable through pointers in an FCTE entry, or through DFHTMP using the 44-character
name as a key, or using the DSNB number as a key.

A DSNB is created, if it does not exist already, when an FCTE attempts to connect itself to a DSNB. This
happens at file open time, or when an EXEC CICS SET FILE DSNAME command (or its CEMT
equivalent) is executed.

A DSNB that represents a VSAM base data set has a base cluster block embedded in it, which has
information specific to the base data set. Note that a BDAM data set has a small amount of information
held in the base cluster block.

A DSNB representing a VSAM path has a blank base cluster block embedded in it.

Information about the base data set is obtained from the VSAM catalog when a CICS file (path or base)
referencing that data set is opened. The information is stored in the base cluster block.

DSNBs are cataloged in the CICS global catalog and are restored across warm and emergency starts.

DSNBs reside above the 16MB line.

The layout of the DSNB is defined by the DFHDSNPS structure, and by the DFHDSNDS DSECT (using
the DFHDSND macro).

The DFHFCDN module handles DSNAME blocks (creation, deletion, FCTE-DSNB connections).
DFHFCDN also provides an interface for the EXEC layer to process DSNAME blocks through the use of
EXEC CICS INQUIRE or SET DSNAME, and CEMT INQUIRE or SET DSNAME. Modules within the file
control component can access the DSNBs directly through pointers in the FCTE.

File browse work area (FBWA)
The FBWA maintains the state of a browse to a data table. It is used for browsing coupling facility data
tables, CICS-maintained data tables, and user-maintained data tables.

An FBWA is created when the browse is started (via a STARTBR request), and is addressed by the
FRT_FBWA_ADDRESS field in the FRTE. It is stored in a file control IO buffer of the appropriate size to
hold the key information.

Some of the fields are specific to CICS-maintained data tables, because the source data set will
sometimes be accessed during a browse of a CICS-maintained data table.

There is a variable-length portion at the end of the FBWA which contains keys, which are pointed to by
fields in the fixed hang on!

part:

v CURRENT_KEY points to the first of the key fields, which is used to hold the key returned by the most
recent request.

File control

Chapter 24. File control 177

v REQUEST_KEY points to the second of the key fields, which is used to contain the key specified at the
start of a browse segment (STARTBR or RESETBR).

v NEXT_KEY points to the third of the key fields, which is used for CICS-maintained data tables to handle
"gaps".

File control static storage (FC static)
File control static storage is used by file control to store information for use throughout the lifetime of a
CICS run; for example, SHRCTL vectors and entry points of file control modules. It is used by file control
modules and by modules outside the file control component, and lasts for the lifetime of a CICS run. It is
addressed by a field in the CSA named CSAFCSBA; it is created by DFHFCIN during CICS initialization
before DFHFCRP gets control, and resides above the 16MB line.

FC static storage is defined by the DFHFCSPS structure and by the DFHFCSDS DSECT.

File control quiesce receive element (FCQRE)
File control uses quiesce receive elements to communicate details of quiesce requests received from
SMSVSAM. There is also a permanent error FCQRE used for communicating errors. The FCQRE contains
information about the data set to which the quiesce applies (or the cache for quiesce type QUICA), the
type of quiesce, and (for the error FCQRE) the type of error and error data.

Each quiesce request received from SMSVSAM via the quiesce exit results in DFHFCQX, the quiesce exit
module, creating an FCQRE which is passed to DFHFCQR, the quiesce receive system task module.

Storage for FCQREs is obtained from storage MVS getmained above the 16MB line.

FCQREs are chained in a one-way linked list anchored from file control static storage. The permanent
error FCQRE is also anchored from file control static storage, and is added to the FCQRE chain when an
error occurs.

The layout of the FCQRE is defined by the DFHFCQRE structure and the DFHFCQRE DSECT.

File control quiesce send element (FCQSE)
File control uses quiesce send elements to communicate the details of quiesce requests that are to be
sent to SMSVSAM. They contain information about the task initiating the request, the data set to be
quiesced, the type of quiesce requested, and the address of an ECB which is posted by SMSVSAM when
the request is completed.

Each quiesce request initiated by CICS results in DFHFCQI, the quiesce initiate module, creating an
FCQSE which is passed to DFHFCQS, the quiesce send module.

Storage for FCQSEs is obtained from the FC_ABOVE subpool, which resides above the 16MB line.

FCQSEs are chained in a two-way linked list anchored from fields in file control static storage.

The layout of the FCQSE is defined by the DFHFCQSE structure and the DFHFCQSE DSECT.

File control coupling facility data table pool element (FCPE)
A file control CFDT pool element represents one connection to a Coupling Facility Data Table Pool. For
each CFDT pool which can be accessed by a given MVS image, there is a CFDT server running in that
image which manages access to the pool.

An FCPE is created and chained to FC static when a file definition that refers to the pool is installed and
there is not already a pool element for that CFDT pool. The creation of an FCPE can occur:
v when files are installed at CICS startup,

File control

178 CICS TS for z/OS: CICS Diagnosis Reference

v when files are installed using CEDA,
v when a SET FILE is issued which names a CFDT pool for which there is not already a pool element.

FCPEs are getmained from the FCPE subpool which is created by DFHFCRP during File Control
Initialization, and chained to the FCPE chain in FC static. The head of the FCPE chain is the field
FC_FCPE_CHAIN.

FCPEs are catalogued when they are created, so that they can be restored at emergency restart.

File control coupling facility data table pool wait element (FCPW)
The file control CFDT pool wait element (FCPW) represents a task which has tried to issue a request to a
coupling facility data table that resides in a particular pool, but which has to wait because there are no
available request slots. Depending on the kind of request, the FCPW will represent either a 'Locking
request slot' (LRS) waiter or a 'MaxReqs' waiter. A flag in the FCPW indicates what kind of wait it is.

The FCPW is created when a task goes into a MaxReqs or LRS wait. It is getmained from the pool wait
element subpool, and appended to a chain of wait elements for the pool. The wait chains are anchored in
the pool element (FCPE), with one FCPW for each task that is waiting. The FCPE contains head and tail
fields for the chains of LRS and MaxReqs FCPWs (FCPE_FIRST_LRS_WAITER,
FCPE_LAST_LRS_WAITER, FCPE_FIRST_WAITER and FCPE_LAST_WAITER). The chains are
manipulated using logic which does not require any special case code for the ends of the chains, but
which does mean that when the chains are empty, the head and tail fields contain a special initial value,
rather than zero.

The FCPW includes:
v A pointer to the next FCPW in the chain (if no next FCPW, this contains the special initial value).
v A pointer to previous FCPW in the chain (if no previous FCPW, this contains the special initial value).
v The suspend token for the wait.
v The task token of the waiting task.
v The suspend start time.

File control table entry (FCTE)
Each entry in the file control table defines a CICS file that is defined to be the CICS view of a VSAM or
BDAM data set or a data table. The FCTE is used by all modules in the file control component (but never
outside), and lasts for the lifetime of a CICS run, or from when it is created by RDO to the end of the
CICS run.

The FCTE is addressable through a TMP index; its layout is defined by the DFHFCTPS structure and by
the DFHFCTDS DSECT; and it resides above the 16MB line.

The FCTE contains information that can be split into three broad groups:

v CICS information about the file, including statistics

v Information that is used as input to build the VSAM ACB or BDAM DCB

v Information that is returned by VSAM, both from the ACB and direct from the VSAM catalog, when the
file is opened.

An FCTE can be created in two ways:

v By defining the file using the DFHFCT TYPE=FILE macro (BDAM only).

v By defining the file online using RDO while CICS is running (VSAM only).

File control

Chapter 24. File control 179

File control table entry (FCPW)

File control coupling facility data tables UOW pool block (FCUP)
The File Control CFDT UOW Pool Block (FCUP) represents recoverable updates made within a unit of
work to one or more coupling facility data tables residing in a coupling facility data table pool. An FCUP
block is created when a unit of work makes its first recoverable request to a CFDT in a given pool, at the
same time as an RMC link is added to represent the recoverable update.

There is one FCUP block per UOW per recoverably-updated CFDT pool. The FCUP is getmained and
freemained from the FCUP subpool using the storage manager quickcell mechanism. The FCUP blocks for
a unit of work are chained from the FRAB for that unit of work, addressed by
FRAB_FCUP_CHAIN_ADDRESS.

An FCUP block contains:

v Forward and back pointers for the chain of FCUP blocks relating to this unit of work.

v The name of the CFDT pool.

v The CFDT RMC link token.

v A pointer to the pool element for the CFDT pool.

v A pointer back to the owning FRAB.

File input/output area (FIOA)
The FIOA is analogous to the VSWA for VSAM, in that it represents the request to BDAM. Embedded in
the FIOA is what is known as the data event control block (DECB), which is passed to BDAM to initiate the
request.

The FIOA is used by DFHFCBD when processing browse requests against BDAM files. It holds position in
a browse when browsing a BDAM file.

An FIOA survives as long as the DECB needs to survive to complete the BDAM request; for example, it
survives from READ UPDATE to the REWRITE request.

The address of the FIOA is held in the file request thread element (FRTE) in the
FRT_WORK_AREA_ADDRESS field.

Storage for the FIOA is acquired from below the 16MB line.

The layout of the FIOA is defined by the DFHFIOA DSECT.

File lasting access block (FLAB)
The FLAB serves as an anchor for the set of file request thread elements (FRTEs) belonging to a
particular file within a given transaction and a given environment. If a transaction accesses several files
from within the same environment, there will be one FLAB for each file. If a transaction accesses the same
file from more than one environment, there will be one FLAB for each environment.

The FLAB contains pointers to the FCTE for the file, to the owning FRAB, to the chain of FRTEs owned by
the FLAB, and to the next FLAB in the chain of FLABs for the unit of work.

The FLAB is used by file control to

v anchor the FRTEs for the file within the unit of work and environment,

v ensure that a file cannot be closed if there are any FRTEs associated with it, or if there have been
recoverable updates made by units of work which have not yet reached syncpoint phase 2,

File control

180 CICS TS for z/OS: CICS Diagnosis Reference

v ensure that the corresponding file entry cannot be reallocated to a different data set, even if the file is
closed and disabled, when there is uncommitted recoverable work associated with the file,

v hold READ SET storage control information across intermediate syncpoints,

v ensure that units of work which have updated the file reach syncpoint before a copy or BWO copy for a
file opened in RLS mode is allowed to proceed,

v record the reason for a failure during syncpoint, and keep track of the fact that the file has uncommitted
updates within a unit of work as a result of the failure.

The file lasting access block is built by DFHFCFR as part of processing of the first file control request for a
particular file within a given transaction and environment. FLABs for recoverable files are also rebuilt by
DFHFCIR at warm and emergency restart.

The storage for the FLAB is obtained from a FLAB storage subpool above the 16MB line.

The FLAB is deleted after all the FRTEs have been processed during syncpoint terminate processing,
providing that there have been no syncpoint failures for the file within the unit of work. The FLAB storage
is not returned to the FLAB storage subpool, but is instead added to a chain of free FLABs, anchored from
file control static storage. Subsequent requests to build a FLAB are, if possible, satisfied by a quick cell
mechanism from this chain.

If a unit of work is shunted as a result of a syncpoint failure, the FLABs for any files which suffered the
syncpoint failure are also shunted.

The chain of FLABs for a unit of work is anchored from field FRAB_FLAB_CHAIN_ADDRESS in the FLAB.

The layout of the FLAB is defined by the DFHFLAB structure and the DFHFLAB DSECT.

File control locks locator blocks (FLLBs)
The file control locks locator block records the fact that a unit of work held locks against a file which were
protecting uncommitted changes to the file, and that it is now uncertain whether the locks are valid. This
can occur, for example, if the data set against which the locks were held is now in the lost locks state, or if
a non-RLS open for update has taken place despite the presence of retained locks and has overridden the
locks (in this case the locks are intact, but the data may not be). It is used by file control to keep track of
outstanding recovery work, because whilst the data set still has FLLBs associated with it, special
processing rules apply (the actual rules vary with the type of lock condition that has occurred).

FLLBs are created by DFHFCRR (for the lost locks condition, or for an OFFSITE=YES CICS restart), or by
DFHFCRO (after a file open which has returned the ‘non-RLS override’ reason code).

FLLBs are chained from both the associated DSNB and the associated FRAB. There is one FLLB per file
that held locks per unit of work. Since the FLLB records information about a data set and a unit of work, it
contains the DSNB address and the local unit of work ID. It also contains an indicator of the type of lock
failure condition that it represents.

FLLBs are getmained from an FLLB subpool above the 16MB line.

File control locks locator blocks are freemained by DFHFCRC at commit time when there are no longer
any retained FLABs for the file.

The layout of the FLLB is defined by the DFHFLLB structure and the DFHFLLB DSECT.

File control

Chapter 24. File control 181

File request anchor block (FRAB)
The file request anchor block serves as an anchor for the set of file lasting access blocks (FLABs)
belonging to a particular transaction. The file request thread elements (FRTEs) are chained from the
FLABs. The FRAB identifies the transaction to which a given file control request belongs.

The FRAB contains pointers to: the next FRAB in the chain from the FC static, the chain of FLABs for this
transaction, the chain of FLLBs for the transaction, and any VSWA that has suffered exclusive control
conflict for the transaction. The FRAB also contains some indicators related to recovery, such as whether
or not the transaction holds RLS locks, whether the unit of work has been through phase 2 of syncpoint,
and whether the unit of work has ever been shunted. There is also some information related to RLS
access, including the local unit of work id, a timeout value to be specified on RLS requests, and some
problem determination information returned by VSAM RLS when deadlocks occur.

The FRAB is built by DFHFCFR as part of processing of the first File Control request in a transaction. The
storage for the FRAB is obtained from a FRAB storage subpool above the 16MB line. The address of the
FRAB is then used as the Recovery Manager token associated with the client name ‘FC’. FRABs are
rebuilt by DFHFCIR at warm or emergency restart, for units of work which had not completed when CICS
terminated. A FRAB is also built if a failure occurs during phase 2 of an intermediate syncpoint. The
original FRAB for the transaction is shunted along with the failed parts of the unit of work, and the newly
built FRAB is passed on to the next unit of work in the transaction.

If a unit of work is shunted, the FRAB is shunted with it, unless there was no recoverable file control work
in the unit of work.

The FRAB is deleted after all the FLABs have been processed during syncpoint at transaction termination.
At the same time, the Recovery Manager token is set to zero. At this point, the FRAB storage is not
returned to the FRAB storage subpool, but is instead added to a chain of free FRABs, anchored from file
control static storage. Subsequent requests to build a FRAB are, if possible, satisfied by a quick cell
mechanism from this chain.

Issuing an INQUIRE_WORK_TOKEN call to the recovery manager with client name ‘FC’ returns the
address of the file request anchor block for a transaction. There is a chain of all the FRABs in a CICS
system, anchored from field FC_FRAB_CHAIN in file control static storage.

The layout of the FRAB is defined by the DFHFRAB structure and the DFHFRAB DSECT.

File request thread elements (FRTEs)
FRTEs are used by file control to:

v Represent active file control requests

v Link related requests together as a file thread, for example, the request sequence STARTBR,
READNEXT, ..., ENDBR, or READ UPDATE, REWRITE

v Anchor SET storage used for READ SET UPDATE requests and browse requests with the set option,
the lifetime of which is that of the request thread.

FRTEs are created by the main file control module, DFHFCFR, and are freed either by DFHFCFR at the
end of a request or thread of requests or by the file control recovery control program, DFHFCRC, at
syncpoint if this occurs before a thread of requests has completed.

FRTEs for a particular file within a particular task and environment are chained together, and anchored
from the FLAB for that file, task and environment.

Storage for FRTEs is acquired from above the 16MB line.

The layout of FRTEs is defined by the DFHFRTE structure and by the DFHFRTE DSECT.

File control

182 CICS TS for z/OS: CICS Diagnosis Reference

Keypoint list element (KPLE)
The keypoint list forms part of file control’s implementation of backup while open (BWO) copy for data sets
accessed in non-RLS mode. One KPLE exists for each keypoint and records the start and end times at
which tie up records are written.

The KPLE chain is anchored from FC_KPLE_CHAIN in file control static storage.

The keypoint list elements are created, processed and deleted (when they become redundant) by
DFHFCRC following RMKP take keypoint calls from the recovery manager. These calls are made
whenever a CICS keypoint is taken. KPLEs are getmained from above the 16MB line.

The layout of the KPLE is defined by the KPLE structure.

Shared resources control (SHRCTL) block
The SHRCTL block represents the CICS region’s requirements of, and the use made of, a local shared
resources pool (LSRPOOL). It is used by DFHFCL when calling VSAM to build an LSRPOOL. It is also
used by DFHFCL and statistics programs to hold and update file control statistics. It lasts for the lifetime of
a CICS run, and is addressable through a pointer in file control static storage. There are eight pointers
collectively named the SHRCTL vector.

A SHRCTL block holds information such as how many virtual and hyperspace buffers of a particular size
are needed, how many strings are needed, the maximum key length allowed. CICS passes this
information to VSAM when the pool is built. It also holds statistics about the pool which are sent to the
statistics domain when requested or when the pool is deleted.

Each SHRCTL block represents one LSRPOOL, and there are eight SHRCTL blocks. The layout of each
SHRCTL block is defined by the DFHFCTLS structure and by the DFHFCTSR DSECT, and they reside
above the 16MB line.

On a CICS cold start, DFHFCRP performs the following:

v Unconditionally builds eight SHRCTL blocks above the 16MB line (from a SHRCTL block subpool)

v Fills in default settings in the block, or inserts user-specified information

v Catalogs each SHRCTL block in the CICS global catalog (GCD).

On a CICS warm or emergency start:

v DFHFCRP restores all eight SHRCTL blocks from the global catalog.

The contents of a SHRCTL block are decided in one of three ways:

v User defines the contents in the FCT by means of the DFHFCT TYPE=SHRCTL,LSRPOOL=n macro
call. This assembled information is used by DFHFCRP on a COLD start only (as per FCT entries).

v User defines the contents online through a CEDA DEFINE LSRPOOL command.

v If neither of the above two methods is used, DFHFCL calculates the contents before calling VSAM to
build the LSRPOOL.

VSAM work area (VSWA)
The VSWA represents a VSAM request to CICS. Embedded in the VSWA is the request parameter list
(RPL) which is passed to VSAM to perform the request. In addition to the RPL, the VSWA contains other
CICS information related to the request.

The VSWA is used by DFHFCVS and DFHFCRS when processing VSAM files.

A VSWA survives as long as the RPL needs to survive to complete the VSAM request; for example, it
survives from READ UPDATE to the REWRITE request.

File control

Chapter 24. File control 183

The address of the VSWA is held in the file request thread element (FRTE) in the
FRT_WORK_AREA_ADDRESS field.

Storage for the VSWA is acquired from above the 16MB line.

The layout of the VSWA is defined by the DFHVSWAS structure and by the DFHVSWA DSECT.

Modules
This Section describes the following modules. Unless otherwise stated, addressing mode and residency
mode are AMODE 31 and RMODE ANY respectively.

Module Function See page

DFHEIFC File control EXEC interface module 186
DFHEIQCF Exec INQUIRE CFDTPOOL module -
DFHFCAT File control catalog manager 186
DFHFCBD File control BDAM request processor 187
DFHFCCA File control RLS control ACB manager 188
DFHFCDL File control coupling facility data table load program 188
DFHFCDN File control DSNAME block manager 188
DFHFCDO File control coupling facility data table open/close program 190
DFHFCDR File control coupling facility data table request processor 191
DFHFCDTS File control shared data table request processor 191
DFHFCDTX File control shared data table function ship program 191
DFHFCDU File control coupling facility data table UOW calls program 191
DFHFCDW File control coupling facility data table RMC program 191
DFHFCDY File control coupling facility data table resynchronization program 191
DFHFCES File control ENF servicer 191
DFHFCFL File control FRAB and FLAB processor 191
DFHFCFR File control file request handler 191
DFHFCFS File control file state program 193
DFHFCIN1 File control initialization program 1 195
DFHFCIN2 File control initialization program 2 196
DFHFCIR File control initialize recovery 197
DFHFCL File control shared resources pool processor 197
DFHFCLF File control log failure handler 198
DFHFCLJ File control logging and journaling program 198
DFHFCMT File control table manager 199
DFHFCN File control open/close program 201
DFHFCNQ File control non-RLS lock handler 204
DFHFCOR File control offsite recovery completion 205
DFHFCQI File control RLS quiesce initiation 205
DFHFCQR File control RLS quiesce receive transaction 205
DFHFCQS File control RLS quiesce send transaction 205
DFHFCQT File control RLS quiesce common system transaction 205
DFHFCQU File control RLS quiesce processor 206
DFHFCQX File control RLS quiesce exit 206
DFHFCRC File control recovery control program 206
DFHFCRD File control RLS cleanup transaction 208
DFHFCRF File control function shipping interface module 208
DFHFCRL File control share control block manager 209
DFHFCRO File control RLS open/close program 210
DFHFCRP File control restart program 210
DFHFCRR File control RLS restart 212
DFHFCRS File control RLS record management processor 212
DFHFCRV File control RLS VSAM interface processor 212
DFHFCSD File control shutdown program 212
DFHFCST File control statistics program 213

File control

184 CICS TS for z/OS: CICS Diagnosis Reference

Module Function See page

DFHFCVR File control VSAM interface program 214
DFHFCVS File control VSAM request processor 215

There are also a number of modules which make up the coupling facility data tables server. These all have
names of the form DFHCFxx.

Figure 50 shows the main file control modules and their interfaces.

Application
program

EXEC CICS
…

DFHEFRM
(EXEC file

control
syncpoint
processor)

CICS
Recovery
Manager

CEMT

DFHFCR O
(file control

RLS
open/close
program)

DFHFCDO
(file control
open/close
program)

DFHEIP
(EXEC

interface
program)

DFHFCCA
(EXEC file

control RLS
control ACB
manager)

DFHFCRC
(file control
recovery
control

program)

DFHFCFS
(file control

file state
program)

DFHFCN
(file control
non-RLS

open/close
program)

DFHFCL
(file control
LSR pool

processor)

DFHFCNQ
(file control
non-RLS

lock handler)

DFHFCRS
(file control
RLS record

management
processor)

DFHFCRV
(file control
RLS VSAM

interface
program)

DFHFCDR
(file control

CFDT request
program)

DFHEIFC
(file control

EXEC
interface
module)

SMSVSAM RLS

SMSVSAM
RLS

DFHFCFR
(file control
file request

handler)

DFHFCVS
(file control

VSAM
request

processor)

DFHFCVR
(file control

VSAM
interface
program)

DFHFCBD
(file control

BDAM request
processor)

DFHFCLJ
(file control
logging and
journaling
program)

DFHFCDTS
(file control
shared data
table request
processor)

DFHFCDTX
(file control
shared data

table function
ship program)

DFHFCQX
(file control

RLS quiesce)

VSAM
non-RLS

BDAMDFHFCRF

Transformer

Remote
requests

Figure 50. Main file control modules and their interfaces

File control

Chapter 24. File control 185

DFHEIFC (file control EXEC interface module)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHEIFC. Stored in the CSA in a field named CSAEIFC.

Purpose
DFHEIFC is DFHEIP’s file control interface. It routes requests to the file control file request handler,
DFHFCFR.

Called by
DFHEIP exclusively.

Inputs
The EIEI parameter list, as defined by the DFHEIEIA DSECT.

Outputs
Updated EIEI parameter list, with completed EIB.

Operation
v Call user exit XFCREQ.

v Call file control request handler DFHFCFR.

v Call user exit XFCREQC.

How loaded
At CICS startup, as part of the building of the CICS nucleus. The nucleus is built by DFHSIB1, which uses
its nucleus build list to determine the content and characteristics of the CICS nucleus.

DFHFCAT (file control catalog manager)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCAT. The entry point address is held in FC static storage in a field named FC_FCAT_ADDRESS,
which is set by DFHFCRP when it loads DFHFCAT.

Purpose
The file control catalog manager is part of the file control component. This program processes inquire and
update requests on the state of the backup while open (BWO) attributes in the ICF catalog for VSAM data
sets and inquire on the quiesce state in the ICF catalog. The DFSMS Callable Services interface is used
for these operations.

Called by
DFHFCDN Get the base data set name for a DSNB that has not yet been validated, update the

recovery point, or to set the BWO attributes to a ‘forward recovered’ state
DFHFCN Inquire on the current state of, and to update, BWO attributes during file open processing;

and to reset these attributes during file close processing.
DFHFCQI Inquire on the quiesce state of a data set.

Inputs
The FCAT parameter list, as defined by the DFHFCATA DSECT, is created as part of the subroutine call.

The input parameters are:

File control

186 CICS TS for z/OS: CICS Diagnosis Reference

Data set name
Recovery point

Outputs
Returned in the FCAT parameter list:

Quiesce state
Base data set name
State (fuzzy, sharp)
Response
Reason

Operation
DFHFCAT provides the following functions:
INQ_BASEDSNAME

Gets the base data set name for a specified data set name from the ICF catalog. This
function is used when there is not a validated DSN block for the data set.

INQ_CATALOG_QUIESCESTATE
If the level of DFSMS is 1.3 or higher, issues an IGWARLS call to determine the quiesce
state of the data set (quiesced or unquiesced).

INQ_DATASET_STATE
Determines the current state of a VSAM data set’s BWO attributes in the ICF catalog. If
the BWO attributes indicate that the data set is “back level”, that is, a backup copy has
been restored but not forward recovered, an exception response is returned; otherwise, a
state of ‘fuzzy’ or ‘sharp’ is returned, indicating whether or not the data set is defined in
the ICF catalog as eligible for BWO.

SET_CATALOG_RECOVERED
Updates a VSAM data set’s BWO attributes in the ICF catalog to a ‘forward recovered’
state to indicate that the data set has been forward recovered.

SET_CATALOG_RECOV_POINT
Updates a VSAM data set’s BWO attributes in the ICF catalog with the new recovery
point.

SET_BWO_BITS_DISABLED
Updates a VSAM data set’s BWO attributes in the ICF catalog to show that the data set is
no longer eligible for BWO support, and updates the recovery point.

SET_BWO_BITS_ENABLED
Updates a VSAM data set’s BWO attributes in the ICF catalog to show that the data set is
eligible for BWO support, and updates the recovery point.

How loaded
By DFHFCRP as part of file control initialization.

DFHFCBD (file control BDAM request processor)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCBD. The entry point address is held in FC static storage in a field named
FC_BDAM_ENTRY_ADDRESS.

Addressing mode
AMODE 31.

Residency mode
RMODE 24.

File control

Chapter 24. File control 187

Purpose
The BDAM request processor is part of the file control component. It processes access requests to BDAM
files.

Called by
DFHFCFR, after having determined that the request is for a BDAM file.

Inputs
The FCFR parameter list, as defined by the DFHFCFRA DSECT. Also, the file control environment,
including FC static storage and the FCT.

Outputs
Updated FCFR parameter list.

Operation
Acquires and releases FIOA storage as necessary. Implements BDAM exclusive control requests.
Performs record-length and key-length checking. Calls BDAM to perform the I/O request.

Acquires storage, in the correct key subpool, for requests that specify SET.

How loaded
By DFHFCFS, by means of a loader domain call. DFHFCBD is not loaded unless DFHFCFS is called to
open a BDAM file and, in doing so, it discovers that DFHFCBD is not yet in storage.

DFHFCCA (file control RLS control ACB manager)
DFHFCCA is the file control RLS control ACB manager. The RLS control ACB is a special ACB required
when a commit protocol application such as CICS uses VSAM RLS. FCCA processes requests to register
and unregister the control ACB, and all other file control requests to SMSVSAM that have to be made via
the control ACB. These requests are:

v IDAREGP (register)

v IDAUNRP (unregister)

v IDARECOV (clear recovery status)

v IDAINQRC (inquire on recovery)

v IDAQUIES (quiesce)

v IDALKREL (release locks, and retain locks marked for retention)

v IDARETLK (mark locks for retention)

DFHFCCA also includes the code for the RLSWAIT exit used by control ACB requests. Whenever CICS
issues such a request, VSAM drives the RLSWAIT exit as soon as it is about to transfer control to the
SMSVSAM address space. CICS is then able to drive the dispatcher and schedule other CICS tasks whilst
the SMSVSAM address space is busy processing the request.

DFHFCDL (file control CFDT load program)
DFHFCDL is attached by DFHFCDO to load a load-capable coupling facility data tavle with records from a
source data set.

DFHFCDN (file control DSN block manager)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

File control

188 CICS TS for z/OS: CICS Diagnosis Reference

Entry address
DFHFCDN. The entry point address is held in FC static storage in a field named FC_FCDN_ADDRESS,
which is set by DFHFCRP when it loads DFHFCDN.

Purpose
The DSNAME block manager is part of the file control component. This program is called to perform
various operations on data set name blocks. These operations include connecting and disconnecting DSN
blocks and FCT entries, setting their attributes, and deleting them when no longer required. The program
also allows the caller to inspect a particular DSN block or browse a set of blocks. It can also be called to
update the backup while open (BWO) attributes in the ICF catalog for VSAM data sets, and to set the
quiesce state to normal in all DSN blocks. Finally it can be called to catalog the information in a DSN
block to the CICS global catalog.

Called by
DFHAMFC Connect a DSN block to a newly created FCT entry
DFHAMPFI Connect the DSN block for the CSD to the associated FCT entry
DFHEIQDN Connect, disconnect, delete, set attributes, browse, and inquire against DSN blocks in

response to external requests; and to update the BWO attributes in the ICF catalog for a
VSAM data set to a ‘forward recovered’ state

DFHEIQDS Connect or disconnect DSN blocks and FCT entries in response to external requests
DFHFCLF Set the availability attribute to unavailable after a forward recovery log stream failure
DFHFCMT Disconnect the DSN block when deleting an FCT entry
DFHFCN Connect or disconnect and to catalog a DSN block
DFHFCRC Update the recovery point in the ICF catalog for all VSAM data sets that are open for

update in non-RLS mode and defined as eligible for BWO support at keypoint time
DFHFCRD To reset all quiesce states to normal after an SMSVSAM server failure
DFHFCRO Connect or disconnect and to catalog a DSN block
DFHFCRP Connect or reconnect DSN blocks during file control initialization or restart.

Inputs
The FCDN parameter list, as defined by the DFHFCDNA DSECT, is created as part of the subroutine call.

The input parameters include:
Request identifier
Address of FCTE or FCTE token
Data set name
Browse token
Availability status
Type of pointer
Recovery point

Outputs
Output parameters, as part of the FCDN parameter list. Apart from the response, all these are returned on
the inquire or browse requests. The parameters include:

Access method
Base data set name
Availability status
DSNB type
File count
DSNB valid status
Lost locks status
Forward-recovery log stream name
Forward-recovery log ID

File control

Chapter 24. File control 189

Recovery status
Response
Reason

Operation
v Connect:

The inputs are a data set name and an FCTE pointer or an FCTE token, with an indication of whether
the entity to be connected is a base or an object.

If the FCT entry is already connected, the connection is broken before connecting it to a DSN block
representing the new object. The DSN block that is connected can exist already, or DFHFCDN creates
a new block before connecting it.

The request is rejected if it requires an existing connection to be broken, and there are uncommitted
updates to the file; that is, there are retained locks.

v Disconnect:

The connection between the FCT entry and the DSN block is broken. The DSN block remains even if
there are no other FCT entries connected to it. The request is rejected if there are uncommitted updates
to the file: that is, there are retained locks.

v Delete:

Checks are made to ensure that the DSN block is allowed to be deleted. If the deletion can proceed,
the table manager is called to delete the DSN from the DSN index, and the storage domain is called to
free the storage.

v Inquire:

The attributes stored in the DSN block are returned to the caller in the FCDN parameter list.

v Set:

The availability status is set in the DSN block. The catalog domain is called to catalog the change.

v Start browse, get next, end browse:

The DSN blocks are browsed in order. For each, the attributes are returned to the caller.

v Catalog:

The information in a DSN block is cataloged to the CICS global catalog.

v SET_CATALOG_RECOVERED:

This function is used by DFHEIQDN. DFHFCDN in turn issues a SET_CATALOG_RECOVERED call to
DFHFCAT to update the BWO attributes in the ICF catalog for a given VSAM data set to a ‘forward
recovered’ state.

v UPDATE_RECOVERY_POINTS:

This function is used by DFHFCRC. DFHFCDN in turn issues a SET_CATALOG_RECOV_POINT call to
DFHFCAT to update the recovery point in the BWO attributes in the ICF catalog for every data set that
is open for update in non-RLS mode and defined as eligible for BWO support.

The recovery point is the time from which a forward-recovery utility should start applying log records. It
is always before the time the last backup was taken. For further information about recovery points and
backup while open in general, see the CICS Recovery and Restart Guide.

v RESET_ALL_QUIESCE_STATUS:

This function is used by DFHFCRD. The DSNB table is scanned, and the quiesce status is reset to
normal in each DSNB.

How loaded
By DFHFCRP as part of file control initialization.

DFHFCDO (file control CFDT open/close program)
When called using the FCFS parameter list, DFHFCDO performs an equivalent function for coupling facility
data table opens and closes as is performed by DFHFCN for non-RLS VSAM files.

File control

190 CICS TS for z/OS: CICS Diagnosis Reference

When called using the FCDS parameter list, DFHFCDO performs statistics collection for coupling facility
data tables, and disconnects from CFDT pools at shutdown.

DFHFCDR (file control CFDT request processor)
DFHFCDR performs an equivalent function for coupling facility data tables as is performed by DFHFCVS
for non-RLS VSAM files, and uses the same interface.

DFHFCDTS (file control shared data table request program)
DFHFCDTS performs an equivalent function for CICS-maintained and user-maintained data tables as is
performed by DFHFCVS for non-RLS VSAM files and uses the same interface.

DFHFCDTX (file control shared data table function ship program)
DFHFCDTX receives file requests from DFHFCDTS in FCFRR format, converts them into command level
interface form and then calls ISP to function ship the request.

The response returned by ISP in the EIB is translated back into an FCFRR response and reason code.

DFHFCDU (file control CFDT UOW calls program)
DFHFCDU encapsulates the processing required to call the coupling facility data tables server for unit of
work related operations, such as commit, backout, inquire. It is called via the FCDU parameter list by
DFHFCDW and DFHFCDY.

DFHFCDW (file control CFDT RMC program)
DFHFCDW provides a recovery manager connector (RMC) between file control and the coupling facility
data tables server, to support 2-phase commit and recovery for recoverable coupling facility data tables. It
is called by the CICS Recovery Manager using the RMLK parameter list.

DFHFCDY (file control CFDT resynchronization program)
DFHFCDY performs resynchronization of coupling facility data table pools and links. It is called using the
FCDY parameter list by DFHFCDO, DFHFCDR and DFHFCDU.

DFHFCES (file control ENF servicer)
DFHFCES is the file control ENF servicer. It is used to prompt dynamic restart of RLS file control when the
SMSVSAM Server becomes available again after an earlier failure. DFHFCES is invoked whenever the
MVS Event Notification Facility notifies CICS (via the CICS domain manager ENF support) that SMSVSAM
is available.

DFHFCES establishes a transaction environment, and calls DFHFCRR to dynamically restart RLS.

DFHFCFL (file control FRAB and FLAB processor)
DFHFCFL is the File Control FRAB/FLAB processor. It contains a number of functions to process FLAB
control blocks belonging to a particular base data set. It processes the functions of the FCFL interface.

The DSNB of the data set is not locked during the processing of the commands. As a FLAB exists, and
hence an FCTE, the DSNB cannot be deleted, therefore there is no need to lock the DSNB.

DFHFCFR (file control file request handler)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

File control

Chapter 24. File control 191

Entry address
DFHFCFR. Stored in the CSA in a field named CSAFCEP.

Purpose
The central module in the file control component.

Processes file control requests issued by DFHEIFC (requests from application programs), or from other
CICS modules (internal CICS file control requests).

Receives and routes file control access-method dependent requests to one of the following:

v DFHFCRS for VSAM RLS files

v DFHFCVS for VSAM non-RLS files

v DFHFCBD for BDAM files

v DFHFCDR for coupling facility data tables

v DFHFCTS for user-maintained data tables

v DFHFCDTS for non-update requests to CICS maintained data table

v DFHFCVS for update requests to CICS-maintained data tables

v DFHFCRF for requests to remote files

Implements TEST_FILE_USER requests.

Routes RESTART_FILE_CONTROL requests to DFHFCVS and DFHFCRS during the file control
initialization.

Frees buffers at the request of DFHAPSM when ‘short on storage’ has been detected.

Performs a CLEAR_ENVIRONMENT when requested by DFHERM, DFHAPLI or DFHUEH. This cleans up
file control storage at the completion of a task-related user exit, a user-replaceable program, or a global
user exit:

v The FLAB and FRTE chain are scanned to find all FRTEs for the specified environment.

v An ENDBR request is issued to terminate any active browse operation.

v An UNLOCK request is issued for any active READ UPDATE or WRITE MASSINSERT.

Called by
DFHAPLI AP language interface program
DFHAPSM AP domain storage notify gate
DFHDMPCA CSD manager adapter
DFHDTLX Shared data tables load program
DFHEIFC File control EXEC interface module
DFHERM Resource manager interface (RMI) module
DFHFCDL Coupling facility data tables load program
DFHFCDTS File control shared data table request processor
DFHFCFR File control file request handler (a recursive call)
DFHFCRC File control recovery control program
DFHFCRP File control restart program
DFHUEH AP user exit handler.

Inputs
The FCFR parameter list, as defined by the DFHFCFRA DSECT. Also the file control environment,
including FC static storage and the FCT.

Outputs
Updated FCFR parameter list.

File control

192 CICS TS for z/OS: CICS Diagnosis Reference

Operation
Selects on the request type, and passes control to the routine specific to that request.

Performs monitoring.

Obtains a FLAB and FRTE to represent this request, or scans the FLAB and FRTE chains to associate
this request with a previous FRTE if required. Some checking for error situations is performed during the
scan.

Performs file state checking to determine whether or not a (VSAM or BDAM) request to a file is able to
proceed. If file is enabled but closed and is not a request to a remote file, opens it before carrying out the
request.

Checks for “privileged” requests.

If the request is not remote, checks the “service request” attributes for the file to determine whether the
request can proceed.

Checks the file’s access method (VSAM or BDAM as defined in the FCT). If BDAM, calls DFHFCBD to
process the request. If VSAM and non-RLS, calls DFHFCVS to process the request. If VSAM and RLS,
calls DFHFCRS to process the request. If a data table, calls DFHFCDTS for read requests against a
CICS-maintained data table or any request against a user-maintained table, and calls DFHFCVS otherwise
(that is, for update and browse requests against a CICS-maintained data table). If the file is remote, calls
DFHFCRF to process the request.

On return, performs cleanup if required.

How loaded
By DFHSIB1 as part of the CICS nucleus.

DFHFCFS (file control file state program)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCFS. The entry point address is held in FC static storage in a field named FC_FCFS_ADDRESS,
which is set by DFHFCRP when it loads DFHFCFS.

Purpose
The file control file state program is part of the file control component.

The program processes requests to enable, disable, open, and close files. Such requests can originate
from explicit requests (either CEMT or EXEC CICS SET), from implicit requests (such as implicit open), or
from requests made from CICS internal processing.

Close and disable requests are processed in different ways, depending on whether the request has been
issued with the WAIT or the NOWAIT option. A request with the WAIT option is treated as a synchronous
request, that is, control returns to the requesting program only after all users of the file have completed
their use.

A request with the NOWAIT option is treated as an asynchronous request. In this case, the file is marked
with the intended state and control is returned immediately.

Called by
DFHAMFC Enable a newly installed file

File control

Chapter 24. File control 193

DFHDMPCA Change the state of the CSD
DFHDMRM Close CSD after an error
DFHDTLX Close the data set associated with a shared data table
DFHEIQDS Implement CEMT and EXEC CICS requests
DFHFCDL Close the data set associated with a coupling facility data table
DFHFCDTS Close shared data table if remote connection disabled or invalidated
DFHFCFR Implicit open
DFHFCQU Close files for quiesce, cancel close for unquiesce, enable files
DFHFCRC Open files which need backout, and close files at syncpoint
DFHFCRD Immediate close of RLS files
DFHFCRV Close files for pending immediate close requests
DFHFCSD Close files on a normal CICS shutdown
DFHFCU Open all files with FILSTAT=OPEN coded
DFHFCVS Open the base, and during empty file or I/O error processing.

Inputs
The FCFS parameter list, as defined by the DFHFCFSA DSECT, is created as part of the subroutine call.

The input parameters are:

Request identifier (open, close, enable, disable, cancel close)
FCTE address
FCTE token
Open options (open base, open for backout)
Close qualifier (close pending, shutdown, immediate close,
quiesce, and so on)
Action (wait, do not wait, force)

Outputs
Returned in the FCFS parameter list:

DFHFCN return code
Register 15 return code
VSAM return code

Operation
Before any processing to change the state of a file is carried out, its FCT entry is locked by means of a
DFHKC ENQ call. At the conclusion of file state change processing, the FCT entry is unlocked before
returning to the caller.

v Enable file.

DFHFCFS marks the FCT entry as ‘enabled’, and catalogs the change.

v Disable file.

If the WAIT option is specified, DFHFCFS tests whether the transaction issuing the request is a current
user of the file. If it is, DFHFCFS returns an exception response.

DFHFCFS next marks the FCT entry entry as ‘disabled’ and catalogs the change. If the disable request
stems from a close request (see later), DFHFCFS also sets the implicit indicator, thereby marking the
state as ‘unenabled’. However, if this close request originated from DFHFCSD as part of CICS
shutdown processing, DFHFCFS does not mark the state as ‘unenabled’.

Finally, if the WAIT option is specified, the FCT entry is unlocked before waiting for the ‘disabled’ ECB in
the FCT entry to be posted by the transaction that reduces the use count to zero.

v Open file.

If the file is unenabled (due to a previous close), DFHFCFS enables it and catalogs the new state,
unless the open option is open for backout.

File control

194 CICS TS for z/OS: CICS Diagnosis Reference

If the file refers to a BDAM data set, DFHFCFS tests whether DFHFCBD is already loaded; if not, it
calls loader domain to do so.

If the file is a data table, DFHFCFS loads and initializes data table services, if this has not been done
already on a previous open request.

DFHFCFS next calls DFHFCN (for non-RLS) or DFHFCRO (for RLS) to perform the physical open. After
the file has been successfully opened, its FCT entry is marked accordingly.

For a data table, DFHFCFS issues OPEN and LOAD requests to data table services.

v Close file.

If there is no close qualifier, the file is first implicitly disabled (as described above), taking into account
the WAIT or NOWAIT option. The new state is cataloged.

If the file use count is zero, DFHFCFS calls DFHFCN or DFHFCRO to perform the physical close. After
the file has been successfully closed, its FCT entry is marked accordingly.

An immediate close is issued if the SMSVSAM RLS server fails. The close must wait until there are no
requests active in the RLS record management processor. The enablement state of the file is not
changed. A close with close qualifier of quiesce is issued to process an RLS quiesce request. The file is
unenabled, and the state catalogued.

For a data table, DFHFCFS issues a CLOSE request to data table services, except in the case of a
special type of CLOSE request issued by DFHFCVS for a user-maintained data table, when loading is
complete and the source data set is to be closed, but not the table itself.

For a remote data table, DFHFCFS issues a DISCONNECT request to data table services.

If the file use count is nonzero, DFHFCFS sets the ‘close requested’ indicator in the FCT and returns to
the caller. Any subsequent transaction that reduces the use count to zero tests the ‘close requested’
indicator and, if set, performs the actual close.

When called by DFHFCSD during CICS shutdown, DFHFCFS ensures that files are closed, marks the
file as ‘closed unenabled’ in the FCT, but does not record this change in the global catalog. This allows
implicit file opens on a subsequent restart.

v Cancel close.

An in-progress close is cancelled if a data set is unquiesced. The close_in_progress flag is reset, any
tasks waiting for the file to close are resumed, and the file is re-enabled.

How loaded
By DFHFCRP as part of file control initialization.

DFHFCIN1 (file control initialization program 1)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCIN1. Stored in the CSA in a field named CSAFCXAD.

Purpose
The file control initialization program is part of the file control component. This program initializes file
control and starts the file control restart task. It also waits for the restart task to complete, and returns the
status of the completion to the caller.

Called by
DFHSII1, as part of CICS initialization.

Inputs
The FCIN parameter list, as defined by the DFHFCINA DSECT.

File control

Chapter 24. File control 195

Outputs
Updated FCIN parameter list.

Operation
Initialize:

v Calls storage manager domain to add a subpool for file control static storage.

v Calls storage manager domain to create the storage for file control static storage.

v Initializes file control static storage.

v Attaches the file control restart task by means of a DFHKC request, with entry point address
DFHFCIN2.

WAITINIT:

v Issues a dispatcher domain call to wait on the CICS ECB which indicates that the file control restart
task has finished (FC_RECOV_ALLOWED_ACB) in file control static storage.

v On completion of the wait, tests the response and returns to DFHSII1.

How loaded
Link-edited with DFHFCIN2 to form the DFHFCIN module, which is loaded by DFHSIB1 as part of the
CICS nucleus.

DFHFCIN2 (file control initialization program 2)

Call mechanism
Attached by DFHFCIN1 as a separate CICS task. Given control by means of the DFHKC TYPE=ATTACH
mechanism.

Entry address
DFHFCIN2. Because DFHFCIN2 is link-edited with DFHFCIN1, the entry address is known to DFHFCIN1
at the time the DFHKC TYPE=ATTACH is issued.

Purpose
The file control initialization program is part of the file control component. This program loads and calls the
file control restart program (DFHFCRP), to perform file control restart as a separate task.

Called by
CICS task control, after being attached by DFHFCIN1.

Inputs
None.

Outputs
The initialized file control component. Addresses and indicators completed in file control static storage.

Operation
Calls loader domain to acquire (that is, to load) the DFHFCRP program. Stores the entry point address of
the loaded module (which is also the load point) in DFHFCIN2’s automatic storage in a field named
FCRP_ENTRY_ADDRESS.

If the ACQUIRE request failed, calls loader domain to define program and then retries the ACQUIRE
request.

Calls DFHFCRP by means of a subroutine call via the kernel.

File control

196 CICS TS for z/OS: CICS Diagnosis Reference

On successful completion, calls loader domain to release DFHFCRP. On both successful and unsuccessful
completion, posts the ECBs FC_NON_RECOV_ALLOWED_ECB and FC_RECOV_ALLOWED_ECB. The
success or otherwise of File Control restart is indicated by the flag FCSCMPLT in file control static
storage.

On unsuccessful completion, posts the Restart Task ECB complete and returns.

How loaded
By DFHSIB1 as part of the CICS nucleus.

DFHFCIR (file control initialize recovery)
DFHFCIR is the File Control Initialize Recovery Module. It initializes the File Control environment in which
recovery after a CICS failure is carried out.

DFHFCIR handles the delivery of recovery data by the CICS Recovery Manager during its scan of the
system log at warm or emergency restart, and rebuilds the file control structures that represent units of
work that were in-flight or shunted when CICS terminated.

During its log scan, Recovery Manager calls File Control's recovery gate, which invokes the module
DFHFCRC. DFHFCRC passes the calls through to DFHFCIR via a kernel subroutine call. The calls are the
RMDE functions START_DELIVERY, DELIVER_RECOVERY, DELIVER_FORGET and END_DELIVERY.

DFHFCL (file control shared resources pool processor)

Call mechanism
BALR, obtaining LIFO storage on entry.

Entry address
DFHFCLNA. DFHFCL is, together with DFHFCN and DFHFCM, link-edited with DFHFCFS. All calls to
DFHFCL are made from DFHFCN; the entry point address is known to DFHFCN from the link edit.

Purpose
The shared resources pool processor is part of the file control component.

This program is called at file open time to create a specific local shared resources pool if it does not exist.
It is also called to delete a specific pool when the last file to use the pool is being closed.

The size and characteristics of the pool being built are obtained either from information in the SHRCTL
definition in the FCT or, if that information has not been provided, from the best information available to
DFHFCL at the time of the open.

Called by
DFHFCL is called exclusively by DFHFCN.

Inputs
The FCLPARAM parameter list, created in DFHFCN’s automatic storage and addressed by register 1 on
the call.

The input parameters are:

Request identifier (build, delete)
LSR pool number

Outputs
Returned in the FCLPARAM parameter list:

File control

Chapter 24. File control 197

DFHFCL return code
BLDVRP/DLVRP return code
VSAM return code

Operation
If the request is for LSR pool creation, DFHFCL first checks whether the SHRCTL block includes
specifications for the number of strings, maximum key length, and the number of virtual and hyperspace
buffers of each of the eleven sizes in the pool. If these values are known, DFHFCL sets up the BLDVRP
parameter list and creates the pool by issuing the BLDVRP macro.

If some or all of the pool characteristics are not specified in the SHRCTL definition, DFHFCL calculates the
pool requirements from the information in the FCT and the VSAM catalog.

Each FCT entry is inspected to find whether it is to be included in the pool being built. If so, its DSNAME
is determined and this is used to obtain data set characteristics from the VSAM catalog. The information
required for the BLDVRP macro is accumulated in the SHRCTL block and the pool is built from these
values.

If the request is for LSR pool deletion, DFHFCL first obtains the VSAM statistics for the pool and saves
them in the SHRCTL block. These statistics are unobtainable after the pool has been deleted.

DFHFCL next deletes the specified pool by issuing a DLVRP macro.

Finally, DFHFCL sends pool statistics to the statistics domain as unsolicited data.

How loaded
As a constituent part of DFHFCFS, which is loaded by DFHFCRP as part of file control initialization.

DFHFCLF (file control log failures handler)
DFHFCLF provides control of long term logger failures for File Control. It is called in the event of a failure
of a general log stream, which will be either the forward recovery log for a data set or the autojournal for a
file.

The CICS Log Manager invokes DFHFCLF when an MVS log stream being used for forward recovery or
file autojournalling suffers a long term failure. The call is made using the LGGL ERROR function.

When file control opens a forward recovery log stream or an autojournal, it will register this call back gate
to the Log Manager by specifying FCLF as the file control error gate.

When called, DFHFCLF takes action to ensure that the log stream failure causes minimum damage. For a
forward recovery log failure it closes all files open against the data set using that forward recovery log
(across the sysplex for a data set accessed in RLS mode) and issues a message advising that a new
backup copy should be taken. For an autojournal it closes the file using that autojournal and issues a
warning message.

DFHFCLJ (file control logging and journaling program
DFHFCLJ is the file control logging and journaling program. It is called to perform logging for transaction
backout and forward recovery, to write to journals for autojournal requests and to write to the log of logs.

Records are written to the system log using the RMRE APPEND function, and optionally forced using the
RMRE FORCE function. Records are written to forward recovery logs and autojournals using the LGGL
WRITE function, and to the log of logs using the LGGL WRITE_JNL function.

File control

198 CICS TS for z/OS: CICS Diagnosis Reference

DFHFCMT (file control table manager)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCMT. The entry point address is held in FC static storage in a field named FC_FCMT_ADDRESS,
which is set by DFHFCRP when it loads DFHFCMT.

Purpose
The file control table manager is part of the file control component. This program is called to add, delete,
and set FCT entries, and to return attributes of an FCT entry (inquire).

Called by
DFHAMFC Inquire on, add, or delete a newly created FCT entry to the system
DFHAMPFI Add the entry in the FCT for the CSD to the system
DFHDMPCA Inquire on and set the attributes of the FCT entry for the CSD
DFHEDFX Inquire on the attributes of an FCT entry
DFHEIQDS Inquire on or set the attributes of FCT entries, or delete an FCT entry.

Inputs
The FCMT parameter list, as defined by the DFHFCMTA assembler DSECT, is created as part of the
subroutine call.

The input parameters are:

Common parameters:
File name
String number
Journal ID
Recovery characteristics
Journaling characteristics
Enablement status
Open time
Data set disposition
Service request attributes
Record format
Number of data buffers
Number of index buffers
Whether to catalog the FCT entry

VSAM-specific parameters:
VSAM password
Empty status
Data set name sharing
LSR pool ID
Base name
Forward recovery log ID
BWO eligibility
RLS access mode
Read integrity

BDAM-specific parameters:
Exclusive control

File control

Chapter 24. File control 199

Outputs
Output parameters, as part of the FCMT parameter list. Apart from the response, all these are returned on
the inquire or browse requests. The output parameters are:

Common parameters:
File type
String number
Record size
Key length
Key position
Recovery characteristics
Journaling characteristics
Enablement status
Open status
Open time
Data set type
Data set disposition
Data set name
Base data set name
Service request attributes
Record format
Block format
Access method
Remote name
Remote system

VSAM-specific parameters:
VSAM password
Empty status
Object type
Data set name sharing
Number of data buffers
Number of index buffers
Number of active strings
LSR pool ID
Whether using shared resources
Forward-recovery log ID
RLS access mode
Read integrity

BDAM-specific parameters:
Block size
Block key length
Relative address form
Exclusive control
Response
Reason

Data Table specific parameters:
Table type
Table size

Operation
v Add:

Storage for the new FCT entry is obtained out of the VSAM FCT storage subpool (BDAM FCT entries
cannot be created).

File control

200 CICS TS for z/OS: CICS Diagnosis Reference

The new FCT entry is completed by filling in the information from the caller’s parameter list.

The name of the new FCT entry is added to the TMP index.

Finally the information in the new entry is written to the CICS global catalog if required.

v Delete:

The request is rejected if there are uncommitted updates for the file; that is, there are retained locks.
DFHTMP is called to locate and quiesce the FCT entry.

Any DSN block that is connected to the FCT entry is disconnected.

The FCT entry name is deleted from the TMP index.

The storage for the FCT entry is freed. In the case of a BDAM FCT entry, its DCB storage is also freed.

Any catalog entries for the FCT entry are deleted.

v Set:

DFHTMP is called to locate the FCT entry.

The request is rejected if there are uncommitted updates for the file; that is, there are retained locks.

If the FCT entry is not marked ‘closed’ and ‘disabled’ (or ‘unenabled’), the request is rejected.

Changes are made to the information in the FCT according to the caller’s parameter list.

Finally the changes are recorded by writing them to the CICS global catalog.

v Inquire:

DFHTMP is called to locate the FCT entry.

The attributes are returned in the FCMT parameter list.

v Connect:

DFHTMP is called to locate the FCT entry.

The connect count is incremented. The FCT token is returned to the caller.

v Disconnect:

DFHTMP is called to quiesce the FCT entry.

A check is made to ensure that the file is closed and disabled (or unenabled). If the check fails, an error
is returned to the caller.

The connect count in the FCT is cleared and a call is again made to DFHTMP to release the quiesce.

How loaded
By DFHFCRP as part of file control initialization.

DFHFCN (file control open/close program)

Call mechanism
BALR, obtaining LIFO storage on entry.

Entry address
DFHFCNNA. DFHFCN is link-edited with DFHFCFS. All calls to DFHFCN are made from DFHFCFS; the
entry point address is known to DFHFCFS from the link-edit.

Purpose
The file control open/close program is part of the file control component.

This program performs the physical opening and closing of files by making the corresponding requests to
VSAM or BDAM. Associated with these operations are a number of further activities that must be
completed before control is returned to DFHFCFS.

These activities include:

v Dynamic allocation of the file

File control

Chapter 24. File control 201

v Empty file checking

v Dynamically setting up ACB fields in advance of the VSAM open

v Copying into file-control control blocks VSAM information about the file which is available after the open

v Inquiring on, and updating, the VSAM data set’s backup while open (BWO) attributes in the ICF catalog
for a file that is defined in the FCT as eligible for BWO support if the appropriate prerequisite software
levels have been installed

v On close, deallocating the file if necessary and clearing the file control information related to the file

v Resetting a VSAM data set’s BWO attributes in the ICF catalog during close processing.

Called by
DFHFCFS, exclusively.

Inputs
The FCSPARMS parameter list, created in DFHFCFS’s automatic storage and addressed by register 1 on
the call.

The input parameters are:

FCTE address
Request identifier

Outputs
Returned in the FCSPARMS parameter list:

DFHFCN return code
Register 15 return code
VSAM return code
Base data set name
Recovery attributes of base

Operation
Execution of the DFHFCN code is serialized. This is done by DFHFCFS issuing a DFHKC ENQ before
calling DFHFCN, and a DFHKC DEQ after calling DFHFCN. As a consequence, only a single open or
close request to any file can be in progress at any time, and multiple concurrent requests are
single-threaded.

The main actions when processing an open request:

1. If the file is being opened for update and any type of autojournalling is specified on the file definition,
then the autojournal log stream is opened, via a call to DFHLGGL.

2. The file is tested to determine if it is allocated to the job by means of a JCL statement or is to be
allocated dynamically.

If the file is already allocated, any existing DSN block to which it may be connected is disconnected
and a new block with the actual DSNAME is connected. Connecting and disconnecting of DSNAME
blocks is always performed by calling DFHFCDN.

If the file is not already allocated, it is at this point dynamically allocated to the DSNAME in the
DSNAME block to which it is connected.

In the case of a VSAM file, the file’s data set name is used to issue appropriate SHOWCAT and
LOCATE instructions to determine relevant information from the VSAM catalog about the data set that
the file represents. In particular, the following are obtained:

Base/path indicator
Base data set name
Attributes of the data set
Key length of the base

File control

202 CICS TS for z/OS: CICS Diagnosis Reference

Relative key position of base key
Maximum record length
Control interval size
Share options
High RBA

3. The data set is checked to determine if it is empty (high RBA is zero) or is to be emptied.

The ‘load’ mode indicator is set on.

4. DFHFCDN is now called to connect the FCT entry to a DSNAME block for the base cluster (which
may be the existing allocation DSNAME block, or may need to be newly created, or may already exist
and need only be pointed to from the FCT). The base cluster’s attributes, as obtained from the VSAM
catalog, are stored in the base cluster block.

The file’s recovery characteristics are checked against any that may already have been stored in the
base cluster block and, if they have not yet been set up, are saved there. Any conflict with the stored
values is handled. In some cases the new value overrides the old one, in others an error is returned.

During this processing, if this is the first open for update for a file associated with this particular data
set:

a. a call is made to the VSAM callable interface IGWARLS, in order to get any recovery attributes
that may be defined in the VSAM catalog. If they are present, then they override any values in the
FCT entry.

b. if forward recovery logging is specified, the forward recovery log stream is opened, using either
the log stream name from the VSAM catalog, or a log stream name derived from the id specified
in the file definition.

In the case of an entry sequenced data set or a path to an ESDS, the next available RBA in the data
set is determined and stored in the base cluster block.

5. If the file uses a shared resources (LSR) pool, and if the pool is not currently in existence, DFHFCL is
called to determine the pool’s characteristics and to build it.

6. Before opening a VSAM file, any STRNO, BUFND, or BUFNI parameters that may have been
specified in the JCL DD statement are copied to the FCT entry (for LSR opens, these are ignored).
The ACB is now created and its various options and parameters filled in from information in the FCT
entry. The OPEN is finally completed by a call to VSAM.

7. If the file refers to a BDAM data set, the assembled DCB is used for the open request and no
dynamic setting of DCB options is carried out.

8. After the VSAM file has been successfully opened, certain file attributes are obtained from VSAM and
are stored in the FCT entry. These include:

Key length
Relative key position
Base/path/AIX indicator
KSDS/ESDS/RRDS/VRRDS indicator
Number of strings required for an update operation.

9. For a file opened for update against a VSAM base data set when the update use count in the DSNB
for this data set is zero, the BWO attributes in the ICF catalog are validated to find their current state.
This is done by making an INQ_DATASET_STATE call to DFHFCAT, regardless of whether the file is
defined in the FCT as eligible for BWO support.

The file open request is rejected if one of the following is true:

a. The BWO attributes in the ICF catalog show either that the data set is “back level”, that is, a
backup copy has been restored but not forward recovered, or that either the catalog or the data
set has been corrupted.

b. The BWO attributes in the FCT entry conflict with those defined in the DSNB, that is, the file has
already been opened with different attributes since the DSNB was created.

If the file is defined in the FCT as eligible for BWO support, the BWO attributes in the ICF catalog are
updated by making a SET_BWO_BITS_ENABLED call to DFHFCAT.

File control

Chapter 24. File control 203

However, if the file is not defined in the FCT as eligible for BWO support, but the BWO attributes in
the ICF catalog currently show that the VSAM base data set is eligible for BWO support, the BWO
attributes in the ICF catalog are disabled by making a SET_BWO_BITS_DISABLED call to DFHFCAT,
and CICS issues a warning message.

Note: The ICF BWO attributes are a property of a VSAM sphere; therefore, the VSAM base data set
and alternate index path definitions should be consistent. For a general description of the
CICS backup while open (BWO) facility, see the CICS Recovery and Restart Guide.

10. The base DSNB, and path DSNB if this is a path, are marked as validated and catalogued.

The main actions when processing a close request:

1. If the close request is for the last file that was opened for update against a VSAM base data set and
the file is defined in the FCT as eligible for BWO support, the BWO attributes in the ICF catalog are
reset so that BWO support is no longer enabled. This is done by making a
SET_BWO_BITS_DISABLED call to DFHFCAT.

2. Before performing the access method close for a VSAM file, the number of accumulated EXCPs is
obtained by making a call to VSAM and is saved in the FCT entry ready to be sent to the statistics
domain as part of the file statistics.

3. A CLOSE request is then made by issuing the appropriate (VSAM or BDAM) macro.

4. The ACB storage is freed, and certain fields in the FCT entry which are no longer valid are cleared.

5. File statistics and data table statistics, if any, are sent to the statistics domain as unsolicited data.

6. If the file being closed uses shared resources, and if it is the last to have been closed in its LSR pool,
DFHFCL is called to delete the pool.

7. If the file was dynamically allocated at open time, it is deallocated, leaving a pointer to the DSNAME
block in the FCT entry.

8. If the file had an autojournal, then the autojournal log stream is closed.

9. If the base data set was forward recoverable, and its use count is non-zero, then the forward recovery
log stream is closed.

How loaded
As a constituent part of DFHFCFS, which is loaded by DFHFCRP as part of file control initialization.

DFHFCNQ (file control non-RLS lock handler)
DFHFCNQ is the file control non-RLS lock handler. It is called using the FCCA
RETAIN_DATASET_LOCKS interface to retain locks in cases of backout failure. It is called using the
NQNQ INTERPRET_ENQUEUE interface to interpret File Control locks for presentation purposes.

Lock retention
When DFHFCRC encounters a failure during an attempt to backout a unit of work it must retain all record
locks held by that UOW for the failing data set. It issues an FCCA RETAIN_DATASET_LOCKS request to
DFHFCCA for RLS access data sets and to this DFHFCNQ for non-RLS access data sets.

Lock name interpretation
Non-RLS locks include record locks for all file types, and for VSAM files, mass-insert range locks, load
mode locks and ESDS WRITE locks. Each lock belongs to one of some half dozen or so pools created by
DFHFCRP during CICS initialization. DFHFCNQ is called using the NQNQ INTERPRET_ENQUEUE
interface and is passed the enqueue pool name and the lock identifier. The name of pool to which a lock
belongs is sufficient information to allow the identifier to be parsed and its constituents returned to the
caller.

The pool names and lock constituents are:

v FCDSRECD - Data set name and record identifier - for VSAM and CICS-maintained data tables

v FCFLRECD - File name and record identifier - for BDAM and user-maintained data tables

File control

204 CICS TS for z/OS: CICS Diagnosis Reference

v FCDSRNGE - Data set name and record identifier - VSAM range locks

v FCDSLDMD - Data set name - VSAM load mode locks

v FCDSESWR - Data set name - VSAM ESDS WRITE locks

v FCFLUMTL - File name - UMT load locks

DFHFCOR (file control offsite recovery completion)
DFHFCOR is the file control RLS offsite recovery completion transaction.

Transaction CFOR is attached when CICS detects that is has completed its RLS offsite recovery
processing. RLS offsite recovery is only performed when OFFSITE=YES is specified as a system
initialization override. CFOR may be attached either during RLS warm or emergency restart (if there is no
RLS offsite recovery work to be performed) or during file control commit processing (if the commit was for
the last remaining item of RLS offsite recovery work).

DFHFCOR issues message DFHFC0575 and awaits an operator reply. When the reply is received, it
enables RLS access for new transactions.

DFHFCQI (file control RLS quiesce initiation)
DFHFCQI is the RLS Quiesce Initiation module. It provides code to initiate a quiesce request against a
base data set. It also provides code to inquire on the quiesce state of a base data set, and to complete a
quiesce request against a base data set. Quiesce initiations are issued by the CICS API, or by CICS
internally, or by CICS internally cancelling certain in-progress quiesce operations. Quiesce inquiries are
issued via the CICS API. Quiesce completions are issued by CICS internally.

DFHFCQR (file control quiesce receive transaction)
DFHFCQR is the VSAM RLS Quiesce Receive module, running under a dedicated CFQR system
transaction. It provides code to take quiesce requests from the CICS VSAM RLS quiesce exit and pass
them to DFHFCQU for processing. As DFHFCQR runs under a system transaction, it has full transaction
environment which enables it to invoke API-capable global user exits, or to call parts of file control that
reference the TCA.

DFHFCQS (file control RLS quiesce send transaction)
DFHFCQS is the VSAM RLS Quiesce Send module, running under a dedicated CFQS system transaction.
It provides code to take quiesce requests from another task and pass them to SMSVSAM. As DFHFCQS
runs under a system transaction, it has full transaction environment which enables it to invoke API-capable
global user exits, or to call parts of file control that reference the TCA. DFHFCQS is called from
DFHFCQT, the quiesce system transaction module, if the transaction id under which DFHFCQT was
started is ’CFQS’.

DFHFCQT (file control RLS quiesce common system transaction)
DFHFCQT is the file control RLS quiesce common system transaction.

There are two file control system transactions dedicated to RLS quiesce processing: CFQS and CFQR.
CFQS sends quiesce requests to SMSVSAM in order to initiate the quiesce or unquiesce of a data set
throughout the sysplex. CFQR receives quiesce requests from VSAM RLS and performs the quiesce
processing required for the CICS region concerned. These transactions share a common top-level
program, DFHFCQT.

There is no DFHFCQT parameter list. The action DFHFCQT takes depends on the transid of the
transaction it is running under. If it is CFQS then DFHFCQS SEND_QUIESCES is called. If it is CFQR
then DFHFCQR RECEIVE_QUIESCES is called. If DFHFCQS or DFHFCQR subsequently fail with a
disastrous error, control is returned to DFHFCQT and a transaction abend is issued, having first
re-attached the transaction concerned to ensure that RLS Quiesce support is not lost for ever.

File control

Chapter 24. File control 205

DFHFCQU (file control RLS quiesce processor)
DFHFCQU is the RLS Quiesce Process module. It processes quiesce requests received from SMSVSAM
via the quiesce exit mechanism.

DFHFCQX (file control RLS quiesce exit)
DFHFCQX is the RLS Quiesce Exit module. It is called by SMSVSAM whenever the CICS region
concerned is required to perform processing for a quiesce request.

The quiesce exit is specified on the RLS control ACB EXLST. The exit simply initiates processing and
returns to VSAM. It must not issue any VSAM requests. It is scheduled as an IRB on the TCB that
registered the RLS control ACB. Because of the environment DFHFCQX cannot issue CICS requests. GTF
tracing is used to trace entry, exit and any errors.In addition, timestamps are made on entry to and exit
from DFHFCQX, and are stored in fields FC_DFHFCQX_ENTRY_STCK and FC_DFHFCQX_EXIT_STCK
respectively of the File Control Static area.

On entry to DFHFCQX, register 1 contains the address of a VSAM structure mapped by IFGQUIES which
defines the quiesce request. The processing of the quiesce request is performed by the CFQR
long-running system transaction (DFHFCQR). To communicate the quiesce to CFQR, DFHFCQX creates
an FC Quiesce Receive Element (FCQRE) to describe the request, and adds it to a chain in file control
static storage, posting an ECB associated with the chain also in FC static.

DFHFCRC (file control recovery control program)
DFHFCRC provides recovery control for file control. All calls from the Recovery Manager domain to file
control come through DFHFCRC.

DFHFCRC is called by the Recovery Manager domain to participate in syncpoint and in warm and
emergency restart.

Early on during startup File Control registers as a client of the CICS Recovery Manager. During File
Control initialization, File Control will add its recovery gate to the kernel, specifying DFHFCRC as the entry
point, and then declares the recovery gate to the CICS Recovery Manager via an RMCD SET_GATE call.

At syncpoint, a resource owner such as File Control may be called either

1. to prepare, optionally followed by shunt-unshunt pairs, followed either by calls to backout (as in 2
below) or a call to commit.

2. to backout, which involves start_backout, optional delivery of backout data, and end_backout, followed
by prepare and commit, optionally followed by backout retries (which consist of shunt-unshunt pairs
followed by the start_backout - delivery of backout data - end_backout - prepare - commit sequence).

At warm or emergency restart, a resource owner such as File Control will be called with start_delivery,
optional deliver_recovery and deliver_forget calls, followed by end_deliver.

The Recovery Manager functions processed by DFHFCRC are:
v RMRO PERFORM_PREPARE
v RMRO PERFORM_COMMIT
v RMRO START_BACKOUT
v RMRO DELIVER_BACKOUT_DATA
v RMRO END_BACKOUT
v RMRO PERFORM_SHUNT
v RMRO PERFORM_UNSHUNT
v RMKP TAKE_KEYPOINT
v RMDE START_DELIVERY
v RMDE DELIVER_RECOVERY
v RMDE DELIVER_FORGET

File control

206 CICS TS for z/OS: CICS Diagnosis Reference

#
#
#

v RMDE END_DELIVERY

DFHFCRC performs different processing depending on the function with which it has been called:

PERFORM_PREPARE
Any active VSAM requests are terminated, and a vote of READ_ONLY is returned if the unit of work did
not make any recoverable file control updates, a vote of YES if the prepare was successful, or a vote of
NO otherwise.

PERFORM_COMMIT
For a forwards syncpoint, any changes made by the unit of work to recoverable user-maintained data
tables are committed. For a backwards syncpoint, locks for any backout-failed data sets are retained. All
other locks are released.

On transaction termination, the FLABs and FRAB are freed unless there are FLABs marked for retention.
On an intermediate syncpoint, various flags in the FLABs and FRAB are reset to indicate that a commit
has been performed.

START_BACKOUT
Any active VSAM requests are terminated, and any changes made by the unit of work to recoverable
user-maintained data tables are backed out.

DELIVER_BACKOUT_DATA
The recoverable file control change represented by the log record delivered to DFHFCRC is backed out
via calls to DFHFCFR which reverse the update. The change is not backed out if the unit of work has
already suffered a backout failure for the data set, or if the data set is in a ’non-RLS update permitted’
state, or if this call is being made as part of a CEMT or EXEC CICS SET DSNAME RESETLOCKS
request.

If a failure occurs during the backout, then backout failure processing is carried out.

END_BACKOUT
Under normal conditions there should be no processing required at END_BACKOUT, but it is conceivable
that there might be outstanding active VSAM requests to be terminated.

PERFORM_SHUNT
The failed parts of the unit of work's file control structures are put into a condition to survive without an
executable transaction environment. This involves retaining any FLABs that are marked for retention,
which will allow files to be closed, but not to be reallocated to a different data set.

If this is an intermediate syncpoint, and the shunt is due to a failure in phase 2 of syncpoint, the
transactional parts of the unit of work are copied into a new control structure to be passed to the follow-on
unit of work. A new FRAB is acquired to anchor this control structure. If this is transaction termination, or
the shunt is due to a failure in phase 1 of syncpoint, the transactional parts are cleaned up.

PERFORM_UNSHUNT
The file control structures are converted back into a condition suitable for a unit of work that is in an
executable state. Retained FLABs for the unit of work are restored.

TAKE_KEYPOINT
DFHFCRC is called when CICS takes a keypoint, to perform processing required by BWO backup on
non-RLS data sets. This involves the writing of a set of ’tie up records’ and the calculation of a new BWO
recovery time.

START_DELIVERY
DFHFCIR is called to process the call.

File control

Chapter 24. File control 207

DELIVER_RECOVERY
DFHFCIR is called to process the call.

DELIVER_FORGET
DFHFCIR is called to process the call.

END_DELIVERY
DFHFCIR is called to process the call.

DFHFCRD (file control RLS cleanup transaction)
As soon as CICS detects an SMSVSAM server failure, it runs program DFHFCRD under transaction
CSFR to perform cleanup.

Following the server failure all current RLS ACBs become unusable. DFHFCRD scans a chain of files
open in RLS mode, which is anchored from file control static storage and call DFHFCFS to perform an
IMMEDIATE_CLOSE for each open file.

DFHFCRD then waits:
1. for the last file to close,
2. once the last file has closed, for SMSVSAM to complete any residual requests against the RLS control

ACB.

When both these events have occurred, DFHFCRD calls DFHFCCA to perform
UNREGISTER_CONTROL_ACB processing in order to clean up the CICS and VSAM state with respect to
the control ACB.

DFHFCRD finally posts an ECB which allows dynamic RLS restart to go ahead. Dynamic RLS restart
cannot start until DFHFCRD has completed clean up and posted this ECB.

DFHFCRF (file control function shipping interface module)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
FC_FCRF_ADDRESS stored in FC Static Storage.

Purpose
DFHFCRF is the function shipping interface module. It is called by the access method independent module
DFHFCFR for record management requests (e.g. reads, writes, rewrites, etc.) that are to be directed to
files that are defined as remote.

DFHFCRF is called with the FCFR parameter list. From this it constructs an FCRF parameter list, which is
subsequently passed to DFHISP and, in turn, either to DFHXFX (the MRO transformer) or to DFHXFFP
(the ISC transformer).

DFHFCRF executes the following requests from the DFHFCFRR parameter list:

v Simple read requests

– READ_INTO and READ_SET

v The read update family

– READ_UPDATE_INTO and READ_UPDATE_SET

– REWRITE

– REWRITE_DELETE

– UNLOCK

File control

208 CICS TS for z/OS: CICS Diagnosis Reference

v The browse family

– START_BROWSE

– RESET_BROWSE

– READ_NEXT_SET, READ_NEXT_INTO, READ_PREVIOUS_SET, READ_NEXT_UPDATE_SET,
READ_NEXT_UPDATE_INTO, READ_PREVIOUS_UPDATE_SET, and
READ_PREVIOUS_UPDATE_INTO

– END_BROWSE

v Write requests

– WRITE

v Delete requests

– DELETE

Called by
DFHFCFR, the File Control file request handler.

Inputs
The FCFR parameter list, as defined by the DFHFCFRA DSECT.

Outputs
The FCRF parameter list, as defined by the DFHFCRFA DSECT.

Operation
Traces module entry.

Checks for an explicit SYSID specified on the request and sets the remote system and remote file name in
the DFHFCRF parameter list ready for function shipping.

Increments statistics for the type of request.

Checks request specific parameters

Ships the request.

Handles return codes.

Finally, traces the module exit.

How loaded
By FCRP at file control initialization.

DFHFCRL (file control share control block manager)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCRL. The entry point address is held in FC static storage in a field named FC_FCRL_ADDRESS,
which is set by DFHFCRP when it loads DFHFCRL.

Purpose
The file control share control block manager is part of the file control component.

This program modifies the CICS specification of a shared resources pool. The changes are allowed to be
made only when the actual pool is deleted.

File control

Chapter 24. File control 209

Called by
DFHAMFC, when installing an LSR pool defined by RDO.

Inputs
The FCRL parameter list, as defined by the DFHFCRLA DSECT, is created as part of the subroutine call.

The input parameters are:

Request identifier
Pool identifier
Number of strings
Maximum key length
Share limit
Buffer characteristics

Outputs
The response and reason codes only. These are returned in the FCRL parameter list.

Operation
The SHRCTL block for the specified pool is addressed. A test is made to determine whether or not the
pool is currently built; if it is built, the request is rejected with an error response.

The pool characteristics specified in the input parameter list are included in the SHRCTL block.

Finally the information in the SHRCTL block is written to the CICS global catalog.

How loaded
By DFHFCRP as part of file control initialization.

DFHFCRO (file control RLS open/close program)
DFHFCRO performs an equivalent function for RLS opens and closes as is performed by DFHFCN for
non-RLS access mode.

DFHFCRP (file control restart program)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCRP. This address is needed only by DFHFCIN2 during initialization; it is therefore not saved in FC
static storage.

Purpose
The file control restart program is part of the file control component. This program creates a file control
component on a cold or initial start of CICS, or re-creates it after a warm or emergency start. For a warm
or emergency start, the intention is to reconstruct the identical file control environment which was in effect
at the time of the previous CICS termination.

Called by
DFHFCIN2, during file control initialization.

Inputs
None.

File control

210 CICS TS for z/OS: CICS Diagnosis Reference

Outputs
The restarted file control component. File control static addresses and indicators are set up. DFHFCRP’s
response and reason codes are set in the parameter list defined by DFHFCRPA DSECT.

Operation
Calls loader domain to define (if necessary) and acquire (load) the following file control programs:
DFHDTINS, DFHFCAT, DFHFCCA, DFHFCDN, DFHFCD2, DFHFCES, DFHFCFL, DFHFCFS, DFHFCIR,
DFHFCLF, DFHFCLJ, DFHFCMT, DFHFCNQ, DFHFCQI, DFHFCQU, DFHFCQX, DFHFCRC, DFHFCRL,
DFHFCRO, DFHFCRR, DFHFCRS, DFHFCRV, DFHFCSD, DFHFCST, and DFHFCVS.

Adds gates to the kernel for recovery control, ENF services, and log stream failure notification.

Calls storage manager domain to add (create) the following storage subpools: file control general below
16MB, VSAM FCTE, BDAM FCTE, ACB, DCB, SHRCTL, DSN, FFLE, FRAB, FRTE, FLLB, FLAB, RPL,
IFGLUWID, file control fixed-length buffer storage. Calls the NQ domain to add (create) enqueue subpools
for: dataset record NQs, file record NQs, range NQs, load mode NQs, ESDS write NQs, and UMT loading
NQs.

Calls DFHTMP to create TMP primary indexes for the FCT, AFCT, and DSN tables, and a TMP secondary
index for the DSN table.

If RLS is supported (correct level of DFSMS, and RLS=YES SIT parameter) initializes the CSFR, CFQS,
CFQR and CFOR tasks, registers file control's interest in the SMSVSAM ENF signal by a LISTEN call to
DFHDMEN, and calls DFHFCRR to restart RLS.

On a warm or emergency start:

v Determines installation levels of the MVS/Data Facility Product (MVS/DFP) (or DFSMS), the Data
Facility Hierarchical Storage Manager (DFHSM), and the Data Facility Data Set Services (DFDSS) for
VSAM backup while open (BWO) support.

v Restores DSNAME blocks from the CICS global catalog, recreating a DSN control block in the DSN
subpool storage. For each block, adds its DS name to the TMP primary index, and adds its DS number
to the TMP secondary index.

v Restores VSAM file entries from the CICS global catalog. For each entry, adds its file name to the TMP
FCT index.

v Restores BDAM file entries from the CICS global catalog. For each entry, adds its file name to the TMP
FCT index. Further, for each entry, restores the BDAM DCB from the catalog and copies it to an entry in
the DCB storage subpool.

v Restores DSNAME references from the CICS global catalog. For each entry, locates its FCTE and
invokes DFHFCDN to connect the FCTE to its DSN block.

v Restores SHRCTL blocks from the CICS global catalog.

On a cold start:

v As for a warm or emergency start, determines installation levels of MVS/DFP, DFHSM, and DFDSS for
VSAM backup while open (BWO) support.

v Purges the CICS global catalog of all FCTEs, SHRCTL blocks, DSNAME references, AFCTEs, and
BDAM DCBs.

v Calls the loader domain to load the FCT specified by the FCT system initialization parameter.

v Builds all eight SHRCTL blocks, using any information that may have been specified in the loaded FCT.
Writes the blocks to the CICS global catalog.

v For each file control table entry in the loaded FCT, creates an FCT entry in the FCT storage subpool,
copies the information to it, adds the file name to the TMP index, and writes the table entry to the CICS
global catalog.

v Calls the loader domain to delete the previously loaded FCT.

File control

Chapter 24. File control 211

Indicates file control restart complete for non-recoverable business by setting
FC_NON_REV_ALLOWED_ECB on.

Sends message to inform that file control restart is complete.

If all was successful, turns on the FCSCMPLT flag in FC static.

Finally, posts the FC_RECOV_ALLOWED_ECB in FC static.

How loaded
By the file control initialization module 2, DFHFCIN2, and deleted after it has completed.

DFHFCRR (file control RLS restart)
DFHFCRR is used to restart the RLS component of File Control. It is called whenever CICS is restarted
and after any total RLS failure. DFHFCRR is also called whenever a resource can be made available
again after earlier failures have been rectified, and after recovery from Lost Locks.

DFHFCRR is invoked whenever CICS is restarted (COLD, WARM or EMERGENCY) by DFHFCRP, and
following any total RLS failure (DYNAMIC restart) by DFHFCES.

DFHFCRR is also called to retry work which has been shunted because a resource (a data set, and RLS
cache, or the VSAM RLS server) was not available. For this purpose, it is called by DFHFCQU when CICS
is notified that a data set has been unquiesced, has completed a non-BWO copy or has completed
forward recovery, and when CICS is notified that a previously failed cache is now available; by DFHFCFL
when the API interface is used to retry all shunted work for a given data set; and by DFHFCRO when an
override condition is detected, in order to drive any shunted work. DFHFCRR is also called by DFHFCQU
when CICS is notified that all systems have completed lost locks recovery for a data set.

DFHFCRS (file control RLS record management processor)
DFHFCRS performs an equivalent function for RLS access mode record management requests as is
performed by DFHFCVS for non-RLS access mode requests.

DFHFCRV (file control RLS VSAM interface processor)
DFHFCRV performs an equivalent function for RLS access mode record management requests as is
performed by DFHFCVR for non-RLS access mode requests.

DFHFCSD (file control shutdown program)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCSD. The entry point address is held in FC static storage in a field named FC_FCSD_ADDRESS,
which is set by DFHFCRP when it loads DFHFCSD.

Purpose
The file control shutdown program is part of the file control component. Its purpose is to close all CICS
files that are still open during phase 2 of a normal controlled CICS termination. This processing is
bypassed for immediate termination.

Called by
DFHSTP, to close all open files managed by CICS file control.

File control

212 CICS TS for z/OS: CICS Diagnosis Reference

Inputs
The FCSD parameter list, as defined by the DFHFCSDA DSECT, is created as part of the subroutine call.

The input parameters are:

Type of shutdown (immediate, warm)

Outputs
The response and reason codes only, which are returned in the FCSD parameter list.

Operation
DFHFCSD has only one function: TERMINATE.

On a ‘warm’ shutdown (that is, a not-immediate shutdown), DFHFCSD calls DFHTMP to scan all FCT
entries. For each file, it calls DFHFCFS to close the file. A special CLOSE qualifier (shutdown) is specified
on the call to DFHFCFS so as not to catalog the FCT entry as in an ‘unenabled’ state. DFHFCSD also
calls DFHFCDO to disconnect coupling facility data table pools.

If RLS is supported, the quiesce system tasks CFQS and CFQR are terminated.

How loaded
By DFHFCRP as part of file control initialization.

DFHFCST (file control statistics program)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCST. The entry point address is held in FC static storage in a field named FC_FCST_ADDRESS,
which is set by DFHFCRP when it loads DFHFCST.

Purpose
The file control statistics program is part of the file control component.

This program is called to collect statistics for a single file, together with any data table statistics, or to
collect statistics for the activity in a shared resources pool.

It is also called to return file statistics associated with a file’s use of a shared resources pool.

Called by
DFHSTFC Collect file statistics
DFHSTLS Collect pool statistics and also file-in-pool statistics.

Inputs
The FCST parameter list, as defined by the DFHFCSTA DSECT, is created as part of the subroutine call.

The input parameters are:

Request identifier
File name
FCTE token
Statistics record
Pool identifier
Browse token
Reset indicator

File control

Chapter 24. File control 213

Outputs
Returned in the FCST parameter list:

Browse token
Response
Reason

Operation
v Collect file statistics:

The FCT entry token is validated if supplied; otherwise, the file name is used to locate the FCT entry.

The file statistics, and any data table statistics, are collected from the FCTE and copied into the
statistics record. The statistics in the FCTE are optionally reset according to the reset indicator.

For data tables, a STATISTICS data table service request is issued to retrieve and reset those statistics
that are maintained by data table services. These statistics are appended to the file statistics record.

The FCT entry is unlocked and the statistics record returned to the caller.

v Collect pool statistics:

The SHRCTL block for the specified pool is addressed. The pool statistics are copied into the statistics
record and are returned to the caller.

v Start browse of files in pool:

Storage is obtained from the general file control pool for the browse cursor. The browse token is
returned to the caller.

v Get statistics for next file in pool:

DFHTMP is invoked to locate the FCT entry identified by the browse cursor. If the file uses the specified
pool, the shared pool statistics for this file are retrieved and returned in the statistics record.

The statistics contain the data and index buffer sizes, and the number of times buffer waits occurred.

The browse cursor is updated before returning to the caller.

v End browse of files in pool:

The browse cursor storage is freed before returning to the caller.

How loaded
By DFHFCRP as part of file control initialization.

DFHFCVR (file control VSAM interface program)

Call mechanism
BALR, obtaining LIFO storage on entry.

Entry address
DFHFCVR. DFHFCVR is link-edited with DFHFCVS. For calls to DFHFCVR from DFHFCVS, the entry
point address is known to DFHFCVS from the link-edit. This address is also stored in FC static storage in
a field named FC_FCVR_ENTRY. In addition, there is a further “entry address”, UPADEXIT, which is the
entry code for the UPAD exit code.

Purpose
The VSAM request interface program is part of the file control component.

This module contains code that issues the VSAM requests, and performs UPAD exit processing in the
case of synchronous requests to LSR files, or performs the IOEVENT wait (‘FCIOWAIT’) in the case of
asynchronous requests to NSR files.

The module also contains a number of further routines that implement functions required by DFHFCVS.

File control

214 CICS TS for z/OS: CICS Diagnosis Reference

Called by
DFHFCBD To issue a message
DFHFCFR To wait on a CICS ECB
DFHFCVR Recursively, in order to issue an ENDREQ request to free a deadlock
DFHFCVS When issuing VSAM requests
DFHFCVS To execute one of the constituent functions
VSAM To invoke the UPAD exit.

Inputs
The FCWSV parameter list, as defined by the DFHFCWS macro, is created in the caller’s automatic
storage and addressed by register 1 on the call. The input parameters are:

Request identifier
FCTE address
VSWA address
ECB address
Wait resource type
Message number
Dump code

In addition, DFHFCVR requires access to the TCA for certain of its operations.

Outputs
FCVR_RESPONSE parameter (only), defined as part of the FCWSV parameter list.

Operation
Initialize: Copies the VSAM exit list to FC static storage. This action is performed as part of file control
initialization.

VSAM_Request: Issues the request to VSAM. Performs the IOEVENT wait. Handles LSR ‘no buffers’
logical error. Issues change mode request to perform the request under the concurrent TCB if possible.

Get_Strings and Free_Strings: Acquires and frees the required number of shared strings from the LSR
pool.

Get_TRANID and Free_TRANID: Allocates and releases a VSAM tranid required during sequential update
operations to an LSR file.

Wait_CICSECB: Issues a function request to wait for a CICS ECB to be posted.

Wait_String: Issues a function request to wait for a private string to become available.

Send_Message: Issues a function request to send a message.

How loaded
Link-edited with DFHFCVS to form the DFHFCVS load module, which is loaded by DFHFCRP as part of
file control initialization.

DFHFCVS (file control VSAM request processor)

Call mechanism
Kernel subroutine call. Automatic stack storage acquired as part of the call.

Entry address
DFHFCVS. The entry point address is held in FC static storage in a field named FC_FCVS_ADDRESS,
which is set by DFHFCRP when it loads DFHFCVS.

File control

Chapter 24. File control 215

Purpose
Processes file control requests to VSAM files.

Also initializes certain FC static storage fields during file control initialization.

Called by
DFHFCDTS To access the VSAM source data set to satisfy requests that cannot be satisfied by the

table itself
DFHFCFR After having determined that the request is for a VSAM file.

Inputs
The FCFR parameter list, as defined by the DFHFCFRA DSECT. Also the file control environment,
including FC static storage and the FCT.

Outputs
Updated FCFR parameter list.

Operation
Selects on the request type, and passes control to the routine specific to that request.

Acquires and releases the VSWA as necessary.

Logs and journals the request if required.

Performs record-length and key-length checking.

Acquires storage, in the correct key subpool, for requests that specify SET.

Calls DFHFCVR to perform the VSAM request.

Resolves conflicts of exclusive control.

Performs record locking and resolves locking conflicts, including the detection of deadlocks caused either
by single tasks that deadlock themselves or by multiple tasks that deadlock each other.

Performs initialization of FC static storage during file control initialization.

For CICS-maintained data tables, calls data table services to update the table to keep it in step with the
VSAM source data set.

How loaded
By DFHFCRP as part of file control initialization.

Parameter lists
File control provides the following functions in OCO modules:

FCCA CHECK function
CHECK is issued to get the results of a previous, asynchronous, operation.

Input parameters
CHECK_TOKEN is a token that was returned on the previous request for which the results are being

checked.

File control

216 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
ACCMETH_RETURN_CODE

is a two-byte code returned by SMSVSAM.
CONFLICTING_QUIESCE

indicates the type of quiesce which conflicts with this request, and can have any of these
values:
QUIESCE|UNQUIESCE|NONBWO_END|BWO_END|NONBWO_START|
BWO_START

RESPONSE is DFHFCCA’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION VSAM_REQUEST_ERROR
RLS_FAILURE

DISASTER ABEND

FCCA COLD_START_RLS function
This request is issued as part of CICS cold start processing. CICS issues an IDARECOV
TYPE=COLDSTART call to SMSVSAM to release all RLS locks owned by this CICS, and to clear the lost
locks status and 'non RLS update permitted' state of all data sets with respect to this CICS.

Input parameters
SUBSYSNM is a pointer to an IFGSYSNM structure.

Output parameters
ACCMETH_RETURN_CODE

is a two-byte code returned by SMSVSAM.
RESPONSE is DFHFCCA’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION VSAM_REQUEST_ERROR
RLS_FAILURE

DISASTER ABEND

FCCA DRAIN_CONTROL_ACB function
The Control ACB must be drained when file control detects that an instance of the SMSVSAM server has
become failed. DFHFCCA will set an indicator in FC static storage so that no other RLS activity may
proceed, and then drain all existing RLS access. This involves incrementing the server sequence number
in FC static storage, closing all RLS ACBs and unregistering the Control ACB.

Input parameters
None

Output parameters
RESPONSE is DFHFCCA’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER DISASTER_PERCOLATION
ABEND

File control

Chapter 24. File control 217

FCCA INQUIRE_RECOVERY function
This request is issued as part of CICS start up processing. CICS makes an IDAINQRC request to VSAM
to obtain the information necessary to determine what RLS recovery actions are required by CICS.

Input parameters
AREA_PTR is the address of an area in which the IFGINQRC information is to be returned.
AREA_LENGTH is the length of the supplied area.

Output parameters
ACCMETH_RETURN_CODE

is a two-byte code returned by SMSVSAM.
REQUIRED_LENGTH

is the length of the IFGINQRC area to be returned, if it exceeds the length of the supplied
area.

RESPONSE is DFHFCCA’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION AREA_TOO_SMALL
VSAM_REQUEST_ERROR
RLS_FAILURE

DISASTER ABEND

FCCA LOST_LOCKS_COMPLETE function
CICS issues an IDARECOV TYPE=LL request to SMSVSAM when it has completed recovery processing
for a data set that is in lost locks status. SMSVSAM resets the state of the data set in the sharing control
data set to indicate that the data set is no longer lost locks with respect to this CICS.

Input parameters
DATASET is the 44-character name of the base data set for which CICS has completed lost locks

recovery.
[RESTART] is an optional parameter which indicates whether the call was issued by file control restart.

It can have either of these values:
YES|NO

Output parameters
ACCMETH_RETURN_CODE

is a two-byte code returned by SMSVSAM.
RESPONSE is DFHFCCA’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION VSAM_REQUEST_ERROR
RLS_FAILURE

DISASTER ABEND

FCCA QUIESCE_COMPLETE function
When CICS has completed the processing required by it for a quiesce request from SMSVSAM, it issues
an IDAQUIES call to SMSVSAM with a quiesce type of QUICMP.

File control

218 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
DATASET is the 44-character name of the base data set for which quiesce processing is complete.
VSAM_QUIESCE_TOKEN

is a token used to relate quiesce completion to the quiesce request which has been
completed, and which is supplied by SMSVSAM when the quiesce request is received by
CICS.

Output parameters
ACCMETH_RETURN_CODE

is a two-byte code returned by SMSVSAM.
RESPONSE is DFHFCCA’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION VSAM_REQUEST_ERROR
RLS_FAILURE

DISASTER ABEND

FCCA QUIESCE_REQUEST function
DFHFCCA issues quiesce requests to SMSVSAM on behalf of the quiesce component of CICS. It issues
IDAQUIES calls of the following types:

v QUICLOSE to request SMSVSAM to notify all CICS systems that have ACBs open against this data set
that these ACBs are to be closed. In addition the data set is marked in the VSAM catalog as being
quiesced once these ACBs have been closed.

v QUIOPEN to request SMSVSAM to mark the data set as no longer quiesced, i.e. unquiesced. In
addition QUIOPEN will cancel an in-progress QUICLOSE.

v QUIBEND to request SMSVSAM to cancel an in-progress BWO backup of a data set.

v QUICEND to request SMSVSAM to cancel an in-progress non-BWO backup of a data set.

Input parameters
DATASET is the 44-character name of the base data set to be quiesced.
QUIESCE_TYPE is the type of quiesce, and can have any of these values:

QUIESCE|UNQUIESCE|NONBWO_END|BWO_END
QUIESCE_TYPE is the type of quiesce, and can have any of these values:

QUIESCE|UNQUIESCE|NONBWO_END|BWO_END
[IMMEDIATE] applies only when the quiesce type is quiesce, and indicates whether or not the quiesce

will force files to close immediately, or will allow in-flight units of work to reach syncpoint. It
can have either of these values:
YES|NO

Output parameters
ACCMETH_RETURN_CODE

is a two-byte code returned by SMSVSAM.
CHECK_TOKEN is a token which will be used on the CHECK request.
CONFLICTING_QUIESCE

indicates the type of quiesce which conflicts with this request, and can have any of these
values:
QUIESCE|UNQUIESCE|NONBWO_END|BWO_END|NONBWO_START|
BWO_START

RESPONSE is DFHFCCA’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

File control

Chapter 24. File control 219

RESPONSE Possible REASON values

EXCEPTION VSAM_REQUEST_ERROR
RLS_FAILURE

DISASTER ABEND

FCCA REGISTER_CONTROL_ACB function
The Control ACB is ’opened’ using an IDAREGP request to SMSVSAM. The Control ACB must be
registered before CICS can open any ’ordinary’ ACB for RLS access.

Input parameters
None

Output parameters
VSAM_RETURN_CODE

is a fullword return code from VSAM.
VSAM_REASON_CODE

is a fullword return code from VSAM.
VSAM_ERROR_DATA

is an 8-byte field containing error data returned by VSAM.
RESPONSE is DFHFCCA’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION RLS_FAILURE
VSAM_REQUEST_ERROR

DISASTER DISASTER_PERCOLATION
ABEND

FCCA RELEASE_LOCKS function
CICS issues an IDALKREL request to SMSVSAM as part of commit processing at the end of every unit of
work. It requests VSAM to release all locks owned by the unit of work.

Input parameters
LUWID is a pointer to an IFGLUWID structure containing the id for the unit of work.
[RESTART] is an optional parameter which indicates whether the call was issued by file control restart.

It can have either of these values:
YES|NO

Output parameters
ACCMETH_RETURN_CODE

is a two-byte code returned by SMSVSAM.
RESPONSE is DFHFCCA’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION VSAM_REQUEST_ERROR
RLS_FAILURE

DISASTER ABEND

File control

220 CICS TS for z/OS: CICS Diagnosis Reference

FCCA RESET_NONRLS_BATCH function
CICS issues an IDARECOV TYPE=NONRLS request to VSAM when it has completed processing the
NSR batch override response from an RLS file open. SMSVSAM resets the state of the data set in the
sharing control data set to indicate that the batch override (or ’non RLS update permitted’) state no longer
needs to be reported to this CICS when it opens the data set.

Input parameters
DATASET is the 44-character name of the base data set for which the state is to be cleared.

Output parameters
ACCMETH_RETURN_CODE

is a two-byte code returned by SMSVSAM.
RESPONSE is DFHFCCA’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION VSAM_REQUEST_ERROR
RLS_FAILURE

DISASTER ABEND

FCCA RETAIN_DATASET_LOCKS function
CICS issues an IDARETLK TYPE=SS call to SMSVSAM when a unit of work has suffered a backout
failure on a data set. This requests SMSVSAM to mark all locks against the data set owned by the unit of
work for conversion into retained locks on a subsequent IDALKREL call.

Input parameters
LUWID is a pointer to an IFGLUWID structure containing the id for the unit of work.
DATASET is the 44-character name of the base data set which has suffered a backout failure.

Output parameters
ACCMETH_RETURN_CODE

is a two-byte code returned by SMSVSAM.
RESPONSE is DFHFCCA’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION VSAM_REQUEST_ERROR
RLS_FAILURE

DISASTER ABEND

FCCA RETAIN_UOW_LOCKS function
CICS issues an IDARETLK TYPE=IND call to SMSVSAM when a unit of work has encountered an
in-doubt failure. This requests VSAM to mark all locks owned by the unit of work for conversion into
retained locks on a subsequent IDALKREL call.

Input parameters
LUWID is a pointer to an IFGLUWID structure containing the id for the unit of work.

Output parameters
ACCMETH_RETURN_CODE

is a two-byte code returned by SMSVSAM.
RESPONSE is DFHFCCA’s response to the call. It can have any of these values:

File control

Chapter 24. File control 221

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION VSAM_REQUEST_ERROR
RLS_FAILURE

DISASTER ABEND

FCCA UNREGISTER_CONTROL_ACB function
The RLS Control ACB is ’closed’ using an IDAUNRP request to SMSVSAM. The Control ACB cannot be
unregistered while there are any ’ordinary’ ACBs open for RLS access.

Input parameters
None

Output parameters
VSAM_RETURN_CODE

is a fullword return code from VSAM.
VSAM_REASON_CODE

is a fullword reason code from VSAM.
RESPONSE is DFHFCCA’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION RLS_FAILURE
VSAM_REQUEST_ERROR

DISASTER DISASTER_PERCOLATION
ABEND

FCCI INQUIRE function
FCCI is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for the table inquire function. It is not used by CICS.

FCCR POINT function
FCCR is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for data access requests.

The POINT function locates a record in a coupling facility data table.

Input parameters
TABLE_NAME is the 16-character name of the CFDT (8 characters padded with trailing spaces).
TABLE_TOKEN is the token returned on OPEN which must be passed on all subsequent requests against

that open table.
KEY is the 16-byte key of the record to be accessed. For approximate key operations, this

specifies the start key and is updated on successful completion to contain the key of the
record actually accessed.

KEY_COMPARISON
is the comparison condition, and can take the values
LT|LTEQ|EQ|GTEQ|GT

KEY_MATCH_LENGTH
is the key match length for generic key operations.

UOW_ID is the unit of work identification, which is required when updating using the locking model
(non-recoverable or recoverable).

File control

222 CICS TS for z/OS: CICS Diagnosis Reference

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
KEY returns the 16-byte key of the located record.
RESPONSE is DFHFCCR’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECORD_NOT_FOUND
TABLE_LOADING
TABLE_TOKEN_INVALID
TABLE_DESTROYED
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCR HIGHEST function
FCCR is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for data access requests.

The HIGHEST function returns the highest key in a coupling facility data table, if any.

Input parameters
TABLE_NAME is the 16-character name of the CFDT (8 characters padded with trailing spaces).
TABLE_TOKEN is the token returned on OPEN which must be passed on all subsequent requests against

that open table.
TRANSACTION_NUMBER

identifies the requesting task within the debug trace, if used.

Output parameters
KEY returns the 16-byte key of the highest record.
RESPONSE is DFHFCCR’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECORD_NOT_FOUND
TABLE_LOADING
TABLE_TOKEN_INVALID
TABLE_DESTROYED
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCR READ function
FCCR is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for data access requests.

The READ function reads a record from a coupling facility data table, optionally for update.

Input parameters
TABLE_NAME is the 16-character name of the CFDT (8 characters padded with trailing spaces).
TABLE_TOKEN is the token returned on OPEN which must be passed on all subsequent requests against

that open table.

File control

Chapter 24. File control 223

KEY_COMPARISON
is the comparison condition, and can take the values
LT|LTEQ|EQ|GTEQ|GT

KEY_MATCH_LENGTH
is the key match length for generic key operations.

KEY is the 16-byte key of the record to be accessed. For approximate key operations, this
specifies the start key and is updated on successful completion to contain the key of the
record actually accessed.

BUFFER is the input buffer for read requests.
UOW_ID is the unit of work identification, which is required when updating using the locking model

(non-recoverable or recoverable).
SUSPEND specifies whether to wait if the requested record is locked by an active lock, and can take

the values
YES|NO

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
UPDATE_TOKEN returns a token on a read for update.
KEY returns the 16-byte key of the highest record.
LOCK_OWNER_SYSTEM

identifies the MVS system from which the record lock was acquired for a record_busy or
record_locked condition. Also set when the wait exit is taken for a lock wait.

LOCK_OWNER_APPLID
identifies the applid of the region which owns the record lock for a record_busy or
record_locked condition. Also set when the wait exit is taken for a lock wait.

LOCK_OWNER_UOW_ID
identifies the unit of work which owns the record lock for a record_busy or record_locked
condition. Also set when the wait exit is taken for a lock wait.

RESPONSE is DFHFCCR’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECORD_NOT_FOUND
RECORD_BUSY
RECORD_LOCKED
TABLE_LOADING
INVALID_REQUEST
INCOMPLETE_UPDATE
TABLE_TOKEN_INVALID
TABLE_DESTROYED
UOW_FAILED
UOW_NOT_IN_FLIGHT
UOW_TOO_LARGE
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCR READ_DELETE function
FCCR is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for data access requests.

The READ_DELETE function reads and deletes a record from a coupling facility data table. It is not used
by CICS.

File control

224 CICS TS for z/OS: CICS Diagnosis Reference

FCCR UNLOCK function
FCCR is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for data access requests.

The UNLOCK function unlocks a record previously read for update in a coupling facility data table.

Input parameters
TABLE_NAME is the 16-character name of the CFDT (8 characters padded with trailing spaces).
TABLE_TOKEN is the token returned on OPEN which must be passed on all subsequent requests against

that open table.
KEY is the 16-byte key of the record to be unlocked.
BUFFER is the input buffer for read requests.
UPDATE_TOKEN is the token returned on the preceding read for update.
UOW_ID is the unit of work identification, which is required for the locking model (non-recoverable

or recoverable).
TRANSACTION_NUMBER

identifies the requesting task within the debug trace, if used.

Output parameters
RESPONSE is DFHFCCR’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECORD_NOT_FOUND
RECORD_CHANGED
TABLE_LOADING
INVALID_REQUEST
UPDATE_TOKEN_INVALID
TABLE_TOKEN_INVALID
TABLE_DESTROYED
UOW_FAILED
UOW_NOT_IN_FLIGHT
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCR LOAD function
FCCR is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for data access requests.

The LOAD function adds a record to a coupling facility data table during loading.

Input parameters
TABLE_NAME is the 16-character name of the CFDT (8 characters padded with trailing spaces).
TABLE_TOKEN is the token returned on OPEN which must be passed on all subsequent requests against

that open table.
KEY is the 16-byte key of the record to be loaded.
DATA is the address and length of the record data to be loaded.
TRANSACTION_NUMBER

identifies the requesting task within the debug trace, if used.

Output parameters
RESPONSE is DFHFCCR’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

File control

Chapter 24. File control 225

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
DUPLICATE_RECORD
MAXIMUM_RECORDS_REACHED
NO_SPACE_IN_POOL
INVALID_REQUEST
INVALID_LENGTH
TABLE_TOKEN_INVALID
TABLE_DESTROYED
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCR WRITE function
FCCR is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for data access requests.

The WRITE function writes a new record to a coupling facility data table.

Input parameters
TABLE_NAME is the 16-character name of the CFDT (8 characters padded with trailing spaces).
TABLE_TOKEN is the token returned on OPEN which must be passed on all subsequent requests against

that open table.
KEY is the 16-byte key of the record to be added.
DATA is the address and length of the record data to be added.
UOW_ID is the unit of work identification, which is required when updating using the locking model

(non-recoverable or recoverable).
SUSPEND specifies whether to wait if the requested record is locked by an active lock, and can take

the values
YES|NO

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
LOCK_OWNER_SYSTEM

identifies the MVS system from which the record lock was acquired for a record_busy or
record_locked condition. Also set when the wait exit is taken for a lock wait.

LOCK_OWNER_APPLID
identifies the applid of the region which owns the record lock for a record_busy or
record_locked condition. Also set when the wait exit is taken for a lock wait.

LOCK_OWNER_UOW_ID
identifies the unit of work which owns the record lock for a record_busy or record_locked
condition. Also set when the wait exit is taken for a lock wait.

RESPONSE is DFHFCCR’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

File control

226 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
DUPLICATE_RECORD
RECORD_BUSY
RECORD_LOCKED
MAXIMUM_RECORDS_REACHED
NO_SPACE_IN_POOL
TABLE_LOADING
INVALID_REQUEST
INVALID_LENGTH
UPDATE_TOKEN_INVALID
INCOMPLETE_UPDATE
TABLE_TOKEN_INVALID
TABLE_DESTROYED
UOW_FAILED
UOW_NOT_IN_FLIGHT
UOW_TOO_LARGE
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCR REWRITE function
FCCR is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for data access requests.

The REWRITE function rewrites an an existing record in a coupling facility data table, following a read for
update.

Input parameters
TABLE_NAME is the 16-character name of the CFDT (8 characters padded with trailing spaces).
TABLE_TOKEN is the token returned on OPEN which must be passed on all subsequent requests against

that open table.
KEY is the 16-byte key of the record to be rewritten.
DATA is the address and length of the record data to be rewritten.
UPDATE_TOKEN is the token returned on the preceding read for update.
UOW_ID is the unit of work identification, which is required when updating using the locking model

(non-recoverable or recoverable).
SUSPEND specifies whether to wait if the requested record is locked by an active lock, and can take

the values
YES|NO

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
LOCK_OWNER_SYSTEM

identifies the MVS system from which the record lock was acquired for a record_busy or
record_locked condition. Also set when the wait exit is taken for a lock wait.

LOCK_OWNER_APPLID
identifies the applid of the region which owns the record lock for a record_busy or
record_locked condition. Also set when the wait exit is taken for a lock wait.

LOCK_OWNER_UOW_ID
identifies the unit of work which owns the record lock for a record_busy or record_locked
condition. Also set when the wait exit is taken for a lock wait.

RESPONSE is DFHFCCR’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

File control

Chapter 24. File control 227

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECORD_NOT_FOUND
RECORD_CHANGED
RECORD_BUSY
RECORD_LOCKED
MAXIMUM_RECORDS_REACHED
NO_SPACE_IN_POOL
TABLE_LOADING
INVALID_REQUEST
INVALID_LENGTH
UPDATE_TOKEN_INVALID
INCOMPLETE_UPDATE
TABLE_TOKEN_INVALID
TABLE_DESTROYED
UOW_FAILED
UOW_NOT_IN_FLIGHT
UOW_TOO_LARGE
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCR DELETE function
FCCR is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for data access requests.

The DELETE function deletes a record from a coupling facility data table, following a read for update.

Input parameters
TABLE_NAME is the 16-character name of the CFDT (8 characters padded with trailing spaces).
TABLE_TOKEN is the token returned on OPEN which must be passed on all subsequent requests against

that open table.
KEY_COMPARISON

is the comparison condition, and can take the values
LT|LTEQ|EQ|GTEQ|GT

KEY_MATCH_LENGTH
is the key match length for generic key operations.

KEY is the 16-byte key of the record to be deleted.
UPDATE_TOKEN is the token returned on the preceding read for update.
UOW_ID is the unit of work identification, which is required when updating using the locking model

(non-recoverable or recoverable).
SUSPEND specifies whether to wait if the requested record is locked by an active lock, and can take

the values
YES|NO

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
KEY is the 16-byte key of the record actually deleted.
LOCK_OWNER_SYSTEM

identifies the MVS system from which the record lock was acquired for a record_busy or
record_locked condition. Also set when the wait exit is taken for a lock wait.

LOCK_OWNER_APPLID
identifies the applid of the region which owns the record lock for a record_busy or
record_locked condition. Also set when the wait exit is taken for a lock wait.

LOCK_OWNER_UOW_ID
identifies the unit of work which owns the record lock for a record_busy or record_locked
condition. Also set when the wait exit is taken for a lock wait.

RESPONSE is DFHFCCR’s response to the call. It can have any of these values:

File control

228 CICS TS for z/OS: CICS Diagnosis Reference

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECORD_NOT_FOUND
RECORD_CHANGED
RECORD_BUSY
RECORD_LOCKED
TABLE_LOADING
INVALID_REQUEST
UPDATE_TOKEN_INVALID
INCOMPLETE_UPDATE
TABLE_TOKEN_INVALID
TABLE_DESTROYED
UOW_FAILED
UOW_NOT_IN_FLIGHT
UOW_TOO_LARGE
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCR DELETE_MULTIPLE function
FCCR is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for data access requests.

The DELETE_MULTIPLE function deletes records from a coupling facility data table, subject to key match
conditions, until no more records match or an exception occurs.

Input parameters
TABLE_NAME is the 16-character name of the CFDT (8 characters padded with trailing spaces).
TABLE_TOKEN is the token returned on OPEN which must be passed on all subsequent requests against

that open table.
KEY_COMPARISON

is the comparison condition, and can take the values
LT|LTEQ|EQ|GTEQ|GT

KEY_MATCH_LENGTH
is the key match length for generic key operations.

KEY is the 16-byte key of the record(s) to be deleted.
UOW_ID is the unit of work identification, which is required when updating using the locking model

(non-recoverable or recoverable).
SUSPEND specifies whether to wait if the requested record is locked by an active lock, and can take

the values
YES|NO

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
DELETED_RECORD_COUNT

is the number of records successfully deleted by the delete_multiple request.
KEY is the 16-byte key of the last record deleted.
LOCK_OWNER_SYSTEM

identifies the MVS system from which the record lock was acquired for a record_busy or
record_locked condition. Also set when the wait exit is taken for a lock wait.

LOCK_OWNER_APPLID
identifies the applid of the region which owns the record lock for a record_busy or
record_locked condition. Also set when the wait exit is taken for a lock wait.

File control

Chapter 24. File control 229

LOCK_OWNER_UOW_ID
identifies the unit of work which owns the record lock for a record_busy or record_locked
condition. Also set when the wait exit is taken for a lock wait.

RESPONSE is DFHFCCR’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECORD_NOT_FOUND
RECORD_CHANGED
RECORD_BUSY
RECORD_LOCKED
TABLE_LOADING
INVALID_REQUEST
UPDATE_TOKEN_INVALID
INCOMPLETE_UPDATE
TABLE_TOKEN_INVALID
TABLE_DESTROYED
UOW_FAILED
UOW_NOT_IN_FLIGHT
UOW_TOO_LARGE
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCT OPEN function
FCCT is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for table status functions (Open, Close etc.).

The OPEN function defines a coupling facility data table table and establishes a connection between it and
a CICS file. A security check is performed for access to the table name. If the table does not exist, it is
implicitly created. If the table requires loading, it can only be opened if the access mode specifies
exclusive access (or prefer_shared, allowing exclusive access if necessary).

Input parameters
TABLE_NAME is the 16-character name of the CFDT (8 characters padded with trailing spaces).
RECORD_LENGTH

specifies the maximum record length, in the range 1 to 32767.
KEY_LENGTH specifies the key length, in the range 1 to 16.
MAXIMUM_RECORDS

specifies the maximum number of records which can be stored in the table.
UPDATE_MODEL specifies the method to be used for updating. It can take any of the values:

CONTENTION|LOCKING|RECOVERABLE

Contention means version compare and swap. Locking means normal update locking.
Recoverable includes backout support in addition to the basic locking model.

INITIAL_LOAD specifies whether initial load is required. It can take the values:
YES|NO

OPEN_MODE specifies a read_only or read_write open. It can take the values
READ_ONLY|READ_WRITE

ACCESS_MODE specifies whether the table is being opened for exclusive or shared use. It can take the
values:
EXCLUSIVE|SHARED|PREFER_SHARED

Only one user at a time can have an exclusive open active. If the table requires loading
and is not yet being loaded, it can only be opened in exclusive mode. If

File control

230 CICS TS for z/OS: CICS Diagnosis Reference

PREFER_SHARED is specified, the table will be opened in exclusive mode if loading is
required, otherwise it will be open in shared mode.

SHARED_ACCESS
specifies for an exclusive mode open whether other users will be allowed shared access
to the file at the same time. It can take the values:
NONE|READ_ONLY|READ_WRITE

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
TABLE_TOKEN is a unique token representing the connection to this table. It must be passed on all

subsequent requests against that open table, including close and set.
RECORD_LENGTH

returns the maximum record length of the table.
KEY_LENGTH returns the key length of the table.
MAXIMUM_RECORDS

returns the maximum number of records limit for the table.
UPDATE_MODEL returns the update model for the data table. It can take any of the values:

CONTENTION|LOCKING|RECOVERABLE

Contention means version compare and swap. Locking means normal update locking.
Recoverable includes backout support in addition to the basic locking model.

INITIAL_LOAD returns whether or not the data table requires initial loading. It can take the values:
YES|NO

ACCESS_MODE returns whether the table was opened for exclusive or shared use. It can take the values:
EXCLUSIVE|SHARED

LOADED returns an indication of whether the table has been loaded. If the table was created as
empty this is set to yes as if loading were already done. It can take the values:
YES|NO

CURRENT_USERS
returns the number of explicit opens which are currently active against the table (not
including internal recoverable opens issued by the server).

CURRENT_RECORDS
returns the number of records in the data table.

CURRENT_HIGH_KEY
returns the key of the last record in the table at the time of the request, or low values if the
table does not contain any records.

RESPONSE is DFHFCCT’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

File control

Chapter 24. File control 231

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
ACCESS_NOT_ALLOWED
TABLE_NOT AVAILABLE
NOT_YET_LOADED
SHARED_ACCESS_CONFLICT
EXCLUSIVE_ACCESS_CONFLICT
INCOMPATIBLE_ATTRIBUTES
INCOMPLETE_ATTRIBUTES
INCORRECT_STATE
RECOVERY_NOT_ENABLED
OPTION_NOT_SUPPORTED
NO_SPACE_IN_POOL
MAXIMUM TABLES_REACHED
TOO_MANY_USERS
TABLE_DESTROYED
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCT CLOSE function
FCCT is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for table status functions (Open, Close etc.).

The CLOSE function terminates the connection to the specified table.

Input parameters
TABLE_NAME is the 16-character name of the CFDT (8 characters padded with trailing spaces).
TABLE_TOKEN is the token which was returned by the open.
TRANSACTION_NUMBER

identifies the requesting task within the debug trace, if used.

Output parameters
RESPONSE is DFHFCCT’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
TABLE_TOKEN_INVALID
TABLE_DESTROYED
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCT DELETE function
FCCT is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for table status functions (Open, Close etc.).

The DELETE function deletes a coupling facility data table, provided that it is not currently open. A security
check for table access is performed.

Input parameters
TABLE_NAME is the 16-character name of the CFDT (8 characters padded with trailing spaces).
TRANSACTION_NUMBER

identifies the requesting task within the debug trace, if used.

Output parameters
RESPONSE is DFHFCCT’s response to the call. It can have any of these values:

File control

232 CICS TS for z/OS: CICS Diagnosis Reference

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
ACCESS_NOT_ALLOWED
TABLE_NOT_FOUND
EXCLUSIVE_ACCESS_CONFLICT
TABLE_DESTROYED
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCT SET function
FCCT is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for table status functions (Open, Close etc.).

The SET function is used to change the attributes of a table. The maximum number of records can be
changed, the open mode can be changed to indicate no longer loading, and the access mode can be
changed from exclusive to shared.

Input parameters
TABLE_NAME is the 16-character name of the CFDT (8 characters padded with trailing spaces).
MAXIMUM_RECORDS

specifies the maximum number of records which can be stored in the table.
AVAILABLE indicates whether new open requests are to be allowed for this table. It can take the

values:
YES|NO

LOADED indicates whether the table is to be marked as loaded. It can take the values:
YES|NO

ACCESS_MODE specifies the access mode which is to be set for the table. It can take the values:
EXCLUSIVE|SHARED

The access mode is normally set to shared when a data table load has completed.
SHARED_ACCESS

specifies the shared access which is to be allowed by other users when the access mode
is shared.
NONE|READ_ONLY|READ_WRITE

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
RESPONSE is DFHFCCT’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

File control

Chapter 24. File control 233

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
ACCESS_NOT_ALLOWED
TABLE_NOT_FOUND
SHARED_ACCESS_CONFLICT
EXCLUSIVE_ACCESS_CONFLICT
ALREADY_SET
INCORRECT_STATE
OPTION_NOT_SUPPORTED
TABLE_TOKEN_INVALID
TABLE_DESTROYED
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCT EXTRACT_STATISTICS function
FCCT is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for table status functions (Open, Close etc.).

The EXTRACT_STATISTICS function returns information about a table which is currently open, with
optional reset.

Input parameters
TABLE_NAME is the 16-character name of the CFDT (8 characters padded with trailing spaces).
TABLE_TOKEN is the token which was returned by the open.
RESET_STATISTICS

is an optional parameter which specifies whether or not statistics are to be reset. It can
take the values
YES|NO

TRANSACTION_NUMBER
identifies the requesting task within the debug trace, if used.

Output parameters
CURRENT_USERS

is the number of explicit opens which are currently active against the table (not including
internal recoverable opens issued by the server).

CURRENT_RECORDS
is the number of records currently in the data table.

HIGHEST_RECORDS
is the highest number of records in the table as seen by the current server at any time
since the last statistics reset.

CONTENTION_COUNT
is the number of times a rewrite or delete failed because of a mismatched version (for the
contention model) or the number of times that a lock was found to be unavailable (for the
locking or recoverable models) since the last statistics reset.

RESPONSE is DFHFCCT’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
TABLE_TOKEN_INVALID

FCCU PREPARE function
FCCU is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for unit of work related functions.

File control

234 CICS TS for z/OS: CICS Diagnosis Reference

The PREPARE function prepares to commit a unit of work.

Input parameters
UOW_ID is the CICS unit of work identification, which is prefixed by the CFDT server with the

subsystem name to form the fully qualified unit of work identifier.
TRANSACTION_NUMBER

is used for debug trace purposes.

Output parameters
RESPONSE is DFHFCCU’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND
UOW_MADE_NO_CHANGES
UOW_FAILED
NO_SPACE_IN_POOL
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCU RETAIN function
FCCU is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for unit of work related functions.

The RETAIN function marks a unit of work as retained.

Input parameters
UOW_ID is the CICS unit of work identification, which is prefixed by the CFDT server with the

subsystem name to form the fully qualified unit of work identifier.
TRANSACTION_NUMBER

is used for debug trace purposes.

Output parameters
RESPONSE is DFHFCCU’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND
UOW_MADE_NO_CHANGES
UOW_FAILED
NO_SPACE_IN_POOL
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCU COMMIT function
FCCU is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for unit of work related functions.

The COMMIT function commits a unit of work.

File control

Chapter 24. File control 235

Input parameters
UOW_ID is the CICS unit of work identification, which is prefixed by the CFDT server with the

subsystem name to form the fully qualified unit of work identifier.
TRANSACTION_NUMBER

is used for debug trace purposes.

Output parameters
RESPONSE is DFHFCCU’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND
UOW_MADE_NO_CHANGES
UOW_FAILED
NO_SPACE_IN_POOL
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCU BACKOUT function
FCCU is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for unit of work related functions.

The BACKOUT function backs out a unit of work.

Input parameters
UOW_ID is the CICS unit of work identification, which is prefixed by the CFDT server with the

subsystem name to form the fully qualified unit of work identifier.
TRANSACTION_NUMBER

is used for debug trace purposes.

Output parameters
RESPONSE is DFHFCCU’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND
UOW_MADE_NO_CHANGES
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCCU INQUIRE function
FCCU is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for unit of work related functions.

The INQUIRE function inquires about the status of a unit of work.

Input parameters
UOW_ID is the CICS unit of work identification, which is prefixed by the CFDT server with the

subsystem name to form the fully qualified unit of work identifier.

File control

236 CICS TS for z/OS: CICS Diagnosis Reference

UOW_RESTARTED
is an optional parameter which indicates whether the inquire should select only units of
work which have been through restart processing, and can take the values:
NO|YES

TRANSACTION_NUMBER
is used for debug trace purposes.

BROWSE specifies whether the inquire is for a single unit of work or for the first or next UOW in a
browse. If omitted, a single UOW inquire is performed. If specified, it can take the values
FIRST|NEXT

FIRST indicates a search for a UOWID greater than or equal to the specified UOWID, and
NEXT indicates a search for a UOWID greater than the specified UOWID.

Output parameters
UOW_STATE indicates the state of an active unit of work, and can have any of the values:

IN_FLIGHT|IN_DOUBT|IN_COMMIT|IN_BACKOUT

In_flight means that the unit of work has made some changes but has not yet reached the
stage of prepare to commit. In_doubt means that it has been prepared but not committed
or backed out. In_commit means that commit processing has been started. In_backout
means that backout processing has been started. (When commit or backout processing
completes, the unit of work is deleted).

UOW_ID is the CICS unit of work id of the UOW for which inquire data is being returned.
UOW_RESTARTED

indicates whether the unit of work has been through restart processing, and can take the
values:
NO|YES

UOW_RETAINED indicates whether the locks for the unit of work have been marked as retained, either
explicitly within the current connection or implicitly by a restart. It can take the values:
NO|YES

RESPONSE is DFHFCCU’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND

FCCU RESTART function
FCCU is the parameter list used by File Control to communicate with the Coupling Facility Data Table
cross-memory server, DFHCFMN, for unit of work related functions.

The RESTART function establishes recovery status on connecting to a CFDT server.

Input parameters
UOW_SUBSYSTEM_NAME

is not specified by CICS (the CICS applid is used by default).
TRANSACTION_NUMBER

is used for debug trace purposes.

Output parameters
RESPONSE is DFHFCCU’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

File control

Chapter 24. File control 237

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
SUBSYSTEM_ALREADY_ACTIVE
RESTART_ALREADY_ACTIVE
TABLE_OPEN_FAILED
NO_SPACE_IN_POOL
POOL_STATE_ERROR
CF_ACCESS_ERROR

FCDS EXTRACT_CFDT_STATS function
This function causes statistics relating to coupling facility data table usage to be extracted from the
coupling facility data tables server.

Input parameters
FCTE_POINTER is the address of the FCTE entry of the file for which CFDT statistics are to be extracted.
RESET_STATISTICS

indicates whether the statistics fields are to be reset to zero or not. It takes the values
YES|NO

TRANSACTION_NUMBER
is an optional parameter which allows the transaction number to be passed to the CFDT
server for inclusion in trace messages.

Output parameters
CURRENT_USERS

is an optional fullword parameter which returns the current number of users of the coupling
facility data table (that is, the number of opens issued against it).

MAXIMUM_RECORDS
is an optional fullword parameter which returns the current value of the MAXNUMRECS
limit for the data table.

CURRENT_RECORDS
is an optional fullword parameter which returns the current number of records in the
coupling facility data table.

HIGHEST_RECORDS
is an optional fullword parameter which returns the highest number of records which have
ever been in this coupling facility data table since it was last created.

CONTENTION_COUNT
is an optional fullword parameter which returns the number of contentions which have
been detected, for a coupling facility data table which uses the contention update model.

RESPONSE is DFHFCDS’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible values
are:

RESPONSE Possible REASON values

EXCEPTION CFDT_CONNECT_ERROR
CFDT_DISCONNECT_ERROR
CFDT_REOPEN_ERROR
CFDT_SERVER_NOT_AVAILABLE
CFDT_SERVER_NOT_FOUND
CFDT_STATS_ERROR
CFDT_SYSIDERR
CFDT_TABLE_GONE

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER POOL_ELEMENT_NOT_FOUND
ABEND
DISASTER_PERCOLATION

File control

238 CICS TS for z/OS: CICS Diagnosis Reference

FCDS DISCONNECT_CFDT_POOLS function
This function causes CICS to disconnect from any coupling facility data table pools to which it is
connected.

Input parameters
None

Output parameters
RESPONSE is DFHFCDS’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION CFDT_DISCONNECT_ERROR

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
DISASTER_PERCOLATION

FCDU PREPARE function
This function causes the coupling facility data table server to be called to prepare a unit of work which has
made recoverable updates to one or more coupling facility data tables.

Input parameters
POOL_ELEM_ADDR

is the address of the pool element which identifies the coupling facility data table pool for
which the prepare is to be issued. One or more of the coupling facility data tables updated
by the unit of work reside in this pool. The prepare call will be issued to the CFDT server
for this pool.

POOL_NAME is the name of the coupling facility data table pool. The pool name is included for
diagnostic purposes.

UOW_ID is the identifier for the unit of work which is to be prepared.

Output parameters
RESPONSE is DFHFCDU’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND
UOW_MADE_NO_CHANGES
UOW_FAILED
NO_SPACE_IN_POOL
POOL_STATE_ERROR
CF_ACCESS_ERROR
CFDT_SYSIDERR
CFDT_SERVER_NOT_AVAILABLE
CFDT_SERVER_NOT_FOUND
CFDT_CONNECT_ERROR
CFDT_DISCONNECT_ERROR
RESYNC_RETRY_FAILED

File control

Chapter 24. File control 239

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
DISASTER_PERCOLATION

FCDU RETAIN function
This function causes the coupling facility data table server to be called to convert locks held by the unit of
work against recoverable coupling facility data tables into retained locks.

Input parameters
POOL_ELEM_ADDR

is the address of the pool element which identifies the coupling facility data table pool for
which the retain is to be issued. One or more of the coupling facility data tables updated
by the unit of work reside in this pool. The retain call will be issued to the CFDT server for
this pool.

POOL_NAME is the name of the coupling facility data table pool. The pool name is included for
diagnostic purposes.

UOW_ID is the identifier for the unit of work for which locks are to be retained.

Output parameters
RESPONSE is DFHFCDU’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND
UOW_MADE_NO_CHANGES
UOW_FAILED
NO_SPACE_IN_POOL
POOL_STATE_ERROR
CF_ACCESS_ERROR
CFDT_SYSIDERR
CFDT_SERVER_NOT_AVAILABLE
CFDT_SERVER_NOT_FOUND
CFDT_CONNECT_ERROR
CFDT_DISCONNECT_ERROR
RESYNC_RETRY_FAILED

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
DISASTER_PERCOLATION

FCDU COMMIT function
This function causes the coupling facility data table server to be called to commit a unit of work which has
made recoverable updates to one or more coupling facility data tables.

Input parameters
POOL_ELEM_ADDR

is the address of the pool element which identifies the coupling facility data table pool for
which the commit is to be issued. One or more of the coupling facility data tables updated
by the unit of work reside in this pool. The commit call will be issued to the CFDT server
for this pool.

File control

240 CICS TS for z/OS: CICS Diagnosis Reference

POOL_NAME is the name of the coupling facility data table pool. The pool name is included for
diagnostic purposes.

UOW_ID is the identifier for the unit of work which is to be committed.

Output parameters
RESPONSE is DFHFCDU’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND
UOW_MADE_NO_CHANGES
UOW_FAILED
NO_SPACE_IN_POOL
POOL_STATE_ERROR
CF_ACCESS_ERROR
CFDT_SYSIDERR
CFDT_SERVER_NOT_AVAILABLE
CFDT_SERVER_NOT_FOUND
CFDT_CONNECT_ERROR
CFDT_DISCONNECT_ERROR
RESYNC_RETRY_FAILED

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
DISASTER_PERCOLATION

FCDU BACKOUT function
This function causes the coupling facility data table server to be called to backout a unit of work which has
made recoverable updates to one or more coupling facility data tables.

Input parameters
POOL_ELEM_ADDR

is the address of the pool element which identifies the coupling facility data table pool for
which the backout is to be issued. One or more of the coupling facility data tables updated
by the unit of work reside in this pool. The backout call will be issued to the CFDT server
for this pool.

POOL_NAME is the name of the coupling facility data table pool. The pool name is included for
diagnostic purposes.

UOW_ID is the identifier for the unit of work which is to be backed out.

Output parameters
RESPONSE is DFHFCDU’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible values

are:

File control

Chapter 24. File control 241

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND
UOW_MADE_NO_CHANGES
POOL_STATE_ERROR
CF_ACCESS_ERROR
CFDT_SYSIDERR
CFDT_SERVER_NOT_AVAILABLE
CFDT_SERVER_NOT_FOUND
CFDT_CONNECT_ERROR
CFDT_DISCONNECT_ERROR
RESYNC_RETRY_FAILED

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
DISASTER_PERCOLATION

FCDU INQUIRE function
This function causes an INQUIRE to be issued to the coupling facility data table in order to obtain
information about the status of an active unit of work. If the BROWSE parameter is specified, then the
function will return the status of the next unit of work in the browse.

Input parameters
POOL_ELEM_ADDR

is the address of the pool element which identifies the coupling facility data table pool for
which the INQUIRE is to be issued. The inquire call will be issued to the CFDT server for
this pool.

POOL_NAME is the name of the coupling facility data table pool. The pool name is included for
diagnostic purposes.

UOW_ID identifies the unit of work for which status information is to be returned, or gives the
previous unit of work in the browse.

UOW_RESTARTED
is an optional input parameter which indicates whether or not the inquire should select
only units of work which have been through restart processing. It can take the values
YES|NO

BROWSE is an optional parameter which specified whether the inquire is for a single unit of work or
for the first or next UOW in a browse, and which can take the values
FIRST|NEXT

If the BROWSE parameter is omitted, the request is a single UOW inquire. The FIRST
option indicates a search for a UOW id greater than or equal to the specified UOW_ID,
and next indicates a search for a UOW id greater than the specified UOW_ID.

Output parameters
RETURNED_UOW_ID

Is the unit of work for which the browse is returning status information.
UOW_STATE indicates the state of the unit of work, and can have the values:

IN_FLIGHT|IN_DOUBT|IN_COMMIT|IN_BACKOUT
UOW_RESTART_STATE

indicates whether the unit of work has been through restart processing.
UOW_RETAINED indicates whether the locks for the unit of work have been retained.
RESPONSE is DFHFCDU’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible values

are:

File control

242 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
RECOVERY_NOT_ENABLED
UOW_NOT_FOUND
CF_ACCESS_ERROR
CFDT_SYSIDERR
CFDT_SERVER_NOT_AVAILABLE
CFDT_SERVER_NOT_FOUND
CFDT_CONNECT_ERROR
CFDT_DISCONNECT_ERROR
RESYNC_RETRY_FAILED

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
DISASTER_PERCOLATION

FCDU RESTART function
This function establishes recovery status for a coupling facility data table pool when a CICS region has
successfully connected to it.

Input parameters
POOL_ELEM_ADDR

is the address of the pool element which identifies the coupling facility data table pool for
recovery status is to be established. The RESTART call will be issued to the CFDT server
for this pool.

POOL_NAME is the name of the coupling facility data table pool. The pool name is included for
diagnostic purposes.

Output parameters
RETURNED_UOW_ID

Is the unit of work for which the browse is returning status information.
UOW_STATE indicates the state of the unit of work, and can have the values:

IN_FLIGHT|IN_DOUBT|IN_COMMIT|IN_BACKOUT
UOW_RESTART_STATE

indicates whether the unit of work has been through restart processing.
UOW_RETAINED indicates whether the locks for the unit of work have been retained.
RESPONSE is DFHFCDU’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION SERVER_CONNECTION_FAILED
SUBSYSTEM_ALREADY_ACTIVE
RESTART_ALREADY_ACTIVE
TABLE_OPEN_FAILED
NO_SPACE_IN_POOL
CF_ACCESS_ERROR
CFDT_SYSIDERR
CFDT_SERVER_NOT_AVAILABLE
CFDT_SERVER_NOT_FOUND
CFDT_CONNECT_ERROR
CFDT_DISCONNECT_ERROR

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
DISASTER_PERCOLATION

File control

Chapter 24. File control 243

FCDY RESYNC_CFDT_POOL function
This function causes a coupling facility data table pool to be resynchronized.

Input parameters
POOL_NAME is the name of the coupling facility data table pool which is to be resynchronized.

Output parameters
RESPONSE is DFHFCDY’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION INITIATE_RECOVERY_FAILED
TERMINATE_RECOVERY_FAILED
CFDT_SERVER_CALL_FAILED

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
DISASTER_PERCOLATION

FCDY RESYNC_CFDT_LINK function
This function causes a link between a unit of work and a coupling facility data table pool to be
resynchronized.

Input parameters
POOL_NAME is the name of the coupling facility data table pool for which the link is to be

resynchronized.
UOW_ID is the unit of work ID which identifies the link to be resynchronized.

Output parameters
RESPONSE is DFHFCDY’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION INITIATE_RECOVERY_FAILED
TERMINATE_RECOVERY_FAILED
CFDT_SERVER_CALL_FAILED

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
DISASTER_PERCOLATION

FCDY RETURN_CFDT_ENTRY_POINTS function
This function causes module DFHFCDY to return the entry point addresses of the other modules with
which it is link-edited.

Input parameters
None

Output parameters
CFDT_EP_DFHFCDW

is the entry point address of module DFHFCDW.

File control

244 CICS TS for z/OS: CICS Diagnosis Reference

CFDT_EP_DFHFCDU
is the entry point address of module DFHFCDU.

RESPONSE is DFHFCDY’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
DISASTER_PERCOLATION

FCFL END_UOWDSN_BROWSE function
After a browse of all the data set failures within a unit of work, the END_UOWDSN_BROWSE function
releases the storage that was used for a snapshot of the failures.

Input parameters
BROWSE_TOKEN is the token which was used for the browse.

Output parameters
RESPONSE is DFHFCFL’s response to the call. It can have any of these values:

OK|INVALID|DISASTER|PURGED
[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_BROWSE_TOKEN

DISASTER DISASTER_PERCOLATION
ABEND

FCFL FIND_RETAINED function
This function looks for any FLAB associated with the specified data set which is flagged as retained,
indicating that there are retained locks associated with the data set.

Input parameters
DSNAME is the 44-character name of the data set for which associated retained locks are to be

found.

Output parameters
RETLOCKS indicates whether or not there are retained locks associated with the data set, and can

have either of these values:
RETAINED|NORETAINED

RESPONSE is DFHFCFL’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER DISASTER_PERCOLATION
ABEND

File control

Chapter 24. File control 245

FCFL FORCE_INDOUBTS function
This function is used by the CEMT or EXEC CICS SET DSNAME()
UOWACTION(COMMIT|BACKOUT|FORCE) command. Shunted in-doubt units of work are forced to
complete in the specified direction. FORCE means that the direction is obtained from the ACTION
specified on the transaction definition.

Input parameters
DSNAME is the 44-character name of the data set for which shunted in-doubt units of work are to be

forced to complete.
DIRECTION is the direction in which the units of work are to complete: forwards (commit), backwards

(backout), or heuristic (from the action specified on the transaction definition). It can have
any of these values:
FORWARD|BACKWARD|HEURISTIC

Output parameters
RESPONSE is DFHFCFL’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER DISASTER_PERCOLATION
ABEND

FCFL GET_NEXT_UOWDSN function
This function returns the failure information for the next data set that has a failure within the unit of work
being browsed.

Input parameters
BROWSE_TOKEN is the token for the browse, which was returned by a START_UOWDSN_BROWSE call.

Output parameters
DSNAME is the 44-character name of the data set for which failure information is returned.
[RLSACCESS] indicates whether the data set was last open in RLS or non-RLS access mode, and can

have either of these values:
RLS|NOTRLS

[CAUSE] indicates the cause of the failure, and can have any of these values:
CACHE|RLSSERVER|CONNECTION|DATASET|UNDEFINED

[RETAIN_REASON]
indicates the reason for the failure, and can have any of these values:
RLSGONE|COMMITFAIL|IOERROR|DATASETFULL|INDEXRECFULL|
OPENERROR|DELEXITERROR|DEADLOCK|BACKUPNONBWO|
LOCKSTRUCFULL|FAILEDBKOUT|NOTAPPLIC|RR_COMMITFAIL|
RR_INDOUBT

RESPONSE is DFHFCFL’s response to the call. It can have any of these values:
OK|INVALID|EXCEPTION|DISASTER

[REASON] is returned when RESPONSE is EXCEPTION, INVALID, or DISASTER. Possible values
are:

RESPONSE Possible REASON values

EXCEPTION END_OF_LIST

INVALID INVALID_BROWSE_TOKEN

DISASTER DISASTER_PERCOLATION
ABEND

File control

246 CICS TS for z/OS: CICS Diagnosis Reference

FCFL RESET_BFAILS function
This function is used by the CEMT and EXEC CICS SET DSNAME() ACTION(RESETLOCKS) command.
It purges shunted unit of work log records which hold backout-failure or commit-failure locks on the
specified data set, and releases the locks.

Input parameters
DSNAME is the 44-character name of the data set for which backout and commit failures are to be

reset.

Output parameters
RESPONSE is DFHFCFL’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER DISASTER_PERCOLATION
ABEND
REMOVE_FAILURE

FCFL RETRY function
This function is used by the CEMT and EXEC CICS SET DSNAME() UOWACTION(RETRY) command. It
drives retry of any failed backouts and commits for the specified data set, by informing DFHFCRR that the
failed resource (that is, the data set) is now available.

Input parameters
DSNAME is the 44-character name of the data set for which backout and/or commits are to be

retried.

Output parameters
RESPONSE is DFHFCFL’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER DISASTER_PERCOLATION
ABEND
RESOURCE_NOT_FOUND

FCFL START_UOWDSN_BROWSE function
This function starts a browse of the data set failures within a unit of work. A snapshot of the failed data
sets for the unit of work and the reasons for the failures are collected in an in-storage table to be browsed
by the GET_NEXT_UOWDSN function.

Input parameters
UOW is the 8-byte local unit of work identifier.

Output parameters
BROWSE_TOKEN is a token which is used during the browse.
RESPONSE is DFHFCFL’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UOW_NOT_FOUND
NO_FLABS_FOUND

File control

Chapter 24. File control 247

RESPONSE Possible REASON values

DISASTER DISASTER_PERCOLATION
ABEND

FCFL TEST_USER function
This function is used to test if the task has updated a record, and therefore established itself as a file user,
either for any data set or for a specified data set. It can be used either as a domain subroutine call or as
an inline macro.

Input parameters
[ENVIRONMENT]

is an optional parameter which is a fullword environment identifier. If specified, then the
function will test whether the task is a user of any files within that environment.

[DSNAME] is an optional parameter which specifies that a particular data set is to be tested.

Output parameters
FLAB_PTR is the address of a FLAB which was found by the test. If a non-zero value is returned,

then this means that the user is a task.
RESPONSE is DFHFCFL’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER DISASTER_PERCOLATION
ABEND

FCLJ FILE_OPEN function
This function is called when a file is opened, and causes a 'tie up record' record to be written to the log of
logs if either the file (or associated data set) is forward recoverable or if autojournalling is specified for the
file, to the forward recovery log if the file (or associated data set) is forward recoverable, and to the
autojournal if autojournalling is specified for the file.

Input parameters
FCTE_ADDRESS is the address of the file control table entry for the file being opened.

Output parameters
RESPONSE is DFHFCLJ’s response to the call. It can have any of these values:

OK|INVALID|PURGED|DISASTER
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR

FCLJ FILE_CLOSE Function
This function is called when a file is closed, and causes a file close log record to be written to the log of
logs if either the file (or associated data set) is forward recoverable or if autojournalling is specified for the
file, to the forward recovery log if the file (or associated data set) is forward recoverable, and to the
autojournal if autojournalling is specified for the file.

Input parameters
FCTE_ADDRESS is the address of the file control table entry for the file being closed.

File control

248 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
RESPONSE is DFHFCLJ’s response to the call. It can have any of these values:

OK|INVALID|PURGED|DISASTER
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR

FCLJ READ_ONLY Function
This function causes a read_only log record to be written to an autojournal, if read-only autojournalling is
specified on the file definition. The log record is built using the input parameters.

Input parameters
BASE_ESDS_RBA

is the RBA of the record being read, if the file is an ESDS.
FCTE_ADDRESS is the address of the file control table entry for the file being read.
KEY_ADDRESS is the address of the key of the record being read.
KEY_LENGTH is the key length of the record being read.
RECORD_ADDRESS

is the address of the record being read.
RECORD_LENGTH

is the length of the record being read.
SHUNTED indicates whether or not the unit of work has ever been shunted (due to some failure

during syncpoint). It can have either of these values:
YES|NO

Output parameters
RESPONSE is DFHFCLJ’s response to the call. It can have any of these values:

OK|INVALID|PURGED|DISASTER
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR
RM_RETURNED_ERROR

FCLJ READ_UPDATE Function
This function causes a read_update log record to be written to the system log, if the file is recoverable,
and if the destination parameter specifies either LOG or BOTH. It causes a read_update log record to be
written to the autojournal if journaling of read updates is specified on the file definition, and if the
destination parameter specifies either JOURNAL or BOTH. The log record is built using the input
parameters.

Input parameters
BASE_ESDS_RBA

is the RBA of the record being read for update, if the file is an ESDS.
FCTE_ADDRESS is the address of the file control table entry for the file being read for update.
KEY_ADDRESS is the address of the key of the record being read for update.
KEY_LENGTH is the key length of the record being read for update.
RECORD_ADDRESS

is the address of the record being read for update.
RECORD_LENGTH

is the length of the record being read for update.

File control

Chapter 24. File control 249

DESTINATION specifies whether the log record is to be written to the autojournal, the system log, or both.
It is used to suppress writing records that would otherwise be requested by the file
definition. It can have any of these values:
JOURNAL|LOG|BOTH

SYNCHRONIZE_LOG
indicates whether or not the system log is to be synchronized (forced) when the log record
is written. It can have either of these values:
YES|NO

SHUNTED indicates whether or not the unit of work has ever been shunted (due to some failure
during syncpoint). It can have either of these values:
YES|NO

Output parameters
[LOG_TOKEN] is an optional parameter which is returned if SYNCHRONIZE(NO) was specified, and

which contains a token to be used when subsequently synchronizing (forcing) the system
log.

RESPONSE is DFHFCLJ’s response to the call. It can have any of these values:
OK|INVALID|PURGED|DISASTER

[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR
RM_RETURNED_ERROR

FCLJ WRITE_UPDATE Function
This function causes a write_update log record to be written to the forward recovery log, if the file (or
associated data set) is forward recoverable, and to the autojournal, if journaling of write updates is
specified on the file definition. A write_update log record represents the completion of a file REWRITE
request. The log record is built using the input parameters.

Input parameters
BACKOUT indicates if the call is made as part of transaction backout processing. It can have either of

these values:
YES|NO

BASE_ESDS_RBA
is the RBA of the record being rewritten, if the file is an ESDS.

FCTE_ADDRESS is the address of the file control table entry for the file being rewritten to.
KEY_ADDRESS is the address of the key of the record being rewritten.
KEY_LENGTH is the key length of the record being rewritten to.
RECORD_ADDRESS

is the address of the record being rewritten.
RECORD_LENGTH

is the length of the record being rewritten.
SHUNTED indicates whether or not the unit of work has ever been shunted (due to some failure

during syncpoint). It can have either of these values:
YES|NO

Output parameters
RESPONSE is DFHFCLJ’s response to the call. It can have any of these values:

OK|INVALID|PURGED|DISASTER
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

File control

250 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR
RM_RETURNED_ERROR

FCLJ WRITE_ADD Function
This function causes a write_add log record to be written to the system log if the file is recoverable, and if
the destination parameter specifies BOTH. It causes a write_add log record to be written to the autojournal
if journaling of write adds was specified on the file definition. The log record is built using the input
parameters.

Input parameters
BACKOUT indicates if the call is made as part of transaction backout processing. It can have either of

these values:
YES|NO

BASE_ESDS_RBA
is the RBA of the record being added, if the file is an ESDS.

FCTE_ADDRESS is the address of the file control table entry for the file being written to.
KEY_ADDRESS is the address of the key of the record being added.
KEY_LENGTH is the key length of the record being written to.
MASSINSERT indicates whether or not the record is being added as part of a mass insert. It can have

either of these values:
YES|NO

DESTINATION specifies whether the log record is to be written to the autojournal only, or to both the
autojournal and the system log. It is used to suppress writing records that would otherwise
be requested by the file definition. It can have either of these values:
JOURNAL|BOTH

RECORD_ADDRESS
is the address of the record being added.

RECORD_LENGTH
is the length of the record being added.

SHUNTED indicates whether or not the unit of work has ever been shunted (due to some failure
during syncpoint). It can have either of these values:
YES|NO

Output parameters
RESPONSE is DFHFCLJ’s response to the call. It can have any of these values:

OK|INVALID|PURGED|DISASTER
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR
RM_RETURNED_ERROR

FCLJ WRITE_ADD_COMPLETE Function
This function causes a write_add_complete log record to be written to the forward recovery log if the file
(or associated data set) is forward recoverable, and to the autojournal if write_add_complete journaling is
specified on the file definition. It causes a truncated write_add_complete log record to be written to the
system log if the file is a recoverable ESDS accessed in non-RLS mode. If MASSINSERT(YES) and
MASSINSERT_STAGE(LAST) are specified, then only the system log record is written, and not the
forward recovery log or autojournal record. The log record is built using the input parameters.

File control

Chapter 24. File control 251

Input parameters
BACKOUT indicates if the call is made as part of transaction backout processing. It can have either of

these values:
YES|NO

BASE_ESDS_RBA
is the RBA of the record that has been added, if the file is an ESDS.

FCTE_ADDRESS is the address of the file control table entry for the file that has been written to.
KEY_ADDRESS is the address of the key of the record which has been added.
KEY_LENGTH is the key length for the file which has been written to.
MASSINSERT indicates whether or not the record was added as part of a mass insert. It can have either

of these values:
YES|NO

[MASSINSERT_STAGE]
is an optional parameter which indicates whether the record is either the first or last record
added during a massinsert sequence. It can have either of these values:
FIRST|LAST

RECORD_ADDRESS
is the address of the record which has been added.

RECORD_LENGTH
is the length of the record which has been added.

SHUNTED indicates whether or not the unit of work has ever been shunted (due to some failure
during syncpoint). It can have either of these values:
YES|NO

Output parameters
RESPONSE is DFHFCLJ’s response to the call. It can have any of these values:

OK|INVALID|PURGED|DISASTER
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR
RM_RETURNED_ERROR

FCLJ WRITE_DELETE Function
This function causes a write_delete log record to be written to the forward recovery log if the file (or
associated data set) is forward recoverable, and to the autojournal if journaling of write_deletes is specified
on the file definition. The log record is built using the input parameters.

Input parameters
BACKOUT indicates if the call is made as part of transaction backout processing. It can have either of

these values:
YES|NO

BASE_ESDS_RBA
is the RBA of the record being deleted, if the file is an ESDS.

FCTE_ADDRESS is the address of the file control table entry for the file.
KEY_ADDRESS is the address of the key of the record being deleted.
KEY_LENGTH is the key length for the file.
BASE_KEY_ADDRESS

is the address of the base key of the record being deleted, which is used if the data set is
being accessed via a path.

SHUNTED indicates whether or not the unit of work has ever been shunted (due to some failure
during syncpoint). It can have either of these values:
YES|NO

File control

252 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
RESPONSE is DFHFCLJ’s response to the call. It can have any of these values:

OK|INVALID|PURGED|DISASTER
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR
RM_RETURNED_ERROR

FCLJ SYNCHRONIZE_READ_UPDATE Function
This function causes any log records previously written to the system log for this file to be synchronized
(forced). The log token returned on a previous call to write a log record for this file is supplied as input.

Input parameters
FCTE_ADDRESS is the address of the file control table entry for the file being read for update.
LOG_TOKEN is the token returned on a previous call. The system log record written by the previous

call, plus any log records written prior to that, are hardened.

Output parameters
RESPONSE is DFHFCLJ’s response to the call. It can have any of these values:

OK|INVALID|PURGED|DISASTER
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
RM_RETURNED_ERROR

FCLJ TAKE_KEYPOINT Function
Provided that BWO copy is supported by this CICS (indicated by a flag in file control static storage), then
this function performs a scan of the file control table and, unless it has been called within the last half
hour, writes a tie up record for each file open for update in non-RLS mode that is BWO-eligible and
forward recoverable to the forward recovery log.

A tie up record specifies which CICS system within the sysplex opened the file, and the data set which the
file was opened against. Tie up records are used by forward recovery utilities, for example CICSVR.

Input parameters
None

Output parameters
KEYPOINT_TAKEN

indicates whether or not the set of tie up records was successfully written. It can have
either of these values:
YES|NO

RESPONSE is DFHFCLJ’s response to the call. It can have any of these values:
OK|INVALID|PURGED|DISASTER

[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR
TM_GETNEXT_FCTE_FAILED

File control

Chapter 24. File control 253

FCLJ DATASET_COPY Function
This function is called when DFSMSdss initiates a copy of an RLS data set via the VSAM RLS quiesce
mechanism. The function causes a ’tie up record’ to be written to the log of logs if either the data set is
forward recoverable, or some flavor of autojournalling has been specified in the file definition. In addition, if
applicable, a record is written to the forward recovery log.

A tie up record specifies which CICS system within the sysplex opened the file, and the data set which the
file was opened against. Tie up records are used by forward recovery utilities, for example CICSVR.

Input parameters
FCTE_ADDRESS is the address of the file control table entry for the file associated with a data set being

copied.

Output parameters
RESPONSE is DFHFCLJ’s response to the call. It can have any of these values:

OK|INVALID|PURGED|DISASTER
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LG_RETURNED_ERROR

FCQI INITIATE_QUIESCE Function
This function takes a quiesce request of type QUIESCE, IMMQUIESCE, UNQUIESCE,
QUIESCE_CANCEL, NONBWO_CANCEL or BWO_CANCEL and creates a FC Quiesce Send Element
(FCQSE) to describe the request. The FCQSE is added to a chain anchored in FC static, and an ECB
associated with the chain (also in FC static) is posted. DFHFCQI then either suspends until the quiesce
request completes or returns immediately to its caller, depending on whether busy WAIT or NOWAIT was
specified on the call.

When DFHFCQI posts the ECB, the CFQS transaction (DFHFCQS) wakes up and processes the FCQSE
on the chain, calling DFHFCCA QUIESCE to issue the appropriate flavor of IDAQUIES macro to
SMSVSAM. When the IDAQUIES has completed, DFHFCQS will resume DFHFCQI if it was suspended,
communicating the results of the IDAQUIES via the FCQSE. The FCQSE can then be unchained and
freed.

Input parameters
QUIESCE_TYPE indicates the type of quiesce being initiated and can have any of these values:

QUIESCE|IMMQUIESCE|UNQUIESCE|NONBWO_CANCEL|
BWO_CANCEL|QUIESCE_CANCEL

DSNAME is the 44-character name of the base data set to be quiesced.
BUSY indicates whether DFHFCQI is to wait for the quiesce to complete, or is to return

immediately to the caller, and can take either of these values:
WAIT|NOWAIT

SOURCE indicates whether the source of the quiesce request was CICS or a user, and can take
either of these values:
CICS|USER

Output parameters
RESPONSE is DFHFCQI’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID, EXCEPTION or DISASTER. Possible values

are:

File control

254 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

INVALID INVALID_QUIESCE_TYPE

EXCEPTION NOT_SUPPORTED
UNKNOWN_VSAM_DATASET
QUIESCE_NOT_POSSIBLE
UNQUIESCE_NOT_POSSIBLE
CANCELLED
TIMED_OUT
IOERR
SERVER_FAILURE
DATASET_MIGRATED

DISASTER ABEND
CATALOG_ERROR
DISASTER_PERCOLATION

FCQI INQUIRE_QUIESCE Function
This function returns the quiesce state of a data set as QUIESCED, UNQUIESCED, or QUIESCING.
DFHFCAT is called to inquire on the state of the ’quiesced’ bit in the VSAM ICF catalog, which will return
QUIESCED or UNQUIESCED. If UNQUIESCED is returned, the FCQSE chain is then scanned to find an
FCQSE specifying the data set in question. If such an FCQSE is found for a quiesce or immquiesce
request then a state of QUIESCING is returned. There is no UNQUIESCING state as the unquiesce
operation is far quicker than quiesce.

Input parameters
DSNAME is the 44-character name of the base data set for which quiesce state information is to be

returned.

Output parameters
QUIESCESTATE indicates the quiesce state of the data set, and can have any of these values:

QUIESCED|UNQUIESCED|QUIESCING
RESPONSE is DFHFCQI’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_SUPPORTED
UNKNOWN_VSAM_DATASET
IOERR

DISASTER ABEND
CATALOG_ERROR
DISASTER_PERCOLATION

FCQI COMPLETE_QUIESCE Function
This function is invoked whenever CICS has finished the processing for those quiesce requests for which
SMSVSAM must be notified with an IDAQUIES QUICMP. Such quiesce requests are VSAM QUICLOSE
(quiesce), QIOCOPY (non-BWO backup) and QUIBWO (BWO backup). This is achieved by calling
DFHFCCA QUIESCE_COMPLETE to issue the IDAQUIES QUICMP macro to SMSVSAM.

Input parameters
DSNAME is the 44-character name of the base data set for which quiesce processing has been

completed by this CICS.
QUIESCE_TOKEN

is the token which was supplied by SMSVSAM when it drove the quiesce exit for the
original quiesce request, and which must be returned on the IDAQUIES QUICMP.

File control

Chapter 24. File control 255

Output parameters
RESPONSE is DFHFCQI’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION IOERR
SERVER_FAILURE

DISASTER ABEND
DISASTER_PERCOLATION

FCQR RECEIVE_QUIESCES Function
This function consists of a forever loop around a dispatcher wait on an ECB. It receives work from the
CICS RLS quiesce exit DFHFCQX whenever SMSVSAM requires CICS to perform processing for a
quiesce request. DFHFCQX queues the request to DFHFCQR by adding an FC Quiesce Receive Element
(FCQRE) to a chain anchored in file control static storage, and posting the ECB associated with the chain,
also in FC static.

The posting of the ECB wakes the CFQR transaction, which executes the code in DFHFCQR. The
FCQREs on the chain are processed, and DFHFCQU is called with function PROCESS_QUIESCE to
perform the actual work. The ECB might also be posted to inform DFHFCQR that CICS is terminating.
When DFHFCQU has finished processing, DFHFCQR unchains and frees the FCQRE.

Input parameters
None.

Output parameters
RESPONSE is DFHFCQR’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
PROCESS_QUIESCE_ERROR
DISASTER_PERCOLATION

FCQS SEND_QUIESCES Function
This function consists of a forever loop around a dispatcher wait on a list of ECBs. Work is received from
tasks that wish to send a quiesce request to SMSVSAM. Such tasks call DFHFCQI with function
INITIATE_QUIESCE, which queues the request to DFHFCQS by adding an FC Quiesce Send Element
(FCQSE) to the chain anchored in file control static storage, and posting an ECB associated with the
chain, also in FC static.

When the ECB is posted, it wakes the CFQS transaction, which executes the code in DFHFCQS. The
FCQSEs on the chain are processed, and DFHFCCA is called with function QUIESCE_REQUEST to issue
the appropriate flavor of IDAQUIES macro to SMSVSAM. This is an asynchronous operation, and
SMSVSAM returns the address of an ECB that will be posted when the IDAQUIES completes. This is
saved in the FCQSE.

DFHFCQS then goes back into its dispatcher wait. It is actually waiting on a list of ECBs, the ECB for the
chain plus an ECB for each IDAQUIES request. It wakes and processes the chain whenever one of these
ECBs is posted. The wait also specifies a timeout interval, so that IDAQUIES requests that hang can be
detected. When DFHFCQS wakes up, this can mean that: there is new work on the chain, or a quiesce
request has completed, or a quiesce request timed out, or CICS is terminating. When a quiesce request

File control

256 CICS TS for z/OS: CICS Diagnosis Reference

has completed or timed out, DFHFCQS will resume the initiating task if it is waiting, after issuing
appropriate messages and invoking global user exit XFCQUIS if active.

Input parameters
None.

Output parameters
RESPONSE is DFHFCQS’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
TIMEOUT_CANCEL_ERROR
DISASTER_PERCOLATION

FCQU PROCESS_QUIESCE Function
DFHFCQU PROCESS_QUIESCE is called whenever a quiesce request is received from VSAM RLS. The
quiesce exit DFHFCQX queues requests to the CFQR system transaction (DFHFCQR), which calls
DFHFCQU to process each one in turn. The PROCESS_QUIESCE function is also called to implement a
non-RLS variant of QUIESCE called NON_RLS_CLOSE. This is for non-RLS files, is only used internally
by CICS, and does not run under the CFQR system transaction. Each quiesce request type is processed
in a different way by DFHFCQU.
QUIESCE corresponds to an SMSVSAM QUICLOSE. All files open against the data set are closed,

the file state of each file is set to unenabled but with a flag that says re-enable on
QUIOPEN, and a QUICMP is issued for the QUICLOSE back to VSAM RLS to indicate
our QUICLOSE processing is complete. The immediate option on the DFHFCQU call
governs how file closes are to be performed. If NO or omitted then closes will occur when
all UOWs using the data set have completed normally. If YES then all such UOWs will be
force purged to speed things up.

UNQUIESCE corresponds to an SMSVSAM QUIOPEN. All files associated with the data set are
checked to see if the file state requires resetting back to enabled, because it had been set
unenabled by a QUICLOSE.

NONBWO_START corresponds to an SMSVSAM QUICOPY. CICS prepares for a non-BWO backup of the
data set by preventing new units of work from updating the data set, allowing existing
UOWs to finish updating the data set, and then issuing a QUICMP for the QUICOPY back
to SMSVSAM to indicate that QUICOPY processing is complete. The files involved are not
closed.

NONBWO_END corresponds to an SMSVSAM QUICEND. All files associated with the data set are
checked to see if the file state requires resetting to enabled because it had been set
unenabled by an OPEN failure, and a set of ’tie up records’ are written for the data set.

BWO corresponds to an SMSVSAM QUIBWO. CICS prepares for a BWO backup of the data set
by writing a set of ’tie up records’ allowing existing units of work to finish updating the data
set, and then issuing a QUICMP for the QUIBWO back to SMSVSAM to indicate that
QUIBWO processing is complete. The files involved are not closed, nor are updates
prevented.

BWO_END corresponds to an SMSVSAM QUIBEND. The only processing involved is to stop an
existing BWO quiesce if one is in progress.

LOST_LOCKS_RECOVERED
corresponds to an SMSVSAM QUILLRC. It notifies CICS that lost locks recovery has been
completed for the data set throughout the sysplex. DFHFCRR is called with function
LOST_LOCKS_RECOVERED to process the availability of the data set.

File control

Chapter 24. File control 257

FORWARD_RECOVERY_COMPLETE
corresponds to an SMSVSAM QUIFRC. It notifies CICS that forward recovery has been
completed for the data set. DFHFCRR is called with function RESOURCE_AVAILABLE to
process the availability of the data set.

CACHE_AVAILABLE
corresponds to an SMSVSAM QUICA. It notifies CICS that a previously failed cache
structure is now available. DFHFCRR is called with function RESOURCE_AVAILABLE to
process the availability of the cache.

NON_RLS_CLOSE
processes a non-RLS variant of type CLOSE called NON_RLS_CLOSE. All ACBs open
against the specified non-RLS data set are closed.

Some of the requests cause global user exit XFCVSDS to be invoked if active and a DSNB exists for the
data set, and XFCVSDS can suppress certain of the requests if desired. Suppression causes the quiesce
request to be cancelled throughout the sysplex (by issuing the inverse quiesce request).

The types of quiesce that DFHFCQU can receive fall into two ’completion’ categories.

1. Those for which VSAM does not require completion notification. For these no IDAQUIES QUICMP is
issued. The successful return of the quiesce exit DFHFCQX to VSAM is sufficient. The requests in this
category are:
UNQUIESCE, NONBWO_END, BWO_END, CACHE_AVAILABLE,
LOCKS_RECOVERY_COMPLETE, FORWARD_RECOVERY_COMPLETE.

2. Those for which VSAM requires completion notification because CICS must complete some critical
processing. For these an IDAQUIES QUICMP must be issued when CICS processing is complete. The
requests in this category are:
QUIESCE, NONBWO_START, BWO_START.

Input parameters
QUIESCE_TYPE indicates the type of quiesce being requested. It can have any of these values:

QUIESCE|UNQUIESCE|NONBWO_START|NONBWO_END|BWO_START|
BWO_END|LOCKS_RECOVERY_COMPLETE|
FORWARD_RECOVERY_COMPLETE|CACHE_AVAILABLE|
NON_RLS_CLOSE

DSNAME|CACHE_NAME
either specifies the 44-character name of the data set to which the quiesce request
applies, or (when the quiesce_type is CACHE_AVAILABLE) the 16-character name of the
cache structure which has become available.

[IMMEDIATE] applies when the quiesce_type is QUIESCE or NON_RLS_CLOSE, and indicates whether
units of work which have updated the data set will be forced to complete immediately, or
whether the request will wait for such units of work to complete naturally. It can have
either of these values:
YES|NO

[CONCURRENT] applies when the quiesce_type is NONBWO_START or BWO_START, and indicates
whether the concurrent copy technique is being used. It is purely informational, and has no
effect on the processing. It can have either of these values:
YES|NO

[QUIESCE_TOKEN]
is a token which is supplied by SMSVSAM when certain quiesce requests are initiated,
and must be passed back when the quiesce complete is issued.

Output parameters
RESPONSE is DFHFCQU’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID, EXCEPTION or DISASTER. Possible values

are:

File control

258 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

INVALID INVALID_QUIESCE_TYPE

EXCEPTION DSNB_NOT_FOUND

DISASTER ABEND
DISASTER_PERCOLATION
DFHFCRR_ERROR
DFHFCQI_ERROR
DFHFCFS_ERROR
DFHTM_FAILURE

FCRR RESTART_RLS Function
This function performs a restart of the RLS component of file control. The exact processing depends on
the type of restart being performed.

COLD and INITIAL
The RLS control ACB is registered, and RLS is cold started, both via calls to DFHFCCA.

WARM and EMERGENCY
The RLS control ACB is registered, and recovery information is inquired upon from SMSVSAM, both via
calls to DFHFCCA. If the recovery information indicates that there are data sets in lost locks status, then
the corresponding DSNBs are marked as being lost locks, and preparation for lost locks recovery is
carried out. Any orphan locks are eliminated.

DYNAMIC
This type of restart occurs when a new instance of the SMSVSAM server becomes available following a
previous server failure.

Having waited for file control restart to complete if it was still in progress, and for any in-progress dynamic
RLS restart to complete, RLS access is drained if this has not already been done, the control ACB is
registered, and recovery information is inquired upon from SMSVSAM, all three via calls to DFHFCCA. If
the recovery information indicates that there are data sets in lost locks status, then the corresponding
DSNBs are marked as being lost locks, and preparation for lost locks recovery is carried out. Any orphan
locks are eliminated. The CICS recovery manager is called to unshunt any units of work that are
backout-failed due to the SMSVSAM server failure or a general file backout failure, and any units of work
that are commit-failed due to the SMSVSAM server failure.

Input parameters
TYPE_OF_RESTART

indicates the type of RLS restart being performed, and can have any of these values:
COLD|WARM|EMERGENCY|DYNAMIC

Output parameters
RESPONSE is DFHFCRR’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID, EXCEPTION or DISASTER. Possible values

are:

RESPONSE Possible REASON values

INVALID INVALID_FUNCTION
INVALID_RESTART_TYPE

File control

Chapter 24. File control 259

RESPONSE Possible REASON values

EXCEPTION REGISTER_CTL_ACB_FAILED
COLD_START_RLS_FAILED
DRAIN_RLS_FAILED
LOST_LOCKS_INFO_LOST
INQUIRE_RECOVERY_FAILED
LOST_LOCKS_COMPLETE_FAILED
ORPHAN_RELEASE_FAILED

DISASTER DSSR_FAILED
TM_LOCATE_FAILED
TM_UNLOCK_FAILED
ABEND
DISASTER_PERCOLATION

FCRR RESOURCE_AVAILABLE function
This function causes the CICS recovery manager to be notified of the availability of the specified resource.
When the resource_type is DSET, an RMRE AVAIL call is issued for the specified data set. When the
resource_type is CACHE, an RMRE avail call is issued for every data set that has outstanding work
shunted due either to a cache failure or to a general file backout failure. When the resource_type is
OTHER, an RMRE AVAIL call is issued for the specified resource.

Input parameters
RESOURCE_TYPE

is the type of resource which has become available, and can have any of these values:
DSET|CACHE|OTHER

RESOURCE_NAME
is the 44-character field containing the name of the resource which has become available.

RESOURCE_NAME_LENGTH
is a halfword containing the actual length of the resource name.

Output parameters
RESPONSE is DFHFCRR’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FUNCTION
INVALID_RESOURCE_TYPE

DISASTER ABEND
DISASTER_PERCOLATION

FCRR LOST_LOCKS_RECOVERED function
This function is called when lost locks recovery for a data set has been completed by all CICS regions that
were sharing it, and causes the flag in the DSNB which indicates that the data set is in lost locks state to
be cleared.

Input parameters
RESOURCE_NAME

is the 44-character field containing the name of the resource (data set) for which lost locks
recovery has been completed.

Output parameters
RESPONSE is DFHFCRR’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

File control

260 CICS TS for z/OS: CICS Diagnosis Reference

[REASON] is returned when RESPONSE is INVALID, EXCEPTION or DISASTER. Possible values
are:

RESPONSE Possible REASON values

INVALID INVALID_FUNCTION

EXCEPTION SPHERE_UNKNOWN

DISASTER TM_LOCATE_FAILED
TM_UNLOCK_FAILED
ABEND
DISASTER_PERCOLATION

File Control’s call back gates
Table 8 summarizes file control’s call back gates. It shows the FC level-1 trace point IDs of the modules
providing the functions for the gate, the functions provided by the gate, and the format for calls to the gate.

Table 8. File control’s call back gates
Gate Trace Function Format

RMRO FC 0BE0
FC 0BE1

PERFORM_PREPARE
PERFORM_COMMIT
START_BACKOUT
DELIVER_BACKOUT_DATA
END_BACKOUT
PERFORM_SHUNT
PERFORM_UNSHUNT

RMRO

RMKP FC 0BE0
FC 0BE1

TAKE_KEYPOINT RMKP

RMLK FC 24A0
FC 24A1

PREPARE
COMMIT
SEND_DO_COMMIT
SHUNT
UNSHUNT

RMLK

RMDE FC 0BE0
FC 0BE1

START_DELIVERY
DELIVER_RECOVERY
DELIVER_FORGET
END_DELIVERY

RMDE

LGGL FC 2350
FC 2351

ERROR LGGL

DMEN FC 0BD0
FC 0BD1

NOTIFY_SMSVSAM_AVAILABLE DMEN

You can find descriptions of these functions and their input and output parameters, in the chapters on the
recovery manager, log manager, and domain manager.

The functions of the RMRO gate are processed by DFHFCRC. For PERFORM_PREPARE and
PERFORM_COMMIT, DFHFCRC performs prepare and commit processing respectively for any file
resources involved in the unit of work. For START_BACKOUT, DELIVER_BACKOUT_DATA and
END_BACKOUT, DFHFCRC backs out changes made to file resources by the unit of work. For
PERFORM_SHUNT and PERFORM_UNSHUNT, DFHFCRC respectively shunts and unshunts the file
control structures representing recoverable parts of the unit of work.

The functions of the RMKP gate are processed by DFHFCRC. For TAKE_KEYPOINT, DFHFCRC performs
processing required for forward recovery of BWO-eligible non-RLS files.

The functions of the RMLK gate are processed by DFHFCDW, which performs syncpoint and recovery
functions for recoverable coupling facility data tables.

The functions of the RMDE gate are passed through by DFHFCRC to DFHFCIR. For START_DELIVERY,
DFHFCIR takes no action. For DELIVER_RECOVERY and DELIVER_FORGET, DFHFCIR uses the log

File control

Chapter 24. File control 261

records that are delivered to it to rebuild file control structures representing the recoverable parts of each
unit of work, and also rebuilds locks for non-RLS files. For END_DELIVERY, DFHFCIR notifies file control
that the rebuilding of recovery information at CICS restart is now complete.

The functions of the LGGL gate are processed by DFHFCLF. For ERROR, DFHFCLF takes actions to
handle a log stream failure for a general log used by file control.

The functions of the DMEN gate are processed by DFHFCES. For NOTIFY_SMSVSAM_AVAILABLE,
DFHFCES calls DFHFCRR with a function of RESTART_RLS and TYPE_OF_RESTART as DYNAMIC.

Exits
The following global user exit points are provided for file control:
In DFHEIFC XFCREQ and XFCREQC
In DFHFCFS XFCSREQ and XFCSREQC
In DFHFCN XFCNREC
In DFHFCRC XFCBFAIL, XFCBOUT, XFCBOVER and XFCLDEL

The following global user exit points are provided specifically for data table services: XDTAD, XDTLC, and
XDTRD.

See the CICS Customization Guide for further information.

Trace
The following point IDs are provided for file control:

v AP 04xx, for which the trace levels are FC 1, FC 2, and Exc

v AP 0Bxx, for which the trace levels are FC 1, FC 2, and Exc.

v AP 23xx, for which the trace levels are FC 1, FC 2, and Exc.

v AP 24xx, for which the trace levels are FC 1, FC 2, and Exc.

Note: Trace entries for shared data table services have point IDs at the lower end of the AP 0Bxx range,
and a corresponding trace level of FC 2. Trace entries for coupling facility data tables are from AP
2440 upwards.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

File control

262 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 25. Front end programming interface (FEPI)

The front end programming interface (FEPI) is an integral part of CICS Transaction Server for z/OS,
Version 3 Release 1. The function is called a front end programming interface because it enables you to
write CICS application programs that access other CICS or IMS programs. In other words, it provides a
front end to those programs.

Design overview
This section describes how FEPI works at a high level. It discusses how the FEPI functions are provided
within CICS.

FEPI as a CICS transaction
The main functions of FEPI are provided through the CSZI transaction, which is defined in group
DFHFEPI. CSZI runs the FEPI Resource Manager, which is responsible for most of the functions of FEPI.

The FEPI Resource Manager transaction is attached during a late stage of CICS initialization. CSZI runs
as a high-priority CICS system task, and cannot be canceled by an operator; it is terminated during CICS
shutdown processing.

The FEPI commands communicate with the Resource Manager through the FEPI adapter program, which
is loaded when CICS initializes, and is part of the CICS nucleus.

The FEPI adapter receives information from FEPI commands through two EXEC stubs, DFHESZ and
DFHEIQSZ. DFHESZ handles the FEPI application programming commands, while DFHEIQSZ handles
the system programming commands.

These two EXEC stubs call the adapter to do FEPI work. The adapter communicates with the Resource
Manager through work queues. See “Application flows” for details of these flows.

Application flows
“FEPI as a CICS transaction” outlined the main components of FEPI. This section shows the pathways
followed by a FEPI command.

Application programming command flows
The FEPI application programming commands flow through the normal EXEC CICS route into DFHEIP,
from where they are routed to DFHESZ. DFHESZ passes the command parameter list to the FEPI
adapter. After checking and other processing, the adapter generates another parameter list in internal
format, and places it on a queue for the FEPI Resource Manager to process.

While the adapter is waiting for the Resource Manager to process the command, it issues a wait. The
event control block (ECB) for this wait is contained in the parameter list queued to the Resource Manager.
Consequently, the application that issued the FEPI command is in a wait state while the Resource
Manager is processing the FEPI command. For information about wait processing, see the CICS Problem
Determination Guide.

When the Resource Manager has retrieved the command from its queue, and processed it, the ECB is
posted, thus ending the wait.

Control returns from the adapter to DFHEIP, and the application program in the normal fashion.

Figure 51 on page 264 shows this processing. Note that the details are for illustration only.

© Copyright IBM Corp. 1997, 2011 263

System programming command flows
The FEPI system programming commands flow through DFHEIQSZ rather than DFHESZ, but the overall
picture is the same as for FEPI application programming requests.

However, some system commands can flow directly to the FEPI Resource Manager, bypassing the EXEC
stub. These commands are mainly concerned with FEPI processing to be done at “special” events, such
as task termination and CICS shutdown.

Figure 52 shows this processing. The details are for illustration only.

Application program

EXEC CICS FEPI …

DFHEIP

FEPI
adapter

Give to
RM

Wait for
RM

Get from RM

DFHESZ

Return
through
EIP

Figure 51. FEPI application programming command flows

CEMT CICS shutdown End-of-task

FEPI INQ/SET command

Application program DFHEIP

EXEC CICS FEPI (SPI)

DFHEIQSZ

Parameter
list

FEPI adapter

Give to RM

Wait for RM

Get from RM

Return to caller

Figure 52. FEPI system programming command flows

Front end programming interface (FEPI)

264 CICS TS for z/OS: CICS Diagnosis Reference

Logic flow within the FEPI adapter
Figure 53 shows the logic flow within the FEPI adapter in more detail. In particular, it shows the points at
which the FEPI global user exits, XSZBRQ and XSZARQ, and the FEPI journaling function, are invoked.

Journaling of data occurs after the Resource Manager has processed the request, but before XSZARQ is
called (if active). Data is not journaled if your XSZBRQ exit program rejects the request.

The FEPI adapter and Resource Manager
The FEPI adapter runs as part of the invoking CICS task, and so runs under the QR task control block
(TCB). The FEPI Resource Manager, running as CSZI, runs under the SZ TCB (reserved for use by the
Resource Manager).

Consequently, the interface between the adapter and the Resource Manager uses waits and queues to
synchronize access. The control block used to pass information between the adapter and the Resource
Manager is called the DQE.

Figure 54 shows this interaction. The details are for illustration only.

FEPI adapter
Request

Syntax check

Lexical check

Call XSZBRQ if
present

FEPI Resource Manager
Invoke RM
and Wait

Journal if
required

Call XSZARQ if
present

Response Return to caller

Figure 53. Logic flow within the FEPI adapter

FEPI FEPI
adapter Resource Manager
(QR TCB) (SZ TCB)

Route for
application
requests

DQE

Figure 54. Interaction of the FEPI adapter and Resource Manager

Front end programming interface (FEPI)

Chapter 25. Front end programming interface (FEPI) 265

The FEPI Resource Manager work queues
When organizing its work, the FEPI Resource Manager uses a mechanism that is optimized for the FEPI
environment. Each DQE is chained to a queue representing the work to be done next.

The most common mechanism used for this movement between queues is the connection on which the
original FEPI command is operating.

Summary of Resource Manager work queues
In addition to the application queue, there are other queues used only by the Resource Manager. They
are:
API/Norm Used for FEPI application requests
API/Expd Used for FEPI high-priority application requests
PRB Used for Resource Manager internal work
PRB/Time Used for Resource Manager internal time-dependent work
IRB Used to control work done in VTAM exits
IRB/Time Used to control time-dependent work done in VTAM exits
TPEND8 Used to process VTAM TPEND8 conditions
Timer Used to control timer-related work
Free Used to hold VTAM RBs that have to be freed
Discard Used to control requests initiated by FEPI DISCARD commands.
CICS work Used to schedule work that has to run under the CICS QR TCB.

Control blocks
This section lists some of the FEPI control blocks and their resident storage subpools, where applicable.
For details of the subpools, see Chapter 104, “Storage manager domain (SM),” on page 1143.
DFHSZSDS (Static area) Used to anchor all FEPI storage
DFHSZDCM (Common area) Used to anchor all FEPI Resource Manager storage (SZSPFCCM)
DFHSZDND (Node) Represents a node (SZSPFCND)
DFHSZDPD (Pool) Represents a pool (SZSPFCPD)
DFHSZDTD (Target) Represents a target (SZSPFCTD)
DFHSZDPS (Propertyset) Represents a property set (SZSPFCPS)
DFHSZDCD (Connection) Represents a connection (a node-target pair) (SZSPFCCD)
DFHSZDCV (Conversation) Represents a FEPI conversation (SZSPFCCV)
DFHSZDSR (Surrogate) Used to associate nodes, pools, and targets with other control blocks—not

to be confused with a CICS surrogate terminal (SZSPFCSR)
DFHSZDQE (Queue element) Used to schedule Resource Manager work (SZSPFCWE).

Some of the relations between FEPI control blocks are shown in Figure 55 on page 267.

Front end programming interface (FEPI)

266 CICS TS for z/OS: CICS Diagnosis Reference

Dump
This section documents the areas that can be listed by the FEPI dump routines. For information about how
to use these facilities for problem determination, see the CICS Problem Determination Guide.

Note: The length of areas described in this section may change in future versions or releases of CICS.
Any status values interpreted may also be open to change. So you should use diagrams and
descriptions in this section only as illustrations of how to interpret FEPI dumps.

Here is a list all the FEPI areas that can be interpreted. If an area does not exist in your system, it does
not appear in the dump—no error message is produced.
v The static area
v The common area:

– The temporary ACB.
v Property sets
v Pools:

– Connections within the pool
– Node surrogates chained to the pool
– Target surrogates chained to the pool
– Queued allocate DQEs waiting within the pool

v Nodes:
– Connections used by the node
– Pool surrogates chained to the node
– Node’s ACB
– Node’s RPL
– Unsolicited BINDs queued to the node

v Targets:
– Connections used by the target
– Connections queueing on the target
– Pool surrogates chained to the target

CSA FEPI
static Static area state
area flag

Common area

Node Pool Target Property-set

Surrogate Surrogate Surrogate

Pool Target Node Target Node Pool

Connection

Node Target

Conversation

Figure 55. FEPI control block relationships

Front end programming interface (FEPI)

Chapter 25. Front end programming interface (FEPI) 267

v Connections:
– Current API request
– Connection’s RPL
– Connection’s RESP data
– Formatted data extension:

- Graphics plane
- Attributes
- Highlights
- Color
- Selection
- Validation

v Active conversations
v Browse conversations
v Inactive conversations
v CICS work queues
v PRB DQEs
v PRB time DQEs
v IRB DQEs
v IRB time DQEs
v TPend8 DQEs
v Discard DQEs
v API normal DQEs
v API expd DQEs
v Timer DQEs
v Free RBs
v The stacks (level 2 only).

A DQE is interpreted further, as follows:
v The DRP representing the DQE
v The DQE associated storage
v Any horizontal DQE extension (chained) DQEs.

The following sections describe some of the areas interpreted.

The static area

�1� This shows the status of the FEPI system; that is, whether or not it was running.

==SZ.Static FEPI Static Area
SZSDS 03AF6710 FEPI Static Area (Status is Open) �1�

0000 01406EC4 C6C8E2E9 E2C4E240 40404040 00000003 00030001 00000000 00000000 *. >DFHSZSDS* 03AF6710
0020 00000000 03B78000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03AF6730
0040 04B96440 000000DC 04B964F0 000000DD 04B965A0 000000DE 04B96650 000000DF *...0...............&....* 03AF6750
0060 04B96700 000000E0 04B967B0 000000E1 04B96860 000000E2 04B96910 000000E3 *...................-...S.......T* 03AF6770
0080 04B969C0 000000E4 04B96A70 000000E5 04B96B20 000000E6 04B96BD0 000000E7 *.......U.......V..,....W..,....X* 03AF6790
00A0 04B96C80 000000E8 04B96DE0 000000EA 04B96E90 000000EB 04B96D30 000000E9 *..%....Y.._.......>......._....Z* 03AF67B0
00C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03AF67D0
00E0 - 013F LINES SAME AS ABOVE 03AF67F0

Front end programming interface (FEPI)

268 CICS TS for z/OS: CICS Diagnosis Reference

The common area

�1� This shows whether the FEPI Resource Manager was active.

�2� This shows details of the currently executing item.

�3� This shows whether one of the VTAM exits was active (none in this case). If an exit was active, it is
shown preceded by an equals (=) character.

Property sets

This shows details of the property set, which defines the characteristics of FEPI pools.

Pools

�1� Refers to the property set that defines the characteristics of the pool.

==SZ.Common FEPI Common Area
SZDCM 1AE1A000 FEPI Common Area

0000 01A86EC4 C6C8E2E9 C4C3D400 00000000 1C0E55A0 000000DB 1AE1A000 00000000 *.y>DFHSZDCM.....................* 1AE1A000
0020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 1AE1A020
0040 00000000 00000000 00000000 1AE1D000 1BEE7210 1BEE72F0 1BEE7280 1BEE7360 *.......................0.......-* 1AE1A040
0060 1AE1B000 00000000 00000000 1AE345A0 00000000 00000000 00000000 1AE2F000 *.............T...............S0.* 1AE1A060
0080 00000000 1AD7F710 1BEE71C8 0007A630 00010000 0000000E 00001000 00000000 *.....P7....H..w.................* 1AE1A080
00A0 00000000 00000F70 0000000E 00000000 1AC9F990 1AE18000 0000006C 1BEEB1B0 *.................I9........%....* 1AE1A0A0
00C0 1AE1A000 1AE182B0 00000028 1BEEB20F 1AE2CB5C 1BEE71C8 0000000B 00000000 *......b..........S.*...H........* 1AE1A0C0
00E0 9BEEA56E 1AE2CA28 1AE18000 1AE2CA28 9BEEAF0E 00000000 1AE1A114 1AE1A118 *..v>.S.......S..................* 1AE1A0E0
0100 1AE1A11C 1AE1A120 1AE1A124 1AE1A128 9AE1A12C 00000000 00000000 00000000 *................................* 1AE1A100
0120 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 1AE1A120
0140 00000000 00000000 00000000 00000000 13000001 1AE1A16C 1AE1A168 1BF023C8 *.......................%.....0.H* 1AE1A140
0160 1AE1A000 00000000 00000064 0002F6C1 00000000 00000000 00000000 00000000 *..............6A................* 1AE1A160
0180 00002000 00010000 00000000 00000001 00000000 0000003C 00000078 00000005 *................................* 1AE1A180
01A0 00000000 00000000 *........ * 1AE1A1A0

Dispatcher Status is Running,CICS Trigger(No),Recovery Trigger(No). Receive-Any Size = 00004096 �1�
Current Request is at address 1AE2F000 Current Timer Element is at address 00000000 �2�
Exit footprints : TPEND, NSEXIT, SCIP, LOSTTERM, RECVANY, Common, DFASY, SETLOGON �3�
LU2 footprints : Send, Drain, REC(Spec), REQSESS, OPNSEC
LUP footprints : Send, Drain, REC(Spec), REQSESS, OPNSEC
RPL footprints : REQSESS, RA(A) issue, UnSolBind, RA(A) fdbk, IRB fdbk

==SZ.Prop FEPI Propertysets
SZDPS.YRAH1 03B98370 FEPI Propertyset

0000 00706EC4 C6C8E2E9 C4D7E200 00000000 04B96A70 000000E5 03B98370 00000000 *..>DFHSZDPS............V..c.....* 03B98370
0020 03B98420 03B982C0 E8D9C1C8 F1404040 00000000 00000000 00000000 00000000 *..d...b.YRAH1* 03B98390
0040 00000000 00001000 00000004 0215021E 02200222 02120214 00000000 00000000 *................................* 03B983B0
0060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03B983D0
0080 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03B983F0
00A0 00000000 00000000 00000000 00000000 *................ * 03B98410

==SZ.Pool FEPI Pools
SZDPD.P1 03B97000 FEPI Pool (created from Propertyset Y1) �1�

0000 008C6EC4 C6C8E2E9 C4D7C400 00000000 04B969C0 000000E4 03B97000 00000000 *..>DFHSZDPD............U........* 03B97000
0020 03B97110 00000000 D7F14040 40404040 E8F14040 40404040 03BA9440 03BA9000 *........P1 Y1 ..m* 03B97020
0040 03BAA2E0 00000000 00490226 00000000 00000000 00000000 00000000 00000000 *..s.............................* 03B97040
0060 00001000 00000003 0215021E 02200222 02120214 00000000 00000000 00000000 *................................* 03B97060
0080 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03B97080
00A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03B970A0
00C0 00000000 00000000 00000000 F1F2F3F4 F5F6F7F8 F9F0F1F2 F3F4F5F6 F7F8F9F0 *............12345678901234567890* 03B970C0
00E0 F1F2F3F4 F5F6F7F8 F9F0F1F2 F3F4F5F6 F7F8F9F0 F1F2F3F4 F5F6F7F8 F9F0F1F2 *12345678901234567890123456789012* 03B970E0
0100 F3F4F5F6 F7F8F9F0 F1F2F3E7 *34567890123X * 03B97100

User Data is :123456789012345678901234567890123456789012345678901234567890123X
Pool is using the Connection at address 03BAA2E0 �2�

SZDSR 03BA9440 FEPI Pool’s Surrogate refers to Node IYAEZM42 at address 03B9C1C0 �3�
0000 003C6EC4 C6C8E2E9 C4E2D900 00000000 04B96C80 000000E8 03BA9440 00000000 *..>DFHSZDSR.......%....Y..m* 03BA9440
0020 00000000 03BA9400 03BA95C0 00000000 03B97000 03B9C1C0 00000000 *......m...n...........A..... * 03BA9460

SZDSR 03BA9000 FEPI Pool’s Surrogate refers to Target CSYSE6 at address 03BA8000 �4�
0000 003C6EC4 C6C8E2E9 C4E2D900 00000000 04B96C80 000000E8 03BA9000 00000000 *..>DFHSZDSR.......%....Y........* 03BA9000
0020 00000000 00000000 03BA9040 00000000 03B97000 03BA8000 00000000 *........... * 03BA9020

�5�

Front end programming interface (FEPI)

Chapter 25. Front end programming interface (FEPI) 269

�2� Shows the connections within the pool.

�3� Shows the node surrogates chained to the pool.

�4� Shows the pool surrogates chained to the pool.

�5� There are no ACB, RPL, and unsolicited bind areas for this pool (no queued allocated DQEs within the
pool). If there were, the areas would be shown here.

Nodes

�1� Shows the connections used by the node.

�2� Shows the pool surrogates chained to the node.

�3� Shows the node’s ACB.

�4� Shows the node’s RPL.

�5� There are no unsolicited binds outstanding for this nodes. If there were, the areas would be shown
here.

Targets

==SZ.Node FEPI Nodes
SZDND.IYAEZM42 03B9C1C0 FEPI Node

0000 00946EC4 C6C8E2E9 C4D5C400 00000000 04B96910 000000E3 03B9C1C0 00000000 *.m>DFHSZDND............T..A.....* 03B9C1C0
0020 00000000 00000000 00000068 00000000 00000000 00000000 00000000 00000000 *................................* 03B9C1E0
0040 00020080 03BB4F00 03B9C2A0 03B9C0E0 03B9FCF0 03BA9C40 000641A0 03B80000 *......|...B........0...* 03B9C200
0060 00064160 08C9E8C1 C5E9D4F4 F2000000 00404040 40404040 40000000 00490045 *...-.IYAEZM42....* 03B9C220
0080 00450226 00450000 00000000 00000001 00000000 F1F2F3F4 F5F6F7F8 F9F0F1F2 *....................123456789012* 03B9C240
00A0 F3F4F5F6 F7F8F9F0 F1F2F3F4 F5F6F7F8 F9F0F1F2 F3F4F5F6 F7F8F9F0 F1F2F3F4 *34567890123456789012345678901234* 03B9C260
00C0 F5F6F7F8 F9F0F1F2 F3F4F5F6 F7F8F9F0 F1F2F3E7 *5678901234567890123X * 03B9C280

User Data is :123456789012345678901234567890123456789012345678901234567890123X
Node is using the Connection at address 03B9FCF0 �1�

SZDSR 03BA9440 FEPI Node’s Surrogate refers to Pool P1 at address 03B97000 �2�
0000 003C6EC4 C6C8E2E9 C4E2D900 00000000 04B96C80 000000E8 03BA9440 00000000 *..>DFHSZDSR.......%....Y..m* 03BA9440
0020 00000000 03BA9400 03BA95C0 00000000 03B97000 03B9C1C0 00000000 *......m...n...........A..... * 03BA9460

SZDAC.IYAEZM42 00064160 FEPI Node’s ACB �3�
0000 00AC6EC4 C6C8E2E9 C4C1C300 00000000 04B96440 000000DC 00064160 00000000 *..>DFHSZDAC........-....* 00064160
0020 00000000 00000000 08C9E8C1 C5E9D4F4 F2000000 00404040 40404040 40000000 *.........IYAEZM42.... ...* 00064180
0040 A020006C 00000000 80D42000 94000001 00000000 00000000 80000008 00000000 *...%.....M..m...................* 000641A0
0060 00000000 044B7CC0 FF000060 00000057 12000000 00000000 00000000 00000000 *......@....-....................* 000641C0
0080 00000000 00000000 00064188 41F00020 07FE0000 00000000 00000000 00BC4FB0 *...........h.0................|.* 000641E0
00A0 7F714F30 03B9C1C0 00000000 *".|...A..... * 00064200

SZDRA.IYAEZM42 03BB4F00 FEPI Node’s RPL �4�
0000 10006EC4 C6C8E2E9 D9C14000 00000000 04B96700 000000E0 03BB4F00 00000000 *..>DFHSZRA|.....* 03BB4F00
0020 00000000 00000000 00000000 00000000 00000000 00000000 03B80000 03B9FCF0 *...............................0* 03BB4F20
0040 03B9C1C0 00000000 00202270 844C9E82 844B4370 00000000 00801004 04008000 *..A.........d<.bd...............* 03BB4F40
0060 000641A0 4B800000 03BB4FB8 050001F4 28800000 00000000 00000000 00000F48 *..........|....4................* 03BB4F60
0080 12309450 00000000 80800001 20000000 00000000 00000000 00000000 00000000 *..m&;...........................* 03BB4F80
00A0 00000000 03B9FCF0 80004043 08130000 00000000 00000000 *.......0.. * 03BB4FA0

�5�

==SZ.Target FEPI Targets
SZDTD.CSYSE6 03BA8000 FEPI Target (network id is CSYSE6) �1�

0000 00786EC4 C6C8E2E9 C4E3C400 00000000 04B96D30 000000E9 03BA8000 00000000 *..>DFHSZDTD......._....Z........* 03BA8000
0020 00000000 00000000 0000006C 00000000 00000000 00000000 00000000 00000000 *...........%....................* 03BA8020
0040 00000000 00000001 03BA80C0 00000000 03BA92C0 03BA22E0 C3E2E8E2 C5F64040 *..................k.....CSYSE6 * 03BA8040
0060 C3E2E8E2 C5F64040 00490226 00000000 00000000 00000000 F1F2F3F4 F5F6F7F8 *CSYSE612345678* 03BA8060
0080 F9F0F1F2 F3F4F5F6 F7F8F9F0 F1F2F3F4 F5F6F7F8 F9F0F1F2 F3F4F5F6 F7F8F9F0 *90123456789012345678901234567890* 03BA8080
00A0 F1F2F3F4 F5F6F7F8 F9F0F1F2 F3F4F5F6 F7F8F9F0 F1F2F3E7 *12345678901234567890123X * 03BA80A0

User Data is :123456789012345678901234567890123456789012345678901234567890123X
Target is using the Connection at address 03BA22E0 �2�

�3�
SZDSR 03BA9000 FEPI Target’s Surrogate refers to Pool P1 at address 03B97000 �4�

0000 003C6EC4 C6C8E2E9 C4E2D900 00000000 04B96C80 000000E8 03BA9000 00000000 *..>DFHSZDSR.......%....Y........* 03BA9000
0020 00000000 00000000 03BA9040 00000000 03B97000 03BA8000 00000000 *........... * 03BA9020

Front end programming interface (FEPI)

270 CICS TS for z/OS: CICS Diagnosis Reference

�1� Shows the applid (network id) of the target.

�2� Shows the connections used by the target.

�3� There are no connections queuing on the target. If there were, the areas would be shown here.

�4� Shows the pool surrogates chained to the target.

Connections

�1� Shows the more significant VTAM statuses of the connection.

�2� Shows the address of the conversation (if any) currently running over the connection.

�3� Shows the connection’s RPL.

�4� There is no RESP data for this connection. If there were, it would be shown here.

�5� Shows the connection’s formatted data extension.

�5a� Shows some of the planes of the formatted data extension.

Only some of the format planes are present.

==SZ.Conn FEPI Connections
SZDCD 03BAA2E0 FEPI Connection

0000 01286EC4 C6C8E2E9 C4C3C400 00000000 04B964F0 000000DD 03BAA2E0 00000000 *..>DFHSZDCD........0......s.....* 03BAA2E0
0020 00000000 00000000 00000064 00000000 00000000 00000000 00000000 00000001 *................................* 03BAA300
0040 00000000 00000000 000000C0 C0000810 00000000 03B9F000 00000000 00000000 *......................0.........* 03BAA320
0060 00000000 00000000 050001EB 00000000 00000000 00010000 00000000 12950000 *.............................n..* 03BAA340
0080 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03BAA360
00A0 00000000 00000000 00000000 C4F4C1F3 F2F7F8F2 00000000 00000000 00000000 *............D4A32782............* 03BAA380
00C0 00000000 00000000 03BAA170 03BAAB80 00000000 03BAA450 03BAA170 03B97000 *......................u&;.......* 03BAA3A0
00E0 03BA8000 03B9C1C0 00000000 00490045 00450226 01E50000 00000000 00000001 *......A..............V..........* 03BAA3C0
0100 03BAB200 03BAA450 03BAA170 00000000 00000000 00000000 00000000 00000000 *......u&;.......................* 03BAA3E0
0120 00000000 F1F2F3F4 F5F6F7F8 F9F0F1F2 F3F4F5F6 F7F8F9F0 F1F2F3F4 F5F6F7F8 *....1234567890123456789012345678* 03BAA400
0140 F9F0F1F2 F3F4F5F6 F7F8F9F0 F1F2F3F4 F5F6F7F8 F9F0F1F2 F3F4F5F6 F7F8F9F0 *90123456789012345678901234567890* 03BAA420
0160 F1F2F3E7 00000000 *123X.... * 03BAA440

Status is DTR Reset,Free,OutB,¬CD,Lose,RA Data abs,RA Resp abs �1�
Connection is using the Conversation at address 00000000 �2�
User Data is :123456789012345678901234567890123456789012345678901234567890123X

SZDRA 03B9F000 FEPI Connection’s RPL �3�
0000 01286EC4 C6C8E2E9 C4C3C400 00000000 04B964F0 000000DD 03B9F000 00000000 *..>DFHSZDCD........0......0.....* 03B9F000
0020 03BADE60 03B9F450 0000006E 08000000 003C0000 00000000 00000000 00000001 *...-..4&;..>....................* 03B9F020
0040 00000000 80800000 00000100 00000010 00000000 00000000 00000000 00000000 *................................* 03B9F040
0060 00000000 00000000 00000000 00000000 000000C5 00010000 00000000 00000000 *...................E............* 03B9F060
0080 00000000 00000000 08570002 00000000 00000000 00000000 00000000 00000000 *................................* 03B9F080
00A0 00000000 00000000 00000000 C4F4C1F3 F2F7F8F2 00000000 *............D4A32782.... * 03B9F0A0

�4�
SZDDS 03BAB200 FEPI Connection’s Format Extension �5�

0000 00F86EC4 C6C8E2E9 C4C4E200 00000000 04B967B0 000000E1 03BAB200 00000000 *.8>DFHSZDDS.....................* 03BAB200
0020 00000000 00000000 00000000 00000000 03BB3000 03BB3780 00000000 00000000 *................................* 03BAB220
0040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 03BAA2E0 *..............................s.* 03BAB240
0060 00000F00 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03BAB260
0080 00000780 50185018 50180000 00000000 00000000 07000000 07000000 02004000 *....&;&;&;.................... .* 03BAB280
00A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03BAB2A0
00C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03BAB2C0
00E0 00000000 00000000 00000000 00000000 00000000 00000000 *........................ * 03BAB2E0

Current Cursor position X’00000000’ Current Buffer address X’00000000’
Screen sizes Current/Default/Alt 024*080/024*080/024*080

SZDDS.Pgraphic 03BB3000 FEPI Formatted Connection’s Graphics Plane
�5a�

0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03BB3000
0020 - 077F LINES SAME AS ABOVE 03BB3020

SZDDS.Pattr 03BB3780 FEPI Formatted Connection’s Attribute Plane
�5a�

0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03BB3780
0020 - 077F LINES SAME AS ABOVE 03BB37A0

Front end programming interface (FEPI)

Chapter 25. Front end programming interface (FEPI) 271

Conversations

�1� Shows the conversation type (active, browse, or inactive).

�2� Shows the address (if any) of the connection that is running the conversation, and the internal id of the
conversation. The internal id of the conversation is a combination of the CICS transid, termid, and task
number for the task running the FEPI request (these can be nulls if there is not a current task).

DQEs

�1� Shows the type of the DQE.

�2� Shows the work the DQE is controlling, and the internal id of the connection on which it is processing.

�3� Shows various significant statuses associated with the DQE.

�4� Shows the DRP representing the DQE.

�5� This DQE does not have any horizontal extensions, nor any associated storage area. If there were
any, they would be shown here.

FEPI and VTAM
This section outlines how FEPI interacts with VTAM, and discusses VTAM control blocks and exits.

You should refer to the OS/390 eNetwork Communications Server: SNA Programming manual for all
information relating to VTAM programming.

VTAM control blocks
FEPI uses standard VTAM programming facilities for its communication. The way in which VTAM control
blocks interact with FEPI control blocks is as follows:
ACBs Each FEPI node represents a terminal connected to the partner system.

Consequently, each node has an access control block (ACB). This ACB
is opened when the node is acquired, and closed when the node is
released.

==SZ.Conv FEPI Active Conversations �1�
SZDCV 03B9A000 FEPI Active Conversation

0000 00686EC4 C6C8E2E9 C4C3E500 00000000 04B96650 000000DF 00000000 00000000 *..>DFHSZDCV........&;...........* 03B9A000
0020 00000000 00000000 03BA3480 00001000 00000001 00000000 C3C5C3C9 C5F1F7F7 *........................CECIE177* 03B9A020
0040 0000050C 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03B9A040
0060 00000000 00000000 *........ * 03B9A060

Conversation 0000000100000000’s internal id is CECIE17700000050 and is in session with the connection at address 03BA3480 �2�

==SZ.DQE FEPI API/Expd DQEs
SZDQE.API/Expd 03B7EDC0 FEPI Work Queue Element �1�

0000 00886EC4 C6C8E2E9 C4D8C500 00000000 0557F7B0 000000E1 00000000 00000000 *.h>DFHSZDQE.......7.............* 03B7EDC0
0020 00000000 00000000 00000001 80800000 03B7EE48 00000000 00000000 00000000 *................................* 03B7EDE0
0040 804BB1EB 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03B7EE00
0060 C3C5C3C9 E2F5F7F6 0000042C 00000000 00000000 00000000 00000318 000001B0 *CECIS576........................* 03B7EE20
0080 00000000 00000000 *........ * 03B7EE40

DQE type is Allocate ,Internal id is CECIS57600000042 �2�
DQE Status is Post,Normal,NoPRBq,NoIRBq,NoTimr,NoAPI,NoTP8,Finish, Timed,Stopped,UnFree. �3�

SZDRP 03B7EE48 DQE’s API Request Data (DRP) �4�
0000 00B86EC4 C6C8E2E9 C4D9D700 00000000 0557F7B0 000000E1 00000000 00000000 *..>DFHSZDRP.......7.............* 03B7EE48
0020 00000000 00000001 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03B7EE68
0040 00000000 00000000 00000168 00000000 D7D6D6D3 C3404040 00000000 00000000 *................POOLC* 03B7EE88
0060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03B7EEA8
0080 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................* 03B7EEC8
00A0 00000000 00000000 00000000 00000000 00000000 00000000 *........................ * 03B7EEE8

�5�

Front end programming interface (FEPI)

272 CICS TS for z/OS: CICS Diagnosis Reference

NIBs Each FEPI target contains the applid of the back-end system. This is used
to build a node initialization block (NIB), when a connection is acquired
by issuing a VTAM REQSESS request. In common with CICS data
communication, the “confidential” flag is set off.

RPLs There are two types of request parameter list (RPL) used by FEPI:
v Each FEPI outbound request causes the generation of an RPL. This

RPL lasts only for the duration of the FEPI request.
v Each FEPI node has a “Receive-Any” RPL. When an inbound flow

occurs, this RPL is attached to the FEPI connection, and turned into a
“Receive-Specific” RPL. When the flow has been received, a new
“Receive-Any” RPL is generated and attached to the node.

VTAM exits
FEPI communicates with VTAM as asynchronously as possible. Therefore, VTAM exits are extensively
used for FEPI communication. The following VTAM exits receive control at specific stages of the
communication process:
DFASY Processes the receipt of expedited-data-flow control indicators.
LOGON Processes the receipt of a CINIT in which FEPI is acting as the primary

logical unit (PLU).
LOSTERM Processes the loss of a session.
NSEXIT Processes:

v The failure of a process that was responded to positively
v A session outage
v The receipt of network service RUs.

SCIP Processes the receipt of session-control requests.
TPEND Processes the termination of VTAM.

Modules

Module Function

DFHSZATC adaptor command tables

DFHSZATR adaptor program

DFHSZBCL cleanup API requests at error routine

DFHSZBCS RM collect statistics

DFHSZBFT FREE transaction requests scheduler

DFHSZBLO lost session reporter

DFHSZBRS RM collect resource ID statistics

DFHSZBSI signon exit scheduler

DFHSZBST STSN transaction scheduler

DFHSZBUN unsolicited data transaction scheduler

DFHSZBUS RM unsolicited statistics recording

DFHSZDUF dump formatting routine

DFHSZFRD formatted 3270 RECEIVE support

DFHSZFSD formatted 3270 SEND support

DFHSZIDX SLU P queue install/discard exit

DFHSZPCP SLU P flow controller

DFHSZPDX SLU P drain completion exit

DFHSZPID SLU P send data processor

Front end programming interface (FEPI)

Chapter 25. Front end programming interface (FEPI) 273

Module Function

DFHSZPIX SLU P send completion exit

DFHSZPOA SLU P send response processor

DFHSZPOD SLU P receive data processor

DFHSZPOR SLU P response processor

DFHSZPOX SLU P receive specific response exit

DFHSZPOY SLU P receive specific response processor

DFHSZPQS SLU P REQSESS (request session) issuer

DFHSZPQX SLU P REQSESS exit

DFHSZPSB SLU P bind processor

DFHSZPSC SLU P session controller

DFHSZPSD SLU P SDT processor

DFHSZPSH SLU P SHUTC processor

DFHSZPSQ SLU P quiesce complete (QC) processor

DFHSZPSR RESETSR processor CSECT

DFHSZPSS SLU P STSN processor

DFHSZPSX SLU P OPNSEC completion exit

DFHSZPTE SLU P TERMSESS processor

DFHSZRCA node control processor

DFHSZRCT issue processor

DFHSZRDC delete connection processor

DFHSZRDG discard node processor

DFHSZRDN delete node processor

DFHSZRDP dispatcher

DFHSZRDS discard property set processor

DFHSZRDT discard target procsssor

DFHSZREQ request passticket module

DFHSZRFC FREE completion processor

DFHSZRGR Dispatcher work queue processor

DFHSZRIA allocate processor

DFHSZRIC define connection processor

DFHSZRID discard processor

DFHSZRIF install free processor

DFHSZRII install processor

DFHSZRIN install node processor

DFHSZRIO ACB open processor

DFHSZRIP install pool processor

DFHSZRIQ inquire processor

DFHSZRIS install processor

DFHSZRIT install target processor

DFHSZRIW SET processor

DFHSZRNC NODE processor

Front end programming interface (FEPI)

274 CICS TS for z/OS: CICS Diagnosis Reference

Module Function

DFHSZRNO NOOP processor

DFHSZRPM timer services

DFHSZRPW request preparation

DFHSZRQR queue for REQSESS processing

DFHSZRQW request queue processor

DFHSZRRD RECEIVE request processor

DFHSZRRT request release processor

DFHSZRSC connection processor

DFHSZRSE SEND request processor

DFHSZRST START request processor

DFHSZRTM recovery services

DFHSZRXD EXTRACT processor

DFHSZRZZ TERMINATE processor

DFHSZSIP initialization processor

DFHSZVBN copy NIB mask to real NIB

DFHSZVGF get queue element FIFO

DFHSZVQS REQSESS dispatcher

DFHSZVRA VTAM receive_any processor

DFHSZVRI VTAM receive_any issuer

DFHSZVSC delayed bind processor

DFHSZVSL SETLOGON request issuer

DFHSZVSQ VTAM feedback interpreter

DFHSZVSR VTAM feedback interpreter

DFHSZVSY VTAM feedback interpreter

DFHSZWSL RPL exit after SETLOGON

DFHSZXDA VTAM DFASY exit

DFHSZXFR RPL exit to free request block

DFHSZXLG VTAM logon exit

DFHSZXLT VTAM LOSTERM (lost terminal) exit

DFHSZXNS VTAM NSEXIT (network services) exit

DFHSZXPM STIMER IRB exit routine

DFHSZXRA VTAM RECEIVE_ANY exit

DFHSZXSC VTAM SCIP (session control) exit

DFHSZXTP VTAM TPEND exit

DFHSZYLG RPL exit following logon reject

DFHSZYQR post for REQSESS processing

DFHSZYRI VTAM RECEIVE_ANY issuer

DFHSZYSC VTAM SCIP exit extension

DFHSZYSR VTAM feedback interpreter

DFHSZYSY VTAM feedback interpreter

DFHSZZAG get RECEIVE_ANY request block

Front end programming interface (FEPI)

Chapter 25. Front end programming interface (FEPI) 275

Module Function

DFHSZZFR free RECEIVE_ANY request block

DFHSZZNG get session control request block

DFHSZZRG get RPL request block

DFHSZ2CP SLU2 flow controller

DFHSZ2DX SLU2 drain completion exit

DFHSZ2ID SLU2 send data processor

DFHSZ2IX SLU2 send completion exit

DFHSZ2OA SLU2 send response processor

DFHSZ2OD SLU2 receive data processor

DFHSZ2OR SLU2 response processor

DFHSZ2OX SLU2 receive specific completion exit

DFHSZ2OY SLU2 receive specific action module

DFHSZ2QS SLU2 REQSESS issuer

DFHSZ2QX SLU2 REQSESS exit

DFHSZ2SB SLU2 bind processor

DFHSZ2SC SLU2 session controller

DFHSZ2SD SLU2 SDT processor

DFHSZ2SH SLU2 SHUTC processor

DFHSZ2SQ SLU2 QC processor

DFHSZ2SR SLU2 RESETSR processor

DFHSZ2SX SLU2 OPNSEC processor

DFHSZ2TE SLU2 TERMSESS processor

Front end programming interface (FEPI)

276 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 26. Function shipping

Function shipping allows a transaction from one CICS system to access a resource owned by another
CICS system.

The CICS function shipping facility enables separate CICS systems to be connected so that a transaction
in one system is able to retrieve data from, send data to, or initiate a transaction in, another CICS system.
The facility is available to application programs that use the command-level interface of CICS.

Design overview
Figure 56 gives an overview of the function shipping component of CICS.

This section provides an overview of the operation of CICS when it is being used to communicate with
other connected CICS systems for CICS function shipping.

Note: The CICS Intercommunication Guide gives a full description of the reasons for CICS function
shipping and how the user can take advantage of the facility.

Application programming functions with CICS function shipping
The functions provided by CICS are extended for CICS function shipping so that an application program
can issue the following types of command and have them executed on another system:
v Temporary-storage commands
v Transient data commands
v Interval control commands
v File control commands
v DL/I calls
v Program link commands (DPL).

Application programs can use these extended functions without having to know where the resources are
actually located; information about where resources are located is contained in the appropriate tables
prepared by the system programmer. Alternatively, provision is made for an application program to name a
remote system explicitly for a particular request.

Function
shipping

Intersystem ISC ALLOCATE Transformation Mirror
communication POINT, FREE program transaction
program (DFHZISP) (DFHXFP (DFHMIRS)
(DFHISP) or DFHXFX)

Intersystem ALLOCATE Transformation Local/remote
communication (DFHZISP) 1 decision
converse (DFHXFP DFHFCEI
(DFHISP) or DFHXFX)

POINT Transformation
(DFHZISP) 2

(DFHXFP
or DFHXFX)

FREE Transformation
(DFHZISP) 3

(DFHXFP
or DFHXFX)

Transformation
4
(DFHXFP
or DFHXFX)

Figure 56. CICS function shipping

© Copyright IBM Corp. 1997, 2011 277

Support for syncpoints, whether explicit (through EXEC CICS SYNCPOINT commands) or implicit (through
DL/I TERM calls), allows updates to be made in several systems as part of a single logical unit of work.

Error handling routines may need to be extended to handle additional error codes that may be returned
from a remote system. See the CICS Intercommunication Guide for the relevant conditions.

Local and remote names
For a transaction to access a resource (such as a file or transient data destination) in a remote system, it
is usually necessary for the local resource table to contain an entry for the remote resource. The name of
this entry (that is, the name by which the resource is known in the local system) must be unique within the
local system. The entry also contains the identity (SYSIDNT) of the remote system and, optionally, a name
by which the resource is known in the remote system. (If this latter value is omitted, it is assumed that the
name of the resource in the remote system is the same as the name by which it is known in the local
system.)

Mirror transactions
When a transaction issues a command for a function to be executed on a remote system, the local CICS
system encodes the request and sends it to the system identified in the appropriate CICS table, or on the
command itself. The receipt of this request at the remote system results in the attachment of one of the
CICS-supplied mirror transactions, namely, CSMI, CSM1, CSM2, CSM3, and CSM5, or transactions CVMI
and CPMI. All these transactions use the mirror program, DFHMIRS. (CVMI services LU6.2 sync level 1
requests, including those from CICS/VM, and CPMI services function shipping from CICS OS/2.)

For distributed program link (DPL) requests shipped from a CICS application region to a CICS resource
region, the name of the mirror transaction to be attached may be specified by the user. If you specify your
own mirror transaction, you must define the transaction in the resource region and associate it with the
CICS-supplied mirror program, DFHMIRS.

The CVMI and CPMI transactions service requests sent as part of an LU6.2 synclevel 1 conversation,
unlike the other transactions that service requests sent as part of an LU6.2 synclevel 2 conversation or an
MRO or LU6.1 conversation.

A mirror transaction executes the initiating transaction’s request and reflects back to the local system the
response code and any control fields and data that are associated with the request. If the execution of the
request causes the mirror transaction to abend, this information is also reflected back to the initiating
transaction.

If a resource has browse place holders or is recoverable, or the lock has been acquired, the mirror
transaction becomes a long-running mirror and does not end until the issuing transaction ends the
logical unit of work (that is, a SYCNPOINT or RETURN). Any resources the mirror has acquired are freed
when the initiating transaction issues the appropriate command to free those resources.

Initialization of CICS for CICS function shipping
If CICS has been generated with the appropriate options for intercommunication, the initialization of CICS
with the ISC=YES system initialization parameter specified causes the following modules to be loaded:
v DFHISP (intersystem communication program)
v DFHXFP (data transformation program)
v DFHXFX (optimized data transformation program).

The entry point addresses of these modules are contained in the optional features list, which is addressed
by CSAOPFLA in the CSA.

Function shipping

278 CICS TS for z/OS: CICS Diagnosis Reference

The mirror program, DFHMIRS, is not loaded until a request is received from a remote system. (This
program can only be loaded if there is an associated PPT entry and PCT entries for mirror transactions
CSMI, CSM1, CSM2, CSM3, and CSM5 or for transactions CVMI and CPMI; sample entries are created
by the CSD group DFHISC.)

Note: The ISC=YES system initialization parameter causes other modules besides those specified earlier
to be loaded; the ones mentioned here are those specifically required for CICS function shipping.

Communication with a remote system
For multiregion operation, communication between CICS systems can be implemented:

v Through support in CICS terminal control management modules and by use of a CICS-supplied
interregion program (DFHIRP) loaded in the link pack area (LPA) of MVS. DFHIRP is invoked by a type
3 supervisory call (SVC). The SVC moves the data to an intermediate area in key 0 MVS CSA storage,
and schedules an SRB to move the data from the intermediate area to the target.

v By MVS cross-memory services (DFHXMP), which you can select as an alternative to the CICS type 3
SVC mechanism. Here, DFHIRP is used only to open and close the interregion links. Cross-memory
services do not require intermediate MVS CSA storage areas.

v By the cross-system coupling facility (XCF) of MVS. XCF is required for MRO links between CICS
regions in different MVS images of an MVS sysplex. It is selected dynamically by CICS for such links, if
available.

For ISC, communication between CICS systems takes place via ACF/VTAM links. CICS and the CICS
application programmer are independent of, and unaware of, the type of physical connection used by
ACF/VTAM to connect the two systems.

Protocols
Requests and replies exchanged between systems for CICS interval control, CICS transient data, CICS
temporary storage, and DL/I functions are shipped using the standard protocol as defined for SNA logical
unit type 6.1.

Requests and replies for CICS file control functions are shipped using a private protocol (with function
management headers of type 43).

Symmetrical bracket protocol
Logical unit type 6.1 (LU6.1) sessions between two CICS systems require most protocols to be
symmetrical; therefore, CICS receives (as well as sends) end bracket.

Shutdown protocol
The LU6.1 shutdown protocol does not use the SHUTDOWN command; it uses the data flow control
commands SBI (stop bracket initiation) and BIS (bracket initial stopped). Shutdown is executed as part of
session termination (by DFHZCLS) and ensures that, when a session is terminated normally (as a result of
a master terminal release command or a normal CICS shutdown), there are no unfinished syncpoint
requests on the session. This means that when the session is initiated, no resynchronization sequence is
required.

Sender error recovery protocol (ERP)
CICS support for LU6.1 uses a symmetrical SNA protocol called Sender ERP. In addition, when CICS
wishes to send a negative response to a remote system, it sends a special negative response (0846),
which indicates that an ERP message is to follow. This ERP message contains the real system and user
sense values, together with a text message. The negative response and ERP message are built by
DFHZEMW, and are received and processed by DFHZRAC, DFHZRVX, and DFHZNAC.

Resynchronization protocol
CICS support for LU6.1 sessions that use the syncpoint protocol has associated resynchronization logic,
which is used during the initiation of a session after a previous session has terminated abnormally. This

Function shipping

Chapter 26. Function shipping 279

logic is used to generate messages concerning the outcome of any logical units of work that were in
doubt when the previous session failed. The modules involved are DFHZRSY, DFHZSCX, and DFHZNAC.

CICS function shipping environment
This section describes the system entries for function shipping in the terminal control table, and how
function shipping requests or replies are transformed between the format suitable for transmission and the
internal parameter list format.

System entries in the terminal control table
All remote systems with which a given system is able to communicate are identified and described in
terminal control table system entries (TCTSEs). The name of the system entry is the name specified in the
SYSIDNT field of the CICS table entry describing a remote resource.

CICS uses the TCTSE as an anchor point to queue requests made by CICS transactions for connection to
the remote system.

Figure 57 shows three TCTTEs. If a transaction fails and you get a transaction dump, this figure shows
you how to find the relevant TCTTEs from the TCA.

Transformation of requests and replies for transmission between systems
Before a request or reply can be transmitted, it must be transformed from its internal, parameter list (EXEC
interface) format to a format suitable for transmission; when received after transmission, the request must
be transformed back into a parameter list format.

TCA

TCAFCAAA TCTTE for session
Address of TCTTE for with system B
task's primary terminal

TCTTECA
TCATCUCN Address of TCA
Address of first
TCTTE in chain

TCTTEUCN
Address of next
TCTTE on chain

TCTTE for task's primary
terminal (such as 3270)

TCTTECA
Address of TCA

TCTTEUCN
Address of next
TCTTE on chain

TCTTE for session
with system C

TCTTECA
Address of TCA

TCTTEUCN
F'0' (end of chain)

Figure 57. Task’s view of CICS function shipping TCTTEs

Function shipping

280 CICS TS for z/OS: CICS Diagnosis Reference

There are four such transformations (numbered 1 through 4), which are performed by DFHXFP, or by
DFHXFX if optimized data transformations are possible. The latter only applies to data transformations for
function shipping in an MRO environment, excluding those relating to DL/I requests.

Transformation 1
For a request to be sent by the originating system; transforms from parameter list format to
transmission format.

Transformation 2
For a request received by the mirror transaction; transforms from transmission format to parameter list
format.

Transformation 3
For a reply to be sent by the mirror transaction; transforms from parameter list format to transmission
format.

Transformation 4
For a reply received by the originating system; transforms from transmission format to parameter list
format.

The parameter list format above refers to the parameter list that is normally passed to DFHEIP (for CICS
requests) or to DFHDLI (for DL/I requests).

The transmission formats of these requests and replies (excluding those for syncpoint protocol) are
described in the DFHFMHDS DSECT.

Information that DFHXFP and DFHXFX need to retain between transformations 1 and 4 (in the originating
system) or between transformations 2 and 3 (in the mirror system) is stored in a transformer storage area
called XFRDS; SeeCICS Data Areas for a detailed description of this control block.

CICS function shipping—handling of EXEC CICS commands
This section describes the sending and receiving of requests and replies (other than DL/I or syncpoint
requests) between two connected systems at the application-layer level; see Figure 58 on page 282.
(The function management and data flow control layers, implemented by CICS terminal control, work in
the same way, regardless of the type of request being transmitted.)

Function shipping

Chapter 26. Function shipping 281

Sending a request to a remote system
A CICS command is handled for an application program by the EXEC interface program, DFHEIP. DFHEIP
analyzes the arguments of each statement to determine the requested function and to assign values into
the appropriate CICS control blocks; DFHEIP also performs storage control and error checking on behalf
of the application programmer.

SYSTEM A

DFHEIP DFHEIFC

DFHEIFC

DFHFCFR

Local

Command from
application program

Response to
application program

DFHEIFC or DFHXFX
(transformation 4)

DFHEIFC or DFHXFX
(transformation 4)

DFHEISP

Request to system B
(via terminal control)

DFHISP
waits for
response

Response from system B
(via terminal control)

DFHEISP

DFHEIP

DFHXFP or DFHXFX
(transformation 2)

DFHXFP or DFHXFX
(transformation 3)

DFHEIP

DFHEIP

Mirror
task

Request from system A
(via terminal control)

Mirror
task

waits for
DFHEIP

DFHEIP
handles

the
command

command
from mirror
task

respond to
mirror task

Local TO DFHISP
(remote)

TO DFHISP
(remote)

Response to system A
(via terminal control)

DFHEIFC DFHFCFR

Mirror
task

SYSTEM B

Figure 58. Overview of CICS function shipping

Function shipping

282 CICS TS for z/OS: CICS Diagnosis Reference

If the system has been initialized with the ISC=YES system initialization parameter, and if the request is
for one of the functions that could be executed on a remote system (see “Application programming
functions with CICS function shipping” on page 277), DFHEIP invokes a local/remote decision routine,
which inspects the appropriate CICS table to determine whether the request is for a local or a remote
resource (unless a remote system has specifically been requested). For all requests except file control,
this local/remote decision is taken in DFHEIP. For file control requests, the decision is taken in the file
control function shipping interface module, DFHFCRF (see Chapter 24, “File control,” on page 163).

If the resource is local:

v DFHEIP invokes the appropriate EXEC interface processor module to process the request locally.

v DFHEIFC calls the file control file request handler, DFHFCFR, to process the request locally, and finally
returns control to DFHEIP.

Note: A SYSID value that names the local system also causes the request to be processed locally.

If the resource is remote, DFHEIP or DFHFCRF:

1. Allocates a transformer storage area (XFRDS) chained off the EXEC interface storage EIS. XFRDS
provides a central area in which all information about processing of the request can be accessed.

2. Places the following data in XFRDS:

v Name of remote system, for subsequent use by DFHISP (in XFRDS field XFRSYSNM)

v Address of the application’s list of parameters (EXEC parameter list) associated with the command
being executed (in XFRDS field XFRPLIST)

v Address of the table (FCT, if DFHFCRF; DCT, and so on, otherwise) for the requested resource (in
XFRDS field XFRATABN).

3. Issues a DFHIS TYPE=CONVERSE macro, which passes control to the CICS function shipping
program DFHISP.

DFHISP obtains the address of the TCTSE for the remote system and places it in XFRDS field
XFRATCSE. DFHISP obtains the address of the TCTTE that controls the session with the remote system
and places it in XFRDS field XFRATCTE. (DFHISP obtains the address by issuing a DFHTC
TYPE=POINT macro. If no session is established, there is no TCTTE; in this case DFHISP issues a
DFHTC TYPE=ALLOCATE macro to establish the session TCTTE.)

If no session can be allocated because, for example, all sessions are out of service, DFHISP determines
whether or not the function request can be queued for shipping at a later time. If it the request can be
queued, then XFRATCTE is set to zero.

Optionally (if a TIOA already exists from an earlier CICS function shipping request from the same
application), DFHISP also places the address of the TIOA in XFRDS field XFRATIOA.

DFHISP then invokes DFHXFP, or DFHXFX for optimized transformations, to transform the requested
command and parameter list into a form suitable for transmission. This is known as transformation 1,
which:

1. Transforms the original command into an appropriate type of request for transmission.

2. Converts the EXEC parameter list into a data unit having a standardized character-string format
(together with a function control header) suitable for transmission. The data unit is built in the TIOA
and contains a copy of each of the parameters that are addressed by the EXEC parameter list. (For
economy of transmission, certain types of data are compressed before being placed in the TIOA.)

3. Returns control to DFHISP.

Note: If local queuing is in effect, the data unit is built in user storage.

Function shipping

Chapter 26. Function shipping 283

DFHISP then invokes terminal control to transmit the contents of the TIOA to the remote system and waits
for the reply from the remote system, if necessary.

If local queuing is in effect, DFHISP issues a DFHIC TYPE=PUT macro specifying transaction CMPX,
which sends the data unit at a later time.

Receiving a request at a remote system
Terminal control receives the request transmission and attaches one of the mirror transactions.

The mirror program allocates space for XFRDS in its LIFO storage area. As in the requesting system,
XFRDS is a central area in which all information about the processing of the received request can be
accessed. The mirror program places the following data in XFRDS:

v Address of the session TCTTE (in XFRDS field XFRATCTE)

v Address of the TIOA (in XFRDS field XFRATIOA).

The mirror program also allocates scratch pad storage in the LIFO storage area for use by DFHXFP (or
DFHXFX) in building argument lists. The address of this storage is placed in XFRPLIST.

The mirror program then invokes DFHXFP, or DFHXFX for optimized transformations, to transform the
received request into a form suitable for execution by DFHEIP. This is known as transformation 2, which:

1. Transforms the received request (as coded in the function management header of the data unit) into
an appropriate CICS command.

2. Decodes the TIOA and builds (in the first part of the STORAGE area) an EXEC parameter list that
basically consists of addresses that point to fields in the TIOA. (Those fields that were compressed for
transmission are expanded and placed in the second part of the STORAGE area; for these fields, the
EXEC parameter list points to the expanded versions, not the compressed versions in the TIOA.)

Note: The NOHANDLE option is specified on each EXEC CICS command that is created; this has the
effect of suppressing DFHEIP’s branching to an error routine.

3. Returns control to the mirror program.

The mirror program then invokes DFHEIP (in the same way as for an application program), passing to it
(in register 1) the address of the EXEC parameter list just built.

DFHEIP or DFHFCRF determines whether the request is for a remote resource on yet another system or
for a local resource. If the resource is remote, DFHEIP or DFHFCRF allocates a new and separate
transfer storage area XFRDS and invokes DFHISP (as described under “Sending a request to a remote
system” on page 282).

If the resource is local, the reply is processed for the mirror program in the usual way.

Sending a reply at a remote system
The process of sending a reply in response to a request from another system is similar to that for sending
a request; see “Sending a request to a remote system” on page 282.

When DFHEIP has successfully completed execution of the command, control is returned to the mirror
program with the results of the execution in the EXEC interface block (EIB). The mirror program then
invokes DFHXFP, or DFHXFX for optimized transformations, to transform the command response into a
suitable form for the transmission of the reply. This is known as transformation 3, which:

1. Checks whether the existing TIOA is long enough to take the reply; if not, DFHXFP (or DFHXFX) frees
the existing TIOA and creates a new one.

2. Converts the EXEC parameter list (kept in the scratch pad area STORAGE) into a data unit having
the standardized character-string format suitable for transmission. The data unit is built in the TIOA. If
the request is received by the mirror program without CD (that is, the requesting system did not expect

Function shipping

284 CICS TS for z/OS: CICS Diagnosis Reference

a reply), the mirror program issues a DFHTC TYPE=READ or TYPE=FREE macro. If an error is
detected, the mirror program is forced to abend, so that at least a record of the request failure is
written.

3. Returns control to the mirror program.

The mirror program then invokes terminal control to transmit the TIOA. (The mirror program does this by
issuing a DFHTC TYPE=(WRITE,WAIT,READ) macro if the mirror program holds any state information that
must be held for a further request or until a syncpoint. Otherwise, a DFHTC TYPE=(WRITE,LAST) macro
is issued.

Receiving a reply from a remote system
Terminal control receives the reply and returns control to the initiating task; in particular, control is passed
to DFHISP, which has been waiting for the reply.

DFHISP invokes DFHXFP, or DFHXFX for optimized transformations, (passing to it the address of the
XFRDS area) in order to transform the reply into the form expected by the application program. This is
known as transformation 4, which:

1. Obtains the addresses of the TIOA and of the original EXEC parameter list from XFRATIOA and
XFRPLIST in the XFRDS area.

2. Uses data in the reply to complete the execution of the original command. For example:

v Sets return codes in the EIB from status bits in the reply

v Stores other received data (if any) in locations specified in the original EXEC parameter list.

3. Frees the TIOA.

4. Returns control to DFHISP.

DFHISP returns control to DFHEIP (if appropriate through DFHEIFC), which raises any error conditions
associated with return codes set in the EIB. DFHEIP then returns control to the application program.

CICS function shipping—handling of DL/I requests
DL/I requests are handled in a similar manner to that for CICS commands; see Figure 59 on page 286.

Function shipping

Chapter 26. Function shipping 285

Sending a DL/I request to a remote system
All DL/I requests are handled by DFHDLI.

DFHDLI determines whether the request is for a remote, or DBCTL database, and routes the request to
the appropriate DL/I call processor. If the request is for a remote database, DFHDLI invokes DFHDLIRP,
which passes control to DFHISP by issuing a DFHIS TYPE=CONVERSE macro.

SYSTEM A
DL/I request from
application
program

DFHDLI

calls
DFHDLIRP

if request
is for

a remote
database

DFHISP DFHXFP
(transforma-
tion 1)

Request to system B
(via terminal control)

DFHDLIRP
waits for
DFHISP

DFHISP
waits for
reply

Response from system B
(via terminal control)

DFHXFP
DFHISP (transforma-

tion 4)DFHDLIRP
returns to
application
via DFHDLIResponse from

remote database

SYSTEM B
Request from system A
(via terminal control)

DFHXFP Mirror task
(transformation 2)

Mirror task
waits for
DFHDLI

DFHDLI

DFHXFP Mirror task
(transformation 3)

Response to system A
(via terminal control)

Figure 59. Overview of CICS function shipping of DL/I requests

Function shipping

286 CICS TS for z/OS: CICS Diagnosis Reference

DFHISP then:

1. Invokes DFHXFP to transform the request into a form suitable for transmission

2. Invokes terminal control to transmit the request.

Receiving a DL/I request at a remote system
As for a CICS request, the appropriate mirror transaction (in this case, CSM5) is attached.

The mirror program invokes DFHXFP to transform the received request into a form suitable for execution
by DFHDLI.

The mirror program then passes the request to DFHDLI in the same way as any other application program
would. DFHDLI determines what type of DL/I request is being made and then routes the request to the
appropriate DL/I call processor: DFHDLIRP (remote, that is, daisy-chained to yet another system), or
DFHDLIDP (DBCTL).

Sending a DL/I reply at a remote system
When DFHDLI has successfully completed the request, control is returned to the mirror program with the
results in the user interface block (UIB). The mirror program then:

1. Invokes DFHXFP to transform the results into a form suitable for transmission

2. Invokes terminal control to transmit the reply.

Receiving a DL/I reply from a remote system
On receipt of the reply, terminal control returns control to DFHISP, which has been waiting for the reply;
DFHISP then invokes DFHXFP to transform the reply into a form that can be used by DFHDLI. DFHXFP
sets the return codes in an intermediate control block, DFHDRX, so that they can ultimately be copied to
the UIB or the TCA for the application program. Control is then returned from DFHISP through DFHDLIRP
to DFHDLI, and finally back to the application program.

Terminal control support for CICS function shipping
Terminal control support for CICS function shipping falls into the following three main areas:

1. TCTTE allocation functions, ALLOCATE, POINT, and FREE. These functions are used mainly by
DFHISP to allow a CICS transaction to own additional TCTTEs. These are session TCTTEs to remote
systems; these functions are supported by DFHZISP.

2. Syncpoint functions, SPR, COMMIT, ABORT, and PREPARE. These functions are used by the
recovery manager connectors to implement the syncpoint protocol; these functions are supported by
DFHZIS1.

3. LU6.1 functions. These functions are used by users of terminal control to support the data flow control
protocols used in a LU6.1 session.

The functions described in areas 1 and 2 above are extensions to the DFHTC macro that are intended for
internal use by CICS control programs only; they are not documented in the user manuals.

TCTTE allocation functions
Terminal control provides the following TCTTE-related functions:

ALLOCATE function
This allocates to the requesting transaction a session TCTTE for communication with a remote system.
The name of the remote system is passed as a parameter. The address of the allocated TCTTE or a
return code is returned to the requester. DFHZISP uses the DFHZCP automatic transaction initiation
(ATI) mechanism to allocate the session.

If the allocation request cannot be satisfied immediately, an automatic initiate descriptor (AID) is
created, and is chained off the system entry; the AID is used to remember, and subsequently to
process, the outstanding allocation request.

Function shipping

Chapter 26. Function shipping 287

Parallel sessions can be allocated explicitly, or implicitly by reference to a remote resource; sessions
are automatically initiated at allocation time, if necessary. They can also be initiated by a master
terminal ACQUIRE command, or automatically during CICS initialization if CONNECT=AUTO is
specified in the TCTTE.

POINT function
This causes terminal control to supply the requesting task with the address of a session TCTTE for a
named remote system. The TCTTE must have been previously allocated to the requesting task.

FREE function
This detaches a TCTTE from the owning task and makes it available for allocation to another
transaction. (The FREE function is the opposite of the ALLOCATE function.)

TERM=YES operand
This operand enables the issuer of a terminal control macro to select explicitly the TCTTE to which the
requested function is to be applied. The address of the TCTTE to be processed is passed as a
parameter of the request; the TCTTE must have been previously allocated to the requesting task.

FREE TCTTE indicator
This indicator is set as a result of the remote system issuing a (WRITE,LAST) or FREE request to
show that the current conversation has finished and that the session should be freed by the current
owner of the TCTTE. The receiver of the FREE indicator (usually DFHISP) must issue a FREE
request.

Syncpoint functions
For ISC, terminal control provides the following syncpoint functions (the equivalent functions for IRC are
provided by DFHZIS1):

SPR (syncpoint request) function
This request is issued by the recovery manager connector during syncpoint processing, and causes
terminal control (DFHZSDR) to send a request that has a definite DR2 response requested. This tells
the other side of the session that a syncpoint is required.

COMMIT function
This request is issued by the recovery manager connector when syncpoint has been completed. It
causes a positive DR2 response to be sent, signaling the successful completion of syncpoint protocol.

ABORT function
This request causes either a negative DR2 response or an LUSTATUS command to be sent, indicating
that a requested syncpoint operation could not be completed successfully, or that there has been an
abnormal end of the current logical unit of work.

PREPARE function
This request causes an LUSTATUS command to be sent to the mirror in the remote system and
indicates that a syncpoint should be taken.

VTAM secondary half-session support
CICS acts as both the primary and the secondary halves of an LUTYPE6 session. To implement
secondary half-session support, CICS VTAM terminal control has to do two things:

1. Implement the secondary half of the data flow control and session control protocols that CICS already
uses as a primary.

2. Use the secondary API provided by VTAM.

The terminal control functions provided by CICS are independent of primary/secondary considerations.
Differences between the primary and secondary VTAM interfaces are contained within the CICS modules
that issue the appropriate VTAM request. The secondary support functions appear principally in the
DFHZCP modules shown in Table 9 on page 289.

Function shipping

288 CICS TS for z/OS: CICS Diagnosis Reference

Table 9. VTAM secondary support functions
Modules Function Secondary function

DFHZSIM Request LOGON Use REQSESS macro
DFHZOPN OPNDST Use OPNSEC macro
DFHZSCX SCIP exit Receive and process BIND, STSN, SDT, CLEAR, and

UNBIND commands
DFHZCLS CLSDST Use TERMSESS macro
DFHZRSY Resynchronization Build STSN responses
DFHZSKR Respond to Send responses to BIND, SDT, and STSN commands
DFHZRAC, DFHZRVX Receive Receive and process BID commands
DFHZATI, DFHZRVX,
DFHZRAC

Bracket protocol Implement secondary contention resolution using bracket
protocol

DFHZNSP Network services error exit Handle secondary LOSTERM type of errors

NOCHECK option function handling
The transmission of a START NOCHECK command and associated data is handled in a slightly different
manner from that for other CICS function shipping commands. Compared with the process described
earlier in “Security manager domain’s generic gates” on page 1339, the major differences are:

v After DFHISP has allocated the session TCTTE to the requesting task, the transformation program
DFHXFP (or DFHXFX) performs transformation 1. In addition, the transformation program detects that
a START NOCHECK command is being processed and passes this fact to DFHISP in its return code.
Accordingly, DFHISP issues a DFHTC TYPE=WRITE macro, which is deferred until syncpoint, return, or
another function-shipped request on that ISC session.

v DFHISP returns to its caller.

v On the receiving system, DFHEIP handles the START NOCHECK command in the usual way and then
terminates when the command has been executed; no response is sent back to the first system.

Exits
There are two global user exit points in DFHISP: XISCONA and XISLCLQ. For further information about
using these exit points, see the CICS Customization Guide.

Trace
The following point ID is provided for the intersystem program:
v AP 00DF, for which the trace level is IS 1.

The following point IDs are provided for function shipping data transformation:
v AP D9xx, for which the trace level is IS 1.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Function shipping

Chapter 26. Function shipping 289

290 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 27. “Good morning” message program

The CICS good morning program issues a “good morning” message for VTAM logical units.

Design overview
This module is invoked by running the CSGM system transaction.

If a satisfactory OPNDST has occurred (detected in the OPNDST exit, DFHZOPX) and if a “good morning”
message has been requested on the TCT TYPE=TERMINAL entry, an NACP request is queued. NACP
issues a DFHIC TYPE=INITIATE for this transaction.

This module determines the terminal type, sets up the appropriate control characters, gets a TIOA, and
writes the message.

For a 3270 terminal, if the operator has entered data before the message has been received, NACP may
be invoked to handle intervention required. In this case the transaction is abended and the write operation
terminated.

A default message text is generated by DFHTCTPX and can be overridden by an option on the TCT
TYPE=INITIAL statement. The text is stored in the TCT prefix.

Modules
DFHGMM

Exits
The XGMTEXT global user exit point is provided in DFHGMM. For further information about this, see the
CICS Customization Guide.

Trace
No trace points are provided for this function.

© Copyright IBM Corp. 1997, 2011 291

292 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 28. Interregion communication (IRC)

CICS multiregion operation (MRO) enables CICS regions that are running in the same MVS image, or in
the same MVS sysplex, to communicate with each other. MRO does not support communication between
a CICS system and a non-CICS system such as IMS. 2

ACF/VTAM and SNA networking facilities are not required for MRO. The support within CICS that enables
region-to-region communication is called interregion communication (IRC). IRC can be implemented in
three ways:

v Through support in CICS terminal control management modules and by use of a CICS-supplied
interregion program, DFHIRP, loaded in the MVS link pack area. DFHIRP is invoked by a type 3
supervisory call (SVC).

v By MVS cross-memory services, which you can select as an alternative to the CICS type 3 SVC
mechanism. Here, DFHIRP is used only to open and close the interregion links.

v By the cross-system coupling facility (XCF) of MVS. XCF is required for MRO links between CICS
regions in different MVS images of an MVS sysplex. It is selected dynamically by CICS for such links, if
available.

This section describes the communication part of MRO. Chapter 35, “Multiregion operation (MRO),” on
page 325 gives a brief description of multiregion operation.

Design overview
For information about the design and implementation of interregion communication facilities, and about the
benefits of cross-system MRO, see the CICS Intercommunication Guide.

Control blocks
IRC uses two levels of control blocks:
1. A CICS/MRO terminal control layer
2. An interregion SVC layer interfaced by the DFHIR macro.

Terminal control layer
The CICS/MRO terminal control layer is shown in Figure 60 on page 294.

This layer uses the cross-region block (CRB). This is a global (that is, one per CICS system) block that is
created in the CICS dynamic storage area above the 16MB line (the ECDSA) when IRC is initialized, and
provides information to communicate with the IRC SVC. See Figure 61 on page 296.

2. The external CICS interface (EXCI) uses a specialized form of MRO link to support: communication between MVS batch programs
and CICS; DCE remote procedure calls to CICS programs.

© Copyright IBM Corp. 1997, 2011 293

CSA

x'128' CSATCTBA
Address of TCT prefix

TCTFX

x'3C' TCTVSEBA
Address of local system entry

TCTSE (local)

x'90' TCSENEXT
Address of first remote
system entry

TCTSE (remote)

x'00' TCTTETI
Connection name
of remote system B

x'08' TCSEDAID

x'0C' TCSESUSF AID
Address of head of AID chain

x'10' AIDCHF
x'28' TCSEVC1 Address of next AID

Address of first primary
session TCTTE

x'3C' AIDTCAA TCA
x'2C' TCSEVC2

Address of first secondary
session TCTTE AID

x'50' TCSESTAS x'10' AIDCHNF
Statistics area Address of next AID

TCTSE (remote) X'3C’ AIDTCAA TCA

x'00' TCTTETI
Connection name AID
of remote system C

x'10' AIDCHNF
x'28' TCSEVC1 Address of dummy AID

x'2C' TCSEVC2
x'3C' AIDTCAA TCA

TCTTE

Primary TCTTE for system B:
a VTAM logical unit type 6 Secondary TCTTE system B
or IRC terminal entry for
session with remote system

x'EC' TCTESLNK Secondary TCTTE system B
ISC system ownership chain

Primary TCTTE for system B Primary TCTTE system C

Primary TCTTE for system B Secondary TCTTE system C

Figure 60. CICS/MRO terminal control layer of control blocks (Part 1 of 2)

Interregion communication (IRC)

294 CICS TS for z/OS: CICS Diagnosis Reference

Notes:

1. The first TCTTE on the chain is not necessarily the TCTTE for the task’s primary terminal.

2. A task has allocated MRO sessions to other systems.

3. TCTTEs are described more fully in Chapter 56, “Terminal control,” on page 405.

4. Primary TCTTEs relate to Receive sessions, and secondary TCTTEs relate to Send sessions.

5. TCSEVC1 is the label on the address of the TCTTE of the first primary session. TCSEVC2 is that of
the first secondary session.

6. The primary and secondary sessions each have sets of TCTTEs. These are found by using the
DFHTC CTYPE=LOCATE macro.

7. A TCTTE is allocated for a surrogate session in transaction routing.

TCA

TCAFCAAA
| | | TCTTE for session

Address of TCTTE for with system B
task's primary terminal

TCTTECA
TCATCUCN |

Address of TCA
Address of first TCTTE
in chain (See note 1)

TCTTEUCN

Address of next
TCTTE on chain

TCTTE for task's primary
terminal (example: a 3270 or
MRO session or surrogate)

|TCTTECA |

Address of TCA

|TCTTEUCN |

Address of next
TCTTE on chain

TCTTE for session
with system C

TCTTECA

Address of TCA |

TCTTEUCN

F'0' (end of chain)

Figure 60. CICS/MRO terminal control layer of control blocks (Part 2 of 2)

Interregion communication (IRC)

Chapter 28. Interregion communication (IRC) 295

DFHIR layer
The interregion SVC layer interfaced by the DFHIR macro is shown in Figure 62.

This layer uses the following control blocks, which, unless otherwise stated, reside in subpool 241 in MVS
storage:

v Global (that is, one per MVS system) housekeeping (used by DFHIRP)
Subsystem control table extension (SCTE)

The SCTE is dynamically created, and contains information about the
number of regions logged on to DFHIRP. It is used to locate the LACB.
See also Figure 74 on page 361, which shows the subsystem interface
control blocks, including a pointer to the SCTE in the CICS subsystem
anchor block (SAB).

Logon address control block (LACB)
The LACB contains entries to identify the regions that have logged on,
and contains the address of the region’s logon control block (LCB).

CSA

x'C8'

CSAOPFL

x'1D8' CSACRBA
Address of
cross region block

DFHCRBDS

x'34’ CRBSTCA
Address of
suspended mirror
TCA chain

x'3C’ CRBSLCB
Address of SLCB

x'60’ CRBCSNC
Address of CSNC TCA

CSAOPFLA
Address of
optional features list

TCA

x'14’ TCAKCSMR

SLCB

x'00’ SLCBLECB
IRC ECB

TCA

TCA

Figure 61. Cross-region block (CRB)

AFCB SUDB LACB SCTE

C'AFCX'

LACB
entries

SLCB LCB LCB SLCB

SCCB CCB CSB CCB SCCB

Figure 62. Interregion SVC layer of control blocks interfaced by the DFHIR macro

Interregion communication (IRC)

296 CICS TS for z/OS: CICS Diagnosis Reference

v Local housekeeping (used by DFHIRP)
Logon control block (LCB) The LCB is created for each successful log on.
Logon control block entry (LCBE)

The LCBE contains the basic control information for each IRC system
with which this system communicates. It addresses the connection
control blocks (CCBs).

Subsystem user definition block (SUDB)
A SUDB provides access to IRC control blocks. There is one SUDB for
each TCB that is currently logged on (so each SUDB may have multiple
LCBs associated with it). The SUDB contains TCB-related data and
working storage.

Connection control block (CCB)
A CCB is created for each IRC send-receive session, and contains
information controlling the connection to the other region. When the
connection is in use, it addresses the CSB.

Connection status block (CSB)
The CSB provides status information about the connection between two
regions.

MVS transfer buffers (MVS SRB mode)
The MVS transfer buffers are used to transfer IRC data between
regions, and reside in subpool 231 in MVS storage.

Terminal control layer and DFHIR layer
Figure 63 shows the control blocks that are accessed by both the terminal control layer and the DFHIR
layer. Figure 64 on page 298 shows the location of these control blocks in MVS virtual storage.

The following blocks are used by both the terminal control layer and the DFHIR layer. These blocks are
allocated at logon time within a single MVS GETMAIN, and, unless otherwise stated, reside in subpool 251
of MVS storage.
Subsystem logon control block (SLCB)

The SLCB is used by the IRC SVC and region and contains the master
ECB, posted when the region has IRC activity. It is pointed to by the CRB
and LCB.

Subsystem connection address control block (SCACB)
The SCACB contains entries allowing the addressing of SCCBs from the
SLCB.

Subsystem connection control block (SCCB)
The SCCB is created for each IRC send-receive session, and is allocated
at logon. It contains the ECB, posted when input for the session is
available.

CSA

OFL CRB

SLCB LCB

LCBEs

SCACB

SCCB CCB

SCCB

Figure 63. Control blocks accessed by CICS/MRO terminal-control layer of control blocks and by interregion SVC layer
of control blocks

Interregion communication (IRC)

Chapter 28. Interregion communication (IRC) 297

Note: There is a one-to-one relationship between TCTTEs and SCCBs
when they are in use.

MRO ECB summary
The following is a summary of the MRO event control blocks (ECBs):
Name Location Who waits Who posts
Dependent ECB SCCB Application (TC WAIT) DFHIRP
LOGON ECB SLCB CICS (KCP, Op sys WAIT list) DFHIRP
Link ECB LCB DFHIRP (Op sys WAIT) DFHIRP
Work queue ECB QUEUE CSNC transaction DFHIRP

DFHZIS2
DFHZLOC

See the CICS Data Areas manual for a detailed description of the CICS control blocks.

MVS

MVS storage MVS storage

CICS1 CICS2

- ECDSA - - ECDSA -

Private
AreaRegion

CRB CRB

SLCB SCCB SCCB SLCB SCCB SCCB

LCB SUDB SUDB LCB

MVS
CSA

LACB

CCB CSB CCB

LPA for MVS DFHIRP

Figure 64. Location of control blocks in MVS virtual storage

Interregion communication (IRC)

298 CICS TS for z/OS: CICS Diagnosis Reference

Modules
Figure 65 gives an overview of the modules involved with interregion communication.

The modules for IRC are of two types:
1. The interregion communication programs: DFHIRP and DFHXMP.
2. CICS address space modules: DFHCRC (interregion ESTAE exit), DFHCRNP (CICS interregion

connection manager), DFHCRR (interregion session recovery), DFHCRSP (CICS interregion
communication startup module), DFHZCP (CICS terminal management program), and DFHZCX (which
includes DFHZIS2, the interregion service subroutines).

Interregion programs

DFHIRP (interregion communication (SVC) program)
The interregion communication program (DFHIRP) is used to pass data from one region to another in the
same processing unit. The programs running in the regions usually are CICS programs, but DFHIRP does
not assume that to be the case.

Each user of this program must first issue a LOGON request specifying an 8-character name. This user
identifier is added to a table maintained in key 0 storage.

After the user has logged on, CONNECT requests may be issued to establish data paths to other users
who have also logged on. The users must cooperate in this process by specifying, when they log on, to
whom and from whom they are to be connected and by how many data paths.

After a connection has been established, either end of the connection may issue a SWITCH request to
send data to the other end of the connection. The receiver of the data must provide a buffer into which the
data is to be written. If the buffer is too small, the receiver is notified of the actual data length and,
possibly having obtained a larger buffer, may issue a PULL request to retrieve as much data as is
required. After the first data has been sent, the link must be used by each end alternately.

A connection may be broken by either end by issuing a DISCONNECT request. When all links have been
disconnected, a user may log off.

When MVS cross-memory services are requested (ACCESSMETHOD(XM) in the RDO CONNECTION
definition), DFHXMP is used (DFHIRP performs initialization and termination for DFHXMP); otherwise,
communication is performed by DFHIRP running as an SVC. In this case, it is invoked by an SVC call to a
startup program (DFHCSVC), which calls the required DFHIRP routine.

Interregion
communication

Interregion CICS
communication region
(SVC) program modules
(DFHIRP)

CICS CICS Interregion Interregion
interregion interregion service session
communication connection subroutines recovery
startup module manager (DFHZIS2) (DFHCRR)
(DFHCRSP) (DFHCRNP)

Interregion
ESTAE
exit
(DFHCRC)

Figure 65. Interregion communication

Interregion communication (IRC)

Chapter 28. Interregion communication (IRC) 299

DFHXMP (MVS cross-memory program)
When the MVS cross-memory services are used for interregion communication, the SWITCH and PULL
functions are performed by DFHXMP, which is entered by issuing a program call (PC) instruction instead
of an SVC. DFHXMP does not need a commonly addressable buffer or service request blocks (SRBs) to
effect data transfer between address spaces.

Code in DFHIRP performs the cross-memory initialization and termination functions for DFHXMP as
follows:

LOGON: Acquire and initialize the cross-memory resources (authorization index (AX), linkage index (LX),
and entry table (ET)), unless this has already been done by a previous logon in this address space.

CONNECT: Update the authority tables (ATs) of both address spaces to allow each one to establish
addressability to the other, unless this was done when a previous connection was established between
them.

DISCONNECT: If the last cross-memory connection between a pair of address spaces is being removed,
update the caller’s AT so that the other system is no longer permitted to access the caller’s address space.

LOGOFF: Free the cross-memory resources acquired by logon if they are no longer required by the
caller’s address space.

CICS address space modules
The CICS address space modules control the handling of requests between this address space and other
address spaces. They include several MRO management modules such as DFHCRSP (see DFHCRSP
(CICS IRC startup module)) and DFHCRNP (see DFHCRNP (connection manager—CSNC transaction)),
and several terminal-control modules (see “DFHZCX (CICS terminal control routines)” on page 302).

These modules provide the CICS address space with a DFHTC-level interface to interregion
communication (in the same way as DFHZCP provides a DFHTC-level interface to VTAM). This enables
other CICS modules (such as DFHISP) to allocate and execute input/output operations on IRC sessions.
The IRC sessions are used for all forms of IRC communication, and the macro-level services available for
IRC are broadly the same. Thus DFHISP works for both IRC and intersystem communication (ISC)
function shipping.

The functions of each module are as follows:

DFHCRSP (CICS IRC startup module)
Execution of this module makes interregion communication possible between this address space and other
address spaces. DFHCRSP, which can be invoked either at system initialization or by the master terminal,
allocates the cross-region block (CRB), issues a LOGON request to the SVC routine, and attaches the
CSNC transaction (connection manager program, DFHCRNP).

DFHCRNP (connection manager—CSNC transaction)
Interregion communication is controlled by the interregion control program, DFHCRNP, which runs as
transaction CSNC. This is attached when CICS first logs on to the interregion program, and it remains
attached until interregion communication is closed.

The main purpose of CSNC is to perform housekeeping and control on IRC sessions, and to simulate the
access method. Its functions include the following:

1. Establish connections to other address spaces (by issuing CONNECT requests)

2. Detect unsolicited input data on connections and attach requested tasks to process such data

3. Disconnect unallocated (between-bracket) sessions during QUIESCE

4. Issue DFHKC AVAIL for any secondary sessions which have become available for reallocation, and are
in demand

Interregion communication (IRC)

300 CICS TS for z/OS: CICS Diagnosis Reference

5. Issue PC RETURN when QUIESCE is complete.

CSNC is attached by DFHCRSP (IRC startup), and waits when it is not processing work. It is resumed by
the dispatcher when the MRO work queue ECB has been posted, or the delay interval (if set) has expired
and there is delayed work to be retried.

Whenever CSNC is posted, it checks first whether it has been invoked because quiescing of the
interregion facility is complete.

v If CSNC has no been resumed to complete interregion quiesce processing, it checks each of the
following:

1. If the “delay-queue” is not empty, CSNC attempts to process any work it finds there. (An element is
added to the queue whenever a transaction cannot be attached by CSNC. The system could, for
example, have been at maximum tasks or short on storage when the previous attempt was made. It
is also possible that a remote system tried to start a new conversation before the local system had
freed the required session from an earlier conversation.)

2. If a new conversation has been received:

– If this is the first conversation on a new connection, and the connecting region is not a batch
region, session recovery is performed. This means that if the name of the secondary connecting
matches the name of the secondary connected in the previous session, the old session is bound
once again.

– If there is no match, or if a batch region is connecting, the first available session is allocated.

– CSNC attempts to attach the required transaction, identified in the attach header included in the
data stream. It is possible for a request to arrive for this session before the session has been
freed from the transaction that last used it. In such a case, the transaction to be attached is
added to the delay-queue.

– The input data stream is built into a TIOA for the session.

3. If this region is a secondary, and there is no task associated with the connection, and the
connection is in quiesce, CSNC disconnects the session.

4. If this region is a primary, and it has received a “disconnect” request from the connected secondary,
CSNC disconnects the session if:

– There is no associated TCTTE

– There is no task associated with the link.

v If CSNC has been resumed to complete interregion quiesce processing, it:

1. Sends message DFHIR3762 to the CSMT log.

2. Resumes any suspended mirror tasks with a facility address of zero, so they can detach
themselves.

3. Disable immediate and delay queues. Any remaining work on those queues (for example, old retry
work which has not been serviced yet) is automatically discarded.

4. Logs off from the interregion SVC.

5. Detaches, using a DFHLFM TYPE=RETURN request.

DFHCRR (CICS session recovery module)
Whenever a new connection is established (via a successful CONNECT request), DFHCRNP links to
DFHCRR at the secondary end of the connection (that is, at the source of the connection). DFHCRNP
sends a data stream down to the other end of the connection (the primary end) which causes DFHCRNP
to link to DFHCRR at the primary end. The two DFHCRRs exchange information in order to determine
whether either end of the connection was in doubt when the previous use of the connection was
terminated, and, if so, whether the two ends were in sync or out of sync. In the case of an in-doubt
connection, the sequence numbers are compared, diagnostics are issued, and the session is freed.

Interregion communication (IRC)

Chapter 28. Interregion communication (IRC) 301

DFHCRC (interregion abnormal exit module)
This module contains the ESTAE exit routine corresponding to the ESTAE macro issued by DFHKESIP. It
is invoked if the ESTAE exit, DFHKESTX, decides to continue the abend, or if an X22 abend (which can’t
be handled by DFHKESTX) occurs.

The purpose of the exit is to free links with other subsystems to which connection has been made by the
interregion SVC, and to free links with the SVC itself. This is done by issuing to the SVC a CLEAR request
(to break links with other subsystems).

DFHZCX (CICS terminal control routines)
DFHZCX is a load module consisting of a set of object modules, including DFHZIS1 (ISC or IRC
syncpoint) and DFHZIS2 (IRC internal functions).

DFHZIS2 provides the following routines:

I/O request routine (IORENT)
Provides a WRITE/WAIT/READ interface to interregion connections.

GETDATA routine (GDAENT)
Retrieves input data from an IRC connection and puts it into a TIOA.

RECEIVE routine (RECENT)
Receives unsolicited data (begin-bracket in SNA terms) and checks validity.

DISCONNECT routine (DSCENT)
Cleans up this end of a connection, and issues DISCONNECT request to DFHIRP.

OPRENT routine (OPRENT)
Issues an INSRV request to DFHIRP, in order to allow future connections between this subsystem and
a specified subsystem.

RECABRT routine (RCAENT)
Is invoked when an ABORT FMH (FMH07) is received (indicating that the connected transaction has
abended). The routine issues a message describing the failure.

STOP routine (STPENT)
Is invoked when communication with other address spaces is to be terminated. The routine issues a
QUIESCE request to DFHIRP.

LOGOFF routine (LGFENT)
Is invoked when quiesce is complete (and during system termination and abend processing). The
routine issues a LOGOFF request to the SVC routine.

DFHZIS1 also contains routines representing terminal control services which are supported by IRC (in
common with VTAM). These routines include PREPARE, SPR, COMMIT, and ABORT.

DFHZCP (CICS terminal management program)
DFHZCP is a load module consisting of a set of object modules, including DFHZARQ (application request
handler), DFHZISP (intersystem program allocation routines), and DFHZSUP (startup task).

DFHZARQ is used (in common with all other telecommunication access methods) to handle
WRITE/WAIT/READ-level requests against IRC connections (sessions). Routine ZARQIRC in DFHZARQ
specifically handles IRC requests by performing SNA request header processing and invoking IORENT
(see DFHZCX) in order to perform the I/O on the session.

DFHZISP includes routines such as ALLOCATE and FREE.

Exits
No global user exit points are provided for this function.

Interregion communication (IRC)

302 CICS TS for z/OS: CICS Diagnosis Reference

Trace
The following point IDs are provided for this function:
v AP DDxx, for which the trace levels are IS 1 and IS 2.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Interregion communication (IRC)

Chapter 28. Interregion communication (IRC) 303

304 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 29. Intersystem communication (ISC)

CICS intersystem communication (ISC) allows the following:

v CICS-to-CICS communication

v CICS-to-IMS communication

v CICS-to-LUTYPE6.2 terminal or application communication.

These can be execute simultaneously within the same or a different CEC. ISC can use VTAM LU6.1 or
LU6.2 (LU6.2 is preferred for CICS operation). For information about these methods of communication,
see the CICS Intercommunication Guide.

The facilities provided by ISC include:

v Transaction routing

v Distributed transaction processing

v Function shipping

v Asynchronous processing

v Distributed program link

v SAA Communications interface.

For information about the design and operation of intersystem communication, see Chapter 66, “VTAM
LU6.2,” on page 479. For descriptions of the facilities provided by ISC, see Chapter 62, “Transaction
routing,” on page 441, Chapter 14, “Distributed transaction processing,” on page 109, Chapter 26,
“Function shipping,” on page 277, and Chapter 43, “SAA Communications and Resource Recovery
interfaces,” on page 347.

© Copyright IBM Corp. 1997, 2011 305

306 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 30. Interval control

Interval control provides various optional task-related functions based on specified intervals of time, or
specified time of day.

Design overview
The following services are performed by interval control in response to a specific request from either an
application program or another CICS function:

Time of day
The EXEC CICS ASKTIME command retrieves the current time-of-day in either binary or packed decimal
format.

Time-dependent task synchronization
Time-dependent task synchronization provides the user with three optional services:

1. The EXEC CICS DELAY command allows a task to temporarily suspend itself for a specified period of
time. When the time has elapsed, the task resumes execution.

2. The EXEC CICS POST command allows a task to be notified when the specified interval of time has
elapsed or the specified time of day occurs. The task proceeds to execute while the time interval is
elapsing.

3. The EXEC CICS CANCEL command allows a task to terminate its own or another task’s request for a
DELAY, POST or START service.

Automatic time-ordered transaction initiation
Automatic time-ordered transaction initiation provides for the automatic initiation of a transaction at a
specified time of day (or after a specified interval of time has elapsed) and for the sending of data that is
to be accessed by the transaction. The user can also cancel a pending request for automatic time-ordered
transaction initiation.

Optional user exits are provided as follows:

v Before determining what type of request for time services was issued

v Upon expiration of a previously requested time-dependent event

v If a START request names an unknown terminal.

Time-of-day control
The EXEC CICS RESETTIME command causes CICS to reset its internal date and time of day
information to accord with that of the operating system. This is done by calling DFHICP with a DFHIC
TYPE=RESET macro. This macro is also issued by DFHAPTIM - the program run by the “midnight task”
attached by interval control initialization - whenever it is resumed by the TI domain, i.e. at midnight.

DFHICP issues a KETI RESET_LOCAL_TIME call to the TI domain if the reason for the reset was a time
of day change. This allows the TI domain to readjust its clocks to the operating system time. DFHICP then
calls DFHTAJP to readjust other CICS clocks to match the operating system time and to make any
necessary changes to the ICE chain resulting from possible changes in the time-to-expiry of time
controlled ICEs. Finally DFHICP scans the ICE chain in order to process any that may have become
expired as a result of the time change, and to reset the time interval for which the expiry task, DFHAPTIX,
will wait, until the next ICE expires.

© Copyright IBM Corp. 1997, 2011 307

Control blocks
An interval control element (ICE—see Figure 66) is created for each time-dependent request received by
interval control. These ICEs are chained from the CSA in expiration time-of-day sequence.

Expired time-ordered requests are processed by Interval Control when called from the DFHAPTIX module,
which runs under a system task that has been resumed by the timer domain. The type of service
represented by the expired ICE is initiated, if all resources required for the service are available, and the
ICE is removed from the chain. If the resources are not available, the ICE remains on the chain and
another attempt to initiate the requested service is made later.

See the CICS Data Areas manual for a detailed description of this control block.

Modules
DFHAPTIM, DFHAPTIX, DFHICP, DFHICRC, and DFHTAJP

Exits
There are three global user exit points in DFHICP: XICEXP, XICREQ, and XICTENF. See the CICS
Customization Guide for further information.

Trace
The following point ID is provided for DFHICP:
v AP 00F3, for which the trace level is IC 1.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

CSA

DFHICEDS
x'54' CSAICEBA

x'10' ICECHNAD
Address of next ICE

x'14' ICETECAA

x'18' ICETCAAD
Address of TCA

ICE |

x'10' ICECHNAD
Address of next ICE

x'14' ICETECAA
Address of ECA ECA

Post bits
x'18' ICETCAAD x'40008000'

Address of TCA

TCA

Note:
An ECA (event control area) exists only after an
EXEC CICS POST command.

Note: An ECA (event control area) exists only after an EXEC CICS POST command.

Figure 66. Interval control element (ICE)

Interval control

308 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 31. Language Environment interface

This section describes the run-time interface between CICS and Language Environment®.

Design overview
Communication between CICS and Language Environment is made by calling a special Language
Environment interface module (CEECCICS) and passing to it a parameter list (addressed by register 1),
which consists of an indication of the function to be performed and a set of address pointers to data
values or areas.

Module CEECCICS is distributed in the Language Environment library, but must be copied to an
authorized library defined in the STEPLIB concatenation of the CICS startup job stream (see CICS System
Definition Guide).

All calls to Language Environment are made directly from the CICS language interface module DFHAPLI.
This module is called by several components of CICS to perform specific functions. Table 10 lists those
functions, and shows the name of the CICS module initiating each function call and the Language
Environment call made by DFHAPLI to support the function. The format of each call parameter list is given
in “External interfaces” on page 313.

Table 10. Language Environment interface calls
Function Module Language Environment call

Terminate Languages DFHSTP Partition Termination
Establish Language DFHPGLK

DFHPGLU
DFHPGPG

Establish Ownership Type

Start Program DFHPGLK
DFHPGLU

Thread Initialization
Run Unit Initialization
Run Unit Begin Invocation
Run Unit End Invocation
Run Unit Termination
Thread Termination

Goto DFHEIP Perform Goto
Find Program Attributes DFHEDFX Determine Working Storage
Initialize Languages DFHSIJ1 Partition Initialization

The logical relationship between the different calls is shown in Figure 67 on page 310.

© Copyright IBM Corp. 1997, 2011 309

Note: The actual passing of control to CEECCICS is made from the CICS language interface program
(DFHAPLI), which provides a single point of contact between CICS and Language Environment.
Other modules call DFHAPLI to initiate the desired function.

All calls to DFHAPLI use either the DFHAPLIM macro (for calls from outside the CICS application domain),
or the DFHLILIM macro (for calls made from within the application domain).

Establishing the connection
The procedure for establishing the initial connection with Language Environment is as follows:

1. Load CEECCICS. At CICS startup, DFHSIJ1 invokes DFHAPLI to “initialize languages”. DFHAPLI
issues a BLDL for CEECCICS, followed by an MVS LOAD macro.

2. Initialize contact with Language Environment. Contact is first made with Language Environment by
having CICS drive the partition initialization function. DFHAPLI attempts partition initialization only if the
earlier load of CEECCICS was successful; otherwise, the logic is bypassed.

If the Language Environment partition initialization is successful, and Language Environment indicates
that it can support the running of programs in languages supported by CICS, a flag is set and no
further processing takes place.

Partition
initialization

C Establish Once only
I ownership type per program
C
S

l
i
f T Thread
e a initialization
t s
i k
m
e l

i
f Run-unit
e initialization
t
i
m
e

Run-unit begin
invocation

L
i Determine
n working
k storage

l
e
v Perform GOTO
e
l

Run-unit end
invocation

Run-unit
termination

Thread
termination

Partition
termination

Figure 67. Language Environment interface components

Language Environment interface

310 CICS TS for z/OS: CICS Diagnosis Reference

If the partition initialization function fails, CICS issues error message DFHAP1200.

Application program contact with Language Environment. Whenever a program written in a supported
language is run, the application’s attempt to make contact with Language Environment fails if the
“Language Environment initialization bits” flag is not set. CICS then tries to run the program itself using the
basic support for the language. If this fails, CICS then abends the transaction and sets the associated
installed resource definition as disabled.

Storage for the transaction
A set of work areas is required during the lifetime of any task that includes one or more programs
supported by Language Environment. This set is known as the “language interface work area”.

The language interface work area contains storage for the following:

v The largest possible Language Environment interface parameter list (currently 15 parameter elements,
but with space allowed for a further three elements)

v A general-purpose register save area for use by DFHAPLI

v A general-purpose register save area for use by Language Environment

v A 240-byte special work area for use by Language Environment as the equivalent of DFHEISTG for
CICS

v A 4-byte Language Environment reason code field

v The IOINFO area (see page 316)

v The PGMINFO1 area (see page 316)

v The program termination block (see page 318).

Also, a thread work area is required if Language Environment is involved in the running of the task. The
length of a thread work area is a constant value that is notified to CICS by Language Environment during
the partition initialization processing. This additional work area is built contiguous with the language
interface work area if the transaction is known to contain one or more programs that use Language
Environment. When such a program is first encountered, DFHAPLI:

1. Gets from the transaction manager the address of the transaction-related instance data.

2. Flags the data to tell the transaction manager that the transaction runs Language Environment
application programs.

3. Adds the length of the language interface work area to the total user storage length for that
transaction.

This forces the transaction manager to acquire extra storage, during task initialization, as an extension to
the language interface work area. For the first occurrence only, DFHAPLI acquires the thread work area.

Further areas known as run-unit work areas (RUWAs) are required at run time if the transaction includes
one or more programs that use Language Environment. The length of an RUWA varies for each program.
The lengths required for work areas above and below the 16MB line by Language Environment are
notified to CICS during the processing to establish ownership type for that program; thereafter they can be
found in the program’s installed resource definition. CICS adds to the length for the RUWA above the
16MB line a fixed amount for its own purposes before acquiring the storage.

Storage acquisition
During task initialization, the transaction manager acquires an area of storage, the language interface work
area, which is large enough to hold all required data for calls to Language Environment. This area is
contiguous with the EXEC interface storage (EIS), and its address is saved in TCACEEPT in the TCA.

The thread work area is usually contiguous with the language interface work area. Its address is always
held in CEE_TWA in the language interface work area.

Language Environment interface

Chapter 31. Language Environment interface 311

For every link level entered during the execution of the application, a run-unit work area must be acquired
by CICS and its address passed to Language Environment during run-unit initialization. Its address is
placed in EIORUSTG in the EXEC interface storage (EIS).

Control blocks
The main control block is the language interface work area. It is addressed by TCACEEPT in the TCA. For
programs supported by Language Environment, the work area is mapped by the
Language_Interface_Workarea DSECT.

Modules
The Language Environment interface is accessed in the language interface program (DFHAPLI) in
response to calls from the following modules:
DFHSIJ1, DFHEIP, DFHEDFX, and DFHSTP.

Exits
No global user exit points are provided for this interface.

Trace
Trace entries are made on entry to and exit from DFHAPLI.

Point IDs AP 1940 to AP 1945, with a trace level of PC 1, correspond to these trace entries.

The function information is always interpreted.

For entry trace records, the program name and link level are also interpreted where applicable.

For exit trace records, the returned reason code is interpreted.

Also, all calls into and out of the language environments are traced at level 1. The point IDs are: AP1948
to AP 1952.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

(The CICS Trace Entries includes tables that show, for entry and exit trace records, the ERTLI function
together with any other data items traced.)

The ERTLI function named in the DFHAPLI entry trace is the function requested on the call, while that
named in the DFHAPLI exit trace is the ERTLI function most recently processed. There are some
situations in which a trace record made on entry to DFHAPLI is not matched by a corresponding exit trace
for the same ERTLI function. In particular, after making a call to Language Environment for thread
initialization, DFHAPLI does not return to the caller, but proceeds with “run-unit initialization” and “run-unit
begin invocation” before finally returning. Another example is the successful execution of a “perform
GOTO” function, which results in DFHAPLI not returning to the caller.

Note: ERTLI refers to the Extended Run-Time Language Interface. This is an extension of the Run-Time
Language Interface (RTLI) protocols that were defined to assist communication between CICS and
both VS COBOL II and C/370. ERTLI includes communication between CICS and Language
Environment.

Language Environment interface

312 CICS TS for z/OS: CICS Diagnosis Reference

External interfaces
This section describes the parameter lists and work areas used for the functions provided by the
Language Environment interface.

Language Environment interface parameter lists
The following tables show the layout and contents of the parameter lists for the functions provided by the
Language Environment interface module CEECCICS.

Table 11. Language Environment PARTITION_INITIALIZATION parameter list

No. Parameter name Description Receiver field Data length

1 FUNCTION F"10" (= Partition initialization) F’word

2 RSNCODE Reason code Yes F’word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token Yes 8

6 EIBLEN Length of CICS EIB F’word

7 TWALEN Thread work area length Yes F’word

8 CELLEVEL Language Environment-CICS interface level Yes F’word

9 GETCAA Get-CAA routine address 4

10 SETCAA Set-CAA routine address 4

11 LANGDEF Language modules defined 32

12 LANGBITS Language availability bits Yes F’word

Table 12. Language Environment ESTABLISH_OWNERSHIP_TYPE parameter list

No. Parameter name Description Receiver field Data length

1 FUNCTION F"50" (= Establish ownership type) F’word

2 RSNCODE Reason code Yes F’word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

6 reserved

7 reserved

8 PGMINFO1 CICS-Language Environment program information 48

9 PGMINFO2 Language Environment-CICS program information Yes 20

Table 13. Language Environment THREAD_INITIALIZATION parameter list

No. Parameter name Description Receiver field Data length

1 FUNCTION F"20" (= Thread initialization) F’word

2 RSNCODE Reason code Yes F’word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

6 TTOKEN Thread token Yes 8

7 PREATWA Address of preallocated thread work area 4

8 PGMINFO1 CICS-Language Environment program information 48

9 PGMINFO2 Language Environment-CICS program information 20

Language Environment interface

Chapter 31. Language Environment interface 313

Table 14. Language Environment RUNUNIT_INITIALIZATION parameter list

No. Parameter name Description Receiver field Data length

1 FUNCTION F"30" (= Run-unit initialization) F’word

2 RSNCODE Reason code Yes F’word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

6 TTOKEN Thread token 8

7 RTOKEN Run-unit token Yes 8

8 PGMINFO1 CICS-Language Environment program information 48

9 PGMINFO2 Language Environment-CICS program information 20

Table 15. Language Environment RUNUNIT_BEGIN_INVOCATION parameter list

No. Parameter name Description Receiver field Data length

1 FUNCTION F"32" (= Run-unit begin invocation) F’word

2 RSNCODE Reason code Yes F’word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

6 TTOKEN Thread token 8

7 RTOKEN Run-unit token 8

8 PGMINFO1 CICS-Language Environment program information 48

9 PGMINFO2 Language Environment-CICS program information 20

10 IOINFO Input/output queue details 18

11 RSA RSA at last EXEC CICS command F’word

Table 16. Language Environment DETERMINE_WORKING_STORAGE parameter list

No. Parameter name Description Receiver field Data length

1 FUNCTION F"60" (= Determine working storage) F’word

2 RSNCODE Reason code Yes F’word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

6 TTOKEN Thread token 8

7 RTOKEN Run-unit token 8

8 LANG Program language bits F’word

9 PGMRSA Register save area address 4

10 WSA Working storage address Yes 4

11 WSL Working storage length Yes F’word

12 SSA Static storage address (reserved) Yes 4

13 SSL Static storage length (reserved) Yes F’word

14 EP Program entry point Yes 4

Table 17. Language Environment PERFORM_GOTO parameter list

No. Parameter name Description Receiver field Data length

1 FUNCTION F"70" (= Perform GOTO) F’word

2 RSNCODE Reason code Yes F’word

Language Environment interface

314 CICS TS for z/OS: CICS Diagnosis Reference

Table 17. Language Environment PERFORM_GOTO parameter list (continued)

No. Parameter name Description Receiver field Data length

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

6 TTOKEN Thread token 8

7 RTOKEN Run-unit token 8

8 LANG Program language bits F’word

9 LABEL Label argument at Handle F’word

10 RSA RSA at last EXEC CICS command F’word

11 CALLERR Cross call error flag Yes F’word

12 ABCODE Address of TACB abend code F’word

13 R13 Register 13 value at abend F’word

Table 18. Language Environment RUNUNIT_END_INVOCATION parameter list

No. Parameter name Description Receiver field Data length

1 FUNCTION F"33" (= Run-unit end invocation) F’word

2 RSNCODE Reason code Yes F’word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

6 TTOKEN Thread token 8

7 RTOKEN Run-unit token 8

8 PGMINFO1 CICS-Language Environment program information 48

9 PGMINFO2 Language Environment-CICS program information 20

10 PTB Program termination block 64

11 RSA RSA at last EXEC CICS command F’word

Table 19. Language Environment RUNUNIT_TERMINATION parameter list

No. Parameter name Description Receiver field Data length

1 FUNCTION F"31" (= Run-unit termination) F’word

2 RSNCODE Reason code Yes F’word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

6 TTOKEN Thread token 8

7 RTOKEN Run-unit token Yes 8

Table 20. Language Environment THREAD_TERMINATION parameter list

No. Parameter name Description Receiver field Data length

1 FUNCTION F"21" (= Thread termination) F’word

2 RSNCODE Reason code Yes F’word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

6 TTOKEN Thread token Yes 8

Language Environment interface

Chapter 31. Language Environment interface 315

Table 21. Language Environment PARTITION_TERMINATION parameter list

No. Parameter name Description Receiver field Data length

1 FUNCTION F"11" (= Partition termination) F’word

2 RSNCODE Reason code Yes F’word

3 SYSEIB Address of system EIB 4

4 PREASA Preallocated save area 240

5 PTOKEN Language Environment partition token 8

Work areas
The following sections describe the work areas required during the lifetime of any task that includes one or
more programs that use the Language Environment interface.

IOINFO
The IOINFO area, which is built by DFHAPLI in the CICS-Language Environment work area, is passed to
Language Environment on a RUNUNIT_BEGIN_INVOCATION call.

CICS applications cannot use the SYSIN and SYSPRINT data streams because such usage would conflict
with the way CICS handles I/O. However, an application may require a general input or output data stream
in some situations, for example, where it is necessary to output a message to a program and the program
has not been written to expect such output under normal operation.

Three such data streams are architected for this purpose: input, output (normal), and error output. The
destinations must be either spools or queues. CICS uses queues, so the file type is always set to "Q".
Table 22 shows the transient data queue names that are passed to Language Environment.

Table 22. Transient data queues for use by Language Environment
File type Language Environment queue name

Input CESI
Output CESO
Error output CESE

Each data stream is identified by a 6-byte control block, and the three control blocks are concatenated to
form the IOINFO area, which CICS passes to Language Environment.

IOINFO has this format (in assembler-language code):
IOINFO DS 0CL18 Input/output queue details

STD_IN DS 0CL6 Standard input file
QORS_IN DS CL1 ..file type - "Q" = transient data
TDQ_IN DS CL4 ..queue name
SPO_IN DS CL1 ..spool class - not used

STD_OUT DS 0CL6 Standard output file
QORS_OUT DS CL1 ..file type - "Q" = transient data
TDQ_OUT DS CL4 ..queue name
SPO_OUT DS CL1 ..spool class - not used

STD_ERR DS 0CL6 Standard error output file
QORS_ERR DS CL1 ..file type - "Q" = transient data
TDQ_ERR DS CL4 ..queue name
SPO_ERR DS CL1 ..spool class - not used

PGMINFO1
The PGMINFO1 area, which is built by DFHAPLI in the CICS-Language Environment work area, is passed
to Language Environment during these interface calls:

Language Environment interface

316 CICS TS for z/OS: CICS Diagnosis Reference

ESTABLISH_OWNERSHIP_TYPE
THREAD_INITIALIZATION
RUNUNIT_INITIALIZATION
RUNUNIT_BEGIN_INVOCATION
RUNUNIT_END_INVOCATION

When both CICS and Language Environment are capable of supporting it, the separate calls to Language
Environment for Rununit Initialisation and Rununit Begin Invocation are combined into a single call. This
single call is a Rununit Initialisation call with additional parameters indicating

1. make the combined call

2. whether CICS believes the RUWA being passed has already been passed to Language Environment,
and so need not be completely initialised by LE.

PGMINFO1 has this format (in assembler-language code):
PGMINFO1 DS 0F
P1_LENGTH DS F Length of PGMINFO1
RULANG DS XL4 Language as defined by user
ASSEMBLER EQU X'80' ..Assembler
C EQU X'40' ..C
COBOL EQU X'20' ..COBOL
PLI EQU X'10' ..PL/I
LE370 EQU X'04' ..Language Environment

RULOADMOD DS 0F
RULOADA DS A Run-unit load module address
RULOADL DS F Run-unit load module length

ENTRY_STATIC DS 0F
RUENTRY DS A Run-unit entry point address
RUSTATIC DS A Modified entry address
RWA_31 DS A Address of run-unit storage

above 16MB
RWA_24 DS A Address of run-unit storage

below 16MB
APAL DS A Application argument list

address
RTOPTS DS A Run-time options
RTOPTSL DS F Length of run-time options
RUNAMEP DS A Pointer to the program name
PGMINFO1L EQU *-PGMINFO1

PGMINFO2
The PGMINFO2 area, which forms part of the PPT entry for the running program, is filled in by Language
Environment on successful completion of an ESTABLISH_OWNERSHIP_TYPE call; and is subsequently
passed by CICS to Language Environment during these interface calls:

THREAD_INITIALIZATION
RUNUNIT INITIALIZATION
RUNUNIT_BEGIN_INVOCATION
RUNUNIT_END_INVOCATION

PGMINFO2 has this format (in assembler-language code):
PGMINFO2 DS 0F
PRGINLEN DS FL4 Length of PGMINFO2 extension
PLBRWA31 DS F Length of 31-bit RUWA
PLBRWAA EQU X'80' ..31-bit storage required (C/370)
PLBRWAL DS FL3 ..Length of 31-bit RUWA
PLBRWA24 DS F Length of 24-bit RUWA

PLBLANG DS 0CL4 Language availability byte
PLBLANG1 DS X

Language Environment interface

Chapter 31. Language Environment interface 317

PLBCEEEN EQU X'80' ..Language Environment
enabled

PLBCEELA EQU X'40' ..Language Environment
language known

PLBMIXED EQU X'20' ..Mixed/single language
PLBCOMPT EQU X'10' ..Compatibility
PLBEXECU EQU X'08' ..Language Environment

executable
PLBASSEM EQU X'04' ..Assembler-language program
PLBC370 EQU X'02' ..C/370 program
PLBCOBL2 EQU X'01' ..VS COBOL II program
PLBLANG2 DS X
PLBOSCOB EQU X'80' ..OS/VS COBOL program
PLBPLI EQU X'40' ..OS PLI program
PLBTYPE3 DS X Reserved
PLBTYPE4 DS X Reserved
PLBMEMID DS FL4 Language member ID
PLBED EQU *-PGMINFO2

Program termination block
The program termination block (PTB), which is built by DFHAPLI in the CICS-Language Environment work
area, is passed to Language Environment on a RUNUNIT_END_INVOCATION call.

It has this format (in Assembler-language code):
CELINFO DS 0F
PCHK DS 0CL32 Abend information

DS CL8
PCHK_PSW DS CL8 ..PSW
PCHKINTS DS 0CL8 ..Interrupt data
PCHK_LEN DS XL2Instruction length
PCHK_INT DS XL2Interrupt code
PCHK_ADR DS FL4 ..Exception address
PCHK_GR DS AL4 ..A(GP registers at abend)
PCHK_FR DS AL4 ..A(FP registers at abend)
PCHK_AR DS AL4 ..A(AX registers at abend)
PCHK_EX DS AL4 ..A(Registers at the last time

a CICS command was issued)
CNTCODE DS 0CL4 Continuation code
CONT1 EQU X’40’ ..retry using registers
CONT2 EQU X’20’ ..retry using PSW

DS BL3 Reserved
RTRY DS 0CL20
RTRY_AD DS FL4 ..Retry address
RTRY_PM DS AL4 ..A(Program mask)
RTRY_GR DS AL4 ..A(GP registers)
RTRY_FR DS AL4 ..A(FP registers)
RTRY_AR DS AL4 ..A(AX registers)

Language Environment interface

318 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 32. Master terminal program

The master terminal program enables dynamic control of the system. Using this function an operator can
change the values of parameters used by CICS, alter the status of system resources, terminate tasks, and
shut down the CICS system.

Design overview
The master terminal program is invoked by the CEMT transaction. The user enters a command to
INQUIRE about or SET the status of a set of resources, and the command outputs a display that shows
the resultant status of the resources. For a CEMT SET command, this display can be overtyped to alter
the status of most of the resources displayed.

Commands are analyzed using the same techniques as the command interpreter described in Chapter 9,
“Command interpreter,” on page 87. A language table is used to define the syntax of commands and the
contents of parameter lists which must be passed to DFHEIP to allow execution. In effect, each CEMT
command results in the execution of a series of EXEC CICS INQUIRE and SET commands.

The master terminal program is also used by the CEST and CEOT transactions, which provide subsets of
the functions available with CEMT. CEST is for supervisory operators and allows access to a limited set of
resources. CEOT only allows changes to the status of the operator’s own terminal.

Modules

Module Function

DFHEMTP Invoked by CEMT. Checks that the terminal is suitable. Obtains and initializes working
storage. Loads the language table DFHEITMT. Links to DFHEMTD.

DFHEOTP Same as DFHEMTP but invoked by CEOT and loads the language table DFHEITOT.

DFHESTP Same as DFHEMTP but invoked by CEST and loads the language table DFHEITST.

DFHEMTD Receives data from the terminal and sends back a display. Analyzes commands and
overtypes. Constructs parameter lists for DFHEIP, which it calls. Deals with PF keys.

DFHEITMT Command language table for CEMT.

DFHEITOT Command language table for CEOT.

DFHEITST Command language table for CEST.

Exits
No global user exit points are provided for this function.

Trace
No trace points are provided for this function.

© Copyright IBM Corp. 1997, 2011 319

320 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 33. Message generation program

The message generation program provides an interface for sending CICS messages to the terminal user
only.

Design overview
The input to the message generation program (DFHMGP) consists of the binary number of the message to
be produced, the identifier of the component issuing the message, and any information to be inserted in
the message. DFHMGP builds the complete message using a prototype held in the message prototype
control table, also known as the message generation table (DFHMGT). The message text itself is held not
in DFHMGT but in the message domain, from which it is retrieved by the DFHMGPME routine (a
component of the DFHMGP load module) when required. DFHMGP finally sends the message to the
appropriate terminal.

The prototype statements are invocations of the DFHMGM TYPE=TEXT macro, and are contained in
copybooks held in DFHMGT.

The message prototype control table consists of a series of copybooks, DFHMGTnn, each of which
contains 1 through 100 messages. They are arranged in such a way that each DFHMGTnn copybook
contains prototypes for messages that have identifiers of the form DFHccnnxx, where cc is the 2-character
identifier of the component issuing the message, nn is the numerical part of the copybook name, and xx is
in the range 00 through 99. For example, the prototype for message DFHAC2214 (belonging to the AC
component) is in copybook DFHMGT22.

Within each copybook are invocations of DFHMGM in ascending message number order. All messages
sent to the terminal end user have both OPTION=NLS and COMPID specified on their DFHMGM
invocations.

The main operands of the DFHMGM TYPE=TEXT macro are:

v MSGNO = actual message number

v COMPID = 2-character identifier of component issuing the message (this forms part of the message
identifier)

v OPTION = any special options, for example, (NLS) for messages that require NLS enabling.

Other operands are provided on the DFHMGM invocations, but in general these are no longer used.

Modules
DFHMGP, DFHMGT

Exits
No global user exit points are provided for this function.

Trace
The following point ID is provided for this function:
v AP 00E0, for which the trace level is AP 1.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

© Copyright IBM Corp. 1997, 2011 321

322 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 34. Message switching

This function provides the user with a general-purpose message-switching capability while CICS is
running.

The facility, which can route messages to one or more destinations, is initiated by the CMSG transaction,
or a user-chosen replacement, read from the terminal. For further information about this transaction, see
the CICS Supplied Transactions manual.

Design overview
Message switching runs as a task under CICS. A terminal operator requests activation of this task by entry
of the CMSG transaction identifier (or another installation-defined 4-character transaction identifier),
followed by appropriate parameters. After it has been initiated, message switching interfaces with CICS
basic mapping support (BMS) and CICS control functions.

Although message switching appears conversational to the terminal operator, the message switching task
is terminated with each terminal response. Conversation is forced, if continuation is possible, by effectively
terminating the transaction with an EXEC CICS RETURN TRANSID(xxxx) command, where xxxx is the
transaction identifier taken from the task’s PCT entry.

Figure 68 shows the message-switching interfaces.

Notes:

1. If the first 4 characters of the terminal input/output area (TIOA) (not including a possible set buffer
address (SBA) sequence from an IBM 3270 Information Display System) do not match the transaction
identifier in the task’s PCT entry, this task must have started as part of a conversation in which a
previous task has set up the next transaction identifier. A "C" immediately following the transaction
identifier is also a forced continuation. In such a case, information has been stored in, and has to be
retrieved from, temporary storage (using a record key of 1-byte X'FC', 4-byte terminal identifier, and
3-byte C"MSG") to allow the task to resume where it left off.

2. The operands in the input TIOA are processed and their values and status are stored in the TWA.

3. If a ROUTE operand specifies terminal list tables (TLTs) for a standard routing list, the program
manager domain is called to load the requested TLTs.

4. Message switching requests storage areas for:

CMSG

Temporary 1 Message 4 Storage
storage switching manager
control program domain
program (DFHMSP)

(Transaction
1 identifier: 6 Terminal

DFHTSIOA CMSG) control
program

2
DFHTIOA 5,6 BMS

7
Program 3
manager TCA
domain

7

TWA

Figure 68. Message-switching interfaces

© Copyright IBM Corp. 1997, 2011 323

v Building route lists (one or more segments, each of which has room for the number of destinations
specified by MSRTELNG, an EQU within the program).

v Constructing a record to be placed in temporary storage.

v Providing the message text to BMS in any of the following situations:

– Message parts from previous inputs exceed the current TIOA size

– A message is completed in the current TIOA but has parts from previous inputs

– A heading has been requested but the message in the current TIOA is too close to TIOADBA to
allow the header to be inserted.

5. Message switching requests BMS routing functions by means of the DFHBMS TYPE=ROUTE macro.
The message text is sent using DFHBMS TYPE=TEXTBLD, and completion of the message is
indicated by DFHBMS TYPE=PAGEOUT. BMS returns the status of destinations and any error
indications in response to the DFHBMS TYPE=CHECK macro.

6. Message switching interfaces with BMS using DFHBMS TYPE=(EDIT,OUT) and with CICS terminal
control using DFHTC TYPE=WRITE for the IBM 3270 Information Display System only, in providing
responses to terminals. These can indicate normal completion, signal that input is to continue, or
provide notification of input error.

7. Like any other task, message switching has a task control area (TCA) in which values may be placed
prior to issuing CICS macros, and from which any returned values can be retrieved after an operation.
All values for the DFHBMS TYPE=ROUTE macro are placed in the TCA because they are created at
execution time. The TWA is used for storing status information (partly saved in temporary storage
across conversations) and space for work. The DFHMSP module is reentrant.

Control blocks
See the list of control blocks in Chapter 5, “Basic mapping support,” on page 29.

Modules
DFHMSP (the message switching program) is invoked by the CMSG transaction. DFHMSP’s purpose is to
route a message entered at the terminal to one or more operator-defined terminals or to other operators.

Exits
No global user exit points are provided for this function.

Trace
No trace points are provided for this function.

External interfaces
See Figure 68 on page 323 for external calls made to other areas or domains.

Message switching

324 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 35. Multiregion operation (MRO)

CICS multiregion operation (MRO) enables CICS regions that are running in the same MVS image, or in
the same MVS sysplex, to communicate with each other. MRO does not support communication between
a CICS system and a non-CICS system such as IMS.3

ACF/VTAM and SNA networking facilities are not required for MRO. The support within CICS that enables
region-to-region communication is called interregion communication

The facilities provided by MRO include:
v Transaction routing
v Distributed transaction processing
v Function shipping
v Asynchronous processing
v Distributed program link.

For more information about the design and implementation of interregion communication facilities, see
Chapter 28, “Interregion communication (IRC),” on page 293. For descriptions of the facilities provided by
MRO, see:

v Chapter 13, “Distributed program link,” on page 107

v Chapter 14, “Distributed transaction processing,” on page 109

v Chapter 26, “Function shipping,” on page 277

v Chapter 62, “Transaction routing,” on page 441.

3. The external CICS interface (EXCI) uses a specialized form of MRO link to support: communication between MVS batch programs
and CICS; DCE remote procedure calls to CICS programs.

© Copyright IBM Corp. 1997, 2011 325

Multiregion operation (MRO)

326 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 36. Node abnormal condition program

DFHZNAC is a CICS program used by terminal control to analyze abnormal terminal conditions that are
logical unit or node errors detected by VTAM. VTAM notifies the CICS terminal control program that there
is a terminal error, and the terminal control program places the terminal out of service. The terminal control
program then invokes DFHZNAC, which writes any error messages to the CSNE transient data
destination.

Design overview
The node abnormal condition program (DFHZNAC) can be called for any of several reasons:

v As a central point of control for most VTAM-related error situations, error actions can be standardized in
table form, allowing for easy addition and alteration to the way conditions are processed.

v Some exception conditions that are not errors are also processed by DFHZNAC, but some exception
conditions that are errors are not processed by DFHZNAC.

v It provides a single point of user interface to those who want to change the default actions for an error
requiring at most one user program (NEP)—see Chapter 37, “Node error program,” on page 331.

To process conditions that are not associated with a known terminal, the dummy TCTTE is used. It is
invoked by placing a TCTTE on the system error queue with a 1-byte code relating to the condition.
Placing it on the queue makes the TCTTE ‘temporary OUTSERV’ (TCTTESOS); that is, the decision is
pending the outcome of DFHZNAC.

The activate scan routine (DFHZACT) is responsible for attaching the CSNE transaction to run DFHZNAC;
this is done during CICS initialization. The CSNE transaction remains in the system until CICS or VTAM is
quiesced. If DFHZNAC itself abends, or VTAM is closed and then restarted, DFHZACT attaches a new
CSNE transaction when there is more work for DFHZNAC to do.

There is only ever one CSNE transaction in the system at any one time. (This should not be confused with
the CSNE transaction that is attached by the remote delete processing of autoinstall.)

Once DFHZNAC has been called, it runs down the system error queue, processing each error for each
TCTTE on the queue. When there is no more work to be done, DFHZNAC suspends itself, to be resumed
by DFHZACT when further processing is required.

Note that the system error queue need not be empty before DFHZNAC terminates; errors can be left on
the queue to be processed later. For example, in an XRF environment, some error codes cannot be
handled until the alternate CICS system has taken over; that is, it has passed the ‘initialization complete’
stage. If DFHZNAC is passed a TCTTE indicating such an error, it leaves that entry on the queue.

Node abnormal condition program (NACP) processing involves mapping the error code (placed into the
TCTTE by a DFHZERRM macro call) to a set of actions, performing any specific processing for that error
code, accumulating the actions for all the error codes in that TCTTE, and then performing the actions.

Figure 69 on page 328 shows the NACP error code processing. The numbers in Figure 69 refer to the
following notes, which use the table entry for DFHZC3424 as the example:
DFHZNCM MSGNO=3424,

E1=S88,
E2=NULL,
E3=NULL,
E4=NULL,
ACT=(ABSEND,ABRECV,ABTASK,CLSDST,SIMLOG),
CODE=NSP02,
TYPE=ENTRY

© Copyright IBM Corp. 1997, 2011 327

Notes:

1. The error codes in TCTEVRC* and default actions are defined in the VTAM-associated errors section
of the CICS Trace Entries.

In the example, TCTVRC5 contains X'5C', which equates to TCZNSP02 (ref CODE=NSP02).

2. Errors that involve SNA sense have it saved in TCTEVNSS. It is processed by code in copy book
DFHZNCS.

3. Call any pre-NEP exits specified by the table entry; for example, E1=S88 references routine
NAPES88.

4. Call the node error program (NEP), passing a parameter list via a COMMAREA. This call may or may
not change the default actions. The operation of the NEP is described in the CICS Customization
Guide and the Chapter 37, “Node error program,” on page 331.

5. Output error-code message associated with the table entry (DFHZC3424 from MSGNO=3424) to the
CSNE log.

6. Check for ‘unavailable printer error’—this caters for a screen copy request that is unable to find an
eligible printer if the first choice is unavailable.

7. Because there can be multiple error codes, the actions are accumulated now and performed together
later.

For each TCTTE

Map error code to a DFHZNCA table entry 1

Call any pre-sense exits designated by the 2
entry

If sense code associated, call DFHZNCS
routine

If any RPL feedback code, call DFHZNCV
routine

Call any pre-NEP exits 3

Call DFHZNEP 4

Output the error-code message 5

Process any 'unavailable printer' error 6

Accumulate actions so far 7

Output any sense message 8

Output any VTAM_3270 message 9

Call any post-NEP exit 10

yes
Another error code for this TCTTE? 11

no

Retrieve accumulated actions 12

Call the action routines 13

Output the 'actions taken' message 14

yes Check again for added error codes and 15
enter again at the top

no

If any work resulting from the actions, 16
add TCTTE to the DFHZACT work queue

get next TCTTE

Figure 69. NACP error code processing

Node abnormal condition program

328 CICS TS for z/OS: CICS Diagnosis Reference

8. Output any sense message resulting from the DFHZNCS call, to the CSNE log.

9. Output any VTAM_3270 message resulting from the DFHZNCS call (if it was non-SNA) to the CSNE
log.

10. Call the post-NEP exit, if any (E4=NULL, no routine).

11. Loop for each error code in TCTEVRC*.

12. When all the error codes for this TCTTE that can be processed at this time have been processed,
retrieve the actions that have been accumulated, such as ACT=(ABSEND, ABRECV, ABTASK,
CLSDST, SIMLOG).

13. Call the action routine to process each of the actions.

14. Output the ‘actions taken’ message DFHZC3437 to the CSNE log.

15. Check again for any error codes added asynchronously while the CSNE transaction was running.

16. Queue any work resulting from the actions to the activate scan routine.

Control blocks
DFHZNAC references CSA, its own TCA, JCA, TCT prefix, TIOA, NIB, PCT, SIT, TCTWE, VTAM RPL,
VTAM ACB, and the NACP/NEP communication area.

As would be expected, however, the processing mainly concerns access to the TCTTE, and to the
NACP/NEP communication area (COMMAREA), which is mapped by the DFHNEPCA DSECT.

See the CICS Data Areas manual or the CICS Customization Guide for a detailed description of the NEP
communication area.

Modules

Module Function

DFHZNAC Processes the system error queue of TCTTEs and contains the central structure of NACP,
outlined in Figure 69 on page 328. It contains the following copy books:

DFHZNCA This copy book contains the exit routines for each error code and the error code table itself
built by DFHZNCM macros.

DFHZNCE Links to the user node error program (DFHZNEP) and responds to the action flag settings in
the NACP/NEP COMMAREA.

DFHZNCS Processes the SNA sense codes and contains the sense code tables built using a
combination of DFHZMJM and DFHZNCM macros.

DFHZNCV Contains the VTAM return code table.

DFHZNCM The macro to build the error code table.

DFHZMJM The macro to build the sense code table.

Exits
No global user exit points are provided for this function.

Trace
The following point IDs are provided for the node abnormal condition program, as part of terminal control:

v AP FCxx, for which the trace levels are TC 1, TC 2, and Exc

v AP FD7E, for which the trace level is TC 1.

Node abnormal condition program

Chapter 36. Node abnormal condition program 329

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Statistics
The only statistical field that DFHZNAC updates is TCTTETE. Because DFHZNAC is the main module for
terminal errors, it has primary responsibility for updating the node error count.

Node abnormal condition program

330 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 37. Node error program

CICS provides a user-replaceable node error program, DFHZNEP, which assists the user in the following
ways:

v It provides a general environment within which it is easy for users to add their own error processors.

v It provides the fundamental error recovery actions for a VTAM 3270 network.

v It serves as the default node error program (NEP), where the user selects a NEP at system
initialization.

The DFHZNEP program can be one of the following:

v The CICS-supplied default NEP

v A skeleton sample NEP generated using the DFHSNEP macro

v A user-written NEP generated using the DFHSNEP macro.

Design overview
The purpose of the NEP is to allow user-dependent processing whenever a communication system event
is reported to CICS. An example of the processing that can be done is to analyze the event and override
the default action set by DFHZNAC. When NEP processing is complete, control returns to DFHZNAC.

The default node error program sets the ‘print TCTTE’ action flag (TWAOTCTE in the user option byte
TWAOPT1, defined in DFHNEPCA) if a VTAM storage problem has been detected; otherwise, it performs
no processing, and leaves the action flags set by DFHZNAC unchanged.

The skeleton sample NEP provided by CICS can provide extended error handling for VTAM terminals, and
is generated by means of the DFHSNEP macro. This procedure is described in the CICS Customization
Guide.

The DFHSNEP macro can also be used to generate a user-written NEP. Interactions between the
applications and VTAM depend on characteristics of the transactions and the installation. Each system has
different characteristics. The CICS-provided skeleton NEP is a framework for a user-written NEP to handle
network error conditions that may be unique to a particular installation.

Guidance information about NEP coding is given in the CICS Recovery and Restart Guide. Reference
information about NEP coding is given in the CICS Customization Guide.

Modules
DFHZNEP

Exits
No global user exit points are provided for this function.

Trace
No trace points are provided specifically for this function; however, trace entries are made from DFHZNAC
immediately before and after calling the node error program.

Point IDs AP FC71 and AP FC72, with a trace level of TC 1, correspond to these trace entries.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

© Copyright IBM Corp. 1997, 2011 331

332 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 38. Program control

The program control program, DFHPCP, is an interface routine which supports DFHPC LINK, ABEND,
SETXIT and RESETXIT calls issued in other CICS modules and invokes the appropriate program manager
domain function.

In previous releases DFHPCP provided the functions that are now provided by the Program Manager
Domain, and other domains.

Design overview

Services in response to requests
The following services are performed by DFHPCP in response to DFHPC requests from other CICS
functions, where those functions have not been converted to use domain interfaces :
Link (LINK) Builds a parameter list and issues DFHPGLK FUNCTION(LINK) domain

call.
Handle Abend (SETXIT) If SETXIT macro specifies an abend routine address, then DFHPCP builds

a parameter list and issues a DFHPGHM FUNCTION(SET_ABEND)
OPERATION(HANDLE) call. If SETXIT macro does not specify an abend
routine address, then DFHPCP builds a parameter list and issues a
DFHPGHM FUNCTION(SET_ABEND) OPERATION(CANCEL) call.

RESETXIT DFHPCP builds a parameter list and issues a DFHPGHM
FUNCTION(SET_ABEND) OPERATION(RESET) call. If SETXIT macro
does not specify an abend routine address, then DFHPCP builds a
parameter list and issues a DFHPGHM CANCEL call.

Abend (ABEND) If it is an ABEND request without an existing TACB, then the parameter list
is built for this abend. A DFHABAB(CREATE_ABEND_RECORD) is issued
to build the TACB. Else a DFHABAB(UPDATE_ABEND_RECORD) is
issued with the name of the failing program is issued. A
DFHABAB(START_ABEND) call is then made to issue the abend. If the
DFHABAB(START_ABEND) call returns control to this module, it is
because the exit XPCTA has been invoked and modified the return
address. Control is passed to the modified address in the requested
execution key.

Modules

DFHEPC

Call mechanism
Branched to from DFHEIP.

Entry address
DFHEPCNA. Stored in the CSA in a field named CSAEPC.

Purpose
DFHEPC is DFHEIP’s program control interface. It supports the following EXEC CICS requests

v LINK

v XCTL

v RETURN

v LOAD

© Copyright IBM Corp. 1997, 2011 333

v RELEASE

v ABEND

v HANDLE ABEND

It routes a local request to the PG domain, or to DFHABAB (EXEC CICS ABEND) It routes a remote
EXEC CICS LINK request to the intersystem module, DFHISP.

Called by
DFHEPC is called exclusively by DFHEIP.

Inputs
The application parameter list.

Outputs
Updated EIB.

Operation
LINK If SYSID is remote, ships the link request through the DFHISP module.

If SYSID is local:
v Builds parameter list and calls DFHPGLE FUNCTION(LINK_EXEC)
v Checks the response.
v If response indicates the program is remote, ships the link request

through the DFHISP module.
v Sets up EIBRESP (and, if needed, EIBRESP2).
v Returns control to DFHEIP.

XCTL Builds parameter list and calls DFHPGXE
FUNCTION(PREPARE_XCTL_EXEC)

Checks the response

Sets up EIBRESP (and, if needed, EIBRESP2).

If the PGXE request failed, then returns control to DFHEIP

If the PGXE request was successful, then return control to DFHAPLI as
for EXEC CICS RETURN. (DFHAPLI will then invoke the program
specified on EXEC CICS XCTL).

RETURN Builds parameter list and calls DFHPGRE
FUNCTION(PREPARE_RETURN_EXEC) (this call is bypassed if there are
no options (COMMAREA, TRANSID, INPUTMSG) specified on EXEC
CICS RETURN

. Checks the response

. Sets up EIBRESP (and, if needed, EIBRESP2).

. If the PGRE request failed, then returns control to DFHEIP

. If the PGRE request was successful (or was bypassed), then return
control to DFHAPLI which completes the return to the calling program or
to Transaction Manager.

LOAD Builds parameter list and calls DFHPGLD FUNCTION(LOAD_EXEC)

Checks the response

Sets up EIBRESP (and, if needed, EIBRESP2).

If the PGLD request was successful, then set the return parameters in the
application parameter list.

Returns control to DFHEIP.
RELEASE Builds parameter list and calls DFHPGLD FUNCTION(RELEASE_EXEC)

Program control

334 CICS TS for z/OS: CICS Diagnosis Reference

Checks the response

Sets up EIBRESP (and, if needed, EIBRESP2).

Returns control to DFHEIP.
HANDLE ABEND For HANDLE ABEND PROGRAM, perform resource security check and

check whether program name is known.

Builds parameter list and calls DFHPGHM FUNCTION(SET_ABEND)
v OPERATION(HANDLE) for HANDLE ABEND PROGRAM or LABEL
v OPERATION(CANCEL) for HANDLE ABEND CANCEL
v OPERATION(RESET) for HANDLE ABEND

Checks the response

Sets up EIBRESP (and, if needed, EIBRESP2).

Returns control to DFHEIP.
ABEND Builds parameter list and calls DFHABAB

FUNCTION(CREATE_ABEND_RECORD) and
FUNCTION(START_ABEND).

DFHABAB START_ABEND does not normally return, as control is passed
to a program or label specified on a HANDLE ABEND, or the program is
terminated abnormally.

The XPCTA user exit can request retry. In this case DFHABAB
START_ABEND returns to DFHEPC passing back the retry parameters.
DFHEPC sets the registers and other values and branches to the
specified retry address.

How loaded
At CICS startup, as part of the building of the CICS nucleus. The nucleus is built by DFHSIB1, which uses
its nucleus build list to determine the content and characteristics of the CICS nucleus.

Exits
There are two global user exit points in DFHEPC: XPCREQ and XPCREQC.

There are two global user exit points in DFHABAB: XPCABND and XPCTA.

There are two global user exit points in DFHAPLI1: XPCFTCH and XPCHAIR.

There is one global user exit point in DFHERM: XPCHAIR.

There is one global user exit point in DFHUEH: XPCHAIR.

For further information, see the CICS Customization Guide.

Trace
The following point IDs are provided for entry to and exit from DFHPCPG:
v AP 2000, for which the trace level is PC 1
v AP 2001, for which the trace level is PC 1.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Program control

Chapter 38. Program control 335

336 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 39. Program error program

CICS provides a dummy program error program (DFHPEP) that does nothing except give control back to
the abnormal condition program (DFHACP), which is invoked during transaction abend processing.

You can provide some additional routines to handle programming errors. For instance, it is possible to
disable the transaction code associated with the program in error, thus preventing the recurrence of the
error until it can be corrected; send messages to the end-user terminal; initiate a new transaction; or
record abend information in transient data.

Design overview
To provide corrective action in response to a programming error, you can code a program error program
(DFHPEP). This program can then be assembled and link-edited to replace the dummy DFHPEP.

If provided, this program is invoked by the abnormal condition program (DFHACP) whenever a task
terminates due to a task abnormal condition. However, it will NOT be called if a task is terminated due to
an attach failure (for example the transaction is not defined) or when CICS deliberately terminates a task
to alleviate a stall.

The user can perform any kind of corrective action within a program error program.

Guidance information about PEP coding is given in the CICS Recovery and Restart Guide. Reference
information about PEP coding is given in the CICS Customization Guide.

Control blocks
The control block associated with the program error program is: DFHPEP_COMMAREA, the commarea
passed to DFHPEP.

See the CICS Data Areas manual for a detailed description of this control block.

Modules
DFHPEP

Exits
No global user exit points are provided for this function.

Trace
No trace points are provided for this function.

© Copyright IBM Corp. 1997, 2011 337

338 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 40. Program preparation utilities

The program preparation utilities consist of the command-language translators, which are utility programs
that run offline to translate CICS application programs using command-level CICS requests. They convert
the EXEC commands into call statements in the language in which the EXEC commands are embedded.
Versions of the translator program are available for:
v COBOL (DFHECP1$)
v PL/I (DFHEPP1$)
v C (DFHEDP1$)
v Assembler language (DFHEAP1$).

Design overview
The command-language translators manage storage by creating a stack from a single area allocated at
the start of the program.

Because the input is free-format, the translators move it into a buffer area that can hold data spanning two
or more source records. The analysis of the source is mainly table driven.

The translators build the replacement source code for each EXEC command in a form appropriate to the
language:

v For COBOL, the replacement code contains a series of MOVE statements, followed by a CALL
statement.

v For PL/I, the replacement code contains a declaration of an entry variable followed by a CALL
statement. These statements are contained within a DO group.

v For C, the replacement code contains a function call (dfhexec) and may also contain assignment
statements.

v For assembler language, the replacement code is an invocation of the DFHECALL macro.

Errors in the source can be detected. Spelling corrections are made to the source, and any unrecognizable
or duplicate keywords and options are ignored. For COBOL, PL/I, and C, the translator produces error
diagnostics that are collected together on the output listing. The assembler language translator, however,
produces error diagnostics in the translated output following the EXEC command in which the error
occurred.

Modules
DFHECP1$, DFHEPP1$, DFHEDP1$, DFHEAP1$

Exits
Global user exit points are not applicable to offline utilities.

Trace
Trace points are not applicable to offline utilities.

© Copyright IBM Corp. 1997, 2011 339

340 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 41. Remote DL/I

An overall description of DL/I database support is given in Chapter 15, “DL/I database support,” on page
119. This section gives information that is specific to remote DL/I.

Design overview
This section outlines what you must do to define remote DL/I support, and describes the functions of
remote DL/I.

System definition
For a CICS system that supports only remote databases you must, in addition to providing the usual
definitions that are required for function shipping, code a PSB directory (PDIR) using the DFHDLPSB
macro. Every PDIR entry must have SYSIDNT specified. The PDIR system initialization parameter must
be coded specifying the suffix of the PDIR.

DL/I PSB scheduling
When a CICS task requests the scheduling of a DL/I PSB by means of an EXEC DLI SCHEDULE request
or DL/I PCB call, and the request is for a remote PSB, control is passed to DFHDLIRP. DFHDLIRP
allocates a remote scheduling block (RSB) and issues a DFHIS TYPE=CONVERSE macro to ship the
scheduling request to the owning system.

Database calls
For a remote DL/I database call, a DFHIS TYPE=CONVERSE macro is issued to ship the request to the
owning system. The return codes are passed back to the user in the user interface block (UIB).

DL/I PSB termination
If a remote PSB is terminated, the actions performed are:

1. Free the RSB and local program communication block (PCB) storage.

2. If the DL/I PSB termination was not caused by a CICS syncpoint, request one now.

Control blocks
Figure 70 illustrates some of the control blocks used to support remote DL/I.

The DL/I interface parameter list (DLP) is described in “DL/I interface parameter list (DLP)” on page 121.

CSADLI
DLP

DLPDLI
DLPEDPEP
DLPRPEP
DLPRPDIR

TCARSBA

PDIR
(Remote
entries

Entry point for DFHDLI
Entry point for DFHEDP
Entry point for DFHDLIRP

RSB

Figure 70. Some control blocks used for remote DL/I support

© Copyright IBM Corp. 1997, 2011 341

The remote PSB directory (PDIR) contains an entry for each remote PSB that can be used from an
application program.

The remote scheduling block (RSB) is acquired when a CICS task issues a PSB schedule request for a
remote PSB. The RSB is freed when the task issues a SYNCPOINT or a DLI TERM request.

See CICS Data Areas for a detailed description of these control blocks.

Remote DL/I

342 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 42. Resource definition online (RDO)

The CEDA transaction creates and alters the definitions of system resources in the CICS system definition
(CSD) data set.

RDO provides:

v Online transactions that can be used to inspect, change, and install resource definitions:
– CEDA (inspect, change, and install)
– CEDB (inspect and change)
– CEDC (inspect only).

v A programmable interface to the CEDA transaction, using an EXEC CICS LINK command in the
application program to invoke DFHEDAP directly. (For further information, see the CICS Customization
Guide.)

v A set of system programmer API command (the EXEC CICS CREATE commands) for creating CICS
resources dynamically.

v An offline utility, DFHCSDUP, to inspect or change resource definitions. (For a description of this utility,
see Chapter 10, “CSD utility program (DFHCSDUP),” on page 89.)

Design overview
Resource definitions are maintained on the CICS system definition (CSD) data set. The resource
definitions in the CSD data set can be viewed and changed using either the online CEDx transactions, or
the offline utility DFHCSDUP.

Installation of resource definitions makes the definitions available to the running CICS system. Resource
definitions can be installed at these times:

v When CICS is cold started, using the GRPLIST system initialization parameter.

v During a run of CICS, using the CEDA transaction.

When resource definitions are installed, they are made available through the appropriate resource
managers.

Modules
The relationships between the components of RDO, and the components of some of the services it uses,
are shown in Figure 71 on page 344.

© Copyright IBM Corp. 1997, 2011 343

DFHEDAP and DFHEDAD control the CEDA, CEDB, and CEDC transactions. They provide screen
management for the transactions, and invoke DFHAMP to implement any actions that are required.

DFHSII1 invokes DFHAMP when CICS is cold started, to install resource definitions for the current run.
These resource definitions are specified by the GRPLIST system initialization parameter. DFHSII1 passes
the GRPLIST system initialization parameter to DFHAMP.

DFHAMP, the allocation management program, manages all requests to view, change, and install
resources. It uses the services provided by other parts of RDO, and by the resource managers:

v DFHAMP invokes DFHPUP and DFHDMP to read, write, and update resource definitions on the CSD
data set:

– DFHPUP, the parameter utility program, converts resource definition data between the parameter list
format provided by DFHAMP and the record format needed by the CSD.

– DFHDMP, the CSD management program, manages I/O of resource definition data to and from the
CSD data set.

v DFHAMP invokes DFHTOR, the terminal object resolution program, to merge TERMINAL, TYPETERM,
CONNECTION, and SESSION definitions:

– When requests are made to install TERMINALs, TYPETERMs, CONNECTIONs, and SESSIONs,
DFHTOR merges TYPETERM and TERMINAL information, and also CONNECTION and SESSION
information, and passes this merged information back to DFHAMP.

– DFHAMP passes the merged definitions to DFHZCQ to install in the running CICS system. Any
merged TERMINAL definitions that are to be used as autoinstall terminal models are passed to the
autoinstall terminal model (AITM) manager.

– When TYPETERM definitions are installed, DFHTOR records the information about the CICS global
catalog for subsequent use.

– When the CHECK command is issued, DFHTOR checks the appropriate TERMINAL, TYPETERM,
CONNECTION, and SESSION definitions for consistency.

v DFHAMP calls the appropriate resource managers to install resources in the running CICS system:

– DFHZCQ is invoked to install CONNECTION, SESSION, and TERMINAL definitions.

– DFHAMXM is invoked to install TRANSACTION and PROFILE definitions.

– DFHPGDD is invoked to install PROGRAM, MAPSET, and PARTITIONSET definitions.

OFFLINE ONLINE

Offline System CEDA/B/C Resource managers
utility initialization (or

from LINK
command in
application
program)

DFHEDAP

DFHPUP DFHSII1 DFHEDAD

Terminal control
(DFHZCQ)

batch
routines Task control

(DFHKCQ)

DFHPUP DFHAMP
DFHCSDUP

RDO
management

Program control
(DFHPGDD)

DFHDMP DFHDMP DFHTOR
batch
routines

File control
(FCMT, FCRL, FCDN,
FCFS, AFMT)

CSD CICS

AITM manager

data set global
catalog Partner resource

manager

CICS data sets

Figure 71. RDO interfaces

Resource definition online

344 CICS TS for z/OS: CICS Diagnosis Reference

– These subroutine “gates” are called to install resources related to file control:
FCMT, for FCT entries
FCRL, for LSR pools
FCDN, for DSN blocks
FCFS, to open and close files
AFMT, for AFCT entries for files.

– The AITM manager is invoked, using an AITM ADD_REPL_TERM_MODEL subroutine call (see
Chapter 4, “Autoinstall terminal model manager,” on page 23), to install autoinstall terminal models.

– The partner resource manager is invoked, using a PRPT ADD_REPLACE_PARTNER subroutine
call (see Chapter 97, “Partner resource manager,” on page 1045), to install partner resources for the
SAA communications interface.

DFHEICRE processes all the EXEC CICS CREATE commands. It builds an internal DEFINE command for
the resource to be created, and passes it to DFHCAP for interpretation. The encoded command is then
passed directly to DFHAMP to install the resource in the running system. The CSD file is not accessed at
all during this processing.

DFHCSDUP, the offline CICS system definition utility program, uses batch versions of routines from
DFHPUP and DFHDMP to read, write, and update resource definitions on the CSD data set (see
Chapter 10, “CSD utility program (DFHCSDUP),” on page 89).

For a detailed description of how the CEDA transaction handles terminal resources, see Chapter 56,
“Terminal control,” on page 405.

Exits
The XRSINDI global user exit is invoked at each install or EXEC CICS CREATE.

Trace
The following point IDs are provided, with a trace level of AP 1:
v AP 00EB (DFHAMP)
v AP 00EC (DFHDMP)
v AP 00EF (DFHTOR)
v AP 00E2 (DFHPUP).

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Resource definition online

Chapter 42. Resource definition online (RDO) 345

346 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 43. SAA Communications and Resource Recovery
interfaces

This section describes the CICS implementation of the Communications and Resource Recovery elements
of the Systems Application Architecture® Common Programming Interface (also known as the SAA
Communications and SAA Resource Recovery interfaces respectively).

The SAA Communications and Resource Recovery interfaces are both call-based application programming
interfaces that are common across all programming languages and across hardware systems.

The common programming interface (CPI) component of CICS, also sometimes known as the CP
component, provides application programming interfaces that conform to SAA specifications for
Communications and Resource Recovery interfaces.

Note: This CICS component does not currently handle any other SAA interface elements.

The CPI component is part of the AP domain, and is shipped as object code only (OCO).

The SAA Communications interface allows CICS applications to communicate via APPC (LU6.2) links to
partner applications on any system that conforms to SAA standards. This interface consists of a set of
defined verbs as program calls that are adapted for the language being used. For further information about
the general call-based API, see the SAA CPI Communications Reference manual, SC26-4399.

The SAA Communications interface in CICS provides an alternative to the existing application interface for
distributed transaction processing (see page 109). A single transaction can use EXEC CICS commands for
one conversation while using SAA Communications calls for another (separate) conversation. Also, one
end of a conversation can use EXEC CICS commands while the other end uses SAA Communications
calls. However, it is not possible to use a mixture of EXEC CICS commands and SAA Communications
calls on the same end of a conversation.

The SAA Resource Recovery interface provides an SAA application programming interface for commit
and backout of recoverable resources. This interface consists of two defined verbs as program calls that
are adapted for the language being used:

SRRCMIT
Commit

SRRBACK
Backout

For further information, see the SAA CPI Resource Recovery Reference manual, SC31-6821.

The SAA Resource Recovery interface in CICS provides an alternative to the use of EXEC CICS
SYNCPOINT and EXEC CICS SYNCPOINT ROLLBACK commands. The SRRCMIT call is equivalent to
the EXEC CICS SYNCPOINT command, and the SRRBACK call is equivalent to the EXEC CICS
SYNCPOINT ROLLBACK command. A single application can use SAA Resource Recovery calls, EXEC
CICS commands, or a mixture of both.

Design overview
This section describes the SAA Communications and Resource Recovery interfaces.

The SAA Communications interface
When an application issues an SAA Communications call, control passes via the DFHCPLC application
link-edit stub to the common programming interface program (DFHCPI), which in turn passes the request

© Copyright IBM Corp. 1997, 2011 347

to the DFHCPIC program load module. DFHCPIC verifies the parameters, checks the conversation state,
and (if required) issues a DFHLUC macro call to invoke the LU6.2 application request logic module
(DFHZARL). For details of DFHZARL, see Chapter 14, “Distributed transaction processing,” on page 109.

Figure 72 shows how the SAA Communications interface support relates to CICS intersystem
communication (ISC) using VTAM LU6.2. The numbers in Figure 72 refer to the notes that follow it.
CMxxxx represents a program call defined in the SAA Communications interface.

Notes:

1. Distributed transaction processing (DTP) allows a transaction using EXEC CICS commands to
communicate with a transaction running in another system. This is carried out by DFHEIP and related
EXEC interface processor modules. For a VTAM LU6.2 intersystem link, each request is converted into
DFHLUC macro requests that call DFHZARL.

2. The SAA Communications interface is implemented by the DFHCPIC load module within the CP (or
CPI) component. DFHCPIC maps the CMxxxx application requests into DFHLUC macro calls.

3. To begin a conversation, the SAA Communications interface requires specific information (side
information) about the partner program, including its name and system details. This is implemented
within CICS as an RDO object called the PARTNER, which is encapsulated by the partner resource
manager (PR) component. Further details of the PR component are given under Chapter 97, “Partner
resource manager,” on page 1045.

Using the SAA Communications interface on recoverable conversations
When using the SAA Communications interface on recoverable conversations (that is, conversations with
the synclevel set to CM_SYNC_POINT), DFHLUC syncpoint requests are routed to DFHZARL via the SAA
Communications interface syncpoint request handler (DFHCPSRH) in the DFHCPIC load module. This
allows the conversation state to be tracked.

For the equivalent EXEC CICS synclevel 2 conversations, DFHLUC syncpoint requests pass directly to
DFHZARL.

The SAA Resource Recovery interface
When an application issues an SAA Resource Recovery call, control passes via the DFHCPLRR
application link-edit stub to the common programming interface program (DFHCPI), which in turn passes
the request to the DFHCPIRR program load module. DFHCPIRR verifies the parameters, and (if required)
issues an appropriate DFHSP macro call: DFHSP TYPE=USER for SRRCMIT, or DFHSP
TYPE=ROLLBACK for SRRBACK.

Figure 73 on page 349 shows how the SAA Resource Recovery interface support relates to the processing
of EXEC CICS SYNCPOINT commands. The number in the figure refers to the accompanying note.

CMxxxx EXEC CICS
application application
request (DTP) request

(2) (1)

CP component EXEC interface
PR component component

(3) DFHCPIC (DFHEIP, DFHEGL,
load module DFHETC, DFHETL)

PARTNER

DFHLUC requests

LU6.2 ISC
(DFHZARL, etc.)

Figure 72. SAA Communications application request processing

SAA Communications and Resource Recovery interfaces

348 CICS TS for z/OS: CICS Diagnosis Reference

SRRxxxx represents a program call defined in the SAA Resource Recovery interface, namely, SRRBACK
or SRRCMIT.

Functions provided by the CPI component
Table 23 summarizes the external subroutine interfaces provided by the CPI component. It shows the
subroutine call formats, the level-1 trace point IDs of the modules providing the functions for these formats,
and the functions provided.

Table 23. CPI component’s subroutine interfaces

Format Trace Function

CPIN AP 0C01
AP 0C02

START_INIT
COMPLETE_INIT

CPSP AP 0CD0
AP 0CD1

SYNCPOINT_REQUEST

CPIN format, START_INIT function
The START_INIT function of the CPIN format is used to attach a CICS task to perform initialization of the
CPI component.

Input parameters
None.

Output parameters
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER GETMAIN_FAILED
ADD_SUSPEND_FAILED

SRRxxxx EXEC CICS
application SYNCPOINT
request command

(See note.)

CP component EXEC interface
component

DFHCPIRR (DFHEIP, DFHESP)
load module

DFHSP requests

Recovery
manager
domain

Note: The SAA Resource Recovery interface is implemented by the DFHCPIRR load module within the
CP (or CPI) component. DFHCPIRR maps SRRxxxx application requests into DFHSP macro calls.

Figure 73. SAA Resource Recovery application request processing

SAA Communications and Resource Recovery interfaces

Chapter 43. SAA Communications and Resource Recovery interfaces 349

CPIN format, COMPLETE_INIT function
The COMPLETE_INIT function of the CPIN format is used to wait for the initialization task attached by the
START_INIT function to complete processing.

Input parameters
None.

Output parameters
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. It has this value:

INIT_TASK_FAILED

CPSP format, SYNCPOINT_REQUEST function
The SYNCPOINT_REQUEST function of the CPSP format is used to send LU6.2 syncpoint flows on
recoverable conversations using the SAA Communications interface, and to update the conversation state
as required.

Input parameters
CPC_ADDRESS is the address of the SAA Communications conversation control block (CPC).
LUC_ADDRESS is the address of the DFHLUC parameter list.

Output parameters
RESPONSE is the subroutine’s response to the call. It can have either of these values:

OK|KERNERROR

Modules

Module Function

DFHAPTRF Trace interpreter for the SAA Communications and Resource Recovery interfaces

DFHCPARH SAA Communications application request handler (entry processor for all application calls to
the DFHCPIC load module, routing them to the appropriate DFHCPCxx module)

DFHCPCxx Components of the DFHCPIC load module, each object module typically handling a different
CMxxxx application request

DFHCPDUF Offline system dump formatter for CP keyword

DFHCPI Common programming interface program (link-edited with DFHEIP and DFHAICBP to form
the DFHAIP load module)

DFHCPIN1 Initialization management program for the SAA Communications and Resource Recovery
interfaces

DFHCPIN2 Runs as a CICS task to perform initialization for the SAA Communications and Resource
Recovery interfaces

DFHCPIR SAA Resource Recovery entry processor, handling all calls to the DFHCPIRR load module

DFHCPLC Link-edit stub for applications using the SAA Communications interface

DFHCPLRR Link-edit stub for applications using the SAA Resource Recovery interface

DFHCPSRH SAA Communications syncpoint request handler (part of the DFHCPIC load module)

Exits
No global user exit points are provided for this component.

SAA Communications and Resource Recovery interfaces

350 CICS TS for z/OS: CICS Diagnosis Reference

Trace
The following point ID is provided for this component:
v AP 0Cxx, for which the trace levels are CP 1, CP 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

SAA Communications and Resource Recovery interfaces

Chapter 43. SAA Communications and Resource Recovery interfaces 351

352 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 44. Statistics utility program (DFHSTUP)

This chapter provides a general overview of the collection of CICS statistics as well as describing the
operation of the offline statistics utility program (DFHSTUP). For more information about using the
DFHSTUP utility program, see the CICS Operations and Utilities Guide.

An operator interface to all online statistics functions is provided by the CEMT transaction. The equivalent
programmable interface is provided by the EXEC API.

Statistics may be collected at user-specified intervals from the startup to the shutdown of a CICS system.
Statistics may also be requested, resulting in the collection of data for the period between the last time
statistics were reset and the time the request was made.

Statistics are also collected at system quiesce or logical end of day; this data is written to the SMF data
set as for a normal interval collection.

An option is provided by the statistics domain to allow the user to specify whether interval statistics are to
be collected. The statistics domain calls each domain in turn to reset the statistics fields at every interval
when statistics are collected. Statistics (particularly interval statistics) can be used for capacity planning
and performance tuning. For further information about this aspect, see the CICS Performance Guide.

There is a great similarity between CICS statistics data and CICS performance class monitoring data.
Statistics data is collected on a resource basis, whereas performance class monitoring collects similar data
on a transaction basis. Statistics can therefore be viewed as resource monitoring.

Design overview
CICS statistics support is divided into the following components:

1. The operator interface. This component is responsible for interfacing to the various CICS-supported
terminals, analyzing the input string and then invoking the statistics domain to perform the appropriate
management operation. This function is provided by the CEMT transaction, and also by the EXEC API.

2. The statistics domain. This component is responsible for managing statistics interfaces, for example,
SMF and EXEC API.

3. The statistics update logic. This code is inline in the relevant resource manager. In this way the control
function of statistics is centralized, but the management and updating of the statistics fields is given to
the resource owner.

4. The statistics data collection and reset. For all collection types except unsolicited (see below), the
collection mechanism is the same. The owning domain is invoked by statistics domain to supply a
record that contains the domain’s statistics. When this record has been formed, the domain then calls
statistics domain to place the data on the SMF data set.

There are five types of collections:

a. Interval. The collection interval default is 3 hours. This may be changed by the user. The minimum
value is 1 minute, the maximum 24 hours. On an interval collection, each called domain collects
and resets its statistics counters. No action is taken if the statistics recording status is OFF.

b. Requested. Statistics may be requested using the PERFORM STATISTICS function provided by
the CEMT transaction or the EXEC API. The data recorded is for the period between the last time
statistics were reset and the time the request was made. Statistics are reset on an interval,
end-of-day, or requested-reset collection; they can also be reset, without a collection, when
changing the statistics recording status from ON to OFF, or from OFF to ON.

This type of collection can obtain statistics from some or all domains, as requested. Each called
domain collects, but does not reset, its statistics counters.

Requested statistics are collected even if the statistics recording status is OFF.

© Copyright IBM Corp. 1997, 2011 353

c. Requested-reset. This collection is similar to requested statistics, except that it always obtains
statistics for all domains, and each called domain resets its statistics counters after collection.

Requested-reset statistics are collected even if the statistics recording status is OFF.

d. End-of-day. This collection occurs when the system is quiescing. A logical end-of-day time may be
specified. The default time is midnight. This is primarily for continually running systems. The
collection is then made at this time, and the called domain collects and resets its statistics
counters.

End-of-day statistics are collected even if the statistics recording status is OFF.

Daily systems that are taken down after midnight should change the logical end of day to a time
when the system is not operational.

If the user wishes to simulate shutdown statistics, the interval can be set to 24 hours. An
end-of-day report, which contains total figures for the CICS run up to the end of the day, can then
be printed by DFHSTUP.

e. Unsolicited. For dynamically allocated and deallocated resources, the resource records its statistics
just before it is deleted; for example, an autoinstall terminal that logs off and is thereby deleted.
USS statistics are written to SMF regardless of the statistics recording status (STATRCD).

By default DFHSTUP formats the statistics for all types of collection, for all the specified APPLIDs.
However, if you specify the EXTRACT control parameter but not COLLECTION TYPE, only the extract
exit is invoked and no other statistics output is produced.

5. The statistics formatting control. The offline utility DFHSTUP opens the statistics data set, which is an
unloaded SMF data set, and the I/O interfaces to that data set. This routine then browses the data set
and formats the statistics.

Reports may be produced for any or all of the five types of statistics collections.

DFHSTUP also provides the option of producing a summary report for selected CICS applids. The
summary report is constructed from all the statistics contained in the interval, requested-reset,
end-of-day, and unsolicited collections. Requested statistics are not involved in the production of the
summary report.

6. The extract statistics reporting function. This is a DFHSTUP exit that takes statistics data from the
input SMF data set and passes it to a user program for processing in order to create tailored statistics
reports. DFH0STXR is a sample program designed to exploit the extract reporting function. There are
also two skeleton exits; an assembler extract exit called DFH£STXA, and a COBOL extract exit called
DFH0STXC. These show the format and structure of the interface between DFHSTUP and the extract
exit.

Specifying the extract statistics reporting function changes the default DFHSTUP report settings. If you
specify only the EXTRACT control statement, only the extract exit is driven; other DFHSTUP reports
are suppressed. If EXTRACT is specified, other statistics report control statements, such as
SUMMARY, must also be specified to ensure that the appropriate reports are produced.

DFHSTUP operation
DFHSTUP runs as a separate MVS job and extracts all or selected entries from the unloaded SMF data
set. The types of entries to be processed by this program are specified in the SYSIN data set. Entries that
can be selected for processing include:

v All entries—the default

v Entries written for specified applids

v Entries written for specified resource types

v Entries written for specified collection types, that is, interval, requested, requested-reset, end-of-day, or
unsolicited

v Entries written during a specified period of time.

You can also select:

v The page size; the default is 60 lines per page.

Statistics utility program (DFHSTUP)

354 CICS TS for z/OS: CICS Diagnosis Reference

v Whether output is to be printed in mixed case or all uppercase; the default is to print in mixed case.

v The summary report option; by default, it is not selected.

Further information about using DFHSTUP is given in the CICS Operations and Utilities Guide.

Modules

Module Function

DFH£STXA Skeleton assembler extract exit
DFH0STXC Skeleton COBOL extract exit
DFH0STXR DFHSTUP extract sample program
DFHST03X VTAM statistics summary formatter
DFHST04X Autoinstall terminals statistics summary formatter
DFHST06X Terminal statistics summary formatter
DFHST08X LSRPOOL resource statistics summary formatter
DFHST09X LSRPOOL file statistics summary formatter
DFHST14X ISC/IRC statistics summary formatter
DFHST16X Table manager statistics summary formatter
DFHST17X File control statistics summary formatter
DFHST21X ISC/IRC attach-time statistics summary formatter
DFHST22X FEPI statistics summary formatter
DFHSTD2X CICS DB2 statistics summary formatter
DFHSTDBX DBCTL statistics summary formatter
DFHSTDSX Dispatcher domain statistics summary formatter
DFHSTDUX Dump domain statistics summary formatter
DFHSTE15 DFSORT interface to E15 user exit
DFHSTE35 DFSORT interface to E35 user exit
DFHSTEJX Enterprise Java domain statistics summary formatter
DFHSTIIX IIOP domain statistics summary formatter
DFHSTIN DFSORT E15 user exit input routine
DFHSTLDX Loader domain statistics summary formatter
DFHSTLGX Log manager domain summary statistics formatter
DFHSTMNX Monitoring domain statistics summary formatter
DFHSTOT DFSORT E35 user exit output routine
DFHSTPGX Program manager domain statistics summary formatter
DFHSTRD Read interface subroutines
DFHSTRMX Recovery manager domain statistics summary formatter
DFHSTSJX JVM domain statistics summary formatter
DFHSTSMX Storage manager domain statistics summary formatter
DFHSTSOX Sockets domain statistics summary formatter
DFHSTSTX Statistics domain statistics summary formatter
DFHSTTQX Transient data statistics summary formatter
DFHSTTSX Temporary storage domain statistics summary formatter
DFHSTU03 VTAM statistics formatter
DFHSTU04 Autoinstall terminals statistics formatter
DFHSTU06 Terminal statistics formatter
DFHSTU08 LSRPOOL resource statistics formatter
DFHSTU09 LSRPOOL file statistics formatter
DFHSTU14 ISC/IRC statistics formatter
DFHSTU16 Table manager statistics formatter
DFHSTU17 File control statistics formatter
DFHSTU21 ISC/IRC attach-time statistics formatter
DFHSTU22 FEPI statistics formatter
DFHSTUD2 CICS DB2 statistics formatter

Statistics utility program (DFHSTUP)

Chapter 44. Statistics utility program (DFHSTUP) 355

Module Function

DFHSTUDB DBCTL statistics formatter
DFHSTUDS Dispatcher domain statistics formatter
DFHSTUDU Dump domain statistics formatter
DFHSTUEJ Enterprise Java domain statistics formatter
DFHSTUII IIOP domain statistics formatter
DFHSTULD Loader domain statistics formatter
DFHSTULG Log manager domain statistics formatter
DFHSTUMN Monitoring domain statistics formatter
DFHSTUP1 PRE_INITIALIZE
DFHSTUPG Program manager domain statistics formatter
DFHSTURM Recovery manager domain statistics formatter
DFHSTURS User domain statistics formatter
DFHSTURX User domain statistics summary formatter
DFHSTUSJ JVM domain statistics formatter
DFHSTUSM Storage manager domain statistics formatter
DFHSTUSO Sockets domain statistics formatter
DFHSTUTQ Transient data statistics formatter
DFHSTUST Statistics domain statistics formatter
DFHSTUTS Temporary storage domain statistics formatter
DFHSTUXM Transaction manager domain statistics formatter
DFHSTWR Write interface subroutines
DFHSTXMX Transaction manager domain statistics summary formatter

Statistics utility program (DFHSTUP)

356 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 45. Storage control macro-compatibility interface

DFHSMSCP is responsible for handling all requests for storage services that are made by using the
routine addressed by CSASCNAC in the CICS common system area (CSA). DFHSMSCP is called by
some parts of the CICS AP domain containing DFHSC macros.

DFHSMSCP converts all requests into calls to the storage manager domain, and its main function is to get
or free storage.

Design overview
The input to DFHSMSCP, set up by the macro used for the invocation, or directly by the calling program,
consists of the following TCA fields:

v TCASCTR—the storage control request byte. This can contain one of the following values:

X'80' GETMAIN, in conjunction with:
X'40' Initialize storage
X'20' Conditional

Storage class in bits 3 through 7 (the resulting SMMC GETMAIN storage class name is given in
parentheses where this differs from the first name):

X'00' 1WD, treated as SHARED
X'04' LINE
X'05' TERMINAL or TERM
X'0C' USER (becomes CICS24)
X'0D' TRANSDATA or TD
X'13' SHARED (becomes SHARED_CICS24)
X'14' CONTROL

X'40' FREEMAIN, in conjunction with:
X'01' TCTTE address supplied.

v TCASCIB—the 1-byte value to which storage is to be initialized.

v TCASCNB—the 2-byte field giving the number of bytes requested on the GETMAIN.

v TCASCSA—the 4-byte address of the storage that was obtained or the storage to be freed.

Modules
DFHSMSCP

Exits
No global user exit points are provided for this function.

Trace
The point IDs for this function are of the form AP F1xx; the corresponding trace levels are SC 1 and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

© Copyright IBM Corp. 1997, 2011 357

358 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 46. Subsystem interface

The subsystem interface is a mechanism by which the MVS operating system communicates with its
underlying subsystems at certain critical points in its processing.

CICS is required to be defined as a formal MVS subsystem for the following purposes:
v Multiregion operation (MRO)
v Shared database support
v Console message handling.

Functional overview
An MVS subsystem consists of two control blocks and a set of functional routines, all resident in common
memory. The control blocks are:
SSCT The subsystem communication table, which contains the 4-character name of the subsystem and

a pointer to the SSVT.
SSVT The subsystem vector table, which contains a list of the subsystem function codes that the

subsystem supports, and the addresses of the functional routines that support them.

The subsystem is active when the SSCT contains a nonzero pointer to the SSVT, and inactive when the
pointer is zero.

Subsystem definition
Each subsystem is defined to MVS by an entry in an IEFSSNxx member of SYS1.PARMLIB. (See the
OS/390 MVS Initialization and Tuning Guide, SC28-1751.) Each subsystem can be defined with an
initialization routine and some initialization parameters. The CICS subsystem is defined with an
initialization routine of DFHSSIN, and an initialization parameter that specifies the name of an additional
member of SYS1.PARMLIB, which contains further CICS-specific subsystem parameters. These
parameters specify whether the console message handling facility is required.

Design overview
When the recommended initialization routine DFHSSIN is specified, the CICS subsystem is initialized
during the master scheduler initialization phase of the MVS IPL. The CICS-specific subsystem parameters
are read from SYS1.PARMLIB, and the subsystem vector table is created. The supporting subsystem
function routines are loaded into common memory and their addresses are stored into the subsystem
vector table. If everything is successful, the CICS subsystem is made active by storing the address of the
subsystem vector table in the subsystem communication table.

Console message handling
At startup, a CICS region that supports console message handling notifies the CICS subsystem of its
existence, by using the CICS SVC to issue a subsystem interface call for the ‘generic connect’ function
with a CONNECT subfunction. The subsystem notes the creation of the new region and, if this is the first
such CICS region to become active, invokes a service of MVS console support called “subsystem console
message broadcasting”. The message broadcasting service causes all subsequent console messages to
be broadcast to all subsystems that have expressed an interest in receiving them, including the CICS
subsystem. This MVS service can also be activated by other products, for example, NetView®.

If the message broadcasting service has been activated, either by CICS or by another product, the CICS
subsystem examines all messages issued by WTO macros in any address space, but it intercepts and
modifies only the following:

v Messages beginning with “DFH” that are issued under any CICS TCB, including those CICS regions
that do not have console message handling support.

© Copyright IBM Corp. 1997, 2011 359

These messages are reformatted to contain the CICS applid for the region in a standard position in the
message.

Because the CICS subsystem receives control after JES has recorded a console message in the job’s
message log, messages in the job log do not appear to be reformatted. The messages are only
reformatted on the operator consoles and in the MVS system log.

If the original message is a long one, inserting the CICS applid can cause the message to exceed the
maximum length for an MVS console message. In this case, the original message is suppressed (that
is, does not appear on the console), and the reformatted message is issued using the MVS multiple-line
console message service to split the message text over several lines. Both the original message and
perhaps several instances of the reformatted multiple-line message appear in the job log, but only one
copy of the reformatted message is displayed on the console.

v Messages that redisplay, on operator consoles or in the MVS system log, MODIFY commands that are
directed towards CICS and contain signon passwords for the CESN transaction.

These messages are reformatted with the passwords replaced by asterisks, so that the original
passwords are not exposed.

As each TCB terminates, it issues an ‘end of task’ subsystem call, which is broadcast to all active
subsystems. Likewise, as each address space terminates, it issues an ‘end of memory’ subsystem call,
which is also broadcast to all active subsystems. When it receives either of these calls, the CICS
subsystem first calls the end-of-memory routine in DFHIRP; then, if the terminating address space is
known by the subsystem, it invokes the ‘generic connect’ function with a DISCONNECT subfunction.

The DISCONNECT subfunction notes the termination of the CICS address space and, if this is the last
CICS containing console message handling support to terminate, notifies the “subsystem console message
broadcasting” support that the CICS subsystem is no longer interested in receiving broadcast console
messages. Nevertheless, if another product has kept console message broadcasting active, the CICS
subsystem continues to reformat messages from CICS regions that do not have console message
handling support.

Control Blocks

DSECT Function

DFHSABDS The CICS subsystem anchor block (SAB). This is used to contain global subsystem-related
information that is common to all CICS regions in the MVS image. It is used to record the
options specified in the DFHSSInn member of SYS1.PARMLIB. It contains a pointer to a bit
map that records which MVS address spaces contain an active CICS. It also contains the
address of the subsystem control table extension (SCTE) used by IRC, and the address of
the CEC status tracking information used by XRF.

IEFJSCVT The subsystem communication table (SSCT). This is an MVS control block. There is one
SSCT for each subsystem, including the primary job entry subsystem (JES) as well as CICS.

IEFJSSVT The subsystem vector table (SSVT). This is an MVS control block. There is one SSVT for
each active subsystem. It contains a lookup table for determining which function codes are
supported by the subsystem, and a list of the entry points for all the supporting function
routines.

Figure 74 on page 361 shows these control blocks.

Subsystem interface

360 CICS TS for z/OS: CICS Diagnosis Reference

Modules

Module Function

DFHSSIN Subsystem initialization routine for the CICS subsystem. Reads in subsystem parameters
from member DFHSSInn of SYS1.PARMLIB, creates SSVT, loads function modules into MVS
common storage.

DFHSSEN End-of-task and end-of-memory functional module. Calls DFHIRP’s EOT/EOM routine. Issues
‘generic connect’ if terminating region or job-step task is in the CICS address space map.

MVS CVT

X’128’

X’18’

X’04’ X’04’

X’104’

X’00’

X’04’

X’04’

X’04’

X’10’

X’14’

JESCT

SSCT (for JES)

SSCT (for MSRT)

SSCT (for CICS)

SSCT

SSVT (for CICS)

X’18’

SAB

SABASMAP

Other subsystem SSCTs Address space bit map

CVTJESCT
Address of JES
communication table

JESSSCT
Address of first SSCT

SSCTSCTA
Address of next SSCT

SSVTFCOD
Matrix of function IDs

List of addresses of
functional routines
(for example, DFHSSGC,
DFHSSWT, and DFHSSEN)

SSCTSCTA
Address of next SSCT

SABCDD
Address of CEC
‘inoperative’ data

SABSCTE
Address of SCTE

SABMAPPT
Address of bit map for
active CICS regions

SSCTSUSE
Address of subsystem
anchor block

SSCTSSVT
Address of SSVT for CICS

SSCTSCTA
Address of next SSCT

Figure 74. Control blocks associated with the subsystem interface

Subsystem interface

Chapter 46. Subsystem interface 361

Module Function

DFHSSGC The generic connect functional module. CONNECT subfunction sets the bit for the current
address space in the address space map. If this is the first CICS region to start, it invokes
IEAVG700 to initiate message broadcasting. DISCONNECT subfunction unsets the bit for the
current address space in the address space map. If this is the last CICS region to finish, it
invokes IEAVG700 to terminate message broadcasting.

DFHSSMGP Message routine for DFHSSIN.

DFHSSMGT Message table for DFHSSIN.

DFHSSWT Router module for the console message handler. Calls DFHSSWTO for messages beginning
with DFH. Calls DFHSSWTF for messages that echo MODIFY commands.

DFHSSWTF Suppresses passwords from the echoed copies of MODIFY CICS commands that contain
signon passwords.

DFHSSWTO Inserts the applid into all DFH messages issued under a TCB with a valid AFCB.

Exits
There are no user exits in the subsystem interface support.

Trace
No tracing is performed by the subsystem interface support.

External interfaces
Module DFHSSIN invokes the MVS module IEEMB878 to read its initialization parameters from
SYS1.PARMLIB.

Module DFHSSGC invokes the MVS module IEAVG700 to start and stop console message subsystem
broadcasting.

Modules DFHCSVC and DFHSSEN use the IEFSSREQ interface to communicate with the CICS
subsystem.

Subsystem interface

362 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 47. Subtask control

Subtask control is the interface between a CICS task and a subtask. It avoids suspending CICS execution,
and improves the response time.

This function is invoked by the DFHSK macro with the following calls:

v CTYPE=PERFORM activates an exit routine under a new TCB.

v CTYPE=WAIT waits for subtask to complete.

v CTYPE=RETURN returns control to the main CICS TCB.

Design overview
Some synchronous operating system requests issued by CICS modules could cause CICS to be
suspended until the requests had completed. To avoid the resulting response-time degradation, certain
requests are processed by the general-purpose subtask control program, DFHSKP. A CICS module calls
DFHSKP to execute a routine within the module under a subtask of the operating system.

DFHSKP does the following:

v Schedules a subtask to execute a routine (called an SK exit routine)

v Allows an SK exit routine to wait on an event control block (ECB) of the operating system

v Manages subtask creation, execution, and termination

v Handles program checks or abends within the SK exit routine.

DFHSKP consists of the DFHSKM, DFHSKC, and DFHSKE programs.

DFHSKM (subtask manager program)
A DFHSK macro invokes DFHSKM to cause a routine to be executed under a subtask of the operating
system. DFHSKM chooses a subtask to execute the request unless the caller has specified a particular
subtask.

DFHSKM determines whether the subtask is inoperative, not started, or running. The subtask is called
inoperative if it has terminated itself, or could not be attached. If the subtask is inoperative and the user
coded SYNC=YES in the DFHSK macro, the request is processed synchronously; that is, DFHSKM
executes the request under the CICS task control block (TCB).

If the subtask has not started, DFHSKM attaches a CICS task specifying the entry point of DFHSKC to
execute. DFHSKM then waits on an ECB in the subtask control area (SKA) for the subtask and continues
when the ECB is posted by DFHSKC, indicating that the subtask has been initialized.

DFHSKM then creates a work queue element (WQE) that represents the work to be performed under a
subtask. The WQE is added to the work queue for the subtask. When the work ECB of the subtask is
posted, signaling work to do, DFHSKM issues a wait on the work-complete ECB in the WQE. This ECB is
posted when the WQE has been processed by the subtask. DFHSKM returns control to the caller,
indicating the outcome of the processing.

If the subtask processing the WQE fails before completion, DFHSKM is informed and attempts to execute
the request synchronously if the caller so specified.

When CICS terminates, it issues a DFHSK CTYPE=TERMINATE macro to terminate the subtasking
mechanism. DFHSKM sets a flag in each subtask control area (in DFHSKP static storage) indicating that
the subtask should terminate. DFHSKM then posts the subtask work ECB to signal the subtask to examine
this flag.

© Copyright IBM Corp. 1997, 2011 363

DFHSKM is also invoked by deferred work element (DWE) processing.

When DFHSKM decides to process a WQE synchronously, control is passed to the routine specified by
the caller. This routine may not complete normally and, so that DFHSKM does not lose the WQE because
the task abended, it creates a DWE containing the address of the WQE. If the task abends, the DWE
processor adds the WQE to the free queue.

DFHSKC (subtask control program)
DFHSKM invokes DFHSKC using the DFHKCP attach logic to start a subtask of the operating system, and
wait for its completion. DFHSKM passes the address of the subtask control area in the facility control area
address (TCAFCAAA) in the TCA.

DFHSKC issues an EXEC CICS GETMAIN for shared storage to pass to the subtask for use as its
automatic storage. The length required is in a field in DFHSKE containing the automatic storage
requirements. DFHSKC issues the ATTACH macro with the ECB option to attach the operating system
subtask, and passes the address of the subtask control area.

DFHSKC issues the CICS SVC to authorize the TCB of the subtask to use the SVC.

DFHSKC issues a KC wait on the attach ECB. The module is suspended until subtask termination, when
the ECB is posted. On termination, the subtask puts a return code in the subtask control area.

When the subtask completes, DFHSKC cleans up the subtask work queue. It then frees the automatic
storage and terminates.

DFHSKC writes messages to CSMT from this module if it was unable to attach a subtask of the operating
system subtask, or the subtask indicated that its termination was not normal.

DFHSKE (subtask exit program)
When the subtask manager DFHSKM, executing on behalf of a CICS task, decides that a subtask is to be
started, it attaches a CICS task using the DFHKC ATTACH macro and specifying the entry point of
DFHSKCNA. This CICS task attaches the subtask and waits for subtask completion by means of the ECB
parameter coded in the ATTACH macro.

The ATTACH macro specifies an entry point in DFHSIP (known to MVS by an IDENTIFY macro issued in
DFHSIP). DFHSIP then branches to the entry point of DFHSKE, whose address is in the subtask control
area.

Note: DFHSIP remains in storage after initialization has completed.

The subtask reverses the order of the in-progress queue to service requests on a first-come, first-served
basis. It then loops round the in-progress queue and, for each WQE, branches to the program specified in
the WQE (the SK exit routine).

The exit routine returns control to DFHSKE, either indicating that the exit routine has completed by issuing
a DFHSK CTYPE=RETURN macro or requesting that execution of the SK exit is suspended until an ECB
specified by the exit is posted by some component of the operating system.

When a return is requested, the ECB in the WQE is posted, causing the dispatcher domain to resume the
CICS task that was waiting for the SK exit to be complete. When a wait is requested, the WQE is added to
the waiting queue, which is processed later.

When all WQEs in the in-progress queue have been processed, DFHSKE examines the waiting queue. If
any WQEs are on this queue, their ECB addresses are inserted into an operating-system multiple-wait

Subtask control

364 CICS TS for z/OS: CICS Diagnosis Reference

queue. The subtask work ECB (posted when a WQE is added to the work queue) is put at the top of this
multiple-wait list. An operating-system multiple-wait is then issued.

When the subtask regains control, an ECB has been posted. This can be because more work has arrived
or because an ECB belonging to an exit routine has been posted.

The WQEs on the waiting queue are scanned, and those whose ECB has been posted are moved to the
in-progress queue, with a flag on indicating that an SK exit routine is to be resumed.

Control returns to the beginning of this program which examines the work queue and proceeds as
described earlier.

DFHSKE handles program checks and operating system abends. If an abend exit is driven when
processing a WQE, that WQE is blamed and processing of it terminates. The CICS task requesting the
processing is informed of the problem.

If an abend exit is driven when a WQE is not being processed, it is assumed to be a problem in the
subtasking program. The abend is handled, and a count of failures is increased. When a threshold is
reached, the subtask terminates.

The MVS exits are ESTAE and SPIE.

For normal termination, DFHSKE loops, processing WQEs and waiting when there is no work to do. The
subtask checks a flag in the subtask control area to see if it has been requested to terminate. If the flag is
set, the subtask terminates, indicating normal termination by setting a response code in the subtask
control area for the attacher, DFHSKC.

Abnormal termination may occur when the error threshold has been reached. The subtask terminates, but
sets an error return code in the subtask control area for the attacher to see. The attacher, DFHSKC, then
cleans up any outstanding WQEs on the subtask queues.

Control blocks
This function has the following control blocks:

v SK static storage contains pointers to free work queue elements (WQEs) and to work queue elements.

v SKRQLIST is the parameter area passed to DFHSKP on a request. It contains the address of the code
to be executed, and the address of the ECB.

v DFHSKWPS is the WKE structure containing the address of the next WQE in the chain, the contents of
the parameter field from CTYPE=PERFORM, the save area for registers, and the work-complete ECB.

v DFHSKAPS is the subtask control area. Each instance of this control block describes the state of one
subtask and contains the address of automatic storage to be used by DFHSKE, pointers to the WQE
used by the subtask, the current WQE being processed, and the ECB for work and completion.

See the CICS Data Areas manual for a detailed description of these control blocks.

Modules

Module Function

DFHSKC The subtask control program is invoked by DFHSKM to start up a subtask of the operating
system

DFHSKE The general-purpose multitask program is executed as a subtask of the operating system

DFHSKM The subtask manager program causes the routine to execute under a subtask.

Subtask control

Chapter 47. Subtask control 365

Exits
No global user exit points are provided for this function.

Trace
The following point ID is provided for this function:
v AP 00DE, for which the trace level is AP 1.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

External interfaces
The following external calls are made by DFHSKC:
MVS ATTACH To attach a new TCB
MVS DETACH To detach a TCB
MVS POST To post a CICS TCB.

The following external calls are made by DFHSKE:
MVS ESTAE To establish an error exit
MVS WAIT To synchronize with the TCB
MVS SETRP To retry after a failure.

Subtask control

366 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 48. Syncpoint program

This allows the user to specify logical units of work by means of syncpoints. Any processing performed
between syncpoints (provided the resources are declared as recoverable) can be reversed in the event of
an error; but after a given syncpoint has been reached, the processing performed before that syncpoint
cannot be reversed.

A syncpoint is also taken automatically at the end of each task.

Design overview
The syncpoint program works in conjunction with the Recovery Manager domain to provide the user with
the ability to establish points in application programs at which all recoverable updates are committed. (The
user can, at any time, back out any uncommitted changes by means of the rollback function.)

The syncpoint interface is provided by the DFHSPP module. DFHSPP is invoked, via the EXEC Interface
module DFHEISP, when an application program issues an EXEC CICS SYNCPOINT or SYNCPOINT
ROLLBACK command. It is also called from other CICS modules, such as DFHMIRS.

Further important information about syncpoint processing is given in Chapter 26, “Function shipping,” on
page 277 and Chapter 99, “Recovery Manager Domain (RM),” on page 1061.

DFHSPP implements syncpoint calls by in turn calling the Recovery Manager domain with DFHRMUWM
COMMIT_UOW or BACKOUT_UOW requests. RM calls its clients with prepare, commit, start backout etc.
calls. One of RM's clients is ’APUS’, serviced by module DFHAPRC. Depending on the call from RM
DFHAPRC calls DFHSPP or DFHDBP to process Deferred Work Elements (DWEs). DWEs provide a
mechanism whereby resource owners can record their need to perform actions at a syncpoint. Most
resource owners provide their own RM client routines, but a few, such as interval control, use DWEs.

Note that the implicit syncpoint or backout performed at task termination is effected by a direct call to the
RM domain, not by issuing a DFHSP macro.

Task-related user exit resynchronization
The purpose of task-related user exit resynchronization is to allow a resource manager to ask CICS for the
resolution of UOWs about which it is in-doubt. Task related user exit resynchronization is called as a result
of an EXEC CICS RESYNC command to restore the CICS end of the thread that was interrupted by the
failure of the connection with the resource manager.

DFHRMSY is passed a parameter list by DFHERMRS which consists of the following: rmi entryname (8
bytes) - the name of the TRUE to be called for resync. rmi qualifier (8 bytes) - the qualifier to the name of
the TRUE to be called for resync. uowid (8 bytes) - the id of the UOW to be resynchronized resync type (1
byte) - a flag indicating whether this is a resync as a result of an EXEC CICS RESYNC command or due
to a Recovery manager domain unshunt.

DFHRMSY's job is to call the named TRUE with a resync call giving the resolution of the named UOW.
The resolution can be commit, backout, should not be indoubt or lost to initial start. (Lost to initial start
means that a START=INITIAL has been performed subsequent to the indoubt UOW being created. Initial
start clears the log and the catalog meaning that Recovery Manager has no knowledge of the UOW.)

In order to find the outcome of the UOW, DFHRMSY issues a INITIATE_RECOVERY call to Recovery
manager domain for the named UOW, which returns the UOW status. DFHRMSY then builds the resync
plist to pass to the TRUE, and calls the TRUE using a DFHRMCAL macro. On return from the TRUE, if
the TRUE returns an OK response indicating that it has successfully resynced with its resource manager,
then DFHRMSY issues a TERMINATE_RECOVERY call to RECOVERY manager domain specifying

© Copyright IBM Corp. 1997, 2011 367

FORGET(YES). This tells RM domain it can remove this TRUE's involvement in the UOW. If no other
components or TRUEs are waiting resync for the UOW, then RM domain will delete it's knowledge of the
UOW. If the TRUE does not return with an ok response, FORGET(NO) is specified on the
TERMINATE_RECOVERY call, and RM domain retains this UOW for this TRUE. A subsequent resync will
be required.

Control blocks
This section describes the control blocks used by the syncpoint program:
v Deferred work element (DWE)

See the CICS Data Areas manual for a detailed description.

Deferred work element (DWE)
A deferred work element (DWE) is created and placed on a DWE chain to save information about actions
that must be taken when the unit of work terminates. These actions may depend upon whether the UOW
commits or backs out.

DWEs are created by CICS control modules, and chained off field TCADWLBA in the task’s TCA using
DWECHAN as the chain field. The module that creates a DWE inserts the entry address of a DWE
processor in field DWESVMNA of that DWE. Control is passed to this DWE processor by the syncpoint
program at the end of the task or UOW.

DWEs can be used for work to be done before or after the syncpoint is logged or in the event of
transaction backout.

The layout of DWEs is defined by the DFHDWEPS structure and by the DFHDWEDS assembler DSECT.

Modules
DFHSPP, DFHAPRC, DFHDBP

DFHSPP
DFHSPP can be invoked by the following macros:
DFHSP TYPE=USER Take a syncpoint
DFHSP TYPE=ROLLBACK Roll back the current unit of work
DFHSP TYPE=PHASE_1 Do DWE processing for prepare
DFHSP TYPE=PHASE_2 Do DWE processing for commit

When DFHSPP is called by means of a DFHSP TYPE=USER or TYPE=ROLLBACK macro the request is
converted into a call to the Recovery Manager domain to commit or backout the current UOW. If the RM
request fails SPP calls DFHAPAC to select an abend code corresponding to the failure reported by RM
(for example ASP1 for an in-doubt failure) and, in most cases, issues a PC ABEND with this abend code.

In the case of a commit or backout failure, however, no PC ABEND is issued and the transaction
continues normally. In these cases CICS has, for the present, been unable to bring all local resources to
the committed state for this unit of work. It has recorded any data necessary to re-attempt this at some
later time, and has retained any locks necessary to preserve data integrity until then.

When DFHSPP is called by means of a DFHSP TYPE=PHASE_1 or TYPE=PHASE_2 macro SPP
processes any DWEs in the DWE chain (TCADWLBA). The TYPE=PHASE_1 call is issued by DFHAPRC
in response to an RM prepare or end_backout request. For each DWE in the chain that is not marked as
cancelled (DWECNLM ON) or phase_2 only (DWEPHS2 ON) the DWE processor (entry address
DWESVMNA) is called. In the prepare case SPP collects ’votes’ and may return a YES, NO or
READ-ONLY vote to its caller. Also, if necessary, a DL/I TERM call is issued to allow DFHDLI to perform

Syncpoint program

368 CICS TS for z/OS: CICS Diagnosis Reference

end-of-UOW actions. The TYPE=PHASE_2 call is issued by DFHAPRC in response to an RM commit or
shunt request. For each DWE in the chain that is marked phase 2 and not cancelled the DWE processor
is called. In the shunt case any DWE that is marked for shunting (DWESHUNT ON) is retained in the
DWE chain. All other DWEs are freed.

DFHDBP
DFHDBP is link-edited with DFHAPRC and is called by DFHAPRC in response to an RM start_backout
request. For each DWE in the task's DWE chain that is not marked cancelled it marks the DWE as
’backout’ (DWEDYNB ON). For any BMS DWE it issues a DFHBMS TYPE=PURGE request to discard the
incomplete message, otherwise it calls the DWE processor then marks the DWE as cancelled.

DFHAPRC
DFHAPRC is the module which provides the gate for the ’APUS’ Recovery Manager client. It provides
keypoint and restart support for user written log records, which is described elsewhere, and syncpoint
support where it serves as a receiver for RMRO calls from the RM domain for prepare, commit, etc. which
it converts into appropriate calls to SPP or DBP described above.

Exits
No global user exit points are provided for this function.

Trace
The following point IDs are provided for this function:
v AP 00CB, for which the trace level is AP 1.
v AP D8xx, for which the trace level is AP 1.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Syncpoint program

Chapter 48. Syncpoint program 369

370 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 49. System dump formatting program

The system dump formatting program is for use on MVS system dump (SYS1.DUMP) data sets that
record system dumps requested by CICS via the MVS SDUMP macro.

The program is invoked via the interactive problem control system (IPCS). You can use IPCS either
interactively or from an MVS batch job.

The CICS-supplied sample system dump formatting program for use with CICS Transaction Server for
z/OS, Version 3 Release 1 control blocks is called DFHPD640.

For further information about the system dump formatting programs, about using IPCS to format and
analyze CICS dumps, and about the dump exit parameters available, see the CICS Operations and
Utilities Guide.

Design overview
The system dump formatting program produces a formatted listing of CICS control blocks grouped within
functional area. CICS dump exit parameters can be specified on the IPCS VERBEXIT subcommand to
indicate whether the control block output is to be produced or suppressed for each functional (component)
area. Summary reports are available for certain of the functional areas, and the dump exit parameters can
also indicate whether these are to be produced or suppressed.

Modules

Module Function

DFHAIDUF Autoinstall terminal model manager formatter
DFHAPTRA Application domain multiregion operation trace interpreter
DFHAPTRB Application domain extended recovery facility trace interpreter
DFHAPTRC Application domain user exit trace interpreter
DFHAPTRD Application domain trace interpreter
DFHAPTRE Application domain data tables trace interpreter
DFHAPTRF Application domain SAA Communications and Resource Recovery interfaces trace interpreter
DFHAPTRG Application domain ZC exception and VTAM exit trace interpreter
DFHAPTRI Application domain trace interpretation router
DFHAPTRJ Application domain ZC VTAM interface trace interpreter
DFHAPTRL Application domain CICS OS/2 LU2 mirror trace interpreter
DFHAPTRN Application domain autoinstall terminal model manager trace interpreter
DFHAPTRO Application domain LU6.2 application request logic trace interpreter
DFHAPTRP Application domain program control trace interpreter
DFHAPTRR Application domain partner resource manager trace interpreter
DFHAPTRS Application domain DFHEISR trace interpreter
DFHAPTRV Application domain DFHSRP trace interpreter
DFHAPTRW Front End Programming Interface feature trace interpreter
DFHAPTR0 Application domain old-style trace entry interpreter
DFHAPTR2 Application domain statistics trace interpreter
DFHAPTR4 Application domain transaction manager trace interpreter
DFHAPTR5 Application domain file control trace interpreter
DFHAPTR6 Application domain DBCTL DL/I trace interpreter
DFHAPTR7 Application domain LU6.2 transaction routing trace interpreter
DFHAPTR8 Application domain security trace interpreter
DFHAPTR9 Application domain interval control trace interpreter
DFHCCDUF CICS catalog formatter

© Copyright IBM Corp. 1997, 2011 371

Module Function

DFHCCTRI CICS catalog trace interpreter
DFHCPDUF SAA Communications and Resource Recovery interfaces formatter
DFHCSDUF CSA and CSA optional features list formatter
DFHDBDUF DBCTL and remote DL/I dump formatter
DFHDDDUF Directory manager formatter
DFHDDTRI Directory manager trace interpreter
DFHDMDUF Domain manager formatter
DFHDMTRI Domain manager trace interpreter
DFHDSDUF Dispatcher domain formatter
DFHDSTRI Dispatcher domain trace interpreter
DFHDUDUF Dump domain formatter
DFHDUF Formatting router
DFHDUFUT Service functions routine
DFHDUTRI Dump domain trace interpreter
DFHERDUF Error message index processor
DFHFCDUF File control formatter
DFHFRDUF File control recoverable work elements formatter
DFHICDUF Interval control formatter
DFHIPCSP Table of CICS entries for the IPCS exit control table
DFHIPDUF Kernel stack internal procedure formatter
DFHKEDUF Kernel domain formatter
DFHKELOC Routine for locating domain anchors
DFHKETRI Kernel domain trace interpreter
DFHLDDUF Loader domain formatter
DFHLDTRI Loader domain trace interpreter
DFHLMDUF Lock manager formatter
DFHLMTRI Lock manager trace interpreter
DFHMEDUF Message domain formatter
DFHMETRI Message domain trace interpreter
DFHMNDUF Monitoring domain formatter
DFHMNTRI Monitoring domain trace interpreter
DFHMRDUF Multiregion operation formatter
DFHNXDUF Control block index processor
DFHPADUF Parameter manager formatter
DFHPATRI Parameter manager trace interpreter
DFHPDKW Input parameter string validation routine
DFHPDX1 Control program
DFHPGDUF Program manager formatter
DFHPGTRI Program manager trace interpreter
DFHPRDUF Partner resource manager formatter
DFHPTDUF Program control table formatter
DFHRMDUF Resource recovery manager formatter
DFHSMDUF Storage manager formatter
DFHSMTRI Storage manager trace interpreter
DFHSNTRI Application domain signon trace interpreter
DFHSSDUF Static storage area formatter
DFHSTDUF Statistics domain formatter
DFHSTTRI Statistics domain trace interpreter
DFHSUDUF Dump domain summary formatter
DFHSUTRI Subroutine trace interpreter
DFHSZDUF Front End Programming Interface feature dump formatter
DFHTCDUF Terminal control formatter
DFHTDDUF Transient data formatter
DFHTDTRI Transient data trace interpreter

System dump formatting program

372 CICS TS for z/OS: CICS Diagnosis Reference

Module Function

DFHTIDUF Timer domain formatter
DFHTITRI Timer domain trace interpreter
DFHTMDUF Table manager formatter
DFHTRDUF Trace domain formatter
DFHTRFFD Trace entry data field formatter
DFHTRFFE Trace entry formatter
DFHTRFPB Routine to process blocks of trace entries
DFHTRFPP Routine for selecting trace entries to be printed
DFHTRIB Trace entry interpretation string builder
DFHTRTRI Trace domain trace interpreter
DFHTSDUF Temporary-storage formatter
DFHUEDUF User exit formatter
DFHUSDUF User domain dump formatter
DFHUSTRI User domain trace interpreter
DFHXMDUF Transaction manager domain formatter
DFHXMTRI Transaction manager domain trace interpreter
DFHXSDUF Security domain dump formatter
DFHXSTRI Security domain trace interpreter
DFHXRDUF Extended recovery facility (XRF) formatter
DFHZXDUF XRF ZCP queue formatter

Exits
Global user exit points are not applicable to offline utilities.

Trace
Trace points are not applicable to offline utilities. However, the output obtained and any messages issued
by the system dump formatting program may provide clues to problems associated with corrupted data.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

External interfaces
The following external calls are used by the system dump formatting program:

v MVS GETMAIN and FREEMAIN for storage management

v OPEN SVC to open DFHSNAP

v CLOSE SVC to close DFHSNAP

v MVS IPCS service routines.

System dump formatting program

Chapter 49. System dump formatting program 373

System dump formatting program

374 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 50. System recovery program

The system recovery programs, DFHSR1, DFHSRP, and DFHSRLI, together form the default CICS
recovery routine for the application (AP) domain. This routine is, in particular, the recovery routine for
program checks, operating system abends, and runaway tasks that occur in user application code.

Design overview
The CICS kernel intercepts program checks, runaway tasks, operating system abends and some other
internal errors for all CICS domains. The kernel then selects which CICS recovery routine to pass control
to. The selected recovery routine can then process the error as appropriate.

The DFHSR1 module is the default recovery routine for the application domain. It receives control if any of
the above errors occur in CICS system application programs, user application programs and some CICS
nucleus modules. It processes internal errors itself but, when dealing with program checks, operating
system abends, and runaway task abends, it calls the DFHSRP module. The DFHSRP module, in turn,
converts the error into a transaction abend, if possible; if not possible, it terminates CICS. The DFHSRP
module uses subroutines in DFHSRLI.

The transaction abend codes that may be issued are:

AEYD
error detected by command protection

AICA task runaway

AKEF domain gate not active

AKEG kernel stack storage GETMAIN failure.

ASRA program check

ASRB
operating system abend

ASRD illegal macro call or attempt to access the CSA or TCA

ASRK
TCA not available

xxxx as set by issuers of deferred abend

The processing associated with each of these abends is described in “Error handling” on page 376.

For further information about the abends, see the CICS Messages and Codes manual.

System recovery table
Associated with DFHSRP is the system recovery table (SRT). This is a table that the user can provide,
containing operating system abend codes. It controls whether CICS recovers from program checks and
operating system abends in noncritical code.

You specify the name of the system recovery table by the SRT system initialization parameter, as either
SRT=NO or SRT=xx, where xx is the two-character suffix of the SRT:

v If NO is coded, CICS does not recover from program checks or operating system abends, and
terminates if one occurs.

v If a suffix is coded, CICS attempts to recover from all types of program check, but can only recover
from an operating system abend if the abend code appears in the SRT identified by the suffix (for
example, DFHSRT1A where 1A is the suffix). If the abend code is not in the SRT, CICS terminates.

© Copyright IBM Corp. 1997, 2011 375

For information about how to create the SRT, see the CICS Resource Definition Guide.

Recovery initialization
The DFHSII1 module calls the DFHSR1 module during AP Domain initialization. The DFHSR1 module tells
the Kernel that it is the default recovery routine for the AP domain and adds the ABAB gate.

If any error occurs when informing the kernel, CICS is terminated with message DFHSR0605 and a
system dump because it is not possible to run CICS without AP domain recovery.

Error handling
The DFHSR1 module gets control from the kernel or from other AP domain modules. It decides whether it
is dealing with an internal error or an external error such as a program check. Internal errors are dealt with
by exiting from the recovery environment and issuing the appropriate kernel call. If either of the DFHXFP
or DFHEMS modules has caused a program check, the DFHSR1 module exits from the recovery
environment and passes control to DFHXFP or DFHEMS. All other external errors are passed on to the
DFHSRP module. If control returns from the DFHSRP module, DFHSR1 issues a transaction abend. If
control returns from the abend call, it is because the XPCTA exit has requested retry; in which case,
DFHSR1 restores the registers etc and branches to the resume address.

The DFHSRP module makes an exception trace entry, ensures it is running on the QR TCB and then
deals with one of the following:

v Program check (see “Program check”)

v Operating system abend (see “Operating system abend” on page 377)

v Runaway task (see “Runaway task” on page 378)

v Kernel gate error (see “Kernel gate error” on page 378)

v Deferred abend. (see “Deferred abend” on page 378).

Note: The kernel recovery environment is terminated very soon after DFHSRP receives control. This
ensures that DFHSRP gets driven again if a subsequent error occurs in DFHSRP itself (rather than
the kernel percolating the error to the next kernel stack entry). DFHSRP is therefore in a position to
detect such recursive errors, and can take the appropriate action.

If DFHSRP can abend the transaction, it builds a Transaction Abend Control Block (TACB) to describe the
abend. The TACB is a task-lifetime control block that records details of a transaction abend. This TACB
may be used by the rest of AP domain that needs information about the abend. DFHSRP builds the TACB,
rather than letting Program Control build it as part of DFHPC TYPE=ABEND processing. This enables
DFHSRP to include extra information in the TACB that would otherwise be lost, such as GP registers,
PSW, and FP registers at the time of the error.

Program check
The following processing takes place for a program check, in the order given:

1. If this program check occurred while DFHSRP was in the middle of processing a previous program
check, then CICS is terminated with message DFHSR0602 and a system dump. Otherwise DFHSRP
may get caught in a recursive loop.

2. If this program check occurred while DFHSRP was in the middle of processing an operating system
abend, then CICS is terminated with message DFHSR0615 and a system dump. This traps program
checks in global user exit XSRAB.

3. If DFHEIP hired gun checking caused the program check, create an abend record for abend code
AEYD and return to DFHSR1.

4. If the program check was an 0C4 protection exception, DFHSRP diagnoses the 0C4 further in order
to establish whether it was caused by an attempt to access or overwrite CICS-managed protected
storage. Such storage is as follows:
v The fetch-protected dummy CSA block

System recovery program

376 CICS TS for z/OS: CICS Diagnosis Reference

v The CDSA
v The ECDSA
v The ERDSA.
v The EUDSA.
v The RDSA.
v The UDSA.

Of the above, it should be noted that one can only 0C4 on the CDSA or ECDSA if storage protection
is active, while 0C4 on the UDSA or EUDSA can only be obtained if transaction isolation is active.

This diagnosis is accomplished by disassembling the failing instruction, and examining the instruction
operands in conjunction with the execution conditions at the time of the 0C4 (such as execution key).
If the dummy CSA caused the 0C4 (that is, an attempt was made to access the CSA or TCA, or an
illegal macro call was issued), message DFHSR0618 is issued. If a DSA caused the 0C4, message
DFHSR0622 is issued.

5. If the SRT=NO system initialization parameter was specified, you have disabled recovery, and CICS
terminates with message DFHSR0603 and a system dump.

6. If a CICS system task was in control at the time of the program check, indicated by a non-numeric
transaction number, CICS is terminated with message DFHSR0601 and a system dump.

7. Some special processing is performed which applies only to PL/I programs.

8. DFHSRLI is called to determine the following information:
v The program in which the program check occurred
v The offset in that program
v The execution key.

9. The results of the diagnosis (program, offset, execution key, and, if an 0C4 abend, any “hit” DSA) are
output in an exception trace.

10. Message DFHAP0001 or DFHSR0001 is issued and a system dump is taken. (See also “System
dump suppression” on page 379.)

Whether message DFHAP0001 or DFHSR0001 is issued is governed by the execution key at the
time of the program check. If the program was running in user key, message DFHSR0001 is issued;
otherwise, message DFHAP0001 is issued.

11. Finally, DFHSRP creates an abend record and returns to DFHSR1.

Operating system abend
The following processing takes place for an operating system abend, in the order given:

1. If this abend occurred while DFHSRP was in the middle of processing a previous operating system
abend, then CICS is terminated with message DFHSR0612 and a system dump. Otherwise, DFHSRP
may get caught in a recursive loop.

2. If the SRT=NO system initialization parameter was specified, you have disabled recovery, and CICS
terminates with message DFHSR0606. A system dump may be taken, if specified on the operating
system abend.

3. If the SRT=xx system initialization parameter was specified, DFHSRP searches the SRT with the
suffix xx (that is, DFHSRTxx) for the abend code. If it does not find the abend code, CICS terminates
with message DFHSR0606. A system dump may be taken, if specified on the operating system
abend.

4. When the abend code has been located, the next check is to see if the operating system abend
occurred in a CICS system task, indicated by a non-numeric transaction number. If so, CICS
terminates with message DFHSR0613 and a system dump.

5. Otherwise, the default decision is to abend the transaction with code ASRB. However, you can modify
this decision by coding a global user exit program at exit point XSRAB. In addition to performing any
processing that might be required for particular operating system abends, the XSRAB exit point
allows you to specify whether to:
v Terminate CICS
v Abend the transaction ASRB

System recovery program

Chapter 50. System recovery program 377

v Abend the transaction ASRB, but cancel any active HANDLE ABEND exits.

6. If you choose to terminate CICS, CICS terminates with message DFHSR0606. A system dump may
be taken, if specified on the operating system abend.

7. DFHSRLI is called to determine the following information:
v The program in which the program check occurred
v The offset in that program
v The execution key.

8. The results of the diagnosis (program, offset, and execution key) are output in an exception trace.

9. Message DFHAP0001 or DFHSR0001 is issued and a system dump is taken. (See also “System
dump suppression” on page 379.)

Whether message DFHAP0001 or DFHSR0001 is issued is governed by the execution key at the
time of the program check. If the program was running in user key, message DFHSR0001 is issued;
otherwise, message DFHAP0001 is issued.

10. Finally, DFHSRP The DFHSRP module creates an abend record with abend code ASRB returns to
DFHSR1.

Runaway task
One of the following processing options takes place for a runaway task:

v If this runaway task occurred while DFHSRP was in the middle of processing an operating system
abend, CICS terminates with message DFHSR0612 and a system dump. This traps runaway tasks
caused by errors in global user exit XSRAB.

v Otherwise, the DFHSRP module creates an abend record with abend code AICA and returns to
DFHSR1.

Kernel gate error
One of the following processing options takes place for a kernel gate error:

v If this error occurred while DFHSRP was in the middle of processing an operating system abend, CICS
terminates with message DFHSR0612 and a system dump. This traps kernel gate errors from XPI calls
in global user exit XSRAB.

v Otherwise, the DFHSRP module issues message DFHAP0001, creates an abend record with abend
code AKEF, and returns to DFHSR1.

kernel stack GETMAIN error
The processing that takes place for a kernel stack GETMAIN error is identical to the processing for a
kernel gate error, except that the transaction is abended with abend code AKEG.

Deferred abend
The DFHSRP module creates an abend record using the abend code set by the code that issued the
deferred abend and returns to DFHSR1.

DFHSRLIM interface
This interface is used to call program DFHSRLI. It provides the following functions for DFHSRP:

INVOKE_XSRAB
This function invokes global user exit XSRAB if active, passing to it structure SRP_ERROR_DATA which
contains details of the operating system abend that occurred. The abend recovery option selected by the
exit is returned, which is either to terminate CICS, abend the transaction ASRB, or abend the transaction
ASRB and cancel any active abend exits.

System recovery program

378 CICS TS for z/OS: CICS Diagnosis Reference

DIAGNOSE_ABEND
This function diagnoses a program check, operating system abend, or other error, to establish the location
of the error. It returns the program in which the error occurred, the offset within that program, and whether
the error occurred in CICS or user application code. (A decision based on the execution key; user key
implies user application code.)

System dump suppression
When message DFHAP0001 or DFHSR0001 is issued before the transaction is abended with ASRA,
ASRB, ASRD, AKEF, or AKEG, the default is to take a system dump with dumpcode AP0001 or SR0001
respectively. Message DFHSR0001 is issued if CICS is running with storage protection active and is
running in user key at the time of the error; otherwise, message DFHAP0001 is issued.

Therefore, it is possible to suppress the system dumps taken for errors occurring in code that is being run
in user key (user application code), while retaining system dumps for errors occurring in code that is being
run in CICS key (CICS code), by adding SR0001 to the dump table specifying that no system dump is to
be taken.

Note that the XDUREQ Global User Exit can be used to distinguish between AP0001 situations in
application and non-application code. This allows selective dump suppression when storage protection is
not active or when it is active but some applications run in CICS key.

Modules

Module Function

DFHSRP Called by DFHSR1 to process program checks, operating system abends, runaway tasks, and so on.

DFHSRLI Provides functions for DFHSRP, via the DFHSRLIM interface.

DFHSR1 The default recovery routine for the AP Domain.

Exits
There is one global user exit point in DFHSR1: XSRAB. This exit can be called if an operating system
abend has occurred and the abend code is in the SRT.

For further information about using the XSRAB exit, see the CICS Customization Guide.

Trace
The following trace point IDs are provided for DFHSRP and DFHSRLI:
v AP 0701, for which the trace entry level is AP 2
v AP 0702, for which the trace entry level is AP 2
v AP 0780, for which the trace entry level is Exc
v AP 0781, for which the trace entry level is Exc
v AP 0782, for which the trace entry level is Exc
v AP 0783, for which the trace entry level is Exc.
v AP 0790, for which the trace entry level is Exc
v AP 0791, for which the trace entry level is Exc
v AP 0792, for which the trace entry level is Exc
v AP 0793, for which the trace entry level is Exc.
v AP 0794, for which the trace entry level is Exc
v AP 0795, for which the trace entry level is Exc
v AP 0796, for which the trace entry level is Exc
v AP 0797, for which the trace entry level is Exc.
v AP 0798, for which the trace entry level is Exc

System recovery program

Chapter 50. System recovery program 379

v AP 0799, for which the trace entry level is Exc.
v AP 079A, for which the trace entry level is Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

System recovery program

380 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 51. System spooler interface

A system programmer can communicate with the local system spooler and, consequently, with other
system spoolers via the system spooler network facilities. The system spooler interface single-threads its
input, and it is the user’s responsibility to see that all transactions get the chance to run. One high-priority
transaction should not use the interface exclusively.

Further information about the system spooler interface is given in the CICS Application Programming
Reference.

Design overview
The system spooler interface program opens a system spooler file for either input or output, reads or
writes a file, and closes a file. These functions are for system programmer use. The input is
single-threaded, so only one transaction can use it at a time.

An application can send files to a remote location by specifying the node of the location, and the userid (or
external writer name) of the user at that location. To retrieve a file at the remote location, you specify the
external writer name, and you can then retrieve reports from that writer. For security reasons, the external
writer name must begin with the same four characters as the CICS applid. The remote system to which a
file or report is sent, or from which it is received, must have JES under MVS, or VM.

System spooler interface modules
The SPOOLOPEN command dynamically allocates input or output files using the CICS SVC, and an
application control block (ACB) is opened to process the file. For an input file, the IEFSSREQ macro is
also issued to determine which file to process. The SPOOLREAD or SPOOLWRITE commands cause
GETs or PUTs to be issued using the ACB. The SPOOLCLOSE command dynamically deallocates a file,
and causes it to be either transmitted or deleted. All processing which could cause CICS to be suspended
is performed under an operating system subtask which is initiated by subtask control, DFHSKP.

DFHPSPST runs under CICS, but DFHPSPSS, and modules called as a result, run under the subtask.

Normal flow
When a system spooler interface command is executed, the normal sequence of invocation of modules is:
1. DFHEIP
2. DFHEPS
3. DFHPSP
4. DFHPSPSS
5. DFHPSPST
6. DFHPSSVC.

DFHPSP is called by:

v Application programs via DFHEPS issuing the DFHPS macro.

v Syncpoint program and dynamic transaction backout program to the deferred work element (DWE)
module (DFHPSPDW). The entry address of DFHPSPDW is stored in the DWE. DFHPSPDW then calls
DFHPSPST via DFHPS.

Abnormal flow
If a user transaction terminates without issuing a SPOOLCLOSE command, DFHPSPDW is invoked to
process a DWE that was set up when the SPOOLOPEN command was processed. This closes the file in
the usual way.

© Copyright IBM Corp. 1997, 2011 381

Modules

Module Name

DFHEIP DFHEIP initializes the EXEC interface structure (EIS) and then invokes the application
program. Each EXEC CICS command invokes DFHEIP (nucleus) which in turn invokes the
appropriate interface processor. DFHEIP also returns information to the application program
through EIB (within EIS).

DFHEPS DFHEPS is the link between DFHEIP and the JES interface program, DFHPSP.

DFHPSP DFHPSP is the system spooler interface control module.

DFHPSPCK DFHPSPCK is the JES interface termination processor.

DFHPSPDW DFHPSPDW is the DWE processor.

DFHPSPSS The system spooler interface subtask module attaches a subtask to check that a writer name
and a token have been supplied. It opens and closes JES data sets, reads a record, and
writes a record.

DFHPSPST DFHPSPST is the JES interface controller.

DFHPSSVC DFHPSSVC is the system spooler interface module that retrieves a data set name for a given
external writer name, dynamically allocates it, and returns its DDNAME.

Exits
No global user exit points are provided for this interface.

Trace
The following point ID is provided for this interface:
v AP 00E3, for which the trace level is AP 1.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

System spooler interface

382 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 52. Table manager

The table manager controls the locating, adding, deleting, locking, and unlocking of entries in certain CICS
tables. These operations can be performed while CICS is running.

Design overview
Locating, adding, deleting, locking, and unlocking entries in tables such as the file control table (FCT),
application file control table (AFCT), data set name block table (DSNT), and terminal control table (TCT)
are performed by the table manager program, DFHTMP. Entries in these tables are also called
“resources”. Because the structures of tables vary as entries are added or deleted, and a quick random
access is required, a hash table mechanism is used to reference the table entries. In addition because fast
access is needed for generic locates and ordered lists of entries, a getnext chain with a range table is
used.

Hash table
The hash table is a set of pointers that are the addresses of directory elements of table entries. A directory
element is a set of pointers; one of these pointers is the address of the table entry, the remaining pointers
are the addresses of the next elements of various chains used in the different operations of the table
manager. An example of a hash table is shown in Figure 75 on page 384.

The table manager logically combines the characters of the name of the resource, and transforms the
result to give an integer that is evenly distributed over the hash table size.

When an entry is located or added, the table manager places it at the head of its chain. Thus frequently
used entries tend to have the minimum search times.

If the hash chains become very long, the table manager creates a larger hash table if storage is available.
The hash table is enqueued before and dequeued after the reorganization, so that no references to the
table can be made during reorganization.

Note: Certain TMP hash tables are not reorganized because they are also used in VTAM SRB exits.

Range table and getnext chain
Some requests to TMP are not full key locates, but rather generic locates with a partial key. For example,
requests to find all terminals whose Termid starts with two specified characters. To enable these requests,
a getnext chain is maintained which orders all the directory elements alphabetically by key. There is also a
‘range table’ which holds pointers to certain elements along the getnext chain and a count of how many
intermediate elements there are in each range.

This range table is hunted with a binary search to find the range in which a given key (full or partial) will
reside, and then the getnext chain is used to find a match (if one exists) for the search condition.

A range will be split into two equal ranges if the number of intermediate elements rises above a threshold
which depends on the number of ranges and the number of elements in the table. So the ranges are
dynamic, and do not depend on any particular key distribution.

The number of ranges in the table is determined when the hash table is created, and if all the ranges are
full, but a range should be split, a reorganization of the ranges takes place, which increases the range
threshold by a factor of 2.

© Copyright IBM Corp. 1997, 2011 383

Secondary indexes
A separate hash table, called the secondary index, is created for certain TMP tables, which allows the
same entry to be located by another key. In certain secondary indexes, the names do not need to be
unique (whereas in the primary index the name is always unique). The secondary index entry is deleted at
the same time the entry in the primary index is deleted.

For example, a secondary index is created for DSNAME blocks. This allows table entries to be accessed
via secondary keys, using the DSNAME block number in the case of DSNAME blocks.

Certain tables also have aliases as distinct from secondary indexes. These are alternative names for the
table entry, which can be used to locate a table entry. They exist in the same index as the primary name,
and are not included in a getnext chain, rather they form an alias chain from the primary entry.

Functions of the table manager
The table manager performs the following functions:
Locate table entry For a given name, find the address of the table entry.
Get next table entry For a given name, find the address of the next table entry in collating

sequence. This can be used repeatedly to find all entries in a range (or all
elements in the whole table).

Add table entry For a given table entry, add it into the table.
Quiesce a table entry For a given name, mark its directory segment as busy.
Unquiesce a table entry For a given name, remove its directory segment from the ‘quiesce’ state.
Delete a table entry For a given name, delete it and any associated alias. The entry must have

been quiesced first.

Directory segment
TMDSG

x'18' Start of
Scatter table directory elements
TMSKT

Directory element
x'30' SKTDIREA TMDEL

Address of first
directory element chain x'00' DIRTEA

Address of table entry
x'34' SKTDIREA

0 x'04' DIRHSCHN
Address of next element

(Minimum of
64 separate chains) x'18' DIRKEY

SKTDIREA
Address of last Table entry
directory element chain

Directory element

x'00' DIRTEA

x'04' DIRHSCHN
0

x'18' DIRKEY

Table entry

Directory element

x'00' DIRTEA

x'04' DIRHSCHN
0

x'18' DIRKEY

Table entry

Figure 75. Example of a hash table

Table manager

384 CICS TS for z/OS: CICS Diagnosis Reference

Create an index for a table Create a hash table of a given type.
Add a name into a secondary index

Given a primary name and a secondary name, add the names to the
secondary index.

Add an alias name For a given name, assign an alias name.
Get next alias name For a given a name, find the next alias name (if any).
Lock a table entry For a given a name, assign a read lock to it.
Unlock a directory entry For a given a name, remove the associated read lock.
Reset lock slots For a given name, reset the lock slots.
Transfer lock to target task For a given a name and the address of a target TCA, transfer the read

lock to the target task.
Process deferred work element

Make the changes made by the logical unit of work (LUW) visible at task
syncpoint time.

Read locks
Read locks are used to prevent a table entry being deleted by the table manager.

A read lock is a fullword of storage. When DFHKCP attaches a task, it allocates storage for a number of
local read locks; this storage is addressed by TCATMRLP in the TCA. Local read locks are not acquired
for table entries that cannot be deleted.

Global read locks are used by the CICS modules that are executed independently of any task. They reside
in the table manager static storage area (TMS) that is addressed by SSATMP in the static storage address
list (SSA).

These locks are released by:
v an Unlock call,
v a Getnext call,
v a Reset call,
v the termination of the task,
v or a DWE call.

Read locks are always obtained against the primary index entry even if the request is against a secondary
index or an alias.

Browse token
For Getnext requests on secondary indexes, a browse token is used to hold the name of the previously
found entry. The token consists of the name found in the secondary index (which may not be unique) and
the name in the primary index (which is unique).

The address of the directory entry cannot be used instead of this logical name because the entry may be
returned unlocked, and so may be deleted when the next getnext request is received.

The getnext consists of locating the entry in the secondary index which has a the correct primary index, if
it exists, and then moving forward in the getnext chain. If it does not, an entry with a matching secondary
index name, but a higher primary index name is located, if one exists. If that also does not exist, an entry
with a higher name in the secondary index is located. This requires that entries on the getnext chain for
ordered both by secondary index name and also when identical secondary index names exist, by primary
index name.

Table manager

Chapter 52. Table manager 385

Quiesce state
A table entry is moved into quiesce state by a quiesce request if no read locks (including ones obtained by
the issuing task) exist for the entry. When a table entry moves into quiesced state, it is unable to be
located. Locating tasks can choose to ignore or wait for quiesced entries to be unquiesced or deleted.

If the quiesce request is performed with the commit option, the only ways to release the quiesced state
are:
v Unquiesce
v Delete

For commit requests, the delete takes place immediately the request completes. Otherwise, if an entry is
not deleted or unquiesced by the end of the UOW the TM DWE will unquiesce the entry. In this case, a
delete does not take effect until the end of the UOW.

Finding FCT, or TCT entries in a partition dump
Figure 76 on page 387 shows the relationship of the table manager control blocks. A general procedure for
finding the required table entries in a partition dump is as follows:

1. Find the CSA.

2. Find the CSA optional features list, CSAOPFL, from its address in field CSAOPFLA (offset X'C8') in the
CSA.

3. Find the static storage area address list (SSA) from its address in field CSASSA (offset X'1C0') in the
CSAOPFL.

4. Find the table manager static storage area (TMS) from its address in field SSATMP (offset X'14') in the
SSA.

5. Look at TMS in the CICS Data Areas manual. The fields TMASKT1 through TMASKT24 hold the
addresses of the hash tables for various control blocks. Find the hash table for the control block you
are interested in:
TMASKT1 = reserved
TMASKT2 = reserved
TMASKT3 = reserved
TMASKT4 = addr of profile table (PFT) entries
TMASKT5 = addr of FCT entries
TMASKT7 = addr of local terminal (TCTE) entries
TMASKT8 = addr of remote terminal and connection (TCNT) entries
TMASKT9 = addr of local connection (TCTS) entries
TMASKT10 = addr of AFCT entries
TMASKT11 = addr of DSNAME entries (by name)
TMASKT12 = addr of DSNAME entries (by block ID)*
TMASKT13 = addr of partner resource table (PRT)

entries
TMASKT14 = reserved
TMASKT15 = addr of local terminal NETNAME table (TCNT) entries
TMASKT16 = addr of autoinstall terminal model (AITM)

table entries
TMASKT17 = addr of signon table (SNT) entries
TMASKT18 = addr of session (TCSE) entries
TMASKT19 = addr of remote connection entries (TCSR)*
TMASKT20 = addr of indirect connection entries (TCSI)*
TMASKT21 = addr of connection NETNAME (TCSN) entries*
TMASKT22 = addr of remote terminal entries (TCTR)*
TMASKT23 = addr of generic connection NETNAME (TCSM) entries*
TMASKT24 = addr of remote terminal NETNAME (TCNR) entries*

* - Secondary index

Use the following formula to find the offset of the individual scatter table:
Length(TMATTV) * (n-1) + X’08’

Where n = position in table (see above - TMASKTn)

Table manager

386 CICS TS for z/OS: CICS Diagnosis Reference

To find Length(TMATTV) (and the value of n) see the CICS Data Areas manual.

6. Find the first directory element from its address in field SKTFDEA (offset X'10') in the hash table area.

7. Directory elements are chained together in alphabetic order. The address of the next element is in field
DIRGNCHN (offset X'10').

8. Look at each directory element until you find the name of the control block you are looking for. The
name is in field DIRKEY (offset X'18'). Field DIRTEA (offset X'0') holds the address of the desired
control block.

Control blocks
Figure 76 shows the table manager control blocks.

See the CICS Data Areas manual for a detailed description of these control blocks.

Modules
DFHTMP

Exits
No global user exit points are provided for this function.

Trace
The following point ID is provided for this function:
v AP 00EA, for which the trace level is AP 1.

See the CICS Trace Entries for further information.

CSA

x'C8' CSAOPFLA
Address of
optional features list

CSAOPFL

x'1C0' CSASSA
Address of static
storage address list

SSA

x'14' SSATMP TMS
Address of table
manager static storage

x'08' TMATTV

Array of tables data

TMASKT(n)

Table scatter table

Figure 76. Table manager control blocks

Table manager

Chapter 52. Table manager 387

Statistics
The statistics utility program, DFHSTUP, provides, for table management, statistics (for each table) on the
amount of storage (expressed in bytes) used by the table manager to support each table (excluding
storage used for the tables themselves).

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Table manager

388 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 53. Task-related user exit control

Task-related user exit support in CICS, also known as the resource manager interface (RMI), provides an
interface that non-CICS resource managers can use to communicate with CICS applications. The exit
program can be enabled or disabled dynamically, and useful information can be transferred to a user work
area.

Functional overview
The following operations may be performed on a task-related user exit from application programs:
ENABLE This is a global operation that names the task-related user exit and

causes the task-related user exit to be loaded into storage, if it has not
already been loaded. It also causes the exit program control block (EPB),
which represents the task-related user exit, and the exit’s global storage to
be set up by the user exit manager module, DFHUEM. The EPB also
holds a TALENGTH argument and a bit-string profile for use in an exit
operation. The ENABLE operation does not pass control to the
task-related user exit. DFHUEM is used to enable both global user exits
and task-related user exits.

The ENABLE operation is performed in two stages:
1. ENABLE
2. START.

An exit is not made available for execution until it has been both enabled
and started.

You can use the TASKSTART keyword on the ENABLE command to
enable a task-related user exit so that it is invoked at task start for all
tasks in the CICS system.

You can also enable a task-related user exit with the FORMATEDF
keyword, which means that the task-related user exit can provide
formatted screens for EDF to display, whenever a DFHRMCAL request to
the task-related user exit takes place.

The task-related user exit is invoked in the addressing mode of its original
caller unless the LINKEDITMODE keyword is specified on the ENABLE
command, in which case the exit is invoked in its own link-edit AMODE.
LINKEDITMODE is only valid on the first ENABLE command for an exit
program.

EXTRACT Information concerning an “enabled and started” task-related user exit is
returned to an application when it issues this command.

DISABLE This is a global operation which in general terms is the reverse of an
ENABLE request. The DISABLE operation can be performed in two
stages:
1. STOP: This is the reverse of the START keyword on the ENABLE

request. It causes the task-related user exit to remain in main storage
together with all its associated control blocks; however it is not
available for execution until an ENABLE command with the START
option is specified.

2. EXITALL: This causes the EXIT and its control blocks to be deleted
from main storage. The EPB however is added to a chain of re-usable
EPB's anchored in the UETH. This function should not be used until all
tasks that have used the exit have ended; the results of EXITALL
before that point are unpredictable.

DFHRMCAL After an exit has been enabled and started, it can be invoked from an

© Copyright IBM Corp. 1997, 2011 389

application using a DFHRMCAL request directly, or by passing control to a
stub which performs the DFHRMCAL request. A register 1 parameter list
may be supplied to the task-related user exit from the application.

The task interface element (TIE) control block is created for the task and
task-related user exit combination when the task issues its first
DFHRMCAL request, unless the TIE has already been created because
the task-related user exit was enabled for TASKSTART.

When a DFHRMCAL request is issued, control passes to DFHEIP, to
DFHERM (the external resource manager interface program), and then to
the task-related user exit. DFHERM manages the TIEs.

ENABLE, DISABLE, and EXTRACT are all EXEC CICS requests. DFHRMCAL is a macro.

A task-related user exit can “express interest” in certain types of events, and be invoked when these
events take place. These events are:

v Application invocations (DFHRMCAL mentioned above), associated with which are optionally the EDF
screen format invocations

v System Programming interface events i.e. INQUIRE EXITPROGRAM commands

v Syncpoint related events

v Task termination events

v CICS termination.

By default, it is assumed that task-related user exits are interested in application invocations only.

Design overview
The task-related user exit interface is comparable with the EXEC interface. When an application program
requests the services of a non-CICS resource manager, it does so by a module called the task-related
user exit. The exit receives arguments from the application program, and passes them on to the resource
manager in a suitable form.

The advantage of this method is that if the resource manager is changed, the application program that
invokes the resource manager should not need to be changed too.

The exit is part of the resource manager programs. The name of the exit, or the name of the entry to the
exit, is specified by the resource manager, and each application program that invokes the resource
manager has to be link-edited with an application program stub that refers to that name.

The exit is enabled and disabled using the user exit manager (DFHUEM). For enabling, the resource
manager can specify the size of a task-related work area that it requires.

The exit, when enabled and subsequently driven, receives arguments in the form specified by the
DFHUEXIT TYPE=RM parameter list (see the CICS Customization Guide or the manual). Register 1 points
to this parameter list. Register 13 points to the address of a save area, rather than the address of the
CSA. The save area is 18 words long, with registers 14 through 12 stored in the fourth word onward.

Responses to the request are indicated by values placed in register 15, and also by means that are
specific to the architecture of the application interface, for example, by moving data into storage areas
passed by the call, or into the caller’s register 15.

The main control blocks used by the task-related interface are the task interface element (TIE):

v A TIE is created by DFHERM on the first call by a task to each resource manager, and it is chained to
the TCA for that task.

Task-related user exit control

390 CICS TS for z/OS: CICS Diagnosis Reference

Task-related user exit implementation
The state of an exit is managed by DFHUEM, which is described under Chapter 64, “User exit control,” on
page 467. For an exit, the TALENGTH argument and a profile in the form of a bit-string are held in the exit
program block (EPB). These arguments are not processed until the occurrence of an application program
CALL that explicitly names the exit, unless the TASKSTART keyword is used on the ENABLE request.

Entry to the exit is through the task-related user exit interface, which comprises:

v An application stub provided with the exit, but generated using the CICS-provided macro DFHRMCAL. It
is this stub which explicitly names the exit, and which is link-edited with each application program that
uses the application program interface (API) of the resource manager.

v DFHEIP, which is entered at DFHEIPCN by the application stub, in much the same way as EXEC CICS
commands are routed at execution time.

v DFHERM, which receives control when DFHEIP discovers that the call is not for a CICS control
function, but for a named exit.

DFHERM receives a set of registers (those of the caller, for example, the application program), and a
routing argument which names the exit. This routing argument is constructed by DFHRMCAL, in the
application stub, and is not normally visible to the application programmer. DFHERM retrieves the name of
the requested exit from the routing argument, and scans any existing task interface elements (TIEs) that
are chained from the task’s TCA, looking for a TIE associated with the named exit. If such a TIE is not
found, it searches the installed exits on a chain of EPBs, looking for the matching name. On finding a
match, DFHERM constructs a TIE to represent the connection between that task and the exit. The TIE is
initialized from information provided in the EPB; the TALENGTH argument defines the size of a task-local
work area which can be thought of as a logical extension of the TIE. The profile string is also copied into
the TIE.

DFHERM stacks (stores in a last-in, first-out manner) various parts of the program execution
environment—the status of HANDLE commands, file browse cursors, the EXEC interface block (EIB), and
so on—and builds a parameter structure which is essentially a superset of that built by DFHUEH.
Additional arguments include the task-local work area, the profile referred to above, and an 8-byte UOW
identifier supplied by Recovery Manager.

DFHERM then passes control to the exit’s entry point using standard CALL conventions, in which register
13 addresses a save area for DFHERM’s own registers, register 14 addresses DFHERM’s next sequential
instruction, and register 1 addresses the passed parameters. This is a vector of addresses which include
that of the caller’s register save area. Any changes the exit makes to arguments of the application
program interface (API), or to the contents of the caller’s register save area, are not examined by
DFHERM when it regains control, because they are not part of the CICS task-related user exit
interface—rather they are the concern of the caller and the exit. However, the exit can request DFHERM
to schedule certain actions by means of the profile argument. For example, the exit can request that it be
informed (driven) when commitment of resources (syncpointing) is taking place, or the exit can request
that DFHERM no longer routes API calls to it from this task.

Finally, on regaining control from the exit, DFHERM unstacks the objects that it had previously stacked,
and returns to the caller. The state of the cursors, HANDLE labels, and so on, is apparently unchanged by
the actions of DFHERM or the exit. Note that the exit may have used EXEC CICS HANDLE commands;
this does not interfere with the caller’s HANDLE status.

In the discussion of DFHERM so far, the term “caller” has been used for the application program.
However, a caller can be a function such as syncpoint (DFHERMSP), task control (DFHAPXM or
DFHERMSP), system programming interface (DFHUEIQ), CICS termination (DFHAPDM or DFHSTP) or
EDF (DFHERM). The exit can set appropriate bits in the profile (schedule flag word) so that, if the
corresponding function is subsequently invoked, it in turn calls the exit. The exit can determine the identity
of the caller from the first argument (called the “function definition”). This argument, passed by DFHERM,
always has its first byte equal to X'00'. (If the first byte is other than X'00', the exit has been entered from

Task-related user exit control

Chapter 53. Task-related user exit control 391

DFHUEH as a global user exit.) DFHERM sets the second byte of this argument according to the type of
caller, thus indicating which interface is addressed by the caller’s register save area. The second byte is:

X'01' For system programming interface

X'02' For an application program

X'04' For the syncpoint program

X'08' For CICS task control

X'0A' For a CICS termination call

X'0C' For an EDF call.

Any remaining arguments are specific to each individual caller.

The flow of control for the task-related user exit interface is shown in Figure 77.

Processors
The term “processor” is used to refer to two different types of object:

1. For the EXEC interface, it refers to the function-dependent modules associated with the EXEC
interface nucleus, DFHEIP. These processors usually have names such as DFHEPC, DFHETC,
DFHETD, and so on, and each of these is invoked by DFHEIP. DFHERM is also a processor of this
type.

2. In various contexts, including task-related user exits, it refers to a piece of code that is link-edited with
an application program and serves the dual function of:

v Satisfying the CALL requirement for a target address—its entry resolves a V-type ADCON

v Finding the entry point of DFHEIP.

Both these types of processor are part of the path between an application call and the functional control
module that supports the request. This path appears as follows:
Application call
Application processor (type 2)
DFHEIP
EXEC interface processor (type 1)
Functional control module

Examples of the interface are:
EXEC CICS SYNCPOINT ... CICS API
DFHECI CICS COBOL EIP router
DFHEIP
DFHEISP CICS syncpoint router
DFHSPP CICS syncpoint manager

CICS processor DFHEIP

Application program EXEC CICS ?
No

EXEC CICS...

CALL...

Stub
(DFHRMCAL)

DFHERM Task-related
user exit

Figure 77. Task-related user exit control flow

Task-related user exit control

392 CICS TS for z/OS: CICS Diagnosis Reference

CICS Recovery manager domain

EXEC DLI TERM ... DLI HLPI
DFHECI CICS COBOL EIP router
DFHEIP
DFHERM CICS RMI module
DFHEDP DLI HLPI manager

(implemented as a task-related
user exit)

Control blocks
The control blocks used in task-related user exit control are the exit program control block (DFHEPB), the
task interface element (DFHTIEDS).

Figure 78 shows the main control blocks associated with task-related user exits.

Field CSAUETBA in the CSA points to the user exit table (UET); UETHEPBC in the UET points to the first
exit program block (EPB); and EPBCHAIN in each EPB points to the next EPB in the chain.

Each EPB holds:
v The address of the exit’s entry point (EPBEPN)
v The address of the global work area
v The halfword length of the global work area
v The halfword length of the task-local work area.

One EPB is associated with each enabled task-related user exit program or entry name.

EPBs used for global user exits and for task-related user exits are held on the same EPB chain.

The task-related user exit’s global storage is optional. It is associated with an individual enabled
task-related user exit program or entry name. Several task-related user exit programs or entry names can
share the same global storage.

For full details of the EPB, see the CICS Data Areas manual.

The task interface element (TIE) is associated with each associated pair of CICS task and task-related
user exit. The first time a CICS task passes control to a particular task-related user exit, a TIE is created.
The TIE lasts until task termination.

User exit table

CSAUETBA UETH First EPB
UETHEPBC

EPB (DFHEPB)
EPBEPN
EPBCHAINNext EPB
EPBGAA

Task-related
Task-related user exit's
user exit's global work area
task local
storage

TCATIEBA
TIE (DFHTIEDS)
TIEEPBA
TIECHNANext TIE

for the same taskDWE

Task-local...
work area

Figure 78. Control blocks associated with task-related user exits

Task-related user exit control

Chapter 53. Task-related user exit control 393

Note that all TIEs relating to a single task are chained together (more than one TIE is set up when a
single CICS task makes use of more than one task-related user exit). The TIEs corresponding to a single
EPB (that is, to a single task-related user exit program or entry name) are not chained together.

A global user exit may only use global storage; a task-related user exit may use both global storage and
task-local work area.

Field TCATIEBA in the TCA points to the first TIE, and TIECHNA in each TIE points to the next TIE in the
chain.

The TIE holds information relevant to all invocations of the task-related user exit for the task concerned.
For example, TIEFLAGS holds information concerning the events for which the task-related user exit
should be invoked, for example, API calls, syncpoint, and task start.

Figure 79 gives a closer look at the TIE control block chain that is used during the lifetime of a task-related
user exit.

For full details of the TIE control blocks, see the CICS Data Areas manual.

Modules

Module Function

DFHUEM The EXEC interface processor for the ENABLE, DISABLE, and EXTRACT user exit commands.

DFHERM Interfaces with task-related user exit.

DFHTIEM Handles the TIE subpools.

Exits
No global user exit points are provided for this function.

TCA

x'E4' TCATIEBA
Address of TIE

TIE

x'3C' TIECHNA
Address of next TIE

x'4C' TIEEPBA
Address of EPB

x'50' TIEFLAGS
Interest profile

x'58' TIERIECH
Address of first
(or only) RIE on
chain for this TIE

x'60' TIELWA
Local work area

Figure 79. Control blocks used during the lifetime of a task-related user exit

Task-related user exit control

394 CICS TS for z/OS: CICS Diagnosis Reference

Trace
The following point ID is provided for this function:
v AP 2520) for which the trace level is RI 1.
v AP 2521)
v AP 2522) for which the trace level is RI 2.
v AP 2523)

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

External interfaces
Calls are made to the task-related user exit via DFHEIP and DFHERM from the following modules:
DFHAPXM Task start
DFHERMSP Task end
DFHERMSP Syncpoint and backout
DFHRMSY For syncpoint resynchronization
DFHAPDM CICS termination
DFHSTP CICS termination
DFHUEIQ System programming interface for inquire exitprogram calls
Applications Application calls to resource manager
DFHERM EDF invocations for application calls to resource manager

Task-related user exit control

Chapter 53. Task-related user exit control 395

Task-related user exit control

396 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 54. Task-related user exit recovery

Task-related user exit recovery, also known as the resource manager interface (RMI) recovery, ensures
that changes to recoverable resources performed by an external resource manager in a logical unit of
work are either all committed or all backed out.

Design overview
During the execution of a CICS task, the CICS recovery manager communicates with the resource
manager task-related user exit to prepare to commit, to commit unconditionally, or to back out. The
purpose of these calls is to ensure that changes to recoverable resources performed in a unit of work
(UOW) are either all committed or all backed out, if there is a failure anywhere in CICS or in any of the
external resource managers.

Each UOW created by Recovery Manager Domain is identified by a UOW_ID and a Local UOW_ID. The
LOCAL UOWID is an eight byte value whose format is easy for CICS to identify whether the UOW
originated before or after an initial start.

When the resource manager receives the call to commit unconditionally or to back out, it takes the
corresponding irreversible step, if possible. If the action is successful, the resource manager sends the
appropriate return code. If not, it sends a return code which requests that CICS record the state of the
UOW, and tries to resolve the status at a later time.

Recovery manager domain maintains the status of UOWs that require resynchronization, until all
participants in the UOW have successfully resynchronized. Recovery manager domain maintains these
UOWs across cold, warm and emergency start of CICS. An initial start of CICS however will mean that
Recovery manager domain will lose this information and resynchronization will not be possible.

The RMI also supports an optimized syncpoint process to improve performance under certain conditions
where a single-phase commit can be used. With single phase commit Recovery manager does not have to
maintain resynchronization information for the RMI. This optimized process is described in more detail later
in this section.

The two-phase commit process
The RMI supports the two-phase commit process. The following is a brief summary of the two-phase
commit process and other related processing as seen from the RMI’s point of view.

v When a unit of work is first created, Recovery manager creates local_uow_id which will be used by the
RMI.

v When the task syncpoints, a prepare-to-commit request is then issued to each task-related user exit
used during the current UOW. For each task-related user exit, issuing the prepare request indicates the
start of phase 1 of commit processing from CICS’s point of view.

v If all syncpoint participants vote 'YES' to the prepare requests, then Recovery manager will commit the
UOW. CICS then invokes each task-related user exit with a commit request. This indicates the start of
phase 2 commit processing for the task-related user exit.

If the task-related user exit is unable to commit the UOW, Recovery manager will maintain a record of
the UOW's status so that the task related user exit can resync later.

v If one or more of the task-related user exits votes ‘NO’ to the prepare-to-commit request, all the task’s
recoverable resources are backed out.

Resolution of in-doubts
An external resource manager can be left in doubt about the disposition of UOWs, for example, if the
resource manager abnormally terminated after receiving a prepare request for an UOW, but before
receiving the commit or backout request. The resource manager, at any time while interfacing with CICS,

© Copyright IBM Corp. 1997, 2011 397

can supply a list of recovery tokens representing the in-doubt UOWs to the task-related user exit. The
task-related user exit (or other related code) can then issue an EXEC CICS RESYNC request with the
in-doubt list and the name of the task-related user exit as parameters.

As a result of a the EXEC CICS RESYNC command, DFHERMRS initiates a CRSY task (running program
DFHRMSY) for each UOW named in the indoubt list passed from the TRUE. DFHRMSY interfaces with
Recovery manager to find out the status of the UOW, and calls the task-related user exit with the
appropriate resolution, for example 'Commit', 'Backout' and so on. For each successful commit or backout,
DFHRMSY informs Recovery manager that it can delete the TRUEs involvement in the UOW. When all
interested parties in a UOW complete such processing, Recovery manager deletes its record of the UOW.

If an EXEC CICS RESYNC request is issued without an in-doubt list or with an in-doubt list of length zero,
then DFHERMRS informs Recovery manager that it can remove the TRUE (identified by its name and
qualifier) from all UOWs in the resynchronization set, i.e. delete all resync information for a TRUE.

A resynchronization set is first established when a TRUE is enabled. The next resynchronization set is
identified on completion of an EXEC CICS RESYNC command, and is used for the next RESYNC
command. A resynchronization bounds how many UOWs resync information is deleted for because
RESUNC commands execute at the same time as new work is processed by a TRUE. A RESYNC
command with a zero list should not delete resync information new UOW created since the resync
command was issued.

The single-phase commit process
The RMI also supports the single-phase commit process for UOWs that are read-only, and for UOWs
where CICS detects that only one external resource manager has been called for update requests. The
task-related exit must indicate to the RMI that it is capable of processing single-phase commit requests;
otherwise, a two-phase commit is used. Use of single-phase commit improves performance, because
CICS does not perform any logging and the task-related user exit is called only once during syncpoint
processing.

Single-phase commit for read-only UOWs
To take advantage of single-phase commit for read-only UOWs, the external resource manager must
return to the task-related user exit an indicator that the UOW is read-only. This can be done by the
resource manager returning a flag indicating the “history” of the UOW so far (that is, whether it is read-only
so far), or returning information about the current request. In the latter case, it is the responsibility of the
task-related user exit to keep a “history” of the UOW so far. After each request, the task-related user exit
must return to CICS with a flag set in the parameter list indicating this history.

At syncpoint time, if CICS detects that the UOW is read-only, it invokes the task-related user exit with an
“End-UOW” request instead of the normal prepare and commit requests associated with a two-phase
commit. This means that the task-related user exit is invoked only once during syncpoint. The “End-UOW”
request is issued during phase 2 syncpoint processing. On receiving an “End-UOW” request, the
task-related user exit should invoke the resource manager for single-phase commit. There are no return
codes associated with the “End-UOW” request, and CICS does not perform any logging for this type of
request.

Single-phase commit for the single updater
To take advantage of single-phase commit for the single-update situation, the task-related user exit must
indicate to the RMI that it knows the single-update protocol. It does this by setting a flag in the parameter
list at the same time as it expresses an interest in syncpoint.

At syncpoint time, if CICS detects that only resources owned by one external resource manager were
updated in the UOW, and if the task-related user exit has indicated that it understands the protocol, CICS
invokes the task-related user exit with an ‘Only’ request, instead of the normal prepare and commit
requests associated with a two-phase commit. This means that the task-related user exit is invoked only
once during syncpoint. The ‘Only’ request is issued during phase 1 syncpoint processing. CICS does not

Task-related user exit recovery

398 CICS TS for z/OS: CICS Diagnosis Reference

perform any logging for this type of request. When invoked for an ‘Only’ request, the task-related user exit
should invoke the resource manager for single-phase commit.

There are two architected responses to the ‘Only’ request: ‘OK’ and ‘Backed-out’. ‘OK’ means that the
UOW was committed; ‘Backed-out’ means that the single-phase commit failed and the updates were
backed out. It is important to note that, unlike the two-phase commit, there is no equivalent ‘Remember’
response. If a task-related user exit calls a resource manager for single-phase commit and, for example,
the resource manager abends while processing this request, the task-related user exit is left in doubt as to
the outcome of the request. The task-related user exit cannot return to CICS in this case, but instead must
output diagnostic messages as appropriate, and then abend the transaction.

Recovery manager does not keep resynchronization information for UOWs using single phase commit.
Because the resource manager is the only updater in the UOW, CICS is not in doubt about any of its
resources. The resource manager has either committed or backed out the updates. The messages output
by the task-related user exit, in conjunction with any messages output by the resource manager, can be
used to determine the outcome of the UOW.

Modules

Module Function

DFHERMRS DFHERMRS is invoked by DFHEISP as a result of a an EXEC CICS RESYNC command. It
attaches a CRSY task for each UOW identified in the IDLIST. Calls Recovery manager to
delete unwanted resynchronization information.

DFHRMSY A CRSY task (running program DFHRMSY) is attached for each indoubt UOW appearing in
the in-doubt list for an EXEC CICS RESYNC command. This program then issues the
appropriate ‘phase 2 of syncpoint’ request, that is, commit or backout, to the external
resource manager that issued the EXEC CICS RESYNC.

Exits
No global user exit points are provided for this function.

Trace
The following point IDs are provided for this function:
v AP 2540) For trace level RI Level 1
v AP 2541)
v AP 2548) For trace level RI level 2
v AP 2549)
v AP 2560) For trace level RI level 1
v AP 2561)

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

External interfaces
Calls are made from DFHRMSY, via DFHERM, to the task-related user exit to provide information about
the disposition of the UOW, when resynchronization of in-doubts is taking place.

Task-related user exit recovery

Chapter 54. Task-related user exit recovery 399

400 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 55. Terminal abnormal condition program

Terminal error processing for BSAM-supported terminals normally routes any error to the terminal
abnormal condition program (DFHTACP). Depending on the type of error, DFHTACP issues messages,
sets error flags, and places the terminal or line out of service.

Before default actions are taken, CICS passes control to the terminal error program (DFHTEP) for
application-dependent action if necessary. On return from the terminal error program, DFHTACP performs
the indicated action as previously set by DFHTACP or as altered by the TEP, a sample version of which is
supplied by CICS (DFHXTEP in source code form). See Chapter 57, “Terminal error program,” on page
425 for further information about the TEP.

Design overview
The terminal abnormal condition program (DFHTACP) is used by terminal control to analyze any abnormal
conditions. Appropriate action is taken with regard to terminal statistics, line statistics, terminal status, and
line status; the task (transaction) can be terminated. Messages are logged to the transient data master
terminal destination (CSMT) or the terminal log destination (CSTL). DFHTACP links to the user-supplied
(or sample) terminal error program, passing a parameter list via a COMMAREA that is mapped by the
DFHTEPCA DSECT. This allows the user to attempt recovery from transmission errors and to take
appropriate action for the task.

Table 24 lists the various TACP message processing routines, which assemble the text of the messages
and write them to one of three destinations depending on the type of error.

The matrix shown in Table 25 on page 402 shows the the sequence in which the message routines are
called for each error code. For example, for error code X'88', the processing routines are executed in the
following order: ME, F, W, X, N, BA, and finally R.

Table 26 on page 403 gives a generalization of TACP’s default error handling upon completion of the
message processing. For each error code, it shows the first routine to be called.

Table 24. TACP message routines

Routine Function

A Establish DFHTC message number 2501 (Msg too long, please resubmit)

D Establish DFHTC message number 2502 (TCT search error)

F Establish DFHTC message number 2507 (Input event rejected)

H Establish DFHTC message number 2506 (Output event rejected)

I Establish DFHTC message number 2513 (Output length zero)

J Establish DFHTC message number 2514 (No output area provided)

K Establish DFHTC message number 2515 (Output area exceeded)

L Establish DFHTC message number 2517 (Unit check SNS=ss, S.N.O.)

M Establish DFHTC message number 2519 (Unit exception, S.N.O.)

N Generate standard message inserts, for example, ‘at term tttt’

O Generate special inserts for message DFHTC2500

Q Write to terminal causing the error, after retrieving the message text from ME domain using
an MEME RETRIEVE_MESSAGE call

R Write to destination (CSMT or CSTL) using an MEME SEND_MESSAGE call to ME domain

T Obtain terminal main storage area (message build area)

© Copyright IBM Corp. 1997, 2011 401

|

Table 24. TACP message routines (continued)

Routine Function

V Establish DFHTC message number 2511 (Incorrect write request)

W Establish ‘return code xx’ message insert

X Convert hexadecimal byte into 2 printable characters

AB Establish DFHTC message number 2534 (Incorrect destination)

AE Establish DFHTC message number 2500 (Line|CU|Terminal out of service)

AF Obtain terminal statistics

BA Obtain line statistics

BB Establish DFHTC message number 2516 (Unit check SNS=ss)

BC Establish DFHTC message number 2518 (Unit exception)

BF Establish DFHTC message number 2521 (Undetermined unit error)

CA Establish DFHTC message number 2522 (Intercept required)

DB Establish DFHTC message number 2529 (Unsolicited input)

ME Initialize parameter list for calling ME domain

Table 25. TACP message construction matrix

Error codes

X'81' X'82' X'84' X'85' X'87' X'88' X'8C' X'8D' X'8E' X'8F' X'94' X'95' X'96' X'97' X'99' X'9A' X'9F'

ME ME ME ME ME ME ME ME ME ME ME ME ME ME ME ME ME

T

AE

D

V

DB

F

H

I

J

K

BB

L

BC

M

BF

CA

AB

A

O

W W

AF

Q

X X X X

N N N N N N N N N N N N N N N

BA BA BA

Terminal abnormal condition program

402 CICS TS for z/OS: CICS Diagnosis Reference

Table 25. TACP message construction matrix (continued)

Error codes

X'81' X'82' X'84' X'85' X'87' X'88' X'8C' X'8D' X'8E' X'8F' X'94' X'95' X'96' X'97' X'99' X'9A' X'9F'

R R R R R R R R R R R R R R R R

Table 26. TACP default error handling

Error code Default action

X'81' Abend transaction

X'82' none

X'84' Put line in or out of service, as required

X'85' Abend transaction

X'87' Unsolicited input message

X'88' Put line (or terminal) out of service

X'8C' Put line (or terminal) out of service

X'8D' Abend transaction

X'8E' Abend transaction

X'8F' Abend transaction

X'94' I/O error test

X'95' I/O error test

X'96' I/O error test

X'97' I/O error test

X'99' Put line (or terminal) out of service

X'9A' Test line for next operation

X'9F' Abend transaction

Modules
DFHTACP

Exits
No global user exit points are provided for this function.

Trace
The following point ID is provided for the terminal abnormal condition program:
v AP 00E6, for which the trace level is TC 1.

DFHTACP provides trace entries immediately before and after calling DFHTEP.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Terminal abnormal condition program

Chapter 55. Terminal abnormal condition program 403

404 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 56. Terminal control

Terminal control allows communication between terminals and application programs. VTAM/NCP is used
for most terminal data control and line control services.

Terminal control supports automatic task initiation to process transactions that use a terminal but which are
not directly initiated by the terminal operator (for example, printers).

Terminal control can also provide a simulation of terminals, using sequential devices, in order to help test
new applications.

Design overview
The user can specify that concurrent terminal support is to be provided by any combination of the following
access methods:
v VTAM
v Basic sequential access method (BSAM)
v Interregion communication (IRC)
v Console.

The primary function of terminal control is to take an input/output (I/O) request for a terminal and convert it
to a format acceptable to the access method (VTAM or BSAM).

Terminal control uses data that describes the communication lines and terminals, kept in the terminal
control table (TCT). The TCT is generated by the user as part of CICS system definition, or dynamically as
needed. The TCT entries contain terminal request indicators, status, statistics, identification, and
addresses of I/O and related areas.

When CICS terminal control is used with VTAM, VTAM itself resides in a separate address space, having
a higher priority than CICS. VTAM-related control blocks and support programming comprise the CICS
terminal control component. The application programs that run under CICS control communicate with
terminals through the CICS terminal control interface with VTAM.

VTAM network functions allow terminals to be connected to any compatible control subsystem that is
online. This enables a terminal operator to switch from one CICS system to another, or to another
subsystem.

VTAM manages the flow of data between devices in the network and VTAM application programs such as
CICS. VTAM is responsible for:

v Connecting, controlling, and terminating communication between the VTAM applications and terminal
logical units

v Transferring data between VTAM applications and logical units

v Allowing VTAM applications to share communication lines, communication controllers, and terminals

v Controlling locally attached devices, that is, those not connected through a communication controller

v Providing tools to monitor network operations and make dynamic changes to the network configuration.

In a VTAM environment, the functions of CICS terminal control include:

v Establishing communication with terminal logical units (LUs) by issuing logon requests, communicated
through the access method

v Handling terminal input and passing user program requests for communication to VTAM

v Returning terminal LUs to the access method by accepting logoff requests

v Taking measures to ensure the integrity of messages flowing to and from VTAM

© Copyright IBM Corp. 1997, 2011 405

v Performing logical error recovery processing for VTAM devices.

Terminal control issues VTAM macros to receive incoming messages, and routes them to the appropriate
CICS application program for processing. Likewise, it sends messages destined for various devices in the
network to VTAM, which then routes them to the appropriate location.

Terminal control services
The following services are performed by, or in conjunction with, terminal control:
v Service request facilities
v System control services
v Transmission facilities.

Service request facilities
Write request

Sets up and issues or queues access method macros; performs journaling and journal
synchronization.

Read request
Sets up and issues access method macros; performs journaling if required.

Wait request
Causes a dispatcher to suspend.

Dispatch analysis
Determines the type of access method and terminal used, and executes the appropriate area of
terminal control.

System control services
Automatic task initiation

Services requests for automatic task (transaction) initiation caused by events internal to the processing
of CICS.

Task initiation
Requests the initiation of a task to process a transaction from a terminal. When an initial input
message is accepted, a task is created to do the processing.

Terminal storage
Performs allocation and deallocation of terminal storage.

Transmission facilities—VTAM
Connection services

Accepts logon requests, requests connection of terminals for automatic task initiation, and returns
terminals to VTAM, as specified by the user. If the terminal has not been defined, CICS uses the
VTAM logon information to autoinstall the terminal.

Transmission facilities—VTAM/non-VTAM
Access method selection

Passes control to the appropriate access method routine based on the access method specified in the
terminal control table.

Wait
Synchronizes the terminal control task with all other tasks in the system. When all possible read and
write operations have been initiated, terminal control processing is complete and control is returned to
the transaction manager to allow dispatching of other tasks.

Terminal control

406 CICS TS for z/OS: CICS Diagnosis Reference

Terminal error recovery
The resolution of certain conditions (for example, permanent transmission errors) involves both CICS and
additional user coding. CICS cannot arbitrarily take all action with regard to these errors. User application
logic is sometimes necessary to resolve the problem.

For the VTAM part of the network, terminal error handling is carried out by the node abnormal condition
program (NACP) and a sample node error program (NEP), provided by CICS, or a user-written node error
program. For further information about these, see Chapter 36, “Node abnormal condition program,” on
page 327 and Chapter 37, “Node error program,” on page 331.

For the portion of the telecommunication network connected to BSAM, these error-handling services are
provided by the terminal abnormal condition program (TACP) and by the user-written or sample terminal
error program (TEP). For further information about these, see Chapter 55, “Terminal abnormal condition
program,” on page 401 and Chapter 57, “Terminal error program,” on page 425.

The following sequence of events takes place when a permanent error occurs for a terminal:

1. The terminal is “locked” against use.

2. The node or terminal abnormal condition program is attached to the system to run as a separate CICS
task.

3. The node or terminal abnormal condition program writes the error data to a destination in transient
data control if the user has defined one. This destination is defined by the user and can be
intrapartition or extrapartition.

4. The node or terminal abnormal condition program then links to the appropriate node/terminal error
program to allow terminal- or transaction-oriented analysis of the error. In the node or terminal error
program, the user may decide, for example, to have the terminal placed out of service, have the line
placed in or out of service, or have the transaction in process on the terminal abnormally terminated.

5. The terminal is “unlocked” for use.

6. The node or terminal abnormal condition program is detached from the system if no other terminals
are to be processed.

Testing facility—BSAM
To allow the user to test programs, BSAM can be used to control sequential devices, such as card
readers, printers, magnetic tape, and direct-access storage devices. These sequential devices can then be
used to supply input/output to CICS before actual terminals are available or during testing of new
applications.

Terminal control modules (DFHZCP, DFHTCP)
Terminal control consists of two CICS resource managers:
ZCP DFHZCP, DFHZCX, and DFHZCXR provide both the common (VTAM and

non-VTAM) interface, and DFHZCA, DFHZCB, DFHZCC, DFHZCW,
DFHZCY, and DFHZCZ provide the VTAM-only support.

TCP DFHTCP provides the non-VTAM support (not MVS console support).

Terminal control communicates with application programs, CICS system control functions (transaction
manager, storage control), CICS application services (basic mapping support and data interchange
program), system reliability functions (abnormal condition handling), and operating system access methods
(VTAM or BSAM).

Requests for terminal control functions made by application programs, BMS, or the transaction manager,
are processed through the common interface of DFHZCP. Generally, terminal control requests for other
CICS or operating system functions are issued by either ZCP or TCP, depending upon the terminal being
serviced.

Terminal control

Chapter 56. Terminal control 407

The ZCP and TCP suites of programs are loaded at CICS system initialization according to specified
system initialization parameters, as follows:

v DFHTCP is loaded only if TCP=YES is specified.

v DFHZCP, DFHZCX, and DFHZCXR are always loaded.

v DFHZCA, DFHZCB, DFHZCY, and DFHZCZ are loaded only if VTAM=YES is specified.

v DFHZCC and DFHZCW are loaded only if ISC=YES is specified.

Figure 80 shows the relationships between the components of terminal control.

Notes for Figure 80:

Common interface

1. When a terminal control request is issued by an application program, or internally by the basic
mapping support (BMS) routines using the DFHTC macro, request bits are set in the user’s task
control area (TCA) and control is passed to the common interface (VTAM, non-VTAM) routines of
DFHZCP.

2. If the request includes WAIT and the IMMED option is not in effect, control is passed to the
transaction manager to place the requesting program (task) in a suspended state. If WAIT is not
included, control is returned to the requesting task.

User TCA Terminal control TCA

User KCP Basic
application mapping
program 2 support

TCAFCAAA

10
TCTTE 1

TCTTEOS
3 TCTTECS MVS console

TCTTECAI Terminal control program
TCTTEOCI DFHZCP - common interface

4 DFHZCX IRC
DFHZCXR

(VTAM, non-VTAM)
Transaction
routing

VTAM

TCAM/BSAM

8 8
ZCP TCP

RPL VTAM Non-VTAM TCTLE
support support

DECB

Node TACLE
abnormal
condition
program

9 9

Node
error
program Terminal

abnormal
error
program

6
Dispatcher
domain 11

5 Storage
manager Terminal

error
program

7
Transaction
manager

Figure 80. Terminal control interfaces

Terminal control

408 CICS TS for z/OS: CICS Diagnosis Reference

3. The task’s TCA contains the TCTTE address either in a field named TCAFCAAA (facility control area
associated address) or in a field named TCATPTA when passing TCATPTA to terminal control.

4. The dispatcher dispatches terminal control through the common interface (DFHZDSP in DFHZCP) for
one of the following reasons:

v The system address space exit time interval (specified by the ICV system initialization parameter)
has elapsed since the last terminal control dispatch.

v The specified terminal scan delay (specified by the ICVTSD system initialization parameter) has
elapsed.

v There is high-performance option (HPO) work to process.

v The terminal control event has been posted complete (for example, an exit scheduled in the case
of VTAM, or an event control block (ECB) posted in the case of non-VTAM), and CICS is about to
go into a wait condition.

5. Terminal control, through its common interface (DFHZDSP) requests the dispatcher to perform a
CICS WAIT when the terminal control task has processed through the terminal network and has no
further work that it can do.

Access method dependent interface

6. Terminal control communicates with storage manager to obtain and release storage as follows:
VTAM ZCP modules issue domain calls for terminal storage (TIOAs),

receive-any input area (RAIA) storage, and request parameter list
(RPL) storage.

Non-VTAM DFHTCP issues DFHSC macros to obtain and release terminal and
line storage.

7. Terminal control communicates with the transaction manager by means of the DFHKC macro. The
macro can be issued by certain CICS control modules, depending upon the terminal being serviced.
Terminal control may request the transaction manager to perform one of the following:

v Attach a task upon receipt of a transaction identifier from a terminal.

v Respond to a DFHKC TYPE=AVAIL request (a task control macro documented only for system
programming) when a terminal is required by or for a task and that facility is available.

8. Terminal control communicates with operating system access methods in either of the following ways,
depending upon the terminal being serviced:
VTAM ZCP (referring here to the resource manager) builds VTAM request

information in the RPL which is then passed to VTAM for servicing.
VTAM notifies terminal control of completion by placing completion
information in the RPL. ZCP analyzes the contents of the RPL upon
completion to determine the type of completion and the presence of
error information. Communication with VTAM also occurs by VTAM
scheduling exits, for example, LOGON or LOSTERM. VTAM passes
parameter lists and does not always use an RPL.

When authorized-path VTAM has been requested (HPO),
communication with VTAM also occurs in service request block (SRB)
mode (using DFHZHPRX); ZCP uses the RPL with an extension to
communicate with its SRB mode code. When an SRB mode RPL
request is complete, ZCP calls the relevant exit or posts the ECB, as
indicated by the RPL extension.

Non-VTAM DFHTCP builds access method requests in the data event control
block (DECB), which is part of the terminal control table line entry
(TCTLE). The DECB portion of the TCTLE is passed to the access
method by terminal control to request a service of that access
method. The access method notifies terminal control of the
completion of the service through the DECB. Terminal control
analyzes the contents of the DECB upon completion to determine the
type of completion and to check for error information.

Terminal control

Chapter 56. Terminal control 409

9. Terminal control communicates with the CICS abnormal condition functions in either of the following
ways, depending upon the terminal being serviced:
VTAM The activate scan routine (DFHZACT, in the DFHZCA load module)

attaches the CSNE transaction to run the node abnormal condition
program (DFHZNAC); this is done during CICS initialization.
DFHZNAC does some preliminary processing and then passes
control to the node error program (DFHZNEP). (The node error
program can be either your own version or the default CICS-supplied
version.) Upon the completion of the user’s error processing, control
is returned to DFHZNAC. (For further information about DFHZNAC,
see Chapter 36, “Node abnormal condition program,” on page 327.)

Non-VTAM DFHTCP attaches the CSTE transaction to run the terminal abnormal
condition program (TACP) and passes a terminal abnormal condition
line entry (TACLE) when an error occurs. The TACLE is a copy of the
DECB portion of the TCTLE and contains all information necessary
for proper evaluation of the error, together with special action
indicators that can be manipulated to alter the error correction
procedure. After analyzing the DECB, DFHTACP calls the terminal
error program (DFHTEP) with a COMMAREA containing the TACLE
address. (The terminal error program can be either your own version
or the default CICS-supplied version.) For further information about
DFHTACP, see Chapter 55, “Terminal abnormal condition program,”
on page 401.

10. Terminal control is executed under either the user’s TCA or its own TCA as follows:

User’s TCA

a. During the application program interface

b. During the interface with basic mapping support

c. While performing direct VTAM terminal SEND requests.

Terminal control’s TCA

a. When the dispatcher dispatches terminal control

b. When terminal control issues a request to the transaction manager to attach a task

c. When terminal control issues a request to storage control

d. While performing non-VTAM terminal I/O or queued VTAM terminal I/O

e. For session-control functions when no task is attached.

Because many devices are supported by CICS terminal control, a large number of modules are required to
provide this support.

Figure 81 gives an overview of the relationships between the functions within terminal control and the rest
of CICS and Figure 82 on page 411 through Figure 84 on page 413 show some of the flows through the
terminal control modules.

KCP Application Application KCP/BMS KCP CICS service
program program programs

Locate/status/ Locate/status/ Application Detach Syncpoint Command
ATI ATI request processing request

DFHZDET DFHZCRQDFHZARQ
and DFHZARL

DFHZGTI
and DFHZLOC

DFHZGTI/A
and DFHZLOC

DFHZGTI
and DFHZLOC

Return

Figure 81. Terminal control functions and modules

Terminal control

410 CICS TS for z/OS: CICS Diagnosis Reference

01

Process VTAM
completed SRB
mode RPLs

Entry from DFHZRVX
system DFHZSDX

initialization TCTVRAEB
Initialization
sequence:

Process VTAM
Attach DFHZINT receive-any

initialization DFHZRPL requests
table DFHSIF1

DFHZAIT DFHZRAC
DFHZAIT DFHZDSP

DFHZSLS
{DFHZXST} Process VTAM
{DFHZXRE} activate chain

VTAM active
analysis Entry from

DFHZACT dispatcher

DFHZDSP
MVS console (Return

from WAIT)

Initialize Issue DSSR
VTAM network WAIT_OLDW

on ECB list Posted by timer
or event completion

DFHZSLS TCZDSP9

1B

Figure 82. Terminal control ZCP and TCP common control routines

Terminal control

Chapter 56. Terminal control 411

01 1B B
TCTLE

TCTLEECB
Initialize
line scan ECB list

A (TCTLE)
TCCCSIN TCTLE

A A (TCTLE)
Line TCTLEECB
advance A (TCTLE)

Return to A (TCTLE)
dispatcher System

termination TCTLE
analysis

TCCCANEA A (TCTLE) TCTLEECB

A (TCTLE)
System not

Last ECB terminating
in list TCTLE

Not last ECB Error TCTLEECB
in list Line status and pending

1A timer analysis

TCCCLLE Timer event
posted

Line out Line status
of service was initiated

TCTLE

Advance to Analyze TACP TCTLEECB
next line A current ECB B preparation

TCCCTMR TCCCLLE TCTDMTCE
TCTLE

TCCCANE
Event TCTLEECB

completed

Select
device-dependent
module

TCCCLTMA

BSAM

DFHTCAM

TCAM

DFHTCAM

1A

Figure 83. Terminal control TCP control routines (BSAM)

Terminal control

412 CICS TS for z/OS: CICS Diagnosis Reference

High-performance option
When running CICS under MVS, the high-performance option (HPO) can be used. HPO uses VTAM with
CICS as an authorized program so that the VTAM path length is reduced. This is achieved by dispatching
SRBs to issue the send and receive requests for data to and from the terminals. The SRB code is
executed in the DFHZHPRX module.

System console support
One or more MVS system consoles can be used as CICS terminals. This includes any MVS extended
console introduced from MVS/ESA SP 4.1 onward; for example, a TSO user issuing the TSO CONSOLE
command.

Each console has a unique number (releases prior to MVS/ESA SP 4.1) or a unique name (MVS/ESA SP
4.1 onwards). This matches the console number or name defined in the MVS system generation. Consoles
are defined to CICS using CEDA DEFINE TERMINAL (see Chapter 42, “Resource definition online (RDO),”
on page 343). The console number or name is specified using the CONSOLE or CONSNAME keyword
respectively, depending on the level of MVS.

The console operator communicates with CICS using the MVS MODIFY command to start transactions.
CICS communicates with the console using either the WTO macro or the WTOR macro.

Enter from Enter
'Select terminal EP DFHxxxxx
routine'

DFHTCSTD

Event
analysis

Completion
code analysis

Output event Input event
completion completion
analysis analysis

Activity Input event
control task initiation

Output event Input event
preparation preparation

Event
initiation

Exit to

TCCCTMR

(advance to next
Exit line and wait)

DFHxxxxx

Device-dependent routine
entry point names

Device EP name
type DFHXXXXX

SEQUENTIAL

TCAM

DFHTDMSA

DFHTCAMM

Figure 84. Terminal control general flow through device-dependent modules (TCP only)

Terminal control

Chapter 56. Terminal control 413

A system console is modeled by CICS as a TCTTE that has an associated control block, the console
control element (CCE). The CCE holds the event control block (ECB) for the console, and both the
console ID and the console name.

The interface between a system console and CICS is the command input buffer (CIB), which is created in
MVS-protected storage for each MODIFY command. A CIB contains the data for a MODIFY command.
CICS addresses the first CIB using the EXTRACT macro and the CIBs are chained together.

The MVS communication ECB is in MVS-protected storage; it is posted complete for each MODIFY
command and reset when there are no CIBs to be processed. The CICS system wait list holds pointers to
the MVS communication ECB and the ECB for each system console.

When CICS is initialized, an EXTRACT macro is executed to obtain the job name and point to the MVS
communication ECB and the first CIB; all these are stored in the TCT prefix.

DFHZCP contains two modules, DFHZCNA and DFHZCNR, which perform system console support.

DFHZCNA is used to:

v Resume a task on completion of a terminal event for the task

v Attach a task to satisfy a request for transaction initiation by a MODIFY command

v Attach a task (AVAIL) requested by automatic transaction initiation (ATI)

v Detach a terminal from a task when the task has completed

v Shut down console support when CICS is quiescing.

DFHZCNR is used to:

v Issue WTO macros for application program WRITE requests

v Issue WTO and WTOR macros for application program CONVERSE or (WRITE,READ) requests

v Issue a WTOR macro with message DFH4200 for application program READ requests.

Console support control modules
DFHZDSP calls DFHZCNA to scan the consoles for any activity.

DFHZCNA checks whether any task is suspended because it is waiting for a terminal event, for example, a
READ, and, if the event is completed, resumes that task before starting any new task. This is done by
scanning the CCE chain for ECBs that have been posted by MVS.

When a MODIFY command is executed, the communication ECB is posted complete and a CIB for the
command is added to the end of the CIB chain. DFHZCNA processes the CIB chain in first-in, first-out
order. For each CIB, DFHZCNA searches the CCE chain for the console. With MVS/ESA SP 4.1 (or later),
the search is on console name; otherwise, the search is on console ID.

The task is then attached if the ‘task pending’ flag in the CCE is not set by a preceding CIB in the chain.
In the course of scanning the CIB chain, DFHZCNA may find a MODIFY command that requires a task to
be attached, but cannot attach the task immediately because there is already a task active, or there is an
outstanding error condition to clear. DFHZCNA therefore sets the ‘task pending’ flag in the CCE to
remember the existence of the CIB. During the CIB chain scan, the condition preventing the task attach
might clear, and a subsequent CIB might be selected for attach. However, the ‘task pending’ flag prevents
this, and ensures that CIBs are processed in order. All ‘task pending’ flags are reset before each CIB chain
scan.

If the task is to be attached, DFHZCNA obtains a TIOA and moves the data from the CIB to the TIOA.
DFHZATT is then called to attach the task. If the attach fails, the TIOA is freed. A QEDIT macro frees the
CIB if the attach is successful, and the scan continues.

Terminal control

414 CICS TS for z/OS: CICS Diagnosis Reference

When a transaction is automatically initiated and DFHKCP schedules the transaction for a terminal which
is a console, a flag is set in the CCE by DFHZLOC. After DFHZCNA has completed scanning the CIB
chain, it checks that the console does not have a task already attached and there is not a CIB on the
chain for the console; if both these conditions are satisfied, the task is attached.

DFHZCNA issues a QEDIT macro to prevent any more MODIFY commands being accepted when CICS is
shutting down. Any MODIFY commands on the CIB chain after shutdown has been started are processed.
When other access methods have been quiesced, and there are no tasks attached for a console, console
support is shut down.

If a console not defined to CICS is used to enter a MODIFY command, DFHZCNA sets up an error code
and links to DFHACP to issue the error message. This is done using the TCTTE for the error console,
CERR.

DFHZCNR sends terminal control requests from an application program to a specific system console by
issuing WTO and WTOR macros. It is called by DFHZARQ.

For a WRITE request, DFHZCNR executes either a single WTO macro, or one or more multiline WTO
macros, depending on the amount of data specified for the request.

For a READ request, DFHZCNR acquires a TIOA for the reply area and executes a WTOR macro with a
CICS-supplied message, DFH4200. This message requests the operator to reply, and the transaction waits
for this reply.

For a CONVERSE or (WRITE,READ) request, DFHZCNR acquires a TIOA for the reply area and executes
a WTOR macro with the data specified for the WRITE. If there is any data remaining, DFHZCNR then
executes either a single WTO macro, or one or more multiline WTO macros, depending on the amount of
data. The transaction then waits until the operator replies to this request.

Defining terminals to CICS
Terminal definitions are created as CSD records or DFHTCT macros (non-VTAM only) and then installed in
(added to) the terminal control table (TCT) as TCT terminal entries (TCTTEs).

When a cold start is performed, CICS obtains its TCT entries from DFHTCT macros or from groups of
resource definitions in the CSD file, which are named in the GRPLIST system initialization parameter.
These are recorded in the CICS catalog.

When a warm start is performed, CICS obtains the definitions from the DFHTCT macros and from the
CICS catalog; the GRPLIST is ignored.

On emergency restart, CICS obtains the definitions from the DFHTCT macros and from the CICS catalog;
the GRPLIST is ignored. Then CICS re-applies any in-flight TCT updates using information from the
system log.

During CICS execution, TCT entries can be added as follows:

v By using the CEDA INSTALL command

v By the autoinstall process when an unknown terminal logs on

v By the transaction routing component when a TCT entry is shipped from a terminal-owning to an
application-owning region.

v By using the EXEC CICS CREATE command

During CICS execution, TCT entries can be deleted as follows:

v By using the EXEC CICS DISCARD command

v By the autoinstall process when an autoinstalled terminal logs off or has been logged for a period.

Terminal control

Chapter 56. Terminal control 415

v By the transaction routing component when a TCT entry has been unused for a period.

v Using the CEDA INSTALL, EXEC CICS CREATE, transaction routing, or autoinstall processes to
replace the old entry.

Figure 85 shows the terminal control table (TCT).

DFHZCQ
DFHZCQ installs, deletes, catalogs, uncatalogs, recovers, and inquires on terminals. Entries are installed
in and deleted from the terminal control table by DFHZCQ. DFHZCQ is called by the following modules:

DFHAMTP
For the CEDA transaction and EXEC CICS CREATE, to install TCT entries

DFHEIQSC
For EXEC CICS DISCARD CONNECTION, to discard a connection.

DFHEIQST
For EXEC CICS DISCARD TERMINAL, to discard a terminal.

DFHTBSS
During CICS initialization, to restore terminal definitions at warm or emergency restart

DFHZATA
The autoinstall program

DFHZATD
The autoinstall delete program

DFHZATS
When a TCT entry is shipped, installed, or deleted for transaction routing

CSA

x'128' CSATCTBA
Address of TCT

DFHTCTFX Wait list
TCT prefix

DFHTCTLE
x'00' TCTVWLA VTAM receive-any

Address of ECB address x'00' TCTLEECB
TCT wait list

x'04' TCTVWLA1 Non-VTAM line x'54' TCTLEPA
First non-VTAM entry ECB addr Address of
wait list entry first terminal

on line
x'1C' TCTVTEBA DFHTCTTE

First terminal TCTTE, non-VTAM
entry

x'08' TCTTESC - 4
x'38' TCTVSEBA Storage chain

Address of first offset
system entry

x'08' TCTTESC
Terminal TIOA

x'E0' TCTVRVRA storage chain
VTAM receive-any
pool address x'0C' TCTTEDA

Address of TIOA
current TIOA

DFHTCPRA
Receive-any x'10' TCTTECA
control element Current task TCA TCA

x'04' TCTVRAL x'70' TCTTELEA
Address of RPL Address of

line entry
x'08' TCTVRAEB

Receive-any ECB

RPL

x'2C' RPLECB
Address of ECB

Figure 85. Terminal control table (TCT)

Terminal control

416 CICS TS for z/OS: CICS Diagnosis Reference

DFHZTSP
When a transaction route request is received to recatalog the connection if certain characteristics
have changed.

DFHQRY
When the QUERY function is used to discover the actual characteristics of a device, complete the
TCT entry, and recatalog the resulting TCTTE

DFHWKP
The warm keypoint program, to record information for RDO-eligible terminals in the CICS catalog,
and to uncatalog autoinstalled entries.

DFHZCQ calls the table builder services (TBS) modules which in turn, call the appropriate DFHBSxxx
modules to build the TCTTE for the input parameters. DFHZCQ is heavily dependent on the module that
calls it to supply the complete set of parameters to be used to create the TCTTE; DFHZCQ itself is not
responsible for determining parameters for the TCTTE.

DFHBS* builder programs
DFHZCQ calls the builder programs, whose names all begin DFHBS. These builders are responsible for
creating TCTTEs. The parameters given to DFHZCQ are passed on to the builders, which extract the
parameters and set the relevant fields in the TCTTE.

For further information about builders, see Chapter 6, “Builders,” on page 53.

Contents of the TCT
The TCT describes the logical units (LUs) known to CICS. Each active LU is represented by a terminal
control table terminal entry (TCTTE). The TCT does not describe the network configuration; it describes
the CICS logical viewpoint of the network.

The TCT contains pointers to these VTAM-related control blocks:

v Access method control block (ACB)— Link an application program, such as CICS, to VTAM

v Receive-any control blocks (RA-RPL, RA-ECB, RACE)— Process initial transaction input

v Node initialization block (NIB) descriptors and bind-area models— Used during logon processing

v TCTTEs— Describe the logical units known to CICS

v ACB and RPL exit lists— Point to the VTAM exit routines.

TCT indexing(DFHZGTI and DFHZLOC)
There are two types of requests that can be used in CICS to locate terminal entries:

1. DFHZGTI calls

2. and DFHTC CTYPE=LOCATE calls

Both these modules use DFHTM calls to a variety of indexes and chains to locate terminal entries in the
TCT with efficiency.

The DFHZGTI module has the following call types:
Locate Find a TCT entry in the given ‘domain’ which matches the name
GetStart Obtain a browse token for Getnexts.
GetFirst Find the first entry that matches the name in the given domain.
GetNext Find the next entry that matches the name in the given domain.
GetEnd Release the browse token
Release Unlock an entry

Callers can decide to have an entry returned as locked or unlocked.

Terminal control

Chapter 56. Terminal control 417

In DFHZGTI the total TCT is carved up into ‘domains’ A TCT entry can reside in several domains
depending on its type. Callers to DFHZGTI specify one domain on a call and are returned one entry that
fits the name (or partial name) that is supplied. DFHZGTI calls can be for the following domains:
Terminal by termid All terminals (local, remote, non-vtam) by the terminal id (4-char).
Session by termid All sessions (VTAM, MRO, remote) by the terminal id (4-char).
Global by termid All terminal and all sessions by the terminal id (4-char).
System by sysid All connections (local, remote) by the sysid (4-char)
MRO system by sysid MRO connections by sysid (4-char).
LU61 system by sysid LU61 connections by sysid(4-char).
REMDEL system by sysid Systems that need REMDEL sent to them (because they do not support

timeout) when a local entry is deleted by sysid (4-char).
Terminal by netname VTAM local terminals by the netname (8-char).
System by netname All connections (local, remote) by the netname (8-char).
Remote terminal by netname

Remote terminals by the netname (8-char).
Global by netname Terminals, remote terminals and sessions by the netname (8-char).
Remote by Unique All remote terminals and remote connections by the unique name that is

Terminal-Owning-Region (TOR) netname, followed by a period, followed
by the termid or sysid in the TOR. (13-char).

Remote terminal by Rsysid Remote terminals by the value of REMOTESYSTEM (4-char).
Remote system by Rsysid Remote connections by the value of REMOTESYSTEM (4-char).
Indirect system by Rsysid Indirect connections by the value of REMOTESYSTEM (4-char).
Generic system by mbrname

Generic connections by the member-name of the connection in the
generic VTAM resource (8-char).

DFHTC CTYPE=LOCATE calls are processed by DFHZLOC. DFHZLOC does not have access to as wide
a range of domains as DFHZGTI, but it provides extra facilities such as finding particular types of sessions
for a connection. Both DFHZGTI and DFHZLOC can lock TCT entries.

Locks
The table manager program (DFHTMP) is used to locate TCT entries by both DFHZGTI and DFHZLOC.
When DFHTMP gives the address of an entry, it notes the address of the calling task, and this has the
effect of a shared lock unless the caller asked for the entry not to be locked. All locks are released
implicitly at the end of the task.

When a TCT entry is deleted, it must not be in use by another task. This is achieved by issuing the
DFHTM QUIESCE macro. Other tasks that issue DFHTM LOCATE for that entry are suspended when they
acquire a shared lock. These tasks are resumed when the original task issues a delete (if the commit
option is used), or at syncpoint if not.

In addition to TMP read locks, DFHZLOC and DFHZGTI, use update locks which are obtained and
released by DFHZGTA. DFHZGTA’s involvement in TCT updates is discussed in Chapter 6, “Builders,” on
page 53. For efficiency, two flags in each TCT entry (one for delete and one for update) are examined
before a TCT entry is returned. If either is set, and the request does not ask to see all updates, DFHZGTA
is called to determine if the inquiring task holds the lock on the termid or sysid name. If it does, the entry
is returned, otherwise the entry is ignored. This hides entries that are being installed or replaced from
other parts of CICS until they are ready to be used, without requiring a lock search for each inquiry. The
Builders, see Chapter 6, “Builders,” on page 53, are responsible for setting and resetting the flags in the
TCT entry.

The following sections describe some of the callers of DFHZCQ.

System initialization (DFHTCRP, DFHAPRDR and DFHTBSS)
The DFHTCRP program is responsible for reestablishing TCTTEs that were in existence in the previous
CICS run. There are three stages of processing in DFHTCRP:

Terminal control

418 CICS TS for z/OS: CICS Diagnosis Reference

1. Initialize DFHZCQ and DFHAPRDR, then exit if START=COLD

2. Reestablish TCTTEs recorded in the CICS catalog calling DFHZCQ for each one.

3. Call DFHAPRDR to allow it to proceed and forward-recover in-flight updates to TCTTEs recorded in
the system log at emergency restart or XRF takeover.

The DFHAPRDR program is called by DFHTCRP in two phases:

1. To initialize its control blocks.

2. To wait until Recovery Manager has delivered any inflight log records and DFHAPRDR (running on
another task) has called DFHTBSS to recover them.

DFHAPRDR is called by Recovery Manager (RM) for each log record that are for UOWs that did not write
a Forget record to the system log when CICS failed. It is then called again to denote the end of any such
records. On this call DFHAPRDR waits until DFHTCRP has rebuilt the TCT from the catalog, and then
calls DFHTBSS to recover each log record (which will update the TCT and catalog). Then it posts
DFHTCRP to show that the TCT has recovered and returns to Recovery Manager.

The DFHTBSS program is called by DFHAPRDR with log records for TCT updates that were being written
to the catalog when CICS failed. It then calls DFHZCQ to re-install or re-delete the entries that the log
records represent.

CEDA INSTALL and EXEC CICS CREATE (DFHAMTP)
When the CEDA INSTALL command is used to install a group of TERMINAL definitions, the flow of control
is as follows:

1. DFHAMP processes CEDA and EXEC CICS CREATE commands.

2. DFHAMPIL processes the INSTALL and CREATE commands.

3. DFHAMTP calls DFHTOR and then DFHZCQ.

4. DFHTOR receives as input a partial definition (TERMINAL, TYPETERM, CONNECTION, or
SESSIONS), calling one of the DFHTOAxx modules, depending on the type of resource definition:

v DFHTOAxx adds a partial definition to a BPS. For a terminal device, a complete BPS is built from
information from one TYPETERM and one TERMINAL definition; for an ISC or MRO link, a
complete BPSes are built from information from one CONNECTION and one (or more) SESSIONS
definition(s).

v DFHTOBPS builds the BPS, calling one of the DFHTRZxP modules to translate the parameter list
into BPS format.

5. When DFHTOR has built a complete BPS, it returns it to DFHAMTP, ready to be passed to DFHZCQ.

For additional information about this process, see Chapter 42, “Resource definition online (RDO),” on page
343.

Autoinstall
For information about this process, see Chapter 3, “Autoinstall for terminals, consoles and APPC
connections,” on page 11.

QUERY function (DFHQRY)
The QUERY function (DFHQRY) is used to determine the characteristics of IBM 3270 Information Display
System devices, and complete the information about a device in the TCTTE. DFHQRY sends a read
partition query structured field to the device, and analyzes the response. The TCTTE fields mainly affected
are those used by basic mapping support (BMS), such as extended attributes. If QUERY(ALL) or
QUERY(COLD) is specified in the terminal definition, DFHQRY is executed before any other transaction is
initiated at a terminal. If QUERY(ALL) is specified, this is done after each logon. If QUERY(COLD) is
specified, it is only done following the first logon after a cold start. After completing the TCTTE fields,
DFHQRY calls DFHZCQ to recatalog the TCTTE.

Terminal control

Chapter 56. Terminal control 419

Control blocks
Figure 86 shows the control blocks associated with terminal control.

CSA From part 2
of this figure

x'128' CSATCTBA
Address of TCT prefix Wait list

Address of
TCTFX VTAM activate chain ECB

x'00' TCTVWLA Address of
Address of wait list VTAM receive-any ECB

x'04' TCTWLA1 2
Address of first non-VTAM Address of non-VTAM
wait list element line entry ECB

x'1C' TCTVTEBA End of ECB list
Address of first non-VTAM indication x'FFFFFFFF'
terminal entry

TCTSE
x'38' TCTVSEBA

Address of first
ISC system entry x'08' TCSELNK

Address of next TCTSE

x'E0' TCTVRVRA
Address of VTAM
receive-any pool x'08' TCSELNK

Address of next TCTSE
x'E4' TCTVLNIB

Address of NETNAME chain
for session TCTTEs TCPRA (RACE pool)

x'134' TCTVMNIB To x'04' TCTVRAL
Address of model NIB 1 in Address of RPL
pointers part 2

of this x'08' TCTVRAEB
figure ECB

Receive-any RPL

RPLECB
TCT Address of ECB

Non-VTAM terminal 1 TCTLE
(non-VTAM line entries)

Non-VTAM terminal 2
x'00' TCTLEECB

ECB

Non-VTAM terminal m
x'08' TCTLEDCB

Address of DCB
Notes:

x'0C' TCTLEIOA
1. TACLE is created only when line Address of I/O area

or terminal error has occurred.

x'44' TCTLETEA
Address of active TCTTE

x'4C' TCTLEECA
Address of error chain,
TACLE for TACP (note 1)

x'54' TCTLEPA
Address of
first terminal on line

Figure 86. Control blocks associated with terminal control (Part 1 of 2)

Terminal control

420 CICS TS for z/OS: CICS Diagnosis Reference

Figure 87 shows the TCTLE and Figure 88 on page 422 shows the TACLE.

TCTTE

x'00' TCTTETI
Terminal name

TIOA
x'08' TCTTESC

Address of
terminal storage chain x'04' TIOASCA

Address of next TIOA
x'0C' TCTTEDA

(see note 2)
TIOA

Address of current TIOA

x'10' TCTTECA x'04' TIOASCA (see note 1)
Address of TCA Address of next TIOA

x'6C' TCTENIBA (VTAM) TCA

Address of NIB descriptor
x'08' TCAFCAAA

x'70' TCTTELEA (non-VTAM) To Address of TCTTE
Address of line entry 2 in

part 1
TCTERPLA (VTAM) of this
Address of RPL figure TCTENIB (NIBD)

x'78' TCTTETEA x'04' TCTENPTR
Address of terminal Address of dynamically
table entry extension acquired NIB/BIND

x'90' TCTTEIST
Address of ISC x'54' TCTENNCH (see note 3)
intersystem table x'FFFFFFFF'

TCTNIBLA
1

Address of NIB model
From NIBM0
part 1 Non-3270 NIB model
of this Address of NIB model
figure NIBM1

3270 NIB model

Notes:
1. Chain field TIOASCA of the last 3. For session TCTTEs, TCTENNCH

TIOA in the chain addresses addresses the next NIBD on the
TCTTESC-4. The offset between NETNAME chain.
TCTTESC-4 and TCTTESC is the Otherwise, TCTENNCH has the
same as the offset of TIOASCA value x'FFFFFFFF',
in the TIOA. indicating that the NETNAME

is in the TCNT (NETNAME table)
2. TCTTEDA addresses the TIOA being managed by DFHTMP.

used for the current I/O
operation. This TIOA can be
anywhere in the TIOA chain.

Figure 86. Control blocks associated with terminal control (Part 2 of 2)

DFHTCTLE

x'15' TCTLETLA
Address of terminal list

x'40' TCTLEPLA
Address of polling list

x'44' TCTLETEA
Address of active term table entry

x'4C' TCTLEECA
Address of line error chain

TACLE

x'54' TCTLEPA
Address of first terminal on line

Figure 87. Terminal control table line entry (TCTLE)

Terminal control

Chapter 56. Terminal control 421

Terminal input/output areas (TIOAs) are set up by storage control and chained to the terminal control table
terminal entry (TCTTE) as needed for terminal input/output operations. The TCTTE contains the address
of the first terminal-type storage area obtained for a task (the beginning of the chain), and the address of
the active TIOA.

See CICS Data Areas for a detailed description of these control blocks.

Modules
The DFHZCx modules contain CSECTs that issue VTAM macros to perform specific communication
functions, and exit routines that are driven by VTAM when network events occur that are related to CICS.

The following is a list of the DFHZCx load modules concerned with terminal control and VTAM
management in CICS, together with brief descriptions of their component object modules (CSECTs):

Module CSECT Description

DFHZCA DFHZACT Activate scan
DFHZFRE Freemain
DFHZGET Getmain
DFHZQUE Queue manager
DFHZRST RESETSR request

DFHZCB DFHZATI Automatic task initiation
DFHZDET Task detach
DFHZHPSR Authorized path SRB requests
DFHZLRP Logical record presentation
DFHZRAC Receive-any completion
DFHZRAS Receive-any slowdown processing
DFHZRVS Receive specific
DFHZRVX Receive specific exit
DFHZSDR Send response
DFHZSDS Send DFSYN
DFHZSDX Send synchronous data exit
DFHZSSX Send DFSYN command exit
DFHZUIX User input exit

DFHZCC DFHZARER Protocol error and exception handler
DFHZARL APPC application request logic
DFHZARM APPC migration logic
DFHZARR Application receive request logic
DFHZARRA Application receive buffer support
DFHZARRC Classify what next to receive
DFHZARRF Receive FMH7 and ER1
DFHZBKT Bracket state machine
DFHZCHS Chain state machine
DFHZCNT Contention state machine
DFHZCRT RPL_B state machine
DFHZRLP GDS post-VTAM receive logic
DFHZRLX GDS receive exit logic
DFHZRVL GDS pre-VTAM receive logic
DFHZSDL GDS send logic
DFHZSLX GDS send exit logic
DFHZSTAP Conversation state determination
DFHZUSR Conversation state machine

TCTLE

DFHTACLE
x'4C' TCTLEECA

x'0C' TCTLEPTE
Address of term entry

Figure 88. Terminal abnormal condition line entry (TACLE)

Terminal control

422 CICS TS for z/OS: CICS Diagnosis Reference

Module CSECT Description

DFHZCP DFHZARQ Application request handler
DFHZATT Attach routine
DFHZCNA MVS console
DFHZDSP Dispatcher
DFHZISP Allocate/free/point
DFHZSUP Startup task
DFHZUCT 3270 uppercase translate

DFHZCW DFHZERH APPC ERP logic
DFHZEV1 APPC bind security (part 1)
DFHZEV2 APPC bind security (part 2)

DFHZCX DFHSNAS Create signon/sign-off ATI sessions
DFHSNPU Preset userid signon/sign-off
DFHSNSU Session userid signon/sign-off
DFHSNTU Terminal userid signon/sign-off
DFHSNUS US domain - local and remote signon
DFHSNXR XRF reflecting signon state
DFHZABD Abend routine for incorrect requests
DFHZAND Build TACB before issuing PC abends
DFHZCNR MVS console request
DFHZIS1 ISC/IRC syncpoint
DFHZIS2 IRC internal requests
DFHZLOC Locate TCTTE and ATI requests
DFHZSTU Status changing TCTTEs/LCDs and TCTSEs

DFHZCXR DFHBSXGS APPC session name generation
DFHZTSP Terminal sharing functions
DFHZXRL APPC command routing
DFHZXRT Routed APPC command handling

DFHZCY DFHZASX DFASY exit
DFHZDST SNA-ASCII translation
DFHZLEX LERAD exit
DFHZLGX LOGON exit
DFHZLTX LOSTERM exit
DFHZNSP Network services exit
DFHZOPA Open VTAM ACB
DFHZRRX Release request exit
DFHZRSY1 Resynchronization part 1
DFHZRSY2 Resynchronization part 2
DFHZRSY3 Resynchronization part 3
DFHZRSY4 Resynchronization part 4
DFHZRSY5 Resynchronization part 5
DFHZRSY6 Resynchronization part 6
DFHZSAX Send command exit
DFHZSCX SESSION control input exit
DFHZSDA Send command
DFHZSES SESSIONC
DFHZSEX SESSIONC exit
DFHZSHU Shutdown VTAM
DFHZSIM SIMLOGON
DFHZSIX SIMLOGON exit
DFHZSKR Send response to command
DFHZSLS SETLOGON start
DFHZSYN Handle CTYPE=syncpoint/recover request
DFHZSYX SYNAD exit
DFHZTPX TPEND exit
DFHZTRA Create ZCP/VIO trace requests
DFHZXPS APPC persistent session recovery
DFHZXRC XRF and persistent sessions state data analysis

Terminal control

Chapter 56. Terminal control 423

Module CSECT Description

DFHZCZ DFHZCLS CLSDST
DFHZCLX CLSDST exit
DFHZCRQ CTYPE command request
DFHZEMW Error message writer
DFHZOPN OPNDST
DFHZOPX OPNDST exit
DFHZRAQ Read ahead queuing
DFHZRAR Read ahead retrieval
DFHZTAX Turnaround exit

Exits
DFHZCB has three global user exit points: XZCIN, XZCOUT, and XZCOUT1.

DFHZCP has one global user exit point: XZCATT.

DFHTCP has the following global user exit points: XTCIN, XTCOUT, XTCATT, XTCTIN, and XTCTOUT.

For further information about these, see the CICS Customization Guide.

Trace
The following point IDs are provided for terminal control:

v AP 00E6 (DFHTCP), for which the trace level is TC 2

v AP 00FC (DFHZCP), for which the trace level is TC 1

v AP FBxx, for which the trace levels are TC 1, TC 2 and Exc

v AP FCxx, for which the trace levels are TC 1, TC 2, and Exc

v AP FDxx, for which the trace level is TC 1

v AP FExx (APPC application receive requests), for which the trace levels are TC 2 and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Terminal control

424 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 57. Terminal error program

The terminal error program (DFHTEP) is invoked by the terminal abnormal condition program (DFHTACP)
when an abnormal condition associated with a terminal or line occurs. The terminal error program (TEP)
can be either of the following:

v The CICS-supplied sample TEP (DFHXTEP in source code form)

v A user-supplied TEP.

Design overview
The TEP analyzes the cause of the terminal or line error that has been detected by the terminal control
program. The CICS-supplied version is designed to attempt basic and generalized recovery actions.

A user-supplied TEP can be used to enable processing to be performed whenever a communication
system error is reported to CICS; for example, to analyze the error and accept or override the default
actions set by DFHTACP.

When TEP processing is complete, control goes back to DFHTACP.

Note: Communication system errors (non-VTAM) are passed only to DFHTEP—not to the application
programs.

Guidance information about TEP coding is given in the CICS Recovery and Restart Guide. Reference
information about TEP coding is given in the CICS Customization Guide.

Modules
DFHTEP

Exits
No global user exit points are provided for this function.

Trace
No trace points are provided specifically for this function; however, DFHTACP provides trace entries
immediately before and after calling the terminal error program (see Chapter 55, “Terminal abnormal
condition program,” on page 401 for further details).

© Copyright IBM Corp. 1997, 2011 425

426 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 58. Trace control macro-compatibility interface

DFHTRP is responsible for handling all requests for trace services that are made by using the routine
addressed by CSATRNAC in the CICS common system area (CSA).

Some parts of the CICS AP domain invoke DFHTRP to record trace information. This is achieved by use
of the DFHTR, DFHTRACE, or DFHLFM macro.

DFHTRP converts all requests for recording trace entries into TRACE_PUT calls to the trace domain. All
requests for changing the various trace flags that control tracing are converted into KEDD format calls to
the kernel domain.

Design overview
The input to DFHTRP, set up by the macro used for the invocation or by the calling program directly,
consists of the following TCA fields:
TCATRTR The trace request byte. The bottom half byte has one of the following

values:
2 User trace entry
3 An entry requested via DFHLFM on entry

to a LIFO module
4 A system entry requested via DFHTR or

DFHTRACE
5 An entry requested via DFHLFM on exit

from a LIFO module.
TCATRID The trace ID of the entry to be made. This is one byte X'nn'. The resulting

trace point ID is AP 00nn.
TCATRF1/TCATRF2 Two 4-byte fields to appear as FIELD A and FIELD B in the trace entry.
TCATRRSN An 8-character field used by some entries to specify a resource name.

The following flags in the TCA and CSA are tested by DFHTRP before making the call to the trace domain
(TRACE_PUT function):
CSATRMAS (X'80' bit in CSATRMF1)

The trace master flag. This is off unless at least one of internal, auxiliary,
or GTF trace is active.

TCANOTRC (X'40' bit in TCAFLAGS)
This is set according to the TRACE (YES|NO) specification on the
TRANSACTION definition for the transaction ID used to start this task. It
allows suppression of all trace activity for specified transaction IDs.

X'80' bit in TCATRMF This is the user entry ‘single’ flag. It allows suppression of user trace
entries for the associated task.

The process flow is as follows:

1. Test appropriate flags and exit if trace not required.

2. Execute data collection routine specific to trace ID in TCATRID to set up fields in trace entry.

3. Call TR domain with TRACE_PUT call to write the entry to the active destinations.

4. Invoke the storage violation trap (if this has been activated) by using the CSFE DEBUG transaction, or
by using the CHKSTSK or CHKSTRM startup override. See the CICS Problem Determination Guide for
information about the detection of storage violations.

Modules
DFHTRP

© Copyright IBM Corp. 1997, 2011 427

Exits
No global user exit points are provided for this function.

Trace
The following point IDs are provided for trace entries recording “trace on” and “trace off” calls to DFHTRP:

v AP 00FE, for trace turned on

v AP 00FF, for trace turned off.

There are no corresponding trace levels for these point IDs; that is, the trace entries are always produced.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Trace control macro-compatibility

428 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 59. Trace formatting

There are three possible destinations for CICS trace entries:

Internal
To main storage in the CICS region

Auxiliary
To a BSAM data set managed by CICS

GTF To the MVS-defined destination for generalized trace facility (GTF) records.

This section describes the code used to interpret and format CICS trace entries from all of these
destinations when they are processed offline.

For more information about using traces in problem determination, see the CICS Trace Entries.

In this context, “formatting” is used to mean the overall process of producing a report, suitable for viewing
or printing, from trace data in a dump or trace data set. “Interpretation” is the process of taking just the
point ID and the data fields from a trace entry and producing a character string describing what the entry
represents.

There are four environments for trace formatting:

v Internal trace in transaction dump

v Internal trace in system dump

v Printing auxiliary trace data set

v Printing GTF trace data set or processing GTF records in an SDUMP.

Table 27. CICS trace formatting summary

Transaction dump
printout

System dump
printout

Auxiliary trace
printout

GTF trace printout

CICS trace type Internal Internal Auxiliary GTF

Data set DFHDMPx SYS1.DUMPnn DFHxUXT SYS1.DUMPnn or
SYS1.TRACE

Controlling program DFHDU640 DFHTRDUF DFHTRPRA DFHTRPRG

Load module name DFHDU640 DFHPD640 DFHTU640 AMDUSREF (alias
DFHTR640)

Design overview
The controlling program (DFHDU640, DFHTRDUF, DFHTRPRA, or DFHTRPRG) is responsible for
acquiring the trace formatting control area (TRFCA), which is used for communication between the
different routines.

As far as possible, the necessary code is constructed of routines that can run in all four environments.
Subroutines required by the common code that cannot themselves be common (such as the line print
subroutine) have their addresses placed in the TRFCA by the controlling program.

The controlling routines are:
DFHDU640 The dump utility program used to print transaction dumps. Invokes

DFHTRFPB for each internal table block.
DFHTRDUF The system dump formatting routine for the trace domain. Invokes

DFHTRFPB for each internal table block.

© Copyright IBM Corp. 1997, 2011 429

DFHTRPRA The main routine of the trace utility program DFHTU640 used to print an
auxiliary trace data set. Invokes DFHTRFPP to encode selective print
parameters. Invokes DFHTRFPB for each auxiliary trace block.

DFHTRPRG The main routine of the GTF format appendage for CICS entries (format
ID X'EF') AMDUSREF (alias DFHTR640). Invokes DFHTRFPP to encode
selective print parameters. Invokes DFHTRFFE for each trace entry.

A noncommon subroutine required in all four environments is:

TRFPRL
Print a specified character buffer. This is contained in the controlling program.

The common routines required in more than one environment are:

DFHTRFPP
Process parameters. Passed a character string, encodes the string as selective print parameters
into the TRFCA (for DFHTRPRA and DFHTRPRG only). See the CICS Operations and Utilities
Guide for details of the selective print parameters.

DFHTRFPB
Process block. Processes a trace block from a dump or auxiliary trace data set, calling
DFHTRFFE for each entry in the block.

DFHTRFFE
Format entry. Passed a trace entry, it calls DFHxxTRI, TRFPRL, and DFHTRFFD to produce the
formatted entry.

DFHTRFFD
Format data. To format and print the trace data fields of a particular entry in hex and character
form. Calls TRFPRL to print each line.

DFHxxTRI
The interpretation routine for the xx domain. Builds the interpretation string for a particular entry
given the trace point ID and the data fields from the entry. The AP domain routine DFHAPTRI calls
one of the interpretation routines DFHAPTRx. Each of these is responsible for a functional
component of the AP domain.

DFHTRIB
The interpretation build program. Adds printable data to the interpretation buffer in the TRFCA as
requested by the interpretation routine.

DFHCDCON
The interpretation of some trace entries requires analysis of domain call parameter lists. Converts
a hexadecimal parameter list into a printable list of keywords. If the resulting interpretation string
would have been more than 1024 bytes long if all keywords were included, the warning
‘<<INTERPRETATION OVERFLOWED>>’ is printed with the string.

DFHxxyyT
The data file for an xxyy format parameter list that is used by DFHCDCON to translate the
hexadecimal parameter list into a printable list of keywords.

The components of the trace formatting function are shown in Figure 89 on page 431.

Trace formatting

430 CICS TS for z/OS: CICS Diagnosis Reference

Segmented entries on GTF
GTF entries with the CICS format ID X'EF' are written from parts of CICS that run asynchronously with the
mainline code, as well as from the trace domain itself. The source of the entry is identified by the type byte
in TREN_TYPE in the entry header. See DFHTREN in the CICS Data Areas manual for a full description
of the trace entry header.
Type Source of entry
00 TR domain
01 not used
02 DFHMNSVC
03 'normal' CICS VTAM exit
04 CICS VTAM LERAD/SYNAD exit
05 CICS VTAM TPEND exit
06 CICS VTAM HPO exit
07 CICS VTAM HPO LERAD/SYNAD exit

For trace formatting, the different types run on different MVS threads. Because CICS entries can be split
into several GTF entries due to the 256-byte restriction on GTF entry length, it is possible that header and
continuation entries of the different types may be interleaved on the GTF data set. DFHTRPRG allows for
this by having 4KB buffers for each type in which it can reconstruct segmented entries. This is made all
the more relevant when it is recognized that there could be several CICS regions writing to the GTF data
set at the same time. Not only may different types become interleaved, but also records of the same type
but from different CICS regions. For each type there can be up to five 4KB buffers for reconstructing the
segmented entries to ensure that all the entries for any region are formatted completely and correctly. This
makes the segmenting of the entries transparent in a formatted GTF trace, although they appear in order
of completion and so may be out of time sequence.

Control blocks
The trace formatting control area (TRFCA) is used as a communication area between the routines that go
to make up each of the four trace formatting load modules. See the CICS Data Areas manual for details of
DFHTRFCA.

Modules

Module Function

Controlling programs

DFHDUnnn DFHTRDUF DFHTRPRA DFHTRPRG

DFHTRFPP
Process
parameters

DFHTRFPB - Process block

DFHTRFFE - Format entry

DFHxxTRI DFHTRFFD - Format data

DFHTRIB TRFPRL

DFHCDCON DFHxxyyT

Figure 89. Trace formatting components

Trace formatting

Chapter 59. Trace formatting 431

Module Function

DFHDU640 Internal trace in transaction dump
DFHTRDUF Internal trace in system dump
DFHTRPRA Auxiliary trace
DFHTRPRG GTF trace
Common routines
DFHTRFPB Process trace block
DFHTRFPP Process selective print parameters
DFHTRFFE Format trace entry
DFHTRFFD Format data from entry
DFHTRIB Interpretation build routine
DFHCDCON Parameter list decode routine
Trace interpretation routines
DFHAPTRA MRO entries
DFHAPTRB XRF entries
DFHAPTRC User exit management entries
DFHAPTRD DFHAPDM/DFHAPAP entries
DFHAPTRE Data tables entries
DFHAPTRF SAA communications and resource recovery entries
DFHAPTRG ZC exception and VTAM exit entries
DFHAPTRI Application domain entries (router)
DFHAPTRJ ZC VTAM interface entries
DFHAPTRL CICS OS/2 LU2 mirror entries
DFHAPTRN Autoinstall terminal model manager entries
DFHAPTRO LU6.2 application request logic entries
DFHAPTRP Program control entries
DFHAPTRR Partner resource manager entries
DFHAPTRS DFHEISR trace entries
DFHAPTRV DFHSRP trace entires
DFHAPTRW Front End Programming Interface feature entries
DFHAPTR0 Old-style entries
DFHAPTR2 Statistics entries
DFHAPTR4 Transaction manager entries
DFHAPTR5 File control entries
DFHAPTR6 DBCTL entries
DFHAPTR7 Transaction routing entries
DFHAPTR8 Security entries
DFHAPTR9 Interval control entries
DFHCCTRI Local and global catalog domain entries
DFHDDTRI Directory manager entries
DFHDMTRI Domain manager domain entries
DFHDSTRI Dispatcher domain entries
DFHDUTRI Dump domain entries
DFHKETRI Kernel domain entries
DFHLDTRI Loader domain entries
DFHLGTRI Log Manager domain entries
DFHL2TRI Log Manager domain entries
DFHLMTRI Lock manager domain entries
DFHMETRI Message domain entries
DFHMNTRI Monitoring domain entries
DFHNQTRI Enqueue domain entries
DFHPATRI Parameter manager domain entries
DFHPGTRI Program manager domain entries
DFHRMTRI Recovery Manager domain entries
DFHSMTRI Storage manager domain entries

Trace formatting

432 CICS TS for z/OS: CICS Diagnosis Reference

Module Function

DFHSNTRI Signon entries
DFHSTTRI Statistics domain entries
DFHTITRI Timer domain entries
DFHTRTRI Trace domain entries
DFHTSITR Temporary Storage domain entries
DFHUSTRI User domain entries
DFHXMTRI Transaction manager domain entries
DFHXSTRI Security domain entries

Exits
Global user exit points are not applicable to offline utilities.

Trace formatting

Chapter 59. Trace formatting 433

434 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 60. Transaction Failure program

The abnormal condition program has been divided into two new programs according to function.

1. DFHTFP which is a new program that is invoked after transaction initialization on abnormal
termination.

2. DFHACP which is invoked by transaction manager whenever an incorrect transaction is detected.

The transaction failure program (DFHTFP) is invoked during transaction abend processing. Its purpose is
to reset the status of a terminal attached to the transaction, and to send a message informing the terminal
operator that the transaction has abended. It also calls the user-written (or default) program error program
(DFHPEP), and writes a message to the CSMT transient data destination.

DFHTFP resolves any abnormal conditions other than those associated with a terminal, or those handled
directly by the operating system.

Design overview
Errors can be classified as belonging in either of two broad categories:

1. DFHTFP. Task abnormal conditions, which are detected by CICS control programs and are often due
to an application program destroying system control information. When this happens, the task is
terminated, the program error program (DFHPEP) is called, the terminal operator is, if possible,
informed of the error, and the error is logged at destination CSMT. If the transaction has entered
syncpoint processing, then DFHPEP is NOT called.

2. DFHACP. Operator errors, such as incorrect transaction identifiers, security key violations, or failure of
an operator to sign on to the system before attempting to communicate with CICS. When any of these
happens, the program error program is NOT called, the terminal operator is notified, and the error is
logged at destination CSMT.

Figure 90 on page 436 and Figure 91 on page 436 show the interfaces between the abnormal condition
programs, DFHTFP and DFHACP, and other components when an error has been detected.

© Copyright IBM Corp. 1997, 2011 435

Notes:

1. DFHTFP is invoked by transaction manager whenever a task is abnormally terminated. The operator
ID for error messages is in the terminal control table terminal entry (TCTTE) at TCTTEOI. DFHTFP
returns to transaction manager after the error message has been issued. When a task is abnormally
terminated because of a stall purge condition, the stall purge count is increased by one and the
transaction identifier (from the installed resource definition) is included in the error message.

2. DFHTFP communicates with storage control to obtain and release terminal input/output areas (TIOAs).

3. DFHTFP links to the user-supplied (or default) program error program by issuing a DFHPGLU
LINK_URM domain call, which passes a parameter list via a COMMAREA (mapped in this case by
DFHPCOM TYPE=DSECT). Any abend within a DFHPEP program results in control returning to
DFHTFP unless there is an active HANDLE ABEND for this program. See Chapter 39, “Program error
program,” on page 337 for further information about the DFHPEP program.

4. DFHTFP and DFHACP both write error messages to the transient data destination, CSMT, by calling
the message domain.

Notes:

1. DFHACP is invoked by transaction manager whenever an incorrect transaction code is detected.

2. DFHTFP and DFHACP both write error messages to the transient data destination, CSMT, by calling
the message domain.

Transient data
program

User-written
error program

Program manager
domain

DFHAPAC

Storage control
program

Syncpoint
program

Transaction
manager
domain

Recovery
manager
domain

TCT

Transaction
failure
program
(DFHTFP)

1

2

3

3

4

CSA

TDOA

TCTTE

TCTLE

TIOA

Figure 90. DFHTFP abnormal condition program interfaces

CSA

TDOA

Abnormal
condition
program
(DFHACP)

TCT

TCTTE DFHAPXME
Transaction
manager
domain

TCTLE

TIOA

Figure 91. DFHACP abnormal condition program interfaces

Transaction failure program

436 CICS TS for z/OS: CICS Diagnosis Reference

Modules
DFHTFP, DFHACP, DFHAPAC, and DFHAPXME

Exits
No global user exit points are provided for this function.

Trace
The following point ID is provided for the abnormal condition program:
v AP 00DC, for which the trace level is AP 1.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Transaction failure program

Chapter 60. Transaction Failure program 437

438 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 61. Transaction restart program

The transaction restart program, DFHREST, is a user-replaceable program that helps you to determine
whether or not a transaction is restarted. The default version of DFHREST requests a transaction restart
under certain conditions; for example, if a program isolation deadlock occurs (that is, when two tasks each
wait for the other to release a particular DL/I database segment), one of the tasks is backed out and
automatically restarted, and the other is allowed to complete its update.

For further information about the transaction restart program, see CICS Recovery and Restart Guide. For
information about how to provide your own code for DFHREST, see CICS Customization Guide.

Design overview
In the creation of the program control table (PCT), the system programmer can designate selected
transactions as restartable.

During the execution of any transaction, certain temporary-storage data, intrapartition destinations, and
files are protected for dynamic backout. In addition, for a restartable transaction, the following actions take
place:

v Any terminal input/output area (TIOA), command-level communication area, or terminal user area
existing at task initiation is copied to the dynamic log.

v Interval control automatic initiate descriptors (AIDs) used in the task are preserved by means of
deferred work elements (DWEs) until the next syncpoint.

v Data is maintained to show:

– What terminal traffic has occurred during the task

– Whether a syncpoint has been passed

– Whether or not the current activation of the task is the result of a restart.

If a transaction abends, but before backout has been attempted, DFHREST may be invoked to decide
whether or not the task is to be restarted. Even if DFHREST decides that the transaction can be restarted,
CICS may overrule the restart, for example because of a transaction backout failure.

DFHREST is invoked by DFHXMTA passing a parameter list via a COMMAREA that is mapped by the
DFHXMRSD DSECT. DFHREST should return to DFHXMTA, indicating whether or not the transaction
should be restarted. If DFHREST requests a restart, and CICS does not overrule this decision, the
principal facility is not released and the principal facility owner reattaches a new task to restart the
transaction.

Notes:

1. DFHREST can invoke CICS facilities such as file control and transient data, via the command-level
interface.

2. If an error occurs while linking to, or in, the transaction restart program, the restart is not attempted for
this task.

3. DFHREST runs before backout.

Control blocks
CICS supplies a description of the transaction restart program commarea, in Assembler-language,
COBOL, PL/I, and C, which maps the layout of the parameter list passed between DFHXMTA and
DFHREST. The parameter list contains information that helps you code your own version of DFHREST to
determine whether a restart should be requested for a task.

For a detailed description of this control block, see the CICS Data Areas.

© Copyright IBM Corp. 1997, 2011 439

Modules
DFHREST is a skeleton user-replaceable program that you can modify.

Exits
Global user exit points are not relevant for this function.

Trace
Trace point IDs are not relevant for this function.

Statistics
CICS keeps a count of the number of times that each transaction has been restarted.

Transaction restart program

440 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 62. Transaction routing

Transaction routing allows one CICS system to run a transaction in another CICS system. The transaction
routing facility enables a terminal operator to enter a CICS transaction code into a terminal attached to one
CICS system, and thereby start a transaction on another CICS system in a different address space in the
same processing system or in another system.

There are two cases of transaction routing:

v Advanced program-to-program communications (APPC); that is, LU6.2

v Non-APPC (for example, LU2).

APPC transaction routing makes use of much of the non-APPC function, and there is often considerable
overlap between the function provided by modules for each of the two cases.

The CICS Intercommunication Guide gives a detailed description of transaction routing.

Design overview
Figure 92 shows the overall design of this component.
CICS executes the CICS relay program DFHAPRT (which invokes the user-replaceable dynamic

transaction routing program) as follows:

v When a transaction defined with the value DYNAMIC(YES) is initiated.

v When a transaction definition is not found and CICS uses the special transaction defined on the
DTRTRAN system initialization parameter. (For more information about DTRTRAN, see the CICS
System Definition Guide.)

v Before routing a remote, terminal-oriented, transaction initiated by ATI.

v If an error occurs in route selection.

v At the end of a routed transaction, if the initial invocation requests re-invocation at termination.

Transaction
routing

Relay Transaction Terminal Transaction
program routing sharing routing
(DFHAPRT) program program transformation

(DFHRTE) (DFHZTSP) program
(DFHXTP)

Remote Transformation
attach 1
(DFHZTSP) (DFHXTP)

Remote Transformation
application 2
request (DFHXTP)
(DFHZTSP)

Remote Transformation
detach 3
(DFHZTSP) (DFHXTP)

Remote Transformation
flush 4
(DFHZTSP) (DFHXTP)

Route
(DFHZTSP)

Figure 92. Transaction routing

© Copyright IBM Corp. 1997, 2011 441

If CICS has been generated with the appropriate options for intercommunication, the initialization of CICS
with the ISC=YES system initialization parameter specified causes the following modules to be loaded:

v DFHXTP (transaction routing data transformation program)

v DFHZCXR (which includes the DFHZTSP CSECT, the terminal sharing program).

The entry point addresses of these modules are contained in the optional features list that is addressed by
CSAOPFLA in the CSA.

The rest of this section is mainly concerned with APPC transaction routing, which occurs when an APPC
device is linked through an LU6.2 session to a transaction that is defined as remote.

Overview of operation in the application-owning region for APPC
transaction routing
Figure 93 shows the modules in the application-owning region for transaction routing for APPC devices.

CICS internals Application program

DFHTC EXEC CICS EXEC CICS GDS CMxxxx
FREE ALLOCATE Other ALLOCATE FREE Other FREE ALLOCATE Other (see note)

DFHETC DFHETL DFHEGL DFHCPIC

DFHZISP DFHZARQ

DFHZARM

DFHZARL

Other

ALLOCATE
FREE DFHZISP DFHZSUP

DFHZXRL

Subroutine Subroutine Subroutine
ZXRL_FREE ZXRL_ ZXRL_

ALLOCATE COMMANDS

DFHZISP

DFHRTSU

ATTACH

DFHZTSP Note:

Subroutine Subroutine CMxxxx represents the names of
RDETENT RAPPCRE program calls that are defined in

the SAA communications interface.

Figure 93. Transaction routing for APPC devices: modules in the application-owning region

Transaction routing

442 CICS TS for z/OS: CICS Diagnosis Reference

APPC control blocks
A remote APPC device is defined in the application-owning region with a remote terminal control table
system entry (or remote system entry). There are no TCT mode entries or session TCTTE entries
associated with the remote system entry when it is defined.

A session with the remote APPC device is represented by a surrogate session TCTTE (or surrogate
session entry). The surrogate is built dynamically when the conversation between the systems is initiated,
and is deleted when the conversation terminates.

Figure 94 shows the way in which the TCT entries are related.

Remote system entry: The remote system entry is similar to a normal system entry and, together with
the TCT skeleton entry, also includes the following information:

v SYSIDNT of the terminal-owning region (TCTSKSYS)

v SYSIDNT of remote APPC device (local name) (TCTSKID)

v REMOTENAME of APPC device (SYSIDNT on terminal-owning region) (TCTSKHID)

v NETNAME of remote APPC device (TCSESID).

The remote system entry may be defined explicitly with CEDA DEFINE and INSTALL commands.

Alternatively, it is installed dynamically when the first transaction is routed from the remote APPC device.
In this case, all data required to build the system entry is included in the initial ATTACH data stream from
the application-owning region. No INQUIRE or INSTALL data is sent.

The remote system entry is recorded on the catalog and recovered after warm start and restart. It is
located by TMP in the REMOTE domain and SYSTEM domain.

Surrogate session entry: The session between the terminal-owning region and the APPC device is
represented in the application-owning region by a surrogate session entry.

The surrogate session entry is used to support the routing of commands to the APPC device, and to
record security and status information for the conversation.

A surrogate session entry cannot be defined by the user; instead it is created when the conversation is
initiated (by an ATTACH request from the APPC device, or an ALLOCATE request from the
application-owning region), and is deleted when the conversation ends.

The surrogate session entry is not recorded on the catalog, is not accessible via TC LOCATE, and does
not have an entry in the TMP index. It is not recovered after warm start or restart.

Remote system entry

TCSESKA

TCT skeleton entry

TCTSKSYS TCTSKMDE TCTSKSRE

TCTSE for link (owning connection)

Surrogate session entry

TCTTEIST

Figure 94. Transaction routing for APPC devices: TCT control-block structure in the application-owning region

Transaction routing

Chapter 62. Transaction routing 443

CEMT and EXEC CICS INQUIRE or SET commands cannot be used to modify a remote system entry.

DFHZXRL
This module forms a principal part of the transaction routing component for APPC devices. It passes
DFHLUC macro requests issued in an application-owning region to the terminal-owning region.

All DFHLUC macro requests cause DFHZARL to be invoked. DFHZARL passes a request to DFHZXRL if
the TCTTE address passed is for a surrogate session, and the request is one that DFHZXRL is known to
handle (apart from ALLOCATE). ALLOCATE requests are always routed from DFHZARL to DFHZISP.
DFHZISP is then responsible for calling DFHZXRL if the system from which a session is to be allocated is
found to be remote. Table 28 summarizes this and shows which of the three main routines in DFHZXRL is
called. ZXRL_ALLOCATE, ZXRL_COMMANDS, and ZXRL_FREE are described in “ALLOCATE
processing in the application-owning region” on page 446, “Other LU6.2 command processing in the
application-owning region” on page 447, and “FREE processing in the application-owning region” on page
447 respectively.

Table 28. DFHZXRL’s processing of DFHLUC requests

DFHLUC request DFHZXRL’s caller DFHZXRL routine called

ALLOCATE DFHZISP ZXRL_ALLOCATE

ISSUE-ABEND
ISSUE-ATTACH
ISSUE-CONFIRMATION
ISSUE-ERROR
ISSUE-SIGNAL
RECEIVE
SEND
WAIT
EXTRACT-PROCESS

DFHZARL ZXRL_COMMANDS

FREE DFHZARL ZXRL_FREE

The input and output for DFHZXRL is provided by means of the LUC parameter list, that is, the parameter
list which is built by the DFHLUC macro. DFHZARL passes the LUC parameter list to DFHZXRL unaltered.
If the LUC parameter list previously contained only the SYSID name, DFHZISP adds the address of the
remote system entry to the LUC parameter list before passing it to DFHZXRL.

DFHZXRL calls routine RAPPCRE of DFHZTSP to build the surrogate TCTTE representing the session
with the APPC device, and DFHZISP calls routine RDETENT to free it.

ATTACH processing in the application-owning region
The following describes how a transaction is attached in the application-owning region when the attach
request has been routed from the terminal-owning region.

DFHZSUP module:

1. Issues DFHSEC TYPE=CHECK,RESTYPE=TRAN to validate transaction security against the security
values associated with the intersystem link at bind time.

2. Processes the incoming attach FMH5.

For an LU6.2 ISC connection:

v Sets the TCTTE to indicate a mapped or unmapped conversation.

v Validates synclevel requested in FMH5 against the value negotiated at bind time.

v Moves the TPN from the FMH5 to the TCA extension.

v Performs attach-time security processing, as defined by the ATTACHSEC parameter in the resource
definition for the LUC CONNECTION to the terminal-owning region. This may change the security

Transaction routing

444 CICS TS for z/OS: CICS Diagnosis Reference

values associated with the link from the bind-time established values that were checked in step 1) to
user-level values, obtained from the SNT for a userid specified in the FMH5.

For an MRO connection:

v Issues DFHZIRCT FN=ZSUP to extract the USERID and UOW-ID from the LU6.2 style FMH5.

v Performs attach-time security processing, as defined by the ATTACHSEC parameter in the resource
definition for the LUC CONNECTION to the terminal-owning region. This can change the security
values associated with the link from the bind-time established values that were checked in step 1) to
user-level values, obtained from the SNT for a userid specified in the FMH5.

v Deletes the LU6.2-style FMH5 from the front of the data stream.

3. Issues DFHZUSRM TYPE=SET,REQUEST=ATTACH_INBOUND and DFHLUC TYPE=INIT-CALL
macros to move input data into a buffer bypassing the FMH5 ATTACH header.

4. PIP processing is bypassed because PIP is never present on an attach from a terminal-owning region
when transaction routing.

5. Puts the remaining data into a TIOA with a DFHTC TYPE=(READ,WAIT),NOATNI=YES.

6. Issues a DFHIS TYPE=RATT, to call DFHZTSP to build a surrogate session entry to represent the
session TCTTE in the terminal-owning region.

7. Assign the security values established for the link to the surrogate, as preset security values are
shipped from the terminal-owning region, and cannot be defined on the application-owning region.

ATTACH security processing in DFHZSUP has established two SNTTEs associated with the link
session:

a. The SNTTE pointed to by TCTELSNT in the LU6.2 extension or TCTEIRSN for MRO represents
link-level security values established at bind time.

b. The SNTTE pointed to by TCTTESNT represents user-level security values established during
ATTACH security processing.

TCTTESNT is copied to the surrogate TCTTE. No provision is made for preset user security values to
override the TCTTESNT value.

Preset security values defined for the terminal session on the terminal-owning region are processed
only on that system, during local attach processing. The SNTTE then associated with the local TCTTE
is used to build the routed attach FMH5.

At transaction end, no SNTTEs addressed by the surrogate are deleted when the surrogate is deleted.
This is done, if necessary, as part of the termination of the LINK SESSION.

Each system in a “daisy chain” imposes its own link security requirements. An intermediate system
with a lower level of security would route the ATTACH with lower security (that is, no USERID or
verified bit) which could cause it to be rejected by the next system in the chain.

8. Passes control to the requested application program.

DFHZTSP module:

1. Performs initialization housekeeping, checks the link TCTTE and TIOA.

2. Locates remote system entry from the TMP REMOTE domain. If not found, attaches the CITS
transaction (DFHZATS) to install it.

3. Builds surrogate session TCTTE.

4. Gets a TIOA and chains it to the surrogate.

5. Issues DFHIS TYPE=XTP,XFNUM=2 to call DFHXTP.

6. Chains surrogate to TCA and Link TCTTE.

7. Copies link operator dispatching priority from the link and establishes dispatching priority for the
surrogate.

Transaction routing

Chapter 62. Transaction routing 445

DETACH processing in the application-owning region
At transaction end, routine RDETENT of DFHZTSP is called to delete the surrogate session entry. The
remote system entry is not deleted, and can be used by a subsequent transaction routing request, by an
ATI request, or by an ALLOCATE request issued in the application-owning region.

ALLOCATE processing in the application-owning region
A session can be allocated as a result of either of the following macro calls:

v DFHLUC TYPE=ALLOCATE

v DFHTC TYPE=ALLOCATE

The DFHLUC call invokes DFHZARL, which passes control to DFHZISP, the module that handles
allocation and freeing of sessions. The DFHTC call invokes DFHZISP directly.

DFHZISP locates the TCTSE for the system identified on the ALLOCATE request.

The request is routed to DFHZXRL if the following conditions hold:

v The system is LU6.2

v The system is remote

v DFHZISP was called as a result of a DFHTC TYPE=ALLOCATE request (which is the case when
DFHZISP is called from DFHZARL).

The address of the remote TCTSE is inserted in the parameter list passed to DFHZXRL.

If a Privileged Allocate request is made, the transaction abends, because the request is not permitted for a
remote system.

DFHZXRL module: For an ALLOCATE request, control passes to subroutine ZXRL_ALLOCATE which
establishes a session between the application-owning region and the alternate facility, and builds a
surrogate session TCTTE.

Subroutine ZXRL_ALLOCATE:

1. Checks that the parameter list contains the TCTSE address for the remote LU6.2 system.

2. Obtains the address of the TCTSE of the system to which the LU6.2 commands are to be routed.

3. Allocates a session to the terminal-owning region.

The connection between the terminal-owning region and application-owning region which supports
remote alternate facilities may be an LU6.2 ISC connection or an MRO connection. Subroutine
ZXRL_ALLOCATE allocates the session using a DFHTC TYPE=ALLOCATE macro call that can
allocate a session on either type of connection.

The default profile DFHCICSR is used; this may specify the modename for an LU6.2 connection. The
modename specified on the EXEC CICS ALLOCATE is not used here, but is shipped to the
terminal-owning region where it is used to allocate an LU6.2 session between the terminal-owning
region and the APPC device.

The queuing option (NOQUEUE|NOSUSPEND) specified on the ALLOCATE request by the caller is
used when the DFHTC TYPE=ALLOCATE macro call is issued for the connection. If NOQUEUE is not
specified, the request may also be queued when it is issued in the terminal-owning region. If a session
failure occurs during this period, the transaction in the application-owning region and the relay
transaction in the terminal-owning region abend.

If a session between the application-owning region and terminal-owning region cannot be allocated:

v When the failure is due to CICS logic, corruption of CICS storage, or incorrect resource definition by
the user, the transaction abends.

v When the failure is due to other conditions (such as session failure or ‘SYSBUSY’), an appropriate
return code is passed to the caller.

Transaction routing

446 CICS TS for z/OS: CICS Diagnosis Reference

The return code is handled so as to minimize the differences between local and remote APPC
devices as seen by the user of the DFHLUC interface. The actions available are:

– Where the condition could be encountered with a local terminal, reflect the return code to the
caller in LUCRCOD2 and LUCRCOD3 with LUCESYSI (X'01') in LUCRCOD1.

– Where the condition would not occur with a local terminal, reflect a different return code to the
caller.

4. Issues a DFHIS TYPE=XTP,XFNUM=3 macro call that invokes a stream that is passed to the
terminal-owning region.

5. Issues a DFHTC TYPE=(WRITE,WAIT,READ),FMH=YES macro call to send the request to the
terminal-owning region and receive the response.

6. Issues a DFHIS TYPE=RALL that invokes DFHZTSP to build a surrogate session TCTTE, then chains
the link session TCTTE and the surrogate session TCTTE together.

7. Issues a DFHIS TYPE=XTP,XFNUM=2 macro call that invokes DFHXTP to unwrap the response from
the terminal-owning region and update the surrogate session TCTTE and the parameter list created by
the DFHLUC macro.

8. Examines the return codes in the response:

v If the request has been successful, returns the surrogate session TCTTE address to the caller.

v If the request has not been successful, issues a DFHIS TYPE=RDET macro call to free the
surrogate session TCTTE.

FREE processing in the application-owning region
One of the following macro calls is made in the application-owning region to request that a surrogate
session TCTTE should be freed:

v DFHLUC TYPE=FREE

v DFHTC TYPE=FREE

The DFHLUC TYPE=FREE call invokes DFHZARL, which passes control to DFHZXRL; and subroutine
ZXRL_FREE in DFHZXRL is then called to issue a DFHTC TYPE=FREE request against the surrogate.
The DFHTC TYPE=FREE call invokes DFHZISP.

DFHZISP:

1. Bypasses security processing (sign-off) for a surrogate session entry, because the sign-off is performed
for the link.

2. Issues the DFHIS TYPE=RDET macro that calls DFHZTSP to free the surrogate and link TCTTEs.

Other LU6.2 command processing in the application-owning region
Most SAA communications calls, EXEC CICS GDS commands, and EXEC CICS commands relating to
LU6.2 sessions cause a call to DFHZARL using the DFHLUC macro.

The EXEC CICS SYNCPOINT, EXEC CICS SYNCPOINT ROLLBACK, and EXEC CICS (GDS) ISSUE
PREPARE commands are handled under the control of the syncpoint program, which uses DFHLUC
macro requests to send syncpoint flows on LU6.2 sessions, and DFHTC macro calls to end any dangling
conversations.

DFHTC macro requests: DFHTC macro requests may be issued against surrogate session TCTTEs.
Unlike requests for other surrogate TCTTEs, which are passed to DFHZTSP, DFHZARQ handles these
requests in the same way as other requests against LU6.2 sessions: they are passed to DFHZARM which
in turn calls DFHZARL. Within DFHZARL, requests are handled in a similar way to those initiated by the
DFHLUC macro.

DFHLUC requests: DFHLUC requests are passed to DFHZARL: when the session is a surrogate, the
request is passed to DFHZXRL (routine ZXRL_COMMANDS).

Transaction routing

Chapter 62. Transaction routing 447

DFHZXRL module: Input to routine ZXRL_COMMANDS in DFHZXRL is the application command in the
form of a DFHLUC macro call parameter list.

1. ZXRL_COMMANDS normally wraps up the command to be shipped and relevant TCTTE fields by
calling a transformer routine in DFHXTP.

However, if the first syncpoint flow has been received, then:

v Application requests ISSUE-ERROR and ISSUE-ABEND are sent unwrapped on the link session.

v All other requests are rejected with a state error.

2. ZXRL_COMMANDS tests the state of its link with the terminal-owning region (this may not be the
same as the state of the application):

If it finds that it is in ‘RECEIVE’ state, it issues a DFHTC TYPE=(READ,WAIT) in order to receive the
change direction (CD) indicator from the terminal-owning region. Except during syncpoint processing,
however, the session is normally in ‘SEND’ state when a command is issued.

3. ZXRL_COMMANDS then sends the wrapped-up request to the remote system using the DFHTC
macro. To reduce the number of flows when the command may result in the termination of the
conversation, the following rules are applied for both MRO and ISC links:

v If the application command is SEND LAST WAIT and the application program is in ‘SEND’ state, the
command is sent using a DFHTC TYPE=(WRITE,LAST) macro.

v If the application command is WAIT and the application program is in ‘FREE PENDING AFTER
SEND LAST’ state, the command is sent using a DFHTC TYPE=(WRITE,LAST) macro.

v If the end bracket (EB) indicator has been sent to the terminal-owning region all other commands
result in a state error return code.

In other cases and when the link between the terminal-owning region and application-owning region is
MRO, ZXRL_COMMANDS issues a DFHTC TYPE=(WRITE,WAIT,READ).

However, when the link is LU6.2, the following additional rules are applied in order to exploit the
buffering provided by LU6.2:

v When the application’s command is a SEND and the application is in ‘SEND’ state
ZXRL_COMMANDS, issues a DFHTC TYPE=(WRITE,WAIT) macro to send the request without
waiting for a response.

v When the application’s command is a SEND and the application is not in ‘SEND’ state
ZXRL_COMMANDS, issues a DFHTC TYPE=(WRITE,WAIT,READ) so that it can get the state error
back from the remote system immediately.

v For all other commands, including SEND INVITE and so on, ZXRL_COMMANDS issues a DFHTC
TYPE=(WRITE,WAIT,READ).

4. ZXRL_COMMANDS receives the response to its DFHTC macro call. This may be:

v An ATNI or ATND abend. ZXRL_COMMANDS frees the link session and returns ‘TERMERR’ to the
application.

v ‘SIGNAL’, which is used by the terminal-owning region when it is in ‘RECEIVE’ state to indicate to
the application-owning region that there is an abnormal response pending.

ZXRL_COMMANDS issues a DFHTC TYPE=(WRITE,WAIT,READ) to send the change direction
indicator and get the abnormal response from the terminal-owning region.

5. When the DFHTC macro included a READ, and the request was succesfully processed,
ZXRL_COMMANDS checks for a wrapped reply from the terminal-owning region, and calls DFHXTP to
unwrap the reply. When the resulting DFHLUC parameter list indicates SYNCPOINT or SYNCPOINT
ROLLBACK, and the link is an MRO connection, ZXRL_COMMANDS issues a DFHTC TYPE=READ,
because there is a SYNCPOINT or ROLLBACK flow pending.

When there is no wrapped reply, ZXRL_COMMANDS checks for SYNCPOINT ROLLBACK received
(the only possibility under these circumstances).

LU6.2 daisy-chaining considerations
There is no special-case code to distinguish between the terminal-owning region and an intermediate
system. When DFHZXRT has interpreted a request received from the application-owning region, it issues

Transaction routing

448 CICS TS for z/OS: CICS Diagnosis Reference

the LU6.2 service request (DFHLUC) macro call with the parameter list that was created in the
application-owning region. The macro generates a call to DFHZARL. If the TCTTE is a surrogate, which is
the case in an intermediate system, control passes to DFHZXRL as described above.

Overview of operation in the terminal-owning region for APPC
transaction routing
Figure 95 shows the modules in the terminal-owning region for transaction routing for APPC devices.

In the terminal-owning region, operation is under the control of a relay program. When transaction routing
is initiated from the APPC device, the relay program is DFHAPRT (which is also used for non-APPC
devices). When transaction routing is initiated by an ALLOCATE request in the application-owning region,
the relay program is DFHCRT. Both relay programs call DFHZTSP, which calls DFHZXRT.

When an APPC device initiates a conversation with an application in the application-owning region, relay
program DFHAPRT is started in the terminal-owning region. It calls the ROUTENT routine of DFHZTSP,
which allocates a session to the application-owning region and starts the requested transaction there (see
“ATTACH processing in the terminal-owning region”).

When an application running in the application-owning region initiates a conversation with a remote APPC
device by issuing an ALLOCATE request, the DFHCRT relay program is started in the terminal-owning
region. It calls the ALLOCLUC routine of DFHZTSP which allocates a session to the APPC device (see
Chapter 39, “Program error program,” on page 337).

After a conversation has been started by either method, the LU6.2 commands passed from the
application-owning region are processed by DFHZXRT, which issues the LU6.2 service request (DFHLUC)
macro with an appropriate parameter list against the APPC device.

ATTACH processing in the terminal-owning region
The following flow describes the steps involved in routing a transaction from an APPC device across an
LU6.2 intersystem link.

DFHZSUP module:

1. Processes the incoming FMH5 from the terminal. This:

v Sets TCTTE to indicate mapped or unmapped conversation.

v Validates synclevel requested in FMH5 against the value negotiated at bind time.

v Moves the TPN from the FMH5 to the TCA extension.

DFHAPRT DFHCRT

DFHIS DFHIS
TYPE=ROUTE TYPE=ALLOC

DFHZTSP

ROUTENT ALLOCLUC

DFHZXRT

Figure 95. Transaction routing for APPC devices: Modules in the terminal-owning region

Transaction routing

Chapter 62. Transaction routing 449

v Performs attach-time security processing, as defined by the ATTACHSEC parameter in the resource
definition for the APPC device (or CONNECTION). This may change the security values associated
with the terminal from the default link-level values to user-level values, obtained from the SNT for a
user who is signed on.

2. Checks transaction security code against new security levels developed during ATTACH security
processing above.

3. Issues DFHSEC TYPE=CHECK,RESTYPE=TRAN to validate transaction security against the security
values associated with the terminal (and with the user, if signed on).

4. Issues DFHZUSRM TYPE=SET,REQUEST=ATTACH_INBOUND and DFHLUC TYPE=INIT-CALL
macros to move input data into a buffer bypassing the FMH5 ATTACH header.

5. If PIP is present, builds a new TCA extension and moves the PIP data into it by issuing a DFHLUC
TYPE=RECEIVE (which also causes the PIP data to be deleted from the buffer).

6. Puts remaining mapped data into a TIOA with a DFHTC TYPE=(READ,WAIT),NOATNI=YES.

7. Issues DFHPC TYPE=XCTL to the relay program DFHAPRT.

DFHAPRT module:

1. Drives the dynamic routing exit if the transaction has been defined as dynamic.

2. Sets up the DFHISCRQ parameter list with remote sysid and tranid.

3. Recognizes that the principal facility is an APPC device.

4. Issues DFHIS macro to invoke DFHZTSP.

DFHZTSP module:

1. If the transaction has been defined with an associated TRPROF, the profile named is located with a
DFHKC CTYPE=PROFLOC; otherwise the default DFHCICSS profile is used.

2. Issues DFHTC TYPE=ALLOCATE,REQUID=CSRR to allocate a session to the remote system using
the profile identified in step 1.

3. Flags the returned TCTTE as a relay link and puts the remote sysid into TCTESYID in the terminal
TCTTE. If the LINK TCTTE status is ‘COLD’, issues DFHTC CTYPE=CATALOG.

4. Sets up the transformer parameter list (DFHXTSTG) to indicate ATTACH FMH5 required, COLD or not
COLD, and transaction routing for an APPC device, passing the tranid, user TCTTE, and link TCTTE.

5. Issues DFHIS TYPE=XTP,XFNUM=1 to call the transformer program, DFHXTP, to build the data. (See
“Transformer program (DFHXTP)” on page 452.)

6. Issues DFHTC TYPE=(WRITE,WAIT,READ) against the link to route the ATTACH request to the
application-owning region. This causes DFHZARM (when the link is ISC) or DFHZIS2 (when the link is
MRO) to add an LU6.2 FMH5 preceding the LU6.1 FHM5 built by XTP. This contains security data
required to validate the request at the application-owning region.

ALLOCATE processing in the terminal-owning region

DFHCRT module: Transaction CXRT (program DFHCRT) is started in the terminal-owning region when
the attach FMH5 is received from the application-owning region

Program DFHCRT:

1. Checks that the principal facility of the task is an ISC or MRO session.

If not, and if it is a terminal, a message is written to the facility, and the transaction terminates.

2. Issues DFHIS TYPE=ALLOC macro which calls DFHZTSP.

DFHZTSP module: The ALLOCLUC routine of DFHZTSP is invoked when the DFHIS TYPE=ALLOC
macro is issued. This routine is called with input from the application-owning region in a TIOA.

Routine ALLOCLUC:

Transaction routing

450 CICS TS for z/OS: CICS Diagnosis Reference

1. Issues DFHIS TYPE=XTP,XFNUM=4 which updates the TCTTE and builds a parameter list of the type
created by the DFHLUC macro.

2. Verifies that the parameter list contains an ALLOCATE request (the only valid request at this stage). If
it does not, the transaction abends.

3. Issues a DFHLUC MF=E macro with the supplied parameter list.

4. If the request is successful, DFHZTSP:

a. Issues DFHIS TYPE=XTP,XFNUM=1 which wraps the updated TCTTE and DFHLUC parameter list
ready for transmission to the application-owning region.

b. Issues a DFHTC TYPE=(WRITE,WAIT,READ) against the session with the application-owning
region.

c. Passes control to DFHZXRT. The TIOA received with the preceding DFHTC request should contain
data for one of the requests that DFHZXRT handles.

5. If the request is unsuccessful, DFHZTSP:

v Issues DFHIS TYPE=XTP,XFNUM=1 which wraps the updated TCTTE and DFHLUC parameter list
ready for transmission to the application-owning region.

v Issues DFHTC TYPE=(WRITE,LAST) to send the response to the application-owning region.

v Frees the session with the application-owning region.

FREE processing in the terminal-owning region
When an end-bracket has flowed from the application-owning region to the terminal-owning region as a
result of an application command (for example, EXEC CICS SEND LAST), and the corresponding
command has been issued in the terminal-owning region against the terminal, DFHZXRT issues a
DFHLUC TYPE=FREE macro against the terminal, and a DFHTC TYPE=FREE macro against the link to
the application-owning region.

Other LU6.2 command processing in the terminal-owning region
DFHZXRT is called by DFHZTSP following a DFHTC TYPE=(WRITE,WAIT,READ) macro. The reply
received from the application-owning region is processed as follows:

1. If an application request has been received, DFHZXRT:

v Calls DFHXTP to unwrap the application program’s request

v Issues the DFHLUC macro call with the parameter list created in the application-owning region

v Calls DFHXTP to wrap the response to the DFHLUC macro

v Sends the response to the application-owning region.

Normally the wrapped terminal response is sent to the application-owning region with a DFHTC
TYPE=(WRITE,WAIT,READ) macro. However, there are exceptions:

– If the response to the DFHLUC macro call is a request for SYNCPOINT ROLLBACK, DFHZXRT
sends the wrapped terminal response with a DFHTC TYPE=WRITE macro and then issues a
DFHSP TYPE=ROLLBACK command.

– If the response to the DFHLUC macro call is a request for SYNCPOINT, DFHZXRT sends the
wrapped terminal response with a DFHTC TYPE=WRITE macro and then issues a DFHSP
TYPE=PREPARE against the link.

The response to the macro is processed in the same way as when a SYNCPOINT request is
received from the application, and issued to the terminal, except that the roles of the terminal and
link are reversed.

– If the session to the terminal has been freed by an application command, DFHZXRT sends the
wrapped terminal response with a DFHTC TYPE=(WRITE,LAST) macro.

– When the session to the application-owning region is in ‘RECEIVE’ state, normally DFHZXRT
issues a DFHTC TYPE=READ to get the next request from the application.

However, if the link between the terminal-owning and application-owning regions is LU6.2, and
the response to the DFHLUC macro issued to the terminal indicates that the terminal has issued
one of ISSUE_SIGNAL, ISSUE_ERROR, ISSUE_ABEND, or SYNCPOINT_ROLLBACK,

Transaction routing

Chapter 62. Transaction routing 451

DFHZXRT issues an ISSUE_SIGNAL against the link with the application-owning region to notify
the application-owning region that the terminal-owning region wants to send. It then issues a
series of DFHTC TYPE=READ macros until it receives the change of direction indicator.

The data is processed in the normal way when ‘SIGNAL’ is received from the terminal. In the
other cases, that is, if a negative response is received from the terminal, the data from the
application-owning region is purged.

After the change direction indicator is received, DFHZXRT sends the response to the
application-owning region, ISSUE_SIGNAL and ISSUE_ERROR are sent using a DFHTC
TYPE=(WRITE,WAIT,READ) macro, ISSUE_ABEND is sent using a DFHTC
TYPE=(WRITE,LAST) macro, and SYNCPOINT_ROLLBACK is sent using a DFHTC
TYPE=WRITE macro.

– If the response from the terminal was ‘ROLLBACK’, by a DFHSP TYPE=ROLLBACK macro is
issued.

2. If a syncpoint request has been received, DFHZXRT:

v Issues a DFHLUC TYPE=ISSUE-PREPARE macro against the terminal TCTTE.

v Checks the terminal’s response:

If the terminal response indicates that a SYNCPOINT or BACKOUT request was issued, DFHSPP is
called.

If the terminal response indicates that the terminal issued a SEND_ERROR request, DFHZXRT
issues a DFHTC CTYPE=ISSUE_ERROR macro followed by a DFHTC TYPE=(WRITE,WAIT,READ)
macro against the link session.

If the terminal response indicates that the terminal issued DEALLOCATE(ABEND), DFHZXRT issues
a DFHTC CTYPE=ISSUE_ABEND macro against the link session. It then frees the link with the
application-owning region and returns.

3. If a syncpoint rollback request has been received, DFHZXRT issues a SYNCPOINT ROLLBACK
request.

When DFHZXRT detects that EB has flowed on both the session with the terminal and the session with
the application-owning region, it issues DFHTC TYPE=FREE on both and returns.

Transformer program (DFHXTP)
The terminal-sharing data-transformation program, DFHXTP, constructs and interprets the data streams
flowing between terminal-owning and application-owning regions, for both APPC and non-APPC
transaction routing environments.

It does this by using four transformers. These either wrap this data from the surrogate TCTTE (in the
AOR) or the real TCTTE (in the TOR) into the link TCTTE’s TIOA, or they unwrap this data from the link
TCTTE’s TIOA into the surrogate or real TCTTE.

The transformers work in matching wrap and unwrap pairs. Transformer 1 wraps any data to be sent from
a TOR to an AOR, which is then unwrapped in the AOR by transformer 2. Transformer 3 wraps any data
to be sent from an AOR to a TOR, which is then unwrapped in the TOR by transformer 4. Figure 96 on
page 453 shows this process.

Transaction routing

452 CICS TS for z/OS: CICS Diagnosis Reference

The transformer program is capable of shipping data from the TCTTE and the following control blocks that
are chained off the TCTTE:

v The TCTTE extension, chained off TCTTETEA in the TCTTE.

v The terminal partition extension, chained off TCTTETPA in the TCTTE BMS extension.

v The TCTTE user extension, chained off TCTTECIA in the TCTTE.

v The SNTTE, chained off TCTTESNT in the TCTTE.

v The DFHLUC parameter list, and fields chained off it.

Note that because this field is not chained off the TCTTE but is in LIFO, its address is passed as a
parameter to the transformer program.

v The TCA extension for LU6.2 communication.

v Fields from the terminal control table system entry (TCTSE), chained off TCTTEIST in the TCTTE.

v Fields from the terminal control table mode entry (TCTME), chained off TCTTEMOD in the TCTTE.

v The data interchange block (DIB), chained off TCTEDIBA in the TCTTE.

The fields to be shipped are defined in tables in the transformer program.

There is special-case code to deal with fields that cannot be processed by the table-driven code.

For the transaction routing of LU6.2 commands, DFHXTP must ensure that the data stream built for
transmission contains all the information relevant to support the issuing of a DFHLUC macro request on
the remote system. This information consists primarily of:

v The DFHLUC parameter list

v Any data addressed by the parameter list

v The conversation state machine (TCTEUSRS in DFHTCTZE) in the TCTTE

v TCTTE fields required to build the surrogate TCTTE, in particular:

– The synclevel supported by the terminal

– The information returned to the application by the EXTRACT PROCESS command.

Data streams for transaction routing
Figure 97 on page 454 shows the types of transaction-routing data streams.

Terminal-owning Application-owning
region region

Transformer Transformer
1 2

Transformer Transformer
4 3

Figure 96. DFHXTP transformer operations

Transaction routing

Chapter 62. Transaction routing 453

The transformer builds four types of data stream for transaction routing:

1. Attach data stream for principal facility
v Built by transformer 1
v Shipped from TOR to AOR
v Unwrapped by transformer 2
v Contains an LU6.1 attach FMH (FMH5)
v For LU6.2, the routed data does not contain a DFHLUC parameter list.

2. Attach data stream for alternate facility
v Built by transformer 3
v Shipped from AOR to TOR
v Unwrapped by transformer 4
v Contains an LU6.1 attach FMH (FMH5)
v For LU6.2, the routed data contains a DFHLUC parameter list.

3. DFHLUC request data stream
v Built by transformer 3
v Shipped from AOR to TOR
v Unwrapped by transformer 4
v For LU6.2, the routed data contains a DFHLUC parameter list.

4. DFHLUC response data stream
v Built by transformer 1
v Shipped from TOR to AOR
v Unwrapped by transformer 2
v For LU6.2, the routed data contains a DFHLUC parameter list.

Note: The first transformer request for remote alternate facilities is to transformer 3, and not to
transformer 1. This is because the same transformers are used whether transaction routing is
initiated in the terminal-owning region or in the application-owning region.

An LU6.1 attach FMH5 is used when a transaction is to be started in the system to which the request is
sent. CSRR is specified as the return process to indicate the use of transaction routing. In the case of
routing to the application-owning region, the transaction is the user transaction; in the case of routing to
the terminal-owning region, the transaction is the CXRT relay transaction.

Transaction-routed data format
Figure 98 shows the format of the data stream passed between a TOR and an AOR to provide transaction
routing from any supported device.

Attach data stream for principal/alternate facility

LU6.1 CICS
attach relay routed data
FMH FMH43

Request/response data stream

CICS
relay routed data
FMH43

Format of FMH43

L CT XCMD XMOD FXCT
G FN

43 80xx

FN = x'00' User data pass-through
FN = x'01' INQUIRE terminal
FN = x'02' INSTALL terminal
FN = x'03' DELETE terminal
FN = x'04' INSTALL response
FN = x'05' LU6.2 remote terminal attach
FN = x'06' LU6.2 DFHLUC request/response

G = x'80' Relay FMH

Figure 97. Transaction-routing data streams

Transaction routing

454 CICS TS for z/OS: CICS Diagnosis Reference

The fields that are shipped depend principally on the type of terminal and on other parameters, as follows:

The length field in Figure 98 depends upon whether the field type is described in the table that follows as
being V (Variable), F (Fixed), or U (Undefined). A V field is 2 bytes in length, an F field is 1 byte, and U
indicates a variable that is no longer wrapped or unwrapped if it is encountered.

Table 51 on page 753 shows the various data fields that may appear in a transaction routing data stream,
together with their codes and field types.

Table 29. Transaction routing data stream. Built by the terminal sharing transformer (DFHXTP).

Code Hex Type DSECT Field Description

1 01 V XTPCDTC1 TC request bytes or attach start code
2 02 V XTPCDOPC Operator class
3 03 V XTPCDTUA TCTTE user area
4 04 V XTPCDTIA Terminal I/O area
5 05 V XTPCDCMA COMMAREA
6 06 V XTPCDLPS Terminal partition set
7 07 V XTPCDPLM Page LDC mnemonic
8 08 V XTPCDPGD Page data
9 09 V XTPCDRQI Request ID
10 0A V XTPCDETI Error terminal ID
11 0B V XTPCDETL Error terminal LDC
12 0C V XTPCDMCF Message control flags
13 0D V XTPCDTTL Message title
14 0E V XTPCDRTT Route target ID: netname.termid.ldc.opid
15 0F V XTPCDCPS Application partition set
16 10 F DFHTCTTE TCTTEAID Automatic initiate descriptor
17 11 F DFHTCTTE TCTTECAD Cursor address
18 12 F DFHTCTTE TCTESIDO Outbound signal data
19 13 F DFHTCTTE TCTESIDI Inbound signal data
20 14 F DFHTCTTE TCTE32SF Screen size attributes
21 15 F DFHTCTTE TCTTEFX Transparency attributes
22 16 F DFHTCTTE TCTTEBMN Map set name
23 17 F DFHTCTTE TCTTECRE Request completion extension
24 18 F DFHTCTTE TCTTECR Request completion analysis
25 19 F DFHTCTTE TCTTEDES TCAM destination name
26 1A F DFHTCTTE TCTTETM Terminal model number
27 1B F DFHTCTTE TCTTETID Teller identification for 2980
28 1C F DFHTCTTE TCTTEOI Operator identification
29 1D F DFHTCTTE TCTTEEDF EDF mode
30 1E F DFHTCTTE TCTTETC Nominated transaction
31 1F F DFHTCTTE TCTTETS Terminal status
32 20 U DFHSNTTE SNTESSF Userid
33 21 F DFHTCTTE TCTEASCZ

TCTEASCL
TCTEASCC

Alternate screen size attributes

34 22 F DFHTCTTE TCTE32EF
TCTE32E2

3270 extended feature flags

35 23 F DFHTCTTE TCTETXTF 3270 text feature flag

code length data code length data code length data

Figure 98. Routed data format

Transaction routing

Chapter 62. Transaction routing 455

Table 29. Transaction routing data stream (continued). Built by the terminal sharing transformer (DFHXTP).

Code Hex Type DSECT Field Description

36 24 F TCTTETTE TCTEAPGL
TCTEAPGC

Alternate page size

37 25 F DFHTCTTE TCTECSG1
TCTECSG2

Coded graphic character set identifiers

38 26 F DFHTCTTE TCTEUSRS LU6.2 conversation state machine
39 27 F TCTTELUC TCTECVT LU6.2 conversation type (mapped or

unmapped)
40 28 F TCTTELUC TCTESPL LU6.2 syncpoint level
41 29 F DFHTCTTE TCTESPSA Additional syncpoint flags
42 2A F TCTTELUC TCTEIAHB Attach FMH indicator
43 2B F DFHTCTSE TCSESID NETNAME of APPC device
44 2C U DFHSNTTE SNTENLS User’s national language
45 2D F DFHTCTTE TCTENLS National Language Support Code
46 2E F DFHTCTTE TCTESCFL Security flag
47 2F F DFHTCTTE TCTEITRS Trace flags
48 30 F DFHTCTME TCMEMODE Mode group name
49 31 F DFHTCTTE TCTTENLI National language in use
50 32 F TCTTELUC TCTELUC1 LUC flag byte 1
51 33 F DFHTCTTE TCTESSPL Synclevel of link
53 35 F DFHTCTTE TCTEVTP Send mode/receive mode
54 36 F DFHTCTTE TCTTEIO Task to be initiated
55 37 F DFHLFS PRESETC Preset userid
56 38 F TCTTETTE TCTTEFMB Outbound formatting status
57 39 F DFHTCTTE TCTEUCTB UCTRAN = YES
58 3A F DFHTCTTE TCTETSU3 UCTRAN = TRANID
63 3F F DFHTCTTE TCTTETT Terminal type code
64 40 F DFHLUCDS LUCOPN0

LUCOPN1
LUCOPN2
LUCOPN3

LUC request codes

65 41 F DFHLUCDS LUCRCODE LUC request error feedback
66 42 F DFHLUCDS LUCSDBLK LUC conversation feedback
67 43 F DFHLUCDS LUCNSYS System name for LUC Allocate
68 44 F DFHLUCDS LUCMODNM Modename for LUC Allocate
69 45 F DFHLUCDS LUCMSGNO Message number for LUC Abend and

Error
70 46 F DFHLUCDS LUCSENSE Sense code for LUC Abend and Error
71 47 F DFHLUCDS LUCRQCON Conversation type for LUC Issue Attach
72 48 F DFHLUCDS LUCRQSYN Syncpoint level for LUC Issue Attach
73 49 F DFHLUCDS LUCFTPNL

LUCFTPN
TPN for LUC Issue Attach

74 4A F DFHLUCDS LUCPIP PIP indicator for LUC Issue Attach
75 4B F DFHLUCDS LUCTAREL Maximum receivable length for LUC

Receive
76 4C F DFHLUCDS LUCMGAL Mode group name of allocated session
90 5A F DFHDIBDS DIBSENSE DIB system/user sense data
128 80 V XTPCDZIR ZC install response
129 81 V XTPCDZBP ZC builder parameter set
130 82 V XTPCDZIM ZC install message set
131 83 V XTPCOPCL Opclass in routed message
132 84 V XTPCDPNM Program name for ISSUE LOAD
133 85 V XTPLUCSD Message text for LUC Send
134 86 V XTPLUCRD Message text for LUC Receive

Transaction routing

456 CICS TS for z/OS: CICS Diagnosis Reference

Table 29. Transaction routing data stream (continued). Built by the terminal sharing transformer (DFHXTP).

Code Hex Type DSECT Field Description

135 87 V XTPLUTCX TCA extension for LU6.2
136 88 V XTPLUMSG Message text for LUC Issue Abend or

Issue Error
137 89 V XTPIPASS Issue Pass
138 8A V XTPLDATA Logon Data
139 8B V XTPRETC Issue Pass Return Code
140 8C V XTPLMOD Issue Pass Logmode

Control blocks

Relay transaction control blocks
To support transaction routing, the relay transaction owns two TCTTEs; see Figure 99. One TCTTE is for
the terminal, the other is for the link to the user transaction. The link TCTTE has bit TCTERLT in field
TCTETSU set on, to indicate that it is being used by the relay transaction.

User transaction control blocks
The user transaction owns two or more TCTTEs; see Figure 100 on page 458. One TCTTE is always
present for the link to the relay transaction, and another TCTTE, called the surrogate TCTTE, represents
the terminal TCTTE in the relay transaction address space. Field TCTTERLA in the surrogate TCTTE
contains the address of the TCTTE for the link to the relay transaction. Bit TCTESUR (in field TCTETSU)
set on indicates that the TCTTE is for a surrogate terminal. The link TCTTE has bit TCTERLX in field
TCTETSU set on, to indicate that it is being used as a relay link.

If the user transaction executes CICS functions that are shipped to another address space or processing
system, one TCTTE is chained off from the TCA for each different address space or processing system.

TCA
for relay transaction

TCTTE for link to
x'1B4' TCATCUCN user transaction

Address of
first TCTTE in chain
(see note) x'8C' TCTTEUCN

TCA

TCTTE for terminal
x'08' TCAFCAAA

Address of TCTTE
for principal facility x'8C' TCTTEUCN

= x'00'

Note:
The first TCTTE in the chain
is not necessarily the TCTTE
for the task's principal
facility.

Figure 99. Control blocks associated with the relay transaction

Transaction routing

Chapter 62. Transaction routing 457

See the CICS Data Areas manual for a detailed description of these control blocks.

Modules
The principal modules associated with transaction routing are as follows:
DFHAPRT is the relay program for non-APPC devices, and for APPC devices when

the device initiates a transaction by sending an attach FMH5 to CICS.
DFHCRT is the relay program for APPC devices when CICS sends an attach FMH5

to the device.
DFHRTSU is the program which maintains the state of a surrogate APPC session

during syncpoint
DFHXTP is the data transformation program for terminal sharing. It constructs and

interprets data streams flowing between terminal-owning and
application-owning regions, for both APPC and non-APPC transaction
routing environments.

DFHZTSP is the terminal sharing program. It is used by transaction routing for
devices of all types, exclusively so for non-APPC devices.

DFHZXRL runs in the application-owning region to route APPC requests to the
terminal-owning region.

DFHZXRT runs in the terminal-owning region to receive APPC requests from the
application-owning region, and issue them to the APPC device.

Exits
No global user exit points are provided for this function.

TCA

TCTTE for surrogate
x'08' TCAFCAAA

Address of TCTTE for
task's principal facility x'6C' TCTTERLA

x'1B4' TCATCUCN x'8C' TCTTEUCN
Address of Address of
first TCTTE in chain next TCTTE in chain
(see note 1)

TCTTE for link to
relay transaction | |

x'84' TCTTESUA

x'8C' TCTTEUCN
Address of next
TCTTE in chain

TCTTE | |

x'8C' TCTTEUCN
= x'00'

TCTTE |

x'8C' TCTTEUCN
Address of
next TCTTE in chain

Notes:
1. The first TCTTE in the chain

is not necessarily the TCTTE
for the task's principal
facility.

2. Apart from the surrogate
and the link to the relay
transaction, other TCTTEs
can be in use for
function shipping or DTP.

Figure 100. Control blocks for the user transaction (non-APPC device)

Transaction routing

458 CICS TS for z/OS: CICS Diagnosis Reference

Trace
The following point IDs are provided for this function:
v AP DBxx (DFHXTP), for which the trace level is IS 1
v AP 08xx (DFHCRT, DFHZXRL, and DFHZXRT), for which the trace levels are IS 1, IS 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Transaction routing

Chapter 62. Transaction routing 459

460 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 63. Transient data control

Transient data control provides an optional queuing facility for managing data being transmitted between
user-defined destinations (I/O devices or CICS tasks). This function facilitates data collection.

Design overview
The transient data program provides a generalized queuing facility enabling data to be queued (stored) for
subsequent internal or offline processing. Selected units of information can be routed to or from predefined
symbolic queues. The queues are classified as either intrapartition or extrapartition.

Intrapartition queues
Intrapartition queues are queues of data, held in a direct-access data set, for eventual input to one or
more CICS transactions. Intrapartition queues are accessible only by CICS transactions within the CICS
address space. Data directed to or from these internal queues is called intrapartition data. It can consist of
variable-length records only.

An intrapartition queue is mapped onto one or more control intervals in the intrapartition data set. The
control intervals are allocated to a queue as records are written and freed automatically as they are read
or as the queue is deleted.

Examples of the data queued for intrapartition processing are:

v Transactions that require processes to be performed serially, not concurrently. An example of this type
of process is one in which pending order numbers are to be assigned.

v Data to be used in a data set (file) update that could pass through the queue to allow the data to be
applied in sequence.

Recovery of intrapartition transient data queues
Following abnormal system termination, intrapartition queues defined as recoverable by the user can be
restored. Recovery is accomplished by reconstructing the queues from catalog data and from log records
written automatically by CICS during normal execution. Two types of recovery are possible: physical and
logical.

Physical recovery of intrapartition transient data queues: Physically recoverable transient data
queues are restored to the state they were in when the system terminated abnormally. A physically
recoverable transient data queue is not backed out if it has been updated by a unit of work (UOW) that
has subsequently failed. Data written to such a queue is always committed and is restored during warm
and emergency restarts.

When a UOW reads, writes, or deletes a physically recoverable queue, a log record is written to the
system log. When the system is brought up after an abnormal termination, CICS can recreate a queue by
retrieving definition information associated with the queue from the catalog, and state data from the log. .

Note: There is an exception to the rule that states that a physically recoverable queue is restored to the
state it was in when CICS abnormally terminated. If a UOW reads a physically recoverable queue
and CICS then terminates abnormally, the read operation will be backed out when CICS is
subsequently brought back up.

Logical recovery of intrapartition transient data queues: Logically recoverable transient data queues
are restored to the state they were in at the time they were last syncpointed. All inflight UOWs are backed
out. If a UOW updates a logically recoverable queue and subsequently fails, all updates to the queue are
backed out. Logically recoverable queues are restored during warm and emergency restarts.

© Copyright IBM Corp. 1997, 2011 461

Logically recoverable queues are logged as part of the first phase of syncpoint processing. When CICS is
brought up after an abnormal termination, it can recreate logically recoverable queues by retrieving
definition information associated with the queue from the catalog, and state data from the log.

Logically recoverable transient data queues can suffer from indoubt failures. If a UOW is indoubt and CICS
abnormally terminates, the indoubt UOW environment is recreated when CICS is next brought up. When
the indoubt failure is resolved, the UOW is committed or backed out.

Extrapartition queues
Extrapartition queues are sequential data sets on tape or direct-access devices. Data directed to or from
these external queues is called extrapartition data and can consist of sequential records that are fixed- or
variable-length, blocked or unblocked.

Data can be placed on an extrapartition data set by CICS for subsequent input to CICS or for offline
processing. Sequentially organized data created by other than CICS programs can be entered into CICS
as an extrapartition data set. Examples of data that might be placed on extrapartition data sets are:
v System statistics
v Transaction error messages
v Customer data, such as cash payments that can be applied offline.

Indirect queues
Intrapartition and extrapartition queues can be referenced through indirect destinations. This provides
flexibility in program maintenance. Queue definitions can be changed, using the CEDA transaction, without
having to recompile existing programs.

Automatic transaction initiation
When data is sent to an intrapartition queue and the number of entries (WRITEQs from one or more
programs) in the queue reaches a predefined level (trigger level), the user can optionally specify that a
transaction be automatically initiated to process the data in that queue.

The automatic transaction initiation (ATI) facility allows a user transaction to be initiated either immediately,
or, if a terminal is required, when that terminal has no task associated with it. The terminal processing
status must be such that messages can be sent to it automatically. Through the trigger level and automatic
transaction initiation facility, an application program can switch messages to terminals. After a task has
been initiated, a command in the application program is executed to retrieve the queued data. All data in
the queue is retrieved sequentially for the application program.

Trigger transactions may only execute sequentially against their associated queue. When a trigger
transaction has been attached, another transaction will not be attached until the first transaction has
completed. If a trigger transaction suffers an indoubt failure, (the transaction must be associated with a
logically recoverable queue) another trigger transaction cannot be attached until the indoubt failure has
been resolved.

Transient data services
The following services are performed by the transient data program in response to transient data
commands issued in application programs:

Intrapartition data disposition
Controls and queues data for serially reusable or re-enterable facilities (programs, terminals) related to
this partition or region.

Intrapartition data acquisition
Retrieves data that has been placed in a queue for subsequent internal processing.

Transient data control

462 CICS TS for z/OS: CICS Diagnosis Reference

Extrapartition data acquisition
Enters a sequentially organized data set into the system.

Extrapartition data disposition
Writes fixed- or variable-length data in a blocked or unblocked format on sequential devices, usually
for subsequent offline processing.

Automatic transaction initiation
Initiates a transaction to process previously queued transient data when a predefined trigger level is
reached.

Dynamic open/close
Logically opens or closes specified extrapartition data sets (queues) during the real-time execution of
CICS.

Dynamic allocation and deallocation of extrapartition queues
Extrapartition transient data queues do not have to be predefined in your JCL. They can be created
dynamically.

Transient data
This section describes transient data’s interfaces.

Intrapartition queues
Figure 101 shows transient data’s interfaces for intrapartition queues.

Transient data control

Chapter 63. Transient data control 463

Notes:

1. An application program invokes a Transient Data request (WRITEQ TD, READQ TD, or DELETEQ
TD). The EXEC interface module, DFHETD is invoked and calls Transient Data using the TDTD
CDURUN parameter list.

2. Transient Data locates the target queue using a Directory Manager locate.

3. Assuming that the required queue has been found, the call is passed to the module that handles
intrapartition queue requests, DFHTDQ.

4. If the target queue is logically recoverable, Transient Data must tell Recovery Manager it is interested
in this UOW by setting its work token in the Recovery Manager’s table.

5. If the target queue is logically recoverable, Transient Data must obtain an enqueue on the appropriate
end of the queue by invoking the Enqueue Manager.

6. Data is read from (or written to) the target queue using the appropriate access method. In the case of
physically recoverable queues only, the buffers are always flushed and the data set hardened.

7. After the request has completed, Transient Data must log the state of the queue, if the queue is
physically recoverable.

8. If the request was a WRITEQ TD request and the target queue was physically recoverable or
non-recoverable, the trigger level may have been exceeded. If the trigger transaction is to be
associated with a terminal DFHALP is invoked so that the required AID can be scheduled. If the
trigger transaction is to be associated with a file, Transaction Manager is invoked to attach the trigger
transaction.

Application
Program

EXEC CICS
. . . TD . . .

DFHETD

DFHTDA DFHTDB DFHTDSUB

DFHTDRM

DFHALP

DFHTDEXP DFHTDSUB

Directory
Manager

Enqueue
Manager

Transaction
Manager

Access
Methods

Recovery
Manager

DFHTDP DFHTDR

Transient
Data

TDTD
parameter
list

LOGGER
1

2 3

5 8

4, 7

9

8

6

10

11

11

Figure 101. Transient data interfaces for intrapartition queues

Transient data control

464 CICS TS for z/OS: CICS Diagnosis Reference

9. If a UOW has updated a logically recoverable queue, Recovery Manager invokes Transient Data
when the UOW begins syncpoint processing DFHTDRM.

10. Transient Data invokes the appropriate access methods to harden the data set. Finally, Recovery
Manager invokes Transient Data once more, detailing whether Transient Data should commit or back
out its updates.

11. If the UOW commits the updates. Transient Data attaches a trigger transaction or schedules an AID if
the trigger level has been exceeded. DFHALP is invoked if the trigger transaction is associated with a
terminal. Transaction Manager is invoked if the trigger transaction is associated with a file.

Extrapartition queues
Figure 102 shows the transient data interfaces for extrapartition queues.

Notes:

1. An application program invokes Transient Data services (WRITEQ TD, READQ TD or DELETEQ TD).
The EXEC interface module, DFHETD is invoked. DFHETD invokes Transient Data using the TDTD
CDURUN parameter list.

2. Transient Data locates the target queue using Directory Manager.

3. The request is passed to the appropriate QSAM routine for processing. QSAM PUT with LOCATE
mode is used.

4. If an application program requests that an intrapartition queue be opened or closed, module
DFHTDOC is invoked using the TDOC CDURUN parameter list.

Modules

Module Function

DFHTDP Provides request analysis and extrapartition processing, RMODE(24)

Application
Program

EXEC CICS
. . . TD . . .

DFHETD

DFHTDA DFHTDOC Access
Methods

Application
Program

EXEC CICS
DFHEIQSQ

DFHTDEXP DFHTDEXP

Directory
Manager

Access
Methods

Transient
Data

1

2

3

4

Figure 102. Transient data interfaces for extrapartition queues

Transient data control

Chapter 63. Transient data control 465

Module Function

DFHTDA Included in load module DFHTDP. Provides request analysis and processing for extrapartition
queues

DFHTDEXC Included in load module DFHTDP. Contains subroutines associated with the processing of
extrapartition queues

DFHTDOC Included in load module DFHTDP. Manages the opening and closing of extrapartition queues

DFHETD Processes EXEC CICS commands and maps them to the TDTD CDURUN parameter list

DFHTDB Included in load module DFHTDQ. Processes intrapartition queue requests

DFHTDSUC Included in load module DFHTDQ. Contains subroutines associated with the processing of
intrapartition transient data queues

DFHTDRM Undertakes syncpoint processing on behalf of Transient Data

DFHTDTM Manages requests to install, discard, set and inquire on transient data queues

Exits
The following global user exit points are provided for this function: XTDREQ, XTDEREQ, XTDEREQC,
XTDIN, and XTDOUT.

See the CICS Customization Guide for further information.

Trace
The following point ID is provided for transient data control:
v AP F6xx, for which the trace levels are TD 1 and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Transient data control

466 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 64. User exit control

User exit control enables the user to run exit programs at selected points in CICS modules in the
application domain and in other domains. The exit program can be enabled or disabled dynamically, and
useful information can be transferred to a user work area.

This function:

v Controls which exit programs are to run at which exit points. This is generally specified using EXEC
CICS commands and can be changed during a CICS run.

v Invokes the specified exit programs when control reaches an exit point in a CICS module, and handles
any change in flow indicated by a return code from the user exit program.

Design overview
User exit control provides an interface that allows the user to run exit programs at selected points (known
as exit points) in CICS control modules. The exit programs are separate from the control modules and are
associated with them dynamically by means of the EXEC CICS ENABLE command. (See the CICS
Customization Guide for a description of how to use exit programs.)

An exit point can have more than one exit program, and an exit program can be shared by more than one
exit point. Work areas can be set up for the exit programs, and several exit programs can share a work
area. For some exit points, the continuation of the control module can be controlled by a return code.

Each exit point is identified internally by an exit number. The user exit table (UET) contains a UET header
and an entry for each exit point, in exit-number order. The UET is addressed from CSAUETBA in the CSA
and exists throughout the life of CICS.

Each enabled exit program is represented by an exit program block (EPB). This exists only while an exit
program is enabled or while any other exit program is using the work area owned by this exit program.
The EPBs are chained together in order of enablement. The UET header points to the first EPB.

Each activation of an exit program for a particular exit point is represented by an exit program link (EPL)
which points to the EPB for the exit program. The first EPL for each exit point is contained in the UET
entry. If an exit point has more than one exit program, additional EPLs are obtained to represent each
subsequent activation. These additional EPLs are chained off the UET entry in order of activation. Thus,
for each exit, its EPL chain defines the exit programs that are to be executed at that exit point, and the
order of execution.

The user exit interface (UEI) control blocks are illustrated in Figure 103.

© Copyright IBM Corp. 1997, 2011 467

All user exit programs are executed in the AP domain. When exit programs are activated for exit points in
other domains, control is passed from the domain to the AP domain’s user exit service module, which
creates the necessary environment to invoke the exit programs via the user exit subroutine.

User exit control modules
This section describes the function of the user exit control modules.

DFHUEM (user exit manager)
The user exit manager (DFHUEM) processes EXEC commands that are entered by an application
program or the command interpreter to control user exit activity. DFHUEM contains three routines,
corresponding to the three commands, as follows:
ENABLE Checks whether an EPB already exists for the exit program specified in

the PROGRAM operand.
v If an EPB is not found and the ENTRY operand is not specified, the exit

program is loaded, and:
1. A new EPB is obtained and added to the chain.
2. The name and entry address of the exit program are placed in the

EPB.

User exit table

Header
@EPB1

Exit1 @EPL1 @EPB1

Exit2

Exit3

Exit4 @EPB2

Exit5

Exit6

@ = address of

Exit program blocks

EPB1 @EPB2 AAA @GWA

EPB2 @EPB3 BBB @GWA
Global
work
area

EPB3 CCC

Exit program links

EPL1 @EPL2 @EPB3

EPL2 @EPB2

Notes:

1. There are three enabled programs: AAA, BBB, and CCC.

2. Program AAA owns a global work area, which is shared by program BBB. The global work area pointer
(@GWA) in BBB’s EPB points to the EPB of the program owning the shared area, namely AAA’s EPB.

3. Exits 1 and 4 are associated with these exit programs.

4. For Exit 1, exit programs AAA, CCC, and BBB have been activated, in that order, as indicated by the
EPL chain.

5. Exit program BBB has been activated for exit 4.

Figure 103. UEI control blocks

User exit control

468 CICS TS for z/OS: CICS Diagnosis Reference

3. If the GALENGTH operand is specified, a work area is obtained,
and its address and length are placed in the EPB.

4. If the GAPROGRAM operand is specified, the address of the EPB
for the exit program specified in the GAPROGRAM operand is
placed in the new EPB, thus allowing exit programs to share a
global work area.

v If the EXIT operand is specified, the EPL chain for the specified exit
point is found.
1. A new EPL is obtained, if necessary, and added to the chain.
2. The address of the EPB for the exit program specified in the

PROGRAM operand is placed in the EPB.
3. The activation count in the EPB is increased by 1.
4. If the exit point is not in the AP domain, the domain is notified that

the exit point is active.
v If the START operand is specified, the start flag in the EPB is set on.

DISABLE Finds the EPB for the exit program specified in the PROGRAM operand.
v If the STOP or EXITALL operand is specified, the start-flag in the EPB

is set off.
v If the EXIT operand is specified, the EPL chain for the specified exit

point is found. The EPL pointing to the EPB for the exit program
specified in the PROGRAM operand is removed from the chain and the
activation count is reduced by 1.

v If the EXITALL operand is specified:
1. All EPL chains are scanned.
2. All EPLs pointing to the EPB for the exit program specified in the

PROGRAM operand are removed from its chain.
3. If the ENTRY operand was not specified when the exit program was

enabled, the exit program is deleted.
4. The EPB is removed from the chain.
5. If a work area used by the exit program is not still being used by

another exit program, it is released.
6. Any EPB or EPL that is no longer required is moved to a free-chain

anchored in the UETH.
v When EXIT or EXITALL is specified for exit points not in the AP domain,

the domain is notified when there are no exit programs active.
EXTRACT-EXIT Finds the EPB for the exit program specified in the PROGRAM operand.

The work area’s address and length are extracted from this EPB (or from
the EPB that owns the work area) and placed in the user’s fields specified
in the GASET and GALENGTH operands.

DFHUEH (user exit handler)
The user exit handler module, DFHUEH, is used to process exit points in the AP domain.

At each exit in a control module, there is a branch to the DFHUEH program. This module scans the EPL
chain for that exit and invokes each started exit program in the chain, passing it a parameter list and a
register save area. On return from each exit program, the return code is checked and a current return
code (maintained by DFHUEH for return to the control module) is set as appropriate.

DFHAPEX (user exit service module)
The user exit service module, DFHAPEX, is used to process exit points in domains other than the AP
domain.

When an exit point is reached in a non-AP domain, control is passed to the user exit service module
(DFHAPEX) in the AP domain, if the domain has previously been notified that there is an exit program
activated for the exit point.

User exit control

Chapter 64. User exit control 469

The user exit service module constructs the user exit parameter list, using special parameters from the
domain, and invokes the user exit subroutine (DFHSUEX).

The return code from DFHSUEX is passed back to the calling domain.

DFHSUEX (user exit subroutine)
The DFHSUEX module invokes all started user exit programs for an exit point in a domain (other than the
AP domain) by scanning the EPL chain, using the same processing as the user exit handler (DFHUEH).
The parameter list defined by DFHAPEX is passed to the exit programs. Return codes from the exit
programs are checked and returned to DFHAPEX.

Control blocks
The control blocks associated with the user exit interface are illustrated in Figure 104 and listed below.
Further information about the control blocks is given in the “Design overview” on page 467 and in
Figure 103 on page 468.

The main control blocks are as follows:
UETH User exit table header
UETE User exit table entry—one for every exit point
EPB Exit program block—one for every enabled user exit program, containing

information about the location and activity of the program, and any global
work area owned or shared by the program

EPL. Exit program link—each EPL indicates one exit program to be invoked at
an exit point and which EPL, if any, contains information about the next
program to be invoked at that exit point.

CSA

x'1C8' CSAUETBA EPL

x'10' EPLNEPL
UETH Address of
User exit table header next EPL

EPB x'14' EPLEPBA
x'80' UETHEPBC Address of

Address of first EPB EPB
x'04' EPBCHAIN

Address of next EPB
UETE
User exit table entry x'08' EPBEPN

Exit program name

x'08’ UETEFEPL x'10' EBPEPA
Address of next EPL Address of

exit program

x'14' EPBGAA
Address of work area

UETE
EPB

x'08’ UETEFEPL
x'04' EPBCHAIN

x'08' EPBEPN

x'10' EPBEPA EPL

x'14' EPBGAA
x'10' EPLNEPL

Note: 0
EPB

Most of the linkages EPLEPBA
shown are created
dynamically in response x'04' EPBCHAIN
to ENABLE commands. 0

x'08' EPBEPN

x'10' EPBEPA

x'14' EPBGAA

Figure 104. Control blocks associated with the user exit interface

User exit control

470 CICS TS for z/OS: CICS Diagnosis Reference

See the CICS Data Areas manual for a detailed description of these control blocks.

Modules

Module Function

DFHAPEX The interface between an exit point in a domain (other than the AP domain) and the AP
domain.

DFHSUEX Handles the invocation of user exit programs at exit points in CICS domains (other than the
AP domain). Processing is similar to DFHUEH, passing a parameter list defined in
DFHAPEX.

DFHUEH Links an exit point in a CICS management module in the AP domain and the user code.
DFHUEH invokes in turn each started exit program for that exit point, passing a parameter
list defined in the CICS management module.

DFHUEM The EXEC interface processor for the ENABLE, DISABLE, and EXTRACT user exit
commands.

Exits
No global user exit points are provided for this function.

Trace
The following point IDs are provided for this function:

v AP D5xx, for which the trace levels are UE 1, AP 1, AP 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

For user exit programs running at an exit point within the AP domain, UE level-1 trace entries are
produced.

For user exit programs running at an exit point in a CICS domain other than the AP domain, the UE
level-1 trace entries are not produced. Instead, the D5xx trace entries for AP level 1 and AP level 2 are
available, providing more information than the UE trace. For AP level 1, the DFHUEPAR parameter list is
traced, containing the addresses of fields special to that exit point. For AP level-2 tracing, the contents of
the fields are printed, each field being truncated to 200 bytes if necessary.

User exit control

Chapter 64. User exit control 471

472 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 65. VTAM generic resource

This section describes how the generic resource support provided by release 4.2 of VTAM is used by
CICS.

A CICS system may register as a VTAM generic resource. It may then be known either by its unique
applid or by the generic resource name which is shared by a number of CICS systems, all of which are
registered to the same generic resource.

For more information about CICS support for VTAM generic resource consult the CICS Release Guide or
the CICS Intercommunication Guide. Consult the VTAM Programming Manual for information about
generic resource from the VTAM point of view.

Design Overview
If CICS is to register as a generic resource member, the GRNAME system initialization parameter must be
specified.

If GRNAME is specified CICS attempts to register immediately after the ACB is open by issuing the VTAM
SETLOGON OPTCD=GNAMEADD command.

If registration succeeds, CICS is then a member of the generic resource specified by the SIT GRNAME
parameter and may be addressed either by its generic resource name or (subject to certain restrictions) by
its unique applid. Use of the generic resource name allows VTAM to balance the workload by selecting
whichever generic resource member is most lightly loaded.

If registration fails, CICS initialization continues but CICS will not be a generic resource member.

The registration status may be examined by means of the CEMT INQUIRE VTAM command.

CICS de-registers as a generic resource by means of the VTAM SETLOGON OPTCD=GNAMEDEL
command immediately before the ACB is closed.

Generic resource and LU6.1/LU6.2
Although terminals may log on freely using either the generic resource name or the member name this is
not the case with LU6.1 and LU6.2 connections which are more restricted in their use of member names.

LU6.2 GR to GR connections
For LU6.2 connections between generic resources the design makes use of LU6.2 autoinstall. Only
connections which are intended to issue an ACQUIRE need be defined and these must all have the
generic resource name specified as the NETNAME.

Two types of connection are possible.

Generic resource name connections. These are connections which have the generic resource name as
the NETNAME. NETNAMEs must be unique and so there can only be one of these per partner generic
resource.

Member name connections. These are connections which have the unique applid (member name) as
the NETNAME.

Since there can only be one generic resource name connection for each partner generic resource it
follows that most connections will be member name connections.

© Copyright IBM Corp. 1997, 2011 473

EXEC CICS INQUIRE CONNECTION or CEMT INQUIRE CONNECTION may be used to determine which
is the generic resource name and which the member name.

When the first BIND from a different generic resource comes into the SCIP exit (DFHZBLX), a generic
resource name connection will be established. If no predefined generic resource name connection exists
one will be autoinstalled. Subsequent BINDs coming into DFHZBLX from different members of the same
generic resource will cause member name connections to be autoinstalled. A member name connection
should never be defined for a member of a different generic resource because this creates the possibility
of having two definitions (TCSE's) for the same connected system.

Communications between members of the same generic resource must be by member names only.

Two new bits TCSE_GR and TCSE_GRNAME_CONN have been introduced to indicate the different
connection types. They are only valid for LU6.2 connections between generic resources.

The table shows different values of TCTENNAM, TCSESID and TCSEX62N for LU6.2 connections
between generic resources, depending on the settings of TCSE_GR and TCSE_GRNAME_CONN:

TCSE_GR
TCSE_GRNAME_CONN

ON
ON

ON
OFF

TCTENNAM
TCSESID
TCSEX62N

GRname
GRname
membername

membername
membername
GRname

LU6.2 GR to non-GR connections
If a single (non-generic resource) system has an LU6.2 connection to a generic resource member it may
use either the generic resource name or the member name as the NETNAME.

If the member name is used the initial acquire of the connection must be done by the non-generic
resource partner. This means that the generic resource side must not have autoconnect set on. This is
because the generic resource partner relies on VTAM to tell it if it is to known by its member name. VTAM
does this by setting a bit which is valid for the first BIND only. Sessions can be acquired by either partner
once the SNASVCMG sessions have bound.

For these connections TCSE_GR is always set off and TCSE_GRNAME_CONN has no meaning on both
systems. The rule here is that TCSESID always contains the NETNAME (as defined in the RDO
connection definition) and TCSEX62N always contains the member name (unique applid). The table
illustrates this:

TCSE_GR
TCSE_GRNAME_CONN
RDO_HOSTNAME

OFF
not applicable
GRname

OFF
not applicable
membername

TCTENNAM
TCSESID
TCSEX62N

GRname
GRname
membername

membername
membername
membername

If the generic resource name is to be used, the single system may itself be made into a generic resource
allowing it to exploit the design for communications between generic resources. If this is not possible the
solution is to use a "hub" or code a generic resource resolution exit to ensure that not more than one
member of a generic resource communicates with the single system at any one time using the generic
resource name. (The use of "hubs" is described in the CICS Intercommunications Guide).

VTAM generic resource

474 CICS TS for z/OS: CICS Diagnosis Reference

LU6.1
There is no autoinstall for LU6.1, and so less flexibility is allowed for LU6.1 connections between generic
resources. CICS-CICS LU6.1 connections can only communicate by generic resource names and must
use a "hub" or a generic resource resolution exit.

TCSE_GR and TCSE_GRNAME_CONN do not apply to LU6.1. For LU6.1 connections with a generic
resource the generic resource name is in TCTENNAM and TCSESID and the member name is in
TCSEX61N.

Ending affinities
Affinities are records held by VTAM to show it where to direct data flows within a generic resource. Some
of these affinities are "owned" by CICS. These are affinities for LU6.2 synclevel 2, LU6.2 limited resources
and LU6.1 connections. They may be ended by means of the SET CONNECTION ENDAFFINITY and
PERFORM ENDAFFINITY commands.

Generic resource and ATI
This section applies only to those terminals which are logged on using the generic resource name.

When an ATI request is issued in an AOR for a terminal that is logged on to a TOR, CICS uses the
terminal definition in the AOR to determine the identity of the TOR to which the request should be shipped.
If there is no terminal definition in the AOR, the “terminal-not-known” global user exits (XICTENF and
XALTENF) may be used to supply the name of the TOR.

However, if the TOR in question is a member of a generic resource and the user has logged on using the
generic resource name, VTAM will have connected the terminal to the generic resource member which
was most lightly loaded at the time. If the user then logs off and on again the terminal may be connected
to a different generic resource member. If this happens, the TOR which is to receive the ATI request
cannot be determined from the terminal definition in the AOR or the “terminal-not-known” user exit.

CICS solves the problem in the following manner:

1. The ATI request is first shipped to the TOR specified in the terminal definition in the AOR (or by the
“terminal-not-known” exit). If the terminal is logged on to this TOR (the “first-choice” TOR) the ATI
request completes as normal.

2. If the terminal is not logged on to the first-choice TOR, the TOR issues a VTAM INQUIRE
OPTCODE=SESSNAME to find which generic resource member, if any, the terminal is now logged on
to. This information is passed back to the AOR and the request is then shipped to the correct TOR.

3. If the first-choice TOR is not available, the AOR issues a VTAM INQUIRE OPTCODE=SESSNAME to
find where the terminal is now logged on. The INQUIRE is not attempted in the following situations:

v The VTAM in the AOR is a pre-4.2 version and does not support generic resource.

v The AOR was started with the VTAM system initialization parameter set to NO.

The INQUIRE will not succeed if the TORs and the AOR are in different networks.

If the INQUIRE is successful the ATL request is shipped to the TOR where the terminal is logged on.

Modules

DFHZBLX
DFHZBLX is a new module which has been created to deal with LU6.2 BIND processing. Part of its
function was formerly part of DFHZSCX. It is link-edited with DFHZSCX and is still logically part of it, but it
returns directly to VTAM, not via DFHZSCX.

VTAM generic resource

Chapter 65. VTAM generic resource 475

There is a new part of the module, apart from that which was once contained in DFHZSCX, which deals
with generic resource BIND processing. If CICS is registered as a generic resource and the partner is also
a generic resource, DFHZBLX has to decide on the appropriate type of connection. This may be either a
generic resource name connection, in which the NETNAME is the partner's generic resource name, or a
member name connection, in which the NETNAME is the partner's member name.

DFHZBLX is also responsible for setting the bits in the connection entry which are specific to generic
resource.

If CICS is not registered as a generic resource, the generic resource code is not invoked.

DFHZGCH
DFHZGCH is a domain subroutine which is called by DFHEIQSC after one of the following commands.

EXEC CICS SET CONNECTION ENDAFFINITY

CEMT SET CONNECTION ENDAFFINITY

EXEC CICS PERFORM ENDAFFINITY

CEMT PERFORM ENDAFFINITY

Its function is to issue the VTAM CHANGE OPTCD=ENDAFFINITY command.

If the affinity is ended successfully,

the connection is deleted if it is autoinstalled.

If the connection is defined,

the generic resource specific information in the connection entry is reset,

the catalog entry is updated,

the connection is deleted from the TCSM index.

The VTAM return codes are reflected back to DFHEIQSC.

DFHZGIN
DFHZGIN is a domain subroutine.

In a TOR it is called by DFHCRS when a request has been shipped from a remote system, if a terminal
cannot be located.

In an AOR it is called by DFHALP when the schedule of an AID fails because the TOR has gone away.

It has two functions:

1. INQUIRE_NQN

A VTAM INQUIRE OPTCD=NQN is issued to find the fully qualified NETNAME of a terminal given the
NETNAME as input. The fully qualified NETNAME is required for INQUIRE OPTCD=SESSNAME.

2. INQUIRE_SESSNAME

A VTAM INQUIRE OPTCD=SESSNAME is issued to find which member of a generic resource a
terminal is logged on to given a fully qualified NETNAME as input.

The following responses are returned to the caller:

v OK - VTAM return code was X'00' fdb2 X'00'

v NOT FOUND - VTAM return code X'14' fdb2 X'88'

v EXCEPTION - The call was rejected for some other reason than not found.

VTAM generic resource

476 CICS TS for z/OS: CICS Diagnosis Reference

For the exception case an exception trace is written and a message in the range DFHZC0182 -
DFHZC0185 is output to the CSNE log giving the VTAM return codes.

Problem solving for generic resource
Trace TC level 1, 2 & exception in the ranges AP FA50-FA59, FAB0-FABA and FB87-FB8F.

Messages DFHZC0170 to DFHZC0185 are written to the console and CSNE logs.

Information output by DFHZNAC following BIND failures.

If a dump is produced examine the generic resource status and generic resource flag bytes.

The following symptoms may indicate that an affinity should be ended and has not been.

v Sessions failing to acquire with message DFHZC2405 "Node not activated". This may also indicate a
setup error.

v Sessions failing to acquire with various instances of DFHZC2411. This may also indicate that a rule has
been violated.

v CICS fails to register as a generic resource when it has previously been a member of a different generic
resource. Message DFHZC0171 is written to the console with VTAM rtncd X'14' fdb2 X'86'.

v Connections autoinstalling unexpectedly. If a non-generic resource is addressing a generic resource
member by its member name this may also indicate that the first ACQUIRE was issued from the generic
resource side.

Generic resource status byte (TCTV_GRSTATUS)
TCTV_GR_REGD (X'80')

This CICS is registered as a member of a generic resource.

TCTV_GR_REGERR (X'40')
This CICS attempted to register as a generic resource member (SIT GRNAME parameter
specified) but the attempt was rejected by VTAM.

TCTV_GR_NOTAVAIL (X'20')
This CICS attempted to register as a generic resource member (SIT GRNAME parameter
specified) but the level of VTAM was not 4.2 or above.

TCTV_GR_DREGD (X'08')
This CICS was previously a member of a generic resource but has successfully de-registered.

TCTV_GR_DREGERR (X'04')
This CICS attempted to de-register as a member of a generic resource by issuing SETLOGON
OPTCD=GNAMEDEL but the attempt was rejected by VTAM.

TCTV_GR_NOTAPPL (X'02')
The GRNAME system initialization parameter was not specified.

TCTV_GR_NOTREG (X'00')
CICS is not registered as a generic resource and has not attempted to register. (Holds this value
before registration is attempted, if required.)

Generic resource flag byte (TCSEI_GR)
TCSE_GR (X'80)

Both partners are registered as generic resources. Valid from initial acquire to ENDAFFINITY.

TCSE_GR_NAME_CONN (X'40')
Set on for a generic resource name connection in which TCSESID contains the generic resource
name and TCSEX62N contains the member name.

VTAM generic resource

Chapter 65. VTAM generic resource 477

Set off for a member name connection in which TCSESID contains the member name and
TCSEX62N contains the generic resource name.

This bit is only meaningful if TCSE_GR is set on.

TCSE_USE_OUR_MEMBER_NAME (X'20')
The partner is using our member name. (An indication that the member name, not the generic
resource name must be passed in the BIND).

TCSE_MSG179_ISSUED (X'10')
Message DFHZC0179 has been issued. This message is issued when the secondary SNASVCMG
session binds if TCSE_GR is set. It makes clear which is the generic resource name and which
the member name of the partner session.

TCSE_CATLG_DONE (X'08')
A defined connection with an affinity has been catalogued.

TCSE_MSG177_ISSUED (X'04')
Message DFHZC0177 has been issued. This message is output whenever an LU6.2 limited
resources, LU6.2 synclevel 2 or LU6.1 connection is acquired. It is output when the secondary
SNASVCMG session binds. It is intended to alert the user to the fact that acquiring the connection
has caused an affinity to be created and gives the NETNAME and NETID of the partner.

Trace
Trace point ids

v FA50 - FA59

are provided for problem determination during ENDAFFINITY processing. (Module DFHZGCH)

v FAB0 - FABA

are provided for problem determination during INQUIRE SESSNAME processing. (Module DFHZGIN)

v FB87 - FB8F

are provided for problem determination during generic resource registration and de-registration. (Module
DFHZGSL)

Waits

Module Type Resource
Name

Resource
Type

ECB Function

DFHZGCH MVS CHANGECB ZC_ZGCH CHANGECB Wait for completion of
INQUIRE SESSNAME

DFHZGIN MVS INQ_ECB ZC_ZGIN INQ_ECB Wait for ENDAFFINITY to
complete

VTAM generic resource

478 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 66. VTAM LU6.2

This section describes the layer of CICS that manages the interface to VTAM for LU6.2 communication.
VTAM LU6.2 provides advanced program-to-program communication (APPC) between
transaction-processing systems, and enables device-level products (APPC terminals) to communicate with
host-level products and with each other. APPC sessions can therefore be used for CICS-to-CICS
communication, and for communication between CICS and other APPC systems (for example, AS/400®) or
terminals.

For information about the CICS functions that you can use to exploit LU6.2 communication, see
Chapter 13, “Distributed program link,” on page 107, Chapter 14, “Distributed transaction processing,” on
page 109, Chapter 26, “Function shipping,” on page 277, Chapter 29, “Intersystem communication (ISC),”
on page 305, Chapter 62, “Transaction routing,” on page 441.

Design overview
The main feature that distinguishes LU6.2 from other LU types is the support for parallel sessions i.e.
many sessions (and conversations) between the two LUs at the same time. These sessions are further
grouped by use of the class of service facility in VTAM. The TCT structure for LU6.2 reflects this. Under
the system entry (TCTSE) are a series of mode group entries (TCTMEs). Within a mode group there are a
number of sessions represented by terminal entries (TCTTEs).

All the sessions within a mode group have the same transmission characteristics, that is, the same class
of service. When a request to ALLOCATE a session is made, a MODENAME can be specified, indicating
which class of service is required.

When a session has been allocated and a conversation started, data can be received and sent between
the connected LUs. This is more or less directly under the control of the CICS application in the case of
DTP, or indirectly under the control of the user for the other ISC facilities.

CICS also supports LU6.2 single session connections. These are represented by a TCTSE, a single
TCTME and a single TCTTE. They support the same functions as parallel session connections.

Detailed information about VTAM LU6.2 commands and macros is given in the relevant VTAM manuals.

Session management
Systems Network Architecture (SNA) defines several processes to be used in managing LU6.2 sessions.
The CICS implementation provides transaction code for the following Transaction Program Names (TPNs)
defined by LU6.2.

v X'06F1' = CHANGE_NUMBER_OF_SESSIONS (CNOS)

v X'06F2' = EXCHANGE_LOG_NAME (XLN)

The required transaction definitions are:

TRANSACTION XTRANID PROGRAM

CLS1 X'06F10000' DFHZLS1
CLS2 X'06F20000' DFHCLS3

These resource definitions are provided in the DFHISC group.

So that the SNA service transaction programs can always communicate with each other, even when all the
sessions between two systems are busy, two extra sessions are always created whenever parallel

© Copyright IBM Corp. 1997, 2011 479

sessions exist between two systems. CICS generates these two extra sessions (with a reserved
MODENAME of SNASVCMG) unless SINGLESESS(YES) is specified for the connection. Only SNA
service transaction programs are allowed to use these two sessions.

Change Number Of Sessions (CNOS)
When there are parallel sessions between two LU6.2 systems, it is possible to vary the number of
sessions available using CEMT or EXEC CICS commands, either for the entire connection, or by
modegroup. The number of available sessions for a modegroup is called the SESSION LIMIT. It
corresponds to the number of in-service sessions in that modegroup. The two systems must agree on the
session limit for a modegroup at any given time. To achieve this, the LU6.2 architecture defines a CNOS
service transaction program which runs in each system, communicating with its counterpart using
architected CNOS commands and replies. They negotiate the session limit and the numbers of contention
winners and losers at each end. For CICS, the CNOS service transaction program is DFHZLS1.

CNOS commands are not required for the SNASVCMG modegroup on parallel session connections, or for
single session connections, because the session limits are fixed.

Figure 105 shows the flow of control for CNOS operations.

Exchange Log Name (XLN)
When DFHZNAC determines that it is necessary to exchange log names with a remote system, it starts
the syncpoint resynchronization transaction, using the DFHCRERI macro specifying FUNCTION(XLN). The
main program for this transaction is DFHCRRSY (in load module DFHLUP). When DFHCRRSY
determines that resynchronization is required it will schedule other instances of itself to perform the
resynchronization.

When TPN X'06F2' is received from a remote system, DFHCRRSY is called to handle the inbound
Exchange Log Names and resynchronization.

- - - - - -
ZXRE0 DFHZLS1M DFHIC PUT FMH5 for |
EIQSC 06F1 |
ZNAC |
etc. CLS1 |

|
ZGCN plist |

|
|
|

D F H Z L S 1 |
|
| CNOS
|

DFHIC GET DFHLUC RECEIVE |
TS | source

main ZGCN CNOS |
|

plist command | LU
|

DFHZGCNM CALL FUNCTION DFHZGCNM CALL |
(INITIALIZE|CHANGE|RESET FUNCTION |

_SESSION_LIMIT) (PROCESS_SESSION_LIMIT) |
|
|
|

- - - - - D F H Z G C N |
| |

CNOS | |
Send CNOS Apply negotiation algorithm |

target Receive reply Send reply |
|

LU | |
| |

- - - - - D F H Z G C A |
|

ACTION_CNOS_AND_CONNECT - - - - - -
DFHZGPC

SET_NEGOTIATED_VALUES

DFHZXRE0 ENSURE_SESSIONS_BOUND

Figure 105. Flow of control for CNOS

VTAM LU6.2

480 CICS TS for z/OS: CICS Diagnosis Reference

LU6.2 session states
The following CICS modules maintain specific states of LU6.2 sessions.

Module State Macro

DFHZBKT SNA bracket state DFHZBSM
DFHZCNT Contention state DFHZCNM
DFHZCHS Chain state DFHZCHM
DFHZCRT RPL_B state DFHZCRM

These modules are invoked via the macros shown in the last column. Any query or change to the states is
performed using these macros.

The LU6.2 states for each session are stored in the TCTTE for that session. The modules and associated
TCTTE field are usually referred to as state machines. When a module, such as DFHZARL, wants to
check that the session is in a suitable state to perform a given operation, it uses the appropriate state
machine to perform the check by invoking the CHECK function of the relevant macro. If the operation
subsequently causes a change in the state of the session, the SET function of the relevant macro is
invoked to record the new state.

LU6.2 SEND and RECEIVE processing
LU6.2 SEND processing is done by DFHZSDL, using POST=SCHED to drive the VTAM exit DFHZSLX
asynchronously when the request has been passed to VTAM.

DFHZRVL does LU6.2 RECEIVE processing, issuing the request to VTAM for asynchronous processing
which drives the VTAM exit DFHZRLX on completion. DFHZRLX queues completed RPLs for further
processing by DFHZRLP to a chain anchored off TCTVRPLQ in the TCT prefix. Entries are removed from
the queue by DFHZDSP, and passed to the program designated to process the completed RPL. When
authorized path VTAM support is used, the SEND and RECEIVE requests use the CICS high performance
option (HPO) routines.

SEND and RECEIVE processing for LU6.2 use different RPLs:

v RECEIVE uses the receive RPL (also known as RPL_B, and addressed by TCTERPLB in the TCTTE
LUC extension).

v SEND uses the send RPL (addressed by TCTERPLA in the TCTTE).

There are two exceptions when a SEND uses the receive RPL instead of the send RPL:

1. DFHZSDL sending a response

2. DFHZRLP sending DR1 response via synchronous SEND.

The processing state of the receive RPL is maintained in the LU6.2 RPL_B state machine field
(TCTERPBS in the TCTTE LUC extension) by the DFHZCRT module and DFHZCRM macro combination,
thus allowing rapid identification of the stage and type of RECEIVE being processed.

LU6.2 state machine transitions for contention, bracket, and chain states are performed via the
DFHZCNM, DFHZBSM, and DFHZCHM macros as part of SEND and RECEIVE processing for LU6.2
sessions.

Limited resources
For efficient use of some network resources (for example, switched lines), SNA allows for such resources
to be defined in the network as limited resources. Whenever a session is bound, VTAM indicates to
CICS whether the bind is over a limited resource. Both single and parallel sessions may use limited
resources.

VTAM LU6.2

Chapter 66. VTAM LU6.2 481

The limited resources (LR) function is part of the LU6.2 base option set. When communicating over
switched lines, it may be important to stop using this expensive resource as soon as possible. LR provides
this facility. A bit in the BIND image is copied into the TCTTE to indicate LR usage. This bit (TCTE_LR) is
used to determine whether CICS should UNBIND the link when the TCTTE is freed and no outstanding
tasks are using the link.

SNASVCMG (parallel) sessions are not scheduled to be unbound until the initial CNOS exchange has
been performed for all mode groups in the connection. They are then treated in the same way as user
sessions.

Two bits in the terminal control table are used to reflect LR: TCTE_LR in the terminal entry (TCTTE) and
TCSE_LR in the system entry (TCTSE). The following table shows the meanings of the TCTE_LR bit (ON
or OFF) in combination with the TCTENIS ‘node now in session’ bits (YES or NO).

TCTE_LR TCTENIS Meaning

ON YES Current session over LR
ON NO Previous session over LR
OFF YES Current session not LR
OFF NO Never bound, or previous session not LR

TCSE_LR (in the system entry) is set ON when the first LR session is bound, and OFF as a result of
CNOS negotiation to release the connection. If TCSE_LR is ON and there are no bound sessions, the
connection state is then ‘available’.

Modules
The modules listed below handle the VTAM LU6.2 support in CICS.
Session management state machines
v DFHZBKT
v DFHZCHS
v DFHZCNT
v DFHZCRT

Send and Receive processing
v DFHZRLP
v DFHZRLX
v DFHZRVL
v DFHZSDL
v DFHZSLX

CNOS
v DFHZLS1
v DFHZGCN
v DFHZGCA

Persistent Verification
v DFHCLS3

XLN and Resynchronization
v DFHCRRSY

DFHZRVL
DFHZRVL is invoked to issue an LU6.2 receive specific request to receive:
v Data

VTAM LU6.2

482 CICS TS for z/OS: CICS Diagnosis Reference

v Commands
v Responses
v Purge to end-chain (used by DFHZERH to clear incoming data)
v A single RU.

Two broad categories of RECEIVE data are recognized by CICS; both are processed as RECEIVE_WAIT
requests to VTAM:

1. RECEIVE_WAIT, where CICS waits until input is received from VTAM before returning control to the
caller. This applies to all RECEIVE response and command requests, and to data requests where the
minimum length to be received is greater than zero.

2. RECEIVE_IMMEDIATE, where CICS immediately returns control to the caller without waiting for VTAM
to complete the request unless the data is already in the VTAM buffer, in which case it processes the
data in the same way as for RECEIVE_WAIT before returning to the caller. This is requested via a
minimum length of zero. It is used by the RECEIVE_IMMEDIATE call for the SAA communications
interface, by a LOOK_AHEAD call, and in support of timely receipt of responses, ensuring earlier
detection of an ISSUE_ERROR response from the partner LU.

The receive buffer is set up to receive the data, and the address of the receive exit DFHZRLX (driven on
completion of the request) is stored into the receive RPL (RPL_B) before the RECEIVE macro is issued to
VTAM. DFHZRVL is used by DFHZERH to determine the state of the session.

DFHZRLP
This module completes the LU6.2 receive specific processing for LU6.2 requests.

RECEIVE_IMMEDIATE requests are processed in two phases, that is, on two passes through DFHZRLP:

1. The RPL_B state machine (TCTERPBS) is set to indicate that the RECEIVE has been completed by
VTAM; then the exit is taken from DFHZRLP.

2. This phase corresponds to the single phase used for processing RECEIVE_WAIT requests, that is, the
requests are checked for successful completion, examined to determine whether data, a command, or
a response has been received, and parameters indicating what has been received are then returned to
the caller.

Data received
When data is received, DFHZRLP:

1. Sets the bracket and chain state machines, and returns indicators to DFHZARL according to the DFC
flags received with the data:
v Response type
v CD
v EC
v CEB
v FMH

2. If more data is required, DFHZRLP recalls DFHZRVL via the activate scan routine (DFHZACT) to
reissue the RECEIVE, for example when:

v End-chain has not yet been received, and there is still room in the receive buffer. If the minimum
length requested has already been received, the type of RECEIVE is altered from RECEIVE_WAIT
to RECEIVE_IMMEDIATE resulting in a READ_AHEAD call in anticipation of there being more data
available, and any data already in the VTAM buffer is processed by DFHZRLP before returning to
the caller.

v The original request was for data, and what has been received and processed is a command (only
LUSTAT or BIS can validly be processed by DFHZRLP).

3. Returns control to DFHZARL when:

v Sufficient data has been received for a BUFFER or LL type request.

v End-chain has been received because of CD, RQD2, or CEB.

VTAM LU6.2

Chapter 66. VTAM LU6.2 483

v FMH has been received.

v The call was incomplete, but insufficient space remains in the receive buffer for further data.

If the data was received with RQD1, a response is sent synchronously by DFHZRLP using the receive
RPL.

Command received
When a command is received, the actions of DFHZRLP depend on the command:

v For LUSTAT6 received, the command is treated as data. If BB is included, then an exception response
is sent (sense X'0813' or X'0814').

v For BIS received, CLSDST is requested and the receive re-driven.

All other commands are incorrect.

Response received
When a response is received, DFHZRLP:

1. Carries out checks:

v Does the sequence number match the number of the BB request?

v If it is a definite response, was it expected?

v If it is an exception response, was it a session-level error?

2. Sets the state machines.

3. Passes back the return code to the caller.

DFHZSDL
This module issues the SEND request to VTAM to transmit data, commands, and responses on LU6.2
sessions.

DFHZSDL transmits:
v Data from a send buffer or an application area
v The commands:

– LUSTAT
– RTR
– BIS

v Responses.

Data transmission
If a SEND LAST command is issued, any outstanding completed receive RPL is first processed by
queuing the TCTTE for RECEIVE processing by DFHZRLP, and any incomplete receive RPL is canceled
via RESETSR.

For data transmission, DFHZSDL uses:

LMPEO
Large message performance enhancement outbound. VTAM slices large messages into RUs.

BUFFLST
Buffer list. VTAM accepts data from non-contiguous buffers.

USERRH
User request header. The request header is passed in BUFFLST.

A maximum of two buffer list entries are used. The first buffer list entry addresses the data in the send
buffer, and the second the data in the application area.

VTAM LU6.2

484 CICS TS for z/OS: CICS Diagnosis Reference

The request header is built in the first buffer list entry using parameters passed from DFHZARL. If an
implicit send was requested, then CD, RQD2, and CEB are not checked. The first-in-chain (FIC) indicator
is set after checking the chain state machine, and last-in-chain (LIC) is set whenever CD, RQD2, or CEB
is included. Null data sent only-in-chain (OIC) is converted to an LUSTAT6 command. The address of the
send exit DFHZSLX is stored in the send RPL, and the VTAM SEND macro is issued. On completion of
the SEND request, the bracket and chain state machines are set according to the DFC indicators. These
state machines are used extensively by DFHZERH to determine the state of the session before executing
an error request.

Command transmission
The LUSTAT6 command is sent with:
v CEB to terminate the BIND_in_bracket state
v Null data for OIC
v CB, RQD1 to BID for bracket.

The RTR command requests BB after a BID request is rejected with sense code X'0814'.

The BIS command shows bracket termination before CLSDST.

On completion of the SEND request, the exit DFHZSLX is invoked. LUSTAT causes the bracket and chain
state machines to be set as for normal data flow.

Response transmission
DFHZSDL transmits ER1 and DR2 responses. The sequence number associated with the response is that
of the path information unit (PIU) that initiated the current bracket. DFHZSDL uses the receive RPL
(RPL_B) to send responses thus ensuring that the RU is returned with the response, unless the response
is an ISSUE_ERROR request, in which case the send RPL is used. The response is sent synchronously,
and POST=SCHED is included in the VTAM command, so that an exit routine is not involved. On return
from VTAM, DFHZSDL sets the bracket and chain state machines accordingly.

DFHZSLX
The DFHZSLX module is the VTAM exit that is driven on completion of a SEND request. If the request
completed successfully, the bracket and chain state machines are set to show the new state of the
session. If the SEND request was data DR1, DFHZRVL is invoked via DFHZACT to receive the response.

DFHZRLX
The DFHZRLX module is the VTAM exit that is scheduled on completion of an LU6.2
RECEIVE_SPECIFIC request. DFHZRLX queues the completed RPL to a chain anchored from
TCTVRLPQ in the TCT prefix. DFHZDSP dequeues the RPLs for further processing by DFHZRLP.

DFHCLS3
In the local CICS system, DFHCLS3 is invoked using the DFHLUS macro, which issues a DFHIC
TYPE=PUT macro to start the appropriate transaction (CLS3) with data recorded on temporary storage
indicating the requested operation.

The DFHLUS operations can be:
SIGNOFF Sign off a user on the other LU
TIMEOUT Time out users.

The SIGNOFF and TIMEOUT operations apply to persistent verification signons only.

DFHCLS3 retrieves the temporary-storage record.

The SIGNOFF and TIMEOUT operations are performed directly by DFHCLS3. These operations are
supported outbound only.

VTAM LU6.2

Chapter 66. VTAM LU6.2 485

For SIGNOFF, DFHCLS3 is started by DFHZCUT when a user on the other LU must be signed off.

For TIMEOUT, DFHCLS3 is started by DFHZCUT during time-out processing of a persistent verification
signed-on-from list, also known to CICS as a local userid table (LUIT).

DFHCLS3 performs the following actions:

1. Calls DFHZCUT to find a userid that needs to be timed out

2. Makes a sign-off call to the other LU

3. Calls DFHZCUT to remove the userid from the LUIT.

This sequence is repeated until there are no more userids to be timed out.

If DFHCLS3 abends during time-out processing, control passes to a SETXIT routine in DFHCLS3, which
calls DFHZCUT to tidy up the relevant LUIT.

DFHZLS1
DFHZLS1 is the main program for the CICS implementation of the CNOS SNA service transaction. When
acting as the initiator of a CNOS request (the CNOS source), it is invoked by the DFHZLS1M macro
issuing a DFHIC TYPE=PUT for transaction id CLS1. The possible commands on the CNOS source
system are:-

v INITIALIZE_SESSION_LIMIT

Acquire the specified connection, using the MAXIMUM values from the RDO SESSIONS definitions (for
the required session limit and number of winner sessions) on the CNOS command for each modegroup.

v CHANGE_SESSION_LIMIT

Negotiate a change of the current session limit for a specified modegroup.

v RESET_SESSION_LIMIT

Release the connection, negotiating all modegroups to a session limit of zero.

When acting as the receiver of a CNOS request (the CNOS target), DFHZLS1 is invoked by an attach
FMH for TPN X'06F1' sent from the CNOS source system, which is not necessarily CICS. The CNOS
command sent with the attach FMH requests changes to the sessions in specified modegroups. In SNA
terms, DFHZLS1 is handling a PROCESS_SESSION_LIMIT command. It issues a DFHLUC RECEIVE for
the CNOS GDS that contains the details of the required command.

DFHZLS1 passes the parameters for each of the above commands through to DFHZGCN, where the
detailed processing takes place.

DFHZGCN
DFHZGCN is an AP domain subroutine. It handles the four architected CNOS functions, as described
below.

INITIALIZE_SESSION_LIMIT
This is a two pass function in CICS. First time through, DFHZGCN initiates the bind of the SNASVCMG
winner session and returns. The bind processing eventually causes the “session started” routine in
DFHZNAC to run. This re-issues the DFHZLS1M INITIALIZE_SESSION_LIMIT request, and the CNOS
negotiation can then take place.

DFHZGCN performs the following actions:

1. Does a ‘privileged’ allocate (for a SNASVCMG session).

2. Builds an attach header.

3. Completes the building of the CNOS command, using MAXIMUM values in the TCTME.

4. Issues a SEND INVITE WAIT.

VTAM LU6.2

486 CICS TS for z/OS: CICS Diagnosis Reference

5. Issues a RECEIVE LLID.

6. Analyzes the responses to the command; SNA decrees that the CNOS source must accept the values
returned.

7. Calls DFHZGCA to action the new values.

8. Sends messages DFHZC4900 and DFHZC4901 as appropriate.

9. Frees the session.

The above steps are repeated for each user modegroup in the connection.

RESET_SESSION_LIMIT
A connection release request is passed via DFHZLS1 to DFHZGCN.

DFHZGCN performs the following actions:

1. Does a ‘privileged’ allocate.

2. Builds an attach header.

3. Completes the building of one CNOS command, setting MAX, WIN, and LOS values to zero, and
mode names affected to ALL.

4. Issues SEND INVITE WAIT.

5. Issues RECEIVE LLID.

6. Analyzes the response to the command; the CNOS target must accept zero sessions (DRAIN can be
changed from ALL to NONE).

7. Calls DFHZGCA to action the new values.

8. Sends message DFHZC4900.

9. Frees the session.

CHANGE_SESSION_LIMIT
DFHZLS1 is started from the EXEC API or CEMT via DFHEIQSM to change the session limit for a specific
modegroup.

DFHZGCN performs the following actions:

1. Does a ‘privileged’ allocate.

2. Builds an attach header.

3. Completes the building of one CNOS command, setting MAX and WIN values.

4. Issues SEND INVITE WAIT.

5. Issues RECEIVE LLID.

6. Analyzes the responses to the command; SNA decrees that the CNOS source must accept the values
returned.

7. Calls DFHZGCA to action the new values.

8. Sends messages DFHZC4900 and DFHZC4901 as appropriate.

9. Frees the session.

PROCESS_SESSION_LIMIT
DFHZLS1 is attached, and calls DFHZGCN.

DFHZGCN performs the following actions:

1. Addresses the CNOS command that DFHZLS1 passed.

2. For each mode group specified, determines whether the values for session limit, source contention
winners and source contention losers are acceptable. If not, the values are adjusted (negotiated)
according to rules laid down by SNA.

3. If this system is currently performing shutdown, negotiates down to session limit zero.

VTAM LU6.2

Chapter 66. VTAM LU6.2 487

4. Calls DFHZGCA to action the new values.

5. Sends the CNOS reply containing the negotiated values.

6. Sends messages DFHZC4900 and DFHZC4901 as appropriate.

DFHZGCA
DFHZGCA is an AP domain subroutine. It has three separate functions, as described below.

ACTION_CNOS_AND_CONNECT
After a CNOS negotiation DFHZGCA is responsible for changing the state of a specified modegroup to
reflect the new values. There are three types of action required.

1. Put sessions in/out of service for session limit increase/decrease.

2. Set sessions to winner/loser in line with negotiated values.

3. Bind/unbind sessions for session limit decrease, autoconnect processing or contention polarity switch.

SET_NEGOTIATED_VALUES
This function is used by DFHZGPC during persistent sessions restart to set the saved CNOS values in the
modegroup without any binding/unbinding of sessions.

ENSURE_SESSIONS_BOUND
DFHZXRE0 invokes this function during persistent sessions restart because recovery processing can lead
to LU6.2 sessions becoming unbound. It is important to ensure that they are re-bound in accordance with
the autoconnect setting.

Exits
No global user exit points are provided for this function.

Trace
All of the above mentioned modules have entry and exit trace points. Several of them also have exception
and level 2 trace points. All of these trace points are from the AP domain and have ids in the range
FB00-FCFF.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

VTAM LU6.2

488 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 67. VTAM persistent sessions

This section describes how CICS handles VTAM persistent session support. It uses VTAM 3.4.1 persistent
LU-LU session improvements to provide restart-in-place of a failed CICS without the need for network
flows to re-bind CICS sessions.

Persistent sessions can either be Single Node Persistent Sessions (SNPS) or Multi Node Persistent
Sessions (MNPS) depending on how your VTAM network is set up.

If CICS is to support MNPS then PSTYPE=MNPS must be specified in the SIT.

The following mainly describes SNPS. Sections are added where MNPS differs from SNPS.

For an overview of persistent sessions, and a comparison with XRF, see the CICS Transaction Server for
z/OS Release Guide.

For an introduction to this topic from the VTAM point of view, see the Advanced Communications Function
for VTAM Programming manual, SC31-6348.

Design overview
CICS support of persistent sessions includes the support of all LU-LU sessions except LU0 pipeline and
LU6.1 sessions. CICS determines for how long the sessions should be retained from the PSDINT system
initialization parameter. (This is a user-defined time interval.) If a failed CICS is restarted within this time, it
can use the retained sessions immediately—there is no need for network flows to re-bind them.

This interval can be changed using the CEMT SET VTAM command, or the EXEC CICS SET VTAM
command, but the changed interval is not stored in the CICS global catalog, and therefore is not restored
on an emergency restart.

If CICS is terminated through CEMT PERFORM SHUTDOWN IMMEDIATE, or if CICS fails, VTAM holds
CICS’ sessions in “recovery pending” state.

During emergency restart, CICS restores those sessions pending recovery from the CICS global catalog
and the CICS system log to an “in session” state. This happens when CICS opens its ACB.

Subsequent processing is LU dependent: cleanup and recovery for non-LU6 persistent sessions is similar
to that for non-LU6 backup sessions under XRF. Cleanup and recovery for LU6.2 persistent sessions
maintains the bound session when possible but there may be cases where it is necessary to unbind and
re-bind the sessions, for example, where CICS fails during a session resynchronization.

The end user of a terminal sees different symptoms of a CICS failure following a restart, depending on
whether VTAM persistent sessions, or XRF, are in use:

v If CICS is running without VTAM persistent sessions, or XRF, and fails, the user sees the VTAM logon
panel followed by the “good morning” message (if AUTOCONNECT(YES) is specified for the
TYPETERM resource definition).

v If CICS does have persistent sessions support and fails, the user perception is that CICS is hanging:
the screen on display at the time of the failure remains until persistent session recovery is complete.
After a successful CICS emergency restart, the recovery options defined (in RECOVOPTION) for the
terminals or sessions take effect. If SYSDEFAULT is specified as the value for RECOVOPTION, the
user can clear the screen and continue to enter CICS transids. If MESSAGE is specified for the
RECOVNOTIFY attribute of the TYPETERM resource definition, the user is notified of the successful
recovery.

© Copyright IBM Corp. 1997, 2011 489

If CICS does not restart within the specified interval, the sessions are unbound, as if there has been a
CICS failure without persistent sessions support in the system.

Note: SNPS support does not retain LU-LU sessions after VTAM, MVS, or CEC failure. Nor are sessions
retained after the following commands:
v SET VTAM FORCECLOSE
v SET VTAM IMMCLOSE
v SET VTAM CLOSED
v PERFORM SHUTDOWN
v VARY INACT ID=applid

MNPS differs from SNPS in that MNPS support retains LU-LU sessions after a VTAM and MVS
failure. The sessions are also retained after:

v SET VTAM FORCECLOSE

Persistent Sessions Restart flow
The following describes the flow of control for:
1. The enabling of persistence
2. The sessions that persist at start up time
3. The sessions that persist during dynamic open.

Enabling of persistence

Summary:
1. VTAM ACB opened with PARM=PERSIST=YES
2. VTAM levels checked.
3. VTAM SETLOGON OPTCD=PERSIST or NPERSIST

More detail: Persistence is enabled by:

1. The VTAM ACB is opened with PARM=PERSIST=YES - specified in DFHTCTPX.

2. DFHZSLS calls DFHZGSL to issue SETLOGON OPTCD=PERSIST/NPERSIST.

DFHZSLS copies 8 bytes of VTAM information into the TCT prefix. These bytes contain details of the
VTAM level and the functions which it supports. Previous releases of CICS only copy 4 bytes of VTAM
data.

The use of persistent sessions is dependent upon the level of VTAM present being at least V3R4.1.
This level of VTAM returns more function bit data to CICS than previous versions and supports the use
of persistent sessions. Checks are made by CICS of the current VTAM level and the VTAM level
against which the TCT was generated. If either level is not high enough, parameters relating to the use
of persistent sessions are not used when macros are called.

Sessions that persist at start up time

Summary:

1. Task CGRP runs DFHZCGRP

2. DFHZCGRP calls DFHZGRP

3. DFHZGRP issues VTAM INQUIRE

4. DFHZGRP either:

terminates session via DFHZGUB issuing CLSDST/TERMSESS or

restores the session with OPNDST TYPE=RESTORE

5. DFHZGRP queues restored sessions for further processing.

6. DFHZGRP issues RECEIVE_ANYs.

7. DFHZGRP does some CNOS work.

VTAM persistent sessions

490 CICS TS for z/OS: CICS Diagnosis Reference

8. DFHZGRP does some URD work.

9. Queued sessions get restored.

More detail: Sessions that persist at startup time are processed by:

1. Attach task CGRP - program DFHZCGRP in DFHSII1 after TCRP is attached.

2. DFHZCGRP calls DFHZGRP with a START_TYPE of:

COLD

WARM

EMER_XRF

EMER

3. DFHZGRP issues VTAM INQUIREs in 'chunks', that is VTAM is passed an area whose size is defined
in the TCT Prefix.

The area is filled with NIBS by VTAM. DFHZGRP scans the NIBS and decides whether to UNBIND or
OPNDST each session.

For COLD, WARM and EMER_XRF all sessions are unbound.

For EMER some sessions are unbound and some restored depending on the circumstances.

4. Restored sessions are queued to DFHZACT for further processing by DFHZXRC or DFHZXPS.

5. RECEIVE_ANY Initialization done.

6. CNOS records are processed by making calls to DFHZGPC.

7. URDS are reset to AWAITING RE_SYNCHRONIZATION for EMER only.

8. DFHZACT calls DFHZXRC or DFHZXPS for each session queued by DFHZGRP.

Task and module Flow diagram:
-> indicates an ATTACH

TASK
TCRP

1 TCP III CSSY CGRP
--- --- ---- ----

.

.
SII1->ZCSTP

ZDSP
.ZSLS
. ZGSL
Spin on
TCTV_RA_DONE
.

SII1---------->SII1 --->TCRP
SII1-----------------> ZCGRP

. . . install .ZGRP

. . . TCTTEs . INQUIRE on

. . . etc . persistent sessions

. . . . wait on TCTVCECB (EMER)

. . . Post TCTVCECB

. . task end .

. . . process persistent

. . . sessions

. . . RECEIVE_ANY processing
ZDSP continues <------------------- set TCTV_RA_DONE

. post TCTV_ZGRP_FIN_ECB

. task end

. Wait on

. TCTV_ZGRP_FIN_ECB
SIJ1
. SETLOGON START
. Start CXRE task

VTAM persistent sessions

Chapter 67. VTAM persistent sessions 491

. Control is Given to CICS
ZACT
. ZXRC
. ZXPS

Task and module flow - more detail.:

1. Startup runs as normal until DFHSII1 has started the TCP (CSTP) task and DFHZDSP runs.

2. DFHZDSP calls DFHZSLS.

v If VTAM is at least V3R4.1, DFHZSLS calls DFHZGSL to issue SETLOGON OPTCD=PERSIST if
the SIT PSDINT value is a valid non 0 value.

v If the VTAM level is V3R4.0 or PSDINT is 0 or defaulted with higher levels of VTAM, DFHZSLS
calls DFHZGSL to issue SETLOGON OPTCD=NPERSIST.

v If the VTAM level is lower than V3R4.0, the SETLOGON OPTCD call is not made since PERSIST
and NPERSIST are not supported for these VTAM releases.

DFHZSLS does NOT issue RECEIVE OPTCD=ANY. It returns to DFHZDSP which ‘spins” until
TCTV_RA_DONE is set by DFHZGRP when the RECEIVE_ANYs have been successfully issued.

3. DFHSII1 attaches the III task which continues to run code in DFHSII1.

4. DFHSII1 (III) attaches and calls DFHTCRP as a system task then attaches task CGRP, which runs
program DFHZCGRP which calls ZGRP.

5. DFHZGRP calls DFHZGUB if there are any sessions to unbind.

6. DFHZGRP queues any sessions to be restored to DFHZACT.

7. DFHZGRP sets TCTV_RA_DONE after issuing RECEIVE_ANYs to allow DFHZDSP to continue.

8. DFHZGRP posts TCTV_ZGRP_FIN_ECB.

9. When DFHZGRP finishes, control is returned to code in DFHZCGRP.

DFHZCGRP checks the RESPONSE and REASON code. It sets TCTV_ZGRP_FAILED off if
RESPONSE(OK) or RESPONSE(EXCEPTION) with REASON(ACB_CLOSED|INQUIRE_FAILED).
Otherwise it sets TCTV_ZGRP_FAILED on.

10. DFHSII1 waits on TCTV_ZGRP_FIN_ECB and checks TCTV_ZGRP_FAILED set by DFHSII1.

If TCTV_ZGRP_FAILED is off then DFHSII1 continues Otherwise it sets INITDERR which causes
CICS to terminate when the other tasks have finished.

11. Just before CONTROL IS GIVEN to CICS, DFHSIJ1 attaches the CXRE task to run DFHZXRE0
which does some additional PRSS processing.

12. DFHZXRC or DFHZXPS are then called to process any TCTTEs queued to DFHZACT.

13. DFHZXRC is called by DFHZACT to process non-APPC sessions which have not been unbound by
DFHZGRP. It takes one of the following actions depending on the state of the session, the terminal
type, and how the TYPETERM for the session has been defined to CICS.

v Send END_BRACKET

v Send CLEAR (followed by START_DATA_TRAFFIC for SNA devices which support it)

v Unbind.

For those devices for which the cleanup action is not to unbind, the TCTTE is queued to DFHZNAC
and message DFHZC0146 is issued for the session.

As part of the processing for message DFHZC0146, any recovery notification requested for the
session is initiated:

v If the requested recovery notification is MESSAGE, DFHZNCA sends a BMS map to the terminal.

v If the requested recovery notification is TRANSACTION, DFHZNCA initiates the requested
transaction.

14. DFHZXPS is called by DFHZACT to process APPC sessions.

DFHZXPS takes one of the following courses of action depending on the setting of TCTE_PRSS on
entry.

VTAM persistent sessions

492 CICS TS for z/OS: CICS Diagnosis Reference

v Examine the data pointed to by TCTV_PRSS_CV29_PTR to determine the state of the session at
system failure.

a. If a task is attached call DFHZGDA to issue DEALLOCATE,ABEND for the task still running on
the partner.

b. If no task is attached but there is further recovery to be done e.g. bid recovery, outstanding
responses, set the TCTTE to a state which allows this further recovery to proceed. If the
existing mechanism will carry out the recovery without further intervention by DFHZXPS then
remove the TCTTE from the DFHZACT queue, otherwise requeue the TCTTE to DFHZACT
and DFHZXPS will be recalled at a later stage to finish recovery processing.

c. If no task is attached and there is no further recovery to be done, remove the TCTTE from the
DFHZACT queue as recovery is now complete.

v Recall DFHZGDA to continue with DEALLOCATE,ABEND or REJECT_ATTACH processing.

v Requeue the TCTTE to DFHZACT if a SEND (for example of an outstanding response) which was
set in motion by an earlier instance of DFHZXPS is still in progress.

v CLSDST the session if an error has occurred during the recovery process.

v Carry out further recovery as described above, if required, following successful completion of
DEALLOCATE,ABEND processing.

v Remove the TCTTE from the DFHZACT queue when all recovery has completed.

Sessions that persist at Dynamic Open
If VTAM fails but CICS stays up SNPS sessions do not exist. For MNPS they do persist. When VTAM
crashes, CICS does not delete the autoinstalled resources and resets all the terminal and connection
sessions to unopened state.

Summary:

1. CEMT SET VTAM OPEN

2. DFHEIQVT calls DFHZOPA

3. DFHZOPA calls DFHZSLS

4. DFHZSLS call DFHZGSL

5. DFHZGSL issues SETLOGON PERSIST or NPERSIST

6. DFHZOPA calls DFHZGRP

7. DFHZGRP issues INQUIRE PERSESS

8. DFHZGRP terminates session via DFHZGUB issuing CLSDST/TERMSESS. However, if MNPS is in
use the sessions are OPNDST RESTOREd instead.

9. DFHZGRP issues RECEIVE_ANYs

10. DFHZGRP deletes CNOS catalogue records

11. DFHZOPA issues SETLOGON START

More detail: Sessions that persist after the ACB has been opened using CEMT SET VTAM OPEN or
EXEC CICS SET VTAM OPEN are processed by:

1. CICS is running with the VTAM ACB closed.

CEMT SET VTAM OPEN or EXEC CICS SET VTAM OPEN is issued.

2. DFHEIQVT calls DFHZOPA to open the ACB.

3. DFHZOPA calls DFHZSLS.

4. DFHZSLS calls DFHZGSL.

5. DFHZGSL issues VTAM macro calls dependent upon the VTAM level and PSDINT value.

v If VTAM is at least V3R4.1, DFHZGSL issues SETLOGON OPTCD=PERSIST if the SIT PSDINT
value is a valid non 0 value.

VTAM persistent sessions

Chapter 67. VTAM persistent sessions 493

v If the VTAM level is V3R4.0 or PSDINT is 0 or defaulted with higher levels of VTAM, DFHZGSL
issues SETLOGON OPTCD=NPERSIST.

v If the VTAM level is lower than V3R4.0, the SETLOGON OPTCD call is not made since PERSIST
and NPERSIST are not supported for these VTAM releases.

6. DFHZOPA then calls DFHZGRP with startup type of DYNOPEN.

7. DFHZGRP issues INQUIRE PERSESS with a storage area that will take up to about 400 sessions -
INQUIRE PERSESS is reissued until all the NIBs have been obtained from VTAM.

8. DFHZGRP calls DFHZGUB if there are any sessions to unbind. For MNPS DFHZGRP instead issues
OPNDST RESTORE for each session that persists.

9. DFHZGRP issues RECEIVE_ANYs.

10. DFHZGRP calls DFHZGCC to delete CNOS records.

11. If ZGRP returns RESPONSE(OK) or RESPONSE(EXCEPTION) with
REASON(ACB_CLOSED|INQUIRE_FAILED) then DFHZOPA issues SETLOGON OPTCD=START.
Otherwise it causes DFHZSHU to be run to close the VTAM ACB and then returns to DFHEIQVT.

TCB Concurrency

Summary: If SUBTSKS = 1 Specified in SIT

v DFHZGRP switches to concurrent TCB if enough NIBS to process.

v INQUIRE PERSESS work done concurrently with TCRP ZC INSTALL.

v DFHZGUB switches to concurrent TCB if enough NIBS to process. (EMER only).

v OPNDST RESTORE and CLSDST/TERMSESS done concurrently.

More detail: During startup DFHZGRP is attached as a task and runs at the same time as other startup
tasks such as DFHTCRP and DFHRCRP. However, DFHZGRP also switches to use the CONCURRENT
TCB if there are enough NIBS to process during EMER start.

This allows DFHZGRP to issue INQUIRE OPTCD=PERSESS as many times as is necessary, concurrently
with the TCTTEs being restored by DFHTCRP.

When DFHZGRP finishes INQUIREing it waits for DFHTCRP to finish before matching each persisting NIB
with the restored TCTTEs.

Each NIBLIST is then OPNDST OPTCD=RESTOREd and while this is running asynchronously DFHZGUB
is called to run under the concurrent TCB if there are enough NIBs to be unbound in the NIBLIST.

Persistent Signon under Persistent Sessions
1. After the persistent session has been recovered, the TCTTE is marked to indicate that the signon will

persist.

2. The RECOVNOTIFY message or transaction is processed.

Note: Because RECOVNOTIFY is processed before persistent signon is recovered, only the first
transaction specified in the RMTRAN system initialization parameter will be processed; the
second transaction specified cannot be processed because security has not yet been restored
yet.

3. The user presses an Attention IDentifier (AID) key.

4. CICS runs the CPSS transaction to recover the signon.

VTAM persistent sessions

494 CICS TS for z/OS: CICS Diagnosis Reference

#
#
#

#

#
#
#
#

#

#

Modules
ZC (terminal control) together with the following:

Module Function

DFHZCGRP Program initiated by task CGRP to set up the start type and to call DFHZGRP during
initialization. It then analysis the response from DFHZGRP and decides if CICS can continue
or not.

DFHZGCA Sets the appropriate ZC control blocks to reflect the currently agreed Change Number Of
Session (CNOS) values for an LU6.2 connection.

DFHZGCC Performs catalogue and retrieval of CNOS data.

This module is called when CICS needs either to store or to recover CNOS values. During a
CICS run, all CNOS values are written to the global catalogue. Under normal circumstances
they are not needed. However, if a persistent sessions restart is performed, it is necessary to
recover the CNOS values which were in operation at the time of the CICS failure. This is
achieved by having a record on the global catalogue which can be read in during PRSS
restart and used to restore the sessions to their pre-failure state.

This module will handle the maintenance of the CNOS records during normal CICS operation
and the recovery of the records during PRSS recovery.

DFHZGCN Handles the process of LU6.2 Change Number Of Sessions (CNOS) negotiation, acting as
either the source or target end of the conversation, and calls DFHZGCA to action the
resulting changes.

DFHZGDA The role of DFHZGDA is to take control of APPC conversations which have persisted across
a CICS failure, and to ensure that they are terminated cleanly, by issuing a
Deallocate(Abend) informing the partner LU that the CICS transaction has abended.

If DFHZGDA is working correctly, the fact that CICS has failed and been restarted should be
transparent to the partner LU; all he knows is that the CICS transaction to which he was
talking has terminated.

DFHZGDA also performs REJECT_ATTACH processing for synclevel 2 conversation which
are started by the partner before Exchange Lognames has been done after a persistent
sessions restart.

DFHZGPC Performs recovery of CNOS values for modegroups.

This module is called when CICS is performing a persistent sessions (PRSS) restart. When a
PRSS restart is performed, it is necessary to do more than merely recover the session. It is
also necessary to recover the CNOS state which the sessions had prior to the CICS failure.
DFHZGCC will have maintained a record of the CNOS state on the global catalogue. This
record will now be used in this module in an attempt to restore CNOS values.

DFHZGPR The role of DFHZGPR is to update the global catalog whenever it is necessary to add,
delete, or test for a record indicating that an APPC connection has a Persistent Resource
associated with it.

A Persistent Resource can be defined as some session state, or piece of work upon which
the partner LU is dependent, and which will be lost in the event of CICS failing. The only
Persistent Resource so far identified is:

v A shipped AID

Prior to persistent sessions, the failure of the APPC session tells the partner that these
resources have been lost, and drives his recovery. With the advent of persistent sessions, it
is necessary for a persisting CICS to know that an APPC session had a Persistent Resource
associated with it, so that the connection can be unbound (to drive the partners cleanup) and
then rebound.

VTAM persistent sessions

Chapter 67. VTAM persistent sessions 495

Module Function

DFHZGRP Initialize VTAM persistent sessions.

DFHZGRP is a domain subroutine but is called by DFHZCGRP (task CGRP) during
initialization.

DFHZGRP is called during ZC initialization or when the VTAM ACB is opened dynamically by
CEMT SET VTAM OPEN or EXEC CICS SET VTAM OPEN by DFHEIQVT.

The module does the following:

1. OPNDST RESTOREs or CLSDST/TERMSESS any session that VTAM has held
persisting, depending on start up type and session parameters.

2. It calls DFHZGPC to re-instate CNOS records during an EMER restart, or calls
DFHZGCC to delete CNOS catalogue records.

3. It initializes the RECEIVE_ANY RPLs and issues the RECEIVE_ANYs.
DFHZGSL Informs VTAM whether sessions are to persist or not.

This module is called when CICS needs to set, unset or change the Persistent Sessions
PSTIMER value.

DFHZGUB Issue CLSDST or TERMSESS for individual NIBs in a NIBLIST.

This module is called by DFHZGRP to unbind nibs in a niblist in two ways:

v Unbind the entire NIBLIST for COLD, WARM, EMER+XRF and dynamic open.

v Unbind only the NIBs with NIBUSER = 0 for EMER starts.
DFHZXPS DFHZXPS handles Persistent Sessions recovery for APPC sessions. It does not deal with

non-APPC sessions which are dealt with by DFHZXRC.

DFHZXPS is called by DFHZACT after OPNDST OPTCD=RESTORE has been issued
successfully for a persisting APPC session. Both single and parallel APPC sessions are dealt
with but there is no difference in the processing.

The task of DFHZXPS is to examine VTAM session tracking data which was hung off
TCTE_PRSS_CV29_PTR by DFHZGRP following a Persistent Sessions restart and if
possible to update the TCTTE to allow work to continue on the session.

If it is not possible to determine the state of the session prior to system failure, or the session
was not in a state which allows it to be recovered, the session will be unbound.

DFHZXRC DFHZXRC analyses the Session State Vector data that is hung off TCTE_PRSS_CV29_PTR
by DFHZGRP during an EMER restart, for each persisting session. The necessary action to
cleanup and recover the session is then initiated.

Diagnosing Persistent Sessions Problems
The following should be consulted when diagnosing problems with persistent session.

v Trace, TC level 1, 2 and exception in the range of AP FB10-FBFF.

v CEMT INQUIRE VTAM showing the PSDINT value.

v Console and CSNE logs:
– Persistent session messages (DFHZC0001 to DFHZC0162)
– Information produced by DFHZNAC

v Dumps taken by some of the above messages.

If a NIBLIST was present at the time the dump was taken then it can be examined by printing the TCP
section of the dump.

v Last flow information - that is the CV29, FMH5, BIS and BID information is useful if a session is in the
wrong state after a persistent session restart. This may have been diagnosed by an error message, or
maybe missed and message DFHZC0146 or DFHZC0156 issued.

VTAM persistent sessions

496 CICS TS for z/OS: CICS Diagnosis Reference

TCTE_PRSS_CV29_PTR points to the CV29 etc which was created by DFHZGRP and used by
DFHZXPS or DFHZXRC. It is freed when DFHZNAC issues message DFHZC0146 or DFHZC0156.
Otherwise it is freed when the session is unbound.

It is traced by DFHZXPS as a TC level 1 trace.

If you have a dump, but no trace level 1 available, it is dumped in the TCP section for each TCTTE for
which it still exists.

v The contents of byte TCTE_PRSS are useful. Values other than X'00' and X'FF' indicate that something
went wrong during the PRSS recovery. The possible values are listed in the CICS Data Areas. If a value
is left in this byte, the meaning may give some indication as to where the recovery went wrong. The
values are described later in this chapter.

v The contents of the state machines are useful.

TCTECNTS - contention state machine.

TCTEBKTS - bracket state machine.

TCTECHSS - chain state machine.

TCTEUSRS - user state machine.

v The contents of TCTE_BID_STATUS are useful. They are described later in this chapter.

Here are some possible problems:

v DFHZGRP may cause CICS to terminate during initialization for the following reasons:

– DFHZGRP has been called with invalid parameters.

– DFHZGRP is unable to complete the receive any process.

– DFHZGRP has had a loop or abend.

– DFHZGRP is unable to switch back to the QR TCB.

– DFHZGRP has failed before any NIBs have been obtained from VTAM (with INQUIRE
OPTCD=PERSESS).

– DFHZGRP or DFHZGUB has issued a VTAM request that failed to respond within 5 minutes. Issued
with message DFHZC0128 and a system dump.

In each case DFHZGRP or a function it has called issues a message giving a reason for the failure.

v Sessions may be unbound by DFHZGRP for the following reasons:

– This is a COLD, WARM, EMER + XRF restart.

– This is a dynamic open of the ACB (e.g. CEMT SET VTAM OPE). However, if MNPS is in use
sessions should be restored at this point.

– The TCTTE has not been found - probably because it has not been cataloged (Autoinstall with
AIRDELAY=0 or APPC clone). No message is written because this is considered to be normal.

– CICS does not support recovery for LU61 or pipeline sessions.

– The TCTTE does not match the NIB - possibly an operational mix-up - has the right GCD been
used?

– A terminal or session had RECOVOPT UNCONDREL|NONE specified.

– A connection had PSRECOVERY NONE specified.

– A matching mode group was not found - have you got the right GCD?

– A suitable session was not found - this can occur if the CNOS values create many “up for grabs”
sessions which were in use when CICS failed - this would occur if the session limit was high and the
contention winners was low.

It may also occur if CICS was in the process of CNOSing from a high session limit to a low session
limit at the time CICS failed.

Message DFHZC0111 is issued in this case.

– An URD was found for the session so the entire connection is unbound to allow the connection to
recover correctly.

v APPC Sessions may be unbound by DFHZXPS for the following reasons:

VTAM persistent sessions

Chapter 67. VTAM persistent sessions 497

Some of the reasons are known states for which the session cannot be recovered. Others are
unexpected errors.

Known states for which the session cannot be recovered:.

– The last flow was a positive response to a bid with data.

– Exchange log names (transaction CLS2) was running when the system failed.

– A bind or bind security had not completed when the system failed.

– Because of the last thing to flow e.g. SIGNAL, the state of the session at the time of system failure
cannot be determined.

Unexpected errors:

– A bad return code was received from a call to DFGZGDA.

– An attempt to reset the session from CS mode to CA mode or vice versa failed.

– The TCTE_PRSS byte contained an unexpected value on entry to DFHZXPS.

– The BIS, bid or CV29 data pointed to by TCTV_PRSS_CV29_PTR contained an unknown value or
was inconsistent.

– An error occurred during some other part of the recovery process.

– An internal logic error occurred in DFHZXPS.

v Sessions may be unbound by DFHZGDA for the following reasons:

– A SEND issued as part of Deallocate(Abend) processing has failed

– A RECEIVE issued as part of Deallocate(Abend) processing has failed

– A logic error is detected during Deallocate(Abend) processing

v Sessions may be unbound by DFHZXRC for the following reasons:

– The user has specified RECOVOPT(RELEASESESS) and the session was in bracket at the time
CICS failed.

– End-Bracket and Clear/SDT could not be used to clean up the session.

– Cold Start has been requested for the session.

v Message DFHZC0124 can be issued with inconsistent counts if:

– DFHZGRP loops or abends.

– The ACB is closed by VTAM operator commands whilst DFHZGRP is in control.

v LU6.2 Connections which might be expected to persist, may be unbound if there was a persistent
resource associated with the connection when CICS failed (i.e. there was an asynchronous processing
request in progress at the time CICS failed).

v Following a persistent sessions restart, LU6.2 partners may experience a series of unexpected abends
with sense code 08640001 from the persisting CICS; this can occur either because there was a
conversation in progress at the time CICS failed, and CICS has terminated the conversation with this
code, or for synclevel 2 conversations, the partner has attempted to initiate a conversation before
Exchange Lognames has run following a persistent sessions restart.

v Some APPC sessions may hang following a persistent sessions restart because CICS has determined
that it was in RECEIVE state at the time of the CICS failure, and issued a RECEIVE for the expected
data, but the partner has not sent the expected data; the RECEIVE will not timeout in this situation,
because RTIMOUT does not apply to sends issued by DFHZGDA.

Persistent Sessions status byte (TCTE_PRSS)
A new byte TCTE_PRSS has been introduced into the TCTTE to track the stage reached in the persistent
sessions recovery of a session. If for some reason persistent sessions recovery does not complete, this
field can give a useful indication of the stage reached in recovery when the problem occurred.

TCTE_NO_PRSS_RECOVERY (X'00')
The value TCTE_PRSS would normally contain, meaning:

v Persistent sessions are not being used.

VTAM persistent sessions

498 CICS TS for z/OS: CICS Diagnosis Reference

v The session was successfully recovered following a persistent sessions restart.

v The session has been CLSDSTed and restarted since a persistent sessions restart.

v The session was started after any persistent sessions restart.

If this was a persisting VTAM session, then TCTE_PRSS will have been set to this value on
completion of recovery notification for non-LU6.2 (see NAPES84 and NAPES83 routines), or in the
session restarted logic of NAPES51 for LU6.2 sessions.

TCTE_NIB_MATCHED (X'01')
Placed in TCTE_PRSS by DFHZGRP once a TCTTE has been found which matches the NIB of a
persisting VTAM session. This should be a transient value, as the OPNDST OPTCD=RESTORE is
issued soon after, and should cause TCTE_PRSS to be updated.

TCTE_OPNDST_RESTORE_COMPLETED (X'02')
Placed in TCTE_PRSS once an OPNDST OPTCD=RESTORE has been successfully issued for a
VTAM Session by DFHZGRP. Once this value has been placed in TCTE_PRSS, the TCTTE
should be put onto the activate scan queue to await processing by DFHZXRC or DFHZXPS.

TCTE_ZXRC_CLEANUP (X'20')
Placed in TCTE_PRSS by DFHZXRC when it begins processing a TCTTE. All TCTE_PRSS values
relating to DFHZXRC processing are X'2x'. This value remains in TCTE_PRSS until the TCTTE is
queued to DFHZNAC for the issuing of message DFHZC0146. If for some reason the TCTTE does
not get recovered and TCTE_PRSS contains this value, then DFHZXRC may be the culprit.

TCTE_ZXRC_ISSUE_RECOVERY_MSG (X'21')
DFHZXRC has identified the cleanup and recovery actions required, and has queued the TCTTE
to DFHZNAC for recovery message processing (message DFHZC0146). If there is any problem
with the recovery notification processing in DFHZNCA, then TCTE_PRSS is likely to contain this
value; it may be that the TCTTE has been taken off the DFHZACT or DFHZNAC queues for an
unexpected reason.

TCTE_ZXPS_CLEANUP (X'30')
All TCTE_PRSS values beginning (X'3x') indicate that DFHZXPS is doing its recovery/cleanup
processing for this TCTTE. TCTE_PRSS is updated to this value on entering DFHZXPS for the
first time. DFHZXPS should only be processing LU6.2 sessions.

TCTE_ZXPS_DEALLOCATE_ABEND (X'31')
DFHZXPS places this value into TCTE_PRSS prior to calling DFHZGDA for the first time. It
indicates that DFHZXPS has determined that an APPC conversation was taking place at the time
CICS failed, and that DFHZXPS is calling DFHZGDA to terminate that conversation. Again, this
should be a transient value, as DFHZGDA will update TCTE_PRSS as it proceeds with its
DEALLOCATE(ABEND) processing.

TCTE_ZXPS_SEND_IN_PROGRESS (X'32')
DFHZXPS has determined that bidding activity was taking place at the time CICS failed, and that
some kind of SEND is required to complete the bid flows. If the session hangs with this value in
TCTE_PRSS there may have been some kind of problem with unexpected bid flows taking place.

TCTE_ZXPS_ISSUE_RECOVERY_MSG (X'33')
When DFHZXPS has completed recovery and cleanup for the session, it puts this value into
TCTE_PRSS before queueing the TCTTE to DFHZNAC for recovery message processing.

TCTE_ZGDA_FMH7_SEND (X'41')
All TCTE_PRSS values with X'4x' indicate that DFHZGDA is terminating the APPC conversation
which was in progress on the session at the time CICS failed. This value indicates that DFHZGDA
is in the process of issuing a SEND for the FMH7 which is to terminate the conversation.

TCTE_ZGDA_FMH7_COMP (X'42')
DFHZGDA has completed its Deallocate(Abend) processing. This value in TCTE_PRSS indicates
to DFHZXPS that it may continue with any outstanding recovery/cleanup processing of its own.

VTAM persistent sessions

Chapter 67. VTAM persistent sessions 499

TCTE_ZGA_FMH7_REC (X'43')
DFHZGDA has determined that CICS was in RECEIVE state at the time CICS failed, and has
issued a RECEIVE for the RU expected from the partner. This value may appear in sessions
which appear to be hanging following a persistent sessions restart. If the partner never issues the
expected SEND, the RECEIVE will never be executed. Since this RECEIVE is issued under the
TCP task, the RECEIVE will not be subject to any RTIMEOUT.

TCTE_ZGDA_REC_EOC (X'44')
Placed in TCTE_PRSS if the first RECEIVE of the DFHZGDA module following the persistent
sessions reveals that the partner is in the middle of sending a chain of RUs. If TCTE_PRSS
contains this value, DFHZGDA has issued a RECEIVE_PURGE for the session. Again, depending
on how quickly the partner sends the expected data, this session may appear to hang.

TCTE_ZGDA_SEND_RESP (X'45')
Placed in TCTE_PRSS if DFHZGDA has to issue a SEND for a response during
Deallocate(Abend) processing.

TCTE_PRSS_CLSDST_SCHEDULED (X'FF')
This value is placed in TCTE_PRSS if there is an error, or if in the course of persistent sessions
recovery it is decided to terminate the persisting session. This may be for a variety of reasons;
some of which are:

v An error occurred issuing a SEND or RECEIVE during persistent sessions recovery.

v RECOVOPT(NONE) or RECOVOPT(UNCONDREL) was specified for the session.

v The only recovery action which DFHZXRC could take was to terminate the session.

The X'FF' value remains in TCTE_PRSS as an indicator that the session was terminated during
PRSS recovery. Only when the session is restarted is the value overwritten with X'00'.

Bid status byte (TCTE_BID_STATUS)
DFHZXPS uses a byte in the TCTTE, TCTE_BID_STATUS, to track the various stages of recovery. It is
possible to examine this byte to determine the stage of recovery reached by DFHZXPS.

The byte values have the following meanings.

v X'00'

This session has not been processed by DFHZXPS.

v X'01' TCTE_SEND_POSITIVE_RESPONSE

A positive response is to be sent to a bid which was received before system failure. This value is
changed to X'07' TCTE_SENT_POSITIVE_RESPONSE before the TCTTE is requeued to DFHZACT for
the SEND and so will only be seen if DFHZXPS abends. When the response has been sent DFHZXPS
will be recalled.

v X'02' TCTE_SEND_NEGATIVE_RESPONSE

A negative response is to be sent to a bid with data which was sent before system failure. This needs to
be followed by RTR and so the status byte is changed to X'03' SEND_RTR before the TCTTE is
requeued to DFHZACT for the SEND. This is another value which should only be seen if DFHZXPS
abends. DFHZXPS will be recalled when the response has been sent.

v X'03' TCTE_SEND_RTR

Recovery is complete apart from the need to send RTR. This will be done by DFHZDET and DFHZXPS
will not be recalled.

v X'04' TCTE_SENT_RTR

RTR was sent before system failure. There is no recovery to be done. DFHZXPS will not be recalled.

v X'05' TCTE_SEND_LUSTAT_EB

VTAM persistent sessions

500 CICS TS for z/OS: CICS Diagnosis Reference

Either we received a positive response to a bid or we sent a positive response to RTR before the
system failed. The bid now has to be canceled. This will be done by DFHZDET and DFHZXPS will not
be recalled.

v X'06' TCTE_AWAITING_BB_RESPONSE

A bid was sent before the system failed. No further recovery is required. When the response arrives
from the partner the bid will be canceled. DFHZXPS will not be recalled.

v X'07' TCTE_SENT_POSITIVE_RESPONSE

Either a positive response has been sent to a bid or one is about to be sent (see above under
SEND_POSITIVE_RESPONSE). In the former case DFHZXPS will not be recalled, in the latter case it
will.

v X'08' TCTE_0814_RECEIVED

A negative response was sent to a bid before the system failed. Any further recovery will be carried out
by DFHZDET and DFHZXPS will not be recalled.

v X'09' TCTE_0813_RECEIVED

As above except that no RTR is expected in this case. No further recovery processing is needed from
either DFHZXPS or DFHZDET.

v X'0A' TCTE_SEND_RECOVERY_MESSAGE

All recovery is now complete.

v X'0B' TCTE_DR1_OUTSTANDING

The last flow was inbound with CEB,RQD1 and so although there is no task to ABEND a response is
still expected by the partner. We requeue for DFHZSDL to send the response and any further recovery
processing will be done by DFHZDET. DFHZXPS will not be recalled.

v X'0C' TCTE_DR1_EXPECTED

As above except that the last flow was inbound. DFHZDET will arrange for the response to be received.
DFHZXPS will not be recalled.

TCTE_BID_STATUS must be used in conjunction with TCTE_PRSS to determine the state of the recovery.
If TCTE_PRSS is set to TCTE_ZXPS_ISSUE_RECOVERY_MESSAGE, or to a state which indicates that
recovery is complete, DFHZXPS has finished processing. If not DFHZXPS will be recalled at a later stage.

Summary of persistent session waits
The DFHDSSRM waits are summarized here. All but PSUNBECB are posted by DFHZGRP.
Module Type Resource_name Resource_type ECB

DFHSII1 MVS ZGRPECB AP_INIT TCTV_ZGRP_FIN_ECB

DFHZGUB OLDC PSUNBECB ZC_ZGUB WAIT_RPL_ECB

DFHZGRP MVS PSOP1ECB ZC_ZGRP OPNDST_ECB

DFHZGRP MVS PSOP2ECB ZC_ZGRP OPNDST_ECB

DFHZGRP MVS PSINQECB ZC_ZGRP INQUIRE_ECB

DFHZGRP OLDC TCTVCECB ZC_ZGRP TCTVCECB

where the waits are issued for the following reasons:
ZGRPECB Wait for DFHZGRP to complete.
PSUNBECB Wait for free unbind RPL from RPL pool anchored from

TCTV_PRSS_RPL_POOL_PTR.
PSOP1ECB Wait for OPNDST RESTORE to complete.
PSOP2ECB Wait for OPNDST RESTORE to complete after UNBINDs have failed.
PSINQECB Wait for INQUIRE PERSESS to complete.

VTAM persistent sessions

Chapter 67. VTAM persistent sessions 501

TCTVCECB Wait for TCTTEs to finish installing (DFHTCRP).

VTAM exits
The VTAM exits SYNAD (DFHZSYX) or LERAD (DFHZLEX) may be driven during persistent sessions
recovery.

In DFHZGRP, before INQUIRE OPTCD=PERSIST is issued, or in DFHZGUB before CLSDST or
TERMSESS are issued CICS sets the RPL user field to -2 to indicate to the exits that they must do NO
processing at all. This is because these macros may be issued under the concurrent TCB.

In DFHZGRP before OPNDST OPTCD=RESTORE is issued CICS sets the RPL user field to -1 to indicate
to the exits that they should try minimum recovery - that is they set the return code to TCZSYXPR if an
error can be retried, or TCZSYXCF if it is a permanent error.

If an error occurs in DFHZGSL for SETLOGON OPTCD=PERSIST DFHZSYX returns immediately (as for
RPL user field = -2).

If MNPS is in use and VTAM crashes DFHZTPX is driven with a code of 8. If SIT parameter
PSTYPE=MNPS was specificed then DFHZTPX does NOT schedule the autoinstalled TCTTEs for
deletion. They are scheduled for CLSDST CLEANUP instead by DFHZSHU.

See the OS/390 eNetwork Communications Server: SNA Programming manual, SC31-8573, for general
VTAM exit information.

Trace
The following point IDs are provided for persistent sessions recovery (DFHZGCA, DFHZGCC, DFHZGCN,
DFHZGDA, DFHZGPC, DFHZGPR, DFHZGRP, DFHZGSL, DFHZGUB, DFHZCGRP, DFHZXPS,
DFHZXRC):

v AP FB10 through AP FBFF, for which the trace levels are TC 1 and TC 2.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Statistics
The following statistics are produced by DFHZGRP. They are treated in the same way as other terminal
control VTAM statistics.
A03_PRSS_NIB_COUNT The number of active VTAM sessions when INQUIRE OPTCD=COUNTS

was issued - this represents the number of persisting sessions.
A03_PRSS_INQUIRE_COUNT

The number of times DFHZGRP issues INQURE OPTCD=PERSESS.
Each INQUIRE should be given about 400 sessions.

A03_PRSS_UNBIND_COUNT The number of times CLSDST or TERMSESS were issued by DFHZGUB.
A03_PRSS_OPNDST_COUNT

The number of sessions that OPNDST RESTORE restored successfully.
A03_PRSS_ERROR_COUNT The number of sessions with NIBUSER=tctte address, that VTAM failed to

restore with OPNDST RESTORE. This occurs if VTAM operator
commands are issued whilst DFHZGRP is in control and sessions are
closed as a result.

VTAM persistent sessions

502 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 68. WTO and WTOR

Design overview
The DFHSUWT module provides the following support for executing MVS WTO and WTOR SVCs:
SEND supports Write To Operator (WTO):

v A single-line message up to 113 characters, or a multiline message
consisting of a control line and up to nine lines of 69 characters

v Route code specification (route code list of 1 through 28 numbers, each
in the range 1 through 28)

v Descriptor code specification (descriptor code list of 1 through 16
numbers, each in the range 1 through 16).

CONVERSE supports Write To Operator With Reply (WTOR):
v A single-line message up to 121 characters
v Route code specification (route code list of 1 through 28 numbers, each

in the range 1 through 28)
v Descriptor code specification (descriptor code list of 1 through each in

the range 1 through 28) 16 numbers, each in the range 1 through 16)
v A reply with maximum length of 119 characters.

The DFHWTO macro may be used to send a message, normally to the system operator, when neither the
CICS message domain nor the old message program (DFHMGP) can be used. The message domain
cannot be used during certain phases of initialization and XRF processing, because it requires a kernel
stack environment. DFHMGP cannot be used during initialization, nor during any sort of abend or dump
processing, because it uses task LIFO storage and may therefore invoke the storage control program.

The DFHWTO macro may also be used to terminate CICS abnormally or to request a reply from the
operator.

Any WTO or WTOR macros that are issued by CICS might be intercepted by the console message
handling facility described under “Console message handling” on page 359. This service optionally inserts
the CICS region’s applid into CICS messages before they are displayed on the console.

Modules
DFHSUWT and DFHWTO

Exits
No global user exit points are provided for this function.

Trace
The following point IDs are provided for this function:
v AP FF0x, for which the trace levels are AP 1 and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

© Copyright IBM Corp. 1997, 2011 503

504 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 69. CICS Web support and the CICS business logic
interface

CICS Web support is a collection of CICS services that enable a CICS region to act both as an HTTP
server, and as an HTTP client. When CICS is an HTTP server, Web clients can use transaction processing
services by calling CICS programs or by running CICS transactions. When CICS is an HTTP client, a user
application program in CICS can initiate a request to an HTTP server, and receive a response from it. Web
clients use TCP/IP to communicate with CICS Web support.

The CICS business logic interface allows other external users to use transaction processing services.

Design overview
For information about the design and implementation of CICS Web support and the CICS business logic
interface, see the CICS Internet Guide.

Control blocks
Figure 106 on page 506 shows the control blocks used by CICS Web support for 3270 display
applications.

© Copyright IBM Corp. 1997, 2011 505

X’14’

X’10’

CSAOPFL

.

.

.

.

.

WBSTA_ANCHOR_BLOCK

WBSTA_DIRECTORY_TOKEN

CSAWEBAN

WBAB_STATE_ANCHOR_PTR

Directory
Manager

X’38’

X’38’

X’38’

WBSTH_STATE_BLOCK

WBSTH_STATE_BLOCK

WBAB_WEB_ANCHOR_BLOCK

WBSTH_STATE_BLOCK

WBSTU_STATE_DATA

WBSTU_STATE_DATA

WBSTU_STATE_DATA

Figure 106. Web support module list

CICS Web support

506 CICS TS for z/OS: CICS Diagnosis Reference

Modules
CICS Web support includes modules used for:
1. Initialization
2. Web attach processing
3. Default analyzer program
4. Alias transaction
5. Web error program
6. HTTP client processing
7. CICS business logic interface
8. CICS Web 3270 support
9. Unescaping function

Initialization, DFHWBIP
DFHWBIP initializes the Web environment at CICS startup.

Web attach processing, DFHWBXN
DFHWBXN is the Web attach processing module. It is the initial program invoked for transaction CWXN
(or an alias of CWXN), which is attached for a new sockets connection received on a port associated with
a TCPIPSERVICE definition with PROTOCOL(HTTP). It is also invoked for transaction CWXU (or alias),
which is attached when the TCPIPSERVICE definition specifies PROTOCOL(USER). It calls the Web
domain WBSR gate to process the incoming data.

Default analyzer program, DFHWBAAX
DFHWBAAX is the default analyzer program for a TCPIPSERVICE definition that specifies
PROTOCOL(HTTP). It does not carry out further processing when a matching URIMAP definition has been
found for the request, even if the URIMAP specifies ANALYZER(YES). It tests for the presence of a
URIMAP definition, and if the result is positive, returns without performing any analysis on the request
URL. This means that the settings specified in the URIMAP definition for the alias transaction, converter
program and application program are automatically accepted and used to determine subsequent
processing stages.

If no matching URIMAP definition is found, DFHWBAAX gives control to the user-replaceable Web error
application program DFHWBERX to produce an error response. This is achieved by setting DFHWBERX
as the application program to handle the request.

An alternative analyzer program that has been specified on the TCPIPSERVICE definition, such as the
CICS-supplied sample analyzer program DFHWBADX, might carry out analysis on the request and specify
alternative settings for the alias transaction, converter program and application program.

When the TCPIPSERVICE definition specifies PROTOCOL(USER), an analyzer program is always
required to determine processing for requests (which are treated as non-HTTP requests). DFHWBAAX is
not suitable for PROTOCOL(USER). The CICS-supplied sample analyzer program DFHWBADX or a
customized analyzer program must be used instead. URIMAP definitions are not used with
PROTOCOL(USER).

Alias transaction, DFHWBA
DFHWBA is the alias program. An alias transaction is started by Web attach processing for each request
received from TCP/IP. The transaction ID can be selected by a URIMAP definition or an analyzer program,
and the default is CWBA. For CICS Web support, DFHWBA calls the user application program that is
specified to process the request. This application program could be specified in a URIMAP definition, or by
an analyzer program or converter program. For the CICS business logic interface, DFHWBA calls the
CICS business logic interface program.

CICS Web support

Chapter 69. CICS Web support and the CICS business logic interface 507

|

|
|

|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

Web error program, DFHWBEP
A Web error program is used to provide an error response to the Web client when a request error or an
abend occurs in the CICS Web support process. DFHWBEP is called when CICS detects an error in
request processing. Alternatively, in situations where the error can be identified by the active program, the
Web error application program DFHWBERX can be specified to send the error response. DFHWBERX is
used when the CICS-supplied default analyzer DFHWBAAX is specified as the analyzer program on the
TCPIPSERVICE definition, and no matching URIMAP definition is found for a request.

DFHWBEP is called in the following situations:

v When CICS Web support detects a problem in initial processing of a request from a Web client, for
example, if required information is missing from the request, or if the receive timeout is reached. This
initial receive processing takes place before any utility programs (analyzer, converter or application
programs) are called, and before URIMAP matching takes place.

v When an installed URIMAP definition matches the request, but the URIMAP definition or virtual host is
disabled, or the resource for a static response is disabled or not found. No utility programs have been
called at this stage.

v When neither the URIMAP definition, nor the analyzer and converter program processing, manages to
determine what application program should be executed to service the request.

v When an abend occurs in the analyzer program, converter program, or user-written application program.
This is indicated by a non-OK return code from the analyzer or converter program, or if these are not
involved in request processing, by the failure of the application program to produce an acceptable HTTP
response. Return codes set by analyzer or converter programs map to default HTTP responses that are
built by CICS and passed through DFHWBEP for modification if necessary.

If a sockets send or receive error occurs, the socket is closed and no response is sent to the Web client.

DFHWBEP is user-replaceable. It uses a COMMAREA-based interface, where information about the error
situation is passed to the program in a COMMAREA, and a complete HTTP response is created as a
buffer of data. (DFHWBERX uses the EXEC CICS commands to obtain information about the Web client's
request and create and send the error response.)

After the error response has been sent, the socket is usually left open for possible further requests from
the Web client, until timeout is reached. The exception is when a 501 (Method Not Implemented) response
is sent, in which case the socket is closed.

HTTP client processing, DFHWBCL
DFHWBCL is the HTTP client processing module. It is called by the command interface DFHEIWB (when
EXEC CICS WEB commands with the SESSTOKEN option are used in application programs), and the
COMMAREA interface DFHWBCLI, to handle outbound HTTP functions, such as opening a session and
writing a request to the socket.

CICS business logic interface, DFHWBBLI
DFHWBBLI is the CICS business logic interface program. The interface to the CICS business logic
interface program is described in CICS Internet Guide.

The CICS business logic interface program is called by DFHWBA. It calls the Decode function of a
converter program, a CICS application program, or the Encode function of a converter program, according
to what is specified in its parameter list, and passes the data back to the caller.

DFHWBA1 is the business logic compatibility interface program. In earlier releases, it was the business
logic interface program, but it is now a compatibility layer on DFHWBBLI. It accepts data from an
old-format business logic interface parameter list, copies it to the new format parameter list, then links to
DFHWBBLI.

CICS Web support

508 CICS TS for z/OS: CICS Diagnosis Reference

|

|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|

|
|
|
|
|

|

|
|
|
|

|
|
|

|

|
|
|
|

CICS Web support for 3270 display applications
The modules used by CICS Web support for handling 3270 display applications (sometimes referred to as
the CICS Web bridge) are:

DFHWBGB
Removes redundant state data from the system.

DFHWBST
Manages the state data.

DFHWBTC
Performs conversion between 3270 and HTML.

DFHWBTTA
The Web terminal translation application, which sets up the parameters for bridging to transactions
from CICS Web support. The program has two aliases, DFHWBTTB and DFHWBTTC.

DFHWBLT
The CICS Web bridge exit.

Unescaping function, DFHWBUN
DFHWBUN provides an unescaping function for data which has been transmitted to CICS in its escaped
form, but which the application needs to manipulate in its unescaped form.

Exits
Two global user exit points are provided in CICS Web support for HTTP client requests:

XWBOPEN, HTTP client open exit
XWBOPEN is called during processing of an EXEC CICS WEB OPEN command, which is used by
an application program to open a connection with a server. It is designed for use to specify proxy
servers that should be used for HTTP requests by CICS as an HTTP client, and to apply a
security policy to the host name specified for those requests.

XWBSNDO, HTTP client send exit
XWBSNDO is called during processing of an EXEC CICS WEB SEND or EXEC CICS WEB
CONVERSE command. It is designed for use to specify a security policy for HTTP requests, in
particular for the path component of the request.

The exits are described in the CICS Internet Guide.

Trace
The trace point IDs for this function are of the form WB xxxx. The trace levels are WB 1, WB 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

CICS Web support

Chapter 69. CICS Web support and the CICS business logic interface 509

510 CICS TS for z/OS: CICS Diagnosis Reference

Part 3. CICS domains

This part describes the domains into which CICS is organized, and the functions within these domains.

Apart from the application domain and the two catalog domains, each domain has one section describing
it. The application domain consists of so many components that each component is described in a
separate section, except for the two catalog domains that are described in the same section.

Sections are ordered alphabetically by domain ID for quick reference.

© Copyright IBM Corp. 1997, 2011 511

512 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 70. Application domain (AP)

The principal components of the application domain are described under Chapter 2, “Application domain,”
on page 7.

Application domain’s specific gates
Table 30 summarizes the application domain’s specific gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gates, the functions provided by the gates, and whether or not the
functions are available through the exit programming interface (XPI).

Table 30. Application domain’s specific gates
Gate Trace Function XPI

ABAB AP 0741
AP 0742

CREATE_ABEND_RECORD
UPDATE_ABEND_RECORD
START_ABEND
INQUIRE_ABEND_RECORD
TAKE_TRANSACTION_DUMP

NO
NO
NO
NO

APAP AP 0910
AP 0911

TRANSFER_SIT NO

APCR AP 4E00
AP 4E01

ESTIMATE_ALL
ESTIMATE_CHANGED
EXPORT_ALL
EXPORT_CHANGED
IMPORT_ALL
IMPORT_CHANGED,

NO
NO
NO
NO
NO
NO

APEX AP 0510
AP 0515

INVOKE_USER_EXIT NO

APID AP 092A
AP 092B

PROFILE
QUERY_NETNAME

NO

APIQ AP 0920
AP 0921

INQ_APPLICATION_DATA YES

APJC AP F900
AP F901

WRITE_JOURNAL_DATA YES

APLH AP 19A0
AP 19A1

ESTABLISH_LANGUAGE
NOTIFY_REFRESH
START_PROGRAM

NO
NO
NO

APLI AP 1940
AP 1941

ESTABLISH_LANGUAGE
START_PROGRAM

NO
NO

APLJ AP 1960
AP 1961

ESTABLISH_LANGUAGE
START_PROGRAM
PIPI_INIT_SUB_DP
PIPI_CALL_SUB
PIPI_TERM

NO
NO
NO
NO
NO

APRT AP 1900
AP 1901

ROUTE_TRANSACTION NO

APTC AP 4900
AP 4901

CANCEL
CLOSE
EXTRACT_PROCESS
ISSUE_NOTIFY
LISTEN
OPEN
RECEIVE
SEND
SET_SESSION

NO
NO
NO
NO
NO
NO
NO
NO
NO

APTD AP F600
AP F601

WRITE_TRANSIENT_DATA
READ_TRANSIENT_DATA
DELETE_TRANSIENT_DATA
INITIALIZE_TRANSIENT_DATA
RESET_TRIGGER_LEVEL

NO

APXM AP 0590
AP 0591

INIT_XM_CLIENT
BIND_XM_CLIENT
RELEASE_XM_CLIENT

NO
NO
NO

© Copyright IBM Corp. 1997, 2011 513

||
|
|
|
|
|
|
|

|
|
|
|
|
|

Table 30. Application domain’s specific gates (continued)
Gate Trace Function XPI

BRAI AP 4AE0
AP 4AE1

INQUIRE_AUTOINSTALL
SET_AUTOINSTALL
INSTALL_BRIDGE_FACILITY
DELETE_BRIDGE_FACILITY

NO
NO
NO
NO

BRAT AP 2800
AP 2801

ATTACH NO

BRFM AP 2140
AP 2141

Subroutine for bridge facility allocation/deletion. NO

BRFR AP 4A00
AP 4A01

ALLOCATE_BRIDGE_FACILITY
REALLOCATE_BRIDGE_FACILITY
DETACH_BRIDGE_FACILITY
SET_BRIDGE_FACILITY
INQUIRE_BRIDGE_FACILITY
STARTBR_BRIDGE_FACILITY
GET_NEXT_BRIDGE_FACILITY
ENDBR_BRIDGE_FACILITY
GARBAGE_COLLECT

NO
NO
NO
NO
NO
NO
NO
NO
NO

BRIC AP 2166
AP 2167

Subroutine interfacing interval control EXEC
commands and the bridge exit.

NO

BRIQ AP 2820 INQUIRE_CONTEXT YES

BRLK AP 4A20
AP 4A21

START_BRIDGE
CONTINUE_BRIDGE
ABEND_BRIDGE

NO
NO
NO

BRME AP 4C40
AP 4C41

API_EMULATOR NO

BRMF AP 4C20
AP 4C21

FORMATTER NO

BRMG AP 4A40
AP 4A41

ALLOCATE_MESSAGE
REALLOCATE_MESSAGE
OUTPUT_MESSAGE
RESEND_MESSAGE
DELETE_MESSAGE
READ_VECTOR
ALLOCATE_VECTOR
ERASE_OUTPUT_VECTORS

NO
NO
NO
NO
NO
NO
NO
NO

BRMS AP 2160
AP 2161

Subroutine interfacing BMS EXEC commands and
the bridge exit.

NO

BRNS AP 4A60
AP 4A61

INITIALISE_NUMBER
CONNECT_NUMBER
DISCONNECT_NUMBER
ALLOCATE_NUMBER
RELEASE_NUMBER

NO
NO
NO
NO
NO

BRRM AP 2840
AP 2841

RMRO callback for PREPARE and COMMIT NO

BRSP AP 216C
AP 216D

Subroutine interfacing syncpoint requests and
the bridge exit.

NO

BRTC AP 2163
AP 2164

Subroutine interfacing terminal control EXEC
commands and the bridge exit.

NO

BRXM AP 2860
AP 2861

XMAC callback for INIT_XM_CLIENT and
BIND_XM_CLIENT

NO

ICXM AP 05C0
AP 05C1

INQUIRE_FACILITY NO

LILI AP 1940
AP 1941

INITIALIZE_LANGUAGES
TERMINATE_LANGUAGES
FIND_PROGRAM_ATTRIBUTES
GO_TO

NO
NO
NO
NO

RTSU AP 1910
AP 1911

COMMIT_SURROGATE
FREE_SURROGATE
GET_RECOVERY_STATUS
PREPARE_SURROGATE
RESET_SURROGATE

NO
NO
NO
NO
NO

TDOC AP F640
AP F641

OPEN_TRANSIENT_DATA
CLOSE_TRANSIENT_DATA
CLOSE_ALL_EXTRA_TD_QUEUES

NO
NO
NO

Application domain (AP)

514 CICS TS for z/OS: CICS Diagnosis Reference

Table 30. Application domain’s specific gates (continued)
Gate Trace Function XPI

TDTM AP F680
AP F681

ADD_REPLACE_TDQDEF
INQUIRE_TDQDEF
START_BROWSE_TDQDEF
GET_NEXT_TDQDEF
END_BROWSE_TDQDEF
SET_TDQDEF
DISCARD_TDQDEF
COMMIT_TDQDEFS

NO
NO
NO
NO
NO
NO
NO
NO

TDXM AP 05B0
AP 05B1

BIND_FACILITY
BIND_SECONDARY_FACILITY
RELEASE_FACILITY
INQUIRE_FACILITY

NO
NO
NO
NO

SAIQ AP E120
AP E122

INQUIRE_SYSTEM
SET_SYSTEM

YES
YES

TFAL AP D600
AP D601

ALLOCATE
CANCEL_AID
CHECK_TRANID_IN_USE
CANCEL_AIDS_FOR_CONNECTION
CANCEL_AIDS_FOR_TERMINAL
DISCARD_AIDS
FIND_TRANSACTION_OWNER
GET_MESSAGE
INITIALIZE_AID_POINTERS
INQUIRE_ALLOCATE_AID
LOCATE_AID
LOCATE_REMDEL_AID
LOCATE_SHIPPABLE_AID
MATCH_TASK_TO_AID
PURGE_ALLOCATE_AIDS
RECOVER_START_DATA
REMOTE_DELETE
REMOVE_EXPIRED_AID
REMOVE_EXPIRED_REMOTE_AID
REMOVE_MESSAGE
REMOVE_REMOTE_DELETES
REROUTE_SHIPPABLE_AIDS
RESCHEDULE_BMS
RESET_AID_QUEUE
RESTORE_FROM_KEYPOINT
RETRIEVE_START_DATA
SCHEDULE_BMS
SCHEDULE_START
SCHEDULE_TDP
SLOWDOWN_PURGE
TAKE_KEYPOINT
TERM_AVAILABLE_FOR_QUEUE
TERMINAL_NOW_UNAVAILABLE
UNCHAIN_AID
UPDATE_TRANNUM_FOR_RESTART

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

TFBF AP 1730
AP 1731

BIND_FACILITY NO

TFIQ AP 1700
AP 1701

INQUIRE_TERMINAL_FACILITY
INQUIRE_MONITOR_DATA
SET_TERMINAL_FACILITY

NO
NO
NO

TFRF AP 1710
AP 1711

RELEASE_FACILITY NO

TFXM AP 1790
AP 1791

INIT_XM_CLIENT
BIND_XM_CLIENT

NO
NO

MRXM AP 17B0
AP 17B1

INIT_XM_CLIENT
BIND_XM_CLIENT

NO
NO

62XM AP 17C0
AP 17C1

INIT_XM_CLIENT
BIND_XM_CLIENT

NO
NO

ABAB gate, CREATE_ABEND_RECORD function
The CREATE_ABEND_RECORD function of the ABAB gate is used to create an abend record (TACB).

Application domain (AP)

Chapter 70. Application domain (AP) 515

Input parameters
[ABEND_CODE] is the four-character transaction abend code.
[FAILING_PROGRAM]

is the name of the program in which the abend occurred.
[REQUEST_ID] is the request ID from the TCTTE for a terminal-oriented task.
[FAILING_RESOURCE]

is the name of the system TCTTE (the connection) if the abend was raised by DFHZAND.
[REMOTE_SYSTEM]

is the name of the remote system if the abend was raised in the client transaction to
reflect an abend occurring in the DPL server.

[SENSE_BYTES]
is the SNA sense bytes if the abend was raised by DFHZAND.

[ERROR_MESSAGE]
is the error message sent from the remote system if the abend was raised by DFHZAND.

[EXECUTION_KEY]
is a code indicating the execution key at the time the abend was issued, or at the time the
operating system abend or program check occurred.

[STORAGE_TYPE]
is a code indicating the storage hit on an OC4.

[ERROR_OFFSET]
is the offset of a program check or operating system abend in the failing application
program or CICS AP domain program.

[GENERAL_REGISTERS]
is the contents of the general purpose registers at the time of a program check or
operating system abend.

[PSW] is the contents of the PSW at the time of a program check or operating system abend.
[INTERRUPT_DATA]

is the interrupt code and instruction length code etc, at the time of a program check or
operating system abend.

[ALET] is the access list entry token (ALET) at the time of a program check or operating system
abend.

[STOKEN] is the subspace token (STOKEN) at the time of a program check or operating system
abend.

[SPACE] indicates whether the task was in SUBSPACE or BASESPACE mode at the time of a
program check or operating system abend. It can have any of these values:
BASESPACE|SUBSPACE|NOSPACE

[GREG_ORDER] indicates the order of the registers passed in GENERAL_REGISTERS. DFHSRP saves
the registers in the abend record in the order 0-15, and INQUIRE_ABEND_RECORD will
always return them in this order. It can have either of these values:
R14TOR13|R0TOR15

[ACCESS_REGISTERS]
is the contents of the access registers at the time of a program check or operating system
abend.

[FLOATING_POINT_REGISTERS]
is the contents of the floating point registers at the time of a program check or operating
system abend.

[STATUS_FLAGS]
is the status flags at the time of the abend.

Output parameters
ABEND_TOKEN is the token allocated by ABAB for this abend. The token must be passed on subsequent

UPDATE_ABEND_RECORD and START_ABEND requests to ABAB. The token is no
longer valid after a START_ABEND request.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER. Possible values are:

Application domain (AP)

516 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND

ABAB gate, UPDATE_ABEND_RECORD function
The UPDATE_ABEND_RECORD function of the ABAB gate is used to update an abend record (TACB).

Input parameters
ABEND_TOKEN is the token allocated by ABAB for this abend (on a preceding

CREATE_ABEND_RECORD request). The token must be passed on subsequent
UPDATE_ABEND_RECORD and START_ABEND requests to ABAB. The token is no
longer valid after a START_ABEND request.

[ABEND_CODE] is the four-character transaction abend code.
[FAILING_PROGRAM]

is the name of the program in which the abend occurred.
[REQUEST_ID] is the request ID from the TCTTE for a terminal-oriented task.
[FAILING_RESOURCE]

is the name of the system TCTTE (the connection) if the abend was raised by DFHZAND.
[REMOTE_SYSTEM]

is the name of the remote system if the abend was raised in the client transaction to
reflect an abend occurring in the DPL server.

[SENSE_BYTES]
is the SNA sense bytes if the abend was raised by DFHZAND.

[ERROR_MESSAGE]
is the error message sent from the remote system if the abend was raised by DFHZAND.

[EXECUTION_KEY]
is a code indicating the execution key at the time the abend was issued, or at the time the
operating system abend or program check occurred.

[STORAGE_TYPE]
is a code indicating the storage hit on an OC4.

[ERROR_OFFSET]
is the offset of a program check or operating system abend in the failing application
program or CICS AP domain program.

[GENERAL_REGISTERS]
is the contents of the general purpose registers at the time of a program check or
operating system abend.

[PSW] is the contents of the PSW at the time of a program check or operating system abend.
[INTERRUPT_DATA]

is the interrupt code and instruction length code etc, at the time of a program check or
operating system abend.

[ALET] is the access list entry token (ALET) at the time of a program check or operating system
abend.

[STOKEN] is the subspace token (STOKEN) at the time of a program check or operating system
abend.

[SPACE] indicates whether the task was in SUBSPACE or BASESPACE mode at the time of a
program check or operating system abend. It can have any of these values:
BASESPACE|SUBSPACE|NOSPACE

[GREG_ORDER] indicates the order of the registers passed in GENERAL_REGISTERS. DFHSRP saves
the registers in the abend record in the order 0-15, and INQUIRE_ABEND_RECORD will
always return them in this order. It can have either of these values:
R14TOR13|R0TOR15

[ACCESS_REGISTERS]
is the contents of the access registers at the time of a program check or operating system
abend.

Application domain (AP)

Chapter 70. Application domain (AP) 517

[FLOATING_POINT_REGISTERS]
is the contents of the floating point registers at the time of a program check or operating
system abend.

[STATUS_FLAGS]
is the status flags at the time of the abend.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION INVALID_TOKEN

ABAB gate, START_ABEND function
The START_ABEND function of the ABAB gate is used to start transaction abend processing.

Input parameters
ABEND_TOKEN is the token allocated by ABAB for this abend (on a preceding

CREATE_ABEND_RECORD request).
[DUMP] indicates whether a transaction dump should be produced for this abend. It can have

either of these values:
YES|NO

[IGNORE_HANDLES]
indicates whether this abend should be passed to any EXEC CICS HANDLE routines that
are active. IGNORE_HANDLES(YES) results in EXEC CICS HANDLE being ignored at all
levels of the program stack. It can have either of these values:
YES|NO

Output parameters
RETRY_ADDRESS

if an XPCTA exit requests retry, control returns to the point of invocation of start_info,
passing the retry address. This address includes the AMODE indicator in the first bit; it can
be used as the target address in a DFHAM TYPE=BRANCH by the caller of
START_ABEND GENERAL_REGISTERS is also set to point to the list of registers to be
used for the retry, and SPACE to indicate the subspace.

[GENERAL_REGISTERS]
is the contents of the general purpose registers at the time of a program check or
operating system abend.

[SPACE] indicates whether the task was in SUBSPACE or BASESPACE mode at the time of a
program check or operating system abend.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION INVALID_TOKEN

ABAB gate, INQUIRE_ABEND_RECORD function
The INQUIRE_ABEND_RECORD function of the ABAB gate is used to inquire about an abend record
(TACB).

Application domain (AP)

518 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
[ABEND_TYPE] indicates which abend record the information is to be extracted from. It can have any of

these values:
LATEST|FIRST|LASTASRA

Output parameters
[ABEND_CODE] is the four-character transaction abend code.
[DUMP] indicates whether a dump was requested for this abend. It can have either of these

values:
YES|NO

[REQUEST_ID] is the request ID from the TCTTE for a terminal-oriented task.
[FAILING_RESOURCE]

is the name of the system TCTTE (the connection) if the abend was raised by DFHZAND.
[FAILING_PROGRAM]

is the name of the program in which the abend occurred.
[REMOTE_SYSTEM]

is the name of the remote system if the abend was raised in the client transaction to
reflect an abend occurring in the DPL server.

[SENSE_BYTES]
is the SNA sense bytes if the abend was raised by DFHZAND.

[ERROR_MESSAGE]
is the error message sent from the remote system if the abend was raised by DFHZAND.

[EXECUTION_KEY]
is a code indicating the execution key at the time the abend was issued, or at the time the
operating system abend or program check occurred.

[STORAGE_TYPE]
is a code indicating the storage hit on an OC4.

[ERROR_OFFSET]
is the offset of a program check or operating system abend in the failing application
program or CICS AP domain program.

[GENERAL_REGISTERS]
is the contents of the general purpose registers at the time of a program check or
operating system abend.

[PSW] is the contents of the PSW at the time of a program check or operating system abend.
[INTERRUPT_DATA]

is the interrupt code and instruction length code etc, at the time of a program check or
operating system abend.

[ALET] is the access list entry token (ALET) at the time of a program check or operating system
abend.

[STOKEN] is the subspace token (STOKEN) at the time of a program check or operating system
abend.

[SPACE] indicates whether the task was in SUBSPACE or BASESPACE mode at the time of a
program check or operating system abend. It can have any of these values:
BASESPACE|SUBSPACE|NOSPACE

[ACCESS_REGISTERS]
is the contents of the access registers at the time of a program check or operating system
abend.

[FLOATING_POINT_REGISTERS]
is the contents of the floating point registers at the time of a program check or operating
system abend.

[STATUS_FLAGS]
is the status flags at the time of the abend.

[IGNORE_HANDLES]
indicates whether this abend should be passed to any EXEC CICS HANDLE routines that
are active. IGNORE_HANDLES(YES) results in EXEC CICS HANDLE being ignored at all
levels of the program stack. It can have either of these values:

Application domain (AP)

Chapter 70. Application domain (AP) 519

YES|NO
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION NO_ABEND_RECORD

ABAB gate, TAKE_TRANSACTION_DUMP function
The TAKE_TRANSACTION_DUMP function of the ABAB gate is used to take a transaction dump.

Notes:

1. The TRANSACTION resource definition must specify dump and DUMP(YES) must be specified or
defaulted on the associated START_ABEND call.

2. A transaction dump is not taken if any of the following is true:

v The application is going to handle the abend; that is, there is an active handle at this level and
IGNORE_HANDLES(NO) is specified or defaulted on the associated START_ABEND call.

v The application is Language Environment/370 enabled, in which case the language interface deals
with the abend.

v A transaction dump is currently in progress.

Input parameters
None.

Output parameters
None.

APAP gate, TRANSFER_SIT function
The TRANSFER_SIT function of the APAP gate is used to transfer the address of DFHSIT to the AP
domain after a GET_PARAMETERS call from this domain to the parameter manager domain.

Input parameters
SIT specifies the address and length of the system initialization table (DFHSIT).

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_ADDRESS
INCONSISTENT_RELEASE

INVALID INVALID_SIT_LENGTH
INVALID_ADDRESS
INVALID_FUNCTION

APCR gate, ESTIMATE_ALL function
The ESTIMATE_ALL function of the APCR gate is used to estimate the size of terminal input/output area
(TIOA) needed to ship a channel.

Application domain (AP)

520 CICS TS for z/OS: CICS Diagnosis Reference

|

|
|

Input parameters
COMMAND

is the type of API command that caused the channel to be shipped. COMMAND can have any of
these values:
START_MRO|START_ISC|LINK|RETURN

[CHANNEL_NAME]
is the name of the channel.

[CHANNEL_TOKEN]
is a token referencing the channel.

Output parameters
BYTES_NEEDED

is the total size, in bytes, of the exported channel, including channel and container headers and
the overall length of the data in the containers. This total includes all bytes for all containers.

[CHANNEL_TOKEN_OUT]
contains, if CHANNEL_NAME was specified on input, a token referencing the channel.

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CHANNEL_ERROR

APCR gate, ESTIMATE_CHANGED function
The ESTIMATE_CHANGED function of the APCR gate is used to obtain the size of the channel data
structure that will be used to ship the containers that have been modified since the IMPORT_ALL call.
Only new, modified, or deleted containers are shipped, with deleted containers being shipped as container
headers only.

This call must be supplied with a CONTAINER_LIST from an earlier IMPORT_ALL call. This list specifies
all the containers that were created by the IMPORT_ALL call.

The output includes a NEW_CONTAINER_LIST that can be passed to a subsequent EXPORT_CHANGED
call. This list specifies all the containers that have been modified or deleted since the IMPORT_ALL call,
and that must therefore be exported by EXPORT_CHANGED.

Input parameters
CHANNEL_TOKEN

is a token referencing the channel.

COMMAND
is the type of API command that caused the channel to be shipped. COMMAND can have any of
these values:
START_MRO|START_ISC|LINK|RETURN

CONTAINER_LIST
is a list of all the containers in the channel, obtained from an earlier IMPORT_ALL call.

Application domain (AP)

Chapter 70. Application domain (AP) 521

|

|
|
|

|

|
|

|
|

|

|
|
|

|
|

|
|

|

|
|

|||

||
|

|

|
|
|
|

|
|

|
|
|

|

|
|

|
|
|

|

|
|

Output parameters
BYTES_NEEDED

is the size, in bytes, of the channel data structure needed to transmit the containers that have
been modified since the IMPORT_ALL call. This figure includes:
v The total size of any new containers in the channel, including the container headers and the

data in the containers
v The total size of any modified containers in the channel, including the container headers and

the data in the containers
v The total size of the container headers for any deleted containers in the channel

NEW_CONTAINER_LIST
is a list of all the containers in the channel that have been created, modified, or deleted since the
last IMPORT_ALL call. This list must be passed to a subsequent EXPORT_CHANGED call.

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CHANNEL_ERROR

APCR gate, EXPORT_ALL function
The EXPORT_ALL function of the APCR gate is used to export the complete contents of a channel.

If a TERMINAL_TOKEN is supplied, terminal control is used to export the channel.

If an RS_TOKEN is supplied, the channel is exported from a listener region by request streams.

If a CORRELATION_ID is supplied, the channel is exported from an AOR by request streams.

The COMMAND keyword is used both to document the origin of the request in a trace, and to control
whether an ID is used before or after the overall channel length.

Input parameters
CHANNEL_TOKEN

is a token referencing the channel to be exported.

COMMAND
is the type of API command that caused the channel to be exported. COMMAND can have any of
these values:
START_MRO|START_ISC|LINK|RETURN|SIBUS

[CORRELATION_ID]
If CORRELATION_ID is specified, the channel is exported from an AOR by request streams.
(RZTA SEND_REPLY is used.)

[RS_TOKEN]
is a token referencing the request stream with which the channel is associated. If RS_TOKEN is
specified, the channel is exported from a listener region by request streams. (RZSO
SEND_REQUEST is used).

[TERMINAL_TOKEN]
is a token referencing the terminal with which the channel is associated. If TERMINAL_TOKEN is
specified, CICS terminal control is used to export the channel.

Application domain (AP)

522 CICS TS for z/OS: CICS Diagnosis Reference

|

|
|
|
|
|
|
|
|

|
|
|

|
|

|

|
|

|||

||
|

|

|

|

|

|

|
|

|

|
|

|
|
|

|

|
|
|

|
|
|
|

|
|
|

Output parameters
RESPONSE

is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CHANNEL_ERROR
TERMINAL_ERROR

CHANNEL_ERROR
indicates a failure in extracting the channel and container details.

TERMINAL_ERROR
indicates that a transmission error was detected either by terminal control or by request
streams. If the error is detected by terminal control, TC_ABEND, TC_RESPONSE, and
TC_SENSE provide additional terminal control diagnostic information. These keywords can
be omitted for requests to export a channel using a request stream.

[TC_ABEND]
is the terminal control abend code.

[TC_RESPONSE]
is the terminal control response code.

[TC_SENSE]
is the terminal sense code.

APCR gate, EXPORT_CHANGED function
The EXPORT_CHANGED function of the APCR gate is used to return only those parts of a channel that
have changed since IMPORT_ALL was issued.

Currently, only terminal control is supported on this call. Request streams are not supported.

EXPORT_CHANGED must be supplied with a CONTAINER_LIST built by an ESTIMATE_CHANGED call.

Currently, EXPORT_CHANGED always builds output in the form used by the LINK commands (length
followed by ID).

Input parameters
CHANNEL_TOKEN

is a token referencing the channel to be exported.

CONTAINER_LIST
is a list of the containers in this channel that have been created, modified, or deleted since the last
IMPORT_ALL call. This list should be obtained from the NEW_CONTAINER_LIST field of an
ESTIMATE_CHANGED call.

COMMAND
is the type of API command that caused the channel to be exported. Currently, COMMAND can
have only the following value:
LINK

TERMINAL_TOKEN
is a token referencing the terminal with which the channel is associated. CICS terminal control is
used to export the channel.

Application domain (AP)

Chapter 70. Application domain (AP) 523

|

|
|

|

|
|

|||

||
|
|

|
|

|
|
|
|
|

|
|

|
|

|
|

|

|
|

|

|

|
|

|

|
|

|
|
|
|

|
|
|

|

|
|
|

Output parameters
RESPONSE

is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CHANNEL_ERROR
DATA_ERROR
TERMINAL_ERROR

CHANNEL_ERROR
indicates a failure in extracting the channel and container details.

DATA_ERROR
indicates a failure in extracting the data from the channel’s containers.

TERMINAL_ERROR
indicates that a transmission error was detected by CICS terminal control. If an error is
detected by terminal control, TC_ABEND, TC_RESPONSE, and TC_SENSE provide
additional terminal control diagnostic information.

[TC_ABEND]
is the terminal control abend code.

[TC_RESPONSE]
is the terminal control response code.

[TC_SENSE]
is the terminal sense code.

APCR gate, IMPORT_ALL function
The IMPORT_ALL function of the APCR gate is used to import the complete contents of a channel.

Typically, IMPORT_ALL creates the channel (and all its containers) into which the channel data is
imported. However, if the CHANNEL_TOKEN_IN keyword is specified, IMPORT_ALL can import into an
existing channel. In this case, the existing channel is typically empty, though this is not enforced.

If a TERMINAL_TOKEN is supplied, terminal control is used to import the channel.

If an RS_TOKEN is supplied, the channel is imported into an AOR by request streams.

If neither a TERMINAL_TOKEN nor an RS_TOKEN is supplied, the channel is imported into a listener
region by request streams.

The COMMAND keyword is used both to document the origin of the request in a trace, and to control
whether an ID is used before or after the overall channel length.

Input parameters
CHANNEL_TOKEN_IN

is a token referencing an existing channel into which the channel data is to be imported.

COMMAND
is the type of API command that caused the channel to be imported. COMMAND can have any of
these values:
START_MRO|START_ISC|LINK|RETURN|SIBUS

Application domain (AP)

524 CICS TS for z/OS: CICS Diagnosis Reference

|

|
|

|

|
|

|||

||
|
|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|

|

|

|
|
|

|

|

|
|

|
|

|

|
|

|
|
|

|

[DATA_START]
is the position of the beginning of the channel data in the inbound TIOA.

[RS_TOKEN]
is a token referencing the request stream with which the channel to be imported is associated. If
RS_TOKEN is specified, the channel is imported into an AOR by request streams. (RZTA
RECEIVE_REQUEST is used.)

If neither TERMINAL_TOKEN nor RS_TOKEN is specifed, the channel is imported into a listener
region by request streams. (RZSO RECEIVE_REPLY is used.) In this case, a CORRELATION_ID
is returned for use with a subsequent EXPORT_ALL request.

[TERMINAL_TOKEN]
is a token referencing the terminal with which the channel to be imported is associated. CICS
terminal control is used to import the channel.

If TERMINAL_TOKEN is specified, DATA_START must also be specified, to identify the position of
the beginning of the channel data in the inbound TIOA.

If neither TERMINAL_TOKEN nor RS_TOKEN is specifed, the channel is imported into a listener
region by request streams. (RZSO RECEIVE_REPLY is used.) In this case, a CORRELATION_ID
is returned for use with a subsequent EXPORT_ALL request.

Output parameters
[CHANNEL_NAME]

is the name of the channel that has been created.

[CHANNEL_TOKEN]
is a token referencing the channel that has been created.

[CONTAINER_LIST]
is the address of a control block that identifies the initial state of the channel. It can be passed to a
subsequent EXPORT_CHANGED call, when it is used to identify what changes have been made
by comparing the initial state of the channel to the current state. This allows CICS to re-export
only the changed containers.

[CORRELATION_ID]

[DATA_END]

[SIZE]

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION DATA_ERROR
TERMINAL_ERROR

DATA_ERROR
indicates that an error was detected in the inbound channel data. For example, an invalid
channel or container header or a premature end to data all result in DATA_ERROR.

TERMINAL_ERROR
indicates that a transmission error was detected either by CICS terminal control or by
request streams.

Application domain (AP)

Chapter 70. Application domain (AP) 525

|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|
|

|

|
|

|
|

|
|
|
|
|

|

|

|

|
|

|

|
|

|||

||
|
|

|
|
|

|
|
|

If an error is detected by terminal control, TC_ABEND, TC_RESPONSE, and TC_SENSE
provide additional terminal control diagnostic information. These keywords can be omitted
for requests to import a channel using a request stream.

[TC_ABEND]
is the terminal control abend code.

[TC_RESPONSE]
is the terminal control response code.

[TC_SENSE]
is the terminal sense code.

APCR gate, IMPORT_CHANGED function
The IMPORT_CHANGED function of the APCR gate is used to import those parts of a channel that have
been modified since an EXPORT_ALL call. Any modified containers are either replaced or deleted. New
containers are added. Unchanged containers are not received on the connection.

Currently, only terminal control intersystem links are supported. Request streams are not supported.

Currently, IMPORT_CHANGED always expects data in the format used for function-shipped LINK
commands (length followed by ID).

DATA_START is used to locate the beginning of the channel data in the TIOA.

Input parameters
CHANNEL_TOKEN

is a token referencing the channel to be imported.

COMMAND
is the type of API command that caused the channel to be imported. COMMAND can have only
the following value:
LINK

DATA_START
is the position of the beginning of the channel data in the inbound TIOA.

TERMINAL_TOKEN
is a token referencing the terminal with which the channel to be imported is associated. CICS
terminal control is used to import the channel.

If TERMINAL_TOKEN is specified, DATA_START must also be specified, to identify the position of
the beginning of the channel data in the inbound TIOA.

Output parameters
CHANNEL_ERROR

indicates a failure in extracting the channel and container details.

[DATA_END]
is the position in the final TIOA, immediately following the end of the channel.

[SIZE] The total number of bytes in all the containers in the channel.

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

Application domain (AP)

526 CICS TS for z/OS: CICS Diagnosis Reference

|
|
|

|
|

|
|

|
|

|

|
|
|

|

|
|

|

|

|
|

|
|
|

|

|
|

|
|
|

|
|

|

|
|

|
|

||

|
|

|

|
|

RESPONSE Possible REASON values

EXCEPTION CHANNEL_ERROR
DATA_ERROR
TERMINAL_ERROR

DATA_ERROR
indicates that an error was detected in the inbound channel data. For example, an invalid
channel or container header or a premature end to data all result in DATA_ERROR.

TERMINAL_ERROR
indicates that a transmission error was detected either by CICS terminal control or by
request streams.

If an error is detected by terminal control, TC_ABEND, TC_RESPONSE, and TC_SENSE
provide additional terminal control diagnostic information. These keywords can be omitted
for requests to import a channel using a request stream.

[TC_ABEND]
is the terminal control abend code.

[TC_RESPONSE]
is the terminal control response code.

[TC_SENSE]
is the terminal sense code.

APEX gate, INVOKE_USER_EXIT function
The INVOKE_USER_EXIT function of the APEX gate is used to invoke the user exit at a specified exit
point.

Input parameters
EXIT_POINT is the name of the exit.
TRACE indicates whether or not user exits are to be traced. It can have either of these values:

YES|NO
[EXIT_PARAMETER_n]

is the parameter (number n) required by the exit. The nature of the parameter varies from
one exit to another.

Output parameters
EXIT_RETURN_CODE

is the return code, if any, issued by the exit.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION, DISASTER, or INVALID. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION EXIT_PROGRAM_FAILURE
CHANGE_MODE_FAILURE

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION
INVALID_EXIT_POINT

APID gate, PROFILE function
The PROFILE function of the APID gate extracts information from the AP domain profile for timeout.

Application domain (AP)

Chapter 70. Application domain (AP) 527

|||

||
|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

Input parameters
NAME is the name of the profile

Output parameters
RTIMEOUT is the read timeout value.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION NOT_FOUND
TM_LOCATE_FAILED

APID gate, QUERY_NETNAME function
The PROFILE function of the APID gate extracts information from the AP domain profile for timeout.

Input parameters
SYSID is the name of the sysid

Output parameters
NETNAME is the value of the netname for the given sysid.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION NOT_FOUND
TM_LOCATE_FAILED

APIQ gate, INQ_APPLICATION_DATA function
The INQ_APPLICATION_DATA function of the APIQ gate is used to inquire about application data owned
by the application domain.

Input parameters
None.

Output parameters
[EIB] is the address of the EXEC Interface Block.
[SYSEIB] is the address of the System EXEC Interface Block.
[TCTUA] is the address of the Task Control Table User Area.
[TCTUASIZE] is the length (in bytes) of the Task Control Table User Area.
[TWA] is the address of the Task Work Area.
[TWASIZE] is the length (in bytes) of the Task Work Area.
[RSA] is the address of the apllication's register save area.
[DSA] is the address of the head of the chain of dynamic storage for reentrant programs.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

Application domain (AP)

528 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
INQ_FAILED
LOOP

EXCEPTION DPL_PROGRAM
NO_TRANSACTION_ENVIRONMENT
TRANSACTION_DOMAIN_ERROR

INVALID INVALID_FUNCTION

APJC gate, WRITE_JOURNAL_DATA function
The WRITE_JOURNAL_DATA function of the APJC gate is used to write a single record into a named
journal.

Input parameters
JOURNALNAME is the journal identifier name.
JOURNAL_RECORD_ID

is the system type record identifier.
FROM is the address of the record.
[RECORD_PREFIX]

is the journal record user prefix.
WAIT specifies whether or not CICS is to wait until the record is written to auxiliary storage

before returning control to the exit program. It can have either of these values:
YES|NO

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION JOURNAL_NOT_FOUND
LENGTH_ERROR
JOURNAL_NOT_OPEN
STATUS_ERROR
IO_ERROR

INVALID INVALID_FORMAT
INVALID_FUNCTION

APLH gate, ESTABLISH_LANGUAGE function
The ESTABLISH_LANGUAGE function of the APLH gate is used to establish the language of a compiled
Java program with hot-pooling.

Input parameters
LOAD_POINT is the load point address of the program.
ENTRY_POINT is the entry point address of the program.
[PROGRAM_LENGTH]

is the length of the program.
[DEFINED_LANGUAGE]

is the language defined for the program. It can have any of these values:
ASSEMBLER|C370|COBOL|LE370|PLI|NOT_DEFINED

EXECUTION_KEY
is the key in which CICS gives control to the program, and determines whether the
program can modify CICS-key storage. It can have either of these values:
CICS|USER

Application domain (AP)

Chapter 70. Application domain (AP) 529

DATA_LOCATION
defines whether the program can handle only 24-bit addresses (data located below the
16MB line) can handle 31-bit addresses (data located above or below the 16MB line). It
can have either of these values:
ANY|BELOW

LANGUAGE_BLOCK
is a token identifying the current language block for the program.

PROGRAM is the 8-character name of the program whose language is to be determined
REQUEST_TYPE identifies the call of establish language. If the caller has a request type of link and

establish language fails, then abend. Do not abend for a request type of load.
THREADSAFE indicates whether whether the program is quasi-reentrant (and must execute on the QR

TCB) or threadsafe (and can execute on the QR TCB or an OPEN TCB).
JVM_CLASS_PTR

is a token addressing the JVM class name length and value.
HOTPOOL indicates whether the program is to be run in a hotpool under an H8 TCB, or under QR as

usual.
JVM_PROG indicates whether the request is for establish language for a JVM program.

Output parameters
[NEW_BLOCK] is a new token identifying the new language block for the program.
[LANGUAGE_ESTABLISHED]

is the language established for the program. It can have any of these values:
ASSEMBLER|C370|COBOL|COBOL2|LE370|PLI|JVM|
ASSEMBLER_CICS|MVSLE370|
NOT_DEFINED|NOT_APPLIC

[CICSVAR_THREADSAFE]
is the threadsafe value established for the program. It can have any of these values:
YES|NO|NOT_DEFINED

[RUNTIME_ENVIRONMENT]
is the runtime environment established for the program. It can have any of these values:
JVM_RUNTIME|LE370_RUNTIME|NON_LE370_RUNTIME|
HOTPOOL_RUNTIME

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION TRANSACTION_ABEND

INVALID INVALID_FUNCTION

APLH gate, START_PROGRAM function
The START_PROGRAM function of the APLI gate is used to start a compiled Java program using
hot-pooling.

Input parameters
PROGRAM is the eight-character name of the program.
LINK_LEVEL is the 16-bit value indicating the link-level of the program.
[CEDF_STATUS]

indicates whether or not the EDF diagnostic screens are displayed when the program is
running under the control of the execution diagnostic facility (EDF). It can have any of
these values:
CEDF|NOCEDF

Application domain (AP)

530 CICS TS for z/OS: CICS Diagnosis Reference

[EXECUTION_SET]
indicates whether you want CICS to link to and run the program as if it were running in a
remote CICS region (with or without the API restrictions of a DPL program). It can have
either of these values:
FULLAPI|DPLSUBSET|NOT_APPLIC

[PARMLIST_PTR]
is an optional token identifying the parameter list for the program.

COMMAREA is an optional token identifying the communications area for the program.
[ENVIRONMENT_TYPE]

is the environment type of the program. It can have any of these values:
EXEC|GLUE|PLT|SYSTEM|TRUE|URM

[SYNCONRETURN]
defines whether or not a syncpoint is to be taken on return from the linked program. It can
have either of these values:
YES|NO

LANGUAGE_BLOCK
LANGUAGE_BLOCK is a token giving the address of the current Program Language
Block.

[SYSEIB_REQUEST]
indicates whether or not an EXEC CICS LINK or EXEC CICS XCTL had the SYSEIB
translator option specified.

[DEFERRED_ABEND_FOR_XCTL]
indicates whether a Runaway type abend should be started on completion of the current
START_PROGRAM.

Output parameters
ABEND_CODE is the four-character abend code which is issued by CICS when an exception response is

given and the cause of the error was a transaction abend.
IGNORE_PENDING_XCTL

indicates whether or not a pending XCTL should be ignored by program manager.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION TRANSACTION_ABEND
JVMPOOL_DISABLED
JVM_PROFILE_NOT_FOUND
JVM_PROFILE_NOT_VALID
SYSTEM_PROPERTIES_NOT_FND
USER_CLASS_NOT_FOUND

INVALID INVALID_FUNCTION

APLH gate, NOTIFY_REFRESH function
The NOTIFY_REFRESH function is called to inform AP domain when a program is refeshed, so that it can
quiesce all users of the program.

Input parameters
PROGRAM is the eight-character name of the program.

Output parameters
[ABEND_CODE] is the four-character abend code that is to be issued by CICS when an exception

response is given and the cause of the error is a transaction abend.

Application domain (AP)

Chapter 70. Application domain (AP) 531

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION TRANSACTION_ABEND

INVALID INVALID_FUNCTION

APLI gate, ESTABLISH_LANGUAGE function
The ESTABLISH_LANGUAGE function of the APLI gate is used to establish the language of a
conventional compiled program.

Input parameters
LOAD_POINT is the load point address of the program.
ENTRY_POINT is the entry point address of the program.
[PROGRAM_LENGTH]

is the length of the program.
[DEFINED_LANGUAGE]

is the language defined for the program. It can have any of these values:
ASSEMBLER|C370|COBOL|LE370|PLI|NOT_DEFINED

EXECUTION_KEY
is the key in which CICS gives control to the program, and determines whether the
program can modify CICS-key storage. It can have either of these values:
CICS|USER

DATA_LOCATION
defines whether the program can handle only 24-bit addresses (data located below the
16MB line) can handle 31-bit addresses (data located above or below the 16MB line). It
can have either of these values:
ANY|BELOW

LANGUAGE_BLOCK
is a token identifying the current language block for the program.

PROGRAM is the 8-character name of the program whose language is to be determined
REQUEST_TYPE identifies the call of establish language. If the caller has a request type of link and

establish language fails, then abend. Do not abend for a request type of load.
THREADSAFE indicates whether whether the program is quasi-reentrant (and must execute on the QR

TCB) or threadsafe (and can execute on the QR TCB or an OPEN TCB).
JVM_CLASS_PTR

is a token addressing the JVM class name length and value.
HOTPOOL indicates whether the program is to be run in a hotpool under an H8 TCB, or under QR as

usual.
JVM_PROG indicates whether the request is for establish language for a JVM program.

Output parameters
[NEW_BLOCK] is a new token identifying the new language block for the program.
[LANGUAGE_ESTABLISHED]

is the language established for the program. It can have any of these values:
ASSEMBLER|C370|COBOL|COBOL2|LE370|PLI|JVM|
ASSEMBLER_CICS|MVSLE370|
NOT_DEFINED|NOT_APPLIC

[CICSVAR_THREADSAFE]
is the threadsafe value established for the program. It can have any of these values:

Application domain (AP)

532 CICS TS for z/OS: CICS Diagnosis Reference

YES|NO|NOT_DEFINED
[RUNTIME_ENVIRONMENT]

is the runtime environment established for the program. It can have any of these values:
JVM_RUNTIME|LE370_RUNTIME|NON_LE370_RUNTIME|
HOTPOOL_RUNTIME

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION TRANSACTION_ABEND

INVALID INVALID_FUNCTION

APLI gate, START_PROGRAM function
The START_PROGRAM function of the APLI gate is used to start a program.

Input parameters
PROGRAM is the eight-character name of the program.
LINK_LEVEL is the 16-bit value indicating the link-level of the program.
[CEDF_STATUS]

indicates whether or not the EDF diagnostic screens are displayed when the program is
running under the control of the execution diagnostic facility (EDF). It can have any of
these values:
CEDF|NOCEDF

[EXECUTION_SET]
indicates whether you want CICS to link to and run the program as if it were running in a
remote CICS region (with or without the API restrictions of a DPL program). It can have
either of these values:
FULLAPI|DPLSUBSET|NOT_APPLIC

[PARMLIST_PTR]
is an optional token identifying the parameter list for the program.

COMMAREA is an optional token identifying the communications area for the program.
[ENVIRONMENT_TYPE]

is the environment type of the program. It can have any of these values:
EXEC|GLUE|PLT|SYSTEM|TRUE|URM

[SYNCONRETURN]
defines whether or not a syncpoint is to be taken on return from the linked program. It can
have either of these values:
YES|NO

LANGUAGE_BLOCK
LANGUAGE_BLOCK is a token giving the address of the current Program Language
Block.

[SYSEIB_REQUEST]
indicates whether or not an EXEC CICS LINK or EXEC CICS XCTL had the SYSEIB
translator option specified.

[DEFERRED_ABEND_FOR_XCTL]
indicates whether a Runaway type abend should be started on completion of the current
START_PROGRAM.

Application domain (AP)

Chapter 70. Application domain (AP) 533

Output parameters
ABEND_CODE is the four-character abend code which is issued by CICS when an exception response is

given and the cause of the error was a transaction abend.
IGNORE_PENDING_XCTL

indicates whether or not a pending XCTL should be ignored by program manager.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION TRANSACTION_ABEND
JVMPOOL_DISABLED
JVM_PROFILE_NOT_FOUND
JVM_PROFILE_NOT_VALID
SYSTEM_PROPERTIES_NOT_FND
USER_CLASS_NOT_FOUND

INVALID INVALID_FUNCTION

APLJ gate, ESTABLISH_LANGUAGE function
The ESTABLISH_LANGUAGE function of the APLI gate is used to establish the language parameters of a
Java bytecode program.

Input parameters
LOAD_POINT is the load point address of the program.
ENTRY_POINT is the entry point address of the program.
[PROGRAM_LENGTH]

is the length of the program.
[DEFINED_LANGUAGE]

is the language defined for the program. It can have any of these values:
ASSEMBLER|C370|COBOL|LE370|PLI|NOT_DEFINED

EXECUTION_KEY
is the key in which CICS gives control to the program, and determines whether the
program can modify CICS-key storage. It can have either of these values:
CICS|USER

DATA_LOCATION
defines whether the program can handle only 24-bit addresses (data located below the
16MB line) can handle 31-bit addresses (data located above or below the 16MB line). It
can have either of these values:
ANY|BELOW

LANGUAGE_BLOCK
is a token identifying the current language block for the program.

PROGRAM is the 8-character name of the program whose language is to be determined
REQUEST_TYPE identifies the call of establish language. If the caller has a request type of link and

establish language fails, then abend. Do not abend for a request type of load.
THREADSAFE indicates whether whether the program is quasi-reentrant (and must execute on the QR

TCB) or threadsafe (and can execute on the QR TCB or an OPEN TCB).
JVM_CLASS_PTR

is a token addressing the JVM class name length and value.
HOTPOOL indicates whether the program is to be run in a hotpool under an H8 TCB, or under QR as

usual.
JVM_PROG indicates whether the request is for establish language for a JVM program.

Application domain (AP)

534 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
[NEW_BLOCK] is a new token identifying the new language block for the program.
[LANGUAGE_ESTABLISHED]

is the language established for the program. It can have any of these values:
ASSEMBLER|C370|COBOL|COBOL2|LE370|PLI|JVM|
ASSEMBLER_CICS|MVSLE370|
NOT_DEFINED|NOT_APPLIC

[CICSVAR_THREADSAFE]
is the threadsafe value established for the program. It can have any of these values:
YES|NO|NOT_DEFINED

[RUNTIME_ENVIRONMENT]
is the runtime environment established for the program. It can have any of these values:
JVM_RUNTIME|LE370_RUNTIME|NON_LE370_RUNTIME|
HOTPOOL_RUNTIME

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION TRANSACTION_ABEND

INVALID INVALID_FUNCTION

APLJ gate, START_PROGRAM function
The START_PROGRAM function of the APLI gate is used to start a Java bytecode program.

Input parameters
PROGRAM is the eight-character name of the program.
LINK_LEVEL is the 16-bit value indicating the link-level of the program.
[CEDF_STATUS]

indicates whether or not the EDF diagnostic screens are displayed when the program is
running under the control of the execution diagnostic facility (EDF). It can have any of
these values:
CEDF|NOCEDF

[EXECUTION_SET]
indicates whether you want CICS to link to and run the program as if it were running in a
remote CICS region (with or without the API restrictions of a DPL program). It can have
either of these values:
FULLAPI|DPLSUBSET|NOT_APPLIC

[PARMLIST_PTR]
is an optional token identifying the parameter list for the program.

COMMAREA is an optional token identifying the communications area for the program.
[ENVIRONMENT_TYPE]

is the environment type of the program. It can have any of these values:
EXEC|GLUE|PLT|SYSTEM|TRUE|URM

[SYNCONRETURN]
defines whether or not a syncpoint is to be taken on return from the linked program. It can
have either of these values:
YES|NO

LANGUAGE_BLOCK
LANGUAGE_BLOCK is a token giving the address of the current Program Language
Block.

Application domain (AP)

Chapter 70. Application domain (AP) 535

[SYSEIB_REQUEST]
indicates whether or not an EXEC CICS LINK or EXEC CICS XCTL had the SYSEIB
translator option specified.

[DEFERRED_ABEND_FOR_XCTL]
indicates whether a Runaway type abend should be started on completion of the current
START_PROGRAM.

Output parameters
ABEND_CODE is the four-character abend code which is issued by CICS when an exception response is

given and the cause of the error was a transaction abend.
IGNORE_PENDING_XCTL

indicates whether or not a pending XCTL should be ignored by program manager.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION TRANSACTION_ABEND
JVMPOOL_DISABLED
JVM_PROFILE_NOT_FOUND
JVM_PROFILE_NOT_VALID
SYSTEM_PROPERTIES_NOT_FND
USER_CLASS_NOT_FOUND

INVALID INVALID_FUNCTION

APLJ gate, PIPI_INIT_SUB_DP function
The PIPI_INIT_SUB_DP function of the APLJ gate is used to invoke the Language Environment PIPI
init_sub_dp function to initialize a subroutine environment.

Input parameters
PIPI_TABLE_ADDRESS

is the address of the PIPI table.
PIPI_SERVICE_RTNS

is the address of the PIPI service routine vector. For CICS, this addresses a vector
providing entry points in DFHAPPIJ for GETSTORAGE and FREESTORAGE.

PIPI_RUNTIME_OPTIONS
is a character string containing the runtime options to be passed to Language Environment
by PIPI.

EXECUTION_KEY
is the key in which CICS gives control to the program, and determines whether the
program can modify CICS-key storage. It can have either of these values:
CICS|USER

Output parameters
PIPI_TOKEN is a token identifying the PIPI subroutine environment for subsequent PIPI_CALL_SUB

and PIPI_CALL_TERM calls.
[PIPI_RETURN_CODE]

is the return code set by PIPI.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

Application domain (AP)

536 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION TRANSACTION_ABEND

INVALID INVALID_FUNCTION

APLJ gate, PIPI_CALL_SUB function
The PIPI_CALL_SUB function of the APLJ gate is used to invoke the Language Environment PIPI
call_sub function to call a subroutine in a previously initialized enclave.

Input parameters
PIPI_TOKEN is the token identifying the PIPI subroutine environment, as returned on the

PIPI_INIT_SUB_DP call.
PIPI_TABLE_INDEX

is the index into the PIPI table for the required function.
PIPI_CALL_PARAMETERS

is the address of the parameters to be passed on the PIPI subroutine call.
EXECUTION_KEY

is the key in which CICS gives control to the program, and determines whether the
program can modify CICS-key storage. It can have either of these values:
CICS|USER

Output parameters
[PIPI_RETURN_CODE]

is the return code set by PIPI.
[PIPI_SUB_RETURN_CODE]

is the subroutine return code. If the enclave is terminated due to an unhandled condition, a
STOP statement, or an EXIT statement (or an exit() function), this contains the return code
for enclave termination.

[PIPI_SUB_REASON_CODE]
is the subroutine reason code. This is 0 for normal subroutine returns. If the enclave is
terminated due to an unhandled condition, a STOP statement, or an EXIT statement (or an
exit() function), this contains the reason code for enclave termination.

[PIPI_SUB_FEEDBACK]
is the feedback code for enclave termination. This is the CEE000 feedback code for
normal subroutine returns. If the enclave is terminated due to an unhandled condition, a
STOP statement, or an EXIT statement (or an exit() function), this contains the feedback
code for enclave termination.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION TRANSACTION_ABEND

INVALID INVALID_FUNCTION

APLJ gate, PIPI_TERM function
The PIPI_TERM function of the APLJ gate is used to invoke the Language Environment PIPI term function
to terminate a previously initialized enclave.

Application domain (AP)

Chapter 70. Application domain (AP) 537

Input parameters
PIPI_TOKEN is the token identifying the PIPI subroutine environment, as returned on the

PIPI_INIT_SUB_DP call.
EXECUTION_KEY

is the key in which CICS gives control to the program, and determines whether the
program can modify CICS-key storage. It can have either of these values:
CICS|USER

Output parameters
[PIPI_RETURN_CODE]

is the return code set by PIPI.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION TRANSACTION_ABEND

INVALID INVALID_FUNCTION

APRT gate, ROUTE_TRANSACTION function
The ROUTE_TRANSACTION function of the APRT gate is used to dynamically route transactions (which
are defined to be dynamic and not automatically initiated) based on decisions made by the dynamic
transaction routing program. For transactions which are automatically initiated or are defined to be remote
and not dynamic, DFHAPRT will statically route such transactions.

Input parameters
DYNAMIC indicates whether or not the transaction is defined as dynamic. It can have either of these

values:
YES|NO

REMOTE indicates whether or not the transaction is defined as remote. It can have either of these
values:
YES|NO

REMOTE_NAME is the four-character transaction identifier by which this transaction is to be known on the
remote CICS region.

REMOTE_SYSTEM
is the eight-character name of the remote CICS region to which the transaction is to be
routed.

DTRTRAN indicates whether or not dynamic transaction routing is available. It can have either of
these values:
YES|NO

Output parameters
RAN_LOCALLY indicates whether or not the transaction ran on the local CICS region (that is, was not

routed to a remote CICS region). It can have either of these values:
YES|NO

ABEND_CODE is the four-character transaction abend code issued if the transaction terminates
abnormally.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

Application domain (AP)

538 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION PROGRAM_NOT_FOUND
TRANSACTION_ABEND
ISC_DISABLED
REMOTE_CONN_OOS
REMOTE_CONN_OOS_SYS_CHGD
ALL_SESSIONS_BUSY
ROUTE_FAILED
DTRTRAN_REJECTED
NOTAUTH

APTC gate, CANCEL function
The CANCEL function of the APTC gate invalidates the listening function.

Input parameters
TOKEN is the token for the session TCTTE

Output parameters
RESPONSE is the domain’s response to the call. It can have any of the following values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION TOKEN_UNKNOWN
TC_ERROR

APTC gate, CLOSE function
The CLOSE function of the APTC gate is used in cleanup.

Input parameters
TOKEN is the token for the session TCTTE

Output parameters
RESPONSE is the domain’s response to the call. It can have any of the following values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION TOKEN_UNKNOWN
TC_ERROR

APTC gate, EXTRACT_PROCESS function
The EXTRACT_PROCESS function of the APTC gate extracts information for the request.

Input parameters
NONE No input parameters

Output parameters
CONVID is the conversation id (which is the session tctte termid).
PROCESS_NAME is the name of the process to be invoked
SYNCLEVEL is the synclevel of the conversation
PIPDATA Applicable only for LU6.2 conversations

Application domain (AP)

Chapter 70. Application domain (AP) 539

PIPDATA LENGTH
Applicable only for LU6.2 conversations.

RESPONSE is the domain’s response to the call. It can have any of the following values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION TOKEN_UNKNOWN
TC_ERROR

APTC gate, ISSUE_NOTIFY function
The ISSUE_NOTIFY function of the APTC gate is used to inform the program DFHAPTC that a request
has arrived.

Input parameters
TOKEN is the token for the session TCTTE
USER_TOKEN is the token supplied the the person who is to be notified.
ACTION specifies the action that should be taken.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of the following values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION TOKEN_UNKNOWN
ISSUE_NOTIFY_ERROR
ACTION_UNKNOWN

APTC gate, LISTEN function
The LISTEN function of the APTC gate is used to update the TCTTE with the user token.

Input parameters
TOKEN is the token for the session TCTTE
USER_TOKEN is a token supplied by requeststreams.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of the following values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION TOKEN_UNKNOWN
TC_ERROR

APTC gate, OPEN function
The OPEN function of the APTC gate is used to allocate a session to the specified AOR.

Input parameters
SYSID specifies the name of the AOR
TRANID is the transaction name to be attached in the AOR.
NETNAME specifies the netname or applid of the AOR.
QUEUE is the queue option specified by the routing program.

Application domain (AP)

540 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
ERROR CODE indicates the code passed back from the allocate procedure.
RESPONSE is the domain’s response to the call. It can have any of the following values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION OPEN_ERROR

APTC gate, RECEIVE function
The RECEIVE function of the APTC gate is used to receive data.

Input parameters
TOKEN is the token for the session TCTTE
RECEIVE_BUFFER

is the buffer into which the reply is to be placed.

Output parameters
LAST is an indicator to indicate if this is the last flow.
RESPONSE is the domain’s response to the call. It can have any of the following values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION TOKEN_UNKNOWN
RECEIVE_BUFFER_TOO_SMALL
TC_ERROR
NO_TCTTE

APTC gate, SEND function
The SEND function of the APTC gate is used to send the request to the AOR.

Input parameters
TOKEN is the token for the session TCTTE
SEND_BLOCK is the block data with the length and send data pointer.
PREFIX_AREA specifies the requeststreams information.
LAST is an indicator to indicate if this is the last flow.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of the following values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION TOKEN_UNKNOWN
TC_ERRO
NO_TCTTE

APTC gate, SET_SESSION function
The SET_SESSION function of the APTC gate is used to send the request to the AOR.

Input parameters
TOKEN is the token for the session TCTTE

Application domain (AP)

Chapter 70. Application domain (AP) 541

RECOVERY_STATUS
indicates if recovery is necessary.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of the following values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION TOKEN_UNKNOWN
TC_ERROR

APTD gate, WRITE_TRANSIENT_DATA function
The WRITE_TRANSIENT_DATA function of the APTD gate is used to write a single record (or multiple
records) to a named transient data queue.

Input parameters
QUEUE specifies the name of the queue to which the data is to be written
FROM_LIST is a list specifying the address and the length of each record that is to be written to the

specified queue.
[RSL_CHECK] states whether resource-level checking is to be carried out. It can take the values:

YES|NO

Output parameters
[TD_RECORD] indicates the number of records that were successfully written to the transient data queue.
[TD_MIN_LENGTH]

indicates the minimum allowable length of a transient data record if a RESPONSE of
EXCEPTION, and a REASON of LENGTH_ERROR is returned.

[TD_MAX_LENGTH]
indicates the maximum allowable length of a transient data record if a RESPONSE of
EXCEPTION, and a REASON of LENGTH_ERROR is returned.

RESPONSE is Transient Data’s response to the call. It can have any of the following values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION, DISASTER, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND
CSM_ERROR
DCT_ERROR
DIRECTORY_MGR_ERROR
LOGIC_ERROR

EXCEPTION QUEUE_REMOTE
QUEUE_NOT_FOUND
QUEUE_NOT_AUTH
QUEUE_DISABLED
QUEUE_NOT_OPEN
QUEUE_NOT_OUTPUT
QUEUE_FULL
NO_SPACE
IO_ERROR
LENGTH_ERROR
LOCKED
NO_RECOVERY_TABLE

Application domain (AP)

542 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

INVALID INVALID_FROM_LIST_P
INVALID_FROM_LIST_N
INVALID_FROM_P
INVALID_FROM_N
INVALID_RSL_CHECK

APTD gate, READ_TRANSIENT_DATA function
The READ_TRANSIENT_DATA function of the APTD gate is used to read a single record from a named
transient data queue.

Input parameters
QUEUE specifies the name of the queue to which a record is to be read.
INTO specifies a piece of storage into which the record is placed.
SUSPEND specifies whether the caller wishes to wait if the record to be read has not been committed

to the queue yet. It can take the values:
YES|NO

[RSL_CHECK] states whether resource level checking is to be carried out. It can take the values:
YES|NO

[DATA_LOC] if this is a READ TD SET rather than an INTO, DATA_LOC specifies whether Transient
Data should obtain the required SET storage from above or below the 16MB line. It can
take the values:
ANY|BELOW

[DATA_KEY] if this is a READ TD SET rather than an INTO, DATA_KEY specifies whether Transient
Data should obtain the required SET storage from CICS key or user key storage. It can
take the values:
CICS|USER

Output parameters
RESPONSE is Transient Data’s response to the call. It can have any of the following values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
CSM_ERROR
DCT_ERROR
DIRECTORY_MGR_ERROR
LOGIC_ERROR

EXCEPTION QUEUE_REMOTE
QUEUE_NOT_FOUND
QUEUE_NOT_AUTH
QUEUE_DISABLED
QUEUE_NOT_OPEN
QUEUE_NOT_INPUT
QUEUE_BUSY
IO_ERROR
LENGTH_ERROR
LOCKED

APTD gate, DELETE_TRANSIENT_DATA function
The DELETE_TRANSIENT_DATA function of the APTD gate is used to delete the specified transient data
queue.

Input parameters
QUEUE specifies the name of the queue to which the data is to be deleted.

Application domain (AP)

Chapter 70. Application domain (AP) 543

[RSL_CHECK] states whether resource level checking is to be carried out. It can take the values:
YES|NO

[DISCARDING_DEFINITION]
states whether this DELETEQ request is part of an attempt by Transient Data to discard a
transient data queue definition. It can take the values:
YES|NO

Output parameters
RESPONSE is Transient Data’s response to the call. It can have any of the following values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
CSM_ERROR
DCT_ERROR
DIRECTORY_MGR_ERROR
LOGIC_ERROR

EXCEPTION QUEUE_REMOTE
QUEUE_NOT_FOUND
QUEUE_NOT_AUTH
QUEUE_DISABLED
QUEUE_EXTRA
IO_ERROR
LOCKED
NO_RECOVERY_TABLE

APTD gate, RESET_TRIGGER_LEVEL function
The RESET_TRIGGER_LEVEL function of the APTD gate is used to reset a transient data queue so that
another trigger transaction can be attached. Sometimes it is necessary to include the
RESET_TRIGGER_LEVEL function if a trigger transaction abends.

Input parameters
QUEUE specifies the name of the queue for which the trigger transaction is to be reset.

Output parameters
RESPONSE is Transient Data’s response to the call. It can have any of the following values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are: ABEND, DCT_ERROR,

CSM_ERROR, DIRECTORY_MGR_ERROR, and LOGIC_ERROR.

APTD gate, INITIALISE_TRANSIENT_DATA function
The INITIALISE_TRANSIENT_DATA function of the APTD gate is invoked as part of the initialization
process for the transient data facility.

Input parameters
None.

Output parameters
RESPONSE is Transient Data’s response to the call. It can have any of the following values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

Application domain (AP)

544 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
CSM_ERROR
DCT_ERROR
DIRECTORY_MGR_ERROR
LOGIC_ERROR

APXM gate, TRANSACTION_INITIALIZATION function
The TRANSACTION_INITIALIZATION function of the APXM gate is called from the transaction manager
domain to the AP Domain during transaction initialization. The AP domain allocates the AP domain
transaction lifetime control blocks, and anchors them in the AP domains transaction token.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION GETMAIN_FAILURE

APXM gate, TRANSACTION_INITIALIZATION function
The TRANSACTION_INITIALIZATION function of the APXM gate is called from the transaction manager
domain to the AP Domain during transaction initialization. The AP domain allocates the AP domain
transaction lifetime control blocks, and anchors them in the AP domains transaction token.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION GETMAIN_FAILURE

APXM gate, RMI_START_OF_TASK function
The RMI_START_OF_TASK function of the APXM gate is called from transaction manager domain to the
AP Domain during transaction initialization. The AP domain invokes any task-related user exits enabled for
start of task.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Application domain (AP)

Chapter 70. Application domain (AP) 545

APXM gate, TRANSACTION_TERMINATION function
The TRANSACTION_TERMINATION function of the APXM gate is called from the transaction manager
domain during transaction termination, and releases AP domain transaction lifetime resources.

Input parameters
TERMINATION_TYPE

is the type of transaction termination. It can have either of these values:
NORMAL|ABNORMAL

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION FREEMAIN_FAILURE

BRAI gate, INQUIRE_AUTOINSTALL function
Get the status of bridge autoinstall

Input parameters
None

Output parameters
AIBRIDGE Values: YES, AUTO

Specifies if the URM is used (YES) or names are generated automatically (AUTO).
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON

BRAI gate, SET_AUTOINSTALL function
Set the status of bridge autoinstall

Input parameters
AIBRIDGE Values: YES, AUTO

Specifies if the URM is used (YES) or names are generated automatically (AUTO).

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON

BRAI gate, INSTALL_BRIDGE_FACILITY function
Call the autoinstall URM to rename the bridge facility.

Input parameters
MECHANISM Values: LINK, START

Specifies the type of mechanism used to invoke the bridge transaction. If invoked using
the start bridge exit mechanism it is set to START and if invoked using the link3270
machanism it is set to LINK.

REQUESTED_TERMID
Termid requested by the client (if any).

Application domain (AP)

546 CICS TS for z/OS: CICS Diagnosis Reference

REQUESTED_NETNAME
Netname requested by the client (if any).

Output parameters
TERMID Termid generated/accepted by the URM.
NETNAME Netname generated/accepted by the URM.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values: AUTOINSTALL_NOT_ACTIVE, LINK_URM_DISABLED, LINK_URM_FAILED,

AUTOINSTALL_ABEND, INVALID_TERMID, INVALID_NETNAME,
REQUEST_REJECTED

BRAI gate, DELETE_BRIDGE_FACILITY function
Notify the URM that a bridge facility is being deleted.

Input parameters
MECHANISM Values: LINK, START

Specifies the type of mechanism used to invoke the bridge transaction. If invoked using
the start bridge exit mechanism it is set to START and if invoked using the link3270
machanism it is set to LINK.

TERMID Termid generated/accepted by the URM.
NETNAME Netname generated/accepted by the URM.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values: AUTOINSTALL_NOT_ACTIVE, LINK_URM_DISABLED, LINK_URM_FAILED,

AUTOINSTALL_ABEND

BRAT gate, ATTACH function
The ATTACH function of the BRAT gate is called to attach a transaction with a bridge primary client.

Input parameters
TRANSACTION_ID

The 4 byte transaction id of the user transaction to be attached.
[BREXIT] An optional program name to be used as the bridge exit. If this is not specified, DFHBRAT

will get the default value from transaction manager. If there is no default bridge exit, an
error is returned.

[USERID] The USERID that should be signed-on to the terminal. This is only set when no facility
token is passed.

[BRDATA] The address and length of a block of storage containing data to be passed to bridge exit.
This is used as part of the primary client data.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION, DISASTER or INVALID. Possible values

are:

Application domain (AP)

Chapter 70. Application domain (AP) 547

RESPONSE Possible REASON values

EXCEPTION NO_BREXIT
NO_STORAGE
USERID_NOT_AUTH_BREXIT
NOT_FOUND
DISABLED
NO_XM_STORAGE
NOT_ENABLED_FOR_SHUTDOWN
STATE_SYSTEM_ATTACH

DISASTER ABEND

INVALID INVALID_FORMAT
INVALID_FUNCTION

BRFR gate, ALLOCATE_BRIDGE_FACILITY function
Initial allocation of a session.

Input parameters
TRANSACTION Name of transaction on Router
USERID Userid of request
FACILITYKEEPTIME

Bridge facility expiry time
FACILITYLIKE Bridge facility model terminal
[REQUESTED_TERMID]

Client requested termid
[REQUESTED_NETNAME]

Client requested netname

Output parameters
FACILITYTOKEN

Bridge facilitytoken
TERMID Allocated Termid
NETNAME Allocated Netname
SEQNO Request sequence number
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values: NO_FREE_NAME, ALLOCATE_RANGE_FAILED, AUTOINSTALL_FAILED,

AUTOINSTALL_BAD_TERMID, AUTOINSTALL_BAD_NETNAME,
AUTOINSTALL_REJECTED

BRFR gate, REALLOCATE_BRIDGE_FACILITY function
Reallocation of a session.

Input parameters
FACILITYTOKEN

Bridge facilitytoken
TRANSACTION Name of transaction on Router
USERID Userid of request

Output parameters
SYSID AOR owning bridge facility
FACILITYKEEPTIME

Bridge facility expiry time
FACILITYLIKE Bridge facility model terminal
[TERMID] Allocated Termid
[NETNAME] Allocated Netname
SEQNO Request sequence number

Application domain (AP)

548 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

REASON Values: INVALID_FACILITYTOKEN, FACILITYTOKEN_IN_USE, SECURITY_VIOLATION

BRFR gate, DETACH_BRIDGE_FACILITY function
Detach a session. This will delete it if the keeptime is zero.

Input parameters
FACILITYTOKEN

Bridge facilitytoken
KEEP_INTERVAL

Bridge facility expiry time

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values: INVALID_FACILITYTOKEN, RELEASE_RANGE_FAILED

BRFR gate, SET_BRIDGE_FACILITY function
Update the BFNB

Input parameters
FACILITYTOKEN

Bridge facilitytoken
[SYSID] AOR owning bridge facility
[REMOTE_TRANSACTION]

Name of transaction on AOR
[STATUS] Values: RELEASED

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON
REASON Values: INVALID_FACILITYTOKEN

BRFR gate, INQUIRE_BRIDGE_FACILITY function
Get information in the BFNB.

Input parameters
FACILITYTOKEN

Bridge facilitytoken

Output parameters
[TERMID] Allocated Termid
[NETNAME] Allocated Netname
[TRANSACTION]

Name of transaction on Router
[TASKID] Taskid of request
[USERID] Userid of request
[SYSID] AOR owning bridge facility
[KEEP_INTERVAL]

Bridge facility expiry time
[STATUS] Values: ACQUIRED, AVAILABLE, RELEASED

State of bridge facility
RESPONSE is the domain’s response to the call. It can have any of these values:

Application domain (AP)

Chapter 70. Application domain (AP) 549

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values: INVALID_FACILITYTOKEN

BRFR gate, STARTBR_BRIDGE_FACILITY function
Get a cursor for a BFNB browse.

Output parameters
BROWSE_TOKEN Browse cursor
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON

BRFR gate, GET_NEXT_BRIDGE_FACILITY function
Get information in a BFNB in a browse.

Input parameters
BROWSE_TOKEN Browse cursor

Output parameters
[FACILITYTOKEN]

Bridge facilitytoken
[TERMID] Allocated Termid
[NETNAME] Allocated Netname
[TRANSACTION]

Name of transaction on Router
[TASKID] Taskid of request
[USERID] Userid of request
[SYSID] AOR owning bridge facility
[KEEP_INTERVAL]

Bridge facility expiry time
[STATUS] Values: ACQUIRED, AVAILABLE, RELEASED

State of bridge facility
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values: BROWSE_END, INVALID_BROWSE_TOKEN

BRFR gate, ENDBR_BRIDGE_FACILITY function
End a browse

Input parameters
BROWSE_TOKEN Browse cursor

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values:

Invalid:

INVALID_BROWSE_TOKEN

BRFR gate, GARBAGE_COLLECT function
Get rid of any expired bridge facilities.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

Application domain (AP)

550 CICS TS for z/OS: CICS Diagnosis Reference

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values: RELEASE_RANGE_FAILED

BRIQ gate, INQUIRE_CONTEXT function
The INQUIRE_CONTEXT of the BRIQ gate is called to inquire on bridge state data.

Input parameters
[TRANSACTION_TOKEN]

The XM transaction token for the task to be inquired upon.

Output parameters
[CALL_EXIT_FOR_SYNC]

Can have either of these two values:
YES|NO

[BRIDGE_ENVIRONMENT]
Can have either of these two values:
YES|NO

[CONTEXT] The transaction context. It can have either of these values:
NORMAL|BRIDGE|BREXIT

[START_CODE] The emulated startcode of the user transaction
[BRIDGE_TRANSACTION_ID]

The transaction identifier of the bridge monitor (if CONTEXT is BRIDGE or BREXIT).
[BRIDGE_EXIT_PROGRAM]

The name of the bridge exit program (if CONTEXT is BRIDGE or BREXIT).
[BRIDGE_FACILITY_TOKEN]

A token identifying the bridge facility
[IDENTIFIER] Data created by the bridge exit for problem determination purposes.
[BRDATA] Data passed to the bridge exit during attach.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION, DISASTER or INVALID. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION BAD_TOKEN
NO_TRANSACTION_ENVIRONMENT

DISASTER ABEND

INVALID INVALID_FORMAT

BRLK gate, START_BRIDGE function
Start a transaction in a bridge environment.

Input parameters
TRANSACTION_ID

The id of the transaction to be started.
FACILITY_TOKEN

The bridge facility associated with this session.
[PRIORITY] XM priority of the transaction

Output parameters
CONVERSATIONAL

Values: YES, NO

Is the bridge transaction in waiting.
RESPONSE is the domain’s response to the call. It can have any of these values:

Application domain (AP)

Chapter 70. Application domain (AP) 551

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values: TXN_ALREADY_RUNNING, NO_STORAGE, TRANSACTION_NOT_FOUND,

DISABLED, NOT_ENABLED_FOR_SHUTDOWN, STATE_SYSTEM_ATTACH

BRLK gate, CONTINUE_BRIDGE function
Connects to a bridge transaction to supply a reply to a conversional request.

Input parameters
FACILITY_TOKEN

The bridge facility associated with this session.

Output parameters
CONVERSATIONAL

Values: YES, NO

Is the bridge transaction in waiting.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values: TRANSACTION_NOT_RUNNING

BRLK gate, ABEND_BRIDGE function
Connects to a bridge transaction waiting for a conversional request to tell it to abend.

Input parameters
FACILITY_TOKEN

The bridge facility associated with this session.
ABEND_CODE The abend code with which to abend the bridge.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values: TRANSACTION_NOT_RUNNING

BRME gate, API_EMULATOR function
Process a 3270 bridge exit request

Input parameters
BRXA The bridge exit interface area

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values: Internal error.

Exception:

BRMF gate, FORMATTER function
Process a 3270 bridge formatter request.

Input parameters
BRXA The bridge exit interface area

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values:

Application domain (AP)

552 CICS TS for z/OS: CICS Diagnosis Reference

Exception

MESSAGE_ERROR

The Link3270 message contains a bad BRIV. Invalid

INVALID_FORMAT

Internal error.

INVALID_FUNCTION

Internal error.

INVALID_DATA

Internal error.

Exception:

BRMG gate, ALLOCATE_MESSAGE function
Allocate the message control blocks for a request.

Input parameters
FACILITYTOKEN

Bridge facilitytoken.
ADDRESS Address of commarea.
INPUT_LENGTH Length of input message.
OUTPUT_LENGTH

Maximum length of output message.

Output parameters
MESSAGE_TOKEN

Token representing the BMB instance.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values: INVALID_ADDRESS, INVALID_INPUT_LENGTH, INVALID_FACILITYTOKEN,

INVALID_OUTPUT_LENGTH, STATE_ALREADY_ALLOC

BRMG gate, REALLOCATE_MESSAGE function
Obtain access to message control blocks.

Input parameters
FACILITYTOKEN

Bridge facilitytoken.
ADDRESS Address of commarea.
INPUT_LENGTH Length of input message.
OUTPUT_LENGTH

Maximum length of output message.
UNRETURNED_VECTORS

Values: CLEAR, KEEP

Action to take on any unread BRIVs.
POSITION Values: IRRELEVANT, FIRST, SUBSEQUENT

Should retrieve vectors be ignored?

Output parameters
MESSAGE_TOKEN

Token representing the BMB instance.
RESPONSE is the domain’s response to the call. It can have any of these values:

Application domain (AP)

Chapter 70. Application domain (AP) 553

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values: INVALID_ADDRESS, INVALID_FACILITYTOKEN, INVALID_INPUT_LENGTH,

INVALID_OUTPUT_LENGTH, RETRIEVE_VECTOR_FOUND, BAD_VECTOR,
STATE_NOT_ALLOC, STATE_ALREADY_ALLOC

BRMG gate, OUTPUT_MESSAGE function
Get a copy of the outbound message. If insufficient room only copy complete vectors, and record how
much is left.

Input parameters
MESSAGE_TOKEN

Token representing the BMB instance.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values: STATE_UNKNOWN_MSG, STATE_ALREADY_OUTPUT,

INVALID_MESSAGE_TOKEN

BRMG gate, RESEND_MESSAGE function
Get a copy of the previous outbound message.

Input parameters
FACILITYTOKEN

Bridge facilitytoken.
ADDRESS Address of commarea.
OUTPUT_LENGTH

Maximum length of output message.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values: INVALID_ADDRESS, INVALID_FACILITYTOKEN, INVALID_OUTPUT_LENGTH,

STATE_NOT_OUTPUT, STATE_UNKNOWN_MSG, INVALID_MESSAGE_TOKEN

BRMG gate, DELETE_MESSAGE function
Delete the message blocks.

Input parameters
MESSAGE_TOKEN

Token representing the BMB instance.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values: INVALID_FACILITYTOKEN, INVALID_MESSAGE_TOKEN

BRMG gate, READ_VECTOR function
Read an inbound vector from the message. There are several vector types which each have have their
own cursors. The vector address is valid until an OUTPUT_MESSAGE request.

Input parameters
MESSAGE_TOKEN

Token representing the BMB instance.
VECTOR_TYPE Values: HEADER, RM, RE, CO, RT

Application domain (AP)

554 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
ADDRESS Address of commarea.
VECTOR_LENGTH

Length of the vector allocated or read.
[ERROR_OFFSET]

For bad vectors, the offset of the field in error in the input message.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values: BAD_VECTOR, END_OF_MESSAGE, STATE_ALREADY_OUTPUT,

STATE_UNKNOWN_MSG, INVALID_MESSAGE_TOKEN

BRMG gate, ALLOCATE_VECTOR function
Allocate the storage for a new vector in the outbound message. The vector address is valid until an
ALLOCATE_VECTOR or OUTPUT_MESSAGE request.

Input parameters
MESSAGE_TOKEN

Token representing the BMB instance.
VECTOR_TYPE Values: HEADER, BRIV
[VECTOR_LENGTH]

Length of the vector allocated or read.

Output parameters
ADDRESS Address of commarea.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values: STATE_ALREADY_OUTPUT, STATE_UNKNOWN_MSG,

INVALID_MESSAGE_TOKEN

BRMG gate, ERASE_OUTPUT_VECTORS function
Remove all BRIV's from the output message.

Input parameters
MESSAGE_TOKEN

Token representing the BMB instance.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Values: STATE_ALREADY_OUTPUT, STATE_UNKNOWN_MSG,

INVALID_MESSAGE_TOKEN

BRNS gate, INITIALISE_NUMBER function
Initialise control blocks and the numberspace file.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] Values: INVALID_FORMAT, INVALID_FUNCTION, ABEND, ADD_LOCK_FAILED,

ADD_SUBPOOL_FAILED, ALREADY_INITIALISED, INQUIRE_KERNEL,
UNLOCK_FAILED, UNKNOWN_KE_ERROR_CODE

BRNS gate, CONNECT_NUMBER function
Connect to the numberspace, and build numberspace blocks

Application domain (AP)

Chapter 70. Application domain (AP) 555

Input parameters
NUMBER_FILENAME

Numberspace file name.
NUMBER_SPACE Name of the numberspace.
OWNER
START_NUMBER The first number within the number range associated with the numberspace.
NUMBER_RANGE The range of numbers within the numberspace.
FREE_NUMBERS Values: YES, NO

Should numbers previously allocated to this region be freed during the first allocate
number or release number request.

ENQUEUE Values: YES, NO

Are requests are enqueued or not. If YES and the allocated request has to wait an
exception of enqueue_waiter is returned and a numbers is not allocated.

Output parameters
TOKEN
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] Values: CONNECTED, NUMBER_FILE_ERROR, INVALID_FORMAT,

INVALID_FUNCTION, ABEND, ADD_LOCK_FAILED, CONNECT_ERROR,
GETMAIN_ERROR, INVALID_RANGE_NUMBER, INVALID_START_NUMBER,
LOCK_FAILED, NOT_INITIALISED, UNKNOWN_KE_ERROR_CODE, UNLOCK_FAILED

BRNS gate, DISCONNECT_NUMBER function
Disconnect from the numberspace. The numberspace blocks are freed and the local allocation record is
deleted. If no numbers are allocated the C1 and C2 records are also deleted. The file is closed.

Input parameters
TOKEN

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] Values: NUMBER_FILE_ERROR, INVALID_FORMAT, INVALID_FUNCTION, ABEND,

ALLOC_RECORD_CORRUPT, C1_ALLOC_MISMATCH, C1_C2_MISMATCH,
C1_RECORD_CORRUPT, C2_RECORD_CORRUPT, FREEMAIN_ERROR,
INVALID_TOKEN, LOCK_FAILED, NOT_INITIALISED, NSBLK_C1_MISMATCH,
NUMBERS_ALLOCATED, UNEXPECTED_NUMFILE_ERROR,
UNKNOWN_KE_ERROR_CODE, UNKNOWN_RECORD_TYPE, UNLOCK_FAILED

BRNS gate, ALLOCATE_NUMBER function
Allocate the next available number.

Input parameters
TOKEN

Output parameters
NUMBER Number allocated by the numberspace.
[CONNECTION_NUMBER]

The numberspace token. The connection number allocated to this regio
[NUMBER_RANGE]

The range of numbers within the numberspace.
[ALLOCATED_NUMBERS]

The allocated numbers within the range.
RESPONSE is the domain’s response to the call. It can have any of these values:

Application domain (AP)

556 CICS TS for z/OS: CICS Diagnosis Reference

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] Values: NUMBER_FILE_ERROR, ALL_NUMBERS_ALLOCATED, ENQUEUE_WAITER,

INVALID_FORMAT, INVALID_FUNCTION, ABEND, ALLOC_RECORD_CORRUPT,
C1_ALLOC_MISMATCH, C1_C2_MISMATCH, C1_RECORD_CORRUPT,
C2_RECORD_CORRUPT, INVALID_TOKEN, NOT_INITIALISED,
NSBLK_C1_MISMATCH, UNEXPECTED_NUMFILE_ERROR,
UNKNOWN_KE_ERROR_CODE, UNKNOWN_RECORD_TYPE, LOCK_FAILED,
UNLOCK_FAILED

BRNS gate, RELEASE_NUMBER function
Release an allocated number from the numberspace.

Input parameters
TOKEN
NUMBER Number allocated by the numberspace.

Output parameters
[CONNECTION_NUMBER]

The numberspace token. The connection number allocated to this region.
[NUMBER_RANGE]

The range of numbers within the numberspace.
[ALLOCATED_NUMBERS]

The allocated numbers within the range.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] Values: NUMBER_FILE_ERROR, INVALID_FORMAT, INVALID_FUNCTION, ABEND,

ALLOC_RECORD_CORRUPT, C1_ALLOC_MISMATCH, C1_C2_MISMATCH,
C1_RECORD_CORRUPT, C2_RECORD_CORRUPT, INVALID_NUMBER,
INVALID_TOKEN, NOT_INITIALISED, NSBLK_C1_MISMATCH,
NUMBER_NOT_ALLOCATED, NUMBER_NOT_ALLOC_LOCALLY,
UNEXPECTED_NUMFILE_ERROR, UNKNOWN_KE_ERROR_CODE,
UNKNOWN_RECORD_TYPE, LOCK_FAILED, UNLOCK_FAILED

ICXM gate, INQUIRE_FACILITY function
The INQUIRE_FACILITY function of the ICXM gate is used to inquire about the interval control facilities
that support facility management calls from the transaction management domain.

Input parameters
[FACILITY_TOKEN]

is the token identifying the transaction that has been trigger-level attached.

Output parameters
FACILITY_NAME

is the four-character name of the transaction that has been trigger-level attached.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

LILI gate, INITIALIZE_LANGUAGES function
The INITIALIZE_LANGUAGES function of the LILI gate is called during CICS initialization to initialize
Language Environment (Partition Initialization).

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

Application domain (AP)

Chapter 70. Application domain (AP) 557

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION

LILI gate, TERMINATE_LANGUAGES function
The TERMINATE_LANGUAGES function of the LILI gate is called during CICS shutdown to terminate
Language Environment (Partition Termination).

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION

LILI gate, FIND_PROGRAM_ATTRIBUTES function
The FIND_PROGRAM_ATTRIBUTES function of the LILI gate is called by EDF to find the working
storage, static storage and entry point of a program. It issues a Determine_Working_Storage request to
Language Environment.

Input parameters
USERS_RSA_POINTER

is the address of the user program's register save area.

Output parameters
WORKING_STORAGE

defines the area into which the address and length of Working Storage are to be put.
STATIC_STORAGE

defines the area into which the address and length of Static Storage are to be put.
PROGRAM_ENTRY_POINT

is a token giving the address of a location set by Language Environment to hold the true
entry point of the program. This is the entry point of the program as seen by the user, and
ignores any CICS and Language Environment stubs.

[ENTRY_POINT_NAME]
is a token giving the address of a location set by Language Environment to address a
character string built by Language Environment that identifies the program at Program
Entry Point. The area addressed is a halfword length value, followed by the character
string, which has a maximum length of 64 characters.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

Application domain (AP)

558 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION

LILI gate, GO_TO function
The GO_TO function of the LILI gate is used in the processing of the HANDLE command, when a
condition or abend occurs, to produce information for the call to Language Environment's Perform_goto
function.

Input parameters
LANGUAGE is the language of the program that issued the HANDLE command, as taken from the

handle table.
LABEL For COBOL languages, this is the address of a special Register Save Area built by CICS,

which contains the values of the registers at the time the original HANDLE ABEND
command was issued. Language Environment is able to determine the GO_TO address
from values set in this RSA. For other languages, this is the actual GO_TO address.

USERS_RSA is the address of the Register Save Area at the time of the HANDLE command.

Output parameters
PARAMETER_LIST

is the address of a parameter list built by DFHLILI, conforming to the Extended Run Time
Language Interface protocols, which is to be used when calling Language Environment to
drive GO_TO.

REGISTER_SAVE_AREA
is the address of a save area, provided by DFHLILI, for use by Language Environment
during the processing of the GO_TO call.

ENVIRONMENT_ENTRY_POINT
is the address of the entry point to the Language Environment interface module
CEECCICS.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION

TFXM gate, INIT_XM_CLIENT function
The INIT_XM_CLIENT function of the TFXM gate is the initialization phase of the transaction initialization
that has been initiated from a terminal or an LU6.1 session.

Input parameters
[PRIMARY_CLIENT_BLOCK]

is the address of the TCTTE and its length.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

Application domain (AP)

Chapter 70. Application domain (AP) 559

RESPONSE Possible REASON values

DISASTER ABEND

TFXM gate, BIND_XM_CLIENT function
The BIND_XM_CLIENT function of the TFXM gate is the bind phase of the transaction initialization that
has been initiated from a terminal or an LU6.1 session.

Input parameters
[PRIMARY_CLIENT_BLOCK]

is the address of the TCTTE and its length.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

MRXM gate, INIT_XM_CLIENT function
The INIT_XM_CLIENT function of the MRXM gate is the initialization phase of the transaction initialization
that has been initiated from a terminal or an MRO session.

Input parameters
[PRIMARY_CLIENT_BLOCK]

is the address of the TCTTE and its length.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

MRXM gate, BIND_XM_CLIENT function
The BIND_XM_CLIENT function of the MRXM gate is the bind phase of the transaction initialization that
has been initiated from a terminal or an MRO session.

Input parameters
[PRIMARY_CLIENT_BLOCK]

is the address of the TCTTE and its length.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

Application domain (AP)

560 CICS TS for z/OS: CICS Diagnosis Reference

62XM gate, INIT_XM_CLIENT function
The INIT_XM_CLIENT function of the 62XM gate is the initialization phase of the transaction initialization
that has been initiated from a terminal or an LU6.2 or APPC session.

Input parameters
[PRIMARY_CLIENT_BLOCK]

is the address of the TCTTE and its length.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

62XM gate, BIND_XM_CLIENT function
The BIND_XM_CLIENT function of the 62XM gate is the bind phase of the transaction initialization that
has been initiated from a terminal or an LU6.2 or APPC session.

Input parameters
[PRIMARY_CLIENT_BLOCK]

is the address of the TCTTE and its length.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

RTSU gate, COMMIT_SURROGATE function
The COMMIT_SURROGATE function of the RTSU gate is used to update the state of a surrogate TCTTE
when a Unit of Work is committed or backed out.

Input parameters
SURROGATE The address of the surrogate TCTTE
[UOW_STATUS] Indicates if the Unit of Work is being committed or backed out. It can have either of these

two values:
FORWARD|BACKWARD

Output parameters
FREE_REQUIRED

Indicates if the surrogate should now be freed (because, for instance, the relay link has
been freed). It can have either of these two values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

Application domain (AP)

Chapter 70. Application domain (AP) 561

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION
INVALID_SURROGATE
INVALID_SAVED_STATE

RTSU gate, FREE_SURROGATE function
The FREE_SURROGATE function of the RTSU gate is used to free a surrogate TCTTE from the currently
executing task.

Input parameters
SURROGATE The address of the surrogate TCTTE

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

INVALID INVALID_FORMAT
INVALID_FUNCTION
INVALID_SURROGATE

RTSU gate, GET_RECOVERY_STATUS function
The GET_RECOVERY_STATUS function of the RTSU gate is used to determine what actions are required
of the relay link at syncpoint.

Input parameters
SURROGATE The address of the surrogate TCTTE

Output parameters
RECOVERY_STATUS

Indicates the syncpoint protocols required on the relay link. It can have any of these
values:
NECESSARY|UNNECESSARY|SYNC_LEVEL_1

ABORT_ALLOWED
Indicates whether, during the syncpoint protocols, an ABORT FMH7 should be sent on the
relay link. It can have either of these values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

INVALID INVALID_FORMAT
INVALID_FUNCTION
INVALID_SURROGATE

RTSU gate, PREPARE_SURROGATE function
The PREPARE_SURROGATE function of the RTSU gate is used to update the state of a surrogate
TCTTE at the start of syncpoint.

Application domain (AP)

562 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
SURROGATE The address of the surrogate TCTTE
INITIATOR Indicates if the associated relay link is the initiator of the syncpoint request. It can have

either of these two values:
YES|NO

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION, DISASTER or INVALID. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION INVALID_STATE

DISASTER ABEND

INVALID INVALID_FORMAT
INVALID_FUNCTION
INVALID_SURROGATE

RTSU gate, RESET_SURROGATE function
The RESET_SURROGATE function of the RTSU gate is used to restore the state of a surrogate TCTTE
when ISSUE_ABEND or ISSUE_ERORR was received on the relay link in reply to an ISSUE PREPARE
request.

Input parameters
SURROGATE The address of the surrogate TCTTE
REPLY_TO_PREPARE

Indicates which reply was received in response to ISSUE_PREPARE. It can have either of
these two values:
ISSUE_ERROR¬ISSUE_ABEND

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

INVALID INVALID_FORMAT
INVALID_FUNCTION
INVALID_SURROGATE

SAIQ gate, INQUIRE_SYSTEM function
The INQUIRE_SYSTEM function of the SAIQ gate is used to inquire about system data owned by the
application domain.

Input parameters
[GMMTEXT] is an optional token identifying the text of the “good-morning” message.

Output parameters
[AKP] is a fullword binary field indicating the activity keypoint frequency, in the range 200 through

65 535, of the local CICS region.
[CICSREL] is a 4-character string indicating the level (version and release numbers) of CICS code

present.

Application domain (AP)

Chapter 70. Application domain (AP) 563

[CICSSTATUS] is the current status of the local CICS system. It can have any of these values:
ACTIVE|FIRSTQUIESCE|FINALQUIESCE|INITIALIZING

[CICSSYS] is the one-character identifier of the operating system for which the running CICS system
has been built. A value of “X” represents MVS system with extended addressing.

[CWA] is the address of the CWA.
[CWALENGTH] is the length (in bytes) of the CWA.
[DATE] is a four-character packed-decimal value indicating the current date (00yydddc, where

yy=years, ddd=days, c is the sign).
[DCE_SUFFIX] is the two-character suffix of the DCE initialization side file, as specified on the

DCESUFFX system initialization parameter.
[DTRPRGRM] is the 8-character name of the program controlling the dynamic routing of transactions.
[GMMLENGTH] is a halfword binary field indicating the length of the “good-morning” message text.
[GMMTRANID] is the four-character identifier of the “good-morning” transaction.
[INITSTATUS] is the initialization status of the local CICS region. It can have any of these values:

FIRSTINIT|SECONDINIT|THIRDINIT|INITCOMPLETE
[JOBNAME] is the eight-character MVS job name for the local CICS region.
[OPREL] indicates the release number of the operating system currently running. The values is ten

times the formal release number. For example, “21” represents Release 2.1.
[OPSYS] is a one-character identifier indicating the type of operating system currently running. A

value of “X” represents MVS.
[PLTPI] is the two-character suffix of the program list table, which contains a list of programs to be

run in the final stages of system initialization.
[SECURITYMGR]

indicates whether an external security manager (such as RACF®) is active in the CICS
region, or whether no security is being used. It can have either of these values:
EXTSECURITY|NOSECURITY

[SHUTSTATUS] is the shutdown status of the local CICS region. It can have any of these values:
CONTROLSHUT|SHUTDOWN|CANCELLED|NOTSHUTDOWN

[STARTUP] is the type of startup used for the local CICS region. It can have any of these values:
COLDSTART|WARMSTART|EMERGENCY|LOGTERM|STANDBY|AUTOSTART

[STARTUPDATE]
is a four-character packed-decimal value indicating the date on which the local CICS
region was started.

[TERMURM] is the eight-character name of the terminal autoinstall program.
[TIMEOFDAY] is a four-character packed-decimal value indicating the time at which the local CICS region

was started (hhmmsstc, where hh=hours, mm=minutes, ss=seconds, c is the sign).
[XRFSTATUS] indicates whether the local CICS region is a PRIMARY (active) or TAKEOVER (alternate)

XRF CICS region, or has no XRF support. It can have any of these values:
PRIMARY|TAKEOVER|NOXRF

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
INQ_FAILED
LOOP

EXCEPTION LENGTH_ERROR
UNKNOWN_DATA

SAIQ gate, SET_SYSTEM function
The SET_SYSTEM function of the SAIQ gate is used to set system data values owned by the application
domain.

Application domain (AP)

564 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
[AKP] is a fullword binary field indicating the activity keypoint frequency, in the range 200 through

65 535, of the local CICS region.
[DCE_SUFFIX] is the two-character suffix of the DCE initialization side file.
[DTRPRGRM] is the 8-character name of the program controlling the dynamic routing of transactions.
[GMMTEXT] is an optional token identifying the text of the “good-morning” message.
[GMMLENGTH] is a halfword binary field indicating the length of the “good-morning” message text.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
SET_FAILED
LOOP

EXCEPTION AKP_SIZE_ERROR
LENGTH_ERROR
NO_KEYPOINTING

TDOC gate, OPEN_TRANSIENT_DATA function
The OPEN_TRANSIENT_DATA function of the TDOC gate is used to open an extrapartition transient data
queue.

Input parameters
QUEUE specifies the name of the extrapartition transient data queue to be opened.
TD_QUEUE_TOKEN

can be specified instead of QUEUE. The token uniquely identifies the extrapartition queue
to be opened.

Output parameters
RESPONSE is Transient Data’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION QUEUE_INTRA
QUEUE_REMOTE
QUEUE_OPEN
QUEUE_NOT_FOUND

DISASTER DCT_ERROR
DIRECTORY_MGR_ERROR
LOGIC_ERROR

TDOC gate, CLOSE_TRANSIENT_DATA function
The CLOSE_TRANSIENT_DATA function of the TDOC gate is used to close an extrapartition transient
data queue.

Input parameters
QUEUE specifies the name of the extrapartition transient data queue to be closed.
TD_QUEUE_TOKEN

can be specified instead of QUEUE. The token uniquely identifies the extrapartition queue
to be closed.

Application domain (AP)

Chapter 70. Application domain (AP) 565

Output parameters
RESPONSE is Transient Data’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
DCT_ERROR
DIRECTORY_MGR_ERROR
LOGIC_ERROR

EXCEPTION QUEUE_INTRA
QUEUE_REMOTE
QUEUE_CLOSED
QUEUE_NOT_FOUND
QUEUE_NULL
QUEUE_NOT_CLOSED

TDOC gate, CLOSE_ALL_EXTRA_TD_QUEUES function
The CLOSE_ALL_EXTRA_TD_QUEUES function of the TDOC gate closes all extrapartition transient data
queues which are currently open in the system. The CLOSE_ALL_EXTRA_TD_QUEUES function is
usually invoked as part of a warm shutdown.

Input parameters
None.

Output parameters
RESPONSE is Transient Data’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are: ABEND, DCT_ERROR,

DIRECTORY_MGR_ERROR, and LOGIC_ERROR.

TDTM gate, ADD_REPLACE_TDQUEUE function
The ADD_REPLACE_TDQUEUE function of the TDTM gate is used to install a transient data queue
definition.

Input parameters
QUEUE_NAME specifies the name of the queue to be installed.
TD_QUEUE_TOKEN

can be specified instead of QUEUE. The token uniquely identifies a DCT entry that has
already been built, but needs to be installed.

TD_TYPE specifies the queue type. Possible values are:
EXTRA|INTRA|INDIRECT|REMOTE

BLOCK_LENGTH specifies the block length of an extrapartition queue.
BUFFER_NUMBER

specifies the number of buffers to be associated with an extrapartition queue.
DDNAME specifies the DDNAME to be associated with an extrapartition queue.
DISPOSITION specifies the disposition of the data set to be associated with an extrapartition queue.

Possible values are:
SHR|OLD|MOD

DSNAME specifies the DSNAME of the data set to be associated with an extrapartition queue.
ERROR_OPTION specifies the action to be taken in the event of an I/O error. This input parameter applies

to extrapartition queues only. Possible values are:
IGNORE|SKIP

FACILITY specifies the facility associated with this intrapartition queue when a trigger transaction is
attached. Possible values are:

Application domain (AP)

566 CICS TS for z/OS: CICS Diagnosis Reference

TERMINAL|FILE|SYSTEM
FACILITY_ID specified together with the FACILITY option, FACILITY_ID identifies the facility that the

trigger transaction should be associated with.
INDIRECT_DEST

specifies the destination queue if this queue is an indirect queue.
WAIT_ACTION specifies the action to be taken if this logically recoverable intrapartition queue suffers an

indoubt failure. Possible values are:
QUEUE|REJECT

WAIT specifies whether this logically recoverable intrapartition queue can wait for the resolution
of an indoubt failure. Possible values are:
YES|NO

OPEN_TIME specifies whether this extrapartition queue should be opened as part of installation
processing. Possible values are:
INITIAL|DEFERRED

RECORD_LENGTH
specifies the record length of an extrapartition queue in bytes.

RECORD_FORMAT
specifies the format of records held in an extrapartition queue. Possible values are:
FIXUNB|FIXUNBA|FIXUNBM|FIXBLK|FIXBLKA|FIXBLKM|
VARBLK|VARBLKA|VARBLKM|VARUNB|VARUNBA|
VARUNBM|UNDEFINED

RECOVERY specifies the recovery type of an intrapartition queue. Possible values are:
NO|PH|LG

REMOTE_NAME specifies the remote name of the queue if this is a remote queue definition.
REMOTE_SYSTEM

specifies the remote system identifier (SYSID) if this is a remote queue definition.
REWIND specifies where the tape is positioned in relation to the end of the data set. This input

parameter applies to extrapartition queues only. Possible values are:
REREAD|LEAVE

TRANSACTION_ID
specifies the ATI transaction to be invoked when the trigger level is reached.

TRIGGER_LEVEL
specifies the trigger level of the intrapartition queue.

TYPE_FILE indicates whether this queue is:
v An input queue
v An output queue
v Whether the queue is to be read backwards.

Possible values are:
INPUT|OUTPUT|RDBACK

USERID specifies the userid to be associated with a trigger-level attached transaction.
SYSOUTCLASS specifies the SYSOUT class to be used for the associated output extrapartition queue.

Output parameters
RESPONSE is Transient Data’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
CATALOG_WRITE_FAILED
DCT_ERROR
DIRECTORY_MGR_ERROR
LOGIC_ERROR

Application domain (AP)

Chapter 70. Application domain (AP) 567

RESPONSE Possible REASON values

EXCEPTION COLD_START_IN_PROGRESS
DDNAME_NOT_FOUND
DFHINTRA_NOT_OPENED
DISABLE_PENDING
DUPLICATE
INSUFFICIENT_STORAGE
NOT_CLOSED
NOT_DISABLED
NOT_EMPTY
NOT_SAME_TYPE
QUEUE_NOT_OPENED
SECURITY_FAILURE
USERID_NOTAUTHED

TDTM gate, INQUIRE_TDQUEUE function
The INQUIRE_TDQUEUE function of the TDTM gate is used to inquire on a specified queue.

Input parameters
QUEUE_NAME specifies the name of the queue to be inquired upon.

Output parameters
[ATI_FACILITY]

specifies the facility associated with this intrapartition queue when a trigger transaction is
attached. Possible values are:
TERMINAL|FILE|SYSTEM

[ATI_TERMID] specified together with the FACILITY option, FACILITY_ID identifies the facility that the
trigger transaction should be associated with.

[ATI_TRANID] specifies the ATI transaction to be invoked when the trigger level is reached.
[BUFFER_NUMBER]

specifies the number of buffers to be associated with an extrapartition queue.
[DDNAME] specifies the DDNAME to be associated with an extrapartition queue.
[DISPOSITION]

specifies the disposition of the data set to be associated with an extrapartition queue.
Possible values are:
SHR|OLD|MOD

[DSNAME] specifies the DSNAME of the data set to be associated with the extrapartition queue.
[EMPTY_STATUS]

indicates whether the queue contains any records, and whether the queue is full. This
option applies to extrapartition queues only. Possible values are:
FULL|EMPTY|NOTEMPTY

[ENABLE_STATUS]
indicates the status of the queue. Possible values are:
ENABLED|DISABLING|DISABLED

[ERROR_OPTION]
specifies what action is to be taken in the event of an I/O error. This option applies to
extrapartition queues only. Possible values are:
IGNORE|SKIP

[INDIRECT_DEST]
specifies the destination queue if this queue is an indirect queue.

[WAIT] specifies whether this logically recoverable intrapartition queue can wait for the resolution
of an indoubt failure. Possible values are:
YES|NO

[WAIT_ACTION]
specifies the action to be taken if this logically recoverable intrapartition queue suffers an
indoubt failure. Possible values are:

Application domain (AP)

568 CICS TS for z/OS: CICS Diagnosis Reference

QUEUE|REJECT
[NUM_ITEMS] states the number of committed items in the queue.
[OPEN_STATUS]

indicates whether the queue is open. Possible values are:
OPEN|CLOSED

[RECORD_FORMAT]
specifies the format of the records held on the extrapartition queue. Possible values are:
FIXUNB|FIXUNBA|FIXUNBM|FIXBLK|FIXBLKA|FIXBLKM|
VARBLK|VARBLKA|VARBLKM|VARUNB|VARUNBA|
VARUNBM|UNDEFINED

[RECORD_LENGTH]
specifies the record length of the extrapartition queue.

[RECOVERY] specifies the recovery type of an intrapartition queue. Possible values are:
NO|PH|LG

[REMOTE_NAME]
specifies the remote name of the queue if this is a remote queue definition.

[REWIND] specifies where the tape is positioned in relation to the end of the data set. This input
parameter applies to extrapartition queues only. Possible values are:
REREAD|LEAVE

[TD_QUEUE_TOKEN]
states which token is associated with this queue.

[TD_TYPE] specifies the queue type. Possible values are:

EXTRA|INTRA|INDIRECT|REMOTE
[TRIGGER_LEVEL]

specifies the trigger level of the intrapartition queue.
[TYPE_FILE] specifies whether this queue is:

v An input queue
v An output queue
v Whether it is a queue that is to be read backwards.

Possible values are:
INPUT|OUTPUT|RDBACK

[USERID_TOKEN]
indicates which token is associated with the USERID that was specified for this
intrapartition queue.

[SYSOUTCLASS]
specifies the SYSOUT class to be used for the associated output extrapartition queue.

[BLOCK_LENGTH]
specifies the block length of an extrapartition queue.

RESPONSE is Transient Data’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

REASON is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
DCT_ERROR
DIRECTORY_MGR_ERROR
LOGIC_ERROR

EXCEPTION QUEUE_NOT_FOUND

TDTM gate, START_BROWSE_TDQDEF function
The START_BROWSE_TDQDEF function of the TDTM gate initiates a browse from a specified queue, or
from the start of the DCT.

Application domain (AP)

Chapter 70. Application domain (AP) 569

Input parameters
START_AT specifies a queue from which the browse should start.

Output parameters
BROWSE_TOKEN is returned and uniquely identifies this browse session.
RESPONSE is Transient Data’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] returned when RESPONSE is DISASTER. Possible values are: ABEND, DCT_ERROR,

DIRECTORY_MGR_ERROR, and LOGIC_ERROR

TDTM gate, GET_NEXT_TDQDEF function
The GET_NEXT_TDQDEF function of the TDTM gate returns information about a queue as part of a
browse operation.

Input parameters
BROWSE_TOKEN identifies the browse session.

Output parameters
QUEUE_NAME is the name of the queue.
[ATI_FACILITY]

specifies the facility associated with this intrapartition queue when a trigger transaction is
attached. Possible values are:
TERMINAL|FILE|SYSTEM

[ATI_TERMID] specified together with the FACILITY option, FACILITY_ID identifies the facility that the
trigger transaction should be associated with.

[ATI_TRANID] specifies the ATI transaction to be invoked when the trigger level is reached.
[BUFFER_NUMBER]

specifies the number of buffers to be associated with an extrapartition queue.
[DDNAME] specifies the DDNAME to be associated with an extrapartition queue.
[DISPOSITION]

specifies the disposition of the data set to be associated with an extrapartition queue.
Possible values are:
SHR|OLD|MOD

[DSNAME] specifies the DSNAME of the data set to be associated with the extrapartition queue.
[EMPTY_STATUS]

indicates whether the queue contains any records, and whether the queue is full. This
option applies to extrapartition queues only. Possible values are:
FULL|EMPTY|NOTEMPTY

[ENABLE_STATUS]
indicates the status of the queue. Possible values are:
ENABLED|DISABLING|DISABLED

[ERROR_OPTION]
specifies what action is to be taken in the event of an I/O error. This option applies to
extrapartition queues only. Possible values are:
IGNORE|SKIP

[INDIRECT_DEST]
specifies the destination queue if this queue is an indirect queue.

[WAIT] specifies whether this logically recoverable intrapartition queue can wait for the resolution
of an indoubt failure. Possible values are:
YES|NO

[WAIT_ACTION]
specifies the action to be taken if this logically recoverable intrapartition queue suffers an
indoubt failure. Possible values are:
QUEUE|REJECT

[NUM_ITEMS] states the number of committed items in the queue.

Application domain (AP)

570 CICS TS for z/OS: CICS Diagnosis Reference

[OPEN_STATUS]
indicates whether the queue is open. Possible values are:
OPEN|CLOSED

[RECORD_FORMAT]
specifies the format of the records held on the extrapartition queue. Possible values are:
FIXUNB|FIXUNBA|FIXUNBM|FIXBLK|FIXBLKA|FIXBLKM|
VARBLK|VARBLKA|VARBLKM|VARUNB|VARUNBA|
VARUNBM|UNDEFINED

[RECORD_LENGTH]
specifies the record length of the extrapartition queue.

[RECOVERY] specifies the recovery type of an intrapartition queue. Possible values are:
NO|PH|LG

[REMOTE_NAME]
specifies the remote name of the queue if this is a remote queue definition.

[REWIND] specifies where the tape is positioned in relation to the end of the data set. This input
parameter applies to extrapartition queues only. Possible values are:
REREAD|LEAVE

[TD_QUEUE_TOKEN]
states which token is associated with this queue.

[TD_TYPE] specifies the queue type. Possible values are:

EXTRA|INTRA|INDIRECT|REMOTE
[TRIGGER_LEVEL]

specifies the trigger level of the intrapartition queue.
[TYPE_FILE] specifies whether this queue is:

v An input queue
v An output queue
v Whether it is a queue that is to be read backwards.

Possible values are:
INPUT|OUTPUT|RDBACK

[USERID_TOKEN]
indicates which token is associated with the USERID that was specified for this
intrapartition queue.

[SYSOUTCLASS]
specifies the SYSOUT class to be used for the associated output extrapartition queue.

[BLOCK_LENGTH]
specifies the block length of an extrapartition queue.

RESPONSE is Transient Data’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
DCT_ERROR
DIRECTORY_MGR_ERROR
LOGIC_ERROR

EXCEPTION NO_MORE_DATA_AVAILABLE

INVALID INVALID_BROWSE_TOKEN

TDTM gate, END_BROWSE_TDQDEF function
The END_BROWSE_TDQDEF function of the TDTM gate terminates a browse session.

Input parameters
BROWSE_TOKEN identifies the browse session.

Application domain (AP)

Chapter 70. Application domain (AP) 571

Output parameters
RESPONSE is Transient Data’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] returned when RESPONSE is DISASTER, or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
DCT_ERROR
DIRECTORY_MGR_ERROR
LOGIC_ERROR

INVALID INVALID_BROWSE_TOKEN

TDTM gate, SET_TDQUEUE function
The SET_TDQUEUE function of the TDTM gate updates attributes of an installed transient data queue.

Input parameters
QUEUE_NAME identifies the queue to be updated.
[ATI_FACILITY]

specifies the type of facility associated with this queue. Possible values are:
TERMINAL|FILE|SYSTEM

[ATI_TERMID] indicates whether the ATI facility is to be updated.
[ATI_TRANID] indicates whether the ATI transaction is to be updated.
[ATI_USERID] indicates whether the USERID associated with the ATI transaction is to be updated.
[USERID_TOKEN]

is the token that is supplied by the user domain when the userid is added to the system.

Output parameters
OLD_USER_TOKEN

identifies the token associated with a previous USERID.
RESPONSE is Transient Data’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
DCT_ERROR
DIRECTORY_MGR_ERROR
LOGIC_ERROR
CATALOG_WRITE_ERROR

EXCEPTION IS_CXRF
NOT_CLOSED
DISABLE_PENDING
NOT_DISABLED
QUEUE_IS_INDOUBT
QUEUE_NOT_FOUND

TDTM gate, DISCARD_TDQDEF function
The DISCARD_TDQDEF function of the TDTM gate deletes an installed transient data queue definition
and removes it from the catalog. A DELETEQ command is issued as part of the discard process.

Input parameters
QUEUE_NAME identifies the queue to be discarded.
[TD_QUEUE_TOKEN]

can be specified instead of QUEUE_NAME. TD_QUEUE_TOKEN identifies the queue to
be discarded.

Application domain (AP)

572 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
RESPONSE is Transient Data’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER DCT_ERROR
DIRECTORY_MGR_ERROR
LOGIC_ERROR
CATALOG_DELETE_FAILED

EXCEPTION NAME_STARTS_WITH_C
NOT_CLOSED
NOT_DISABLED
DISABLE_PENDING
QUEUE_NOT_FOUND

TDTM gate, COMMIT_TDQDEFS function
The COMMIT_TDQDEFS function of the TDTM gate catalogs all installed transient data queue definitions
as part of cold start processing.

Input parameters
TOKEN specifies the catalog to which the queue definitions are to be written.

Output parameters
RESPONSE is Transient Data’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] returned when RESPONSE is DISASTER. Possible values are:

DIRECTORY_MGR_ERROR, CATALOG_WRITE_FAILED, and ABEND.

TDXM gate, BIND_FACILITY function
The BIND_FACILITY function of the TDXM gate is used to associate a transaction with the definition for
the transient data queue that caused the transaction to be trigger-level attached, where the principal facility
is the queue itself (that is there is no terminal associated with the queue).

Input parameters
None.

Output parameters
RESPONSE is Transient Data’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

TDXM gate, BIND_SECONDARY_FACILITY function
The BIND_SECONDARY_FACILITY function of the TDXM gate is used to associate a transaction with the
definition for a transient data queue that has caused the transaction to be trigger-level attached (where the
principal facility is a terminal and the secondary facility is the transient data queue itself).

Input parameters
None.

Application domain (AP)

Chapter 70. Application domain (AP) 573

Output parameters
FACILITY_NAME

is the name of the transient data queue. The queue is the secondary facility and has been
associated with this transaction.

RESPONSE is Transient Data’s response to the call. It can have any of the following values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

REASON is returned when RESPONSE is DISASTER. Possible value is ABEND.

TDXM gate, RELEASE_FACILITY function
The RELEASE_FACILITY function of the TDXM gate is used to disassociate a transaction from the TD
queue. (The principal facility type is either TERMINAL or TDQUEUE.)

Input parameters
TERMINATION_TYPE

is the type of transaction termination. It can have either of these values:
NORMAL ABNORMAL

[RESTART_REQUESTED]
indicates whether or not the transaction is to be restarted. It can have either of these
values:
YES|NO

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION RESTART_FAILURE

TDXM gate, INQUIRE_FACILITY function
The INQUIRE_FACILITY function of the TDXM gate is used to inquire about the transient data facilities
that support facility manager calls from the transaction manager domain.

Input parameters
[FACILITY_TOKEN]

is the token identifying the transaction that has been trigger-level attached.

Output parameters
FACILITY_NAME

is the four-character name of the transaction that has been trigger-level attached.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

TFAL gate, ALLOCATE function
The ALLOCATE function of the TFAL gate is used to allocate a terminal for a transaction.

Input parameters
REQUEST_ID is the four-character transaction identifier initiating the attach.
[MODE_NAME] is the eight-character mode-name of the terminal to be attached.
SYSTEM_TOKEN is the token identifying the CICS region to which the terminal is to be attached.
[PRIVILEGED] indicates whether or not the terminal is to be attached as a privileged terminal. It can have

either of these values:
YES|NO

Application domain (AP)

574 CICS TS for z/OS: CICS Diagnosis Reference

[NON_PURGEABLE]
indicates whether or not the terminal is to be purgeable. It can have either of these values:
YES|NO

Output parameters
TERMINAL_TOKEN

is the token identifying the terminal that has been attached.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER GETMAIN_FAILED
LOGIC_ERROR

EXCEPTION ALLOCATE_FAILURE
ALLOCATE_PURGED

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, CANCEL_AID function
The CANCEL_AID function of the TFAL gate is used to cancel a terminal-transaction AID.

Input parameters
TERMID is the four-character terminal identifier.
TRANID is the four-character transaction identifier.
TERM_OWNER_NETNAME

is the APPLID of the CICS region that “owns” the terminal.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, CANCEL_AIDS_FOR_CONNECTION function
The CANCEL_AIDS_FOR_CONNECTION function of the TFAL gate is used to cancel AIDs for the given
CICS region.

Input parameters
SYSTEM_TOKEN is the token identifying the CICS region.
CALLER is the method used to call this function. It can have either of these values:

BUILDER|API
FORCE indicates whether or not system AIDs are to be canceled. It can have either of these

values:
YES|NO

FACILITY indicates the facility type associated with the AIDs. It can have either of these values:
CONNECTION|TERMINAL

Application domain (AP)

Chapter 70. Application domain (AP) 575

Output parameters
[AIDS_CANCELLED]

indicates whether or not AIDs were canceled as a result of this request. It can have either
of these values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NULL_SYSTEM_TOKEN

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, CANCEL_AIDS_FOR_TERMINAL function
The CANCEL_AIDS_FOR_TERMINAL function of the TFAL gate is used to cancel all AIDs for the given
terminal.

Input parameters

Note: Specify either TERMID or TERMINAL_TOKEN, not both.
TERMID is the four-character terminal identifier.
TERMINAL_TOKEN

is the token identifying the terminal.
CALLER is the method used to call this function. It can have one of these values:

BUILDER|API|BUILDER_REMDEL
FORCE indicates whether or not system AIDs are to be canceled. It can have either of

these values:
YES|NO

FACILITY indicates the facility type associated with the AIDs. It can have either of these
values:
CONNECTION|TERMINAL

Output parameters
[AIDS_CANCELLED]

indicates whether or not AIDs were canceled as a result of this request. It can have either
of these values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NULL_TERMINAL_TOKEN,

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, CHECK_TRANID_IN_USE function
The CHECK_TRANID_IN_USE function of the TFAL gate is used to check whether any of the AID chains
contain ferrences to the given TRANID

Input parameters
TRANID is the four-character transaction identifier.

Application domain (AP)

576 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
IN_USE indicates whether or not the transaction identifier (specified by the TRANID parameter) is

in use. It can have either of these values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, DISCARD_AIDS function
The DISCARD_AIDS function of the TFAL gate is used to attach a task which will release start data and
free the AIDs in the chain addressed by the AID_TOKEN

Input parameters
AID_TOKEN is the token identifying the chain of AIDs.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, FIND_TRANSACTION_OWNER function
The FIND_TRANSACTION_OWNER function of the TFAL gate is used to determine the CICS region that
owns the given transaction (that is, at which the transaction instance originated).

Input parameters
TERMINAL_TOKEN

is the token identifying the terminal.
TRANID is the four-character transaction identifier.

Output parameters
TRAN_OWNER_SYSID

is the four-character system identifier for the CICS region that owns the transaction
instance.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND
TOR_LINK_NOT_ACTIVE

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, GET_MESSAGE function
The GET_MESSAGE function of the TFAL gate is used to get a message from a terminal.

Application domain (AP)

Chapter 70. Application domain (AP) 577

Input parameters
TERMINAL_TOKEN

is the token identifying the terminal.
PREVIOUS_AID_TOKEN

is the AID token identifying the previous transaction that ran at this terminal.

Output parameters
AID_TOKEN is the AID token identifying the current transaction for which the message was got.
TSQUEUE_NAME is the eight-character name of the temporary storage queue name of the message whose

BMS AID was found.
BMS_TITLE_PRESENT

indicates whether or not a BMS title is present on the terminal. It can have either of these
values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, INITIALIZE_AID_POINTERS function
The INITIALIZE_AID_POINTERS function of the TFAL gate is used to initialize the AID pointers for the
given CICS region.

Input parameters
SYSTEM_TOKEN is the token identifying the CICS region.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, INQUIRE_ALLOCATE_AID function
The INQUIRE_ALLOCATE_AID function of the TFAL gate is used to inquire about the AIDs allocated for
the given CICS region.

Input parameters
SYSTEM_TOKEN is the token identifying the CICS region.
[PRIVILEGED] indicates whether or not to inquire only about privileged ISC type AIDs. It can have either

of these values:
YES|NO

Output parameters
EXISTS indicates whether or not the AID exists. It can have either of these values:

YES|NO
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Application domain (AP)

578 CICS TS for z/OS: CICS Diagnosis Reference

[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, LOCATE_AID
The LOCATE_AID function of the TFAL gate is used for automatic transaction initiation to determine the
AID for the specified terminal, and if found, to use the transaction identifier from the AID to attach the task.

Input parameters
TERMID is the four-character terminal-identifier.
[TYPE] denotes the type of AID to be located. It can have one of these values:

BMS|PUT|INT|TDP|ISC|REMDEL

Output parameters
[TRANID] is the four-character transaction identifier associated with the specified terminal.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, LOCATE_REMDEL_AID
The LOCATE_REMDEL_AID function of the TFAL gate is used to determine the AID (for a delete remote
TERMINAL definition request) for the specified system (SYSTEM_TOKEN specified) or after the given
(PREVIOUS_AID_TOKEN specified).

Input parameters
SYSTEM_TOKEN is the token identifying the CICS region.
PREVIOUS_AID_TOKEN

is the AID token identifying the previous transaction that ran at this terminal.

Output parameters
AID_TOKEN is the AID token identifying the transaction to be deleted.
TARGET_SYSID is the four-character system identifier for the target CICS system.
TERMID is the four-character terminal identifier from the REMDEL AID.
TERM_OWNER_NETNAME

is the eight-character netname from the REMDEL AID.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

INVALID INVALID_FORMAT
INVALID_FUNCTION

Application domain (AP)

Chapter 70. Application domain (AP) 579

TFAL gate, LOCATE_SHIPPABLE_AID
The LOCATE_SHIPPABLE_AID function of the TFAL gate is used to determine an AID (for a delete
remote TERMINAL definition request or for a remote terminal request) to be shipped to the specified
system.

Input parameters
SYSTEM_TOKEN is the token identifying the CICS region.

Output parameters
AID_TOKEN is the AID token identifying the transaction to be deleted.
LAST Indicates that either:

v there is a single qualifying AID or all qualifying AIDs have the same AIDTRMID (YES),
or

v in addition to the AID returned there are other qualifying AIDs (NO)

It can have either of these values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, MATCH_TASK_TO_AID function
The MATCH_TASK_TO_AID function of the TFAL gate is used to inquire about AIDs for the given terminal
and transaction.

Input parameters
TERMINAL_TOKEN

is the token identifying the terminal.
TRANID is the four-character transaction identifier.

Output parameters
TDQUEUE_NAME is the eight-character name of the transient data queue for the AID.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND
MATCHED_TERMID_ONLY

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, PURGE_ALLOCATE_AIDS
The PURGE_ALLOCATE_AIDS function of the TFAL gate is used to delete purgeable allocate AIDs for a
given connection after user exit XZIQUE in DFHZISP has issued return code 8 (delete all) or return code
12 (delete all for given modegroup).

Input parameters
SYSTEM_TOKEN is the token identifying the CICS region.

Application domain (AP)

580 CICS TS for z/OS: CICS Diagnosis Reference

[MODE_NAME] The name of the modegroup. If this parameter is omitted, the default is all modegroups.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, RECOVER_START_DATA
The RECOVER_START_DATA function of the TFAL gate is used to retrieve a PUT-type AID stored in a
DWE and rechain it onto the TCTSE in front of the first AID for the terminal.

Input parameters
AID_TOKEN is the AID token identifying the transaction to be deleted.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER NULL_SYSTEM_TOKEN
GETMAIN_FAILED

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, REMOTE_DELETE
The REMOTE_DELETE function of the TFAL gate is used to chain a REMOTE DELETE (REMDEL) AID
onto the system entry of the specified target CICS region. The REMDEL AID tells the target region to
delete its shipped definition of the specified terminal.

Input parameters
TARGET_SYSID is the four-character system identifier for the target CICS region.
TERMINAL_TOKEN

is the token identifying the terminal.
TERMID is the four-character terminal identifier for the terminal associated with the transaction.
TERM_OWNER_NETNAME

Is the VTAM APPLID of the CICS region that “owns” the terminal.

Note: The terminal identifier can either be specified as TERMID and
TERM_OWNER_NETNAME (where TERMID is the name known in the terminal
owning system), or it can be specified by TERMINAL_TOKEN if the TCTTE
address is known.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

Application domain (AP)

Chapter 70. Application domain (AP) 581

RESPONSE Possible REASON values

DISASTER GETMAIN_FAILED

EXCEPTION TOR_LINK_NOT_ACTIVE

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, REMOVE_EXPIRED_AID
The REMOVE_EXPIRED_AID function of the TFAL gate is used to search all AID chains for a BMS AID
that has yet to be initiated and which matches the eligibility parameters. Unchain the first such AID found,
copy details from the AID into the caller’s parameter list, and freemain the AID.

Input parameters
[NORMAL_EXPIRY_TIME]

is the normal threshold time.
[ADJUSTED_EXPIRY_TIME]

is the adjusted threshold time.
[MSGID] is the BMS message identifier
[LDC] is the logical device code

Note: If MSGID and LDC are specified, the expiry time is not checked.

Output parameters
TSQUEUE_NAME is the eight-character name of the temporary storage queue name of the message whose

BMS AID was found.
TRANID is the four-character transaction identifier associated with the specified terminal.
TERMID is the four-character terminal identifier for the terminal associated with the transaction.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, REMOVE_EXPIRED_REMOTE_AID
The REMOVE_EXPIRED_REMOTE_AID function of the TFAL gate is used to search for an uninitiated
remote AID which is older than the expiry time specified by the caller, unchain the AID, and cleanup any
associated resources.

Input parameters
NORMAL_EXPIRY_TIME

is the normal threshold time.
ADJUSTED_EXPIRY_TIME

is the adjusted threshold time.

Output parameters
TRANID is the four-character transaction identifier associated with the specified terminal.
TERMID is the four-character terminal identifier for the terminal associated with the transaction.
TERM_OWNER_SYSID

is the system identifier of the CICS region that “owns” the terminal.
SHIPPED identifies whether the AID has been shipped. It can have either of these values:

YES|NO
RESPONSE is the domain’s response to the call. It can have any of these values:

Application domain (AP)

582 CICS TS for z/OS: CICS Diagnosis Reference

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, REMOVE_MESSAGE
The REMOVE_MESSAGE function of the TFAL gate is used to:

1. Find an uninitiated BMS AID for the specified terminal

2. Unchain and freemain the AID, provided that the AID security fields match those of the currently
signed-on operator

3. Return the TS queue name from the AID.

Input parameters
TERMINAL_TOKEN

is the token identifying the terminal.
[MSGID] is the BMS message identifier

Output parameters
TSQUEUE_NAME is the eight-character name of the temporary storage queue name for the message whose

BMS AID was found.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND
SECURITY_MISMATCH

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, REMOVE_REMOTE_DELETES
The REMOVE_REMOTE_DELETES function of the TFAL gate is used to unchain and freemain all
REMDEL AIDs from the AID chain of the specified system entry. Optional parameters TERMID and
TERM_OWNER_NETNAME may be specified; in which case only those REMDEL AIDs which match the
specified values are removed.

Input parameters
TARGET_SYSID is the four-character system identifier for the target CICS region.
SYSTEM_TOKEN is the token identifying the CICS region.

Note: Specify either the TARGET_SYSID parameter or the SYSTEM_TOKEN parameter,
not both.

[TERMID] is the four-character terminal identifier for the terminal associated with the transaction.
[TERM_OWNER_NETNAME]

is the netname of the region that “owns” the terminal.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

Application domain (AP)

Chapter 70. Application domain (AP) 583

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, REROUTE_SHIPPABLE_AIDS
The REROUTE_SHIPPABLE_AIDS function of the TFAL gate is used to redirect AIDs for remote terminals
from one remote system to another.

Input parameters
ORIGINAL_SYSTEM_TOKEN

is the token identifying the remote system which was the AIDs' original target.
TARGET_SYSTEM_TOKEN

is the token identifying the remote system which is the AIDs' new target.
TERMINAL_NETNAME

is the eight-character NETNAME which identifies the terminal whose AIDs are to be
rerouted.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, RESCHEDULE_BMS
The RESCHEDULE_BMS function of the TFAL gate is used to build a BMS AID and chain it to the front of
the AID queue.

Input parameters
TERMINAL_TOKEN

is the token identifying the terminal.
TRANID is the four-character transaction identifier associated with the specified terminal.
TSQUEUE_NAME is the eight-character name of the temporary storage queue name of the message whose

BMS AID was found.
BMS_TIMESTAMP

Timestamp for BMS AID. Used to test if AID is older than specified EXPIRY_TIME.
[OPIDENT] Identifies the operator

Note: You can specify either the OPIDENT parameter or the OPCLASS parameter, not
both.

[OPCLASS] Identifies the operator class.

Note: You can specify either the OPIDENT parameter or the OPCLASS parameter, not
both.

[BMS_TITLE_PRESENT]
Indicates if title in message control record. You can specify either of these values:
YES|NO

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

Application domain (AP)

584 CICS TS for z/OS: CICS Diagnosis Reference

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER GETMAIN_FAILED

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, RESET_AID_QUEUE
The RESET_AID_QUEUE function of the TFAL gate is used to:

1. Give ALP a chance to reset the AID queue when a transaction ends

2. Give ALP a chance to bid for the use of the terminal if ATI tasks are waiting.

Input parameters
TERMINAL_TOKEN

is the token identifying the terminal.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, RESTORE_FROM_KEYPOINT
The RESTORE_FROM_KEYPOINT function of the TFAL gate is used to: reschedule a chain of AIDs that
we restored from the catalog during CICS system initialization.

Input parameters
AID_TOKEN A token denoting the chain of AIDs which are to be rescheduled.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, RETRIEVE_START_DATA
The RETRIEVE_START_DATA function of the TFAL gate is used to return the AID address and temporary
storage queue name associated with the start data for the specified transaction and terminal.

Input parameters
TERMINAL_TOKEN

is the token identifying the terminal.
TRANID is the four-character transaction identifier associated with the specified terminal.

Application domain (AP)

Chapter 70. Application domain (AP) 585

Output parameters
TSQUEUE_NAME is the eight-character name of the temporary storage queue name of the message whose

BMS AID was found.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, SCHEDULE_BMS
The SCHEDULE_BMS function of the TFAL gate is used to: schedule a BMS AID.

Input parameters
TERMID is the four-character terminal identifier for the terminal associated with the transaction.
TRANID is the four-character transaction identifier associated with the specified terminal.
TSQUEUE_NAME is the eight-character name of the temporary storage queue name of the message whose

BMS AID was found.
BMS_TIMESTAMP

is the timestamp for the BMS AID. This is used to test if the AID is older than its
EXPIRY_TIME.

[OPIDENT] Identifies the operator.

Note: You can specify either the OPIDENT parameter or the OPCLASS parameter, not
both.

[OPCLASS] Identifies the operator class.

Note: You can specify either the OPIDENT parameter or the OPCLASS parameter, not
both.

[BMS_TITLE_PRESENT]
Indicates if the title is in the message control record. You can specify either of these
values:
YES|NO

[TERMINAL_NETNAME]
is the eight-character NETNAME which identifies the terminal whose AIDs are to be
rerouted.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER GETMAIN_FAILED

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, SCHEDULE_START
The SCHEDULE_START function of the TFAL gate is used to schedule a PUT or INT type AID

Input parameters
TRANID is the four-character transaction identifier associated with the specified terminal.

Application domain (AP)

586 CICS TS for z/OS: CICS Diagnosis Reference

TERMID is the four-character terminal identifier for the terminal associated with the transaction.
[TRAN_OWNER_SYSID]

is the system identifier of the CICS region that “owns” the transaction.
[TERM_OWNER_SYSID]

is the system identifier of the CICS region to which the request should be shipped.

Note: You can specify either the TERM_OWNER_SYSID parameter or
TERM_OWNER_NETNAME parameter, not both.

[TERM_OWNER_NETNAME]
is the system identifier of the CICS region to which the request should be shipped.

Note: You can specify either the TERM_OWNER_SYSID parameter or
TERM_OWNER_NETNAME parameter, not both.

[ROUTED_FROM_TERMID]
is the four-character terminal identifier for the terminal from which a task was
transaction-routed to issue this START request.

[SHIPPED_VIA_SESSID]
is the identifier of the session via which this START request was function shipped.

[MODE_NAME] is the mode name to be used
[TSQUEUE_NAME]

is the name of the temporary storage queue which contains the data associated with the
START request.

[FEPI] indicates that this is a FEPI START request. It can have either of these values:
YES|NO

[RECOVERABLE_DATA]
indicates that the request is associated with recoverable data It can have either of these
values:
YES|NO

[IN_DOUBT] indicates that the Unit of Work making the request is in doubt, and the request should not
be scheduled until the Unit of Work is committed. It can have either of these values:
YES|NO

[TERMINAL_NETNAME]
is the eight-character NETNAME of the terminal associated with the transaction.

[SHIPPED_VIA_SYSID]
identifies the connection via which this request was function shipped or transaction routed.

[TOR_NETNAME]
is the netname of the CICS region that owns the terminal.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER GETMAIN_FAILED

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, SCHEDULE_TDP
The SCHEDULE_TDP function of the TFAL gate is used to schedule a TDP type AID.

Input parameters
TRANID is the four-character transaction identifier associated with the specified terminal.
TERMID is the four-character terminal identifier for the terminal associated with the transaction.
TDQUEUE_NAME is the destination identifier for the TD queue.

Application domain (AP)

Chapter 70. Application domain (AP) 587

[TERMINAL_NETNAME]
is the eight-character NETNAME of the terminal associated with the transaction.

Output parameters
AID_TOKEN is the AID token identifying the transaction to be deleted.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER GETMAIN_FAILED

EXCEPTION UNKNOWN_TRANID

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, SLOWDOWN_PURGE
The SLOWDOWN_PURGE function of the TFAL gate is used to:

1. Search the specified system entry’s AID chain for the first allocate-type AID associated with a
stall-purgeable task

2. Cancel the identified transaction.

Input parameters
SYSTEM_TOKEN is the four-character terminal identifier for the terminal associated with the transaction.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION, or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, TAKE_KEYPOINT
The TAKE_KEYPOINT function of the TFAL gate is used to return a chain of AIDs which are to be written
to the global catalog.

Input parameters
None.

Output parameters
AID_TOKEN is the token identifying the chain of AIDs.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

Application domain (AP)

588 CICS TS for z/OS: CICS Diagnosis Reference

TFAL gate, TERM_AVAILABLE_FOR_QUEUE
The TERM_AVAILABLE_FOR_QUEUE function of the TFAL gate is used, when a terminal becomes
available for allocation, to give DFHALP the chance to attach or resume a task which requires this
terminal.

Input parameters
TERMINAL_TOKEN

is the token identifying the terminal.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER GETMAIN_FAILED
ATTACH_ERROR

EXCEPTION NOT_FOUND

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, TERMINAL_NOW_UNAVAILABLE
The TERMINAL_NOW_UNAVAILABLE function of the TFAL gate is used to perform required actions when
a terminal or connection becomes unavailable.

Input parameters
TERMINAL_TOKEN

is the token identifying the terminal.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, UNCHAIN_AID
The UNCHAIN_AID function of the TFAL gate is used to unchain and optionally freemain the specified
AID.

Input parameters
AID_TOKEN is the AID token identifying the transaction to be deleted.
FREEMAIN indicates whether freemain is wanted. It can have either of these values:

YES|NO

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

Application domain (AP)

Chapter 70. Application domain (AP) 589

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFAL gate, UPDATE_TRANNUM_FOR_RESTART
The UPDATE_TRANNUM_FOR_RESTART function of the TFAL gate is used to update the AID’s
TRANNUM to that of the restarted task.

Input parameters
TERMINAL_TOKEN

is the token identifying the terminal.
ORIGINAL_TRANNUM

is the TRANNUM set in the AID when original task was attached.
NEW_TRANNUM is the new TRANNUM to be set in the AID.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NULL_TERMINAL_TOKEN

INVALID INVALID_FORMAT
INVALID_FUNCTION

TFBF gate, BIND_FACILITY function
The BIND_FACILITY function of the TFBF gate is used to associate a transaction with the terminal.

Input parameters
[PROFILE] is the eight-character name of the profile to be used to associate the transaction and

terminal.
[PARTITIONSET_NAME]

is the eight-character name of a partition set. This parameter is used only of the value of
PARTITIONSET is NAME.

[PARTITIONSET]
indicates if a partition set is to be used for the terminal facility. It can have any of these
values:
NONE|NAME|OWN|KEEP

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
REMOTE_SCHEDULE_FAILURE
SECURITY_FAILURE
TABLE_MANAGER_FAILURE

EXCEPTION NO_TERMINAL
TRANSACTION_ABEND

INVALID INVALID_FORMAT
INVALID_FUNCTION

Application domain (AP)

590 CICS TS for z/OS: CICS Diagnosis Reference

TFIQ gate, INQUIRE_TERMINAL_FACILITY function
The INQUIRE_TERMINAL_FACILITY function of the TFIQ gate is used to inquire about attributes of a
named terminal facility.

Input parameters

Note: Specify a value for either the TRANSACTION_TOKEN or TERMINAL_TOKEN parameter, not both.
[TRANSACTION_TOKEN]

is a token identifying a transaction for which you want to inquire about the
associated terminal.

[TERMINAL_TOKEN]
is a token identifying a terminal.

Output parameters
[FACILITY_NAME]

is the four-character name of the terminal facility.
[NETNAME] is the eight-character netname of the terminal facility.
[PSEUDO_CONV_COMMAREA]

is a block into which the communications area for a pseudo-conversational transaction is
copied.

[TERMINAL_TRAFFIC_READ]
indicates whether or not reading is supported. It can have either of these values:
YES|NO

[TERMINAL_TRAFFIC_WRITE]
indicates whether or not writing is supported. It can have either of these values:
YES|NO

[TERMINAL_USER_AREA]
is a block into which the terminal user area is copied.

[NATIONAL_LANGUAGE_IN_USE]
is the three-character code indicating the national language in use for the terminal facility.
(See Table 120 on page 1318.)

[INSPECT_DATA]
is a token indicating the Language Environment runtime options for the terminal facility.

[STORAGE_FREEZE]
indicates whether or not storage normally freed during the processing of a transaction for
the terminal facility is to be frozen. (The frozen storage is not freed until the end of the
transaction.) It can have either of these values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_TERMINAL

INVALID INVALID_TERMINAL_TYPE

TFIQ gate, SET_TERMINAL_FACILITY function
The SET_TERMINAL_FACILITY function of the TFIQ gate is used to set attributes of a named terminal
facility.

Input parameters

Note: Specify a value for either the TRANSACTION_TOKEN or TERMINAL_TOKEN parameter, not both.

Application domain (AP)

Chapter 70. Application domain (AP) 591

[TRANSACTION_TOKEN]
is a token identifying a transaction for which you want to inquire about the
associated terminal.

[TERMINAL_TOKEN]
is a token identifying a terminal.

[COUNT_STORAGE_VIOLATION]
indicates whether or not storage violations are to be counted for this terminal
facility. It can have either of these values:
YES|NO

[INPUTMSG] is a block into which the input message for a pseudo-conversational transaction is
copied.

[PSEUDO_CONV_NEXT_TRANSID]
is the four-character identifier of the transaction to which control is passed on a
normal return from a pseudo-conversational transaction (to which the
pseudo_conversational data is passed).

[PSEUDO_CONV_COMMAREA]
is a block into which the communications area for a pseudo-conversational
transaction is copied.

[PSEUDO_CONV_IMMEDIATE]
is the four-character identifier of the transaction to which control is passed on an
immediate return from a pseudo-conversational transaction (to which the
pseudo_conversational data is passed).

[NATIONAL_LANGUAGE_IN_USE]
is the three-character code indicating the national language in use for the terminal
facility. (See Table 120 on page 1318.)

[INSPECT_DATA]
is a token indicating the Language Environment runtime options for the terminal
facility.

[STORAGE_FREEZE]
indicates whether or not storage normally freed during the processing of a
transaction for the terminal facility is to be frozen. (The frozen storage is not freed
until the end of the transaction.) It can have either of these values:
YES|NO

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_TERMINAL
PERMANENT_TRANSID

INVALID INVALID_TERMINAL_TYPE

TFIQ gate, INQUIRE_MONITOR_DATA function
The INQUIRE_MONITOR_DATA function of the TFIQ gate is used to inquire about monitoring data of the
terminal facility.

Input parameters
None.

Output parameters
[FACILITY_TYPE]

indicates the type of terminal facility. It can have any of these values:
LU61|LU62|IRC|IRC_XCF|OTHER

Application domain (AP)

592 CICS TS for z/OS: CICS Diagnosis Reference

[FACILITY_NAME]
is the four-character name of the terminal facility.

[NETNAME] is the eight-character netname of the terminal facility.
[INPUT_MSG_LENGTH]

is the length (in bytes) of the input message for the terminal facility.
[SERVICE_REPORTING_CLASS]

is a token indicating the service reporting class for the terminal facility (for MVS workload
manager purposes).

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_TERMINAL

Application domain’s generic gates
Table 31 summarizes the application domain’s generic gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gates, the functions provided by the gates, and the generic formats
for calls to the gates.

Table 31. Application domain’s generic gates
Gate Trace Function Format

APDM AP 0900
AP 0901

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

APDS AP 0500
AP 0501

TASK_REPLY
PURGE_INHIBIT_QUERY

DSAT

APST AP D400
AP D401

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

APSM AP F110
AP F111

STORAGE_NOTIFY SMNT

APTI AP F300
AP F301

NOTIFY TISR

For descriptions of these functions and their input and output parameters, refer to the sections dealing with
the corresponding generic formats, as follows:

Functions and parameters

Format DMDM—“Domain manager domain’s generic formats” on page 669

Format DSAT—“Dispatcher domain’s generic formats” on page 717

Format STST—“Statistics domain’s generic format” on page 1198

Format SMNT—“Storage manager domain’s generic formats” on page 1159

Format TISR—“Timer domain’s generic format” on page 1203

Application domain’s generic formats
Table 32 describes the generic formats owned by the application domain and shows the functions
performed on the calls.

Table 32. Generic formats owned by application domain
Format Calling module Function

APUE DFHUEM SET_EXIT_STATUS

Application domain (AP)

Chapter 70. Application domain (AP) 593

In the descriptions of the formats that follow, the “input” parameters are input not to the application
domain, but to the domain being called by the application domain. Similarly, the “output” parameters are
output by the domain that was called by the application domain, in response to the call.

APUE format, SET_EXIT_STATUS function
The SET_EXIT_STATUS function of the APUE format is used to set the exit status at a specified exit
point.

Input parameters
EXIT_POINT is the name of the exit to be enabled or disabled.
EXIT_STATUS (ACTIVE|INACTIVE

indicates whether the exit is to be made active or inactive.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION
INVALID_EXIT_POINT

Control blocks
The main CICS control block in the AP domain is the common system area (CSA), which exists from CICS
system initialization time until CICS is closed down. The CSA contains:
v Register save area
v Pointers to the CICS control modules
v Control information
v System constants
v Time-control storage
v Work area for statistics
v Task abnormal termination interface
v Pointers to CICS system tables.

The CSA has an extension area known as the CSA optional features list. The address of the optional
features list is held in CSAOPFLA in the CSA, and also in TCACSOAD in the TCA.

See CICS Data Areas for a detailed description of these control blocks.

There is also a user-defined work area, called the common work area (CWA). The user can govern the
length and storage key of the CWA by using the WRKAREA and CWAKEY system initialization
parameters.

The CWA is available to any task while it has control of the system (that is, for operations performed
between requests to CICS).

Application domain (AP)

594 CICS TS for z/OS: CICS Diagnosis Reference

Modules

Module Function

DFHAPDM AP domain/domain manager gate service module. Handles the following calls made by the domain
manager to the AP domain:

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHAPEX AP domain user exit service module. This module handles INVOKE_USER_EXIT made by several
domains to the AP domain.

DFHAPID Handles the following requests:
PROFILE
QUERY_NETNAME

DFHAPIQ AP domain task data inquire and set gate service module. Handles the following call to the AP domain:
INQ_APPLICATION_DATA

DFHAPJC AP domain/journal gate service module. This module handles WRITE_JOURNAL_DATA calls made by
the user exits’ XPI.

DFHAPPIJ Provides Language Environment PIPI service routines for getstore and freestore, for use in JVMs running
under CICS. This module invokes DFHSMVP through DFHSMVPI to perform execute and monitor the
MVS getmains and freemains.

DFHAPSM AP domain storage notify gate service module.

DFHAPST AP domain functional gate for statistics. This module accepts a request for and then supervises the
copying and resetting of statistics counters in the AP domain by calling the appropriate DFHSTxx
modules to access the counters.

DFHAPTC AP domain module DFHAPTC provides a common mechanism for issuing TC macro calls.It issues the
following calls:

CANCEL
CLOSE
EXTRACT_PROCESS
ISSUE NOTIFY
LISTEN
OPEN
RECEIVE
SEND
SET_SESSION

DFHAPTI AP domain timer domain gate service module. This module handles NOTIFY calls made by the timer
domain to the AP domain.

DFHAPTIM CICS interval control midnight task. This module deals with NOTIFY requests from the timer domain.

DFHAPTIX CICS expiry analysis task. This module deals with NOTIFY requests from the timer domain.

DFHAPXM AP domain/transaction manager gate service module. Handles the following calls made by the
transaction manager to the AP domain:

TRANSACTION_INITIALIZATION
RMI_START_OF_TASK
TRANSACTION_TERMINATION

DFHICXM AP domain/interval control principal facility management gate service module. Handles the following calls
made by the transaction manager to the AP domain:

INQUIRE_FACILITY

DFHSAIQ AP domain system data inquire and set gate service module. Handles the following calls to the AP
domain:

INQUIRE_SYSTEM
SET_SYSTEM

DFHSRP Default system recovery program for the AP domain. It includes the ABAB functions. For more
information about DFHSRP, see Chapter 50, “System recovery program,” on page 375.

DFHTDXM AP domain/transient data principal facility management gate service module. Handles the following calls
made by the transaction manager to the AP domain:

BIND_FACILITY
BIND_SECONDARY_FACILITY
RELEASE_FACILITY
INQUIRE_FACILITY

Application domain (AP)

Chapter 70. Application domain (AP) 595

Module Function

DFHTFBF AP domain/terminal facility manager bind facility gate service module. Handles the following call made by
the terminal facility manager to the AP domain:

BIND_FACILITY

DFHTFIQ AP domain/terminal facility manager inquire and set gate service module. Handles the following calls
made by the terminal facility manager to the AP domain:

INQUIRE_TERMINAL_FACILITY
INQUIRE_MONITOR_DATA
SET_TERMINAL_FACILITY

DFHTFRF AP domain/terminal facility manager release facility gate service module. Handles the following calls
made by the terminal facility manager to the AP domain:

RELEASE_FACILITY

Exits
Various global user exit points are provided for this domain, and these are described under the appropriate
functions in the rest of this book.

Trace
Various trace point IDs are provided for this domain, and these are described under the appropriate
functions in the rest of this book.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Application domain (AP)

596 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 71. AP domain initialization program

The AP domain initialization program is resident only long enough to start up the AP domain.

Modules
The main initialization program is DFHAPSIP. DFHAPSIP calls a series of modules DFHSIA1, DFHSIB1,
..., DFHSIJ1, which complete initialization. DFHAPSIP receives control from DFHAPDM. For further
information about DFHAPDM, see page “Modules” on page 595.

Exits
No global user exit points are provided for this function.

Trace
The following point ID is provided for this function:
v AP 0700 (DFHSII1 add gate), for which the trace level is Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

© Copyright IBM Corp. 1997, 2011 597

598 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 72. AP domain KC subcomponent

The AP domain KC subcomponent does the following:

v Provides an enqueue facility

v Manages profile definitions (making use of table manager program (see “The FEPI Resource Manager
work queues” on page 266)).

v Converts some DFHKC macro calls into dispatcher domain calls and transaction manager domain calls.

Design overview
This section describes the macro calls supported by the AP domain KC subcomponent.

DFHKC macro calls
ATTACH. This call is converted into a transaction manager domain XMAT ATTACH

call to create an instance of the requested transaction. This request is only
used to create CICS system transactions and may not be used to attach a
user transaction.

DEQ. DEQ is used to reduce the use count of a resource previously enqueued
on by this transaction. If the use count reaches zero, the resource is freed
for use by another transaction. The NQED DEQUEUE service of the NQ
domain is used for this function.

ENQ. The caller passes a resource name or address. The AP domain KC
subcomponent issues an NQED ENQUEUE request to the NQ domain.

INITIALIZE. INITIALIZE is used during CICS initialization to tell the AP domain KC
subcomponent to build profile table entries in storage.

PROFBROWSE. This is used to browse profile table (PFT) entries.
PROFLOC. This finds the profile table (PFT) entry for the profile ID passed.
REPLACE. This replaces an existing profile table entry by a new version.
RESUME. This call is converted into a dispatcher domain DSSR RESUME call to

resume the suspended task.
WAIT. Wait calls are converted into the appropriate dispatcher domain call.
WAITINIT. This is used once during initialization to wait for the completion of an

earlier INITIALIZE call.

Control blocks
Static storage area (SSA). The AP domain KC subcomponent uses an SSA as a permanent work

area. Field SSAKCP in the static storage area address list (as defined by
the DSECT DFHSSADS) points to the AP domain KC subcomponents
static storage area. The address of the static storage area address list is
held in field CSASSA in the CSA optional features list.

See the CICS Data Areas manual for a detailed description of these control blocks.

Modules
The following are link-edited together to form the DFHKCP module:

Module Function

DFHKCP This is a startup routine that passes control to either DFHXCP or DFHXCPC.

DFHXCP Processes DFHKC ATTACH, RESUME, and WAIT macro calls to the transaction manager
and dispatcher and handles the DFHKC PROFLOC AND PROFBROWSE (profile locate and
profile browse) services.

© Copyright IBM Corp. 1997, 2011 599

Module Function

DFHXCPC Processes DFHKC DEQ and ENQ macro calls to the AP domain KC subcomponent

Receives DFHKC INITIALIZE, REPLACE, WAITINIT, and DISCARD macro calls to the
transaction manager and passes them on to DFHKCQ.

DFHKCQ Processes DFHKC INITIALIZE, REPLACE, WAITINIT, and DISCARD macro calls to the AP
domain KC subcomponent.

DFHKCSC Provides chain scanning facilities for the DISCARD TRANSACTION command.

Exits
There are two globasl user exit points in DFHEKC: XNQEREQ and XNQEREQC. See the CICS
Customization Guide for further information.

Trace
The following point ID is provided for the AP domain KC subcomponent

v AP F0xx, for which the trace levels are AP 1, AP 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Dumps
F007 DFHXCP was called to process a AP domain KC subcomponent request

but did not recognize the function code in the TCA.

External interfaces
The AP domain KC subcomponent calls the following domains: DS, GC, KE, ME, MN, NQ, SM, TR and
XM.

The AP domain KC subcomponent calls the following CICS AP domain function:
v Table manager

Statistics
No statistics are created by the AP domain KC subcomponent

AP domain KC subcomponent

600 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 73. AP domain termination program

The AP domain (system) termination program (DFHSTP) provides for an orderly shutdown of CICS. When
an PERFORM SHUTDOWN or PERFORM TAKEOVER command is used, either on the CEMT transaction
or by an EXEC CICS command, the DFHEIPSH program invokes DFHSTP to handle it.

Design overview
Figure 107 shows the relationships between the components of AP domain termination.

Notes:

1. When a PERFORM SHUTDOWN or PERFORM TAKEOVER command is used, either on the CEMT
transaction or by an EXEC CICS command, the DFHEIPSH program:

v Loads the transaction list table (XLT) and program list table (PLT) from the DFHRPL DD
concatenation

v Transfers control to DFHSTP by means of a DFHPGXE PREPARE_XCTL_EXEC domain call.

For an immediate shutdown, statistics are collected at the step described by 1. Following this, the resource
managers and the subsystem interface are terminated; no load of tables, terminal quiescing, or execution
of programs specified in the PLT occurs, that is to say the steps described in notes 601, 2, 3, and 4 are
not performed on an immediate shutdown. Also, CICS files are not closed during step 5 on an immediate
shutdown.

2. Terminal activity is quiesced via an indicator in the CSA. This tells terminal control not to attach any
transactions other than those specified in the XLT and those specifying SHUTDOWN(ENABLED) in
their associated TRANSACTION resource definitions. The termination task logically disconnects itself
from the physical terminal to allow other activity on that terminal.

3. The termination task allows all other tasks (except any journal tasks) to complete before linking to the
first program specified in the first portion of the PLT.

4. When all programs in the first portion of the PLT have executed, terminal activity is quiesced
completely, using bit CSATQIM in CSASSI2 in the CSA. If monitoring is running, it is stopped. The ICE
and AID chains are broken (addresses saved in the TWA), the IRC session is quiesced, and the
programs specified in the second portion of the PLT are executed.

5. All open files managed by CICS file control are closed by the file control shutdown program,
DFHFCSD; temporary-storage control, DFHTSP is requested to output its buffer; and a keypoint is
taken by the warm keypoint program, DFHWKP.

DFHEIPSH

1

AP domain
2 (system) 1,2

CSA termination DFHXLT
program DFHPLT
(DFHSTP)

3,4
4 DFHPLT

TCA

5
DFHFCSD
DFHTSP
DFHWKP

6

Operating
system

Figure 107. AP domain termination program interfaces

© Copyright IBM Corp. 1997, 2011 601

6. Control is returned to the operating system, with or without a dump (depending upon the parameters
specified in the shutdown request causing termination).

For the high-performance option (HPO), the service request block (SRB) in the system queue area
(SQA) is freed by using a CICS SVC (DFHCSVC).

Modules
DFHSTP

Exits
There is one global user exit point in DFHSTP: XSTERM. See the CICS Customization Guide for further
information.

Trace
No trace points are provided for this function.

AP domain termination program

602 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 74. Business Application Manager domain (BAM)

The business application manager domain (also sometimes known simply as “buisness application
manager”) is responsible for managing CICS business transaction services' (BTS) processes, process
types and activities. It deals with the hardening of the associated data to BTS repository files. Along with
scheduler services domain and event manager domain it forms the CICS BTS function.

Business application manager domain’s specific gate
Table 33 summarizes the business application manager domain’s specific gate. It shows the level-1 trace
point IDs of the modules providing the functions for the gate, the functions provided by the gate, and
whether or not the functions are available through the exit programming interface (XPI).

Table 33. Business application manager domain’s specific gate
Gate Trace Function XPI

BATT BA 0160
BA 0161

ADD_REPLACE_PROCSSTYPE
INQUIRE_PROCESSTYPE
START_BROWSE_PROCESSTYPE
GET_NEXT_PROCESSTYPE
END_BROWSE_PROCESSTYPE
SET_PROCESSTYPE
DISCARD_PROCESSTYPE
COMMIT_PROCESSTYPE_TABLE

NO
NO
NO
NO
NO
NO
NO
NO

BAXM BA 0170
BA 0171

INIT_ACTIVITY_REQUEST
BIND_ACTIVITY_REQUEST

NO
NO

BAPR BA 0110
BA 0111

ADD_PROCESS
RUN_PROCESS
LINK_PROCESS
ACQUIRE_PROCESS
CANCEL_PROCESS
SUSPEND_PROCESS
RESUME_PROCESS
CHECK_PROCESS
RESET_PROCESS

NO
NO
NO
NO
NO
NO
NO
NO
NO

BAAC BA 0120
BA 0121

ADD_ACTIVITY
RUN_ACTIVITY
CHECK_ACTIVITY
RETURN_END_ACTIVITY
DELETE_ACTIVITY
SUSPEND_ACTIVITY
RESUME_ACTIVITY
CANCEL_ACTIVITY
LINK_ACTIVITY
ACQUIRE_ACTIVITY
RESET_ACTIVITY
ADD_TIMER_REQUEST
ADD_REATTACH_ACQUIRED

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

BABR BA 0150
BA 0151

STARTBR_ACTIVITY
GETNEXT_ACTIVITY
ENDBR_ACTIVITY
INQUIRE_ACTIVITY
STARTBR_CONTAINER
GETNEXT_CONTAINER
ENDBR_CONTAINER
INQUIRE_CONTAINER
STARTBR_PROCESS
GETNEXT_PROCESS
ENDBR_PROCESS
INQUIRE_PROCESS
INQUIRE_ACTIVATION
COMMIT_BROWSE

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

BACR BA 0130
BA 0131

DELETE_CONTAINER
GET_CONTAINER_INTO
GET_CONTAINER_SET
PUT_CONTAINER
GET_CONTAINER_LENGTH

NO
NO
NO
NO
NO

© Copyright IBM Corp. 1997, 2011 603

Table 33. Business application manager domain’s specific gate (continued)
Gate Trace Function XPI

BACM BA 01B0
BA 01B1

MOVE_CONTAINER NO

BAGD BA 0401
BA 0402

INQUIRE_DATA_LENGTH
GET_DATA
DESTROY_TOKEN
ADDRESS_DATA
RELEASE_DATA

NO
NO
NO
NO

BATT gate, ADD_REPLACE_PROCESSTYPE function
The ADD_REPLACE_PROCESSTYPE function of the BATT gate is used to add a new process type
definition or replace an existing process type definition. Process types are defined using RDO.

Input parameters
PROCESSTYPE_NAME

is an 8-character name.
FILE_NAME is an 8-character name of the repository file to be associated with this process type. The

file is defined using RDO.
AUDITLOG_NAME

is an 8-character name of the audit log to be associated with this process type. The log is
defined using RDO.

AUDITLEVEL determines the level of auditing to be undertaken for this process type. It can take the
values:
OFF|PROCESS|ACTIVITY|FULL

USERRECORDS indicates whether user audit records are to be written to the log. It can take the values:
YES|NO

CATALOG_PTDEF
indicates whether the definition should be written to the global catalog. It can take the
values:
YES|NO

STATUS indicates whether the process type definition should be installed in a disabled or enabled
state. It can take the values:
DISABLED|ENABLED

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_DISABLED
INSUFFICIENT_STORAGE

BATT gate, INQUIRE_PROCESSTYPE function
The INQUIRE_PROCESSTYPE function of the BATT gate is used to return information on the named
process type.

Input parameters
PROCESSTYPE_NAME

is the 8-character name of the process type to be inquired upon.

Output parameters
FILE_NAME is the 8-character name of the repository file associated with this process type.

Business application manager domain (BAM)

604 CICS TS for z/OS: CICS Diagnosis Reference

AUDITLOG_NAME
is an 8-character name of the audit log associated with this process type.

AUDITLEVEL identifies the level of auditing for this process type. It can take the values:
OFF|PROCESS|ACTIVITY|FULL

USERRECORDS indicates whether user audit records are to being written to the log. It can take the values:
YES|NO

STATUS indicates the status of the process type. It can take the values:
DISABLED|ENABLED

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|PURGED|INVALID|DISASTER|KERNERROR

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ENTRY_NOT_FOUND

BATT gate, START_BROWSE_PROCESSTYPE function
The START_BROWSE_PROCESSTYPE function of the BATT gate is used to initiate a browse of the
process types known to this region.

Input parameters
None

Output parameters
BROWSE_TOKEN is the token used to identify this browse.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

BATT gate, GET_NEXT_PROCESSTYPE function
The GET_NEXT_PROCESSTYPE function of the BATT gate is used to return the name of the next
process type in the browse, identified by the browse token.

Input parameters
BROWSE_TOKEN is the token returned to the caller on the START_BROWSE_PROCESSTYPE call.

Output parameters
PROCESSTYPE_NAME

the 8-character process type name.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_MORE_DATA_AVAILABLE

BATT gate, END_BROWSE_PROCESSTYPE function
The END_BROWSE_PROCESSTYPE function of the BATT gate is used to end the browse identified by
the browse token.

Input parameters
BROWSE_TOKEN is the token returned to the caller on the START_BROWSE_PROCESSTYPE call.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

Business application manager domain (BAM)

Chapter 74. Business Application Manager domain (BAM) 605

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

BATT gate, SET_PROCESSTYPE function
The SET_PROCESSTYPE function of the BATT gate is used to alter the named processtype definition.

Input parameters
PROCESSTYPE_NAME

is the 8-character process type name.
FILE_NAME is an 8-character name of the repository file to be associated with this process type.
AUDITLEVEL determines the level of auditing to be undertaken for this process type. It can take the

values:
OFF|PROCESS|ACTIVITY|FULL

USERRECORDS indicates whether user audit records are to be written to the log. It can take the values:
YES|NO

STATUS indicates whether the status of the process type. It can take the values:
DISABLED|ENABLED

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ENTRY_NOT_FOUND
NOT_DISABLED

BATT gate, DISCARD_PROCESSTYPE function
The DISCARD_PROCESSTYPE function of the BATT gate is used to discard the named processtype
definition.

Input parameters
PROCESSTYPE_NAME

is the 8-character process type name.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ENTRY_NOT_FOUND
NOT_DISABLED

BATT gate, COMMIT_PROCESSTYPE_TABLE function
The COMMIT_PROCESSTYPE_TABLE function of the BATT gate is used to commit the process type
definitions to the global catalog.

Input parameters
TOKEN is the token identifying the table of process type definitions.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

Business application manager domain (BAM)

606 CICS TS for z/OS: CICS Diagnosis Reference

BAXM gate, INIT_ACTIVITY_REQUEST function
The INIT_ACTIVITY_REQUEST function of the BAXM gate is used when the transaction requires a 3270
bridge facility, in which case the named bridge exit program is invoked.

Input parameters
REQUEST_BLOCK

a block used to hold the request data.
BRIDGE_EXIT the 8-character name of the bridge exit program.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

BAXM gate, BIND_ACTIVITY_REQUEST function
The BIND_ACTIVITY_REQUEST function of the BAXM gate is used to make the current UOW an
activation of the activity specified in the activity request. This activation could be used to mark the activity
complete abended because the previous activation failed, hence the abend information.

Input parameters
ABEND_CODE the 4-character abend code.
ABEND_PROG the 8-character abend program name.
ABEND_MSG the 6-character abend message number.
REQUEST_BLOCK

a block used to hold the activity request data.

Output parameters
PROGRAM is the 8-character program name.
RUN_PROGRAM is used to indicate if a program is to be invoked on the program manager INITIAL_LINK. It

can take the values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
TIMEOUT
READ_FAILURE

BAPR gate, ADD_PROCESS function
The ADD_PROCESS function of the BAPR gate is used to define a new process in reponse to an EXEC
CICS DEFINE PROCESS call.

Input parameters
PROCESS_NAME the 36-character process name.
PROCESSTYPE the 8-character process type.
TRANID the 4-character transaction id.
PROGRAM the 8-character program name associated with the root activity.
USERID the 8-character userid.
CHECK_UNIQUE a Boolean value indicating whether a check should be made to ensure that the process

name is unique within the scope of the process-type.

Output parameters
PROCESS_TOKEN

a token representing this process internally.

Business application manager domain (BAM)

Chapter 74. Business Application Manager domain (BAM) 607

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION DUPLICATE_PROCESS_NAME
FILE_NOT_AUTH
PROCESS_ALREADY_ACQUIRED
PROCESSTYPE_NOT_ENABLED
PROCESSTYPE_NOT_FOUND
WRITE_FAILED

BAPR gate, RUN_PROCESS function
The RUN_PROCESS function of the BAPR gate is used to execute the acquired process (invoke the root
activity), either asynchronously or synchronously i.e. with a context switch.

Input parameters
MODE can take the values:

SYNC|ASYNC
INPUT_EVENT the 16-character name of the input event.
FACILITY_TOKEN

the 8-character facility token.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION PROCESS_NOT_FOUND
PROCESSTYPE_NOT_FOUND
PROCESS_SUSPENDED
OTHER_PROCESS_CURRENT
INVALID_EVENT
INVALID_MODE
AUTOINSTALL_FAILED
AUTOINSTALL_INVALID_DATA
AUTOINSTALL_MODEL_NOT_DEF
AUTOINSTALL_URM_FAILED
PROGRAM_NOT_AUTHORISED
PROGRAM_NOT_DEFINED
PROGRAM_NOT_ENABLED
PROGRAM_NOT_LOADABLE
REMOTE_PROGRAM
SECOND_JVM_PROGRAM
RUN_SYNC_ABENDED
RECORD_BUSY
REMOTE_TRAN
TRAN_NOT_AUTH

BAPR gate, LINK_PROCESS function
The LINK_PROCESS function of the BAPR gate is used to invoke the acquired process synchronously,
without a context switch.

Business application manager domain (BAM)

608 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
INPUT_EVENT the 16-character name of the input event.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION PROCESS_NOT_FOUND
PROCESSTYPE_NOT_FOUND
PROCESS_SUSPENDED
OTHER_PROCESS_CURRENT
INVALID_EVENT
INVALID_MODE
AUTOINSTALL_FAILED
AUTOINSTALL_INVALID_DATA
AUTOINSTALL_MODEL_NOT_DEF
AUTOINSTALL_URM_FAILED
PROGRAM_NOT_AUTHORISED
PROGRAM_NOT_DEFINED
PROGRAM_NOT_ENABLED
PROGRAM_NOT_LOADABLE
REMOTE_PROGRAM
SECOND_JVM_PROGRAM
NO_EVENTS_PROCESSED
PENDING_ACTIVITY_EVENTS

BAPR gate, ACQUIRE_PROCESS function
The ACQUIRE_PROCESS function of the BAPR gate is used to acquire the named process.

Input parameters
PROCESS_NAME the 36-character process name.
PROCESSTYPE the 8-character process type.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION PROCESS_NOT_FOUND
PROCESSTYPE_NOT_FOUND
FILE_NOT_AUTH
OTHER_PROCESS_CURRENT
RECORD_BUSY

BAPR gate, CANCEL_PROCESS function
The CANCEL_PROCESS function of the BAPR gate is used to synchronously cancel the acquired
process.

Input parameters
None

Business application manager domain (BAM)

Chapter 74. Business Application Manager domain (BAM) 609

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION PROCESS_NOT_FOUND
PROCESSTYPE_NOT_FOUND
FILE_NOT_AUTH
RECORD_BUSY

BAPR gate, SUSPEND_PROCESS function
The SUSPEND_PROCESS function of the BAPR gate is used to suspend the acquired process.

Input parameters
None

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION PROCESS_NOT_FOUND
RECORD_BUSY

BAPR gate, RESUME_PROCESS function
The RESUME_PROCESS function of the BAPR gate is used to resume a previously suspended process.

Input parameters
None

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION PROCESS_NOT_FOUND
RECORD_BUSY

BAPR gate, CHECK_PROCESS function
The CHECK_PROCESS function of the BAPR gate is used to establish how the acquired process
completed.

Input parameters
None

Output parameters
COMPLETION_STATUS

is the completion status of the process. It can have any of these values:
NORMAL|ABENDED|FORCEDCOMPLETE|INCOMPLETE

Business application manager domain (BAM)

610 CICS TS for z/OS: CICS Diagnosis Reference

ABEND_CODE the 4-character abend code.
ABEND_PROGRAM

the 8-character name of the program which abended.
SUSPENDED indicates whether the process is suspended. It can take the value:

YES|NO
ACTMODE the active mode of the process. It can take the value:

INITIAL|ACTIVE|DORMANT|CANCELLING|COMPLETE
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION PROCESS_NOT_FOUND
RECORD_BUSY

BAPR gate, REST_PROCESS function
The RESET_PROCESS function of the BAPR gate is used to reset the state of the acquired root activity
to initial, so it may be run again.

Input parameters
None

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION PROCESS_NOT_FOUND
FILE_NOT_AUTH
PROCESSTYPE_NOT_FOUND
INVALID_MODE
RECORD_BUSY

BAAC gate, ADD_ACTIVITY function
The ADD_ACTIVITY function of the BAAC gate is used to define a new activity in response to an EXEC
CICS DEFINE ACTIVITY call.

Input parameters
ACTIVITY_NAME

the 16-character activity name.
COMPLETION_EVENT

the 16-character completion event.
TRANID the 4-character transaction id.
PROGRAM the 8-character program name associated with the root activity.
USERID the 8-character userid.
ACTIVITYID the buffer containing the activity identifier.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Business application manager domain (BAM)

Chapter 74. Business Application Manager domain (BAM) 611

RESPONSE Possible REASON values

EXCEPTION DUPLICATE_ACTIVITY_NAME
NO_CURRENT_ACTIVITY
UNKNOWN_TRANSACTION_ID
INVALID_NAME

BAAC gate, RUN_ACTIVITY function
The RUN_ACTIVITY function of the BAAC gate is used to execute the named child activity or the acquired
activity either asynchronously or synchronously i.e. with a context switch.

Input parameters
ACTIVITY_NAME

the 16-character activity name.
MODE can take the values:

SYNC|ASYNC
INPUT_EVENT the 16-character name of the input event.
FACILITY_TOKEN

the 8-character facility token.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
INVALID_EVENT
INVALID_MODE
NO_CURRENT_ACTIVITY
NO_COMPLETION_EVENT
REMOTE_PROGRAM
ACTIVITY_SUSPENDED
RUN_SYNC_ABENDED
READ_FAILURE
RECORD_BUSY
REMOTE_TRAN
TRAN_NOT_AUTH

BAAC gate, LINK_ACTIVITY function
The LINK_PROCESS function of the BAAC gate is used to invoke the named child activity or acquired
activity synchronously, without a context switch.

Input parameters
ACTIVITY_NAME

the 16-character name of the activity.
INPUT_EVENT the 16-character name of the input event.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Business application manager domain (BAM)

612 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
NO_CURRENT_ACTIVITY
NO_COMPLETION_EVENT
INVALID_EVENT
INVALID_MODE
AUTOINSTALL_FAILED
AUTOINSTALL_INVALID_DATA
AUTOINSTALL_MODEL_NOT_DEF
AUTOINSTALL_URM_FAILED
PROGRAM_NOT_AUTHORISED
PROGRAM_NOT_DEFINED
PROGRAM_NOT_ENABLED
PROGRAM_NOT_LOADABLE
REMOTE_PROGRAM
SECOND_JVM_PROGRAM
NO_EVENTS_PROCESSED
PENDING_ACTIVITY_EVENTS

BAAC gate, CANCEL_ACTIVITY function
The CANCEL_ACTIVITY function of the BAAC gate is used to synchronously cancel the named child
activity or the acquired activity.

Input parameters
ACTIVITY_NAME

the 16-character activity name.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
NO_CURRENT_ACTIVITY
INVALID_MODE
INVALID_ACTIVITYID
FILE_NOT_AUTH
RECORD_BUSY

BAAC gate, SUSPEND_ACTIVITY function
The SUSPEND_ACTIVITY function of the BAAC gate is used to suspend the named child activity or the
acquired activity.

Input parameters
ACTIVITY_NAME

the 16-character activity name.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Business application manager domain (BAM)

Chapter 74. Business Application Manager domain (BAM) 613

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
NO_ACQUIRED_ACTIVITY
INVALID_MODE
READ_FAILURE
RECORD_BUSY

BAAC gate, RESUME_ACTIVITY function
The RESUME_ACTIVITY function of the BAAC gate is used to resume a previously suspended activity.

Input parameters
ACTIVITY_NAME

the 16-character activity name.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
NO_ACQUIRED_ACTIVITY
INVALID_MODE
READ_FAILURE
RECORD_BUSY

BAAC gate, CHECK_ACTIVITY function
The CHECK_ACTIVITY function of the BAAC gate is used to establish how the named child activity or
acquired activity completed.

Input parameters
ACTIVITY_NAME

the 16-character activity name.

Output parameters
COMPLETION_STATUS

is the completion status of the activity. It can have any of these values:
NORMAL|ABENDED|FORCEDCOMPLETE|INCOMPLETE

ABEND_CODE the 4-character abend code.
ABEND_PROGRAM

the 8-character name of the program which abended.
SUSPENDED indicates whether the process is suspended. It can take the value:

YES|NO
ACTMODE the active mode of the process. It can take the value:

INITIAL|ACTIVE|DORMANT|CANCELLING|COMPLETE
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Business application manager domain (BAM)

614 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
NO_CURRENT_ACTIVITY
READ_FAILURE
RECORD_BUSY

BAAC gate, RESET_ACTIVITY function
The RESET_ACTIVITY function of the BAAC gate is used to reset the state of the named child activity to
initial, so it may be run again.

Input parameters
ACTIVITY_NAME

the 16-character activity name.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
NO_CURRENT_ACTIVITY
FILE_NOT_AUTH
INVALID_MODE
READ_FAILURE
RECORD_BUSY

BAAC gate, RETURN_END_ACTIVITY function
The RETURN_END_ACTIVITY function of the BAAC gate is used to indicate the completion of the current
activity and so raise the completion event.

Input parameters
None

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_CURRENT_ACTIVITY

BAAC gate, DELETE_ACTIVITY function
The DELETE_ACTIVITY function of the BAAC gate is used to delete the named child activity from the
repository.

Input parameters
ACTIVITY_NAME

the 16-character activity name.

Output parameters
ACTMODE the active mode of the process. It can take the value:

Business application manager domain (BAM)

Chapter 74. Business Application Manager domain (BAM) 615

INITIAL|ACTIVE|DORMANT|CANCELLING|COMPLETE
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
NO_CURRENT_ACTIVITY
INVALID_MODE
READ_FAILURE
RECORD_BUSY

BAAC gate, ACQUIRE_ACTIVITY function
The ACQUIRE_ACTIVITY function of the BAAC gate is used to acquire the specified activity.

Input parameters
ACTIVITYID the buffer for the activity identifier.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
ACTIVITY_ALREADY_ACQUIRED
READ_FAILURE
RECORD_BUSY

BAAC gate, ADD_TIMER_REQUEST function
The ADD_TIMER_REQUEST function of the BAAC gate is used to add a delayed request to BAM domain
in response to an EXEC CICS DEfINE TIMER call.

Input parameters
REQUEST_TOKEN

the token representing the request.
TIMER_EVENT the timer event name.
EVENT_VERSION

the version of the event.
DATETIME the time at which the timer expires.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_CURRENT_ACTIVITY

BAAC gate, ADD_REATTACH_ACQUIRED function
The ADD_REATTACH_ACQUIRED function of the BAAC gate is used to reattach an activity.

Business application manager domain (BAM)

616 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
None

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_ACQUIRED_ACTIVITY

BABR gate, STARTBR_ACTIVITY function
The STARTBR_ACTIVITY function of the BABR gate is used to initiate a browse of activities from the
specified activity identifier or from the root activity of the specified process.

Input parameters
ACTIVITYID is a buffer containing the activity identifier.
PROCESS_NAME is a buffer containing the process name.
PROCESS_TYPE is the 8-character process type.

Output parameters
BROWSE_TOKEN is the token identifying the browse.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
FILE_NOT_AUTH
NO_CURRENT_ACTIVITY
PROCESS_NOT_FOUND
PROCESSTYPE_NOT_FOUND
RECORD_BUSY

INVALID INVALID_ACTIVITYID_LEN
INVALID_PROCESSNAME_LEN

BABR gate, GETNEXT_ACTIVITY function
The GETNEXT_ACTIVITY function of the BABR gate is used to return the next activity in the specified
browse.

Input parameters
RETURNED_ACTIVITYID

is a buffer containing the activity identifier.
BROWSE_TOKEN is the browse token.

Output parameters
ACTIVITY_NAME

is the 16-character activity name.
LEVEL is the level into the activity tree.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

Business application manager domain (BAM)

Chapter 74. Business Application Manager domain (BAM) 617

RESPONSE Possible REASON values

EXCEPTION BROWSE_END
INVALID_BROWSE_TOKEN
INVALID_BROWSE_TYPE
RECORD_BUSY

INVALID INVALID_BUFFER_LENGTH

BABR gate, ENDBR_ACTIVITY function
The ENDBR_ACTIVITY function of the BABR gate is used to end the specified activity browse.

Input parameters
BROWSE_TOKEN is the browse token.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_BROWSE_TOKEN
INVALID_BROWSE_TYPE

BABR gate, INQUIRE_ACTIVITY function
The INQUIRE_ACTIVITY function of the BABR gate is used to obtain information about the specified
activity.

Input parameters
ACTIVITYID is a buffer containing the identifier of the activity which is to be inquired upon.
RETURNED_ACTIVITYID

is a buffer containing the returned activity identifier.
RETURNED_PROCESS_NAME

is a buffer containing the returned process name.

Output parameters
ABEND_CODE is the 4-character abend code.
ABEND_PROGRAM

is the 8-character name of the program which abended.
ACTIVITY_NAME

is the 16-character activity name.
COMPLETION_STATUS

is the completion status. It can take the values:
ABENDED|FORCED|INCOMPLETE|NORMAL

EVENT_NAME is the 16-character event name.
MODE is the mode of the activity. It can take the values:

INITIAL|ACTIVE|DORMANT|CANCELLING|COMPLETE
PROCESS_TYPE is the 8-character process type.
PROGRAM is the 8-character name of the activity program.
TRANSID is the 4-character transaction identifier.
INIT_TRANSID is the 4-character transaction identifier of the transaction under which the activity was

initiated.
USERID is the 8-character userid.
SUSPENDED indicates whether the activity is currently suspended. It can take the values:

YES|NO

Business application manager domain (BAM)

618 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
FILE_NOT_AUTH
NO_CURRENT_ACTIVITY
RECORD_BUSY

INVALID INVALID_ACTIVITYID_LEN
INVALID_BUFFER_LEN

BABR gate, STARTBR_CONTAINER function
The STARTBR_CONTAINER function of the BABR gate is used to initiate a browse of containers
associated with a specified activity or process.

Input parameters
ACTIVITYID is a buffer containing the activity identifier.
PROCESS_NAME is a buffer containing the process name.
PROCESS_TYPE is the 8-character process type.

Output parameters
BROWSE_TOKEN is the token identifying the browse.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
FILE_NOT_AUTH
NO_CURRENT_ACTIVITY
PROCESS_NOT_FOUND
PROCESSTYPE_NOT_FOUND
RECORD_BUSY

INVALID INVALID_ACTIVITYID_LEN
INVALID_PROCESSNAME_LEN

BABR gate, GETNEXT_CONTAINER function
The GETNEXT_CONTAINER function of the BABR gate is used to return the next container in the
specified browse.

Input parameters
BROWSE_TOKEN is the browse token.

Output parameters
CONTAINER_NAME

is the 16-character container name.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Business application manager domain (BAM)

Chapter 74. Business Application Manager domain (BAM) 619

RESPONSE Possible REASON values

EXCEPTION BROWSE_END
INVALID_BROWSE_TOKEN
INVALID_BROWSE_TYPE
RECORD_BUSY

BABR gate, ENDBR_CONTAINER function
The ENDBR_CONTAINER function of the BABR gate is used to end the specified container browse.

Input parameters
BROWSE_TOKEN is the browse token.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_BROWSE_TOKEN
INVALID_BROWSE_TYPE

BABR gate, INQUIRE_CONTAINER function
The INQUIRE_CONTAINER function of the BABR gate is used to obtain information about the specified
container.

Input parameters
CONTAINER_NAME

the 16-character container name.
ACTIVITYID is a buffer containing the activity identifier.
PROCESS_NAME is a buffer containing the process name.
PROCESS_TYPE is the 8-character process type.

Output parameters
DATA_LENGTH is the length of the container data.
DATA_ADDRESS is the address of the container data.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
CONTAINER_NOT_FOUND
PROCESS_NOT_FOUND
PROCESSTYPE_NOT_FOUND
FILE_NOT_AUTH
NO_CURRENT_ACTIVITY
RECORD_BUSY

INVALID INVALID_ACTIVITYID_LEN
INVALID_PROCESSNAME_LEN

Business application manager domain (BAM)

620 CICS TS for z/OS: CICS Diagnosis Reference

BABR gate, STARTBR_PROCESS function
The STARTBR_PROCESS function of the BABR gate is used to initiate a browse of the processes of a
certain type.

Input parameters
PROCESS_TYPE is the 8-character process type.

Output parameters
BROWSE_TOKEN is the token identifying the browse.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION FILE_NOT_AUTH
FILE_UNAVAILABLE
NO_CURRENT_ACTIVITY
PROCESSTYPE_NOT_FOUND
RECORD_BUSY

BABR gate, GETNEXT_PROCESS function
The GETNEXT_PROCESS function of the BABR gate is used to return the next process in the specified
browse.

Input parameters
BROWSE_TOKEN is the browse token.
RETURNED_ACTIVITYID

is a buffer containing the activity identifier.
RETURNED_PROCESS_NAME

is a buffer containing the process name.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION BROWSE_END
INVALID_BROWSE_TOKEN
INVALID_BROWSE_TYPE
RECORD_BUSY

INVALID INVALID_BUFFER_LENGTH

BABR gate, ENDBR_PROCESS function
The ENDBR_PROCESS function of the BABR gate is used to end the specified process browse.

Input parameters
BROWSE_TOKEN is the browse token.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Business application manager domain (BAM)

Chapter 74. Business Application Manager domain (BAM) 621

RESPONSE Possible REASON values

EXCEPTION INVALID_BROWSE_TOKEN
INVALID_BROWSE_TYPE

BABR gate, INQUIRE_PROCESS function
The INQUIRE_PROCESS function of the BABR gate is used to obtain information about the specified
process.

Input parameters
RETURNED_ACTIVITYID

is a buffer containing the activity identifier.
PROCESS_NAME is a buffer containing the process name.
PROCESS_TYPE is the 8-character process type.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION PROCESS_NOT_FOUND
PROCESSTYPE_NOT_FOUND
FILE_NOT_AUTH
RECORD_BUSY

INVALID INVALID_BUFFER_LENGTH

BABR gate, INQUIRE_ACTIVATION function
The INQUIRE_ACTIVATION function of the BABR gate is used to obtain information about the activation
associated with a running transaction, if there is one.

Input parameters
TRANSACTION_TOKEN

is a token representing an instance of a transaction.
RETURNED_ACTIVITYID

is a buffer containing the activity identifier.
RETURNED_PROCESS_NAME

is a buffer containing the process name.

Output parameters
ACTIVITY_NAME

is the 16-character activity name.
PROCESS_TYPE is the 8-character process type.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND

INVALID INVALID_BUFFER_LENGTH

Business application manager domain (BAM)

622 CICS TS for z/OS: CICS Diagnosis Reference

BABR gate, COMMIT_BROWSE function
The COMMIT_BROWSE function of the BABR gate is used to release any CICS BTS browses associated
with this UOW.

Input parameters
CHAIN_HEAD pointer to the head of the browse chain.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

BACR gate, DELETE_CONTAINER function
The DELETE_CONTAINER function of the BACR gate is used to delete a named container and its
associated data.

Input parameters
CONTAINER_NAME

is the 16-character container name.
ACTIVITY_NAME

is the 16-character activity name.
CONTAINER_SCOPE

identifies the scope of this container. It can the values:
CHILD_ACTIVITY|ACTIVITY|PROCESS|
ACQUIRED_ACTIVITY|ACQUIRED_PROCESS

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
CONTAINER_NOT_FOUND
NO_ACQUIRED_PROCESS
NO_ACQUIRED_ACTIVITY
NO_CURRENT_PROCESS
NO_CURRENT_ACTIVITY
RECORD_BUSY
CONTAINER_READONLY

BACR gate, GET_CONTAINER_INTO function
The GET_CONTAINER_INTO function of the BACR gate is used to place the data in a named container
into an area provided by the caller.

Input parameters
CONTAINER_NAME

is the 16-character container name.
ACTIVITY_NAME

is the 16-character activity name.
CONTAINER_SCOPE

identifies the scope of this container. It can have the values:
CHILD_ACTIVITY|ACTIVITY|PROCESS|
ACQUIRED_ACTIVITY|ACQUIRED_PROCESS

ITEM_BUFFER is the buffer into which the container data is placed.

Business application manager domain (BAM)

Chapter 74. Business Application Manager domain (BAM) 623

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
CONTAINER_NOT_FOUND
LENGTH_ERROR
NO_ACQUIRED_PROCESS
NO_ACQUIRED_ACTIVITY
NO_CURRENT_ACTIVITY
NO_CURRENT_PROCESS
RECORD_BUSY

BACR gate, GET_CONTAINER_LENGTH function
The GET_CONTAINER_LENGTH function of the BACR gate is used to query the length of application
data in a named container.

Input parameters
CONTAINER_NAME

is the 16-character container name.
ACTIVITY_NAME

is the 16-character activity name.
CONTAINER_SCOPE

identifies the scope of this container. It can have the values:
CHILD_ACTIVITY|ACTIVITY|PROCESS|
ACQUIRED_ACTIVITY|ACQUIRED_PROCESS

Output parameters
CONTAINER_LENGTH

is the fullword length of the application data.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
CONTAINER_NOT_FOUND
NO_ACQUIRED_PROCESS
NO_ACQUIRED_ACTIVITY
NO_CURRENT_PROCESS
NO_CURRENT_ACTIVITY

BACR gate, GET_CONTAINER_SET function
The GET_CONTAINER_SET function of the BACR gate is used to place the data in a named container
into an area provided by BAM domain and return this area to the caller.

Input parameters
CONTAINER_NAME

is the 16-character container name.
ACTIVITY_NAME

is the 16-character activity name.

Business application manager domain (BAM)

624 CICS TS for z/OS: CICS Diagnosis Reference

CONTAINER_SCOPE
identifies the scope of this container. It can the values:
CHILD_ACTIVITY|ACTIVITY|PROCESS|
ACQUIRED_ACTIVITY|ACQUIRED_PROCESS

Output parameters
ITEM_DATA a block holding the named container's data.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
CONTAINER_NOT_FOUND
NO_ACQUIRED_PROCESS
NO_ACQUIRED_ACTIVITY
NO_CURRENT_ACTIVITY
NO_CURRENT_PROCESS
RECORD_BUSY

BACR gate, PUT_CONTAINER function
The PUT_CONTAINER function of the BACR gate is used to place data into a named container.

Input parameters
CONTAINER_NAME

is the 16-character container name.
ACTIVITY_NAME

is the 16-character activity name.
CONTAINER_SCOPE

identifies the scope of this container. It can the values:
CHILD_ACTIVITY|ACTIVITY|PROCESS|
ACQUIRED_ACTIVITY|ACQUIRED_PROCESS

ITEM_DATA a block holding the data to be placed in the named container.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
CONTAINER_NOT_FOUND
LENGTH_ERROR
NO_ACQUIRED_PROCESS
NO_ACQUIRED_ACTIVITY
NO_CURRENT_ACTIVITY
NO_CURRENT_PROCESS
INVALID_CONTAINER_NAME
CONTAINER_READONLY
RECORD_BUSY

BACM gate, MOVE_CONTAINER function
The MOVE_CONTAINER function of the BACM gate is used to move a container between activities. If a
container of the same name as the destination container name already exists in the destination activity
then it is overwritten. .

Business application manager domain (BAM)

Chapter 74. Business Application Manager domain (BAM) 625

Input parameters
CONTAINER_NAME

is the 16-character source container name.
ACTIVITY_NAME

is the 16-character activity name of the activity with which the source container is
associated.

CONTAINER_SCOPE
identifies the scope of the source container. It can have the values:
CHILD_ACTIVITY|ACTIVITY|PROCESS|
ACQUIRED_ACTIVITY|ACQUIRED_PROCESS

TO_ACTIVITY is the 16-character activity name of the activity with which the destination container is
associated.

AS_CONTAINER is the 16-character destination container name.
TO_PROCESS is a Boolean value indicating if the destination container is to be a process container

rather than an activity container.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
CONTAINER_NOT_FOUND
NO_ACQUIRED_PROCESS
NO_ACQUIRED_ACTIVITY
NO_CURRENT_PROCESS
NO_CURRENT_ACTIVITY
INVALID_CONTAINER_NAME
CONTAINER_READONLY
RECORD_BUSY

BAGD format, INQUIRE_DATA_LENGTH function
The INQUIRE_DATA_LENGTH function of the BAGD format is used by BAM domain to query the called
domain as to the size of the flattened data which is to be included in the activity record.

Input parameters
DATA_TOKEN a token representing the data.

Output parameters
DATA_LENGTH the length of the flattened data.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|PURGED|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_TOKEN

BAGD format, DESTROY_TOKEN function
The DESTROY_TOKEN function of the BAGD format is used by BAM domain to tell interested parties (EM
domain) to destroy their data token.

Input parameters
DATA_TOKEN a token representing the data.

Business application manager domain (BAM)

626 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|PURGED|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_TOKEN

BAGD format, ADDRESS_DATA function
The ADDRESS_DATA function of the BAGD format is a call made to BAM domain which returns the length
of the calling domain's data in the activity record.

Input parameters
ACTIVITYID a block to hold the activity identifier.
ACQUIRED_ACTIVITY

indicates if this is an acquired activity. It can take the values:
YES|NO

Output parameters
DATA_BLOCK a block containing the flattened data.
ACTIVITY_TOKEN

a token representing the activity.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|PURGED|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ACTIVITY_NOT_FOUND
NO_CURRENT_ACTIVITY
FILE_NOT_AUTH

BAGD format, RELEASE_DATA function
The RELEASE_DATA function of the BAGD format is a call made to BAM domain which releases the
calling domain's storage associated with the identified activity.

Input parameters
ACTIVITY_TOKEN

a token representing the activity.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|PURGED|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_TOKEN

Business application manager domain (BAM)

Chapter 74. Business Application Manager domain (BAM) 627

Business application manager domain’s generic gates
Table 34 summarizes the business application manager domain’s generic gates. It shows the level-1 trace
point IDs of the modules providing the functions for the gates, the functions provided by the gates, and the
generic formats for calls to the gates.

Table 34. Business application manager domain’s generic gates
Gate Trace Function Format

DMDM BA 0101
BA 0102

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

RMRO BA 0140
BA 0141

PERFORM_PREPARE
PERFORM_COMMIT
START_BACKOUT
DELIVER_BACKOUT_DATA
END_BACKOUT
PERFORM_SHUNT
PERFRM_UNSHUNT

RMRO

RMKP BA 0140
BA 0141

TAKE_KEYPOINT RMKP

RMDE BA 0140
BA 0141

START_DELIVERY
DELIVER_RECOVERY
END_DELIVERY

RMDE

APUE BA 0180
BA 0181

SET_EXIT_STATUS APUE

For descriptions of these functions and their input and output parameters, refer to the Sections dealing
with the corresponding generic formats:

Functions and parameters

Format DMDM—“Domain manager domain’s generic formats” on page 669

Format RMRO—“Recovery Manager domain’s call back formats” on page 1088

Format RMKP—“Recovery Manager domain’s call back formats” on page 1088

Format RMDE—“Recovery Manager domain’s call back formats” on page 1088

Format APUE—“Application domain’s generic formats” on page 593

Modules

Module Function

DFHBADM DFHBADM is the gate module for the following requests:
PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHBATT DFHBATT is the gate module for the following requests:
ADD_REPLACE_PROCESSTYPE
INQUIRE_PROCESSTYPE
START_BROWSE_PROCESSTYPE
GET_NEXT_PROCESSTYPE
END_BROWSE_PROCESSTYPE
DISCARD_PROCESSTYPE
COMMIT_PROCESSTYPE_TABLE

Business application manager domain (BAM)

628 CICS TS for z/OS: CICS Diagnosis Reference

Module Function

DFHBAAC DFHBAAC is the gate module for the following requests:

ADD_ACTIVITY
RUN_ACTIVITY
CHECK_ACTIVITY
RETURN_END_ACTIVITY
DELETE_ACTIVITY
SUSPEND_ACTIVITY
RESUME_ACTIVITY
CANCEL_ACTIVITY
LINK_ACTIVITY
ACQUIRE_ACTIVITY
RESET_ACTIVITY
ADD_TIMER_REQUEST
ADD_REATTACH_ACQUIRED

DFHBAPR DFHBAPR is the gate module for the following requests:

ADD_PROCESS
RUN_PROCESS
CHECK_PROCESS
SUSPEND_PROCESS
RESUME_PROCESS
CANCEL_PROCESS
LINK_PROCESS
ACQUIRE_PROCESS
RESET_PROCESS

DFHBACR DFHBACR is the gate module for the following requests:

DELETE_CONTAINER
GET_CONTAINER_INTO
GET_CONTAINER_SET
PUT_CONTAINER

DFHBAXM DFHBAXM is the gate module for the following requests:

INIT_ACTIVITY_REQUEST
BIND_ACTIVITY_REQUEST

DFHBAGD DFHBAGD is the gate module for the following requests:

INQUIRE_DATA_LENGTH
GET_DATA
DESTROY_TOKEN
ADDRESS_DATA
RELEASE_DATA

Business application manager domain (BAM)

Chapter 74. Business Application Manager domain (BAM) 629

Module Function

DFHBABR DFHBABR is the gate module for the following requests:

STARTBR_ACTIVITY
GETNEXT_ACTIVITY
ENDBR_ACTIVITY
INQUIRE_ACTIVITY
STARTBR_CONTAINER
GETNEXT_CONTAINER
ENDBR_CONTAINER
INQUIRE_CONTAINER
STARTBR_PROCESS
GETNEXT_PROCESS
ENDBR_PROCESS
INQUIRE_PROCESS
INQUIRE_ACTIVATION
COMMIT_BROWSE

DFHBASP DFHBASP is the gate module for the following requests:

PERFORM_PREPARE
PERFORM_COMMIT
PERFORM_SHUNT
PERFORM_UNSHUNT
START_BACKOUT
DELIVER_BACKOUT_DATA
END_BACKOUT
START_RECOVERY
DELIVER_RECOVERY
END_RECOVERY
TAKE_KEYPOINT

DFHBAUE DFHBAUE is the gate module for the following requests:

SET_EXIT_STATUS

DFHBAAC0 Implements general activity class methods.

DFHBAAC1 Initialises the activity class.

DFHBAAC2 Implements the prepare method of the activity class.

DFHBAAC3 Implements the commit method of the activity class.

DFHBAAC4 Implements the delete method of the activity class.

DFHBAAC5 Implements the set_complete method of the activity class.

DFHBAAC6 Implements the invoke_exit method of the activity class.

DFHBAA10 Implements the read_activity method of the activity class.

DFHBAA11 Implements the get_activity_instance method of the activity class.

DFHBAA12 Implements the run_sync method of the activity class.

DFHBAAR1 Intialises the audit class.

DFHBAAR2 Implements the write method of the audit class.

DFHBAPR0 Implements general process class methods.

DFHBAVP1 Initialises the variable length subpool class.

DFHBAOFI Initialises the object factory class.

DFHBABU1 Initialises the buffer class.

DFHBAPT1 Initialises the processtype class.

DFHBAPT2 Implements the rebuild_table method of the processtype class.

Business application manager domain (BAM)

630 CICS TS for z/OS: CICS Diagnosis Reference

Module Function

DFHBAPT3 Implements the purge_catalog method of the processtype class.

DFHBALR2 Implements the create_key method of the logical record class.

DFHBALR3 Implements the write_buffer method of the logical record class.

DFHBALR4 Implements the read_key method of the logical record class.

DFHBALR5 Implements the read_record method of the logical record class.

DFHBALR6 Implements the delete_record method of the logical record class.

DFHBALR7 Implements the get_browse_token method of the logical record class.

DFHBALR8 Implements the read_next_record method of the logical record class.

DFHBALR9 Implements the release_browse_token method of the logical record class.

DFHBARUP The BTS repository utility program.

DFHBARUC The BTS repository utility program.

DFHBARUD The BTS repository utility program.

DFHBADUF Formats the BAM domain control blocks

DFHBADU1 Formats the BAM domain control blocks

DFHBATRI Interprets BAM domain trace entries

Exits
There are two user exit points in BAM domain, XRSINDI and XBADEACT. See the CICS Customization
Guide for further details.

Trace
The point IDs for the business application manager domain are of the form BA xxxx; the corresponding
trace levels are BA 1, BA 2, and Exc.

For more information about the trace points, see CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Business application manager domain (BAM)

Chapter 74. Business Application Manager domain (BAM) 631

632 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 75. CICS catalog domains (CC/GC)

The two CICS catalog domains, namely the local catalog (CC) domain and the global catalog (GC)
domain, are repositories used by other domains to hold information to allow an orderly restart. They
enable CICS code to read, write, and purge records on the local and global catalog data sets so that a
record of the CICS state can be maintained when CICS is not running.

These domains use a common set of programs to provide a domain interface to VSAM KSDS data sets
for the local catalog (DFHLCD) and for the global catalog (DFHGCD). They also conceal, from the user
domain, the underlying VSAM operations.

The local catalog is initialized with the DFHCCUTL utility to contain information that is relevant to a
particular CICS system, including a list of domains.

The global catalog is used to hold information that is applicable to a whole CICS system. Thus, in an XRF
system consisting of one active and one alternate CICS system, there are two local catalogs and one
global catalog. Conversely, in a non-XRF system, there is one local catalog and one global catalog.

The descriptions that follow relate to the common set of programs for both the local and the global catalog
domains.

CICS catalog domains’ specific gate
Table 35 summarizes the CICS catalog domains’ specific gate. It shows the level-1 trace point IDs of the
modules providing the functions for the gate, the functions provided by the gate, and whether or not the
functions are available through the exit programming interface (XPI).

Table 35. CICS catalog domains’ specific gate
Gate Trace Function XPI

CCCC CC 2010
CC 2050

ADD
DELETE
GET
WRITE
GET_UPDATE
PUT_REPLACE
START_BROWSE
GET_NEXT
END_BROWSE
TYPE_PURGE
START_WRITE
WRITE_NEXT
END_WRITE

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

The domain identifier part of the point ID, shown in the table as CC, appears in a trace as either LC (local catalog domain) or GC (global catalog
domain).

In many of the functions to be described, an input parameter NAME is listed. This name is used in the
construction of a VSAM key which is then used to identify a specific record in the catalog. The record may,
or may not, already exist. The key is a string concatenation of the calling domain, the type, and the name.
The type is a block of records for a domain. The choice of type and name for a specific domain is at the
discretion of the calling domain.

CCCC gate, ADD function
The ADD function of the CCCC gate is used to add a record.

Input parameters
DATA_IN is the data to be added to the record.
TYPE identifies a block of data.
NAME is used to construct a record key, together with the domain and the type.

© Copyright IBM Corp. 1997, 2011 633

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION DUPLICATE
INVALID_DATA_LENGTH
IO_ERROR
CATALOG_FULL

CCCC gate, DELETE function
The DELETE function of the CCCC gate is used to delete a record.

Input parameters
TYPE identifies a block of data.
NAME is used to construct a record key, together with the domain and the type.
[WRITE_TOKEN]

is an optional token corresponding to a START_WRITE. This avoids the need for
additional connects or disconnects.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION RECORD_NOT_FOUND
IO_ERROR
BAD_TOKEN

CCCC gate, GET function
The GET function of the CCCC gate is used to get a record.

Input parameters
DATA_OUT If the response is OK, this contains a copy of the specified record.
TYPE identifies a block of data.
NAME is used to construct a record key, together with the domain and the type.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION RECORD_NOT_FOUND
INVALID_DATA_LENGTH
IO_ERROR

CCCC gate, WRITE function
The WRITE function of the CCCC gate is used to write a record.

CICS catalog domains (CC/GC)

634 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
DATA_OUT is the data to be written to the specified record.
TYPE identifies a block of data.
NAME is used to construct a record key, together with the domain and the type.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_DATA_LENGTH
IO_ERROR
CATALOG_FULL

CCCC gate, GET_UPDATE function
The GET_UPDATE function of the CCCC gate is used to get a record and to establish a thread. This
thread, identified by a token, is used in a corresponding PUT_REPLACE.

Input parameters
DATA_OUT If response is OK, this contains a copy of the record.
TYPE identifies a block of data.
NAME is used to construct a record key, together with the domain and the type.

Output parameters
UPDATE_TOKEN Token to be used by the corresponding PUT_REPLACE.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION RECORD_NOT_FOUND
INVALID_DATA_LENGTH
IO_ERROR

CCCC gate, PUT_REPLACE function
The PUT_REPLACE function of the CCCC gate is used to replace a record.

Input parameters
DATA_IN is the data to be copied to the record.
UPDATE_TOKEN is the token obtained from a previous GET_UPDATE, used to identify an existing record in

the catalog.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION BAD_TOKEN
INVALID_DATA_LENGTH
IO_ERROR
CATALOG_FULL

CICS catalog domains (CC/GC)

Chapter 75. CICS catalog domains (CC/GC) 635

CCCC gate, START_BROWSE function
The START_BROWSE function of the CCCC gate is used to start a browse session.

Input parameters
TYPE identifies a block of data. The browse positions itself before the first record for that type.

Output parameters
BROWSE_TOKEN is the token identifying this browse session.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. It has this value:

IO_ERROR

CCCC gate, GET_NEXT function
The GET_NEXT function of the CCCC gate is used to get the next record.

Input parameters
BROWSE_TOKEN is the token identifying this browse session.
DATA_OUT is a copy of the next record within the browsed type.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_DATA_LENGTH
BAD_TOKEN
BROWSE_END
IO_ERROR

CCCC gate, END_BROWSE function
The END_BROWSE function of the CCCC gate is used to end a browse session.

Input parameters
BROWSE_TOKEN is the token identifying this browse session.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION BAD_TOKEN
IO_ERROR

CCCC gate, TYPE_PURGE function
The TYPE_PURGE function of the CCCC gate is used to purge records. This deletes all records within the
specified TYPE block for that domain.

Input parameters
TYPE identifies a block of data.

CICS catalog domains (CC/GC)

636 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION TYPE_NOT_FOUND
IO_ERROR

CCCC gate, START_WRITE function
The START_WRITE function of the CCCC gate is used to start a write session.

Input parameters
None.

Output parameters
WRITE_TOKEN is the token identifying a unique file string (thread).
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. It has this value:

IO_ERROR

CCCC gate, WRITE_NEXT function
The WRITE_NEXT function of the CCCC gate is used to write the next record.

Input parameters
WRITE_TOKEN is the token corresponding to the token from START_WRITE.
DATA_IN is the data to be copied to the record.
TYPE identifies a block of data.
NAME is used to construct a record key, together with the domain and the type.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_DATA_LENGTH
IO_ERROR
CATALOG_FULL
BAD_TOKEN

CCCC gate, END_WRITE function
The END_WRITE function of the CCCC gate is used to end a write session.

Input parameters
WRITE_TOKEN Token corresponding to a START_WRITE.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

CICS catalog domains (CC/GC)

Chapter 75. CICS catalog domains (CC/GC) 637

RESPONSE Possible REASON values

EXCEPTION IO_ERROR
BAD_TOKEN

CICS catalog domains’ generic gate
Table 36 summarizes the CICS catalog domains’ generic gate. It shows the level-1 trace point IDs of the
modules providing the functions for the gate, the functions provided by the gate, and the generic formats
for calls to the gates.

Table 36. CICS catalog domains’ generic gate

Gate Trace Function Format

DMDM CC 1010
CC 1040

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

The domain identifier part of the point ID, shown in the table as CC, appears in a trace as either LC (local catalog
domain) or GC (global catalog domain).

Descriptions of these functions and their input and output parameters are given in the section dealing with
the corresponding generic formats. This is in format DMDM—see “Domain manager domain’s generic
formats” on page 669.

In preinitialization processing, the local catalog domain opens the CICS local catalog, DFHLCD. (There is
no preinitialization processing for the global catalog domain.)

In initialization processing, the global catalog domain opens the CICS global catalog, DFHGCD.

In quiesce processing, the local and global catalog domains close their respective catalog data sets.

In termination processing, the CICS catalog domains perform no termination processing. They do not close
either the local catalog or the global catalog; the operating system closes these data sets.

Modules

Module Function

DFHCCCC Handles the following functions:
ADD
DELETE
GET
WRITE
GET_UPDATE
PUT_REPLACE
START_BROWSE
GET_NEXT
END_BROWSE
TYPE_PURGE
START_WRITE
WRITE_NEXT
END_WRITE

DFHCCDM Handles the initialization and termination of the CICS catalog domains.

DFHCCDUF Catalog dump formatting routine.

CICS catalog domains (CC/GC)

638 CICS TS for z/OS: CICS Diagnosis Reference

Module Function

DFHCCTRI Trace interpreter routine for the catalog domains.

DFHCCUTL Offline utility to initialize the local catalog.

Exits
No global user exit points are provided in these domains.

Trace
The point IDs for the local catalog domain are of the form LC xxxx; the corresponding trace levels are
LC 1 and Exc.

The point IDs for the global catalog domain are of the form GC xxxx; the corresponding trace levels are
GC 1 and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

CICS catalog domains (CC/GC)

Chapter 75. CICS catalog domains (CC/GC) 639

640 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 76. Directory manager domain (DD)

The directory manager domain (also sometimes known simply as “directory manager”) manages
directories of named tokens.

Directory manager domain’s specific gates
Table 37 summarizes the directory manager domain’s specific gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gates, and the functions provided by the gates.

Table 37. Directory manager domain’s specific gates
Gate Trace Function

DDDI DD 0201
DD 0202

CREATE_DIRECTORY
ADD_ENTRY
DELETE_ENTRY
REPLACE_DATA

DDLO DD 0301
DD 0302

LOCATE

DDBR DD 0401
DD 0402

START_BROWSE
GET_NEXT_ENTRY
END_BROWSE

DDDI gate, CREATE_DIRECTORY function
The CREATE_DIRECTORY function of the DDDI gate is used to create a new directory with entry names
of a given length.

Input parameters
DIRECTORY_NAME

is the four_character name of the directory to be created.
NAME_LENGTH is the length of entry names in the directory. This value must be a multiple of four, and

less than 256.

Output parameters
DIRECTORY_TOKEN

is the directory token
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID DUPLICATE_DIRECTORY
INVALID_NAME_LEN

DDDI gate, ADD_ENTRY function
The ADD_ENTRY function of the DDDI gate is used to add an entry to a directory.

Input parameters
DIRECTORY_TOKEN

is the token for the directory.
ENTRY_NAME is the address of the entry name. The length is fixed for the directory.
DATA_TOKEN is the data to be associated with the entry name in the directory.
SUSPEND indicates whether Storage Manager GETMAIN requests should be conditional or

unconditional. Takes one of the values:

© Copyright IBM Corp. 1997, 2011 641

YES|NO

Output parameters
DUPLICATE_DATA_TOKEN

is the data currently associated with the entry name if it already exists in the directory.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION DUPLICATE
INSUFFICIENT_STORAGE

INVALID INVALID_DIRECTORY

DDDI gate, DELETE_ENTRY function
The DELETE_ENTRY function of the DDDI gate is used to delete an entry from a directory.

Input parameters
DIRECTORY_TOKEN

is the token for the directory.
ENTRY_NAME is the address of the entry name. The length is fixed for the directory.

Output parameters
DATA_TOKEN is the data associated with the entry name when it was deleted.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

INVALID INVALID_DIRECTORY

DDDI gate, REPLACE_DATA function
The REPLACE_DATA function of the DDDI gate is used to replace the data associated with an existing
entry name in a directory.

Input parameters
DIRECTORY_TOKEN

is the token for the directory.
ENTRY_NAME is the address of the entry name. The length is fixed for the directory.
NEW_DATA_TOKEN

is the new data to be associated with the entry name.
PRIOR_DATA_TOKEN

is an optional parameter that indicates the data expected to be associated with the entry
name just prior to it being replaced.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

Directory manager domain (DD)

642 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND
DATA_CHANGED

INVALID INVALID_DIRECTORY

DDLO gate, LOCATE function
The LOCATE function of the DDLO gate is used to locate the data associated with an existing entry name
in a directory.

Input parameters
DIRECTORY_TOKEN

is the token for the directory.
ENTRY_NAME is the address of the entry name. The length is fixed for the directory.

Output parameters
DATA_TOKEN is the data associated with the entry name.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

INVALID INVALID_DIRECTORY

DDBR gate, START_BROWSE function
The START_BROWSE function of the DDBR gate is used to start an alphabetical browse through all of
the entries in a directory.

Input parameters
DIRECTORY_TOKEN

is the token for the directory.
AT_NAME is the address of an entry name at which the browse is to start. The first name found will

be the first which is greater than or equal to this in alphabetical order.
TASK_RELATED is an optional parameter which indicates whether the browse will end at task end. It can

be one of these values:
YES|NO

if not specified this parameter defaults to YES.

Output parameters
BROWSE_TOKEN is the token for this browse.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_DIRECTORY

DDBR gate, GET_NEXT_ENTRY function
The GET_NEXT_ENTRY function of the DDBR gate is used to get the next entry name in alphabetical
order in a directory.

Directory manager domain (DD)

Chapter 76. Directory manager domain (DD) 643

Input parameters
DIRECTORY_TOKEN

is the token for the directory.
BROWSE_TOKEN is the token for the browse.
ENTRY_NAME is a buffer in which the entry name will be returned.

Output parameters
DATA_TOKEN is the token associated with the entry name.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION BROWSE_END

INVALID INVALID_DIRECTORY
INVALID_BROWSE
INVALID_NAME

DDBR gate, END_BROWSE function
The END_BROWSE function of the DDBR gate is used to end a browse on a directory.

Input parameters
DIRECTORY_TOKEN

is the token for the directory.
BROWSE_TOKEN is the token for the browse.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_DIRECTORY
INVALID_BROWSE

Directory manager domain’s generic gates
Table 38 summarizes the directory manager domain’s generic gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gates, the functions provided by the gates, and the generic
formats for calls to the gates.

Table 38. Directory manager domain’s generic gates
Gate Trace Function Format

DDDM DD 0101
DD 0102

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

For descriptions of these functions and their input and output parameters, refer to the sections dealing with
the corresponding generic formats:

Directory manager domain (DD)

644 CICS TS for z/OS: CICS Diagnosis Reference

Functions and parameters

Format DMDM—“Domain manager domain’s generic formats” on page 669

In preinitialization the directory manager adds its general subpool and global lock.

In initialization, quiesce, and termination processing, the directory manager domain performs only internal
routines.

Exits
No global user exit points are provided in this domain.

Trace
The point IDs for the directory manager domain are of the form DD xxxx; the corresponding trace levels
are DD 1, DD 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Directory manager domain (DD)

Chapter 76. Directory manager domain (DD) 645

646 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 77. Document Handler domain (DH)

The document handler domain manages CICS Documents.

Document Handler domain’s specific gates
Table 39 summarizes the document handler domain’s specific gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gates, the functions provided by the gates, and whether or not
the functions are available through the exit programming interface (XPI).

Table 39. Document Handler domain’s specific gates
Gate Trace Function XPI

DHDH DH 0120
DH 0121

CREATE_DOCUMENT
INSERT_DATA
INSERT_BOOKMARK
REPLACE_DATA
DELETE_DOCUMENT
DELETE_DATA
DELETE_BOOKMARK
RETRIEVE_WITH_CTLINFO
RETRIEVE_WITHOUT_CTLINFO
INQUIRE_DOCUMENT

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

DHSL DH 0200
DH 0201

SET_SYMBOL_VALUE_BY_API,
SET_SYMBOL_VALUE_BY_SSI,
ADD_SYMBOL_LIST
EXPORT_SYMBOL_LIST
IMPORT_SYMBOL_LIST

NO
NO
NO
NO
NO

DHTM DH 0401
DH 0402

INITIALIZE_DOCTEMPLATES
ADD_REPLACE_DOCTEMPLATE
DELETE_DOCTEMPLATE
INQUIRE_DOCTEMPLATE
INQUIRE_TEMPLATE_STATUS
START_BROWSE
GET_NEXT
END_BROWSE
READ_TEMPLATE

NO
NO
NO
NO
NO
NO
NO
NO
NO

DHRP DH 0C01
DH 0C02

RECOVER_DEFINITIONS NO

DHDH gate, CREATE_DOCUMENT function
The CREATE_DOCUMENT function of the DHDH gate is used to create a new CICS document.

Input parameters
[TEXT] is a buffer containing a block of text to be added to the document.
[BINARY] is a buffer containing a block of binary data to be added to the document.
[TEMPLATE_BUFFER]

is a buffer containing a template to be added to the document.
[TEMPLATE_NAME]

is the name of an RDO defined DOCTEMPLATE which is to be added to the document.
[SOURCE_DOCUMENT]

is the document token of an existing document created by the same CICS task which is to
be added to the document.

[RETRIEVED_DOCUMENT]
is a buffer containing a document in a retrieved format which is to be added to the
document.

[HOST_CODEPAGE]
is the character encoding for the block of data being added to the document. This
parameter is taken into account for the TEXT and TEMPLATE_BUFFER options and
ignored for all other options.

© Copyright IBM Corp. 1997, 2011 647

[SYMBOL_LIST]
is a buffer containing a list of symbols to be added to the symbol table of the document.

[TEMPLATE_IN_ERROR]
is a buffer which is used by the Document Handler domain to return the name of a
DOCTEMPLATE in which an error has been detected. This parameter is only meaningful
when specified with the TEMPLATE_NAME option or the TEMPLATE_BUFFER option
where the template in the TEMPLATE_BUFFER option contains an embedded template.

Output parameters
DOCUMENT_TOKEN

is the token identifying the newly created document.
ERROR_OFFSET is the offset into a template where a syntax error has been detected.
RETRIEVE_SIZE

is the maximum size in bytes that a retrieved copy of the document can be.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CODEPAGE_NOT_SPECIFIED
INVALID_HOST_CODEPAGE
INVALID_TEMPLATE_SYNTAX
TEMPLATE_NOT_FOUND
SOURCE_DOC_NOT_FOUND
INVALID_RETRIEVE_FORMAT
SYMBOL_NAME_INVALID
SYMBOL_VALUE_INVALID
EMBED_DEPTH_EXCEEDED
INVALID_TEMPLATE_LENGTH

DHDH gate, INSERT_DATA function
The INSERT_DATA function of the DHDH gate is used to insert a block of data into an existing document.

Input parameters
DOCUMENT_TOKEN

is the token which identifies the document into which the data will be inserted.
[TEXT] is a buffer containing a block of text to be added to the document.
[BINARY] is a buffer containing a block of binary data to be added to the document.
[TEMPLATE_BUFFER]

is a buffer containing a template to be added to the document.
[TEMPLATE_NAME]

is the name of an RDO defined DOCTEMPLATE which is to be added to the document.
[SYMBOL] is the name of a symbol defined in the symbol table. The value associated with the symbol

will be added to the document.
[SOURCE_DOCUMENT]

is the document token of an existing document created by the same CICS task which is to
be added to the document.

[RETRIEVED_DOCUMENT]
is a buffer containing a document in a retrieved format which is to be added to the
document.

[HOST_CODEPAGE]
is the character encoding for the block of data being added to the document. This
parameter is taken into account for the TEXT, SYMBOL and TEMPLATE_BUFFER options
and ignored for all other options.

Document Handler domain (DH)

648 CICS TS for z/OS: CICS Diagnosis Reference

[INSERT_POINT]
identifies the beginning or end as the position at which data should be inserted into a
document. It can have either of these values:
START|END

[INSERT_AT] is the name of a bookmark which identifies the position at which the data should be
inserted.

[TEMPLATE_IN_ERROR]
is a buffer which is used by the Document Handler domain to return the name of a
DOCTEMPLATE in which an error has been detected. This parameter is only meaningful
when specified with the TEMPLATE_NAME option or the TEMPLATE_BUFFER option
where the template in the TEMPLATE_BUFFER option contains an embedded template.

Output parameters
ERROR_OFFSET is the offset into a template where a syntax error has been detected.
RETRIEVE_SIZE

is the maximum size in bytes that a retrieved copy of the document can be.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CODEPAGE_NOT_SPECIFIED
INVALID_HOST_CODEPAGE
EMBED_DEPTH_EXCEEDED
INSERTPOINT_NOT_FOUND
INVALID_TEMPLATE_SYNTAX
TEMPLATE_NOT_FOUND
SOURCE_DOC_NOT_FOUND
INVALID_RETRIEVE_FORMAT
SYMBOL_NOT_FOUND
INVALID_TEMPLATE_LENGTH

INVALID DOCUMENT_NOT_FOUND

DHDH gate, INSERT_BOOKMARK function
The INSERT_BOOKMARK function of the DHDH gate is used to insert a bookmark into an existing
document.

Input parameters
DOCUMENT_TOKEN

is the token which identifies the document into which the bookmark will be inserted.
BOOKMARK_NAME

is the 16 byte name of a bookmark to be added to the document.
[INSERT_POINT]

identifies the beginning or end as the position at which the bookmark should be inserted
into a document. It can have either of these values:
START|END

[INSERT_AT] is the name of a bookmark which identifies the position at which the bookmark should be
inserted.

Output parameters
RETRIEVE_SIZE

is the maximum size in bytes that a retrieved copy of the document can be.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

Document Handler domain (DH)

Chapter 77. Document Handler domain (DH) 649

RESPONSE Possible REASON values

EXCEPTION INSERTPOINT_NOT_FOUND
INVALID_BOOKMARK_NAME
DUPLICATE_BOOKMARK

INVALID DOCUMENT_NOT_FOUND

DHDH gate, REPLACE_DATA function
The REPLACE_DATA function of the DHDH gate is used to replace the data between 2 bookmarks in an
existing document.

Input parameters
DOCUMENT_TOKEN

is the token which identifies the document into which the data will be inserted.
[TEXT] is a buffer containing a block of text to be added to the document.
[BINARY] is a buffer containing a block of binary data to be added to the document.
[TEMPLATE_BUFFER]

is a buffer containing a template to be added to the document.
[TEMPLATE_NAME]

is the name of an RDO defined DOCTEMPLATE which is to be added to the document.
[SYMBOL] is the name of a symbol defined in the symbol table. The value associated with the symbol

will be added to the document.
[SOURCE_DOCUMENT]

is the document token of an existing document created by the same CICS task which is to
be added to the document.

[RETRIEVED_DOCUMENT]
is a buffer containing a document in a retrieved format which is to be added to the
document.

[HOST_CODEPAGE]
is the character encoding for the block of data being added to the document. This
parameter is taken into account for the TEXT, SYMBOL and TEMPLATE_BUFFER options
and ignored for all other options.

[FROM_POSITION]
identifies the beginning or end of the document as the start of the data which is to be
replaced in the document. It can have either of these values:
START|END

[FROM_BOOKMARK]
is the name of a bookmark which identifies the start of the data which is to be replaced.

[TO_POSITION]
identifies the beginning or end of the document as the end of the data which is to be
replaced in the document. It can have either of these values:
START|END

[TO_BOOKMARK]
is the name of a bookmark which identifies the end of the data which is to be replaced.

[TEMPLATE_IN_ERROR]
is a buffer which is used by the Document Handler domain to return the name of a
DOCTEMPLATE in which an error has been detected. This parameter is only meaningful
when specified with the TEMPLATE_NAME option or the TEMPLATE_BUFFER option
where the template in the TEMPLATE_BUFFER option contains an embedded template.

Output parameters
ERROR_OFFSET is the offset into a template where a syntax error has been detected.
RETRIEVE_SIZE

is the maximum size in bytes that a retrieved copy of the document can be.
RESPONSE is the domain’s response to the call. It can have any of these values:

Document Handler domain (DH)

650 CICS TS for z/OS: CICS Diagnosis Reference

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CODEPAGE_NOT_SPECIFIED
INVALID_HOST_CODEPAGE
EMBED_DEPTH_EXCEEDED
INVALID_TEMPLATE_SYNTAX
TEMPLATE_NOT_FOUND
SOURCE_DOC_NOT_FOUND
INVALID_RETRIEVE_FORMAT
SYMBOL_NOT_FOUND
FROM_BOOKMARK_NOT_FOUND
TO_BOOKMARK_NOT_FOUND
INVALID_TEMPLATE_LENGTH

INVALID DOCUMENT_NOT_FOUND

DHDH gate, DELETE_DOCUMENT function
The DELETE_DOCUMENT function of the DHDH gate is used to delete a document.

Input parameters
DOCUMENT_TOKEN

is the token which identifies the document to be deleted.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID DOCUMENT_NOT_FOUND

DHDH gate, DELETE_DATA function
The DELETE_DATA function of the DHDH gate is used to delete the data between 2 bookmarks in an
existing document.

Input parameters
DOCUMENT_TOKEN

is the token which identifies the document from which the data will be deleted.
[FROM_POSITION]

identifies the beginning or end of the document as the start of the data which is to be
deleted from the document. It can have either of these values:
START|END

[FROM_BOOKMARK]
is the name of a bookmark which identifies the start of the data which is to be deleted.

[TO_POSITION]
identifies the beginning or end of the document as the end of the data which is to be
deleted from the document. It can have either of these values:
START|END

[TO_BOOKMARK]
is the name of a bookmark which identifies the end of the data which is to be deleted.

Document Handler domain (DH)

Chapter 77. Document Handler domain (DH) 651

Output parameters
RETRIEVE_SIZE

is the maximum size in bytes that a retrieved copy of the document can be.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION FROM_BOOKMARK_NOT_FOUND
TO_BOOKMARK_NOT_FOUND
INVALID_BOOKMARK_SEQUENCE

INVALID DOCUMENT_NOT_FOUND

DHDH gate, DELETE_BOOKMARK function
The DELETE_BOOKMARK function of the DHDH gate is used to delete a bookmark in an existing
document.

Input parameters
DOCUMENT_TOKEN

is the token which identifies the document from which the bookmark will be deleted.
BOOKMARK_NAME

is the name of the bookmark to be deleted from the document.

Output parameters
RETRIEVE_SIZE

is the maximum size in bytes that a retrieved copy of the document can be.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION BOOKMARK_NOT_FOUND

INVALID DOCUMENT_NOT_FOUND

DHDH gate, RETRIEVE_WITH_CTLINFO function
The RETRIEVE_WITH_CTLINFO function of the DHDH gate is used to retrieve a copy of an existing
document. The retrieved copy will contain embedded control information.

Input parameters
DOCUMENT_TOKEN

is the token which identifies the document to be retrieved.
DOCUMENT_BUFFER

is a buffer into which the Document Handler domain will place the copy of the document.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID DOCUMENT_NOT_FOUND

Document Handler domain (DH)

652 CICS TS for z/OS: CICS Diagnosis Reference

DHDH gate, RETRIEVE_WITHOUT_CTLINFO function
The RETRIEVE_WITHOUT_CTLINFO function of the DHDH gate is used to retrieve a copy of an existing
document. The retrieved copy will only contain the data in the document.

Input parameters
DOCUMENT_TOKEN

is the token which identifies the document to be retrieved.
DOCUMENT_BUFFER

is a buffer into which the Document Handler domain will place the copy of the document.
[CLIENT_CODEPAGE]

is the character encoding that the retrieved document should be converted to when it is
placed in the buffer.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_HOST_CODEPAGE
INVALID_CLIENT_CODEPAGE

INVALID DOCUMENT_NOT_FOUND

DHDH gate, INQUIRE_DOCUMENT function
The INQUIRE_DOCUMENT function of the DHDH gate is used to obtain information about the document.

Input parameters
DOCUMENT_TOKEN

is the token which identifies the document to be queried.

Output parameters
[DOCUMENT_SIZE]

is the size of the data in a document.
[RETRIEVE_SIZE]

is the maximum size in bytes that a retrieved copy of the document can be.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID DOCUMENT_NOT_FOUND

DHSL gate, SET_SYMBOL_VALUE_BY_API function
The SET_SYMBOL_VALUE_BY_API function of the DHSL gate is used to set the value of a symbol in the
symbol table. If the symbol does not exist in the table, it will be added. If the symbol does exist in the
table, it will always be replaced.

Input parameters
DOCUMENT_TOKEN

is the token which identifies the document that owns the symbol table.
SYMBOL_NAME is the name of the symbol in the symbol table.
VALUE is the value to be associated with the symbol.

Document Handler domain (DH)

Chapter 77. Document Handler domain (DH) 653

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION GETMAIN_ERROR
SYMBOL_NAME_INVALID

INVALID DOCUMENT_NOT_FOUND

DHSL gate, SET_SYMBOL_VALUE_BY_SSI function
The SET_SYMBOL_VALUE_BY_SSI function of the DHSL gate is used to set the value of a symbol in the
symbol table. If the symbol does not exist in the table, it will be added. If the symbol does exist in the
table, it will only be replaced if it was previously set using the SET_SYMBOL_VALUE_BY_SSI function.

Input parameters
DOCUMENT_TOKEN

is the token which identifies the document that owns the symbol table.
SYMBOL_NAME is the name of the symbol in the symbol table.
VALUE is the value to be associated with the symbol.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION GETMAIN_ERROR
SYMBOL_NAME_INVALID

INVALID DOCUMENT_NOT_FOUND

DHSL gate, ADD_SYMBOL_LIST function
The ADD_SYMBOL_LIST function of the DHSL gate is used to add a list of symbols to the symbol table at
one time.

Input parameters
DOCUMENT_TOKEN

is the token which identifies the document that owns the symbol table.
SYMBOL_LIST is a buffer containing a list of symbols to be added to the symbol table of the document.

Output parameters
ERROR_OFFSET is the offset into the symbol list where a syntax error has been detected.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION GETMAIN_ERROR
SYMBOL_NAME_INVALID
SYMBOL_VALUE_INVALID

INVALID DOCUMENT_NOT_FOUND

Document Handler domain (DH)

654 CICS TS for z/OS: CICS Diagnosis Reference

DHSL gate, EXPORT_SYMBOL_LIST function
The EXPORT_SYMBOL_LIST function of the DHSL gate is used to export all the symbols in the symbol
table in a form that can be re-imported with IMPORT_SYMBOL_LIST.

Input parameters
DOCUMENT_TOKEN

is the token which identifies the document that owns the symbol table.
SYMBOL_LIST_BUFFER

is a buffer that is to contain the exported symbol list.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID DOCUMENT_NOT_FOUND

DHSL gate, IMPORT_SYMBOL_LIST function
The IMPORT_SYMBOL_LIST function of the DHSL gate is used to import all the symbols in the symbol
table that were exported with EXPORT_SYMBOL_LIST.

Input parameters
DOCUMENT_TOKEN

is the token which identifies the document that owns the symbol table.
SYMBOL_LIST_BUFFER

is a buffer that contains the symbol list to be added to the symbol table. This list should
have been created using and the EXPORT_SYMBOL_LIST function.

Output parameters
ERROR_OFFSET is the offset into the list where a syntax error has been detected.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SYMBOL_NAME_INVALID
SYMBOL_VALUE_INVALID

INVALID DOCUMENT_NOT_FOUND

DHTM gate, INITIALIZE_DOCTEMPLATES function
The INITIALIZE_DOCTEMPLATES function of the DHSL gate is used to initialize the state required by the
template manager.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER DIRECTORY_ERROR

Document Handler domain (DH)

Chapter 77. Document Handler domain (DH) 655

DHTM gate, ADD_REPLACE_DOCTEMPLATE function
The ADD_REPLACE_DOCTEMPLATE function of the DHTM gate is used to install a document template
into the currently executing CICS system.

Input parameters
DOCTEMPLATE is the name of the DOCTEMPLATE resource that is to be added.
TEMPLATE_NAME

is the name by which the DOCTEMPLATE is known outside of RDO.
RESOURCE_TYPE

specifies the type of resource containing the DOCTEMPLATE. It can have one of the
following values:
PDS_MEMBER|FILE|PROGRAM|TSQUEUE|TDQUEUE|EXITPGM

RESOURCE_NAME
is the name of the resource containing the DOCTEMPLATE.

[DDNAME] is the DDNAME of the PDS containing the DOCTEMPLATE resource if the resource
resides on a PDS.

Output parameters
[DATASET] is the dataset name of the PDS containing the DOCTEMPLATE resource if the resource

resides on a PDS.
[DOCTEMPLATE_IN_USE]

is the name of the DOCTEMPLATE definition that uses the same TEMPLATE_NAME as
the resource being defined.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID, DISASTER or EXCEPTION. Possible values
are:

RESPONSE Possible REASON values

INVALID INVALID_RESOURCE_TYPE

DISASTER DIRECTORY_ERROR

EXCEPTION GETMAIN_FAILED
NAME_IN_USE
NOT_FOUND
DDNAME_NOT_FOUND
MEMBER_NOT_FOUND

DHTM gate, READ_TEMPLATE function
The READ_TEMPLATE function of the DHTM gate is used to read a named template into a buffer
provided by the caller.

Input parameters
TEMPLATE_NAME

is the name of a previously installed document template.
TEMPLATE_BUFFER

is the buffer into which the template is to be read.

Output parameters
[DOCTEMPLATE]

is the name of the DOCTEMPLATE resource as it is known to RDO.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

Document Handler domain (DH)

656 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER DIRECTORY_ERROR
INVALID_RESOURCE_TYPE

EXCEPTION NOT_FOUND NOT_USABLE TRUNCATED

DHTM gate, INQUIRE_DOCTEMPLATE function
The INQUIRE_DOCTEMPLATE function of the DHTM gate returns information about a previously installed
document template.

Input parameters
DOCTEMPLATE is the name of the DOCTEMPLATE as known to RDO.

Output parameters
TEMPLATE_NAME

is the full name of the template as known outside RDO.
RESOURCE_TYPE

is the CICS or non-CICS resource type associated with the template. It can have one of
the following values:
PDS_MEMBER|FILE|PROGRAM|TSQUEUE|TDQUEUE|EXITPGM

RESOURCE_NAME
is the name of the CICS or non-CICS resource.

DATASET is the dataset name of the template PDS if the RESOURCE_TYPE indicates a PDS.
DDNAME is the DDNAME of the template PDS if the RESOURCE_TYPE indicates a PDS.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER DIRECTORY_ERROR

EXCEPTION NOT_FOUND

DHTM gate, INQUIRE_TEMPLATE_STATUS function
The INQUIRE_TEMPLATE_STATUS function of the DHTM gate is used to inquire the install status of one
or more templates.

Input parameters
TEMPLATE_NAME_LIST

is a list of template names whose install status is sought.
TEMPLATE_STATUS_LIST

is a list of install status indicators for the templates named in the TEMPLATE_NAME_LIST

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

DHTM gate, DELETE_DOCTEMPLATE function
The DELETE_DOCTEMPLATE function of the DHTM gate deletes a previously installed DOCTEMPLATE.

Input parameters
DOCTEMPLATE is the name of the DOCTEMPLATE as known to RDO.

Document Handler domain (DH)

Chapter 77. Document Handler domain (DH) 657

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER DIRECTORY_ERROR

EXCEPTION NOT_FOUND

DHTM gate, START_BROWSE function
The START_BROWSE function of the DHTM gate is used to initiate a browse of installed DOCTEMPLATE
definitions.

Output parameters
BROWSE_TOKEN is a token identifying this DOCTEMPLATE browse.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

DHTM gate, GET_NEXT function
The GET_NEXT function of the DHTM gate returns information about the next installed DOCTEMPLATE in
the browse.

Input parameters
BROWSE_TOKEN is the token identifying this browse of the DOCTEMPLATE definitions.

Output parameters
DOCTEMPLATE is the name of the DOCTEMPLATE as known to RDO.
TEMPLATE_NAME

is the full name of the template as known outside RDO.
RESOURCE_TYPE

is the CICS or non-CICS resource type associated with the template. It can have one of
the following values:
PDS_MEMBER|FILE|PROGRAM|TSQUEUE|TDQUEUE|EXITPGM

RESOURCE_NAME
is the name of the CICS or non-CICS resource.

DATASET is the dataset name of the template PDS if the RESOURCE_TYPE indicates a PDS.
DDNAME is the DDNAME of the template PDS if the RESOURCE_TYPE indicates a PDS.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_BROWSE_TOKEN

EXCEPTION BROWSE_END

DHTM gate, END_BROWSE function
The END_BROWSE function of the DHTM gate is used to terminate a browse of installed DOCTEMPLATE
definitions.

Input parameters
BROWSE_TOKEN is the token identifying this browse of the DOCTEMPLATE definitions.

Document Handler domain (DH)

658 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_BROWSE_TOKEN

DHRP gate, RECOVER_DEFINITIONS function
The RECOVER_DEFINITIONS function of the DHRP gate is used to purge/recover DOCTEMPLATE
definitions from the global catalog depending upon the CICS start type.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER INVALID_BROWSE_TOKEN
CATALOG_BROWSE_FAILURE
CATALOG_PURGE_FAILURE
LOGIC_ERROR
WAIT_PHASE_FAILURE
ABEND

Document Handler domain’s generic gates
Table 40 summarizes the document handler domain’s generic gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gates, the functions provided by the gates, and the generic
formats for calls to the gates.

Table 40. Document Handler domain’s generic gates
Gate Trace Function Format

DMDM DH 0101
DH 0102
DH 0103
DH 0104
DH 0105
DH 0106
DH 0107
DH 0108

INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

APUE DH 0D01
DH 0D02
DH 0D03
DH 0D04
DH 0D05
DH 0D06
DH 0D07
DH 0D08

SET_EXIT_STATUS APUE

RMRO DH 0301
DH 0302
DH 0303
DH 0304
DH 0305
DH 0308

PERFORM_PREPARE
PERFORM_COMMIT
PERFORM_SHUNT
PERFORM_UNSHUNT
START_BACKOUT
END_BACKOUT

RMRO

Document Handler domain (DH)

Chapter 77. Document Handler domain (DH) 659

Table 40. Document Handler domain’s generic gates (continued)
Gate Trace Function Format

RMDE DH 0301
DH 0302
DH 0303
DH 0304
DH 0306
DH 0308

START_DELIVERY
DELIVER_RECOVERY
END_DELIVERY

RMDE

RMKP DH 0301
DH 0302
DH 0303
DH 0304
DH 0307
DH 0308

TAKE_KEYPOINT RMKP

For descriptions of these functions and their input and output parameters, refer to the Sections dealing
with the corresponding generic formats:

Functions and parameters

Format DMDM—“Domain manager domain’s generic formats” on page 669

Format APUE—“Application domain’s generic formats” on page 593

Format RMRO—“Recovery Manager domain’s call back formats” on page 1088

Format RMDE—“Recovery Manager domain’s call back formats” on page 1088

Format RMKP—“Recovery Manager domain’s call back formats” on page 1088

Modules

Module Function

DFHDHDM Handles the following requests:
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHDHDH Handles the following requests:
CREATE_DOCUMENT
INSERT_DATA
INSERT_BOOKMARK
REPLACE_DATA
DELETE_DOCUMENT
DELETE_DATA
DELETE_BOOKMARK
RETRIEVE_WITH_CTLINFO
RETRIEVE_WITHOUT_CTLINFO
INQUIRE_DOCUMENT

DFHDHSL Handles the following requests:
SET_SYMBOL_VALUE_BY_API,
SET_SYMBOL_VALUE_BY_SSI,
ADD_SYMBOL_LIST
EXPORT_SYMBOL_LIST
IMPORT_SYMBOL_LIST

Document Handler domain (DH)

660 CICS TS for z/OS: CICS Diagnosis Reference

Module Function

DFHDHTM Handles the following requests:
INITIALIZE_DOCTEMPLATES
ADD_REPLACE_DOCTEMPLATE
DELETE_DOCTEMPLATE
INQUIRE_DOCTEMPLATE
INQUIRE_TEMPLATE_STATUS
START_BROWSE
GET_NEXT
END_BROWSE
READ_TEMPLATE

DFHDHRM Handles the following requests:
PERFORM_PREPARE
PERFORM_COMMIT
PERFORM_SHUNT
PERFORM_UNSHUNT
START_BACKOUT
END_BACKOUT
START_DELIVERY
DELIVER_RECOVERY
END_DELIVERY
TAKE_KEYPOINT

DFHDHUE Handles the following requests:
SET_EXIT_STATUS

DFHDHPB Processes data supplied on the BINARY parameter of CREATE_DOCUMENT, INSERT_DATA
and REPLACE_DATA calls of DFHDHDH.

DFHDHPD Processes data supplied on the SOURCE_DOCUMENT parameter of CREATE_DOCUMENT,
INSERT_DATA and REPLACE_DATA calls of DFHDHDH.

DFHDHPM Processes data supplied on the TEMPLATE_NAME parameter of CREATE_DOCUMENT,
INSERT_DATA and REPLACE_DATA calls of DFHDHDH.

DFHDHPS Processes data supplied on the SYMBOL parameter of INSERT_DATA and REPLACE_DATA
calls of DFHDHDH.

DFHDHPT Processes data supplied on the TEXT parameter of CREATE_DOCUMENT, INSERT_DATA
and REPLACE_DATA calls of DFHDHDH.

DFHDHPU Processes data supplied on the TEMPLATE_BUFFER parameter of CREATE_DOCUMENT,
INSERT_DATA and REPLACE_DATA calls of DFHDHDH.

DFHDHPX Processes data supplied on the RETRIEVED_DOCUMENT parameter of
CREATE_DOCUMENT, INSERT_DATA and REPLACE_DATA calls of DFHDHDH.

DFHDHPR Reads templates held as member’s of partitioned datasets.

DFHDHEI Reads templates held on CICS resources.

DFHDHPR Reads PDS members containing templates.

DFHDHDUF DH domain offline dump formatting routine

DFHDHTRI Interprets DH domain trace entries

Exits
No global user exit points are provided in this domain.

Trace
The point IDs for the document handler domain are of the form DH xxxx; the corresponding trace levels
are DH 1, DH ,.2, and Exc.

Document Handler domain (DH)

Chapter 77. Document Handler domain (DH) 661

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Document Handler domain (DH)

662 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 78. Domain manager domain (DM)

The domain manager domain (also sometimes known simply as “domain manager”) is responsible for
maintaining, through the use of catalog services, permanent information about individual domains.

Each domain has certain permanent characteristics. These are stored on the local catalog and include the
name, token, and ID; these characteristics are unique for each domain. Each domain also has volatile
characteristics (including the phase number and the status), which are not stored on the catalog.

The domain manager attaches initialization and termination tasks for other domains. It maintains phase
information of the other domains to allow controlled introduction and withdrawal of domain services during
initialization and termination. For each domain, a phase number denotes the set of services that are
available from the domain. An increased phase number would correspond to an increased set of available
functions.

During initialization, the system phase is the minimum of the phase numbers of the active domains. During
shutdown, the system phase is the maximum of the phase numbers of the active domains.

The domain manager also maintains and manages a queue of waiting domains (called “waiters”); these
waiting domains are waiting for a specific domain to reach a certain phase or for the system phase to
reach a certain level.

Domain manager domain’s specific gates
Table 41 summarizes the domain manager domain’s specific gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gates, the functions provided by the gates, and whether or not
the functions are available through the exit programming interface (XPI).

Table 41. Domain manager domain’s specific gates
Gate Trace Function XPI

DMDM DM 0001
DM 0002

ADD_DOMAIN
QUIESCE_SYSTEM
SET_PHASE
WAIT_PHASE

NO
NO
NO
NO

DMIQ DM 0003
DM 0004

START_BROWSE
GET_NEXT
END_BROWSE
INQ_DOMAIN_BY_NAME
INQ_DOMAIN_BY_TOKEN
INQ_DOMAIN_BY_ID

NO
NO
NO
NO
NO
NO

DMEN DM 0210
DM 0211

LISTEN
DELETE
NOTIFY_SMSVSAM_OPERATIONAL

NO
NO
NO

DMEN gate, LISTEN function
The LISTEN function of the DMEN gate is issued to register an interest in an event notification facility
(ENF) event. The MVS event notification facility is a generalized communication facility which allows
subsystems to broadcast notification of events.

If a domain wishes to be notified of particular ENF events, it must register the events that it wishes to be
notified of with Domain Manager using the LISTEN interface.

When an ENF event occurs domain manager will invoke the named listen gate of all domains that
registered for that event.

Input parameters
EVENT is the event that the caller is registering an interest in, and can have any of these values:

© Copyright IBM Corp. 1997, 2011 663

SMSVSAM_OPERATIONAL
LISTEN_GATE is the gate number of the gate at which the caller wishes to be notified when the event

occurs.

Output parameters
RESPONSE is DFHDMEN's response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|
PURGED

[REASON] is returned when response is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_EVENT
DUPLICATE_LISTEN

DMEN gate, DELETE function
The DELETE function of the DMEN gate is used to deregister an interest in an ENF event.

If a domain is registered with domain manager for notification of an ENF event and that domain no longer
wishes to receive notification of that event then it can deregister its interest in the event using the DELETE
interface.

Input parameters
EVENT is the event which the caller wishes to deregister its interest in. It can have any of these

values:
SMSVSAM_OPERATIONAL

LISTEN_GATE is the gate number of the gate which the caller specified as its listen gate when it
registered an interest in this event.

Output parameters
RESPONSE is DFHDMEN's response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|
PURGED

[REASON] is returned when response is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION LISTEN_NOT_ACTIVE

DMEN gate, NOTIFY_SMSVSAM_OPERATIONAL function
Domains that have registered their interest in ENF events are invoked at their identified listen gates when
the ENF event occurs. A unique DMEN notify function is provided for each event to allow event specific
parameters to be specified in a meaningful way.

The NOTIFY_SMSVSAM_OPERATIONAL function of the DMEN gate is used to notify domains which
have registered an interest in it of the occurrence of the SMSVSAM operational event.

Input parameters
NOTIFY_PLIST is a parameter list specific to the ENF event being notified, which was supplied by the

subsystem issuing the ENF signal.

Output parameters
RESPONSE is DFHDMEN's response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|
PURGED

[REASON] is returned when response is EXCEPTION. Possible values are:

Domain manager domain (DM)

664 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION RESTART_RLS_FAILED

DMDM gate, ADD_DOMAIN function
The ADD_DOMAIN function of the DMDM gate adds a new domain to the DM table (on the CICS catalog)
of all domains. Because the add is placed on the catalog, it survives system failure. A delete is required to
remove the entry.

Input parameters
DOMAIN_NAME is a unique string, 1 through 8 characters, which is the name of the domain.
PROGRAM_NAME is a unique string, 1 through 8 characters, which is the name of the initialization module for

the specified domain.
DOMAIN_TOKEN is the unique index that corresponds to the new table entry for the domain.
DOMAIN_ID is the unique character pair, usually an abbreviated form of the domain name.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER LOADER_ERROR, ABEND, LOOP

EXCEPTION DUPLICATE_DOMAIN_NAME
PROGRAM_NOT_FOUND
INSUFFICIENT_STORAGE
DUPLICATE_DOMAIN_TOKEN

DMDM gate, QUIESCE_SYSTEM function
The QUIESCE_SYSTEM function of the DMDM gate is used to call the domain manager to cause a
normal shutdown of the system.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER INSUFFICIENT_STORAGE
ABEND
LOOP

INVALID SYSTEM_INITIALIZING

DMDM gate, SET_PHASE function
When a domain issues SET_PHASE during initialization, it is declaring that it is now prepared to support a
given set of services.

When a domain issues SET_PHASE during quiesce, it is asserting that it still needs the set of services
identified by that phase number.

Domain manager domain (DM)

Chapter 78. Domain manager domain (DM) 665

The system phase is the minimum of all active domains’ phases during initialization, and the maximum
during quiesce.

Input parameters
PHASE specifies the set of services that are to be available.
STATUS is either ACTIVE or INACTIVE.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID SYSTEM_NOT_INITIALIZING
SYSTEM_NOT_QUIESCING
INVALID_PHASE

DMDM gate, WAIT_PHASE function
The WAIT_PHASE function of the DMDM gate is used to wait until the services required to carry on the
work are available.

A WAIT_PHASE for a given phase is understood by CICS as a SET_PHASE for at least the phase
specified in the phase parameter of WAIT_PHASE.

Input parameters
PHASE specifies the set of services that are to be available.
STATUS specifies the required status. It is either ACTIVE or INACTIVE.
[DOMAIN_TOKEN]

specifies the domain. If this is omitted, a wait on the system phase is actioned, rather than
for a particular domain.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION DOMAIN_TOKEN_NOT_ACTIVE

INVALID SYSTEM_NOT_INITIALIZING
SYSTEM_NOT_QUIESCING
INVALID_PHASE

DMIQ gate, START_BROWSE function
The START_BROWSE function of the DMIQ gate is used to create a browse thread. The GET_NEXT
function request issued after this command returns the first domain in the active domain list.

Input parameters
None.

Domain manager domain (DM)

666 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
BROWSE_TOKEN is the token identifying this browse session.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

DMIQ gate, GET_NEXT function
The GET_NEXT function of the DMIQ gate is used to return the next available record or an END
indication.

Input parameters
BROWSE_TOKEN is the token identifying this browse session.

Output parameters
DOMAIN_NAME is a unique string, 1 through 8 characters, which is the name of the domain.
PROGRAM_NAME is a unique string, 1 through 8 characters, which is the name of the initialization module for

the specified domain.
DOMAIN_TOKEN is the unique index that corresponds to the new table entry for the domain.
DOMAIN_ID is the unique character pair, usually an abbreviated form of the domain name.
DOMAIN_STATUS

is ACTIVE or INACTIVE.
DOMAIN_PHASE is the current phase level for that domain.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION END_LIST

INVALID BROWSE_TOKEN_NOT_FOUND

DMIQ gate, END_BROWSE function
The END_BROWSE function of the DMIQ gate is used to release the browse thread at any time.

Input parameters
BROWSE_TOKEN is the token identifying this browse session.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID BROWSE_TOKEN_NOT_FOUND

Domain manager domain (DM)

Chapter 78. Domain manager domain (DM) 667

DMIQ gate, INQ_DOMAIN_BY_NAME function
The INQ_DOMAIN_BY_NAME function of the DMIQ gate is used to get the domain’s token, ID, status,
and phase for the specified domain name.

Input parameters
DOMAIN_NAME is the unique name of an existing domain.

Output parameters
DOMAIN_TOKEN is the unique index that corresponds to the table entry for the domain.
DOMAIN_ID is the unique character pair, usually an abbreviated form of the domain name.
DOMAIN_STATUS

is ACTIVE or INACTIVE.
DOMAIN_PHASE is the current phase level for that domain.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID DOMAIN_NAME_NOT_FOUND

DMIQ gate, INQ_DOMAIN_BY_TOKEN function
The INQ_DOMAIN_BY_TOKEN function of the DMIQ gate is used to get the domain’s name, ID, status,
and phase for the specified domain token.

Input parameters
DOMAIN_TOKEN is the unique index that corresponds to the table entry for the domain.

Output parameters
DOMAIN_NAME is a unique string, 1 through 8 characters, which is the name of the domain.
DOMAIN_ID is the unique character pair, usually an abbreviated form of the domain name.
DOMAIN_STATUS

is ACTIVE or INACTIVE.
DOMAIN_PHASE is the current phase level for that domain.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID DOMAIN_TOKEN_NOT_FOUND

DMIQ gate, INQ_DOMAIN_BY_ID function
The INQ_DOMAIN_BY_ID function of the DMIQ gate is used to get the domain’s token, name, status, and
phase for the specified domain ID.

Input parameters
DOMAIN_ID is the unique character pair, usually an abbreviated form of the domain name.

Output parameters
DOMAIN_TOKEN is the unique index that corresponds to the table entry for the domain.

Domain manager domain (DM)

668 CICS TS for z/OS: CICS Diagnosis Reference

DOMAIN_NAME is a unique string, 1 through 8 characters, which is the name of the domain.
DOMAIN_STATUS

is ACTIVE or INACTIVE.
DOMAIN_PHASE is the current phase level for that domain.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID DOMAIN_ID_NOT_FOUND

Domain manager domain’s generic gates
Table 42 summarizes the domain manager domain’s generic gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gates, the functions provided by the gates, and the generic
formats for calls to the gates.

Table 42. Domain manager domain’s generic gates
Gate Trace Function Format

DSAT

None

TASK_REPLY DSAT

For descriptions of the DSAT function and its input and output parameters, refer to the section dealing with
the corresponding generic format:

Functions and parameters

Format DSAT—“Dispatcher domain’s generic formats” on page 717

Domain manager domain’s generic formats
Table 43 describes the generic formats owned by the domain manager domain and shows the functions
performed on the calls.

Table 43. Generic formats owned by the domain manager domain

Format Calling module Function

DMDM DFHKETCB
DFHDMDS
DFHDMDS
DFHKETCB

PRE_INITIALIZE
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

In the descriptions of the formats that follow, the “input” parameters are input not to the domain manager
domain, but to the domain being called by the domain manager. Similarly, the “output” parameters are
output by the domain that was called by the domain manager, in response to the call.

DMDM format, PRE_INITIALIZE function
The DFHKETCB module issues a preinitialization call to each of the following domains: LC, PA, TR, ME,
DU, LM, SM, DD, DS, XM, LD, and DM.

Domain manager domain (DM)

Chapter 78. Domain manager domain (DM) 669

Apart from the LD, and DM domains, preinitialization takes place under the job-step TCB; for LD, and DM,
it takes place under the resource-owning (RO) TCB.

In preinitialization processing, the domain manager domain reads information about domains from the local
catalog, and passes it to the kernel. It then attaches the initialization tasks for all the other domains.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER INSUFFICIENT_STORAGE
ABEND
LOOP

DMDM format, INITIALIZE_DOMAIN function
The domain manager domain issues an INITIALIZE_DOMAIN function call to a domain. In initialization
processing, the domain manager domain performs only internal routines.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER INSUFFICIENT_STORAGE
ABEND
LOOP

INVALID ALREADY_INITIALIZED

DMDM format, QUIESCE_DOMAIN function
The domain manager domain issues a QUIESCE_DOMAIN function call to a domain when the system is
required to shut down normally. The domain manager domain initiates quiesce processing by attaching the
quiesce task for each domain.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

Domain manager domain (DM)

670 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER INSUFFICIENT_STORAGE
ABEND
LOOP

DMDM format, TERMINATE_DOMAIN function
The domain manager domain issues a TERMINATE_DOMAIN function call to a domain when the system
is required to shut down quickly. This call is always issued under the job-step TCB.

The domain manager domain does no termination processing.

Input parameters
CLEAN_UP indicates whether or not the TERMINATE_DOMAIN function request is being issued under

a cleanup-only ESTAE exit. It can have either of these values:
YES|NO

YES implies restrictions for termination logic, specifically that an ATTACH request cannot
be issued.

CANCEL indicates whether or not the termination is happening because of an operator CANCEL
command. It can have either of these values:
YES|NO

YES means that attached subtasks are no longer dispatchable.
TERMINATION_TYPE

indicates whether the termination is happening because of either a quiesce or an
abnormal shutdown. It can have either of these values:
QUIESCE|IMMEDIATE

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

Modules

Module Function

DFHDMDM Handles the following requests:
INITIALIZE_DOMAIN
PRE_INITIALIZE
QUIESCE_DOMAIN
QUIESCE_SYSTEM
TERMINATE_DOMAIN
SET_PHASE
WAIT_PHASE
ADD_DOMAIN

DFHDMDS Handles the TASK_REPLY request

DFHDMDUF Formats the DM domain control blocks in a CICS system dump

DFHDMEN Handles LISTEN, DELETE, NOTIFY_SMSVSAM_OPERATIONAL

Domain manager domain (DM)

Chapter 78. Domain manager domain (DM) 671

Module Function

DFHDMENF Broadcasts ENF events to interested domains

DFHDMIQ Handles the following requests:
START_BROWSE
GET_NEXT
END_BROWSE
INQUIRE_DOMAIN_BY_ID
INQUIRE_DOMAIN_BY_NAME
INQUIRE_DOMAIN_BY_TOKEN

DFHDMSVC Provides authorized services for the DM ENF support

DFHDMTRI Interprets DM domain trace entries

DFHDMWQ Handles the following requests:
INITIALIZE
SET_UP_WAIT
RESUME_WAITERS
RESUME_DOMAIN_WAITERS
RESUME_PHASE_WAITERS

Exits
No global user exit points are provided in this domain.

Trace
The point IDs for the domain manager domain are of the form DM xxxx; the corresponding trace levels are
DM 1, DM 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Domain manager domain (DM)

672 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 79. Debugging profile domain (DP)

The Debugging profile domain manages debugging profiles.

Debugging profile domain’s specific gates
Table 44 summarizes the Debugging profile domain’s specific gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gates, and the functions provided by the gates.

Table 44. Debugging profile domain’s specific gates
Gate Trace Function XPI

DPFM DP 0300
DP 0301

GET_DEBUG_PROFILE
SAVE_DEBUG_PROFILE
DELETE_DEBUG_PROFILE
ACTIVATE_DEBUG_PROFILE
INACTIVATE_DEBUG_PROFILE
REPLACE_DEBUG_PROFILE
START_PM_BROWSE
READNEXT_PM_PROFILE
END_PM_BROWSE

No

DPIQ DP 0A00
DP 0A01

INQUIRE_PARAMETERS
SET_PARAMETERS
INQUIRE_DEBUG_TASK
SET_DEBUG_PROFILE

No

DPLM DP 0200
DP 0201

STARTBR_DEBUG_PROFILES
READNEXT_DEBUG_PROFILE
READNEXT_INPUT
ENDBR_DEBUG_PROFILES
RESTARTBR_DEBUG_PROFILES
UPDATE_PROFILE_IN_LIST

No

DPPM DP 0800
DP 0801

PATTERN_MATCH_TASK
PATTERN_MATCH_PROFILE

No

DPUM DP 0500
DP 0501

GET_USER_DEFAULTS
SAVE_USER_DEFAULTS

No

DPWD DP 1100
DP 1101

PROCESS_PAGE
PROCESS_SUBMIT

No

DPWE DP 0F00
DP 0F01

PROCESS_PAGE
PROCESS_SUBMIT

No

DPWJ DP 1000
DP 1001

PROCESS_PAGE
PROCESS_SUBMIT

No

DPWL DP 0E00
DP 0E01

PROCESS_PAGE
PROCESS_SUBMIT

No

DPXM DP 0900
DP0901

INIT_XM_CLIENT
BIND_XM_CLIENT
RELEASE_XM_CLIENT

No

DPFM gate, GET_DEBUG_PROFILE function
Retrieve a debugging profile from the debugging profile data set.

Input parameters
OWNER_USERID The userid of the debugging profile's owner
PROFILE_NAME The name of the debugging profile
[BEAN_BLOCK] A block of storage containing the bean name
[CLASS_BLOCK]

A block of storage containing the class name
[METHOD_BLOCK]

A block of storage containing the method name
[IP_NAME_OR_ADDR_BLOCK]

A block of storage containing the IP name or IP address

© Copyright IBM Corp. 1997, 2011 673

[LE_OPTIONS_BLOCK]
A block of storage containing Language Environment options

Output parameters
[TRANID] The transaction ID specified in the debugging profile
[TERMID] The terminal ID specified in the debugging profile
[PROGRAM] The program name specified in the debugging profile
[COMP_UNIT] The compile unit name specified in the debugging profile
[TYPE] The type of debugging profile. Values are C | E | J | LE
[USERID] The user ID specified in the debugging profile
[NETNAME] The terminal's network name specified in the debugging profile
[APPLID] The Applid specified in the debugging profile
[SESSION_TYPE]

The session type specified in the debugging profile. Values are LU3270 | TCP
[PORT] The port number specified in the debugging profile
[LU_3270_DISPLAY]

The 3270 display terminal to be used by Debug Tool
[JVM_PROFILE]

The JVM profile specified in the debugging profile
[TEST_LEVEL] The test level specified in the debugging profile. Values are ALL | ERROR | NONE
[COMMAND_FILE]

The command file specified in the debugging profile
[PROMPT] The prompt specified in the debugging profile
[PREFERENCE_FILE]

The preference file specified in the debugging profile
[STATUS] The status of the debugging profile. Values are ACTIVE | INACTIVE
[PATTERN_MATCH_NUMBER]

A metric computed from the contents of the debugging profile, which is compared with the
pattern match number form other profiles to determine which of the profiles is the best
match for a program instance.

[ACTIVATE_USERID]
For an active debugging profile, the user ID of the user who made it active.

RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |
KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION PROFILE_NOT_FOUND
FILE_ERROR

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPFM gate, SAVE_DEBUG_PROFILE function
Save a debug profile on the debug profile data set.

Input parameters
OWNER_USERID The userid of the profile's owner
PROFILE_NAME The name of the debugging profile
[TRANID] The transaction ID specified in the debugging profile
[TERMID] The terminal ID specified in the debugging profile
[PROGRAM] The program name specified in the debugging profile
[COMP_UNIT] The compile unit name specified in the debugging profile
[TYPE] The type of debugging profile. Values are C | E | J | LE
[BEAN_BLOCK] A block of storage containing the bean name

Debugging profile domain (DP)

674 CICS TS for z/OS: CICS Diagnosis Reference

[CLASS_BLOCK]
A block of storage containing the class name

[METHOD_BLOCK]
A block of storage containing the method name

[USERID] The user ID specified in the debugging profile
[NETNAME] The terminal's network name specified in the debugging profile
[APPLID] The Applid specified in the debugging profile
SESSION_TYPE The session type specified in the debugging profile. Values are LU3270 | TCP
[IP_NAME_OR_ADDR_BLOCK]

A block of storage containing the IP name or IP address
[PORT] The port number specified in the debugging profile
[LU_3270_DISPLAY]

The 3270 display terminal specified in the debugging profile to be used by Debug Tool
[JVM_PROFILE]

The JVM profile specified in the debugging profile
[TEST_LEVEL] The test level specified in the debugging profile. Values are ALL | ERROR | NONE
[COMMAND_FILE]

The command file specified in the debugging profile
[PROMPT] The prompt specified in the debugging profile
[PREFERENCE_FILE]

The preference file specified in the debugging profile
[LE_OPTIONS_BLOCK]

A block of storage containing Language Environment options

Output parameters
MANGLE_CODE Values are PROPERTY_ACC | UNDERSCORE | IDL_KEYWORD | MANGLED_TO_SELF
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION DUPLICATE_PROFILE
PROFILE_NAME_BLANK
PROFILE_NAME_INVALID
TRANID_INVALID
TERMID_INVALID
PROGRAM_INVALID
COMP_UNIT_INVALID
USERID_INVALID
NETNAME_INVALID
APPLID_INVALID
JVM_PROFILE_INVALID
CMD_FILE_INVALID
PREF_FILE_INVALID
CLASS_INVAL_FOR_TYPE_E
BEAN_INVAL_FOR_TYPE_J
BEAN_INVAL_FOR_TYPE_C
METHOD_INVAL_FOR_TYPE_J
CLASS_INVALID
BEAN_INVALID
METHOD_INVALID
PROMPT_INVALID
FILE_ERROR
FILE_FULL

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

Debugging profile domain (DP)

Chapter 79. Debugging profile domain (DP) 675

DPFM gate, DELETE_DEBUG_PROFILE function
Delete a debugging profile from the debugging profile data set.

Input parameters
CURRENT_USERID

The userid of the user making the request
OWNER_USERID The userid of the profile's owner
PROFILE_NAME The name of the debugging profile

Output parameters
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION PROFILE_NOT_FOUND
PROFILE_ACTIVE
FILE_ERROR

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPFM gate, ACTIVATE_DEBUG_PROFILE function

Input parameters
CURRENT_USERID

The userid of the user making the request
OWNER_USERID The userid of the profile's owner
PROFILE_NAME The name of the debugging profile
[SESSION_TYPE]

The session type specified in the debugging profile. Values are LU3270 | TCP
[IP_NAME_OR_ADDR_BLOCK]

A block of storage containing the IP name or IP address
[PORT] The port number specified in the debugging profile
[LU_3270_DISPLAY]

The 3270 display terminal specified in the debugging profile to be used by Debug Tool

Output parameters
[PATTERN_MATCH_NUMBER]

A metric computed from the contents of the debugging profile, which is compared with the
pattern match number form other profiles to determine which of the profiles is the best
match for a program instance.

RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |
KERNERROR | PURGED

[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION PROFILE_NOT_FOUND
ALREADY_ACTIVE
FILE_ERROR
FILE_FULL

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

Debugging profile domain (DP)

676 CICS TS for z/OS: CICS Diagnosis Reference

DPFM gate, INACTIVATE_DEBUG_PROFILE function
Inactivate a debug_profile on the debugging profile data set.

Input parameters
CURRENT_USERID

The userid of the user making the request
OWNER_USERID The userid of the profile's owner
PROFILE_NAME The name of the debugging profile

Output parameters
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION PROFILE_NOT_FOUND
ALREADY_INACTIVE
FILE_ERROR
FILE_FULL

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPFM gate, REPLACE_DEBUG_PROFILE function
Replace a debug_profile on the debugging profile data set.

Input parameters
OWNER_USERID The userid of the profile's owner
PROFILE_NAME The name of the debugging profile
[TRANID] The transaction ID specified in the debugging profile
[TERMID] The terminal ID specified in the debugging profile
[PROGRAM] The program name specified in the debugging profile
[COMP_UNIT] The compile unit name specified in the debugging profile
[TYPE] The type of debugging profile. Values are C | E | J | LE
[BEAN_BLOCK] A block of storage containing the bean name
[CLASS_BLOCK]

A block of storage containing the class name
[METHOD_BLOCK]

A block of storage containing the method name
[USERID] The user ID specified in the debugging profile
[NETNAME] The terminal's network name specified in the debugging profile
[APPLID] The Applid specified in the debugging profile
[SESSION_TYPE]

The session type specified in the debugging profile. Values are LU3270 | TCP
[IP_NAME_OR_ADDR_BLOCK]

A block of storage containing the IP name or IP address
[PORT] The port number specified in the debugging profile
[LU_3270_DISPLAY]

The 3270 display terminal specified in the debugging profile to be used by Debug Tool
[JVM_PROFILE]

The JVM profile specified in the debugging profile
[TEST_LEVEL] The test level specified in the debugging profile. Values are ALL | ERROR | NONE
[COMMAND_FILE]

The command file specified in the debugging profile
[PROMPT] The prompt specified in the debugging profile

Debugging profile domain (DP)

Chapter 79. Debugging profile domain (DP) 677

[PREFERENCE_FILE]
The preference file specified in the debugging profile

[LE_OPTIONS_BLOCK]
A block of storage containing Language Environment options

Output parameters
NEW_PROFILE_CREATED

Indicates whether a new profile was created. Values are YES | NO
[MANGLE_CODE]

Values are PROPERTY_ACC | UNDERSCORE | IDL_KEYWORD | MANGLED_TO_SELF
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION PROFILE_NAME_BLANK
PROFILE_NAME_INVALID
TRANID_INVALID
TERMID_INVALID
PROGRAM_INVALID
COMP_UNIT_INVALID
USERID_INVALID
NETNAME_INVALID
APPLID_INVALID
JVM_PROFILE_INVALID
CMD_FILE_INVALID
PREF_FILE_INVALID
CLASS_INVAL_FOR_TYPE_E
BEAN_INVAL_FOR_TYPE_J
BEAN_INVAL_FOR_TYPE_C
METHOD_INVAL_FOR_TYPE_J
CLASS_INVALID
BEAN_INVALID
METHOD_INVALID
PROMPT_INVALID
FILE_ERROR
FILE_FULL

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPFM gate, START_PM_BROWSE function
Start a browse for pattern matching.

Input parameters
[MATCH_TYPE] Values are TYPE_LE | TYPE_J

Output parameters
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION NO_PROFILES
FILE_ERROR

Debugging profile domain (DP)

678 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE REASON

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

INVALID

KERNERROR

PURGED

DPFM gate, READNEXT_PM_PROFILE function
Read the next profile on the debugging profile data set for pattern match.

Input parameters
[BEAN_BLOCK] A block of storage containing the bean name
[CLASS_BLOCK]

A block of storage containing the class name
[MANGLED_METHOD_BLOCK]

A block of storage containing the mangled method name
[IP_NAME_OR_ADDR_BLOCK]

A block of storage containing the IP name or IP address
[LE_OPTIONS_BLOCK]

A block of storage containing Language Environment options

Output parameters
OWNER_USERID The userid of the profile's owner
PROFILE_NAME The name of the debugging profile
TRANID The transaction ID specified in the debugging profile
TERMID The terminal ID specified in the debugging profile
PROGRAM The program name specified in the debugging profile
[COMP_UNIT] The compile unit name specified in the debugging profile
TYPE The type of debugging profile. Values are C | E | J | LE
USERID The user ID specified in the debugging profile
NETNAME The terminal's network name specified in the debugging profile
APPLID The Applid specified in the debugging profile
SESSION_TYPE The session type specified in the debugging profile. Values are LU3270 | TCP
PORT The port number specified in the debugging profile
LU_3270_DISPLAY

The 3270 display terminal specified in the debugging profile to be used by Debug Tool
JVM_PROFILE The JVM profile specified in the debugging profile
TEST_LEVEL The test level specified in the debugging profile. Values are ALL | ERROR | NONE
COMMAND_FILE The command file specified in the debugging profile
PROMPT The prompt specified in the debugging profile
PREFERENCE_FILE

The preference file specified in the debugging profile
PATTERN_MATCH_NUMBER

A metric computed from the contents of the debugging profile, which is compared with the
pattern match number form other profiles to determine which of the profiles is the best
match for a program instance.

[ACTIVATE_USERID]
For an active debugging profile, the user ID of the user who made it active.

RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |
KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

Debugging profile domain (DP)

Chapter 79. Debugging profile domain (DP) 679

RESPONSE REASON

EXCEPTION END_OF_PROFILES
FILE_ERROR

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPFM gate, END_PM_BROWSE function
End the browse for pattern matching.

Input parameters
None

Output parameters
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION FILE_ERROR

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPIQ gate, INQUIRE_PARAMETERS function
Inquire DP domain parameters.

Input parameters
None

Output parameters
[DEBUGTOOL] The value of the DEBUGTOOL system initialization parameter. Values are DEBUGTOOL_YES

| DEBUGTOOL_NO
[DTLEVEL] Specifies whether the level of Debug Tool supports the CADP transaction. Values are

DTNEW_YES | DTNEW_NO
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED

DPIQ gate, SET_PARAMETERS function
Set DP domain parameters.

Input parameters
DEBUGTOOL The value of the DEBUGTOOL system initialization parameter. Values are DEBUGTOOL_YES

| DEBUGTOOL_NO

Output parameters
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED

DPIQ gate, INQUIRE_DEBUG_TASK function
Inquire DP domain debug settings.

Debugging profile domain (DP)

680 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
None

Output parameters
[DEBUG_TASK] Specifies whether Debug Tool is to be used to debug an application. Values are YES | NO
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED

DPIQ gate, SET_DEBUG_PROFILE function
Set DP domain parameters.

Input parameters
[DEBUG_PROFILE]

Values are YES | NO

Output parameters
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED

DPLM gate, STARTBR_DEBUG_PROFILES function
Creates an in-memory linked list copy of the debug profiles from the debug profile data set. The list is
filtered and sorted as requested. A browse_list_token which uniquely identifies the list on subsequent
requests to process it is returned.

Input parameters
CURRENT_USERID

The userid of the user making the request
FILTER_ACTIVE

Specifies whether the list contains active profiles only, or active and inactive profiles.
Values are ACTIVE_P | ALL_P

FILTER_USER Specifies whether the list contains profiles for just the current user, or all users. Values are
CURRENT_USER | ALL_U

SORT_TYPE Specifies the field used to sort the list. Values are OWNER | NAME | TRAN | STAT | PROG |
TERM | USER | APPL | NETN | COMP_U | TYP

Output parameters
BROWSE_LIST_TOKEN

A token which uniquely identifies the list of profiles.
[NUMBER_IN_LIST]

The number of profiles in the list
[CURRENT_PAGE]

Specifies which page of the list of profiles is currently displayed
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION NO_PROFILES
FILE_ERROR

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

Debugging profile domain (DP)

Chapter 79. Debugging profile domain (DP) 681

DPLM gate, READNEXT_DEBUG_PROFILE function
Returns one profile to the caller for display on the screen. Largely for the benefit of the 3270 version of
CADP, the readnext can optionally position itself based on a page size parameter so that it is possible to
easily implement scrolling up and down. The default if no position is specified is to return the next profile.

Input parameters
BROWSE_LIST_TOKEN

A token which uniquely identifies the list of profiles.
[PAGE_SIZE] The number of profiles which can be shown on a page of the display
[POSITION] Specifies the position in the list of the next profile to be read. Values are TOP |

TOP_CURRENT_PAGE | NEXT_PROFILE | PAGE_FORWARD | PAGE_BACK
[BEAN_BLOCK] A block of storage containing the bean name
[CLASS_BLOCK]

A block of storage containing the class name
[METHOD_BLOCK]

A block of storage containing the method name
[MANGLED_METHOD_BLOCK]

A block of storage containing the mangled method name
[LE_OPTIONS_BLOCK]

A block of storage containing Language Environment options

Output parameters
INPUT The action specified for the profile. Values are ACTIVATE | INACTIVATE | COPY | DELETE |

CLEAR
OWNER_USERID The userid of the profile's owner
PROFILE_NAME The name of the debugging profile
TRANID The transaction ID specified in the debugging profile
TERMID The terminal ID specified in the debugging profile
PROGRAM The program name specified in the debugging profile
COMP_UNIT The compile unit name specified in the debugging profile
TYPE The type of debugging profile. Values are C | E | J | LE
USERID The user ID specified in the debugging profile
NETNAME The terminal's network name specified in the debugging profile
APPLID The Applid specified in the debugging profile
JVM_PROFILE The JVM profile specified in the debugging profile
TEST_LEVEL The test level specified in the debugging profile. Values are ALL | ERROR | NONE
COMMAND_FILE The command file specified in the debugging profile
PROMPT The prompt specified in the debugging profile
PREFERENCE_FILE

The preference file specified in the debugging profile
STATUS The status of the debugging profile. Values are ACTIVE | INACTIVE
PATTERN_MATCH_NUMBER

A metric computed from the contents of the debugging profile, which is compared with the
pattern match number form other profiles to determine which of the profiles is the best
match for a program instance.

[PROFILE_NUMBER]
The position of the current profile in the list

[CURRENT_PAGE]
Specifies which page of the list of profiles is currently displayed

[ACTIVATE_USERID]
For an active debugging profile, the user ID of the user who made it active.

[INVALID_INPUT]
Whatever was (invalidly) typed as an input

RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |
KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

Debugging profile domain (DP)

682 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE REASON

EXCEPTION END_OF_PROFILES
ALREADY_AT_TOP
ALREADY_AT_BOTTOM

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPLM gate, READNEXT_INPUT function
When inputs are typed in against profiles they are saved with the profile in the linked list so that they are
still retrievable for redisplay after scrolling up and down. Readnext_input allows easy retrieval of just those
profiles with inputs against them so that they can be processed when enter is pressed. All the data in the
profile is returned as it is required if the input to be processed is COPY.

Input parameters
BROWSE_LIST_TOKEN

A token which uniquely identifies the list of profiles.
[POSITION] Specifies the position in the list of the next profile to be read. Values are TOP |

NEXT_PROFILE
[INPUT_FILTER]

Specifies profiles of interest, based on any actions that have been specified for the profile.
Values are ACTIVATES | INACTIVATES | COPIES | DELETES | ALL_INPUTS

[BEAN_BLOCK] A block of storage containing the bean name
[CLASS_BLOCK]

A block of storage containing the class name
[METHOD_BLOCK]

A block of storage containing the method name
[MANGLED_METHOD_BLOCK]

A block of storage containing the mangled method name
[LE_OPTIONS_BLOCK]

A block of storage containing Language Environment options

Output parameters
INPUT The action specified for the profile. Values are ACTIVATE | INACTIVATE | COPY | DELETE |

CLEAR
OWNER_USERID The userid of the profile's owner
PROFILE_NAME The name of the debugging profile
TRANID The transaction ID specified in the debugging profile
TERMID The terminal ID specified in the debugging profile
PROGRAM The program name specified in the debugging profile
COMP_UNIT The compile unit name specified in the debugging profile
TYPE The type of debugging profile. Values are C | E | J | LE
USERID The user ID specified in the debugging profile
NETNAME The terminal's network name specified in the debugging profile
APPLID The Applid specified in the debugging profile
JVM_PROFILE The JVM profile specified in the debugging profile
TEST_LEVEL The test level specified in the debugging profile. Values are ALL | ERROR | NONE
COMMAND_FILE The command file specified in the debugging profile
PROMPT The prompt specified in the debugging profile
PREFERENCE_FILE

The preference file specified in the debugging profile
STATUS The status of the debugging profile. Values are ACTIVE | INACTIVE

Debugging profile domain (DP)

Chapter 79. Debugging profile domain (DP) 683

[PATTERN_MATCH_NUMBER]
A metric computed from the contents of the debugging profile, which is compared with the
pattern match number form other profiles to determine which of the profiles is the best
match for a program instance.

[ACTIVATE_USERID]
For an active debugging profile, the user ID of the user who made it active.

[INVALID_INPUT]
Whatever was (invalidly) typed as an input

RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |
KERNERROR | PURGED

[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION END_OF_INPUTS

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

INVALID

KERNERROR

PURGED

DPLM gate, ENDBR_DEBUG_PROFILES function
Frees the in-memory list of debug profile records.

Input parameters
BROWSE_LIST_TOKEN

A token which uniquely identifies the list of profiles.

Output parameters
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION FILE_ERROR

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPLM gate, RESTARTBR_DEBUG_PROFILES function
A new in_memory list of the debug profiles is created from the profiles on the data set but the previous
filter, sort and position in the list currently displayed are maintained. The position may alter if the
underlying list has changed dramatically (due to additions/deletions of profiles via other CADP
transactions). Outstanding actions are preserved, and copied to the new list.

Input parameters
BROWSE_LIST_TOKEN

A token which uniquely identifies the list of profiles.
CURRENT_USERID

The userid of the user making the request

Debugging profile domain (DP)

684 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
[NUMBER_IN_LIST]

The number of profiles in the list
[CURRENT_PAGE]

Specifies which page of the list of profiles is currently displayed
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION NO_PROFILES
FILE_ERROR

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPLM gate, UPDATE_PROFILE_IN_LIST function
Update the specified in-memory linked list element with the input supplied so that it may be kept until
ready to process later. CLEAR may be used to clear an input that has been handled.

Input parameters
BROWSE_LIST_TOKEN

A token which uniquely identifies the list of profiles.
OWNER_USERID The userid of the profile's owner
PROFILE_NAME The name of the debugging profile
INPUT The action specified for the profile. Values are ACTIVATE | INACTIVATE | COPY | DELETE |

CLEAR

Output parameters
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE REASON

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPPM gate, PATTERN_MATCH_TASK function
Determines if an active debugging profile matches the parameters supplied.

Input parameters
TRANID The transaction ID to be matched with the corresponding field in the active debugging

profiles
TERMID The terminal ID to be matched with the corresponding field in the active debugging profiles
USERID The user ID to be matched with the corresponding field in the active debugging profiles
NETNAME The terminal's network name to be matched with the corresponding field in the active

debugging profiles
APPLID The APPLID to be matched with the corresponding field in the active debugging profiles

Output parameters
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

Debugging profile domain (DP)

Chapter 79. Debugging profile domain (DP) 685

RESPONSE REASON

EXCEPTION NO_MATCH
FILE_ERROR

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPPM gate, PATTERN_MATCH_PROFILE function
Determines if an active debugging profile matches the parameters supplied.

Input parameters
[MATCH_TYPE] Values are LE | NON_LE
[TRANID] The transaction ID to be matched with the corresponding field in the active debugging

profiles
[TERMID] The terminal ID to be matched with the corresponding field in the active debugging profiles
[PROGRAM] The program name to be matched with the corresponding field in the active debugging

profiles
[COMP_UNIT] The compile unit name to be matched with the corresponding field in the active debugging

profiles
[CLASS_BLOCK]

A block of storage containing the class name to be matched with the corresponding field in
the active debugging profiles

[MANGLED_METHOD_BLOCK]
A block of storage containing the mangled method name to be matched with the
corresponding field in the active debugging profiles

[IP_NAME_OR_ADDR_BLOCK]
A block of storage containing the IP name or IP address

[LE_OPTIONS_BLOCK]
A block of storage containing Language Environment options

[USERID] The user ID to be matched with the corresponding field in the active debugging profiles
[NETNAME] The terminal's network name to be matched with the corresponding field in the active

debugging profiles
[APPLID] The Applid to be matched with the corresponding field in the active debugging profiles

Output parameters
[PROFILE_TRANID]

The transaction ID specified in the matching profile
[PROFILE_TERMID]

The terminal ID specified in the matching profile
[PROFILE_PROGRAM]

The program name specified in the matching profile
[PROFILE_COMP_UNIT]

The compile unit name specified in the matching profile
[PROFILE_USERID]

The user ID specified in the matching profile
[PROFILE_NETNAME]

The terminal's network name specified in the matching profile
[PROFILE_APPLID]

The Applid specified in the matching profile
[SESSION_TYPE]

The session type specified in the debugging profile. Values are LU3270 | TCP
[PORT] The port number specified in the debugging profile
[LU_3270_DISPLAY]

The 3270 display terminal specified in the debugging profile to be used by Debug Tool

Debugging profile domain (DP)

686 CICS TS for z/OS: CICS Diagnosis Reference

[JVM_PROFILE]
The JVM profile specified in the debugging profile

[TEST_LEVEL] The test level specified in the debugging profile. Values are ALL | ERROR | NONE
[COMMAND_FILE]

The command file specified in the debugging profile
[PROMPT] The prompt specified in the debugging profile
[PREFERENCE_FILE]

The preference file specified in the debugging profile
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION NO_MATCH
FILE_ERROR

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPUM gate, GET_USER_DEFAULTS function
Get user defaults. If none already, returns global defaults.

Input parameters
CURRENT_SESSION_TYPE

The session type specified for the current user. Values are LU3270 | TCP
CURRENT_USERID

The userid of the user making the request
[IP_NAME_OR_ADDR_BLOCK]

A block of storage containing the IP name or IP address
[LE_OPTIONS_BLOCK]

A block of storage containing Language Environment options

Output parameters
[SUPPRESS_PANEL]

Specifies whether the debugging device panel is to be suppressed. Values are SUPPRESS |
NOSUPPRESS

[SESSION_TYPE]
The session type specified in the debugging profile. Values are LU3270 | TCP

[PORT] The port number specified in the debugging profile
[LU_3270_DISPLAY]

The 3270 display terminal specified in the debugging profile to be used by Debug Tool
[JVM_PROFILE]

The JVM profile specified in the debugging profile
[TEST_LEVEL] The test level specified in the debugging profile. Values are ALL | ERROR | NONE
[COMMAND_FILE]

The command file specified in the debugging profile
[PROMPT] The prompt specified in the debugging profile
[PREFERENCE_FILE]

The preference file specified in the debugging profile
[FILTER_ACTIVE]

Specifies whether the list contains active profiles only, or active and inactive profiles.
Values are ACTIVE_P | ALL_P

[FILTER_USER]
Specifies whether the list contains profiles for just the current user, or all users. Values are
CURRENT_USER | ALL_U

Debugging profile domain (DP)

Chapter 79. Debugging profile domain (DP) 687

[SORT_TYPE] Specifies the field used to sort the list. Values are OWNER | NAME | TRAN | STAT | PROG |
TERM | USER | APPL | NETN | COMP_U | TYP

[TYPE] The type of debugging profile. Values are C | E | J | LE
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION FILE_ERROR

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPUM gate, SAVE_USER_DEFAULTS function
Save user defaults. Never returns duplicate response - saves or updates.

Input parameters
CURRENT_USERID

The userid of the user making the request
[SUPPRESS_PANEL]

Specifies whether the debugging device panel is to be suppressed. Values are SUPPRESS |
NOSUPPRESS

[SESSION_TYPE]
The session type specified in the debugging profile. Values are LU3270 | TCP

[IP_NAME_OR_ADDR_BLOCK]
A block of storage containing the IP name or IP address

[PORT] The port number specified in the debugging profile
[LU_3270_DISPLAY]

The 3270 display terminal specified in the debugging profile to be used by Debug Tool
[JVM_PROFILE]

The JVM profile specified in the debugging profile
[TEST_LEVEL] The test level specified in the debugging profile. Values are ALL | ERROR | NONE
[COMMAND_FILE]

The command file specified in the debugging profile
[PROMPT] The prompt specified in the debugging profile
[PREFERENCE_FILE]

The preference file specified in the debugging profile
[LE_OPTIONS_BLOCK]

A block of storage containing Language Environment options
[FILTER_ACTIVE]

Specifies whether the list contains active profiles only, or active and inactive profiles.
Values are ACTIVE_P | ALL_P

[FILTER_USER]
Specifies whether the list contains profiles for just the current user, or all users. Values are
CURRENT_USER | ALL_U

[SORT_TYPE] Specifies the field used to sort the list. Values are OWNER | NAME | TRAN | STAT | PROG |
TERM | USER | APPL | NETN | COMP_U | TYP

[TYPE] The type of debugging profile. Values are C | E | J | LE

Output parameters
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

Debugging profile domain (DP)

688 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE REASON

EXCEPTION 3270_DISPLAY_BLANK
3270_DISPLAY_INVALID
PORT_BLANK
PORT_INVALID
IP_BLANK
IP_INVALID
JVM_PROFILE_INVALID
CMD_FILE_INVALID
PROMPT_INVALID
PREF_FILE_INVALID
FILE_ERROR
FILE_FULL

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPWD gate, PROCESS_PAGE function
Process a request for an html page in the following format:
http://mvs_address:port/CICS/CWBA/dfhdpwb?options

The input options will be read by the page processor from ITOKEN. The page processor will generate an
output page request in OTOKEN.

Input parameters
PAGE The page to be processed
ITOKEN A token representing a chain of input values. These are name-value pairs from either the

page options, or from the form.
[MSG_TYPE] The type of message to be displayed when the page is formatted, in the absence of a

more serious message. If this value is not present then by default no message is
displayed. Values are INFO | ERROR

[MSG_NUM] The message number of a message to be displayed when the page is formatted.
[MSG_INSERT1]

An insert for the message. If this field is null there is no first insert.
[MSG_INSERT2]

An insert for the message. If this field is null there is no second insert.

Output parameters
OTOKEN A token representing a chain of output html tags.
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION FILE_ERROR

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPWD gate, PROCESS_SUBMIT function
Process a submitted form request. The input options will be read by the page processor from ITOKEN.
The page processor will generate an output page request in OTOKEN.

Debugging profile domain (DP)

Chapter 79. Debugging profile domain (DP) 689

Input parameters
BUTTON The action button used to submit the form.
ITOKEN A token representing a chain of input values. These are name-value pairs from either the

page options, or from the form.

Output parameters
OTOKEN A token representing a chain of output html tags.
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION FILE_ERROR

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPWE gate, PROCESS_PAGE function
Process a request for an html page in the following format:
http://mvs_address:port/CICS/CWBA/dfhdpwb?options

The input options will be read by the page processor from ITOKEN. The page processor will generate an
output page request in OTOKEN.

Input parameters
PAGE The page to be processed
ITOKEN A token representing a chain of input values. These are name-value pairs from either the

page options, or from the form.
[MSG_TYPE] The type of message to be displayed when the page is formatted, in the absence of a

more serious message. If this value is not present then by default no message is
displayed. Values are INFO | ERROR

[MSG_NUM] The message number of a message to be displayed when the page is formatted.
[MSG_INSERT1]

An insert for the message. If this field is null there is no first insert.
[MSG_INSERT2]

An insert for the message. If this field is null there is no second insert.

Output parameters
OTOKEN A token representing a chain of output html tags.
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION FILE_ERROR

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPWE gate, PROCESS_SUBMIT function
Process a submitted form request. The input options will be read by the page processor from ITOKEN.
The page processor will generate an output page request in OTOKEN.

Debugging profile domain (DP)

690 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
BUTTON The action button used to submit the form.
ITOKEN A token representing a chain of input values. These are name-value pairs from either the

page options, or from the form.

Output parameters
OTOKEN A token representing a chain of output html tags.
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION FILE_ERROR

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPWJ gate, PROCESS_PAGE function
Process a request for an html page in the following format:
http://mvs_address:port/CICS/CWBA/dfhdpwb?options

The input options will be read by the page processor from ITOKEN. The page processor will generate an
output page request in OTOKEN.

Input parameters
PAGE The page to be processed
ITOKEN A token representing a chain of input values. These are name-value pairs from either the

page options, or from the form.

Output parameters
OTOKEN A token representing a chain of output html tags.
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPWJ gate, PROCESS_SUBMIT function
Process a submitted form request. The input options will be read by the page processor from ITOKEN.
The page processor will generate an output page request in OTOKEN.

Input parameters
BUTTON The action button used to submit the form.
ITOKEN A token representing a chain of input values. These are name-value pairs from either the

page options, or from the form.

Output parameters
OTOKEN A token representing a chain of output html tags.
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED

Debugging profile domain (DP)

Chapter 79. Debugging profile domain (DP) 691

[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPWL gate, PROCESS_PAGE function
Process a request for an html page in the following format:
http://mvs_address:port/CICS/CWBA/dfhdpwb?options

The input options will be read by the page processor from ITOKEN. The page processor will generate an
output page request in OTOKEN.

Input parameters
PAGE The page to be processed
ITOKEN A token representing a chain of input values. These are name-value pairs from either the

page options, or from the form.
[MSG_TYPE] The type of message to be displayed when the page is formatted, in the absence of a

more serious message. If this value is not present then by default no message is
displayed. Values are INFO | ERROR

[MSG_NUM] The message number of a message to be displayed when the page is formatted.
[MSG_INSERT1]

An insert for the message. If this field is null there is no first insert.
[MSG_INSERT2]

An insert for the message. If this field is null there is no second insert.

Output parameters
OTOKEN A token representing a chain of output html tags.
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION FILE_ERROR

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPWL gate, PROCESS_SUBMIT function
Process a submitted form request. The input options will be read by the page processor from ITOKEN.
The page processor will generate an output page request in OTOKEN.

Input parameters
BUTTON The action button used to submit the form.
ITOKEN A token representing a chain of input values. These are name-value pairs from either the

page options, or from the form.

Output parameters
OTOKEN A token representing a chain of output html tags.
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED

Debugging profile domain (DP)

692 CICS TS for z/OS: CICS Diagnosis Reference

[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION FILE_ERROR

DISASTER ABEND
INTERNAL_ERROR
DISASTER_PERCOLATION

DPXM gate, INIT_XM_CLIENT function
The INIT_XM_CLIENT call flows from the transaction manager to the DP Domain during transaction
initialization. The DP domain allocates the DP domain transaction lifetime control block, and anchors it in
the AP domain's transaction token.

Input parameters
[PRINCIPAL_USER_TOKEN]

The token which represents the characteristics of the principal user of the transaction.

Output parameters
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION INVALID_USER_TOKEN

DISASTER ABEND
LOOP

INVALID INVALID_FORMAT
INVALID_FUNCTION

DPXM gate, BIND_XM_CLIENT function
The BIND_XM_CLIENT call flows from the transaction manager to the DP Domain during transaction
initialization after Recovery Manager initialisation is complete. The DP domain does a scan of the active
debugging profiles to determine if it is possible that debugging could be required in this transaction. If it is
not then DP domain is not invoked again until transaction termination.

Input parameters
[PRINCIPAL_USER_TOKEN]

The token which represents the characteristics of the principal user of the transaction.

Output parameters
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION INVALID_USER_TOKEN

DISASTER ABEND
LOOP

INVALID INVALID_FORMAT
INVALID_FUNCTION

Debugging profile domain (DP)

Chapter 79. Debugging profile domain (DP) 693

DPXM gate, RELEASE_XM_CLIENT function
The RELEASE_XM_CLIENT call is made from the transaction manager to the DP Domain during
transaction termination. DP domain transaction lifetime resources are released.

Input parameters
[PRINCIPAL_USER_TOKEN]

The token which represents the characteristics of the principal user of the transaction.

Output parameters
RESPONSE The domain's response to the call. Values are OK | EXCEPTION | DISASTER | INVALID |

KERNERROR | PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE REASON

EXCEPTION INVALID_USER_TOKEN

DISASTER ABEND
LOOP

INVALID INVALID_FORMAT
INVALID_FUNCTION

Debugging profile domain’s generic gates
Table 45 summarizes the Debugging profile domain’s generic gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gates, the functions provided by the gates, and the generic
formats for calls to the gates.

Table 45. Debugging profile domain’s generic gates
Gate Trace Function Format

DPDM DP 0101
DP 0102

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DPDM

For descriptions of these functions and their input and output parameters, refer to the sections dealing with
the corresponding generic formats:

Functions and parameters

Format DMDM—“Domain manager domain’s generic formats” on page 669

In preinitialization the Debugging profile adds its general subpool and global lock.

In initialization, quiesce, and termination processing, the Debugging profile domain performs only internal
routines.

Exits
No global user exit points are provided in this domain.

Trace
The point IDs for the Debugging profile domain are of the form DP xxxx; the corresponding trace levels
are DP 1, DP 2, and Exc.

Debugging profile domain (DP)

694 CICS TS for z/OS: CICS Diagnosis Reference

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Debugging profile domain (DP)

Chapter 79. Debugging profile domain (DP) 695

696 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 80. Dispatcher domain (DS)

The dispatcher domain is concerned with the attaching, running, and detaching of tasks, and the posting of
TCBs with the following modes (names): concurrent (CO), ONC/RPC-owning (RP), quasi-reentrant (QR),
resource-owning (RO), file-owning (FO), secondary LU usage (SZ), open key 8 (L8), JVM key 8 (J8), JVM
key 9 (J9), master JVM (JM), hot-pooling key 8 (H8), sockets (SO), sockets listener (SL), secure sockets
key 8 (S8), or DB2 (D2).

Dispatcher domain’s specific gates
Table 46 summarizes the dispatcher domain’s specific gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gates, the functions provided by the gates, and whether or not the
functions are available through the exit programming interface (XPI).

Table 46. Dispatcher domain’s specific gates
Gate Trace Function XPI

DSAT DS 0002
DS 0003

ATTACH
CANCEL_TASK
CHANGE_MODE
CHANGE_PRIORITY
CLEAR_MATCH
DELETE_SUBSPACE_TCBS
FREE_SUBSPACE_TCBS
NOTIFY_DELETE_TCB
RELEASE_OPEN_TCB
SET_PRIORITY
SET_TRANSACTION_TOKEN
TCB_POOL_MANAGEMENT

NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO

DSBR DS 0010
DS 0011

END_BROWSE
GET_NEXT
INQUIRE_TASK
INQUIRE_TCB
SET_TASK
SET_TCB
START_BROWSE

NO
NO
NO
NO
NO
NO
NO

DSIT DS 0008
DS 0009

ACTIVATE_MODE
ADD_TCB
DELETE_ALL_OPEN_TCBS
DELETE_OPEN_TCB
DELETE_TCB
FREE_TCB
INQUIRE_DISPATCHER
PROCESS_DEAD_TCBS
SET_DISPATCHER

NO
NO
NO
NO
NO
NO
NO
NO
NO

DSSR DS 0004
DS 0005

ADD_SUSPEND
DELETE_SUSPEND
SUSPEND
RESUME
WAIT_MVS
WAIT_OLDW
WAIT_OLDC

YES
YES
YES
YES
YES
NO
NO

DSAT gate, ATTACH function
The ATTACH function of the DSAT gate is used to attach a new task.

v The transaction manager uses the function to attach system or nonsystem tasks that have PCT entries.

v Other parts of CICS use the function to attach system tasks that do not have PCT entries.

This function is used to attach a new task, and add it to the appropriate Dispatcher queue.

When the task is first dispatched, the calling domain receives the TASK_REPLY call at its DSAT gate (see
“DSAT format, TASK_REPLY function” on page 717).

© Copyright IBM Corp. 1997, 2011 697

Input parameters
PRIORITY affects a task’s dispatching precedence. It can have a value in the range 0 (low priority)

through 255 (high priority).
USER_TOKEN is the token by which the task to be attached is known to the caller.
[TIMEOUT] is the deadlock time-out interval, in milliseconds.
TYPE is the type of task. It can have either of these values:

SYSTEM|NON_SYSTEM
[MODE] specifies the mode in which the task is to run. It can have any of these values:

CO (concurrent)
FO (file-owning)
QR (quasi-reentrant)
RO (resource-owning)
RP (ONC/RPC-owning)
SZ (secondary LU usage)

[TASK_REPLY_GATE_INDEX]
is used when a gate other than the attaching domain’s default gate is to receive a
resultant TASK_REPLY.

[SPECIAL_TYPE(SMSY)]
identifies the special task SMSY.

[TRANSACTION_TOKEN]
identifies the transaction associated with the attached task.

Output parameters
TASK_TOKEN is the token by which the attached task is known to the dispatcher.
RESPONSE is the dispatcher’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INSUFFICIENT_STORAGE

DISASTER LOOP
ABEND
USER_TASK_SLOT_UNAVAILABLE

DSAT gate, CHANGE_MODE function
The CHANGE_MODE function of DSAT gate is used to move a task from one CICS-managed TCB to
another, or to select the mode in which the task is to run.

Input parameters
MODE is the mode to be used by the task. It can have any of these values:

CO (concurrent)
FO (file-owning)
QR (quasi-reentrant)
RO (resource-owning)
RP (ONC/RPC-owning)
SZ (secondary LU usage)

[CONDITIONAL]
states whether the CHANGE_MODE should be conditional on the current load on the
CPU. It can have either of these values:
YES|NO

MODENAME 2-character mode name.
MODENAME_TOKEN

token representing modename. More efficient than using MODENAME. The token is
returned by ACTIVATE_MODE and by CHANGE_MODE (see OLD_MODENAME_TOKEN
below)

Dispatcher domain (DS)

698 CICS TS for z/OS: CICS Diagnosis Reference

TCB_TOKEN token representing the TCB instance to which to switch. The token is returned by
CHANGE_MODE (see OLD_TCB_TOKEN below)

FRESH_TCB indicates whether a fresh TCB is required. It can have either of these values:
YES|NO

[PRIMARY MATCH]
an 8–byte token to be used to search for a matching free TCB instance to which to switch.

[SECONDARY MATCH]
an 8–byte token to be used to search for a matching free TCB instance to which to switch.

[MATCH_STRATEGY]
the strategy to be followed if a TCB instance that satisfies the PRIMARY_MATCH and
SECONDARY_MATCH values is not found. The only value allowed is:
EXACT_THEN_NEW_THEN_BEST

Output parameters
OLD_MODE is the mode used by the task when the CHANGE_MODE request was issued. It can have

any of these values:
CO (concurrent)
FO (file-owning)
QR (quasi-reentrant)
RO (resource-owning)
RP (ONC/RPC-owning)
SZ (secondary LU usage)

OLD_MODENAME is the mode used by the task when the CHANGE_MODE request was issued. It can have
the same values as OLD_MODE. OLD_MODENAME is preferred to OLD_MODE.

OLD_MODENAME_TOKEN
is a token representing the mode used by the task when the CHANGE_MODE request
was issued.

OLD_TCB_TOKEN
is a token representing the TCB used by the task when the CHANGE_MODE request was
issued.

[MATCH_RESULT]
indicates the level of success of the matching process. It can have any of these values:
EXACT_MATCH
NO_MATCH
PRIM_NOT_SEC_MATCH
NOT_APPLIC

[NEW_TCB_TOKEN]
token representing the TCB instance returned by the matching process.

RESPONSE is the dispatcher’s response to the call. It can have any one of these values:
OK|DISASTER|EXCEPTION|INVALID|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, INVALID, or PURGED.
Possible values are:

RESPONSE Possible REASON values

DISASTER LOCK_FAILED
ACTIVATE_MODE_FAILED
ADD_TCB_FAILED
SUSPEND_FAILED

EXCEPTION MODE_NOT ACTIVE
NO_TCBS_ACTIVE
INSUFFICIENT_STORAGE,
TCB_FAILED
TOO_FEW_TCBS

Dispatcher domain (DS)

Chapter 80. Dispatcher domain (DS) 699

RESPONSE Possible REASON values

INVALID INVALID_MODENAME
INVALID_MODENAME_TOKEN
INVALID_TCB_TOKEN
INVALID_FRESH_TCB_USAGE

PURGED TIMED_OUT
TASK_CANCELLED

DSAT gate, CLEAR_MATCH function
The CLEAR_MATCH function of the DSAT gate causes all match tokens associated with the calling TCB
to be discarded.

Input parameters
None

Output parameters
RESPONSE is the dispatcher’s response to the call. It can have only one value:

OK

DSAT gate, CHANGE_PRIORITY function
The CHANGE_PRIORITY function of DSAT gate has two effects:

1. It changes the dispatch priority of the issuing task.

2. It causes control to be given up to another task.

Input parameters
[PRIORITY] is the new priority. It can have a value in the range 0 (low priority) through 255 (high

priority).

Output parameters
[OLD_PRIORITY]

is the task’s former priority. It can have a value in the range 0 (low priority) through 255
(high priority).

RESPONSE is the dispatcher’s response to the call. It can have any one of these values:
OK|DISASTER|INVALID|KERNERROR

DSAT gate, SET_PRIORITY function
The SET_PRIORITY function of DSAT gate changes the priority of the issuing task, or the task specified
by the TASK_TOKEN parameter.

Input parameters
PRIORITY is the new priority. It can have a value in the range 0 (low priority) through 255 (high

priority).
[TASK_TOKEN] identifies the task whose priority is to be changed.
[SPECIAL_TYPE(IMMEDIATE_SHUTDOWN_TASK)]

identifies the special task “IMMEDIATE_SHUTDOWN_TASK”:

Output parameters
[OLD_PRIORITY]

is the task’s former priority. It can have a value in the range 0 (low priority) through 255
(high priority).

[RESPONSE] is the dispatcher’s response to the call. It can have any one of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR

[REASON] is returned when RESPONSE is EXCEPTION. It has the value:

Dispatcher domain (DS)

700 CICS TS for z/OS: CICS Diagnosis Reference

INVALID_TASK_TOKEN

DSAT gate, CANCEL_TASK function
The CANCEL_TASK function of DSAT gate causes a specified task to be canceled. The task is cancelled
when in a suitable suspend or when a deferred abend can be delivered to the task.

Input parameters
TASK_TOKEN is the token representing the task to be canceled.
CANCEL_TYPE can have either of these values:

FORCE_CANCEL|NORMAL_CANCEL
DEFERRED_ABEND_CODE

is the abend code to be used when the task is abended during deferred abend processing.

Output parameters
RESPONSE is the dispatcher’s response to the call. It can have any one of these values:

OK|DISASTER|EXCEPTION|INVALID|KERNERROR
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_TASK_TOKEN
INVALID_STATE
NOT_PURGEABLE,
CANCEL_INHIBITED
INVALID_STATE_PURGE

DSAT gate, FREE_SUBSPACE_TCBS function
The FREE_SUBSPACE_TCBS function of DSAT gate releases any open subspace TCBs owned by the
task, and makes them available for use by another task executing with the same subspace, or deletes the
TCBs if the task is 'unclean'.

Input parameters
None

Output parameters
OPEN_TCBS_USED_AND_KEPT

is a bit string indicating which TCB modes were used by the task, of and are now
available to other tasks

OPEN_TCBS_USED_AND_LOST
is a bit string indicating which TCB modes were used by the task, of and have now been
deleted because the task was 'unclean'

RESPONSE is the dispatcher’s response to the call. It can have any one of these values:
OK|DISASTER|INVALID|KERNERROR

[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER LOCK_FAILED

INVALID NOT_SUBSPACE_ELIGIBLE

DSAT gate, DELETE_SUBSPACE_TCBS function
The DELETE_SUBSPACE_TCBS function of DSAT gate deletes any open TCBs associated with the given
subspace.

Dispatcher domain (DS)

Chapter 80. Dispatcher domain (DS) 701

Input parameters
SUBSPACE_TOKEN

indicates the subspace whose associated open TCBs are to be deleted

Output parameters
RESPONSE is the dispatcher’s response to the call. It can have any one of these values:

OK|DISASTER|EXCEPTION|KERNERROR
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER LOCK_FAILED

EXCEPTION TOO_FEW_TCBS

DSAT gate, TCB_POOL_MANAGEMENT function
The TCB_POOL_MANAGEMENT function of DSAT gate deletes unallocated TCBs which are excess to
current requirements.

Input parameters
None

Output parameters
RESPONSE is the dispatcher’s response to the call. It can have any one of these values:

OK|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER LOCK_FAILED

DSAT gate, RELEASE_OPEN_TCB function
The RELEASE_OPEN_TCB function of DSAT gate frees the TCB from the calling task's ownership.

Input parameters
TCB_TOKEN is the token representing the task that owns the TCB to be freed.

Output parameters
RESPONSE is the dispatcher’s response to the call. It can have any one of these values:

OK|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER LOCK_FAILED

INVALID INVALID_TCB_TOKEN, TCB_NOT_OWNED

DSAT gate, SET_TRANSACTION_TOKEN function
The SET_TRANSACTION_TOKEN function of DSAT gate sets the XM domain transaction token of the
transaction associated with the currently dispatched task.

Input parameters
TRANSACTION_TOKEN

identifies the dispatcher task for which SET_TRANSACTION_TOKEN is to be performed.

Dispatcher domain (DS)

702 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
RESPONSE is the dispatcher’s response to the call. It can have any one of these values:

OK|DISASTER|INVALID|KERNERROR

DSBR gate, START_BROWSE function
The START_BROWSE function of DSBR gate starts a browse session with the dispatcher.

Input parameters
None.

Output parameters
BROWSE_TOKEN is the token representing this browse session.
RESPONSE is the dispatcher’s response to the call. It can have any one of these values:

OK|DISASTER|PURGED

DSBR gate, END_BROWSE function
The END_BROWSE function of DSBR gate ends a browse session with the dispatcher.

Input parameters
BROWSE_TOKEN is the token identifying the browse session to be ended.

Output parameters
RESPONSE is the dispatcher’s response to the call. It can have any one of these values:

OK|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is INVALID. It has this value:

INVALID_BROWSE_TOKEN

DSBR gate, GET_NEXT function
The GET_NEXT function of DSBR gate returns information about the next task.

Input parameters
BROWSE_TOKEN is the token identifying the browse session.

Output parameters
[TASK_TOKEN] is the token by which the task is known to the dispatcher.
[KERNEL_TOKEN]

is the token by which the task is known to the kernel.
[DOMAIN_INDEX]

is the 2-character index identifying the domain that made the ATTACH call for the task.
[OPEN_MODES] is a 32-bit string which indicates which modes of open TCBs were used by this task.
[PRIORITY] is the task’s dispatch priority. It can have a value in the range 0 (low priority) through 255

(high priority).
[TYPE] is the type of task. It can have either of these values:

SYSTEM|NON_SYSTEM
[STATE] is the state of the task. It can have any one of these values:

READY|RUNNING|SUSPENDED
[RESOURCE_NAME]

is the name of the resource that the task is waiting for, if the task is suspended.
[RESOURCE_TYPE]

is the type of resource that the task is waiting for, if the task is suspended.
[RESOURCE_TIME]

is the interval of time that has passed since the task last issued a suspend or wait.
[USER_TOKEN] is the token by which the task is known to the caller that made the ATTACH request for

the task.

Dispatcher domain (DS)

Chapter 80. Dispatcher domain (DS) 703

[SUSPEND_TOKEN]
is the token by which the dispatcher recognizes a task to be suspended or resumed.

[MODE] is the mode in which the task is to run. It can have any one of these values:
CO (concurrent)
FO (file-owning)
QR (quasi-reentrant)
RO (resource-owning)
RP (ONC/RPC-owning)
SZ (secondary LU usage)

[TCB_TYPE] is the type of TCB that the task is executing on. It can have any one of these values:
CKOPEN_TCB|UKOPEN_TCB|QR_TCB|INTERNAL_TCB

[TCB_TOKEN] is the TCB token associated with the task.
[ESSENTIAL_TCB]

indicates whether the TCB is an essential TCB or not. It can have either of these values:
ESSENTIAL_YES|ESSENTIAL_NO

RESPONSE is the dispatcher’s response to the call. It can have any one of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION END, INVALID_BROWSE_TOKEN

DSBR gate, INQUIRE_TASK function
The INQUIRE_TASK function of DSBR gate returns information about a specified task.

Input parameters
[INPUT_TASK_TOKEN]

is the token for the task to be inquired on.

Output parameters
[TASK_TOKEN] is the token by which the task is known to the dispatcher.
[KERNEL_TOKEN]

is the token by which the task is known to the kernel.
[DOMAIN_INDEX]

is the 2-character index identifying the domain that made the ATTACH call for the task.
[OPEN_MODES] is a 32-bit string which indicates which modes of open TCBs were used by this task.
[PRIORITY] is the task’s dispatch priority. It can have a value in the range 0 (low priority) through 255

(high priority).
[TYPE] is the type of task. It can have either of these values:

SYSTEM|NON_SYSTEM
[STATE] is the state of the task. It can have any one of these values:

READY|RUNNING|SUSPENDED
[RESOURCE_NAME]

is the name of the resource that the task is waiting for, if the task is suspended.
[RESOURCE_TYPE]

is the type of resource that the task is waiting for, if the task is suspended.
[RESOURCE_TIME]

is the interval of time that has passed since the task last issued a suspend or wait.
[USER_TOKEN] is the token by which the task is known to the caller that made the ATTACH request for

the task.
[SUSPEND_TOKEN]

is the token by which the dispatcher recognizes a task to be suspended or resumed.
[MODE] is the mode in which the task is to run. It can have any one of these values:

Dispatcher domain (DS)

704 CICS TS for z/OS: CICS Diagnosis Reference

CO (concurrent)
FO (file-owning)
QR (quasi-reentrant)
RO (resource-owning)
RP (ONC/RPC-owning)
SZ (secondary LU usage)

[TCB_TYPE] is the type of TCB that the task is executing on. It can have any one of these values:
CKOPEN_TCB|UKOPEN_TCB|QR_TCB|INTERNAL_TCB

[TCB_TOKEN] is the TCB token associated with the task.
[ESSENTIAL_TCB]

indicates whether the TCB is an essential TCB or not. It can have either of these values:
ESSENTIAL_YES|ESSENTIAL_NO

[CANCEL_PENDING]
Not supported by domain gate function.

[DEFERRED_ABEND_CODE]
Not supported by domain gate function.

RESPONSE is the dispatcher’s response to the call. It can have any one of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR

[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_SUPPORTED

INVALID INVALID_TASK_TOKEN

DSBR gate, SET_TASK function
The SET_TASK function of DSBR gate marks the task as "unclean" so that open TCBs will be freed at
task termination.

Input parameters
[INPUT_TASK_TOKEN]

is the token by which the task is known to the dispatcher.
[CLEANLINESS]

specifies that the task is to be marked "unclean". It can take only the value UNCLEAN.
[ABTERM_ALLOWED]

Not supported by domain gate function.
[WAIT] Not supported by domain gate function.
[CLEAR_CANCEL_PENDING]

Not supported by domain gate function.

Output parameters
[ACTION] Not supported by domain gate function.
RESPONSE is the dispatcher’s response to the call. It can have any one of these values:

OK|DISASTER|EXCEPTION|INVALID|KERNERROR
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

INVALID_TASK_TOKEN, NOT_SUPPORTED

DSBR gate, INQUIRE_TCB function
The INQUIRE_TCB function of the DSBR gate returns the AP TCB-related token associated with the
specified DS TCB_TOKEN. If the AP token has not yet been set by SET_TCB, then the function returns an
AP_TCB_TOKEN value of zero.

Input parameters
[TCB_TOKEN] token provided by DS representing the TCB instance for which the associated AP-related

token is required. If this is omitted, the token of the running TCB is assumed.

Dispatcher domain (DS)

Chapter 80. Dispatcher domain (DS) 705

Output parameters
OWNER_TCB_TOKEN

token, provided by the TCB's owning domain, associated with the TCB instance defined by
TCB_TOKEN.

RESPONSE is the dispatcher’s response to the call. It can have one of these values:
OK|INVALID

[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_TCB_TOKEN

DSBR gate, SET_TCB function
The SET_TCB function of the DSBR gate sets the AP TCB-related token to be associated with the running
TCB.

Input parameters
OWNER_TCB_TOKEN

token, provided by the TCB's owning domain, to be associated with the running TCB.

Output parameters
RESPONSE is the dispatcher’s response to the call. It can have only one value:

OK

DSIT gate, INQUIRE_DISPATCHER function
The INQUIRE_DISPATCHER function of DSIT gate returns information about the current state of the
dispatcher.

Input parameters
None.

Output parameters
[NUMBER_OF_SUBTASKS]

is the number of subtasks for concurrent mode.
[SCAN_DELAY_INTERVAL]

is the delay before terminal control is dispatched after a terminal is posted by the access
method.

[MAXIMUM_WAIT_INTERVAL]
is the maximum delay before terminal control is dispatched.

[PRIORITY_MULTIPLIER]
determines how the priority of new tasks is to be penalized in ‘storage getting short’ and
‘storage critical’ situations.

[QR_BATCHING_VALUE]
is the number of POSTs for BATCH=YES waits in quasi-reentrant mode.

[MAXOPENTCBS]
is the maximum number of TCBs in the TCB pool known as the open pool.

[ACTOPENTCBS]
is the number of TCBs in the TCB pool known as the open pool which are being used by
current tasks.

[RP_TCB_ATTACHED]
indicates whether or not the RP TCB is attached. It can have either of these values:
YES|NO

[SZ_TCB_ATTACHED]
indicates whether or not the SZ TCB is attached. It can have either of these values:
YES|NO

Dispatcher domain (DS)

706 CICS TS for z/OS: CICS Diagnosis Reference

MAXJVMTCBS is the maximum number of TCBs in the JVM TCB pool.
MAXHPTCBS is the maximum number of TCBS in the hotpooling Java TCB pool.
ACTJVMTCBS is the number of TCBs in the JVM TCB pool which are being used by current tasks.
ACTHPTCBS is the number of TCBS in the hotpooling Java TCB pool which are being used by current

tasks.
RESPONSE is the dispatcher’s response to the call. It can have either of these values:

OK|DISASTER

DSIT gate, SET_DISPATCHER function
The SET_DISPATCHER function of DSIT gate sets the state of the dispatcher.

Input parameters
[NUMBER_OF_SUBTASKS]

is the number of subtasks for concurrent mode.
[SCAN_DELAY_INTERVAL]

is the delay before terminal control is dispatched after a terminal is posted by the access
method.

[MAXIMUM_WAIT_INTERVAL]
is the maximum delay before terminal control is dispatched.

[PRIORITY_MULTIPLIER]
determines how quickly a task's priority increases as it waits to be dispatched. The faster it
increases the less likely a low priority task is to be held up for long periods by higher
priority tasks in a busy system.

[QR_BATCHING_VALUE]
is the number of POSTs for BATCH=YES waits in quasi reentrant mode.

[MAXOPENTCBS]
is the maximum number of TCBs in the TCB pool known as the open pool.

MAXJVMTCBS is the maximum number of TCBs in the JVM TCB pool.
MAXHPTCBS is the maximum number of TCBS in the hotpooling Java TCB pool.

Output parameters
RESPONSE is the dispatcher’s response to the call. It can be any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION MAXWAIT_LESSTHAN_SCANDELAY
MAXOPENTCBS_OUT_OF_RANGE
TOO_LATE_TO_SET_SUBTASKS
MAXJVMTCBS_OUT_OF_RANGE
MAXHPTCBS_OUT_OF_RANGE

DSIT gate, ACTIVATE_MODE function
The ACTIVATE_MODE function creates a mode to which TCBs can be added (by ADD_TCB) so that tasks
can CHANGE_MODE to the TCBs.

Input parameters
MODE is the mode to be activated. MODE and MODENAME are mutually exclusive but one must

be specified. Mode is a single byte whose values correspond to the pre 1.3 modes QR,
RO, FO, CO, SZ and RP.

MODENAME is the two character string that becomes the block name of the sub dispatcher block
created by ACTIVATE_MODE.

IDENTITY is the name of the mode to be activated. It is a two byte character string.
EXEC_CAPABLE indicates whether TCBs in this mode are to be set up to support the use of EXEC CICS

commands by code running on them.

Dispatcher domain (DS)

Chapter 80. Dispatcher domain (DS) 707

LE_ENVIRONMENT
indicates whether Language Environment is to run in native MVS mode or in CICS mode
on TCBs in this mode.

TCB_KEY indicates the key to be specified on ATTACHes of TCBs in this mode.
INHERIT_SUBSPACE

indicates whether TCBs in this mode will be able to run application code in a subspace.
ESSENTIAL_TCB

indicates whether CICS is to be brought down if a TCB in this mode suffers a non
recoverable abend.

PRTY_RELATIVE_TO_QR
allows TCBs in this mode to have a different priority to that of the QR TCB.

MULTIPLE_TCBS
indicates whether this mode allows more than one TCB.

OPEN indicates whether TCBs in this mode are to be managed by the Dispatcher domain as
"Open TCBs".

[NOTIFY_DELETE]
indicates which domain, if any, to notify when a DELETE_TCB is issued. It is the binary
domain index for the domain.

[OPEN_POOL_NUMBER]
is the number of the open TCB pool which is to contain TCBs of the newly-activated
mode.

[DEPENDENT_ON]
indicates that TCBs of the mode being activated depend on the existence of TCBs of
another mode.

[SZERO] indicates whether TCBs of the new mode should be attached with SZERO(YES) or
SZERO(NO). It can have either of these values:
SZERO_YES|SZERO_NO

[WAIT_FOR_MATCH]
indicates if a CHANGE_MODE should consider waiting for a suitable TCB rather than
using a free TCB. It can have one of these values:
NO_PRIMARY|NO_MODE|NEVER

Output parameters
[MODENAME_TOKEN]

is a token that identifies this modename.
RESPONSE is the dispatcher’s response to the call. It can be any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION MODE_ALREADY_ACTIVE
INSUFFICIENT_STORAGE,
MODENAME_ALREADY_ACTIVE
RESERVED_MODENAME
MODE_LIMIT_REACHED
TOO_MANY_MULTI

INVALID INVALID_MODE
INVALID_POOL_NUMBER

DSIT gate, ADD_TCB function
The ADD_TCB function adds a TCB to a particular mode.

Input parameters
MODENAME specifies the name of the mode the TCB is to be added to. MODENAME and

MODENAME_TOKEN are mutually exclusive but one of them must be coded.

Dispatcher domain (DS)

708 CICS TS for z/OS: CICS Diagnosis Reference

MODENAME_TOKEN
identifies mode the TCB is to be added by using the token returned by the
ACTIVATE_MODE.

IDENTITY is an eight character string to placed in the Dispatcher's block that represents the TCB.

Output parameters
TCB_TOKEN is a token that uniquely idenifies this TCB.
RESPONSE is the dispatcher’s response to the call. It can be any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INSUFFICIENT_STORAGE
RESERVED_MODENAME
MODE_LIMIT_REACHED
MODE_NOT_ACTIVE

INVALID INVALID_MODENAME
INVALID_MODENAME_TOKEN

DSIT gate, DELETE_TCB function
The DELETE_TCB function is used by the caller to tell the Dispatcher that the TCB is to be shutdown and
that the associated control blocks can be freed. If an attempt is made to shut down an essential TCB, an
EXCEPTION response is returned with a reason of NOT_SUPPORTED.

Note that no quiescing of tasks on the TCB is performed.

Input parameters
TCB_TOKEN is a token that uniquely identifies the TCB.

Output parameters
RESPONSE is the dispatcher’s response to the call. It can be any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_SUPPORTED
TCB_IN_USE

INVALID INVALID_TCB_TOKEN

DSIT gate, DELETE_ OPEN_TCB function
DELETE_OPEN_TCB schedules the termination of an open TCB. If the TCB is currently in use, the
termination will occur when the owning task terminates.

Input parameters
TCB_TOKEN is a token provided by DS that uniquely identifies the TCB.

Output parameters
RESPONSE is the dispatcher’s response to the call. It can be any one of these values:

OK|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_TCB_TOKEN

Dispatcher domain (DS)

Chapter 80. Dispatcher domain (DS) 709

DSIT gate, DELETE_ALL_OPEN_TCBS function
DELETE_ALL_OPEN_TCBS schedules the termination of all open TCBs with a given modename. For
TCBs that are currently in use, the termination will occur when the owning task terminates. The function
does not prevent new TCBs of the given mode from being created.

Input parameters
MODENAME is the name of the mode of the TCBs to be deleted.

Output parameters
RESPONSE is the dispatcher’s response to the call. It can be any one of these values:

OK|DISASTER|EXCEPTION|INVALID|KERNERROR
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION MODE_NOT_ACTIVE

INVALID INVALID_MODENAME

DSIT gate, FREE_TCB function
The FREE_TCB function is issued by the Kernel and tells the Dispatcher that a given TCB has terminated
and been DETACHed.

Input parameters
TCB_TOKEN is a token that uniquely identifies the TCB.

Output parameters
RESPONSE is the dispatcher’s response to the call. It can be any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION TASK_NOT_TERMINATED
INVALID_TCB_TOKEN

DSIT gate, PROCESS_DEAD_TCBS function
The PROCESS_DEAD_TCBS function is issued by the SM system task each time it runs to tell the
Dispatcher to process any TCBs it finds on its dead TCB chain. Such TCBs will be in an MVS WAIT
issued by their ESTAE exit after suffering a non recoverable abend.

Input parameters
None.

Output parameters
RESPONSE is the dispatcher’s response to the call. It can be any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR

DSSR gate, ADD_SUSPEND function
The ADD_SUSPEND function of DSSR gate returns a suspend token which is used to identify a task to be
suspended or resumed.

Dispatcher domain (DS)

710 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
[RESOURCE_NAME]

is the name of the resource that the task is suspended on.
[RESOURCE_TYPE]

is the type of resource that the task is suspended on.

Output parameters
SUSPEND_TOKEN

is the token that is used to identify the task to be suspended or resumed.
RESPONSE is the dispatcher’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. It has this value:

INSUFFICIENT_STORAGE

DSSR gate, DELETE_SUSPEND function
The DELETE_SUSPEND function of DSSR gate discards a suspend token.

Input parameters
SUSPEND_TOKEN

is the suspend token to be deleted.

Output parameters
RESPONSE is the dispatcher’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_SUSPEND_TOKEN
SUSPEND_TOKEN_IN_USE

DSSR gate, SUSPEND function
The SUSPEND function of DSSR gate causes a running task to be suspended.

Input parameters

Note: [INTERVAL] and [DEADLOCK_ACTION] are mutually exclusive parameters.
SUSPEND_TOKEN

is the token identifying the task to be suspended.
PURGEABLE is the purgeable status of the task. It can have either of these values:

YES|NO
[INTERVAL] is an interval (in units as specified by TIME_UNIT) after which the task is given

back control if it has not been resumed by a DSSR RESUME call.
[DEADLOCK_ACTION]

describes whether the suspended task should be purged if deadlock is detected,
and if so, how it should be purged. It can have any one of these values:
DELAYED|IMMEDIATE|INHIBIT

[RESOURCE_NAME]
is the name of the resource that the task is suspended on.

[RESOURCE_TYPE]
is the type of resource that the task is suspended on.

[TIME_UNIT] identifies the time units specified on the INTERVAL and DELAY parameters where
present. It can have either of these values:
SECOND|MILLI_SECOND

Dispatcher domain (DS)

Chapter 80. Dispatcher domain (DS) 711

[DELAY] is an interval (in units as specified by TIME_UNIT) during which the task is not
dispatched if CICS has other work to do.

[RETRY] indicates whether or not the dispatcher is to retry the suspend operation, if the
running task is not suspended by a preceding suspend operation. It can have either
of these values:
YES|NO

[WLM_WAIT_TYPE]
indicates the reason for task’s wait state to the MVS workload manager. It can have
any of these values:
LOCK|IO|CONV|CMDRESP|DISTRIB|
SESS_LOCALMVS|SESS_NETWORK|
SESS_SYSPLEX|TIMER|OTHER_PRODUCT|
MISC|IDLE

[DISPATCH_BEFORE_WAIT]
indicates if the suspended task is prepared to wait across a partition exit It can
have either of these values:
YES|NO

[TEMP_HIGH_PRIORITY]
indicates if the task is to get a temporary priority boost at the completion of the
suspend. It can have either of these values:
YES|NO

Output parameters
[COMPLETION_CODE]

is a completion code supplied by the resumed task.
RESPONSE is the dispatcher’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or PURGED. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_SUSPEND_TOKEN
ALREADY_SUSPENDED
CLEAN_UP_PENDING

PURGED TASK_CANCELLED
TIMED_OUT

DSSR gate, RESUME function
The RESUME function of DSSR gate causes a suspended task to be resumed.

Input parameters
SUSPEND_TOKEN

is the token identifying the task to be resumed.
[COMPLETION_CODE]

is a completion code to be passed from the resumed task to the suspended task.

Output parameters
RESPONSE is the dispatcher’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION TASK_CANCELLED
TIMED_OUT

Dispatcher domain (DS)

712 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

INVALID INVALID_SUSPEND_TOKEN
ALREADY_RESUMED

DSSR gate, WAIT_MVS function
The WAIT_MVS function of DSSR gate causes a task to wait on an ECB, or list of ECBs, to be posted via
the MVS POST service.

Input parameters

Note: ECB_ADDRESS and ECB_LIST_ADDRESS are mutually exclusive parameters; [INTERVAL] and
[DEADLOCK_ACTION] are also mutually exclusive.
ECB_ADDRESS is the address of the ECB for the task.
ECB_LIST_ADDRESS

is the address of a list of ECBs for the task.
PURGEABLE is the purgeable status of the task. It can have either of these values:

YES|NO
[INTERVAL] is an interval (in units as specified by TIME_UNIT) after which the task is given

back control if it has not been resumed by a DSSR RESUME call.
[DEADLOCK_ACTION]

describes whether the suspended task should be purged if deadlock is detected,
and if so, how it should be purged. It can have any one of these values:
DELAYED|IMMEDIATE|INHIBIT

[RESOURCE_NAME]
is the name of the resource that the task is suspended on.

[RESOURCE_TYPE]
is the type of resource that the task is suspended on.

[BATCH] states whether requests are to be batched. It can have either of these values:
YES|NO

[TIME_UNIT] identifies the time units specified on the INTERVAL and DELAY parameters where
present. It can have either of these values:
SECOND|MILLI_SECOND

[DELAY] is an interval (in units as specified by TIME_UNIT) during which the task is not
dispatched if CICS has other work to do.

[RETRY] indicates whether or not the dispatcher is to retry the suspend operation, if the
running task is not suspended by a preceding suspend operation. It can have either
of these values:
YES|NO

[WLM_WAIT_TYPE]
indicates the reasonfor task’s wait state to the MVS workload manager. It can have
any of these values:
LOCK|IO|CONV|CMDRESP|DISTRIB|
SESS_LOCALMVS|SESS_NETWORK|
SESS_SYSPLEX|TIMER|OTHER_PRODUCT|
MISC|IDLE

[DISPATCH_BEFORE_WAIT]
indicates if the suspended task is prepared to wait across a partition exit It can
have either of these values:
YES|NO

[TEMP_HIGH_PRIORITY]
indicates if the task is to get a temporary priority boost at the completion of the
suspend. It can have either of these values:
YES|NO

Dispatcher domain (DS)

Chapter 80. Dispatcher domain (DS) 713

Output parameters
RESPONSE is the dispatcher’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or PURGED. Possible values are:

RESPONSE Possible REASON values

INVALID ALREADY_WAITING
INVALID_ECB_ADDR

PURGED TASK_CANCELLED
TIMED_OUT

DSSR gate, WAIT_OLDW function
The WAIT_OLDW function of DSSR gate causes a task to wait on an ECB, or list of ECBs, that may be
posted via the MVS POST service or by setting the POST bit (X'40' in the first byte). This is supported
only in QR mode.

Input parameters

Note: ECB_ADDRESS and ECB_LIST_ADDRESS are mutually exclusive parameters; [INTERVAL] and
[DEADLOCK_ACTION] are also mutually exclusive.
ECB_ADDRESS is the address of the ECB for the task.
ECB_LIST_ADDRESS

is the address of a list of ECBs for the task.
PURGEABLE is the purgeable status of the task. It can have either of these values:

YES|NO
[INTERVAL] is an interval (in units as specified by TIME_UNIT) after which the task is given

back control if it has not been resumed by a DSSR RESUME call.
[DEADLOCK_ACTION]

describes whether the suspended task should be purged if deadlock is detected,
and if so, how it should be purged. It can have any one of these values:
DELAYED|IMMEDIATE|INHIBIT

[RESOURCE_NAME]
is the name of the resource that the task is suspended on.

[RESOURCE_TYPE]
is the type of resource that the task is suspended on.

[SPECIAL_TYPE(CSTP)]
identifies the special task CSTP.

[TIME_UNIT] identifies the time units specified on the INTERVAL and DELAY parameters where
present. It can have either of these values:
SECOND|MILLI_SECOND

[DELAY] is an interval (in units as specified by TIME_UNIT) during which the task is not
dispatched if CICS has other work to do.

[RETRY] indicates whether or not the dispatcher is to retry the suspend operation, if the
running task is not suspended by a preceding suspend operation. It can have either
of these values:
YES|NO

[WLM_WAIT_TYPE]
indicates the reason for task’s wait state to the MVS workload manager. It can have
any of these values:
LOCK|IO|CONV|CMDRESP|DISTRIB|
SESS_LOCALMVS|SESS_NETWORK|
SESS_SYSPLEX|TIMER|OTHER_PRODUCT|
MISC|IDLE

Dispatcher domain (DS)

714 CICS TS for z/OS: CICS Diagnosis Reference

[DISPATCH_BEFORE_WAIT]
indicates if the suspended task is prepared to wait across a partition exit It can
have either of these values:
YES|NO

[TEMP_HIGH_PRIORITY]
indicates if the task is to get a temporary priority boost at the completion of the
suspend. It can have either of these values:
YES|NO

Output parameters
RESPONSE is the dispatcher’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or PURGED. Possible values are:

RESPONSE Possible REASON values

PURGED TASK_CANCELLED
TIMED_OUT

INVALID ALREADY_WAITING, INVALID_ECB_ADDR, INVALID_MODE

DSSR gate, WAIT_OLDC function
The WAIT_OLDC function of DSSR gate causes a task to wait on an ECB that must be posted by setting
the X'40' bit rather than via the MVS POST service. This is supported only in QR mode.

Input parameters

Note: [INTERVAL] and [DEADLOCK_ACTION] are mutually exclusive parameters.
ECB_ADDRESS is the address of the ECB for the task.
PURGEABLE is the purgeable status of the task. It can have either of these values:

YES|NO
[INTERVAL] is an interval (in units as specified by TIME_UNIT) after which the task is given

back control if it has not been resumed by a DSSR RESUME call.
[DEADLOCK_ACTION]

describes whether the suspended task should be purged if deadlock is detected,
and if so, how it should be purged. It can have any one of these values:
DELAYED|IMMEDIATE|INHIBIT

[RESOURCE_NAME]
is the name of the resource that the task is suspended on.

[RESOURCE_TYPE]
is the type of resource that the task is suspended on.

[TIME_UNIT] identifies the time units specified on the INTERVAL and DELAY parameters where
present. It can have either of these values:
SECOND|MILLI_SECOND

[DELAY] is an interval (in units as specified by TIME_UNIT) during which the task is not
dispatched if CICS has other work to do.

[RETRY] indicates whether or not the dispatcher is to retry the suspend operation, if the
running task is not suspended by a preceding suspend operation. It can have either
of these values:
YES|NO

[WLM_WAIT_TYPE]
indicates the reason for task’s wait state to the MVS workload manager. It can have
any of these values:

Dispatcher domain (DS)

Chapter 80. Dispatcher domain (DS) 715

LOCK|IO|CONV|CMDRESP|DISTRIB|
SESS_LOCALMVS|SESS_NETWORK|
SESS_SYSPLEX|TIMER|OTHER_PRODUCT|
MISC|IDLE

[DISPATCH_BEFORE_WAIT]
indicates if the suspended task is prepared to wait across a partition exit It can
have either of these values:
YES|NO

[TEMP_HIGH_PRIORITY]
indicates if the task is to get a temporary priority boost at the completion of the
suspend. It can have either of these values:
YES|NO

Output parameters
RESPONSE is the dispatcher’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or PURGED. Possible values are:

RESPONSE Possible REASON values

INVALID ALREADY_WAITING
INVALID_ECB_ADDR
INVALID_MODE

PURGED TASK_CANCELLED
TIMED_OUT

Dispatcher domain’s generic gates
Table 47 summarizes the dispatcher domain’s generic gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gates, the functions provided by the gates, and the generic formats
for calls to the gates.

Table 47. Dispatcher domain’s generic gates
Gate Trace Function Format

DMDM DS 0006
DS 0007

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

KEDS DS 0012
DS 0013

TCB_REPLY
TASK_REPLY

KEDS

SMNT DS 0145
DS 0113

STORAGE_NOTIFY SMNT

STST DS 0020
DS 0021

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

APUE DS 0121
DS 0122

SET_EXIT_STATUS APUE

For descriptions of these functions and their input and output parameters, you need to refer to the sections
dealing with the corresponding generic formats:

Dispatcher domain (DS)

716 CICS TS for z/OS: CICS Diagnosis Reference

Functions and parameters

Format APUE—“Application domain’s generic formats” on page 593

Format DMDM—“Domain manager domain’s generic formats” on page 669

Format KEDS—“Kernel domain’s generic formats” on page 848

Format STST—“Statistics domain’s generic format” on page 1198

Format SMNT—“Storage manager domain’s generic formats” on page 1159

In preinitialization processing, the dispatcher domain sets the initial dispatching options:
v The priority aging value (PRTYAGE)
v Whether or not tasks are to be run in concurrent mode (SUBTSKS)
v The terminal scan delay interval (ICVTSD)
v The region exit time (ICV).

For a cold start, the information comes from the system initialization parameters (given in parentheses); for
any other type of start, the information comes from the local catalog, but is then modified by any relevant
system initialization parameters.

Dispatcher domain’s generic formats
Table 48 describes the generic formats owned by the dispatcher domain and shows the functions
performed on the calls.

Table 48. Generic formats owned by dispatcher domain

Format Calling modules Functions

DSAT DFHDSKE
DFHDSDS4
DFHSJIN
DFHSMVN

TASK_REPLY
PURGE_INHIBIT_QUERY
FORCE_PURGE_INHIBIT_QUERY
NOTIFY_DELETE_TCB

In the descriptions of the formats that follow, the “input” parameters are input not to the dispatcher, but to
the domain being called by the dispatcher. Similarly, the “output” parameters are output by the domain that
was called by the dispatcher, in response to the call.

DSAT format, TASK_REPLY function
The TASK_REPLY function of DSAT format is used to notify the domain that attached a task that the task
has had its first dispatch.

Input parameters
USER_TOKEN is the token by which the task that has been dispatched is known to the called domain.
TASK_TOKEN is the token by which the task that has been dispatched is known to the dispatcher.
SUSPEND_TOKEN

is the suspend token that the task can be suspended against by default.

Output parameters
RESPONSE is the called domain’s response to the call. It can have any one of these values:

OK|DISASTER|INVALID|KERNERROR

Dispatcher domain (DS)

Chapter 80. Dispatcher domain (DS) 717

DSAT format, PURGE_INHIBIT_QUERY function
The PURGE_INHIBIT_QUERY function of DSAT format is used by the dispatcher to see if a task selected
for purge can be purged. Its main purpose is to find out from the AP domain whether the task is currently
purgeable by the system.

Input parameters
USER_TOKEN is the token by which the task that has been dispatched is known to the called domain.
TASK_TOKEN is the token by which the task that has been dispatched is known to the dispatcher.

Output parameters
PURGE_INHIBITED_RESPONSE

states whether the task can be purged. It can have either of these values:
YES|NO

RESPONSE always has the value OK.

DSAT format, FORCE_PURGE_INHIBIT_QUERY function
The FORCE_PURGE_INHIBIT_QUERY function of DSAT format is used by the dispatcher to see if a task
selected for purge can be forcepurged. Its main purpose is to find out from the AP domain whether the
task is currently purgeable by the system.

Input parameters
USER_TOKEN is the token by which the task that has been dispatched is known to the called domain.
TASK_TOKEN is the token by which the task that has been dispatched is known to the dispatcher.

Output parameters
PURGE_INHIBITED_RESPONSE

states whether the task can be purged. It can have either of these values:
YES|NO

RESPONSE always has the value OK.

DSAT format, NOTIFY_DELETE_TCB function
The NOTIFY_DELETE function of DSAT format notifies the interested domain (as specified in the
NOTIFY_DELETE parameter on the DSIT ACTIVATE_MODE request for the mode) that a DELETE_TCB
request is in progress.

Input parameters
TCB_TOKEN The DS token representing the TCB instance for which notification is required when

deleted.

Output parameters
RESPONSE is the dispatcher’s response to the call. It can have only one value:

OK

Modules

Module Function

DFHDSAT Receives calls to the dispatcher DSAT gate. This gate carries out such work as:
ATTACH—Create new task
CHANGE_MODE—Change mode of running task
CHANGE_PRIORITY—Change priority of running task and release control
SET_PRIORITY—Change priority of running task or other task and keep running
CANCEL_TASK—Cancel specified task.

Dispatcher domain (DS)

718 CICS TS for z/OS: CICS Diagnosis Reference

Module Function

DFHDSBR Handles the following requests:
START_BROWSE
GET_NEXT
END_BROWSE
INQUIRE_TASK

DFHDSDM Handles the following dispatcher requests:
DMDM PRE_INITIALISE
DMDM INITIALISE_DOMAIN
DMDM QUIESCE_DOMAIN
DMDM TERMINATE_DOMAIN

DFHDSIT Handles the following dispatcher requests:
INQUIRE_DISPATCHER
SET_DISPATCHER

DFHDSKE Handles kernel DS requirements, and handles the following requests:
KEDS TCB_REPLY
KEDS TASK_REPLY

DFHDSSM Receives the STORAGE_NOTIFY call from the storage manager domain.

DFHDSSR Handles the following requests:
ADD_SUSPEND
DELETE_SUSPEND
INQUIRE_SUSPEND_TOKEN
SUSPEND
RESUME
WAIT_MVS
WAIT_OLDW
WAIT_OLDC

DFHDSST Receives statistics calls from the ST domain

DFHDSUE Receives the user exit gate call from the AP domain

Exits
There are two global user exit points in the dispatcher domain: XDSAWT and XDSBWT. For further
information about these, see the CICS Customization Guide.

Trace
The point IDs for the dispatcher domain are of the form DS xxxx; the corresponding trace levels are DS 1,
DS 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Dispatcher domain (DS)

Chapter 80. Dispatcher domain (DS) 719

720 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 81. Dump domain (DU)

The dump domain is responsible for producing storage dumps and for handling the associated data sets
and status in the CICS system. Two types of dump are produced:
Transaction dumps

These are written to the CICS-managed BSAM data sets DFHDMPA and DFHDMPB. They
consist of the storage areas related to a particular transaction.

System dumps CICS uses the MVS SDUMP facility to dump the entire CICS region to an MVS
SYS1.DUMP data set.

The two dump tables (one for each dump type) are indexed by the dump code and contain details of the
options required for each request.

Design overview
Figure 108 gives an overview of the dump domain architecture.

Dump domain’s specific gates
Table 49 summarizes the dump domain’s specific gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gates, the functions provided by the gates, and whether or not the
functions are available through the exit programming interface (XPI).

Table 49. Dump domain’s specific gates
Gate Trace Function XPI

DUDT DU 0500
DU 0501

ADD_TRAN_DUMPCODE
DELETE_TRAN_DUMPCODE
INQUIRE_TRAN_DUMPCODE
SET_TRAN_DUMPCODE
STARTBR_TRAN_DUMPCODE
GETNEXT_TRAN_DUMPCODE
ENDBR_TRAN_DUMPCODE
ADD_SYSTEM_DUMPCODE
DELETE_SYSTEM_DUMPCODE
INQUIRE_SYSTEM_DUMPCODE
SET_SYSTEM_DUMPCODE
STARTBR_SYSTEM_DUMPCODE
GETNEXT_SYSTEM_DUMPCODE
ENDBR_SYSTEM_DUMPCODE

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

DUMPDS
SYSTEM DUMP OPEN SET PRE_INITIALISE

COLLECT ADD TRAN TRANSACTION etc EXIT etc
STATISTICS DUMPCODE DUMP STATUS Domain

etc Call

Formats: STST DUDT DUDU DUSR APUE DMDM Interface

DFH DUDT DFHDUDU DFHDUSR DFHDUDM

TAKE RECORD
STATISTICS STATISTICS

LOCATE DFHDUXD
DFHDUTM COMMIT transaction dump

Dump table manager
DFHxxXDF

DFHDUSVC
system dump DFHDUXW

DFHDUSU
subroutines

DFHDUIO
Dump I/O routines

Figure 108. CICS dump domain structure

© Copyright IBM Corp. 1997, 2011 721

Table 49. Dump domain’s specific gates (continued)
Gate Trace Function XPI

DUDU DU 0101
DU 0102

TRANSACTION_DUMP
SYSTEM_DUMP

YES
YES

DUSR DU 0301
DU 0302

DUMPDS_OPEN
DUMPDS_CLOSE
DUMPDS_SWITCH
INQUIRE_CURRENT_DUMPDS
INQUIRE_DUMPDS_OPEN_STATUS
INQUIRE_DUMPDS_AUTOSWITCH
SET_DUMPDS_AUTOSWITCH
SET_DUMPTABLE_DEFAULTS
INQUIRE_INITIAL_DUMPDS
SET_INITIAL_DUMPDS
INQUIRE_SYSTEM_DUMP
SET_SYSTEM_DUMP
INQUIRE_RETRY_TIME
SET_RETRY_TIME
SET_CONNECT_TOKEN

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

DUDT gate, ADD_TRAN_DUMPCODE function
The ADD_TRAN_DUMPCODE function of the DUDT gate is invoked to add a new dump code to the
transaction dump table.

Input parameters
DUMPSCOPE indicates whether an SDUMP request is to be sent to all MVS images in the sysplex which

are running CICS systems connected via XCF/MRO to the system on which the command
is issued. It can have either of the following values:
LOCAL|RELATED
LOCAL

indicates that the SDUMP request is not sent to MVS images in the sysplex which are
running XCF/MRO connected CICS systems

RELATED
indicates that, when an SDUMP is initiated for the dump code, the request is sent to
all MVS images in the sysplex which are running one or more CICS systems
connected via XCF/MRO to the CICS on which the SDUMP is initiated.

TRANSACTION_DUMPCODE
is the transaction dump code.

TRANSACTION_DUMP
states whether a transaction dump is required for this dump code. It can have either of
these values:
YES|NO

SYSTEM_DUMP states whether a system dump is required for this dump code. It can have either of these
values:
YES|NO

TERMINATE_CICS
states whether CICS is to be terminated for this dump code. It can have either of these
values:
YES|NO

MAXIMUM_DUMPS
is the maximum number of times the dump code action can be taken.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Dump domain (DU)

722 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION DUPLICATE_DUMPCODE
INVALID_DUMPCODE
CATALOG_FULL
INSUFFICIENT_STORAGE
IO_ERROR

Process flow
1. Issue LMLM LOCK for DUTABLE lock.

2. Issue DUDT ADD_TRAN_DUMPCODE call to DFHDUTM.

3. Issue LMLM UNLOCK for DUTABLE lock.

DFHDUTM process flow
1. Validate the dump code to be added. Transaction dump codes are 4 bytes and must not contain

leading or embedded blanks. If the dump code is not valid, return to the caller indicating the exception.

2. Scan the transaction dump table to find the correct place to insert the dump code in collating
sequence. If an entry already exists for that dump code, return to the caller indicating duplicate dump
code. If the entry is about to use the last available entry in the dump table block, obtain a new block
and initialize it with null values. Create a dump table entry in the next available entry, indicated by
TDTFREEHEAD pointer in the anchor block, using the parameter values passed by the caller. Set up
the NEXT and PREV pointers of the new entry and higher and lower entries to include the new entry in
the correct sequence in the table.

3. Write the dump code information to the global catalog.

DUDT gate, DELETE_TRAN_DUMPCODE function
The DELETE_TRAN_DUMPCODE function of the DUDT gate is invoked to delete an existing dump code
from the transaction dump table.

Input parameters
TRANSACTION_DUMPCODE

is the transaction dump code.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION DUMPCODE_NOT_FOUND
IO_ERROR

Process flow
1. Issue LMLM LOCK for DUTABLE lock.

2. Issue DUDT DELETE_TRAN_DUMPCODE call to DFHDUTM.

3. Issue LMLM UNLOCK for DUTABLE lock.

DFHDUTM process flow
1. Locate the dump code in the transaction dump table. If it cannot be found, return to the caller

indicating DUMPCODE_NOT_FOUND exception.

2. Adjust the NEXT and PREV of the higher and lower entries in the table to bypass this entry, and set its
NEXT and PREV pointers to 0.

Dump domain (DU)

Chapter 81. Dump domain (DU) 723

3. Delete the information for the dump code from the global catalog. If the attempt to delete from the
catalog indicates that the record is not found, it is assumed that the dump code was present on the
dump table as a result of a LOCATE_TRAN_DUMPCODE subroutine call that does not update the
catalog.

DUDT LOCATE_TRAN_DUMPCODE process flow
1. Validate the dump code for which a dump has been requested (see ADD_TRAN_DUMPCODE).

2. Search the transaction dump table for the dump code. If it is found, set up the return DUDT
parameters to indicate whether CICS is to be terminated, and whether a system or transaction dump is
to be taken, using values taken from the dump table entry.

If the dump code does not exist on the dump table, an entry is added, using default values (see the
CICS Problem Determination Guide) and the DUDT return parameters are set up dependent on these
default values. (This default entry is not added to the global catalog.)

DUDT gate, INQUIRE_TRAN_DUMPCODE function
The INQUIRE_TRAN_DUMPCODE function of the DUDT gate is invoked to inquire on a dump code in the
transaction dump table.

Input parameters
TRANSACTION_DUMPCODE

is the transaction dump code.

Output parameters
[DUMPSCOPE] indicates whether an SDUMP request is to be sent to all MVS images in the sysplex which

are running CICS systems connected via XCF/MRO to the system on which the command
is issued. It can have either of the following values:
LOCAL|RELATED
LOCAL

indicates that the SDUMP request is not sent to MVS images in the sysplex which are
running XCF/MRO connected CICS systems

RELATED
indicates that, when an SDUMP is initiated for the dump code, the request is sent to
all MVS images in the sysplex which are running one or more CICS systems
connected via XCF/MRO to the CICS on which the SDUMP is initiated.

[TRANSACTION_DUMP]
states whether a transaction dump is required for this dump code. It can have either of
these values:
YES|NO

[SYSTEM_DUMP]
states whether a system dump is required for this dump code. It can have either of these
values:
YES|NO

[TERMINATE_CICS]
states whether CICS is to be terminated for this dump code. It can have either of these
values:
YES|NO

[MAXIMUM_DUMPS]
is the maximum number of times the dump code action can be taken.

[COUNT] is the number of times the dump code action has been taken.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. It has this value:

DUMPCODE_NOT_FOUND

Dump domain (DU)

724 CICS TS for z/OS: CICS Diagnosis Reference

Process flow
1. Issue LMLM LOCK for DUTABLE lock.

2. Issue DUDT INQUIRE_TRAN_DUMPCODE call to DFHDUTM.

3. Issue LMLM UNLOCK for DUTABLE lock.

DFHDUTM process flow
1. Locate the dump code in the transaction dump code table. If it cannot be found, return to the caller

indicating DUMPCODE_NOT_FOUND exception.

2. Return the dump code table entry information to the caller in the DUDT parameters.

DUDT gate, SET_TRAN_DUMPCODE function
The SET_TRAN_DUMPCODE function of the DUDT gate is invoked to set options for a dump code in the
transaction dump table.

Input parameters
[DUMPSCOPE] indicates whether an SDUMP request is to be sent to all MVS images in the sysplex which

are running CICS systems connected via XCF/MRO to the system on which the command
is issued. It can have either of the following values:
LOCAL|RELATED
LOCAL

indicates that the SDUMP request is not sent to MVS images in the sysplex which are
running XCF/MRO connected CICS systems

RELATED
indicates that, when an SDUMP is initiated for the dump code, the request is sent to
all MVS images in the sysplex which are running one or more CICS systems
connected via XCF/MRO to the CICS on which the SDUMP is initiated.

TRANSACTION_DUMPCODE
is the transaction dump code.

[TRANSACTION_DUMP]
states whether a transaction dump is required for this dump code. It can have either of
these values:
YES|NO

[SYSTEM_DUMP]
states whether a system dump is required for this dump code. It can have either of these
values:
YES|NO

[TERMINATE_CICS]
states whether CICS is to be terminated for this dump code. It can have either of these
values:
YES|NO

[MAXIMUM_DUMPS]
is the maximum number of times the dump code action can be taken.

[RESET_COUNT]
states whether COUNT is to be reset to zero. It can have either of these values:
YES|NO

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Dump domain (DU)

Chapter 81. Dump domain (DU) 725

RESPONSE Possible REASON values

EXCEPTION DUMPCODE_NOT_FOUND
CATALOG_FULL
IO_ERROR

Process flow
1. Issue LMLM LOCK for DUTABLE lock.

2. Issue DUDT SET_TRAN_DUMPCODE call to DFHDUTM.

3. Issue LMLM UNLOCK for DUTABLE lock.

DFHDUTM process flow
1. Locate the dump code in the transaction dump code table. If it cannot be found, return to the caller

indicating DUMPCODE_NOT_FOUND exception.

2. Change the values on the dump code table entry for any passed in the DUDT parameter list (some or
all may be changed). If the RESET_COUNT parameter is present, set the count of the number of
dumps taken for this dump code to zero.

3. Make the same changes to the dump code information about the global catalog. If the attempt to
delete from the catalog indicates that the record is not found, it is assumed that the dump code was
present on the dump table as a result of a LOCATE_TRAN_DUMPCODE subroutine call that does not
update the catalog. See “DUDT LOCATE_TRAN_DUMPCODE process flow” on page 724 for a
description of the process flow of this function.

DUDT gate, STARTBR_TRAN_DUMPCODE function
The STARTBR_TRAN_DUMPCODE function of the DUDT gate is invoked to start a browse session on the
transaction dump table.

Input parameters
None.

Output parameters
BROWSE_TOKEN is the token identifying the browse session.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. It has this value:

INSUFFICIENT_STORAGE

Process flow
1. Issue LMLM LOCK for DUTABLE lock.

2. Issue DUDT STARTBR_TRAN_DUMPCODE call to DFHDUTM.

3. Issue LMLM UNLOCK for DUTABLE lock.

DFHDUTM process flow
1. Add a new browse token to the end of the browse token table. Set the value of the last dump code

used to null in the browse token table entry.

2. Return the browse token to the caller.

DUDT gate, GETNEXT_TRAN_DUMPCODE function
The GETNEXT_TRAN_DUMPCODE function of the DUDT gate is invoked in a browse session to get the
next entry in the transaction dump table.

Input parameters
BROWSE_TOKEN is the token identifying the browse session.

Dump domain (DU)

726 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
[DUMPSCOPE] indicates whether an SDUMP request is to be sent to all MVS images in the sysplex which

are running CICS systems connected via XCF/MRO to the system on which the command
is issued. It can have either of the following values:
LOCAL|RELATED
LOCAL

indicates that the SDUMP request is not sent to MVS images in the sysplex which are
running XCF/MRO connected CICS systems

RELATED
indicates that, when an SDUMP is initiated for the dump code, the request is sent to
all MVS images in the sysplex which are running one or more CICS systems
connected via XCF/MRO to the CICS on which the SDUMP is initiated.

[TRANSACTION_DUMPCODE]
is the transaction dump code.

[TRANSACTION_DUMP]
states whether a transaction dump is required for this dump code. It can have either of
these values:
YES|NO

[SYSTEM_DUMP]
states whether a system dump is required for this dump code. It can have either of these
values:
YES|NO

[TERMINATE_CICS]
states whether CICS is to be terminated for this dump code. It can have either of these
values:
YES|NO

[MAXIMUM_DUMPS]
is the maximum number of times the dump code action can be taken.

[COUNT] is the number of times the dump code action has been taken.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION END_BROWSE

INVALID INVALID_BROWSE_TOKEN

Process flow
1. Issue LMLM LOCK for DUTABLE lock.

2. Issue DUDT GETNEXT_TRAN_DUMPCODE call to DFHDUTM.

3. Issue LMLM UNLOCK for DUTABLE lock.

DFHDUTM process flow
1. Search the browse token table for the browse token passed in the DUDT parameters. If the browse

token cannot be found, perform error handling (exception trace, message, and dump) and return to the
caller.

2. Obtain the value of the last dump code read by this browse session from the browse token table entry,
and scan the dump table for a higher dump code entry. If there are no more entries, return
END_BROWSE exception to the call; otherwise return the details of the dump code table entry in the
parameters and save the value of the dump code in the browse token table entry.

Dump domain (DU)

Chapter 81. Dump domain (DU) 727

DUDT gate, ENDBR_TRAN_DUMPCODE function
The ENDBR_TRAN_DUMPCODE function of the DUDT gate is invoked to end a browse session on the
transaction dump table.

Input parameters
BROWSE_TOKEN is the token identifying the browse session.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. It has this value:

INVALID_BROWSE_TOKEN

Process flow
1. Issue LMLM LOCK for DUTABLE lock.

2. Issue DUDT ENDBR_TRAN_DUMPCODE call to DFHDUTM.

3. Issue LMLM UNLOCK for DUTABLE lock.

DFHDUTM process flow
1. Search the browse token table for the browse token passed in the DUDT parameters. If the browse

token cannot be found, perform error handling (exception trace, message, and dump) and return to the
caller.

2. Set the browse token table entry to nulls and adjust the NEXT and PREV pointers to bypass the entry.

DUDT gate, ADD_SYSTEM_DUMPCODE function
The ADD_SYSTEM_DUMPCODE function of the DUDT gate is invoked to add a new dump code to the
system dump table.

Input parameters
DAEOPTION states whether a dump produced for this dumpcode is eligible for suppression by the MVS

Dump Analysis and Elimination (DAE) component. It can have either of these values:
YES|NO

DUMPSCOPE indicates whether an SDUMP request is to be sent to all MVS images in the sysplex which
are running CICS systems connected via XCF/MRO to the system on which the command
is issued. It can have either of the following values:
LOCAL|RELATED
LOCAL

indicates that the SDUMP request is not sent to MVS images in the sysplex which are
running XCF/MRO connected CICS systems

RELATED
indicates that, when an SDUMP is initiated for the dump code, the request is sent to
all MVS images in the sysplex which are running one or more CICS systems
connected via XCF/MRO to the CICS on which the SDUMP is initiated.

SYSTEM_DUMPCODE
is the system dump code.

SYSTEM_DUMP states whether a system dump is required for this dump code. It can have either of these
values:
YES|NO

TERMINATE_CICS
states whether CICS is to be terminated for this dump code. It can have either of these
values:
YES|NO

MAXIMUM_DUMPS
is the maximum number of times the dump code action can be taken.

Dump domain (DU)

728 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION DUPLICATE_DUMPCODE
INVALID_DUMPCODE
CATALOG_FULL
INSUFFICIENT_STORAGE
IO_ERROR

Process flow
1. Acquire KE system dump lock.

2. Issue DUDT ADD_SYSTEM_DUMPCODE call to DFHDUTM.

3. Release KE system dump lock.

DFHDUTM process flow
1. Validate the dump code to be added. System dump codes are 4 bytes and must not contain leading or

embedded blanks. If the dump code is not valid, return to the caller indicating the exception.

2. Scan the system dump table to find the correct place to insert the dump code in collating sequence. If
an entry already exists for that dump code, return to the caller indicating duplicate dump code. If the
entry is about to use the last available entry in the dump table block, obtain a new block and initialize it
with null values. Create a dump table entry in the next available entry, indicated by TDTFREEHEAD
pointer in the anchor block, using the parameter values passed by the caller. Set up the NEXT and
PREV pointers of the new entry and higher and lower entries to include the new entry in the correct
sequence in the table.

3. Write the dump code information to the global catalog.

DUDT gate, DELETE_SYSTEM_DUMPCODE function
The DELETE_SYSTEM_DUMPCODE function of the DUDT gate is invoked to delete an existing dump
code from the system dump table.

Input parameters
SYSTEM_DUMPCODE

is the system dump code.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION DUMPCODE_NOT_FOUND
IO_ERROR

Process flow
1. Acquire KE system dump lock.

2. Issue DUDT DELETE_SYSTEM_DUMPCODE call to DFHDUTM.

3. Release KE system dump lock.

Dump domain (DU)

Chapter 81. Dump domain (DU) 729

DFHDUTM process flow
1. Locate the dump code in the system dump table. If it cannot be found, return to the caller indicating

DUMPCODE_NOT_FOUND exception.

2. Adjust the NEXT and PREV of the higher and lower entries in the table to bypass this entry, and set its
NEXT and PREV pointers to 0.

3. Delete the information for the dump table from the global catalog. If the attempt to delete from the
catalog indicates that the record is not found, it is assumed that the dump code was present on the
dump table as a result of a LOCATE_SYSTEM_DUMPCODE subroutine call that does not update the
catalog.

DUDT LOCATE_SYSTEM_DUMPCODE process flow
1. Validate the dump code for which a dump has been requested (see ADD_SYSTEM_DUMPCODE).

2. Search the system dump table for the dump code. If it is found, set up the return DUDT parameters to
indicate whether CICS is to be terminated, and whether a system dump is to be taken, using values
taken from the dump table entry.

If the dump code does not exist on the dump table, an entry is added, using default values (see the
CICS Problem Determination Guide) and the DUDT return parameters are set up dependent on these
default values. (This default entry is not added to the global catalog.)

DUDT gate, INQUIRE_SYSTEM_DUMPCODE function
The INQUIRE_SYSTEM_DUMPCODE function of the DUDT gate is invoked to inquire on a dump code in
the system dump table.

Input parameters
SYSTEM_DUMPCODE

is the system dump code.

Output parameters
DAEOPTION states whether a dump produced for this dumpcode is eligible for suppression by the MVS

Dump Analysis and Elimination (DAE) component. It can have either of these values:
YES|NO

DUMPSCOPE indicates whether an SDUMP request is to be sent to all MVS images in the sysplex which
are running CICS systems connected via XCF/MRO to the system on which the command
is issued. It can have either of the following values:
LOCAL|RELATED
LOCAL

indicates that the SDUMP request is not sent to MVS images in the sysplex which are
running XCF/MRO connected CICS systems

RELATED
indicates that, when an SDUMP is initiated for the dump code, the request is sent to
all MVS images in the sysplex which are running one or more CICS systems
connected via XCF/MRO to the CICS on which the SDUMP is initiated.

[SYSTEM_DUMP]
states whether a system dump is required for this dump code. It can have either of these
values:
YES|NO

[TERMINATE_CICS]
states whether CICS is to be terminated for this dump code. It can have either of these
values:
YES|NO

[MAXIMUM_DUMPS]
is the maximum number of times the dump code action can be taken.

[COUNT] is the number of times the dump code action has been taken.
RESPONSE is the domain’s response to the call. It can have any of these values:

Dump domain (DU)

730 CICS TS for z/OS: CICS Diagnosis Reference

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. It has this value:

DUMPCODE_NOT_FOUND

Process flow
1. Acquire KE system dump lock.

2. Issue DUDT INQUIRE_SYSTEM_DUMPCODE call to DFHDUTM.

3. Release KE system dump lock.

DFHDUTM process flow
1. Locate the dump code in the system dump code table. If it cannot be found, return to the caller

indicating DUMPCODE_NOT_FOUND exception.

2. Return the dump code table entry information to the caller in the DUDT parameters.

DUDT gate, SET_SYSTEM_DUMPCODE function
The SET_SYSTEM_DUMPCODE function of the DUDT gate is invoked to set options for a dump code in
the system dump table.

Input parameters
[DAEOPTION] states whether a dump produced for this dumpcode is eligible for suppression by the MVS

Dump Analysis and Elimination (DAE) component. It can have either of these values:
YES|NO

[DUMPSCOPE] indicates whether an SDUMP request is to be sent to all MVS images in the sysplex which
are running CICS systems connected via XCF/MRO to the system on which the command
is issued. It can have either of the following values:
LOCAL|RELATED
LOCAL

indicates that the SDUMP request is not sent to MVS images in the sysplex which are
running XCF/MRO connected CICS systems

RELATED
indicates that, when an SDUMP is initiated for the dump code, the request is sent to
all MVS images in the sysplex which are running one or more CICS systems
connected via XCF/MRO to the CICS on which the SDUMP is initiated.

SYSTEM_DUMPCODE
is the system dump code.

[SYSTEM_DUMP]
states whether a system dump is required for this dump code. It can have either of these
values:
YES|NO

[TERMINATE_CICS]
states whether CICS is to be terminated for this dump code. It can have either of these
values:
YES|NO

[MAXIMUM_DUMPS]
is the maximum number of times the dump code action can be taken.

[RESET_COUNT]
states whether COUNT is to be reset to zero. It can have either of these values:
YES|NO

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Dump domain (DU)

Chapter 81. Dump domain (DU) 731

RESPONSE Possible REASON values

EXCEPTION DUMPCODE_NOT_FOUND
CATALOG_FULL
IO_ERROR

Process flow
1. Acquire KE system dump lock.

2. Issue DUDT SET_SYSTEM_DUMPCODE call to DFHDUTM.

3. Release KE system dump lock.

DFHDUTM process flow
1. Locate the dump code in the system dump code table. If it cannot be found, return to the caller

indicating DUMPCODE_NOT_FOUND exception.

2. Change the values on the dump code table entry for any passed in the DUDT parameter list (some or
all may be changed). If the RESET_COUNT parameter is present, set the count of the number of
dumps taken for this dump code to zero.

3. Make the same changes to the dump code information about the global catalog. If the attempt to
delete from the catalog indicates that the record is not found, it is assumed that the dump code was
present on the dump table as a result of a LOCATE_SYSTEM_DUMPCODE subroutine call that does
not update the catalog. See “DUDT LOCATE_SYSTEM_DUMPCODE process flow” on page 730 for a
description of the process flow of this function.

DUDT gate, STARTBR_SYSTEM_DUMPCODE function
The STARTBR_SYSTEM_DUMPCODE function of the DUDT gate is invoked to start a browse session on
the system dump table.

Input parameters
None.

Output parameters
BROWSE_TOKEN is the token identifying the browse session.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. It has this value:

INSUFFICIENT_STORAGE

Process flow
1. Acquire KE system dump lock.

2. Issue DUDT STARTBR_SYSTEM_DUMPCODE call to DFHDUTM.

3. Release KE system dump lock.

DFHDUTM process flow
1. Add a new browse token to the end of the browse token table. Set the value of the last dump code

used to null in the browse token table entry.

2. Return the browse token to the caller.

DUDT gate, GETNEXT_SYSTEM_DUMPCODE function
The GETNEXT_SYSTEM_DUMPCODE function of the DUDT gate is invoked in a browse session to get
the next entry in the system dump table.

Input parameters
BROWSE_TOKEN is the token identifying the browse session.

Dump domain (DU)

732 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
[DAEOPTION] states whether a dump produced for this dumpcode is eligible for suppression by the MVS

Dump Analysis and Elimination (DAE) component. It can have either of these values:
YES|NO

[DUMPSCOPE] indicates whether an SDUMP request is to be sent to all MVS images in the sysplex which
are running CICS systems connected via XCF/MRO to the system on which the command
is issued. It can have either of the following values:
LOCAL|RELATED
LOCAL

indicates that the SDUMP request is not sent to MVS images in the sysplex which are
running XCF/MRO connected CICS systems

RELATED
indicates that, when an SDUMP is initiated for the dump code, the request is sent to
all MVS images in the sysplex which are running one or more CICS systems
connected via XCF/MRO to the CICS on which the SDUMP is initiated.

[SYSTEM_DUMPCODE]
is the system dump code.

[SYSTEM_DUMP]
states whether a system dump is required for this dump code. It can have either of these
values:
YES|NO

[TERMINATE_CICS]
states whether CICS is to be terminated for this dump code. It can have either of these
values:
YES|NO

[MAXIMUM_DUMPS]
is the maximum number of times the dump code action can be taken.

[COUNT] is the number of times the dump code action has been taken.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION END_BROWSE

INVALID INVALID_BROWSE_TOKEN

Process flow
1. Acquire KE system dump lock.

2. Issue DUDT GETNEXT_SYSTEM_DUMPCODE call to DFHDUTM.

3. Release KE system dump lock.

DFHDUTM process flow
1. Search the browse token table for the browse token passed in the DUDT parameters. If the browse

token cannot be found, perform error handling (exception trace, message, and dump) and return to the
caller.

2. Obtain the value of the last dump code read by this browse session from the browse token table entry,
and scan the dump table for a higher dump code entry. If there are no more entries, return
END_BROWSE exception to the call; otherwise return the details of the dump code table entry in the
parameters and save the value of the dump code in the browse token table entry.

DUDT gate, ENDBR_SYSTEM_DUMPCODE function
The ENDBR_SYSTEM_DUMPCODE function of the DUDT gate is invoked to end a browse on the system
dump table.

Dump domain (DU)

Chapter 81. Dump domain (DU) 733

Input parameters
BROWSE_TOKEN is the token identifying the browse session.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. It has this value:

INVALID_BROWSE_TOKEN

Process flow
1. Acquire KE system dump lock.

2. Issue DUDT ENDBR_SYSTEM_DUMPCODE call to DFHDUTM.

3. Release KE system dump lock.

DFHDUTM process flow
1. Search the browse token table for the browse token passed in the DUDT parameters. If the browse

token cannot be found, perform error handling (exception trace, message, and dump) and return to the
caller.

2. Set the browse token table entry to nulls and adjust the NEXT and PREV pointers to bypass the entry.

DUDU gate, TRANSACTION_DUMP function
The TRANSACTION_DUMP function of the DUDU gate is invoked to take a transaction dump.

Input parameters

Note: The [SEGMENT] and [SEGMENT_LIST] parameters are mutually exclusive.
TRANSACTION_DUMPCODE

is a 4-character identifier for this dump request, used to index the transaction dump
table to determine the options to be used.

The following set of optional input parameters indicates which parts of storage are to be
included in the transaction dump. Each parameter can have either of these values: YES|NO.
[CSA] – common system area
[TCA] – task control area
[PROGRAM] – program storage
[TRT] – internal trace table
[TERMINAL] – terminal-related storage areas
[TRANSACTION]

– transaction-related storage areas
[SIT] – system initialization table
[PPT] – processing program table
[PCT] – program control table
[TCT] – terminal control table
[FCT] – file control table
[DCT] – destination control table.
[SEGMENT] specifies the address and length of a single block of storage to be dumped.
[SEGMENT_LIST]

specifies the address and length of a list of length-address pairs of storage blocks
to be dumped. SEGMENT and SEGMENT_LIST may not be specified together.

[INDIRECT_CALL]
states whether the call is indirect, that is, whether the actual requester of the dump
is not the immediate caller of the dump domain. It can have either of these values:
YES|NO

Dump domain (DU)

734 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
DUMPID is a character string of the form “rrrr/cccc” giving a unique identification to this dump

request. “rrrr” is the run number of this CICS instance. Leading zeros are removed. The
run number is incremented every time CICS is initialized. “cccc” is the count of this dump
request within this CICS run.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. It can have any one of these values:
FESTAE_FAILED

The MVS FESTAE macro failed to set up a functional recovery routine
during the processing of the system dump request.

IWMWQWRK_FAILED
An MVS IWMWQWRK macro call to Workload Manager returned a
warning or error response during the processing of the system dump
request.

INVALID_SVC_CALL
DFHDUSVC received a request for an invalid function.

INVALID_PROBDESC
The MVS PROBDESC parameters, which CICS creates and passes to
MVS on an SDUMP call, contained invalid data.

OPEN_ERROR Failed to open the CICS dump data set during an autoswitch.
NOT_OPEN The dump data set is currently closed.
INVALID_DUMPCODE

The transaction dump code failed validation.
PARTIAL_TRANSACTION_DUMP

There was insufficient space in the current dump data set for this dump.
Autoswitching had not been requested.

SUPPRESSED_BY_DUMPOPTION
A system dump requested through the dump table for this transaction
dump code was suppressed because the DUMP=NO system initialization
parameter had been specified.

SUPPRESSED_BY_DUMPTABLE
The dump table specified that no dump was required for this dump code.

SUPPRESSED_BY_USEREXIT
The XDUREQ user exit requested suppression of this dump.

PARTIAL_SYSTEM_DUMP
A system dump requested through the dump table for this transaction
dump code was incomplete because of insufficient space on the
SYS1.DUMP data set.

SDUMP_FAILED A system dump requested through the dump table for this transaction
dump code failed because of an MVS or I/O failure.

SDUMP_BUSY A system dump requested through the dump table for this system dump
code failed because another address space was in the process of taking
an SDUMP or the task was cancelled using the KILL option.

SDUMP_NOT_AUTHORIZED
A system dump requested through the dump table for this transaction
dump code failed because the CICS authorized function control block
(AFCB) indicates that CICS use of SDUMP is not authorized.

INSUFFICIENT_STORAGE
A system dump requested through the dump table for this transaction
dump code failed because CICS failed to acquire the necessary storage to
build the SDUMP parameter list.

NO_DATASET A system dump requested through the dump table for this transaction
dump code failed because there were no SYS1.DUMP data sets available.

Dump domain (DU)

Chapter 81. Dump domain (DU) 735

#
#
#

Process flow
1. Issue LMLM LOCK for DUTABLE lock.

2. Issue DUDT LOCATE_TRAN_DUMPCODE call to DFHDUTM. If the dump table is not available,
CICS takes a system dump and terminates.

3. Issue LMLM UNLOCK for DUTABLE lock.

4. If XDUREQ exit active, issue APEX INVOKE_USER_EXIT.

5. If XDUREQ exit not active or it was active and the return code was zero:

v If dump table indicates that a system dump is required for this transaction dump code and the
DUMP=NO system initialization parameter was not specified. invoke CICS SVC to take system
dump, retrying as necessary if SDUMP is busy.

v If dump table indicates that a transaction dump is required, call DFHDUXD with a DUDD format
parameter list to take a transaction dump.

6. If XDUREQC exit active, issue APEX INVOKE_USER_EXIT.

7. Issue LMLM LOCK for DUTABLE lock.

8. Issue DUDT COMMIT_TRAN_DUMPCODE call to DFHDUTM.

9. Issue LMLM UNLOCK for DUTABLE lock.

10. Issue KEDD PERFORM_SYSTEM_ACTION to terminate CICS if the dump table indicated that
termination was required for this dump code.

DUDD TAKE_DUMP process flow
In DFHDUXD:

1. If dump data set is closed or is a dummy data set, and the XDUOUT exit is not active, return to caller.

2. Issue LMLM LOCK for dump data set lock.

3. Invoke transaction dump formatting routines (DFHxxXDF), with DUXF FORMAT function, in turn to
dump required areas to the transaction dump data set. If, at any point, the DUXF FORMAT function
returns a response of EXCEPTION and a reason of RESTART, an autoswitch has occurred and the
DUXF FORMAT calls have to be issued again.

4. Issue LMLM UNLOCK for dump data set lock.

5. If DFHDUXD is terminating with a DISASTER response and XDUOUT is active, issue APEX
INVOKE_USER_EXIT for XDUOUT, passing the abnormal termination indication.

DUDT COMMIT_TRAN_DUMPCODE process flow
The DUDT COMMIT_TRAN_DUMPCODE function updates statistics for the dump code, according to
whether or not the dump domain took the requested dumps.

1. Locate the entry on the transaction dump table. Return to the caller, indicating exception if the entry is
not found.

2. Increment the global system dump statistics in the DUA and the system dump statistics on the dump
table entry, for either dump-taken or dump-suppressed depending on the input system-dump
parameter.

3. Increment the global transaction dump statistics in the DUA and the transaction dump statistics for
either dump-taken or dump-suppressed depending on the input transaction-dump parameter.

DUDU gate, SYSTEM_DUMP function
The SYSTEM_DUMP function of the DUDU gate is invoked to take a system dump.

Input parameters
SYSTEM_DUMPCODE

is an 8-character identifier for this dump request, used to index the system dump table to
determine the options to be used.

[MESSAGE_TEXT]
specifies the address and length of the message text associated with this system dump.

Dump domain (DU)

736 CICS TS for z/OS: CICS Diagnosis Reference

[TITLE] specifies the address and length of a title to be associated with this dump.
[CALLER] specifies the address and length of a character string to appear as the caller of this dump.
[SYMPTOM_RECORD]

specifies the address and length of the symptom record associated with this dump.
[SYMPTOM_STRING]

specifies the address and length of the symptom string associated with this dump.
[TERMINATE_CICS]

states whether CICS is to be terminated after the dump if there is no entry in the dump
table for this dump code; that is, it overrides the termination default of NO. It can have
either of these values:
YES|NO

[INDIRECT_CALL]
states whether the call is indirect, that is, whether the actual requester of the dump is not
the immediate caller of the dump domain. It can have either of these values:
YES|NO

Output parameters
DUMPID is a character string of the form “rrrr/cccc” giving a unique identification to this dump

request. “rrrr” is the run number of this CICS instance. Leading zeros are removed. The
run number is incremented every time CICS is initialized. “cccc” is the count of this dump
request within this CICS run.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. It can have any one of these values:
INVALID_DUMPCODE

The system dump code failed validation.
SUPPRESSED_BY_DUMPOPTION

A system dump requested through the dump table for this system dump
code was suppressed because the DUMP=NO system initialization
parameter had been specified.

SUPPRESSED_BY_DUMPTABLE
The dump table specified that no dump was required for this dump code.

SUPPRESSED_BY_USEREXIT
The XDUREQ user exit requested suppression of this dump.

PARTIAL_SYSTEM_DUMP
A system dump requested through the dump table for this system dump
code was incomplete because of insufficient space on the SYS1.DUMP
data set.

SDUMP_FAILED A system dump requested through the dump table for this system dump
code failed because of an MVS or I/O failure.

SDUMP_BUSY A system dump requested through the dump table for this system dump
code failed because another address space was in the process of taking
an SDUMP or the task was cancelled using the KILL option.

SDUMP_NOT_AUTHORIZED
A system dump requested through the dump table for this system dump
code failed because the CICS authorized function control block (AFCB)
indicates that CICS use of SDUMP is not authorized.

INSUFFICIENT_STORAGE
A system dump requested through the dump table for this system dump
code failed because CICS failed to acquire the necessary storage to build
the SDUMP parameter list.

NO_DATASET A system dump requested through the dump table for this system dump
code failed because there were no SYS1.DUMP data sets available.

Dump domain (DU)

Chapter 81. Dump domain (DU) 737

#
#
#

Process flow
1. Acquire KE system dump lock.

2. If the DUMP=YES system initialization parameter was specified:

v Issue DUDT LOCATE_SYSTEM_DUMPCODE call to DFHDUTM.

v If dump table indicates system dump required:

– If XDUREQ exit active, issue APEX INVOKE_USER_EXIT.

– If XDUREQ exit not active or it was active and the return code was zero, invoke CICS SVC to
take system dump, retrying as necessary if SDUMP is busy.

– If XDUREQC exit active, issue APEX INVOKE_USER_EXIT.

3. Issue DUDT COMMIT_SYSTEM_DUMPCODE call to DFHDUTM.

4. Release KE system dump lock.

5. Issue KEDD PERFORM_SYSTEM_ACTION to terminate CICS if the dump table indicated that
termination was required for this dump code.

DUDT COMMIT_SYSTEM_DUMPCODE process flow
The COMMIT_SYSTEM_DUMPCODE function of the DUDT gate updates statistics for the dump code,
according to whether or not the dump domain took the requested dumps.

v Locate the entry on the system dump table. Return to the caller, indicating exception if the entry is not
found.

v Increment the global system dump statistics and the system dump statistics on the dump table entry, for
either dump-taken or dump-suppressed depending on the input system-dump parameter.

DUSR gate, CROSS_SYSTEM_DUMP_AVAIL function
The CROSS_SYSTEM_DUMP_AVAIL function of the DUSR gate is used to inform the dump domain about
the DUMP_AVAIL token which links CICS with the MVS workload manager.

Input parameters
CROSS_SYSTEM_DUMP_AVAIL

is the CICS to MVS workload manager token.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED

Process flow
v Set the CICS to MVS workload manager connect token in the DUA.

Dump domain (DU)

738 CICS TS for z/OS: CICS Diagnosis Reference

DUSR gate, DUMPDS_OPEN function
The DUMPDS_OPEN function of the DUSR gate is invoked to open the CICS dump data set.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. It has this value:

OPEN_ERROR

which indicates that the MVS OPEN of the dump data set failed.

Process flow
1. Issue LMLM LOCK for dump data set lock.

2. Call DUSU OPEN function.

3. Issue LMLM UNLOCK for dump data set lock.

DUSR gate, DUMPDS_CLOSE function
The DUMPDS_CLOSE function of the DUSR gate is invoked to close the CICS dump data set.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Process flow
1. Issue LMLM LOCK for dump data set lock.

2. Call DUSU CLOSE function.

3. Issue LMLM UNLOCK for dump data set lock.

DUSR gate, DUMPDS_SWITCH function
The DUMPDS_SWITCH function of the DUSR gate is invoked to switch to the alternate CICS dump data
set.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. It has this value:

OPEN_ERROR

which indicates that the MVS OPEN of the dump data set failed.

Process flow
1. Issue LMLM LOCK for dump data set lock.

2. Call DUSU SWITCH function.

3. Issue LMLM UNLOCK for dump data set lock.

Dump domain (DU)

Chapter 81. Dump domain (DU) 739

DUSU SWITCH process flow
1. Process as for DUSU CLOSE.

2. Switch current data set name in the DUA.

3. Process as for DUSU OPEN.

DUSU OPEN process flow
1. Return if the DUA indicates already open.

2. Call DUIO OPEN function.

3. Update status on catalog.

DUSU CLOSE process flow
1. If data set is open:

v Call DUIO ALLOC_STG function to get storage for DYNALLOC parameter list.

v Issue DYNALLOC to get data set name for current dump data set.

2. Call DUIO CLOSE function.

3. If XDUCLSE exit is active, call APEX INVOKE_USER_EXIT.

4. Set status in the DUA to closed.

5. Free DYNALLOC parameter list if necessary.

DUIO OPEN process flow
1. Return if the DUA indicates transaction dump data set is already open.

2. Issue MVS GETMAIN for DU Open Block if it is not yet allocated.

3. Issue MVS OPEN.

4. Set status to open in the DUA.

5. Write end-of-data record.

DUIO uses the DCB OPEN exit to complete the DCB with block size and LRECL, and to determine the
size of the buffer to be used by CICS. The DCB abend exit and the SYNAD routine are also activated to
detect any errors that may occur during OPEN.

DUIO CLOSE process flow
1. Return if already closed.

2. Issue MVS CLOSE.

3. Issue MVS FREEPOOL to release buffers.

4. If this close is not for a switch, free the DU open block.

5. Set status to closed in the DUA.

DUIO ALLOC_STG process flow
1. Issue MVS GETMAIN for requested storage.

2. Clear acquired area to hexadecimal zeros.

DUSR gate, INQUIRE_CURRENT_DUMPDS function
The INQUIRE_CURRENT_DUMPDS function of the DUSR gate returns the name of the current dump
data set.

Input parameters
None.

Output parameters
CURRENT_DUMPDS

is the name of the current dump data set. It can have either of these values:

Dump domain (DU)

740 CICS TS for z/OS: CICS Diagnosis Reference

DFHDMPA|DFHDMPB
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

DUSR gate, INQUIRE_DUMPDS_OPEN_STATUS function
The INQUIRE_DUMPDS_OPEN_STATUS function of the DUSR gate returns an indication of whether the
current dump data set is open or closed.

Input parameters
None.

Output parameters
OPEN_STATUS is the open status of the current dump data set. It can have either of these values:

OPEN|CLOSED
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

DUSR gate, INQUIRE_DUMPDS_AUTOSWITCH function
The INQUIRE_DUMPDS_AUTOSWITCH function of the DUSR gate returns an indication of whether
autoswitching is active or not.

Input parameters
None.

Output parameters
AUTOSWITCH is the dump data set autoswitch status. It can have either of these values:

ON|OFF
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

DUSR gate, SET_DUMPDS_AUTOSWITCH function
The SET_DUMPDS_AUTOSWITCH function of the DUSR gate is used to set autoswitching on or off.

Input parameters
AUTOSWITCH is the dump data set autoswitch status. It can have either of these values:

ON|OFF

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Process flow
1. Set new autoswitch value in the DUA.

2. Call DUSU UPDATE_CATALOGUE function, to write the DU state record to local catalog, using the
current status from the DUA.

DUSR gate, INQUIRE_INITIAL_DUMPDS function
The INQUIRE_INITIAL_DUMPDS function of the DUSR gate returns the setting of the initial dump data
set.

Input parameters
None.

Dump domain (DU)

Chapter 81. Dump domain (DU) 741

Output parameters
INITIAL_DUMPDS

is the initial dump data set. It can have any one of these values:
DFHDMPA

Open DFHDMPA first when CICS is next initialized.
DFHDMPB

Open DFHDMPB first when CICS is next initialized.
AUTO

When CICS is next initialized, open the extent that was not active when CICS last
terminated.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

DUSR gate, SET_INITIAL_DUMPDS function
The SET_INITIAL_DUMPDS function of the DUSR gate is used to change the setting of the initial dump
data set.

Input parameters
INITIAL_DUMPDS

is the initial dump data set. It can have any one of these values:
DFHDMPA

Open DFHDMPA first when CICS is next initialized.
DFHDMPB

Open DFHDMPB first when CICS is next initialized.
AUTO

When CICS is next initialized, open the extent that was not active when CICS last
terminated.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Process flow
1. Set new initial dump data set value in the DUA.

2. Call DUSU UPDATE_CATALOGUE function, to write the DU state record to local catalog, using the
current status from the DUA.

DUSR gate, SET_DUMPTABLE_DEFAULTS function
The SET_DUMPTABLE_DEFAULTS function of the DUSR gate is invoked during system initialization tp
update the DUA with the DAE option specified in a SIT or as a SIT override.

Input parameters
DAE_DEFAULT indicates whether temporary dump table entries added by CICS will indicate DAE (dump

eligible for DAE suppression) of NODAE (dump will not be suppressed by DAE). It can
have either of the values:
DAE|NODAE

SYDUMAX_DEFAULT
is taken from system initialization parameter (SIT=SYDUMAX), which specifies the
maximum number of system dumps which can be taken per dump table entry.

TRDUMAX_DEFAULT
is taken from system initialization parameter (SIT=TRDUMAX), which specifies the
maximum number of transaction dumps which can be taken per dump table entry.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

Dump domain (DU)

742 CICS TS for z/OS: CICS Diagnosis Reference

OK|DISASTER|INVALID|KERNERROR|PURGED

Process flow
1. Set DAE_DEFAULT flag value in the DUA. 1 indicates DAE, 0 indicates NODAE.

2. Call DUSU UPDATE_CATALOGUE function, to write the DU state record to local catalog, using the
current status from the DUA.

DUSR gate, INQUIRE_SYSTEM_DUMP function
The INQUIRE_SYSTEM_DUMP function of the DUSR gate returns the setting of the system dump
suppression flag.

Input parameters
None.

Output parameters
SYSTEM_DUMP is the system dump option, indicating whether or not SDUMPs are to be taken by this

CICS system. It can have either of these values:
YES|NO

where NO means that SDUMPs are not taken by this CICS system.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

DUSR gate, SET_SYSTEM_DUMP function
The SET_SYSTEM_DUMP function of the DUSR gate is used to change the setting of the system dump
suppression flag.

Input parameters
SYSTEM_DUMP is the system dump option, indicating whether or not SDUMPs are to be taken by this

CICS system. It can have either of these values:
YES|NO

where NO means that SDUMPs are not taken by this CICS system.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Process flow
v Set new system dump suppression flag value in the DUA.

v Call DUSU UPDATE_CATALOGUE function, to write the DU state record to local catalog, using the
current status from the DUA.

DUSR gate, INQUIRE_RETRY_TIME function
The INQUIRE_RETRY_TIME function of the DUSR gate returns the value of the SDUMP retry time.

Input parameters
None.

Output parameters
RETRY_TIME is the value in seconds of the time interval for which CICS should retry SDUMP requests

that fail because another SDUMP is in progress within the MVS system. The SDUMP is
retried at intervals of five seconds for the specified total time.

RESPONSE is the domain’s response to the call. It can have any of these values:

Dump domain (DU)

Chapter 81. Dump domain (DU) 743

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

DUSR gate, SET_RETRY_TIME function
The SET_RETRY_TIME function of the DUSR gate is invoked to set the SDUMP retry time.

Input parameters
RETRY_TIME is the value in seconds of the time interval for which CICS should retry SDUMP requests

that fail because another SDUMP is in progress within the MVS system. The SDUMP is
retried at intervals of five seconds for the specified total time.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Process flow
1. Set new SDUMP retry time in the DUA.

2. Call DUSU UPDATE_CATALOGUE function, to write the DU state record to local catalog, using the
current status from the DUA.

Miscellaneous process flows

DUIO format, WRITE function
1. If the first record in the block to be written is a dump header:

v Issue MVS NOTE to get location of last record written (an end-of-data record).

v Issue MVS POINT to position for overwrite of the end-of-data record.

2. Issue MVS WRITE.

3. Issue DSSR WAIT_MVS on the I/O ECB.

4. Issue MVS CHECK for I/O completion. This drives the DCB abend exit if an error or end-of-extent is
encountered and results in an error or END_OF_EXTENT response from DUIO.

DUSU format, WRITE function
1. Call DUIO WRITE function if the dump data set is open and is not a dummy.

2. If an end-of-extent occurred:

v If autoswitch is not active, close data set as for DUSU CLOSE above.

v If autoswitch is active, turn autoswitch off and process as for DUSU SWITCH.

DUXF format, FORMAT function
This is the format of the parameter list passed to the transaction dump formatting routines (DFHxxXDF).
There is a SUB_FUNCTION parameter which indicates the areas to be dumped. Each formatting routine is
responsible for handling a subset of the subfunctions. The subfunctions and corresponding formatting
modules are listed below in the order of the subfunction invocation from DFHDUXD.

Module Subfunction

DFHXDXDF DUXF_FORMAT_DUMP_HEADER
DFHXDXDF DUXF_FORMAT_SHORT_SYMPTOM_STRIN
DFHXDXDF DUXF_FORMAT_CICS_SERVICE_LEVEL
DFHXDXDF DUXF_FORMAT_PSW_REGISTERS
DFHSAXDF DUXF_FORMAT_TCA
DFHPCXDF DUXF_FORMAT_LIFO
DFHSAXDF DUXF_FORMAT_COMM_AREAS
DFHSAXDF DUXF_FORMAT_CSA
DFHTRXDF DUXF_FORMAT_TRT
DFHXDXDF DUXF_FORMAT_SEGMENT

Dump domain (DU)

744 CICS TS for z/OS: CICS Diagnosis Reference

Module Subfunction

DFHXDXDF DUXF_FORMAT_SEGMENT_LIST
DFHSAXDF DUXF_FORMAT_TRANSACTION_STORAGE
DFHSAXDF DUXF_FORMAT_FCA
DFHTCXDF DUXF_FORMAT_TCTTE
DFHPCXDF DUXF_FORMAT_PROGRAM
DFHSAXDF DUXF_FORMAT_DCT
DFHFCXDF DUXF_FORMAT_FCT
DFHTCXDF DUXF_FORMAT_TCT
DFHXRXDF DUXF_FORMAT_XRF
DFHPCXDF DUXF_FORMAT_PCT
DFHPCXDF DUXF_FORMAT_PPT
DFHSAXDF DUXF_FORMAT_SIT
DFHDLXDF DUXF_FORMAT_DLI
DFHPCXDF DUXF_FORMAT_MODULE_INDEX
DFHXDXDF DUXF_FORMAT_DUMP_TRAILER

DUXW format, HEX function
1. Construct record in buffer indicating that this data should be formatted as hexadecimal.

2. If buffer is full, call DUSU WRITE to output it.

3. If XDUOUT exit is active, call APEX INVOKE_USER_EXIT.

DUXW format, NON_HEX function
1. Construct record in buffer indicating that this data should be printed as-is; that is, it is already a

character string.

2. If buffer is full, call DUSU WRITE to output it.

3. If XDUOUT exit is active, call APEX INVOKE_USER_EXIT.

Dump domain’s generic gates
Table 50 summarizes the dump domain’s generic gates. It shows the level-1 trace point IDs of the modules
providing the functions for the gates, the functions provided by the gates, and the generic formats for calls
to the gates.

Table 50. Dump domain’s generic gates
Gate Trace Function Format

DMDM DU 0001
DU 0002

PRE_INITIALISE
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

APUE DU 0301
DU 0302

SET_EXIT_STATUS APUE

STST DU 0500
DU 0501

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

For descriptions of these functions and their input and output parameters, refer to the sections dealing with
the corresponding generic formats:

Functions and parameters

Format APUE—“Application domain’s generic formats” on page 593

Format DMDM—“Domain manager domain’s generic formats” on page 669

Format STST—“Statistics domain’s generic format” on page 1198

Dump domain (DU)

Chapter 81. Dump domain (DU) 745

In preinitialization processing, the dump domain establishes the initial dumping status:

v System dumping is enabled or suppressed, as required.

v The next transaction dump data set to be used is flagged.

v The transaction dump data set autoswitch status is set on or off, as required.

v The dump retry interval is established.

v The system dump table is initialized to empty.

For a cold start, the information comes from the system initialization parameters; for any other type of
start, the information comes from the local catalog, but is then modified by any relevant system
initialization parameters.

In initialization processing, the dump domain loads the transaction dump table and the system dump table
from the global catalog.

In quiesce processing, the dump domain performs only internal routines.

In termination processing, the dump domain closes the transaction dump data set.

DMDM PRE_INITIALIZE function
The PRE_INITIALIZE function of the DMDM gate performs the following functions:

1. Issue MVS GETMAIN for DU anchor block (DUA) and initialize it.

2. Read DU state record from the local catalog and set values in the DUA.

3. Initialize to empty the system dump table.

4. Issue MVS GETMAIN for DU statistics buffer.

5. Acquire startup information from the parameter manager (PA) domain and set it in the DUA.

6. Inform the kernel that DU system dump is available by issuing KEDD ADD_GATE for the DFHDUDU
gate.

DMDM INITIALIZE_DOMAIN function
The INITIALIZE_DOMAIN function of the DMDM gate performs the following functions:

1. Load the system dump table from the global catalog.

2. Load the transaction dump table from the global catalog.

3. Issue LMLM ADD_LOCK for the dump data set lock (DUDATSET).

4. Issue LMLM ADD_LOCK for the dump table lock (DUTABLE).

5. Issue LMLM UNLOCK for DUTABLE lock.

6. Issue KEDD ADD_GATE for the DU STST, DUDT, and APUE gates.

7. Initialize transaction dump, including loading DFHDUIO, and indicate that the dump table is available to
the DUDU TRANSACTION_DUMP function.

8. Update DU state record on catalog.

9. Issue LMLM UNLOCK for DUDATSET lock, thereby making the transaction dump function available.

DMDM QUIESCE_DOMAIN function
The QUIESCE_DOMAIN function of the DMDM gate issues a DMDM WAIT_PHASE function request to
ensure all statistics are collected.

DMDM TERMINATE_DOMAIN function
The TERMINATE_DOMAIN function of the DMDM gate issues a DUSU CLOSE request to close the
transaction dump data set.

Dump domain (DU)

746 CICS TS for z/OS: CICS Diagnosis Reference

APUE SET_EXIT_STATUS function
The SET_EXIT_STATUS function of the APUE gate sets the exit status flag in the DUA for the specified
exit.

STST COLLECT_STATISTICS function
The COLLECT_STATISTICS function of the STST gate is called from the statistics domain. The process
flow is:

1. Issue LMLM LOCK for DUTABLE lock on the transaction dump table.

2. Acquire KE system dump lock.

3. Issue STST COLLECT_STATISTICS call to DFHDUTM.

4. Release DUTABLE lock and system dump lock.

DFHDUTM process flow
If the COLLECT_STATISTICS parameters requested DATA, the following statistics records are written to
the statistics domain:

1. If the RESOURCE_TYPE is not specified or is SYSDUMP, a DFHSDGPS global system dump
statistics record is created, using global system dump counts (taken and suppressed) from the DUA.
The KE system lock is released while a STATS_PUT request is made to the statistics domain. The lock
is obtained again on successful completion of the STATS_PUT.

2. If the RESOURCE_TYPE is not specified or is TRANDUMP, a DFHTDGPS global transaction dump
statistics record is created, using global transaction dump counts (taken and suppressed) from the
DUA. The DUTABLE lock is released while a RECORD_STATISTICS request is made to the statistics
domain. The lock is obtained again on successful completion of the RECORD_STATISTICS.

3. If the RESOURCE_TYPE is not specified or is SYSDUMP, a DFHSDRPS statistics detail record is
written for every dump code found on the system dump table. The records contain the statistics for that
dump code held on the dump table entry. The DFHSDRPS records are buffered and full buffers are
written out using a RECORD_STATISTICS call to the statistics domain.

4. If the RESOURCE_TYPE is not specified or is TRANDUMP, a DFHTDRPS statistics detail record is
written for every dump code found on the transaction dump table. The records contain the statistics for
that dump code held on the dump table entry. The DFHTDRPS records are buffered and full buffers
are written out using a RECORD_STATISTICS call to the statistics domain.

The global system and transaction dump counts (taken and suppressed) in the DUA are also reset to zero.
The last_reset_time is also updated in the DUA at this time.

STST COLLECT_RESOURCE_STATS function
The COLLECT_RESOURCE_STATS function of the STST gate is called from an EXEC CICS command.
The process flow is:

1. Issue LMLM LOCK for DUTABLE lock on the transaction dump table.

2. Acquire KE system dump lock.

3. Issue STST COLLECT_RESOURCE_STATS call to DFHDUTM.

4. Release DUTABLE lock and system dump lock.

DFHDUTM process flow
1. Validate RESOURCE_TYPE for either SYSDUMP or TRANDUMP. Perform error processing and return

INVALID to the caller if it is neither of these.

2. If the RESOURCE_ID has not been passed, format a global statistics record, using counts of dumps
taken and suppressed from the DUA, for either system or transaction dumps, depending on the
RESOURCE_TYPE. Return this record to the caller in the RESOURCE_STATISTICS_DATA parameter.

3. If the RESOURCE_ID is present, it should contain a dump code. Search the relevant dump table
(depending on RESOURCE_TYPE). Return ID_NOT_FOUND exception to the caller if the dump code

Dump domain (DU)

Chapter 81. Dump domain (DU) 747

cannot be found. If the dump code is found, format either a DFHTDRPS or a DFHSDRPS statistics
record using the dumps taken and suppressed statistics on the dump table entry. This record is
formatted in the next available space in the RESOURCE_STATISTICS_DATA buffer.

Control blocks
Dump domain anchor block (DUA)

There is one DU anchor block in the system. It is created when DU is initialized, and lasts
for the lifetime of the system. It contains information relating to the status of the domain,
and pointers to other control blocks.

Dump domain open block.
This contains the data areas associated with the dump data set DCB, namely the ECB,
DCB itself, DECB, and the output buffer. It resides below the 16MB line. It is allocated
when the data set is opened, and freed when either an explicit close is issued or the end
of the current data set is reached and autoswitching is not active.

System dump table (SDT)
Storage for this table is obtained during dump domain preinitialization. The table is then
initialized with null table entries. During dump domain initialization, the table is loaded with
any values held on the global catalog for system dump codes that were explicitly added
during previous CICS runs. Any system dumps taken before this point in initialization use
default dump values (see the CICS Problem Determination Guide for information held for
each dump code, and the default values).

Table entries are added during a CICS run either explicitly via CEMT or EXEC CICS
commands, or implicitly, with default values, if a dump is requested for which an entry
does not exist. These entries can be changed or deleted via CEMT or EXEC CICS
commands. Explicitly added entries are written to the global catalog. Further blocks of
storage are obtained if necessary as each block fills up. Storage for deleted entries is not
reused, because activity on the table is low.

The DU domain anchor block contains pointers to the table, to the first and last active
entries in the table, and to the next available entry. The table contains forward and
backward pointers so that the table can be accessed in dump code sequence, and
additional blocks are chained off the header of the previous block.

Transaction dump table (TDT)
Storage for this table is obtained during dump domain initialization and the table is then
loaded with any values held on the global catalog which were explicitly added during
previous CICS runs.

Table entries are added during a CICS run either explicitly via CEMT or EXEC CICS
commands, or implicitly, with default values, if a dump is requested for which an entry
does not exist. These entries can be changed or deleted via CEMT or EXEC CICS
commands. Explicitly added entries are written to the global catalog. Further blocks of
storage are obtained if necessary as each block fills up. Storage for deleted entries is not
reused, because activity on the table is low.

The DU domain anchor (DUA) block contains pointers to the table, to the first and last
active entries in the table, and to the next available entry. The table contains forward and
backward pointers so that the table can be accessed in dump code sequence, and
additional blocks are chained off the header of the previous block.

Browse token table (BTT)
This table holds browse tokens for both system and transaction dump tables. Each browse
session started on either dump table is allocated a token that is held in this table, along
with the dump code of the last dump table entry obtained by the browse session.

Storage for this table is obtained when the first dump table browse session of a CICS run
is started. More storage is obtained when the table is full. Storage for deleted entries is
not reused.

Dump domain (DU)

748 CICS TS for z/OS: CICS Diagnosis Reference

The structure of the table is the same as for the dump tables, as shown in Figure 109.

Notes:

1. This example is for the transaction dump table, but it also applies to the SDT and the BTT.

2. The global catalog contained records for dump codes AAAA, BBBB, CCCC, DDDD, and FFFF.

3. Dump code BBBB has been deleted by an EXEC CICS command, so the NEXT and PREV pointers
have been set to zero.

4. Dump code EEEE has been added during this CICS run and the pointers in entries for DDDD and
FFFF adjusted to include EEEE in the correct sequence.

5. In this example, the first table block is not full, so TDT_NEXT in the block header is zero.

For a detailed description of these control blocks, see the CICS Data Areas manual.

Modules

Module Function

DFHAPTRV System dump formatting program, ZC Install

DFHAPTRY System dump formatting program, XM related

DFHAPTRX System dump formatting program, ZC persistent sessions

DFHDUDM Processes requests to the DMDM gate of the dump domain

DFHDUDT Processes requests to the DUDT gate of the dump domain

DFHDUDU Processes requests to the DUDU gate of the dump domain

DFHDUIO Processes domain subroutine requests of format DUIO

DFHDUSR Processes requests to the DUSR and APUE gates of the dump domain

DFHDUSU Processes domain subroutine requests of format DUSU

DFHDUSVC System dump

DFHDUTM Dump table manager

DFHDUXD Invoked by DFHDUDU with a DUDD format parameter list to control the transaction dump
process

DFHDUXW Processes domain subroutine requests of format DUXW

Dump table
Used as pointer

DUA - Anchor block to next block in TDT

) Block
TDT_NEXT) header

TDT BLOCKHEAD)

TDT FREEHEAD @CCCC O AAAA

TDT FIRST O O BBBB

TDT LAST @DDDD @AAAA CCCC

@EEEE @CCCC DDDD

O @EEEE FFFF

@ = address @FFFF @DDDD EEEE

Next unused
entry

NEXT PREV DUMPCODE

Figure 109. Format of the system and transaction dump tables and browse token table

Dump domain (DU)

Chapter 81. Dump domain (DU) 749

Transaction dump formatting routines
The following routines are invoked by DFHDUXD to dump the storage areas associated with a particular
CICS component. They are passed a DUXF format parameter list. They are all part of the DFHSIP load
module.

Routine Function

DFHDLXDF DL/I related areas

DFHFCXDF File control related areas

DFHPCXDF Program related areas

DFHSAXDF Common areas such as CSA, TCA, and so on

DFHSMXDF Task subpools

DFHTCXDF Terminal control related areas

DFHTRXDF The internal trace table

DFHXDXDF Information such as register contents, headers, and so on

DFHXRXDF XRF related areas.

Copy books

Copy book Function

DFHDUDCC Contains the definitions of all DU control blocks.

DFHDUXDC Provides common definitions for the transaction dump formatting routines DFHxxXDF.

DFHDUXDS Common routine for the transaction dump formatting routines to convert responses from
DFHDUXW into responses for DFHDUXD.

DFHDUXDV Common abend recovery routine for the transaction dump formatting routines.

Exits
The dump domain exits are listed below. See the CICS Customization Guide for details of each exit.

XDUREQ
The dump request exit, driven for each transaction and system dump request.

XDUREQ
The dump request close exit, driven after a transaction or system dump has been taken (or failed
or supressed).

XDUOUT
The output exit, driven before each buffer is written to the transaction dump data set.

XDUCLSE
The dump data set close exit, driven after each close of a transaction dump data set.

Trace
The point IDs for the dump domain are of the form DU xxxx; the corresponding trace levels are DU 1,
DU 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Dump domain (DU)

750 CICS TS for z/OS: CICS Diagnosis Reference

Dumps
A formatted system dump contains the DU anchor (DUA) block and the DU open block.

System dumps requested by DU fall into two categories:
Dump code DUnnnn For these there is a preceding console message DFHDUnnnn. See the

CICS Messages and Codes manual for details.
Dump code KERNDUMP If an error occurs in DFHDUDM during PRE_INITIALIZE processing, that

is, before the system dump function is available, DU uses MVS WTO to
write message DFHDU0103, and the kernel dump function to take an
SDUMP.

Dump domain (DU)

Chapter 81. Dump domain (DU) 751

Dump domain (DU)

752 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 82. Enterprise Java domain (EJ)

The Enterprise Java (EJ) domain is logically divided into three parts:

v Elements, which covers the manipulation of the EJ Resources of CorbaServers (EJCG), DJars (EJDG)
and Beans (EJBJ)

v Object Stores, used to store stateful Session Beans, and to hold the EJB Directory (EJOS and EJOB)

v Directory, used to record the association of OTS transactions and object instances with Request
Processors (EJDI).

EJ domain's specific gates
Table 51 summarizes the EJ domain’s specific gates. It shows the level-1 trace point IDs of the modules
providing the functions for the gates, the functions provided by the gates, and whether or not the functions
are available through the exit programming interface (XPI).

Table 51. EJ domain’s specific gates
Gate Trace Function XPI

EJBB EJ 0Cxx START_BROWSE
GET_NEXT
END_BROWSE

NO
NO
NO

EJBG EJ 0Bxx ADD_BEAN
ADD_BEAN_STATS
CONFIRM_ALL_BEANS
DELETE_ALL_BEANS
DELETE_BEAN
GET_BEAN_DD
INQUIRE_BEAN
RESET_BEAN_STATS

NO
NO
NO
NO
NO
NO
NO
NO

EJCB EJ 08xx START_BROWSE
GET_NEXT
END_BROWSE

NO
NO
NO

EJCG EJ 07xx
EJ 17xx

ADD_CORBASERVER
ACTION_CORBASERVER
AMEND_CORBASERVER
DELETE_CORBASERVER
ESTABLISH
INQUIRE_CORBASERVER
RELINQUISH
RESOLVE_CORBASERVER
SET_ALL_STATE
WAIT_FOR_CORBASERVER

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

EJDB EJ 0Axx START_BROWSE
GET_NEXT
END_BROWSE

NO
NO
NO

EJDG EJ 09xx
EJ 19xx

ADD_DJAR
ACTION_DJAR
AMEND_DJAR
COUNT_FOR_CS
DELETE_ALL_DJARS
DELETE_DJAR
INQUIRE_DJAR
RESOLVE_DJAR
SET_ALL_STATE
WAIT_FOR_DJAR
WAIT_FOR_USABLE_DJARS

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

EJDI EJ 05xx ADD_ENTRY
INITIALIZE
LOOKUP_ENTRY
REMOVE_ENTRY

NO
NO
NO
NO

EJDU EJ 06xx DUMP_DATA
DUMP_STACK
INQUIRE_TRACE_FLAGS

NO
NO
NO

© Copyright IBM Corp. 1997, 2011 753

Table 51. EJ domain’s specific gates (continued)
Gate Trace Function XPI

EJGE EJ 0Dxx INITIALIZE
QUIESCE
TERMINATE

NO
NO
NO

EJIO EJ 0Fxx RESOLVE
RESOLVE_CSERVERS
RESOLVE_DJARS

NO
NO
NO

EJJO EJ 0Exx ADD_BEAN
END_BEAN_BROWSE
GET_BEAN_DD
GET_NEXT_BEAN
INQUIRE_CORBASERVER
START_BEAN_BROWSE
WAIT_FOR_CORBASERVER
WAIT_FOR_USABLE_DJARS

NO
NO
NO
NO
NO
NO
NO
NO

EJMI EJ 50xx ADD_BEAN
ADD_METHOD
DISCARD_METHOD_INFO
GET_METHOD_INFO
INITIALIZE

NO
NO
NO
NO
NO

EJOB EJ 03xx END_BROWSE_OBJECT
GET_NEXT_OBJECSTORE
INQUIRE_OBJECT
INQUIRE_STORES
RETRIEVE_STATISTICS
START_BROWSE_OBJECT

NO
NO
NO
NO
NO
NO

EJOS EJ 02xx ACTIVATE_OBJECT
CLOSE_OBJECT_STORE
OPEN_OBJECT_STORE
REMOVE_OBJECT
REMOVE_STORE
STORE_OBJECT

NO
NO
NO
NO
NO
NO

EJSO EJ 1751
EJ 1752

INQUIRE_CORBASERVER
AMEND_CORBASERVER

NO
NO

EJBB gate, START_BROWSE Function
The START_BROWSE function of the EJBB gate initiates the browse upon the chain of Beans. Positioning
of the start of the Browse is not supported. Selection by Bean is not provided, but selection by owning
CorbaServer and owning DJar is. The end_browse condition is not returned if there are no suitable Beans
(this is postponed until the get_next). The returned browsetoken must be used for subsequent GET_NEXT
operations. This operation is available from EJJO and so the definitions must be consistent. The
browsemode parameter controls which Beans are selected. Only BROWSEMODE(VALIDONLY) should be
used by the SPI-layers.

v BROWSEMODE(ALL) selects all Beans (setting not usually used)

v BROWSEMODE(VALIDONLY) selects the Beans whose status has been confirmed (those which are
not temporarily present during the install of all the Beans from a DJar). This is the usual (and default)
setting.

v BROWSEMODE(INDOUBTONLY) selects the Beans whose status is temporary (those which are
temporarily present during the install of all the Beans from a DJar).

Input parameters
CORBASERVER Name of the CorbaServer to be Browsed
DJAR Name of the DJar for this Bean
[BROWSEMODE] Controls which Beans are to be selected for Bean Browse

Output parameters
BROWSETOKEN The pointer set up by START_BROWSE which points to the first DJar in the chain to be

Browsed
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Enterprise Java domain (EJ)

754 CICS TS for z/OS: CICS Diagnosis Reference

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION EJB_INACTIVE
INVALID_BROWSEMODE
INVALID_CORBASERVER
INVALID_DJAR
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR
STORAGE_ERROR

EJBB gate, GET_NEXT Function
The GET_NEXT function of the EJBB gate returns the next Bean Control Block in the list of Beans that
meets the selection criteria. The ordering of Beans returned is not specified (the order is not alpha order
but LastIn-FirstOut for Browse purposes). This operation is available from EJJO and so the definitions
must be consistent. The POINTAT parameter is used to enable a Browse to proceed when the aim of the
Browse is to locate a Bean to be deleted.

v POINTAT(NORMAL) should be used in all cases by the SPI layers and general users (and is the
default).

v POINTAT(PRIOR) shows the deletion intent. POINTAT(PRIOR) should never be coded in normal
circumstances and may result in an infinite loop if used without a delete.

Input parameters
BROWSETOKEN The pointer set up by START_BROWSE which points to the first DJar in the chain to be

browsed
[POINTAT] Indicates whether to advance the browse pointer to point to the next item in the chain

(NORMAL|PRIOR). NORMAL will return the next item in the chain, whereas PRIOR will
always return the same item, unless that item has been deleted

Output parameters
BEAN Name of the Bean
[CORBASERVER]

Name of the CorbaServer for this DJar
[DDLEN] Length of the deployment/meta data area. Used particularly to contain the length of the

data if the size is larger than the maximum length for ddareaforin block
[DJAR] Name of DJar for this Bean
[STATUS] The state of the Bean being Browsed (NORMAL or TEMPORARY). Indicates that a Bean

has been confirmed
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 755

RESPONSE Possible REASON values

EXCEPTION BROWSE_TOKEN
EJB_INACTIVE
END_OF_BROWSE
INVALID_BROWSE_TOKEN
INVALID_POINTAT
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR

EJBB gate, END_BROWSE Function
The END_BROWSE function of the EJBB gate ends the browse operation and deletes the browsetoken.
This operation is available from EJJO and so the definitions must be consistent.

Input parameters
BROWSETOKEN The pointer which points to the first DJar in the chain to be deleted

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION EJB_INACTIVE
INVALID_BROWSE_TOKEN
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR
STORAGE_ERROR

EJBG gate, ADD_BEAN function
The ADD_BEAN function of the EJBG gate:

v Creates the Bean element in memory and chains it appropriately. The XRSINDI exit is called to notify
the creation of this element.

v The ADDMODE parameter controls the compartmentalization of this operation for usage purposes (this
defaults to NORMAL which does both the creation of the Control Block and its replacement in
temporary mode). Usage of this verb is always via the Java layers and so ADDMODE(NORMAL) is
used.

v The namespace for the Bean is at the CorbaServer level - the Bean cannot already have been installed
from a different DJar (with the same name).

v The Bean itself is not actually installed until all the Beans within the Djar have been installed. Therefore,
the Bean is added as a Control Block in a temporary state until all the Beans from the DJar have been
so processed. When all the Beans in the DJar have been (successfully) added, the
CONFIRM_ALL_BEANS call is made to alter the temporary state in the CB into a proper state.
Otherwise the DELETE_ALL_BEANS call is made which deletes the Control Block. As the DJar was
invalid it will be removed.

v On Warm restart, the owning Container and DJar will already have been restored from the Global
Catalog.

Input parameters
BEAN Name of the Bean to be added

Enterprise Java domain (EJ)

756 CICS TS for z/OS: CICS Diagnosis Reference

CORBASERVER Name of the CorbaServer for this Bean
DJAR Name of the Djar for this Bean
DDAREAFORIN Block for Bean deployment/meta data input
[ADDMODE] The type of create done for the Bean
[MESSAGE] Controls whether a message is issued when a CorbaServer is created

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION BEAN_ALREADY_PRESENT
CORBASERVER_ABSENT
CORBASERVER_INVALID_STATE
DDAREAFORIN_ABSENT
DJAR_ABSENT
DJAR_INVALID_STATE
EJB_INACTIVE
INVALID_BEAN
INVALID_BROWSE_TOKEN
INVALID_CORBASERVER
INVALID_DDAREAFORIN
INVALID_DD_ZERO_LENGTH
INVALID_DD_ZERO_POINTER
INVALID_DJAR
LOCK_ERROR
LOOP
NAMESPACE_CONFLICT
PARMS_STORAGE_ERROR
SETUP_ERROR
STORAGE_ERROR

EJBG gate, ADD_BEAN_STATS function
The ADD_BEAN_STATS function of the EJBG gate increments the EJ domain’s statistics counters for a
specific enterprise bean.

Input parameters
BEAN Name of the enterprise bean whose statistics are to be incremented
CORBASERVER Name of the CorbaServer in which this bean is installed
[ACTIVATES] The number of times this bean has been activated
[PASSIVATES] The number of times this bean has been passivated
[CREATES] The number of times this bean has been created
[REMOVES] The number of times this bean has been removed
[METHOD_CALLS]

The number of method calls (other than the above) made against this bean

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 757

RESPONSE Possible REASON values

EXCEPTION BEAN_ABSENT
EJB_INACTIVE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR

EJBG gate, CONFIRM_ALL_BEANS Function
The CONFIRM_ALL_BEANS function of the EJBG gate hardens all Beans associated with the given DJar
within the relevant CorbaServer namespace. This just switches the state of a suitable Bean from
temporary to normal. This will run when all Beans in the DJar have been correctly installed. The key is
CS+DJar for this multiple status changing.

Input parameters
CORBASERVER The name of the CorbaServer for this Bean
DJAR The name of the DJar for this Bean

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION BEAN_ABSENT
EJB_INACTIVE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR

EJBG gate, DELETE_ALL_BEANS Function
The DELETE_ALL_BEANS function of the EJBG gate is executed when all of the Beans within the DJar
did not install or when the owning DJar itself is deleted. All relevant Bean Control Blocks (whatever their
state) are deleted. This works via the usual Browse mechanism (BROWSEMODE(ALL)) with
POINTAT(PRIOR) enabled to delete each individual Bean. The key of CS+DJar+Bean is required.

Input parameters
CORBASERVER The name of the CorbaServer for this Bean
DJAR the name of the DJar for this Bean

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

Enterprise Java domain (EJ)

758 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION BEAN_ABSENT
BROWSE_ERROR
EJB_INACTIVE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR

EJBG gate, DELETE_BEAN Function
The DELETE_BEAN function of the EJBG gate deletes the Bean Control Block. The XRSINDI exit is also
called to notify the removal. The full key of CS+DJar+Bean is required.

Input parameters
BEAN The name of the Bean
CORBASERVER The name of the CorbaServer for this Bean
DJAR The name of the DJar for the Bean

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION BEAN_ABSENT
EJB_INACTIVE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR
STORAGE_ERROR

EJBG gate, GET_BEAN_DD Function
The GET_BEAN_DD function of the EJBG gate returns the saved Deployment/Meta Data for the Bean
(key is CS+Bean) in a buffer. The Buffer Pointer (_P) must be non-zero and point to a suitable area of
length_M bytes. After the Deployment/Meta Data has been moved to the _P area, the _N item will be set
to the length of the Deployment/Meta Data as is the DDLEN parameter. If _M is too small for the
Deployment/Meta Data, then it is not moved into the _P area, _N is set to zero and the required length
returned in DDLEN. Note that DDLEN and _N are only valid for OK operation or length errors - they are
not available for use in other circumstances.

This operation is available via EJJO and so parameters should be kept consistent.

Input parameters
BEAN The name of the Bean
CORBASERVER The name of the CorbaServer for this Bean
DDAREAFORUPD A buffer for Bean the deployment/meta data update area

Output parameters
[DDLEN] The length of the deployment/meta data area. Used particularly to contain the length of the

data if the size is larger than the maximum length for the ddareaforin block
[DJAR] The name of the DJar for this Bean
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 759

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION BEAN_ABSENT
CORBASERVER_ABSENT
CORBASERVER_INVALID_STATE
DJAR_ABSENT
DJAR_INVALID_STATE
DDAREAFORUPD_ABSENT
DD_AREA_TOO_SMALL
EJB_INACTIVE
INVALID_DDAREAFORUPD
INVALID_DD_ZERO_LENGTH
INVALID_DD_ZERO_POINTER
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR

EJBG gate, INQUIRE_BEAN Function
The INQUIRE_BEAN function of the EJBG gate extracts information from the named Bean Control Block
(key is CS+Bean). Note that the length of the Deployment/Meta Data is returned, but this XML is obtained
via get_bean_dd.

This function can be used to determine the DJar which sourced the Bean.

Input parameters
BEAN The name for the Bean
CORBASERVER The name of the CorbaServer for this Bean

Output parameters
[DDLEN] The length of the deployment/meta data area. Used particularly to contain the length of the

data if the size is larger than the maximum length of the ddareaforin block
[DJAR] The name of the DJarfor this Bean
[STATUS] The state of the Bean being inquired upon
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION BEAN_ABSENT
EJB_INACTIVE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR

EJBG gate, RESET_BEAN_STATS function
The RESET_BEAN_STATS function of the EJBG gate sets the EJ domain’s statistics counters, for a
specific enterprise bean, to zero.

Input parameters
BEAN Name of the enterprise bean whose statistics counters are to be reset

Enterprise Java domain (EJ)

760 CICS TS for z/OS: CICS Diagnosis Reference

CORBASERVER Name of the CorbaServer in which this bean is installed

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION BEAN_ABSENT
EJB_INACTIVE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR

EJCB gate, START_BROWSE function
The START_BROWSE function of the EJCB gate initiates the browse upon the chain of CorbaServers.
Positioning of the start of the Browse is not supported. Selection by CorbaServer is not provided. The
end_browse condition is not returned if there are no suitable CorbaServers (this is postponed until the
get_next). The returned browsetoken must be used for subsequent GET_NEXT operations.

Input parameters
None

Output parameters
BROWSETOKEN The pointer set up by START_BROWSE which points to the first CorbaServer in the chain

to be browsed
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION EJB_INACTIVE
LOCK_ERROR
LOOP
SETUP_ERROR
STORAGE_ERROR

EJCB gate, GET_NEXT function
The GET_NEXT function of the EJCB gate returns the next CorbaServer Control Block in the list of
CorbaServers. The ordering of CorbaServers returned is not specified (the order is not alpha order but
Last-FirstOut for Browse purposes). The POINTAT parameter is used to enable a Browse to proceed when
the aim of the Browse is to locate a CorbaServer to be deleted.

v POINTAT(NORMAL) should be used in all cases by the SPI layers and general users (and is the
default).

v POINTAT(PRIOR) shows the deletion intent. POINTAT(PRIOR) should never be coded in normal
circumstances and may result in an infinite loop if used without a delete.

Input parameters
BROWSETOKEN The pointer set up by START_BROWSE which points to the first CorbaServer in the chain

to be browsed
[POINTAT] Indicates whether to advance the browse pointer to point to the next item in the chain

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 761

(NORMAL|PRIOR). NORMAL will return the next item in the chain, whereas PRIOR will
always return the same item, unless that item has been deleted

Output parameters
CORBASERVER Name of the CorbaServer
[STATE] Indicates the current Resolution State and whether it is available for use or not.
[TIMEOUT] The elapsed time period (in seconds) of inactivity after which a session Bean can be

discarded
[PORT] The binary TCP/IP port number for non-SSL communication included in IORs exported

from this CorbaServer
[SSLPORT] The binary TCP/IP port number for SSL communication included in IORs exported from

this CorbaServer
[SSL] the SSL type for this CorbaServer (YES|NO|CLIENTAUTH)
[JNDIPREFIX] The prefix to use at runtime when publishing the JNDI
[SHELF] The fully qualified name of a directory (a 'shelf' for 'jars') on HFS
[HOST] The TCP/IP hostname or the dotted decimal TCP/IP address included in IORs exported

from this CorbaServer
[CERT] The label of a certificate within the keyring that is to be used as a client certificate in the

SSL handshake for outbound IIOP connections
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION BROWSE_TOKEN
EJB_INACTIVE
END_OF_BROWSE
INVALID_BROWSE_TOKEN
INVALID_POINTAT
LOCK_ERROR
LOOP
SETUP_ERROR

EJCB gate, END_BROWSE function
The END_BROWSE function of the EJCB gate ends the browse operation and deletes the browsetoken.

Input parameters
BROWSETOKEN The pointer set up by START_BROWSE which points to the first CorbaServer in the chain

to be browsed

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION EJB_INACTIVE
INVALID_BROWSE_TOKEN
LOCK_ERROR
LOOP
SETUP_ERROR
STORAGE_ERROR

Enterprise Java domain (EJ)

762 CICS TS for z/OS: CICS Diagnosis Reference

EJCG gate, ACTION_CORBASERVER function
The ACTION_CORBASERVER function of the EJCG gate is a gate which tells another party that
something is to be done on the CorbaServer. The implemented actions are to manipulate the External
Namespace for the named CorbaServer.

Input parameters
CORBASERVER Name of the CorbaServer on which the action is to be done
ACTIONMODE the action to perform on the CorbaServer. Possible values are:

PUBLISH|RETRACT

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION CORBASERVER_ABSENT
CORBASERVER_INVALID_STATE
DJAR_INVALID_STATE
EJB_INACTIVE
INVALID_ACTION
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
PUBLISH_ERROR
RETRACT_ERROR
SETUP_ERROR
STORAGE_ERROR

EJCG gate, ADD_CORBASERVER function
The ADD_CORBASERVER function creates a CorbaServer Control Block:

v creates the CorbaServer in memory, chains it appropriately, and saves an entry in the Global Catalog
for Warm restart purposes.

v The XRSINDI exit is called to notify the creation of this element.

v The ADDMODE parameter controls the scope of this operation for restart purposes (this defaults to
NORMAL which does both creation of the Control Block and its cataloging). Usage of this verb via the
SPI/RDO layers should always code ADDMODE(NORMAL).

Input parameters
CORBASERVER Name of the CorbaServer to be added
STATE Indicates the current resolution state of the CorbaServer and whether it is available for use

or not.
TIMEOUT The elapsed time (in seconds) of inactivity after which a session Bean can be discarded
JNDIPREFIX The prefix to use at runtime when publishing to JNDI
SHELF The fully qualified name of a directory (a 'shelf' for 'jars') on HFS
HOST The TCP/IP hostname or the dotted decimal TCP/IP address included in IORs exported

from this CorbaServer
CERT The label of a certificate within the keyring that is to be used as a client certificate in the

SSL handshake for outbound IIOP connections
[ADDMODE] The type of create done for the CorbaServer
[MESSAGE] Controls whether a message is issued when a CorbaServer is created
[ENABLESTATE]

Permissible values are:
ENABLED|DISABLED|DISABLING

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 763

[SCANINTERVAL]

[DJARDIR]
[AUTOPUBLISH]

[OUTPRIVACY]
[UNAUTH_TCPIPSERVICE]

The 8-character name of a TCPIPSERVICE that defines the characteristics of the port
which is used for inbound IIOP with no authentication.

[SSLUNAUTH_TCPIPSERVICE]
The 8-character name of a TCPIPSERVICE that defines the characteristics of the port
which is used for inbound IIOP with SSL but no client authentication.

[CLIENTCERT_TCPIPSERVICE]
The 8-character name of a TCPIPSERVICE that defines the characteristics of the port
which is used for inbound IIOP with SSL client certificate authentication.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION ATTACH_ERROR
CATALOG_ERROR
CERT_ERROR
CORBASERVER_ALREADY_THERE
EJB_INACTIVE
INVALID_CERT
INVALID_CORBASERVER
INVALID_HOST
INVALID_JNDIPREFIX
INVALID_PORT
INVALID_SHELF
INVALID_SSL
INVALID_SSLPORT
INVALID_STATE
INVALID_TIMEOUT
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR
STORAGE_ERROR

EJCG gate, AMEND_CORBASERVER function
The AMEND_CORBASERVER function of the EJCG gate changes information held within the
CorbaServer Control Block. It does not harden this information over a CICS restart, nor does the change
get communicated to the executing JVMs.

Input parameters
CORBASERVER Name of the CorbaServer in which the information is to be changed
STATE Indicates the current resolution state of the CorbaServer and whether it is available for use

or not.
[TIMEOUT] The elapsed time (in seconds) of inactivity after which a session Bean can be discarded
[STATE] Specifies the state into which the CorbaServer is to be put. Values are

PENDINIT|INITING|UNUSABLE|PENDRESOLV|RESOLVING|INSERV|
UNRESOLVED|DELETING

Enterprise Java domain (EJ)

764 CICS TS for z/OS: CICS Diagnosis Reference

[CURRENT_STATE]
Used as a check, must match the existing state of the CorbaServer. Values are
PENDINIT|INITING|UNUSABLE|PENDRESOLV|RESOLVING|INSERV|
UNRESOLVED|DELETING

[ENABLESTATE]
Permissible values are:
ENABLED|DISABLED|DISABLING

[SCANINTERVAL]

[DJARDIR]
[AUTOPUBLISH]

[OUTPRIVACY]
[UNAUTH_TCPIPSERVICE]

The 8-character name of a TCPIPSERVICE that defines the characteristics of the port
which is used for inbound IIOP with no authentication.

[SSLUNAUTH_TCPIPSERVICE]
The 8-character name of a TCPIPSERVICE that defines the characteristics of the port
which is used for inbound IIOP with SSL but no client authentication.

[CLIENTCERT_TCPIPSERVICE]
The 8-character name of a TCPIPSERVICE that defines the characteristics of the port
which is used for inbound IIOP with SSL client certificate authentication.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION CORBASERVER_ABSENT
CORBASERVER_INVALID_STATE
CORBASERVER_STATE_CHANGED
EJB_INACTIVE
EJOS_ERROR
INVALID_STATE
INVALID_STATE_CHANGE
INVALID_TIMEOUT
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR

EJCG gate, DELETE_CORBASERVER function
The DELETE_CORBASERVER function of the EJCG gate removes a CorbaServer.

v Deletes the CorbaServer Control Block and removes the saved entry in the Global catalog. The
XRSINDI exit is called to notify the removal.

v The Java layers are informed that the CorbaServer has been deleted.

v This operation has a side effect in that all DJars associated with the CorbaServer are also deleted, and
then all the Beans from the DJar.

Input parameters
CORBASERVER Name of the CorbaServer to be deleted

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 765

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION CATALOG_ERROR
CORBASERVER_ABSENT
CORBASERVER_DELETING
DELDJAR_ERROR
EJB_INACTIVE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR
STORAGE_ERROR

EJCG gate, ESTABLISH function
The ESTABLISH function of the EJCG gate associates a CorbaServer with the calling task. It sets the
task’s Recovery Manager work token to reference the CorbaServer.

Input parameters
CORBASERVER Name of the CorbaServer with which an association is to be established

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION CORBASERVER_ABSENT
CORBASERVER_DELETING
EJB_INACTIVE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
STORAGE_ERROR

EJCG gate, INQUIRE_CORBASERVER function
The INQUIRE_CORBASERVER function of the EJCG gate extracts information from the named
CorbaServer Control Block. It is also executed indirectly from the EJJO gate.

Input parameters
CORBASERVER Name of the CorbaServer from which to extract information

Output parameters
[STATE] The state of the CorbaServer. Used to indicate whether the CorbaServer is available to

use or not
[ENABLESTATE]

Possible values are:
ENABLED|DISABLED|DISABLING

[TIMEOUT] The elapsed time (in seconds) of inactivity after which a session Bean can be discarded
[PORT] The binary TCP/IP port number for non-SSL communication included in IORs exported

from this CorbaServer
[SSLPORT] The binary TCP/IP port number for SSL communication included in IORs exported from

this CorbaServer

Enterprise Java domain (EJ)

766 CICS TS for z/OS: CICS Diagnosis Reference

[SSL] The SSL type for this CorbaServer (YES|NO|CLIENTAUTH)
[JNDIPREFIX] The prefix to use at runtime when publishing to JNDI
[SHELF] The fully qualified name of a directory (a 'shelf' for 'jars') on HFS
[HOST] The TCP/IP hostname or the dotted decimal TCP/IP address included in IORs exported

from this CorbaServer
[CERT] The label of a certificate within the keyring that is to be used as a client certificate in the

SSL handshake for outbound IIOP connections
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION CORBASERVER_ABSENT
EJB_INACTIVE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR

EJCG gate, RELINQUISH function
The RELINQUISH function of the EJCG gate ends an association between a CorbaServer and the calling
task. It sets the task’s Recovery Manager work token to blank.

Input parameters
CORBASERVER Name of the CorbaServer with which an association is to be ended
[ALLOC_COUNT]

The allocation number of the CorbaServer (used to prevent the accidental relinquishing of
CorbaServers that have been freed and reallocated).

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION CORBASERVER_ABSENT
CORBASERVER_DELETING
EJB_INACTIVE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
STORAGE_ERROR

EJCG gate, RESOLVE_CORBASERVER function
The RESOLVE_CORBASERVER function of the EJCG gate makes the CorbaServer available for use by
Resolution (called by the CEJR transaction). The Java layers are informed that the CorbaServer has been
created.

Input parameters
CORBASERVER Name of the CorbaServer

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 767

Output parameters
DID_STAGE The output from Resolve function which indicates which stage of resolution was done

(STAGE1 or STAGE2)
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION BAD_STATE_SET
CATALOG_ERROR
CORBASERVER_ABSENT
CORBASERVER_INVALID_STATE
EJB_INACTIVE
EJOS_ERROR
IILS_ERROR
INVALID_CORBASERVER
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR

EJCG gate, SET_ALL_STATE function
The SET_ALL_STATE function sets the state of all the CorbaServers.

input parameters
STATE Indicates the current Resolution State and whether it is available for use or not.

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION EJB_INACTIVE
INVALID_STATE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR

EJCG gate, WAIT_FOR_CORBASERVER function
The WAIT_FOR_CORBASERVER function of the EJCG gate will wait until the CorbaServer enters the
required state.

Input parameters
CORBASERVER Name of the CorbaServer being waited on
STATE Indicates the current Resolution State and whether it is available for use or not.

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

Enterprise Java domain (EJ)

768 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION CORBASERVER_ABSENT
CORBASERVER_UNRESOLVED
CORBASERVER_UNUSABLE
EJB_INACTIVE
INVALID_STATE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR
WAIT_ERROR

EJCP gate, DISCARD_DJAR function
The DISCARD_DJAR function of the EJCP gate is called by the EJ domain during DJar Discard
processing, but the DJar is unavailable for inquire.

The jar file is removed from its shelf and the shelf directory is deleted.

Input parameters
CORBASERVER Name of the CorbaServer (container) in which this DJar is installed. This is the

CorbaServer name as specified in the DJar definition.
DJAR Name of the DJar to be discarded

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND LOOP

EXCEPTION SHELF_ACCESS_ERROR

EJCP gate, INSTALL_DJAR function
The INSTALL_DJAR function of the EJCP gate is called by the EJ domain when a DJar is installed as the
second part of the DJar installation processing (after the DJar has been copied to the shelf).

The Java Container should initiate the processing of the DJar and pass the obtained Bean to the EJ
domain.

The EJ domain expects to be called back for inquire_corbaserver and inquire_djar during the processing of
this call, so the DJar must be available for inquire.

Input parameters
CORBASERVER Name of the CorbaServer (container) into which this DJar is to be installed. This is the

CorbaServer name as specified in the DJar definition.
DJAR Name of the DJar to be installed
HFSFILE The fully qualified name of the jar file to be installed. The name must be a valid HFS

filename and must not have any trailing blanks.

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 769

RESPONSE Possible REASON values

DISASTER ABEND LOOP

EXCEPTION CONTAINER_ERROR
HFSFILE_NOT_FOUND
HFS_ACCESS_ERROR
SHELF_ACCESS_ERROR

EJCP gate, PRE_INSTALL_DJAR function
The PRE_INSTALL_DJAR function of the EJCP gate is called by the EJ domain when a DJar is installed
to copy the hfsfile comprising the DJar onto the shelf.

The Java Container should create a copy of the DJar file on the shelf for the associated CorbaServer.

The EJ domain expects to be called back for inquire_corbaserver and inquire_djar during the processing of
this call (EJJO gate), so the DJar must be available for inquire.

Input parameters
CORBASERVER Name of the CorbaServer (container) into which this DJar is to be installed. This is the

CorbaServer name as specified in the DJar definition.
DJAR Name of the DJar to be installed
HFSFILE The fully qualified name of the jar file to be installed. The name must be a valid HFS

filename and must not have any trailing blanks.

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND LOOP

EXCEPTION CONTAINER_ERROR
HFSFILE_NOT_FOUND
HFS_ACCESS_ERROR
SHELF_ACCESS_ERROR

EJCP gate, PUBLISH_CORBASERVER function
The PUBLISH_CORBASERVER function of the EJCP gate may be invoked by the EJ domain or the exec
interface layer. All beans in the specified logical server are published to JNDI. This is not to be confused
with the IILS publish function.

The Java container calls back to the EJ domain with a browse of all installed Beans for the logical server
during processing of the function.

Input parameters
CORBASERVER Name of the CorbaServer for which to publish Beans.

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND LOOP

Enterprise Java domain (EJ)

770 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION CONTAINER_ERROR
HFS_ACCESS_ERROR
JNDI_ACCESS_ERROR

EJCP gate, PUBLISH_DJAR function
The PUBLISH_DJAR function of the EJCP gate may be invoked by the EJ domain or the exec interface
layer. All beans in the specified logical server are published to JNDI.

The Java container calls back to the EJ domain with a browse of all installed Beans for the DJar during
processing of the function.

Input parameters
CORBASERVER Name of the CorbaServer for which to publish Beans.
DJAR Name of the DJar for which to publish all Beans.

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND LOOP

EXCEPTION CONTAINER_ERROR
HFS_ACCESS_ERROR
JNDI_ACCESS_ERROR

EJCP gate, RETRACT_CORBASERVER function
The RETRACT_CORBASERVER function of the EJCP gate may be invoked by the EJ domain or the exec
interface layer. All beans in the specified logical server are retracted from JNDI. This is not to be confused
with the IILS retract function.

The Java container calls back to the EJ domain with a browse of all installed Beans for the logical server
during processing of the function.

Input parameters
CORBASERVER Name of the CorbaServer for which to retract Beans.

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND LOOP

EXCEPTION HFS_ACCESS_ERROR
JNDI_ACCESS_ERROR

EJCP gate, RETRACT_DJAR function
The RETRACT_DJAR function of the EJCP gate may be invoked by the EJ domain or the exec interface
layer. All beans in the specified DJar server are retracted from JNDI.

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 771

The Java container calls back to the EJ domain with a browse of all installed Beans for DJar or the logical
server during processing of the function.

Input parameters
CORBASERVER Name of the CorbaServer for which to retract Beans.
DJAR Name of the DJar for which to retract all Beans.

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND LOOP

EXCEPTION HFS_ACCESS_ERROR
JNDI_ACCESS_ERROR

EJDB gate, START_BROWSE function
The START_BROWSE function of the EJDB gate initiates the browse upon the chain of DJars. Positioning
of the start of the Browse is not supported. Selection by DJars is not provided, but selection by owning
CorbaServer is. The end_browse condition is not returned if there are no suitable DJars (this is postponed
until the get_next). The returned browsetoken must be used for subsequent GET_NEXT operations.

Input parameters
CORBASERVER The name of the CorbaServer for this DJar

Output parameters
BROWSETOKEN The pointer set up by START_BROWSE which points to the first CorbaServer in the chain

to be browsed
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION EJB_INACTIVE
INVALID_CORBASERVER
LOCK_ERROR
LOOP
SETUP_ERROR
STORAGE_ERROR

EJDB gate, GET_NEXT function
The GET_NEXT function of the EJDB gate returns the next DJar Control Block in the list of DJars that
meets the selection criteria. The ordering of DJars returned is not specified (the order is not alpha order
but LastIn-FirstOut for Browse purposes). The POINTAT parameter is used to enable a Browse to proceed
when the aim of the browse is to locate a DJar to be deleted.

v POINTAT(NORMAL) should be used in all cases by the SPI layers and general users (and is the
default).

v POINTAT(PRIOR) shows the deletion intent. POINTAT(PRIOR) should never be coded in normal
circumstances and may result in an infinite loop if used without a delete.

Enterprise Java domain (EJ)

772 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
BROWSETOKEN The pointer set up by START_BROWSE which points to the first DJar in the chain to be

browsed
[POINTAT] Indicates whether to advance the browse pointer to point to the next item in the chain

(NORMAL|PRIOR). NORMAL will return the next item in the chain, whereas PRIOR will
always return the same item, unless that item has been deleted

Output parameters
DJAR The name of the DJar
[CORBASERVER]

The name of the CorbaSerever for this DJar
[HFSFILE] The fully qualified name of the deployed jar file on HFS
[STATE] The state of the DJar. Used to indicate whether the DJar is available for use or not
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION BROWSE_TOKEN
EJB_INACTIVE
END_OF_BROWSE
INVALID_BROWSE_TOKEN
INVALID_POINTAT
LOCK_ERROR
LOOP
SETUP_ERROR

EJDB gate, END_BROWSE function
The END_BROWSE function of the EJDB gate ends the browse operation and deletes the browsetoken.

Input parameters
BROWSETOKEN The pointer set up by START_BROWSE which points to the first DJar in the chain to be

browsed

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION EJB_INACTIVE
INVALID_BROWSE_TOKEN
LOCK_ERROR
LOOP
SETUP_ERROR

EJDG gate, ACTION_DJAR function
The ACTION_DJAR function of the EJDG gate tells another party that something is to be done on the
DJar. The implemented actions are to manipulate the External Namespace for the named DJar.

Input parameters
DJAR The name of the DJar

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 773

ACTIONMODE The action to perform on the DJar (PUBLISH|RETRACT)

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION DJAR_ABSENT
DJAR_INVALID_STATE
EJB_INACTIVE
INVALID_ACTION
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
PUBLISH_ERROR
RETRACT_ERROR
SETUP_ERROR
STORAGE_ERROR

EJDG gate, ADD_DJAR function
The ADD_DJAR function of the EJDG gate creates a DJar Control Block.

v Creates the DJar element in memory, chains it appropriately, and saves an entry in the Global Catalog
for Warm restart purposes.

v The XRSINDI exit is called to notify the creation of the element. The Java layers are informed that the
DJar has been created.

v The ADDMODE parameter controls the compartmentalization of this operation for restart purposes (this
defaults to NORMAL which does both the creation of the Control Block and its cataloging). Usage of
this verb via the SPI/RDO layers should always code ADDMODE(NORMAL).

Input parameters
DJAR The name of the DJar to be added
CORBASERVER The name of the CorbaServer for this DJar
HFSFILE The fully qualified name of the deployed jar file on HFS
STATE Indicates the current Resolution State and whether it is available for use or not.

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

Enterprise Java domain (EJ)

774 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION ATTACH_ERROR
CATALOG_ERROR
CORBASERVER_ABSENT
CORBASERVER_INVALID_STATE
DJAR_ALREADY_THERE
EJB_INACTIVE
INVALID_CORBASERVER
INVALID_DJAR
INVALID_HFSNAME
INVALID_STATE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR
STORAGE_ERROR

EJDG gate, AMEND_DJAR function
The AMEND_DJAR function of the EJDG gate alters the DJar Control Block, but does not catalog the
change or tell Java about the amendment.

Input parameters
DJAR The name of the DJar to be changed
[STATE] Specifies the state into which the DJar is to be put. Values are

PENDINIT|INITING|UNUSABLE|PENDRESOLV|RESOLVING|INSERV|
UNRESOLVED|DELETING

[CURRENT_STATE]
Used as a check, and must match the existing state of the DJar. Values are
PENDINIT|INITING|UNUSABLE|PENDRESOLV|RESOLVING|INSERV|
UNRESOLVED|DELETING

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION BAD_STATE_CHANGE
DJAR_ABSENT
DJAR_STATE_CHANGED
EJB_INACTIVE
INVALID_STATE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR

EJDG gate, COUNT_FOR_CS function
The COUNT_FOR_CS function of the EJDG gate totals the number of DJars in each state for the owning
CorbaServer

Input parameters
CORBASERVER The name of the CorbaServer

Output parameters
[NDJARS] The number of DJars in this Corbaserver

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 775

[NPENDINIT] The number of DJars which are in pendinit state in the CorbaServer
[NINITING] The number of DJars which are in initing state in the CorbaServer
[NUNUSABLE] The number of DJars which are in unusable state in the CorbaServer
[NPENDRESOLV]

The number of DJars which are in pendresolve state in the CorbaServer
[NRESOLVING] The number of DJars which are in resolving state in the CorbaServer
[NINSERV] The number of DJars which are in inservice state in the CorbaServer
[NUNRESOLVED]

The number of DJars which are in unresolved state in the CorbaServer
[NDELETING] The number of DJars which are in deleting state in the CorbaServer
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION BAD_STATE_CHANGE
DJAR_ABSENT
DJAR_STATE_CHANGED
EJB_INACTIVE
INVALID_STATE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR

EJDG gate, DELETE_DJAR function
The DELETE_DJAR function of the EJDG gate

v Deletes the DJar Control Block and removes the saved entry in the Global Catalog. the XRSINDI exit is
also called to notify the removal.

v The Java layers are informed that the DJar has been deleted. However, this notification is not done if
the deletion has been initiated by the deletion of the owning CorbaServer (this is notified by the
delmode parameter - DELMODE(CASCADE) showing this CorbaServer initiated deletion and
DELMODE(NORMAL) showing that the deletion has been initiated from the SPI/CEMT layers).

v This operation has a side effect in that all Beans associated with the DJar are also deleted.

Input parameters
DJAR The name of the DJar to be deleted
DELMODE Indicates what type of deletion is being done:

v DELMODE(CASCADE) indicates an owning CorbaServer initiated the deletion of this
DJar

v DELMODE(NORMAL) indicated deletion is for SPI/CEMT delete DJar request

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

Enterprise Java domain (EJ)

776 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION CATALOG_ERROR
DJAR_ABSENT
DJAR_DELETING
EJB_INACTIVE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR
STORAGE_ERROR

EJDG gate, DELETE_ALL_DJARS function
The DELETE_ALL_DJARS function of the EJDG gate is called when the owning CorbaServer is deleted
which forces the cascaded deletion of all the DJars associated with the CorbaServer. This gate eventually
uses EJDG.DELETE_DJAR with DELMODE(CASCADE) as part of its operation.

Input parameters
CORBASERVER The name of the CorbaServer for these DJars

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION CORBASERVER_ABSENT
EJB_INACTIVE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR
STORAGE_ERROR

EJDG gate, INQUIRE_DJAR function
The INQUIRE_DJAR function of the EJDG gate extracts information from the named DJar Control Block

Input parameters
DJAR The name of the DJar

Output parameters
[CORBASERVER]

The name of the CorbaServer for this deployed jar file.
[HFSFILE] The fully qualified name of the deployed jar file on HFS
[STATE] The state of the deployed jar file. Used to indicate whether the deployed jar file is

available for use or not
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 777

RESPONSE Possible REASON values

EXCEPTION DJAR_ABSENT
EJB_INACTIVE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR

EJDG gate, SET_ALL_STATE function
The SET_ALL_STATE function of the EJDG gate sets the state of all the DJars.

Input parameters
STATE Indicates the current Resolution State and whether it is available for use or not.

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION EJB_INACTIVE
INVALID_STATE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR

EJDG gate, WAIT_FOR_DJAR function
The WAIT_FOR_DJAR function of the EJDG gate waits until the DJars enter the required state.

Input parameters
DJAR The name of the DJar being waited on
STATE Indicates the current Resolution State and whether it is available for use or not.

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION DJAR_ABSENT
DJAR_UNRESOLVED
DJAR_UNUSABLE
EJB_INACTIVE
INVALID_STATE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR
WAIT_ERROR

Enterprise Java domain (EJ)

778 CICS TS for z/OS: CICS Diagnosis Reference

EJDG gate, WAIT_FOR_USABLE_DJARS function
The WAIT_FOR_USABLE_DJARS function of the EJDG gate waits until all the DJars associated with a
CorbaServer are INSERV.

Input parameters
CORBASERVER The name of the CorbaServers for these DJars

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION CORBASERVER_ABSENT
CORBASERVER_ERROR
CORBASERVER_INVALID_STATE
COUNT_ERROR
DJAR_ABSENT
DJAR_UNRESOLVED
DJAR_UNUSABLE
EJB_INACTIVE
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR
WAIT_ERROR

EJDI gate, ADD_ENTRY Function
The ADD_ENTRY function of the EJDI gate adds a new entry to the Directory partition for the specified
LogicalServer.

No entry with the same name should exist in the specified LogicalServer partition. In the case of a
transaction entry, no existing entry should refer to the same request stream, but this is not checked.

Input parameters
ENTRY_KEY The key (OTS or Object Key) for the entry
ENTRY_TYPE Indicates whether this is a transaction or object_key entry
LOGICALSERVER

Name of the LogicalServer for which the entry is to be added
REQUEST_STREAM_ID

Public ID of the request stream to be put in the entry

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 779

RESPONSE Possible REASON values

EXCEPTION DUPLICATE_ENTRY
FILE_CONNECT_ERROR
FILE_CORRUPT_ERROR
FILE_FULL_ERROR
FILE_IO_ERROR
STORE_NOT_OPEN

INVALID INVALID_KEYLENGTH

EJDI gate, INITIALIZE Function
The INITIALIZE function of the EJDI gate is called when a store_not_open has been detected.

Input parameters
LOGICALSERVER

Name of the LogicalServer for which the entry is to be added

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION CICS_TERMINATING
FILE_CONNECT_ERROR
FILE_CORRUPT_ERROR
FILE_IO_ERROR
FILE_NOT_FOUND
FILE_RECOVERY_ERROR
FILE_RECOVERY_UNKNOWN
CTL_REC_FULL_ERROR

INVALID INVALID_KEYLENGTH
INVALID_RECORD_SIZE

EJDI gate, LOOKUP_ENTRY Function
The LOOKUP_ENTRY function of the EJDI gate looks up the given OTS transaction or object key /
LogicalServer pair and returns the associated Request Stream if found.

Input parameters
ENTRY_KEY The key (OTS transaction or Object Key) for the entry to be returned
ENTRY_TYPE Indicates whether this is a transaction or object_key entry
LOGICALSERVER

Name of the LogicalServer to search for the entry
REQUEST_STREAM_BUFFER

Caller supplied buffer to contain the request stream id

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

Enterprise Java domain (EJ)

780 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION BUFFER_TOO_SMALL
ENTRY_NOT_FOUND
FILE_CONNECT_ERROR
FILE_CORRUPT_ERROR
FILE_IO_ERROR
OBJECT_CORRUPT
STORE_NOT_FOUND
STORE_NOT_OPEN

INVALID INVALID_KEYLENGTH

EJDI gate, REMOVE_ENTRY Function
The REMOVE_ENTRY function of the EJDI gate removes a transaction or object key for a given
LogicalServer.

Input parameters
ENTRY_KEY The key (OTS transaction or Object Key) for the entry to be removed
ENTRY_TYPE Indicates whether this is a transaction or object_key entry
LOGICALSERVER

Name of the LogicalServer for which the entry is to be removed

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION ENTRY_NOT_FOUND
FILE_CONNECT_ERROR
FILE_CORRUPT_ERROR
FILE_IO_ERROR
STORE_NOT_OPEN

INVALID INVALID_KEYLENGTH

EJDU gate, DUMP_DATA Function
The DUMP_DATA function of the EJDU gate is used to collect data from a dumping class. It will be placed
in the chain of data collected by EJDU and formatted out when a CICS dump occurs.

Input parameters
DATA A pointer and length pair containing the data to be stored for inclusion in a dump.

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND INTERNAL_ERROR

EXCEPTION INSUFFICIENT_STORAGE

INVALID INVALID_FORMAT
INVALID_FUNCTION

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 781

EJDU gate, DUMP_STACK Function
The DUMP_STACK function of the EJDU gate is used to collect the stack of a running JVM. The stack is
passed as a string to EJDU and will be formatted out separately from the other data collected by EJDU's
DUMP_DATA function. This function should be called before DUMP_DATA as it will free any existing data
gathered for the running task.

Input parameters
DATA A pointer and length pair containing the data to be stored for inclusion in a dump.

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
INTERNAL_ERROR

EXCEPTION INSUFFICIENT_STORAGE

INVALID INVALID_FORMAT
INVALID_FUNCTION

EJDU gate, INQUIRE_TRACE_FLAGS Function
The INQUIRE_TRACE_FLAGS function of the EJDU gate is used to return the current settings of all the
trace flags. It takes into account the master trace flag setting when returning the result. The trace flags are
returned as a continuous block of storage with 2 bytes for each flag, in domain order.

Input parameters
TRACE_DATA A block of data containing the trace flags in domain order, where each trace flag takes up

2 bytes

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
INTERNAL_ERROR

EXCEPTION BAD_DOMAIN_TOKEN
TRACE_BUFFER_ERROR

INVALID INVALID_FORMAT
INVALID_FUNCTION

EJGE gate, INITIALIZE Function
The INITIALIZE function of the EJGE gate creates the various things in the EJE Anchor Block (Locks,
Store Subpools, Statii etc.) and then sets up the initial chains of CorbaServer, DJar and BEan Control
Blocks (and the Browse equivalents). These chains all start with a dummy X'00' element and end with
another dummy X'FF' element. This permits easy chaining and detection of end-of-lists. However, more
importantly, this technique enables multi-TCB operations to proceed as there are never any EJ Element
wide-locks - all locks are at the CorbaServer, DJar or Bean level. After the EJE anchor block has been
setup it is never subsequently amended.

Enterprise Java domain (EJ)

782 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
STARTTYPE The startup type for this CICS system (WARM|COLD)

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION CATALOG_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR
STORAGE_ERROR

EJGE gate, QUIESCE Function
The QUIESCE function of the EJGE gate runs when a CEMT P SHUT is executed.

Input parameters
None

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR
STORAGE_ERROR

EJGE gate, TERMINATE Function
The TERMINATE function of the EJGE gate runs when a CEMT P IMMED is executed.

Input parameters
None

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR
STORAGE_ERROR

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 783

EJIO gate, RESOLVE Function
The RESOLVE function of the EJIO gate controls the operation of Resolution processing. It is called by the
CEJR transaction.

Input parameters
None

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION BEAN_ADD_ERROR
CATALOG_ERROR
EJB_INACTIVE
ENV_ERROR
LOOP
MULTIUSE
OBJECTSTORE_ERROR
PARMS_STORAGE_ERROR
PRIORFAIL
RESC_BAD_STB
RESC_GETNEXT_ERROR
RESD_BAD_STB
RESD_GETNEXT_ERROR
RESOLV_FAIL_CS
RESOLV_FAIL_DJAR
SETUP_ERROR
STORAGE_ERROR

EJIO gate, RESOLVE_CSERVERS Function
The RESOLVE_CSERVERS function of the EJIO gate scans all existing CorbaServer Control Blocks that
have not been fully processed and issues a EJCG.RESOLVE_CORBASERVER on the first such
CorbaServer. (both Stage one 'copying the DJar to the Shelf' and Stage two 'Opening Object Stores'
Resolution Processing).

Input parameters
None

Output parameters

EJIO gate, RESOLVE_DJARS Function
The RESOLVE_DJARS function of the EJIO gate scans all existing DJar Control Blocks that have not
been fully processed and issues a EJDG.RESOLVE_DJAR on the first such DJar (both Stage one 'copying
the DJar to the Shelf' and Stage two 'Bean loading' Resolution Processing).

Input parameters
None

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

Enterprise Java domain (EJ)

784 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION BEAN_ADD_ERROR
CATALOG_ERROR
EJB_INACTIVE
ENV_ERROR
LOCK_ERROR
LOOP
OBJECTSTORE_ERROR
PARMS_STORAGE_ERROR
RESD_BAD_STB
RESD_GETNEXT_ERROR
SETUP_ERROR
STORAGE_ERROR

EJJO gate
The EJJO Gate provides a subset of the aforementioned EJ Domain Gates for direct use by the
CICS-supplied layers residing within Java code. See the native functions for details.

EJMI gate, ADD_BEAN Function
The ADD_BEAN function of the EJMI gate adds the named Bean within the named CorbaServer to the
EJMI state.

A duplicate_bean exception is returned if there is already a Bean of that name within the given
CorbaServer. (The DJar must be discarded before the Bean can be added again.)

Input parameters
BEAN The name of the Bean to be added
CORBASERVER The name of the CorbaServer containing the Bean
DJAR The name of the DJar

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION DUPLICATE_BEAN

EJMI gate, ADD_METHOD Function
The ADD_METHOD function of the EJMI gate adds the information for the named method within the given
Bean and CorbaServer.

An unknown_bean exception is returned if there the given Bean and CorbaServer combination is not
present in the EJMI state.

A duplicate_method exception is returned if there is already a method of that name within the given Bean
and CorbaServer combination.

Input parameters
BEAN The name of the Bean to be added
CORBASERVER The name of the CorbaServer containing the Bean
METHOD The name of the method

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 785

XCOORD Indicates whether an external OTS transaction coordinator, if there is one, is respected for
determining transaction commit or rollback. Values are:
RESPECTED|IGNORED

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION DUPLICATE_METHOD
UNKNOWN_BEAN

EJMI gate, DISCARD_METHOD_INFO Function
The DISCARD_METHOD_INFO function of the EJMI gate removes from the given CorbaServer all the
information about Beans with the given DJar name. If no DJar name is specified all Beans are removed.

Input parameters
CORBASERVER The name of the CorbaServer for this DJar
[DJAR] The name of the DJar for these Beans

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_CORBASERVER

EJMI gate, GET_METHOD_INFO Function
The GET_METHOD_INFO function of the EJMI gate returns the information about the named method
within the named Bean and CorbaServer.

An unknown_method exception is returned if the method is not found within the Bean and CorbaServer
combination.

Input parameters
BEAN The name of the Bean
CORBASERVER The name of the CorbaServer for this Bean
METHOD The name of the Bean method

Output parameters
XCOORD Indicates whether an external OTS transaction coordinator, if there is one, is respected for

determining transaction commit or rollback Values are:
RESPECTED|IGNORED

RESPONSE is the domain's response to the call. It can have any of these values
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

Enterprise Java domain (EJ)

786 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_BEAN
UNKNOWN_CORBASERVER
UNKNOWN_METHOD

EJMI gate, INITIALIZE Function
The INITIALIZE function of the EJMI gate initializes the EJMI state in the EJ anchor block.

Input parameters
None

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

EJOB gate, END_BROWSE_OBJECT Function
The END_BROWSE_OBJECT function of the EJOB gate is called after START_BROWSE_OBJECT to
end the Browse of a file or object_store.

Input parameters
BROWSE_TOKEN The token returned by START_BROWSE

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

INVALID INVALID_TOKEN

EJOB gate, GET_NEXT_OBJECT Function
The GET_NEXT_OBJECT function of the EJOB gate is called after START_BROWSE_OBJECT to return
the next object in the file or object_store.

Input parameters
BROWSE_TOKEN The token returned by START_BROWSE
[KEY_BUFFER] A buffer in which the next object key is returned
[OBJECT_BUFFER]

A buffer in which the next object is returned

Output parameters
[ACTIVE_TIMEOUT]

A full-word giving the number of seconds after which Objects in the Active state may be
automatically deleted from the store.

[FILE_NAME] The 8-character name of the file containing the Object Store.
[LAST_UPDATED]

The time in STCK seconds when the object was last stored or activated.
[OBJECT_SIZE]

The size of the object being inquired.
[PASSIVE_TIMEOUT]

A full-word giving the number of seconds after which Objects in the Passive state may be
automatically deleted from the store.

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 787

[STATUS] The state of the Object, ACTIVE or PASSIVE.
[STORE_NAME] The 8-character name of the Object Store.
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION BUFFER_TOO_SMALL
END_BROWSE FILE_CONNECT_ERROR
FILE_CORRUPT_ERROR
FILE_IO_ERROR
FILE_KEY_LENGTH_ERROR
FILE_NOT_FOUND
OBJECT_CORRUPT

INVALID INVALID_TOKEN

EJOB gate, INQUIRE_OBJECT Function
The INQUIRE_OBJECT function of the EJOB gate is called to return the Object data and attributes
associated with the given key.

Input parameters
STORE_NAME The 8-character name of the Object Store
KEY_BLOCK A block giving the key of the Object being inquired
[OBJECT_BUFFER]

A buffer in which the object is returned

Output parameters
[ACTIVE_TIMEOUT]

A full-word giving the number of seconds after which Objects in the Active state may be
automatically deleted from the store.

[FILE_NAME] The 8-character name of the file containing the Object Store.
[LAST_UPDATED]

The time in STCK seconds when the object was last stored or activated.
[OBJECT_SIZE]

The size of the object being inquired.
[PASSIVE_TIMEOUT]

A full-word giving the number of seconds after which Objects in the Passive state may be
automatically deleted from the store.

[STATUS] The state of the Object, ACTIVE or PASSIVE.
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION BUFFER_TOO_SMALL
FILE_CONNECT_ERROR
FILE_CORRUPT_ERROR
FILE_IO_ERROR
FILE_KEY_LENGTH_ERROR
FILE_NOT_FOUND
OBJECT_CORRUPT
OBJECT_NOT_FOUND
STORE_NOT_OPEN

Enterprise Java domain (EJ)

788 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

INVALID INVALID_KEYLENGTH

EJOB gate, INQUIRE_STORES Function
The INQUIRE_STORES function of the EJOB gate is called to return a list of the Object Store names
associated with the given file. The list is returned as an array of 8-character store names.

Input parameters
[FILE_NAME] The optional 8-character name of the file to be inquired. If omitted then the default file

'DFHEJOS' will be used.
[OBJECT_BUFFER]

A buffer in which the array of store names is returned.
[SUBPOOL] A storage subpool from which to getmain the object block.

Output parameters
STORE_COUNT The number of store names being returned
[OBJECT_BLOCK]

A block containing the array of 8-character store names. If specified then SUBPOOL must
also be specified.

RESPONSE is the domain's response to the call. It can have any of these values
OK|EXCEPTION|DISASTER|INVALID|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION BUFFER_TOO_SMALL
FILE_CONNECT_ERROR
FILE_CORRUPT_ERROR
FILE_IO_ERROR
FILE_KEY_LENGTH_ERROR
FILE_NOT_FOUND
FILE_REC_SIZE_ERROR

INVALID INVALID_TOKEN

EJOB gate, RETRIEVE_STATISTICS Function
The RETRIEVE_STATISTICS function of the EJOB gate is called by statistics to return the statistics
associated with a supplied store key.

Input parameters
STORE_NAME The name of the store for which the statistics are being retrieved.
[DATA] A flag indicating if the statistics must be returned
[OBJECT_BUFFER]

The statistics buffer which the data must be put into
[RESET] A flag indicating that the statistics fields must be reset

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 789

RESPONSE Possible REASON values

EXCEPTION BUFFER_TOO_SMALL
BUFFER_NOT_SUPPLIED
STORE_NOT_OPEN

EJOB gate, START_BROWSE_OBJECT Function
The START_BROWSE_OBJECT function of the EJOB gate is called To Browse an Object Store. If
STORE_NAME is omitted then all Objects in the file are browsed. If FILE_NAME is omitted then the
default file 'DFHEJOS' is assumed.

Input parameters
[STORE_NAME] The 8-character name of the Object Store to browse
[FILE_NAME] The 8-character name of the Object Store to browse

Output parameters
BROWSE_TOKEN A token required by GET_NEXT and END_BROWSE
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION FILE_CONNECT_ERROR
FILE_CORRUPT_ERROR
FILE_IO_ERROR
FILE_KEY_LENGTH_ERROR
FILE_NOT_FOUND
FILE_REC_SIZE_ERROR
STORE_NOT_FOUND

EJOS gate, ACTIVATE_OBJECT Function
The ACTIVATE_OBJECT function of the EJOS gate is called to Activate an Object instance.

If DELETE(NO) is specified then the ACTIVATE function will mark Objects as ACTIVE in the store.
ACTIVE_TIMEOUT indicates when entries marked ACTIVE may be automatically deleted from the store. If
DELETE(YES) is specified then ACTIVE_TIMEOUT is ignored, and the ACTIVATE function will delete the
object from the store.

Input parameters
STORE_NAME The 8-character name of the Object Store
KEY_BLOCK A block giving the key of the Object to be activated
OBJECT_BUFFER

The buffer into which the Object is returned
DELETE YES means the Object is to be deleted from the while and NO means the Object is to be

marked ACTIVE in the file

Output parameters
OBJECT_SIZE The size of the Object being activated
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

Enterprise Java domain (EJ)

790 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION BUFFER_TOO_SMALL
FILE_CONNECT_ERROR
FILE_CORRUPT_ERROR
FILE_IO_ERROR
FILE_KEY_LENGTH_ERROR
OBJECT_CORRUPT
OBJECT_IS_ACTIVE
OBJECT_NOT_FOUND
STORE_NOT_OPEN

INVALID INVALID_KEYLENGTH

EJOS gate, CLOSE_OBJECT_STORE Function
The CLOSE_OBJECT_STORE function of the EJOS gate is called to Close an Object Store in the local
system.

If an Object Store is open with a non-zero timeout value, then a task is scheduled to sweep the store
periodically, deleting timed-out Objects. It will, therefore, improve CICS performance if stores are closed
when not required.

Input parameters
STORE_NAME The 8-character name of the Object Store

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION STORE_NOT_OPEN

EJOS gate, OPEN_OBJECT_STORE Function
The OPEN_OBJECT_STORE function of the EJOS gate is called to Open a new or existing Object Store
in the local system.

An Object Store must be opened in each region wishing to use it. Many object stores can use the same
CICS file, or they can each specify a different file.

If an Object Store of the same name is already open in that region, the existing definition is replaced, and
the new file name and timeout values are then used. As timeout values are stored with the object,
changes to the store definition will not affect objects already stored. If file_name is omitted, then the
default file 'DFHEJOS' will be used.

Input parameters
ACTIVATE_TIMEOUT

A full-word giving the number of seconds after which Objects in the Active State may be
automatically deleted from the store

PASSIVE_TIMEOUT
A full-word giving the number of seconds after which Objects in the Passive State may be
automatically deleted from the store

RECOVERY YES indicates that the file should be recoverable. If it is not, FILE_RECOVERY_ERROR is
returned. NO indicates that the file should not be recoverable. If it is then

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 791

FILE_RECOVERY_ERROR is returned. If CICS is unable to determine whether the file is
recoverable then FILE_RECOVERY_UNKNOWN is returned

STORE_NAME The 8-character name of the Object Store
[FILE_NAME] The optional 8-character name of the file to be used

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION CICS_TERMINATING
FILE_CONNECT_ERROR
FILE_CORRUPT_ERROR
FILE_IO_ERROR
FILE_KEY_LENGTH_ERROR
FILE_NOT_FOUND
FILE_RECOVERY_ERROR
FILE_RECOVERY_UNKNOWN
FILE_REC_SIZE_ERROR
CTL_REC_FULL_ERROR

INVALID INVALID_OBJECT_TIMEOUT

EJOS gate, REMOVE_OBJECT Function
The REMOVE_OBJECT function of the EJOS gate is called to Remove an Object instance from the
specified Object Store.

Input parameters
KEY_BLOCK A block containing the key of the Object to be removed
STORE_NAME The 8-character name of the Object Store

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION FILE_CONNECT_ERROR
FILE_CORRUPT_ERROR
FILE_IO_ERROR
FILE_KEY_LENGTH_ERROR
FILE_NOT_FOUND
OBJECT_NOT_FOUND
STORE_NOT_OPEN

INVALID INVALID_KEYLENGTH

EJOS gate, REMOVE_STORE Function
The REMOVE_STORE function of the EJOS gate is called to Remove one or all Object Stores from the
specified file.

When a Store is removed, it should be removed or closed in every region in which it is open. If not, then
data may be lost.

Enterprise Java domain (EJ)

792 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
STORE_NAME |ALL

The 8-character name of the Object Store
[FILE_NAME] The optional 8-character name of the file to be used

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION FILE_CONNECT_ERROR
FILE_CORRUPT_ERROR
FILE_IO_ERROR
FILE_KEY_LENGTH_ERROR
FILE_NOT_FOUND
STORE_NOT_OPEN

EJOS gate, STORE_OBJECT Function
The STORE_OBJECT function of the EJOS gate is called to Store an Object instance.

The Object is identified by a KEY of from 1 to (recordsize -64) bytes, and the Object can be of any size.

If no Object with that key exists in the store then one is created in the Passive state. If an Object with the
same key already exists in the Store, then the action depends on the REPLACE value
(YES|NO|ACTIVE|PASSIVE). An exception OBJECT_IS_ACTIVE or OBJECT_IS_PASSIVE indicates why
an object was not replaced.

Input parameters
STORE_NAME The 8-character name of the Object Store
REPLACE Yes means that an Object with the same key will be replaced. NO means that an Object

with the same key will not be replaced. ACTIVE means that an ACTIVE Object with the
same key is replaced. PASSIVE means that a PASSIVE Object with the same key is
replaced. Values are
YES|NO|ACTIVE|PASSIVE

KEY_BLOCK A block containing the key of the Object to be stored
OBJECT_BLOCK A block containing the Object data to be stored

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION FILE_CONNECT_ERROR
FILE_CORRUPT_ERROR
FILE_FULL_ERROR
FILE_IO_ERROR
FILE_KEY_LENGTH_ERROR
FILE_NOT_FOUND
OBJECT_IS_ACTIVE
OBJECT_IS_PASSIVE
STORE_NOT_OPEN

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 793

RESPONSE Possible REASON values

INVALID INVALID_KEYLENGTH

EJSO gate, INQUIRE_CORBASERVER function
The INQUIRE_CORBASERVER function of the EJSO gate is used by the EJ domain to find any TCPIP
parameters that are also kept in the corba server after resolution time. This function is used by JAVA code
and normal CICS code.

Input parameters
CORBASERVER The 4 character name of the corba server.

Output parameters
ASSERTED_PORT

A fullword containing the port number of the TCPIPSERVICE named in the ASSERTED
attribute of the CORBASERVER.

ASSERTED_PRIVACY
An enumerated type of REQUIRED|SUPPORTED|NOTSUPPORTED taken from the TCPIPSERVICE
named in the ASSERTED attribute of the CORBASERVER.

ASSERTED_SSL An enumerated type of YES|CLIENTAUTH taken from the TCPIPSERVICE named in the
ASSERTED attribute of the CORBASERVER.

ASSERTED_HASH
A fullword created by the sockets domain to represent the TCPIPSERVICE named in the
ASSERTED attribute of the CORBASERVER.. It is used to check that the TCPIPSERVICE
in the listener region has the same attributes as the one in the AOR.

BASIC_PORT A fullword containing the port number of the TCPIPSERVICE named in the BASIC attribute
of the CORBASERVER.

BASIC_PRIVACY
An enumerated type of REQUIRED|SUPPORTED|NOTSUPPORTED taken from the TCPIPSERVICE
named in the BASIC attribute of the CORBASERVER.

BASIC_SSL An enumerated type of YES|CLIENTAUTH taken from the TCPIPSERVICE named in the
BASIC attribute of the CORBASERVER.

BASIC_HASH A fullword created by the sockets domain to represent the TCPIPSERVICE named in the
BASIC attribute of the CORBASERVER. It is used to check that the TCPIPSERVICE in
the listener region has the same attributes as the one in the AOR.

UNAUTH_PORT A fullword containing the port number of the TCPIPSERVICE named in the UNAUTH
attribute of the CORBASERVER.

UNAUTH_PRIVACY
An enumerated type of REQUIRED|SUPPORTED|NOTSUPPORTED taken from the TCPIPSERVICE
named in the UNAUTH attribute of the CORBASERVER.

UNAUTH_SSL An enumerated type of YES|NO|CLIENTAUTH taken from the TCPIPSERVICE named in the
UNAUTH attribute of the CORBASERVER.

UNAUTH_HASH A fullword created by the sockets domain to represent the TCPIPSERVICE named in the
UNAUTH attribute of the CORBASERVER. It is used to check that the TCPIPSERVICE in
the listener region has the same attributes as the one in the AOR.

CLIENTCERT_PORT
A fullword containing the port number of the TCPIPSERVICE named in the CLIENTCERT
attribute of the CORBASERVER.

CLIENTCERT_PRIVACY
An enumerated type of REQUIRED|SUPPORTED|NOTSUPPORTED taken from the TCPIPSERVICE
named in the CLIENTCERT attribute of the CORBASERVER.

CLIENTCERT_SSL
An enumerated type of YES|CLIENTAUTH taken from the TCPIPSERVICE named in the
CLIENTCERT attribute of the CORBASERVER.

CLIENTCERT_HASH
A fullword created by the sockets domain to represent the TCPIPSERVICE named in the

Enterprise Java domain (EJ)

794 CICS TS for z/OS: CICS Diagnosis Reference

CLIENTCERT attribute of the CORBASERVER. It is used to check that the
TCPIPSERVICE in the listener region has the same attributes as the one in the AOR.

SSLUNAUTH_PORT
A fullword containing the port number of the TCPIPSERVICE named in the SSLUNAUTH
attribute of the CORBASERVER.

SSLUNAUTH_PRIVACY
An enumerated type of REQUIRED|SUPPORTED|NOTSUPPORTED taken from the TCPIPSERVICE
named in the SSLUNAUTH attribute of the CORBASERVER.

SSLUNAUTH_SSL
An enumerated type of clientauth taken from the TCPIPSERVICE named in the
SSLUNAUTH attribute of the CORBASERVER.

SSLUNAUTH_HASH
A fullword created by the sockets domain to represent the TCPIPSERVICE named in the
SSLUNAUTH attribute of the CORBASERVER. It is used to check that the
TCPIPSERVICE in the listener region has the same attributes as the one in the AOR.

RESPONSE is the domain's response to the call. It can have any of these values
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CORBASERVER_ABSENT
LOCK_ERROR

DISASTER ABEND

EJSO gate, AMEND_CORBASERVER function
The AMEND_CORBASERVER function of the EJSO gate is used by the EJ domain to update TCPIP
parameters that are also kept in the corba server after resolution time. This function is only used by
DFHEJCG RESOLVE_CORBASERVER.

Input parameters
CORBASERVER The 4 character name of the corba server.
ASSERTED_PORT

A fullword containing the port number of the TCPIPSERVICE named in the ASSERTED
attribute of the CORBASERVER.

ASSERTED_PRIVACY
An enumerated type of REQUIRED|SUPPORTED|NOTSUPPORTED taken from the TCPIPSERVICE
named in the ASSERTED attribute of the CORBASERVER.

ASSERTED_SSL An enumerated type of YES|CLIENTAUTH taken from the TCPIPSERVICE named in the
ASSERTED attribute of the CORBASERVER.

ASSERTED_HASH
A fullword created by the sockets domain to represent the TCPIPSERVICE named in the
ASSERTED attribute of the CORBASERVER.. It is used to check that the TCPIPSERVICE
in the listener region has the same attributes as the one in the AOR.

BASIC_PORT A fullword containing the port number of the TCPIPSERVICE named in the BASIC attribute
of the CORBASERVER.

BASIC_PRIVACY
An enumerated type of REQUIRED|SUPPORTED|NOTSUPPORTED taken from the TCPIPSERVICE
named in the BASIC attribute of the CORBASERVER.

BASIC_SSL An enumerated type of YES|CLIENTAUTH taken from the TCPIPSERVICE named in the
BASIC attribute of the CORBASERVER.

BASIC_HASH A fullword created by the sockets domain to represent the TCPIPSERVICE named in the
BASIC attribute of the CORBASERVER. It is used to check that the TCPIPSERVICE in
the listener region has the same attributes as the one in the AOR.

UNAUTH_PORT A fullword containing the port number of the TCPIPSERVICE named in the UNAUTH
attribute of the CORBASERVER.

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 795

UNAUTH_PRIVACY
An enumerated type of REQUIRED|SUPPORTED|NOTSUPPORTED taken from the TCPIPSERVICE
named in the UNAUTH attribute of the CORBASERVER.

UNAUTH_SSL An enumerated type of YES|NO|CLIENTAUTH taken from the TCPIPSERVICE named in the
UNAUTH attribute of the CORBASERVER.

UNAUTH_HASH A fullword created by the sockets domain to represent the TCPIPSERVICE named in the
UNAUTH attribute of the CORBASERVER. It is used to check that the TCPIPSERVICE in
the listener region has the same attributes as the one in the AOR.

CLIENTCERT_PORT
A fullword containing the port number of the TCPIPSERVICE named in the CLIENTCERT
attribute of the CORBASERVER.

CLIENTCERT_PRIVACY
An enumerated type of REQUIRED|SUPPORTED|NOTSUPPORTED taken from the TCPIPSERVICE
named in the CLIENTCERT attribute of the CORBASERVER.

CLIENTCERT_SSL
An enumerated type of YES|CLIENTAUTH taken from the TCPIPSERVICE named in the
CLIENTCERT attribute of the CORBASERVER.

CLIENTCERT_HASH
A fullword created by the sockets domain to represent the TCPIPSERVICE named in the
CLIENTCERT attribute of the CORBASERVER. It is used to check that the
TCPIPSERVICE in the listener region has the same attributes as the one in the AOR.

SSLUNAUTH_PORT
A fullword containing the port number of the TCPIPSERVICE named in the SSLUNAUTH
attribute of the CORBASERVER.

SSLUNAUTH_PRIVACY
An enumerated type of REQUIRED|SUPPORTED|NOTSUPPORTED taken from the TCPIPSERVICE
named in the SSLUNAUTH attribute of the CORBASERVER.

SSLUNAUTH_SSL
An enumerated type of clientauth taken from the TCPIPSERVICE named in the
SSLUNAUTH attribute of the CORBASERVER.

SSLUNAUTH_HASH
A fullword created by the sockets domain to represent the TCPIPSERVICE named in the
SSLUNAUTH attribute of the CORBASERVER. It is used to check that the
TCPIPSERVICE in the listener region has the same attributes as the one in the AOR.

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CORBASERVER_ABSENT
LOCK_ERROR

DISASTER ABEND

The Enterprise Java (EJ) domain is logically divided into three parts:

v Elements, which covers the manipulation of the EJ Resources of CorbaServers (EJCG), DJars (EJDG)
and Beans (EJBJ)

v Object Stores, used to store stateful Session Beans, and to hold the EJB Directory (EJOS and EJOB)

v Directory, used to record the association of OTS transactions and object instances with Request
Processors (EJDI).

Enterprise Java domain (EJ)

796 CICS TS for z/OS: CICS Diagnosis Reference

EJ domain's generic gates
Table 52 summarizes the EJ domain’s generic gates. It shows the level-1 trace point IDs of the modules
providing the functions for the gates, the functions provided by the gates, and the generic formats for calls
to the gates.

Table 52. EJ domain’s generic gates
Gate Trace Function Format

EJDM EJ 01xx INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

EJST EJ 04xx COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

For descriptions of these functions and their input and output parameters, refer to the Sections dealing
with the corresponding generic formats:

Functions and parameters

Format DMDM—Chapter 78, “Domain manager domain (DM),” on page 663

Format STST—“System programming command flows” on page 264

The Domain Manager gates perform normal internal state initialization and termination functions.

Modules

Module Function

DFHEJBB Bean Browse EJBB Gate

DFHEJBG Bean General EJBG Gate

DFHEJCB CorbaServer Browse EJCB Gate

DFHEJCG CorbaServer General EJCG Gate

DFHEJCP Command Processor functions EJCP Gate

DFHEJDB DJar Browse EJDB Gate

DFHEJDG DJar General EJDG Gate

DFHEJDI EJB Directory EJDI Gate

DFHEJDM EJ Initialize/Terminate EJDM Gate

DFHEJDU EJ Dump Interface EJDU Gate

DFHEJGE EJ General Initialization/Termination functions EJGE Gate

DFHEJIO CEJR Resolution EJIO Gate

DFHEJJO Jave Interface EJJO Gate

DFHEJMI Method Information function EJMI Gate

DFHEJOB Object Store Browse EJOB Gate

DFHEJOS Object Store General EJOS Gate

DFHEJST Statistics General EJSt Gate

Exits
NONE

Enterprise Java domain (EJ)

Chapter 82. Enterprise Java domain (EJ) 797

Trace
The point IDs have just been added onto the usual EJ ones.

Enterprise Java domain (EJ)

798 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 83. Event manager domain (EM)

The event manager domain manages event and timer objects created within CICS BTS activities. For
further information regarding these objects see CICS Business Transaction Services.

Event manager domain’s specific gates
Table 53 summarizes the event manager domain’s specific gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gate, the functions provided by the gate, and whether or not
the functions are available through the exit programming interface (XPI).

Table 53. Event manager domain’s specific gates
Gate Trace Function XPI

EMEM EM 0201
EM 0202

ADD_SUBEVENT
CHECK_TIMER
DEFINE_ATOMIC_EVENT
DEFINE_COMPOSITE_EVENT
DEFINE_TIMER

DELETE_EVENT
DELETE_TIMER
FIRE_EVENT
FORCE_TIMER
INQUIRE_STATUS
REMOVE_SUBEVENT
RESET_EVENT
RETRIEVE_REATTACH_EVENT
RETRIEVE_SUBEVENT
TEST_EVENT

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

EMBR EM 0301
EM 0302

INQUIRE_EVENT
START_BROWSE_EVENT
GET_NEXT_EVENT
END_BROWSE_EVENT
INQUIRE_TIMER
START_BROWSE_TIMER
GET_NEXT_TIMER
END_BROWSE_TIMER

NO
NO
NO
NO
NO
NO
NO
NO

EMEM gate, ADD_SUBEVENT function
The ADD_SUBEVENT function adds a subevent to an existing composite event.

Input parameters
EVENT is the name of the composite event.
SUBEVENT is the name of the subevent.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_CURRENT_ACTIVITY
EVENT_NOT_FOUND
INVALID_EVENT_TYPE
SUBEVENT_NOT_FOUND
INVALID_SUBEVENT

EMEM gate, CHECK_TIMER function
The CHECK_TIMER function returns the status of a timer.

© Copyright IBM Corp. 1997, 2011 799

Input parameters
TIMER_NAME is the name of the timer.

Output parameters
TIMER_STATUS returns the status of the timer. It can have one of these values:

EXPIRED|FORCED|UNEXPIRED
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_CURRENT_ACTIVITY
TIMER_NOT_FOUND

EMEM gate, DEFINE_ATOMIC_EVENT function
The DEFINE_ATOMIC_EVENT function defines an atomic event of type ACTIVITY or INPUT.

Input parameters
EVENT is the name of the event.
EVENT_TYPE is the type of the event. It can have one of these values:

ACTIVITY|INPUT

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_CURRENT_ACTIVITY
INVALID_EVENT_NAME
DUPLICATE_EVENT

EMEM gate, DEFINE_COMPOSITE_EVENT function
The DEFINE_COMPOSITE_EVENT function defines a composite event with an associated predicate
which may be AND or OR. Up to eight subevents may be provided.

Input parameters
EVENT is the name of the composite event.
PREDICATE is the predicate type. It may have either one of these values:

AND|OR
SUBEVENT_LIST

is an optional list of up to 8 subevents.

Output parameters
SUBEVENT_IN_ERROR

returns the number of the first subevent which is in error (if any).
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Event Manager Domain (EM)

800 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION NO_CURRENT_ACTIVITY
INVALID_EVENT_NAME
SUBEVENT_NOT_FOUND
INVALID_SUBEVENT
DUPLICATE_EVENT

EMEM gate, DEFINE_TIMER function
The DEFINE_TIMER function defines a timer.

Input parameters
TIMER_NAME is the name of the timer.
EVENT is the optional name of an event to be associated with the timer.
AFTER indicates whether or not the timer is an interval. It may have either of these values:

YES|NO
AT indicates whether or not the timer is a time. It may have either of these values:

YES|NO
DAYS is the number of days for an interval.
HOURS is the number of hours for an interval or time.
MINUTES is the number of minutes for an interval or time.
SECONDS is the number of seconds for an interval or time.
ON indicates whether or not a date has been specified. It may have either of these values:

YES|NO
YEAR is the year.
MONTH is the month.
DAYOFMONTH is the day of the month.
DAYOFYEAR is the day of the year.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_CURRENT_ACTIVITY
INVALID_TIMER_NAME
DUPLICATE_TIMER
INVALID_EVENT_NAME
DUPLICATE_EVENT
INVALID_INTERVAL
INVALID_TIME

EMEM gate, DELETE_EVENT function
The DELETE_EVENT function deletes an event.

Input parameters
EVENT is the name of the event to be deleted.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Event Manager Domain (EM)

Chapter 83. Event manager domain (EM) 801

RESPONSE Possible REASON values

EXCEPTION NO_CURRENT_ACTIVITY
EVENT_NOT_FOUND
INVALID_EVENT_TYPE

EMEM gate, DELETE_TIMER function
The DELETE_TIMER function deletes a timer.

Input parameters
TIMER is the name of the timer to be deleted.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_CURRENT_ACTIVITY
TIMER_NOT_FOUND

EMEM gate, FIRE_EVENT function
The FIRE_EVENT function causes an event to fire.

Input parameters
EVENT is the name of the event to be fired.
EVENT_VERSION

is an optional version number for the event.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_CURRENT_ACTIVITY
EVENT_NOT_FOUND
INVALID_EVENT_TYPE
ALREADY_FIRED
VERSION_NOT_FOUND

EMEM gate, FORCE_TIMER function
The FORCE_TIMER function causes a timer to expire early.

Input parameters
TIMER is the name of the timer to be forced.
ACQUIRED_PROCESS

indicates whether or not the timer to be forced is owned by the acquired process. It may
have either of these values:
YES|NO

ACQUIRED_ACTIVITY
indicates whether or not the timer to be forced is owned by the acquired activity. It may
have either of these values:

Event Manager Domain (EM)

802 CICS TS for z/OS: CICS Diagnosis Reference

YES|NO

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_CURRENT_ACTIVITY
NO_ACQUIRED_PROCESS
NO_ACQUIRED_ACTIVITY
INVALID_ACTIVITY
TIMER_NOT_FOUND

EMEM gate, INQUIRE_STATUS function
The INQUIRE_STATUS function returns the status of the event pool for the current activity.

Output parameters
PENDING_EVENTS

indicates whether any events are pending. It may have either of these values:
YES|NO

PENDING_ACTIVITY_EVENTS
indicates whether any activity events are pending. It may have either of these values:
YES|NO

REATTACH indicates whether the task should be reattached. It may have either of these values:
YES|NO

EVENTS_PROCESSED
indicates whether any events were processed during this activation. It may have either of
these values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_CURRENT_ACTIVITY

EMEM gate, REMOVE_SUBEVENT function
The REMOVE_SUBEVENT function removes a subevent from the named composite event.

Input parameters
EVENT is the name of the composite event.
SUBEVENT is the name of the subevent.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Event Manager Domain (EM)

Chapter 83. Event manager domain (EM) 803

RESPONSE Possible REASON values

EXCEPTION NO_CURRENT_ACTIVITY
EVENT_NOT_FOUND
INVALID_EVENT_TYPE
SUBEVENT_NOT_FOUND
INVALID_SUBEVENT

EMEM gate, RETRIEVE_REATTACH_EVENT function
The RETRIEVE_REATTACH_EVENT function retrieves the next event from the current activity's reattach
queue.

Output parameters
EVENT is the name of the retrieved reattach event.
EVENT_TYPE is the type of the retrieved reattach event. It may have one of the following values:

ACTIVITY|COMPOSITE|INPUT|SYSTEM|TIMER
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_CURRENT_ACTIVITY
END_EVENTS

EMEM gate, RETRIEVE_SUBEVENT function
The RETRIEVE_SUBEVENT function retrieves the next event from the named composite event's subevent
queue.

Input parameters
EVENT is the name of the composite event.

Output parameters
SUBEVENT is the name of the subevent.
EVENT_TYPE is the type of the retrieved reattach event. It may have one of the following values:

ACTIVITY|COMPOSITE|INPUT|SYSTEM|TIMER
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_CURRENT_ACTIVITY
EVENT_NOT_FOUND
INVALID_EVENT_TYPE
END_SUBEVENTS
NO_SUBEVENTS

EMEM gate, TEST_EVENT function
The TEST_EVENT function returns the fire status of the named event.

Input parameters
EVENT is the name of the event to be tested.

Event Manager Domain (EM)

804 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
FIRED returns the fire status of the event. It may have either of these values:

YES|NO
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_CURRENT_ACTIVITY
EVENT_NOT_FOUND

EMBR gate, INQUIRE_EVENT function
The INQUIRE_EVENT function returns information about the named event.

Input parameters
EVENT is the name of the event being inquired upon.

Output parameters
EVENT_TYPE is the type of the event. It can have one of these values:

ACTIVITY|COMPOSITE|INPUT|SYSTEM|TIMER
FIRED returns the fire status of the event. It may have either of these values:

YES|NO
PREDICATE is the predicate type (for composite events only). It may have either one of these values:

AND|OR
PARENT is the name of the parent (if the event is a subevent).
TIMER_NAME is the name of the associated timer (if the event is of type timer).
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_ACTIVITY_ID
NO_CURRENT_ACTIVITY
FILE_NOT_AUTH
EVENT_NOT_FOUND
READ_FAILURE
FILE_UNAVAILABLE

EMBR gate, START_BROWSE_EVENT function
The START_BROWSE_EVENT function starts an event browse and returns a token to be used for the
browse.

Input parameters
ACTIVITY_ID is an optional activity id for the activity whose event pool is to be browsed.

Output parameters
BROWSE_TOKEN returns a token which is used to identify the browse.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Event Manager Domain (EM)

Chapter 83. Event manager domain (EM) 805

RESPONSE Possible REASON values

EXCEPTION INVALID_ACTIVITY_ID
FILE_NOT_AUTH
NO_CURRENT_ACTIVITY
READ_FAILURE
FILE_UNAVAILABLE

EMBR gate, GET_NEXT_EVENT function
The GET_NEXT_EVENT function returns the next name in the browse specified by the browse token, and
returns the attributes associated with the event.

Input parameters
BROWSE_TOKEN is a token which identifies the browse.

Output parameters
EVENT is the name of the event.
EVENT_TYPE is the type of the event. It can have one of these values:

ACTIVITY|COMPOSITE|INPUT|SYSTEM|TIMER
FIRED returns the fire status of the event. It may have either of these values:

YES|NO
PREDICATE is the predicate type (for composite events only). It may have either one of these values:

AND|OR
PARENT is the name of the parent (if the event is a subevent).
TIMER_NAME is the name of the associated timer (if the event is of type timer).
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_BROWSE_TOKEN
BROWSE_END

EMBR gate, END_BROWSE_EVENT function
The END_BROWSE_EVENT function ends the event browse identified by the browse token.

Input parameters
BROWSE_TOKEN is a token which identifies the browse.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_BROWSE_TOKEN

EMBR gate, INQUIRE_TIMER function
The INQUIRE_TIMER function returns information about the named timer.

Input parameters
TIMER is the name of the timer being inquired upon.

Event Manager Domain (EM)

806 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
EVENT is the name of the associated event.
TIMER_STATUS is the status of the timer. It can have one of these values:

EXPIRED|FORCED|UNEXPIRED
ABSTIME returns the timer's expiry time in ABSTIME format.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_ACTIVITY_ID
NO_CURRENT_ACTIVITY
FILE_NOT_AUTH
TIMER_NOT_FOUND
READ_FAILURE
FILE_UNAVAILABLE

EMBR gate, START_BROWSE_TIMER function
The START_BROWSE_TIMER function starts a timer browse and returns a token to be used for the
browse.

Input parameters
ACTIVITY_ID is an optional activity id for the activity whose event pool is to be browsed.

Output parameters
BROWSE_TOKEN returns a token which is used to identify the browse.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_ACTIVITY_ID
FILE_NOT_AUTH
NO_CURRENT_ACTIVITY
READ_FAILURE
FILE_UNAVAILABLE

EMBR gate, GET_NEXT_TIMER function
The GET_NEXT_TIMER function returns the next name in the browse specified by the browse token, and
returns the attributes associated with the timer.

Input parameters
BROWSE_TOKEN is the token which identifies the browse.

Output parameters
TIMER is the name of the timer.
EVENT is the name of the associated event.
TIMER_STATUS is the status of the timer. It can have one of these values:

EXPIRED|FORCED|UNEXPIRED
ABSTIME returns the timer's expiry time in ABSTIME format.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Event Manager Domain (EM)

Chapter 83. Event manager domain (EM) 807

RESPONSE Possible REASON values

EXCEPTION INVALID_BROWSE_TOKEN
BROWSE_END

EMBR gate, END_BROWSE_TIMER function
The END_BROWSE_TIMER function ends the timer browse identified by the browse token.

Input parameters
BROWSE_TOKEN is a token which identifies the browse.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_BROWSE_TOKEN

Event manager domain’s generic gates
Table 54 summarizes the event manager domain’s generic gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gates, the functions provided by the gates, and the generic
formats for calls to the gates.

Table 54. Event manager domain’s generic gates
Gate Trace Function Format

DMDM EM 0101
EM 0102

INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

EMBA EM 0401
EM 0402

INQUIRE_DATA_LENGTH
GET_DATA
DESTROY_TOKEN

BAGD

For descriptions of these functions and their input and output parameters, refer to the Sections dealing
with the corresponding generic formats:

Functions and parameters

Format DMDM—“Domain manager domain’s generic formats” on page 669

In initialization, quiesce, and termination processing, the event manager domain performs only internal
routines.

Modules

Module Function

DFHEMDM Handles the following requests:
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

Event Manager Domain (EM)

808 CICS TS for z/OS: CICS Diagnosis Reference

Module Function

DFHEMEM Handles the following requests:
ADD_SUBEVENT
CHECK_TIMER
DEFINE_ATOMIC_EVENT
DEFINE_COMPOSITE_EVENT
DEFINE_TIMER
DELETE_EVENT
DELETE_TIMER
FIRE_EVENT
FORCE_TIMER
INQUIRE_STATUS
REMOVE_SUBEVENT
RESET_EVENT
RETRIEVE_REATTACH_EVENT
RETRIEVE_SUBEVENT
TEST_EVENT

DFHEMBR Handles the following requests:
INQUIRE_EVENT
START_BROWSE_EVENT
GET_NEXT_EVENT
END_BROWSE_EVENT
INQUIRE_TIMER
START_BROWSE_TIMER
GET_NEXT_TIMER
END_BROWSE_TIMER

DFHEMBA Handles the following requests:
INQUIRE_DATA_LENGTH
GET_DATA
DESTROY_TOKEN

DFHEMDUF Formats the EM domain control blocks

DFHEMTRI Interprets EM domain trace entries

Exits
No global user exit points are provided in this domain.

Trace
The point IDs for the event manager domain are of the form EM xxxx; the corresponding trace levels are
EM 1, EM 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Event Manager Domain (EM)

Chapter 83. Event manager domain (EM) 809

810 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 84. IP ECI (IE) domain

The IP ECI (IE) domain processes external call interface (ECI) requests that arrive from a CICS client that
is connected to CICS by a TCP/IP network. It attaches a mirror task to issue the appropriate program link
request, and returns the results to the client.

IE domain's generic gates
Table 55 summarizes the IE domain's generic gates. It shows the level-1 trace point IDs of the modules
providing the functions for the gates, the functions provided by the gates, and the generic formats for calls
to the gates.

Table 55. IE domain’s generic gates
Gate Trace Function FORMAT

DMDM IE 0100
IE 0101

INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM
DMDM
DMDM

For descriptions of these functions and their input and output parameters, refer to the sections dealing with
the corresponding generic formats:

Functions and parameters

Format DMDM—“Domain manager domain’s generic formats” on page 669

IE domain's specific gates
Table 56 summarizes the IE domain's specific gates. It shows the level-1 trace point IDs of the modules
providing the functions for the gates, the functions provided by the gates, and whether or not the functions
are available through the exit programming interface (XPI).

Table 56. IE domain’s specific gates
Gate Trace Function XPI

IEIE IE 0001
IE 0002

PROCESS_ECI_FLOW
RECEIVE
SEND
SEND_ERROR

NO
NO
NO
NO

IEIE gate, PROCESS_ECI_FLOW function
Initiates processing of a flow from an ECI client, either by attaching a new mirror task, or by posting an
existing mirror task.

Input parameters
None

Output parameters
RESPONSE

is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION, DISASTER or INVALID. Possible values are:

© Copyright IBM Corp. 1997, 2011 811

RESPONSE Possible REASON values

EXCEPTION NOT_INSTALLED
INVALID_FLOW
INSTALL_FAILED

DISASTER ABEND
FREEMAIN_FAILURE
RECEIVE_FAILURE
SEND_FAILURE

INVALID INVALID_FORMAT
INVALID_FUNCTION

IEIE gate, RECEIVE function
Receives input from an ECI client.

Input parameters
None

Output parameters
DATA_ADDRESS

The address of the buffer containing the data received.

DATA_LENGTH
The length of the data received.

CODEPAGE
The codepage of the request

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION, DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CLIENT_NOT_RESPONDING
REQUEST_PURGED

DISASTER ABEND
FREEMAIN_FAILURE
INVALID_REQUEST
WAIT_FAILURE

INVALID INVALID_FORMAT
INVALID_FUNCTION

IEIE gate, SEND function
Sends a reply to an ECI client.

Input parameters
DATA_ADDRESS

The address of the buffer containing the data to be sent. DATA_LENGTH.

DATA_LENGTH
The length of the data to be sent.

812 CICS TS for z/OS: CICS Diagnosis Reference

LAST
This is the last send in this conversation, or not.

Output parameters
RESPONSE

is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION, DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ABEND
REQUEST_PURGED

DISASTER FREEMAIN_FAILURE
INVALID_REQUEST
SEND_FAILURE

INVALID INVALID_FORMAT
INVALID_FUNCTION

IEIE gate, SEND_ERROR function
Sends an FMH7 to an ECI client.

Input parameters
MESSAGE_NUMBER

The number of the IE component message to be sent to the client.

INSERT1
The first message insert

INSERT2
The second message insert

INSERT3
The third message insert

INSERT4
The fourth message insert

Output parameters
RESPONSE

is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
FREEMAIN_FAILURE
INVALID_REQUEST
SEND_FAILURE

INVALID INVALID_FORMAT
INVALID_FUNCTION

Chapter 84. IP ECI (IE) domain 813

Control blocks
Each installed client is represented by an IP ECI Client State Block (IECSB). This is the IP equivalent of
the TCSE extension built by CICS for SNA connected clients.

The IECSBs are indexed by the socket token provided by SO domain.

Each client can have many simultaneous conversations in progress. Each of these is represented by an IP
ECI Client Conversation Block (IECCB). The IECCBs are indexed by a session id allocated by the client
and the sequence number of the attach that initiated the conversation.

Modules
DFHIEIE

The main part of IE domain. Processes all DFHIEIE_GATE functions.

DFHIEDM
IE domain initialization and termination.

Exits
None

Trace
The point ids for the IP ECI domain are of the form IE xxxx. The corresponding trace levels are IE 1, IE 2
and Exc. IE level 2 tracing includes a complete trace of all data sent to and from the client.

814 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 85. IIOP domain (II)

The IIOP domain represents the non-Java portion of the IIOP EJB support encompassing the following:

v Request Receiver

v Request Handler

v Request Processor

v Request Models

v Command Processor

IIOP domain’s specific gates
Table 57 summarizes the IIOP domain’s specific gates. It shows the level-1 trace point IDs of the modules
providing the functions for the gates, the functions provided by the gates, and whether or not the functions
are available through the exit programming interface (XPI).

Table 57. IIOP domain’s specific gates
Gate Trace Function XPI

IIRR II 0100
II 0101

PROCESS_REQUESTS NO

IIRH II 0200
II 0201

FIND_REQUEST_STREAM
PARSE

NO
NO

IIMM II 0300
II 0301

ADD_REPLACE_RQMODEL
DELETE_RQMODEL
COMMIT_RQMODELS

NO
NO
NO

IIRQ II 0400
II 0401

INQUIRE_RQMODEL
START_BROWSE
GET_NEXT
END_BROWSE
MATCH_RQMODEL

NO
NO
NO
NO
NO

IIRP II 0700
II 0701

GET_INITIAL_DATA
RECEIVE_REQUEST
INVOKE
SEND_REPLY
RECEIVE_REPLY
INITIALISE
TERMINATE

NO
NO
NO
NO
NO
NO
NO

IIRS II 0900
II 0901

HANDLE_SECURITY_CONTEXT
DESTROY_VAULT

NO
NO

IICP II 0800
II 0801

ABSTRACT NO

IILS gate, ADD_LOGICAL_SERVER function
The ADD_LOGICAL_SERVER function of the IILS gate is used to invoke JAVA code to add a logical
server.

Input parameters
logical_server

Name of the logical server to be added.
shelf Name of the shelf to which the logical server is to be added.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SHELF_ACCESS_ERROR

© Copyright IBM Corp. 1997, 2011 815

IILS gate, DELETE_LOGICAL_SERVER function
The DELETE_LOGICAL_SERVER function of the IILS gate is used to invoke JAVA code to delete a logical
server.

Input parameters
logical_server

Name of the logical server to be deleted.
shelf Name of the shelf to which the logical server is to be deleted.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND
SHELF_ACCESS_ERROR

IILS gate, PUBLISH_LOGICAL_SERVER function
The PUBLISH_LOGICAL_SERVER function of the IILS gate is used to invoke JAVA code to publish a
logical server to JNDI.

Input parameters
logical_server

Name of the logical server to be published.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND
JNDI_ERROR

IILS gate, RETRACT_LOGICAL_SERVER function
The RETRACT_LOGICAL_SERVER function of the IILS gate is used to invoke JAVA code to retract a
logical server from the JNDI.

Input parameters
logical_server

Name of the logical server to be retracted.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND
JNDI_ERROR

IIOP domain (II)

816 CICS TS for z/OS: CICS Diagnosis Reference

IIMM gate, ADD_REPLACE_RQMODEL function
The ADD_REPLACE_RQMODEL function of the IIMM gate is used to install or delete and install a request
model.

Input parameters
rqmodel_name Name of the request model to be installed.
corbaserver Name of the corbaserver for this request model.
model_type can be any of the following values: EJB | CORBA | GENERIC
[module_pattern]

If CORBA - name of the module.
[interface_pattern]

If CORBA - name of the interface.
[bean_pattern]

If EJB - name of the bean.
[interface_type]

If EJB - HOME | REMOTE | BOTH
operation_pattern

name of the operation.
tranid Transaction name.
catalog YES | NO. If YES the request model is added to the catalogue.

Output parameters
duplicate_model_name

Name of a model with the same parameters if DUPLICATE_PATTERN set.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_NAME
DUPLICATE_PATTERN

IIMM gate, DELETE_RQMODEL function
The DELETE_RQMODEL function of the IIMM gate is used to delete an installed request model.

Input parameters
rqmodel_name Name of the request model to be deleted.

Output parameters
RESPONSE is the domain's response to the call it can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

IIMM gate, COMMIT_RQMODELS function
The COMMIT_RQMODELS function of the IIMM gate is used to commit the request model to the
catalogue.

input parameters
commit_token Token for catalogue writes.

IIOP domain (II)

Chapter 85. IIOP domain (II) 817

Output parameters
RESPONSE is the domain's response to the call it can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

IIRH gate, FIND_REQUEST_STREAM function
The FIND_REQUEST_STREAM function of the IIRH gate is used to examine the incoming GIOP request
and to find a new or existing request stream using request models and the directory.

It also handles any incoming security contexts.

Input parameters
request_block

Address and length of the GIOP Request - the block must contain the whole of the
request header. It need not contain the body.

[urm_commarea_block]
Storage used as input to the security user-replaceable program.

[urmname] Name of the security user-replaceable program.
[userid] userid to be used by the ORB.
[force_create]

YES | NO - YES indicates that IIRH must CREATE a new request stream. NO indicates
that normal logic is used to see if a request stream exists and to JOIN it if it does or
CREATE a new one if it does not.

[vault_ptr_addr]
The address of the vault pointer, updated in DFHIIRS.

[authentication_type]
An enumerated type set from the AUTHENTICATION attribute of the TCPIPSERVICE
definition. Values are
NONE|BASIC|ASSERTED|CERTIFICATE

Output parameters
request_stream_token

The token, representing the request stream, to be used as input for the SEND_REQUEST.
result JOINED | CREATED - whether the request stream was joined or created.
RESPONSE is the domain's response to the call it can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION URM_DENIED_PERMISSION
URM_USERID_NOTAUTH
INVALID_OBJECT_KEY
REQUEST_ERROR

IIRH gate, PARSE function
The PARSE function of the IIRH gate is used to examine the incoming GIOP request or reply and to return
selected information in the output parameters.

IIOP domain (II)

818 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
request_block

Address and length of the GIOP Request/reply - the block must contain the whole of the
request/reply header. It need not contain the body.

Output parameters
[response_expected]

YES | NO - YES is set if the response_expected bit is on in the request header.
[reply_status]

NO_EXCEPTION | USER_EXCEPTION | SYSTEM_EXCEPTION |
LOCATION_FORWARD This extracts the reply status from a reply header.

[codeset_context]
This is a block containing a pointer to and the length of the named context if it exists
within the request or reply. The pointer and length are set to 0 if the context does not
exist.

[sending_context]
This is a block containing a pointer to and the length of the named context if it exists
within the request or reply. The pointer and length are set to 0 if the context does not
exist.

[tracking_context]
This is a block containing a pointer to and the length of the named context if it exists
within the request or reply. The pointer and length are set to 0 if the context does not
exist.

[connection_context]
This is a block containing a pointer to and the length of the named context if it exists
within the request or reply. The pointer and length are set to 0 if the context does not
exist.

[redirection_context]
This is a block containing a pointer to and the length of the named context if it exists
within the request or reply. The pointer and length are set to 0 if the context does not
exist.

[requestId] is the requestId extracted from the request or reply header.
RESPONSE is the domain's response to the call it can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION REQUEST_ERROR

IIRP gate, GET_INITIAL_DATA function
The GET_INITIAL_DATA function of the IIRP gate is used by the ORB program DFJIIRP (or its CICS-key
equivalent DFJIIRQ) to set up an environment to allow it to issue further IIRP requests and to return the
output parameters below.

Input parameters
none

Output parameters
rp_token token to allow further calls for the same Request Processor
server_name name of the corba server held by the request stream for the incoming request.
public_id The public_id that identifies the request stream for the incoming request.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

IIOP domain (II)

Chapter 85. IIOP domain (II) 819

RESPONSE Possible REASON values

DISASTER ERROR_REENTERED
ABEND

EXCEPTION REQUEST_STREAM_NOT_CURRENT
NO_SERVER_DATA
NO_PUBLIC_ID

IIRP gate, RECEIVE_REQUEST function
The RECEIVE_REQUEST function of the IIRP gate is used by the ORB program DFJIIRP (or its CICS-key
equivalent DFJIIRQ) to receive a request via a request stream from a Request Receiver. This is for
INBOUND requests.

Input parameters
RP_TOKEN Token supplied by GET_INITIAL_DATA or INITIALISE representing state storage.
CONTINUE YES | NO - YES is set if RECEIVE_REQUEST is to listen for a further request.
REQUEST_BUF A buffer, into which the received request is to be placed.
RECEIVE_TYPE FULL | OVERFLOW - FULL is set for the first receive_request. OVERFLOW is set if the

buffer supplied to the first receive_request was too small.

Output parameters
correlation_id

The correlation id returned by the request stream receive_request.
bytes_available

Set if BUFFER_TOO_SMALL is set. It contains the actual size of of the buffer needed
which is obtained from the GIOP header received by receive_request.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ERROR_REENTERED
ABEND

EXCEPTION RECEIVE_REQUEST_FAILED
LISTEN_FAILED
MESSAGE_NOT_RECEIVABLE
BUFFER_TOO_SMALL
TIMEOUT_NOTIFIED
GIOP_REQ_HEADER_INVALID
REQUEST_INVALID

INVALID INVALID_RP_TOKEN

IIRP gate, INVOKE function
The INVOKE function of the IIRP gate is used by the ORB program DFJIIRP (or its CICS-key equivalent
DFJIIRQ) to send an outbound request and to receive its reply.

Input parameters
RP_TOKEN Token supplied by GET_INITIAL_DATA or INITIALISE representing state storage.
RS_TOKEN Token representing the outbound request stream.
CONTINUE YES | NO - YES is set if RECEIVE_REQUEST is to listen for a further request.
REQUEST_BUF A block holding the request to be sent.
REPLY_BUF A buffer, into which the reply is to be placed.

IIOP domain (II)

820 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
bytes_available

Set if BUFFER_TOO_SMALL is set. It contains the actual size of of the buffer needed for
the reply which is obtained from the GIOP reply header received by INVOKE

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ERROR_REENTERED
ABEND

EXCEPTION REQUEST_RECEIVED
LISTEN_FAILED
MESSAGE_NOT_RECEIVABLE
RECEIVE_REPLY_FAILED
SEND_REQUEST_FAILED
BUFFER_TOO_SMALL
TIMEOUT_NOTIFIED
GIOP_REP_HEADER_INVALID
GIOP_FRAGMENT_NOT_EXPECTED
GIOP_CLOSE_CONN_RECEIVED
GIOP_FRAGMENT_EXPECTED
GIOP_INVALID_VERSION
GIOP_INVALID_MESSAGE_TYPE
GIOP_MESSAGE_ERROR_RCVD
REQUEST_INVALID
REDIRECTION_RECEIVED

INVALID INVALID_RP_TOKEN

IIRP gate, RECEIVE_REPLY function
The RECEIVE_REPLY function of the IIRP gate is used by the ORB program DFJIIRP (or its CICS-key
equivalent DFJIIRQ) to receive an outbound reply to an outbound request. It is used, following INVOKE, if
INVOKE indicated that a further request was ready before the reply was available (loopback) or if the reply
buffer supplied by INVOKE was too small.

Input parameters
RP_TOKEN Token supplied by GET_INITIAL_DATA or INITIALISE representing state storage.
RS_TOKEN Token representing the outbound request stream.
RECEIVE_TYPE FULL | OVERFLOW. FULL is set if all of the reply is to be received. OVERFLOW is set if

the previous INVOKE or RECEIVE_REPLY ended in BUFFER_TOO_SMALL.
REPLY_BUF A buffer, into which the reply is to be placed.

Output parameters
bytes_available

Set if BUFFER_TOO_SMALL is set. It contains the actual size of of the buffer needed for
the reply which is obtained from the GIOP reply header received by INVOKE.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ERROR_REENTERED
ABEND

IIOP domain (II)

Chapter 85. IIOP domain (II) 821

RESPONSE Possible REASON values

EXCEPTION REQUEST_RECEIVED
LISTEN_FAILED
MESSAGE_NOT_RECEIVABLE
RECEIVE_REPLY_FAILED
SEND_REQUEST_FAILED
BUFFER_TOO_SMALL
TIMEOUT_NOTIFIED
GIOP_REP_HEADER_INVALID
GIOP_FRAGMENT_NOT_EXPECTED
GIOP_CLOSE_CONN_RECEIVED
GIOP_FRAGMENT_EXPECTED
GIOP_INVALID_VERSION
GIOP_INVALID_MESSAGE_TYPE
GIOP_MESSAGE_ERROR_RCVD
REQUEST_INVALID
REDIRECTION_RECEIVED

INVALID INVALID_RP_TOKEN

IIRP gate, SEND_REPLY function
The SEND_REPLY function of the IIRP gate is used by the ORB program DFJIIRP (or its CICS-key
equivalent DFJIIRQ) to send a reply via a request stream to an inbound request.

Input parameters
RP_TOKEN Token supplied by GET_INITIAL_DATA or INITIALISE representing state storage.
REPLY_BUF A buffer containing the reply to be sent.
CORRELATION_ID

of the request returned by IIRP RECEIVE_REQUEST.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION SEND_REPLY_FAILED

INVALID INVALID_RP_TOKEN

IIRP gate, INITIALISE function
The INITIALISE function of the IIRP gate is used by the ORB program DFJIIRP (or its CICS-key
equivalent DFJIIRQ) to set up an environment to allow it to issue further IIRP requests. This is used during
COMMAND PROCESSING. For example when DFJIIRQ is processing an ADD_CORBASERVER
command.

Input parameters
rp_token token to allow further calls for the same Request Processor.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

IIOP domain (II)

822 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ERROR_REENTERED
ABEND

IIRP gate, TERMINATE function
The TERMINATE function of the IIRP gate is used by the ORB program DFJIIRP (or its CICS-key
equivalent DFJIIRQ) in normal and command processing mode to free any storage obtained by
GET_INITIAL_DATA or INITIALISE. If necessary, it will also leave the request stream.

Input parameters
rp_token token to allow further calls for the same Request Processor. If rp_token is 0 then

TERMINATE checks to see if this task has any state storage to be freed.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ERROR_REENTERED
ABEND

IIRQ gate, INQUIRE_RQMODEL function
The INQUIRE_RQMODEL function of the IIRQ gate is used to inquire on a particular model, returning the
output parameters below.

Input parameters
rqmodel_name Name of the request model for which information is needed.

Output parameters
[corbaserver]

Name of the corbaserver for this request model.
[model_type] EJB | CORBA | GENERIC
[module_pattern]

If CORBA - name of the module.
[interface_pattern]

If CORBA - name of the interface.
[bean_pattern]

If EJB - name of the bean.
[interface_type]

If EJB - HOME | REMOTE | BOTH
[operation_pattern]

name of the operation.
[tranid] Transaction name.
RESPONSE is the domain's response to the call it can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION NOT_FOUND

IIOP domain (II)

Chapter 85. IIOP domain (II) 823

IIRQ gate, START_BROWSE function
The START_BROWSE function of the IIMM gate is used to return a token to allow all the request models
to be browsed.

Input parameters
none

Output parameters
browse_token token to be used by get_next and end_browse.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NONE

IIRQ gate, GET_NEXT function
The GET_NEXT function of the IIMM gate is used to pass back the output parameters for the next request
model.

Input parameters
browse_token token created by start_browse representing the next request model

Output parameters
rqmodel_name Name of the request model to be installed.
[corbaserver]

Name of the corbaserver for this request model.
[model_type] EJB | CORBA | GENERIC
[module_pattern]

If CORBA - name of the module.
[interface_pattern]

If CORBA - name of the interface.
[bean_pattern]

If EJB - name of the bean.
[interface_type]

If EJB - HOME | REMOTE | BOTH
[operation_pattern]

name of the operation.
[tranid] Transaction name.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION BROWSE_END

IIRQ gate, END_BROWSE function
The END_BROWSE function of the IIMM gate is used to end the browse session.

Input parameters
browse_token token created by start_browse.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

IIOP domain (II)

824 CICS TS for z/OS: CICS Diagnosis Reference

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION none

IIRQ gate, MATCH_RQMODEL function
The MATCH_RQMODEL function of the IIRQ gate is used to find the most specific request model that
matches the input parameters.

Input parameters
corbaserver Name of the corbaserver for this request model.
[module_name_block]

If CORBA - name of the module.
[interface_name_block]

If CORBA - name of the interface.
[bean_name_block]

If EJB - name of the bean.
[interface_type]

If EJB - HOME | REMOTE | BOTH
operation_pattern

name of the operation.

Output parameters
[tranid] Transaction name from the matching model. If no match is found the default of CIRP is

returned.
RESPONSE is the domain's response to the call it can have any of these values

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION none

IIRR gate, PROCESS_REQUESTS function
The PROCESS_REQUESTS function of the IIRR gate is used to receive a GIOP request from a socket,
find a request stream, send the request over the request stream, optionally receive a reply and send the
reply to the socket. This process continues until the socket is closed or no further data is available.

Input parameters
none

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ERROR_REENTERED
ABEND

IIOP domain (II)

Chapter 85. IIOP domain (II) 825

RESPONSE Possible REASON values

EXCEPTION RESCHEDULE
NO_PERMISSION
GIOP_FRAGMENT_NOT_EXPECTED
GIOP_CLOSE_CONN_RECEIVED
GIOP_FRAGMENT_EXPECTED
GIOP_INVALID_HEADER
GIOP_INVALID_VERSION
GIOP_INVALID_MESSAGE_TYPE
GIOP_MESSAGE_ERROR_RCVD
GIOP_REPLY_RECEIVED
IIRH_FIND_EXCEPTION
SOCK_RECEIVE_TIMEOUT

IIRS gate, HANDLE_SECURITY_CONTEXT function
The HANDLE_SECURITY_CONTEXT function of the IIRS gate is used by the Request Handler to check
that any relevant security context in an incoming request is the correct one one and to validate the
parameters therein

This function is handed a security context which it verifies (depending on the msgType) and extracts the
userid and password etc..If an error is found it sets msgType and ErrorCode into the security context and
returns information to allow DFHIIRR to build a system exception.

Input parameters
SECURITY_CONTEXT

A buffer containing the address and length of the security context to be checked.

If an exception response is returned the security context will have been updated to be an
error security context.

AUTHENTICATION_TYPE
An enumerated type containing the TCPIPSERVICE AUTHENTICATION value - in other
words, what sort of security context is expected. This may be
BASIC|ASSERTED

VAULT_PTR_ADDR
The address of the start of the vault chain. The vault contains sessionID to userid
mappings and is added to, looked up in if the security context is BASIC.

CORBASERVER ASSERTED IDENTITY needs the corbaserver name as input to a security check.

Output parameters
USERID The main aim of this module is to return a USERID for the ORB (DFJIIRP) task to run

under. Only returned with an OK response.
STRING If an exception response is returned, STRING contains an enumerated type to be used in

the STRING section of the system exception written to the client by DFHIIRR: for example,
if the STRING returned is NO_PERMISSION, then the string NO_PERMISSION is added
to the system_exception reply. Values are
NO_PERMISSION|INTERNAL|MARSHAL

RESPONSE is the domain's response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] AUTHENTICATION_TYPEis returned when RESPONSE is DISASTER or EXCEPTION.
Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION SECURITY_CHECK_FAILED

IIOP domain (II)

826 CICS TS for z/OS: CICS Diagnosis Reference

IIRS gate, DESTROY_VAULT function
The DESTROY_VAULT function of the IIRS gate is used by the Request Receiver to delete any security
vault entries that have built up for this connection.

Input parameters
VAULT_PTR_ADDR

The address of the start of the vault entry chain to be destroyed when the socket is closed
- either normally or in an error situation.

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

. :dt.:dd.is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values are: :table
refid='rsntab'. :thd. :c.RESPONSE :c.Possible REASON values :ethd. :row. :c. DISASTER :c. ABEND :row.
:c. EXCEPTION :c. :etable. :edl.

IIOP domain’s generic gates
Table 75 on page 936 summarizes the II domain’s generic gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gates, the functions provided by the gates, and the generic formats
for calls to the gates.

Table 58. II domain’s generic gates
Gate Trace Function Format

IIDM II 0000
II 0001

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

IIST II 0600
II 0601

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

IIXM AP 09E0
AO 09E1

INIT_XM_CLIENT BIND_XM_CLIENT TRANSACTION_HANG ABEND_TERMINATE
RELEASE_XM_CLIENT

XMAC

For descriptions of these functions and their input and output parameters, refer to the Sections dealing
with the corresponding generic formats:

Functions and parameters

Format DMDM—Chapter 78, “Domain manager domain (DM),” on page 663

Format STST—“System programming command flows” on page 264

Format XMAC—“Object Transaction Service domain’s specific gates” on page 939

INIT_XM_CLIENT 'saves' a pointer obtained by the IIRR socket notify gate for connection data and makes
it available to the task.

The Domain Manager gates perform normal internal state initialisation and termination functions.

IIOP domain (II)

Chapter 85. IIOP domain (II) 827

Modules

Module Function

DFHIICP II domain command processor DFHIICP provides a common mechanism for the following OT and EJ
requests to call JAVA ORB code.

RESYNC_COORDINATOR
RESYNC_SUBORDINATE
PUBLISH_CORBASERVER
RETRACT_CORBASERVER
PRE_INSTALL_DJAR
INSTALL_DJAR
DISCARD_DJAR
PUBLISH_DJAR
RETRACT_DJAR

DFHIIDM Handles the following requests:
PRE_INITIALIZE
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHIIDUF II domain offline dump formatting routine

DFHIIMM Handles the following requests:
ADD_REPLACE_RQMODEL
DELETE_RQMODEL
COMMIT_RQMODELS

DFHIILS Handles the following requests via DFHIICP:
ADD_LOGIGICAL_SERVER
DELETE_LOGIGICAL_SERVER
PUBLISH_LOGIGICAL_SERVER
RETRACT_LOGIGICAL_SERVER

DFHIIRH Handles the following requests:
FIND_REQUEST_STREAM
PARSE

DFHIIRP Handles the following requests:
GET_INITIAL_DATA
RECEIVE_REQUEST
INVOKE
SEND_REPLY
RECEIVE_REPLY
INITIALISE
TERMINATE

DFHIIRQ Handles the following requests:
INQUIRE_RQMODEL
START_BROWSE
GET_NEXT
END_BROWSE
MATCH_RQMODEL

DFHIIRR Handles the following requests:
PROCESS_REQUESTS

DFHIIST Handles the following requests:
COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

DFHIITRI Interprets II domain trace entries

DFHIIXM Handles the following requests:
INIT_XM_CLIENT
BIND_XM_CLIENT
TRANSACTION_HANG
ABEND_TERMINATE
RELEASE_XM_CLIENT

IIOP domain (II)

828 CICS TS for z/OS: CICS Diagnosis Reference

Exits
There is one user-replaceable program, DFHXOPUS, which is called by DFHIIRR during Request
Receiver processing.

Trace
The point IDs for the IIOP domain are of the form IIxxxx; the corresponding trace levels are II 1, II 2 and
Exc. Trace points II1000-1FFF are II JRAS trace points.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

IIOP domain (II)

Chapter 85. IIOP domain (II) 829

830 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 86. Kernel domain (KE)

The kernel domain provides a consistent linkage and recovery environment for CICS.

The application programmer has no external interface to kernel linkage. However, services invoked by the
application program result in execution of kernel linkage requests.

The CICS customization interface uses kernel linkage; this interface is described in the CICS
Customization Guide.

The kernel domain, with its associated trace entries and dumped storage, becomes the first point of
reference for problems that cause system recovery to be invoked. The kernel domain returns errors to the
caller as response codes, if they seem to be of a form such that the caller can be expected to take
alternative action.

For serious system-wide errors, the kernel domain terminates CICS with a system dump.

When the kernel domain terminates CICS following a program check or abend, messages and abend
codes are produced to indicate the event that caused the kernel domain recovery routines to consider that
the error was not recoverable.

Kernel domain’s specific gates
Table 59 summarizes the kernel domain’s specific gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gates, the functions provided by the gates, and whether or not the
functions are available through the exit programming interface (XPI).

Table 59. Kernel domain’s specific gates
Gate Trace Function XPI

KEAR KE 0701
KE 0702

DEREGISTER
READY
REGISTER
WAITPRED

NO

KEDD KE 0201
KE 0202

ADD_DOMAIN
INQUIRE_DOMAIN_BY_TOKEN
INQUIRE_DOMAIN_BY_NAME
SET_ANCHOR
INQUIRE_ANCHOR
ADD_GATE
DELETE_GATE
INQUIRE_GLOBAL_TRACE
SET_GLOBAL_TRACE
INQUIRE_DOMAIN_TRACE
SET_DOMAIN_TRACE
INQUIRE_TASK_TRACE
SET_TASK_TRACE
PERFORM_SYSTEM_ACTION
SET_TRAP_OFF
SET_TRAP_ON
SET_DEFAULT_RECOVERY

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

4. Only the following KEDS functions are traced:

SEND_DEFERRED_ABEND, START_PURGE_PROTECTION, STOP_PURGE_PROTECTION, and PROCESS_KETA_ERROR.

5. The CREATE_TASK function is processed by the DFHKETA module; all other KEDS functions are processed by the DFHKEDS
module.

© Copyright IBM Corp. 1997, 2011 831

Table 59. Kernel domain’s specific gates (continued)
Gate Trace Function XPI

KEDS KE 0502
KE 05034

ABNORMALLY_TERMINATE_TASK
CREATE_TASK5

CREATE_TCB
DETACH_TERMINATED_OWN_TCBS
END_TASK
FREE_TCBS
PUSH_TASK
POP_TASK
READ_TIME
RESET_RUNAWAY_TIMER
RESET_TIME
START_RUNAWAY_TIMER
STOP_RUNAWAY_TIMER
RESTORE_STIMER
SEND_DEFERRED_ABEND
START_PURGE_PROTECTION
STOP_PURGE_PROTECTION
START_FORCEPURGE_PROTECTION
STOP_FORCEPURGE_PROTECTION
PROCESS_KETA_ERROR

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
YES
NO
NO
NO

KEGD KE 0401
KE 0402

INQUIRE_KERNEL
SET_KERNEL

NO
NO

KEIN KE 0301
KE 0302

INITIALISE_KERNEL
SET_STATIC_TASKS
ADD_DYNAMIC_TASK
ADD_TEMPORARY_STATIC_TASK
DELETE_TASKS

NO
NO
NO
NO
NO

KETI KE 0101
KE 0102

ADJUST_STCK_TO_LOCAL
CONVERT_TO_DECIMAL_TIME
CONVERT_TO_STCK_FORMAT
INQUIRE_DATE_FORMAT
INQ_LOCAL_DATETIME_DECIMAL
NOTIFY_RESET
REQUEST_NOTIFY_OF_A_RESET
RESET_LOCAL_TIME
SET_DATE_FORMAT

NO
NO
NO
NO
NO
NO
NO
NO
NO

KEXM KE 0601
KE 0602

TRANSACTION_INITIALISATION NO

KEAR gate, DEREGISTER function
The DEREGISTER function of the KEAR gate is used when performing a normal shutdown (and optionally
at an immediate shutdown) to deregister CICS from the MVS automatic restart manager.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|KERNERROR|PURGED

KEAR gate, READY function
The READY function of the KEAR gate is used at the end of CICS initialization to indicate to the MVS
automatic restart manager. that this CICS region is ready for work.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|KERNERROR|PURGED

Kernel domain (KE)

832 CICS TS for z/OS: CICS Diagnosis Reference

#

KEAR gate, REGISTER function
The REGISTER function of the KEAR gate is used very early in CICS initialization to register CICS with
the MVS automatic restart manager.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER

KEAR gate, WAITPRED function
The WAITPRED function of the KEAR gate is used to wait on predecessors in the restart policy for this
CICS region, to ensure that prerequisite subsystems are available to CICS.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|KERNERROR|PURGED

KEDD gate, ADD_DOMAIN function
The ADD_DOMAIN function of the KEDD gate is used to add a new domain to the domain table.

Input parameters
DOMAIN_NAME is the 8-character domain name for the new domain to be added.
DOMAIN_TOKEN is the 31-bit constant that uniquely identifies the domain, for example, DFHSM_DOMAIN

for storage manager domain.
ENTRY_POINT is the 31-bit address of the entry point for that domain, for example, A(X'80000000' +

DFHSMDM) for storage manager domain.
[DOMAIN_AFFINITY]

is the TCB that the domain has affinity with for TERMINATE_DOMAIN. It can have any
one of these values:
STEP|RO|QR|CO|SZ

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION DUPLICATE_DOMAIN_TOKEN
DUPLICATE_DOMAIN_NAME

INVALID INVALID_DOMAIN_TOKEN
INVALID_ENTRY_POINT

KEDD gate, INQUIRE_DOMAIN_BY_TOKEN function
The INQUIRE_DOMAIN_BY_TOKEN function of the KEDD gate is used to return the domain name for a
specified domain token.

Input parameters
DOMAIN_TOKEN is the 31-bit constant that uniquely identifies the domain.

Kernel domain (KE)

Chapter 86. Kernel domain (KE) 833

Output parameters
DOMAIN_NAME is the 8-character domain name for the new domain to be added.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION DOMAIN_TOKEN_NOT_FOUND

INVALID INVALID_DOMAIN_TOKEN

KEDD gate, INQUIRE_DOMAIN_BY_NAME function
The INQUIRE_DOMAIN_BY_NAME function of the KEDD gate is used to return the domain token for a
given domain name.

Input parameters
DOMAIN_NAME is the 8-character domain name for the new domain to be added.

Output parameters
DOMAIN_TOKEN is the 31-bit constant that uniquely identifies the domain.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER
[REASON] is returned when RESPONSE is EXCEPTION. It has this value:

DOMAIN_NAME_NOT_FOUND

KEDD gate, SET_ANCHOR function
The SET_ANCHOR function of the KEDD gate is used to establish the calling domain’s global storage
pointer.

Input parameters
ANCHOR is the 31-bit address of the domain’s global storage.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER
[REASON] is returned when RESPONSE is INVALID. It has this value:

INVALID_DOMAIN_TOKEN

KEDD gate, INQUIRE_ANCHOR function
The INQUIRE_ANCHOR function of the KEDD gate is used to return the specified domain’s global storage
pointer to the caller. If the domain token is omitted, the calling domain is assumed.

Input parameters
[DOMAIN_TOKEN]

is the 31-bit constant that uniquely identifies the domain.

Output parameters
ANCHOR is the 31-bit address of the domain’s global storage.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION DOMAIN_TOKEN_NOT_FOUND

Kernel domain (KE)

834 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

INVALID INVALID_DOMAIN_TOKEN

KEDD gate, ADD_GATE function
The ADD_GATE function of the KEDD gate is used to update the domain table to add a new gate to the
calling domain’s gate table.

Input parameters
GATE_INDEX is the 31-bit constant that uniquely identifies the gate in the domain’s gate table.
ENTRY_POINT is the 31-bit address of the entry point for the gate.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION DUPLICATE_GATE_INDEX

INVALID INVALID_ENTRY_POINT
INVALID_GATE_INDEX
INVALID_DOMAIN_TOKEN

KEDD gate, DELETE_GATE function
The DELETE_GATE function of the KEDD gate is used to delete an existing gate from the calling
domain’s gate table.

Input parameters
GATE_INDEX is the 31-bit constant that uniquely identifies the gate in the domain’s gate table.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER
[REASON] When RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_GATE_INDEX
INVALID_DOMAIN_TOKEN

KEDD gate, INQUIRE_GLOBAL_TRACE function
The INQUIRE_GLOBAL_TRACE function of the KEDD gate is used to return the value of the global trace
flags to the caller.

Input parameters
None.

Output parameters
[MASTER_TRACE_FLAG]

determines whether tracing, for any of the trace destinations, is active. It can have either
of these values:
ON|OFF

Kernel domain (KE)

Chapter 86. Kernel domain (KE) 835

[SYSTEM_TRACE_FLAG]
determines whether tracing is allowed for tasks for which standard tracing is in effect. It
can have either of these values:
ON|OFF

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|INVALID|DISASTER

KEDD gate, SET_GLOBAL_TRACE function
The SET_GLOBAL_TRACE function of the KEDD gate is used to store the value of the global trace flags
within the kernel.

Input parameters
[MASTER_TRACE_FLAG]

determines whether tracing, for any of the trace destinations, is active. It can have either
of these values:
ON|OFF

[SYSTEM_TRACE_FLAG]
determines whether tracing is allowed for tasks for which standard tracing is in effect. It
can have either of these values:
ON|OFF

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER

KEDD gate, INQUIRE_DOMAIN_TRACE function
The INQUIRE_DOMAIN_TRACE function of the KEDD gate is used to return the value of the specified
domain’s trace flags to the caller. If the domain token is omitted, the calling domain is assumed.

Input parameters
[DOMAIN_TOKEN]

is the 31-bit constant that uniquely identifies the domain.

Output parameters
[STANDARD_TRACE_FLAGS]

is the set of 32 bits which determines selectivity of tracing within the domain for standard
tasks.

[SPECIAL_TRACE_FLAGS]
is the set of 32 bits which determines selectivity of tracing within the domain for special
tasks.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|INVALID|DISASTER

[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION DOMAIN_TOKEN_NOT_FOUND

INVALID INVALID_DOMAIN_TOKEN

KEDD gate, SET_DOMAIN_TRACE function
The SET_DOMAIN_TRACE function of the KEDD gate is used to store the value of the specified domain’s
trace flags in the kernel. If the domain token is omitted, the calling domain is assumed.

Kernel domain (KE)

836 CICS TS for z/OS: CICS Diagnosis Reference

The current task’s stack entries are updated to reflect the change. The trace count is incremented so that
all other tasks have their stack entries refreshed when they are next dispatched.

Input parameters
[DOMAIN_TOKEN]

is the 31-bit constant that uniquely identifies the domain.
[STANDARD_TRACE_FLAGS]

is the set of 32 bits which determines selectivity of tracing within the domain for standard
tasks.

[SPECIAL_TRACE_FLAGS]
is the set of 32 bits which determines selectivity of tracing within the domain for special
tasks.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION DOMAIN_TOKEN_NOT_FOUND

INVALID INVALID_DOMAIN_TOKEN

KEDD gate, INQUIRE_TASK_TRACE function
The INQUIRE_TASK_TRACE function of the KEDD gate is used to return the value of the calling task’s
trace flag to the caller.

Input parameters
None.

Output parameters
[TRACE_TYPE] determines whether standard, special, or no tracing is required for this task. It can have

any one of these values:
STANDARD|SPECIAL|SUPPRESSED

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|INVALID|DISASTER

KEDD gate, SET_TASK_TRACE function
The SET_TASK_TRACE function of the KEDD gate is used to store the value of the task trace flag in the
current task’s task table6 entry.

The current task’s stack entries are updated to reflect the change.

Input parameters
TRACE_TYPE determines whether standard, special, or no tracing is required for this task. It can have

any one of these values:
STANDARD|SPECIAL|SUPPRESSED

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER

6. Task table: A task table is a logical block of tasks, allocated together by the Kernel domain, and used to simplify the process of
dynamically adding new tasks. Task tables are chained together, and vary in number.

Kernel domain (KE)

Chapter 86. Kernel domain (KE) 837

KEDD gate, PERFORM_SYSTEM_ACTION function
The PERFORM_SYSTEM_ACTION function of the KEDD gate is used in exceptional circumstances either
to terminate CICS (with or without a dump) or to take an MVS SDUMP.

Normally, these services are invoked from domains during preinitialization before the dump domain is
available.

Input parameters
[TERMINATE_SYSTEM (YES, NO)]

specifies whether CICS is to be terminated or not. It can have either of these values:
YES|NO

[DUMP_SYSTEM (YES, NO)]
specifies whether an MVS SDUMP is to be taken or not. It can have either of these
values:
YES|NO

[NORMAL_TERMINATION(YES, NO)]
specifies whether CICS is being terminated normally. Normal termination includes
controlled and immediate shutdowns. It can have either of these values:
YES|NO

The default value is NO.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER

KEDD gate, SET_TRAP_OFF function
The SET_TRAP_OFF function of the KEDD gate is used to reset the kernel global trap point.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER

KEDD gate, SET_TRAP_ON function
The SET_TRAP_ON function of the KEDD gate is used to set a kernel global trap point.

Input parameters
ENTRY_POINT is the 31-bit address of the kernel global trap.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER
[REASON] is returned when RESPONSE is INVALID. It has this value:

INVALID_ENTRY_POINT

KEDD gate, SET_DEFAULT_RECOVERY function
The SET_DEFAULT_RECOVERY function of the KEDD gate is used to establish the calling domain’s
default recovery routine. Used by the Application domain to identify DFHSRP as its default recovery
routine.

Kernel domain (KE)

838 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
ENTRY_POINT is the 31-bit address of the entry point for the recovery routine.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER
[REASON] is returned when RESPONSE is INVALID. It has this value:

INVALID_DOMAIN_TOKEN

KEDS gate, ABNORMALLY_TERMINATE_TASK function
The ABNORMALLY_TERMINATE_TASK function of the KEDS gate identifies the task which is to be
abnormally terminated.

Input parameters
TASK_TOKEN identifies the task which is to be abnormally terminated.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION TERMINATE_FAILED

KEDS gate, CREATE_TASK function
The CREATE_TASK function of the KEDS gate is used to allocate a new executable task from the task
table7.

When the task is first dispatched, the Kernel domain issues a KEDS_TASK_REPLY request, which passes
control to the Dispatcher domain’s task reply gate. (See “KEDS format, TASK_REPLY function” on page
849.)

The attach token input on the CREATE_TASK request is passed back to the dispatcher domain on the
TASK_REPLY, to identify the CREATE_TASK and TASK_REPLY pair.

Note: The CREATE_TASK function is processed by the DFHKETA module.

Input parameters
ALLOCATION indicates whether or not the returned task should be allocated from those tasks

pre-allocated for MXT. It can either of these values:
STATIC | DYNAMIC

ATTACH_TOKEN is the 31-bit token that uniquely identifies the request. This token is returned on the
corresponding TASK_REPLY to identify the request.

Output parameters
TASK_TOKEN is the 31-bit token that uniquely identifies the newly created task.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

7. Task table: A task table is a logical block of tasks, allocated together by the Kernel domain, and used to simplify the process of
dynamically adding new tasks. Task tables are chained together, and vary in number.

Kernel domain (KE)

Chapter 86. Kernel domain (KE) 839

RESPONSE Possible REASON values

DISASTER INQUIRE_ERROR

EXCEPTION ADD_TASK_ERROR

KEDS gate, CREATE_TCB function
The CREATE_TCB function of the KEDS gate creates the default task for a new MVS TCB, and MVS
posts the TCB to start execution. The default task is the task, associated with the TCB, that executes the
dispatcher loop which chooses the next CICS task (system or non-system) to be dispatched, or if no CICS
task is to be dispatched, issues an MVS WAIT.

The kernel invokes the dispatcher domain at its KEDS gate with a TCB_REPLY request, under the new
TCB’s default task.

The attach token is used to identify the CREATE_TCB and TCB_REPLY pair.

Input parameters
ATTACH_TOKEN is the 31-bit token that uniquely identifies the request. This token is returned on the

corresponding TCB_REPLY to identify the request.
DEPENDENT_ON specifies that the TCB is dependent on the named parent TCB mode. This parameter is

used to ensure that in the case of an immediate shutdown, worker JVMs (which are built
on J8 or J9 mode TCBs) are terminated before master JVMs (which are built on JM mode
TCBs).

ESSENTIAL_TCB
indicates whether CICS is to be terminated if a TCB in this mode has its ESTAE exit
driven for a non recoverable error.

EXEC_CAPABLE indicates whether support should be provided under the new TCB for CICS API
commands.

INHERIT_SUBSPACE
indicates whether TCBs in this mode are to inherit the subspace of the attaching TCB.

LE_ENVIRONMENT
indicates whether CICS should tell Language Environment that it is running in a CICS
environment under this TCB. If LE_CICS is specified, Language Environment will issue
CICS API commands.

[MODE] specifies the mode of the new TCB. It can have any one of these values:
RO|QR|CO|SZ|RP|FO

PARENT_MODENAME
identifies the mode of the TCB that is to ATTACH the new TCB.

PRTY_RELATIVE_TO_QR
gives the priority of this TCB relative to QR.

[SZERO] gives the value (YES or NO) of the SZERO parameter for the ATTACH request. If
TCB_KEY(USERKEY) is specified, SZERO(NO) is assumed.

TCB_KEY specifies the key to be specified on the ATTACH of TCBs in this mode. The value ends up
in TCBPKF. It can have either of these values:
CICSKEY|USERKEY

Output parameters
TASK_TOKEN is the 31-bit token that uniquely identifies the new TCB’s task.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER INQUIRE_ERROR

Kernel domain (KE)

840 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION ADD_TASK_ERROR
ADD_TCB_ERROR
ATTACH_KTCB_ERROR

KEDS gate, DETACH_TERMINATED_OWN_TCBS function
The DETACH_TERMINATED_OWN_TCBS function of the KEDS gate detaches any terminated TCBs
which were attached by the TCB on which this function is invoked.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have this value:

OK

KEDS gate, END_TASK function
The END_TASK function of the KEDS gate is used to free any resources that have been acquired by the
kernel domain during the lifetime of the current task and need freeing before the end of the task.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|INVALID|DISASTER

KEDS gate, FREE_TCBS function
The FREE_TCBS function of the KEDS gate conditionally frees control blocks, in collaboration with the
Dispatcher for re-use, associated with any detached TCBs.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have this value:

OK

KEDS gate, PUSH_TASK function
Given a TCB executing its default task, the PUSH_TASK function of the KEDS gate is used to make it
execute a CICS task instead.

Input parameters
TASK_TOKEN is the 31-bit token that identifies the CICS task to be executed.

Output parameters
[INTERVAL] is a doubleword containing the CPU time used by the task while it was pushed.
RESPONSE is the domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|INVALID|DISASTER

KEDS gate, POP_TASK function
Given a TCB executing the current CICS task, the POP_TASK function of the KEDS gate is used to make
it execute its default task instead.

Kernel domain (KE)

Chapter 86. Kernel domain (KE) 841

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER

KEDS gate, READ_TIME function
The READ_TIME function of the KEDS gate is used to obtain the total CPU time that the current task has
taken so far and the accumulated CPU time for the current TCB.

Input parameters
None.

Output parameters
[INTERVAL] A doubleword containing the total CPU time used so far.
[ACCUM_TIME] A doubleword containing the accumulated CPU time used so far by the current TCB.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER

KEDS gate, RESET_RUNAWAY_TIMER function
The RESET_RUNAWAY_TIMER function of the KEDS gate is used to reset runaway timing for the current
task. This resets the count of outstanding STOP_RUNAWAY_TIMER requests.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER

KEDS gate, RESET_TIME function
The RESET_TIME function of the KEDS gate is used to reset the total CPU time that the current task has
taken so far.

Input parameters
None.

Output parameters
[INTERVAL] A doubleword containing the total CPU time used so far.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER

KEDS gate, STOP_RUNAWAY_TIMER function
The STOP_RUNAWAY_TIMER function of the KEDS gate is used to inhibit runaway detection for the
current task. The remaining runaway interval is preserved until a START_RUNAWAY_TIMER request is
issued. The stop runaway count is incremented by one; this allows STOP_RUNAWAY_TIMER requests to
be nested.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER

Kernel domain (KE)

842 CICS TS for z/OS: CICS Diagnosis Reference

#

#
#

#
#

#
##

#

#

KEDS gate, START_RUNAWAY_TIMER function
The START_RUNAWAY_TIMER function of the KEDS gate is used to resume runaway timing for the
current task. This reduces the stop runaway count by one. The timer is resumed only when all outstanding
STOP_RUNAWAY_TIMER requests have been canceled.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER

KEDS gate, RESTORE_STIMER function
The RESTORE_STIMER function of the KEDS gate is used to restore the kernel’s STIMER exit after MVS
requests that use the MVS STIMER macro internally.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER

KEDS gate, SEND_DEFERRED_ABEND function
The SEND_DEFERRED_ABEND function of the KEDS gate is used by the transaction manager to
implement the deferred purge function. If a purge request is made against a task that is not in a suitable
state to be purged, this function defers the abend of that task until the task is no longer protected against
purge.

This function is used by the transaction manager to implement the deferred purge function.

Input parameters
[DS_TASK_TOKEN]

is the 31-bit dispatcher token that identifies the CICS task to be abended. If not supplied,
DS_TASK_TOKEN defaults to the current task.

ABEND_CODE is the four-character abend code for the abend.
[FORCE] indicates whether or not the deferred abend is to be forced. It can have either of these

values:
YES|NO

The default is NO.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER

KEDS gate, START_PURGE_PROTECTION function
The START_PURGE_PROTECTION function of the KEDS gate is used to inhibit purge, but not
force-purge, for the current task.

In general, each START_PURGE_PROTECTION call should have a corresponding
STOP_PURGE_PROTECTION function call to end the purge protection period on completion of any
program logic that needs such protection.

Kernel domain (KE)

Chapter 86. Kernel domain (KE) 843

This function increments by one the purge protection count for the task. You can issue several
START_PURGE_PROTECTION commands for the same task, to increase the count for the task. (To
enable the task to purged, the count must be decremented to zero by issuing
STOP_PURGE_PROTECTION commands.)

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER

KEDS gate, STOP_PURGE_PROTECTION function
The STOP_PURGE_PROTECTION function of the KEDS gate is used to enable again purge for the
current task after purge has been suspended by a previous START_PURGE_PROTECTION function call.

This function decrements by one the purge protection count for the task. To enable the task to purged, the
count must be decremented to zero by issuing the appropriate number of STOP_PURGE_PROTECTION
commands.

You must design your exit programs to ensure that purge protection is correctly cancelled. For more
information about using these functions to stop and start purge protection, see the CICS Customization
Guide.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER

KEDS gate, START_FORCEPURGE_PROTECTION function
The START_FORCEPURGE_PROTECTION function of the KEDS gate is used by CICS to inhibit
forcepurge for a task. The STOP_FORCEPURGE_PROTECTION function is used to end the forcepurge
protection period.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER

KEDS gate, STOP_FORCEPURGE_PROTECTION function
The STOP_FORCEPURGE_PROTECTION function of the KEDS gate is used by CICS to enable again
forcepurge for a task after forcepurge has been suspended by a previous
START_FORCEPURGE_PROTECTION function call.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER

Kernel domain (KE)

844 CICS TS for z/OS: CICS Diagnosis Reference

KEDS gate, PROCESS_KETA_ERROR function
The PROCESS_KETA_ERROR function of the KEDS gate is used to handle any errors for the DFHKETA
module. (The DFHKETA module handles the performance sensitive KEDS functions, and calls the
DFHKEDS module when its recovery routine is invoked.)

Input parameters
ERROR_DATA address of the error data that describes the error that has occurred in the DFHKETA

module.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER

KEGD gate, INQUIRE_KERNEL function
The INQUIRE_KERNEL function of the KEGD gate is used to obtain the global data maintained by the
kernel.

Input parameters
None.

Output parameters
[CICS_SVC_NUMBER]

is the 8-bit CICS service SVC number.
[SPECIFIC_APPLID]

is the 8-character specific applid that identifies the CICS system in the VTAM network.
[GENERIC_APPLID]

is the 8-character generic applid that identifies the active and alternate CICS systems to
VTAM in an XRF environment.

[XRF_COMMAND_LIST]
is the 8-character name of the command list table used by the XRF alternate CICS region.

[ALTERNATE_XRF_IDS]
is the 8-character name of the recoverable service table used if the CICS region is running
with XRF and DBCTL.

[SYSID] is the 4-character ZCP system entry name.
[SIT_NAME] is the 8-character SIT name.
[OS_PARMS] is the 8-byte block containing the 31-bit address and 31-bit length of the MVS parameters.
[OP_SYS] is the 1-character operating system identifier, for example, ‘B’ = MVS.
[OP_REL] is the 2-byte operating system release and modification level.
[HPO] specifies whether CICS is to use the VTAM high performance option. It can have either of

these values:
YES|NO

[SYSTEM_RUNAWAY_LIMIT]
the ICVR time to be used by all tasks that have been defined to have the default runaway
limit in the system.

[CPU_MONITORING]
specifies whether the kernel is to perform CPU monitoring. It can have either of these
values:
YES|NO

[USS_AVAILABLE]
specifies whether the kernel successfully issued a Unix System Services (USS)
SET_DUB_DEFAULT DUBPROCESS command during CICS initialization. It can have
either of these values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Kernel domain (KE)

Chapter 86. Kernel domain (KE) 845

KEGD gate, SET_KERNEL function
The SET_KERNEL function of the KEGD gate is used to change the global data maintained by the kernel.

Input parameters
[CICS_SVC_NUMBER]

is the 8-bit CICS service SVC number.
[SPECIFIC_APPLID]

is the 8-character specific applid that identifies the CICS system in the VTAM network.
[GENERIC_APPLID]

is the 8-character generic applid that identifies the active and alternate CICS systems to
VTAM in an XRF environment.

[XRF_COMMAND_LIST]
is the 8-character name of the command list table used by the XRF alternate CICS region.

[ALTERNATE_XRF_IDS]
is the 8-character name of the recoverable service table used if the CICS region is running
with XRF and DBCTL.

[SYSID] is the 4-character ZCP system entry name.
[SIT_NAME] is the 8-character name of the system initialization table.
[HPO] specifies whether CICS is to use the VTAM high performance option. It can have either of

these values:
YES|NO

[SYSTEM_RUNAWAY_LIMIT]
the ICVR time to be used by all tasks that have been defined to have the default runaway
limit in the system.

[CPU_MONITORING]
specifies whether the kernel is to perform CPU monitoring. It can have either of these
values:
YES|NO

[TERMINATE_FO]
specifies whether the FO TCB can be normally terminated on an immediate shutdown.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

KETI gate, RESET_LOCAL_TIME function
The RESET_LOCAL_TIME function of the KETI gate is used by the AP domain to inform KETI that a local
time reset has occurred.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any one of these values:

OK|INVALID|KERNERROR|PURGED|DISASTER

KETI gate, REQUEST_NOTIFY_OF_A_RESET function
The REQUEST_NOTIFY_OF_A_RESET function of the KETI gate requests a shoulder tap from KETI
whenever the local time is reset.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any one of these values:

Kernel domain (KE)

846 CICS TS for z/OS: CICS Diagnosis Reference

OK|INVALID|KERNERROR|PURGED|DISASTER

KETI gate, SET_DATE_FORMAT function
The SET_DATE_FORMAT function of the KETI gate is used to set the date format for the timer domain.

Input parameters
DATE_FORMAT is the format to be set as the default for the timer domain. It can have any one of these

values:
YYMMDD|DDMMYY|MMDDYY

Output parameters
RESPONSE is the domain’s response to the call. It can have any one of these values:

OK|INVALID|KERNERROR|PURGED|DISASTER

KETI gate, INQUIRE_DATE_FORMAT function
The INQUIRE_DATE_FORMAT function of the KETI gate is used to return the current date format.

Input parameters
None.

Output parameters
DATE_FORMAT is the current default date format for the timer domain. It can have any one of these

values:
YYMMDD|DDMMYY|MMDDYY

RESPONSE is the domain’s response to the call. It can have any one of these values:
OK|INVALID|KERNERROR|PURGED|DISASTER

KETI gate, INQ_LOCAL_DATETIME_DECIMAL function
The INQ_LOCAL_DATETIME_DECIMAL function of the KETI gate is used to return the local date, and the
local time in decimal format.

Input parameters
None.

Output parameters
DECIMAL_DATE is an 8-character date in the format determined by FULL_DATE_FORMAT.
DECIMAL_TIME is the current local decimal time in the format HHMMSS.
DECIMAL_MICROSECONDS

is the 6-character microseconds portion of DECIMAL_TIME.
FULL_DATE_FORMAT

is the current full date format determined by the default date format of the timer domain. It
can have any one of these values:
YYYYMMDD|DDMMYYYY|MMDDYYYY

RESPONSE is the domain’s response to the call. It can have any one of these values:
OK|INVALID|KERNERROR|PURGED|DISASTER

KETI gate, CONVERT_TO_DECIMAL_TIME function
The CONVERT_TO_DECIMAL_TIME function of the KETI gate is used to convert dates and times in the
internal store clock (STCK) format to decimal format.

Input parameters
STCK_TIME is a doubleword containing a date and time in STCK format.

Output parameters
DECIMAL_DATE is an 8-character date in the format determined by FULL_DATE_FORMAT

Kernel domain (KE)

Chapter 86. Kernel domain (KE) 847

DECIMAL_TIME is the current local decimal time in the format HHMMSS
DECIMAL_MICROSECONDS

is the 6-character microseconds portion of DECIMAL_TIME
FULL_DATE_FORMAT

is the current full date format determined by the default date format of the timer domain. It
can have any one of these values:
YYYYMMDD|DDMMYYYY|MMDDYYYY

RESPONSE is the domain’s response to the call. It can have any one of these values:
OK|INVALID|KERNERROR|PURGED|DISASTER

KETI gate, CONVERT_TO_STCK_FORMAT function
The CONVERT_TO_STCK_FORMAT function of the KETI gate is used to convert times and dates to
STCK format.

Input parameters
DECIMAL_TIME is the current local decimal time in the format HHMMSS.
[DECIMAL_DATE]

is an optional 8-character date in the format determined either by FULL_DATE_FORMAT
or by the default for the timer domain if FULL_DATE_FORMAT is omitted.

[INSTANCE] is required only if DECIMAL_DATE is omitted. It can have either of these values:
LAST|NEXT

[FULL_DATE_FORMAT]
is the current full date format. It can have any one of these values:
YYYYMMDD|DDMMYYYY|MMDDYYYY

Output parameters
STCK_TIME is a doubleword containing the GMT STCK value corresponding to the input local time.
RESPONSE is the domain’s response to the call. It can have any one of these values:

OK|INVALID|KERNERROR|PURGED|DISASTER

KEXM gate, TRANSACTION_INITIALISATION function
The TRANSACTION_INITIALISATION function of the KEXM gate is used to perform kernel initialisation
during XM task-reply.

Input parameters
TRANSACTION_TOKEN

is a token identifying the transaction for which kernel initialization is to be performed.

Output parameters
RESPONSE is the domain’s response to the call. It can have any one of these values:

OK|INVALID|KERNERROR|PURGED|DISASTER

Kernel domain’s generic formats
Table 60 describes the generic formats owned by the kernel domain, and shows the functions performed
on the calls.

Table 60. Generic formats owned by the kernel domain

Format Calling module Function

KEDS DFHKETA
DFHKETCB

TASK_REPLY
TCB_REPLY

KETI DFHKETI NOTIFY_RESET

Kernel domain (KE)

848 CICS TS for z/OS: CICS Diagnosis Reference

In the descriptions of the formats that follow, the “input” parameters are input not to the kernel domain, but
to the domain being called by the kernel domain. Similarly, the “output” parameters are output by the
domain that was called by the kernel domain, in response to the call.

KEDS format, TASK_REPLY function
The TASK_REPLY function of the KEDS format is issued by the kernel to the issuer of CREATE_TASK,
under the new task.

Input parameters
ATTACH_TOKEN is the 31-bit token that uniquely identifies the corresponding CREATE_TASK request.
TASK_TOKEN is the 31-bit token that uniquely identifies the new task.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|KERNERROR|PURGED|DISASTER

KEDS format, TCB_REPLY function
The TCB_REPLY function of the KEDS format is issued by the kernel to the issuer of CREATE_TCB,
under the new TCB’s default task.

Input parameters
ATTACH_TOKEN is the 31-bit token that uniquely identifies the corresponding CREATE_TCB request.
TASK_TOKEN is the 31-bit token that uniquely identifies the new TCB’s task.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER

KETI format, NOTIFY_RESET function
The NOTIFY_RESET function of the KETI format is used by KETI itself to inform domains that a RESET
has occurred.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any one of these values:

OK|KERNERROR|PURGED|DISASTER

Control blocks
Figure 110 on page 850 shows the MVS TCB structure used by CICS. Other TCBs are attached under the
quasi-reentrant TCB by IBM DATABASE 2 (DB2) or IMS code, if those products are being used.

Kernel domain (KE)

Chapter 86. Kernel domain (KE) 849

JOB-STEP TCB

Runs early initialization
and late termination

FILE OWNING TCB

Used to OPEN and CLOSE
user files managed by

File Control

RESOURCE-OWNING TCB

Runs CICS code containing
imbedded MVS WAIT,
e.g. program load

QUASI-REENTRANT TCB

Runs CICS code that is
non-reentrant, and all
application code

Concurrent TCB Secondary LU TCB ONC/RPC OWNING TCB

Runs some CICS code Used for FEPI work Used to make calls
that is reentrant. Used - only if FEPI is to the TCP/IP address
only if SUBTASKS¬ = 0 being used space - only if the

ONC/RPC Feature is
being used

SL TCB * J8 TCBs

The sockets Required to run a JVM
listener TCB to interpret programs

defined to CICS with
JAVA language

S8 TCBs **

Required for
secure sockets
layer

CAVM TCB Transient TCBs Attached only
if XRF=YES

Surveillance and Communicate with
message transmission JES and with MVS

GPS #1 GPS #2 GPS #3 GPS #4
General-purpose

General use General use Spooler input Spooler output subtask TCBs
operations operations

SO TCB

Sockets I/O
TCB

Work under
these TCBs is
controlled by
the CICS
dispatcher

** If SIT Option
KEYFILE is
specified the
S8 TCBs are
activated during
sockets domain
initialization

H8 TCBs

Required for
hot-pooling

Figure 110. MVS TCB structure used by CICS

Kernel domain (KE)

850 CICS TS for z/OS: CICS Diagnosis Reference

Modules

Module Function

DFHKEAR Implements KEAR service requests.

DFHKEDCL Implements domain call requests.

DFHKEDD Services KEDD-format requests.

DFHKEDRT Implements domain return requests.

DFHKEDS Services KEDS-format requests.

DFHKEDUF Offline dump formatting routine to format the kernel domain control blocks.

DFHKEEDA Handles deferred abends

DFHKEGD Services KEGD-format requests.

DFHKEIN Implements kernel domain initialization.

DFHKELCL Implements LIFO Push.

DFHKELOC Offline dump formatting routine to locate the kernel domain anchor blocks.

DFHKELRT Implements LIFO Pop.

DFHKERCD Constructs the kernel domain error data for error handling routines.

DFHKERER Updates the kernel domain error table for error handling routines.

DFHKERET Implements RESET_ADDRESS requests.

DFHKERKE Handles KERNERROR responses for domain call requests which cannot handle them.

DFHKERPC Implements recovery percolation both from RECOVERY_PERCOLATE requests and also
other recovery events that, because of the existing environment, must be percolated.

DFHKERRI Responsible for actually passing control to a recovery routine.

DFHKERRQ Implements RECOVERY_REQUEST requests.

DFHKERRU Implements runaway task error handling.

DFHKERRX Implements RECOVERY_EXIT requests.

DFHKESCL Implements subroutine call requests.

DFHKESFM Handles freeing of stack segments.

DFHKESGM Handles allocation of new stack segments.

DFHKESIP Receives control from and returns control to MVS.

DFHKESRT Implements subroutine return requests.

DFHKESTX Is the CICS ESTAE exit and passes control to the appropriate level of recovery routine.

DFHKESVC Provides authorised services for kernel domain functions.

DFHKETA Implements KEDS CREATE_TASK requests.

DFHKETCB Receives control from MVS for a kernel domain TCB.

DFHKETI Provides service time functions at the KETI gate.

DFHKETIX Performs task CPU monitoring functions and task runaway detection.

DFHKETRI Offline trace formatting routine for kernel domain trace entries.

DFHKETXR Allows an attaching TCB to detmine that a TCB (but not a specific TCB) which it attached,
has terminated. This allows for the possibility of initiating a more timely detach of TCBs which
have terminated normally, and to detect TCBs which have prematurely terminated.

DFHKEXM Implements KEXM_FORMAT requests.

Kernel domain (KE)

Chapter 86. Kernel domain (KE) 851

Exits
No global user exit points are provided in this domain.

Trace
The point IDs for the kernel domain are of the form KE xxxx; the corresponding trace levels are KE 1 and
Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Kernel domain (KE)

852 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 87. Loader domain (LD)

The loader domain is used by the domains of the CICS system to obtain access to storage-resident copies
of nucleus and application programs, maps, and tables. In order to provide this, the loader domain
interfaces with MVS to perform the loading of programs into the CICS dynamic storage areas (DSAs), and
the scanning of the MVS link pack area (LPA).

The most common functions provided by the loader domain are:
ACQUIRE_PROGRAM

used to obtain the load point and entry point addresses and length of a usable program
copy, and to reserve the copy for use by the caller.

RELEASE_PROGRAM
used to inform the loader domain that a specific program copy is no longer required.

DEFINE_PROGRAM
used to inform the loader domain of the CICS attributes of a program.

REFRESH_PROGRAM
used to request the loader domain to rescan the LPA or DFHRPL library for a new copy of
a program.

The loader domain is utilized by many domains in the system, but its most common user is the program
manager domain, for access to application programs. The program manager domain issues the following
requests:
ACQUIRE_PROGRAM

whenever a program issues a LINK, XCTL, or LOAD command to link to, transfer control
to, or load another program.

DEFINE_PROGRAM
as part of a request to define or autoinstall a program, mapset, or partitionset.

RELEASE_PROGRAM
whenever a called program issues a RETURN command to return control to the calling
program, or a program issues a RELEASE command to release a loaded program.

REFRESH_PROGRAM
as part of an EXEC CICS SET PROGRAM NEWCOPY or PHASEIN request.

Loader domain’s specific gate
Table 61 summarizes the loader domain’s specific gate. It shows the level-1 trace point IDs of the modules
providing the functions for the gate, the functions provided by the gate, and whether or not the functions
are available through the exit programming interface (XPI).

Table 61. Loader domain’s specific gate
Gate Trace Function XPI

LDLD LD 0001
LD 0002

ACQUIRE_PROGRAM
RELEASE_PROGRAM
REFRESH_PROGRAM
DEFINE_PROGRAM
INQUIRE_PROGRAM
DELETE_PROGRAM
START_BROWSE
GET_NEXT_PROGRAM
GET_NEXT_INSTANCE
END_BROWSE
IDENTIFY_PROGRAM
SET_OPTIONS
INQUIRE_OPTIONS
CATALOG_PROGRAMS

YES
YES
NO
YES
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO

© Copyright IBM Corp. 1997, 2011 853

LDLD gate, ACQUIRE_PROGRAM function
The ACQUIRE_PROGRAM function of the LDLD gate is used to obtain the entry point and load point
addresses and the length of a usable copy of the named program. The program must previously have
been identified to the system in a DEFINE request, either during this session or in a previous session, if
the catalog is in use.

Input parameters
PROGRAM_NAME specifies the name of the required program.
PROGRAM_TOKEN

is a valid program-identifying token as returned by a previous DEFINE or ACQUIRE
request for the same program name.

[SUSPEND] indicates whether the caller expects to receive control with an exception response if the
loader encounters a shortage of virtual storage, or other transient error conditions. It can
have either of these values:
YES|NO

If there is insufficient storage to satisfy the request, SUSPEND(YES) causes the caller to
be suspended until the request can be satisfied, and SUSPEND(NO) causes an exception
response (reason NO_STORAGE) to be returned to the caller.

Output parameters
ENTRY_POINT is the address of the entry point of the program instance.
[LOAD_POINT] is the address of the load point of the program instance.
[PROGRAM_LENGTH]

is the length of the program instance in bytes.
[NEW_PROGRAM_TOKEN]

is the identifying token that may be used on subsequent ACQUIRE or RELEASE calls for
this program name.

[PROGRAM_ATTRIBUTE]
reflects the program attribute from the program definition, and is used by the program
manager domain to recognize RELOAD programs.

[LOCATION] determines where the program instance for which the LOAD_POINT and ENTRY_POINT
have been returned resides.

[COPY_STATUS]
indicates whether this request resulted in a physical load of the program into storage, and
is used by the program manager domain to recognize that a COBOL program requires
initialization.

[FETCH_TIME] is the time taken to load the program from the DFHRPL library. This is represented as the
middle 4 bytes of a doubleword stored clock (STCK) value. If the acquired program
resides in the MVS link pack area (LPA) or has already been loaded into one of the CICS
dynamic storage areas (DSAs), the returned value is zero.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER LIBRARY_IO_ERROR
OS_STORAGE_SHORTAGE
ABEND
LOOP

EXCEPTION PROGRAM_NOT_DEFINED
PROGRAM_NOT_FOUND
NO_STORAGE

INVALID INVALID_PROGRAM_TOKEN

Loader domain (LD)

854 CICS TS for z/OS: CICS Diagnosis Reference

LDLD gate, RELEASE_PROGRAM function
The RELEASE_PROGRAM function of the LDLD gate is used to inform the loader domain that use of a
copy of the named program is no longer required. The use count of the specified program instance is
decremented; if the use count reaches zero, and the program is eligible to be removed from memory, it is
removed from memory.

Input parameters
PROGRAM_NAME specifies the name of the program to be released.
PROGRAM_TOKEN

is the identifying token returned by the ACQUIRE request for this program.
ENTRY_POINT specifies the address of the entry point of the module.

Output parameters
[LOAD_POINT] is the address of the load point of the program instance.
[PROGRAM_LENGTH]

is the length of the program instance in bytes.
[LOCATION] determines where the program instance for which the LOAD_POINT and ENTRY_POINT

have been returned resides.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION PROGRAM_NOT_DEFINED
PROGRAM_NOT_IN_USE

INVALID INVALID_PROGRAM_TOKEN
INVALID_ENTRY_POINT

LDLD gate, REFRESH_PROGRAM function
The REFRESH_PROGRAM function of the LDLD gate is used to inform the loader domain that a new
version of the program has been cataloged, and that this version of the named program should be used
for all future ACQUIRE requests.

Input parameters
PROGRAM_NAME specifies the name of the program that is to have a new version used.

Output parameters
[NEW_VERSION_FOUND]

indicates whether a new version of the program has been found.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER LIBRARY_IO_ERROR
OS_STORAGE_SHORTAGE
ABEND
LOOP

Loader domain (LD)

Chapter 87. Loader domain (LD) 855

RESPONSE Possible REASON values

EXCEPTION PROGRAM_NOT_DEFINED
PROGRAM_NOT_FOUND

LDLD gate, DEFINE_PROGRAM function
The DEFINE_PROGRAM function of the LDLD gate is used to introduce a new program to the CICS
system or to update the details of an existing program.

Input parameters
PROGRAM_NAME specifies the name of the program whose attributes are to be set.
CATALOG_MODULE

indicates whether the program definition should be written to one of the catalogs. It can
have either of these values:
YES|NO

UPDATE indicates whether the loader domain should update the program definition if the loader
domain already has a program definition for the program. If UPDATE(NO) is specified, and
the loader domain already has a program definition for the specified program,
PROGRAM_ALREADY_DEFINED is returned. It can have either of these values:
YES|NO

[EXECUTION_KEY]
is the execution key for the program. This is used to determine which DSA the program
instance resides in. It can have either of these values:
USER|CICS

[PROGRAM_TYPE]
is the type of program copy to be used. It can have any of these values:
PRIVATE|SHARED|TYPE_ANY

[PROGRAM_USAGE]
defines whether the program is part of the CICS nucleus, or is an application program
defined by the user. This determines whether the program definition is written to the local
catalog or to the global catalog. It can have either of these values:
NUCLEUS|APPLICATION

[PROGRAM_ATTRIBUTE]
is a residency attribute to be associated with the program. It can have any of these values:
RESIDENT|REUSABLE|TRANSIENT|RELOAD

[REQUIRED_AMODE]
is the addressing mode required by CICS for the program. A program that does not have
the required residency mode is not loaded. It can have any of these values:
24|31|AMODE_ANY

[REQUIRED_RMODE]
is the residency mode required by CICS for the program. A program that does not have
the required mode requirements is not loaded. It can have any of these values:
24|RMODE_ANY

Output parameters
[NEW_PROGRAM_TOKEN]

is an identifying token that can be used on subsequent ACQUIRE or RELEASE calls for
this program name.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

Loader domain (LD)

856 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION CATALOG_NOT_OPERATIONAL
CATALOG_ERROR
INVALID_PROGRAM_NAME
PROGRAM_ALREADY_DEFINED

INVALID INVALID_MODE_COMBINATION
INVALID_TYPE_ATTRIB_COMBIN

LDLD gate, INQUIRE_PROGRAM function
The INQUIRE_PROGRAM function of the LDLD gate is used to return the details of a specific program.

Input parameters
PROGRAM_NAME specifies the name of the program whose attributes are being requested.
PROGRAM_TOKEN

is a valid program token as returned by a previous DEFINE or ACQUIRE request, or
obtained from the PPT entry, for the program.

Output parameters
[NEW_PROGRAM_TOKEN]

is an identifying token that can be used on subsequent ACQUIRE or RELEASE calls for
this program name.

[PROGRAM_TYPE]
is the current program copy type.

[PROGRAM_USAGE]
is the current usage definition.

[EXECUTION_KEY]
is the execution key for the program.

[PROGRAM_ATTRIBUTE]
is the current residency attribute of the program.

[SPECIFIED_AMODE]
is the addressing mode required by CICS for the program. A program that does not have
the required residency mode is not loaded. If REQUIRED_AMODE was omitted when the
program was defined, AMODE_NOT_SPECIFIED is returned.

[SPECIFIED_RMODE]
is the residency mode required by CICS for the program. A program that does not have
the required residency mode is not loaded. If REQUIRED_RMODE was omitted when the
program was defined, RMODE_NOT_SPECIFIED is returned.

[PROGRAM_LENGTH]
is the length of the program in bytes. If the program has not been used, this is zero.

[PROGRAM_USE_COUNT]
is the cumulative use count of the program.

[PROGRAM_USER_COUNT]
is the current number of users of the program.

[LOAD_POINT] is the address of the load point of the last program instance created for this program
name.

[ENTRY_POINT]
is the address of the entry point of the last program instance created for this program
name.

[LOCATION] indicates where the program for which the LOAD_POINT and ENTRY_POINT have been
returned resides.

[ACCESS] is the type of storage that the program resides in.
RESPONSE is the domain’s response to the call. It can have any of these values:

Loader domain (LD)

Chapter 87. Loader domain (LD) 857

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION PROGRAM_NOT_DEFINED

INVALID INVALID_PROGRAM_TOKEN

LDLD gate, DELETE_PROGRAM function
The DELETE_PROGRAM function of the LDLD gate is used to remove a program from the CICS system.
All subsequent ACQUIRE requests for the named program fail with a reason of
PROGRAM_NOT_DEFINED. Any instance of the program in use at the time the DELETE is received
continue to exist until a RELEASE request reduces the use count to zero, at which time the instance is
removed from memory.

Input parameters
PROGRAM_NAME specifies the name of the program to be removed.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION PROGRAM_NOT_DEFINED

LDLD gate, START_BROWSE function
The START_BROWSE function of the LDLD gate is used to start a browse session.

Input parameters
[PROGRAM_NAME]

specifies the name of the program whose attributes are to be returned.
[ENTRY_POINT]

is the address of the entry point of the last program instance created for this program
name.

Output parameters
BROWSE_TOKEN is a token used to refer to this browse session on subsequent browse requests.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

Loader domain (LD)

858 CICS TS for z/OS: CICS Diagnosis Reference

LDLD gate, GET_NEXT_PROGRAM function
The GET_NEXT_PROGRAM function of the LDLD gate is used to perform an INQUIRE function for the
next program in the alphabetic sequence of programs in the current browse session.

Input parameters
BROWSE_TOKEN is a valid browse token as returned by the preceding START_BROWSE request.

Output parameters
[PROGRAM_NAME]

is the name of the program whose attributes have been returned.
[PROGRAM_TYPE]

is the current program copy type.
[PROGRAM_USAGE]

is the current usage definition.
[EXECUTION_KEY]

is the execution key for the program.
[PROGRAM_ATTRIBUTE]

is the current residency attribute of the program.
[SPECIFIED_AMODE]

is the current addressing mode required by CICS for the program. If REQUIRED_AMODE
was omitted when the program was defined, AMODE_NOT_SPECIFIED is returned.

[SPECIFIED_RMODE]
is the current residency mode required by CICS for the program. If REQUIRED_RMODE
was omitted when the program was defined, RMODE_NOT_SPECIFIED is returned.

[PROGRAM_LENGTH]
is the length of the program in bytes. If the program has not been used, this is zero.

[PROGRAM_USE_COUNT]
is the cumulative use count of the program.

[PROGRAM_USER_COUNT]
is the current number of users of the program.

[LOAD_POINT] is the address of the load point of the last program instance created for this program
name.

[ENTRY_POINT]
is the address of the entry point of the last program instance created for this program
name.

[LOCATION] indicates where the program for which the LOAD_POINT and ENTRY_POINT have been
returned resides.

[ACCESS] is the type of storage that the program resides in.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION END_LIST

INVALID INVALID_BROWSE_TOKEN

LDLD gate, GET_NEXT_INSTANCE function
The GET_NEXT_INSTANCE function of the LDLD gate is used to browse the current program instances in
ascending load point address sequence.

Loader domain (LD)

Chapter 87. Loader domain (LD) 859

Input parameters
BROWSE_TOKEN is a valid browse token as returned by the preceding START_BROWSE request.

Output parameters
[PROGRAM_NAME]

is the name of the program of which this is an instance.
[PROGRAM_TYPE]

is the current program copy type.
[PROGRAM_USAGE]

is the current usage definition.
[EXECUTION_KEY]

is the execution key for the program.
[PROGRAM_ATTRIBUTE]

is the current residency attribute of the program.
[SPECIFIED_AMODE]

is the current addressing mode required by CICS for the program. If REQUIRED_AMODE
was omitted when the program was defined, AMODE_NOT_SPECIFIED is returned.

[SPECIFIED_RMODE]
is the current residency mode required by CICS for the program. If REQUIRED_RMODE
was omitted when the program was defined, RMODE_NOT_SPECIFIED is returned.

[PROGRAM_LENGTH]
is the length of the program in bytes. If the program has not been used, this is zero.

[ENTRY_POINT]
is the address of the entry point of the last program instance created for this program
name.

[LOAD_POINT] is the address of the load point of the last program instance created for this program
name.

[LOCATION] indicates where the program instance for which the LOAD_POINT and ENTRY_POINT
have been returned resides.

[ACCESS] is the type of storage that the program resides in.
[INSTANCE_USE_COUNT]

is the current number of users of this instance.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION END_LIST

INVALID INVALID_BROWSE_TOKEN

LDLD gate, END_BROWSE function
The END_BROWSE function of the LDLD gate is used to end a browse session.

Input parameters
BROWSE_TOKEN is the token identifying this browse session.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

Loader domain (LD)

860 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_BROWSE_TOKEN

LDLD gate, IDENTIFY_PROGRAM function
The IDENTIFY_PROGRAM function of the LDLD gate is used to locate the program instance which
contains the specified address.

Input parameters
ADDRESS is a storage address.

Output parameters
[PROGRAM_NAME]

is the name of the program of which this is an instance.
[PROGRAM_TYPE]

is the current program copy type.
[PROGRAM_USAGE]

is the current usage definition.
[EXECUTION_KEY]

is the execution key for the program.
[PROGRAM_ATTRIBUTE]

is the current residency attribute of the program.
[SPECIFIED_AMODE]

is the addressing mode required by CICS for the program. A program that does not have
the required residency mode is not loaded. If REQUIRED_AMODE was omitted when the
program was defined, AMODE_NOT_SPECIFIED is returned.

[SPECIFIED_RMODE]
is the residency mode required by CICS for the program. A program that does not have
the required residency mode is not loaded. If REQUIRED_RMODE was omitted when the
program was defined, RMODE_NOT_SPECIFIED is returned.

[PROGRAM_LENGTH]
is the length of the program in bytes. If the program has not been used, this is zero.

[ENTRY_POINT]
is the address of the entry point of the last program instance created for this program
name.

[LOAD_POINT] is the address of the load point of the last program instance created for this program
name.

[LOCATION] indicates where the program instance for which the LOAD_POINT and ENTRY_POINT
have been returned resides.

[ACCESS] is the type of storage that the program resides in.
[INSTANCE_USE_COUNT]

is the current number of users of this instance.
[CSECT_NAME] is the name of the CSECT within the module which contains the address. If no CSECT is

available, the module name is returned.
[OFFSET_INTO_CSECT]

is the offset of the address within the CSECT. If no CSECT is available, the module name
is returned.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

Loader domain (LD)

Chapter 87. Loader domain (LD) 861

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION INSTANCE_NOT_FOUND

LDLD gate, SET_OPTIONS function
The SET_OPTIONS function of the LDLD gate is used to set loader global options.

Input parameters
[LLACOPY] indicates whether the loader is to use the MVS macro LLACOPY or BLDL to locate

programs. It can have any of these values:
YES|NO|NEWCOPY

[SHARED_PROGRAMS]
indicates whether the loader is to use LPA-resident programs to satisfy ACQUIRE
requests. It can have either of these values:
YES|NO

[STORAGE_FACTOR]
indicates the percentage of system free storage that may be occupied by program
instances that have a zero use count.

[PRVMOD] is a list of the names of modules that are not to be used from the MVS link pack area
(LPA), but instead are to be loaded as private copies from the DFHRPL library.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION CATALOG_NOT_OPERATIONAL
CATALOG_ERROR

INVALID INVALID_STORAGE_FACTOR

LDLD gate, INQUIRE_OPTIONS function
The INQUIRE_OPTIONS function of the LDLD gate is used to return loader global options.

Input parameters
None.

Output parameters
[SHARED_PROGRAMS]

indicates whether the loader is utilizing LPA-resident programs to satisfy ACQUIRE
requests.

[STORAGE_FACTOR]
indicates the percentage of system free storage that may be occupied by program
instances that have a zero use count.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER. Possible values are:

Loader domain (LD)

862 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

LDLD gate, CATALOG_PROGRAMS function
The CATALOG_PROGRAMS function of the LDLD gate is used at the end of CICS initialization to request
the loader domain to catalog all the program definitions that need cataloging. The call is issued by the
DFHSIJ1 module.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION CATALOG_NOT_OPERATIONAL
CATALOG_ERROR

Loader domain’s generic gates
Table 62 summarizes the loader domain’s generic gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gates, the functions provided by the gates, and the generic formats
for calls to the gates.

Table 62. Loader domain’s generic gates
Gate Trace Function Format

DMDM LD 6001
LD 6002

PRE_INITIALIZE
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

STST LD 5001
LD 5002

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

SMNT LD 4001
LD 4002

STORAGE_NOTIFY SMNT

For descriptions of these functions and their input and output parameters, refer to the sections dealing with
the corresponding generic formats:

Functions and parameters

Format DMDM—“Domain manager domain’s generic formats” on page 669

Format STST—“Statistics domain’s generic format” on page 1198

Format SMNT—“Storage manager domain’s generic formats” on page 1159

In preinitialization processing, the LDLD gate is added, enabling programs to be loaded.

Loader domain (LD)

Chapter 87. Loader domain (LD) 863

In initialization processing, on a cold start, the loader domain purges the loader program definitions (for
user application programs and non-nucleus CICS modules) from the CICS global catalog. The loader
domain then reads program definitions from the local catalog, and makes them available to CICS.

On a warm or emergency start, the loader domain reads program definitions from the global and local
CICS catalogs, and makes them available to CICS.

For any type of start, the loader domain loads the subset of CICS nucleus programs that are defined as
resident.

In quiesce and termination processing, the loader domain performs only internal routines.

Modules

Module Function

DFHLDDM Handles the following requests:
PRE_INITIALIZE
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHLDDMI Reinstates any program resources defined during previous runs of CICS. It is called by
DFHLDDM.

DFHLDDUF Formats the loader domain control blocks in a CICS system.

DFHLDLD Directs the following requests to DFHLDLD1, DFHLDLD2, or DFHLDLD3, as appropriate:
ACQUIRE_PROGRAM
RELEASE_PROGRAM
REFRESH_PROGRAM
DEFINE_PROGRAM
DELETE_PROGRAM
INQUIRE_PROGRAM
START_BROWSE
GET_NEXT_PROGRAM
GET_NEXT_INSTANCE
END_BROWSE
IDENTIFY_PROGRAM
SET_OPTIONS
INQUIRE_OPTIONS
CATALOG_OPTIONS

DFHLDLD1 Handles the following requests:
ACQUIRE_PROGRAM
RELEASE_PROGRAM
REFRESH_PROGRAM

DFHLDLD2 Handles the following requests:
DEFINE_PROGRAM
DELETE_PROGRAM

DFHLDLD3 Handles the following requests:
INQUIRE_PROGRAM
START_BROWSE
GET_NEXT_PROGRAM
GET_NEXT_INSTANCE
END_BROWSE
IDENTIFY_PROGRAM
SET_OPTIONS
INQUIRE_OPTIONS
CATALOG_OPTIONS

Loader domain (LD)

864 CICS TS for z/OS: CICS Diagnosis Reference

Module Function

DFHLDNT Handles the following request:
STORAGE_NOTIFY

DFHLDST Handles the following requests:
COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

DFHLDSVC Provides authorized services for loader domain functions that involve MVS load facilities.

DFHLDTRI Provides a trace interpretation routine for CICS dumps and traces.

Exits
No global user exit points are provided in this domain.

Trace
The point IDs for the loader domain are of the form LD xxxx; the corresponding trace levels are LD 1,
LD 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Loader domain (LD)

Chapter 87. Loader domain (LD) 865

866 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 88. Log manager domain (LG)

The log manager domain (also sometimes known simply as “log manager” or “logger”) provides facilities
for Recovery Manager to:

v Write records to the CICS system log

v Read records from the CICS system log

v Maintain the system log deleting obsolete records and shunting old, but still needed, records to a
secondary system log.

It also provides facilities to:

v Write user journal, forward recovery and auto journals records to MVS system logger logstreams or the
MVS SMF log.

v Install, discard and inquire for Journalmodel resource definitions

v Auto-install, discard, inquire and set for Journal definitions

v Connect, disconnect and define for MVS system logger logstreams

v Collect statistics for Journal and Logstream usage.

Log manager domain’s specific gates
Table 63 summarizes the log manager domain’s specific gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gate, the functions provided by the gate, and whether or not the
functions are available through the exit programming interface (XPI).

Table 63. Log manager domain’s specific gate
Gate Trace Function XPI

LGGL LG 0201
LG 0202

OPEN
WRITE
FORCE
CLOSE
WRITE_JNL
FORCE_JNL
UOW_TIME
INITIALIZE

NO
NO
NO
NO
NO
NO
NO
NO

LGJN LG 0301
LG 0302
LG 0314
LG 0325

INQUIRE
START_BROWSE
GET_NEXT
END_BROWSE
SET
DISCARD
EXPLICIT_OPEN
IMPLICIT_OPEN
INITIALIZE
STREAM_FAIL
PROCESS_STATISTICS

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

LGLD LG 0401
LG 0402
LG 0411
LG 0412
LG 0415

INQUIRE
START_BROWSE
GET_NEXT
END_BROWSE
MATCH
INSTALL
DISCARD
INITIALIZE

NO
NO
NO
NO
NO
NO
NO
NO

LGST LG 0501
LG 0502
LG 0514
LG 0517
LG 0526

INQUIRE
START_BROWSE
GET_NEXT
END_BROWSE
CONNECT
DISCONNECT
INITIALIZE

NO
NO
NO
NO
NO
NO
NO

LGPA LG 0601
LG 0602

INQUIRE_PARAMETERS
SET_PARAMETERS

YES
YES

© Copyright IBM Corp. 1997, 2011 867

Table 63. Log manager domain’s specific gate (continued)
Gate Trace Function XPI

LGLB LG 2001
LG 2002

CONNECT
DISCONNECT
GL_WRITE
GL_FORCE
DISCONNECT_ALL

NO
NO
NO
NO
NO

LGCC LG 2101
LG 2102

SYSINI
CREATE_CHAIN_TOKEN
RELEASE_CHAIN_TOKEN
RESTORE_CHAIN_TOKEN
START_BROWSE_CHAINS
BROWSE_CHAINS_GET_NEXT
END_BROWSE_CHAINS
DELETE_ALL
SET_HISTORY
DELETE_HISTORY
SET_KEYPOINT_FREQUENCY
INQUIRE_KEYPOINT_FREQUENCY

SET_DEFER_INTERVAL
INQUIRE_DEFER_INTERVAL
INQUIRE_KEYPOINT_STATS
RESET_KEYPOINT_STATS

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

NO
NO
NO
NO

LGWF LG 2201
LG 2202

WRITE
FORCE_DATA

NO
NO

LGCB LG 2301
LG 2302

START_CHAIN_BROWSE
CHAIN_BROWSE_GET_NEXT
END_CHAIN_BROWSE

NO
NO
NO

LGBA LG 2401
LG 2402

START_BROWSE_ALL
BROWSE_ALL_GET_NEXT
END_BROWSE_ALL

NO
NO
NO

LGMV LG 2501
LG 2502

MOVE_CHAIN NO

LGSR LG 2601
LG 2602

WRITE
FORCE_DATA

NO
NO

LGBA gate, BROWSE_ALL_GET_NEXT function
Returns the next record in the browse all object.

Input parameters
None

Output parameters
USER_TOKEN is a user token that was passed in by RESTORE_CHAIN_TOKEN.
USER_DATA is the address of the CICS record just read from the CICS system log.
USER_DATA_LENGTH

is the length of the CICS record just read from the chain.
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION END_OF_DATA

LGBA gate, END_BROWSE_ALL function
Destroys the browse all object.

Input parameters
None

Log manager domain (LG)

868 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] No reason codes are defined for this call.

LGBA gate, START_BROWSE_ALL function
Creates a browse all object for the CICS system log.

Input parameters
None

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] No reason codes are defined for this call.

LGCB gate, CHAIN_BROWSE_GET_NEXT function
Creates a browse object for the chain denoted by CHAIN_TOKEN.

Input parameters
CHAIN_TOKEN is a chain token.

Output parameters
USER_DATA is the address of the CICS record just read from the chain.
USER_DATA_LENGTH

is the length of the CICS record just read from the chain.
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION END_OF_DATA

LGCB gate, END_CHAIN_BROWSE function
Destroys the chain browse object denoted by CHAIN_TOKEN.

Input parameters
CHAIN_TOKEN is a chain token.

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] No reason codes are defined for this call.

LGCB gate, START_CHAIN_BROWSE function
Creates a browse object for the chain denoted by CHAIN_TOKEN.

Input parameters
CHAIN_TOKEN is a chain token.

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] No reason codes are defined for this call.

Log manager domain (LG)

Chapter 88. Log manager domain (LG) 869

LGCC gate, SYSINI function
Creates a primary and secondary log stream objects of type MVS that comprises the CICS system log.

Input parameters
None

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] No reason codes are defined for this call.

LGCC gate, CREATE_CHAIN_TOKEN function
Creates a CHAIN TOKEN.

Input parameters
None

Output parameters
CHAIN_TOKEN is a new chain token token, which can be used as input to RELEASE_CHAIN_TOKEN,

RESTORE_CHAIN_TOKEN, START_CHAIN_BROWSE, CHAIN_BROWSE_GET_NEXT,
END_CHAIN_BROWSE, MOVE_CHAIN

RESPONSE is the log manager domain’s response to the call. It can have any one of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] No reason codes are defined for this call.

LGCC gate, RELEASE_CHAIN_TOKEN function
Destroys the chain token in CHAIN_TOKEN

Input parameters
CHAIN_TOKEN is a chain token that must have been created by CREATE_CHAIN_TOKEN or

RESTORE_CHAIN_TOKEN

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] No reason codes are defined for this call.

LGCC gate, RESTORE_CHAIN_TOKEN function
Creates a chain token and adds the last record (viewed as a chain element) read from the system log
during a BROWSE_ALL_GET_NEXT

Input parameters
USER_TOKEN is a user token that is returned by BROWSE_CHAINS_GET_NEXT and

BROWSE_ALL_GET_NEXT.

Output parameters
CHAIN_TOKEN is a new chain token token, which can be used as input to RELEASE_CHAIN_TOKEN,

RESTORE_CHAIN_TOKEN, START_CHAIN_BROWSE, CHAIN_BROWSE_GET_NEXT,
END_CHAIN_BROWSE, MOVE_CHAIN.

RESPONSE is the log manager domain’s response to the call. It can have any one of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] No reason codes are defined for this call.

LGCC gate, START_BROWSE_CHAINS function
Creates a chains browse object and initializes the browse cursor position.

Log manager domain (LG)

870 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
None

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] No reason codes are defined for this call.

LGCC gate, BROWSE_CHAINS_GET_NEXT function
Returns the next chain token and moves the browse cursor position to the next chain.

Input parameters
None

Output parameters
CHAIN_TOKEN is the chain token of the next chain in the chains browse list.
USER_TOKEN is a user token that was passed in by RESTORE_CHAIN_TOKEN.
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION END_OF_CHAINS

LGCC gate, END_BROWSE_CHAINS function
Destroys the browse chains object.

Input parameters
None

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] No reason codes are defined for this call.

LGCC gate, DELETE_ALL function
Deletes all of the data on both log streams of the CICS system log.

Input parameters
None

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] No reason codes are defined for this call.

LGCC gate, SET_HISTORY function
Evaluates and saves the current history point for both log streams of the CICS system log. The history
point of a log stream is the oldest block id that CICS knows of on the log stream.

Input parameters
None

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

Log manager domain (LG)

Chapter 88. Log manager domain (LG) 871

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] No reason codes are defined for this call.

LGCC gate, DELETE_HISTORY function
Deletes all blocks of data, for both log streams of the CICS system log, that are older than the
corresponding history point saved during a call of SET_HISTORY.

Input parameters
None

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] No reason codes are defined for this call.

LGCC gate, SET_KEYPOINT_FREQUENCY function
Sets the activity frequency to KEYPOINT_FREQUENCY.

Input parameters
None

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION OUT_OF_RANGE

LGCC gate, INQUIRE_KEYPOINT_FREQUENCY function
Returns the activity keypoint frequency value in KEYPOINT_FREQUENCY.

Input parameters
None

Output parameters
KEYPOINT_FREQUENCY

is the current keypoint frequency value.
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] No reason codes are defined for this call.

LGCC gate, SET_DEFER_INTERVAL function
Sets the log defer interval.

Input parameters
DEFER_INTERVAL

is the number of milliseconds for which a forced log write will be deferred. The maximum
value that may be specified is 65535 milliseconds.

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Log manager domain (LG)

872 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION OUT_OF_RANGE

LGCC gate, INQUIRE_DEFER_INTERVAL function
Returns the number of millisecoonds for which a forced log write will be deferred.

Input parameters
None

Output parameters
DEFER_INTERVAL

is the number of millisecoonds for which a forced log write will be deferred.
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] No reason codes are defined for this call.

LGCC gate, INQUIRE_KEYPOINT_STATS function
Return the number of keypoints that have occurred since the count was last reset.

Input parameters
None

Output parameters
KEYPOINT_COUNT

is the number of keypoints that have occurred since the count was last reset.
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] No reason codes are defined for this call.

LGCC gate, RESET_KEYPOINT_STATS function
Reset the count of the number of keypoints.

Input parameters
None

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] No reason codes are defined for this call.

LGGL gate, OPEN function
Opens a general log and returns a log token. The log token is used by the WRITE, FORCE and CLOSE
operations.

Input parameters
STREAM_NAME The 26-byte log stream name to be opened
JNL_NAME The 8-byte journal name to be opened

Either STREAM_NAME or JNL_NAME must be specified
COMPONENT Identifies the component (e.g. FC) opening this stream
[USER_TOKEN] A token that identifies to the calling component why this log stream was opened. It will be

passed to the ERROR gate in the event that an error is detected on the log stream. For
example for file control it might contain a pointer to the DSNBx

Log manager domain (LG)

Chapter 88. Log manager domain (LG) 873

[ERROR_GATE] The domain gate number that the logger should call using ERROR if an error occurs
accessing the log stream.

Output parameters
LOG_TOKEN The token to be used on subsequent WRITE, FORCE, CLOSE requests.
LOG_TYPE The associated log stream type: It can have any one of these values:

MVS MVS logger stream
SMF SMF logging
DUMMY No logging

JNL_STREAM The MVS logstream name associated with the journal being opened
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ERROR_OPENING_LOG
LOG_IS_SYSTEM_LOG
LOG_IS_DISABLED
LOG_NOT_DEFINED
LOG_HAS_FAILED
INVALID_JNL_NAME

INVALID INVALID_PARAMETERS

LGGL gate, WRITE function
Write a record to a general log identified by a token from a previous OPEN.

Input parameters
LOG_TOKEN The token returned by OPEN
DATA The address of a reusable Iliffe vector describing the items of data to be written to the log

stream.
[FORCE_NOW] Indicates that the caller wishes to wait until the data has been successfully written to the

log stream. It can have either of these values:
YES|NO

Default is NO
[FORCE_AT_SYNC]

Indicates that the caller wishes the log stream to be forced when the associated
transaction reaches Syncpoint. It can have either of these values:
YES|NO

Default is NO

Note: Force_at_Sync can be used in conjunction with FORCE_NOW. This is needed by
File control for ESDS writes which have to be forced immediately but which also
need the UOW structure to allow the calculation of Fuzzy backup recovery times.

Output parameters
[FORCE_TOKEN]

A token to be used on a subsequent FORCE to ensure that a specific records and any
prior records have been hardened

RESPONSE is the log manager domain’s response to the call. It can have any one of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or INVALID Possible values are:

Log manager domain (LG)

874 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION WRITE_ERROR
BUFFER_LENGTH_ERROR

INVALID UNKNOWN_LOG_TOKEN

LGGL gate, FORCE function
Ensures that the previously written records have been flushed from the buffer and hardened on the chosen
log stream

Input parameters
LOG_TOKEN The token returned by OPEN
[FORCE_TOKEN]

Token returned by WRITE to indicate a specific record to be written. If omitted all records
are forced.

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION WRITE_ERROR

INVALID UNKNOWN_LOG_TOKEN

LGGL gate, CLOSE function
Invalidates the LOG_TOKEN, on the last usage of a log stream disconnects from the log stream

Input parameters
LOG_TOKEN The token returned by OPEN

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION WRITE_ERROR

INVALID UNKNOWN_LOG_TOKEN

LGGL gate, WRITE_JNL function
Write a record to a general log identified by a journal name

Input parameters
JNL_NAME The 8-byte journal name to be written to
DATA The address of a reusable Iliffe vector describing the items of data to be written to the log

stream.
[FORCE_NOW] Indicates that the caller wishes to wait until the data has been successfully written to the

log stream. It can have either of these values:
YES|NO

Default is NO

Log manager domain (LG)

Chapter 88. Log manager domain (LG) 875

[FORCE_AT_SYNC]
Indicates that the caller wishes the log stream to be forced when the associated
transaction reaches Syncpoint. It can have either of these values:
YES|NO

Default is NO

Note: Force_at_Sync can be used in conjunction with FORCE_NOW. This is needed by
File control for ESDS writes which have to be forced immediately but which also
need the UOW structure to allow the calculation of Fuzzy backup recovery times.

COMPONENT Identifies the component (e.g. TC) writing this stream
SUSPEND Supported for compatibility with old EXEC interface. Causes BUFFER_FULL exception to

be raised if there is no space rather than waiting for space. The task may still be
suspended for many other reasons! It can have either of these values:
YES|NO

Default is YES

Output parameters
[FORCE_TOKEN]

A token to be used on a subsequent FORCE_JNL to ensure that a specific record and any
prior records have been hardened

RESPONSE is the log manager domain’s response to the call. It can have any one of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION WRITE_ERROR
ERROR_OPENING_LOG
LOG_IS_SYSTEM_LOG
LOG_IS_DISABLED
LOG_HAS_FAILED
LOG_NOT_DEFINED
BUFFER_FULL
INVALID_JNL_NAME
BUFFER_LENGTH_ERROR

LGGL gate, FORCE_JNL function
Ensures that the previously written records have been hardened on the chosen log.

Input parameters
JNL_NAME The 8-byte journal name to be forced
[FORCE_TOKEN]

Token returned by WRITE_JNL to indicate a specific record to be written. If omitted all
records are forced.

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Log manager domain (LG)

876 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION WRITE_ERROR
LOG_IS_NOT_ACTIVE
LOG_IS_SYSTEM_LOG
LOG_IS_DISABLED
LOG_HAS_FAILED

LGGL gate, UOW_TIME function
Returns the oldest active transactions first log write time for use in calculating the recovery time for
Backup while open.

Usually called by AKP processing when calculating the recovery time for non-RLS BWO files

Input parameters
UOW_TIME_STAMP

The 8-byte STCK format time of the oldest active transaction that has written log records
with the FORCE_AT_SYNC option, or current time if there are no active transactions.

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] No reason codes are defined for this call

LGGL gate, INITIALIZE function
Establish subpools, locks, and anchor control blocks

Called as subroutine during domain initialization.

Input parameters
None

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] No reason codes are defined for this call

LGJN gate, INQUIRE function
Returns information about the current state of a user journal

Also causes the stats information for a particular journal to be updated, when called as part of a
FORCE_JNL request from LGGL.

Input parameters
JNL_NAME The 8-byte Journal name to be inquired upon
[FORCE] Indicates that a force of the data in the buffer has been requested.

This is used to indicate when the stats field in the journal info, which records the number
of flushes, needs incrementing.

Output parameters
[LOG_TYPE] The associated log stream type:

MVS MVS logger stream
SMF SMF logging
DUMMY No logging

[JNL_STATUS] The associated log stream status:

Log manager domain (LG)

Chapter 88. Log manager domain (LG) 877

Note: Status will always appear as disconnected for journals that have not been used as
user journals (i.e. system logs, forward recovery logs, fc auto journals) even though
they may be in use
CONNECTED Stream is currently connected
DISCONNECTED Stream is not currently connected
DISABLED Stream has been disabled by SPI/CEMT function
FAILED The MVS log stream has failed

[STREAM_NAME]
The associated MVS log stream name. Blank for SMF or DUMMY

[SYSTEM_LOG] Whether or not the journal is a system log. It can have either of these values:
YES|NO

[STREAM_TOKEN]
The log stream token if the journal is currently connected to an MVS log stream or the
logbuf token for an SMF journal.

If specified the stream shared lock will be acquired and it its the callers responsibility to
free the lock when they have finished with the stream token.

RESPONSE is the log manager domain’s response to the call. It can have any one of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_JNL_NAME

LGJN gate, START_BROWSE function
Initialize browse token for subsequent GET_NEXT requests

Input parameters
None.

Output parameters
BROWSE_TOKEN Token for use on subsequent GET_NEXT requests
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None defined for this call

LGJN gate, GET_NEXT function
Return information for next Journal.

Input parameters
BROWSE_TOKEN Token returned by START_BROWSE

Output parameters
JNL_NAME The next 8-byte Journal name found
[LOG_TYPE] The associated log stream type:

MVS MVS logger stream
SMF SMF logging
DUMMY No logging

[JNL_STATUS] The associated log stream status:

Note: Status will always appear as disconnected for journals that have not been used as
user journals (i.e. system logs, forward recovery logs, fc auto journals) even though
they may be in use
CONNECTED Stream is currently connected
DISCONNECTED Stream is not currently connected

Log manager domain (LG)

878 CICS TS for z/OS: CICS Diagnosis Reference

DISABLED Stream has been disabled by SPI/CEMT function
FAILED The MVS log stream has failed

[STREAM_NAME]
The associated MVS log stream name. Blank for SMF or DUMMY

[SYSTEM_LOG] Whether or not the journal is a system log. It can have either of these values:
YES|NO

RESPONSE is the log manager domain’s response to the call. It can have any one of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_MORE_DATA_AVAILABLE

INVALID INVALID_BROWSE_TOKEN

LGJN gate, END_BROWSE function
Terminate browse and invalidate browse token

Input parameters
BROWSE_TOKEN Token returned by START_BROWSE

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_BROWSE_TOKEN

LGJN gate, SET function
Update the status of the Journal.

Will create journal if it does not currently exist (except for FLUSH)

Input parameters
JNL_NAME The 8-byte Journal name to be updated
JNL_STATUS The new status for the journal:

CONNECTED Stream is to be connected
DISCONNECTED Stream is to be disconnected
DISABLED Stream is to be disabled from further use
FLUSH The current log buffers are to be written to the log stream

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Log manager domain (LG)

Chapter 88. Log manager domain (LG) 879

RESPONSE Possible REASON values

EXCEPTION JNL_ALREADY_IN_REQ_STATE
JNL_IS_NOT_ACTIVE
LOG_IS_SYSTEM_LOG
SYSTEM_LOG_CONFLICT
UNKNOWN_JNL_NAME
UNABLE_TO_CREATE_JNL
ERROR_OPENING_LOG
JNL_HAS_FAILED
INVALID_JNL_NAME
WRITE_ERROR

LGJN gate, DISCARD function
Remove a journal from the set of known journals to clean up the catalog or to allow it to be reinstalled with
a new set of attributes.

Input parameters
JNL_NAME The 8-byte Journal name to be discarded

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION LOG_IS_SYSTEM_LOG
UNKNOWN_JNL_NAME

LGJN gate, EXPLICIT_OPEN function
Inquire on a journal and if the journal does not already exist in the set of known journals perform the
autoinstall process to define it.

The stream is explicitly opened for each call and so must eventually be explicitly closed using the LGST
DISCONNECT function

Input parameters
JNL_NAME The 8-byte Journal name to be Explicit_Opened
SYSTEM_LOG Whether or not this journal is to be used as a system log It can have either of these

values:
YES|NO

Output parameters
[LOG_TYPE] The associated log stream type:

MVS MVS logger stream
SMF SMF logging
DUMMY No logging

[JNL_STATUS] The associated log stream status:

Note: Status will always appear as disconnected for journals that have not been used as
user journals (i.e. system logs, forward recovery logs, fc auto journals) even though
they may be in use
CONNECTED Stream is currently connected
DISCONNECTED Stream is not currently connected
DISABLED Stream has been disabled by SPI/CEMT function

Log manager domain (LG)

880 CICS TS for z/OS: CICS Diagnosis Reference

FAILED The MVS log stream has failed
STREAM_TOKEN The log stream token if the journal is currently connected to an MVS log stream or the

logbuf token for an SMF journal.
[STREAM_NAME]

The associated MVS log stream name. Blank for SMF or DUMMY
[LOG_TOKEN] The buffer manager's log token for the log stream
[STRUCTURE_NAME]

is the 16 byte name of the coupling facility structure of the log stream.
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UNABLE_TO_CREATE_JNL
SYSTEM_LOG_CONFLICT
JNL_IS_DISABLED
JNL_HAS_FAILED
ERROR_OPENING_LOG
INVALID_JNL_NAME

LGJN gate, IMPLICIT_OPEN function
Inquire on a journal and if the journal does not already exist in the set of known journals perform the
autoinstall process to define it. If the associated log stream has not been opened then it is opened and the
stream token returned.

Input parameters
JNL_NAME The 8-byte Journal name to be Explicit_Opened
SYSTEM_LOG Whether or not this journal is to be used as a system log It can have either of these

values:
YES|NO

[FORCE] Indicates that a force of the data in the buffer has been requested.

This is used to indicate when the stats field in the journal info, which records the number
of flushes, needs incrementing. It can have either of these values:
YES|NO

[WRITE_BYTES]
The number of bytes of data being written, as a 64 bit value.

This field is used to update the bytes counter in the stats information for a journal, and
also indicates that the writes counter also needs incrementing.

Output parameters
[LOG_TYPE] The associated log stream type:

MVS MVS logger stream
SMF SMF logging
DUMMY No logging

[JNL_STATUS] The associated log stream status:

Note: Status will always appear as disconnected for journals that have not been used as
user journals (i.e. system logs, forward recovery logs, fc auto journals) even though
they may be in use
CONNECTED Stream is currently connected
DISCONNECTED Stream is not currently connected
DISABLED Stream has been disabled by SPI/CEMT function
FAILED The MVS log stream has failed

Log manager domain (LG)

Chapter 88. Log manager domain (LG) 881

[STREAM_NAME]
The associated MVS log stream name. Blank for SMF or DUMMY

STREAM_TOKEN The log stream token if the journal is currently connected to an MVS log stream or logbuf
token for SMF.

If specified the stream shared lock will be acquired and it its the callers responsibility to
free the lock when they have finished with the stream token.

RESPONSE is the log manager domain’s response to the call. It can have any one of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UNABLE_TO_CREATE_JNL
SYSTEM_LOG_CONFLICT
JNL_IS_DISABLED
JNL_HAS_FAILED
ERROR_OPENING_LOG
INVALID_JNL_NAME

LGJN gate, INITIALIZE function
Establish subpools, locks, and anchor control blocks

Called as subroutine during domain initialization.

Input parameters
None

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None defined for this call

LGJN gate, STREAM_FAIL function
Marks all journals that have used the failing log stream as failed, issues a message, and closes the stream
connection. This ensures that all subsequent activity for the log stream is rejected until either CICS is
restarted or the operator explicitly reactivates the journal

Input parameters
STREAM_TOKEN The token of the log stream that has failed
STREAM_NAME The name of the log stream that has failed

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None defined for this call

LGJN gate, PROCESS_STATISTICS function
Deal with the various types of requests for journal statistics using the information in the STST parameter
list.

Input parameters
STATS_PARMS The address of the STST parameter list.

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

Log manager domain (LG)

882 CICS TS for z/OS: CICS Diagnosis Reference

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_JNL_NAME
NO_JOURNALS_DEFINED

LGLB gate, CONNECT function
Creates a log stream object and if of type MVS, a connection is made to the log stream, denoted by its
name, through the MVS logger.

Input parameters
STREAM_NAME is the name of the log stream to be connected. Only valid if the log type is MVS.
SYSTEM_LOG is the system log indicator, which can assume the following values:

YES The log stream being connected is part of the CICS system log.
NO The log stream being connected is general log.

LOG_TYPE is the log stream type, which can assume the following values:
MVS A MVS logger log stream
SMF The MVS SMF log
DUMMY A dummy log

JOURNAL_NAME is the journal name associated with the log stream on this request.
[STRUCTURE_NAME]

is the 16 byte name of the coupling facility structure of the log stream.

Output parameters
LOGBUF_TOKEN is the token denoting the connected log stream, which can be used as input to

GL_WRITE, GL_FORCE and DISCONNECT.
RESPONSE is the response code, possible values are:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION LOG_NOT_DEFINED
CONNECT_FAILURE

LGLB gate, DISCONNECT function
Destroys the log stream object and if it is of type MVS, disconnects from the MVS logger.

Input parameters
LOGBUF_TOKEN is the token of the log stream created during a call of CONNECT.

Output parameters
RESPONSE is the response code, possible values are:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION LOG_NOT_DEFINED
CONNECT_FAILURE

LGLB gate, GL_WRITE function
Writes a record to a general log denoted by LOGBUF_TOKEN.

Log manager domain (LG)

Chapter 88. Log manager domain (LG) 883

Input parameters
LOGBUF_TOKEN is the token of the log stream created during a call of CONNECT.
DATA is the address of the data to be written.
COMPONENT identifies the original CICS component making this request.
SUSPEND is a task suspend indicator, which can assume the following values:

YES The task may be suspended if necessary.
NO If there is no buffer space immediately available without suspending the

current task then return an exception with a reason of BUFFER_FULL
JOURNAL_NAME is the journal name associated with the log stream on this request.

Output parameters
FORCE_TOKEN is the token denoting the output buffer which includes the data of this request. This token

can be used as input to GL_FORCE.
RESPONSE is the response code, possible values are:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION BUFFER_FULL
BUFFER_LENGTH_ERROR
WRITE_FAILURE

LGLB gate, GL_FORCE function
Ensures that the output buffer denoted by FORCE_TOKEN for the log stream denoted by
LOGBUF_TOKEN has been written to the physical media.

Input parameters
LOGBUF_TOKEN is the token of the log stream created during a call of CONNECT.
FORCE_TOKEN is the token denoting the output buffer containing the data written during a call of

GL_WRITE. A null token denotes the current output buffer.

Output parameters
RESPONSE is the response code, possible values are:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION WRITE_FAILURE

LGLB gate, DISCONNECT_ALL function
Ensures that any data in the output buffer has been written to the physical media before the stream
connection is destroyed for all connected streams.

Input parameters
None.

Output parameters
RESPONSE is the response code, possible values are:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] No reason codes are defined for this call

LGLD gate, INQUIRE function
Returns information about the current state of a JournalModel

Log manager domain (LG)

884 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
JOURNALMODEL_NAME

The 8-byte JournalModel name to be inquired upon

Output parameters
[JNL_TEMPLATE]

The associated journal name template
[LOG_TYPE] The associated log stream type:

MVS MVS logger stream
SMF SMF logging
DUMMY No logging

[STREAM_PROTOTYPE]
The associated MVS log stream name prototype

RESPONSE is the log manager domain’s response to the call. It can have any one of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_JOURNALMODEL_NAME

LGLD gate, START_BROWSE function
Initialize browse token for subsequent GET_NEXT requests

Input parameters
None

Output parameters
BROWSE_TOKEN Token for use on subsequent GET_NEXT requests
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None defined for this function.

LGLD gate, GET_NEXT function
Return information for next JournalModel entry

Input parameters
BROWSE_TOKEN Token returned by START_BROWSE

Output parameters
JOURNALMODEL_NAME

The next 8-byte JournalModel name
[JNL_TEMPLATE]

The associated journal name template
[LOG_TYPE] The associated log stream type:

MVS MVS logger stream
SMF SMF logging
DUMMY No logging

[STREAM_PROTOTYPE]
The associated MVS log stream name prototype

RESPONSE is the log manager domain’s response to the call. It can have any one of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

Log manager domain (LG)

Chapter 88. Log manager domain (LG) 885

RESPONSE Possible REASON values

EXCEPTION NO_MORE_DATA_AVAILABLE

INVALID INVALID_BROWSE_TOKEN

LGLD gate, END_BROWSE function
Terminate browse and invalidate browse token

Input parameters
BROWSE_TOKEN Token returned by START_BROWSE

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_BROWSE_TOKEN

LGLD gate, MATCH function
Find JournalModel entry that best matches a journal name. Variables in the stream name prototype are
resolved and the resultant stream name is returned.

Input parameters
JNL_NAME The journal name to be matched

Output parameters
LOG_TYPE The associated log stream type:

MVS MVS logger stream
SMF SMF logging
DUMMY No logging

STREAM_NAME The MVS log stream name
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_JNL_NAME

LGLD gate, INSTALL function
Create/replace JournalModel entry

Input parameters
JOURNALMODEL_NAME

The 8-byte JournalModel name
JNL_TEMPLATE The associated journal name template
LOG_TYPE The associated log stream type:

MVS MVS logger stream
SMF SMF logging
DUMMY No logging

STREAM_PROTOTYPE
The associated MVS log stream name prototype

Log manager domain (LG)

886 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_JNL_TEMPLATE
INVALID_STREAM_PROTOTYPE

LGLD gate, DISCARD function
Remove a JournalModel from the set of defined JournalModels

Input parameters
JOURNALMODEL_NAME

The 8-byte JournalModel name to be discarded

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_JOURNALMODEL_NAME

LGLD gate, INITIALIZE function
Establish subpools, locks, and anchor control blocks

Called as subroutine during domain initialization.

Input parameters
None

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None defined for this function.

LGMV gate, MOVE_CHAIN function
Destroys the chain browse object denoted by CHAIN_TOKEN.

Input parameters
CHAIN_TOKEN is a chain token denoting the chain to be moved.

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None defined for this function.

LGPA gate, INQUIRE_PARAMETERS function
Inquire logger domain parameters.

Input parameters
None

Log manager domain (LG)

Chapter 88. Log manager domain (LG) 887

Output parameters
[KEYPOINT_FREQUENCY]

How often, in terms of physical writes to the system log, activity keypoints are initiated. A
value of zero indicates that activity keypoints are not initiated.

RESPONSE is the log manager domain’s response to the call. It can have any one of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] None defined for this function.

LGPA gate, SET_PARAMETERS function
Set logger domain parameters.

Input parameters
[KEYPOINT_FREQUENCY]

How often, in terms of physical writes to the system log, activity keypoints should be
initiated. A value of zero indicates that activity keypoints should not be initiated.

Non-zero values outside the range from 200 to 65535 inclusive are invalid and cause the
OUT_OF_RANGE exception to be returned.

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION OUT_OF_RANGE

LGSR gate, LOGSTREAM_STATS function
Collects, and resets if required, the log stream statistics of either the log stream denoted by
LOGSTREAM_NAME or of all log streams known to the log manager.

Input parameters
[ALL] if specified then the request is for all log streams of type MVS known to the log manager.
[LOGSTREAM_NAME]

if specified then this is a log stream name, which must be of type MVS.
STATS_BUFFER_ADDR

is the address of a buffer to put the log stream statistics record(s).
STATS_BUFFER_LENGTH

is the length of the buffer.
[RESET] is a request qualifier that assumes the following values:

YES The log stream statistics data are to be reset after collection.
NO The log stream statistics data are not to be reset.

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION LOG_NOT_DEFINED

LGST gate, INQUIRE function
Returns information about the current state of a stream name

Log manager domain (LG)

888 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
STREAM_NAME The 26-byte stream name

Output parameters
[USE_CT] The current number of users of the stream
[SYSTEM_LOG] Whether or not this is a CICS system log It can have either of these values:

YES|NO
[FAILED] Whether or not the stream has failed It can have either of these values:

YES|NO
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_STREAM_NAME

LGST gate, START_BROWSE function
Initialize browse token for subsequent GET_NEXT requests

Input parameters
None

Output parameters
BROWSE_TOKEN Token for use on subsequent GET_NEXT requests
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None defined for this function.

LGST gate, GET_NEXT function
Return information for next stream entry

Input parameters
BROWSE_TOKEN Token returned by START_BROWSE

Output parameters
STREAM_NAME The 26-byte stream name
[USE_CT] The current number of users of the stream
[SYSTEM_LOG] Whether or not this is a CICS system log It can have either of these values:

YES|NO
[FAILED] Whether or not the stream has failed It can have either of these values:

YES|NO
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_MORE_DATA_AVAILABLE

INVALID INVALID_BROWSE_TOKEN

LGST gate, END_BROWSE function
Terminate browse and invalidate browse token

Log manager domain (LG)

Chapter 88. Log manager domain (LG) 889

Input parameters
BROWSE_TOKEN Token returned by START_BROWSE

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_BROWSE_TOKEN

LGST gate, CONNECT function
Connect to an MVS log stream, or increment use count on subsequent call.

Input parameters
STREAM_NAME The 26-byte stream name
SYSTEM_LOG Whether or not this is a CICS system log It can have either of these values:

YES|NO

Output parameters
STREAM_TOKEN A token to represent this stream
[STRUCTURE_NAME]

is the 16 byte name of the coupling facility structure of the log stream.
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SYSTEM_LOG_CONFLICT
LOG_HAS_FAILED
DEFINE_FAILURE
CONNECT_FAILURE,

LGST gate, DISCONNECT function
Decrement the stream use count and disconnect from the MVS logger on last use

Input parameters
STREAM_TOKEN The token returned by CONNECT

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None defined for this function.

LGST gate, INITIALIZE function
Establish subpools, locks, and anchor control blocks

Called as subroutine during domain initialization.

Input parameters
None

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

Log manager domain (LG)

890 CICS TS for z/OS: CICS Diagnosis Reference

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None defined for this function.

LGWF gate, FORCE_DATA function
Ensures that the output buffer denoted by FORCE_TOKEN has been written to the physical media.

Input parameters
FORCE_TOKEN is a token denoting the output buffer containing the data written during a call of

GL_WRITE. A null token denotes the current output buffer.

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION AKP_KICK_OFF

LGWF gate, WRITE function
Writes a record to the CICS system log.

Input parameters
DATA is the address of the data to be written.
CHAIN_TOKEN is a token denoting the chain that this record belongs. A chain token is created by

CREATE_CHAIN_TOKEN and RESTORE__CHAIN_TOKEN
SUSPEND is a task suspend indicator, which can assume the following values:

YES The task may be suspended if necessary.
NO If there is no buffer space immediately available without suspending the

current task then return an exception with a reason of BUFFER_FULL
FORCE is a request qualifier, which can assume the following values:

YES The data of this request including any other data already in the output
buffer is to be written to the physical media before returning.

NO The data of this request need only be written to the output buffer, but may
get written to the physical media.

RAISE_LENGERR
is a request qualifier, which can assume the following values:
YES If the data length is too large to fit into the output buffer then an

EXCEPTION condition is returned to the caller.
NO If the data length is too large to fit into the output buffer then the log

manager terminates CICS.

Output parameters
FORCE_TOKEN is the token denoting the output buffer which includes the data of the request. This token

can be used as input to GL_FORCE.
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION BUFFER_FULL
AKP_KICK_OFF
BUFFER_LENGTH_ERROR

Log manager domain (LG)

Chapter 88. Log manager domain (LG) 891

Log manager domain’s generic gates
Table 64 summarizes the log manager domain’s generic gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gate, the functions provided by the gate, and the generic format for
calls to the gate.

Table 64. Log manager domain’s generic gate
Gate Trace Function Format

APUE LG 0101
LG 0102

SET_EXIT_STATUS APUE

DMDM LG 0101
LG 0102

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

STST LG 0701
LG 0702

COLLECT_STATISTICS
COLLECT_RESOURCE_STATISTICS

STST

You can find descriptions of these functions and their input and output parameters, in the section. dealing
with the corresponding generic format, in “Domain manager domain’s generic formats” on page 669.

In Initialization processing, the log manager domain retrieves Journal and Journalmodel information from
the catalog and initializes the system log except on a cold start when system log initialization occurs after
group list install has completed.

In Quiesce processing, the log manager disconnects from MVS log streams after all transactions have
completed.

Log manager domain’s call back gates
Table 64 summarizes the log manager domain’s call back gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gate, the functions provided by the gate, and the format for calls to
the gate.

Table 65. Log manager domain’s call back gate
Gate Trace Function Format

RMRO LG 0201
LG 0202

PERFORM_COMMIT
PERFORM_PREPARE
START_BACKOUT
DELIVER_BACKOUT_DATA
END_BACKOUT
PERFORM_SHUNT
PERFORM_UNSHUNT

RMRO

You can find descriptions of these functions and their input and output parameters, in the section. dealing
with the recovery manager formats, in Chapter 99, “Recovery Manager Domain (RM),” on page 1061.

For PERFORM_PREPARE, PERFORM_COMMIT, END_BACKOUT the log manager forces any log buffers
written using the FORCE_AT_SYNCH option of the LGGL WRITE gate to the MVS system logger. For the
other RMRO gate functions the log manager does nothing.

Log manager domain’s call back format
Table 66 describes the call back format owned by the log manager domain and shows the function
performed on the calls.

Table 66. Call back format owned by the log manager domain

Format Calling module Function

LGGL DFHLGGL ERROR

Log manager domain (LG)

892 CICS TS for z/OS: CICS Diagnosis Reference

In the descriptions of the formats that follow, the “input” parameters are input not to log manager domain,
but to the domain being called by the log manager. Similarly, the “output” parameters are output by the
domain that was called by log manager domain, in response to the call.

LGGL gate, ERROR function
This is a back-to-front or outbound function. The logger will call the domain that issued OPEN, using the
gate number specified in ERROR_GATE, when a long term error condition is detected on the opened log
stream.

The called domain should take any recovery action needed and close the log stream (if appropriate).

Called by the logger during log stream error processing.

Note: An error call back could occur while an Open or Close request for the associated log-token is still in
progress.

Input parameters
ERROR_TYPE Indicates the severity of the error: It can have either of these values:

LONG_TERM|RECOVERED
STREAM_NAME The 26-byte name of the failing log stream name
[JNL_NAME] The 8-byte journal name if the open was by journal name
COMPONENT The 2-byte component id supplied on OPEN
USER_TOKEN The 8-byte token supplied on OPEN, this allows the opening domain to determine what

resource (eg DSNB) this open is associated with.
LOG_TOKEN The token returned by OPEN

Output parameters
RESPONSE is the log manager domain’s response to the call. It can have any one of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] No reason codes are defined for this call

Modules

Module Function

DFHLGDM Log manager domain initialization and termination. Also handles exit activation for XLGSTRM
and XRSINDI.

Handles the DMDM and APUE gate functions

DFHLGDUF A routine to format system dump information

DFHLGGL Handles the LGGL and RMRO gate functions

DFHLGHB Assesses the availability of the MVS system logger

DFHLGICV Log record conversion for SSI exit

DFHLGIGT Log record get routine for SSI exit

DFHLGILA Lexical analysis for SSI exit

DFHLGIMS Message composer for SSI exit

DFHLGIPA Parser for SSI exit

DFHLGIPI Parse interface for SSI exit

DFHLGISM Parse message exit for SSI exit

DFHLGJN Handles the LGJN gate functions

DFHLGLD Handles the LGLD gate functions

DFHLGPA Handles the LGPA gate functions

Log manager domain (LG)

Chapter 88. Log manager domain (LG) 893

Module Function

DFHLGSC Handles the STST gate functions

DFHLGST Handles the LGST gate functions

DFHLGSSI Handles the batch QSAM access to CICS logstreams via the DD SUBSYS=(LOGR...) SSI
interface

DFHLGTRI A routine to format trace points

DFHL2DM Initializes the ’L2’ part of the Log Manager Domain

DFHL2TRI A routine to format the ’L2’ trace points

DFHL2LB Handles the LGLB gate functions

DFHL2SR Handles the LGSR gate functions

DFHL2WF Handles the LGWF gate functions

DFHL2CC Handles the LGCC gate functions

DFHL2CB Handles the LGCB gate functions

DFHL2BA Handles the LGBA gate functions

DFHL2MV Handles the LGMV gate functions

DFHL2BL1 Initializes the Block class data

DFHL2BL2 Retrieves the current block on the CICS system log

DFHL2BS1 Initializes the BrowseableStream class data

DFHL2BS2 Creates a BrowseableStream class instance

DFHL2BS3 Destroys a BrowseableStream class instance

DFHL2BS4 Destroys all BrowseableStream class instance

DFHL2CH1 Initializes the Chain class data

DFHL2CH2 Creates a Chain class instance

DFHL2CH3 Handles start chain browse

DFHL2CH4 Handles chain browse get next

DFHL2CH5 Handles end chain browse

DFHL2CHA Handles start browse all

DFHL2CHN Handles browse all get next

DFHL2CHL Handles end browse all

DFHL2CHH Handles start browse chains

DFHL2CHG Handles browse chains get next

DFHL2CHI Handles end browse chains

DFHL2CHR Handles chain restore

DFHL2CHS handles set history point

DFHL2CHE Handles delete at history point

DFHL2CHM Handles move chain

DFHL2HS2 Handles the log stream connect request to the MVS logger

DFHL2HS3 Handles the log stream disconnect request to the MVS logger

DFHL2HS4 Handles the log stream delete all request to the MVS logger

DFHL2HS5 Handles the log stream delete history request to the MVS logger

DFHL2HS6 Handles the log stream start browse block request to the MVS logger

DFHL2HS7 Handles the log stream start browse cursor request to the MVS logger

Log manager domain (LG)

894 CICS TS for z/OS: CICS Diagnosis Reference

Module Function

DFHL2HS8 Handles the log stream read browse cursor request to the MVS logger

DFHL2HS9 Handles the log stream end browse cursor request to the MVS logger

DFHL2HSG Handles the log stream read browse block request to the MVS logger

DFHL2HSJ Handles the log stream end browse block request to the MVS logger

DFHL2OFI Initializes the ObjectFactory instance data

DFHL2SL1 Initializes the SystemLog class data

DFHL2SLN Handles system log log stream open request

DFHL2SLE Handles system log log stream failure notification

DFHL2SR1 Initializes the Stream class data

DFHL2SR2 Creates a Stream class instance

DFHL2SR3 Destroys a Stream class instance

DFHL2SR4 Collect and resets Stream statistics

DFHL2SR5 Destroys all Stream class instances

DFHL2VPX Initializes the VariablePool class data

Exits
Two global user exit points are provided in this domain.

XLGSTRM
This exit is called prior to defining a new log stream to the MVS system logger

XRSINDI
This exit is called when a Journal or Journalmodel is installed or discarded. It is also called when
CICS connects or disconnects an MVS system logger logstream.

See CICS Customization Guide for further information.

Trace
The point IDs for the log manager domain are of the form LG xxxx; the corresponding trace levels are
LG 1, LG 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Log manager domain (LG)

Chapter 88. Log manager domain (LG) 895

896 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 89. Lock manager domain (LM)

The lock manager domain (also sometimes known simply as “lock manager”) provides both locking and
associated queuing facilities for CICS resources. Before using these facilities, a resource must add a
named lock for itself. This lock can then be requested as either exclusive or shared. If an exclusive lock is
obtained, no other task may obtain the lock with that name; if a shared lock is obtained, multiple tasks
may obtain that lock, and the exclusive lock with that name cannot be acquired.

Lock manager domain’s specific gate
Table 67 summarizes the lock manager domain’s specific gate. It shows the level-1 trace point IDs of the
modules providing the functions for the gate, the functions provided by the gate, and whether or not the
functions are available through the exit programming interface (XPI).

Table 67. Lock manager domain’s specific gate
Gate Trace Function XPI

LMLM LM 0003
LM 0004

ADD_LOCK
DELETE_LOCK
LOCK
UNLOCK
TEST_LOCK_OWNER

NO
NO
NO
NO
NO

LMLM gate, ADD_LOCK function
The ADD_LOCK function of the LMLM gate is used to add a named lock to LM’s state.

Input parameters
LOCK_NAME is an 8-character name.

Output parameters
LOCK_TOKEN is the 8-character token that uniquely identifies the lock, returned to the caller on the this

call.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER INSUFFICIENT_STORAGE
ABEND
LOOP

LMLM gate, LOCK function
The LOCK function of the LMLM gate is used to request the lock.

Input parameters
LOCK_TOKEN is the token returned to the caller on the ADD_LOCK call.
MODE defines the type of lock. It can have either of these values:

EXCLUSIVE|SHARED
[WAIT] indicates whether a task is suspended (CICS) or a LOCK_BUSY is to be returned as a

reason output parameter (NO). It can have either of these values:
CICS|NO

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|PURGED|INVALID|DISASTER|KERNERROR

© Copyright IBM Corp. 1997, 2011 897

[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER INSUFFICIENT_STORAGE
ABEND
LOOP

EXCEPTION LOCK_TOKEN_NOT_FOUND
DUPLICATE_LOCK_OWNER
LOCK_BUSY

Note: DUPLICATE_LOCK_OWNER is returned when a resource requests a lock twice without unlocking during the
same task: this is often treated in the same way as OK by the requesting resource.

LMLM gate, UNLOCK function
The UNLOCK function of the LMLM gate is used to release the lock.

Input parameters
LOCK_TOKEN is the token returned to the caller on the ADD_LOCK call.
MODE defines the type of lock to be released. It can have either of these values:

EXCLUSIVE|SHARED
[OWNER_TOKEN]

defines the owner of the lock.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION LOCK_TOKEN_NOT_FOUND
SHARED_LOCK_FREE
NOT_LOCK_OWNER

LMLM gate, TEST_LOCK_OWNER function
The TEST_LOCK_OWNER function of the LMLM gate is used to test the owner of a lock for self.

Input parameters
LOCK_TOKEN is the token returned to the caller on the ADD_LOCK call.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION LOCK_TOKEN_NOT_FOUND
NOT_LOCK_OWNER

DISASTER ABEND
LOOP

Lock manager domain (LM)

898 CICS TS for z/OS: CICS Diagnosis Reference

LMLM gate, DELETE_LOCK function
The DELETE_LOCK function of the LMLM gate is used to delete the named lock from LM’s state.

Input parameters
LOCK_TOKEN is the token returned to the caller on the ADD_LOCK call.
[OWNER_TOKEN]

defines the owner of the lock.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION LOCK_TOKEN_NOT_FOUND
NOT_LOCK_OWNER

Lock manager domain’s generic gates
Table 68 summarizes the lock manager domain’s generic gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gates, the functions provided by the gates, and the generic formats
for calls to the gates.

Table 68. Lock manager domain’s generic gates
Gate Trace Function Format

DMDM LM 0001
LM 0002

PRE_INITIALIZE
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

DSNT LM 0005
LM 0006

DISPATCHER_NOTIFY DSNT

For descriptions of these functions and their input and output parameters, refer to the sections dealing with
the corresponding generic formats:

Functions and parameters

Format DMDM—“Domain manager domain’s generic formats” on page 669

Format DSNT—“Dispatcher domain’s generic formats” on page 717

In preinitialization processing, gates are added to make lock manager services available to other domains.

In initialization, quiesce, and termination processing, the lock manager domain performs only internal
routines.

Lock manager domain (LM)

Chapter 89. Lock manager domain (LM) 899

Modules

Module Function

DFHLMDM Handles the following requests:
PRE_INITIALIZE
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHLMDS Handles transaction manager domain MXT_CHANGE_NOTIFY requests.

DFHLMDUF Formats the LM domain control blocks

DFHLMLM Handles the following requests:
ADD_LOCK
DELETE_LOCK
LOCK
TEST_LOCK_OWNER
UNLOCK

DFHLMTRI Interprets LM domain trace entries

Exits
No global user exit points are provided in this domain.

Trace
The point IDs for the lock manager domain are of the form LM xxxx; the corresponding trace levels are
LM 1, LM 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Lock manager domain (LM)

900 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 90. Message domain (ME)

The message domain acts as a repository for CICS messages, and handles the sending of messages to
transient data destinations or to the console. It also provides an interface for returning the text of a
message to the caller.

Message domain’s specific gates
Table 69 summarizes the message domain’s specific gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gates, the functions provided by the gates, and whether or not the
functions are available through the exit programming interface (XPI).

Table 69. Message domain’s specific gates
Gate Trace Function XPI

MEBM None INQUIRE_MESSAGE_DEFINITION
INQUIRE_MESSAGE_LENGTH
RETRIEVE_MESSAGE

NO
NO
NO

MEME ME 0301
ME 0302

CONVERSE
INQUIRE_MESSAGE
INQUIRE_MESSAGE_LENGTH
RETRIEVE_MESSAGE
SEND_MESSAGE
VALIDATE_LANGUAGE_CODE
VALIDATE_LANGUAGE_SUFFIX

NO
NO
NO
NO
NO
NO
NO

MESR ME 0201
ME 0202

SET_MESSAGE_OPTIONS NO

MEBM gate, RETRIEVE_MESSAGE function
The RETRIEVE_MESSAGE function of the MEBM gate is used to retrieve the message text and build the
message into a buffer.

Input parameters
MESSAGE_TABLE

is a table containing all the message definitions for the message domain.
[COMPONENT_ID]

is the component identifier for the message.
MESSAGE_NUMBER

is the numeric message identifier.
MESSAGE_BUFFER

is the buffer to receive the message text.
[INSERT1] through [INSERT10]

are user-supplied inserts, if these are required by the message definition.
[SYMPTOM_BUFFER]

is the buffer to receive a symptom string for the message.
[SUPPRESS_SRBUILD]

indicates whether or not a symptom record build is suppressed. It can have either of these
values:
YES|NO

[MODULE_NAME]
is the name of the module in error, supplied as data for the symptom string.

[MODULE_PTF] is the PTF level of the module in error, supplied as data for the symptom string.
[UPPERCASE] determines whether or not messages should be converted to uppercase. It can have either

of these values:
YES|NO

© Copyright IBM Corp. 1997, 2011 901

Output parameters
RESPONSE is the domain’s response to the call. It can have either of these values:

OK|EXCEPTION
[REASON] is returned when RESPONSE is EXCEPTION. It has this value:

MESSAGE_CANNOT_BE_PRODUCED

MEBM gate, INQUIRE_MESSAGE_LENGTH function
The INQUIRE_MESSAGE_LENGTH function of the MEBM gate is used to find the length of the message
in order to obtain the appropriate sized buffer to retrieve the message.

Input parameters
MESSAGE_TABLE

is a table containing all the message definitions for messages output by the message
domain.

[COMPONENT_ID]
is the component identifier for the message.

MESSAGE_NUMBER
is the numeric message identifier.

[INSERT1] through [INSERT10]
are user-supplied inserts, if these are required by the message definition.

Output parameters
MESSAGE_LENGTH

is the length of the message being inquired on.
RESPONSE is the domain’s response to the call. It can have either of these values:

OK|EXCEPTION
[REASON] is returned when RESPONSE is EXCEPTION. It has this value:

MESSAGE_CANNOT_BE_FOUND

MEBM gate, INQUIRE_MESSAGE_DEFINITION function
The INQUIRE_MESSAGE_DEFINITION function of the MEBM gate is used to return the action and
severity codes of a message.

Input parameters
MESSAGE_TABLE

is a table containing all the message definitions for the message domain.
[COMPONENT_ID]

is the component identifier for the message.
MESSAGE_NUMBER

is the numeric message identifier.

Output parameters
SEVERITY_CODE

is the severity of the message.
ACTION_CODE is the action code for the message.
RESPONSE is the domain’s response to the call. It can have either of these values:

OK|EXCEPTION
[REASON] is returned when RESPONSE is EXCEPTION. It has this value:

MESSAGE_CANNOT_BE_FOUND

MEME gate, SEND_MESSAGE function
The SEND_MESSAGE function of the MEME gate is used to send a message to one or more
destinations.

Message domain (ME)

902 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
[COMPONENT_ID]

is the component identifier for the message.
MESSAGE_NUMBER

is the numeric message identifier.
[PRODUCT] is an optional product identifier.
[MSGTABLE] indicates that the feature message table is to be used.
[SYSTEM_DUMPCODE]

is the dump code to be used when the message domain requests a dump on behalf of its
caller.

[TERMINATE_CICS]
specifies whether the caller requests CICS to be terminated.

[RESTART_CICS]
specifies whether the caller requests CICS to be automatically restarted by ARM.

[INSERT1] through [INSERT10]
are user-supplied inserts, if these are required by the message definition.

[TRANID] is the transaction identifier to be used to override the tranid obtained by the message
domain.

[TERMID] is the terminal identifier to be used to override the termid obtained by the message
domain.

[NETNAME] is the network name to be used to override the netname obtained by the message
domain.

[NOREROUTE] specifies whether the caller requests that the message is to be rerouted to a transient data
destination.

[TDQUEUES] specifies the transient data destinations to which a message is to be sent.
[IGNORE_EXCEPTIONS]

specifies whether the caller requests that a failure sending a message to a transient data
destination is to be ignored.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, INVALID, or PURGED. Possible values are:

RESPONSE Possible REASON values

DISASTER INVALID_MODULE_PTR
INVALID_TEMPLATE
ABEND
INSUFFICIENT_STORAGE

INVALID INVALID_COMPONENT_TYPE
INVALID_DBCS_FORMAT
INVALID_DESTINATION
INVALID_FUNCTION
INVALID_INSERT
INVALID_MEFO_RESPONSE
MESSAGE_NOT_FOUND
MESSAGE_SET_NOT_FOUND
MISSING_INSERT
OPT_INSERT_NOT_FOUND
RETRY_MSG_LOCATE

PURGED TDQ_PURGED

MEME gate, CONVERSE function
The CONVERSE function of the MEME gate is used to send a message and receive a reply.

Message domain (ME)

Chapter 90. Message domain (ME) 903

#
#

##
#
##
#
#
#

Input parameters
[COMPONENT_ID]

is the component identifier for the message.
MESSAGE_NUMBER

is the numeric message identifier.
[PRODUCT] is an optional product identifier.
[INSERT1] through [INSERT10]

are user-supplied inserts, if these are required by the message definition.
[TRANID] is the transaction identifier to be used to override the tranid obtained by the message

domain.
[TERMID] is the terminal identifier to be used to override the termid obtained by the message

domain.
[NETNAME] is the network name to be used to override the netname obtained by the message

domain.
[REPLY_BUFFER]

is the buffer into which the text reply is to be returned.
REPLY_FORMAT (VALUE|TEXT_OR_VALUE|TEXT)

indicates the format of the reply. It can be one of these formats:
VALUE|TEXT_OR_VALUE|TEXT

Output parameters
[REPLY_INDEX]

is the number of the template reply option that matches the user’s reply text.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER INVALID_MODULE_PTR
INVALID_TEMPLATE
MAX_REPLIES_EXCEEDED
ABEND
INSUFFICIENT_STORAGE

EXCEPTION REPLY_BUFFER_TOO_SMALL

INVALID INVALID_COMPONENT_TYPE
INVALID_DESTINATION
INVALID_FUNCTION
INVALID_INSERT
INVALID_REPLY_BUFFER
MESSAGE_NOT_FOUND
MESSAGE_SET_NOT_FOUND
MISSING_INSERT
OPT_INSERT_NOT_FOUND
REPLY_BUFFER_REQUIRED
REPLY_INDEX_REQUIRED
RETRY_MSG_LOCATE

MEME gate, RETRIEVE_MESSAGE function
The RETRIEVE_MESSAGE function of the MEME gate is used to retrieve a message text.

Input parameters
[COMPONENT_ID]

is the component identifier for the message.

Message domain (ME)

904 CICS TS for z/OS: CICS Diagnosis Reference

MESSAGE_NUMBER
is the numeric message identifier.

MESSAGE_BUFFER
is the buffer to receive the message text.

[PRODUCT] is an optional product identifier.
[MSGTABLE] indicates that the feature message table is to be used.
[LANGUAGE] is an optional language code.
[INSERT1] through [INSERT10]

are user-supplied inserts, if these are required by the message definition.
[TRANID] is the transaction identifier to be used to override the tranid obtained by the message

domain.
[TERMID] is the terminal identifier to be used to override the termid obtained by the message

domain.
[NETNAME] is the network name to be used to override the netname obtained by the message

domain.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
INSUFFICIENT_STORAGE
INVALID_MODULE_PTR
INVALID_TEMPLATE

EXCEPTION MSG_BUFFER_TOO_SMALL
REPLY_BUFFER_TOO_SMALL

INVALID INVALID_COMPONENT_TYPE
INVALID_FUNCTION,
INVALID_INSERT
INVALID_MESSAGE_BUFFER
MESSAGE_NOT_FOUND
MESSAGE_SET_NOT_FOUND,
MISSING_INSERT
OPT_INSERT_NOT_FOUND
RETRY_MSG_LOCATE

MEME gate, INQUIRE_MESSAGE_LENGTH function
The INQUIRE_MESSAGE_LENGTH function of the MEME gate is used to find the length of the message
in order to obtain the appropriate size buffer to retrieve the message.

Input parameters
[COMPONENT_ID]

is the component identifier for the message.
MESSAGE_NUMBER

is the numeric message identifier.
[PRODUCT] is an optional product identifier.
[MSGTABLE] indicates that the feature message table is to be used.
[LANGUAGE] is an optional language code.
[INSERT1] through [INSERT10]

are user-supplied inserts, if these are required by the message definition.

Message domain (ME)

Chapter 90. Message domain (ME) 905

Output parameters
MESSAGE_LENGTH

is the length of the message being inquired on.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
INSUFFICIENT_STORAGE
INVALID_MODULE_PTR
INVALID_TEMPLATE

INVALID INVALID_COMPONENT_TYPE
INVALID_FUNCTION
INVALID_INSERT
MESSAGE_NOT_FOUND
MESSAGE_SET_NOT_FOUND
MISSING_INSERT
OPT_INSERT_NOT_FOUND
RETRY_MSG_LOCATE

MEME gate, VALIDATE_LANGUAGE_CODE function
The VALIDATE_LANGUAGE_CODE function of the MEME gate is used to determine whether a specific
three-letter IBM standard national language code is valid. If it is valid, this function returns the equivalent
one-character CICS language suffix. The IBM standard three-character codes, and their corresponding
one-character CICS language suffices, are listed in Table 70 on page 907.

Input parameters
LANGUAGE_CODE

is the three-character national language code to be validated.

Output parameters
[LANGUAGE_SUFFIX]

is the one-character CICS language suffix that corresponds to the input
LANGUAGE_CODE.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION LANGUAGE_CODE_INVALID
LANGUAGE_NOT_SUPPORTED

INVALID INVALID_FUNCTION

Message domain (ME)

906 CICS TS for z/OS: CICS Diagnosis Reference

Table 70. Languages and their codes

NATLANG code NLS code Language

A ENG Alternative English
Q ARA Arabic
1 BEL Byelorussian
L BGR Bulgarian
B PTB Brazilian Portuguese
T DBCS CHT Traditional Chinese
C DBCS CHS Simplified Chinese
2 CSY Czech
D DAN Danish
G DEU German
O ELL Greek
S ESP Spanish
W FIN Finnish
F FRA French
X HEB Hebrew
3 HRV Croatian
4 HUN Hungarian
J ISL Icelandic
I ITA Italian
H DBCS KOR Korean
M MKD Macedonian
9 NLD Dutch
N NOR Norwegian
5 PLK Polish
P PTG Portuguese
6 ROM Romanian
R RUS Russian
Y SHC Serbo-Croatian (Cyrillic)
7 SHL Serbo-Croatian (Latin)
V SVE Swedish
Z THA Thai
8 TRK Turkish
U UKR Ukrainian
Notes:

1. DBCS denotes Double-Byte Character Set languages.

2. A for alternative English. Code letter A means “alternative English” to distinguish your edited English message
tables from the default US English message tables supplied by CICS. The default US English tables are
designated by the language code letter E.

3. The NATLANG code for the selected language is used as the suffix of your edited message data sets that you
can create using the message editing utility. For more information about the message editing utility, see CICS
Operations and Utilities Guide.

MEME gate, VALIDATE_LANGUAGE_SUFFIX function
The VALIDATE_LANGUAGE_SUFFIX function of the MEME gate is used to determine whether a specific
one-character CICS language suffix is valid. If it is valid, this function returns the equivalent
three-character IBM standard national language code. The IBM standard three-character codes, and their
corresponding one-character CICS language suffices, are listed in Table 70.

Input parameters
LANGUAGE_SUFFIX

is the one-character CICS language code to be validated.

Message domain (ME)

Chapter 90. Message domain (ME) 907

Output parameters
[LANGUAGE_CODE]

is the three-character CICS language suffix that corresponds to the input
LANGUAGE_SUFFIX.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND

EXCEPTION LANGUAGE_NOT_SUPPORTED
LANGUAGE_SUFFIX_INVALID

INVALID INVALID_FUNCTION

MEME gate, INQUIRE_MESSAGE function
The INQUIRE_MESSAGE function of the MEME gate is used to find the system default language as a
one-character CICS language suffix and a three-character IBM standard national language code.

Input parameters
None.

Output parameters
DEFAULT_LANGUAGE_CODE

is the three-character code for the default language.
DEFAULT_LANGUAGE_SUFFIX

is the one-character suffix for the default language.
RESPONSE is the domain’s response to the call. It can have either of these values:

OK|DISASTER|INVALID
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

INVALID INVALID_FUNCTION

MESR gate, SET_MESSAGE_OPTIONS function
The SET_MESSAGE_OPTIONS function of the MESR gate is used to set the various message options
specified by the system initialization parameters MSGCASE, MSGLVL, and NATLANG.

Input parameters
[LANGUAGES_USED]

is a list of the languages used in the system.
[MESSAGE_LEVEL]

can be 0 or 1. 0 means that information messages do not appear (are suppressed) at the
console.

[MESSAGE_CASE]
is either MIXED for mixed-case messages, or UPPER for messages to be folded to
uppercase.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|KERNERROR|PURGED

Message domain (ME)

908 CICS TS for z/OS: CICS Diagnosis Reference

[REASON] is returned when RESPONSE is INVALID. It has this value:
INVALID_FUNCTION

Message domain’s generic gate
Table 71 summarizes the message domain’s generic gate. It shows the level-1 trace point IDs of the
modules providing the functions for the gate, the functions provided by the gate, and the generic format for
calls to the gate.

Table 71. Message domain’s generic gate
Gate Trace Function Format

DMDM ME 0101
ME 0102

PRE_INITIALIZE
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

You can find descriptions of these functions and their input and output parameters, in the section dealing
with the corresponding generic formats, in “Domain manager domain’s generic formats” on page 669.

In preinitialization processing, the message domain sets the following message options:

v The national languages to be supported during this CICS run

v The message level for initialization messages

v The message case.

For a cold start, the information comes from the system initialization parameters; for any other type of
start, the information comes from the local catalog, but is then modified by any relevant system
initialization parameters.

The message domain does no quiesce processing or termination processing.

Modules

Module Function

DFHCMAC Displays messages and codes online for the CMAC transaction

DFHMEBM Is executed in an offline environment, and is provided for use by batch utility programs

DFHMEBU Builds a message into a buffer, and also builds a symptom string when required

DFHMEDM Performs the necessary domain manager functions; that is, preinitialize, initialize, quiesce,
and terminate for the message domain

DFHMEDUF ME domain offline dump formatting routine

DFHMEFO Formats a long message into lines of specified length

DFHMEIN Provides all the data required to build a message

Message domain (ME)

Chapter 90. Message domain (ME) 909

Module Function

DFHMEME Handles the following functions:
SEND_MESSAGE sends a message to any individual or combination of

MVS/MCS consoles, or CICS TD queues.
CONVERSE sends a message to any individual or combination of

MVS/MCS consoles and receives a reply from one of
them.

RETRIEVE_MESSAGE builds a message and places it in a buffer passed by the
caller.

INQUIRE_MESSAGE_LENGTH returns the length of a terminal end user message.
INQUIRE_MESSAGE returns the requested data, held by the ME domain (for

example, Default_Language).
VALIDATE_LANGUAGE_CODE checks whether a three-character language code is valid.
VALIDATE_LANGUAGE_SUFFIX checks whether a one-character language suffix is valid.

DFHMESR Collects the system initialization parameter overrides for a particular CICS start

DFHMETRI ME domain offline trace interpretation routine

DFHMEWS Writes a symptom record containing a symptom string to SYS1.LOGREC by using the MVS
SYMRBLD macro

DFHMEWT Provides support to execute the MVS WTOR SVC

Exits
There is one global user exit point in the message domain: XMEOUT. See the CICS Customization Guide
for further information.

Trace
The point IDs for the message domain are of the form ME xxxx; the corresponding trace levels are ME 1,
ME 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Message domain (ME)

910 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 91. Monitoring domain (MN)

The monitoring domain is responsible for all monitoring functions within CICS. These functions enable the
user to measure the amount of CPU, storage, temporary-storage requests, and so on used per task, and
hence charge customers for computing services and help review the performance of a CICS system.

Monitoring domain’s specific gates
Table 72 summarizes the monitoring domain’s specific gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gates, the functions provided by the gates, and whether or not the
functions are available through the exit programming interface (XPI).

Table 72. Monitoring domain’s specific gates
Gate Trace Function XPI

MNMN MN 0201
MN 0202

EXCEPTION_DATA_PUT
PERFORMANCE_DATA_PUT
INQUIRE_MONITORING_DATA
MONITOR
INQUIRE_RESOURCE_DATA

NO
NO
YES*
YES
NO

MNSR MN 0301
MN 0302

SET_MCT_SUFFIX
SET_MONITORING
INQ_MONITORING

NO
NO
NO

MNXM MN 0A01
MN 0A02

TRANSACTION_INITIALIZATION
TRANSACTION_TERMINATION

NO
NO
NO

* In a modified form, without a transaction number or current data buffer.

MNMN gate, EXCEPTION_DATA_PUT function
The EXCEPTION_DATA_PUT function of the MNMN gate is used to produce an exception record at the
completion of an EXCEPTION condition.

Input parameters
EXCEPTION_START

is the start time of the exception in stored clock (STCK) format.
EXCEPTION_STOP

is the stop time of the exception in STCK format.
RESOURCE_TYPE

is the type of resource for which the exception data is to be recorded.
RESOURCE_ID is the identifier of the resource for which the exception data is to be recorded.
EXCEPTION_TYPE

is the type of exception to be recorded.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
INVALID_MONITORING_TOKEN
LOOP

© Copyright IBM Corp. 1997, 2011 911

MNMN gate, PERFORMANCE_DATA_PUT function
The PERFORMANCE_DATA_PUT function of the MNMN gate is used to produce a performance record
and reset task monitoring information for a conversational task or a syncpoint.

Input parameters
RECORD_TYPE is the reason for the record to be output.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
INVALID_MONITORING_TOKEN
LOOP

MNMN gate, INQUIRE_MONITORING_DATA function
The INQUIRE_MONITORING_DATA function of the MNMN gate is used to access a transaction’s
monitoring information.

Input parameters
[TRANSACTION_NUMBER]

is the transaction number for which monitoring data is required.
DATA_BUFFER specifies the address and length of a buffer for the monitoring data.
[CURRENT_DATA_BUFFER]

specifies the address and length of a buffer for the current monitoring data.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION MONITOR_DATA_UNAVAILABLE
LENGTH_ERROR

MNMN gate, MONITOR function
The MONITOR function of the MNMN gate is called to process a user event-monitoring point (EMP).

Input parameters
POINT is a value in the range 0 through 255 corresponding to a monitoring point identifier defined

in the monitoring control table (MCT).
[ENTRYNAME] is an ID qualifier, 1 through 8 bytes, corresponding to an entry name specified in the MCT.
[DATA1] supplies 4 bytes of data to be used in the operations performed by this user’s EMP.
[DATA2] supplies 4 bytes of data to be used in the operations performed by this user’s EMP.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

Monitoring domain (MN)

912 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
INVALID_MONITORING_TOKEN
LOOP

EXCEPTION POINT_NOT_DEFINED
DATA1_NOT_SPECIFIED
DATA2_NOT_SPECIFIED
INVALID_DATA1_VALUE
INVALID_DATA2_VALUE

MNMN gate, INQUIRE_RESOURCE_DATA function
The INQUIRE_RESOURCE_DATA function of the MNMN gate is used to access a transaction’s resource
data when transaction resource monitoring is active.

Input parameters
[TRANSACTION_NUMBER]

is the transaction number for which transactoin resource data is required.
RESOURCE_DATA_BUFFER

specifies the address and length of a buffer for the transaction resource data.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION RESOURCE_DATA_UNAVAILABLE
LENGTH_ERROR

MNMN gate, ACCUMULATE_RMI_TIME function
The ACCUMULATE_RMI_TIME function of the MNMN gate is used to accumulate all of the appropriate
performance class DFHRMI timing fields.

Input parameters
[TRUE_NAME] is the name of the CICS resource manager being used by your

transaction.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible

values are:

RESPONSE Possible REASON values

DISASTER ABEND, LOOP

EXCEPTION INVALID_MONITORING_TOKEN

MNSR gate, SET_MCT_SUFFIX function
The SET_MCT_SUFFIX function of the MNSR gate is used to identify to the monitoring domain the suffix
of the monitoring control table (MCT).

Monitoring domain (MN)

Chapter 91. Monitoring domain (MN) 913

Input parameters
SUFFIX is the 2-character MCT suffix.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION MCT_NOT_FOUND

MNSR gate, SET_MONITORING function
The SET_MONITORING function of the MNSR gate is used to set the monitoring classes on or off and to
change the monitoring options.

Input parameters
[CONVERSE] indicates if a transaction performance class record is to be produced for conversational

tasks for each pair of terminal control I/O requests. It can have either of these values:
YES|NO

[EXCEPTION_STATUS]
indicates the exception class monitoring setting. It can have either of these values:
ON|OFF

[FREQUENCY] is the interval for which monitoring automatically produces a transaction performance class
record for any long-running transaction. Frequency times are 0, or in the range 000100
through 240000. The default frequency value is 0, which means that frequency monitoring
is inactive.

[MONITORING_STATUS]
indicates the monitoring status setting. It can have either of these values:
ON|OFF

[PERFORMANCE_STATUS]
indicates the performance class monitoring setting. It can have either of these values:
ON|OFF

[RESOURCE_STATUS]
indicates the transaction resource class monitoring setting. It can have one of the following
values:
ON|OFF

[SUBSYSTEM_ID]
specifies the 4-character subsystem-id to be used in the MVS workload activity records.
The default is the first four character of the generic applid.

[SYNCPOINT] indicates if a transaction performance class record is to be produced when a transaction
takes an explicit or implicit syncpoint (unit-of-work). It can have either of these values:
YES|NO

[TIME] indicates whether the monitoring timestamp fields returned on the
INQUIRE_MONITORING_DATA function are to be in GMT or Local time. It can have either
of these values:
GMT|LOCAL

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

Monitoring domain (MN)

914 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION INVALID_FREQUENCY

MNSR gate, INQ_MONITORING function
The INQ_MONITORING function of the MNSR gate is used to enquire on the monitoring classes and the
monitoring options.

Input parameters
None.

Output parameters
CONVERSE indicates if a transaction performance class record is to be produced for conversational

tasks for each pair of terminal control I/O requests. It can have either of these values:
YES|NO

EXCEPTION_STATUS
indicates whether exception class monitoring is active. It can have either of these values:
ON|OFF

FREQUENCY is the interval for which monitoring automatically produces a transaction performance class
record for any long-running transaction. Frequency times are 0, or in the range 000100
through 240000. The default frequency value is 0, which means that frequency monitoring
is inactive.

MONITORING_STATUS
indicates whether monitoring is active. It can have either of these values:
ON|OFF

PERFORMANCE_STATUS
indicates whether performance class monitoring is active. It can have either of these
values:
ON|OFF

RESOURCE_STATUS
indicates whether transaction resource class monitoring is active. It can have one of the
the following values:
ON|OFF

SUBSYSTEM_ID specifies the 4-character subsystem-id to be used in the MVS workload activity records.
The default is the first four character of the generic applid. implicit syncpoint (unit-of-work).

SYNCPOINT indicates if a transaction performance class record is to be produced when a transaction
takes an explicit or implicit syncpoint (unit-of-work). It can have either of these values:
YES|NO

TIME indicates whether the monitoring timestamp fields returned on the
INQUIRE_MONITORING_DATA function are to be in GMT or Local time. It can have either
of these values:
GMT|LOCAL

APPLICATION_NAMING
indicates whether application naming support is enabled in the CICS region. It can have
either of these values:
YES|NO

RMI_STATUS indicates whether additional monitoring performance class data is required for the resource
managers used by your transaction. It can have either of these values:
YES|NO

FILE_LIMIT specifies the maximum number of files for which you want CICS to perform transaction
resource monitoring. It can have a value in the range 1 through 64.

Monitoring domain (MN)

Chapter 91. Monitoring domain (MN) 915

TSQUEUE_LIMIT
specifies the maximum number of temporary storage queues for which you want CICS to
perform transaction resource monitoring. It can have a value in the range 1 through 32.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION SUBSYSTEM_ID_NOT_AVAILABLE

MNXM gate, TRANSACTION_INITIALIZATION function
The TRANSACTION_INITIALIZATION function of the MNXM gate is used to inform the monitoring domain
of a transaction attach request so that the monitoring domain can allocate task monitoring storage.

Input parameters
TASK_ATTACH_TIME

is the time when this task was attached.
TCLASS_DELAY_TIME

is the time this task was delayed due to the transaction class (if any) limit for this
transaction being reached.

MXT_DELAY_TIME
is the time this task was delayed due to the maximum user task limit (MXT) being
reached.

INITIAL_DISPATCH_TIME
is the time when this task was first dispatched after attach.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
INVALID_MONITORING_TOKEN
LOOP

MNXM gate, TRANSACTION_TERMINATION function
The TRANSACTION_TERMINATION function of the MNXM gate is used to inform the monitoring domain
of a transaction detach request, so that the monitoring domain can report on task monitoring information
and then release the storage.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

Monitoring domain (MN)

916 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
INVALID_MONITORING_TOKEN
LOOP

Monitoring domain’s generic gates
Table 73 summarizes the monitoring domain’s generic gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gates, the functions provided by the gates, and the generic formats
for calls to the gates.

Table 73. Monitoring domain’s generic gates
Gate Trace Function Format

APUE MN 0601
MN 0602

SET_EXIT_STATUS APUE

DMDM MN 0101
MN 0102

INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

STST MN 0401
MN 0402

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

TISR MN 0801
MN 0802

NOTIFY TISR

XMNT MN 0901
MN 0902

MXT_CHANGE_NOTIFY XMNT

For descriptions of these functions and their input and output parameters, refer to the sections dealing with
the corresponding generic formats:

Functions and parameters

Format APUE—“Application domain’s generic formats” on page 593

Format DMDM—“Domain manager domain’s generic formats” on page 669

Format STST—“Statistics domain’s generic format” on page 1198

Format TISR—“Timer domain’s generic format” on page 1203

Format XMNT—“Transaction manager domain’s generic format” on page 1308.

In initialization processing, the monitoring domain sets the initial monitoring options:
v Monitoring control table suffix
v Initial monitoring status
v Initial exception class monitoring status
v Initial performance class monitoring status
v Initial transaction resource class monitoring status
v Initial converse option
v Initial syncpoint option
v Initial time option
v Initial frequency option
v Initial subsystem id.

For a cold start, the information comes from the system initialization parameters; for any other type of
start, the information comes from the global catalog, but is then modified by any relevant system
initialization parameters.

In addition:

v If necessary, the monitoring control table (MCT) is loaded and initialized.

Monitoring domain (MN)

Chapter 91. Monitoring domain (MN) 917

v If performance class monitoring is active, CPU timing is started.

v The monitoring domain user exit gate is enabled.

v Messages are sent to the console to indicate whether monitoring is active, and what MCT suffix (if any)
is being used.

In quiesce processing, the monitoring domain waits for all transactions that it is monitoring to terminate.
Then the final data in the performance class buffer and the transaction resource class buffer, if any, is
written to SMF.

The monitoring domain does no termination processing.

Modules

Module Function

DFHMNDM Handles the following requests:
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHMNDUF Formats the MN domain control blocks in a CICS system dump

DFHMNMN Handles the following requests:
EXCEPTION_DATA_PUT
PERFORMANCE_DATA_PUT
INQUIRE_MONITORING_DATA
MONITOR
INQUIRE_RESOURCE_DATA
ACCUMULATE_RMI_TIME

DFHMNNT Handles the following request:
MXT_CHANGE_NOTIFY

DFHMNSR Handles the following requests:
SET_MCT_SUFFIX
SET_MONITORING
INQ_MONITORING

DFHMNST Handles the following requests:
COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

DFHMNSU Handles monitoring domain subroutine requests of format MNSU:
v UPDATE_CATALOGUE
v MONITORING_DATASET_PUT
v WLM_CONNECT
v WLM_DISCONNECT
v WLM_REPORT
v WLM_NOTIFY
v PB_ALLOCATE
v PB_DELETE

DFHMNSVC Provides SMFEWTM, WLM_CONNECT, WLM_DISCONNECT, WLM_REPORT, WLM_NOTIFY,
WLM_PB_CREATE, and WLM_PB_DELETE authorized services with GTF tracing (GTRACE)

DFHMNTI Handles the following request:
NOTIFY

DFHMNTRI Provides a trace interpretation routine for CICS dumps and traces

DFHMNUE Provides a SET_EXIT_STATUS (services user exit) routine to enable or disable an exit

DFHMNXM Handles the following requests:
TRANSACTION_INITIALIZATION
TRANSACTION_TERMINATION

Monitoring domain (MN)

918 CICS TS for z/OS: CICS Diagnosis Reference

Exits
There is one global user exit point in the monitoring domain: XMNOUT. See the CICS Customization
Guide for further information.

Trace
The point IDs for the monitoring domain are of the form MN xxxx; the corresponding trace levels are
MN 1, MN 3, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Monitoring domain (MN)

Chapter 91. Monitoring domain (MN) 919

920 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 92. Enqueue Domain (NQ)

The NQ domain provides UOW based locking services. This is provided to the local clients FC, TD and
TS. It also services the EXEC CICS ENQ/DEQ requests.

The most common functions provided by the NQ domain are:
CREATE_ENQUEUE_POOL

This function creates a separate enqueue pool for the caller. A token is returned which the
caller specifies on all requests associated with that pool.

DEACTIVATE This function converts an active enqueue into retained state. The caller must already own
the enqueue.

REACQUIRE_ENQUEUE
NQ domain doesn't recover enqueues over a CICS restart. Instead resource owners use
this function to reacquire enqueues that were held by inflight and indoubt UOWs.

ENQUEUE This functions obtains an enqueue from the specified enqueue pool in active state.
DEQUEUE This functions releases an active enqueue owned by the current UOW from the specified

enqueue pool.
INQUIRE_NQRNAME

This function calls INQ_NQRNAME to see if an enqueue name entry exists in
NQRNAME_LIST. If the name is either an exact or generic match, INQUIRE_NQRNAME
returns the 4-character SCOPE name, enqmodel STATE and ann OK RESPONSE.
Otherwise it returns an EXCEPTION REASON(NQRNAME_NOT_FOUND).

ADD_REPLACE_ENQMODEL
This function adds an enqmodel definition to both the NQRN directory (keyed by enqmodel
name, and to the NQRNAME_LIST (keyed by the variable length NQRNAME). If the
enqmodel already exists the entry is replaced.

DISCARD_ENQMODEL
Remove an enqmodel definition from both the NQRN directory and from the
NQRNAME_LIST. If the enqmodel is not installed, exception 'ENQMODEL_NOT_FOUND'
is returned.

INQUIRE_ENQMODEL
Uses directory DDLO_LOCATE to retrieve information about a specified enqmodel
definition in the NQRN directory.

If found, it returns the 1 to 255 character NQRNAME, the 4-character SCOPE name, the
enqmodel STATE and ann OK RESPONSE. Otherwise it returns an EXCEPTION
REASON(ENQMODEL_NOT_FOUND).

SET_ENQMODEL This function uses directory DDLO_LOCATE to see if an enqmodel entry exists in the
NQRN directory. If found, it enables or disables the entry. Otherwise it returns an
EXCEPTION REASON(ENQMODEL_NOT_FOUND).

Enqueue domain's specific gates
Table 74 summarizes the NQ domain's specific gate. It shows the level-1 trace point IDs of the modules
providing the functions for the gate and the functions provided by the gate. The DFHNQEDX XPI macro
provides ENQUEUE and DEQUEUE functions for the NQ domain.

Table 74. NQ domain’s specific gates
Gate Trace Function

NQNQ NQ 0201
NQ 0202

CREATE_ENQUEUE_POOL
DEACTIVATE
REACQUIRE_ENQUEUE
SET_NQRNAME_LIST
DEQUEUE_TASK

NQED NQ 0301
NQ 0302

ENQUEUE
DEQUEUE

© Copyright IBM Corp. 1997, 2011 921

Table 74. NQ domain’s specific gates (continued)
Gate Trace Function

NQIB NQ 0401
NQ 0402

INQUIRE_ENQUEUE
START_BROWSE_ENQUEUE
GET_NEXT_ENQUEUE
END_BROWSE_ENQUEUE

NQRN NQ 0601
NQ 0602

INQUIRE_NQRNAME
ADD_REPLACE_ENQMODEL
DISCARD_ENQMODEL
REMOVE_ENQMODEL
INQUIRE_ENQMODEL
START_BROWSE_ENQMODEL
GET_NEXT_ENQMODEL
END_BROWSE_ENQMODEL
SET_ENQMODEL
COMMIT_ENQMODEL
RESTORE_DIRECTORY

NQIE NQ FF50
NQ FF51

INTERPRET_ENQUEUE

NQNQ gate, CREATE_ENQUEUE_POOL function
This function creates a separate enqueue pool for the caller. A token is returned which the caller specifies
on all requests associated with that pool.

Input parameters:
POOL_NAME The eight character name of the new enqueue pool.
EXPECTED_NAME_LENGTH

The expected length for enqueue names in the pool.

For pools with fixed length enqueue names this should be the length of the names that are
going to be enqueued upon.

For pools that are to contain variable length enqueue names this should be a length that
would satisfy 'most' of the requests to be made in the pool.

Note that is no maximum length for enqueue names. However, requests will only be
handled inline if the length of the enqueue name is less than or equal to the
EXPECTED_NAME_LENGTH. The inline macro only copes with names of less than or
equal to 256 characters. For this reason an error will be diagnosed if a value of greater
than 256 is specified for this parameter.

SHUNT_ACTION Indicates the default action that is to be performed to UOW lifetime enqueues in this pool
if their owning UOW is shunted. Note that most enqueue pools will require the same
action to be performed for all enqueues in that pool. However, the ENQUEUE function
allows this default to be overridden for particular enqueue requests.

The possible values are as follows:
RELEASE

The enqueue(s) will be released if the owning UOW is shunted.
RETAIN

The enqueue(s) will be retained if the owning UOW is shunted.
IGNORE

The shunt will be ignored. The enqueue(s) will remain in the same state as currently
held in.

Transaction lifetime enqueues are automatically released when a shunt occurs.
ERROR_LEVEL Indicates the severity of the error response that is to be returned for the following errors

made while using this pool:
v DEQUEUE

– Enqueue_not_owned
– Enqueue_locked

v REACQUIRE_ENQUEUE

Enqueue Domain (NQ)

922 CICS TS for z/OS: CICS Diagnosis Reference

– Enqueue_locked
– Enqueue_active

v DEACTIVATE
– Enqueue_not_owned
– Enqueue_not_active

The possible values for ERROR_LEVEL are as follows:
EXCEPTION_RESPONSE

The above errors are to be returned with an exception response.
INVALID_RESPONSE

The above errors are to be returned with an invalid response. (i.e. FFDC is to be
performed).

Note: It is expected that only the EXEC and the KC enqueue pools will specify
EXCEPTION_RESPONSE since the DFHKC service previously used by them
allowed these sorts of error to go by undetected.

EXEC_INTERPRETER
Indicates how enqueues belonging to the enqueue pool are to be interpreted by the EXEC
CICS INQUIRE UOWENQ command.

The possible values are as follows:
NONE

No interpreter has been supplied so enqueues belonging to this pool will be ignored by
the INQUIRE UOWENQ command.

DEFAULT
Enqueues are to be returned by the INQUIRE UOWENQ command. The default NQ
domain interpreter will be called to perform the interpretation. This will map the outputs
of the INQUIRE UOWENQ command as follows:
TYPE

Will be the CVDA corresponding to the ENQUEUE_TYPE parameter supplied on
this call.

RESOURCE
Will be ENQUEUE_NAME1 as supplied on the NQED_ENQUEUE function.

QUALIFIER
Will be ENQUEUE_NAME2 if supplied on the NQED_ENQUEUE function. If not
then no QUALIFIER data will be returned.

OWN
Enqueues are to be returned by the INQUIRE UOWENQ command. A routine provided
by the pool owner will perform the interpretation. In this case the entry point of the
routine must be passed in the INTERPRETER_ADDR parameter.

Note: The routine will be called by a kernel subroutine call, not by a domain call.
Consequently it will execute in the domain of the caller (i.e. AP domain).

OWN_INTERPRETER_ADDRESS
Entry point of interpreter routine for this pool. Should only be supplied for pools which
specify a value of OWN for the EXEC_INTERPRETER parameter.

ENQUEUE_TYPE The enqueue type that is to be returned by the default interpreter. Should only be supplied
for pools which specify a value of DEFAULT for the EXEC_INTERPRETER parameter.

The possible values are as follows and these map onto the CVDA values for the TYPE
field as detailed under the EXEC CICS INQUIRE UOWENQ command.
v DATASET
v EXECENQ
v EXECENQADDR
v EXECENQPLEX
v FILE
v TDQUEUE

Enqueue Domain (NQ)

Chapter 92. Enqueue Domain (NQ) 923

v TSQUEUE
v DISPATCHER

Output parameters:
POOL_TOKEN Token returned which identifies the newly created enqueue pool.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INTERPRETER_ADDR_EXPECTED
ENQUEUE_TYPE_EXPECTED
DUPLICATE_POOL_NAME
INVALID_NAME_LENGTH

NQNQ gate, DEACTIVATE function
This function converts an active enqueue into retained state. The caller must already own the enqueue.

Input parameters:
POOL_TOKEN Token representing enqueue pool from which the enqueue is to be deactivated.
ENQUEUE_TOKEN

Token representing the enqueue that is to be deactivated.

Slightly better performance is achieved for callers that use the token method for this
function.

ENQUEUE_NAME1
A block (addr,len) identifying the name of the enqueue to be deactivated.

Or alternatively identifies the prefix of the enqueue name which when combined with the
ENQUEUE_NAME2 parameter forms the name of the enqueue to be deactivated.

ENQUEUE_NAME2
A block (addr,len) identifying the second half of the enqueue name.

Output parameters:
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION ENQUEUE_NOT_OWNED
ENQUEUE_NOT_ACTIVE

INVALID ENQUEUE_NOT_OWNED
ENQUEUE_NOT_ACTIVE
TRANSACTION_ENQUEUE
INVALID_POOL_TOKEN

NQNQ gate, REACQUIRE_ENQUEUE function
NQ domain doesn't recover enqueues over a CICS restart. Instead resource owners use this function to
reacquire enqueues that were held by inflight and indoubt UOWs.

Enqueue Domain (NQ)

924 CICS TS for z/OS: CICS Diagnosis Reference

The enqueue can be reacquired in either active or retained state. The calling UOW must currently be
shunted.

No MAX_LIFETIME input is provided since such enqueues are only ever associated with a single UOW.

The same rules as documented for the mainline ENQUEUE function apply to the shunt action that will be
associated with the reacquired enqueue.

Input parameters:
POOL_TOKEN Token representing enqueue pool from which the enqueue is to be allocated from.
ENQUEUE_NAME1

A block (addr,len) identifying the name of the enqueue.

Or alternatively identifies the prefix of the enqueue name which when combined with the
ENQUEUE_NAME2 parameter forms the name being enqueued on.

ENQUEUE_NAME2
A block (addr,len) identifying the second half of the enqueue name.

STATE The state that the enqueue is to be reacquired in.

The possible states are as follows:
ACTIVE

The enqueue is to be reacquired in active state.
RETAINED

The enqueue is to be reacquired in retained state.
SHUNT_ACTION Indicates the action that is to be performed if the UOW reacquiring the enqueue is shunted

again. This parameter acts as an override, if not supplied then the default shunt action
specified when the pool was created is assumed for this request.

The possible overrides are as follows:
RELEASE

The enqueue will be released if the UOW is shunted again.
RETAIN

The enqueue will be retained if the UOW is shunted again.
IGNORE

The shunt will be ignored. The enqueue will remain in the same state as it is currently
held in.

Output parameters:
ENQUEUE_TOKEN

Token returned to represent the enqueue that has been successfully reacquired.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION ENQUEUE_LOCKED
ENQUEUE_ACTIVE

INVALID ENQUEUE_LOCKED
ENQUEUE_ACTIVE
CALLER_NOT_SHUNTED
INVALID_POOL_TOKEN

NQNQ gate, SET_NQRNAME_LIST function
This function is called from three places in dfhnqrn:

Enqueue Domain (NQ)

Chapter 92. Enqueue Domain (NQ) 925

discard_enqmodel
IF nqrmodel delete is set THEN the specified nqrmodel is removed from nqrname_list.

Add_replace_enqmodel
IF nqrmodel add is set THEN the specified nqrmodel is added to nqrname_list.

set_nqrmodel IF neither delete or add is set THEN the specified nqrmodel is set disabled.

Input parameters:
MODEL_TOKEN The address of the nqrmodel to be set or added to nqrname_list.
POOL_TOKEN The pool to be searched for matching enqueues
POOL_TWO An optional second pool to be searched for matching enqueues

Output parameters:
FREE_TOKEN Address of Model being removed.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION or PURGED. Possible values

are:
NQRMODEL_NOT_FOUND

The nqrmodel could not be found in nqrname_list
FREE_NQRMODEL

A nqrmodel has been removed and must be freemained. Its address is in free_token.

NQED gate, ENQUEUE function
This functions obtains an enqueue from the specified enqueue pool in active state.

Input parameters:
POOL_TOKEN Token representing enqueue pool from which the enqueue is to be allocated.
ENQUEUE_NAME1

A block (addr,len) identifying the name being enqueued on.

Or alternatively identifies the prefix of the enqueue name which when combined with the
ENQUEUE_NAME2 parameter forms the name being enqueued on.

ENQUEUE_NAME2
A block (addr,len) identifying the second half of the enqueue name.

MAX_LIFETIME Indicates the maximum duration that the enqueue is to be held for. The possible values
are as follows:
UOW

The enqueue will be released if it is held when the current UOW commits. This is the
default value when not supplied on the call.

TRANSACTION
The enqueue will be released if it is held when the last UOW in the current transaction
commits.

DISPATCHER_TASK
The enqueue will be released if it is held when a DEQUEUE_ALL request is issued by
the owning dispatcher task. This is the only value permitted when POOL_TOKEN is
not supplied on the call.

WAIT Indicates whether the caller wishes to wait if the requested enqueue is currently held in
the pool by a different UOW. The possible values are as follows:
YES

The caller will be suspended if the enqueue is busy. This is the default value when not
supplied on the call.

NO The ENQUEUE_BUSY exception is returned to the caller if the enqueue is busy.

Note that callers specifying WAIT(NO) should still expect to suspend for the NQ domain
lock.

SHUNT_ACTION Indicates the action that is to be performed if this UOW is shunted whilst it owns the

Enqueue Domain (NQ)

926 CICS TS for z/OS: CICS Diagnosis Reference

enqueue. This parameter acts as an override, if not supplied then the default shunt action
specified when the pool was created is assumed for this enqueue request.

The shunt action is only applicable to UOW lifetime enqueues. An error is diagnosed if this
parameter is supplied on a request for a transaction lifetime enqueue.

The possible overrides are as follows:
RELEASE

The enqueue will be released if the UOW is shunted.
RETAIN

The enqueue will be retained if the UOW is shunted.
IGNORE

The shunt will be ignored. The enqueue will remain in the same state as it is currently
held in.

Output parameters:
ENQUEUE_TOKEN

Token returned to represent the enqueue that has been successfully returned.

The token can then be used on the corresponding DEQUEUE request.
DUPLICATE_REQUEST

When an OK is returned this indicates whether the caller already owned the enqueue or
not:
YES

The caller already owned the enqueue.
NO The caller didn't already own the enqueue.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, PURGED or INVALID.
Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION ENQUEUE_BUSY
ENQUEUE_LOCKED
ENQUEUE_DISABLED
LIMIT_EXCEEDED
SYSENQ_FAILURE

PURGED TASK_CANCELLED
TIMED_OUT

INVALID SHUNT_ACTION_NOT_EXPECTED
INVALID_POOL_TOKEN

NQED gate, DEQUEUE function
This functions releases an active enqueue owned by the current UOW from the specified enqueue pool.

Input parameters:
POOL_TOKEN Token representing enqueue pool from which the enqueue is to be released.
ENQUEUE_TOKEN

Token representing the enqueue that is to be released.

Slightly better performance is achieved for callers that use the token method for releasing
their enqueues.

ENQUEUE_NAME1
A block (addr,len) identifying the name of the enqueue being released.

Enqueue Domain (NQ)

Chapter 92. Enqueue Domain (NQ) 927

Or alternatively identifies the prefix of the enqueue name which when combined with the
ENQUEUE_NAME2 parameter forms the name of the enqueue being released.

ENQUEUE_NAME2
A block (addr,len) identifying the second half of the enqueue name.

MAX_LIFETIME Indicates the maximum duration of the enqueue being released. The possible values are
as follows:
UOW

The enqueue was acquired with a duration of the current UOW. This is the default
value when not supplied on the call.

TRANSACTION
The enqueue was acquired with a duration of the last UOW of the current transaction.

Output parameters:
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION ENQUEUE_NOT_OWNED
ENQUEUE_LOCKED

INVALID ENQUEUE_NOT_OWNED
ENQUEUE_LOCKED
INVALID_POOL_TOKEN

NQIB gate, INQUIRE_ENQUEUE function
This functions returns information about a particular enqueue. Note that the pool containing the enqueue
must be passed since it is a logical extension to the enqueue name.

For inquiries by token it is the caller's responsibility to ensure that the enqueue which the token represents
is still held.

Input parameters:
POOL_TOKEN The token identifying the pool from which the enqueue being inquired about belongs.
ENQUEUE_TOKEN

Token representing the enqueue that is being inquired upon.
ENQUEUE_NAME1

A block (addr,len) identifying the name of the enqueue be inquired upon.

Or alternatively identifies the prefix of the enqueue name which when combined with the
ENQUEUE_NAME2 parameter forms the name of the enqueue being inquired upon.

ENQUEUE_NAME2
A block (addr,len) identifying the second half of the enqueue name.

Output parameters:
ENQUEUE_NAME_OUT

A buffer into which the enqueue name is returned. The caller specifies the address and
maximum length of the data area into which the enqueue name will be returned. If the
enqueue name is too big for the buffer then the data is truncated and an OK response is
returned. The actual length of the name is returned in enqueue_name_out_n.

Typically this parameter will only be of interest to callers inquiring by enqueue token.
POOL_NAME The name of the pool containing the enqueue.
STATE The state that the enqueue is held in.

Enqueue Domain (NQ)

928 CICS TS for z/OS: CICS Diagnosis Reference

ACTIVE
The enqueue is held in active state.

RETAINED
The enqueue is held in retained state.

LOCAL_UOWID The local UOWID of the UOW which owns the enqueue
UOW_LIFETIME The number of times the enqueue is held with UOW lifetime.
TRANSACTION_LIFETIME

The number of times the enqueue is held with TRANSACTION lifetime.
NUM_WAITERS The number of transactions waiting for this enqueue.
NUM_LOCKED_FAILURES

Returns the number of failed requests for this enqueue whilst it is held in retained state.
SHUNT_ACTION The action that would be performed to this enqueue should its owning UOW be shunted.

The possible values are as follows:
RELEASE

The enqueue will be released.
RETAIN

The enqueue will be retained.
IGNORE

The shunt will be ignored and the enqueue will remain in the same state.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION ENQUEUE_NOT_FOUND

INVALID INVALID_POOL_TOKEN

NQIB gate, START_BROWSE_ENQUEUE function
This function initiates a browse of all enqueues currently in the system or currently associated with a given
UOW.

The browse returns both enqueue owners and enqueue waiters. The RELATION output parameter on
GET_NEXT_ENQUEUE indicates whether the data being returned is associated with the enqueue owner
or a UOW waiting for that enqueue.

When a system wide browse is initiated the first enqueue in the system is returned with
RELATION(OWNER). If the enqueue has any waiters then the same enqueue will be returned again for
each of the waiters but this time with RELATION(WAITER). The data returned will be that associated with
that particular waiter. After the last waiter has been returned the next owned enqueue will be returned.

If the browse is restricted to only a particular UOW then only the enqueues that UOW owns will be
returned. If the UOW is waiting for an enqueue this will also be returned.

The order in which the enqueues are returned is undefined, however enqueue waiters are always returned
consecutively after their enqueue owner

As with other types of CICS browses the state isn't locked for the duration of the browse. Thus for
example, there is no guarantee that the owner returned on a previous GET_NEXT_ENQUEUE is still the
owner by the time each of its waiters are returned.

Enqueue Domain (NQ)

Chapter 92. Enqueue Domain (NQ) 929

Input parameters:
LOCAL_UOWID Identifies the unit of work if the browse is to be restricted to only those enqueues owned

and being waited for by a particular UOW.

If omitted then browse will return all enqueue owners and waiters in the system.
STABLE_ENQUEUES

Specifies that the caller will complete the browse without issuing any further ENQ or DEQ
requests. Applies only if LOCAL_UOWID is also specified and names the caller's own
UOWID.

Output parameters:
BROWSE_TOKEN Token to be used by the caller on subsequent operations associated with this browse.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION NO_UOW_ENVIRONMENT

NQIB gate, GET_NEXT_ENQUEUE function
This functions returns information about the next enqueue owner or waiter in a browse.

Input parameters:
BROWSE_TOKEN The token for the current browse.

Output parameters:
ENQUEUE_NAME_OUT

A buffer into which the enqueue name is returned. The caller specifies the address and
maximum length of the data area into which the enqueue name will be returned. If the
enqueue name is too big for the buffer then the data is truncated and an OK response is
returned. The actual length of the name is returned in enqueue_name_out_n.

RELATION Indicates whether the data being returned is associated with owner or a UOW waiting for
the enqueue.
OWNER

The data is associated with the owner of the returned enqueue.
WAITER

The data is associated with a waiter of the returned enqueue.
POOL_NAME The name of the pool containing the enqueue.
STATE The state that the enqueue is held in.

ACTIVE
The enqueue is held in active state.

RETAINED
The enqueue is held in retained state.

LOCAL_UOWID The local UOWID of the UOW which owns or is waiting for the enqueue.
UOW_LIFETIME For an enqueue returned with RELATION(OWNER) the number of times it is held with

UOW lifetime.

For an enqueue returned with RELATION(WAITER) a count of one indicates that the
enqueue was requested with UOW lifetime.

TRANSACTION_LIFETIME
For an enqueue returned with RELATION(OWNER) the number of times it is held with
TRANSACTION lifetime.

For an enqueue returned with RELATION(WAITER) a count of one indicates that the
enqueue was requested with TRANSACTION lifetime.

Enqueue Domain (NQ)

930 CICS TS for z/OS: CICS Diagnosis Reference

NUM_WAITERS The number of transactions waiting for this enqueue.
NUM_LOCKED_FAILURES

Returns the number of failed requests for this enqueue whilst it is held in retained state.
SHUNT_ACTION The action that would be performed to this enqueue should its owning UOW be shunted.

The possible values are as follows:
RELEASE

The enqueue will be released.
RETAIN

The enqueue will be retained.
IGNORE

The shunt will be ignored and the enqueue will remain in the same state.
INTERPRETER_ADDRESS

The address of a routine which should be called with the INTERPRET_ENQUEUE function
in order to interpret the enqueue for the EXEC CICS INQUIRE UOWENQ command.

If a zero address is returned then the enqueue isn't to be returned by the INQUIRE
UOWENQ command.

POOL_TOKEN Token which identifies the pool which the enqueue owner or waiter belongs.
ENQUEUE_NAME2_LENGTH

The length of the second part of the enqueue name if the enqueue was originally specified
in two parts (i.e. ENQUEUE_NAME1 and ENQUEUE_NAME2).

If the ENQUEUE_NAME2 parameter wasn't originally specified for this enqueue then zero
will be returned.

ENQUEUE_TOKEN
Token returned only when the enqueue is owned by the caller. Parameter is set to zero for
all other enqueues returned on the browse.

RESOURCE_FILTER
The resource filter as specified in the RESOURCE option on the ENQUIRE UOWENQ
command.

RESOURCE_FILTER_LEN
The length of the RESOURCE_FILTER parameter.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION BROWSE_END

INVALID INVALID_BROWSE_TOKEN

NQIB gate, END_BROWSE_ENQUEUE function
This functions terminates a browse of the enqueues.

Input parameters:
BROWSE_TOKEN The token for the browse that is to be terminated.

Output parameters:
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

Enqueue Domain (NQ)

Chapter 92. Enqueue Domain (NQ) 931

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_BROWSE_TOKEN

NQRN gate, ENQUEUE function
This function calls INQ_NQRNAME to see if an enqueue name entry exists in NQRNAME_LIST.

If the name is either an exact or generic match, INQUIRE_NQRNAME returns the 4-character SCOPE
name, enqmodel STATE and ann OK RESPONSE. Otherwise it returns an EXCEPTION
REASON(NQRNAME_NOT_FOUND).

Input parameters:
NQRNAME A buffer giving a 1 to 255 char name and length of the resource to be located.
MSG0105 YES|NO, indicating whether message DFHNQ0105 is to be issued if the matching

enqmodel is disabled or in the waiting state.

Output parameters:
SCOPE The 4-character scope identifier for the resource. Four blanks indicates that the enqueue

has local scope.
STATE

ENABLED
Matching ENQ/DEQ requests should be processed.

DISABLED
Matching ENQ/DEQ requests should be rejected, and the issuing task abended
abcode ENQ_DISABLED.

WAITING
Matching ENQ/DEQ requests should be rejected, and the issuing task abended
abcode ENQ_DISABLED. There are INSTALL, CREATE, or DISCARD requests
waiting to be processed.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, PURGED or INVALID.
Possible values are:
NQRNAME_NOT_FOUND

The name does not exist in the table.
ACQUIRE_LOCK_FAILED

Attempt to acquire a shared NQRNAME lock failed.
RELEASE_LOCK_FAILED

Attempt to release a shared NQRNAME lock failed.

NQRN gate, ADD_REPLACE_ENQMODEL function
This function adds an enqmodel definition to both the NQRN directory (keyed by enqmodel name, and to
the NQRNAME_LIST (keyed by the variable length NQRNAME).

If the enqmodel already exists the entry is replaced. The replace is a discard then add operation.

If an attempt is made to create a deep enqmodel nesting, or if another enqmodel with the same nqrname
is already installed, then msg NQ0106 is issued and a 'DUPLICATE_NQRNAME' exception is returned.

Input parameters:
CALLER COLDINST, RDOINST or RESTART indicating A cold start, An online install or The input is

in the MODEL_TOKEN respectively.
CATALOG YES or NO indicating whether the record should be cataloged.

Enqueue Domain (NQ)

932 CICS TS for z/OS: CICS Diagnosis Reference

ENQMODEL The 8-character identifier of the resource to be added.
MODEL_TOKEN The address of the record obtained from the catalogue to be restored.
SCOPE The 4-character scope identifier for the resource. If ommitted or specified as blanks,

matching ENQs will have LOCAL scope.
STATE ENABLED|DISABLED is the state in which to install the enqmodel. If ommitted, ENABLED

is assumed.
NQRNAME A buffer giving the 1 to 255 character name and length of the ENQ name or stem* to be

added.

Output parameters:
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, PURGED or INVALID.

Possible values are:
INVALID_PARAMETERS

One of the input parameters is invalid
DUPLICATE_NQRNAME

An attempt has been made to create a deep enqmodel nesting, or another enqmodel
with the same nqrname is already installed.

DUPLICATE_ENABLED
An attempt to create an enabled enqmodel failed, because a less specific enqmodel is
enabled.

CATALOG_WRITE_FAILED
COMMIT was specified but the record was not written to the catalogue.

GETMAIN_FAILED
The getmain for the NQRN storage failed.

DIRECTORY_ADD_FAILED
The DFHDDDIM ADD_ENTRY failed to add the ENQMODEL entry.

DIRECTORY_DELETE_FAILED
The DFHDDDIM DELETE_ENTRY failed to delete the ENQMODEL entry.

ACQUIRE_LOCK_FAILED
Attempt to acquire an exclusive NQRNAME lock failed.

RELEASE_LOCK_FAILED
Attempt to release an exclusive NQRNAME lock failed.

NQRN gate, DISCARD_ENQMODEL function
Remove an enqmodel definition from both the NQRN directory and from the NQRNAME_LIST.

If the enqmodel is not installed, an 'ENQMODEL_NOT_FOUND' exception is returned.

The ENQMODEL is put into the WAITING state until there are no enqueues in the local system which
match the ENQNAME pattern. It is then removed from the local system.

Input parameters:
ENQMODEL The 8-character identifier of the resource to be DELETED.

Output parameters:
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

ENQMODEL_NOT_FOUND
The name is not in the NQRN directory.

CATALOG_DELETE_FAILED
An attempt to delete the ENQMODEL ENTRY from the GCD failed.

ACQUIRE_LOCK_FAILED
Attempt to acquire an exclusive NQRNAME lock failed.

Enqueue Domain (NQ)

Chapter 92. Enqueue Domain (NQ) 933

RELEASE_LOCK_FAILED
Attempt to release an exclusive NQRNAME lock failed.

NQRN gate, INQUIRE_ENQMODEL function
Uses directory DDLO_LOCATE to retrieve information about a specified enqmodel definition in the NQRN
directory.

If found, it returns the 1 to 255 character NQRNAME, the 4-character SCOPE name, the enqmodel STATE
and ann OK RESPONSE. Otherwise it returns an EXCEPTION REASON(ENQMODEL_NOT_FOUND).

Input parameters:
ENQMODEL The 8-character identifier of the entry to be returned.

Output parameters:
NQRNAME A buffer returning the 1 to 255 character name and length of the ENQ name or generic

stem*
SCOPE Returns the 4-character scope identifier for the resource. Four blanks indicates that the

enqueue has local scope.
STATE

ENABLED
Matching ENQ/DEQ requests should be processed.

DISABLED
Matching ENQ/DEQ requests should be rejected, and the issuing task abended
abcode ENQ_DISABLED.

WAITING
Matching ENQ/DEQ requests should be rejected, and the issuing task abended
abcode ENQ_DISABLED. There are INSTALL, CREATE, or DISCARD requests
waiting to be processed.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER

[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:
ENQMODEL_NOT_FOUND

The name does not exist in the directory.
DIRECTORY_LOCATE_FAILED

Directory DDLO_LOCATE failed with something other than NOT_FOUND.
ACQUIRE_LOCK_FAILED

Attempt to acquire a shared NQRNAME lock failed.
RELEASE_LOCK_FAILED

Attempt to release a shared NQRNAME lock failed.

NQRN gate, SET_ENQMODEL function
This function uses directory DDLO_LOCATE to see if an enqmodel entry exists in the NQRN directory. If
found, it calls SET_ENQMODEL to enable or disable the entry. Otherwise it returns an EXCEPTION
REASON(ENQMODEL_NOT_FOUND).

Enqmodels forming nested generic nqrnames must be enabled in order, from the most to the least
specific. I.e. A more specific enqmodel may not be enabled if a less specific enqmodel is enabled. If
attempted, msg NQ0107 is issued and EXCEPTION 'DUPLICATE_ENABLED' is returned to the caller.

You cannot enable/disable an enqmodel which is in the waiting state. If attempted, EXCEPTION
'ENQMODEL_WAITING' is returned to the caller.

Input parameters:
ENQMODEL The 8-character identifier of the entry to be enabled/disabled.
STATE

Enqueue Domain (NQ)

934 CICS TS for z/OS: CICS Diagnosis Reference

ENABLED
The enqmodel is to be enabled.

DISABLED
The enqmodel is to be disabled.

Output parameters:
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

ENQMODEL_NOT_FOUND
The name does not exist in the directory.

ENQMODEL_WAITING
The enqmodel is in the WAITING state.

DUPLICATE_ENABLED
Attempt to enable/disable an enqmodel failed, because a less specific enqmodel is
enabled.

DIRECTORY_LOCATE_FAILED
A DDLO_LOCATE failed with something other than NOT_FOUND.

CATALOG_UPDATE_FAILED
Attempt to update the enqmodel on the global catalog failed.

ACQUIRE_LOCK_FAILED
Attempt to acquire an exclusive NQRNAME lock failed.

RELEASE_LOCK_FAILED
Attempt to release an exclusive NQRNAME lock failed.

NQIE gate, INTERPRET_ENQUEUE function
This function interprets the passed enqueue prior to it being returned by the EXEC CICS INQUIRE
UOWENQ command. The function takes the enqueue to be interpreted as input and returns
ENQUEUE_TYPE, RESOURCE and QUALIFIER to the caller (EXEC layer).

Each enqueue pool can either

v not have an interpreter and consequently not have its enqueues returned by the INQUIRE UOWENQ
command

v rely upon a default interpreter supplied by NQ domain, (DFHNQIE)

v supply its own interpreter routine.

This is specified when the pool is created.

Input parameters:
POOL_NAME Name of the pool containing the enqueue to be interpreted.

Note that an interpreter may interpret enqueues from more than one pool.
POOL_TOKEN Token corresponding to the pool containing the enqueue to be interpreted
ENQUEUE_NAME A block (addr,len) identifying the full name of the enqueue to be interpreted.
ENQUEUE_NAME2_LENGTH

The length of the second part of the enqueue name if the enqueue was originally specified
in two parts (i.e. ENQUEUE_NAME1 and ENQUEUE_NAME2).

If the ENQUEUE_NAME2 parameter wasn't originally specified for this enqueue then this
will contain zero.

Output parameters:
RESOURCE_BUFFER

A buffer into which the data for the RESOURCE field is returned. The caller specifies the
address and maximum length of the data area into which the RESOURCE data will be
returned. If the data is too big for the buffer then the data is truncated and an OK
response is returned. The actual length of the name is returned in resource_buffer_n.

Enqueue Domain (NQ)

Chapter 92. Enqueue Domain (NQ) 935

QUALIFIER_BUFFER
A buffer into which the data for the QUALIFIER field is returned. The caller specifies the
address and maximum length of the data area into which the QUALIFIER data will be
returned. If the data is too big for the buffer then the data is truncated and an OK
response is returned. The actual length of the name is returned in qualifer_buffer_n.

If there is no QUALIFIER data then no data should be returned and the length of the data
(qualifier_buffer_n) be returned as zero.

ENQUEUE_TYPE The TYPE of the enqueue being returned.

The possible values are as follows and these map onto the CVDA values for the TYPE
field as detailed under the EXEC CICS INQUIRE UOWENQ command.

DATASET
EXECENQ
EXECENQADDR
FILE
TDQUEUE
TSQUEUE

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_ENQUEUE

Enqueue domain’s generic gates
Table 75 summarizes the NQ domain’s generic gates. It shows the level-1 trace point IDs of the modules
providing the functions for the gates, the functions provided by the gates, and the generic formats for calls
to the gates.

Table 75. NQ domain’s generic gates
Gate Trace Function Format

DMDM NQ 0101
NQ 0102

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

STST NQ 0501
NQ 0502

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

RMRO NQ 0201
NQ 0202

PERFORM_PREPARE PERFORM_COMMIT PERFORM_SHUNT
PERFORM_UNSHUNT

RMRO

For descriptions of these functions and their input and output parameters, refer to the Sections dealing
with the corresponding generic formats:

Functions and parameters

Format DMDM—Chapter 78, “Domain manager domain (DM),” on page 663

Format STST—“System programming command flows” on page 264

Format RMRO—Chapter 99, “Recovery Manager Domain (RM),” on page 1061

PERFORM_PREPARE is a no-op. PERFORM_COMMIT releases enqueues. PERFORM_SHUNT make
active enqueues retained. PERFORM_UNSHUNT makes retained enquires active.

Enqueue Domain (NQ)

936 CICS TS for z/OS: CICS Diagnosis Reference

The Domain Manager gates perform normal internal state initialisation and termination functions.

Modules

Module Function

DFHNQDM Handles the following requests:
INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHNQDUF Formats the NQ domain control blocks in a CICS system.

DFHNQNQ Handles the following requests:
CREATE_ENQUEUE_POOL
REACQUIRE_ENQUEUE
DEACTIVATE
SET_NQRNAME_LIST
DEQUEUE_TASK

DFHNQED Handles the following requests:
ENQUEUE
DEQUEUE

DFHNQEDI Inline version of DFHNQED.

DFHNQIB Handles the following requests:
INQUIRE_ENQUEUE
START_BROWSE_ENQUEUE
GET_NEXT_ENQUEUE
END_BROWSE_ENQUEUE

DFHNQRN Handles the following requests:
INQUIRE_NQRNAME
ADD_REPLACE_ENQMODEL
DISCARD_ENQMODEL
REMOVE_ENQMODEL
INQUIRE_ENQMODEL
START_BROWSE_ENQMODEL
GET_NEXT_ENQMODEL
END_BROWSE_ENQMODEL
SET_ENQMODEL
COMMIT_ENQMODEL
RESTORE_DIRECTORY

DFHNQIE Handles the following requests:
INTERPRET_ENQUEUE

DFHNQST Handles the following requests:
COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

DFHNQTRI Provides a trace interpretation routine for CICS dumps and traces.

Exits
The XNQEREQ and XNQEREQC global user exit points are invoked respectivly before and after each
EXEC ENQ or DEQ request to the NQ domain.

Trace
The point IDs for the NQ domain are of the form NQ xxxx; the corresponding trace levels are NQ 1,
NQ 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Enqueue Domain (NQ)

Chapter 92. Enqueue Domain (NQ) 937

938 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 93. Object Transaction Service domain (OT)

The object transaction service domain provides services to manage OTS transactions.

Object Transaction Service domain’s specific gates
Table 76 summarizes the OT domain’s specific gates. It shows the level-1 trace point IDs of the modules
providing the functions for the gates, the functions provided by the gates, and whether or not the functions
are available through the exit programming interface (XPI).

Table 76. Object Transaction Service domain’s specific gates
Gate Trace Function XPI

OTTR OT 0401
OT 0402

IMPORT_TRAN
BEGIN_TRAN
COMMIT_ONE_PHASE
PREPARE
COMMIT
ROLLBACK
SET_ROLLBACK_ONLY

NO
NO
NO
NO
NO
NO
NO

OTSU XM 0501
XM 0502

ADD_SUBORDINATE
SET_VOTE
FORGET
RESYNC

NO
NO
NO

OTCO XM 0601
XM 0602

SET_COORDINATOR
FORGET
RESYNC

NO
NO
NO

OTRM XM 0701
XM 0702

PERFORM_PRELOGGING
PERFORM_PREPARE
PERFORM_COMMIT
REPLY_DO_COMMIT
SEND_DO_COMMIT
PERFORM_SHUNT
PERFORM_UNSHUNT
START_BACKOUT
DELIVER_BACKOUT_DATA
END_BACKOUT

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

OTTR gate, IMPORT_TRAN function
The IMPORT_TRAN function of the OTTR gate is used to import an OTS transaction to a task.

Input parameters
FORMAT_ID The OTS transactions format identifier.
BQUAL_LEN The batch qualifer length of the OTS transaction.
TID_BLOCK_IN The OTS transaction identifier (TID) of the transaction being imported.
TIMEOUT The OTS transaction timeout value.
LOGICAL_SERVER

The name of the logical server within which the transaction is executing.
PUBLIC_ID The Request Stream public identifier associated with the transaction.

Output parameters
UOW_ID The identifier of the logical unit of work into which the OTS transaction was imported.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION TID_TOO_LONG

INVALID INVALID_FUNCTION

© Copyright IBM Corp. 1997, 2011 939

OTTR gate, BEGIN_TRAN function
The BEGIN_TRAN function of the OTTR gate is used to create a new OTS transaction.

Input parameters
[TIMEOUT] The timeout specified for the new OTS transaction.
TID_BUFFER_OUT

The OTS transaction identifier (TID) of the transaction created.
LOGICAL_SERVER

The name of the logical server within which the transaction is executing.
PUBLIC_ID The Request Stream public identifier associated with the transaction.

Output parameters
FORMAT_ID The OTS transactions format identifier.
BQUAL_LEN The batch qualifer length of the OTS transaction.
[TIMEOUT] The default OTS transaction timeout value.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION TID_TOO_LONG
UOW_ROLLEDBACK

OTTR gate, COMMIT_ONE_PHASE function
The COMMIT_ONE_PHASE function of the OTTR gate is used to attempt to commit the current OTS
transaction.

Input parameters
None

Output parameters
STATUS The outcome of the OTS transaction. It can have either of these values:

COMMITTED|ROLLEDBACK
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None

OTTR gate, PREPARE function
The PREPARE function of the OTTR gate is used to perform the first phase of the syncpoint of an OTS
transaction.

Input parameters
None

Output parameters
VOTE The vote from first phase of syncpoint. It can have any of these values:

YES|NO|READ_ONLY|HEURISTIC_MIXED
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None

OTTR gate, COMMIT function
The COMMIT function of the OTTR gate is used to perform the second phase of the syncpoint of an OTS
transaction.

Object Transaction Service domain (OT)

940 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UOW_ROLLEDBACK

OTTR gate, SET_ROLLBACK_ONLY function
The SET_ROLLBACK_ONLY function of the OTTR gate is used to ensure that the OTS transaction will
rollback when it comes to syncpoint.

Input parameters
None.

Output parameters
RESPONSE is the domain│s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None

OTSU gate, ADD_SUBORDINATE function
The ADD_SUBORDINATE function of the OTSU gate is used add a subordinate participant to the OTS
transaction.

Input parameters
IOR_BLOCK Block containing the CORBA IOR of the OTS Resource that is being added as a

subordinate participant in the OTS transaction.
HOST_BLOCK Block containing the name of the TCPIP host where the subordinate OTS resource

resides.

Output parameters
SUBORDINATE_TOKEN

token representing the added Resource.
RESPONSE is the domain│s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION IOR_TOO_LONG
HOST_TOO_LONG

DISASTER ADD_LINK_FAILED

OTSU gate, SET_VOTE function
The SET_VOTE function of the OTSU gate is used record the vote that results from a PREPARE method
being invoked on the OTS Resource represented by the given SUBORDINATE_TOKEN.

Input parameters
SUBORDINATE_TOKEN

Token representing the subordinate OTS resource.
VOTE The vote resulting from the first phase of syncpoint on the subordinate resource. It can

have one of the following values:

Object Transaction Service domain (OT)

Chapter 93. Object Transaction Service domain (OT) 941

YES|NO|READ_ONLY|HEURISTIC_MIXED|
HEURISTIC_COMMIT|HEURISTIC_ROLLBACK|HEURISTIC_HAZARD

Output parameters
RESPONSE is the domain│s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_SUBORDINATE
INVALID_VOTE

DISASTER RECORD_VOTE_FAILED

OTSU gate, FORGET function
The FORGET function of the OTSU gate is used signal the fact that the obligation to the subordinate
resource has been discharged.

Input parameters
SUBORDINATE_TOKEN

Token representing the subordinate OTS resource.

Output parameters
RESPONSE is the domain│s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_SUBORDINATE

DISASTER INBOUND_FLOW_FAILED

OTSU gate, RESYNC function
The RESYNC function of the OTSU gate is used to initiate the resynchronisation protocol with the
subordinate resource identified by the given IOR.

Input parameters
IOR_BLOCK Block containing the CORBA IOR of the OTS Resource with which to resynchronise.
UOWID identification of the local logical unit of work managing the OTS transaction.

Output parameters
RESPONSE is the domain│s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None

OTCO gate, SET_COORDINATOR function
The SET_COORDINATOR function of the OTCO gate is used to make known the CORBA object that will
coordinate this part of the OTS transaction.

Input parameters
IOR_BLOCK Block containing the CORBA IOR of the OTS Coordinator.
HOST_BLOCK Block containing the name of the TCPIP host where the coordinator resides.

Output parameters
COORDINATOR_TOKEN

token representing the coordinator.

Object Transaction Service domain (OT)

942 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE is the domain│s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION IOR_TOO_LONG
HOST_TO_LONG

OTCO gate, FORGET function
The FORGET function of the OTCO gate is used signal the fact that the obligation to the coordinator has
been discharged.

Input parameters
SUBORDINATE_TOKEN

Token representing the subordinate OTS resource.

Output parameters
RESPONSE is the domain│s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_SUBORDINATE

DISASTER INBOUND_FLOW_FAILED

Modules

Module Function

DFHOTDM Domain initialisation and termination.

PRE_INITIALIZE

INITIALIZE_DOMAIN

QUIESCE_DOMAIN

TERMINATE_DOMAIN

DFHOTRM Handles the following requests:

ATTACH

DFHOTTR Handles requests on the OTTR gate.

DFHOTSU Handles requests on the OTSU gate.

DFHOTCO Handles requests on the OTCO gate.

DFHOTDUF OT domain offline dump formatting routine

DFHOTTRI Interprets OT domain trace entries

Exits
None

Trace
The point IDs for the OT domain are of the form OTxxxx; the corresponding trace levels are OT 1, OT 2
and Exc.

Object Transaction Service domain (OT)

Chapter 93. Object Transaction Service domain (OT) 943

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Object Transaction Service domain (OT)

944 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 94. Parameter manager domain (PA)

The parameter manager domain (also sometimes known simply as “parameter manager”) provides a
facility to inform CICS domains of system parameters during CICS initialization. These system
initialization parameters are specified in the system initialization table (SIT), and as temporary override
parameters read from the SYSIN data stream or specified interactively at the system console.

The parameter manager domain also provides an operator correction facility for incorrectly specified
system initialization parameter keywords early in CICS initialization. To use this facility, the user must
specify the PARMERR system initialization parameter.

Parameter manager domain’s specific gate
Table 77 summarizes the parameter manager domain’s specific gate. It shows the level-1 trace point IDs
of the modules providing the functions for the gate, the functions provided by the gate, and whether or not
the functions are available through the exit programming interface (XPI).

Table 77. Parameter manager domain’s specific gate
Gate Trace Function XPI

PAGP PA 0101
PA 0102

FORCE_START
GET_PARAMETERS
INQUIRE_START

NO
NO
NO

PAGP gate, FORCE_START function
The FORCE_START function of the PAGP gate is used to override the type of start requested by the
START system initialization parameter. It is currently used to force START=AUTO if the MVS automatic
restart manager indicates that CICS is being automatically restarted with the original startup JCL (so that
CICS does not get a COLD start that the original JCL might have asked for).

Input parameters
START_TYPE specifies the type of CICS start to be forced. It can have either of these values:

COLD|AUTO

Output parameters
RESPONSE is the parameter manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_POSSIBLE

PAGP gate, GET_PARAMETERS function
The GET_PARAMETERS function of the PAGP gate is used to get the initialization parameters for a
requesting domain.

Input parameters
FORCE_ALL specifies whether all parameters are required, even on a non-cold start. It can have either

of these values:
YES|NO

© Copyright IBM Corp. 1997, 2011 945

Output parameters
PARAMETERS_TRANSFERRED

indicates to the calling domain whether any system parameters were transferred
successfully by the parameter manager domain. It can have either of these values:
YES|NO

RESPONSE is the parameter manager domain’s response to the call. It can have any one of these
values:
OK|EXCEPTION|DISASTER

PAGP gate, INQUIRE_START function
The INQUIRE_START function of the PAGP gate is used to find out the type of start that CICS is to
perform. This information is used to determine whether domains need to perform a cold or warm start.

Input parameters
None.

Output parameters
START specifies the type of start CICS is to perform. It can have any one of these values:

COLD|WARM|LOGTERM
RESPONSE is the parameter manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER

Parameter manager domain’s generic gate
Table 78 summarizes the parameter manager domain’s generic gate. It shows the level-1 trace point IDs of
the modules providing the functions for the gate, the functions provided by the gate, and the generic
format for calls to the gate.

Table 78. Parameter manager domain’s generic gate
Gate Trace Function Format

DMDM PA 0201
PA 0202

PRE_INITIALIZE
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

You can find descriptions of these functions and their input and output parameters, in the section dealing
with the corresponding generic format, in “Domain manager domain’s generic formats” on page 669.

In preinitialization processing, the parameter manager domain reads system initialization (override)
parameters from the startup job stream and, if requested, from the SYSIN data set and the console.

If a system initialization table (SIT) has been specified, that is loaded into storage. Otherwise, the default
SIT is loaded. The override parameters are applied to the SIT, and related parameters are checked for
consistency. Errors are reported, but no action is taken.

The parameter manager domain also provides services to other domains as they preinitialize. It informs
them of the type of start (cold or auto), and supplies information as required from the SIT.

In initialization processing, the parameter manager domain waits for all the other domains to complete their
initialization, and then writes a warm start record to the catalog.

The parameter manager domain does no quiesce processing or termination processing.

Parameter manager domain (PA)

946 CICS TS for z/OS: CICS Diagnosis Reference

Modules

Module Function

DFHPADM Parameter manager domain initialization and termination

DFHPADUF An offline routine to format system dump information

DFHPAGP Passes initialization parameters to domains requesting GET_PARAMETERS

DFHPAIO Communicates with the SYSIN data set and operator console

DFHPASY System initialization override parameter checker and syntax parser

DFHPATRI An offline routine to format trace points

Exits
No global user exit points are provided in this domain.

Trace
The point IDs for the parameter manager domain are of the form PA xxxx; the corresponding trace levels
are PA 1, PA 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Parameter manager domain (PA)

Chapter 94. Parameter manager domain (PA) 947

948 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 95. Program manager domain (PG)

The program manager domain provides support for the following areas of CICS:

v Program control functions; EXEC CICS LINK, XCTL, LOAD, RELEASE, and RETURN

v Transaction ABEND and condition handling functions; EXEC CICS ABEND, HANDLE ABEND, HANDLE
CONDITION and HANDLE AID

v Related functions such as invoking user-replaceable programs, global user exits, and task-related user
exits

v Autoinstall for programs, mapsets, and partitionsets.

Program manager domain’s specific gates
Table 79 summarizes the program manager domain’s specific gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gates, the functions provided by the gates, and whether or not
the functions are available through the exit programming interface (XPI).

Table 79. Program manager domain’s specific gates
Gate Trace Function XPI

PGAI PG 0E01
PG 0E02

Kernel subroutine called internally from program manager NO
NO

PGAQ PG 0401
PG 0402

INQUIRE_AUTOINSTALL
SET_AUTOINSTALL

YES
YES

PGCH PG 1700
PG 1701

BIND_CHANNEL
COPY_CHANNEL
CREATE_CHANNEL
DELETE_CHANNEL
DELETE_OWNED_CHANNELS
DETACH_CHANNEL
INQUIRE_BOUND_CHANNEL
INQUIRE_CHANNEL
INQUIRE_CHANNEL_BY_TOKEN
INQUIRE_CURRENT_CHANNEL
RENAME_CHANNEL
SET_CURRENT_CHANNEL

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

PGCP PG 1800
PG 1801

COPY_CONTAINER_POOL
CREATE_CONTAINER_POOL
DELETE_CONTAINER_POOL,
INQUIRE_CONTAINER_POOL

NO
NO
NO
NO

PGCR PG 1900
PG 1901

COPY_CONTAINER
DELETE_CONTAINER
ENDBR_CONTAINER
GET_CONTAINER_INTO
GET_CONTAINER_LENGTH
GET_CONTAINER_SET
GETNEXT_CONTAINER
INQUIRE_BROWSE_CONTEXT
INQUIRE_CONTAINER
INQUIRE_CONTAINER_BY_TOKEN
MOVE_CONTAINER
PUT_CONTAINER
SET_CONTAINER
TRACE_CONTAINERS

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

PGDD PG 0301
PG 0302

DEFINE_PROGRAM
DELETE_PROGRAM

NO
NO

PGEX PG 0C01
PG 0C02

INITIALIZE_EXIT
TERMINATE_EXIT

NO
NO

© Copyright IBM Corp. 1997, 2011 949

||
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|

|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 79. Program manager domain’s specific gates (continued)
Gate Trace Function XPI

PGHM PG 0700
PG 0701

SET_CONDITIONS
IGNORE_CONDITIONS
INQ_CONDITION
SET_AIDS
INQ_AID
SET_ABEND
INQ_ABEND
PUSH_HANDLE
POP_HANDLE
FREE_HANDLE_TABLES
CLEAR_LABELS

NO
NO

PGIS PG 0500
PG 0501

INQUIRE_PROGRAM
INQUIRE_CURRENT_PROGRAM
SET_PROGRAM
START_BROWSE_PROGRAM
GET_NEXT_PROGRAM
END_BROWSE_PROGRAM
REFRESH_PROGRAM

YES
YES
YES
YES
YES
YES
NO

PGLD PG 0601
PG 0602

LOAD_EXEC
LOAD
RELEASE_EXEC
RELEASE

NO
NO
NO
NO

PGLE PG 1101
PG 1102

LINK_EXEC NO

PGLK PG 0B01
PG 0B02

LINK
LINK_PLT

NO
NO

PGLU PG 0A01
PG 0A02

LINK_URM NO
NO

PGPG PG 0901
PG 0902

INITIAL_LINK NO
NO

PGRE PG 1201
PG 1202

PREPARE_RETURN_EXEC NO

PGXE PG 1301
PG 1302

PREPARE_XCTL_EXEC NO
NO

PGXM PG 0901
PG 0902

INITIALIZE_TRANSACTION
TERMINATE_TRANSACTION

NO
NO

Note: PGRE is only called for EXEC RETURN statements which have input parameters (COMMAREA, INPUTMSG, or TRANSID) specified. If no input
parameters are specified, there is no trace of PGRE after the EIP trace of the RETURN statement.

PGAQ gate, INQUIRE_AUTOINSTALL function
The INQUIRE_AUTOINSTALL function of the PGAQ gate is used to inquire about attributes of the program
autoinstall function.

Input parameters
None.

Output parameters
[AUTOINSTALL_STATE]

is the state of the program autoinstall function. It can have either of these values:
ACTIVE|INACTIVE

[AUTOINSTALL_CATALOG]
identifies if program autoinstall events are cataloged. It can have any of these values:
MODIFY|NONE|ALL

[AUTOINSTALL_EXIT_NAME]
is the name of the program autoinstall exit program.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID. Possible values are:

Program manager domain (PG)

950 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

INVALID INVALID_FUNCTION

PGAQ gate, SET_AUTOINSTALL function
The SET_AUTOINSTALL function of the PGAQ gate is used to set attributes of the program autoinstall
function.

Input parameters
[AUTOINSTALL_STATE]

is the state of the program autoinstall function. It can have either of these values:
ACTIVE|INACTIVE

[AUTOINSTALL_CATALOG]
identifies if program autoinstall events are cataloged. It can have any of these values:
MODIFY|NONE|ALL

[AUTOINSTALL_EXIT_NAME]
is the name of the program autoinstall exit program.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FUNCTION

PGCH gate, BIND_CHANNEL function
The BIND_CHANNEL function of the PGCH gate is used to make the specified channel the channel used
on the initial link.

Input parameters
CHANNEL_TOKEN

is a token referencing the channel to be used on the initial link.

Output parameters
RESPONSE

is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CHANNEL_ALREADY_SET

INVALID INVALID_LINK_LEVEL
INVALID_TOKEN

CHANNEL_ALREADY_SET
Only one bind can occur for each task.

INVALID_LINK_LEVEL
The command was executed outside a program manager environment.

INVALID_TOKEN
The specified token does not address a channel control block.

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 951

|

|
|

|

|
|

|

|
|

|

|
|

|||

||

||
|
|

|
|

|
|

|
|

PGCH gate, COPY_CHANNEL function
The COPY_CHANNEL function of the PGCH gate is used to take a copy of a channel and all its
containers. The copy has the same name as the original, but is not on any chain. This function is required
by the START command.

Input parameters
CHANNEL_TOKEN

is a token referencing the channel to be copied.

Output parameters
COPIED_CHANNEL_TOKEN

A token referencing a copy of the specified channel (used on START and RETURN commands).

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_TOKEN

INVALID_TOKEN
The specified token does not address a channel control block.

PGCH gate, CREATE_CHANNEL function
The CREATE_CHANNEL function of the PGCH gate is used to create a channel.

Input parameters
[CCSID]

is the default coded character set identifier (CCSID) for character data in this channel.

CHANNEL_NAME
is the 16-character name of the channel to be created.

[CURRENT_CHANNEL]
whether or not the created channel is to be the current channel of the current link level. It can
have either of these values:
YES|NO

[LINK_LEVEL]
whether the channel is to be created on the current chain, the previous link level’s chain, or on no
chain (NONE). LINK_LEVEL can have any of these values:
CURRENT|PREVIOUS|NONE

NONE is used when creating a channel for transfer on a START or RETURN command.

Output parameters
[CHANNEL_TOKEN]

is a token referencing the newly-created channel.

[CONTAINER_POOL_TOKEN]
is a token to access a pool of containers.

RESPONSE
is the domain’s response to the call. It can have any of these values:

Program manager domain (PG)

952 CICS TS for z/OS: CICS Diagnosis Reference

|

|
|
|

|

|
|

|

|
|

|
|

|

|
|

|||

||
|

|
|

|

|

|

|
|

|
|

|
|
|

|

|
|
|

|

|

|

|
|

|
|

|
|

OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CHANNEL_ALREADY_EXISTS
CHANNEL_ALREADY_SET

INVALID CCSID_INVALID
INVALID_CHANNEL_NAME
INVALID_LINK_LEVEL
INVALID_PARAMETERS
INVALID_TOKEN

CCSID_INVALID
The specified CCSID is incorrect.

CHANNEL_ALREADY_EXISTS
A channel with this name already exists.

CHANNEL_ALREADY_SET
Only one current channel is possible.

INVALID_CHANNEL_NAME
The channel name contains invalid characters.

INVALID_LINK_LEVEL
A link-level of PREVIOUS was specified in a top-level program, or the command is
executed outside a program manager environment.

INVALID_PARAMETERS
You have specified an invalid combination of parameters.

INVALID_TOKEN
The specified token does not address a channel control block.

PGCH gate, DELETE_CHANNEL function
The DELETE_CHANNEL function of the PGCH gate is used to delete a channel. This command can be
used to delete channels when they are bound to principal facilities, but not to PLCBs.

Input parameters
CHANNEL_TOKEN

is a token referencing the channel to be deleted.

Output parameters
RESPONSE

is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CHANNEL_ATTACHED

INVALID INVALID_TOKEN

CHANNEL_ATTACHED
The channel is attached to PLCB chain and cannot be deleted.

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 953

|

|
|

|||

||
|

||
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|||

||

||
|

|
|

INVALID_TOKEN
The specified token does not address a channel control block.

PGCH gate, DELETE_OWNED_CHANNELS function
The DELETE_OWNED_CHANNELS function of the PGCH gate is used to delete all channels from the
channel chain. If the current channel is owned by this link level, it is deleted as well. The container pool
associated with each channel is also deleted. This ends any browse in progress and deletes all containers.

Output parameters
RESPONSE

is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_LINK_LEVEL

INVALID_LINK_LEVEL
The command was executed outside a program manager environment.

PGCH gate, DETACH_CHANNEL function
The DETACH_CHANNEL function of the PGCH gate is used to detach a channel. The channel may be the
current channel, or on the PLCB chain. The channel’s containers are only deleted if DELETE(YES) is
specified. It is implied that a SET_CURRENT_CHANNEL will be done with this channel at some time.

A channel can only be detached from the current link level.

Input parameters
CHANNEL_TOKEN

is a token referencing the channel to be detached.

[DELETE]
whether the channel’s containers should be deleted. DELETE can have either of these values:
YES|NO

[FREE_SET_STORAGE]
whether the channel’s storage should be freed. FREE_SET_STORAGE can have either of these
values:
YES|NO

Output parameters
RESPONSE

is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CHANNEL_NOT_FOUND

INVALID INVALID_TOKEN
INVALID_LINK_LEVEL

Program manager domain (PG)

954 CICS TS for z/OS: CICS Diagnosis Reference

|
|

|

|
|
|

|

|
|

|

|
|

|||

||
|

|
|

|

|
|
|

|

|

|
|

|
|

|

|
|
|

|

|

|
|

|

|
|

|||

||

||
|
|

CHANNEL_NOT_FOUND
The channel was not found on the PLCB channel chain.

INVALID_LINK_LEVEL
The command was executed outside a program manager environment.

INVALID_TOKEN
The specified token does not address a channel control block.

PGCH gate, INQUIRE_BOUND_CHANNEL function
The INQUIRE_BOUND_CHANNEL function of the PGCH gate is used to get information about the
channel that is bound to the current transaction. This may or may not be the current channel. This request
may be issued outside a program manager environment.

Output parameters
[CHANNEL_TOKEN]

is a token referencing the bound channel.

[CHANNEL_NAME]
is the name of the bound channel.

[CONTAINER_POOL_TOKEN]
is a token referencing the container pool of the bound channel.

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CHANNEL_NOT_FOUND

CHANNEL_NOT_FOUND
There is no bound channel.

PGCH gate, INQUIRE_CHANNEL function
The INQUIRE_CHANNEL function of the PGCH gate is used to retrieve the properties of a named
channel, including its address (returned as a token). To find the named channel, CICS scans the channels
accessible from the specified link level.

Input parameters
CHANNEL_NAME

is the name of the channel to be to be enquired upon.

[LINK_LEVEL]
whether the named channel is on the current chain or the previous link level’s chain. LINK_LEVEL
can have either of these values:
CURRENT|PREVIOUS

Output parameters
[CCSID]

is the default coded character set identifier (CCSID) for character data in the named channel.

[CHANNEL_TOKEN]
is a token referencing the named channel.

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 955

|
|

|
|

|
|

|

|
|
|

|

|
|

|
|

|
|

|
|

|

|
|

|||

||
|

|
|

|

|
|
|

|

|
|

|
|
|

|

|

|
|

|
|

[CONTAINER_POOL_TOKEN]
is a token referencing the container pool of the named channel.

[CURRENT_CHANNEL]
whether the named channel is the current channel. CURRENT_CHANNEL can have either of
these values:
YES|NO

[OWNER]
whether the named channel is owned by the specified link level. OWNER can have either of these
values:
YES|NO

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CHANNEL_NOT_FOUND

INVALID INVALID_LINK_LEVEL

CHANNEL_NOT_FOUND
No channel can be found at the specified link level.

INVALID_LINK_LEVEL
A link-level of PREVIOUS was specified in a top-level program, or the command was
executed outside a program manager environment.

PGCH gate, INQUIRE_CHANNEL_BY_TOKEN function
The INQUIRE_CHANNEL_BY_TOKEN function is used to retrieve the properties of a channel (which is
specified by token).

Input parameters
CHANNEL_TOKEN

is a token referencing the channel to be enquired upon.

Output parameters
[CCSID]

is the default coded character set identifier (CCSID) for character data in the specified channel.

[CHANNEL_NAME]
is the name of the specified channel.

[CONTAINER_POOL_TOKEN]
is a token referencing the container pool of the specified channel.

[CURRENT_CHANNEL]
whether the specified channel is the current channel. CURRENT_CHANNEL can have either of
these values:
YES|NO

[OWNER]
whether the specified channel is owned by the specified link level. OWNER can have either of
these values:
YES|NO

Program manager domain (PG)

956 CICS TS for z/OS: CICS Diagnosis Reference

|
|

|
|
|

|

|
|
|

|

|
|

|

|
|

|||

||

||
|

|
|

|
|
|

|

|
|

|

|
|

|

|
|

|
|

|
|

|
|
|

|

|
|
|

|

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_TOKEN

INVALID INVALID_LINK_LEVEL

CHANNEL_NOT_FOUND
No channel can be found at the specified link level.

INVALID_LINK_LEVEL
A link-level of PREVIOUS was specified in a top-level program, or the command was
executed outside a program manager environment.

INVALID_TOKEN
The specified token does not address a channel control block.

PGCH gate, INQUIRE_CURRENT_CHANNEL function
The INQUIRE_CURRENT_CHANNEL function of the PGCH gate is used to retrieve the properties of the
current channel.

Output parameters
[CCSID]

is the default coded character set identifier (CCSID) for character data in the current channel.

[CHANNEL_NAME]
is the name of the current channel.

[CHANNEL_TOKEN]
is a token referencing the current channel.

[CONTAINER_POOL_TOKEN]
is a token referencing the container pool of the current channel.

[OWNER]
whether the current channel is owned by the specified link level. OWNER can have either of these
values:
YES|NO

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CHANNEL_NOT_FOUND

INVALID INVALID_LINK_LEVEL

CHANNEL_NOT_FOUND
The current link level was not passed a channel.

INVALID_LINK_LEVEL
The command was executed outside a program manager environment.

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 957

|
|

|

|
|

|||

||

||
|

|
|

|
|
|

|
|

|

|
|

|

|
|

|
|

|
|

|
|

|
|
|

|

|
|

|

|
|

|||

||

||
|

|
|

|
|

PGCH gate, RENAME_CHANNEL function
The RENAME_CHANNEL function of the PGCH gate is used to rename a channel.

Input parameters
CHANNEL_NAME

is the new name of the channel, after it has been renamed.

CHANNEL_TOKEN
is a token referencing the channel to be renamed. The token must have been obtained using the
INQUIRE_CHANNEL command.

Output parameters
RESPONSE

is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CHANNEL_ALREADY_EXISTS
INVALID_CHANNEL_NAME
INVALID_TOKEN

CHANNEL_ALREADY_EXISTS
A channel with the specified channel name already exists.

INVALID_CHANNEL_NAME
The new channel name contains invalid characters.

INVALID_TOKEN
The specified channel token does not address a channel control block.

PGCH gate, SET_CURRENT_CHANNEL function
The SET_CURRENT_CHANNEL function of the PGCH gate is used to make the specified channel the
current channel for the current link level.

If OWNER(YES) is specified, the channel is added to the current link level’s chain.

Input parameters
CHANNEL_TOKEN

is a token referencing the channel that is to become the current channel for this link level.

[OWNER]
whether the specified channel is owned by the current link level. If OWNER(YES) is specified, the
channel is added to the current link level’s chain. OWNER can have either of these values:
YES|NO

Output parameters
RESPONSE

is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

Program manager domain (PG)

958 CICS TS for z/OS: CICS Diagnosis Reference

|

|

|

|
|

|
|
|

|

|
|

|

|
|

|||

||
|
|
|

|
|

|
|

|
|

|

|
|

|

|

|
|

|
|
|

|

|

|
|

|

|
|

RESPONSE Possible REASON values

EXCEPTION CHANNEL_ALREADY_EXISTS
INVALID_TOKEN

INVALID INVALID_LINK_LEVEL

CHANNEL_ALREADY_EXISTS
A channel with the same name as the specified channel already exists on the current link
level’s chain.

INVALID_LINK_LEVEL
The command was executed outside a program manager environment.

INVALID_TOKEN
The specified channel token does not address a channel control block.

PGCP gate, COPY_CONTAINER_POOL function
The COPY_CONTAINER_POOL function of the PGCP gate is used to copy all the containers in a
container pool to another container pool.

Input parameters
POOL_TOKEN

is a token (returned on a CREATE_CONTAINER_POOL request) that identifies the container pool
to be copied.

Output parameters
COPIED_POOL_TOKEN

is a token that maps to the pool to which all containers have been copied from the pool referenced
by POOL_TOKEN.

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_POOL_TOKEN

PGCP gate, CREATE_CONTAINER_POOL function
The CREATE_CONTAINER_POOL function of the PGCP gate is used to create a container pool.

Input parameters
[CCSID]

is the default coded character set identifier of the character data in the pool to be created.

Output parameters
POOL_TOKEN

is a token that references the container pool that has been created.

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 959

|||

||
|

||
|

|
|
|

|
|

|
|

|

|
|

|

|
|
|

|

|
|
|

|
|

|

|
|

|||

||
|

|

|

|

|
|

|

|
|

|
|

|

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_POOL_TOKEN

PGCP gate, DELETE_CONTAINER_POOL function
The DELETE_CONTAINER_POOL function of the PGCP gate is used to delete a container pool.

Input parameters
POOL_TOKEN

is a token that identifies the container pool to be deleted.

Output parameters
RESPONSE

is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_POOL_TOKEN

PGCP gate, INQUIRE_CONTAINER_POOL function
The INQUIRE_CONTAINER_POOL function of the PGCP gate is used to inquire about the attributes of a
container pool.

Input parameters
POOL_TOKEN

is a token that identifies the container pool to be inquired upon.

Output parameters
[CCSID]

is the default coded character set identifier (CCSID) for character data in the containers in the
pool.

[NUMBER_OF_CONTAINERS]
is the number of containers that the pool contains.

[POOL_SIZE]
is the size, in bytes, of the data in the pool.

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_POOL_TOKEN

Program manager domain (PG)

960 CICS TS for z/OS: CICS Diagnosis Reference

|
|

|||

||
|

|

|

|

|
|

|

|
|

|

|
|

|||

||
|

|

|
|

|

|
|

|

|
|
|

|
|

|
|

|
|

|

|
|

|||

||
|

PGCR gate, COPY_CONTAINER function
The COPY_CONTAINER function of the PGCR gate is used to copy a container from one container pool
to another. Both pools must already have been created.

Input parameters
[AS_CONTAINER_NAME]

is the name by which the copied container is to be known in the target container pool.

[CONTAINER_NAME]
is the name of the container to be copied.

[CONTAINER_TOKEN]
is a token referencing the container to be copied.

[POOL_TOKEN]
is a token referencing the source container pool (that is, the pool from which the container is to be
copied).

[TO_POOL_TOKEN]
is a token referencing the target container pool (that is, the pool to which the container is to be
copied).

[TYPE]
whether the container is visible only to CICS, or to user programs as well. TYPE can have either
of these values:
CICS|USER

Output parameters
[CONTAINER_TOKEN_OUT]

is a token representing the new copy of the container.

[GENERATION_NUMBER]
Every time a container in a container pool is changed or created the pool generation number is
incremented. This number is the number for the container when the container was last changed.

[INITIAL_GENERATION]
Every time a container in a container pool is changed or created the pool generation number is
incremented. This number is the number for the container when the container was created.

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

REASON
is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CONTAINER_NOT_FOUND
INVALID_AS_CONTAINER_NAME

INVALID INVALID_CONTAINER_TOKEN
INVALID_POOL_TOKEN
INVALID_PARAMETERS
INVALID_TO_POOL_TOKEN

PGCR gate, DELETE_CONTAINER function
The DELETE_CONTAINER function of the PGCR gate is used to delete a container and its data. The
container is identified using its name, the container pool to which it belongs, and its type.

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 961

|

|
|

|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|

|

|
|

|
|
|

|
|
|

|
|

|

|
|

|||

||
|

||
|
|
|
|

|

|
|

Input parameters
[CALLER]

is the call part of an API call. It can have either of these values:
EXEC|SYSTEM

[CONTAINER_NAME]
is the name of the container to be deleted.

[CONTAINER_TOKEN]
is a token representing the container to be deleted.

[POOL_TOKEN]
is a token referencing the container pool that contains the container to be deleted.

[TYPE]
whether the container is visible only to CICS, or to user programs as well. TYPE can have either
of these values:
CICS|USER

Output parameters
RESPONSE

is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

REASON
is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CONTAINER_NOT_FOUND
READONLY_CONTAINER

INVALID INVALID_CONTAINER_TOKEN
INVALID_PARAMETERS
INVALID_POOL_TOKEN

PGCR gate, ENDBR_CONTAINER function
The ENDBR_CONTAINER function of the PGCR gate is used to end a browse of containers.

Input parameters
BROWSE_TOKEN

is a browse token referencing the next container in the container pool being browsed.

Output parameters
RESPONSE

is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

REASON
is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_BROWSE_TOKEN

Program manager domain (PG)

962 CICS TS for z/OS: CICS Diagnosis Reference

|

|
|

|

|
|

|
|

|
|

|
|
|

|

|

|
|

|

|
|

|||

||
|

||
|
|
|

|

|

|

|
|

|

|
|

|

|
|

|||

||
|

PGCR gate, GET_CONTAINER_INTO function
The GET_CONTAINER function of the PGCR gate is used to get the data from a container into an area
provided by the caller. The container is identified using a pool token, together with the container’s name
and type. Note that LENGTH_ERROR indicates that as much data as possible has been copied.

It is the user's responsibility that DATA_TOKEN_OUT is specified on the next call as DATA_TOKEN_IN.
The first call doesn't have a DATA_TOKEN_IN.

Input parameters
[CALLER]

is the call part of an API call. It can have either of these values:
EXEC|SYSTEM

[CCSID]
if conversion is specified (see the CONVERT option), CCSID is the coded character set identifier
to which the character data in the container should be converted.

[CONTAINER_NAME]
is the name of the container from which the data is to be obtained.

[CONTAINER_TOKEN]
is a token representing the container from which the data is to be obtained.

[CONVERT]
whether the data in the container should be converted. It can have either of these values:
YES|NO

The default value is YES.

[DATA_TOKEN_IN]
is a token referencing the data in the container.

The value returned in DATA_TOKEN_OUT on one GET_CONTAINER_INTO call must be specified
on the next call as DATA_TOKEN_IN. (The first GET_CONTAINER_INTO call for this container
doesn't have a DATA_TOKEN_IN.)

ITEM_BUFFER
On input, ITEM_BUFFER_P is a pointer to a receiving area of length ITEM_BUFFER_M. On
output, the value ITEM_BUFFER_N is set to the actual length returned.

[POOL_TOKEN]
is a token referencing the container pool to which the container belongs.

[TYPE]
whether the container is visible only to CICS, or to user programs as well. TYPE can have either
of these values:
CICS|USER

Output parameters
[CONTAINER_CCSID]

is the coded character set identifier of the extracted data.

[DATA_TOKEN_OUT]
is a token referencing the data in the container.

The value returned in DATA_TOKEN_OUT on one GET_CONTAINER_INTO call must be specified
on the next call as DATA_TOKEN_IN. (The first GET_CONTAINER_INTO call for this container
doesn't have a DATA_TOKEN_IN.)

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 963

|

|
|
|

|
|

|

|
|

|

|
|
|

|
|

|
|

|
|

|

|

|
|

|
|
|

|
|
|

|
|

|
|
|

|

|

|
|

|
|

|
|
|

[DATATYPE]
is the format of the data. It can have either of these values:
CHAR|BIT

[GENERATION_NUMBER]
Every time a container in a container pool is changed or created the pool generation number is
incremented. This number is the number for the container when the container was last changed.

[INITIAL_GENERATION]
Every time a container in a container pool is changed or created the pool generation number is
incremented. This number is the number for the container when the container was created.

[USERACCESS]
whether USER containers can be updated by API commands. USERACCESS can have either of
these values:
READONLY|ANY

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

REASON
is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CCSID_CONVERSION_ERROR
CCSID_INVALID
CCSID_PAIR_UNSUPPORTED
CCSID_PARTIAL_CONVERSION
CONTAINER_NOT_FOUND
INVALID_DATA_TOKEN_IN
LENGTH_ERROR
MORE_DATA

INVALID INVALID_CONTAINER_TOKEN
INVALID_POOL_TOKEN
INVALID_PARAMETERS

PGCR gate, GET_CONTAINER_LENGTH function
The GET_CONTAINER_LENGTH function of the PGCR gate is used to discover the length, in bytes, of
the data in a container.

Input parameters
[CALLER]

is the call part of an API call. It can have either of these values:
EXEC|SYSTEM

[CCSID]
is the coded character set identifier to which the character data in the container should be
converted.

[CONTAINER_NAME]
is the name of the container that holds the data.

[CONTAINER_TOKEN]
is a token representing the container that holds the data.

[POOL_TOKEN]
is a token referencing the container pool to which the container belongs.

Program manager domain (PG)

964 CICS TS for z/OS: CICS Diagnosis Reference

|
|

|

|
|
|

|
|
|

|
|
|

|

|
|

|

|
|

|||

||
|
|
|
|
|
|
|

||
|
|
|

|

|
|

|

|
|

|

|
|
|

|
|

|
|

|
|

[TYPE]
whether the container is visible only to CICS, or to user programs as well. TYPE can have either
of these values:
CICS|USER

Output parameters
[CONTAINER_CCSID]

is the coded character set identifier of the character data in the container.

[DATA_LENGTH]
is the length, in bytes, of the data in the container. If the container holds character data that has
been converted from one CCSID to another, this is the length of the converted data.

[DATATYPE]
is the format of the data. It can have either of these values:
CHAR|BIT

[GENERATION_NUMBER]
Every time a container in a container pool is changed or created the pool generation number is
incremented. This number is the number for the container when the container was last changed.

[INITIAL_GENERATION]
Every time a container in a container pool is changed or created the pool generation number is
incremented. This number is the number for the container when the container was created.

[USERACCESS]
whether USER containers can be updated by API commands. USERACCESS can have either of
these values:
READONLY|ANY

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

REASON
is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CCSID_CONVERSION_ERROR
CCSID_IGNORED
CCSID_INVALID
CCSID_PAIR_UNSUPPORTED
CCSID_PARTIAL_CONVERSION
CONTAINER_NOT_FOUND

INVALID INVALID_CONTAINER_TOKEN
INVALID_PARAMETERS
INVALID_POOL_TOKEN

PGCR gate, GET_CONTAINER_SET function
The GET_CONTAINER_SET function of the PGCR gate is used to get the data from a container and copy
it into an area provided by the CICS program domain. The container is identified using a pool token,
together with its name and type.

Input parameters
[CALLER]

is the call part of an API call. It can have either of these values:
EXEC|SYSTEM

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 965

|
|
|

|

|

|
|

|
|
|

|
|

|

|
|
|

|
|
|

|
|
|

|

|
|

|

|
|

|||

||
|
|
|
|
|

||
|
|
|

|

|
|
|

|

|
|

|

[CCSID]
if conversion is specified (see the CONVERT option), CCSID is the coded character set identifier
to which the character data in the container should be converted.

[CONTAINER_NAME]
is the name of the container from which the data is to be obtained.

[CONTAINER_TOKEN]
is a token representing the container from which the data is to be obtained.

[CONVERT]
whether the data in the container should be converted. It can have either of these values:
YES|NO

The default value is YES.

[POOL_TOKEN]
is a token referencing the container pool to which the container belongs.

[TYPE]
whether the container is visible only to CICS, or to user programs as well. TYPE can have either
of these values:
CICS|USER

Output parameters
[CONTAINER_CCSID]

is the coded character set identifier of the extracted data.

[DATATYPE]
is the format of the data. It can have either of these values:
CHAR|BIT

[GENERATION_NUMBER]
Every time a container in a container pool is changed or created the pool generation number is
incremented. This number is the number for the container when the container was last changed.

[INITIAL_GENERATION]
Every time a container in a container pool is changed or created the pool generation number is
incremented. This number is the number for the container when the container was created.

ITEM_DATA
The address and length of the SET storage returned.

[USERACCESS]
whether USER containers can be updated by API commands. USERACCESS can have either of
these values:
READONLY|ANY

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

REASON
is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

Program manager domain (PG)

966 CICS TS for z/OS: CICS Diagnosis Reference

|
|
|

|
|

|
|

|
|

|

|

|
|

|
|
|

|

|

|
|

|
|

|

|
|
|

|
|
|

|
|

|
|
|

|

|
|

|

|
|

RESPONSE Possible REASON values

EXCEPTION CCSID_CONVERSION_ERROR
CCSID_IGNORED
CCSID_INVALID
CCSID_PAIR_UNSUPPORTED
CCSID_PARTIAL_CONVERSION
CONTAINER_NOT_FOUND

INVALID INVALID_CONTAINER_TOKEN
INVALID_PARAMETERS
INVALID_POOL_TOKEN

PGCR gate, GETNEXT_CONTAINER function
The GETNEXT_CONTAINER function of the PGCR gate is used to get the next container in a browse of
containers.

Input parameters
BROWSE_TOKEN

is a browse token referencing the next container in a browse of containers.

Output parameters
[CCSID]

is the coded character set identifier of the character data in the container.

[CONTAINER_NAME]
is the name of the container.

[CONTAINER_TOKEN]
is a token referencing the container.

[DATA_LENGTH]
is the length, in bytes, of the data in the container.

[DATATYPE]
is the format of the data in the container. DATATYPE can have either of these values:
CHAR|BIT

[GENERATION_NUMBER]
Every time a container in a container pool is changed or created the pool generation number is
incremented. This number is the number for the container when the container was last changed.

[INITIAL_GENERATION]
Every time a container in a container pool is changed or created the pool generation number is
incremented. This number is the number for the container when the container was created.

[TYPE]
whether the container is visible only to CICS, or to user programs as well. TYPE can have either
of these values:
CICS|USER

[USERACCESS]
whether the container can be updated by API commands. USERACCESS can have either of these
values:
READONLY|ANY

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 967

|||

||
|
|
|
|
|

||
|
|
|

|

|
|

|

|
|

|

|
|

|
|

|
|

|
|

|
|

|

|
|
|

|
|
|

|
|
|

|

|
|
|

|

|
|

|

REASON
is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION BROWSE_END
INVALID_BROWSE_TOKEN

PGCR gate, INQUIRE_BROWSE_CONTEXT function
The INQUIRE_BROWSE__CONTEXT function of the PGCR gate is used to

Input parameters
BROWSE_TOKEN

is a browse token referencing the next container in a browse of containers.

Output parameters
RESPONSE

is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

REASON
is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_BROWSE_TOKEN

PGCR gate, INQUIRE_CONTAINER function
The INQUIRE_CONTAINER function of the PGCR gate is used to retrieve the attributes of a container.

CCSID is the coded character set identifier that the character data in the container is stored in.

Input parameters
[CALLER]

is the call part of an API call. It can have either of these values:
EXEC|SYSTEM

CONTAINER_NAME
is the name of the container to be enquired upon.

POOL_TOKEN
is a token referencing the container pool to which the container belongs.

[TYPE]
whether the container is visible only to CICS, or to user programs as well. TYPE can have either
of these values:
CICS|USER

Output parameters
[CCSID]

is the coded character set identifier of the character data in the container.

[CONTAINER_TOKEN]
is a token referencing the container.

[DATATYPE]
is the format of the data. It can have either of these values:

Program manager domain (PG)

968 CICS TS for z/OS: CICS Diagnosis Reference

|
|

|||

||
|
|

|

|

|

|
|

|

|
|

|

|
|

|||

||
|

|

|

|

|

|
|

|

|
|

|
|

|
|
|

|

|

|
|

|
|

|
|

CHAR|BIT

[DATA_LENGTH]
is the length, in bytes, of the data in the container.

[GENERATION_NUMBER]
Every time a container in a container pool is changed or created the pool generation number is
incremented. This number is the number for the container when the container was last changed.

[INITIAL_GENERATION]
Every time a container in a container pool is changed or created the pool generation number is
incremented. This number is the number for the container when the container was created.

[USERACCESS]
whether USER containers can be updated by API commands. USERACCESS can have either of
these values:
READONLY|ANY

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

REASON
is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CONTAINER_NOT_FOUND

INVALID INVALID_CONTAINER_TOKEN
INVALID_PARAMETERS
INVALID_POOL_TOKEN

PGCR gate, INQUIRE_CONTAINER_BY_TOKEN function
The INQIRE_CONTAINER_BY_TOKEN function of the PGCR gate is used to retrieve the attributes of a
container by means of a token.

Input parameters
CONTAINER_TOKEN

is a token referencing the container to be enquired upon.

Output parameters
[CCSID]

is the coded character set identifier of the character data in the container.

[CONTAINER_NAME]
is the name of the container.

[DATA_LENGTH]
is the length, in bytes, of the data in the container.

[DATATYPE]
is the format of the data. It can have either of these values:
CHAR|BIT

[GENERATION_NUMBER]
Every time a container in a container pool is changed or created the pool generation number is
incremented. This number is the number for the container when the container was last changed.

[INITIAL_GENERATION]
Every time a container in a container pool is changed or created the pool generation number is
incremented. This number is the number for the container when the container was created.

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 969

|

|
|

|
|
|

|
|
|

|
|
|

|

|
|

|

|
|

|||

||

||
|
|
|

|

|
|

|

|
|

|

|
|

|
|

|
|

|
|

|

|
|
|

|
|
|

[TYPE]
whether the container is visible only to CICS, or to user programs as well. TYPE can have either
of these values:
CICS|USER

[USERACCESS]
whether USER containers can be updated by API commands. USERACCESS can have either of
these values:
READONLY|ANY

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

REASON
is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CONTAINER_NOT_FOUND

INVALID INVALID_CONTAINER_TOKEN
INVALID_PARAMETERS

PGCR gate, MOVE_CONTAINER function
The MOVE_CONTAINER function of the PGCR gate is used to move a container from one container pool
to another. Both pools must already have been created. If the TO_POOL_TOKEN is not specified, the
container is not moved to a different pool but is renamed to the value of AS_CONTAINER_NAME.

Input parameters
[AS_CONTAINER_NAME]

is the name by which the container is to be known in the target container pool.

[CALLER]
is the call part of an API call. It can have either of these values:
EXEC|SYSTEM

[CONTAINER_NAME]
is the name of the container to be moved.

[CONTAINER_TOKEN]
is a token representing the container to be moved.

[POOL_TOKEN]
is a token referencing the container pool from which the container is to be moved.

[TO_POOL_TOKEN]
is a token referencing the container pool to which the container is to be moved.

[TYPE]
whether the container is visible only to CICS, or to user programs as well. TYPE can have either
of these values:
CICS|USER

Output parameters
[CONTAINER_TOKEN_OUT]

is a token representing the moved container in the target container pool.

Program manager domain (PG)

970 CICS TS for z/OS: CICS Diagnosis Reference

|
|
|

|

|
|
|

|

|
|

|

|
|

|||

||

||
|
|

|

|
|
|

|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|
|

|

|

|
|

[GENERATION_NUMBER]
Every time a container in a container pool is changed or created the pool generation number is
incremented. This number is the number for the container when the container was last changed.

[INITIAL_GENERATION]
Every time a container in a container pool is changed or created the pool generation number is
incremented. This number is the number for the container when the container was created.

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

REASON
is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CONTAINER_NOT_FOUND
INVALID_AS_CONTAINER_NAME
READONLY_AS_CONTAINER
READONLY_CONTAINER

INVALID INVALID_CONTAINER_TOKEN
INVALID_PARAMETERS
INVALID_POOL_TOKEN
INVALID_TO_POOL_TOKEN

PGCR gate, PUT_CONTAINER function
The PUT_CONTAINER function of the PGCR gate is used to put data into a container from an area
provided by the caller.

Input parameters
[CALLER]

is the call part of an API call. It can have either of these values:
EXEC|SYSTEM

[CCSID]
is the coded character set identifier (CCSID) of the character data to be put into the container.

[CONTAINER_NAME]
is the name of the container.

[CONTAINER_TOKEN]
is a token referencing an existing container into which the data is to be put.

[CONVERT]
whether character data in the container should be converted. It can have either of these values:
YES|NO

The default value is YES.

[DATATYPE]
is the format of the data. It can have either of these values:
CHAR|BIT

ITEM_DATA
The address and length of the put data.

[POOL_TOKEN]
is a token referencing the container pool to which the container belongs.

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 971

|
|
|

|
|
|

|
|

|

|
|

|||

||
|
|
|

||
|
|
|
|

|

|
|

|

|
|

|

|
|

|
|

|
|

|
|

|

|

|
|

|

|
|

|
|

[PUT_TYPE]
whether the PUT data should be appended to the current contents of the container or replace the
current contents. PUT_TYPE can have either of these values:
APPEND|REPLACE

[TYPE]
whether the container is visible only to CICS, or to user programs as well. TYPE can have either
of these values:
CICS|USER

[USERACCESS]
whether USER containers can be updated by API commands. USERACCESS can have either of
these values:
READONLY|ANY

Output parameters
[CONTAINER_TOKEN_OUT]

is a token referencing the container.

[GENERATION_NUMBER]
Every time a container in a container pool is changed or created the pool generation number is
incremented. This number is the number for the container when the container was last changed.

[INITIAL_GENERATION]
Every time a container in a container pool is changed or created the pool generation number is
incremented. This number is the number for the container when the container was created.

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON]
is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CCSID_INVALID
DATATYPE_CHANGE
INVALID_CONTAINER_NAME
LENGTH_ERROR,
READONLY_CONTAINER

INVALID INVALID_CONTAINER_TOKEN
INVALID_PARAMETERS
INVALID_POOL_TOKEN

PGCR gate, SET_CONTAINER function
The SET_CONTAINER function of the PGCR gate is used to change the attributes of a container.

Input parameters
[CONTAINER_NAME]

is the name of the container.

[CONTAINER_TOKEN]
is a token referencing the container whose attributes are to be changed.

[POOL_TOKEN]
is a token referencing the container pool to which the container belongs.

Program manager domain (PG)

972 CICS TS for z/OS: CICS Diagnosis Reference

|
|
|

|

|
|
|

|

|
|
|

|

|

|
|

|
|
|

|
|
|

|
|

|

|
|

|||

||
|
|
|
|

||
|
|
|

|

|

|

|
|

|
|

|
|

[TYPE]
whether the container is visible only to CICS, or to user programs as well. TYPE can have either
of these values:
CICS|USER

[USERACCESS]
whether USER containers can be updated by API commands. USERACCESS can have either of
these values:
READONLY|ANY

Output parameters
RESPONSE

is the domain’s response to the call. It can have any of these values:
OK|DISASTER|EXCEPTION|INVALID|KERNERROR|PURGED

REASON
is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CONTAINER_NOT_FOUND

INVALID INVALID_CONTAINER_TOKEN
INVALID_PARAMETERS
INVALID_POOL_TOKEN

PGCR gate, STARTBR_CONTAINER function
The STARTBR_CONTAINER function of the PGCR gate is used to initiate a browse of the containers in a
specified container pool.

Input parameters
POOL_TOKEN

is a token referencing the container pool to be browsed.

[CALLER]
is the call part of an API call. It can have either of these values:
EXEC|SYSTEM

Output parameters
BROWSE_TOKEN

is a browse token referencing a container in the container pool. This container is the first in the
browse list.

RESPONSE
is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

REASON
is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_POOL_TOKEN

PGCR gate, TRACE_CONTAINERS function
The TRACE_CONTAINER function of the PGCR gate is used to initiate a trace of the containers in a
specified channel.

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 973

|
|
|

|

|
|
|

|

|

|
|

|

|
|

|||

||

||
|
|
|

|

|
|

|

|
|

|
|

|

|

|
|
|

|
|

|

|
|

|||

||
|

|

|
|

Input parameters
CHANNEL_TOKEN

is a token referencing the channel whose containers are to be traced.

Output parameters
RESPONSE

is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

REASON
is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_CHANNEL_TOKEN

PGDD gate, DEFINE_PROGRAM function
The DEFINE_PROGRAM function of the PGDD gate is used to define a program resource.

Input parameters

Note: Specify either the PROGRAM_NAME parameter or the CATALOG_ADDRESS parameter, not both.
PROGRAM_NAME is the name of the program resource to be defined.
CATALOG_ADDRESS

is the token identifying the program resource to be defined.
[CEDF_STATUS]

indicates whether or not the EDF diagnostic screens are displayed when the program is
running under the control of the execution diagnostic facility (EDF). It can have either of
these values:
CEDF|NOCEDF

[LANGUAGE_DEFINED]
is the language to be defined for the program. It can have any of these values:
ASSEMBLER|C370|COBOL|LE370|PLI|NOT_DEFINED

[AVAIL_STATUS]
defines whether (ENABLED) or not (DISABLED) the program can be used. It can have
either of these values:
ENABLED|DISABLED

[MODULE_TYPE]
is the type of program resource to be defined: It can have any of these values:
PROGRAM|MAPSET|PARTITIONSET

[DATA_LOCATION]
defines whether the program can handle only 24-bit addresses (data located below the
16MB line) can handle 31-bit addresses (data located above or below the 16MB line). The
DATALOCATION options are independent from the addressing mode of the link-edited
program. It can have either of these values:
ANY|BELOW

[EXECUTION_SET]
indicates whether you want CICS to link to and run the program as if it were running in a
remote CICS region (with or without the API restrictions of a DPL program). It can have
either of these values:
FULLAPI|DPLSUBSET

[REMOTE_PROGID]
is the name by which the program is known in the remote CICS region. If you specify
REMOTE_SYSID and omit REMOTE_PROGID, the REMOTE_PROGID parameter
defaults to the same name as the local name (that is, the PROGRAM_NAME value).

Program manager domain (PG)

974 CICS TS for z/OS: CICS Diagnosis Reference

|

|
|

|

|
|

|

|
|

|||

||
|

|

[REMOTE_SYSID]
is the name of a remote CICS region if you want CICS to ship a distributed program link
(DPL) request to another CICS region.

[REMOTE_TRANID]
is the name of the transaction you want the remote CICS to attach, and under which it is
to run the remote program.

[EXECUTION_KEY]
is the key in which CICS gives control to the program, and determines whether the
program can modify CICS-key storage. It can have either of these values:
CICS|USER

Note: If the program is link-edited with the RENT attribute and the RMODE(ANY) mode
statement, CICS loads the program into extended the read-only DSA(ERDSA),
regardless of the EXECKEY option. The ERDSA is allocated from read-only
extended storage only if RENTPGM=PROTECT is specified as a system
initialization parameter.

[PROGRAM_TYPE]
is the type of program. It can have any of these values:
PRIVATE|SHARED|TYPE_ANY

[PROGRAM_USAGE]
defines whether the program is to be used as a CICS nucleus program or as a user
application program. It can have either of these values:
NUCLEUS|APPLICATION

[PROGRAM_ATTRIBUTE]
defines the residence status of the program, and when the storage for this program is
released. It can have any of these values:
RESIDENT|REUSABLE|TRANSIENT|RELOAD|TEST

[REQUIRED_AMODE]
is the addressing mode of the program. It can have any of these values:
24|31|AMODE_ANY

[REQUIRED_RMODE]
is the residence mode of the program. It can have any of these values:
24|RMODE_ANY

[DYNAMIC_STATUS]
indicates whether or not a request to LINK to the program may be dynamically routed. It
can have either of these values:
DYNAMIC|NOTDYNAMIC

[CONCURRENCY]
indicates whether the program is threadsafe or only quasi-reentrant. It can have either of
these two values:
THREADSAFE|QUASIRENT

[JVM] indicates whether or not the program is to be executed under the control of a JVM (Java
Virtual Machine). It can have either of these values:
YES|NO

[JVM_CLASS] is the name of the main class in a Java program to be run under the control of a JVM.
[HOTPOOL] indicates whether or not the Java program object is to be run in a preinitialized Language

Environment enclave reused by multiple invocations of the program, under control of an
H8 TCB. It can have either of these two values:
YES|NO

[JVM_PROFILE]
specifies the name of the data set member that contains the JVM profile.. The named
profile provides the attributes of the JVM that is needed to execute the program.

[MULTITCB] is reserved for future use
[OPENAPI] is reserved for future use

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 975

[NEW_PROGRAM_TOKEN]
is the Loader Domain token for the program

Output parameters
NEW_PROGRAM_TOKEN

is the token assigned to program.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
CATALOG_NOT_OPERATIONAL
CATALOG_ERROR
INSUFFICIENT_STORAGE
LOCK_ERROR

EXCEPTION PROGRAM_ALREADY_DEFINED
PROGRAM_IN_USE

INVALID INVALID_CATALOG_ADDRESS
INVALID_FUNCTION
INVALID_MODE_COMBINATION
INVALID_PROGRAM_NAME
INVALID_TYPE_ATTRIB_COMBIN

PGDD gate, DELETE_PROGRAM function
The DELETE_PROGRAM function of the PGDD gate is used to delete a program resource.

Input parameters
PROGRAM_NAME is the name of the program resource to be defined.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOCK_ERROR

EXCEPTION PROGRAM_NOT_DEFINED
PROGRAM_NAME_STARTS_DFH
PROGRAM_IS_URM
PROGRAM_IN_USE

INVALID INVALID_FUNCTION

PGEX gate, INITIALIZE_EXIT function
The INITIALIZE_EXIT function of the PGEX gate is used to initialize an exit program.

Input parameters
PROGRAM_NAME is the name, 1 through 8 alphanumeric characters, of the program to be initialized.
LOAD_PROGRAM defines whether or not the program is to be loaded when initialized. It can have either of

these values:
YES|NO

Program manager domain (PG)

976 CICS TS for z/OS: CICS Diagnosis Reference

SYSTEM_AUTOINSTALL
defines whether CICS is to autoinstall the program if there is no associated PROGRAM
resource definition. It can have either of these values:
YES|NO

[LPA_ELIGIBLE]
defines whether or not the program can be loaded into the MVS link pack area (LPA). It
can have either of these values:
YES|NO

Output parameters
PROGRAM_TOKEN

is the token assigned to program.
[ENTRY_POINT]

is the token defining the entry point of the program.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION AUTOINSTALL_URM_FAILED
AUTOINSTALL_MODEL_NOT_DEF
AUTOINSTALL_INVALID_DATA
AUTOINSTALL_FAILED
JVM_PROGRAM
PROGRAM_NOT_AUTHORIZED
PROGRAM_NOT_DEFINED
PROGRAM_NOT_ENABLED
PROGRAM_NOT_LOADABLE
REMOTE_PROGRAM

INVALID INVALID_INITIALIZE_REQUEST
INVALID_FUNCTION

PGEX gate, TERMINATE_EXIT function
The TERMINATE_EXIT function of the PGEX gate is used to terminate an exit program.

Input parameters
PROGRAM_TOKEN

is the token identifying the program to be terminated.
RELEASE_PROGRAM

defines whether or not the program is to be released when terminated. It can have either
of these values:
YES|NO

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 977

RESPONSE Possible REASON values

EXCEPTION PROGRAM_NOT_AUTHORIZED
PROGRAM_NOT_DEFINED
PROGRAM_NOT_IN_USE
PROGRAM_NOT_ENABLED
PROGRAM_NOT_LOADABLE

INVALID INVALID_PROGRAM_TOKEN
INVALID_FUNCTION

PGHM gate, SET_CONDITIONS function
The SET_CONDITIONS function of the PGHM gate is used to process for user EXEC CICS HANDLE
CONDITION commands, and to save the details of the condition into the current condition handle table.

Input parameters
IDENTIFIERS is the token identifying the conditions to be handled.
LABELS_FLAGS is the token identifying the number of conditions in this command that have associated

labels.
[LABELS] is the token identifying the condition labels (the locations within the program to be

branched to if the condition occurs).
[LANGUAGE] is the program language. It can have any of these values:

ASSEMBLER|C370|COBOL|LE370|PLI
[CURRENT_EXECUTION_KEY]

is an 8-bit value indicating the current program execution key (at the time the EXEC CICS
HANDLE CONDITION command was issued).

[USERS_RSA_POINTER]
is the address of the user program Register Save Area into which the program’s registers
are saved at each EXEC CICS command execution.

[AMODE] is the addressing mode (24–bit or 31–bit) of the program at the time the handle command
was driven.

Output parameters
[FASTPATH_FLAGS]

identifies the fastpath flag settings for the following conditions handled by the user:
RDATT, WRBRK, EOF, NOSPACE, QBUSY, NOSTG, ENQBUSY, NOJBUFSP, SIGNAL,
OVERFLOW, SYSBUSY, SESSBUSY.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION
MISSING_PARAMETER

PGHM gate, INQ_CONDITION function
The INQ_CONDITION function of the PGHM gate is invoked when a condition has occurred, and returns
to the caller about details of the condition for user EXEC CICS HANDLE CONDITION commands.

Input parameters
CONDITION is an 8-bit value identifying the condition.

Output parameters
STATUS identifies the status of the condition. It can have any of these values:

Program manager domain (PG)

978 CICS TS for z/OS: CICS Diagnosis Reference

DEFAULT|HANDLED|IGNORED
[LABEL] is the token identifying the condition label within the program to be branched to if the

condition occurs.
[LANGUAGE] is the program language. It can have any of these values:

ASSEMBLER|C370|COBOL|LE370|PLI
[CURRENT_EXECUTION_KEY]

is an 8-bit value indicating the current program execution key (at the time the EXEC CICS
HANDLE CONDITION command was issued).

[USERS_RSA_POINTER]
is the address of the user program Register Save Area into which the program’s registers
are saved at each EXEC CICS command execution.

[PROGRAM_MASK]
identifies the program mask at the time the HANDLE CONDITION command was
executed.

[GOTOL] is the token identifying the condition label within the program to be branched to if the
condition is ignored.

[ABEND_CODE] is the four-character abend code to be issued if CICS drives the system default, which is
to abend the transaction.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION
MISSING_PARAMETER

PGHM gate, IGNORE_CONDITIONS function
The IGNORE_CONDITIONS function of the PGHM gate is used to ignore the conditions for user EXEC
CICS IGNORE CONDITION commands.

Input parameters
IDENTIFIERS is the token identifying the conditions to be ignored.

Output parameters
[FASTPATH_FLAGS]

identifies the fastpath flag settings for the conditions.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION
MISSING_PARAMETER

PGHM gate, SET_AIDS function
The SET_AIDS function of the PGHM gate is invoked in response to a user EXEC CICS HANDLE AID
command, and saves the details of the handle into the current aid Handle Table.

Input parameters
IDENTIFIERS is the token identifying the aids to be handled.

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 979

LABELS_FLAGS is the token identifying the number of aids in this command that have associated labels.
[LABELS] is the token identifying the condition labels (the locations within the program to be

branched to if the aid occurs).
[LANGUAGE] is the program language. It can have any of these values:

ASSEMBLER|C370|COBOL|LE370|PLI
[CURRENT_EXECUTION_KEY]

is an 8-bit value indicating the current program execution key (at the time the EXEC CICS
HANDLE AID command was issued).

[USERS_RSA_POINTER]
is the address of the user program Register Save Area into which the program’s registers
are saved at each EXEC CICS command execution.

[AMODE] is the addressing mode (24–bit or 31–bit) of the program at the time the handle command
was driven.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION
MISSING_PARAMETER

PGHM gate, INQ_AID function
The INQ_AID function of the PGHM gate is invoked when an aid has occurred, and returns to the caller
details of the handle aid for user EXEC CICS HANDLE AID commands.

Input parameters
AID is an 8-bit value identifying the aid.

Output parameters
[LABEL] is the token identifying the condition label within the program to be branched to if the aid

occurs.
[LANGUAGE] is the program language. It can have any of these values:

ASSEMBLER|C370|COBOL|LE370|PLI
[CURRENT_EXECUTION_KEY]

is an 8-bit value indicating the current program execution key (at the time the EXEC CICS
HANDLE AID command was issued).

[USERS_RSA_POINTER]
is the address of the user program Register Save Area into which the program’s registers
are saved at each EXEC CICS command execution.

[PROGRAM_MASK]
identifies the program mask at the time the HANDLE CONDITION command was
executed.

[GOTOL] is the token identifying the condition label within the program to be branched to if the
condition is ignored.

[STATUS] identifies the status of the AID. It can have either of these values:
SYSTEM_DEFAULT|HANDLED

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

Program manager domain (PG)

980 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION
MISSING_PARAMETER

PGHM gate, SET_ABEND function
The SET_ABEND function of the PGHM gate is invoked in response to a user EXEC CICS HANDLE
ABEND command, and saves the details of the handle into the current abend Handle Table.

Input parameters
OPERATION identifies what is to be done if the abend occurs. It can have any of these values:

HANDLE|CANCEL|RESET

Note: Specify either the LABEL parameter or the PROGRAM parameter, not both.
[LABEL] is the token identifying the condition label within the program to be branched to if the

abend occurs.
[PROGRAM] is the name of the program to which control will be passed if the abend occurs.
[LANGUAGE] is the program language. It can have any of these values:

ASSEMBLER|C370|COBOL|LE370|PLI
[CURRENT_EXECUTION_KEY]

is an 8-bit value indicating the current program execution key (at the time the EXEC CICS
HANDLE ABEND command was issued).

[USERS_RSA_POINTER]
is the address of the user program Register Save Area into which the program’s registers
are saved at each EXEC CICS command execution.

[AMODE] is the addressing mode (24–bit or 31–bit) of the program at the time the handle command
was driven.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION
MISSING_PARAMETER

PGHM gate, INQ_ABEND function
The INQ_ABEND function of the PGHM gate is invoked when an abend has occurred, and returns to the
caller details of the handle abend for user EXEC CICS HANDLE AID commands.

Input parameters
None.

Output parameters
STATUS identifies the status of the condition. It can have either of these values:

SYSTEM_DEFAULT|HANDLED
[LABEL] is the token identifying the condition label within the program branched to when the abend

occurred.
[PROGRAM] is the name of the program to which control was passed when the abend occurred.
[LANGUAGE] is the program language. It can have any of these values:

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 981

ASSEMBLER|C370|COBOL|LE370|PLI
[CURRENT_EXECUTION_KEY]

is an 8-bit value indicating the current program execution key (at the time the EXEC CICS
HANDLE AID command was issued).

[USERS_RSA_POINTER]
is the address of the user program Register Save Area into which the program’s registers
are saved at each EXEC CICS command execution.

[PROGRAM_MASK]
identifies the program mask at the time the HANDLE CONDITION command was
executed.

[GOTOL] is the token identifying the condition label within the program to be branched to if the
condition is ignored.

[HANDLE_COUNT]
is the number of times that this abend code has been handled.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION
MISSING_PARAMETER

PGHM gate, PUSH_HANDLE function
The PUSH_HANDLE function of the PGHM gate is invoked for a user EXEC CICS PUSH command.

Input parameters
None.

Output parameters
[FASTPATH_FLAGS]

identifies the fastpath flag settings for the conditions.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION
MISSING_PARAMETER

PGHM gate, POP_HANDLE function
The POP_HANDLE function of the PGHM gate is invoked for a user EXEC CICS POP command.

Input parameters
None.

Output parameters
[FASTPATH_FLAGS]

identifies the fastpath flag settings for the conditions.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Program manager domain (PG)

982 CICS TS for z/OS: CICS Diagnosis Reference

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION NO_PREVIOUS_PUSH

INVALID INVALID_FUNCTION
MISSING_PARAMETER

PGHM gate, FREE_HANDLE_TABLES function
The FREE_HANDLE_TABLES function of the PGHM gate is invoked by CICS during program termination
processing and frees all storage relating to the Handle State for that program level.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION
MISSING_PARAMETER

PGHM gate, CLEAR_LABELS function
The CLEAR_LABELS function of the PGHM gate is invoked by CICS during XCTL processing and frees
all storage relating to the Handle State for that program (except for the initial default state) and removes all
user-defined label handles.

Input parameters
None.

Output parameters
[FASTPATH_FLAGS]

identifies the fastpath flag settings for the conditions.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION
MISSING_PARAMETER

PGIS gate, INQUIRE_PROGRAM function
The INQUIRE_PROGRAM function of the PGIS gate is used to inquire about attributes of a program.

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 983

Input parameters

Note: Specify either the PROGRAM_NAME parameter or the PROGRAM_TOKEN parameter, not both.
PROGRAM_NAME is the name of the program.
PROGRAM_TOKEN

is the token identifying the program.

Output parameters
[CEDF_STATUS]

indicates whether or not the EDF diagnostic screens are displayed when the program is
running under the control of the execution diagnostic facility (EDF) It can have any of
these values:
CEDF|NOCEDF|NOT_APPLIC

[HOLD_STATUS]
is the hold status of the program (that is, for how long the program is to be loaded). It can
have any of these values:
TASK_LIFE|CICS_LIFE|NOT_APPLIC

[LOAD_STATUS]
is the load status of the program (that is, whether or not the program can be loaded). It
can have any of these values:
LOADABLE|NOT_LOADABLE|NOT_LOADED|NOT_APPLIC

[INSTALL_TYPE]
is the method used to install the PROGRAM resource definition. It can have any of these
values:
RDO|CATALOG|GROUPLIST|AUTO|SYSAUTO|MANUAL

[LANGUAGE_DEFINED]
is the language defined for the program. It can have any of these values:
ASSEMBLER|C370|COBOL|LE370|PLI|
NOT_DEFINED|NOT_APPLIC

[LANGUAGE_DEDUCED]
is the language deduced by CICS for the program. It can have any of these values:
ASSEMBLER|C370|COBOL|COBOL2|JAVA|LE370|PLI|
NOT_DEDUCED|NOT_APPLIC

[AVAIL_STATUS]
defines whether (ENABLED) or not (DISABLED) the program can be used. It can have
either of these values:
ENABLED|DISABLED

[MODULE_TYPE]
is the type of program resource to be defined: It can have any of these values:
PROGRAM|MAPSET|PARTITIONSET

[DATA_LOCATION]
defines whether the program can handle only 24-bit addresses (data located below the
16MB line) can handle 31-bit addresses (data located above or below the 16MB line). The
DATALOCATION options are independent from the addressing mode of the link-edited
program. It can have either of these values:

ANY|BELOW|NOT_APPLIC
[EXECUTION_SET]

indicates whether you want CICS to link to and run the program as if it were running in a
remote CICS region (with or without the API restrictions of a DPL program). It can have
either of these values:
FULLAPI|DPLSUBSET|NOT_APPLIC

[REMOTE_PROGID]
is the name by which the program is known in the remote CICS region. If you specify

Program manager domain (PG)

984 CICS TS for z/OS: CICS Diagnosis Reference

REMOTE_SYSID and omit REMOTE_PROGID, the REMOTE_PROGID parameter
defaults to the same name as the local name (that is, the PROGRAM_NAME value.

[REMOTE_SYSID]
is the name of a remote CICS region if you want CICS to ship a distributed program link
(DPL) request to another CICS region.

[REMOTE_TRANID]
is the name of the transaction you want the remote CICS to attach, and under which it is
to run the remote program.

[EXECUTION_KEY]
is the key in which CICS gives control to the program, and determines whether the
program can modify CICS-key storage. It can have either of these values:
CICS|USER|NOT_APPLIC

Note: If the program is link-edited with the RENT attribute and the RMODE(ANY) mode
statement, CICS loads the program into extended the read-only DSA(ERDSA),
regardless of the EXECKEY option. The ERDSA is allocated from read-only
extended storage only if RENTPGM=PROTECT is specified as a system
initialization parameter.

[PROGRAM_TYPE]
is the type of program. It can have any of these values:
PRIVATE|SHARED|TYPE_ANY|NOT_APPLIC

[PROGRAM_USAGE]
defines whether the program is to be used as a CICS nucleus program or as a user
application program. It can have either of these values:
NUCLEUS|APPLICATION

[PROGRAM_ATTRIBUTE]
defines the residence status of the program, and when the storage for this program is
released. It can have any of these values:
RESIDENT|REUSABLE|TRANSIENT|RELOAD|TEST

[SPECIFIED_AMODE]
is the addressing mode of the program. It can have any of these values:
24|31|AMODE_ANY|AMODE_NOT_SPECIFIED

[SPECIFIED_RMODE]
is the residence mode of the program. It can have any of these values:
24|RMODE_ANY|RMODE_NOT_SPECIFIED

[PROGRAM_LENGTH]
is the length of the program. returned by the loader domain on the ACQUIRE_PROGRAM
call.

[PROGRAM_USE_COUNT]
is the number of times that the program has been used.

[PROGRAM_USER_COUNT]
is the number of different users that have invoked the program.

[LOAD_POINT] is the load point address of the program returned by the loader domain on the
ACQUIRE_PROGRAM call.

[ENTRY_POINT]
is the entry point address of the program returned by the loader domain on the
ACQUIRE_PROGRAM call.

[LOCATION] defines where the program resides. It can have any of these values:
CDSA|ECDSA|SDSA|ESDSA|RDSA|ERDSA|LPA|ELPA|NONE

[ACCESS] is the type of access for the program. It can have any of these values:
USER|CICS|READ_ONLY|NONE

[REMOTE_DEFINITION]
indicates whether the program is defined as remote or local. It can take the values:
REMOTE|LOCAL

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 985

[NEW_PROGRAM_TOKEN]
is the loader domain token for the program

[DYNAMIC_STATUS]
indicates whether or not a request to LINK to the program may be dynamically routed. It
can have either of these values:
DYNAMIC|NOTDYNAMIC

[CONCURRENCY]
indicates whether the program is threadsafe or only quasi-reentrant. It can have either of
these two values:
THREADSAFE|QUASIRENT

[JVM] indicates whether or not the program is to be executed under the control of a JVM (Java
Virtual Machine). It can have either of these values:
YES|NO

[JVM_CLASS] is the name of the main class in a Java program to be run under the control of a JVM.
[HOTPOOL] indicates whether or not the Java program object is to be run in a preinitialized Language

Environment enclave reused by multiple invocations of the program, under control of an
H8 TCB. It can have either of these two values:
YES|NO

[JVM_PROFILE]
specifies the name of the JVM profile. The named profile provides the attributes of the
JVM that is needed to execute the program.

[JVMPROGRAM_USE_COUNT]
For Java programs to be run under the control of a JVM, the number of times the program
has been used.

[RUNTIME_ENVIRONMENT]
indicates the runtime environment used for the execution of this program. It can take the
values
JVM_RUNTIME|LE370_RUNTIME|NON_LE370_RUNTIME|
UNKNOWN_RUNTIME|NOT_APPLIC

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND
LOCK_ERROR

EXCEPTION PROGRAM_NOT_DEFINED_TO_LD
PROGRAM_NOT_DEFINED_TO_PG

INVALID INVALID_PROGRAM_TOKEN

PGIS gate, INQUIRE_CURRENT_PROGRAM function
The INQUIRE_CURRENT_PROGRAM function of the PGIS gate is used to inquire about the current
attributes of a program (for the current invocation of the program).

Input parameters
None.

Output parameters
[CEDF_STATUS]

indicates whether or not the EDF diagnostic screens are displayed when the program is
running under the control of the execution diagnostic facility (EDF) It can have any of
these values:
CEDF|NOCEDF|NOT_APPLIC

Program manager domain (PG)

986 CICS TS for z/OS: CICS Diagnosis Reference

[HOLD_STATUS]
is the hold status of the program (that is, for how long the program is to be loaded). It can
have any of these values:
TASK_LIFE|CICS_LIFE|NOT_APPLIC

[LOAD_STATUS]
is the load status of the program (that is, whether or not the program can be loaded). It
can have any of these values:
LOADABLE|NOT_LOADABLE|NOT_LOADED|NOT_APPLIC

[INSTALL_TYPE]
is the method used to install the PROGRAM resource definition. It can have any of these
values:
RDO|CATALOG|GROUPLIST|AUTO|SYSAUTO|MANUAL

[LANGUAGE_DEFINED]
is the language defined for the program. It can have any of these values:
ASSEMBLER|C370|COBOL|LE370|PLI|
NOT_DEFINED|NOT_APPLIC

[LANGUAGE_DEDUCED]
is the language deduced by CICS for the program. It can have any of these values:
ASSEMBLER|C370|COBOL|COBOL2|LE370|PLI|
NOT_DEDUCED|NOT_APPLIC

[AVAIL_STATUS]
defines whether (ENABLED) or not (DISABLED) the program can be used. It can have
either of these values:
ENABLED|DISABLED

[MODULE_TYPE]
is the type of program resource to be defined: It can have any of these values:
PROGRAM|MAPSET|PARTITIONSET

[DATA_LOCATION]
defines whether the program can handle only 24-bit addresses (data located below the
16MB line) can handle 31-bit addresses (data located above or below the 16MB line). The
DATALOCATION options are independent from the addressing mode of the link-edited
program. It can have either of these values:
ANY|BELOW|NOT_APPLIC

[EXECUTION_SET]
indicates whether you want CICS to link to and run the program as if it were running in a
remote CICS region (with or without the API restrictions of a DPL program). It can have
any of these values:
FULLAPI|DPLSUBSET|NOT_APPLIC

[REMOTE_DEFINITION]
defines whether the program is local or remote. It can have either of these values:
LOCAL|REMOTE

[REMOTE_PROGID]
is the name by which the program is known in the remote CICS region. If you specify
REMOTE_SYSID and omit REMOTE_PROGID, the REMOTE_PROGID parameter
defaults to the same name as the local name (that is, the PROGRAM_NAME value).

[REMOTE_SYSID]
is the name of a remote CICS region if you want CICS to ship a distributed program link
(DPL) request to another CICS region.

[REMOTE_TRANID]
is the name of the transaction you want the remote CICS to attach, and under which it is
to run the remote program.

[EXECUTION_KEY]
is the key in which CICS gives control to the program, and determines whether the
program can modify CICS-key storage. It can have any of these values:

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 987

CICS|USER|NOT_APPLIC

Note: If the program is link-edited with the RENT attribute and the RMODE(ANY) mode
statement, CICS loads the program into extended the read-only DSA(ERDSA),
regardless of the EXECKEY option. The ERDSA is allocated from read-only
extended storage only if RENTPGM=PROTECT is specified as a system
initialization parameter.

NEW_PROGRAM_TOKEN
is the token assigned to program.

[CURRENT_PROGRAM_NAME]
is the current name of the program.

[INVOKING_PROGRAM_NAME]
is the name of the program invoking this program.

[RETURN_PROGRAM_NAME]
is the name of the program to which control will be returned when this program has
ended.

[CURRENT_CEDF_STATUS]
indicates whether or not the EDF diagnostic screens are displayed when the program is
running under the control of the execution diagnostic facility (EDF) It can have either of
these values:
CEDF|NOCEDF

[CURRENT_EXECUTION_SET]
indicates whether the program is running with or without the API restrictions of a DPL
program. It can have any of these values:
FULLAPI|DPLSUBSET

[CURRENT_ENVIRONMENT]
indicates the current environment in which the program is running. It can have any of
these values:
EXEC|GLUE|PLT|SYSTEM|TRUE|URM

[CURRENT_AMODE]
is the addressing mode of the program. It can have either of these values:
24|31

[CURRENT_LOAD_POINT]
is the current load point address of the program returned by the loader domain on the
ACQUIRE_PROGRAM call.

[CURRENT_ENTRY_POINT]
is the current entry point address of the program returned by the loader domain on the
ACQUIRE_PROGRAM call.

[CURRENT_PROGRAM_LENGTH]
is the length of the current program in bytes, as returned by the Loader Domain on the
AQUIRE_PROGRAM call.

[INVOKING_ENVIRONMENT]
is the environment in which the program invoking this program was executing. It can have
any of these values:
EXEC|GLUE|PLT|SYSTEM|TRUE|URM

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOCK_ERROR

EXCEPTION NO_CURRENT_PROGRAM

Program manager domain (PG)

988 CICS TS for z/OS: CICS Diagnosis Reference

PGIS gate, SET_PROGRAM function
The SET_PROGRAM function of the PGIS gate is used to set the characteristics of a program when it is
loaded.

Input parameters
note.Specify either the PROGRAM_NAME parameter or the PROGRAM_TOKEN parameter, not both.
PROGRAM_NAME is the name of the program.
PROGRAM_TOKEN

is the token identifying the program.
[CEDF_STATUS]

indicates whether or not the EDF diagnostic screens are displayed when the program is
running under the control of the execution diagnostic facility (EDF) It can have either of
these values:
CEDF|NOCEDF

[AVAIL_STATUS]
defines whether (ENABLED) or not (DISABLED) the program can be used. It can have
either of these values:
ENABLED|DISABLED

[EXECUTION_SET]
indicates whether you want CICS to link to and run the program as if it were running in a
remote CICS region (with or without the API restrictions of a DPL program). It can have
either of these values:
FULLAPI|DPLSUBSET

[EXECUTION_KEY]
is the key in which CICS gives control to the program, and determines whether the
program can modify CICS-key storage. It can have either of these values:
CICS|USER

Note: If the program is link-edited with the RENT attribute and the RMODE(ANY) mode
statement, CICS loads the program into extended the read-only DSA(ERDSA),
regardless of the EXECKEY option. The ERDSA is allocated from read-only
extended storage only if RENTPGM=PROTECT is specified as a system
initialization parameter.

[PROGRAM_TYPE]
is the type of program. It can have any of these values:
PRIVATE|SHARED|TYPE_ANY

[PROGRAM_USAGE]
defines whether the program is to be used as a CICS nucleus program or as a user
application program. It can have either of these values:
NUCLEUS|APPLICATION

[PROGRAM_ATTRIBUTE]
defines the residence status of the program, and when the storage for this program is
released. It can have any of these values:
RESIDENT|REUSABLE|TRANSIENT|RELOAD|TEST

[REQUIRED_AMODE]
is the addressing mode of the program. It can have any of these values:
24|31|AMODE_ANY

[REQUIRED_RMODE]
is the residence mode of the program. It can have any of these values:
24|RMODE_ANY

[JVM] indicates whether or not the program is to be executed under the control of a JVM (Java
Virtual Machine). It can have either of these values:
YES|NO

[JVM_CLASS] is the name of the main class in a Java program to be run under the control of a JVM.

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 989

[JVM_PROFILE]
is the name of the JVM profile that provides the attributes of the JVM which is needed to
execute the program.

[HOTPOOL] indicates whether or not the Java program object is to be run in a preinitialized Language
Environment enclave reused by multiple invocations of the program, under control of an
H8 TCB. It can have either of these two values:
YES|NO

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
CATALOG_NOT_OPERATIONAL
CATALOG_ERROR
LOCK_ERROR
INSUFFICIENT_STORAGE

EXCEPTION PROGRAM_NOT_DEFINED_TO_PG
CEDF_STATUS_NOT_FOR_REMOTE
CEDF_STATUS_NOT_FOR_MAPSET
CEDF_STATUS_NOT_FOR_PTNSET
EXEC_SET_NOT_FOR_REMOTE
EXEC_SET_NOT_FOR_MAPSET
EXEC_SET_NOT_FOR_PTNSET
EXEC_KEY_NOT_FOR_REMOTE
EXEC_KEY_NOT_FOR_MAPSET
EXEC_KEY_NOT_FOR_PTNSET
PROG_TYPE_NOT_FOR_REMOTE
PROGRAM_NOT_DEFINED_TO_LD
PROGRAM_NOT_FOUND
JVM_BUT_NO_JVMCLASS
HOTPOOL_NOT_FOR_REMOTE
HOTPOOL_NOT_FOR_MAPSET
HOTPOOL_NOT_FOR_PTNSET

INVALID INVALID_MODE_COMBINATION
INVALID_PROGRAM_NAME
INVALID_PROGRAM_TOKEN
INVALID_TYPE_ATTRIB_COMBIN

PGIS gate, START_BROWSE_PROGRAM function
The START_BROWSE_PROGRAM function of the PGIS gate is used to start browsing through program
definitions, optionally starting at the given program definition.

Input parameters
[PROGRAM_NAME]

is the optional name of the program definition at which you want to start browsing.
[TASK_RELATED]

indicates whether or not the browse is task-related. If it is task-related, storage will be
obtained from the CICS storage class rather than the directory browse subpool. The
default is YES.

Output parameters
BROWSE_TOKEN is a token identifying the program definition being browsed.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

Program manager domain (PG)

990 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
INVALID_DIRECTORY
LOCK_ERROR

PGIS gate, GET_NEXT_PROGRAM function
The GET_NEXT_PROGRAM function of the PGIS gate is used to get the next program definition to be
browse.

Input parameters
BROWSE_TOKEN is a token identifying the program definition to be browsed.

Output parameters
[CEDF_STATUS]

indicates whether or not the EDF diagnostic screens are displayed when the program is
running under the control of the execution diagnostic facility (EDF) It can have any of
these values:
CEDF|NOCEDF|NOT_APPLIC

[HOLD_STATUS]
is the hold status of the program (that is, for how long the program is to be loaded). It can
have any of these values:
TASK_LIFE|CICS_LIFE|NOT_APPLIC

[LOAD_STATUS]
is the load status of the program (that is, whether or not the program can be loaded). It
can have any of these values:
LOADABLE|NOT_LOADABLE|NOT_LOADED|NOT_APPLIC

[INSTALL_TYPE]
is the method used to install the PROGRAM resource definition. It can have any of these
values:
RDO|CATALOG|GROUPLIST|AUTO|SYSAUTO|MANUAL

[LANGUAGE_DEFINED]
is the language defined for the program. It can have any of these values:
ASSEMBLER|C370|COBOL|LE370|PLI|
NOT_DEFINED|NOT_APPLIC

[LANGUAGE_DEDUCED]
is the language deduced by CICS for the program. It can have any of these values:
ASSEMBLER|C370|COBOL|COBOL2|LE370|PLI|
NOT_DEDUCED|NOT_APPLIC

[AVAIL_STATUS]
defines whether (ENABLED) or not (DISABLED) the program can be used. It can have
either of these values:
ENABLED|DISABLED

[MODULE_TYPE]
is the type of program resource to be defined: It can have any of these values:
PROGRAM|MAPSET|PARTITIONSET

[DATA_LOCATION]
defines whether the program can handle only 24-bit addresses (data located below the
16MB line) can handle 31-bit addresses (data located above or below the 16MB line). The
DATALOCATION options are independent from the addressing mode of the link-edited
program. It can have either of these values:
ANY|BELOW|NOT_APPLIC

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 991

[EXECUTION_SET]
indicates whether you want CICS to link to and run the program as if it were running in a
remote CICS region (with or without the API restrictions of a DPL program). It can have
either of these values:
FULLAPI|DPLSUBSET|NOT_APPLIC

[REMOTE_PROGID]
is the name by which the program is known in the remote CICS region. If you specify
REMOTE_SYSID and omit REMOTE_PROGID, the REMOTE_PROGID parameter
defaults to the same name as the local name (that is, the PROGRAM_NAME value.

[REMOTE_SYSID]
is the name of a remote CICS region if you want CICS to ship a distributed program link
(DPL) request to another CICS region.

[REMOTE_TRANID]
is the name of the transaction you want the remote CICS to attach, and under which it is
to run the remote program.

[EXECUTION_KEY]
is the key in which CICS gives control to the program, and determines whether the
program can modify CICS-key storage. It can have either of these values:
CICS|USER|NOT_APPLIC

Note: If the program is link-edited with the RENT attribute and the RMODE(ANY) mode
statement, CICS loads the program into extended the read-only DSA(ERDSA),
regardless of the EXECKEY option. The ERDSA is allocated from read-only
extended storage only if RENTPGM=PROTECT is specified as a system
initialization parameter.

[PROGRAM_TYPE]
is the type of program. It can have any of these values:
PRIVATE|SHARED|TYPE_ANY|NOT_APPLIC

[PROGRAM_USAGE]
defines whether the program is to be used as a CICS nucleus program or as a user
application program. It can have either of these values:
NUCLEUS|APPLICATION

[PROGRAM_ATTRIBUTE]
defines the residence status of the program, and when the storage for this program is
released. It can have any of these values:
RESIDENT|REUSABLE|TRANSIENT|RELOAD|TEST

[SPECIFIED_AMODE]
is the addressing mode of the program. It can have any of these values:
24|31|AMODE_ANY|AMODE_NOT_SPECIFIED

[SPECIFIED_RMODE]
is the residence mode of the program. It can have any of these values:
24|RMODE_ANY|RMODE_NOT_SPECIFIED

[PROGRAM_LENGTH]
is the length of the program. returned by the loader domain on the ACQUIRE_PROGRAM
call.

[PROGRAM_USE_COUNT]
is the number of times that the program has been used.

[PROGRAM_USER_COUNT]
is the number of different users that have invoked the program.

[LOAD_POINT] is the load point address of the program returned by the loader domain on the
ACQUIRE_PROGRAM call.

[ENTRY_POINT]
is the entry point address of the program returned by the loader domain on the
ACQUIRE_PROGRAM call.

[LOCATION] defines where the program resides. It can have any of these values:

Program manager domain (PG)

992 CICS TS for z/OS: CICS Diagnosis Reference

CDSA|ECDSA|SDSA|ESDSA|RDSA|ERDSA|LPA|ELPA|NONE
[ACCESS is the type of access for the program. It can have any of these values:

USER|CICS|READ_ONLY|NONE
[REMOTE_DEFINITION]

indicates whether the program is defined as remote or local. It can take the values:
REMOTE|LOCAL

[NEW_PROGRAM_TOKEN]
is the loader domain token for the program

[DYNAMIC_STATUS]
indicates whether or not a request to LINK to the program may be dynamically routed. It
can have either of these values:
DYNAMIC|NOTDYNAMIC

[CONCURRENCY]
indicates whether the program is threadsafe or only quasi-reentrant. It can have either of
these two values:
THREADSAFE|QUASIRENT

[JVM] indicates whether or not the program is to be executed under the control of a JVM (Java
Virtual Machine). It can have either of these values:
YES|NO

[JVM_CLASS] is the name of the main class in a Java program to be run under the control of a JVM.
[HOTPOOL] indicates whether or not the Java program object is to be run in a preinitialized Language

Environment enclave reused by multiple invocations of the program, under control of an
H8 TCB. It can have either of these two values:
YES|NO

[JVM_PROFILE]
specifies the name of the data set member that contains the JVM profile.. The named
profile provides the attributes of the JVM that is needed to execute the program.

[RUNTIME_ENVIRONMENT]
indicates the runtime environment used for the execution of this program. It can take the
values
JVM_RUNTIME|LE370_RUNTIME|NON_LE370_RUNTIME|
UNKNOWN_RUNTIME|NOT_APPLIC

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOCK_ERROR

EXCEPTION INVALID_BROWSE_TOKEN
END_LIST
PROGRAM_NOT_DEFINED_TO_LD

PGIS gate, END_BROWSE_PROGRAM function
The END_BROWSE_PROGRAM function of the PGIS gate is used to end browsing through program
definitions.

Input parameters
BROWSE_TOKEN is a token identifying the last program definition that was browsed.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 993

RESPONSE Possible REASON values

DISASTER ABEND
LOCK_ERROR

EXCEPTION INVALID_BROWSE_TOKEN
END_LIST

PGIS gate, REFRESH_PROGRAM function
The REFRESH_PROGRAM function of the PGIS gate is used to inform the loader domain that a new
copy of a named program is now available for use in the relocatable program library.

Input parameters
PROGRAM_NAME is the name of the program being refreshed.
COPY indicates whether a NEWCOPY or PHASEIN function is required.

Output parameters
VERSION is the version of the program after the REFRESH_PROGRAM function call. It can have

either of these values:
NEW|OLD

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOCK_ERROR

EXCEPTION PROGRAM_LOADED_CICS_LIFE
PROGRAM_NOT_DEFINED_TO_LD
PROGRAM_NOT_DEFINED_TO_PG
PROGRAM_NOT_FOUND
REMOTE_PROGRAM
PROGRAM_IN_USE

PGLD gate, LOAD_EXEC function
The LOAD_EXEC function of the PGLD gate is used to load a program in response to an EXEC CICS
LOAD command.

Input parameters
PROGRAM_NAME is the name of the program being refreshed.
HOLD_LIFETIME

determines for how long the program is to be loaded; that is, for the life-time of CICS (or
until explicitly deleted) or for the lifetime of the task (unless explicitly deleted by the task).
It can have either of these values:
CICS_LIFE|TASK_LIFE|CALLER_MANAGED

Output parameters
LOAD_POINT is the current load point address of the program returned by the loader domain on the

ACQUIRE_PROGRAM call.
ENTRY_POINT is the current entry point address of the program returned by the loader domain on the

ACQUIRE_PROGRAM call.
PROGRAM_LENGTH

is the length of the program returned by the loader domain on the ACQUIRE_PROGRAM
call.

[LANGUAGE_TOKEN]
is a token representing the AP domain language block for the program.

RESPONSE is the domain’s response to the call. It can have any of these values:

Program manager domain (PG)

994 CICS TS for z/OS: CICS Diagnosis Reference

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION PROGRAM_NOT_DEFINED
PROGRAM_NOT_ENABLED
PROGRAM_NOT_LOADABLE
REMOTE_PROGRAM
NOT_AUTHORIZED
AUTOINSTALL_URM_FAILED
AUTOINSTALL_INVALID_DATA
AUTOINSTALL_MODEL_NOT_DEF
AUTOINSTALL_FAILED
NOT_INITIALIZED
JVM_PROGRAM

INVALID INVALID_FUNCTION

PGLD gate, LOAD function
The LOAD function of the PGLD gate is used to load a program in response to a CICS internal load
request.

Input parameters
PROGRAM_NAME is the name of the program being refreshed.
HOLD_LIFETIME

determines for how long the program is to be loaded; that is, for the life-time of CICS (or
until explicitly deleted) or for the lifetime of the task (unless explicitly deleted by the task).
It can have either of these values:
CICS_LIFE|TASK_LIFE

MODULE_TYPE is the type of program to be loaded: It can have any of these values:
PROGRAM|MAPSET|PARTITIONSET

SYSTEM_AUTOINSTALL
defines whether CICS is to autoinstall the program if there is no associated PROGRAM
resource definition. It can have either of these values:
YES|NO

[LPA_ELIGIBLE]
defines whether or not the program can be loaded into the MVS link pack area (LPA). It
can have either of these values:
YES|NO

[SUSPEND] This option is passed to the LDLD call, and thence to SMGF. It specifies the action in the
event of a storage shortage.YES, the default value, means that the task will be suspended
until storage is available. NO means that the task will be abended.

Output parameters
LOAD_POINT is the current load point address of the program returned by the loader domain on the

ACQUIRE_PROGRAM call.
ENTRY_POINT is the current entry point address of the program returned by the loader domain on the

ACQUIRE_PROGRAM call.
[PROGRAM_LENGTH]

is the length of the program returned by the loader domain on the ACQUIRE_PROGRAM
call.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 995

RESPONSE Possible REASON values

EXCEPTION PROGRAM_NOT_DEFINED
PROGRAM_NOT_ENABLED
PROGRAM_NOT_LOADABLE
REMOTE_PROGRAM
AUTOINSTALL_URM_FAILED
AUTOINSTALL_INVALID_DATA
AUTOINSTALL_MODEL_NOT_DEF
AUTOINSTALL_FAILED
JVM_PROGRAM

INVALID INVALID_FUNCTION

PGLD gate, RELEASE_EXEC function
The RELEASE_EXEC function of the PGLD gate is used to release a program in response to an EXEC
CICS RELEASE command.

Input parameters
PROGRAM_NAME is the name of the program being released.
[ENTRY_POINT]

must be provided on RELEASE_EXEC by the caller for a program loaded with
caller-managed lifetime.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_AUTHORIZED
NOT_INITIALIZED
PROGRAM_NOT_DEFINED
PROGRAM_NOT_ENABLED
PROGRAM_NOT_IN_USE
PROGRAM_NOT_LOADED
PROGRAM_RELOAD_YES
RELEASE_ISSUING_PROGRAM
REMOTE_PROGRAM
JVM_PROGRAM

INVALID INVALID_FUNCTION

PGLD gate, RELEASE function
The RELEASE function of the PGLD gate is used by CICS internal modules to release a program in
response previously loaded by a PGLD LOAD request.

Input parameters
PROGRAM_NAME is the name of the program being released.
[ENTRY_POINT]

must be provided on RELEASE_EXEC by the caller for a program loaded with
caller-managed lifetime.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

Program manager domain (PG)

996 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION PROGRAM_NOT_DEFINED
PROGRAM_NOT_ENABLED
PROGRAM_NOT_IN_USE
PROGRAM_NOT_LOADED
PROGRAM_RELOAD_YES
REMOTE_PROGRAM
JVM_PROGRAM

INVALID INVALID_FUNCTION

PGLE gate, LINK_EXEC function
The LINK_EXEC function of the PGLE gate is used to link to a program in response to a user EXEC CICS
LINK command.

Input parameters
PROGRAM_NAME is the name of the program to be linked.
[COMMAREA] is the optional communications area to be made available to the linked program.
[HANDLE_ABEND_PGM]

defines whether or not the program is to run as an abend handler program. It can have
either of these values:
YES|NO

[INPUTMSG] is a data area to be supplied to the linked program on its first execution of an EXEC CICS
RECEIVE command.

[SYNCONRETURN]
defines whether or not a syncpoint is to be taken on return from the linked program. It can
have either of these values:
YES|NO

[SYSEIB_REQUEST]
Specifies whether the EXEC CICS LINK had the SYSEIB translator option specified.

[FORCE_LOCAL]
indicates whether the program must execute locally.

Output parameters
[REMOTE_PROGRAM_NAME]

is the name by which the program is known in the remote CICS region. If you specify
REMOTE_SYSID and omit REMOTE_PROGID, the REMOTE_PROGID parameter
defaults to the same name as the local name (that is, the PROGRAM_NAME value).

[REMOTE_SYSID]
is the name of a remote CICS region if you want CICS to ship a distributed program link
(DPL) request to another CICS region.

[REMOTE_TRANID]
is the name of the transaction you want the remote CICS to attach, and under which it is
to run the remote program.

[ABEND_CODE] is the four-character abend code to be issued if there is an exception response with
reason TRANSACTION_ABEND.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 997

RESPONSE Possible REASON values

EXCEPTION AUTOINSTALL_FAILED
AUTOINSTALL_INVALID_DATA
AUTOINSTALL_MODEL_NOT_DEF
AUTOINSTALL_URM_FAILED
DESTRUCTIVE_OVERLAP
INVALID_COMMAREA_ADDR
INVALID_COMMAREA_LEN
INVALID_INPUTMSG_LEN
INVALID_TERMINAL_TYPE
NOT_INITIALIZED
PROGRAM_NOT_AUTHORIZED
PROGRAM_NOT_DEFINED
PROGRAM_NOT_ENABLED
PROGRAM_NOT_LOADABLE
REMOTE_PROGRAM
TRANSACTION_ABEND
DYNAMIC_PGM
SECOND_JVM_PROGRAM
SECOND_H8_PROGRAM
JVMPOOL_DISABLED
JVM_PROFILE_NOT_FOUND
JVM_PROFILE_NOT_VALID
SYSTEM_PROPERTIES_NOT_FND
USER_CLASS_NOT_FOUND

PGLK gate, LINK function
The LINK function of the PGLK gate is used by CICS internal modules to link to a program.

Input parameters
PROGRAM_NAME is the name of the program being linked.
SYSTEM_AUTOINSTALL

defines whether CICS is to autoinstall the program if there is no associated PROGRAM
resource definition. It can have either of these values:
YES|NO

[LPA_ELIGIBLE]
defines whether or not the program can be loaded into the MVS link pack area (LPA). It
can have either of these values:
YES|NO

[PARMLIST_PTR]
is the address of a parameter list passed by the CICS program initiating the PGLK link to
the new program.

Output parameters
[ABEND_CODE] is the four-character abend code to be issued if there is an exception response with

reason TRANSACTION_ABEND.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID Possible values are:

RESPONSE Possible REASON values

EXCEPTION PROGRAM_NOT_DEFINED
PROGRAM_NOT_ENABLED
PROGRAM_NOT_LOADABLE
REMOTE_PROGRAM
AUTOINSTALL_URM_FAILED
AUTOINSTALL_MODEL_NOT_DEF
AUTOINSTALL_INVALID_DATA
AUTOINSTALL_FAILED
TRANSACTION_ABEND

Program manager domain (PG)

998 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

INVALID INVALID_FUNCTION

PGLK gate, LINK_PLT function
The LINK_PLT function of the PGLK gate is used by CICS internal modules to link to a program in the
program list table.

Input parameters
PROGRAM_NAME is the name of the program being linked.
SYSTEM_AUTOINSTALL

defines whether CICS is to autoinstall the program if there is no associated PROGRAM
resource definition. It can have either of these values:
YES|NO

[LPA_ELIGIBLE]
defines whether or not the program can be loaded into the MVS link pack area (LPA). It
can have either of these values:
YES|NO

Output parameters
[ABEND_CODE] is the four-character abend code to be issued if there is an exception response with

reason TRANSACTION_ABEND.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID Possible values are:

RESPONSE Possible REASON values

EXCEPTION PROGRAM_NOT_DEFINED
PROGRAM_NOT_ENABLED
PROGRAM_NOT_LOADABLE
REMOTE_PROGRAM
AUTOINSTALL_URM_FAILED
AUTOINSTALL_MODEL_NOT_DEF
AUTOINSTALL_INVALID_DATA
AUTOINSTALL_FAILED
TRANSACTION_ABEND

INVALID INVALID_FUNCTION

PGLU gate, LINK_URM function
The LINK_URM function of the PGLU gate is used by CICS internal modules to link to a user-replaceable
program.

Input parameters
PROGRAM_NAME is the name of the program to be linked.
SYSTEM_AUTOINSTALL

defines whether CICS is to autoinstall the program if there is no associated PROGRAM
resource definition. It can have either of these values:
YES|NO

[LPA_ELIGIBLE]
defines whether or not the program can be loaded into the MVS link pack area (LPA). It
can have either of these values:
YES|NO

[COMMAREA] is the optional communications area to be made available to the linked program.

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 999

[CALLER_THREADSAFE]
indicates that the caller of the user-replaceable program is threadsafe, and so execution
can continue on any TCB on return from the program: there is no need for PGLU to issue
change_mode.

Output parameters
[ABEND_CODE] is the four-character abend code to be issued if there is an exception response with

reason URM_ABEND.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID Possible values are:

RESPONSE Possible REASON values

EXCEPTION PROGRAM_NOT_DEFINED
PROGRAM_NOT_ENABLED
PROGRAM_NOT_LOADABLE
REMOTE_PROGRAM
AUTOINSTALL_URM_FAILED
AUTOINSTALL_MODEL_NOT_DEF
AUTOINSTALL_INVALID_DATA AUTOINSTALL_FAILED
INVALID_COMMAREA_LEN
INVALID_COMMAREA_ADDR
AMODE_ERROR
URM_ABEND
DESTRUCTIVE_OVERLAP
SECOND_JVM_PROGRAM
SECOND_H8_PROGRAM
JVMPOOL_DISABLED
JVM_PROFILE_NOT_FOUND
JVM_PROFILE_NOT_VALID
SYSTEM_PROPERTIES_NOT_FND
USER_CLASS_NOT_FOUND

INVALID INVALID_FUNCTION

PGPG gate, INITIAL_LINK function
The INITIAL_LINK function of the PGPG gate is used to link to the first program of a transaction.

Input parameters
PROGRAM_NAME is the name of the program being linked.

Output parameters
[ABEND_CODE] is the four-character abend code to be issued if there is an exception response with

reason TRANSACTION_ABEND.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Program manager domain (PG)

1000 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION AUTOINSTALL_FAILED
AUTOINSTALL_INVALID_DATA
AUTOINSTALL_MODEL_NOT_DEF
AUTOINSTALL_URM_FAILED
DESTRUCTIVE_OVERLAP
INVALID_TERMINAL_TYPE
PROGRAM_NOT_ENABLED
PROGRAM_NOT_LOADABLE
PROGRAM_NOT_DEFINED
REMOTE_PROGRAM
TRANSACTION_ABEND
SECOND_JVM_PROGRAM
SECOND_H8_PROGRAM
JVMPOOL_DISABLED
JVM_PROFILE_NOT_FOUND
JVM_PROFILE_NOT_VALID
SYSTEM_PROPERTIES_NOT_FND
USER_CLASS_NOT_FOUND

PGRE gate, PREPARE_RETURN_EXEC function
The PREPARE_RETURN_EXEC function of the PGRE gate is used to process the communications area,
inputmsg data, and transaction identifier from a user EXEC CICS RETURN command.

Input parameters
[TRANSID] is the four-character transaction identifier.
[COMMAREA] is the optional communications area made available to the linked program.
[INPUTMSG] is a data area to be supplied to the linked program on its first execution of an EXEC CICS

RECEIVE command.
[IMMEDIATE] Indicates whether or not the transaction specified in TRANSID is to be attached as the

next transaction regardless of any other transactions enqueued by ATI for this terminal. It
can have either of these values:
YES|NO

[ENDACTIVITY]
indicates that a BTS activity is to be ended.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_COMMAREA_ADDR
INVALID_COMMAREA_LEN
INVALID_INPUTMSG_LEN
INVALID_TERMINAL_TYPE
INVALID_REQUEST_FROM_EXIT
INVALID_RETURN_REQUEST
NOT_INITIALIZED
NO_TERMINAL
TRANSID_NO_TERMINAL

PGXE gate, PREPARE_XCTL_EXEC function
The PREPARE_XCTL_EXEC function of the PGXE gate is used to process the communications area,
inputmsg data, and transaction identifier from a user EXEC CICS XCTL command.

Input parameters
PROGRAM_NAME is the name of the program to which control is to be passed.

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 1001

[COMMAREA] is the optional communications area made available to the linked program.
[INPUTMSG] is a data area to be supplied to the linked program on its first execution of an EXEC CICS

RECEIVE command.
[SYSEIB_REQUEST]

specifies whether the EXEC CICS LINK had the SYSEIB translator option specified.
[SECURITY] indicates whether Program Manager must check security authorisation for the target

program

Output parameters
[ABEND_CODE] is the four-character abend code to be issued if CICS drives the system default, which is

to abend the transaction.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION AUTOINSTALL_FAILED
AUTOINSTALL_INVALID_DATA
AUTOINSTALL_MODEL_NOT_DEF
AUTOINSTALL_URM_FAILED
DESTRUCTIVE_OVERLAP
INVALID_COMMAREA_ADDR
INVALID_COMMAREA_LEN
INVALID_INPUTMSG_LEN
INVALID_TERMINAL_TYPE
INVALID_REQUEST_FROM_EXIT
NOT_INITIALIZED
PROGRAM_NOT_AUTHORIZED
PROGRAM_NOT_DEFINED
PROGRAM_NOT_ENABLED
PROGRAM_NOT_LOADABLE
REMOTE_PROGRAM
TRANSACTION_ABEND

PGXM gate, INITIALIZE_TRANSACTION function
The INITIALIZE_TRANSACTION function of the PGXM gate is used to initialize a transaction, and set up
storage for the transaction.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FUNCTION

PGXM gate, TERMINATE_TRANSACTION function
The TERMINATE_TRANSACTION function of the PGXM gate is used to terminate a transaction, and
clean up the transaction-related storage at task termination.

Input parameters
None.

Program manager domain (PG)

1002 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FUNCTION

Program manager domain’s generic gates
Table 80 summarizes the program manager domain’s generic gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gates, the functions provided by the gates, and the generic
formats for calls to the gates.

Table 80. Program manager domain’s generic gates
Gate Trace Function Format

PGDM PG 0101
PG 0102

INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

PGST PG 0F01
PG 0F02

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

PGUE PG 1001
PG 1002

SET_EXIT_STATUS APUE

For descriptions of these functions and their input and output parameters, refer to the sections dealing with
the corresponding generic formats:

Functions and parameters

Format APUE—“Application domain’s generic formats” on page 593

Format DMDM—“Domain manager domain’s generic formats” on page 669

Format STST—“Statistics domain’s generic format” on page 1198

Initialize domain
There are two phases to initialization of the program manager domain:

1. The DFHPGDM module creates the PG domain anchor block, the PPT directory, and the PG Lock. It
also adds subpools and gates, determines whether a cold, warm, or emergency start is needed, and
waits for the global catalog to be available.

2. For a warm or emergency start, the DFHPGDM module rebuilds the PPT and restores the program
autoinstall system initialization parameters from the global catalog entries. (It calls the parameter
manager to obtain other system initialization parameter values.)

For a cold start, the DFHPGDM module purges all the PPT entries from the global catalog.

Quiesce domain
In quiesce processing, the program manager domain:

v Sets the PG state to quiescing.

v Ensures that the statistics domain has gathered the PG statistics by issuing a WAIT_PHASE for
STATISTICS_UNAVAILABLE.

This also ensures synchronization with the AP domain quiesce activity.

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 1003

v Does not delete PG gates; PG functions remain available. However, use of programs after this point
does not appear in statistics. (DFHSTP issues a PC LINK/ PGLK LINK to DFHWKP after AP domain
waits for STATISTICS_UNAVAILABLE).

v Does not write PPT entries to the global catalog. (PPT entries are only written to the catalog when they
are installed or changed.)

v (Finally) Sets the PG state to quiesced.

Terminate domain
In terminate processing, the program manager domain sets the PG state to terminated, and makes the
program manager domain unavailable to EXEC CICS commands.

Modules

Module Function

DFHPGAI A kernel subroutine called internally from the Program Manager to support the autoinstall for programs
function.

DFHPGAQ Handles the following requests:
INQUIRE_AUTOINSTALL
SET_AUTOINSTALL

DFHPGDD Handles the following requests:
DEFINE_PROGRAM
DELETE_PROGRAM

DFHPGDM Handles the following requests:
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHPGDUF PG domain offline dump formatting routine

DFHPGEX Handles the following requests:
INITIALIZE_EXIT
TERMINATE_EXIT

DFHPGHM Handles the following requests:
SET_CONDITIONS
IGNORE_CONDITIONS
INQ_CONDITION
SET_AIDS
INQ_AID
SET_ABEND
INQ_ABEND
PUSH_HANDLE
POP_HANDLE
FREE_HANDLE_TABLES
CLEAR_LABELS

DFHPGIS Handles the following requests:
INQUIRE_PROGRAM
INQUIRE_CURRENT_PROGRAM
SET_PROGRAM
START_BROWSE_PROGRAM
GET_NEXT_PROGRAM
END_BROWSE_PROGRAM
REFRESH_PROGRAM

DFHPGLD Handles the following requests:
LOAD_EXEC
LOAD
RELEASE_EXEC
RELEASE

DFHPGLE Handles the following requests:
LINK_EXEC

Program manager domain (PG)

1004 CICS TS for z/OS: CICS Diagnosis Reference

Module Function

DFHPGLK Handles the following requests:
LINK
LINK_PLT

DFHPGLU Handles the following requests:
LINK_URM

DFHPGPG Handles the following requests:
INITIAL_LINK

DFHPGRE Handles the following requests:
PREPARE_RETURN_EXEC

DFHPGRP Program manager domain recovery program, responsible for recovering program definitions from the
global catalog.

DFHPGST Handles the following requests:
COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

DFHPGUE Handles program manager domain service requests.

DFHPGTRI Interprets PG domain trace entries

DFHPGXE Handles the following requests:
PREPARE_XCTL_EXEC

DFHPGXM Handles the following requests:
INITIALIZE_TRANSACTION
TERMINATE_TRANSACTION

Exits
No global user exit points are provided in this domain.

Trace
The point IDs for the program manager domain are of the form PG xxxx; the corresponding trace levels
are PG 1, PG 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Program manager domain (PG)

Chapter 95. Program manager domain (PG) 1005

1006 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 96. Pipeline Manager Domain (PI)

Pipeline Manager Domain's specific gates
Table 81 summarizes the Pipeline Manager domain's specific gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gate, the functions provided by the gate, and whether or not
the functions are available through the exit programming interface (XPI).

Table 81. Pipeline Manager domain's specific gates

Gate Trace Function XPI

PIAT PI 0D00
PI 0D01

CREATE_CONTEXT
CREATE_CONTEXT_RESP
CREATE_NON_TERMINAL_MSG
CREATE_REGISTER_REQUEST
CREATE_REGISTER_RESP
CREATE_TERMINAL_MSG
PROCESS_CONTEXT
PROCESS_CONTEXT_RESP
PROCESS_MSG

No

PICC PI 0F30
PI 0F31

FIND_SIGNATURE
HANDLE_PARSE_EVENT
PERFORM_XML_PARSE

No

PIII PI 0F00
PI 0F01

PARSE_ICM No

PIPL PI 0400
PI 0401

ADD_PIPELINE
COMPLETE_PIPELINE
DISCARD_PIPELINE
END_BROWSE_PIPELINE
ESTABLISH_PIPELINE
GET_NEXT_PIPELINE
INQUIRE_PIPELINE
PERFORM_PIPELINE
RELINQUISH_PIPELINE
RESOLVE_PIPELINE
SET_PIPELINE
START_BROWSE_PIPELINE

No

PIPM PI 0A00
PI 0A01

INVOKE_PROGRAM
INVOKE_STUB
START_PIPELINE

No

PIRE PI 0D90
PI 0D92

PERFORM_RESYNC No

PISC PI 0E00
PI 0E01

DYN_CREATE_WEBSERVICE
UPDATE_WEBSERVICE

No

PISF PI 0C00
PI 0C01

SOAPFAULT_ADD
SOAPFAULT_CREATE
SOAPFAULT_DELETE

No

PISN PI 0C10
PI 0C11

SOAP_11
SOAP_12

No

PITG PI 0700
PI 0701

SEND_REQUEST
SEND_RESPONSE
CONVERSE
RECEIVE_REQUEST
SEND_ERROR_RESPONSE

No

© Copyright IBM Corp. 1997, 2011 1007

Table 81. Pipeline Manager domain's specific gates (continued)

Gate Trace Function XPI

PITL PI 1000
PI 1001

PROCESS_SOAP_REQUEST_FUNCTION No

PIWR PI 0300
PI 0301

CREATE_WEBSERVICE
DECREMENT_USE_COUNT
DISCARD_WEBSERVICE
END_BROWSE_WEBSERVICE
GET_NEXT_WEBSERVICE
INCREMENT_USE_COUNT
INITIALISE_WEBSERVICE
INQUIRE_WEBSERVICE
RESOLVE_ALL_WEBSERVICES
SET_WEBSERVICE
START_BROWSE_WEBSERVICE

No

PIAT gate, CREATE_CONTEXT function
Creates a WSAT coordination context SOAP header.

Input Parameters
POOL_TOKEN

A token to the current container pool, which holds data used to build the header, and where the
populated DFHHEADER container is placed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
INVALID_FORMAT
INVALID_FUNCTION
LOOP
NO_CHANNEL
PGCR_GET_ERROR
PGCR_PUT_ERROR
SMGF_ERROR
TASK_CANCELLED
TIMED_OUT

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PIAT gate, CREATE_CONTEXT_RESP function
Create a null context response, which is returned when a WSAT participant send back its output.

Input Parameters
POOL_TOKEN

A token to the current container pool, which holds data used to build the header, and where the
populated dfhheader container is placed.

1008 CICS TS for z/OS: CICS Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
INVALID_FORMAT
INVALID_FUNCTION
LOOP
NO_CHANNEL
PGCR_GET_ERROR
PGCR_PUT_ERROR
SMGF_ERROR
TASK_CANCELLED
TIMED_OUT

RESPONSE

Values for the parameter are:
OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PIAT gate, CREATE_NON_TERMINAL_MSG function
Create a non-terminal SOAP message used in WS-AtomicTransaction two-phase commit protocol
processing. Non-terminal messages anticipate a response. They are used to convey the following function
requests: Prepare, Commit, Rollback, and Replay.

Input Parameters
NOTIFICATION_TYPE

Values for the parameter are:
COMMIT
PREPARE
ROLLBACK

POOL_TOKEN
A token to the current container pool, which holds data used to build the header, and where the
populated DFHHEADER container is placed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
INVALID_FORMAT
INVALID_FUNCTION
LOOP
NO_CHANNEL
PGCR_GET_ERROR
PGCR_PUT_ERROR
SMGF_ERROR
TASK_CANCELLED
TIMED_OUT

RESPONSE

Values for the parameter are:
OK
EXCEPTION

Chapter 96. Pipeline Manager Domain (PI) 1009

DISASTER
INVALID
KERNERROR
PURGED

PIAT gate, CREATE_REGISTER_REQUEST function
Create a WSAT registration request SOAP message.

Input Parameters
POOL_TOKEN

A token to the current container pool, which holds data used to build the header, and where the
populated DFHHEADER container is placed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
INVALID_FORMAT
INVALID_FUNCTION
LOOP
NO_CHANNEL
PGCR_GET_ERROR
PGCR_PUT_ERROR
SMGF_ERROR
TASK_CANCELLED
TIMED_OUT

RESPONSE

Values for the parameter are:
OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PIAT gate, CREATE_REGISTER_RESP function
Create a WSAT registration response SOAP message.

Input Parameters
POOL_TOKEN

A token to the current container pool, which holds data used to build the header, and where the
populated DFHHEADER container is placed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
INVALID_FORMAT
INVALID_FUNCTION
LOOP
NO_CHANNEL
PGCR_GET_ERROR
PGCR_PUT_ERROR
SMGF_ERROR

1010 CICS TS for z/OS: CICS Diagnosis Reference

TASK_CANCELLED
TIMED_OUT

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PIAT gate, CREATE_TERMINAL_MSG function
Create a terminal SOAP message used in WS-AtomicTransaction two-phase commit protocol processing.
Terminal messages do not anticipate a response. They are used to convey the following function requests:
Prepared, Committed, Aborted, and Readonly.

Input Parameters
NOTIFICATION_TYPE

Values for the parameter are:
ABORTED
COMMITTED
PREPARED
READONLY

POOL_TOKEN
A token to the current container pool, which holds data used to build the header, and where the
populated DFHHEADER container is placed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
INVALID_FORMAT
INVALID_FUNCTION
LOOP
NO_CHANNEL
PGCR_GET_ERROR
PGCR_PUT_ERROR
SMGF_ERROR
TASK_CANCELLED
TIMED_OUT

RESPONSE

Values for the parameter are:
OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PIAT gate, PROCESS_CONTEXT function
Process a WS-AtomicTransaction coordination context header.

Chapter 96. Pipeline Manager Domain (PI) 1011

Input Parameters
POOL_TOKEN

A token to the current container pool, which holds data used to build the header, and where the
populated DFHHEADER container is placed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
INVALID_FORMAT
INVALID_FUNCTION
LOOP
NO_CHANNEL
PGCR_GET_ERROR
PGCR_PUT_ERROR
SMGF_ERROR
TASK_CANCELLED
TIMED_OUT

RESPONSE

Values for the parameter are:
OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PIAT gate, PROCESS_CONTEXT_RESP function

Input Parameters
POOL_TOKEN

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
INVALID_FORMAT
INVALID_FUNCTION
LOOP
NO_CHANNEL
PGCR_GET_ERROR
PGCR_PUT_ERROR
SMGF_ERROR
TASK_CANCELLED
TIMED_OUT

RESPONSE

Values for the parameter are:
OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

1012 CICS TS for z/OS: CICS Diagnosis Reference

PIAT gate, PROCESS_MSG function
Process a WS-AtomicTransaction message. This can be a Register Request, a Register Response, a Non
Terminal message, or a Terminal Message.

Input Parameters
POOL_TOKEN

A token to the current container pool, which holds data used to build the header, and where the
populated DFHHEADER container is placed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
INVALID_FORMAT
INVALID_FUNCTION
LOOP
NO_CHANNEL
PGCR_GET_ERROR
PGCR_PUT_ERROR
SMGF_ERROR
TASK_CANCELLED
TIMED_OUT

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PICC gate, FIND_SIGNATURE function
Determine an operation from its signature

Input Parameters
OUTPUT_DATA

A pointer to the operation in the internal COMMAREA or container model (ICM)
XML_BODY_STRING

The incoming SOAP message

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
HEAP_INIT_FAILURE
INSUFFICIENT_STORAGE
INTERNAL_FAILURE
INVALID_PARSE_STATE
SAXHANDLER_LINK_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
FIXED_ELEMENT_COUNT
HEAP_ALLOCATE_FAILURE
HEAP_RELEASE_FAILURE
ICM_ENTRY_NOT_FOUND
INQUIRE_CHANNEL_FAILED

Chapter 96. Pipeline Manager Domain (PI) 1013

OUTPUT_BUFFER_OVERFLOW
PUT_CONTAINER_FAILED
SOAP_FAULT

The following values are returned when RESPONSE is EXCEPTION:
COMMAREA_LENGTH
INVALID_FUNCTION
INVALID_ICM_TYPE
INVALID_INPUT

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PICC gate, HANDLE_PARSE_EVENT function
Handle an XML parse event when located by the PL/I SAX parser

Input Parameters
EVENT_TOKEN

A pointer to the event token provided by the XML parser.
EVENT_TOKEN_LENGTH

The length of the event token.
EVENT_TYPE

A BIN(31) value indicating what event has been signaled by the parser.
HANDLER_WORK_TOKEN

A pointer to the DFHPICC work area.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
HEAP_INIT_FAILURE
INSUFFICIENT_STORAGE
INTERNAL_FAILURE
INVALID_PARSE_STATE
SAXHANDLER_LINK_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
FIXED_ELEMENT_COUNT
HEAP_ALLOCATE_FAILURE
HEAP_RELEASE_FAILURE
ICM_ENTRY_NOT_FOUND
INQUIRE_CHANNEL_FAILED
OUTPUT_BUFFER_OVERFLOW
PUT_CONTAINER_FAILED
SOAP_FAULT

The following values are returned when RESPONSE is INVALID:
COMMAREA_LENGTH
INVALID_FUNCTION
INVALID_INPUT

RESPONSE
Values for the parameter are:

OK

1014 CICS TS for z/OS: CICS Diagnosis Reference

EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PICC gate, PERFORM_XML_PARSE function
Parse a SOAP body and convert the data elements into a COMMAREA format.

Input Parameters
ICM_ADDRESS

The address of the internal COMMAREA or container model (ICM) which is to be used for the SOAP
to COMMAREA conversion.

OUTPUT_DATA
A pointer to, and length of, the COMMAREA into which the SOAP body has been mapped.

XML_BODY_STRING
A pointer to the incoming SOAP body.

CHANNEL_NAME
The name of the channel which contains the SOAP body.

XML_HEADER_NS
Optional Parameter

A pointer to the XML namespace information for the SOAP body.
XML_OPERATION

Optional Parameter

The operation name for which the SOAP body is intended.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
HEAP_INIT_FAILURE
INSUFFICIENT_STORAGE
INTERNAL_FAILURE
INVALID_PARSE_STATE
SAXHANDLER_LINK_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
FIXED_ELEMENT_COUNT
HEAP_ALLOCATE_FAILURE
HEAP_RELEASE_FAILURE
ICM_ENTRY_NOT_FOUND
INQUIRE_CHANNEL_FAILED
OUTPUT_BUFFER_OVERFLOW
PUT_CONTAINER_FAILED
SOAP_FAULT

The following values are returned when RESPONSE is INVALID:
COMMAREA_LENGTH
INVALID_FUNCTION
INVALID_INPUT

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID

Chapter 96. Pipeline Manager Domain (PI) 1015

KERNERROR
PURGED

PIII gate, PARSE_ICM function
Convert an outbound COMMAREA or container into a SOAP body.

Input Parameters
CHANNEL_NAME

Optional parameter

The name of the channel which holds the container with the SOAP body.
INPUT_COMMAREA

The address and length of the COMMAREA or container to convert.
OUTPUT_ICM_ADDRESS

The address of the internal COMMAREA or container model (ICM) that defines how to map the
COMMAREA or container to a SOAP body.

OUTPUT_XML
The address of the SOAP body.

Output Parameters
REASON

Values for the parameter are:
ABEND
BUFFER_OVERFLOW
CONTAINER_GET_FAILURE
FREEMAIN_FAILURE
GETMAIN_FAILURE
HEAP_INIT_FAILURE
ICM_NOT_FOUND
INPUT_ERROR
INSUFFICIENT_STORAGE
INVALID_FORMAT
INVALID_FUNCTION
INVALID_ICM_DATATYPE
MALLOC_FAILURE
NOT_AUTHORIZED
RELEASE_FAILURE
SEVERE_ERROR

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
PURGED

PIIW gate, INVOKE_WEBSERVICE function
This function supports the INVOKE WEBSERVICE API where CICS is acting as Web Service Requester.
Depending upon the attributes specified in the WEBSERVICE resource, it calls the Pipeline Manager
(DFHPIPM) to start the pipeline, or it links directly to an application program directly.

Input Parameters
CHANNEL

The name of a channel which holds the container in which data is passed to the target WEBSERVICE.
OPERATION

The name of the operation which is to be invoked.

1016 CICS TS for z/OS: CICS Diagnosis Reference

WEBSERVICE
The name of the WEBSERVICE resource.

URI
Optional Parameter

The URI of the target Web service. If this parameter is omitted, the WEBSERVICE resource must
specify an endpoint or a program.

Output Parameters
REASON

Values for the parameter are:
CHANNEL_NOT_FOUND
CHANNEL_ERROR
CONTAINER_DATATYPE_ERR
CONTAINER_NOT_FOUND
ENDPOINT_NOT_PROVIDED
INVALID_CHANNEL_NAME
INVALID_FUNCTION
INVALID_OPERATION
INVALID_URI
INVALID_WSBIND_FORMAT
OPERATION_NOT_FOUND
PARSE_CONVERSION_ERROR
PARSE_INPUT_ERROR
PIPELINE_MODE_MISMATCH
PIPELINE_NOT_ACTIVE
PIPELINE_NOT_FOUND
PROGRAM_LINK_FAILED
SOAP_FAULT_BUILT
UNHANDLED_PIPELINE_ERROR
VENDOR_LINK_FAILED
WEBSERVICE_NOT_FOUND
WEBSERVICE_NOT_INSERVICE

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

SOAP_FAULT_RESP1
The response that was returned from the SOAP message handler's fault processing in the
DFHWS-RESPCODES container.

SOAP_FAULT_RESP2
The reason that was returned from the SOAP message handler's fault processing in the
DFHWS-RESPCODES container.

PIPL gate, ADD_PIPELINE function
Add a PIPELINE definition to the system.

Input Parameters
CONFIGFILE

The fully qualified name of the XML pipeline configuration file on HFS.
PIPELINE

The name of the PIPELINE.

Chapter 96. Pipeline Manager Domain (PI) 1017

SHELF
The fully qualified name of a directory (or shelf) primarily for WSBIND and WSDL files.

STATUS
The initial state of the PIPELINE.

Values for the parameter are:
DISABLED
ENABLED

WSDIR
Optional Parameter

The fully qualified name of the WSBIND directory on HFS.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
CATALOG_ERROR
DIRECTORY_ERROR
INVALID_HFSNAME
INVALID_NAME
INVALID_SHELF
INVALID_STATUS
INVALID_WSDIR
NOT_AUTHORIZED
NOT_DISABLED
WSDIR_INACCESIBLE

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PIPL gate, COMPLETE_PIPELINE function
Complete the installation of a PIPELINE. PIPELINEs are installed in two phases: this is the second, called
after CICS initialization is complete. This function reads data from the files in HFS and builds the internal
control blocks.

Input Parameters
PIPELINE

The name of the PIPELINE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
CATALOG_ERROR
DIRECTORY_ERROR
INVALID_HFSNAME
INVALID_NAME
INVALID_SHELF
INVALID_STATUS
INVALID_WSDIR
NOT_AUTHORIZED
NOT_DISABLED

1018 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PIPL gate, DISCARD_PIPELINE function
Discard a PIPELINE.

Input Parameters
PIPELINE

The name of the PIPELINE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
CATALOG_ERROR
DISCARD_IN_PROGRESS
INVALID_BROWSE_TOKEN
NOT_AUTHORIZED
NOT_DISABLED
NOT_FOUND

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PIPL gate, END_BROWSE_PIPELINE function
End the browse operation on the PIPELINE resources that are installed in the system.

Input Parameters
BROWSETOKEN

A token that represents the browse operation on subsequent GET_NEXT_PIPLINE and
END_BROWSE requests.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
INVALID_BROWSE_TOKEN
LOOP

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR

Chapter 96. Pipeline Manager Domain (PI) 1019

PURGED

PIPL gate, ESTABLISH_PIPELINE function
Check that a PIPELINE is in a state in which it can be used, and increment its use count.

Input Parameters
PIPELINE

The name of the PIPELINE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
CATALOG_ERROR
INVALID_STATUS
NOT_AUTHORIZED
NOT_FOUND

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PIPL gate, GET_NEXT_PIPELINE function
During a browse operation, extract information about the next PIPELINE.

Input Parameters
BROWSETOKEN

The browse token that was returned by the START_BROWSE_PIPELINE function.
CONFIGFILE_BUFF

Optional Parameter

A buffer in which the fully qualified name of the XML pipeline configuration file on HFS is returned.
RESET

Optional Parameter

A parameter indicating whether the statistics for the PIPELINE are to be reset.

Values for the parameter are:
NO
YES

SHELF_BUFF
Optional Parameter

A buffer in which the fully qualified name of the directory (or shelf) for WSBIND and WSDL files is
returned.

WSDIR_BUFF
Optional Parameter

A buffer in which the fully qualified name of the WSBIND directory on HFS is returned.

Output Parameters
PIPELINE

The name of the PIPELINE.

1020 CICS TS for z/OS: CICS Diagnosis Reference

REASON
The following values are returned when RESPONSE is EXCEPTION:

ABEND
BROWSE_END
INVALID_BROWSE_TOKEN
LOCK_ERROR
LOOP
PARMS_STORAGE_ERROR
SETUP_ERROR
STORAGE_ERROR

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

STATUS
Optional Parameter

The current status of the PIPELINE.

Values for the parameter are:
DISABLING
DISABLED
DISCARDING
ENABLED
ENABLING

TOTAL_USE_COUNT
Optional Parameter

The current use count of the PIPELINE.

PIPL gate, INQUIRE_PIPELINE function
Inquire on the attributes, state and associated resources of a PIPELINE.

Input Parameters
PIPELINE

The name of the PIPELINE.
CONFIGFILE_BUFF

Optional Parameter

A buffer in which the fully qualified name of the XML pipeline configuration file on HFS is returned.
DERIVED_SHELF_BUFF

Optional Parameter

A buffer in which the fully qualified name of the HFS file which contains the WSDL for the PIPELINE is
returned.

SHELF_BUFF
Optional Parameter

A buffer in which the fully qualified name of the directory (or shelf) for WSBIND and WSDL files is
returned.

WSDIR_BUFF
Optional Parameter

A buffer in which the fully qualified name of the WSBIND directory on HFS is returned.

Chapter 96. Pipeline Manager Domain (PI) 1021

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
NOT_AUTHORIZED
NOT_FOUND

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

MODE
Optional Parameter

The MODE of the PIPELINE.

Values for the parameter are:
PROVIDER
REQUESTER
UNKNOWN

PIPELINE_TOKEN
Optional Parameter

A token which can be used by other parts of the domain to refer to the PIPELINE.
STATUS

Optional Parameter

The current status of the PIPELINE.

Values for the parameter are:
DISABLING
DISABLED
DISCARDING
ENABLED
ENABLING

TOTAL_USE_COUNT
Optional Parameter

The current use count of the PIPELINE.

PIPL gate, PERFORM_PIPELINE function
Perform the specified action on a PIPELINE.

Input Parameters
ACTION

The only supported action is SCAN. The PIPELINE is scanned for WSBIND files which are then
installed.

Values for the parameter are:
SCAN

PIPELINE
The name of the PIPELINE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND

1022 CICS TS for z/OS: CICS Diagnosis Reference

DUPLICATE
INVALID_ACTION
INVALID_STATUS
LOOP
NOT_AUTHORIZED
NOT_FOUND
PIPELINE_SCAN_ERROR
SCAN_ALREADY_IN_PROGRESS
WSDIR_INACCESSIBLE

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PIPL gate, RELINQUISH_PIPELINE function
Relinquish the use of a PIPELINE. The use count is decremented, and if it is then zero, and the
PIPELINE's state is DISABLING, the status changes to DISABLED.

Input Parameters
PIPELINE

The name of the PIPELINE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
CATALOG_ERROR
NOT_AUTHORIZED
NOT_FOUND

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PIPL gate, RESOLVE_PIPELINE function
For each PIPELINE, start a transaction to complete PIPELINE installation. The function is used at the end
of domain initialization.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
LOOP
SETUP_ERROR
STORAGE_ERROR

RESPONSE
Values for the parameter are:

OK

Chapter 96. Pipeline Manager Domain (PI) 1023

EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PIPL gate, SET_PIPELINE function
Set a PIPELINE to DISABLED or ENABLED state.

Input Parameters
PIPELINE

The name of the PIPELINE.
STATUS

The state to be set.

Values for the parameter are:
DISABLED
ENABLED

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
INVALID_STATE
NOT_AUTHORIZED
NOT_FOUND

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PIPL gate, START_BROWSE_PIPELINE function
Start browsing the installed PIPELINE resources.

Input Parameters
PIPELINE

Optional Parameter

The name of the PIPELINE at which the browse is to begin.

Output Parameters
BROWSETOKEN

A token that identifies the browse operation to subsequent GET_NEXT_PIPELINE and
END_BROWSE reqeusts.

REASON
Values for the parameter are:

ABEND
INVALID_PIPELINE
LOCK_ERROR
LOOP
SETUP_ERROR
STORAGE_ERROR

1024 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PIPM gate, INVOKE_PROGRAM function
Invoke a PIPELINE's application programs. The function can change the transaction's context, and the
request can be routed to another region.

Input Parameters
CHANNEL

The channel to be passed to the target program.
PROGRAM

The program to be invoked.
APPLID

Optional Parameter

The APPLID to be used for the execution of the application program.
RS_PUBLIC_ID

Optional Parameter

The request stream public identifier to be associated with the transaction.
TRANSID

Optional Parameter

The transaction identifier to be used to execute the application program.
USERID

Optional Parameter

The user ID to be used for the execution of the application program.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
ABEND
LOCK_FAILURE
LOOP

The following values are returned when RESPONSE is EXCEPTION:
CHANNEL_ERROR
CONTEXT_SWITCH_FAILED
NO_CHANNEL
PIPELINE_MODE_MISMATCH
PIPELINE_NOT_ACTIVE
PIPELINE_NOT_FOUND
RZ_CREATE_FAILURE
RZ_TRANSPORT_ERROR
TARGET_PROGRAM_UNAVAILABLE
UNHANDLED_NODE_FAILURE

The following values are returned when RESPONSE is INVALID:
INVALID_FORMAT
INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:

Chapter 96. Pipeline Manager Domain (PI) 1025

TASK_CANCELLED
TIMED_OUT

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PIPM gate, INVOKE_STUB function
Invoke an application program remotely.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
ABEND
LOCK_FAILURE
LOOP

The following values are returned when RESPONSE is EXCEPTION:
CHANNEL_ERROR
CONTEXT_SWITCH_FAILED
NO_CHANNEL
PIPELINE_MODE_MISMATCH
PIPELINE_NOT_ACTIVE
PIPELINE_NOT_FOUND
RZ_CREATE_FAILURE
RZ_TRANSPORT_ERROR
TARGET_PROGRAM_UNAVAILABLE
UNHANDLED_NODE_FAILURE

The following values are returned when RESPONSE is INVALID:
INVALID_FORMAT
INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
TASK_CANCELLED
TIMED_OUT

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PIPM gate, START_PIPELINE function
Start a requester or provider pipeline.

Input Parameters
MODE

Parameter indicating whether the pipeline is to be started for a service requester or for a service
provider.

1026 CICS TS for z/OS: CICS Diagnosis Reference

Values for the parameter are:
PROVIDER
REQUESTER

PIPELINE
The name of the PIPELINE resource.

CHANNEL
Optional Parameter

The name of a channel holding containers to be passed to the pipeline.
TRANSPORT_NAME

Optional Parameter

Depending upon the value of the TRANSPORT_TYPE parameter, the name of a TCPIPSERVICE or
an MQ queue to be passed to the pipeline.

TRANSPORT_TYPE
Optional Parameter

Parameter indicating the type of transport.

Values for the parameter are:
HTTP
MQ

WEBSERVICE
Optional Parameter

The name of the WEBSERVICE to be invoked for this pipeline.

Output Parameters
REASON

The following values are returned when RESPONSE is DISASTER:
ABEND
LOCK_FAILURE
LOOP

The following values are returned when RESPONSE is EXCEPTION:
CHANNEL_ERROR
CONTEXT_SWITCH_FAILED
NO_CHANNEL
PIPELINE_MODE_MISMATCH
PIPELINE_NOT_ACTIVE
PIPELINE_NOT_FOUND
RZ_CREATE_FAILURE
RZ_TRANSPORT_ERROR
TARGET_PROGRAM_UNAVAILABLE
UNHANDLED_NODE_FAILURE

The following values are returned when RESPONSE is INVALID:
INVALID_FORMAT
INVALID_FUNCTION

The following values are returned when RESPONSE is PURGED:
TASK_CANCELLED
TIMED_OUT

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR

Chapter 96. Pipeline Manager Domain (PI) 1027

PURGED

PIRE gate, PERFORM_RESYNC function
Resynchronize any WS-AtomicTransaction units of work that are in-doubt, following a restart of CICS.

Input Parameters

None.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ALREADY_IN_RESYNC

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
PURGED

PISC gate, DYN_CREATE_WEBSERVICE function
This function dynamically creates a WEBSERVICE resource via a PIPELINE scan.

Input Parameters
PIPELINE

The name of the PIPELINE resource that owns the WEBSERVICE.
WSBIND

The fully qualified location of the Web service binding file in the pickup directory in the hierarchical file
system (HFS).

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
CREATE_FAILED
DISCARD_FAILED
INQUIRE_FAILED
INQUIRE_HFS_FAILED
NAME_CLASH
NO_UPDATE_NEEDED
UPDATE_PENDING
WSDL_NAME_TOO_LONG

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
PURGED

PISC gate, UPDATE_WEBSERVICE function
This function completes the updating of a WEBSERVICE resource. It is invoked when the use count for a
WEBSERVICE which is in UPDATING state reaches zero.

1028 CICS TS for z/OS: CICS Diagnosis Reference

Input Parameters
WEBSERVICE

The name of the WEBSERVICE whose update is to be completed.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
CREATE_FAILED
DISCARD_FAILED
INQUIRE_FAILED
INQUIRE_HFS_FAILED
NAME_CLASH
NO_UPDATE_NEEDED
UPDATE_PENDING
WSDL_NAME_TOO_LONG

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
PURGED

PISF gate, SOAPFAULT_ADD function
Add extra data to a SOAP fault created by the SOAPFAULT_CREATE function.

Input Parameters
FAULT_STRING

The description of the fault in a readable form.
SUBCODE_STRING

The value to put in the <subcode> element of a SOAP fault.
CCSID

Optional Parameter

The CCSID of the input.
NATLANG

Optional Parameter

The xml:lang value for the FAULT_STRING

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
CCSID_CONVERSION_ERROR
CCSID_INVALID
CCSID_PARTIAL_CONVERSION
CCSID_UNSUPPORTED
INVALID_CODE
INVALID_REQUEST
NO_FAULT
SEVERE_ERROR

RESPONSE

Values for the parameter are:
OK
EXCEPTION
DISASTER
INVALID

Chapter 96. Pipeline Manager Domain (PI) 1029

KERNERROR
PURGED

PISF gate, SOAPFAULT_CREATE function
Create a SOAP fault in an internal format.

Input Parameters
FAULT_STRING

The description of the fault in a readable form.
FAULTCODE

The standard SOAP fault code to use
FAULTCODE_STRING

The value to use for the <faultcode> element instead of a standard one.
CCSID

Optional Parameter

The CCSID of the input.
DETAIL

Optional Parameter

XML containing detailed fault data.
FAULT_ACTOR

Optional Parameter

The value to put in the <faultactor> element.
NATLANG

Optional Parameter

The xml:lang value for the FAULT_STRING parameter.
ROLE

Optional Parameter

The value to put in the <role> element.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
CCSID_CONVERSION_ERROR
CCSID_INVALID
CCSID_PARTIAL_CONVERSION
CCSID_UNSUPPORTED
INVALID_CODE
INVALID_REQUEST
SEVERE_ERROR

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PISF gate, SOAPFAULT_DELETE function
Delete the internal form of a SOAP fault.

1030 CICS TS for z/OS: CICS Diagnosis Reference

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
NO_FAULT
NOT_FOUND
SEVERE_ERROR

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PISN gate, SOAP_11 function
Start a message handler to process SOAP 1.1 messages.

Output Parameters
SOAPFAULT

indicates whether a SOAP fault has been built.

Values for the parameter are:
NONE
FAULT_BUILT

REASON
The following values are returned when RESPONSE is EXCEPTION:

ABEND
BAD_FAULT
SEVERE_ERROR

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
PURGED

PISN gate, SOAP_12 function
Start a message handler to process SOAP 1.2 messages.

Output Parameters
SOAPFAULT

indicates whether a SOAP fault has been built.

Values for the parameter are:
NONE
FAULT_BUILT

REASON
The following values are returned when RESPONSE is EXCEPTION:

ABEND
BAD_FAULT
SEVERE_ERROR

RESPONSE
Values for the parameter are:

OK
EXCEPTION

Chapter 96. Pipeline Manager Domain (PI) 1031

DISASTER
PURGED

PITG gate, SEND_REQUEST function

Input Parameters

None

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
invalid_codepage
socket_error
unknown_host

The following values are returned when RESPONSE is INVALID:
INVALID_FORMAT
INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
ABEND
MQ_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
INSUFFICIENT_STORAGE
INVALID_PARAMETER

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
PURGED

PITG gate, SEND_RESPONSE function

Input Parameters

None

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
invalid_codepage
socket_error
unknown_host

The following values are returned when RESPONSE is INVALID:
INVALID_FORMAT
INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
ABEND
MQ_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
INSUFFICIENT_STORAGE
INVALID_PARAMETER

1032 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
PURGED

PITG gate, CONVERSE function

Input Parameters

None

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
invalid_codepage
socket_error
unknown_host

The following values are returned when RESPONSE is INVALID:
INVALID_FORMAT
INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
ABEND
MQ_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
INSUFFICIENT_STORAGE
INVALID_PARAMETER

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
PURGED

RECEIVE_REQUEST

Input Parameters

None

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
codepage_not_found
connection_closed
socket_error

The following values are returned when RESPONSE is INVALID:
INVALID_FORMAT
INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
ABEND
MQ_FAILURE

Chapter 96. Pipeline Manager Domain (PI) 1033

The following values are returned when RESPONSE is EXCEPTION:
INSUFFICIENT_STORAGE
INVALID_PARAMETER

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
PURGED

PITG gate, SEND_ERROR_RESPONSE function

Input Parameters

None

Output Parameters
REASON

The following values are returned when RESPONSE is INVALID:
INVALID_FORMAT
INVALID_FUNCTION

The following values are returned when RESPONSE is DISASTER:
ABEND
MQ_FAILURE

The following values are returned when RESPONSE is EXCEPTION:
INSUFFICIENT_STORAGE
INVALID_PARAMETER

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
PURGED

PITL gate, PROCESS_SOAP_REQUEST function
Process a SOAP body received on a SOAP pipeline

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
APP_FAULT
CONV_FROM_SOAP_FAILED
CONV_TO_SOAP_FAILED
INBOUND_VALIDATION_FAILED
INVALID_FORMAT
INVALID_FUNCTION
LOOP
NOT_AUTHORIZED
OPERATION_NOT_FOUND
OUTBOUND_VALIDATION_FAILED
SEVERE_ERROR
SOAP_BODY_CONTAINER_FAULT
TARGET_ABENDED

1034 CICS TS for z/OS: CICS Diagnosis Reference

TARGET_LINK_FAILED
VENDOR_LINK_FAILED
WSBIND_FORMAT_INVALID

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
PURGED

PIWR gate, CREATE_WEBSERVICE function
Create a new WEBSERVICE resource.

Input Parameters
PIPELINE

The pipeline which will own the WEBSERVICE.
WEBSERVICE

The name of the WEBSERVICE.
WSBIND_BUF

The location of the Web service binding file in the hierarchical file system (HFS).
SCAN_MODE

Optional Parameter

Indicates whether the WEBSERVICE is being scanned in or not.

Values for the parameter are:
NO
YES

VALIDATION
Optional Parameter

Indicates whether validation is enabled for the WEBSERVICE.

Values for the parameter are:
NO
YES

WARM_RESTART
Optional Parameter

Indicates whether the WEBSERVICE is to be recovered from the catalog during a warm restart.

Values for the parameter are:
NO
YES

WSDLFILE_BUF
Optional Parameter

The location of the optional Web service description (WSDL) file in the hierarchical file system (HFS).

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
DIRECTORY_ERROR
INSUFFICIENT_STORAGE
LOCK_FAILURE
PIPELINE_ERROR
PIPELINE_NON_EXISTANT
SEVERE_ERROR

Chapter 96. Pipeline Manager Domain (PI) 1035

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
PURGED

PIWR gate, DECREMENT_USE_COUNT function
Decrement the current use count for a WEBSERVICE. When it reaches 0 and if the WEBSERVICE is
updating or discarding then the completion of the update or discard operation will be triggered.

Input Parameters
WEBSERVICE

The name of the WEBSERVICE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
SEVERE_ERROR

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
PURGED

PIWR gate, DISCARD_WEBSERVICE function
This function discards a WEBSERVICE resource.

Input Parameters
WEBSERVICE

The name of the WEBSERVICE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
NOT_AUTHORIZED
SEVERE_ERROR
WEBSERVICE_IN_USE
WEBSERVICE_NOT_FOUND

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
PURGED

PIWR gate, END_BROWSE_WEBSERVICE function
This function ends a browse operation for WEBSERVICE resources.

1036 CICS TS for z/OS: CICS Diagnosis Reference

Input Parameters
BROWSE_TOKEN

The browse token for the browse operation.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
INVALID_BROWSE_TOKEN

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

PIWR gate, GET_NEXT_WEBSERVICE function
Get the next WEBSERVICE resource during a browse operation.

Input Parameters
BROWSE_TOKEN

The browse token for the browse operation.
BINDING_BUF

Optional Parameter

A buffer in which the WSDL binding value is returned.
ENDPOINT_BUF

Optional Parameter

A buffer in which the end point URI is returned.
RESET

Optional Parameter

A flag that indicates if the use count is to be reset to zero.

Values for the parameter are:
NO
YES

WSBIND_BUF
Optional Parameter

A buffer in which the location of the Webservice binding file in the hierarchical file system (HFS) is
returned.

WSDLFILE_BUF
Optional Parameter

A buffer in which the location of the Web service description (WSDL) file in the hierarchical file system
(HFS) is returned.

Output Parameters
DATESTAMP

The date stamp of the Web service binding file
LASTMODTIME

The time at which the Web service binding file was last changed.
PGMINTERFACE

The type of interface used by the target program

Values for the parameter are:

Chapter 96. Pipeline Manager Domain (PI) 1037

CHANNEL
COMMAREA

PIPELINE
The pipeline which owns the WEBSERVICE.

PROGRAM
The target program.

REASON
The following values are returned when RESPONSE is EXCEPTION:

BROWSE_END
INVALID_BROWSE_TOKEN

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
INVALID
KERNERROR
PURGED

STATE
The current state of the WEBSERVICE.

Values for the parameter are:
DISCARDING
INITING
INSERVICE
UNUSABLE
UPDATING

TIMESTAMP
The time stamp of the Web service binding file.

URIMAP
The name of the URIMAP that is associated with the WEBSERVICE.

VALIDATION
Indicates whether validation is enabled for the WEBSERVICE.

Values for the parameter are:
NO
YES

WEBSERVICE
The name of the WEBSERVICE.

TOTAL_USE_COUNT
Optional Parameter

The current use count for the WEBSERVICE.

PIWR gate, INCREMENT_USE_COUNT function
Increment the use count for the named WEBSERVICE.

Input Parameters
WEBSERVICE

The name of the WEBSERVICE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
SEVERE_ERROR

1038 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
PURGED

PIWR gate, INITIALISE_WEBSERVICE function
Resolve the HFS parts of a WEBSERVICE. The function takes a WEBSERVICE which is in INSTALLING
state to either INSERVICE or UNUSABLE state.

Input Parameters
WEBSERVICE

The name of the WEBSERVICE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
EYECATCHER_ERROR
FILE_NOT_FOUND
INSUFFICIENT_STORAGE
NOT_AUTHORIZED
PIPELINE_ERROR
PIPELINE_WRONG_MODE
READ_ERROR
SEVERE_ERROR
SHELF_WRITE_ERROR
VERSION_ERROR
WEBSERVICE_NOT_FOUND

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
PURGED

PIWR gate, INQUIRE_WEBSERVICE function
Inquire on a WEBSERVICE resource.

Input Parameters
WEBSERVICE

The name of the WEBSERVICE.
BINDING_BUF

Optional Parameter

A buffer in which the WSDL binding value is returned.
ENDPOINT_BUF

Optional Parameter

A buffer in which the endpoint URI is returned.
WSBIND_BUF

Optional Parameter

A buffer in which the location of the Web service binding file in the hierarchical file system (HFS) is
returned.

Chapter 96. Pipeline Manager Domain (PI) 1039

WSDLFILE_BUF
Optional Parameter

A buffer in which the location of the optional Web service description (WSDL) file in the hierarchical file
system (HFS) is returned.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
NOT_AUTHORIZED
SEVERE_ERROR
WEBSERVICE_NOT_FOUND

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
PURGED

CONTAINER
Optional Parameter

The name of the container for the target program's data.
DATESTAMP

Optional Parameter

The date stamp of the Web service binding file.
LASTMODTIME

Optional Parameter

The time at which the Web service binding file was last changed.
PGMINTERFACE

Optional Parameter

The type of interface used by the target program

Values for the parameter are:
CHANNEL
COMMAREA
NOTAPPLIC

PGMINTERFACE
The type of interface used by the target program

Values for the parameter are:
CHANNEL
COMMAREA
NOTAPPLIC

PIPELINE
Optional Parameter

The pipeline which owns the WEBSERVICE.
PROGRAM

Optional Parameter

The target program.
STATE

Optional Parameter

The current state of the WEBSERVICE.

Values for the parameter are:

1040 CICS TS for z/OS: CICS Diagnosis Reference

DISCARDING
INITING
INSERVICE
UNUSABLE
UPDATING

TIMESTAMP
Optional Parameter

The time stamp of the Web service binding file.
TOTAL_USE_COUNT

Optional Parameter

The total use count for the WEBSERVICE.
URIMAP

Optional Parameter

The name of the URIMAP that is associated with the WEBSERVICE.
VALIDATION

Optional Parameter

Indicates whether validation is enabled for the WEBSERVICE.

Values for the parameter are:
NO
YES

WSADDR
Optional Parameter

The address of the WEBSERVICE control block.

PIWR gate, RESOLVE_ALL_WEBSERVICES function
Resolve all WEBSERVICE resources for a given pipeline that are in INITING state.

Input Parameters
PIPELINE

Optional Parameter

The pipeline for which WEBSERVICE resources are to be resolved.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
SEVERE_ERROR

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
PURGED

PIWR gate, SET_WEBSERVICE function
Change the state of a WEBSERVICE resource.

Input Parameters
VALIDATION

The new validation state for the WEBSERVICE.

Values for the parameter are:

Chapter 96. Pipeline Manager Domain (PI) 1041

NO
YES

WEBSERVICE
The name of the WEBSERVICE.

Output Parameters
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
DUPLICATE
NOT_AUTHORIZED
SEVERE_ERROR
WEBSERVICE_NOT_FOUND

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER
PURGED

PIWR gate, START_BROWSE_WEBSERVICE function
Start a browse operation on WEBSERVICE resources.

Output Parameters
BROWSE_TOKEN

The browse token for the browse operation.
REASON

The following values are returned when RESPONSE is EXCEPTION:
ABEND
BROWSE_END
DIRECTORY_ERROR
DUPLICATE
FILE_NOT_FOUND
FREEMAIN_FAILURE
INSUFFICIENT_STORAGE
INVALID_BROWSE_TOKEN
INVALID_FORMAT
INVALID_FUNCTION
LOCK_FAILURE
LOOP
NO_WEBS_INSTALLED
NOT_AUTHORIZED
PIPELINE_ERROR
PIPELINE_NON_EXISTANT
PIPELINE_WRONG_MODE
READ_ERROR
SEVERE_ERROR
SHELF_WRITE_ERROR
WEBSERVICE_IN_USE
WEBSERVICE_NOT_FOUND

RESPONSE
Values for the parameter are:

OK
EXCEPTION
DISASTER

1042 CICS TS for z/OS: CICS Diagnosis Reference

INVALID
KERNERROR
PURGED

Pipeline Manager domain's generic gates
Table 82 summarizes the Pipeline Manager domain's generic gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gate, the functions provided by the gate, and the generic
format for calls to the gate.

Table 82. Pipeline Manager domain's generic gates

Gate Trace Function Format

PIDM PI 0100
PI 0101

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

PIST PI 0200
PI 0201

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

Modules

Module Function

DFHPIAP Remote stub program.

DFHPIAT Supports PI domain's atomic transactions functions.

DFHPICC Marshal XML body to COMMAREA and channel data.

DFHPIDM Domain initialization and termination program.

DFHPIDSH The pipeline HTTP inbound router module. Starts a service provider pipeline by issuing a
DFHPIPM START_PIPELINE call to the pipeline manager.

DFHPIDUF PI domain dump formatting program.

DFHPIEP SOAP envelope SAX parser.

DFHPIII ICM interpreter.

DFHPIIT PI installation assist transaction program

DFHPIIW Pipeline manager support for PIIW gate.

DFHPILN Pipeline callback program

DFHPIPA SOAP envelope SAX parser

DFHPIPL PIPL gate functions

DFHPIPM Pipleine manager domain gate

DFHPIRT The pipeline HTTP outbound router module. Starts a service requester pipeline by issuing a
DFHPIPM START_PIPELINE call to the pipeline manager.

DFHPISB DFHPICC's callback stub.

DFHPISF SOAP fault API support.

DFHPISN SOAP node support.

DFHPISN1 SOAP 1.1 handler program.

DFHPISN2 SOAP 1.2 handler program.

DFHPIST Pipeline manager's statistics gate.

DFHPITH The pipeline HTTP transport management program which performs the functions of the PITG
gate.

DFHPITL Top level Web service module

Chapter 96. Pipeline Manager Domain (PI) 1043

Module Function

DFHPITP PI domain's EXEC layer program

DFHPITQ MQ transport.

DFHPITQ1 CICS SOAP MQ Transport program.

DFHPITRI PI domain trace formatting program.

DFHPIWR WEBSERVICE resource functions.

DFHPIWT Work request manager.

DFHPIXE SAX event handler interface.

Exits
None

Trace

1044 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 97. Partner resource manager

The partner resource manager (an OCO component of the AP domain) is responsible for managing all
operations involving the partner resource table (PRT). A PARTNER definition is required for every remote
partner referenced in SAA communications interface calls (see Chapter 43, “SAA Communications and
Resource Recovery interfaces,” on page 347). Partner resources are installed either at system initialization
or using CEDA INSTALL, and can be discarded using either the CEMT transaction or EXEC CICS
commands.

The partner resource manager is implemented as a set of subroutine interfaces.

Functions provided by the partner resource manager
Table 83 summarizes the external subroutine interfaces provided by the partner resource manager. It
shows the subroutine call formats, the level-1 trace point IDs of the modules providing the functions for
these formats, and the functions provided.

Table 83. Partner resource manager’s subroutine interfaces

Format Trace Function

PRCM AP 0F36
AP 0F37

INQUIRE_PARTNER
START_PARTNER_BROWSE
GET_NEXT_PARTNER
END_PARTNER_BROWSE

PRFS AP 0F34
AP 0F35

LOCATE_AND_LOCK_PARTNER

PRIN AP 0F20
AP 0F21

START_INIT
COMPLETE_INIT

PRPT AP 0F30
AP 0F31

ADD_REPLACE_PARTNER
DELETE_PARTNER

PRCM format, INQUIRE_PARTNER function
The INQUIRE_PARTNER function of the PRCM format is used to retrieve the installed definition of a
specified partner, consisting of the remote transaction program name (TP name), network identifier,
netname (network LU name), and profile name.

Input parameters
PARTNER_NAME is the 8-character name of the entry whose contents are to be retrieved.
TP_NAME is a buffer for the output TP name.

Output parameters
NETWORK is the 8-character network identifier.
NETNAME is the 8-character netname.
PROFILE_NAME is the 8-character CICS profile name.
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|KERNERROR
[REASON] is returned when RESPONSE is EXCEPTION. It has this value:

PARTNER_NOT_FOUND

PRCM format, START_PARTNER_BROWSE function
The START_PARTNER_BROWSE function of the PRCM format is used to initiate a browse of the partner
resource table. The browse starts at the beginning of the table.

© Copyright IBM Corp. 1997, 2011 1045

Input parameters
None.

Output parameters
BROWSE_TOKEN is the token identifying the browse session initiated by this call.
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. It has this value:

GETMAIN_FAILED

PRCM format, GET_NEXT_PARTNER function
The GET_NEXT_PARTNER function of the PRCM format is used to retrieve the information stored in the
next partner found in a sequential browse of the partner resource table.

Input parameters
BROWSE_TOKEN is the token identifying this browse session.
TP_NAME is a buffer for the output TP name.

Output parameters
PARTNER_NAME is the 8-character name of the entry retrieved.
NETWORK is the 8-character network identifier.
NETNAME is the 8-character netname.
PROFILE_NAME is the 8-character CICS profile name.
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|KERNERROR
[REASON] is returned when RESPONSE is EXCEPTION. It has this value:

END_OF_LIST

PRCM format, END_PARTNER_BROWSE function
The END_PARTNER_BROWSE function of the PRCM format is used to terminate a browse of the partner
resource table.

Input parameters
BROWSE_TOKEN is the token identifying this browse session.

Output parameters
RESPONSE is the subroutine’s response to the call. It can have either of these values:

OK|KERNERROR

PRFS format, LOCATE_AND_LOCK_PARTNER function
The LOCATE_AND_LOCK_PARTNER function of the PRFS format is used to retrieve the information
stored in a named entry in the partner resource table. A table manager read lock is applied to the entry.

Input parameters
PARTNER_NAME is the 8-character name of the entry whose contents are to be retrieved.
TP_NAME is a buffer for the output TP name.

Output parameters
NETWORK is the 8-character network identifier.
NETNAME is the 8-character netname.
PROFILE_NAME is the 8-character CICS profile name.
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|KERNERROR
[REASON] is returned when RESPONSE is EXCEPTION. It has this value:

PARTNER_NOT_FOUND

Partner resource manager

1046 CICS TS for z/OS: CICS Diagnosis Reference

PRIN format, START_INIT function
The START_INIT function of the PRIN format is used to attach a CICS task to perform initialization of the
partner resource manager.

Input parameters
None.

Output parameters
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. It can have either of these values:

RESPONSE Possible REASON values

DISASTER GETMAIN-FAILED
ADD_SUSPEND_FAILED

PRIN format, COMPLETE_INIT function
The COMPLETE_INIT function of the PRIN format is used to wait for the initialization task attached by the
START_INIT function to complete processing.

Input parameters
None.

Output parameters
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. It has this value:

INIT_TASK_FAILED

PRPT format, ADD_REPLACE_PARTNER function
The ADD_REPLACE_PARTNER function of PRPT format is used to add a named entry to the partner
resource table. The new entry replaces the existing entry (if any) with the specified name.

Input parameters
PARTNER_NAME is the 8-character name of the entry whose contents are to be added or replaced.
NETWORK is the 8-character network identifier.
NETNAME is the 8-character netname.
PROFILE_NAME is the 8-character CICS profile name.
TP_NAME specifies the address and length of a buffer containing the TP name.
SYSTEM_STATUS

specifies the status of the CICS system at the time of the call. It can have any one of
these values (ONLINE here means during execution):
COLD_START|WARM_START|ONLINE

Output parameters
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER CATALOG_WRITE_FAILED
GETMAIN_FAILED

EXCEPTION PARTNER_IN_USE

Partner resource manager

Chapter 97. Partner resource manager 1047

PRPT format, DELETE_PARTNER function
The DELETE_PARTNER function of the PRPT format is used to delete a named entry in the partner
resource table.

Input parameters
PARTNER_NAME is the 8-character name of the entry to be deleted.
SYSTEM_STATUS

is the status of the CICS system at the time of the call. It can have any one of these
values (ONLINE here means during execution):
COLD_START|WARM_START|ONLINE

Output parameters
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER CATALOG_DELETE_FAILED

EXCEPTION PARTNER_IN_USE
PARTNER_NOT_FOUND

Modules

Module Function

DFHAPTRR Interprets partner resource manager trace entries

DFHPRCM Handles the following requests:
INQUIRE_PARTNER
START_PARTNER_BROWSE
GET_NEXT_PARTNER
END_PARTNER_BROWSE

DFHPRDUF Formats the partner resource manager control blocks in a CICS system dump

DFHPRFS Handles the following request:
LOCATE_AND_LOCK_PARTNER

DFHPRIN1 Handles the following requests:
START_INIT
COMPLETE_INIT

DFHPRIN2 Runs as a CICS task to perform initialization of the partner resource manager

DFHPRPT Handles the following requests:
ADD_REPLACE_PARTNER
DELETE_PARTNER

DFHPRRP Initializes the partner resource table at CICS startup

Exits
No global user exit points are provided for this component.

Trace
The following point ID is provided for the partner resource manager:
v AP 0F20 through AP 0F3F, for which the trace levels are AP 1 and Exc.

Partner resource manager

1048 CICS TS for z/OS: CICS Diagnosis Reference

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Partner resource manager

Chapter 97. Partner resource manager 1049

1050 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 98. Partner domain (PT)

The partner domain provides services to coordinate flows between two CICS tasks.

Partner domain’s specific gates
Table 84 summarizes the PT domain’s specific gates. It shows the level-1 trace point IDs of the modules
providing the functions for the gates, the functions provided by the gates, and whether or not the functions
are available through the exit programming interface (XPI).

Table 84. Partner domain’s specific gates
Gate Trace Function XPI

PTTW OT 0100
OT 0101

CREATE_POOL
DESTROY_POOL
QUERY_POOL
START_POOL_BROWSE
GET_NEXT_POOL
END_POOL_BROWSE
CREATE_PARTNERSHIP
DESTROY_PARTNERSHIP
SET_USER_TOKEN
INQUIRE_USER_TOKEN
MAKE_PARTNERSHIP
BREAK_PARTNERSHIP
TRIGGER_PARTNER
WAIT_FOR_PARTNER
QUERY_PARTNERSHIP
SET_GARBAGE_INTERVAL
INQUIRE_GARBAGE_INTERVAL

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

PTTW gate, CREATE_POOL function
The CREATE_POOL function creates a pool for state_tokens.

Input parameters
POOL_NAME The eight character name of the pool. This name must be unique across all pools. There

is no enforced character set for this name.
GARBAGE_COLLECTION

Whether or not garbage collection is to be performed for state_tokens in this pool. It can
have either of these two values:
ON|OFF

[GARBAGE_COLLECT_INTERVAL]
The interval in milliseconds between collections of garbage for this pool. If garbage
collection is on, this parameter must be provided. If garbage collection is off, this
parameter is ignored.

[FREE_USER_DATA_DOMAIN]
An optional callback routine that may be called to free any user data addressed from the
user_data_token associated with each state_token. This callback must implement the
PTFD FREE_USER_DATA gate.

[FREE_USER_DATA_GATE]
An optional callback routine that may be called to free any user data addressed from the
user_data_token associated with each state_token. This callback must implement the
PTFD FREE_USER_DATA gate.

Output parameters
POOL_TOKEN The token of this pool
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

© Copyright IBM Corp. 1997, 2011 1051

RESPONSE Possible REASON values

EXCEPTION NAME_NOT_UNIQUE
BAD_CALLBACK

PTTW gate, DESTROY_POOL function
Destroys a pool of state_tokens.

Input parameters
POOL_TOKEN The token of this pool
DESTROY_OPTION

Specifies how the pool is destroyed. It can have any of these values:
MUST_BE_EMPTY|FORCE|QUIESCE

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION POOL_NOT_EMPTY
POOL_NOT_FOUND
POOL_QUIESCING

PTTW gate, QUERY_POOL function
Query the attributes and state of a pool.

Input parameters
[POOL_NAME] The eight character name of the pool. This name must be unique across all pools. There

is no enforced character set for this name.
[POOL_TOKEN] The token of this pool

Output parameters
[POOL_NAME_OUT]

The pool name is returned.
[POOL_TOKEN_OUT]

The pool token is returned.
[POOL_STATE] The cureent state of the pool. It can have any of these values:

EMPTY|NOT_EMPTY|QUIESCING
[GARBAGE_COLLECTION]

Whether or not garbage collection is to be performed for state_tokens in this pool. It can
have either of these two values:
ON|OFF

[GARBAGE_COLLECT_INTERVAL]
The interval in milliseconds between collections of garbage for this pool. If garbage
collection is on, this parameter must be provided. If garbage collection is off, this
parameter is ignored.

[FREE_USER_DATA_DOMAIN]
An optional callback routine that may be called to free any user data addressed from the
user_data_token associated with each state_token. This callback must implement the
PTFD FREE_USER_DATA gate.

[FREE_USER_DATA_GATE]
An optional callback routine that may be called to free any user data addressed from the
user_data_token associated with each state_token. This callback must implement the
PTFD FREE_USER_DATA gate.

Partner domain (PT)

1052 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION POOL_NOT_FOUND

PTTW gate, START_POOL_BROWSE function
Creates a pool cursor to browse pools.

Output parameters
POOL_CURSOR The browse cursor returned from start_pool_browse
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_POOLS

PTTW gate, GET_NEXT_POOL function
Get the next pool

Input parameters
POOL_CURSOR The browse cursor returned from start_pool_browse

Output parameters
[POOL_TOKEN] The token of this pool
[POOL_NAME] The eight character name of the pool. This name must be unique across all pools. There

is no enforced character set for this name.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION END_BROWSE
INVALID_CURSOR

PTTW gate, END_POOL_BROWSE function
End a browse of pools.

Input parameters
POOL_CURSOR The browse cursor returned from start_pool_browse

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_CURSOR

Partner domain (PT)

Chapter 98. Partner domain (PT) 1053

PTTW gate, CREATE_PARTNERSHIP function
Create a new state block to represent a partnership, and add it to the pool.

Input parameters
POOL_TOKEN The token of this pool

Output parameters
STATE_TOKEN The state_token used to manage the handshake
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION POOL_NOT_FOUND
POOL_QUIESCING

PTTW gate, DESTROY_PARTNERSHIP function
Remove a state block from its pool and delete it to destroy the partnership. If the state token is still in use
by the partner, it is flagged as deleted.

Input parameters
STATE_TOKEN The state_token used to manage the handshake

Output parameters
[OLD_TRIGSTATE1]

The state of partner 1 before the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

[OLD_TRIGSTATE2]
The state of partner 2 before the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

[NEW_TRIGSTATE1]
The state of partner 1 after the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

[NEW_TRIGSTATE2]
The state of partner 2 after the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND
PARTNER_WAITING

PTTW gate, SET_USER_TOKEN function
Change the user token in the state block.

Input parameters
STATE_TOKEN The state_token used to manage the handshake
USER_TOKEN The user token to be associated with the state token

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Partner domain (PT)

1054 CICS TS for z/OS: CICS Diagnosis Reference

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

PTTW gate, INQUIRE_USER_TOKEN function
Get the user token in the state block.

Input parameters
STATE_TOKEN The state_token used to manage the handshake

Output parameters
USER_TOKEN The user token to be associated with the state token
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

PTTW gate, MAKE_PARTNERSHIP function
Establish a partnership with another task. The partner task may or may not have previously made the
partnership.

Input parameters
STATE_TOKEN The state_token used to manage the handshake
ORDER Specifies the order in which the partners make the partnership. It can have any of these

values:
DONT_CARE|ONLY|SUBSEQUENT

Output parameters
[OLD_TRIGSTATE1]

The state of partner 1 before the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

[OLD_TRIGSTATE2]
The state of partner 2 before the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

[NEW_TRIGSTATE1]
The state of partner 1 after the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

[NEW_TRIGSTATE2]
The state of partner 2 after the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_ONLY
NOT_SUBSEQUENT
ALREADY_MADE
ALREADY_PARTNER
NOT_FOUND
NOT_PARTNER

Partner domain (PT)

Chapter 98. Partner domain (PT) 1055

PTTW gate, BREAK_PARTNERSHIP function
Break an established partnership.

Input parameters
STATE_TOKEN The state_token used to manage the handshake
[COMPLETION_CODE]

The completion code to be passed to the partner. The caller can use this to notify partner
why the partnership is being broken. Once read the completion code is reset to zero. This
is optional so that the caller can pass exactly one completion code when calling
trigger_partner followed by break_partnership. The completion code is ignored if the
resulting state is not_made.

Output parameters
[OLD_TRIGSTATE1]

The state of partner 1 before the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

[OLD_TRIGSTATE2]
The state of partner 2 before the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

[NEW_TRIGSTATE1]
The state of partner 1 after the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

[NEW_TRIGSTATE2]
The state of partner 2 after the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

PARTNER_COMPLETION_CODE
The partner's completion code indicates why the partner broke the partnership.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_PARTNER
NOT_FOUND
PARTNERSHIP_NOT_MADE

PTTW gate, TRIGGER_PARTNER function
Notify a waiting partner. If the partner is not actually waiting when trigger is called, the partner will be
triggered when it next waits.

Input parameters
STATE_TOKEN The state_token used to manage the handshake
COMPLETION_CODE

The completion code to be passed to the partner.
PARTNER_EXISTENCE

Specifies whether the partner must exist for this request. It can have either of these two
values:
DONT_CARE|MUST_EXIST

Output parameters
[OLD_TRIGSTATE1]

The state of partner 1 before the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

Partner domain (PT)

1056 CICS TS for z/OS: CICS Diagnosis Reference

[OLD_TRIGSTATE2]
The state of partner 2 before the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

[NEW_TRIGSTATE1]
The state of partner 1 after the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

[NEW_TRIGSTATE2]
The state of partner 2 after the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NAME_NOT_UNIQUE
BAD_CALLBACK

PTTW gate, WAIT_FOR_PARTNER function
Wait to be notified by a partner or until the wait times out.

Input parameters
STATE_TOKEN The state_token used to manage the handshake
PARTNER_EXISTENCE

Specifies whether the partner must exist for this request. It can have either of these two
values:
DONT_CARE|MUST_EXIST

[TIMEOUT] An optional maximum time to wait before waking up in milliseconds
[PURGEABLE] Specifies whether the wait can be purged. It can have either of these two values:

YES|NO

Output parameters
PARTNER_COMPLETION_CODE

The partner's completion code indicates why the partner broke the partnership.
[OLD_TRIGSTATE1]

The state of partner 1 before the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

[OLD_TRIGSTATE2]
The state of partner 2 before the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

[NEW_TRIGSTATE1]
The state of partner 1 after the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

[NEW_TRIGSTATE2]
The state of partner 2 after the request. It can have any of these values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Partner domain (PT)

Chapter 98. Partner domain (PT) 1057

RESPONSE Possible REASON values

EXCEPTION NAME_NOT_UPARTNERSHIP_NOT_MADE
NOT_PARTNER
TIMED_OUT
NOT_FOUND
PARTNER_WAITING
PARTNER_NOT_THERENIQUE
BAD_CALLBACK

PTTW gate, QUERY_PARTNERSHIP function
Get the status of the partner task.

Input parameters
STATE_TOKEN The state_token used to manage the handshake

Output parameters
[XM_TOKEN] The partner's transaction manager token.
[POOL_TOKEN] The token of this pool
[STATE] Describes whether the state token is not made, made or partially made and who by. It can

have any of these values:
NOT_MADE|MADE_BY_PARTNER|MADE_BY_SELF|MADE

[STATUS_OF_PARTNER]
Describes whether partner is waiting or has been triggered. It can have any of these
values:
UNDEFINED|VALID|TRIGGERED|WAITING|RESUMED

[STATUS_OF_SELF]
Describes whether the caller has been triggered or not. It can have any of these values:
UNDEFINED|VALID|TRIGGERED

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_PARTNER
NOT_FOUND

PTTW gate, SET_GARBAGE_INTERVAL function
Set garbage collection interval.

Input parameters
POOL_TOKEN The token of this pool
GARBAGE_COLLECT_INTERVAL

The interval in milliseconds between collections of garbage for this pool. If garbage
collection is on, this parameter must be provided. If garbage collection is off, this
parameter is ignored.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION GARBAGE_COLLECTION_OFF
POOL_NOT_FOUND

Partner domain (PT)

1058 CICS TS for z/OS: CICS Diagnosis Reference

PTTW gate, INQUIRE_GARBAGE_INTERVAL function
Get garbage collection interval.

Input parameters
POOL_TOKEN The token of this pool

Output parameters
GARBAGE_COLLECTION

Indicates whether or not garbage collection is to be performed for state_tokens in this
pool. It can have either of these two values:
ON|OFF

GARBAGE_COLLECT_INTERVAL
The interval in milliseconds between collections of garbage for this pool. If garbage
collection is on, this parameter must be provided. If garbage collection is off, this
parameter is ignored.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NAME_NOT_UNIQUE
BAD_CALLBACK

Modules

Module Function

DFHPTDM Domain initialisation and termination.

PRE_INITIALIZE

INITIALIZE_DOMAIN

QUIESCE_DOMAIN

TERMINATE_DOMAIN

DFHPTTW Handles the following requests:

CREATE_POOL

DESTROY_POOL

QUERY_POOL

START_POOL_BROWSE

GET_NEXT_POOL

END_POOL_BROWSE

CREATE_PARTNERSHIP

DESTROY_PARTNERSHIP

SET_USER_TOKEN

INQUIRE_USER_TOKEN

MAKE_PARTNERSHIP

BREAK_PARTNERSHIP

TRIGGER_PARTNER

WAIT_FOR_PARTNER

QUERY_PARTNERSHIP

SET_GARBAGE_INTERVAL

INQUIRE_GARBAGE_INTERVAL

Partner domain (PT)

Chapter 98. Partner domain (PT) 1059

Exits
None

Trace
The point IDs for the PT domain are of the form OTxxxx; the corresponding trace levels are PT 1, PT 2
and Exc.

For more information about the trace points, see CICS Trace Entries. For more information about using
traces in problem determination, see CICS Problem Determination Guide.

Partner domain (PT)

1060 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 99. Recovery Manager Domain (RM)

Recovery Manager (RM) is a domain which is responsible for ensuring that the resource updates for a unit
of work are all committed or all backed out, including updates across multiple systems.

Resource Owners, such as File Control, are responsible for processing update requests from applications
and for backing out updates. Recovery Manager provides interfaces which Resource Owners use to
participate in a unit of work. So Recovery Manager coordinates the Resource Owners ensuring that they
all either commit or back out the updates for a particular unit of work. Each Resource Owner protects
Recovery Manager from the details of how its resources are managed.

Updates on multiple systems are also coordinated by Recovery Manager. However, since systems are
connected in a variety of ways, Recovery Manager uses Recovery Manager Connectors (RMCs) to
communicate with remote systems. RMCs, such as the LU 6.2 RMC, are responsible for adapting the
Recovery Manager protocols to the inter-system protocols. RMCs protect Recovery Manager from the
details of the various inter-system protocols.

Additionally, Recovery Manager supports failures such as a system crash, a remote connection failure, or
a local resource failure (e.g. an I/O error). It also supports the forward recovery of local resources allowing
them to be reconstructed to a consistent state.

Recovery Manager Domain’s specific gates
Table 85 summarizes the Recovery Manager domain’s specific gates. It shows the level-1 trace point IDs
of the modules providing the functions for the gate, the functions provided by the gate, and whether or not
the functions are available through the exit programming interface (XPI).

Table 85. Recovery Manager domain’s specific gate
Gate Trace Function XPI

RMUW RM 0201
RM 0202

CREATE_UOW
INQUIRE_UOW_ID
INQUIRE_UOW_TOKEN
INQUIRE_UOW
SET_UOW
COMMIT_UOW
FORCE_UOW
START_UOW_BROWSE
GET_NEXT_UOW
END_UOW_BROWSE
BACKOUT_UOW
BIND_UOW_TO_TXN
REATTACH_REPLY

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

RMLN RM 0301
RM 0302

ADD_LINK
DELETE_LINK
INQUIRE_LINK
SET_LINK
ISSUE_PREPARE
INBOUND_FLOW
INITIATE_RECOVERY
SET_RECOVERY_STATUS
REPORT_RECOVERY_STATUS
TERMINATE_RECOVERY
SET_MARK
START_LINK_BROWSE
GET_NEXT_LINK
END_LINK_BROWSE

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

RMNM RM 0161
RM 0162

INQUIRE_LOGNAME
SET_LOGNAME
CLEAR_PENDING

NO
NO
NO

RMCD RM 0121
RM 0122

REGISTER
SET_GATE
INQUIRE_CLIENT_DATA
SET_CLIENT_DATA

NO
NO
NO
NO

© Copyright IBM Corp. 1997, 2011 1061

Table 85. Recovery Manager domain’s specific gate (continued)
Gate Trace Function XPI

RMDM RM 0101
RM 0102

INQUIRE_STARTUP
SET_STARTUP
SET_LOCAL_LU_NAME
SET_PARAMETERS

NO
NO
NO
NO

RMKD RM 0231
RM 0232

KEYPOINT_DATA NO

RMRE RM 0231
RM 0232

APPEND
FORCE
REMOVE
AVAIL
REQUEST_FORGET

NO
NO
NO
NO
NO

RMSL RM 06E1
RM 06E2

TAKE_ACTIVITY_KEYPOINT NO

RMWT RM 0201
RM 0202

INQUIRE_WORK_TOKEN
SET_WORK_TOKEN
START_WORK_TOKEN_BROWSE
GET_NEXT_WORK_TOKEN
END_WORK_TOKEN_BROWSE

NO
NO
NO
NO
NO

RMUW gate, CREATE_UOW function
Create a unit of work object under the currently executing transaction.

Input parameters
UOW_ID An optional parameter specifying the network UOWID to be given to the unit of work

object. This parameter will be present if the unit of work being created is part of a
distributed unit of work that originated on another system.

HEURISM An optional parameter specifying whether the unit of work should take a unilateral decision
if a failure occurs in the in doubt window? It can have any one of these values:
YES|NO

CHOICE An optional parameter specifying whether the unit of work should commit or backout if
requested to take a unilateral decision. It can have any one of these values:
FORWARD|BACKWARD

INDOUBT_TIMEOUT_INTERVAL
An optional parameter specifying the period of time that the unit of work should be
prepared to wait in doubt.

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMUW gate, INQUIRE_UOW_ID function
Return the network and local UOWIDs of the unit of work of the currently executing transaction.

Input parameters
UOW_ID An optional parameter specifying a buffer in which the network UOWID will be returned.

Output parameters
LOCAL_UOW_ID An optional parameter to receive the local UOWID.
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMUW gate, INQUIRE_UOW_TOKEN function
Return the token identifying the unit of work object with the specified local UOWID.

Recovery Manager Domain (RM)

1062 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
LOCAL_UOW_ID The local UOWID of the required unit of work.

Output parameters
UOW_TOKEN A token identifying the unit of work object.
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

RMUW INQUIRE_UOW function
This function is used to query information about a particular unit of work.

Input parameters
UOW_TOKEN An optional parameter specifying a token used to identify the unit of work object being

queried.
TRANSACTION_TOKEN

An optional parameter specifying a token of a transaction whose unit of work object is to
be queried.

LOG_CHAIN_TOKEN
An optional parameter specifying a token of a log chain whose unit of work object is to be
queried.

UOW_ID An optional parameter specifying a buffer in which the network UOWID will be returned.
LOGNAME An optional parameter specifying a buffer in which the log name of the coordinating

system will be returned.
LOCAL_ACCESS_ID

An optional parameter specifying a buffer in which the local access id of resource causing
the unit of work to shunt will be returned.

REMOTE_ACCESS_ID
An optional parameter specifying a buffer in which the netname of coordinating system will
be returned.

LINK_ID An optional parameter specifying a buffer in which the termid of the link to the coordinating
system will be returned.

Output parameters
OUT_UOW_TOKEN

The token used to identify the unit of work object.
LOCAL_UOW_ID The local unit of work id.
TRANID The tranid of the task that created the unit of work object.
TERMID The termid associated with the task that created the unit of work object.
TERMINAL_LUNAME

The terminal LU name associated with the task that created the unit of work object.
USERID The userid associated with the task that created the unit of work object.
CHOICE The choice of whether the unit of work should commit or backout if requested to take a

unilateral decision. It can have any one of these values:
FORWARD|BACKWARD

UOW_STATUS The status of the unit of work. It can have any one of these values:
FORWARD|BACKWARD|IN_DOUBT|IN_FLIGHT|
HEURISTIC_FORWARD|HEURISTIC_BACKWARD

SHUNTED The unit of work may or may not be shunted. It can have any one of these values:
YES|NO

DURATION An 8 byte Store Clock representation of the time the unit of work changed state.

Recovery Manager Domain (RM)

Chapter 99. Recovery Manager Domain (RM) 1063

CREATION_TIME
An 8 byte Store Clock representation of the time the unit of work was created.

CLIENT_NAME The name of the Recovery Manager client that owns the resource that has caused the unit
of work to shunt.

ACCESS_ID_TYPE
The type of resource that has caused the unit of work to shunt. It can have any one of
these values:
LOCAL|REMOTE

TRANNUM The task number of the task that created the unit of work.
OP_ID The Operator Id associated with the task that created the unit of work.
FIRST_UOW_FOR_TXN

It can have any one of these values:
YES|NO

HEURISM Whether the unit of work should take a unilateral decision if a failure occurs in the in doubt
window? It can have any one of these values:
YES|NO

AWAITING_FORGET
The unit of work might have completed syncpoint processing, and be merely waiting for
confirmation that subordinates have completed theirs. It can have any one of these values:
YES|NO

RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these
values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

RMUW gate, SET_UOW function
This function is used to set characteristics of the currently executing unit of work.

Input parameters
HEURISM Determines whether the unit of work will take a unilateral decision if a failure occurs in the

in doubt window, or waits for communication with the coordinating system to be
reestablished. It can have any one of these values:
YES|NO

HEURISTIC_CAUSE
An indication of the reason a unilateral decision must be taken. It can have any one of
these values:
TD_CLIENT|LU61_CLIENT|MRO_CLIENT|
RMI_CLIENT|OTHER_CLIENT

Output parameters
USERID When requested this parameter causes the userid associated with unit of work to be reset

to that of the currently executing transaction.
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

Recovery Manager Domain (RM)

1064 CICS TS for z/OS: CICS Diagnosis Reference

RMUW gate, COMMIT_UOW function
This function attempts to commit the changes made in a unit of work.

Input parameters
CONTINUE Is the task continuing into a following, new unit of work. This parameter can have any one

of these values:
YES|NO

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ROLLBACK,
LOCAL_NO_VOTE,
REMOTE_NO_VOTE,
REMOTE_NO_DECISION,
HEURISTIC_READONLY_COMMIT,
HEURISTIC_READONLY_BACKOUT,
HEURISTIC_BACKOUT,
LINKS_INVALID,
HEURISTIC_COMMIT,
INDOUBT_FAILURE,
COMMIT_FAILURE,
REMOTE_COMMIT_ABENDED

RMUW gate, FORCE_UOW function
This function forces an in doubt unit of work to unilaterally commit or backout its changes rather than
continue waiting for resynchronization with the coordinating system.

Input parameters
UOW_TOKEN The token identifying the unit of work object.
DIRECTION Parameter specifying whether to commit (FORWARD), backout (BACKWARD) or obey the

ACTION attribute in the definition of the originating transaction. It can have any one of
these values:
FORWARD|BACKWARD|HEURISTIC

HEURISTIC_CAUSE
The reason for the force. It can have any one of these values:
OPERATOR|TIMEOUT|OTHER_CAUSE

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND,
RESYNCH_IN_PROGRESS,
UOW_NOT_INDOUBT

Recovery Manager Domain (RM)

Chapter 99. Recovery Manager Domain (RM) 1065

RMUW gate, START_UOW_BROWSE function
This function is used to start a browse of unit of work objects in the system.

Input parameters
SHUNTED The browse can be of only shunted units of work, only non-shunted units of work or all

units of work. This parameter can have any one of these values:
YES|NO|BOTH

Output parameters
BROWSE_TOKEN A token to be used on subsequent GET_NEXT_UOW calls.
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

RMUW gate, GET_NEXT_UOW function
This function returns information about the next unit of work object in the browse.

Input parameters
BROWSE_TOKEN A token obtained from a previous START_UOW_BROWSE call.
UOW_ID An optional parameter specifying a buffer in which the network UOWID will be returned.
LOGNAME An optional parameter specifying a buffer in which the log name of the coordinating

system will be returned.
LOCAL_ACCESS_ID

An optional parameter specifying a buffer in which the local access id of resource causing
the unit of work to shunt will be returned.

REMOTE_ACCESS_ID
An optional parameter specifying a buffer in which the netname of coordinating system will
be returned.

LINK_ID An optional parameter specifying a buffer in which the termid of the link to the coordinating
system will be returned.

Output parameters
OUT_UOW_TOKEN

The token used to identify the unit of work object.
LOCAL_UOW_ID The local unit of work id.
TRANID The tranid of the task that created the unit of work object.
TERMID The termid associated with the task that created the unit of work object.
TERMINAL_LUNAME

The terminal LU name associated with the task that created the unit of work object.
USERID The userid associated with the task that created the unit of work object.
CHOICE The choice of whether the unit of work should commit or backout if requested to take a

unilateral decision. It can have any one of these values:
FORWARD|BACKWARD

UOW_STATUS The status of the unit of work. It can have any one of these values:
FORWARD|BACKWARD|IN_DOUBT|IN_FLIGHT|
HEURISTIC_FORWARD|HEURISTIC_BACKWARD

SHUNTED The unit of work may or may not be shunted. It can have any one of these values:
YES|NO

DURATION An 8 byte Store Clock representation of the time the unit of work changed state.

Recovery Manager Domain (RM)

1066 CICS TS for z/OS: CICS Diagnosis Reference

CREATION_TIME
An 8 byte Store Clock representation of the time the unit of work was created.

CLIENT_NAME The name of the Recovery Manager client that owns the resource that has caused the unit
of work to shunt.

ACCESS_ID_TYPE
The type of resource that has caused the unit of work to shunt. It can have any one of
these values:
LOCAL|REMOTE

TRANNUM The task number of the task that created the unit of work.
OP_ID The Operator Id associated with the task that created the unit of work.
FIRST_UOW_FOR_TXN

It can have any one of these values:
YES|NO

HEURISM Whether the unit of work should take a unilateral decision if a failure occurs in the in doubt
window? It can have any one of these values:
YES|NO

AWAITING_FORGET
The unit of work might have completed syncpoint processing, and be merely waiting for
confirmation that subordinates have completed theirs. It can have any one of these values:
YES|NO

RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these
values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_BROWSE_TOKEN,
BROWSE_END

RMUW gate, END_UOW_BROWSE function
This function is used at the end of a browse of the unit of work objects in the system.

Input parameters
BROWSE_TOKEN A token obtained from a previous START_UOW_BROWSE call.

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_BROWSE_TOKEN

RMUW gate, BACKOUT_UOW function
This function causes the changes in a unit of work to be backed out.

Input parameters
CONTINUE This parameter indicates whether the task is continuing into a following, new unit of work.

This parameter can have any one of these values:
YES|NO

RESTART This parameter is only applicable when CONTINUE(NO) is specified and indicates whether
or not transaction restart will be performed.

Recovery Manager Domain (RM)

Chapter 99. Recovery Manager Domain (RM) 1067

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION BACKOUT_FAILURE,
COMMIT_FAILURE,
ROLLBACK_NOT_SUPPORTED,
REMOTE_COMMIT_ABENDED

RMUW gate, BIND_UOW_TO_TXN function
Make the specified unit of work the current unit of work for the current transaction.

Input parameters
UOW_TOKEN The token identifying the unit of work object.

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMUW gate, REATTACH_REPLY function
This function gives control to Recovery Manager to do its unshunt processing under a re-attached
transaction.

Input parameters
UOW_TOKEN The token identifying the unit of work object.

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMLN gate, ADD_LINK function
This function adds a link to a remote system to a unit of work. The unit of work is distributed across more
than one system and Recovery Manager will manage the syncpoint processing between systems.

Input parameters
CLIENT_NAME Name of the communications protocol used on the link. It can have any one of these

values:
IRC |IRCO|LU61|LU62|RMI |IND

LOGNAME_BUFFER
An optional parameter specifying a buffer containing the logname of the remote system.

REMOTE_ACCESS_ID_BUFFER
A buffer containing the netname of the remote system, or the name of the External
Resource Manager.

LINK_ID_BUFFER
A buffer containing the termid of the session to the remote system, or the External
Resource Manager qualifier.

LINK_ID_SOURCE
An optional parameter specifying whether the local or remote system allocated the
session. It can have any one of these values:

Recovery Manager Domain (RM)

1068 CICS TS for z/OS: CICS Diagnosis Reference

LOCAL|REMOTE
RMC_TOKEN A token to be passed to the client on all callback functions.
LAST A parameter specifying whether the remote system supports the last agent optimization. It

can have any one of these values:
YES|NO|MAYBE|DESIRABLE

PRESUMPTION A parameter specifying whether the remote system assumes the presume abort or
presume nothing protocols. It can have any one of these values:
ABORT|NOTHING

PRELOGGING A parameter specifying whether the client requires to be called with the
PERFORM_PRELOGGING callback function. It can have any one of these values:
YES|NO

SINGLE_UPDATER
A parameter specifying whether the remote system supports the single updater
optimization. It can have any one of these values:
YES|NO

COORDINATOR A parameter specifying whether the remote system is the coordinator of the distributed unit
of work. It can have any one of these values:
YES|NO

INITIATOR A parameter specifying whether the remote system is the initiator of the syncpoint. It can
have any one of these values:
YES|NO

RECOVERY_STATUS
A parameter specifying whether recoverable work has taken place as part of the
distributed unit of work on the remote system. It can have any one of these values:
NECESSARY|UNNECESSARY|SYNC_LEVEL_1

Output parameters
LINK_TOKEN A token identifying the new Recovery Manager Link object.
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CLIENT_UNKNOWN,
COORDINATOR_ALREADY

RMLN gate, DELETE_LINK function
This function removes a link to a remote system from a unit of work. The remote system will not now be
included in syncpoint processing for the current unit of work.

Input parameters
LINK_TOKEN A token identifying the Recovery Manager Link object.

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION LINK_UNKNOWN

Recovery Manager Domain (RM)

Chapter 99. Recovery Manager Domain (RM) 1069

RMLN gate, INQUIRE_LINK function
This function returns information about a given Recovery Manager Link object.

Input parameters
LINK_TOKEN A token identifying a Recovery Manager Link object.
RESOLVE_TO_CURRENT_LINK

Up to two Recovery Manager Link objects may be associated with a token. This optional
parameter specifies whether to return information about the most recent or not. It can have
any one of these values:
YES|NO

REMOTE_ACCESS_ID_BUFFER
A buffer in which the netname of the remote system, or External Resource Manager name
will be returned.

LOGNAME_BUFFER
A buffer in which the logname of the remote system will be returned.

LINK_ID_BUFFER
A buffer in which the termid of the session to the remote system, or External Resource
Manager qualifier will be returned.

Output parameters
CLIENT_NAME The name of the protocol that owns the Recovery Manager Link object. It can have any

one of these values:
IRC |IRCO|LU61|LU62|RMI |IND

COORDINATOR Whether the remote system is the coordinator of the distributed unit of work. It can have
any one of these values:
YES|NO

INITIATOR Whether the remote system is the initiator of the syncpoint of the distributed unit of work. It
can have any one of these values:
YES|NO

LAST Whether the remote system supports the last agent optimization. It can have any one of
these values:
YES|NO|MAYBE

SINGLE_UPDATER
Whether the remote system supports the single updater optimization. It can have any one
of these values:
YES|NO

PRESUMPTION Whether the remote system assumes the presume abort or presume nothing protocols. It
can have any one of these values:
ABORT|NOTHING

RECOVERY_STATUS
Whether recoverable work has taken place as part of the distributed unit of work on the
remote system. It can have any one of these values:
NECESSARY|UNNECESSARY|SYNC_LEVEL_1

FORGET Whether all obligations to the remote system with respect to recovery have been
discharged. It can have any one of these values:
YES|NO

MARK Whether the Recovery Manager Link object has been marked during resynchronization. It
can have any one of these values:
YES|NO

UNSHUNTED Whether the unit of work is not currently shunted. It can have any one of these values:
YES|NO

RESYNC_SCHEDULED
Whether resynchronization activity has been scheduled. It can have any one of these
values:

Recovery Manager Domain (RM)

1070 CICS TS for z/OS: CICS Diagnosis Reference

YES|NO
ACCESSIBLE Whether the communications link to the remote system is active or not. It can have any

one of these values:
YES|NO|SHUNTED

LINK_ID_SOURCE
Whether the local or remote system allocated the session. It can have any one of these
values:
LOCAL|REMOTE

UOW_TOKEN The token identifying the unit of work object.
LOCAL_UOW_ID The local unit of work id of the unit of work to which the Recovery Manager Link object

belongs.
HEURISM Whether the unit of work to which the Recovery Manager Link object belongs will take a

unilateral decision if a failure occurs in the in doubt window. It can have any one of these
values:
YES|NO

RMC_TOKEN A token to be passed to the client on all callback functions.
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION LINK_UNKNOWN

RMLN gate, SET_LINK function
This function is used to set characteristics of a Recovery Manager Link object.

Input parameters
LINK_TOKEN A token used to identify a Recovery Manager Link object.
RESOLVE_TO_CURRENT_LINK

Up to two Recovery Manager Link objects may be associated with a token. This optional
parameter specifies whether to set characteristics of the most recent or not. It can have
any one of these values:
YES|NO

LOGNAME_BUFFER
An optional parameter specifying a buffer containing a logname to be associated with the
Recovery Manager Link object.

COORDINATOR A parameter specifying whether the remote system is the coordinator of the distributed unit
of work. It can have any one of these values:
YES|NO

INITIATOR A parameter specifying whether the remote system is the initiator of the syncpoint. It can
have any one of these values:
YES|NO

RECOVERY_STATUS
A parameter specifying whether recoverable work has taken place as part of the
distributed unit of work on the remote system. It can have any one of these values:
NECESSARY|UNNECESSARY|SYNC_LEVEL_1

SINGLE_UPDATER
A parameter specifying whether the remote system supports the single updater
optimization. It can have any one of these values:
YES|NO

PRELOGGING A parameter specifying whether the client requires to be called with the
PERFORM_PRELOGGING callback function. It can have any one of these values:

Recovery Manager Domain (RM)

Chapter 99. Recovery Manager Domain (RM) 1071

YES|NO
LINK_ID_BUFFER

A buffer containing the termid of the session to the remote system, or the External
Resource Manager qualifier.

LINK_ID_SOURCE
An optional parameter specifying whether the local or remote system allocated the
session. It can have any one of these values:
LOCAL|REMOTE

UNSHUNTED A parameter specifying whether the unit of work is not currently shunted. It can have any
one of these values:
YES|NO

RESYNC_SCHEDULED
A parameter specifying whether resynchronization activity has been scheduled. It can have
any one of these values:
YES|NO

ACCESSIBLE A parameter specifying that the communications link to the remote system has failed. It
can have any one of these values:
NO|SHUNTED

FORGET A parameter specifying whether all obligations to the remote system with respect to
recovery have been discharged. It can have any one of these values:
YES|NO

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION LINK_UNKNOWN,
COORDINATOR_ALREADY,
INITIATOR_ALREADY

RMLN gate, ISSUE_PREPARE function
This function performs phase 1 of syncpoint processing on the specified Recovery Manager Link object.

Input parameters
LINK_TOKEN A token used to identify a Recovery Manager Link object.
CONTINUE Is the task continuing into a following, new unit of work. This parameter can have any one

of these values:
YES|NO

Output parameters
VOTE The vote from the client owning the Recovery Manager Link object. This parameter can

have any one of these values:
YES|NO|NO_CONTINUE|READ_ONLY

RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these
values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Recovery Manager Domain (RM)

1072 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION LINK_UNKNOWN,
COORDINATOR_ALREADY,
INITIATOR_ALREADY,
PREPARE_REJECTED

RMLN gate, INBOUND_FLOW function
This function is used to notify Recovery Manager of the successful completion of syncpoint processing on
the remote system, or a communications failure with the remote system.

Input parameters
LINK_TOKEN A token used to identify a Recovery Manager Link object.
FLOW A parameter specifying successful completion (DATA) or communication failure (UNBIND).

It can have any one of these values:
DATA|UNBIND

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION LINK_UNKNOWN,
LINK_INACCESSIBLE

RMLN gate, INITIATE_RECOVERY function
This function identifies a Recovery Manager Link object in an in doubt failed unit of work and marks it as
being resynchronized.

Input parameters
UOW_ID An optional parameter specifying a buffer containing the network UOWID of the unit of

work to be resynchronized.
LOCAL_UOW_ID An optional parameter specifying the local UOWID.
CLIENT_NAME The name of the Recovery Manager client that owns the Recovery Manager Link object

over which resynchronization is to take place.
REMOTE_ACCESS_ID_BUFFER

A buffer containing the netname of the remote system, or the name of the External
Resource Manager of the Recovery Manager Link object over which resynchronization is
to take place.

LINK_ID_BUFFER
A buffer containing the termid of the session to the remote system, or the External
Resource Manager qualifier of the Recovery Manager Link object over which
resynchronization is to take place.

LINK_ID_SOURCE
An optional parameter specifying whether the local or remote system allocated the session
associated with the Recovery Manager Link object over which resynchronization is to take
place. It can have any one of these values:
LOCAL|REMOTE

DIRECTION A parameter specifying whether the resynchronization activity was initiated by the local or
remote system. It can have any one of these values:
INBOUND|OUTBOUND

Recovery Manager Domain (RM)

Chapter 99. Recovery Manager Domain (RM) 1073

Output parameters
UOW_TOKEN The token identifying the unit of work object. to which the Recovery Manager Link object

being resynchronized belongs.
LINK_TOKEN A token identifying the Recovery Manager Link object being resynchronized.
COORDINATOR A parameter specifying whether the remote system is the coordinator of the distributed unit

of work. It can have any one of these values:
YES|NO

INITIATOR A parameter specifying whether the remote system is the initiator of the syncpoint. It can
have any one of these values:
YES|NO

PRESUMPTION Whether the remote system assumes the presume abort or presume nothing protocols. It
can have any one of these values:
ABORT|NOTHING

UOW_STATUS The status of the unit of work object that the Recovery Manager Link object belongs to. It
can have any one of these values:
INDOUBT|FORWARD|BACKWARD|
HEURISTIC_FORWARD|HEURISTIC_BACKWARD

FAILURE_TIME An 8 byte Store Clock representation of the in doubt failure time.
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION LINK_UNKNOWN,
RECOVERY_ALREADY_IN_PROG,
LINK_ACTIVE

RMLN gate, SET_RECOVERY_STATUS function
This function is used to notify an Recovery Manager Link object of the outcome of a distributed unit of
work which failed in the in doubt window. It results in the shunted unit of work the Recovery Manager Link
object belongs to unshunting and committing or backing out its resource updates as appropriate.

Input parameters
LINK_TOKEN A token identifying the Recovery Manager Link object being resynchronized.
DIRECTION A parameter specifying whether the resynchronization activity was initiated by the local or

remote system. It can have any one of these values:
INBOUND|OUTBOUND

REMOTE_UOW_STATUS
The status of the unit of work in the remote system. It can have any one of these values:
INDOUBT|HEURISTIC_FORWARD|HEURISTIC_BACKWARD|
FORWARD|BACKWARD|HEURISTIC_MIXED|COLD|RESET|UNKNOWN

TOLERATE_VIOLATIONS
A parameter specifying the rules to be used to detect resynchronization protocol violations.
It can have any one of these values:
YES|NO

Output parameters
UOW_STATUS The status (as a result of the resynchronization) of the unit of work object to which the

Recovery Manager Link object belongs. It can have any one of these values:
INDOUBT|HEURISTIC_FORWARD|HEURISTIC_BACKWARD|
FORWARD|BACKWARD

RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these
values:

Recovery Manager Domain (RM)

1074 CICS TS for z/OS: CICS Diagnosis Reference

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION LINK_UNKNOWN,
RECOVERY_NOT_IN_PROGRESS,
ALREADY_SET

RMLN gate, REPORT_RECOVERY_STATUS function
This function is similar to SET_RECOVERY_STATUS but is applicable in the case of Presumed Abort or
Last Agent resynchronization where the coordinator has backed out and has no record of the UOW. The
participant may have gone indoubt, and needs to resynchronize.

Input parameters
UOW_ID A parameter specifying a buffer containing the network UOWID of the unit of work to be

resynchronized.
REMOTE_ACCESS_ID_BUFFER

A buffer containing the netname of the remote system, or the name of the External
Resource Manager of the Recovery Manager Link object over which resynchronization is
to take place.

REMOTE_UOW_STATUS
The status of the unit of work in the remote system. It can have any one of these values:
INDOUBT|HEURISTIC_FORWARD|HEURISTIC_BACKWARD|
HEURISTIC_MIXED

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMLN gate, TERMINATE_RECOVERY function

Input parameters
LINK_TOKEN A token identifying the Recovery Manager Link object being resynchronized.
DIRECTION A parameter specifying whether the resynchronization activity was initiated by the local or

remote system. It can have any one of these values:
INBOUND|OUTBOUND

FORGET A parameter specifying whether all obligations to the remote system with respect to
recovery have been discharged. It can have any one of these values:
YES|NO

OPERATOR_INITIATED
A parameter specifying whether the function is the result of an explicit user action. It can
have any one of these values:
YES|NO

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Recovery Manager Domain (RM)

Chapter 99. Recovery Manager Domain (RM) 1075

RESPONSE Possible REASON values

EXCEPTION LINK_UNKNOWN,
RECOVERY_NOT_IN_PROGRESS,
SET_NOT_DONE

RMLN gate, SET_MARK function
This function marks a Recovery Manager Link object during recovery.

Input parameters
LINK_TOKEN A token identifying the Recovery Manager Link object to be marked.
MARK It can have any one of these values:

YES|NO

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION LINK_UNKNOWN,
LINK_ACTIVE,
RECOVERY_IN_PROGRESS

RMLN gate, START_LINK_BROWSE function
This function starts a browse of Recovery Manager Link objects. The browse can return either
v all the Recovery Manager Link objects in the system owned by a particular Recovery Manager client

and associated with a particular remote system or External Resource Manager, or
v all Recovery Manager Link objects belonging to a particular unit of work object.

Input parameters
CLIENT_NAME The name of a Recovery Manager client.
REMOTE_ACCESS_ID_BUFFER

A buffer containing the netname of the remote system, or the name of the External
Resource Manager.

UOW_TOKEN The token identifying a unit of work object.

Output parameters
LINK_BROWSE_TOKEN

A token to be used during a browse of all Recovery Manager Link objects for a particular
Recovery Manager client.

UOW_BROWSE_TOKEN
A token to be used during a browse of all Recovery Manager Link objects for a particular
unit of work object.

RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these
values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UOW_UNKNOWN,
CLIENT_UNKNOWN

Recovery Manager Domain (RM)

1076 CICS TS for z/OS: CICS Diagnosis Reference

RMLN gate, GET_NEXT_LINK function
This function returns information about the next Recovery Manager Link object in a browse.

Input parameters
LINK_BROWSE_TOKEN

A token identifying a browse of all the Recovery Manager Link objects belonging to a
particular Recovery Manager client.

UOW_BROWSE_TOKEN
A token identifying a browse of all the Recovery Manager Link objects belonging to a
particular unit of work object.

REMOTE_ACCESS_ID_BUFFER
A buffer in which the netname of the remote system, or External Resource Manager name
will be returned.

LOGNAME_BUFFER
A buffer in which the logname of the remote system will be returned.

LINK_ID_BUFFER
A buffer in which the termid of the session to the remote system, or External Resource
Manager qualifier will be returned.

Output parameters
LINK_TOKEN
CLIENT_NAME The name of the protocol that owns the Recovery Manager Link object. It can have any

one of these values:
IRC |IRCO|LU61|LU62|RMI |IND

COORDINATOR Whether the remote system is the coordinator of the distributed unit of work. It can have
any one of these values:
YES|NO

INITIATOR Whether the remote system is the initiator of the syncpoint of the distributed unit of work. It
can have any one of these values:
YES|NO

LAST Whether the remote system supports the last agent optimization. It can have any one of
these values:
YES|NO|MAYBE

SINGLE_UPDATER
Whether the remote system supports the single updater optimization. It can have any one
of these values:
YES|NO

PRESUMPTION Whether the remote system assumes the presume abort or presume nothing protocols. It
can have any one of these values:
ABORT|NOTHING

RECOVERY_STATUS
Whether recoverable work has taken place as part of the distributed unit of work on the
remote system. It can have any one of these values:
NECESSARY|UNNECESSARY|SYNC_LEVEL_1

FORGET Whether all obligations to the remote system with respect to recovery have been
discharged. It can have any one of these values:
YES|NO

MARK Whether the Recovery Manager Link object has been marked during resynchronization. It
can have any one of these values:
YES|NO

UNSHUNTED Whether the unit of work is not currently shunted. It can have any one of these values:
YES|NO

Recovery Manager Domain (RM)

Chapter 99. Recovery Manager Domain (RM) 1077

RESYNC_SCHEDULED
Whether resynchronization activity has been scheduled. It can have any one of these
values:
YES|NO

ACCESSIBLE Whether the communications link to the remote system is active or not. It can have any
one of these values:
YES|NO|SHUNTED

LINK_ID_SOURCE
Whether the local or remote system allocated the session. It can have any one of these
values:
LOCAL|REMOTE

UOW_TOKEN The token identifying the unit of work object.
LOCAL_UOW_ID The local unit of work id of the unit of work to which the Recovery Manager Link object

belongs.
HEURISM Whether the unit of work to which the Recovery Manager Link object belongs will take a

unilateral decision if a failure occurs in the in doubt window. It can have any one of these
values:
YES|NO

RMC_TOKEN A token to be passed to the client on all callback functions.
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UOW_UNKNOWN,
END_BROWSE

INVALID INVALID_BROWSE

RMLN gate, END_LINK_BROWSE function
This function is used to terminate a browse of Recovery Manager Link objects.

Input parameters
LINK_BROWSE_TOKEN

A token identifying a browse of all the Recovery Manager Link objects belonging to a
particular Recovery Manager client.

UOW_BROWSE_TOKEN
A token identifying a browse of all the Recovery Manager Link objects belonging to a
particular unit of work object.

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_BROWSE

RMNM gate, INQUIRE_LOGNAME function
This function returns the logname and data associated with the specified remote system being
communicated with via the specified Recovery Manager client.

Recovery Manager Domain (RM)

1078 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
CLIENT_NAME Name of a Recovery Manager client.
REMOTE_ACCESS_ID_BUFFER

A buffer containing the netname of the remote system.
LOGNAME_BUFFER

A buffer to be used to return the logname.
RMC_DATA_BUFFER

A buffer to be used to return data owned by the Recovery Manager client.

Output parameters
IN_USE Whether there are any Recovery Manager Link object in the system associated with the

logname. It can have any one of these values:
YES|NO

RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these
values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND,
UNKNOWN_CLIENT

RMNM gate, SET_LOGNAME function
This function is used to associate a logname and some data with the netname of a remote system for a
specified Recovery Manager client.

Input parameters
CLIENT_NAME A name of a Recovery Manager client.
REMOTE_ACCESS_ID_BUFFER

A buffer containing the netname of a remote system.
LOGNAME_BUFFER

A buffer containing the logname to be associated with the netname.
RMC_DATA_BUFFER

A buffer containing data to be associated with the netname.

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_CLIENT

RMNM gate, CLEAR_PENDING function
This function is used to remove Recovery Manager Link objects associated with a specified remote
system. Affected indoubt units of work will take a unilateral decision to commit or backout their resource
updates.

Input parameters
CLIENT_NAME A name of a Recovery Manager client.
REMOTE_ACCESS_ID_BUFFER

A buffer containing the netname of the remote system.

Recovery Manager Domain (RM)

Chapter 99. Recovery Manager Domain (RM) 1079

COLD A parameter specifying whether the remote system has a new log and so has lost
recovery information with respect to units of work in this system. It can have any one of
these values:
YES|NO

ALL A parameter specifying whether only Recovery Manager Link objects with the same
logname as that currently associated with the remote system should be removed or all
Recovery Manager Link objects.

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

RMCD gate, REGISTER function
This function is used to register a Recovery Manager client.

Input parameters
CLIENT_NAME A name of a Recovery Manager client.
CLIENT_TYPE Whether the client owns local (RO) or remote (RMC) resources. It can have any one of

these values:
RO|RMC

GATE An optional parameter specifying the kernel gate that services the client's callback
functions.

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ALREADY_REGISTERED,
TOO_LATE

RMCD gate, SET_GATE function
This function is used to inform Recovery Manager of the kernel gate that services a Recovery Manager
clients callback functions.

Input parameters
CLIENT_NAME A name of a Recovery Manager client.
GATE A parameter specifying the kernel gate that services the client's callback functions.

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Recovery Manager Domain (RM)

1080 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_CLIENT,
GET_ALREADY_SET

RMCD gate, INQUIRE_CLIENT_DATA function
This function returns data associated with a Recovery Manager client.

Input parameters
CLIENT_NAME A name of a Recovery Manager client.
CLIENT_DATA_BUFFER

A buffer to contain the data returned.

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_CLIENT,
CLIENT_DATA_TOO_LONG

RMCD gate, SET_CLIENT_DATA function
This function associates some data with a Recovery Manager client.

Input parameters
CLIENT_NAME A name of a Recovery Manager client.
CLIENT_DATA_BUFFER

A buffer containing the data to be associated with the Recovery Manager client.

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_CLIENT,
CLIENT_DATA_TOO_LONG

RMDM gate, INQUIRE_STARTUP function
This function returns information about the type of system start being performed.

Input parameters
None

Output parameters
STARTUP It can have any one of these values:

COLD|WARM|EMERGENCY
ALL A value specifying whether all components are cold starting. It can have any one of these

values:
YES|NO

Recovery Manager Domain (RM)

Chapter 99. Recovery Manager Domain (RM) 1081

INITIAL_START
A value specifying whether the cold start is in fact an initial one. It can have any one of
these values:
YES|NO

LAST_COLD_START_TIME
An 8 byte Store Clock representation of the last cold start time.

LAST_EMER_START_TIME
An 8 byte Store Clock representation of the last emergency start time.

LAST_INIT_START_TIME
An 8 byte Store Clock representation of the last initial start time.

RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these
values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMDM gate, SET_STARTUP function
This function sets the type of start that will be performed when this system is next restarted.

Input parameters
STARTUP The type of start. It can have any one of these values:

COLD|NORESTART

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMDM gate, SET_LOCAL_LU_NAME function
This function sets the local LU name, that is used in the generation of network UOWIDs by in this system.

Input parameters
LOCAL_LU_NAME

A parameter specifying the local LU name.
LOCAL_LU_NAME_LENGTH

A parameter specifying the length of the local LU name.

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMDM gate, SET_PARAMETERS function
This function is used only by Parameter Manager Domain to inform Recovery Manager of initialization
parameters.

Input parameters
DELETE_LOG An optional parameter specifying whether an initial start has been requested in the System

Initialization Table, and so the contents of the system log should be deleted. It can have
any one of these values:
YES|NO

STARTUP An optional parameter used in the case where OFFSITE=YES has been specified as a
SIT override. It can only have the value EMERGENCY.

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:

Recovery Manager Domain (RM)

1082 CICS TS for z/OS: CICS Diagnosis Reference

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMKD gate, KEYPOINT_DATA function
This function writes Recovery Manager client data to the system log for keypointing purposes.

Input parameters
CLIENT_NAME A name of a Recovery Manager client.
DATA Address of an extended Iliffe vector. An extended Iliffe vector consists of a linked list of at

least one element. Each element of the linked list consists of a variable length array of
address length pairs. Each address and length field is four bytes long. The top bit of each
address is off except for the last which may be on.

If an address is binary zero, then this terminates the element and the linked list.

If an address has the top bit on, then it terminates the element and points to the next
element in the linked list.

An extended Iliffe vector simply represents the block of data formed by concatenating all
the blocks which are pointed to by address length pairs in the vector which have the
address top bit off. The order is from front to back of the linked list and from low to high
index within each array.

REMARK An optional parameter for the benefit of trace to describe the data being logged.
RAISE_INV_DATA_LENGTH

An optional parameter specifying whether the caller wishes to be informed of there being
to much data to be logged. It can have any one of these values:
YES|NO

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_DATA_LENGTH,
INVALID_CLIENT_NAME,
NO_DATA

RMRE gate, APPEND function
This function writes data to the system log. The data written is associated with the current unit of work of
the currently executing transaction if either FORWARD_DATA(YES) or BACKWARD_DATA(YES) is
specified.

Input parameters
CLIENT_NAME A name of a Recovery Manager client.
RESOURCE_ID A parameter specifying the name of the resource with which the data to be logged is

associated.
DATA Address of an extended Iliffe vector. An extended Iliffe vector consists of a linked list of at

least one element. Each element of the linked list consists of a variable length array of
address length pairs. Each address and length field is four bytes long. The top bit of each
address is off except for the last which may be on.

If an address is binary zero, then this terminates the element and the linked list.

If an address has the top bit on, then it terminates the element and points to the next
element in the linked list.

Recovery Manager Domain (RM)

Chapter 99. Recovery Manager Domain (RM) 1083

An extended Iliffe vector simply represents the block of data formed by concatenating all
the blocks which are pointed to by address length pairs in the vector which have the
address top bit off. The order is from front to back of the linked list and from low to high
index within each array.

FORCE_DATA A parameter specifying whether the data is forced out on to the non-volatile log or can
merely be written to the volatile log buffer. It can have any one of these values:
YES|NO

FORWARD_DATA A parameter specifying whether the data is used for forward recovery purposes. It can
have any one of these values:
YES|NO

BACKWARD_DATA
A parameter specifying whether the data is used for backward recovery purposes. It can
have any one of these values:
YES|NO

REMARK An optional parameter for the benefit of trace to describe the data being logged.
LOG_BUFFER_SUSPEND

An optional parameter specifying whether the caller can tolerate the task suspending to
wait for space in a log buffer. It can have any one of these values:
YES|NO

RAISE_INV_DATA_LENGTH
An optional parameter specifying whether the caller wishes to be informed of there being
to much data to be logged. It can have any one of these values:
YES|NO

Output parameters
FORCE_TOKEN A token that can be used to force the data on to the non-volatile log with the FORCE

function of the RMRE gate.
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_DATA_LENGTH,
INSUFFICIENT_BUFFER_SPACE,
INVALID_CLIENT_NAME,
INVALID_RESOURCE_ID,
NO_DATA

RMRE gate, FORCE function
This function forces data written previously to a log buffer to the non-volatile log.

Input parameters
FORCE_TOKEN A token returned on a previous call to the APPEND function of the RMRE gate.

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMRE gate, REMOVE function
This function removes data logged by a Recovery Manager client and associated with a particular local
resource from a unit of work.

Recovery Manager Domain (RM)

1084 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
UOW_ID The network UOWID under which the data was logged.
LOCAL_UOW_ID The local UOWID under which the data was logged.
CLIENT_NAME The name of the Recovery Manager client that logged the data.
LOCAL_ACCESS_ID

The name of the local resource with which the logged data was associated.

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UOW_NOT_SHUNTED,
UOW_NOT_BACKWARDS,
INVALID_CLIENT_NAME,
INVALID_LOCAL_ACCESS_ID

RMRE gate, AVAIL function
This function informs Recovery Manager that a local resource has become available. It is used when
either a backout failure or a commit failure has previously occurred and the resource (or reason for the
failure) has now cleared - or there is now reason to believe it may have cleared.

Input parameters
CLIENT_NAME The name of the Recovery Manager client that owns the local resource.
LOCAL_ACCESS_ID

The name of the local resource.

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION LOCAL_ACCESS_ID_UNKNOWN

RMRE gate, REQUEST_FORGET function
This function associates a Recovery Manager client and a named local resource with a requirement to
engage in forget processing.

Input parameters
CLIENT_NAME The name of the Recovery Manager client that owns the local resource.
LOCAL_ACCESS_ID

The name of the local resource.

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Recovery Manager Domain (RM)

Chapter 99. Recovery Manager Domain (RM) 1085

RESPONSE Possible REASON values

EXCEPTION INVALID_CLIENT_NAME,
INVALID_LOCAL_ACCESS_ID

RMSL gate, TAKE_ACTIVITY_KEYPOINT function
This function performs the activity associated with taking a keypoint.

Input parameters
None

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION None

RMWT gate, INQUIRE_WORK_TOKEN function
This function returns the value of the work token belonging to the named Recovery Manager client in a
particular unit of work object.

Input parameters
UOW_TOKEN An optional parameter specifying the token identifying a unit of work object. If not specified

the work token from the current unit of work of the currently executing transaction is
returned.

CLIENT_NAME The name of a Recovery Manager client.

Output parameters
WORK_TOKEN The value of the Recovery Manager clients work token in the specified unit of work object.
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

RMWT gate, START_WORK_TOKEN_BROWSE function
This function starts a browse of a all the non-zero work tokens in the system for a specific Recovery
Manager client.

Input parameters
CLIENT_NAME The name of a Recovery Manager client.

Output parameters
BROWSE_TOKEN A token to be used during the browse.
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Recovery Manager Domain (RM)

1086 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

RMWT gate, GET_NEXT_WORK_TOKEN function
This function returns the next non-zero work token for the Recovery Manager client specified on the
START_WORK_TOKEN_BROWSE. The token used to identify the unit of work object and local UOWID
associated with the work token are also optionally returned.

Input parameters
BROWSE_TOKEN A token identifying the browse.

Output parameters
WORK_TOKEN The value of the Recovery Manager clients work token.
UOW_TOKEN The token identifying the unit of work object.
LOCAL_UOW_ID The local UOWID.
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_BROWSE_TOKEN,
BROWSE_END

RMWT gate, END_WORK_TOKEN_BROWSE function
This function terminates a browse of work tokens.

Input parameters
BROWSE_TOKEN A token identifying the browse.

Output parameters
RESPONSE is the Recovery Manager domain’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_BROWSE_TOKEN

Recovery Manager domain’s generic gates
Table 86 summarizes the Recovery Manager domain’s generic gates. It shows the level-1 trace point IDs
of the modules providing the functions for the gate, the functions provided by the gate, and the generic
format for calls to the gate.

Table 86. Recovery Manager domain’s generic gate
Gate Trace Function Format

DMDM RM 0101
RM 0102

INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

Recovery Manager Domain (RM)

Chapter 99. Recovery Manager Domain (RM) 1087

You can find descriptions of these functions and their input and output parameters, in the section. dealing
with the corresponding generic format, in Chapter 78, “Domain manager domain (DM),” on page 663.

In Initialization processing, the Recovery Manager
v Obtains initialization parameters from Parameter Manager,
v Determines the type of start to be performed,
v Processes it's data from the Global Catalog,
v Processes recovery information from the System Log.

In Quiesce processing, the Recovery Manager takes the warm keypoint.

Recovery Manager domain’s call back formats
Table 87 describes the call back format owned by the Recovery Manager domain and shows the function
performed on the calls.

Table 87. Call back format owned by the Recovery Manager domain

Format Calling module Function

RMRO DFHRMUO
DFHRMUP
DFHRMUQ
DFHRMUW
DFHRMUO
DFHRMRO2
DFHRMRO3
DFHRMRO4
DFHRMROS
DFHRMROU

PERFORM_COMMIT

PERFORM_PREPARE
START_BACKOUT
DELIVER_BACKOUT_DATA
END_BACKOUT
PERFORM_SHUNT
PERFORM_UNSHUNT

RMDE DFHRMR1S
DFHRMR1D
DFHRMR1E
DFHRMR1D

START_DELIVERY
DELIVER_RECOVERY
END_DELIVERY
DELIVER_FORGET

RMKP DFHRMR1K TAKE_KEYPOINT

RMLK DFHRMLSP
DFHRMLSP
DFHRMLSD
DFHRMLSD
DFHRMLSO
DFHRMLSS
DFHRMLSU

PERFORM_PRELOGGING
PERFORM_PREPARE
REPLY_DO_COMMIT
SEND_DO_COMMIT
PERFORM_COMMIT
PERFORM_SHUNT
PERFORM_UNSHUNT

In the descriptions of the formats that follow, the “input” parameters are input not to Recovery Manager
domain, but to the domain being called by the Recovery Manager. Similarly, the “output” parameters are
output by the domain that was called by Recovery Manager domain, in response to the call.

RMRO gate, PERFORM_COMMIT function
This function requires the Recovery Manager client to perform phase 2 of syncpoint processing.

Input parameters
WORK_TOKEN The Recovery Manager client’s work token for the syncpointing unit of work.
CONTINUE A parameter specifying whether the current transaction will continue into a following unit of

work. It can have any one of these values:
YES|NO

UOW_STATUS The status of the current unit of work. It can have any one of these values:
FORWARD|BACKWARD

Recovery Manager Domain (RM)

1088 CICS TS for z/OS: CICS Diagnosis Reference

RESTART An optional parameter specifying whether a backing out transaction will be restarted. It can
have any one of these values:
YES|NO

Output parameters
FORGET_RECORD

A value specifying whether all obligations to this Recovery Manager client have been
discharged. It can have any one of these values:
YES|NO

RESPONSE is the Recovery Manager client’s response to the call. It can have any one of these
values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMRO gate, PERFORM_PREPARE function
This function requires the Recovery Manager client to perform phase 1 of syncpoint processing.

Input parameters
WORK_TOKEN The Recovery Manager client’s work token for the syncpointing unit of work.
CONTINUE A parameter specifying whether the current transaction will continue into a following unit of

work. It can have any one of these values:
YES|NO

Output parameters
VOTE A value specifying the Recovery Manager client’s vote on the outcome of the syncpointing

unit of work. It can have any one of these values:
YES|NO|NO_CONTINUE|READ_ONLY

RESPONSE is the Recovery Manager client’s response to the call. It can have any one of these
values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMRO gate, START_BACKOUT function
This function notifies the Recovery Manager client that backout processing is about to be performed for
the unit of work.

Input parameters
WORK_TOKEN The Recovery Manager client’s work token for the syncpointing unit of work.
CONTINUE A parameter specifying whether the current transaction will continue into a following unit of

work. It can have any one of these values:
YES|NO

REMOVE A parameter specifying whether or not the backout is due to an invocation of the REMOVE
function of the RMRE gate. It can have any one of these values:
YES|NO

Output parameters
RESPONSE is the Recovery Manager client’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMRO gate, DELIVER_BACKOUT_DATA function
This function requires the Recovery Manager client process backout data from the system log for the unit
of work.

Input parameters
WORK_TOKEN The Recovery Manager client’s work token for the syncpointing unit of work.

Recovery Manager Domain (RM)

Chapter 99. Recovery Manager Domain (RM) 1089

DATA A buffer containing the data previously logged with BACKWARD_DATA(YES) via the
APPEND function of the RMRE gate.

RESOURCE_ID An optional parameter specifying the name of the resource with which the logged data is
associated.

CONTINUE A parameter specifying whether the current transaction will continue into a following unit of
work. It can have any one of these values:
YES|NO

FORWARD_DATA A parameter specifying whether or not the data was originally logged as
FORWARD_DATA. It can have any one of these values:
YES|NO

REMOVE A parameter specifying whether or not the backout is due to an invocation of the REMOVE
function of the RMRE gate. It can have any one of these values:
YES|NO

CLUSTER_ID A buffer to receive a symbolic name identifying the resource.
LOCAL_ACCESS_ID

A buffer to receive the specific name of the resource

Output parameters
KEEP A value specifying whether the backout action failed, implying the record should be kept

and not forgotten. It can have any one of these values:
YES|NO

RESPONSE is the Recovery Manager client’s response to the call. It can have any one of these
values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMRO gate, END_BACKOUT function
This function notifies the Recovery Manager client that backout processing has completed for the unit of
work.

Input parameters
WORK_TOKEN The Recovery Manager client’s work token for the syncpointing unit of work.
CONTINUE A parameter specifying whether the current transaction will continue into a following unit of

work. It can have any one of these values:
YES|NO

REMOVE A parameter specifying whether or not the backout is due to an invocation of the REMOVE
function of the RMRE gate. It can have any one of these values:
YES|NO

Output parameters
RESPONSE is the Recovery Manager client’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMRO gate, PERFORM_SHUNT function
This function notifies the Recovery Manager client that the unit of work is about to shunt.

Input parameters
WORK_TOKEN The Recovery Manager client’s work token for the syncpointing unit of work.
CONTINUE A parameter specifying whether the current transaction will continue into a following unit of

work. It can have any one of these values:
YES|NO

Output parameters
NEXT_WORK_TOKEN

A value for the Recovery Manager client’s work token in the following unit of work.

Recovery Manager Domain (RM)

1090 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE is the Recovery Manager client’s response to the call. It can have any one of these
values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMRO gate, PERFORM_UNSHUNT function
This function notifies the Recovery Manager client that the unit of work is unshunting.

Input parameters
WORK_TOKEN The Recovery Manager client’s work token for the syncpointing unit of work.

Output parameters
RESPONSE is the Recovery Manager client’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMDE gate, START_DELIVERY function
This function notifies the Recovery Manager client that system recovery processing is about to be
performed.

Input parameters
None

Output parameters
RESPONSE is the Recovery Manager client’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMDE gate, DELIVER_RECOVERY function
This function requires the Recovery Manager client to process recovery data from the system log.

Input parameters
RESOURCE_ID An optional parameter specifying the name of the resource with which the logged data is

associated.
DATA A buffer containing the data previously logged with BACKWARD_DATA(YES) via the

APPEND function of the RMRE gate.
FORWARD_DATA A parameter specifying whether or not the data was originally logged as

FORWARD_DATA. It can have any one of these values:
YES|NO

BACKWARD_DATA
A parameter specifying whether or not the data was originally logged as
BACKWARD_DATA. It can have any one of these values:
YES|NO

KEYPOINT A parameter specifying whether or not the data was logged as part of a keypoint. It can
have any one of these values:
YES|NO

BACKED_OUT A parameter specifying whether or not the update the data is associated with backed out.
It can have any one of these values:
YES|NO

UOW A parameter specifying whether the data is related to a particular unit of work. It can have
any one of these values:
YES|NO

UOW_STATUS An optional parameter specifying the status of unit of work the data belongs to (if any). It
can have any one of these values:
FORWARD|BACKWARD|IN_DOUBT|IN_FLIGHT

Recovery Manager Domain (RM)

Chapter 99. Recovery Manager Domain (RM) 1091

LOCAL_UOW_ID An optional parameter specifying the local UOWID of the unit of work the data belongs to
(if any).

Output parameters
RESPONSE is the Recovery Manager client’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMDE gate, END_DELIVERY function
This function notifies the Recovery Manager client that all recovery information from the system log has
been processed.

Input parameters
None

Output parameters
RESPONSE is the Recovery Manager client’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMDE gate, DELIVER_FORGET function
This function notifies the Recovery Manager client that FORGET processing is required for some resource
in a unit of work.

Input parameters
LOCAL_ACCESS_ID

A parameter specifying the name of the resource associated with the forget processing.
UOW It can only have the value YES.
UOW_STATUS The status of the unit of work. It can have any one of these values:

FORWARD|BACKWARD|IN_DOUBT|IN_FLIGHT
LOCAL_UOW_ID The local UOWID of the unit of work.

Output parameters
RESPONSE is the Recovery Manager client’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMKP gate, TAKE_KEYPOINT function
This function requires the Recovery Manager client to perform keypoint processing.

Input parameters
SHUTDOWN A parameter specifying whether the keypoint is the warm keypoint taken during shutdown

or an activity keypoint. It can have any one of these values:
YES|NO

Output parameters
RESPONSE is the Recovery Manager client’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMLK gate, PERFORM_PRELOGGING function
This function notifies the Recovery Manager client that phase 1 of syncpoint processing is about to occur.

Input parameters
RMC_TOKEN The Recovery Manager client’s token associated with the Recovery Manager Link object.

Recovery Manager Domain (RM)

1092 CICS TS for z/OS: CICS Diagnosis Reference

INITIATOR A parameter specifying whether the remote system is the initiator of the syncpoint. It can
have any one of these values:
YES|NO

COORDINATOR(YES]NO)
A parameter specifying whether the remote system is the coordinator of the distributed unit
of work. It can have any one of these values:
YES|NO

Output parameters
RESPONSE is the Recovery Manager client’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMLK gate, PERFORM_PREPARE function
This function requires the Recovery Manager client perform phase 1 of syncpoint processing.

Input parameters
RMC_TOKEN The Recovery Manager client’s token associated with the Recovery Manager Link object.
CONTINUE A parameter specifying whether the current transaction will continue into a following unit of

work. It can have any one of these values:
YES|NO

SYSTEM A parameter specifying whether PERFORM_PREPARE call is part of a syncpoint or the
result of EXEC CICS ISSUE PREPARE. It can have any one of these values:
YES|NO

RECOVERY_STATUS
A parameter specifying whether recoverable work has taken place as part of the
distributed unit of work on the remote system. It can have any one of these values:
NECESSARY|UNNECESSARY|SYNC_LEVEL_1

Output parameters
VOTE A value specifying the Recovery Manager client’s vote on the outcome of the syncpointing

unit of work. It can have any one of these values:
YES|NO|NO_CONTINUE|READ_ONLY|HEURISTIC_MIXED

RESPONSE is the Recovery Manager client’s response to the call. It can have any one of these
values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMLK gate, REPLY_DO_COMMIT function
This function requires the Recovery Manager client communicate the result of this systems phase 1
syncpoint processing to the coordinating system, and obtain the outcome of the distributed unit of work.

Input parameters
RMC_TOKEN The Recovery Manager client’s token associated with the Recovery Manager Link object.
CONTINUE A parameter specifying whether the current transaction will continue into a following unit of

work. It can have any one of these values:
YES|NO

SINGLE_UPDATER
A parameter specifying whether the single updater optimization is being performed. It can
have any one of these values:
YES|NO

Output parameters
ACCESSIBLE A value specifying whether communication with the remote system failed. It can have any

one of these values:

Recovery Manager Domain (RM)

Chapter 99. Recovery Manager Domain (RM) 1093

YES|NO|SHUNTED
VOTE A value specifying the outcome of the syncpointing unit of work. It can have any one of

these values:
YES|NO|NO_CONTINUE|READ_ONLY|HEURISTIC_MIXED

RESPONSE is the Recovery Manager client’s response to the call. It can have any one of these
values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMLK gate, SEND_DO_COMMIT function
This function requires the Recovery Manager client communicate the result of this systems phase 1
syncpoint processing to the last agent system, and obtain the outcome of the distributed unit of work.

Input parameters
RMC_TOKEN The Recovery Manager client’s token associated with the Recovery Manager Link object.
CONTINUE A parameter specifying whether the current transaction will continue into a following unit of

work. It can have any one of these values:
YES|NO

SINGLE_UPDATER
A parameter specifying whether the single updater optimization is being performed. It can
have any one of these values:
YES|NO

Output parameters
ACCESSIBLE A value specifying whether communication with the remote system failed. It can have any

one of these values:
YES|NO|SHUNTED

VOTE A value specifying the outcome of the syncpointing unit of work. It can have any one of
these values:
YES|NO|NO_CONTINUE|READ_ONLY|HEURISTIC_MIXED

RESPONSE is the Recovery Manager client’s response to the call. It can have any one of these
values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMLK gate, PERFORM_COMMIT function
This function requires the Recovery Manager client perform phase 2 of syncpoint processing.

Input parameters
RMC_TOKEN The Recovery Manager client’s token associated with the Recovery Manager Link object.
CONTINUE A parameter specifying whether the current transaction will continue into a following unit of

work. It can have any one of these values:
YES|NO

SINGLE_UPDATER
A parameter specifying whether the single updater optimization is being performed. It can
have any one of these values:
YES|NO

UOW_STATUS The status of the syncpointing unit of work. It can have any one of these values:
FORWARD|BACKWARD

RESTART An optional parameter specifying whether a backing out transaction will be restarted. It can
have any one of these values:
YES|NO

COORDINATOR A parameter specifying whether the remote system is the coordinator of the distributed unit
of work. It can have any one of these values:
YES|NO

Recovery Manager Domain (RM)

1094 CICS TS for z/OS: CICS Diagnosis Reference

INITIATOR A parameter specifying whether the remote system is the initiator of the syncpoint. It can
have any one of these values:
YES|NO

PRESUMPTION A parameter specifying whether the remote system assumes the presume abort or
presume nothing protocols. It can have any one of these values:
ABORT|NOTHING

RECOVERY_STATUS
A parameter specifying whether recoverable work has taken place as part of the
distributed unit of work on the remote system. It can have any one of these values:
NECESSARY|UNNECESSARY|SYNC_LEVEL_1

Output parameters
ACCESSIBLE A parameter specifying that the communications link to the remote system has failed. It

can have any one of these values:
YES|NO|SHUNTED

FORGET A parameter specifying whether all obligations to the remote system with respect to
recovery have been discharged. It can have any one of these values:
YES|NO

PASS A parameter specifying whether an equivalent Recovery Manager Link object should be
created in the following unit of work. It can have any one of these values:
YES|NO

ABEND A parameter specifying whether an abend occurred during the PERFORM_COMMIT
call-back. It can have any one of these values:
YES|NO

NEXT_RECOVERY_STATUS
A parameter specifying the initial RECOVERY_STATUS of the Recovery Manager Link
object created in the following unit of work as a result of PASS(YES). It can have any one
of these values:
NECESSARY|UNNECESSARY|SYNC_LEVEL_1|DEFAULT

RESPONSE is the Recovery Manager client’s response to the call. It can have any one of these
values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RMLK gate, PERFORM_SHUNT function
This function notifies the Recovery Manager client that the unit of work is shunting.

Input parameters
RMC_TOKEN The Recovery Manager client’s token associated with the Recovery Manager Link object.
CONTINUE A parameter specifying whether the current transaction will continue into a following unit of

work. It can have any one of these values:
YES|NO

RECOVERY_STATUS
A parameter specifying whether recoverable work has taken place as part of the
distributed unit of work on the remote system. It can have any one of these values:
NECESSARY|UNNECESSARY|SYNC_LEVEL_1

Output parameters
FORGET A parameter specifying whether all obligations to the remote system with respect to

recovery have been discharged. It can have any one of these values:
YES|NO

RESPONSE is the Recovery Manager client’s response to the call. It can have any one of these
values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Recovery Manager Domain (RM)

Chapter 99. Recovery Manager Domain (RM) 1095

RMLK gate, PERFORM_UNSHUNT function
This function notifies the Recovery Manager client that the unit of work is unshunting.

Input parameters
LINK_TOKEN A token identifying the Recovery Manager Link object to be unshunted.
LOGNAME_BUFFER

A parameter specifying a buffer containing the logname of the remote system.
REMOTE_ACCESS_ID_BUFFER

A buffer containing the netname of the remote system, or the name of the External
Resource Manager.

LINK_ID_BUFFER
A buffer containing the termid of the session to the remote system, or the External
Resource Manager qualifier.

LINK_ID_SOURCE
An optional parameter specifying whether the local or remote system allocated the
session. It can have any one of these values:
LOCAL|REMOTE

Output parameters
RESPONSE is the Recovery Manager client’s response to the call. It can have any one of these

values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Modules

Module Function

DFHRMCD Handles the functions of the RMCD gate.

DFHRMCD1 Initialises the Client Directory Class.

DFHRMCD2 Quiesces the Client Directory Class.

DFHRMCI2 Sets the callback gate of a Recovery Manager client.

DFHRMCI3 Waits for a registered Recovery Manager client to set its callback gate.

DFHRMCI4 Waits for a registered Recovery Manager client to set its callback gate and calls it with a
given parameter list.

DFHRMDM Recovery Manager domain initialization and termination. Handles the DMDM and RMDM gate
functions.

DFHRMUTL Recovery Manager batch utility.

DFHRMDU0 Formats the Recovery Manager control blocks.

DFHRMDU2 Starts a browse of all Recovery Manager client work tokens during dump formatting.

DFHRMDU3 Gets the next Recovery Manager client work token during dump formatting.

DFHRMDU4 Ends a browse of all Recovery Manager client work tokens during dump formatting.

DFHRMLK1 Initialises the Recovery Manager Link Class.

DFHRMLK2 Handles the INITIATE_RECOVERY function of the RMLN gate.

DFHRMLK3 Inquires whether a Logname is in-use by any Recovery Manager Link.

DFHRMLK4 Handles the CLEAR_PENDING function for a particular Recovery Manager Link.

DFHRMLK5 Collects statistics from the Recovery Manager Link Class.

DFHRMLKQ Quiesces the Recovery Manager Link Class.

DFHRMLN Handles the functions of the RMLN gate.

DFHRMLSD Asks the coordinator Recovery Manager Link to decide the outcome of the unit of work.

Recovery Manager Domain (RM)

1096 CICS TS for z/OS: CICS Diagnosis Reference

Module Function

DFHRMLSF Determines the reason for a unit of work being in doubt.

DFHRMLSO Commits the Recovery Manager Links for a unit of work.

DFHRMLSP Prepares the Recovery Manager Links for a unit of work.

DFHRMLSS Shunts the Recovery Manager Links for a unit of work.

DFHRMLSU Unshunts the Recovery Manager Links for a unit of work.

DFHRML1D Reconstructs Recovery Manager Links from log records.

DFHRMNM Handles the functions of the RMNM gate.

DFHRMNM1 Initialises the Recovery Manager Lognames Class.

DFHRMNS1 Initialises the Recovery Manager Logname Set Class.

DFHRMNS2 Quiesces the Recovery Manager Logname Set Class.

DFHRMOFI Initialises a Recovery Manager Object Factory.

DFHRMRO Handles the functions of the RMRO gate.

DFHRMROO Handles FORGET processing for Recovery Manager Resource Owners.

DFHRMROS Shunts a Recovery Manager Resource Owner.

DFHRMROU Unshunts a Recovery Manager Resource Owner.

DFHRMROV Handles AVAIL processing for Recovery Manager Resource Owners.

DFHRMRO1 Initialises the Recovery Manager Resource Owner Class.

DFHRMRO2 Signals start_backout to a Recovery Manager Resource Owner.

DFHRMRO3 Delivers backout data to a Recovery Manager Resource Owner.

DFHRMRO4 Signals end_backout to a Recovery Manager Resource Owner.

DFHRMR1D Delivers recovery data to a Recovery Manager Resource Owner.

DFHRMR1E Signals end of recovery to a Recovery Manager Resource Owner.

DFHRMR1K Signals a keypoint to a Recovery Manager Resource Owner.

DFHRMR1S Signals start of recovery to a Recovery Manager Resource Owner.

DFHRMSL Handles the functions of the RMSL gate.

DFHRMSLF Forces the System Log.

DFHRMSLJ Checks for Chain independence during recovery.

DFHRMSLL Closes a Chain on the System Log.

DFHRMSLO Opens a Chain on the System Log.

DFHRMSLV Moves a Chain on the System Log.

DFHRMSLW Writes a record to a Chain on the System Log.

DFHRMSL1 Initialises the Recovery Manager System Log Class.

DFHRMSL2 Starts a browse of a Chain on the System Log.

DFHRMSL3 Reads a Record from a Chain on the System Log.

DFHRMSL4 Ends a browse of a Chain on the System Log.

DFHRMSL5 Performs restart processing for Recovery Manager System Log Class.

DFHRMSL6 Schedules keypoint activity.

DFHRMSL7 Performs keypoint processing.

DFHRMST Handles STST functions for Recovery Manager.

DFHRMST1 Initializes the Recovery Manager Statistics Class.

DFHRMTRI Formats Recovery Manager trace entries.

Recovery Manager Domain (RM)

Chapter 99. Recovery Manager Domain (RM) 1097

Module Function

DFHRMUC Creates a RMUW (unit of work) object.

DFHRMUO Commits a unit of work.

DFHRMUW Handles the functions of the RMUW gate.

DFHRMUWB Handles data during backout of a unit of work.

DFHRMUWE Handles activities when a unit of work is unshunted.

DFHRMUWF Forces log records for a unit of work.

DFHRMUWH Holds an RMUW object.

DFHRMUWJ Forces a unit of work to take a unilateral decision.

DFHRMUWL Handles notification that all remote remotes have finished processing.

DFHRMUWN Schedules a unit of work to be unshunted.

DFHRMUWP Handles notification that a local resource has become available.

DFHRMUWQ Handles commit or backout of an unshunted, in doubt unit of work.

DFHRMUWS Records the outcome of a unit of work during resynchronization.

DFHRMUWU Records the local LU name.

DFHRMUWV Handles notification that a local resource has become available.

DFHRMUWW Writes a record belonging to a unit of work to the System Log.

DFHRMUW0 Releases an RMUW object.

DFHRMUW1 Initializes the Recovery Manager Unit of Work Class.

DFHRMUW2 Collects the Recovery Manager Unit of Work Class Statistics.

DFHRMUW3 Handles the INQUIRE_UOW_TOKEN function.

DFHRMU1C Sets the Chain token for a unit of work.

DFHRMU1D Handles log records of units of work during recovery.

DFHRMU1E Signals that all records have been recovered from the System Log during recovery.

DFHRMU1F Handles an in doubt wait timeout.

DFHRMU1J Inquires whether all unit of work chains are disjoint.

DFHRMU1K Keypoints a unit of work.

DFHRMU1L Handle XMPP_FORCE_PURGE_INHIBIT_QUERY.

DFHRMU1N Handle XMPP_FORCE_PURGE_INHIBIT_QUERY.

DFHRMU1Q Handle the NOTIFY function of the TISR gate.

DFHRMU1R Performs restart processing for Recovery Manager Unit of Work Class.

DFHRMU1S Signals that recovery of log records is about to be performed.

DFHRMU1U Process a unit of work after recovery.

DFHRMU1V Requests time out interval notification for a unit of work.

DFHRMU1W Cancels wait time out notification for a unit of work.

DFHRMVP1 Initializes the Recovery Manager Variable Length Subpool Class.

DFHRMXNE Reattaches a transaction to process an unshunted unit of work.

DFHRMXN2 Schedules a keypoint.

DFHRMXN3 The keypoint program.

DFHRMXN4 Restarts the Recovery Manager Transaction Class.

DFHRMXN5 Increments Recovery Manager statistics for a Transaction.

Recovery Manager Domain (RM)

1098 CICS TS for z/OS: CICS Diagnosis Reference

Exits
None

Trace
The point IDs for the Recovery Manager domain are of the form RM xxxx the corresponding trace levels
are RM 1, RM 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Recovery Manager Domain (RM)

Chapter 99. Recovery Manager Domain (RM) 1099

1100 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 100. RRMS domain (RX)

The RRMS domain is responsible for managing interaction with OS/390 Recoverable Resource
Management Services (RRMS) and in particular, Resource Recovery Services (RRS) which is a
component of RRMS.

RRMS domain's specific gates
Table 88 summarizes the RX domain’s specific gates. It shows the level-1 trace point IDs of the modules
providing the functions for the gate, the functions provided by the gate, and whether or not the functions
are available through the exit programming interface (XPI).

Table 88. RX domain’s specific gate

Gate Trace Function XPI

RXDM RX 0101
RX 0102

INQUIRE_RRS SET_PARAMETERS NO
NO

RXUW RX 0401
RX 0402

PUT_CLIENT_REQUEST
GET_CLIENT_REQUEST
INQUIRE

NO
NO
NO

RXDM gate, INQUIRE_RRS function
The INQUIRE_RRS function of the RXDM gate is used to determine the status of CICS's interface with
OS/390 Recoverable Resource Management Services (RRMS).

Output Parameters
OPEN Returns YES or NO to indicate if the interface with RRMS is open.
[RESTART_STATE]

Returns a value to indicate the state of restart processing with Resource Recovery
Services (RRS). One of these values is returned:
NOT_STARTED

Restart processing has not started
STARTING

Restart is in progress
COLD

Restart processing is complete, and RRS was cold started.
WARM

Restart processing is complete, and RRS was warm started.
RESPONSE is the domain's response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

RXDM gate, SET_PARAMETERS function
The SET_PARAMETERS function of the RXDM gate is used to pass the values of relevant System
Initialization parameters to the domain.

Input Parameters
RRMS Specifies the value of the RRMS System Initialization Parameter. It can have one of these

values:
YES|NO

Output Parameters
RESPONSE is the domain's response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|
KERNERROR|PURGED

© Copyright IBM Corp. 1997, 2011 1101

RXUW gate, PUT_CLIENT_REQUEST function
The PUT_CLIENT_REQUEST function of the RXDM gate is used to associate a request from a client with
an RRS Unit of Recovery (UR).

Input parameters
TRANSACTION_ID

The transaction id associated with the request. This parmeter is used to correlate
succesive requests for the same transaction instance.

USERID The userid associated with the request. This parmeter is used to correlate succesive
requests for the same transaction instance.

CONNECTION The connection on which the client request was received. This parameter is used to
identify the source of the request in any messages that are issued.

CONTEXT_TOKEN
The token representing the RRMS context for which the request is issued.

URID The identifier of the RRS Unit of Recovery associated with the context.
PASS_TOKEN A token used to protect against unauthorised use of the context token and URID.
CLIENT_TOKEN A token representing the client of the UR.
CLIENT_TYPE Indicates the type of client of the transaction. The only permissible value is TERMINAL

Output parameters
NEW_UR Indicates whether a new UR has been created for this request. It can have one of these

values:
YES

indicates that a new UR has been created
NO_AND_READY

indicates that the request was associated with an existing UR and that task is ready to
receive the request.

NO_AND_NOT_READY
indicates that the request was associated with an existing UR but that task is not
ready to receive the request. This usually occurs when the original request has timed
out and another transactional EXCI request in the same RRS UR has been sent by
the EXCI job.

NO_AND_NOTASK
indicates that the request was associated with an existing UR but that task has not yet
expressed an interest in the UR. This can occur when the original request has been
held by MAXTASK or TRANCLASS (TCLASS) limits and has timed out, and another
Transactional EXCI request in the same UR has been sent by the EXCI job.

UR_TOKEN is the token by which the UR associated with the request is known by the RX domain.
TRANSACTION_NUMBER

The transaction number of the transaction associated with the request.
RESPONSE is the domain's response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|
KERNERROR|PURGED

RXUW gate, GET_CLIENT_REQUEST function
The GET_CLIENT_REQUEST function of the RXDM gate is used to suspend a transaction until the
PUT_CLIENT_REQUEST is issued for the same Unit of Recovery.

Input parameters
UR_TOKEN is the token by which the UR associated with the request is known by the RX domain.
[TIMEOUT] The time (in seconds) for which the transaction should be suspended. If this paramter is

omitted, the transaction will be suspended indefinitely.

Output paramters
CLIENT_TOKEN A token representing the client of the UR.
CLIENT_TYPE Indicates the type of client of the transaction. The only possible value is TERMINAL

1102 CICS TS for z/OS: CICS Diagnosis Reference

#
#
#
#
#
#
#
#
#
#
#
#
#

RESPONSE is the domain's response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are
SYNCPOINT

RRS has requested a syncpoint
BACKOUT

RRS has requested rollback
RACE

RRS has requested syncpoint or rollback and a client request has been received at
the same time

[REASON] is also returned when RESPONSE is PURGED. Possible values are
TASK_CANCELLED

The task has been purged
TIMED_OUT

The request has timed out

RXUW gate, INQUIRE function
The INQUIRE function requests attributes of a Unit of Recovery

Input parameters
UR_TOKEN is the token which identifies the Unit of Recovery

Output parameters
[URID] The identifier of the Unit of Recovery used by RRMS.
RESPONSE is the domain's response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|
KERNERROR|PURGED

Modules

Module Function

DFHRXDM RX domain management and global functions.

DFHRXUW RX domain unit-of-work related functions.

DFHRXSVC RX domain SVC code for RRMS authorized interface.

DFHRXXRG RX domain Registration Services exits.

DFHRXXRM RX domain Resource Manager exits.

DFHRXDUF RX domain dump formatting.

DFHRXTRI RX domain trace interpretation.

Exits
None

Trace
The point IDs for the RRMS domain are of the form RX xxxx the corresponding trace levels are RX 1,
RX 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Chapter 100. RRMS domain (RX) 1103

1104 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 101. RequestStream domain (RZ)

The RequestStream domain provides connectivity between elements of the Corbaserver and EJB
components in a sysplex to allow transfer of GIOP requests from a requester to a request processor, and
to permit appropriate workload balancing of the deployment of those requests.

It provides basic management functions for RequestStreams:

v Create RequestStream

v Destroy RequestStream

v Publicise RequestStream (see PublicId)

v Join requeststream

v Leave RequestStream

v Send/receive requests on RequestStreams

The RequestStream domain also manages Transports, which are single communication mechanisms that
transfer bytes from one task to another in the sysplex. They occur in different types, depending upon
which technology is appropriate for the route that needs to be taken. For example, there are “InStore”
transports, “MRO” transports and “Socket” transports.

RequestStream domain’s specific gates
Table 89 summarizes the RequestStream domain’s specific gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gates, and the functions provided by the gates. None of the
functions are available through the exit programming interface (XPI).

Table 89. RequestStream domain specific gates
Gate Trace Function XPI

RZSO RZ 0110
RZ 0111

CREATE
SEND_REQUEST
RECEIVE_REPLY
LEAVE
JOIN
IS_ID_LOCAL

NO
NO
NO
NO
NO
NO

RZTA RZ 0120
RZ 0121

RECEIVE_REQUEST
SEND_REPLY
GET_PUBLIC_ID
GET_SERVER_DATA
GET_CURRENT
GET_JOIN_DATA
TERMINATE

NO
NO
NO
NO
NO
NO
NO

RZRT RZ 0170
RZ 0171

SET_EXIT_PROGRAM NO

RZRJ RZ 0180
RZ 0181

PERFORM_JOIN NO

RZSO gate, CREATE function
Create a RequestStream and return a (local region) source RequestStream token for it.

The target process(or) is identified either by USERID and TRANID or by HOST_IP_ADDRESS and
PORT_NUMBER. Precisely one of these groups must be provided.

(The HOST_IP_ADDRESS is a character string as expected by the internal sockets domain interfaces.)

The SERVER_DATA may be retrieved at the target (RZTA) interface and is copied (and fixed) on this call.

© Copyright IBM Corp. 1997, 2011 1105

The response is (exception, service_not_available) if it is not possible to resolve the target, or to set up
a connection to the target. (Success does not guarantee that this exception will not occur on the SEND
function.)

The response is (exception, target_unknown) if the HOST_IP_ADDRESS character string is malformed
(as detected by the sockets domain interfaces).

The response is invalid when the parameters are badly formed, in particular if there is not the right
combination of target identification parameters.

Input parameters
[USERID] Userid under which the requests are to be processed.
[TRANID] TranId of the transaction which runs the target processor.
[HOST_IP_ADDRESS]

Identification of the target which is to process the requests.
[PORT_NUMBER]

Further identification of the target.
[SERVER_BLOCK]

Data associated with the RequestStream available at the target end by the server using
the RZTA interface.

[SSL_REQUIRED]
Values: YES, NO

Whether to use SSL on a socket transport. Otherwise ignored.
[CERTIFICATE_NAME]

Further information for an SSL socket transport. Otherwise ignored.

Output parameters
RS_TOKEN Token by which RequestStream is identified on all subsequent requests from this task on

this region.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVICE_NOT_AVAILABLE
TARGET_UNKNOWN

RZSO gate, SEND_REQUEST function
The source RequestStream token and the request (coded as a RUEI or as a contiguous data block) is
passed as input. Either a ruei or a block must be used, not both. If this is not so then an invalid response
is returned.

The request is deemed to be entire and may be presented to the target. Data may be transported across
the transport mechanism during this call. The request may be of zero length, this does not imply that
nothing is transported.

If the source RequestStream token does not exist (in the local region) the response (exception,
rs_token_unknown) is returned.

If a transport mechanism fails to respond, or is not functional, then the response (exception,
service_not_available) is returned. If it fails during transmission then (exception, transport_failure) is
returned. The distinction is that in the former case there is no transport mechanism and in the latter there
is still one (albeit inoperational).

RequestStream domain (RZ)

1106 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
RS_TOKEN Token returned on CREATE by which RequestStream is identified.
[REQUEST_RUEI]

Reusable-extended-Iliffe Vector which describes contiguous bytes to send as a request,
supplied in possibly discontiguous blocks. Exclusive with REQUST_BLOCK.

[REQUEST_BLOCK]
Request data to send described as a single block. Exclusive with REQUEST_RUEI.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION RS_TOKEN_UNKNOWN
TRANSPORT_FAILURE
SERVICE_NOT_AVAILABLE

RZSO gate, RECEIVE_REPLY function
A reply is returned (blocks until one is available).

The "reply_buffer" is set with as much data as will fit. The total number of bytes possible to be transferred
is returned in the buffer as well as as many bytes of the reply that will fit. The "reply_buffer" size +is not
set+ although the number of bytes to be set in the buffer is set as usual. The call can be re-issued before
any other calls to the RequestStreams source interface (using this token) to receive the remaining reply
bytes. Reply data is not redelivered.

The final call to "receive_reply" indicates that all of the data to be transferred fit within the buffer passed.
The final call to "receive_reply" will allow the transport to change direction, which means that further calls
to "receive_reply" will be an error and will give a response "(exception, transport_failure)". If a "notify"
callback has been called before this function is issued then "receive_reply" will be satisfied. The status of
the "notify" callback is not affected by this call ("notify" is disabled automatically when it is issued) except
that if there is data to deliver, and a "notify" callback is enabled with "listen", and has not been called, then
the "notify" callback will be called as part of the processing of this function. This can be avoided, if
necessary, by issuing a "cancel" beforehand.

If the RequestStream token is not known then the response is "(exception, rs_token_unknown)". If the
transport service is not open then the response "(exception, service_not_available)" is returned. If the
transport service is still open but gives some sort of error (for example, is not in the correct state to
receive a reply) then the response is "(exception, transport_failure)". If the request processor cannot, for
some reason, process the request, and returned an exception, or failed during execution, then the
response is "(exception, request_processor_failure)". Processor failure, when it can be ascertained, takes
precedence over transport failure.

Input parameters
RS_TOKEN Token returned on CREATE by which RequestStream is identified.
[REPLY_BUFFER]

Buffer in which reply bytes are assembled.
[MINIMUM_DATA_LENGTH]

Minimum amount of data to accept (multiple transfers may occur until this amount is
received).

Output parameters
[REPLY_DATA_LENGTH]

Total length of reply (even if not all received in one call).
RESPONSE is the domain’s response to the call. It can have any of these values:

RequestStream domain (RZ)

Chapter 101. RequestStream domain (RZ) 1107

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION RS_TOKEN_UNKNOWN
SERVICE_NOT_AVAILABLE
TRANSPORT_FAILURE
REQUEST_PROCESSOR_FAILURE

RZSO gate, LEAVE function
Remove this source from its RequestStream. The RequestStream is modified so that the "rs_token" (which
must denote a source end of the RequestStream) is no longer valid. (A token value may or may not be
reissued by "RZ" on another "create" or "join" request - however the caller must not rely on its value after
"leave".)

If the RequestStream "rs_token" is valid but does not denote a source end of a RequestStream known in
this region the response "(exception, rs_token_not_source)" is returned.

If the transport mechanism fails then the response "(exception, transport_failure)" is returned, +however
the RequestStream source token is still invalidated+.

If a "notify" is enabled for this RequestStream token (with a "listen" call) then the "notify" callback is called
with the "CLOSE" parameter prior to removing the RequestStream source.

Input parameters
RS_TOKEN The token returned on CREATE identifying the RequestStream for this region.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION RS_TOKEN_UNKNOWN
TRANSPORT_FAILURE
RS_TOKEN_NOT_SOURCE

RZSO gate, JOIN function
"Join" the RequestStream identified by the "public_id".

If the required transport mechanism is not available, or fails in use, the appropriate exception is returned
as for "create".

If the RequestStream, identified by the "public_id", does not exist (because the target end does not exist)
then this call does not detect this. Instead a new request processor will be created implicitly just as for
"create".

The "userid" (if supplied) must match that used on the "create", otherwise an error may occur later in
(Request Processor) processing. This is not detected at this call. The "tranid" and the "server_data" is
supplied in case the RequestStream is recreated on this call, otherwise they are ignored. They may be
omitted as in *create*.

If the "public_id" is not valid, or cannot be interpreted then the response "(exception, public_id_invalid)" will
be returned.

RequestStream domain (RZ)

1108 CICS TS for z/OS: CICS Diagnosis Reference

The "rs_token" for the local source RequestStream is returned as result.

Input parameters
PUBLIC_ID Public RequestStream Identifier -- valid for all participating regions in the logical server --

of the target RequestStream, which may be in a separate region.
[USERID] The security userid under which the target RequestStream should be executing.
[TRANID] The transaction identifier for the target RequestStream task.
[SERVER_BLOCK]

The server data that was specified. This parameter and Tranid are used only if a new
target RequestStream needs to be created owing to the omission of the target
RequestStream processor.

Output parameters
RS_TOKEN The local region token by which the source RequestStream (that connects to the target) is

known on all subsequent calls.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVICE_NOT_AVAILABLE
TRANSPORT_FAILURE
PUBLIC_ID_INVALID

RZSO gate, IS_ID_LOCAL function
Return "yes" if the "public_id" refers to the local region as the target region for the RequestStream.
Otherwise "no".

This is a non-blocking call that gives the response "(exception, public_id_invalid)" if the "public_id" is
detectably invalid (e.g. has the wrong format) and otherwise has no exceptions.

Input parameters
PUBLIC_ID Public RequestStream Identifier -- valid for all participating regions in the logical server --

of a target RequestStream, which may be in a separate region.

Output parameters
LOCAL Values:

YES|NO indicating whether the identified PUBLIC_ID is in the local region or not. There is
no guarantee that it exists in either case.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

REASON is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION PUBLIC_ID_INVALID

RZTA gate, RECEIVE_REQUEST function
Get the next request. This call blocks if there is no request ready, and returns when a request becomes
available or if the RequestStream is destroyed while waiting ("terminate"d). This call will be satisfied
without undue waiting if a "notify" callback has been invoked.

RequestStream domain (RZ)

Chapter 101. RequestStream domain (RZ) 1109

A request is delivered by means of a buffer. The total length of the buffer data available is placed in the
buffer content value, and as many bytes as will fit are copied to the buffer data area. If there are more
bytes than will fit in the buffer area then another receive request may be issued to receive more, and more
will be copied until all are delivered.

Should a request not be fully delivered on this interface then the underlying transport will not be reversed
(as in half-duplex communications) until another receive is issued. Only when all of the request is
delivered will the request be deemed to be delivered and the underlying transport be able to flip.

Should other interface calls be issued on this RequestStream (target) then data bytes of this request may
be lost. The request data are bound to the task which is issuing the receive request commands, and the
task cannot change in the middle of receiving a request.

The "correlation_id" (optionally received and identical on all the calls for one request) identifies the source
from which the request comes and is required when sending a reply on this RequestStream (with
"send_reply"). It is guaranteed distinct for each distinct source of this RequestStream. The reply to this
request (if there is one) should be accompanied by the same "correlation_id" (on "send_reply") otherwise
no guarantee can be made that the reply will return to the correct source.

Input parameters
REQUEST_BUFFER

Buffer into which the request is received.
[MINIMUM_DATA_LENGTH]

The minimum data length that should secure a response if not all the request is received.
Multiple transfers may occur if not enough data is available when the request is issued.

Output parameters
[CORRELATION_ID]

The identifier of the requester using this RequestStream. It is used when replying to this
request (using SEND_REPLY on this RequestStream) so as to identify the source from
which the request was issued. It is valid only while this RequestStream is available to this
transaction.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

REASON Returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION REQUESTSTREAM_NOT_CURRENT
SERVICE_NOT_AVAILABLE
TRANSPORT_FAILURE

INVALID INVALID_BUFFER

RZTA gate, SEND_REPLY function
Send a reply to a source identified by "correlation_id".

The "correlation_id" must be one returned by the "receive_request" function for the current
RequestStream, or else the exception "correlation_id_unknown" may be returned.

A reply may consist of the empty sequence of bytes in which case an empty reply is sent.

The usual exceptions are returned for transportation failures.

Input parameters
REPLY_BLOCK A block containing the complete contiguous reply.

RequestStream domain (RZ)

1110 CICS TS for z/OS: CICS Diagnosis Reference

CORRELATION_ID
The correlation id received on RECEIVE_REQUEST for the request to which this is the
reply.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION REQUESTSTREAM_NOT_CURRENT
CORRELATION_ID_UNKNOWN
SERVICE_NOT_AVAILABLE
TRANSPORT_FAILURE

RZTA gate, GET_SERVER_DATA function
Return the server data for the current RequestStream.

If there is a current RequestStream then server data are available. If there is no current RequestStream
the response "(exception, requeststream_not_current)" is returned. If the server data are known but empty
(zero-length sequence of bytes), then the outputs are set to indicate zero-length content.

The "server_block" is input so that it may be filled on return. If the data area is too small then the
response "(exception, server_block_too_small)" is returned +and no data is transferred+. In this case the
output "server_data_length" is set to indicate the total number of bytes in the server data.

Server data do not change while the RequestStream remains current. (A RequestStream may be recreated
as a result of a "join" if it has previously been destroyed or terminated. At this point the server data may
be different from the original values.)

Input parameters
SERVER_BLOCK Block in which the server data is placed on output.

Output parameters
SERVER_DATA_LENGTH

The number of bytes of the server data, even if not all were returned.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION REQUESTSTREAM_NOT_CURRENT
SERVER_BLOCK_TOO_SMALL

RZTA gate, GET_PUBLIC_ID function
The public identifier of the RequestStream for the current transaction is returned. (If the target of the
RequestStream is not internal to the plex there may not be a public identifier, for example in the case of
outbound RequestStreams. In this case the response is "(exception, public_id_unknown)". However, this
should never happen on this interface, since such a RequestStream will never be set in the "RZ"
transaction manager token for a transaction instance.)

The response "(exception, RequestStream_not_current)" is returned if the XM token is not valid in the local
region, or if no XM token for the RequestStream is set.

RequestStream domain (RZ)

Chapter 101. RequestStream domain (RZ) 1111

Output parameters
PUBLIC_ID Public RequestStream Identifier -- valid for all participating regions in the logical server --

of the current target RequestStream which must be attached to this task/transaction.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION REQUESTSTREAM_NOT_CURRENT
PUBLIC_ID_UNKNOWN

RZTA gate, GET_CURRENT function
The token for the RequestStream for the current transaction is returned. If the "XM" token is not set, or is
set to an invalid value, then the response "(exception, RequestStream_not_current)" is returned.

Output parameters
RS_TOKEN Token for current target RequestStream which must be attached to this task.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION REQUESTSTREAM_NOT_CURRENT

RZTA gate, GET_JOIN_DATA function
This is a utility function used by the join task which can thereby reduce the number of domain calls to RZ
when acting as intermediary to another task on remote join.

If there is no current RequestStream the response "(exception, requeststream_not_current)" is returned.

Output parameters
USERID The userid of the request processor to be joined.
TRANID The transid of the request processor to be joined.
PUBLIC_ID The public id of the target RequestStream on the processor to be joined.
REQUEST_DATA_LENGTH

The data length of the request to be passed to the processor to be joined.
RESPONSE Values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION REQUESTSTREAM_NOT_CURRENT

RZTA gate, TERMINATE function
Terminate the current (target) RequestStream either normally or abnormally. After this call the "XM" token
in the transaction instance is cleared and no longer denotes a RequestStream.

If no "rs_token" is specified and there is no current RequestStream ("XM" token) then the response
"(exception, RequestStream_not_current)" is returned.

If "rs_token" is specified it is taken as the token of the RequestStream to terminate.

RequestStream domain (RZ)

1112 CICS TS for z/OS: CICS Diagnosis Reference

If the RequestStream token is not in the +RegionRSTable+ (or else is not a +target+ RequestStream in
that table) then the response "(exception, rs_token_unknown)" is returned.

If the termination is "normal" then transports are tested for being in a state that accepts normal termination
and if they are they are closed and storage associated with the RequestStream is returned and the local
region token is invalidated. The +ResionRSTable+ has the "rs_token" removed, and the current
RequestStream is unset (the "XM" token is cleared but only if the "rs_token" was +not+ specified on the
call). If any transports are +not+ in a correct state then no action is taken and the response "(exception,
cannot_terminate_normally)" is returned.

If the termination is "abnormal" then the transports are closed in whatever state they are found, and the
RequestStream is terminated as for normal termination.

The usual exceptions concerning the transport mechanism (if used) are possible however +the
RequestStream was still terminated even if a transport exception is returned+.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION REQUESTSTREAM_NOT_CURRENT
RS_TOKEN_UNKNOWN
SERVICE_NOT_AVAILABLE
TRANSPORT_FAILURE
CANNOT_TERMINATE_NORMALLY

RZRT gate, SET_EXIT_PROGRAM function
The following defines the syntax of the SET_EXIT_PROGRAM function.

This is used to identify the name of the distributed routing user-replaceable program at domain initialization
time and when the program name is dynamically changed. During CICS initialization the local sysid is also
passed to "RZ" from Parameter Manager via this interface.

Input parameters
PROGRAM_NAME The name of the user-replaceable program for the Distributed Dynamic Routing program.
[LOCAL_SYSID]

The SYSID for the local CICS region to recognize it in routing user-replaceable program
responses.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

RZRJ gate, PERFORM_JOIN function
This function reduces the calls necessary from the join task (in remote join capability) to the RZ domain. It
initiates the procedures necessary to pass an attached RequestStream to a local processor.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

RequestStream domain (RZ)

Chapter 101. RequestStream domain (RZ) 1113

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION TRANSPORT_FAILURE
JOIN_NOT_POSSIBLE

RequestStream domain’s generic gates
Table 90 summarizes the generic gates which the RequestStream domain implements. It shows the level-1
trace point IDs of the modules providing the functions for the gates, the functions provided by the gates,
and the generic formats for calls to the gates.

Table 90. RequestStream domain’s generic gate calls
Gate Trace Function Format

RZDM RZ 0101
RZ 0102

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

For descriptions of these functions and their input and output parameters, refer to the Sections dealing
with the corresponding generic format:

Functions and parameters

Format DMDM—“Domain manager domain’s generic formats” on page 669

RequestStream domain formats
Table 91 shows the formats owned by the requeststream domain, and shows the functions performed. The
modules that issue requests in this format make them to RZ.

Table 91. Generic formats owned by the RequestStream domain.
Format Module called Calling modules Functions

LSTN DFHRZLN DFHIIDM
DFHIIRP
DFHIIRR

REGISTER
LISTEN
CANCEL
DEREGISTER

NOTI DFHIIRP
DFHIIRR

DFHRZLN NOTIFY

LSTN gate, REGISTER function
Register the notify interface with the server domain. The calback_gate is the gate number +in the caller’s
domain+. The caller’s domain is inferred by kernel linkage.

Returns the "notify_token" which identifies this registration.

Returns ("exception, registration_rejected") if the domain is not ready to allow registrations (initializing or
quiescing, for example), or if it cannot issue any more tokens (due to resource limitations, for example).
This response is given if the other functions of the domain are not compromised by this failure. Higher
severity responses may be given otherwise.

The caller must supply the parameters "call_domain()" and "call_gate()" on this function. See design file for
details.

RequestStream domain (RZ)

1114 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
CALLBACK_GATE

The gate number of the Domain Gate to be called for notification.

Output parameters
NOTIFY_TOKEN The token identifying this notification registration. Used on Listen, Cancel, and Notify

functions.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION REGISTRATION_REJECTED

LSTN gate, LISTEN function
Listen to the server object and notify the registered notify callback gate, identified by "notify_token", if the
object requires service. Pass the supplied "client_token" on the notify call.

Exceptions:
"notify_token_unknown"

the notify token cannot be found by this server domain;
"notify_token_in_use"

the notify token is being used and this server does not allow multiple uses;
"notify_token_misused"

the notify token belongs to another domain and this server does not allow multiple client
access to it;

"server_token_unknown"
the server does not recognize the server token;

"server_token_in_use"
the object denoted by the server token already has a listen outstanding, and this server
does not allow multiple listens.

The caller must supply the parameters "call_domain()" and "call_gate()" on this function. See design file for
details.

Input parameters
NOTIFY_TOKEN Token that identifies the registration for this listen request.
SERVER_TOKEN Token that identifies the server-owned object being listened to.
CLIENT_TOKEN Token for the client, returned on Notify to identify this listen request.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOTIFY_TOKEN_UNKNOWN
NOTIFY_TOKEN_IN_USE
NOTIFY_TOKEN_MISUSED
SERVER_TOKEN_UNKNOWN
SERVER_TOKEN_IN_USE

RequestStream domain (RZ)

Chapter 101. RequestStream domain (RZ) 1115

LSTN gate, CANCEL function
Cancel an outstanding listen request. Ensure that it is not driven upon return from this call. The
"notify_token" and the "server_token" are to be specified, and optionally the "client_token" that was
specified on the "listen" request can be retrieved.

Exceptions:
"notify_token_unknown"

the notify token cannot be found by this server domain;
"notify_token_misused"

the notify token belongs to another domain and this server does not allow multiple client
access to it;

"server_token_unknown"
the server does not recognize the server token;

"listen_not_outstanding"
the object denoted by the server token does not have a listen outstanding.

The caller must supply the parameters "call_domain()" and "call_gate()" on this function. See design file for
details.

Input parameters
NOTIFY_TOKEN Token that identifies the registration for this cancel request.
SERVER_TOKEN Token that identifies the server-owned object being listened to.

Output parameters
[CLIENT_TOKEN]

Client Token that was passed on LISTEN and would have been passed to NOTIFY.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOTIFY_TOKEN_UNKNOWN
NOTIFY_TOKEN_MISUSED
SERVER_TOKEN_UNKNOWN
LISTEN_NOT_OUTSTANDING

LSTN gate, DEREGISTER function
Call outstanding notifies on this registration (identified by "notify_token") with a normal termination
notification, and then remove the registration of the client (caller) domain from this server domain. The
"notify_token" is no longer valid.

Exceptions:
"notify_token_unknown"

the notify token cannot be found by this server domain;
"notify_token_misused"

the notify token belongs to another domain and this server does not allow multiple client
domain access to it;

The caller must supply the parameters "call_domain()" and "call_gate()" on this function. See design file for
details.

Input parameters
NOTIFY_TOKEN Token that identifies the registration token being deregistered.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

RequestStream domain (RZ)

1116 CICS TS for z/OS: CICS Diagnosis Reference

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOTIFY_TOKEN_UNKNOWN,
NOTIFY_TOKEN_MISUSED

NOTI gate, NOTIFY function
Call the client domain notify gate registered as "notify_token" passing the "server_token" and the
"client_token" given on the "listen" call, and with a status indicating the notification reason. The listen is
considered discharged after this call, and this notify will not be called again unless another "listen" request
is made.

If the callback returns an exception response then the registration should be deleted. This is equivalent to
a "deregister" call, including the call of this same notify callback gate for any other outstanding "listen"
requests.

If the callback returns a response more serious than exception ("disaster", "purged", etc.) then the
registration should be deleted but no other callbacks are to be made to outstanding "listen"s for this
registration. In particular a kernel error, or an "invalid" response, should not attempt to recall the same
gate again. This is deemed to be a severe internal error.

The caller (the server domain) will use "call_gate()" with the value of the callback gate supplied on
registration, and "call_domain()" with the client domain who registered. This must refer to a valid gate or a
kernel error will result.

Input parameters
NOTIFY_TOKEN Token that identifies the registration for this notify request.
SERVER_TOKEN Token that identifies the server-owned object being notified.
CLIENT_TOKEN Token supplied by the client on the listen request.
NOTIFY_STATUS

Values: NOTIFY, CLOSE, ABEND, TIMEOUT

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
REASON Returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOTIFY_CALLBACK_FAILED

Modules
The following modules implement the RZ domain:

Module Function

DFHRZDUF Dump Formatting program

DFHRZIX XM Attach Client for InStore transports

DFHRZJN Join task program

DFHRZLN Listen and Notify calls

DFHRZNR2 Init rsnr class (notification object)

DFHRZOFI Init object factory class

DFHRZRG2 Init rsrg registration class

RequestStream domain (RZ)

Chapter 101. RequestStream domain (RZ) 1117

Module Function

DFHRZRJ Perform join

DFHRZRM RM Resource Owner for RZ

DFHRZRS1 Init rz_reqstream class

DFHRZRT Set Routing Exit program name

DFHRZRT1 Init routing user-replaceable program class (rzrt)

DFHRZRT2 Invoke Routing user-replaceable program

DFHRZSO Source commands on RequestStreams (not Create/Join)

DFHRZSO1 Create and Join commands on Source RequestStreams

DFHRZTA Target commands on RequestStreams

DFHRZTCX XM Attach Client for MRO transports

DFHRZTRI Trace interpretation

DFHRZTR1 Init rztr class

DFHRZVP1 Init rzvp class

DFHRZXM XM Attach Client for RequestStreams

Exits
None

User-replaceable programs
Program DFHRZRT2 calls the dynamic routing program, which is described in CICS Customization Guide.

Trace
The point IDs for the RequestStream domain are of the form RZ xxxx; the corresponding trace levels are
RZ 1, RZ 2 and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

RequestStream domain (RZ)

1118 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 102. Scheduler Services domain (SH)

The scheduler services domain (also sometimes known simply as “scheduler services”) is used to harden
schedule requests between UOWs and to route schedule requests to a target region identified by the
distributed routing exit program. A schedule request may be viewed as a request to undertake a piece of
work, execute a named transaction. The domain is part of CICS business transaction services.

Scheduler services domain’s specific gate
Table 92 summarizes the scheduler services domain’s specific gate. It shows the level-1 trace point IDs of
the modules providing the functions for the gate, the functions provided by the gate, and whether or not
the functions are available through the exit programming interface (XPI).

Table 92. Scheduler services domain’s specific gate
Gate Trace Function XPI

SHPR SH 0151
SH 0152

ADD_PENDING_REQUEST
DELETE_PENDING_REQUEST
SET_BOUND_REQUEST

NO
NO
NO

SHRT SH 0141
SH 0142

SET_EXIT_PROGRAM
INQUIRE_EXIT_PROGRAM

NO
NO

SHRQ SH 0111
SH 0112

PERFORM_RESTART_DREDGE
PERFORM_REGULAR_DREDGE
PERFORM_SHUTDOWN

NO
NO
NO

SHRR SH 0161
SH 0162

ROUTE_REQUEST
RECEIVE_REQUEST
RETRY_REQUEST

NO
NO
NO

SHPR gate, ADD_PENDING_REQUEST function
The ADD_PENDING_REQUEST function of the SHPR gate is used to add a pending schedule request to
the scheduler services queue associated with this UOW. The pending schedule requests are hardened to
the scheduler services local request queue (LRQ) as part of syncpoint processing.

Input parameters
TRANID is an 4-character transaction id.
USERID is an 8-character userid.
TIME is a string of length 8, used when a request is delayed for a period time.
TOKEN is a string of length 4, used to identify the pending queue.
BALANCE indicates whether this schedule request is eligible for workload balancing. It can have

either of these values:
YES|NO

PTYPE is the 8-character process type.
PNAME is the 36-character process name.
ACTIVITY_ID is a block containing the activity id.
ACTIVITY_REQUEST_BLOCK

is a block containing the BAM domain activity request block.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

SHPR gate, DELETE_PENDING_REQUEST function
The DELETE_PENDING_REQUEST of the SHPR gate is used to delete a pending request queue.

Input parameters
TOKEN is a string of length 4, which identifies the queue to be deleted.

© Copyright IBM Corp. 1997, 2011 1119

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|PURGED|INVALID|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION REQUEST_NOT_FOUND

SHPR gate, SET_BOUND_REQUEST function
The SET_BOUND_REQUEST function of the SHPR gate is used to update the schedule request to
indicate that a process and/or activity has completed.

Input parameters
ACTIVITY_COMPLETE

indicates whether the activity associated with this UOW has completed. It can have either
of these values:
YES|NO

PROCESS_COMPLETE
indicates whether the process associated with this UOW has completed. It can have either
of these values:
YES|NO

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION REQUEST_NOT_FOUND

SHRT gate, SET_EXIT_PROGRAM function
The SET_EXIT_PROGRAM function of the SHRT gate is used to alter the distributed routing exit program,
initially named on the DSRTPGM system initialisation parameter. The sysid of the local system is passed
during CICS initialisation.

Input parameters
PROGRAM_NAME is the 8-character exit program name.
LOCAL_SYSID is the 4-character local sysid.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

SHRT gate, INQUIRE_EXIT_PROGRAM function
The INQUIRE_EXIT_PROGRAM function of the SHRT gate is used to return the name of the distributed
routing exit program, initially named on the DSRTPGM system initialisation parameter.

Scheduler Services domain (SH)

1120 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
PROGRAM_NAME is the 8-character exit program name.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND

SHRQ gate, PERFORM_RESTART_DREDGE function
The PERFORM_RESTART_DREDGE of the SHRQ gate is used to initiate the dredging of expired
schedule requests on the local request queue (LRQ) after a CICS system restart.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

SHRQ gate, PERFORM_REGULAR_DREDGE function
The PERFORM_REGULAR_DREDGE function of the SHRQ gate initiates the periodic dredging of expired
schedule requests on the local request queue (LRQ).

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

SHRQ gate, PERFORM_SHUTDOWN function
The PERFORM_SHUTDOWN function of the SHRQ gate is used to stop dredging of schedule requests on
the local request queue (LRQ), preventing any further CICS BTS work from being initiated.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

SHRR gate, ROUTE_REQUEST function
The ROUTE_REQUEST function of the SHRR gate is used to identify a target region to which a schedule
request should be routed.

Input parameters
REQUEST_BUFFER

is a buffer used to hold the schedule request which is to be routed.

Output parameters
SYSID is the 4-character sysid of the region to which the schedule request should be routed.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_REQUEST_FOUND
REQUEST_BUFFER_TOO_SMALL
NO_SYSTEM

Scheduler Services domain (SH)

Chapter 102. Scheduler Services domain (SH) 1121

SHRR gate, RECEIVE_REQUEST function
The RECIEVE_REQUEST function of the SHRR gate is used to receive a schedule request once it has
been routed to the target region.

Input parameters
REQUEST_BUFFER

is a buffer used to hold the received schedule request.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_REQUEST_RECEIVED

SHRR gate, RETRY_REQUEST function
The RETRY_REQUEST function of the SHRR gate is used obtain another target region if the initial
attempt at routing the schedule request fails.

Input parameters
REQUEST_BUFFER

is a buffer used to hold the schedule request which is to be routed.
ROUTE_ERROR indicates the reason why the routing of the schedule request failed. It can have a value of:

SYSID_NOT_FOUND|SYSID_OUT_OF_SERVICE|NO_SESSIONS|
ALLOCATE_REJECTED|QUEUE_PURGED|FUNC_NOT_SUPPORTED|
LEGERR|PGMIDERR|INVREQ|NOTAUTH|TERMERR

Output parameters
SYSID is the 4-character sysid of the region to which the schedule request should be routed.
LOCAL indicates whether we should retry the schedule request on the local region. It can take the

values:
YES|NO

ABEND_CODE is the 4-character abend code.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_REQUEST_FOUND
REQUEST_BUFFER_TOO_SMALL
NO_SYSTEM

Scheduler Services domain (SH)

1122 CICS TS for z/OS: CICS Diagnosis Reference

Scheduler service domain’s generic gates
Table 93 summarizes the scheduler services domain’s generic gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gates, the functions provided by the gates, and the generic
formats for calls to the gates.

Table 93. Scheduler services domain’s generic gates
Gate Trace Function Format

DMDM SH 0101
SH 0102

PRE_INITIALIZE
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

XMAC SH 0121
SH 0122

INIT_XM_CLIENT
BIND_XM_CLIENT
RELEASE_XM_CLIENT

XMAC

RMDE SH 0131
SH 0132

START_DELIVERY
DELIVER_RECOVERY
END_DELIVERY

RMDE

RMKP SH 0131
SH 0132

TAKE_KEYPOINT RMKP

RMRO SH 0131
SH 0132

PERFORM_PERPARE
PERFORM_COMMIT
PERFORM_SHUNT
PERFORM_UNSHUNT
START_BACKOUT
DELIVER_BACKOUT
END_BACKOUT

RMDE

TISR SH 0701
SH 0702

NOTIFY TISR

KETI SH 0701
SH 0702

NOTIFY_RESET KETI

For descriptions of these functions and their input and output parameters, refer to the Sections dealing
with the corresponding generic formats:

Functions and parameters

Format DMDM—“Domain manager domain’s generic formats” on page 669

Format XMAC—Chapter 113, “Transaction manager domain (XM),” on page 1275

Format RMDE—“Recovery Manager domain’s call back formats” on page 1088

Format RMRO—“Recovery Manager domain’s call back formats” on page 1088

Format RMKP—“Recovery Manager domain’s call back formats” on page 1088

Format TISR—“Timer domain’s specific gate” on page 1201

Format KETI—“Kernel domain’s specific gates” on page 831

When invoked for the DMDM INITIALIZE_DOMAIN function scheduler services obtains its anchor block
and initializes its various classes. This would include starting the scheduler services system task , CSHY
and obtaining the name of the distributed routing exit program named on the DSRTPGM system
initialization parameter.

When invoked by transaction manager via the XMAC generic gate, for INIT_XM_CLIENT SH domain
obtains a user token in order to set up the correct transaction environment. For BIND_XM_CLIENT SH
domain initializes recoverable resources, which includes setting the RM work token and logging a backout
request for this UOW. SH domain also determines the name of the program to be invoked on the initial
program link.

Scheduler Services domain (SH)

Chapter 102. Scheduler Services domain (SH) 1123

When invoked for the RMRO PERFORM_PREPARE function SH domain prepares to commit the pending
request for the UOW by adding them to the local request queue (LRQ). On receipt of the RMRO
PERFORM_COMMIT the schedule requests for this UOW are committed or destroyed, depending upon
whether we are committing forwards or backwards.

When invoked for the RMDE DELIVER_RECOVERY function SH domain recreates the pending request
queues and in the case of inflight UOWs attempts to retry the associated BTS activation.

Scheduler services makes use of the TISR functions, REQUEST_ NOTIFY_INTERVAL and NOTIFY to
deal with delayed schedule requests i.e. EXEC CICS DEFINE TIMER calls.

The KETI interface is used when the time is adjusted, causing the time at which delayed schedule
requests are to expire to be recalculated.

Modules

Module Function

DFHSHDM Handles the following requests:
PRE_INITIALIZE
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHSHRM Handles the following requests:
PERFORM_PREPARE
PERFORM_COMMIT
START_BACKOUT
DELIVER_BACKOUT
END_BACKOUT
PERFORM_SHUNT
PERFORM_UNSHUNT
TAKE_KEYPOINT
START_DELIVERY
DELIVER_RECOVERY
END_DELIVERY

DFHSHXM Handles the following requests:
INIT_XM_CLIENT
BIND_XM_CLIENT
RELEASE_XM_CLIENT

DFHSHTI Handles the following requests:
NOTIFY
NOTIFY_RESET

DFHSHRQ Handles the following requests:
PERFORM_RESTART_DREDGE
PERFORM_REGULAR_DREDGE
PERFORM_SHUTDOWN

DFHSHPR Handles the following requests:
ADD_PENDING_REQUEST
DELETE_PENDING_REQUEST
SET_BOUND_REQUEST

DFHSHRT Handles the following requests:
SET_EXIT_PROGRAM
INQUIRE_EXIT_PROGRAM

Scheduler Services domain (SH)

1124 CICS TS for z/OS: CICS Diagnosis Reference

Module Function

DFHSHRR Handles the following requests:
ROUTE_REQUEST
RECEIVE_REUEST
RETRY_REQUEST

DFHSHSY Implements the SH domain system task, CSHY.

DFHSHRRP The SH domain request receiving program, the back-end to SH domain DPL requests.

DFHSHRSP The SH domain request sending program, the front-end to SH domain DPL requests.

DFHSHDUF Formats the SH domain control blocks

DFHSHTRI Interprets SH domain trace entries

DFHSHRE1 Initializes the SH domain request class.

DFHSHOFI Initializes the SH domain object factory class.

DFHSHVP1 Initializes the SH domain variable length storage class.

DFHSHRT1 Initializes the SH domain request routing class.

DFHSHRT2 Invokes the distributed routing exit program, named on the DSRTPGM system initialization
parameter.

DFHSHRQ1 Initializes the SH domain request queue class.

Exits
No global user exit points are provided in this domain.

Trace
The point IDs for the scheduler services domain are of the form SH xxxx; the corresponding trace levels
are SH 1, SH 2, and Exc.

For more information about the trace points, see CICS Trace Entries. For more information about using
traces in problem determination, see CICS Problem Determination Guide.

Scheduler Services domain (SH)

Chapter 102. Scheduler Services domain (SH) 1125

1126 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 103. JVM domain (SJ)

The JVM domain provides services to:

v Invoke a Java program

v Inquire on and set the JVM pool

v Inquire on individual JVMs

v Inquire on JVM profiles and set the directory for them

v Manage the shared class cache

v Delete inactive JVMs

This Section covers:

v “SJ domain: Design overview”

v “SJ domain’s specific gates” on page 1128

v “SJ domain’s generic gates” on page 1137

v “SJ domain: Control blocks” on page 1138

v “SJ domain: Modules” on page 1140

v “SJ domain: Exits” on page 1140

v “SJ domain: Trace” on page 1140

SJ domain: Design overview
The process by which CICS creates JVMs and allocates them to requests is described in “About JVMs” in
Java Applications in CICS. This design overview looks at that process from a more technical viewpoint.

The actions that CICS takes when a Java program is invoked are as follows:

1. When the Java program is started, the Program Manager (PG) domain recognizes from the
PROGRAM resource definition that it is a Java program. It calls the APLJ gate's START_PROGRAM
function, which calls the SJIN gate's INVOKE_JAVA_PROGRAM function in the JVM domain.

2. The INVOKE_JAVA_PROGRAM function determines if the program is to run in CICS key or in user
key (from the EXEC_KEY input parameter), and calls the Dispatcher (DS) domain's CHANGE_MODE
function to move the task to either a J8 TCB (for CICS key) or a J9 TCB (for user key).

3. The Dispatcher domain looks for an existing J8 or J9 TCB, in the pool of JVM TCBs (the JVM pool),
that matches the execution key and the JVM profile (JVM_PROFILE_NAME input parameter)
requested by the program. “How CICS allocates JVMs to applications” in Java Applications in CICS
explains the selection mechanism that the Dispatcher domain uses to decide whether to assign the
request an existing, matching TCB, or to assign the request a new TCB, or to destroy and re-create an
existing, mismatching TCB, or to make the request wait. If the Dispatcher domain assigns the request
a new TCB or a re-created TCB, steps 4 and 5 of this process must now be performed. If the
Dispatcher domain assigns the program request an existing, matching TCB, steps 4 and 5 are omitted,
and the request re-enters the process at step 6.

4. If the Dispatcher domain assigns the request a new TCB or a re-created TCB, the JVM (SJ) domain
must build a JVM on the TCB. To do this, it obtains storage in the appropriate key from the Storage
Manager (SM) domain to keep its representation of the TCB. The address of this storage is used as a
token, and returned to the Dispatcher domain for it to track. The SJ domain calls Language
Environment using the Language Environment preinitialization module CEEPIPI (in the Application (AP)
domain). CEEPIPI starts a Language Environment enclave on the TCB. “The structure of a JVM” in
Java Applications in CICS explains more about the relationship between the Language Environment
enclave and the JVM.

5. The SJCS program (a CICS program written in C) runs in the Language Environment enclave. It
processes the JVM profile (JVM_PROFILE_NAME input parameter) and the associated JVM properties

© Copyright IBM Corp. 1997, 2011 1127

file for the request, to build a JVM with the appropriate attributes. “How CICS creates JVMs” in Java
Applications in CICS explains what attributes of a JVM can be specified in its JVM profile and JVM
properties file. If the JVM profile indicates that this JVM is to use the shared class cache (that is, it is a
worker JVM), a call is made to the shared class cache to obtain the token for the currently active
JVMset. “The shared class cache” in Java Applications in CICS explains more about the relationship
between worker JVMs and the shared class cache. The JNI function JNI_StartJavaVM is then used to
start the JVM, and this call returns two JVM tokens, which are stored in a SJ control block for later
use. The JVM has now been created, and the SJCS program returns to SJIN.

6. If the Dispatcher domain assigned the program request an existing, matching TCB, which has a JVM
that has already been created, the request re-enters the process at this point. The SJ domain now
calls another C subroutine to invoke the Wrapper class. The wrapper loads required DLLs (to support
CICS' native methods) and output redirection classes, then it calls our user class (the Java program),
as specified by the USER_CLASS input parameter.

7. When the user class (the Java program) returns, if the option REUSE=RESET was specified in the
JVM profile, creating a resettable JVM, a JVM reset is attempted. “How JVMs can be reset for reuse”
in Java Applications in CICS has more information about the conditions that must be met for a JVM to
be reset, and why sometimes they cannot be reset. If the JVM reset is attempted but fails, the JVM
and the Language Environment enclave are destroyed, but the TCB is not destroyed (unless the JVM
failed with an abend). If the JVM reset succeeds, the JVM and TCB are ready for reuse, and the
Dispatcher domain can assign them to another program request (as described in step 3). If the option
REUSE=YES was specified in the JVM profile, creating a continuous JVM, a JVM reset is not
attempted, and the JVM and TCB are ready for reuse as soon as the user class returns (unless
garbage collection is taking place in the JVM). If the option REUSE=NO was specified in the JVM
profile, creating a single-use JVM, the JVM is not made available for reuse, but instead the JVM and
the Language Environment enclave are destroyed as soon as the user class returns.

The other functions provided by the JVM domain are to do with the management of the JVM pool (the pool
of J8 and J9 TCBs that are used to build JVMs to service Java program requests), and of the shared class
cache. “How CICS manages JVMs in the JVM pool” in Java Applications in CICS explains the part CICS
plays in this process, and “Managing the shared class cache” and “Managing your JVMs” in Java
Applications in CICS describe the functions that system administrators can use.

SJ domain’s specific gates
Table 94 summarizes the SJ (JVM) domain’s specific gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gates, the functions provided by the gates, and whether or not the
functions are available through the exit programming interface (XPI).

Table 94. SJ domain’s specific gates
Gate Trace Function XPI

SJCC SJ 0601
SJ 0602

START_CLASSCACHE
STOP_CLASSCACHE
RELOAD_CLASSCACHE
NOTIFY_CLASSCACHE
ADD_TO_ACTIVE_JVMSET
REMOVE_FROM_JVMSET

NO
NO
NO
NO
NO
NO

SJIN SJ 0201
SJ 0202

INVOKE_JAVA_PROGRAM
(also has a generic function:

NOTIFY_DELETE_TCB)

NO

JVM domain (SJ)

1128 CICS TS for z/OS: CICS Diagnosis Reference

Table 94. SJ domain’s specific gates (continued)
Gate Trace Function XPI

SJIS SJ 0301
SJ 0302

INQUIRE_JVMPOOL
SET_JVMPOOL
INQUIRE_JVM
START_BROWSE_JVM
GET_NEXT_JVM
END_BROWSE_JVM
INQUIRE_CLASSCACHE
SET_CLASSCACHE
INQUIRE_JVMPROFILE
START_BROWSE_JVMPROFILE
GET_NEXT_JVMPROFILE
END_BROWSE_JVMPROFILE
SET_JVMPROFILEDIR
DELETE_INACTIVE_JVMS

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

SJCC gate, START_CLASSCACHE function
The START_CLASSCACHE function of the SJCC gate is used to start the shared class cache.

Input parameters
[CACHE_SIZE] The size of the shared class cache.
[JVM_PROFILE_NAME]

The name of the JVM profile to be used for the master JVM that initializes the shared
class cache.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_STOPPED

SJCC gate, STOP_CLASSCACHE function
The STOP_CLASSCACHE function of the SJCC gate is used to stop the shared class cache.

Input parameters
[AUTOSTART] The autostart status that is to be set for the shared class cache, to determine whether or

not it will restart automatically when a JVM requests its use. It can have the values:
ENABLED|DISABLED

[TERMINATE] The type of termination that is to be attempted for the shared class cache and the worker
JVMs that are dependent on it. It can have the values:
PHASEOUT|PURGE|FORCEPURGE

When PHASEOUT is specified, the supporting TCBs for the JVMs will be marked for
deletion at the termination of their current task (if any). If PURGE or FORCEPURGE is
specified, then premature termination of those tasks is initiated. When all worker JVMs
have been terminated, the shared class cache is also terminated.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ALREADY_STOPPED

JVM domain (SJ)

Chapter 103. JVM domain (SJ) 1129

SJCC gate, RELOAD_CLASSCACHE function
The RELOAD_CLASSCACHE function of the SJCC gate is used to reload the shared class cache—that is,
to start a new master JVM and phase out the existing JVMset.

Input parameters
[CACHE_SIZE] The size of the shared class cache.
[JVM_PROFILE_NAME]

The name of the JVM profile to be used for the master JVM that initializes the shared
class cache.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOT_STARTED

SJCC gate, NOTIFY_CLASSCACHE function
The NOTIFY_CLASSCACHE function of the SJCC gate is used to confirm the status of the master JVM
that initializes the shared class cache. If the master JVM starts successfully, the function quiesces the
previous shared class cache so that the new master JVM becomes the active shared class cache, and
can be used by new worker JVMs (so the new master and worker JVMs become the active JVMset). If the
master JVM fails to start, its autostart status is marked as disabled.

Input parameters
SJVMS_TOKEN The token of the SJVMS control block.
JVMSET_STATUS

The status of the JVMset, that is, whether the master JVM started successfully. It can
have the values:
READY|START_FAILED

[JVMSET_TOKEN]
The token of the master JVM.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION MASTER_JVM_ABENDED

INVALID INVALID_CC_STATE

SJCC gate, ADD_TO_ACTIVE_JVMSET function
The ADD_TO_ACTIVE_JVMSET function of the SJCC gate is used to add a new worker JVM to the active
JVMset, and also to automatically start the shared class cache if autostart is enabled and the shared class
cache is not started. The active JVMset consists of the master JVM for the active shared class cache, and
the worker JVMs that are dependent on it.

Input parameters
SJTCB_TOKEN The token of the TCB on which the worker JVM is to be built.

Output parameters
JVMSET_TOKEN The token of the master JVM.

JVM domain (SJ)

1130 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION AUTOSTART_DISABLED

DISASTER INVALID_CC_STATE

SJCC gate, REMOVE_FROM_JVMSET function
The REMOVE_FROM_JVMSET function of the SJCC gate is used to dissociate a worker JVM from the
master JVM as part of the termination process for the worker JVM.

Input parameters
SJTCB_TOKEN The token of the TCB on which the worker JVM has been built.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None.

SJIN gate, INVOKE_JAVA_PROGRAM function
The INVOKE_JAVA_PROGRAM function of the SJIN gate is used to invoke a user Java program.

Input parameters
PROGRAM The program name of the program to be invoked.
TRANSACTION The transaction id of the current transaction.
JVM_PROFILE_NAME

The name of the JVM profile to be used for the JVM for this program to run in.
USER_CLASS The name of the main class in the Java program that is to run in the JVM.
EXEC_KEY The EXEC key of the JVM. It can have the values:

CICS|USER

Output parameters
ABEND_CODE The CICS abend code returned if an abend occurs.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION AUTOSTART_DISABLED
JVM_START_FAILURE
JVM_POOL_DISABLED
JVM_PROFILE_MISSING
JVM_PROFILE_INVALID
SYSTEM_PROPERTIES_MISSING
SYSTEM_PROPERTIES_INVALID
TRANSACTION_ABENDED
USER_CLASS_NOT_FOUND

SJIS gate, INQUIRE_JVMPOOL function
The INQUIRE_JVMPOOL function of the SJIS gate is used to retrieve information about the JVM pool.

JVM domain (SJ)

Chapter 103. JVM domain (SJ) 1131

Input parameters
[JVM_LEVEL0_TRACE_BUFFER]

is a buffer which is used by the JVM domain to return the JVM trace options that have
been set for JVM Level 0 trace (up to 240 characters).

[JVM_LEVEL1_TRACE_BUFFER]
is a buffer which is used by the JVM domain to return the JVM trace options that have
been set for JVM Level 1 trace (up to 240 characters).

[JVM_LEVEL2_TRACE_BUFFER]
is a buffer which is used by the JVM domain to return the JVM trace options that have
been set for JVM Level 2 trace (up to 240 characters).

[JVM_USER_TRACE_BUFFER]
is a buffer which is used by the JVM domain to return the JVM trace options that have
been set for JVM User trace (up to 240 characters).

Output parameters
[TOTAL] The total number of JVMs in the JVM pool.
[STATUS] The status of the JVM pool (that is, whether it can service new requests or not). It can

have the values:
ENABLED|DISABLED

[PHASINGOUT] The number of JVMs that are curently being phased out (that is, they have been marked
for deletion, but are still being used by a task).

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION JVM_LEVEL0_TRACE_OVERFLOW
JVM_LEVEL1_TRACE_OVERFLOW
JVM_LEVEL2_TRACE_OVERFLOW
JVM_USER_TRACE_OVERFLOW

DISASTER INSUFFICIENT_STORAGE

SJIS gate, SET_JVMPOOL function
The SET_JVMPOOL function of the SJIS gate is used to set the status of the JVM pool, or to set JVM
trace options for the JVM pool, or to terminate the JVM pool.

Input parameters
[STATUS] The status of the JVM pool (that is, whether it can service new requests or not). It can

have the values:
ENABLED|DISABLED

[TERMINATE] The type of termination that is to be attempted for the JVMs in the JVM pool (both worker
JVMs and standalone JVMs), and for the shared class cache. It can have the values:
PHASEOUT|PURGE|FORCEPURGE

When PHASEOUT is specified, the supporting TCBs for the JVMs will be marked for
deletion at the termination of their current task (if any). If PURGE or FORCEPURGE is
specified, then premature termination of those tasks is initiated. If a shared class cache
has been started, it will be terminated when all the worker JVMs that were dependent on it
have been terminated.

[JVM_LEVEL0_TRACE_BLOCK]
is a buffer containing the JVM trace options (up to 240 characters) that are to be set for
JVM Level 0 trace.

[JVM_LEVEL1_TRACE_BLOCK]
is a buffer containing the JVM trace options (up to 240 characters) that are to be set for
JVM Level 1 trace.

JVM domain (SJ)

1132 CICS TS for z/OS: CICS Diagnosis Reference

[JVM_LEVEL2_TRACE_BLOCK]
is a buffer containing the JVM trace options (up to 240 characters) that are to be set for
JVM Level 2 trace.

[JVM_USER_TRACE_BLOCK]
is a buffer containing the JVM trace options (up to 240 characters) that are to be set for
JVM User trace.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None.

SJIS gate, INQUIRE_JVM function
The INQUIRE_JVM function of the SJIS gate is used to identify and retrieve information about the JVMs in
the JVM pool.

Input parameters
JVM_ID The JVM token, a value that identifies the JVM.

Output parameters
[AGE] The number of seconds since the JVM was initialized.
[ALLOC_AGE] The number of seconds for which the JVM has been allocated to its task (zero if the JVM

is not currently allocated to a task).
[CLASSCACHE] Indicates whether the JVM is a worker JVM dependent on the shared class cache. It can

have the values:
YES|NO

[EXEC_KEY] The EXEC key of the JVM. It can have the values:
CICS|USER

[PHASING_OUT]
Indicates whether the JVM is being phased out (that is, it has been marked for deletion,
but is still being used by a task). It can have the values:
YES|NO

[JVMPROFILE_NAME]
The name of the JVM profile used to initialize the JVM.

[TRANNUM] The task to which the JVM is allocated (zero if the JVM is not currently allocated to a
task).

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION JVM_NOT_FOUND

SJIS gate, START_BROWSE_JVM function
The START_BROWSE_JVM function of the SJIS gate starts a browse of the JVMs in the JVM pool.

Input parameters
None.

Output parameters
BROWSE_TOKEN A pointer to the JVM_ID (JVM token) of the first JVM that is to be browsed.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None.

JVM domain (SJ)

Chapter 103. JVM domain (SJ) 1133

SJIS gate, GET_NEXT_JVM function
The GET_NEXT_JVM function of the SJIS gate returns the next JVM in the JVM pool. The JVMs are
ordered by their JVM tokens.

Input parameters
BROWSE_TOKEN A pointer to the JVM_ID (JVM token) of the last JVM that was found by the browse.

Output parameters
[JVM_ID] The JVM token, a value that identifies the JVM.
[AGE] The number of seconds since the JVM was initialized.
[ALLOC_AGE] The number of seconds for which the JVM has been allocated to its task (zero if the JVM

is not currently allocated to a task).
[CLASSCACHE] Indicates whether the JVM is a worker JVM dependent on the shared class cache. It can

have the values:
YES|NO

[EXEC_KEY] The EXEC key of the JVM. It can have the values:
CICS|USER

[PHASING_OUT]
Indicates whether the JVM is being phased out (that is, it has been marked for deletion,
but is still being used by a task). It can have the values:
YES|NO

[JVMPROFILE_NAME]
The name of the JVM profile used to initialize the JVM.

[TRANNUM] The task to which the JVM is allocated (zero if the JVM is not currently allocated to a
task).

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION END_OF_BROWSE

SJIS gate, END_BROWSE_JVM function
The END_BROWSE_JVM function of the SJIS gate ends the browse of the JVMs in the JVM pool.

Input parameters
BROWSE_TOKEN A pointer to the JVM_ID (JVM token) of the last JVM that was found by the browse.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None.

SJIS gate, INQUIRE_CLASSCACHE function
The INQUIRE_CLASSCACHE function of the SJIS gate is used to retrieve information about the shared
class cache in the CICS region.

Input parameters
None.

Output parameters
[ACTIVE_JVMS]

The number of worker JVMs in the CICS region that are dependent on the current shared
class cache or on a shared class cache that is phasing out.

JVM domain (SJ)

1134 CICS TS for z/OS: CICS Diagnosis Reference

[AUTOSTART] The status of autostart for the shared class cache.
[JVMPROFILE_NAME]

The name of the JVM profile for the master JVM that initializes the shared class cache.
[PHASINGOUT_JVMS]

The number of worker JVMs that are dependent on an old shared class cache (or on the
current shared class cache, if its status is STOPPED) and are being phased out.

[PHASINGOUT_JVMSETS]
The number of old shared class caches that are still present in the region because they
are waiting for worker JVMs that are dependent on them to be phased out (including the
current shared class cache, if its status is STOPPED).

[CACHE_FREE] The amount of free space in the shared class cache.
[CACHE_SIZE] The size of the shared class cache, in bytes.
[START_DATE] The date on which the current shared class cache was started.
[START_TIME] The time at which the current shared class cache was started.
[START_ABSTIME]

The absolute date and time at which the current shared class cache was started
(ABSTIME format).

[STARTED_STATUS]
The status of the current shared class cache (STARTING, STARTED, RELOADING or
STOPPED).

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] None.

SJIS gate, SET_CLASSCACHE function
The SET_CLASSCACHE function of the SJIS gate is used to set the autostart status and size of the
shared class cache, and the JVM profile that is to be used for the master JVM.

Input parameters
[AUTOSTART] The autostart status that is to be set for the shared class cache, to determine whether or

not it will restart automatically when a JVM requests its use. It can have the values:
ENABLED|DISABLED

[INITIAL_START]
Specifies whether or not the shared class cache will start automatically at CICS
initialization. It can have the values:
YES|NO

[JVMPROFILE_NAME]
The name of the JVM profile for the master JVM that initializes the shared class cache.

[CACHE_SIZE] The size of the shared class cache, in bytes.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None.

SJIS gate, INQUIRE_JVMPROFILE function
The INQUIRE_JVMPROFILE function of the SJIS gate is used to retrieve information about JVM profiles
that have been used during the lifetime of this CICS region.

Input parameters
JVMPROFILE_NAME

The name of the JVM profile.
JVMPROFILE_PATH_NAME

is a buffer which is used by the JVM domain to return the full path name of the HFS file
for the JVM profile (up to 240 characters).

JVM domain (SJ)

Chapter 103. JVM domain (SJ) 1135

Output parameters
CLASSCACHE Indicates whether JVMs that use this JVM profile are worker JVMs dependent on the

shared class cache. It can have the values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION JVMPROFILE_NOT_FOUND

SJIS gate, START_BROWSE_JVMPROFILE function
The START_BROWSE_JVMPROFILE function of the SJIS gate starts a browse of the JVM profiles that
have been used during the lifetime of this CICS region.

Input parameters
None.

Output parameters
BROWSE_TOKEN A pointer to the first JVM profile to be browsed.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None.

SJIS gate, GET_NEXT_JVMPROFILE function
The GET_NEXT_JVMPROFILE function of the SJIS gate returns the next JVM profile. The JVM profiles
are returned in alphabetical order.

Input parameters
BROWSE_TOKEN A pointer to the last JVM profile that was found by the browse.
JVMPROFILE_PATH_NAME

is a buffer which is used by the JVM domain to return the full path name of the HFS file
for the JVM profile (up to 240 characters).

Output parameters
JVMPROFILE_NAME

The name of the JVM profile.
CLASSCACHE Indicates whether JVMs that use this JVM profile are worker JVMs dependent on the

shared class cache. It can have the values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION END_OF_BROWSE

DISASTER INVALID_BROWSE_TOKEN

SJIS gate, END_BROWSE_JVMPROFILE function
The END_BROWSE_JVMPROFILE function of the SJIS gate ends the browse of the JVM profiles.

Input parameters
BROWSE_TOKEN A pointer to the last JVM profile that was found by the browse.

JVM domain (SJ)

1136 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None.

SJIS gate, SET_JVMPROFILEDIR function
The SET_JVMPROFILEDIR function of the SJIS gate is used to set the HFS directory where CICS will
look for JVM profiles.

Input parameters
JVMPROFILE_DIR_BLOCK

is a buffer containing the full path of the HFS directory where CICS will look for JVM
profiles (up to 240 characters).

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None.

SJIS gate, DELETE_INACTIVE_JVMS function
The DELETE_INACTIVE_JVMS function of the SJIS gate is used when MVS storage is constrained, and
CICS needs to delete JVMs in the JVM pool that are not currently in use, together with their TCBs.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None.

SJ domain’s generic gates
Table 95 summarizes the SJ domain’s generic gates. It shows the level-1 trace point IDs of the modules
providing the functions for the gates, the functions provided by the gates, and the generic formats for calls
to the gates.

Table 95. SJ domain’s generic gates
Gate Trace Function Format

SJDM SJ 0000
SJ 0001

INITIALISE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

SJIN SJ 0201
SJ 0202

NOTIFY_DELETE_TCB DSAT

SJSM SJ 0901
SJ 0902

MVS_STORAGE_NOTIFY SMNT

SJST SJ 0401
SJ 0402

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

For descriptions of these functions and their input and output parameters, refer to the Sections dealing
with the corresponding generic formats:

JVM domain (SJ)

Chapter 103. JVM domain (SJ) 1137

Functions and parameters

Format DSAT—“Dispatcher domain’s generic formats” on page 717

Format DMDM—Chapter 78, “Domain manager domain (DM),” on page 663

Format SMNT—“Storage manager domain’s generic formats” on page 1159

Format STST—“System programming command flows” on page 264

The Domain Manager gates perform normal internal state initialization and termination functions.

SJ domain: Control blocks
The principal control blocks in the SJ (JVM) domain are as follows:

Control block Function

SJA JVM domain anchor block.

SJCCH Shared class cache control block. Controls all shared class caches (the current,
or active, shared class cache; any old shared class caches still in the system;
and any new shared class cache that is being loaded).

SJVMS Master JVM control block (or JVMSet control block). One for each master JVM,
the JVM that initializes and owns the shared class cache—so one for each
shared class cache. Also known as the JVMSet control block, because JVMSet
is another name for the group consisting of a master JVM and shared class
cache, and all the worker JVMs that share that class cache.

SJTCB JVM control block. Tracks the J8 or J9 TCB on which a JVM is built. One for
each worker or standalone JVM in the JVM pool (but not master JVMs, which
have an SJVMS control block).

Each control block ends with a history section that records the task number,
transid, and program name of each program invocation against that JVM. The
list wraps after 32 entries. It contains an index value, which appears immediately
before the History section of the control block, and which indicates the position
in the list of the last entry to be added.

“The shared class cache” in Java Applications in CICS explains more about the relationship between
worker JVMs and the shared class cache.

Figure 111 on page 1139 shows how the control blocks are related. In this example:

v There are six JVMs in the JVM pool, each controlled by an SJTCB control block.

v The first three JVMs are standalone JVMs (that is, they are not using a shared class cache).

v The remaining three JVMs are worker JVMs (that is, they are using a shared class cache). Two worker
JVMs are using the current, or active, shared class cache. One worker JVM (JVM 4) is dependent on
an old shared class cache, so when the task to which that JVM is allocated is complete, the JVM will be
terminated.

v There are three shared class caches in the CICS region, each controlled by an SJVMS control block.
Only one shared class cache is active, meaning that new worker JVMs, or worker JVMs starting new
tasks, can use it. CICS only supports one active shared class cache in each region. Two JVMs are
using (or dependent on) the active shared class cache.

v As well as the active shared class cache, there is an old shared class cache, which is still present in the
CICS region because one worker JVM (JVM 4) is dependent on it and has not yet completed its task.
As soon as JVM 4 has completed its task and been terminated, the old shared class cache will also be
terminated.

JVM domain (SJ)

1138 CICS TS for z/OS: CICS Diagnosis Reference

v The CICS region also contains a new shared class cache, which is being loaded as a result of a
PERFORM CLASSCACHE RELOAD command. (The new shared class cache has been made larger
than the active shared class cache.) Worker JVMs cannot yet use this shared class cache. When the
new shared class cache is ready, it becomes the active shared class cache, and the previous shared
class cache becomes an old shared class cache.

SJA

SJ Domain Anchor JVM 1

JVM 6

JVM 2

JVM 5

JVM 3

JVM 4

Old shared
class cache

Active shared
class cache

New shared
class cache

(being loaded)

Shared
class cache
control block

SJTCB

SJTCB

SJVMS

SJCCH

SJVMS SJVMS

64MB 32MB 24MB

SJTCB

SJTCB

SJTCB

SJTCB

Figure 111. Control blocks associated with the JVM pool and shared class cache

JVM domain (SJ)

Chapter 103. JVM domain (SJ) 1139

SJ domain: Modules

Module Function

DFHSJCS An internal module which handles the following C subroutines called by SJIN:

sjcsbld (sjcs_build_jvm)

sjcsdes (sjcs_destroy_jvm)

sjcscall (sjcs_call_java_method)

sjcsrset (sjcs_reset_jvm_output_streams)

DFHSJDM Handles requests associated with the DMDM generic gate.

DFHSJIN Handles requests associated with the SJIN gate.

DFHSJIS Handles requests associated with the SJIS gate.

DFHSJJL An internal module which handles C subroutines called by the launcher program for the master JVM that
initializes the shared class cache.

DFHSJJM Launcher program for the master JVM that initializes the shared class cache.

DFHSJPJP An internal module which handles the following C subroutine called by SJIN:

sjpjp_process_jvm_profile

DFHSJSM Handles MVS storage notifications and takes action to reduce the usage of MVS storage if necessary.

SJ domain: Exits
Two user-replaceable programs are used by the SJ domain:

v DFHJVMRO, which is loaded by the SJ domain and used to set user-specified options for an Language
Environment enclave in which a JVM is to be started.

v DFHJVMAT, which can be called during the startup of a single-use JVM (one with REUSE=NO or the
older option Xresettable=NO in its JVM profile), and allows users to interrogate and possibly alter
environment variables in order to modify the starting JVM's properties.

For further information about both these user-replaceable programs, see the CICS Customization Guide.

You can also customize JVMs by creating Java classes that intercept the stdout and stderr output from a
JVM, add time stamps and record headers, and redirect the output to the destination of your choice.
“Writing Java classes to redirect JVM stdout and stderr output” in the CICS Customization Guide tells you
how to do this.

SJ domain: Trace
The point IDs for the SJ domain are of the form SJxxxx. The SJ domain includes trace points relating to
the creation and management of JVMs, and to the process of setting JVM trace options. There is also a
level 2 trace point SJ 0224, which shows you a history of the programs that have used each JVM. The
corresponding trace levels are SJ 1, SJ 2 and Exc. For more information about the trace points for the SJ
domain, see the CICS Trace Entries.

The SJ domain also uses trace levels 29–32 to control JVM trace, that is, the trace produced by JVMs in
the CICS region, rather than by the SJ domain itself. These levels correspond to trace levels 0, 1, and 2,
plus a user-definable trace level, for JVMs. The JVM trace options are defined using a "free-form"
240–character field. "Controlling tracing for JVMs" in Java Applications in CICS tells you about the different
ways to activate JVM trace and change the JVM trace options, and there is information about the meaning
of the JVM trace options in the IBM Developer Kit and Runtime Environment, Java 2 Technology Edition,
Version 1.4.2 Diagnostics Guide, SC34-6358, which is available to download from www.ibm.com/
developerworks/java/jdk/diagnosis/.

JVM domain (SJ)

1140 CICS TS for z/OS: CICS Diagnosis Reference

When you set trace levels 29–32 for the SJ component and activate JVM trace, the JVM trace appears as
CICS trace point SJ 4D01. If the JVM trace facility fails, CICS issues the trace point SJ 4D00. Note that
JVM trace can produce a large amount of output, so you should normally activate JVM trace for special
transactions, rather than turning it on globally for all transactions.

For more information about using traces in problem determination, see the CICS Problem Determination
Guide.

JVM domain (SJ)

Chapter 103. JVM domain (SJ) 1141

1142 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 104. Storage manager domain (SM)

The storage manager domain (also sometimes known simply as “storage manager”) manages virtual
storage requests.

Storage manager domain’s specific gates
Table 96 summarizes the storage manager domain’s specific gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gates, the functions provided by the gates, and whether or not
the functions are available through the exit programming interface (XPI).

Table 96. Storage manager domain’s specific gates
Gate Trace Function XPI

SMAD SM 0201
SM 0202

ADD_SUBPOOL
DELETE_SUBPOOL
START_SUBPOOL_BROWSE
GET_NEXT_SUBPOOL
END_SUBPOOL_BROWSE
INQUIRE_SUBPOOL

NO
NO
NO
NO
NO
NO

SMAR SM 0F01
SM 0F02

ALLOCATE_TRANSACTION_STG
RELEASE_TRANSACTION_STG

NO
NO

SMCK SM 0901
SM 0902

CHECK_STORAGE
RECOVER_STORAGE

NO
NO

SMGF SM 0301
SM 0302

GETMAIN
FREEMAIN
INQUIRE_ELEMENT_LENGTH

NO
NO
NO

SMMC SM 0601
SM 0602
SM 0C01
SM 0C02
SM 0D01
SM 0D02
SM 0E01
SM 0E02
SM 0E01
SM 0E02

INITIALIZE

GETMAIN

FREEMAIN

FREEMAIN_ALL_TERMINAL

INQUIRE_ELEMENT_LENGTH

INQUIRE_TASK_STORAGE

NO

YES

YES

NO

YES

YES

SMSR SM 0401
SM 0402

INQUIRE_DSA_SIZE
SET_DSA_LIMIT
INQUIRE_DSA_LIMIT
SET_STORAGE_RECOVERY
SET_STORAGE_PROTECT
INQUIRE_STORAGE_PROTECT
INQUIRE_ACCESS_TOKEN
INQUIRE_ACCESS
SET_REENTRANT_PROGRAM
SET_TRANSACTION_ISOLATION
INQUIRE_REENTRANT_PROGRAM
INQUIRE_TRANSACTION_ISOLATION
SWITCH_SUBSPACE
INQUIRE_SHORT_ON_STORAGE
UPDATE_SUBSPACE_TCB_INFO

NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
YES
YES
NO

SMAD gate, ADD_SUBPOOL function
The ADD_SUBPOOL function of the SMAD gate is used to create a new subpool with given attributes.

Input parameters
USAGE indicates whether the subpool is for task or domain use. It can have either of these values:

TASK|DOMAIN
ELEMENT_TYPE indicates whether the subpool elements are of fixed or variable length. It can have either

of these values:
FIXED|VARIABLE

© Copyright IBM Corp. 1997, 2011 1143

[FIXED_LENGTH]
is the element length for a fixed-length subpool.

ELEMENT_CHAIN
indicates whether a chain of the addresses and lengths of the elements is to be kept. It
can have either of these values:
YES|NO

BOUNDARY is the boundary on which all elements within the subpool must be aligned. The boundary
must be a power of two in the range 8 through 4096.

LOCATION specifies whether all elements within the subpool must be allocated below the maximum
24-bit address, or may be allocated anywhere. It can have either of these values:
BELOW|ANY

SUBPOOL_NAME is the 8-character name by which the subpool is known.
INITIAL_FREE is the size of the initial free storage area for the subpool.
[STORAGE_CHECK]

indicates whether storage zone checking is to be enabled for this subpool. It can have
either of these values:
YES|NO

Output parameters
SUBPOOL_TOKEN

is the token identifying the newly created subpool.
[DSA_NAME] is the name of the CICS dynamic storage area (DSA) in which the subpool resides. It can

have any of these values:
CDSA|UDSA|SDSA|RDSA|ECDSA|EUDSA|ESDSA|ERDSA

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INSUFFICIENT_STORAGE

INVALID INVALID_FIXED_LENGTH
INVALID_BOUNDARY
INVALID_SUBPOOL_NAME
INVALID_INITIAL_FREE
DUPLICATE_SUBPOOL_NAME

SMAD gate, DELETE_SUBPOOL function
The DELETE_SUBPOOL function of the SMAD gate is used to delete a subpool.

Input parameters
SUBPOOL_TOKEN

is the token identifying the subpool to be deleted.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_SUBPOOL_TOKEN
NOT_SUBPOOL_OWNER
SUBPOOL_NOT_EMPTY

Storage manager domain (SM)

1144 CICS TS for z/OS: CICS Diagnosis Reference

SMAD gate, START_SUBPOOL_BROWSE function
The START_SUBPOOL_BROWSE function of the SMAD gate is used to start a browse of the storage
manager domain subpools.

Input parameters
None

Output parameters
BROWSE_TOKEN is the token identifying the browse operation.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION, with the following value:

RESPONSE REASON value

EXCEPTION INSUFFICIENT_STORAGE

SMAD gate, GET_NEXT_SUBPOOL function
The GET_NEXT_SUBPOOL function of the SMAD gate is used in a storage manager domain subpool
browse to get the next subpool.

Input parameters
BROWSE_TOKEN is the token identifying the browse operation.

Output parameters
SUBPOOL_NAME is name of the subpool returned by the browse.
[DSA_NAME] is the name of the DSA in which the subpool resides. It can have one of the following

values:
CDSA|UDSA|SDSA|RDSA|ECDSA|EUDSA|ESDSA|ERDSA

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION, with the following value:

RESPONSE REASON value

EXCEPTION BROWSE_END

SMAD gate, END_SUBPOOL_BROWSE function
The END_SUBPOOL_BROWSE function of the SMAD gate is used to end a browse of the storage
manager domain subpools.

Input parameters
BROWSE_TOKEN is the token identifying the browse operation.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] None.

SMAD gate, INQUIRE_SUBPOOL function
The INQUIRE_SUBPOOL function of the SMAD gate is used to inquire about a storage mangaer domain
subpool.

Input parameters
SUBPOOL_NAME is the name of a storage manager domain subpool.

Storage manager domain (SM)

Chapter 104. Storage manager domain (SM) 1145

Output parameters
[DSA_NAME] is the name of the DSA in which the subpool resides. It can have one of the following

values:
CDSA|UDSA|SDSA|RDSA|ECDSA|EUDSA|ESDSA|ERDSA

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION, with the following value:

RESPONSE REASON value

EXCEPTION SUBPOOL_NOT_FOUND

SMAR gate, ALLOCATE_TRANSACTION_STG function
The ALLOCATE_TRANSACTION_STG function of the SMAR gate is used at task initialization to add the
four task lifetime storage subpools.

Input parameters
TASK_DATALOC indicates the location of task data for the transaction, as specified by the TASKDATALOC

attribute on the associated TRANSACTION resource definition. It can have either of these
values:
BELOW|ANY

TASK_DATAKEY indicates the storage key for the task-lifetime storage and program-related storage (for all
programs that run under the transaction) for the transaction, as specified by the
TASKDATAKEY attribute on the associated TRANSACTION resource definition. It can
have either of these values:
CICS|USER

ISOLATE indicates whether CICS is to isolate the transaction’s user-key task-lifetime storage to
provide application-to-application protection, as specified by the ISOLATE attribute on the
associated TRANSACTION resource definition. It can have either of these values:
YES|NO

STORAGE_FREEZE
indicates whether or not task-lifetime storage freemains should be delayed until task
termination. It can have either of these values:
YES|NO

STORAGE_CLEAR
indicates whether task lifetime storage should be cleared to zeros when it is freemained. It
can have either of these values:
YES|NO

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
INSUFFICIENT_STORAGE

SMAR gate, RELEASE_TRANSACTION_STG function
The RELEASE_TRANSACTION_STG function of the SMAR gate is used at task termination to freemain
all remaining task-lifetime storage and deletes the four task lifetime subpools.

Input parameters
None.

Storage manager domain (SM)

1146 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
DEACTIVATE_FAILURE
INSUFFICIENT_STORAGE
STORAGE_VIOLATION

SMCK gate, CHECK_STORAGE function
The CHECK_STORAGE function of the SMCK gate is used to check the storage check zones of task
lifetime storage and the storage accounting areas (SAAs) of terminal storage for consistency.

Input parameters
TASK_STORAGE specifies whether the storage check zones of task lifetime storage are to be checked for

the current task or all tasks, or is not to be checked. It can have any one of these values:
NO|CURRENT_TASK|ALL_TASKS

TP_STORAGE specifies whether the SAAs of terminal storage are to be checked for the current terminal,
or is not to be checked. It can have either of these values:
NO|CURRENT_TERMINAL

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
STORAGE_VIOLATION

SMCK gate, RECOVER_STORAGE function
The RECOVER_STORAGE function of the SMCK gate is used to recover storage.

Input parameters
TASK_STORAGE specifies whether or not the task lifetime storage for the current task is to be recovered. It

can have any one of these values:
NO|CURRENT_TASK

TP_STORAGE specifies whether or not the SAAs of terminal storage for the current terminal are to be
recovered. It can have either of these values:
NO|CURRENT_TERMINAL

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION STORAGE_NOT_RECOVERED

Storage manager domain (SM)

Chapter 104. Storage manager domain (SM) 1147

SMGF gate, GETMAIN function
The GETMAIN function of the SMGF gate is used to allocate an element of storage from a subpool.

Input parameters

Note: Either STORAGE_CLASS or SUBPOOL_TOKEN, but not both, must be specified.
[REMARK] is an optional 8-character field that is used to identify the GETMAIN operation for

problem determination. This field is highlighted when the GETMAIN trace is
interpreted. Typically, it is the name of the control block whose storage is being
obtained.

[STORAGE_CLASS]
identifies the class of storage that is being allocated. It can have any one of these
values:
CICS|CICS24|USER|USER24|TASK|TASK24

[SUBPOOL_TOKEN]
is a token identifying the subpool within which the element is to be allocated.

[GET_LENGTH] is the length of the storage requested.
SUSPEND If there is insufficient storage to satisfy the request, SUSPEND(YES) causes the

caller to be suspended until the request can be satisfied, and SUSPEND(NO)
causes REASON to be set to INSUFFICIENT_STORAGE. It can have either of
these values:
YES|NO

[INITIAL_IMAGE]
is an optional byte value to which every byte in the new element is set.

Output parameters
ADDRESS is the address of the new element.
[ELEMENT_LENGTH]

is the actual length of the new element (when it has been rounded up to a multiple of the
boundary for the subpool).

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND
ACTIVATE_FAILURE
LOOP

EXCEPTION INSUFFICIENT_STORAGE

INVALID INVALID_SUBPOOL_TOKEN
INVALID_GET_LENGTH
INVALID_STORAGE_CLASS
NO_GET_LENGTH
NOT_SUBPOOL_OWNER
INVALID_INITIAL_IMAGE

SMGF gate, FREEMAIN function
The FREEMAIN function of the SMGF gate is used to release an element of storage within a subpool.

Input parameters

Note: Either STORAGE_CLASS or SUBPOOL_TOKEN, but not both, must be specified.
[REMARK] is an optional 8-character field that is used to identify the FREEMAIN operation for

Storage manager domain (SM)

1148 CICS TS for z/OS: CICS Diagnosis Reference

problem determination. This field is highlighted when the FREEMAIN trace is
interpreted. Typically, it is the name of the control block whose storage is being
released.

[STORAGE_CLASS]
identifies the class of storage that is being released. It can have any one of these
values:
CICS|CICS24|USER|USER24|TASK|TASK24

[SUBPOOL_TOKEN]
is a token identifying the subpool within which the element is to be released.

ADDRESS is the address of the element to be released.
[FREE_LENGTH]

is the length of the element to be released.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
DEACTIVATE_FAILURE
LOOP

INVALID INVALID_SUBPOOL_TOKEN
INVALID_ADDRESS
INVALID_FREE_LENGTH
INVALID_STORAGE_CLASS
NO_FREE_LENGTH
NOT_SUBPOOL_OWNER
SUBPOOL_EMPTY

SMGF gate, INQUIRE_ELEMENT_LENGTH function
The INQUIRE_ELEMENT_LENGTH function of the SMGF gate is used to return the length of an element
of storage whose address is known.

Input parameters

Note: Either STORAGE_CLASS or SUBPOOL_TOKEN, but not both, must be specified.
[STORAGE_CLASS]

identifies the class of storage that is being inquired upon. It can have any one of
these values:
CICS|CICS24|USER|USER24|TASK|TASK24

[SUBPOOL_TOKEN]
is a token identifying the subpool within which the element has been allocated.

ADDRESS is the address of the element whose length is being inquired on.

Output parameters
ELEMENT_LENGTH

is the length of the element.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

Storage manager domain (SM)

Chapter 104. Storage manager domain (SM) 1149

RESPONSE Possible REASON values

EXCEPTION ADDRESS_NOT_FOUND

INVALID INVALID_STORAGE_CLASS
INVALID_SUBPOOL_TOKEN

SMMC gate, INQUIRE_ELEMENT_LENGTH function
The INQUIRE_ELEMENT_LENGTH function of the SMMC gate is used to obtain the start address and
length of the storage element that contains the address that was specified on the input to the call. This
function only searches the current task’s task-lifetime storage for the required storage element.

Input parameters
ADDRESS is the address to be searched for.

Output parameters
ELEMENT_LENGTH

is the length of the storage element that contains the input address.
[ELEMENT_ADDRESS]

is the start address of the element that contains the input address.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION INVALID_ADDRESS

SMMC gate, INQUIRE_TASK_STORAGE function
The INQUIRE_TASK_STORAGE function of the SMMC gate is used to obtain details of all the
task-lifetime storage associated with the current task (if the input parameter TRANSACTION_NUMBER is
omitted from the call) or for the specified task.

Input parameters
[TRANSACTION_NUMBER]

indicates the transaction that you wish to obtain storage details about. If this parameter is
omitted, the current task is assumed.

ELEMENT_BUFFER
is a buffer in which the storage manager lists the start addresses of all the specified task’s
task-lifetime storage.

LENGTH_BUFFER
is a buffer in which the storage manager lists the lengths of all the specified task’s
task-lifetime storage.

Output parameters
NUMBER_OF_ELEMENTS

is the number of elements in each buffer.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

Storage manager domain (SM)

1150 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION INSUFFICIENT_STORAGE
NO_TRANSACTION_ENVIRONMENT

SMMC gate, INITIALIZE function
The INITIALIZE function of the SMMC gate is used to perform macro-compatibility interface initialization.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

SMMC gate, GETMAIN function
The GETMAIN function of the SMMC gate is used to allocate an element of storage.

Input parameters
[REMARK] is an optional 8-character field that is used to identify the GETMAIN operation for problem

determination. This field is highlighted when the GETMAIN trace is interpreted. Typically, it
is the name of the control block whose storage is being obtained.

GET_LENGTH is the length of storage requested. For storage classes that have 8-byte SAAs, the
requested length excludes the lengths of the initial and duplicate SAAs. However, for
storage classes that have only a 4-byte SAA, the requested length must include the length
of the SAA.

SUSPEND specifies whether the request is to be suspended if there is insufficient storage to satisfy
the request. It can have either of these values:
YES|NO

[INITIAL_IMAGE]
specifies a byte value to which the user’s part of the allocated storage element is to be
set.

[TCTTE_ADDRESS]
is an optional field that must be specified for GETMAIN requests for the TERMINAL
storage class.

STORAGE_CLASS
is the class of storage to be allocated. It can have any one of these values:
TERMINAL24|CICS|SHARED_CICS|LINE|TERMINAL|
TASK|TASK24|CICS24_SAA|SHARED_CICS24_SAA|
CICS24|TRANSDATA|TEMPSTG|USER|USER24|
SHARED_CICS24|CONTROL|TACLE|SHARED_USER24|
SHARED_USER

[CALLER] can have any one of these values:
EXEC|MACRO|SYSTEM

Output parameters
ADDRESS is the address of the allocated storage.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Storage manager domain (SM)

Chapter 104. Storage manager domain (SM) 1151

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND
ACTIVATE_FAILURE
LOOP

EXCEPTION INSUFFICIENT_STORAGE
INVALID_GET_LENGTH

INVALID NO_TCTTE_ADDRESS
INVALID_STORAGE_CLASS

SMMC gate, FREEMAIN function
The FREEMAIN function of the SMMC gate is used to release an element of storage.

Input parameters
[REMARK] is an optional 8-character field that is used to identify the FREEMAIN operation for

problem determination. This field is highlighted when the FREEMAIN trace is interpreted.
Typically, it is the name of the control block whose storage is being released.

ADDRESS is the address of the storage to be freed.
[TCTTE_ADDRESS]

is an optional field that must be specified if the FREEMAIN is for storage of a LINE or
TERMINAL class.

[STORAGE_CLASS]
is an optional field specifying the class of storage that is being freed. It can have any one
of these values:
TERMINAL24|CICS|SHARED_CICS|LINE|TERMINAL|
TASK|TASK24|CICS24_SAA|SHARED_CICS24_SAA|
CICS24|TRANSDATA|TEMPSTG|USER|USER24|
SHARED_CICS24|CONTROL|TACLE|SHARED_USER24|
SHARED_USER

[CALLER] can have any one of these values:
EXEC|MACRO|SYSTEM

[EXEC_KEY] is the execution key of the program issuing the EXEC FREEMAIN request. It can have
either of these values:
CICS|USER

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
DEACTIVATE_FAILURE
LOOP

EXCEPTION INVALID_EXEC_KEY

INVALID INVALID_ADDRESS
NO_TCTTE_ADDRESS

SMMC gate, FREEMAIN_ALL_TERMINAL function
The FREEMAIN_ALL_TERMINAL function of the SMMC gate is used to release all terminal storage.

Storage manager domain (SM)

1152 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
TCTTE_ADDRESS

is the address of the TCTTE whose storage is to be freed.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

SMSR gate, INQUIRE_ISOLATION_TOKEN function
The INQUIRE_ISOLATION_TOKEN function of the SMSR gate is used to return an isolation token which
can be used on SWITCH_SUBSPACE calls.

Input parameters
None.

Output parameters
ISOLATION_TOKEN

an isolation token which can be used on SWITCH_SUBSPACE calls.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

SMSR gate, INQUIRE_REENTRANT_PROGRAM function
The INQUIRE_REENTRANT_PROGRAM function of the SMSR gate is used to return whether the
read-only DSAs, RDSA and ERDSA, have been allocated from read-only key-0 protected storage or
CICS-key storage, as set by the RENTPGM system initialization parameter.

Input parameters
None.

Output parameters
RENTPGM indicates whether CICS has obtained the storage for the read-only DSAs from key-0

non-fetch protected storage (PROTECT) or from CICS-key storage (NOPROTECT). It can
have either of these values:
PROTECT|NOPROTECT

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|DISASTER|INVALID|KERNERROR

[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

Storage manager domain (SM)

Chapter 104. Storage manager domain (SM) 1153

SMSR gate, INQUIRE_SHORT_ON_STORAGE function
The INQUIRE_SHORT_ON_STORAGE function of the SMSR gate is used to return whether or not CICS
is currently short-on-storage.

Input parameters
None.

Output parameters
SOS_BELOW_THE_LINE

indicates whether or not CICS is short-on-storage below the 16MB line. It can have either
of these values:
YES|NO

SOS_ABOVE_THE_LINE
indicates whether or not CICS is short-on-storage above the 16MB line. It can have either
of these values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|DISASTER|INVALID|KERNERROR

[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

SMSR gate, INQUIRE_DSA_SIZE function
The INQUIRE_DSA_SIZE function of the SMSR gate is used to return the size of the CICS DSAs.

Input parameters
DSA_NAME is the name of the DSA whose size is being inquired on. It can have any of these values:

CDSA|UDSA|SDSA|RDSA|ECDSA|EUDSA|ESDSA|ERDSA

Output parameters
DSA_SIZE is the size of the DSA.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

SMSR gate, SET_STORAGE_RECOVERY function
The SET_STORAGE_RECOVERY function of the SMSR gate is used to set the storage recovery option.

Input parameters
RECOVERY is the value to which the storage recovery option is to be set. It can have either of these

values:
YES|NO

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

Storage manager domain (SM)

1154 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

SMSR gate, SET_TRANSACTION_ISOLATION function
The SET_TRANSACTION_ISOLATION function of the SMSR gate is used to set whether or not you want
transaction isolation in your CICS region. This value is initially set by the TRANISO system initialization
parameter.

Input parameters
TRANSACTION_ISOLATION

indicates whether or not transaction isolation is active in your CICS region. It can have
either of these values:
ACTIVE|INACTIVE

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

SMSR gate, SWITCH_SUBSPACE function
The SWITCH_SUBSPACE function of the SMSR gate is used to change a task’s subspace.

Input parameters
SPACE indicates the type of subspace you wish this task to execute in. It can have any of these

the values:
BASESPACE|SUBSPACE|RESET_SPACE

[ISOLATION_TOKEN]
an isolation token which can be returned from an INQUIRE_ISOLATION_TOKEN call.

[TRANSACTION_TOKEN]
a transaction manager token (which can be returned from an XMIQ
INQUIRE_TRANSACTION_TOKEN call) that represents the task whose subspace you
wish to change.

[WORK_REGISTER]
a work register.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

SMSR gate, INQUIRE_DSA_LIMIT function
The INQUIRE_DSA_LIMIT function of the SMSR gate is used to return the DSA storage limits above
(EDSA) and below (DSA) the 16MB line. These limits are the maximum amounts of storage that CICS can
use for all the DSAs above and below the 16MB line.

Storage manager domain (SM)

Chapter 104. Storage manager domain (SM) 1155

Input parameters
None.

Output parameters
[DSA_LIMIT] indicates the DSA storage limit.
[EDSA_LIMIT] indicates the EDSA storage limit.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

SMSR gate, SET_DSA_LIMIT function
The SET_DSA_LIMIT function of the SMSR gate is used to set the DSA storage limits above (EDSA) and
below (DSA) the 16MB line. These limits are the maximum amounts of storage that CICS can use for all
the DSAs above and below the 16MB line.

Input parameters
[DSA_LIMIT] indicates the DSA storage limit required.
[EDSA_LIMIT] indicates the EDSA storage limit required.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION INSUFFICIENT_STORAGE
INVALID_DSA_LIMIT

SMSR gate, SET_STORAGE_PROTECT function
The SET_STORAGE_PROTECT function of the SMSR gate is used to set the storage protection option.

Input parameters
STORAGE_PROTECT

can have either of these values:
YES|NO

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION NO_HARDWARE_SUPPORT

Storage manager domain (SM)

1156 CICS TS for z/OS: CICS Diagnosis Reference

SMSR gate, INQUIRE_STORAGE_PROTECT function
The INQUIRE_STORAGE_PROTECT function of the SMSR gate is used to return the current value of the
storage protection option.

Input parameters
None.

Output parameters
STORAGE_PROTECT

is the current storage protection mode. It can have either of these values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|DISASTER|INVALID|KERNERROR

[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

SMSR gate, INQUIRE_ACCESS function
The INQUIRE_ACCESS function of the SMSR gate is used to return the access key of an element of
storage.

Input parameters
[ACCESS_TOKEN]

is the access token for the element of storage (returned by the
INQUIRE_ACCESS_TOKEN function).

ELEMENT_ADDRESS
is the start address of the storage element.

ELEMENT_LENGTH
is the length of the storage element.

Output parameters
ACCESS is the type of access for the storage element. It can have any of these values:

CICS|USER|READ_ONLY
[DSA_NAME] is the name of the DSA in which the storage element resides.
[DSA_EXTENT_START]

indicates the start address of the DSA extent that contains the input address.
[DSA_EXTENT_END]

indicates the end address of the DSA extent that contains the input address.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION INVALID_ELEMENT

SMSR gate, SET_REENTRANT_PROGRAM function
The SET_REENTRANT_PROGRAM function of the SMSR gate is used to set the reentrant program
option for the RDSA and the ERDSA.

Storage manager domain (SM)

Chapter 104. Storage manager domain (SM) 1157

Input parameters
REENTRANT_PROGRAM

is the reentrant program option for the RDSA and the ERDSA. It can have either of these
values:
PROTECT|NOPROTECT

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

SMSR gate, INQUIRE_ACCESS_TOKEN function
The INQUIRE_ACCESS_TOKEN function of the SMSR gate is used to return the access token for a
storage element.

Input parameters
None.

Output parameters
ACCESS_TOKEN is the access token for the storage element.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

SMSR gate, UPDATE_SUBSPACE_TCB_INFO function
The UPDATE_SUBSPACE_TCB_INFO function informs SM of the deletion of open TCBs which are
associated with subspaces.

Input parameters
SUBSPACE_TOKEN

indicates the subspace which is associated with the deleted TCBs.
OPEN_TCBS_DELETED

is a 32-bit string indicating the mode(s) of deleted TCB(s).

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR

Storage manager domain (SM)

1158 CICS TS for z/OS: CICS Diagnosis Reference

Storage manager domain’s generic gates
Table 97 summarizes the storage manager domain’s generic gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gates, the functions provided by the gates, and the generic
formats for calls to the gates.

Table 97. Storage manager domain’s generic gates
Gate Trace Function Format

DMDM SM 0101
SM 0102

PRE_INITIALIZE
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

SMVN SM 1401
SM 1402

DSAT_TASK_REPLY
DSAT_PURGE_INHIBIT_QUERY

DSAT

STST SM 0A01
SM 0A02

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

For descriptions of these functions and their input and output parameters, refer to the sections dealing with
the corresponding generic formats:

Functions and parameters

Format DMDM—“Domain manager domain’s generic formats” on page 669

Format DSAT—“DSAT format, TASK_REPLY function” on page 717

Format STST—“Statistics domain’s generic format” on page 1198

In preinitialization processing, the storage manager domain sets the initial storage options:

v The amount of storage to be allocated to the dynamic storage area

v The amount of storage to be allocated to the extended dynamic storage area

v The storage recovery option

v The state of the storage protect, transaction isolation and the reentrant program option.

For a cold start, the information comes from the system initialization parameters; for any other type of
start, the information comes from the local catalog, but is then modified by any relevant system
initialization parameters.

Storage manager domain also issues console messages during preinitialization to report the amount of
storage allocated above and below the line for DSA use.

In initialization, quiesce, and termination processing, the storage manager domain performs only internal
routines.

Storage manager domain’s generic formats
Table 98 shows the generic formats owned by the storage manager domain, and shows the functions
performed on the calls.

Table 98. Generic formats owned by the storage manager domain

Format Calling module Function

SMNT DFHSMSY
DFHSJSM

STORAGE_NOTIFY
MVS_STORAGE_NOTIFY

Storage manager domain (SM)

Chapter 104. Storage manager domain (SM) 1159

In the descriptions of the formats that follow, the “input” parameters are input not to the storage manager
domain, but to the domain being called by the storage manager. Similarly, the “output” parameters are
output by the domain that was called by the storage manager domain, in response to the call.

Format SMNT, STORAGE_NOTIFY function
The STORAGE_NOTIFY function of SMNT format is used to notify free storage above and below the
16MB line.

Input parameters
DSAS_CONSTRAINED YES|NO

indicates whether any DSA is currently constrained due to lack of free storage.
FREE_BYTES_CDSA

is the largest free area available (in bytes) in the CICS DSA below the 16MB line (not
including the cushion).

FREE_BYTES_UDSA
is the largest free area available (in bytes) in the user-key DSA below the 16MB line (not
including the cushion).

FREE_BYTES_SDSA
is the largest free area available (in bytes) in the shared user-key DSA below the 16MB
line (not including the cushion).

FREE_BYTES_RDSA
is the largest free area available (in bytes) in the read-only DSA below the 16MB line (not
including the cushion).

FREE_BYTES_ECDSA
is the largest free area available (in bytes) in the CICS DSA above the 16MB line (not
including the cushion).

FREE_BYTES_EUDSA
is the largest free area available (in bytes) in the user-key DSA above the 16MB line (not
including the cushion).

FREE_BYTES_ESDSA
is the largest free area available (in bytes) in the shared user-key DSA above the 16MB
line (not including the cushion).

FREE_BYTES_ERDSA
is the largest free area available (in bytes) in the read-only DSA above the 16MB line (not
including the cushion).

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER LOOP
ABEND

INVALID INVALID_FUNCTION

Format SMNT, MVS_STORAGE_NOTIFY function
The MVS_STORAGE_NOTIFY function of SMNT format is used to notify a domain when MVS storage
usage becomes excessive, so that the target domain can take action to release MVS storage or to limit its
future MVS storage requirements. It is also used to notify the domain when MVS storage is no longer
constrained, so the domain can return to normal operation. There are different notifications for a breach of
the threshold value for MVS storage, and for a breach of the reserved MVS storage cushion, the latter
being a more serious condition.

Storage manager domain (SM)

1160 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
THRESHOLD indicates the relationship between MVS storage requirements and the threshold value for

MVS storage. It can have the values:
NEWLY_BREACHED|NEWLY_RESTORED|UNCHANGED

NEWLY_BREACHED indicates that MVS storage requirements have increased above the
threshold value since the last time the SM domain issued a MVS_STORAGE_NOTIFY.
NEWLY_RESTORED indicates that MVS storage requirements have decreased below the
threshold value since the last time the SM domain issued a MVS_STORAGE_NOTIFY.
UNCHANGED indicates that since the last time the SM domain issued a
MVS_STORAGE_NOTIFY, no change has occurred in the MVS storage requirements
relative to the threshold value. That is, if the MVS storage requirements were previously
above the threshold, they are still above the threshold, and if they were previously below
the threshold, they are still below the threshold.

CUSHION indicates the status of the reserved MVS storage cushion. It can have the values:
NEWLY_BREACHED|NEWLY_RESTORED|UNCHANGED

NEWLY_BREACHED indicates that the cushion has been partially freed to satisfy
requirements for MVS storage since the last time the SM domain issued a
MVS_STORAGE_NOTIFY. NEWLY_RESTORED indicates that CICS has managed to
reallocate the reserved storage cushion since the last time the SM domain issued a
MVS_STORAGE_NOTIFY. UNCHANGED indicates that since the last time the SM domain
issued a MVS_STORAGE_NOTIFY, no change has occurred in the state of the cushion: it
is still partially freed, or still intact.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER LOOP
ABEND
LOCK_FAILED
RESUME_FAILURE

INVALID INVALID_FUNCTION

Modules

Module Function

DFHSMAD Handles the following requests:
ADD_SUBPOOL
DELETE_SUBPOOL
START_SUBPOOL_BROWSE
GET_NEXT_SUBPOOL
END_SUBPOOL_BROWSE
INQUIRE_SUBPOOL

DFHSMAR Handles the following requests:
ALLOCATE_TRANSACTION_STG
RELEASE_TRANSACTION_STG

DFHSMCK Handles the following requests:
CHECK_STORAGE
RECOVER_STORAGE

Storage manager domain (SM)

Chapter 104. Storage manager domain (SM) 1161

Module Function

DFHSMDM Handles the following requests:
PRE_INITIALIZE
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHSMDUF SM domain offline dump formatting routine

DFHSMGF Handles the following requests:
GETMAIN
FREEMAIN
INQUIRE_ELEMENT_LENGTH

DFHSMMCI SM domain macro-compatibility interface INITIALISE function

DFHSMMC2 SM domain macro-compatibility interface which handles the following requests:
FREEMAIN_ALL_TERMINAL
INQUIRE_ELEMENT_LENGTH
INQUIRE_TASK_STORAGE

DFHSMMF SM domain macro-compatibility interface FREEMAIN function

DFHSMMG SM domain macro-compatibility interface GETMAIN function

DFHSMSR Handles the following requests:
INQUIRE_ACCESS
INQUIRE_ACCESS_TOKEN
INQUIRE_DSA_LIMIT
INQUIRE_DSA_SIZE
INQUIRE_REENTRANT_PROGRAM
INQUIRE_SHORT_ON_STORAGE
INQUIRE_STORAGE_PROTECT
INQUIRE_TRANSACTION_ISOLATION
SET_DSA_LIMIT
SET_REENTRANT_PROGRAM
SET_STORAGE_RECOVERY
SET_STORAGE_PROTECT
SWITCH_SUBSPACE

DFHSMST Handles the following requests:
COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

DFHSMSVC Gets DSAs

DFHSMSY SM domain system task—issues STORAGE_NOTIFY requests

DFHSMTRI Interprets SM domain trace entries

DFHSMVN SM domain system task — issues MVS_STORAGE_NOTIFY requests

DFHSMVP Detects and manages MVS storage constraints

Exits
No global user exit points are provided in this domain.

Trace
The point IDs for the storage manager domain are of the form SM xxxx; the corresponding trace levels are
SM 1 and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Storage manager domain (SM)

1162 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 105. Sign-on component

The sign-on routine is a component of terminal control that associates users with terminals, connections,
and sessions. Because it is a part of terminal control, it is logically part of the application (AP) domain.

Sign-on component’s subroutines
The sign-on component is entered as a single kernel-managed subroutine, DFHSNUS, which handles
some function itself and also acts as a router to further kernel-managed subroutines. Table 99 summarizes
the sign-on component’s subroutines. It shows the level-1 trace point IDs of the modules providing the
functions for the subroutines, the functions provided by the subroutines, and whether or not the functions
are available through the exit programming interface (XPI).

Table 99. Sign-on component’s subroutines

Subroutine Trace Function XPI

DFHSNAS AP 2050
AP 2051
AP 2052
AP 2053
AP 2054
AP 2055
AP 2056

SIGNON_ATI_SESSION
SIGNOFF_ATI_SESSION

NO
NO

DFHSNPU AP 2070
AP 2071
AP 2072
AP 2073
AP 2074
AP 2075
AP 2076
AP 2077
AP 2078
AP 2079

SIGNON_PRESET_USERID
SIGNOFF_PRESET_USERID

NO
NO

DFHSNSG AP 20C0
AP 20C1
AP 20C2
AP 20C3
AP 20C4
AP 20C5
AP 20C6

SIGNOFF_SURROGATE NO

DFHSNSU AP 2060
AP 2061
AP 2062
AP 2063
AP 2064
AP 2065
AP 2066
AP 2067
AP 2068
AP 2069
AP 206A
AP 206B
AP 206C
AP 206D

SIGNON_SESSION_USERID
SIGNOFF_SESSION_USERID

NO
NO

© Copyright IBM Corp. 1997, 2011 1163

Table 99. Sign-on component’s subroutines (continued)

Subroutine Trace Function XPI

DFHSNTU AP 2080
AP 2081
AP 2082
AP 2083
AP 2084
AP 2085
AP 2086
AP 2087
AP 2088
AP 2089
AP 208A
AP 208B
AP 208C
AP 208D
AP 208E
AP 208F
AP 2090
AP 2091
AP 2092
AP 2093
AP 2094
AP 2095
AP 2096
AP 2097

SIGNON_TERMINAL_USER
SIGNOFF_TERMINAL_USER

NO
NO

DFHSNUS AP 2040
AP 2041
AP 2042
AP 2043
AP 2044
AP 2045
AP 2046
AP 2047
AP 2048
AP 2049

SIGNON_ATTACH_HEADER
SIGNOFF_ATTACH_HEADER

NO
NO

DFHSNAS subroutine, SIGNON_ATI_SESSION function
The SIGNON_ATI_SESSION function of the DFHSNAS subroutine signs on the appropriate userid to a
session when that session is being used by a trigger transaction specified in a DCT with
DESTFAC=SYSTEM.

Input parameters
SESSION_TCTTE_PTR is the address of the TCTTE for the session to be signed on.

Output parameters
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID.

Possible values are:

Sign-on Component

1164 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
UNEXPECTED_REASON
CORRUPT_USER_TOKEN
USER_DOMAIN_FAILURE
USER_TOKEN_MISMATCH

EXCEPTION INVALID_TERMINAL_TYPE
TERMINAL_ALREADY_SIGNED_ON
SURROGATE_TERMINAL
SECURITY_INACTIVE

INVALID INVALID_FORMAT
INVALID_FUNCTION

DFHSNAS subroutine, SIGNOFF_ATI_SESSION function
The SIGNOFF_ATI_SESSION function of the DFHSNAS subroutine is used to reverse the effect of a
SIGNON_ATI_SESSION.

Input parameters
SESSION_TCTTE_PTR is the address of the session TCTTE to be signed off.

Output parameters
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID.

Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
CORRUPT_USER_TOKEN
USER_DOMAIN_FAILURE
INVALID_USER_TOKEN

EXCEPTION INVALID_TERMINAL_TYPE
TERMINAL_NOT_SIGNED_ON
SURROGATE_TERMINAL
SECURITY_INACTIVE

INVALID INVALID_FORMAT
INVALID_FUNCTION

DFHSNPU subroutine, SIGNON_PRESET_USERID function
The SIGNON_PRESET_USERID function of the DFHSNPU subroutine is used to sign on the userid
specified in a terminal definition when that terminal is installed.

Input parameters
USERID is the userid to be assigned to the terminal.
USERID_LENGTH is the length of the userid.
TCTTE_PTR is the address of the TCTTE for the terminal to be given preset security.
[NATLANG_SUFFIX] is an optional one-character national language code to be assigned to the

terminal, which will override any national language associated with the
userid.

Sign-on Component

Chapter 105. Sign-on component 1165

[MESSAGE] is an optional parameter that specifies whether a message is to be issued
when the sign on completes successfully. It can have either of these
values:
YES|NO

Output parameters
[SAF_RESPONSE] is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE] is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID.

Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
EXCEPTION_UNKNOWN
CORRUPT_USER_TOKEN
MESSAGE_DOMAIN_FAILURE
USER_DOMAIN_FAILURE
GETMAIN_FAILED

EXCEPTION INVALID_USERID
INVALID_NATIONAL_LANGUAGE
TERMINAL_ALREADY_SIGNED_ON
UNKNOWN_ESM_RESPONSE
SECURITY_INACTIVE
ESM_INACTIVE
TERMINAL_NOTAUTH
APPLICATION_NOTAUTH
USERID_REVOKED
TERMINAL_NOT_PRESET
GROUP_ACCESS_REVOKED
UNAVAILABLE_NATLANG
SECLABEL_CHECK_FAILED
ESM_TRANQUIL

INVALID INVALID_FORMAT
INVALID_FUNCTION

DFHSNPU subroutine, SIGNOFF_PRESET_USERID function
The SIGNOFF_PRESET_USERID function of the DFHSNPU subroutine is used to sign off a preallocated
userid from a terminal before it is deleted.

Input parameters
TCTTE_PTR is the address of the TCTTE for the terminal from which preset security is

to be removed.
[MESSAGE] is an optional parameter that specifies whether a message is to be issued

when the sign off completes successfully. It can have either of these
values:
YES|NO

Output parameters
[SAF_RESPONSE] is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE] is the optional 32-bit ESM response code to the call.

Sign-on Component

1166 CICS TS for z/OS: CICS Diagnosis Reference

[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID.

Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
CORRUPT_USER_TOKEN
FREEMAIN_FAILED

EXCEPTION TERMINAL_NOT_SIGNED_ON
TERMINAL_NOT_PRESET
SECURITY_INACTIVE
ESM_INACTIVE
ESM_TRANQUIL
UNKNOWN_ESM_RESPONSE

INVALID INVALID_FORMAT
INVALID_FUNCTION

DFHSNSG subroutine, SIGNOFF_SURROGATE function
The SIGNOFF_SURROGATE function of the DFHSNSG subroutine is used to sign off a userid from a
surrogate terminal that is about to be deleted by the remote terminal builder. (The equivalent sign-on
routine is always performed as an inline function, so no SIGNON call to DFHSNSG is ever traced.)

Input parameters
TCTTE_PTR is the address of the TCTTE for the surrogate terminal being signed off.
SESSION_TCTTE_PTR is the address of the TCTTE for the associated relay session.

Output parameters
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

DFHSNSU subroutine, SIGNON_SESSION_USERID function
The SIGNON_SESSION_USERID function of the DFHSNSU subroutine is used to sign on the USERID
(from the SESSIONS definition) or the SECURITYNAME (from the CONNECTION definition) for IRC,
LU6.1, and LU6.2 sessions.

Input parameters
[USERID] is the userid to be signed on.
[USERID_LENGTH] is the length of the userid to be signed on.
SESSION_TCTTE_PTR is the address of the TCTTE for the session being signed on.

Output parameters
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID.

Possible values are:

Sign-on Component

Chapter 105. Sign-on component 1167

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
USER_TOKEN_MISMATCH
MESSAGE_DOMAIN_FAILURE
SURROGATE_TERMINAL
USER_DOMAIN_FAILURE
XS_DOMAIN_FAILURE

EXCEPTION INVALID_USERID
INVALID_TERMINAL_TYPE
TERMINAL_ALREADY_SIGNED_ON
UNKNOWN_ESM_RESPONSE
SECURITY_INACTIVE
ESM_INACTIVE
APPLICATION_NOTAUTH
USERID_REVOKED
GROUP_ACCESS_REVOKED
SECLABEL_CHECK_FAILED
ESM_TRANQUIL

INVALID INVALID_FORMAT
INVALID_FUNCTION

DFHSNSU subroutine, SIGNOFF_SESSION_USERID function
The SIGNOFF_SESSION_USERID function of the DFHSNSU subroutine is used to reverse the effect of
the SIGNON_SESSION_USERID function.

Input parameters
None

Output parameters
[SAF_RESPONSE] is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE] is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID.

Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
TERMINAL_NOT_SIGNED_ON
CORRUPT_USER_TOKEN
INVALID_TERMINAL_TYPE
SURROGATE_TERMINAL
SECOND_DELETE_FAILED
MESSAGE_DOMAIN_FAILURE
USER_DOMAIN_FAILURE

EXCEPTION SECURITY_INACTIVE
ESM_INACTIVE
ESM_TRANQUIL
UNKNOWN_ESM_RESPONSE

INVALID INVALID_FORMAT
INVALID_FUNCTION

Sign-on Component

1168 CICS TS for z/OS: CICS Diagnosis Reference

DFHSNTU subroutine, SIGNON_TERMINAL_USER function
The SIGNON_TERMINAL_USER function of the DFHSNTU subroutine is used to implement the EXEC
CICS SIGNON command and signs on a specific user at the principal facility terminal.

Input parameters
USERID is the userid being signed on to the principal facility terminal.
USERID_LENGTH is the length of the userid.
[PASSWORD] is the optional password associated with the userid. The external security

manager determines whether the password is required or not.
[PASSWORD_LENGTH] is the length of the password.
[NEW_PASSWORD] is the optional new password that is to replace the existing password
[NEW_PASSWORD_LENGTH]

is the length of the new password.
[OIDCARD] is the text obtained from an operator identification card. The external

security manager determines whether operator identification card data, or
a password, or both, or neither, are required.

[GROUPID] is the optional group name to be associated with the userid for this sign
on.

[GROUPID_LENGTH] is the length of the group name.
[NATIONAL_LANGUAGE] is the optional three-letter national language code to be associated with

the terminal for the duration of this sign on. The code should be one of
those specified in Table 120 on page 1318.

[SCOPE_CHECK] is an optional parameter that specifies whether this sign on is to be
subject to the constraints imposed by the SNSCOPE system initialization
parameter. It can have either of these values:
YES|NO

Output parameters
[SAF_RESPONSE] is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE] is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID.

Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
ADD_USER_FAILURE
GETMAIN_FAILED
EXCEPTION_UNKNOWN
INQUIRE_DEFAULT_ERROR
MESSAGE_DOMAIN_FAILURE
USER_DOMAIN_FAILURE
XMIQ_FAILURE
CORRUPT_USER_TOKEN
SNXR_FAILURE
SUSX_FAILURE

Sign-on Component

Chapter 105. Sign-on component 1169

RESPONSE Possible REASON values

EXCEPTION INVALID_USERID
INVALID_PASSWORD
INVALID_NEW_PASSWORD
INVALID_OIDCARD
INVALID_GROUPID
USERID_NOT_IN_GROUP
INVALID_TERMINAL_TYPE
INVALID_NATIONAL_LANGUAGE
UNAVAILABLE_NATLANG
TERMINAL_ALREADY_SIGNED_ON
USERID_ALREADY_SIGNED_ON
SURROGATE_TERMINAL
PRESET_SECURITY_TERMINAL
NO_TERMINAL_WITH_TASK
USERID_REQUIRED
PASSWORD_REQUIRED
NEW_PASSWORD_REQUIRED
OIDCARD_REQUIRED
UNKNOWN_ESM_RESPONSE
SECURITY_INACTIVE
ESM_INACTIVE
TERMINAL_NOTAUTH
APPLICATION_NOTAUTH
USERID_REVOKED
GROUP_ACCESS_REVOKED
SECLABEL_CHECK_FAILED
ESM_TRANQUIL

INVALID INVALID_FORMAT
INVALID_FUNCTION

DFHSNTU subroutine, SIGNOFF_TERMINAL_USER function
The SIGNOFF_TERMINAL_USER function of the DFHSNTU subroutine is used to implement the EXEC
CICS SIGNOFF command and reverses the effect of a SIGNON_TERMINAL_USER function. It effectively
associates the terminal with the default userid specified in the DFLTUSER system initialization parameter.

Input parameters
[TCTTE_PTR] is the optional TCTTE address of a terminal that is to be signed off.

Output parameters
[SAF_RESPONSE] is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE] is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID.

Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
FREEMAIN_FAILED
LOOP
XMIQ_FAILURE
ADD_TXN_USER_ERROR
INVALID_USER_TOKEN

Sign-on Component

1170 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION INVALID_TERMINAL_TYPE
TERMINAL_NOT_SIGNED_ON
PRESET_SECURITY_TERMINAL
SURROGATE_TERMINAL
NO_TERMINAL_WITH_TASK
SECURITY_INACTIVE
ESM_INACTIVE
ESM_TRANQUIL
UNKNOWN_ESM_RESPONSE

INVALID INVALID_FORMAT
INVALID_FUNCTION

DFHSNUS subroutine, SIGNON_ATTACH_HEADER function
The SIGNON_ATTACH_HEADER function of the DFHSNUS subroutine causes a sign on for the userid
received in an LU6.2 function management header type 5, also known as an attach header or an FMH5.

Input parameters
TCTTE_PTR is the address of the TCTTE for which the FMH5 sign on is being

performed.
[USERID] is the userid obtained from the FMH5, if any.
[USERID_LENGTH] is the length of the userid
[PASSWORD] is the password obtained fron the FMH5, if any.
[PASSWORD_LENGTH] is the length of the password.
[GROUPID] is the group name obtained from the profile name in the FMH5, if any.
[GROUPID_LENGTH] is the length of the group name.
[ENTRY_PORT_NAME] is the optional name of the entry port (terminal) at which the userid was

signed on in the terminal-owning region.
[ENTRY_PORT_TYPE] is the optional terminal type associated with the port of entry. It can have

either of these values:
TERMINAL|CONSOLE

[APPLID] is the optional applid at which the userid was signed on in the
terminal-owning region.

ATTACHSEC_TYPE specifies whether the ATTACHSEC associated with the connection is
LOCAL or not. It can have either of these values:
LOCAL|NON_LOCAL

ALREADY_VERIFIED specifies whether the already-verified indicator (AV) is present in the
FMH5. It can have either of these values:
YES|NO

PERSISTENT_SIGNON specifies whether the persistent-sign on indicator (PV2) is present in the
FMH5. It can have either of these values:
YES|NO

PERSISTENT_VERIFY specifies whether the persistent-verification indicator (PV1) is present in
the FMH5. It can have either of these values:
YES|NO

Output parameters
[SAF_RESPONSE] is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE] is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Sign-on Component

Chapter 105. Sign-on component 1171

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID.
Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
USER_DOMAIN_FAILURE
MESSAGE_DOMAIN_FAILURE
CORRUPT_USER_TOKEN
ZCUT_FAILURE

EXCEPTION TERMINAL_ALREADY_SIGNED_ON
INVALID_USERID
INVALID_PASSWORD
INVALID_GROUPID
USERID_NOT_IN_GROUP
PRESET_SECURITY_TERMINAL
USERID_REQUIRED
PROTOCOL_VIOLATION
PASSWORD_REQUIRED
UNKNOWN_ESM_RESPONSE
SECURITY_INACTIVE
ESM_INACTIVE
TERMINAL_NOTAUTH
LUIT_ENTRY_NOT_FOUND
APPLICATION_NOTAUTH
USERID_REVOKED
GROUP_ACCESS_REVOKED
SECLABEL_CHECK_FAILED
SIGNON_SURROGATE_ERROR
ESM_TRANQUIL

INVALID INVALID_FORMAT
INVALID_FUNCTION

DFHSNUS subroutine, SIGNOFF_ATTACH_HEADER function
The SIGNOFF_ATTACH_HEADER function of the DFHSNUS subroutine is used to reverse the effect of a
SIGNON_ATTACH_HEADER function when the transaction initiated by the FMH5 attach header
terminates.

Input parameters
TCTTE_PTR is the address of the TCTTE for which the FMH5 sign off is being

performed.

Output parameters
[SAF_RESPONSE] is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE] is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the subroutine’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID.

Possible values are:

Sign-on Component

1172 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
ZCUT_FAILURE
CORRUPT_USER_TOKEN

EXCEPTION INVALID_TERMINAL_TYPE
PRESET_SECURITY_TERMINAL
SURROGATE_TERMINAL
SECURITY_INACTIVE
ESM_INACTIVE
ESM_TRANQUIL
UNKNOWN_ESM_RESPONSE

INVALID INVALID_FORMAT
INVALID_FUNCTION

Modules

Module Function

DFHSNAS Handles the following requests:
SIGNON_ATI_SESSION
SIGNOFF_ATI_SESSION

DFHSNPU Handles the following requests:
SIGNON_PRESET_USERID
SIGNOFF_PRESET_USERID

DFHSNDUF SN domain offline dump formatting routine

DFHSNSG Handles the following requests:
SIGNOFF_SURROGATE

DFHSNSU Handles the following requests:
SIGNON_SESSION_USERID
SIGNOFF_SESSION_USERID

DFHSNTU Handles the following requests:
SIGNON_TERMINAL_USER
SIGNOFF_TERMINAL_USER

DFHSNUS Acts as a router to the other signon modules, and handles the following requests directly:
SIGNON_ATTACH_HEADER
SIGNOFF_ATTACH_HEADER

DFHSNTRI Interprets SN domain trace entries

Exits
There are two global user exit points in DFHSNUS: XSNON and XSNOFF.

For further information, see the CICS Customization Guide.

Trace
The point IDs for the sign on component are of the form AP xxxx; the corresponding trace levels are AP 1
and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Sign-on Component

Chapter 105. Sign-on component 1173

1174 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 106. Socket domain (SO)

The socket domain provides TCP/IP services to the CICS Web Support and CICS IIOP Support
components. It includes a TCP/IP listener system task, the TCPIPSERVICE RDO resource to manage the
listener and domain gates to operate on a TCP/IP connection.

Socket domain’s specific gates
Table 100 summarizes the socket domain’s specific gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gate, the functions provided by the gate, and whether or not the
functions are available through the exit programming interface (XPI).

Table 100. Socket domain’s specific gates
Gate Trace Function XPI

SOCK SO 0201
SO 0202

SEND
SEND_SSL_DATA
RECEIVE
RECEIVE_SSL_DATA
CLOSE
LISTEN

NO
NO
NO
NO
NO
NO

SORD SO 0301
SO 0302

REGISTER
DEREGISTER
IMMCLOSE

NO
NO
NO

SOIS SO 0401
SO 0402

SET_PARAMETERS
INITIALIZE_ENVIRONMENT
INQUIRE
SET
INQUIRE_STATISTICS
VERIFY
EXPORT_CERTIFICATE_DATA
IMPORT_CERTIFICATE_DATA
DELETE_CERTIFICATE_DATA

NO
NO
NO
NO
NO
NO
NO
NO
NO

SOAD SO 0601
SO 0602

ADD_REPLACE_TCPIPSERVICE
DELETE_TCPIPSERVICE

NO
NO

SOTB SO 0701
SO 0702

INQUIRE_TCPIPSERVICE
START_BROWSE
GET_NEXT
END_BROWSE
SET_TCPIPSERVICE

NO
NO
NO
NO
NO

SOSE SO 0801
SO 0802

INITIALIZE_SSL
SECURE_SOC_INIT
SECURE_SOC_READ
SECURE_SOC_WRITE
SECURE_SOC_CLOSE
SECURE_SOC_RESET
TERMINATE_SSL
EXPORT_CERTIFICATE_DATA
IMPORT_CERTIFICATE_DATA
DELETE_CERTIFICATE_DATA

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

SOCK gate, SEND function
The SEND function sends a buffer of data to a connected TCP/IP client.

Input parameters
SEND_BUFFER is the buffer of data to be sent.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible values
are:

© Copyright IBM Corp. 1997, 2011 1175

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_SESSION_TOKEN
INSUFFICIENT_STORAGE
IO_ERROR,CONNECTION_CLOSED

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE
SOCKET_IN_USE

SOCK gate, SEND_SSL_DATA function
The SEND_SSL_DATA function is called to send data to a connected TCP/IP client if the connection is
secured using SSL.

Input parameters
STE_PTR is a pointer to the STE control block of the session.
SEND_BUFFER is the buffer of data to be sent.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible values
are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_SESSION_TOKEN
INSUFFICIENT_STORAGE
IO_ERROR,CONNECTION_CLOSED

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE
SOCKET_IN_USE

SOCK gate, RECEIVE function
The RECEIVE function receives a buffer of data from a TCP/IP connected client.

Input parameters
RECEIVE_BUFFER

is the buffer to receive the data into.
[TIMEOUT] is an optional parameter. It can take two values:

DEFAULT|SOCKETCLOSE

If not specified or a value of SOCKETCLOSE is specified then the timeout is taken from
the tcpipservice definition. If DEFAULT is specified then the timeout is 30 seconds.

Output parameters
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

Socket Domain (SO)

1176 CICS TS for z/OS: CICS Diagnosis Reference

[REASON] is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible values
are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_SESSION_TOKEN
INSUFFICIENT_STORAGE
IO_ERROR,CONNECTION_CLOSED

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE
SOCKET_IN_USE

SOCK gate, RECEIVE_SSL_DATA function
The RECEIVE_SSL_DATA function is called to receive data from a connected TCP/IP client if the
connection is secured using SSL.

Input parameters
STE_PTR is a pointer to the STE control block of the session.
RECEIVE_BUFFER

is the buffer to receive data into.

Output parameters
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible values
are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_SESSION_TOKEN
INSUFFICIENT_STORAGE
IO_ERROR,CONNECTION_CLOSED

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE
SOCKET_IN_USE

SOCK gate, CLOSE function
The CLOSE function is called to close the socket connection to the TCP/IP client.

Output parameters
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION, INVALID or DISASTER. Possible values
are:

Socket Domain (SO)

Chapter 106. Socket domain (SO) 1177

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_SESSION_TOKEN
INSUFFICIENT_STORAGE
IO_ERROR,CONNECTION_CLOSED

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE
SOCKET_IN_USE

SOCK gate, LISTEN function
The LISTEN function is the main routine for the SO domain listener task CSOL. When the listener task
starts it branches into the LISTEN function of the SOCK gate. This allows the listener code to be written at
the domain level rather than the task level.

Output parameters
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

SORD gate, REGISTER function
The REGISTER function is called to open a tcpipservice. It registers all the parameters of the service with
the listener task.

Input parameters
PORT_NUMBER is the TCP/IP port number to listen for new connection on.
SERVICE_NAME is the name of the tcpipservice.
TRANID is the transaction ID that is to be attached when a new connection is made to the listening

port.
SSL specifies whether or not connections to this service are to be secured using the Secure

Sockets Layer protcols.
BACKLOG is the value of the backlog parameter passed to the TCP/IP listen function for this service.

It specifies how many connection requests TCP/IP will queue for this service.
URM is the name of a user-replacable program that the handler transaction for this service will

invoke during request processing.
TSQPREFIX is the prefix for TS queues that are created by the programs handling requests for this

service.
IPADDRESS is the specific IP address that the listener will bind to for this service.
[CERTIFICATE_LABEL]

is the name of a certificate within the keyfile that this service will use to authenticate itself
to clients with, if the SSL protocol is used.

RECV_TIMEOUT specifies whether or not receives should timeout, and if so, after how long.

Socket Domain (SO)

1178 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
LISTEN_TOKEN is a token representing the opened tcpipservice. This is subsequently used to close the

service.
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_LISTEN_TOKEN
INSUFFICIENT_STORAGE
NOT_PERMITTED_TO_BIND
TCPIP_SERVICE_ERROR
TCPIP_CLOSED
TCPIP_INACTIVE
UNKNOWN_ADDRESS
PORT_IN_USE

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

SORD gate, DEREGISTER function
The DEREGISTER function is called to close a tcpipservice. The listener task closes the listening socket
and no more connections to the port are permitted. Any tasks handling existing connections are allowed to
end normally.

Input parameters
LISTEN_TOKEN is a token representing the opened tcpipservice.

Output parameters
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_LISTEN_TOKEN
INSUFFICIENT_STORAGE
NOT_PERMITTED_TO_BIND
TCPIP_SERVICE_ERROR
TCPIP_CLOSED
TCPIP_INACTIVE
UNKNOWN_ADDRESS,
PORT_IN_USE

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

Socket Domain (SO)

Chapter 106. Socket domain (SO) 1179

SORD gate, IMMCLOSE function
The IMMCLOSE function is called to immediatly close a tcpipservice. The listener task closes the listening
socket and no more connections to the port are permitted. All existing connections are closes and any
tasks handling them are abended.

Input parameters
LISTEN_TOKEN is a token representing the opened tcpipservice.

Output parameters
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_LISTEN_TOKEN
INSUFFICIENT_STORAGE
NOT_PERMITTED_TO_BIND
TCPIP_SERVICE_ERROR
TCPIP_CLOSED
TCPIP_INACTIVE
UNKNOWN_ADDRESS,
PORT_IN_USE

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

SOIS gate, SET_PARAMETERS function
The SET_PARAMETERS function is called during CICS initialisation when the SIT is processed. It sets the
startup parameters for the SO domain.

Input parameters
TCPIP is a YES or NO value indicating if the SO domain is to initalise in this CICS region.
SSLDELAY is a the SSL timeout value.
SSLTCBS specifies the number of S8 TCBs to be attached for SSL use.
ENCRYPTION specifies the type of encryption that will be used by the system. The value can be

NORMAL,STRONG or WEAK.
KEYFILE specifies the name of the HFS keyring file that contains the keypairs and certificate data.
QUALIFIER is actually the password that was used to secure the keyring file upon creation.

Output parameters
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

Socket Domain (SO)

1180 CICS TS for z/OS: CICS Diagnosis Reference

SOIS gate, INITIALIZE_ENVIRONMENT function
The INITIALIZE_ENVIRONMENT function is called during SO domain startup to create and initialize the
CEEPIPI Language Environment pre-initialized environment for invokcation of C functions.

Output parameters
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

SOIS gate, INQUIRE function
The INQUIRE function is called by tasks that have been attached by the listener in response to a new
TCP/IP connection. It provides TCP/IP and socket information about connection and the connected client.

Input parameters
[LISTEN_TOKEN]

is a token representing an opened tcpipservice.
[CLIENT_HOSTNAME]

is a buffer in which the full hostname of the client is returned to the caller.
[SERVER_HOSTNAME]

is a buffer in which the full hostname of the CICS region is returned to the caller.
[GENERIC_HOSTNAME]

is a buffer in which the full generic hostname of the CICS region, as known to the DNS in
a connection optimization environment, is returned to the caller.

Output parameters
[CLIENT_IP_ADDRESS]

is the text representation of the IP address of the client.
[CLIENT_BIN_IP_ADDRESS]

is the 32 bit binary IP address of the client.
[SERVER_IP_ADDRESS]

is the text representation of the IP address of the CICS region.
[SERVER_BIN_IP_ADDRESS]

is the 32 bit binary IP address of the CICS region.
[LISTENER_PORT]

is the port number that the connection was received on.
[CLIENT_IP_ADDRESS_LEN]

is the length of the text representation of the client IP address.
[SERVER_IP_ADDRESS_LEN]

is the length of the text representation of the server IP address.
[CERTFICATE_USERID]

is the userid associated with the certificate that was used to authenticate a client if this is
an SSL connection.

[SSLTYPE] returns whether or not SSL is being used to secure this connection.
[URM_NAME] is the name of the user-replaceable program specified on the tcpipservice definition for this

connection.
[TSQ_PREFIX] is the TS queue prefix specified on the tcpipservice definition for this connection.

Socket Domain (SO)

Chapter 106. Socket domain (SO) 1181

[LISTENER_STATUS]
is the current status of the SO domain listener task.

[CONNECTIONS]
is either the number of connections for the service represented by the supplied
LISTEN_TOKEN, or the total number of TCP/IP connections to all of of the currently active
services.

[TCPIPSERVICE_NAME]
is the name of the service that attached the task, or the name associated with the supplied
LISTEN_TOKEN.

[GROUP_NAME] is the name of the dynamic DNS group that is registered with the MVS Work Load
Manager for this service.

RESPONSE is the domain└s response to the call. It can have any of these values:
OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

SOIS gate, SET function
The SET function is called to open, close or immediatly close the SO domain within a region. This is called
in response to a SET TCPIP operator or SPI command.

Input parameters
[TCPIP_STATUS]

is either OPEN,CLOSED or IMMCLOSE.

Output parameters
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

SOIS gate, INQUIRE_STATISTICS function
The INQUIRE_STATISTICS function returns gathered statistics about an open tcpipservice.

Input parameters
LISTEN_TOKEN is the token representing the open tcpipservice, returned from the SORD REGISTER

function.
RESET is a value indicating if the statistics should be reset.

Socket Domain (SO)

1182 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
[ATTACH_COUNT]

is the total number of tasks that have been attached to handle incoming connections.
[PEAK_CONNECTIONS]

is the high water mark for connections since that last reset.
[SEND_COUND] is the number of times TCP/IP send has been called.
[SEND_BYTES] is the number of bytes that have been sent to TCP/IP.
[RECV_COUNT] is the number of times TCP/IP receive has been called.
[RECV_BYTES] is the number of bytes received from TCP/IP.
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

SOIS gate, VERIFY function
The VERIFY function checks an IP address string in the form nnn.nnn.nnn.nnn for validity and returns the
binary form.

Input parameters
SERVER_IP_ADDRESS

is a char string in the form nnn.nnn.nnn.nnn representing an IP address.

Output parameters
SERVER_BIN_IP_ADDRESS

is the 32 bit binary number of the IP address.
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

SOIS gate, EXPORT_CERTIFICATE_DATA function
The EXPORT_CERTIFICATE_DATA function saves a certificate in the sockets repository.

Input parameters
CERTIFICATE_INFORMATION

is a block representing the certificate.

Output parameters
REPOSITORY_TOKEN

is a token that represents the saves certificate data.

Socket Domain (SO)

Chapter 106. Socket domain (SO) 1183

RESPONSE is the domain└s response to the call. It can have any of these values:
OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

SOIS gate, IMPORT_CERTIFICATE_DATA function
The IMPORT_CERTIFICATE_DATA imports certificate data from the sockets repository.

Input parameters
[REPOSITORY_TOKEN]

a token representing a certificate exported to the repository.
CERTIFICATE_INFORMATION

is the block representing the certificate. The data is returned by the function.

Output parameters
CERTIFICATE_USERID

is the userid associated with the certificate.
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

SOIS gate, DELETE_CERTIFICATE_DATA function
The DELETE_CERTIFICATE_DATA deletes certificate data from the sockets repository.

Input parameters
REPOSITORY_TOKEN

a token representing a certificate exported to the repository.

Output parameters
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

Socket Domain (SO)

1184 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
LOCK_FAILURE

SOAD gate, ADD_REPLACE_TCPIPSERVICE function
The ADD_REPLACE_TCPIPSERVICE function is called at RDO time to install a tcpipservice definition. If
the status is OPEN then the service is also opened using the SORD REGISTER function. A catalog entry
is written to record the installed resource.

Input parameters
TCPIPSERVICE_NAME

is the name of the tcpipservice.
URM_NAME is the name of the user-replaceable program.
STATUS is either OPEN or CLOSED.
SSL is either YES, NO or CLIENTAUTH.
TRANSACTION is the tranid of the transaction to attach for each connection to this service.
BACKLOG is the TCP/IP listen backlog parameter.
PORTNUMBER is the port number to listen on.
[CERTIFICATE_LABEL]

is the name of the certificate from the keyfile to use to authenticate this service.
IPADDRESS is the IP address to bind this service to.
TSQPREFIX is the TS queue prefix to use for this service.
SOCKETCLOSE is the value of receive timeout for this service.

Output parameters
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

SOAD gate, DELETE_TCPIPSERVICE function
The DELETE_TCPIPSERVICE function is called at RDO time to remove an installed tcpipservice
definition. If the status is OPEN then the tcpipservice is not removed. The catalog entry is removed for the
discarded resource.

Input parameters
TCPIPSERVICE_NAME

is the name of the tcpipservice to remove.

Output parameters
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

Socket Domain (SO)

Chapter 106. Socket domain (SO) 1185

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

SOTB gate, INQUIRE_TCPIPSERVICE function
The INQUIRE_TCPIPSERVICE function is called by CEMT and the SPI for an INQUIRE TCPIPSERICE
function. It returns information about an installed tcpipservice.

Input parameters
TCPIPSERVICE_NAME

is the name of the tcpipservice to inquire upon.

Output parameters
[TRANSID] is the transaction ID associated with the service.
[URM] is the name of the user-replaceable program associated with the service.
[PORT] is the port number associated with the service.
[BACKLOG] is the backlog value associated with the service.
[CONNECTIONS]

is the current number of connections associated with the service.
[IPADDRESS] is the IP address that the service is bound to.
[TSQPREFIX] is the TS queue prefix associated with the service.
[SOCKETCLOSE]

is the receive timeout value associated with the service.
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

SOTB gate, START_BROWSE function
The START_BROWSE function is called by CEMT and the SPI for an browsing tcpipservices.

Output parameters
BROWSE_TOKEN is a token representing the browse.
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

Socket Domain (SO)

1186 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
LOCK_FAILURE

SOTB gate, GET_NEXT function
The GET_NEXT function is called by CEMT and the SPI for browsing tcpipservices. It returns information
about an installed tcpipservice.

Input parameters
BROWSE_TOKEN is a token representing the browse.

Output parameters
TCPIPSERVICE_NAME

is the name of the tcpipserivce.
[TRANSID] is the transaction ID associated with the service.
[URM] is the name of the user-replaceable pogram associated with the service.
[PORT] is the port number associated with the service.
[BACKLOG] is the backlog value associated with the service.
[CONNECTIONS]

is the current number of connections associated with the service.
[IPADDRESS] is the IP address that the service is bound to.
[TSQPREFIX] is the TS queue prefix associated with the service.
[SOCKETCLOSE]

is the receive timeout value associated with the service.
[STATUS] is the current status of the service:

OPEN|OPENING|CLOSED|CLOSING|IMMCLOSING
[SSL] is the SSL setting for the service:

YES|NO|CLIAUTH
[CERTIFICATE_LABEL]

is the certificate label associated with the service.
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

SOTB gate, END_BROWSE function
The END_BROWSE function is called by CEMT and the SPI to end browsing tcpipservices.

Input parameters
BROWSE_TOKEN is a token representing the browse.

Output parameters
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

Socket Domain (SO)

Chapter 106. Socket domain (SO) 1187

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

SOTB gate, SET_TCPIPSERVICE function
The SET_TCPIPSERVICE function is called by CEMT and the SPI to set tcpipservice parameters.

Input parameters
TCPIPSERVICE_NAME

is the name of the service to set.
[STATUS] is the status to set for the service:

OPEN|CLOSED|IMMCLOSED
[URM] is the name of the user-replaceable program.
[BACKLOG] is the value of the new backlog parameter. This can only be set if the service is closed.

Output parameters
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

SOSE gate, INITIALIZE_SSL function
The INITIALIZE_SSL function is called at SO domain initialization. It creates the environment necessary to
perform Secure Sockets Layer communication.

Output parameters
GSK_RETURN_CODE

is the return code from the System SSL component of OS/390 that CICS uses to perform
SSL communications.

RESPONSE is the domain└s response to the call. It can have any of these values:
OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
CEEPIPI_ERROR
GSK_ERROR

Socket Domain (SO)

1188 CICS TS for z/OS: CICS Diagnosis Reference

SOSE gate, SECURE_SOC_INIT function
The SECURE_SOC_INIT function is called when a new connection is established with the service and
SSL is enabled. This function performs the SSL handshake to establish the security.

Output parameters
GSK_RETURN_CODE

is the return code from the System SSL component of OS/390 that CICS uses to perform
SSL communications.

CERTIFICATE is the certificate used by the client to authenticate itself.
CERTIFICATE_USERID

is the userid associated with the client certificate.
CIPHERS_SELECTED

represents the encryption cyphers that have been selected in negotiation with the client
and server.

RESPONSE is the domain└s response to the call. It can have any of these values:
OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

EXCEPTION GSK_INACTIVE,INSUFFICIENT_THREADS
GETMAIN_FAILED,REPOSITORY_ERROR
CONNECTION_CLOSED,CLIENT_ERROR

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
CEEPIPI_ERROR
GSK_ERROR

SOSE gate, SECURE_SOC_READ function
The SECURE_SOC_READ function is called to read data on a secure connection.

Input parameters
RECEIVE_BUFFER

is the buffer to hold the received data.

Output parameters
GSK_RETURN_CODE

is the return code from the System SSL component of OS/390 that CICS uses to perform
SSL communications.

RESPONSE is the domain└s response to the call. It can have any of these values:
OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

Socket Domain (SO)

Chapter 106. Socket domain (SO) 1189

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
CEEPIPI_ERROR
GSK_ERROR
CONNECTION_CLOSED
HANDSHAKE_ERROR

SOSE gate, SECURE_SOC_WRITE function
The SECURE_SOC_WRITE function is called to send data on a secure connection.

Input parameters
SEND_BUFFER is the buffer to holding the data to send.

Output parameters
GSK_RETURN_CODE

is the return code from the System SSL component of OS/390 that CICS uses to perform
SSL communications.

RESPONSE is the domain└s response to the call. It can have any of these values:
OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
CEEPIPI_ERROR
GSK_ERROR
CONNECTION_CLOSED
HANDSHAKE_ERROR

SOSE gate, SECURE_SOC_CLOSE function
The SECURE_SOC_CLOSE function is called to close a secure connection.

Output parameters
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
CEEPIPI_ERROR
GSK_ERROR

SOSE gate, SECURE_SOC_RESET function
The SECURE_SOC_RESET function is called to reset a secure connection.

Socket Domain (SO)

1190 CICS TS for z/OS: CICS Diagnosis Reference

Output parameters
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
CEEPIPI_ERROR
GSK_ERROR

SOSE gate, TERMINATE_SSL function
The TERMINATE_SSL function is to terminate all SSL operation in a region.

Output parameters
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
CEEPIPI_ERROR

SOSE gate, EXPORT_CERTIFICATE_DATA function
The EXPORT_CERTIFICATE_DATA function saves a certificate in the sockets repository.

Input parameters
CERTIFICATE_INFORMATION

is a block representing the certificate.

Output parameters
REPOSITORY_TOKEN

is a token that represents the saves certificate data.
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

Socket Domain (SO)

Chapter 106. Socket domain (SO) 1191

SOSE gate, IMPORT_CERTIFICATE_DATA function
The IMPORT_CERTIFICATE_DATA imports certificate data from the sockets repository.

Input parameters
[REPOSITORY_TOKEN]

a token representing a certificate exported to the repository.
CERTIFICATE_INFORMATION

is the block representing the certificate. The data is returned by the function.

Output parameters
CERTIFICATE_USERID

is the userid associated with the certificate.
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

SOSE gate, DELETE_CERTIFICATE_DATA function
The DELETE_CERTIFICATE_DATA deletes certificate data from the sockets repository.

Input parameters
REPOSITORY_TOKEN

a token representing a certificate exported to the repository.

Output parameters
RESPONSE is the domain└s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|
KERNERROR|PURGED

[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP
LOCK_FAILURE

Socket Domain (SO)

1192 CICS TS for z/OS: CICS Diagnosis Reference

Socket domain’s generic gates
Table 101 summarizes the socket domain’s generic gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gates, the functions provided by the gates, and the generic formats
for calls to the gates.

Table 101. Socket domain’s generic gates
Gate Trace Function Format

SODM SO 0101
SO 0102

INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

SOST SO 0A01
SO 0A02

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

SOXM EM 0401
EM 0402

INQUIRE_DATA_LENGTH
GET_DATA
DESTROY_TOKEN

XMXM

For descriptions of these functions and their input and output parameters, refer to the Sections dealing
with the corresponding generic formats:

Functions and parameters

Format DMDM—Figure 99 on page 457

Format STST—“System programming command flows” on page 264

Format XMXM-Figure 76 on page 387

In initialization, quiesce, and termination processing, the socket domain performs only internal routines.

Modules

Module Function

DFHSODM Handles the following requests:
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHSOCK Handles the following requests:
LISTEN
SEND
RECEIVE
CLOSE
SEND_SSL_DATA
RECV_SSL_DATA

DFHSORD Handles the following requests:
REGISTER
DEREGISTER
IMMCLOSE

DFHSOIS Handles the following requests:
INITIALIZE_ENVIRONMENT
INQUIRE
SET_PARAMETERS
INQUIRE_STATISTICS
VERIFY
EXPORT_CERTIFICATE_DATA
IMPORT_CERTIFICATE_DATA
DELETE_CERTIFICATE_DATA

Socket Domain (SO)

Chapter 106. Socket domain (SO) 1193

Module Function

DFHSOAD Handles the following requests:
ADD_REPLACE_TCPIPSERVICE
DELETE_TCPIPSERVICE

DFHSOTB Handles the following requests:
INQUIRE_TCPIPSERVICE
START_BROWSE
GET_NEXT
END_BROWSE
SET_TCPIPSERVICE

DFHSOSE Handles the following requests:
INITIALIZE_SSL
SECURE_SOC_INIT
SECURE_SOC_READ
SECURE_SOC_WRITE
SECURE_SOC_CLOSE
SECURE_SOC_RESET
TERMINATE_SSL
EXPORT_CERTIFICATE_DATA
IMPORT_CERTIFICATE_DATA
DELETE_CERTIFICATE_DATA

DFHSODUF Formats the SO domain control blocks

DFHSOTRI Interprets SO domain trace entries

Exits
No global user exit points are provided in this domain.

Socket Domain (SO)

1194 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 107. Statistics domain (ST)

The statistics domain controls the collection of resource statistics for a CICS system (the monitoring
domain collects task statistics). The statistics domain collects data at user-specified intervals, at system
quiesce or logical end of day, and when requested by the user, and writes it to the statistics data sets in
SMF format. This can subsequently be used by the statistics offline utility to produce formatted reports.

Statistics domain’s specific gate
Table 102 summarizes the statistics domain’s specific gate. It shows the level-1 trace point IDs of the
modules providing the functions for the gate, the functions provided by the gate, and whether or not the
functions are available through the exit programming interface (XPI).

Table 102. Statistics domain’s specific gate
Gate Trace Function XPI

STST ST 0003
ST 0004

INQ_STATISTICS_OPTIONS
SET_STATISTICS_OPTIONS
REQUEST_STATISTICS
RECORD_STATISTICS
STATISTICS_COLLECTION
DISABLE_STATISTICS

NO
NO
NO
NO
NO
NO

STST gate, INQ_STATISTICS_OPTIONS function
The INQ_STATISTICS_OPTIONS function of the STST gate is used to return information associated with
the statistics domain options.

Input parameters
None.

Output parameters
COLLECT indicates whether interval statistics are being collected (and their counts reset). It can have

either of these values:
YES|NO

INTERVAL is the interval at which statistics are being collected if COLLECT is YES.
EOD_TIME_OF_DAY

is the time of day at which end-of-day statistics are collected.
NEXT_COLLECTION_TIME

is the time of the next collection of statistics. If COLLECT is YES, it is the earlier of the
next interval collection time and the logical end-of-day time; if COLLECT is NO, it is the
logical end-of-day time.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|INVALID|KERNERROR|DISASTER

[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

STST gate, SET_STATISTICS_OPTIONS function
The SET_STATISTICS_OPTIONS function of the STST gate is used to set statistics options.

Input parameters
[COLLECT] indicates whether interval statistics are to be collected (and their counts reset). It can have

either of these values:

© Copyright IBM Corp. 1997, 2011 1195

YES|NO
[INTERVAL] is the interval at which statistics are to be collected if COLLECT is YES.
[EOD_TIME_OF_DAY]

is the time of day at which end-of-day statistics are to be collected.
[COLLECT_UPDATE_ACTION]

is the action to be taken when changing the COLLECT option value from NO to YES, or
from YES to NO. It can have any one of these values:
NOACTION|RESETNOW|RECORDNOW|RECORD_RESETNOW

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION COLL_ACTION_NO_UPDATE

INVALID INVALID_COLLECT
INVALID_INTERVAL
INVALID_EOD_TIME_OF_DAY
INV_COLL_UPDATE_ACTION

STST gate, REQUEST_STATISTICS function
The REQUEST_STATISTICS function of the STST gate is used to request a collection of statistics.

Input parameters
[DOMAIN_TOKEN]

identifies the domain from which the statistics are to be collected.
[RESOURCE_TYPE]

indicates the resource in the AP domain on which statistics are to be collected.
REQUEST_TOKEN

uniquely identifies the collection of statistics requested by the caller.
RESET indicates whether certain statistics fields are to be reset.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|EXCEPTION|PURGED|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION TYPE_NOT_FOUND
NOT_AVAILABLE
INCOMPLETE_DATA

INVALID INVALID_RESET

STST gate, RECORD_STATISTICS function
The RECORD_STATISTICS function of the STST gate is used to record statistics.

Statistics domain (ST)

1196 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
STATISTICS_DATA

specifies the address and length of data requested.
STATISTICS_TYPE

indicates the type of statistics collection, either a normal collection or unsolicited. It can
have either of these values:
COLLECTION|USS

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_DATA_FORMAT

STST gate, STATISTICS_COLLECTION function
The STATISTICS_COLLECTION function of the STST gate is used to initiate a collection of statistics.

Input parameters
RESET indicates whether certain statistics fields are to be reset.
DATA indicates whether the domain being called is requested to return its statistics to the caller.
END_OF_DAY indicates whether all statistics fields are to be reset.
COLLECTION_TYPE

indicates whether this is an interval collection or end-of-day collection of statistics. It can
have either of these values:
INT|EOD

[SYSTEM_TERMINATING]
indicates whether this is the last collection for the CICS run. It can have either of these
values:
YES|NO

YES is used for the end-of-day collection that is taken when CICS is shut down.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

STST gate, DISABLE_STATISTICS function
The DISABLE_STATISTICS function of the STST gate is used to disable statistics interval collections.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

Statistics domain (ST)

Chapter 107. Statistics domain (ST) 1197

OK|INVALID|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

Statistics domain’s generic gates
Table 103 summarizes the statistics domain’s generic gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gates, the functions provided by the gates, and the generic formats
for calls to the gates.

Table 103. Statistics domain’s generic gates
Gate Trace Function Format

DMDM ST 0001
ST 0002

INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

TISR ST 0005
ST 0006

NOTIFY TISR

For descriptions of these functions and their input and output parameters, refer to the sections dealing with
the corresponding generic formats:

Functions and parameters

Format DMDM—“Domain manager domain’s generic formats” on page 669

Format TISR—“Timer domain’s generic format” on page 1203

In initialization processing, the statistics domain sets the initial statistics options:
v Collecting interval
v Logical end of day
v Collecting status.

For a cold start, the collecting interval defaults to 3 hours, the logical end of day defaults to midnight, and
the collecting status defaults to ON; for any other type of start, the information comes from the global
catalog.

In quiesce processing, the statistics domain collects and records statistics from all other domains.

In termination processing, the statistics domain collects and records end-of-day statistics.

Statistics domain’s generic format
Table 104 summarizes the generic format owned by the statistics domain and shows the functions
performed on the calls.

Table 104. Generic format owned by statistics domain

Format Calling module Function

STST DFHSTST
DFHEIQMS

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

Statistics domain (ST)

1198 CICS TS for z/OS: CICS Diagnosis Reference

In the descriptions of the format that follows, the “input” parameters are input not to statistics domain, but
to the domain being called by the statistics domain. Similarly, the “output” parameters are output by the
domain that was called by the statistics domain, in response to the call.

STST format, COLLECT_STATISTICS function
The COLLECT_STATISTICS function of the STST format is used by the statistics domain to ask a domain
to collect its statistics.

Input parameters
DATA indicates whether the domain being called is requested to return its statistics to the caller.

It can have either of these values:
YES|NO

END_OF_DAY indicates whether all statistics fields are to be reset. It can have either of these values:
YES|NO

RESET indicates whether certain statistics fields are to be reset. It can have either of these
values:
YES|NO

RESET_TIME is the time of day to be used as the time at which the statistics fields were last reset.
[RESOURCE_TYPE]

indicates the resource in the AP domain on which statistics are to be collected.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|PURGED|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION TYPE_NOT_FOUND
NOT_AVAILABLE
INCOMPLETE_DATA

STST format, COLLECT_RESOURCE_STATS function
The COLLECT_RESOURCE_STATS function of the STST format is used by the EXEC API to ask a
domain to collect its monitoring data collection information.

Input parameters
[RESOURCE_TYPE]

is the type of resource on which statistics are required.
[RESOURCE_ID]

specifies the address and length of the resource identifier.
[RESOURCE_ID_2]

specifies the address and length of the resource identifier.
[RESOURCE_ID_3]

specifies the address and length of the resource identifier.
[LONG_RESOURCE_ID_DATA]

specifies the address and length of the resource identifier.
[RESID_TOKEN]

a token representing the resource id required.
RESOURCE_STATISTICS_DATA

specifies the address and length of the area into which the requested statistics are to be
placed.

Statistics domain (ST)

Chapter 107. Statistics domain (ST) 1199

Output parameters
[LAST_RESET_TIME]

indicates the time at which the statistics fields were last reset.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|PURGED|KERNERROR|DISASTER
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION TYPE_NOT_FOUND
ID_NOT_FOUND
NOT_AVAILABLE

Modules

Module Function

DFHSTDM Handles the following requests:
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHSTDUF Formats the ST domain control blocks in a CICS system dump

DFHSTST Handles the following requests:
INQ_STATISTICS_OPTIONS
RECORD_STATISTICS
REQUEST_STATISTICS
SET_STATISTICS_OPTIONS
STATISTICS_COLLECTION
DISABLE_STATISTICS

DFHSTTI Handles the NOTIFY request

DFHSTTRI Interprets ST domain trace entries

DFHSTUE Provides a SET_EXIT_STATUS routine to enable or disable a user exit.

Exits
There is one global user exit point in the statistics domain: XSTOUT. See the CICS Customization Guide
for further information.

Trace
The point IDs for the statistics domain are of the form ST xxxx; the corresponding trace levels are ST 1,
ST 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Statistics domain (ST)

1200 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 108. Timer domain (TI)

The timer domain provides interval timing and alarm clock services for CICS domains. These are
processes that cause an action to occur at some predetermined future time. This service (called
“notifying”) can be performed after a specific interval, at periodic intervals, at a specified time of day, or at
a specific time of day every day.

The timer domain also provides date and time provision and conversion functions. This includes the facility
to synchronize the CICS local time with the operating clock when the system operator has adjusted the
time zone.

Timer domain’s specific gate
Table 105 summarizes the timer domain’s specific gate. It shows the level-1 trace point IDs of the modules
providing the functions for the gate, the functions provided by the gate, and whether or not the functions
are available through the exit programming interface (XPI).

Table 105. Timer domain’s specific gate
Gate Trace Function XPI

TISR TI 0100
TI 0101

REQUEST_NOTIFY_INTERVAL
REQUEST_NOTIFY_TIME_OF_DAY
CANCEL
INQUIRE_EXPIRATION_TOKEN

NO
NO
NO
NO

TISR gate, REQUEST_NOTIFY_INTERVAL function
The REQUEST_NOTIFY_INTERVAL function of the TISR gate is used to request the timer domain to
notify the calling domain after a specified real interval of time. The calling domain can request a NOTIFY
on a one-off basis or periodically, and can specify the type of NOTIFY to be expected.

Input parameters
DOMAIN_TOKEN is a token that is to be passed as a parameter on the NOTIFY call.
STCK_INTERVAL

specifies an interval as a doubleword binary interval in stored clock (STCK) format, where
bit 51 of the doubleword represents 1 microsecond.

PERIODIC_NOTIFY
specifies whether the requested NOTIFY is to be repeated at the specified interval until
canceled (YES), or is to be just a one-off NOTIFY (NO). It can have either of these values:
YES|NO

NOTIFY_TYPE specifies whether the attached task or the timer task is to be used to notify the calling
domain after the specified interval of time. It can have either of these values:
ATTACHED_TASK|TIMER_TASK

[ATTACH_PRIORITY]
defines the priority, in the range 0 through 255, at which the requested NOTIFY task is to
be attached.

[ATTACH_TASK_TIMEOUT]
defines the value, in seconds, of a wait in the attached task after which the dispatcher
causes a time-out.

[ATTACH_MODE]
is the optional TCB mode in which the attached NOTIFY task is to run.

[ORIGIN_DATE]
defines the date from which the timer domain is to start the interval timing for this request.
This parameter is mandatory if ORIGIN_TIME has been specified. It holds the origin date
as MMDDYYYY.

© Copyright IBM Corp. 1997, 2011 1201

[ORIGIN_TIME]
defines the local time of day from which the timer domain is to start the interval timing for
this request. The value in decimal digits is specified in the form HHMMSS:
HH Hours in the range 00 through 23
MM Minutes in the range 00 through 59
SS Seconds in the range 00 through 59.

ORIGIN_TIME defaults to the current time.

Output parameters
TIMER_TOKEN is the token that is returned by the timer domain. The timer token may be used to cancel

the NOTIFY request.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|EXCEPTION|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. It has this value:

INVALID_INTERVAL

TISR gate, REQUEST_NOTIFY_TIME_OF_DAY function
The REQUEST_NOTIFY_TIME_OF_DAY function of the TISR gate is used to inform the timer domain that
an alarm call is required from the timer domain (that is, a NOTIFY) at the specified time of day. The calling
domain can request a NOTIFY on a one-off basis or daily, and the type of NOTIFY to be expected.

Input parameters
DOMAIN_TOKEN is the token that is to be passed as a parameter on the NOTIFY call.
REQUESTED_TIME

is the time of day at which the NOTIFY function is to be invoked. The value is specified in
the form HHMMSS.

PERIODIC_NOTIFY
specifies whether the requested NOTIFY is to be repeated every day at the requested
time (YES), or is to be just a one-off NOTIFY (NO). It can have either of these values:
YES|NO

NOTIFY_TYPE specifies whether the attached task or the timer task is to be used to notify the calling
domain after the specified interval of time. It can have either of these values:
ATTACHED_TASK|TIMER_TASK

[ATTACH_PRIORITY]
defines the priority, in the range 0 through 255, at which the requested NOTIFY task is to
be attached.

[ATTACH_TASK_TIMEOUT]
defines the value, in seconds, of a wait in the attached task after which the dispatcher
causes a time-out.

[ATTACH_MODE]
is the optional TCB mode in which the attached NOTIFY task is to run.

Output parameters
TIMER_TOKEN is the token that is returned by the timer domain.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|EXCEPTION|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. It has this value:

TOO_LATE

TISR gate, CANCEL function
The CANCEL function of the TISR gate is used to cancel a timer request that has already been initiated by
one of these functions:

REQUEST_NOTIFY_INTERVAL
REQUEST_NOTIFY_TIME_OF_DAY

Timer domain (TI)

1202 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
TIMER_TOKEN is the token that was returned when the timer request was made.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|EXCEPTION|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID REQUEST_NOT_FOUND
TOO_LATE

TISR gate, INQUIRE_EXPIRATION_TOKEN function
The INQUIRE_EXPIRATION_TOKEN function of the TISR gate is used by the dispatcher domain during its
initialization.

Input parameters
None.

Output parameters
EXPIRATION_TOKEN

is a token used during initialization of the dispatcher domain.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|EXCEPTION|DISASTER|KERNERROR|PURGED

Timer domain’s generic gate
Table 106 summarizes the timer domain’s generic gate. It shows the level-1 trace point IDs of the modules
providing the functions for the gate, the functions provided by the gate, and the generic format for calls to
the gate.

Table 106. Timer domain’s generic gate
Gate Trace Function Format

DMDM TI 0001
TI 0002

INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

You can find descriptions of these functions and their input and output parameters in the section dealing
with the corresponding generic format, in format DMDM under “Domain manager domain’s generic
formats” on page 669.

In initialization and quiesce processing, the timer domain performs only internal routines.

The timer domain does no termination processing.

Timer domain’s generic format
Table 107 describes the generic format owned by the timer domain and shows the function performed on
the calls.

Table 107. Generic format owned by the timer domain

Format Calling module Function

TISR DFHTISR NOTIFY

Timer domain (TI)

Chapter 108. Timer domain (TI) 1203

In the descriptions of the formats that follow, the “input” parameters are input not to timer domain, but to
the domain being called by the timer. Similarly, the “output” parameters are output by the domain that was
called by timer domain, in response to the call.

TISR format, NOTIFY function
The NOTIFY function of the TISR format is used by the timer domain itself to notify a domain after its
requested interval or time has expired.

Input parameters
DOMAIN_TOKEN is a token that is to be passed as a parameter on the NOTIFY call.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|INVALID|EXCEPTION|DISASTER|KERNERROR|PURGED

Modules

Module Function

DFHTIDM Handles the following requests:
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHTIDUF Formats the timer domain’s control blocks

DFHTISR Handles the following requests:
REQUEST_NOTIFY_INTERVAL
REQUEST_NOTIFY_TIME_OF_DAY
CANCEL
INQUIRE_EXPIRATION_TOKEN

DFHTITRI Interprets timer domain trace entries

Exits
No global user exit points are provided in this domain.

Trace
The point IDs for the timer domain are of the form TI xxxx; the corresponding trace levels are TI 1 and
Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Timer domain (TI)

1204 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 109. Trace domain (TR)

The trace domain is used by CICS system code and user application programs to record details of the
sequence of events occurring in the system. The basic unit of information created for this purpose is called
a trace entry. The trace domain can put trace entries to any combination of three possible destinations:
INTERNAL trace

a wraparound table in main storage in the CICS address space
AUXILIARY trace

a pair of CICS-controlled BSAM data sets used alternately
Generalized trace facility (GTF) trace

the user-defined destination for MVS GTF records.

Design overview
The trace domain consists of a set of modules that are used to record and manage trace information
about internal, auxiliary, and GTF trace. The services of the trace domain are requested by making domain
calls, described in “Domain calls” on page 1206. The modules that handle these domain calls are
DFHTRDM, DFHTRPT, and DFHTRSR.

Certain sub-functions of the trace domain are required by more than one of these modules. These
sub-functions are packaged together in the DFHTRSU module, and are invoked by domain subroutine
calls, described in “Subroutine calls” on page 1209.

All processing directly related to the auxiliary trace data sets is carried out by the DFHTRAO module.
DFHTRAO is loaded below the 16MB line so that it can run in 24-bit mode when calling BSAM and
referencing the auxiliary trace data set data control block (DCB). The DFHTRAO functions are described in
“DFHTRAO functions” on page 1210.

TRACE_PUT handling
For performance reasons, it is important to minimize the path length of a request to write a trace entry.
This is achieved for most TRACE_PUT requests by handling them in module DFHTRPX, which runs as a
subroutine of the domain that is requesting the trace.

DFHTRPX runs in a very restricted environment. It has no working storage and can make no calls out.
Nevertheless, it can still handle the majority of TRACE_PUT requests. When DFHTRPX cannot handle a
request, it passes control to the TRPT gate of the trace domain for module DFHTRPT to process the
request.

DFHTRPX passes control to DFHTRPT in the following situations:

v CICS tracing to GTF is active.

v Transaction dump processing currently holds the trace lock while copying parts of the trace table to a
local buffer.

v DFHTRSR currently holds the trace lock while processing the SET_INTERNAL_TABLE_SIZE function.

v CICS auxiliary trace is active and the requested entry does not fit in the current block, that is, a block
write is required.

v The amount of data passed for tracing is larger than the trace domain limit (overlength entry).

v DFHTRPX’s recovery routine has been driven, probably because of a program check while moving data
into the internal trace table.

v The FE global trap/trace exit (DFHTRAP) is active.

© Copyright IBM Corp. 1997, 2011 1205

Locking
The trace domain handles TRACE_PUT requests from many MVS task control blocks (TCBs), and so
requires a locking mechanism to prevent overlapping or simultaneous access to its control blocks. This is
an MVS TCB lock and is provided by the LOCK and UNLOCK functions of the DFHKERN macro.

DFHTRPX does not acquire the trace lock. It uses “compare double and swap” (CDS) logic to serialize the
allocation of space for trace entries in the internal trace table.

Selectivity
The overall trace master flag is logically a combination of the flags controlling internal, auxiliary, and GTF
trace. It is owned by the trace domain, and both the kernel and the common system area (CSA) have their
own copies that are kept up-to-date by calls from the trace domain.

The user trace master flag is owned by the AP domain. The system trace master flag and the standard
and special component trace flags are owned by the kernel. None of these flags is referenced by the trace
domain.

Domain calls
This section lists the process flows for the domain calls used for the trace domain services.

DMDM gate, PRE_INITIALIZE function
1. Issue an MVS GETMAIN for the trace domain anchor block (TRA) and initialize it.

2. Acquire startup information from the parameter manager (PA) domain and set it in the TRA. The
relevant startup parameters are INTTR, TRTABSZ, AUXTR, AUXTRSW, and GTFTR.

3. Call TRSU SET_UP_INTERNAL_TABLE to get and initialize the internal trace table.

4. Call TRSU GET_GTF_BUFFER to initialize CICS tracing to GTF.

5. Issue the KEDD ADD_GATE call for the DFHTRPT gate to inform the kernel that the trace domain is
available.

6. If internal trace or GTF trace is started, turn on the trace master flags in the TRA, the kernel, and the
CSA.

DMDM gate, INITIALIZE_DOMAIN function
1. If required, call TRSR ACTIVATE_TRAP to active the FE global trap/trace exit, DFHTRAP.

2. If required, call TRSR START_AUXILIARY_TRACE to start auxiliary trace on DFHAUXT.

DMDM gate, QUIESCE_DOMAIN function
Do nothing.

DMDM gate, TERMINATE_DOMAIN function
If auxiliary trace is active, call TRSR STOP_AUXILIARY_TRACE.

KETI gate, NOTIFY_RESET function
Call KETI CONVERT_TO_STCK_FORMAT to get the new STCK value for the last local midnight, and
store this in the TRA.

TRPT gate, TRACE_PUT function
1. Acquire the trace lock.

2. Calculate the length of the required entry.

3. If the entry does not fit in the current trace block (TRBL) and auxiliary trace is active, call TRSU
WRITE_AUX_BUFFER.

4. Use “compare double and swap” (CDS) to update pointer and available length for next entry in the
TRA.

Trace domain (TR)

1206 CICS TS for z/OS: CICS Diagnosis Reference

5. Build the entry in allocated space.

6. If GTF trace is required, issue the GTRACE macro to write an entry to GTF, and if the entry is more
than 256 bytes, split it into multiple entries.

7. If the FE global trap/trace exit, DFHTRAP, has been activated as a result of using the CSFE DEBUG
transaction, or specifying the TRAP=ON system initialization parameter, invoke the exit. See the CICS
Problem Determination Guide for details of DFHTRAP.

8. Release the trace lock.

TRSR gate, SET_INTERNAL_TABLE_SIZE function
1. If the call is from the parameter manager (during initialization), set the required size in the TRA and

return.

2. Acquire the trace lock.

3. If auxiliary trace is active, call TRSU WRITE_AUX_BUFFER to write the current TRBL.

4. If the new table size is smaller, free part of the old table and reset chaining and pointers.

5. If a larger table is required, free all but 16KB (KB equals 1024 bytes) of the old table. Call TRSU
SET_UP_INTERNAL_TABLE. If this completes correctly, free the 16KB that was kept back. If it does
not work, make the 16KB piece the new table.

6. Release the trace lock.

TRSR gate, START_INTERNAL_TRACE function
1. Set the required status in the TRA.

2. If the call is from the parameter manager (during initialization), return.

3. If required, change the kernel and CSA copies of the trace master flag.

TRSR gate, STOP_INTERNAL_TRACE function
1. Set the required status in the TRA.

2. If the call is from the parameter manager (during initialization), return.

3. If required, change the kernel and CSA copies of the trace master flag.

TRSR gate, INQUIRE_INTERNAL_TRACE function
Get the internal status and internal table size from the TRA.

TRSR gate, START_AUXILIARY_TRACE function
1. If the call is from the parameter manager (during initialization), set the status in the TRA and return.

2. If already started, return immediately.

3. If auxiliary trace is currently stopped (rather than paused):

a. Issue an MVS GETMAIN for an auxiliary trace buffer, DCB, and DECB storage.

b. Issue LDLD ACQUIRE_PROGRAM for DFHTRAO.

c. Call DFHTRAO to OPEN the auxiliary trace data set.

4. Acquire the trace lock.

5. Skip the current TRBL pointer in the TRA to the next TRBL to avoid entries from before start appearing
in the auxiliary trace.

6. Release the trace lock.

7. Set the auxiliary trace status in the TRA to started.

8. If required, change the kernel and CSA copies of the trace master flag.

TRSR gate, STOP_AUXILIARY_TRACE function
1. If the call is from the parameter manager (during initialization), set the status in the TRA and return.

2. If already stopped, return immediately.

3. Acquire the trace lock.

Trace domain (TR)

Chapter 109. Trace domain (TR) 1207

4. If auxiliary trace is started (rather than paused), call TRSU WRITE_AUX_BUFFER to output the
current TRBL to the auxiliary trace data set, and move the current TRBL pointer in the TRA to the
next TRBL.

5. Call TRSU WRITE_AUX_BUFFER to write an end-of-file indication on the auxiliary trace data set.

6. Call DFHTRAO to ensure (CHECK) that output is complete.

7. Call DFHTRAO to CLOSE the auxiliary trace data set.

8. Call TRSU TERMINATE_AUXILIARY_TRACE.

9. Release the trace lock.

10. Issue LDLD RELEASE_PROGRAM for DFHTRAO.

TRSR gate, PAUSE_AUXILIARY_TRACE function
1. If auxiliary trace is stopped, return with error.

2. If auxiliary trace is paused, return ‘OK’.

3. Acquire the trace lock.

4. Call TRSU WRITE_AUX_BUFFER to output the current TRBL to the auxiliary trace data set, and move
the current TRBL pointer in the TRA to the next TRBL.

5. Release the trace lock.

6. Change the kernel and CSA copies of the trace master flag if required.

TRSR gate, SET_AUX_TRACE_AUTOSWITCH function
Set the new autoswitch status in the TRA.

TRSR gate, SWITCH_AUXILIARY_EXTENTS function
1. If auxiliary trace is started or paused:

a. Acquire the trace lock.

b. Call TRSU WRITE_AUX_BUFFER to write an end-of-file indication on the auxiliary trace data set.

c. Call DFHTRAO to ensure (CHECK) that output is complete.

d. Call DFHTRAO to close the auxiliary trace data set.

2. Change the name of the current extent in the TRA from DFHAUXT to DFHBUXT or from DFHBUXT to
DFHAUXT.

3. If auxiliary trace is started or paused:

a. Call DFHTRAO to OPEN the auxiliary trace data set.

b. Release the trace lock.

TRSR gate, INQUIRE_AUXILIARY_TRACE function
Get the auxiliary trace status, current extent name, and autoswitch status from the TRA.

TRSR gate, START_GTF_TRACE function
1. If the call is from the parameter manager (during initialization), set the required status in the TRA and

return.

2. If already started, return immediately.

3. Call TRSU GET_GTF_BUFFER.

4. Set the status in the TRA to started.

5. If required, change the kernel and CSA copies of the trace master flag.

TRSR gate, STOP_GTF_TRACE function
1. Set the status in the TRA to stopped.

2. If the call is from the parameter manager (during initialization), return.

3. If required, change the kernel and CSA copies of the trace master flag.

4. If the GTF buffer is present:

Trace domain (TR)

1208 CICS TS for z/OS: CICS Diagnosis Reference

a. Acquire the trace lock.

b. Issue an MVS FREEMAIN for the GTF buffer.

c. Release the trace lock.

TRSR gate, INQUIRE_GTF_TRACE function
Get the GTF status from the TRA.

TRSR gate, ACTIVATE_TRAP function
1. If the call is from the parameter manager (during initialization), set the required status in the TRA and

return.

2. If the trap is already active, check whether it is marked unusable because a program check occurred
while the trap was in control:

a. If the trap is unusable, return with error.

b. If the trap is usable, set the required status in the TRA and return.

3. Issue LDLD ACQUIRE_PROGRAM for DFHTRAP.

4. Issue an MVS GETMAIN for the DFHTRAP work area (TRGTW).

5. Acquire the trace lock.

6. Check whether another task has activated the trap:

a. If the trap is not active, update the trap status in the TRA, release the trace lock, and return.

b. If the trap has been activated by another task, release the trace lock, issue LDLD
RELEASE_PROGRAM for DFHTRAP, issue an MVS FREEMAIN for the DFHTRAP work area, and
return.

TRSR gate, DEACTIVATE_TRAP function
1. If the call is from the parameter manager (during initialization), set the required status in the TRA and

return.

2. If the trap is not active, return.

3. Acquire the trace lock.

4. Update the trap status in the TRA.

5. Release the trace lock.

6. Issue LDLD RELEASE_PROGRAM for DFHTRAP.

7. Issue an MVS FREEMAIN for the DFHTRAP work area.

Subroutine calls
This section lists the process flows for the domain subroutine calls used for the trace domain
sub-functions.

TRSU format, WRITE_AUX_BUFFER function
1. If output to the auxiliary trace data set is pending, call DFHTRAO with a CHECK request to allow

output to complete.

2. If there was no output pending or the output completed successfully, call DFHTRAO to write the
current TRBL, and return.

If an ‘end of extent’ was encountered on the BSAM CHECK:

3. Call DFHTRAO to close the auxiliary trace data set.

4. If autoswitch is not required:

a. Issue an MVS FREEMAIN for the auxiliary trace buffer, DCB, and DECB.

b. Set auxiliary trace status in the TRA to stopped.

c. Change the kernel and CSA copies of the trace master flag if required.

d. Return.

Trace domain (TR)

Chapter 109. Trace domain (TR) 1209

5. If autoswitch next is specified, change to autoswitch off.

6. Change the name of the current extent in the TRA from DFHAUXT to DFHBUXT or from DFHBUXT to
DFHAUXT.

7. Call DFHTRAO to OPEN the auxiliary trace data set.

8. Call DFHTRAO with a WRITE request to rewrite the block that caused the end-of-extent.

9. Go back to the top of this function’s processing to issue the write that was originally requested in this
call.

TRSU format, TERMINATE_AUXILIARY_TRACE function
1. Issue an MVS FREEMAIN for the auxiliary trace buffer, DCB, and DECB.

2. Set the auxiliary trace status in the TRA to stopped.

3. If required, change the kernel and CSA copies of the trace master flag.

TRSU format, GET_GTF_BUFFER function
1. Issue an MVS GETMAIN for the GTF buffer.

2. Save the address in the TRA.

TRSU format, SET_UP_INTERNAL_TABLE function
1. Issue an MVS V-type GETMAIN for the required size.

2. Initialize all TRBL headers within the acquired area.

DFHTRAO functions
This section lists the process flows for the DFHTRAO functions for auxiliary trace data sets.

DFHTRAO, OPEN function
1. If the DCB indicates already open, return ‘OK’.

2. Issue the BSAM OPEN macro.

DFHTRAO, CLOSE function
1. If the DCB indicates already closed, return ‘OK’.

2. Issue the BSAM CLOSE macro.

DFHTRAO, CHECK function
1. Issue the BSAM CHECK macro.

2. If an end-of-extent is caused by the write for which this CHECK is issued, the DCB ABEND exit is
driven and causes DFHTRAO to return an end-of-extent indication to the caller.

3. Clear output pending status in TRA.

DFHTRAO, WRITE function
1. Move the specified TRBL to the auxiliary trace buffer.

2. Issue the BSAM WRITE macro.

3. Set output pending status in the TRA.

Trace domain’s specific gates
Table 108 summarizes the trace domain’s specific gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gates, the functions provided by the gates, and whether or not the
functions are available through the exit programming interface (XPI).

Table 108. Trace domain’s specific gates
Gate Trace Function XPI

TRPT None TRACE_PUT YES

Trace domain (TR)

1210 CICS TS for z/OS: CICS Diagnosis Reference

Table 108. Trace domain’s specific gates (continued)
Gate Trace Function XPI

TRSR TR 0201
TR 0202

SET_INTERNAL_TABLE_SIZE
START_INTERNAL_TRACE
STOP_INTERNAL_TRACE
INQUIRE_INTERNAL_TRACE
START_AUXILIARY_TRACE
STOP_AUXILIARY_TRACE
PAUSE_AUXILIARY_TRACE
SET_AUX_TRACE_AUTOSWITCH
SWITCH_AUXILIARY_EXTENTS
INQUIRE_AUXILIARY_TRACE
START_GTF_TRACE
STOP_GTF_TRACE
INQUIRE_GTF_TRACE
ACTIVATE_TRAP
DEACTIVATE_TRAP

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

TRPT gate, TRACE_PUT function
This function is invoked to write a trace entry to the active trace destinations.

Input parameters
POINT_ID is a number, unique within the calling domain, that identifies the trace entries made from

this call.
[DATA1] through [DATA7]

are BLOCK descriptions of up to seven areas to be included in the data section of the
trace entry. They appear in numerical order in the entry, each preceded by a 2-byte length
field.

The maximum total length of data that can be traced in one call is as described below:
Length of trace table block 4096
less length of trace table block header - 24
less length of trace entry header - 32

Maximum space for data + length fields 4040
For each DATA field specified, 2 bytes must be
subtracted to allow for the length field.
Maximum space for actual data = 4040 - (2 * n)
where ’n’ is the number of DATA fields specified.

[RETURN_ADDR]
is used by DFHTRP to give a return address in the trace entry from the calling module
rather than in DFHTRP.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Note: No response is returned when the TRACE_PUT request is handled by module
DFHTRPX without involving the trace domain.

TRSR gate, SET_INTERNAL_TABLE_SIZE function
The SET_INTERNAL_TABLE_SIZE function of the TRSR gate is used to change the size of the internal
trace table during a CICS run.

Input parameters
TABLE_SIZE is the required table size, specified as a number of KB (KB equals 1024 bytes). This is

rounded up to the nearest multiple of 4KB. The lower limit is 16KB. The upper limit is set
only by the amount of storage available. If the table is being made larger, the existing
table is freed and a variable MVS GETMAIN issued for the required size. The actual

Trace domain (TR)

Chapter 109. Trace domain (TR) 1211

length of the new table can be determined by issuing an INQUIRE_INTERNAL_TRACE
command. If the table is being made smaller, part of the existing table is freed.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_TABLE_SIZE
NO_SPACE

Note: INVALID_TABLE_SIZE indicates that the value of TABLE_SIZE is less than 16KB.

NO_SPACE indicates that the variable GETMAIN for the new trace table failed to obtain even the minimum trace
table size. In this situation, the trace domain retains an amount equal to the minimum table size from the old table to
use.

TRSR gate, START_INTERNAL_TRACE function
The START_INTERNAL_TRACE function of the TRSR gate is used to activate tracing to the internal trace
table.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

TRSR gate, STOP_INTERNAL_TRACE function
The STOP_INTERNAL_TRACE function of the TRSR gate is used to deactivate tracing to the internal
trace table.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

TRSR gate, INQUIRE_INTERNAL_TRACE function
The INQUIRE_INTERNAL_TRACE function of the TRSR gate is used to return the status of the internal
trace and the current size of the internal trace table.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
TABLE_SIZE is the size of the current internal trace table in KB (KB equals 1024 bytes).
INTERNAL_STATUS

indicates whether internal trace is active (STARTED) or inactive (STOPPED).

Trace domain (TR)

1212 CICS TS for z/OS: CICS Diagnosis Reference

TRSR gate, START_AUXILIARY_TRACE function
The START_AUXILIARY_TRACE function of the TRSR gate is used to open the current auxiliary trace
extent (if it is closed) and start tracing to it.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CANT_GET_AUX_BUFFER
DFHTRAO_NOT_AVAILABLE
OPEN_FAILED

Note: CANT_GET_AUX_BUFFER indicates that MVS had insufficient free storage to satisfy the request for a buffer
below the 16MB line.

DFHTRAO_NOT_AVAILABLE indicates that the request to the CICS loader to acquire the auxiliary trace output
program, DFHTRAO, has failed.

OPEN_FAILED indicates that the MVS open of the auxiliary trace data set has failed.

TRSR gate, STOP_AUXILIARY_TRACE function
The STOP_AUXILIARY_TRACE function of the TRSR gate is used to stop auxiliary tracing and close the
currently active auxiliary trace extent.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

TRSR gate, PAUSE_AUXILIARY_TRACE function
The PAUSE_AUXILIARY_TRACE function of the TRSR gate is used to stop auxiliary tracing without
closing the currently active extent.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. It has this value:

AUX_TRACE_STOPPED

meaning that the pause is allowed only if auxiliary trace is not stopped.

TRSR gate, SET_AUX_TRACE_AUTOSWITCH function
The SET_AUX_TRACE_AUTOSWITCH function of the TRSR gate is used to allow the autoswitch facility
for the CICS auxiliary trace data set to be enabled or disabled.

Trace domain (TR)

Chapter 109. Trace domain (TR) 1213

Input parameters
AUTOSWITCH_STATUS

Indicates whether or not an automatic switch to the inactive CICS auxiliary extent is to
occur once only when the current extent fills up, or that such automatic switching should
occur “continuously” whenever the current extent fills up. It can have any one of these
values:
OFF|ONCE|CONTINUOUS

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. It has this value:

INVALID_AUTOSWITCH_STATUS

meaning that an incorrect value was passed for AUTOSWITCH_STATUS.

TRSR gate, SWITCH_AUXILIARY_EXTENTS function
The SWITCH_AUXILIARY_EXTENTS function of the TRSR gate allows switching from one auxiliary trace
extent to the other.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. It has this value:

OPEN_FAILED

meaning that the attempt to open the new auxiliary extent failed.

TRSR gate, INQUIRE_AUXILIARY_TRACE function
The INQUIRE_AUXILIARY_TRACE function of the TRSR gate is used to return the current state of the
auxiliary trace.

Input parameters
None.

Output parameters
AUXILIARY_STATUS

Indicates the current status of auxiliary trace. It can have any one of these values:
STARTED|STOPPED|PAUSED

EXTENT indicates the currently active CICS auxiliary trace extent; that is, the extent that is already
in use or is used if CICS auxiliary tracing is started. It can have either of these values:
DFHAUXT|DFHBUXT

AUTOSWITCH_STATUS
Indicates whether or not an automatic switch to the inactive CICS auxiliary extent is to
occur once only when the current extent fills up, or that such automatic switching should
occur “continuously” whenever the current extent fills up. It can have any one of these
values:
OFF|ONCE|CONTINUOUS

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Trace domain (TR)

1214 CICS TS for z/OS: CICS Diagnosis Reference

TRSR gate, START_GTF_TRACE function
The START_GTF_TRACE function of the TRSR gate is used to start the tracing of CICS activity to GTF. It
is the responsibility of the user to ensure that GTF has been started in MVS with at least TRACE=USR. If
it has not, CICS issues the GTF calls but they are ignored by GTF.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. It has this value:

CANT_GET_GTF_BUFFER

meaning that there was insufficient storage for a buffer to be used in constructing
continuation records when an individual entry is longer than 256 bytes.

TRSR gate, STOP_GTF_TRACE function
The STOP_GTF_TRACE function of the TRSR gate is used to stop tracing of CICS activity to GTF.

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

TRSR gate, INQUIRE_GTF_TRACE function
The INQUIRE_GTF_TRACE function of the TRSR gate is used to return the current state of the GTF
trace.

Input parameters
None.

Output parameters
GTF_STATUS indicates whether CICS tracing to GTF is active (STARTED) or inactive (STOPPED).
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

TRSR gate, ACTIVATE_TRAP function
The ACTIVATE_TRAP function of the TRSR gate is used to activate the FE global trap/trace exit
(DFHTRAP).

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION DFHTRAP_NOT_FOUND
DFHTRAP_UNUSABLE

Trace domain (TR)

Chapter 109. Trace domain (TR) 1215

RESPONSE Possible REASON values

Note: DFHTRAP_NOT_FOUND indicates that the request to the CICS loader to acquire the FE global trap/trace exit
program, DFHTRAP, has failed.

DFHTRAP_UNUSABLE indicates that the trap was already active, but marked as unusable because a program
check had previously occurred when DFHTRAP was in control.

TRSR gate, DEACTIVATE_TRAP function
The DEACTIVATE_TRAP function of the TRSR gate is used to deactivate the FE global trap/trace exit
(DFHTRAP).

Input parameters
None.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Trace domain’s generic gates
Table 109 summarizes the trace domain’s generic gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gates, the functions provided by the gates, and the generic formats
for calls to the gates.

Table 109. Trace domain’s generic gates
Gate Trace Function Format

DMDM TR 0001
TR 0002

PRE_INITIALIZE
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

KETI TR 0201
TR 0202

NOTIFY_RESET KETI

For descriptions of these functions and their input and output parameters, refer to the sections dealing with
the corresponding generic formats:

Functions and parameters

Format DMDM—“Domain manager domain’s generic formats” on page 669

Format KETI—“Kernel domain’s generic formats” on page 848

In preinitialization processing, the trace domain establishes the initial tracing status:

v A suitably sized internal trace table is created.

v If internal tracing or GTF tracing is required, set on the trace master flag.

v If required, start internal tracing and CICS GTF tracing.

v As required, set the auxiliary tracing switch status to ‘started’ or ‘stopped’.

The information always comes from the system initialization parameters—trace domain is always cold
started.

In initialization processing, the trace domain starts auxiliary tracing if it is required.

The trace domain does no quiesce processing.

Trace domain (TR)

1216 CICS TS for z/OS: CICS Diagnosis Reference

In termination processing, the trace domain stops auxiliary tracing if it is active.

Control blocks
Figure 112 shows the control blocks associated with the trace domain.

TR domain anchor block (TRA).
There is one TRA in the system. It contains all status information relating
to the trace domain and also pointers to the other trace domain control
blocks.

Internal trace table. An area of virtual storage above the 16MB line used for recording trace
entries.

TR block (TRBL). The internal trace table consists of a number of TRBLs chained in a loop.
They are each 4096 bytes long. Each block contains a standard header
and a sequence of variable-length trace entries.

Trace entry (TREN). All trace entries consist of a header together with any data specified on
the call. The length of each trace entry is in the range 32 through 4072
bytes.

TR auxiliary trace data set DCB, DECB, and buffer.
During the auxiliary trace start process, an MVS GETMAIN is issued to
acquire storage below the 16MB line for these areas. Their addresses are
kept in the TRA. The storage is released when auxiliary trace is stopped.

GTF buffer. During the GTF trace start process, an MVS GETMAIN is issued to
acquire storage above the 16MB line for this area. It is 256 bytes long,
and its address is kept in the TRA. The storage is released when GTF
trace is stopped. The buffer is used when splitting large entries (more than
256 bytes) into 256-byte pieces to be written to GTF. This is done because
GTF has a length restriction of 256 bytes.

Global trap/trace exit work area (TRGTW).
When the FE global trap/trace exit (DFHTRAP) is activated, an MVS
GETMAIN is issued to acquire storage above the 16MB line for the
TRGTW. This area contains a register save area and all working storage
associated with DFHTRAP, including the parameter list passed to the exit
program. Its address is kept in the TRA. The storage is released when the
trap is deactivated.

See the CICS Data Areas manual for a detailed description of these control blocks.

Internal
TRBL trace

table
TRBL

Aux trace
buffer

Next
Aux trace space
DCB in

T R A

Trace

anchor

block

TRBL
Aux trace current
DECB block

TRBL

DFHTRAP
work area

GTF trace
buffer

Figure 112. Control blocks associated with the trace domain

Trace domain (TR)

Chapter 109. Trace domain (TR) 1217

Modules

Module Function

DFHTRDM Processes requests to the DMDM gate of the trace domain. Part of the DFHSIP load module.

DFHTRPT Processes requests to the TRPT gate of the trace domain. Part of the DFHSIP load module.

DFHTRPX Processes, within the calling domain, all TRACE_PUT requests that do not require special
handling. Part of the DFHSIP load module.

DFHTRSR Processes requests to the TRSR and KETI gates of the trace domain. Part of the DFHSIP
load module.

DFHTRSU Processes domain subroutine requests of format TRSU. Part of the DFHSIP load module.

DFHTRAO Auxiliary trace output subroutines for interfacing with BSAM. Loaded separately below the
16MB line when auxiliary trace is started.

DFHTRAP FE global trap/trace exit program. Loaded separately above the 16MB line when the trap is
activated.

Copy books

Copy book Function

DFHTRADS Contains the definition of the parameter list passed to DFHTRAP.

DFHTRDS Contains the definitions of the TRA and TRBL.

DFHTREN Contains the definition of the trace entry (TREN) format.

Exits
No global user exit points are provided in this domain.

Trace
The point IDs for the trace domain are of the form TR xxxx; the corresponding trace levels are TR 1 and
Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Dumps
A formatted system dump contains (depending on the options specified on the TR keyword):
v TR anchor block with interpretation
v Auxiliary trace data set DCB if data set open
v Auxiliary trace data set DECB if data set open
v Auxiliary trace buffer if data set open
v Internal trace table in abbreviated format
v Internal trace table in full format.

System dumps requested by the trace domain fall into two categories:
Dump code TRnnnn These dump codes are preceded by a console message, DFHTRnnnn.

See the CICS Messages and Codes manual for details.
Dump code KERNDUMP At many points in its processing, the trace domain cannot issue domain

calls because they would lead to further trace calls and possible recursion
of the error. In these circumstances, the trace domain uses MVS WTO to

Trace domain (TR)

1218 CICS TS for z/OS: CICS Diagnosis Reference

write a console message and the kernel dump function to take a system
dump. All such dumps have dump code KERNDUMP. The message
numbers for which this occurs are DFHTR0105, DFHTR0114,
DFHTR0115, and DFHTR0116. See the CICS Messages and Codes
manual for more details.

Trace domain (TR)

Chapter 109. Trace domain (TR) 1219

Trace domain (TR)

1220 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 110. Temporary storage domain (TS)

The temporary storage domain manages temporary storage requests.

Temporary storage domain’s specific gates
Table 110 summarizes the temporary storage domain’s specific gates. It shows the level-1 trace point IDs
of the modules providing the functions for the gates, the functions provided by the gates, and whether or
not the functions are available through the exit programming interface (XPI).

Table 110. Temporary storage domain’s specific gates
Gate Trace Function XPI

TSQR TS 0201
TS 0202

WRITE
REWRITE
READ_INTO
READ_SET
READ_NEXT_INTO
READ_NEXT_SET
DELETE

NO
NO
NO
NO
NO
NO
NO

TSPT TS 0301
TS 0302

PUT
PUT_REPLACE
GET
GET_SET
GET_RELEASE
GET_RELEASE_SET
RELEASE

NO
NO
NO
NO
NO
NO
NO

TSSH TS 0A01
TS 0A02

INITIALIZE
INQUIRE_POOL_TOKEN
WRITE
REWRITE
READ_INTO
READ_SET
READ_NEXT_INTO
READ_NEXT_SET
DELETE
INQUIRE_SYSID_TABLE_TOKEN
START_BROWSE
GET_NEXT
END_BROWSE
INQUIRE_QUEUE

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

TSSR TS 0601
TS 0602

SET_START_TYPE
SET_BUFFERS
SET_STRINGS

NO
NO
NO

TSBR TS 0701
TS 0702

INQUIRE_QUEUE
START_BROWSE
GET_NEXT
END_BROWSE
CHECK_PREFIX

NO
NO
NO
NO
NO

TSQR gate, WRITE function
If the queue does not exist, this function creates a queue with the single item provided, and the queue's
"read cursor" is set to zero.

If the queue already exists, the item provided is appended to the queue, and the read cursor left
unchanged.

Input parameters
QUEUE_NAME is the name of the queue being created or appended to.
ITEM_DATA is the address and length of the item being written.
[BMS] indicates whether or not BMS owns this queue. It can have either of these values:

YES|NO

© Copyright IBM Corp. 1997, 2011 1221

SUSPEND indicates whether or not the request will be suspended if there is insufficient auxiliary
storage to satisfy the request. This option is ignored if the queue is in main storage.

STORAGE_TYPE indicates whether the queue is to be created in main or auxiliary storage. Note that this
option is ignored if the queue already exists.

[CALLER] indicates whether this request originated from an EXEC or macro call. The default is
MACRO. It can have either of these values:
EXEC|MACRO

[FMH] indicates whether the data contains an FMH. It can have either of these values:
YES|NO

Output parameters
[TOTAL_ITEMS]

is the total number of items in the queue on completion of the operation.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION QUEUE_FULL
INSUFFICIENT_STORAGE
INVALID_LENGTH
IO_ERROR
INVALID_QUEUE_TYPE
LOCKED
INVALID_QUEUE_NAME
QUEUE_DELETED
QUEUE_REMOTE

TSQR gate, REWRITE function
This function updates the specified item in an existing queue. The read cursor is unchanged.

Input parameters
QUEUE_NAME is the name of the queue being updated.
ITEM_NUMBER is the number of the item to be updated.
ITEM_DATA is the address and length of the item being written.
SUSPEND indicates whether the request will be suspended if there is insufficient auxiliary storage to

satisfy the request. This option is ignored if the queue is in main storage.
[CALLER] indicates whether this request originated from an EXEC or macro call. The default is

MACRO. It can have either of these values:
EXEC|MACRO

[FMH] indicates whether the data contains an FMH. It can have either of these values:
YES|NO

Output parameters
[TOTAL_ITEMS]

is the total number of items in the queue.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Temporary storage domain (TS)

1222 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION INSUFFICIENT_STORAGE
INVALID_LENGTH
IO_ERROR
INVALID_QUEUE_TYPE
QUEUE_NOT_FOUND
ITEM_NOT_FOUND
LOCKED
INVALID_QUEUE_NAME
QUEUE_DELETED
QUEUE_REMOTE

TSQR gate, READ_INTO function
This function reads the specified queue item into a buffer provided by the caller. The read cursor for the
queue is set to the item number provided. The caller provides the address (item_buffer_p) and buffer
length (item_buffer_m). The actual length of the record is returned in item_buffer_n. If item_buffer_n is
greater than item_buffer_m, the data is truncated (but an OK response is returned).

Input parameters
QUEUE_NAME is the name of the queue being read.
ITEM_NUMBER is the number of the item to be read.
ITEM_BUFFER specifies the address (item_buffer_p) and maximum length (item_buffer_m) of the data

area into which the data will be read. The actual data length is returned in item_buffer_n.
[CALLER] indicates whether this request originated from an EXEC or macro call. The default is

MACRO. It can have either of these values:
EXEC|MACRO

Output parameters
[TOTAL_ITEMS]

returns the total number of items in the queue.
[FMH] indicates whether the data contains an FMH. It can have either of these values:

YES|NO
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION IO_ERROR
INVALID_QUEUE_TYPE
QUEUE_NOT_FOUND
ITEM_NOT_FOUND
INVALID_QUEUE_NAME

TSQR gate, READ_SET function
This function reads the specified queue item into a storage area obtained by TS. The read cursor for the
queue is set to the input item number.

Input parameters
QUEUE_NAME is the name of the queue being read.
ITEM_NUMBER is the number of the item to be read.
[TCTTE_ADDRESS]

is the address of the TCTTE - required if SET_STORAGE_CLASS(TERMINAL) is
specified.

Temporary storage domain (TS)

Chapter 110. Temporary storage domain (TS) 1223

[SET_STORAGE_CLASS]
specifies the class of storage into which the item will be read. This may be either TASK
(the default) or TERMINAL. If TERMINAL is specified, the item is read into a TIOA. It can
have either of these values:
TASK|TERMINAL

[CALLER] indicates whether this request originated from an EXEC or macro call. The default is
MACRO. It can have either of these values:
EXEC|MACRO

Output parameters
ITEM_DATA returns the address and length of the item data.
[TOTAL_ITEMS]

returns the total number of items in the queue.
[FMH] indicates whether the data contains an FMH. It can have either of these values:

YES|NO
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION IO_ERROR
INVALID_QUEUE_TYPE
QUEUE_NOT_FOUND
ITEM_NOT_FOUND
INVALID_QUEUE_NAME

TSQR gate, READ_NEXT_INTO function
This function increments the read cursor by one and reads that item number into the buffer provided by
the caller. The caller provides the address (item_buffer_p) and buffer length (item_buffer_m). The actual
length of the record is returned in item_buffer_n. If item_buffer_n is greater than item_buffer_m, the data
will have been truncated.

Input parameters
QUEUE_NAME is the name of the queue being read.
ITEM_BUFFER specifies the address (item_buffer_p) and maximum length (item_buffer_m) of the data

area into which the data will be read. The actual data length is returned in item_buffer_n.
[CALLER] indicates whether this request originated from an EXEC or macro call. The default is

MACRO. It can have either of these values:
EXEC|MACRO

ITEM NUMBER returns the number of the item just read.

Output parameters
[TOTAL_ITEMS]

returns the total number of items in the queue.
[FMH] indicates whether the data contains an FMH. It can have either of these values:

YES|NO
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Temporary storage domain (TS)

1224 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION IO_ERROR
INVALID_QUEUE_TYPE
QUEUE_NOT_FOUND
ITEM_NOT_FOUND
INVALID_QUEUE_NAME

TSQR gate, READ_NEXT_SET function
This function increments the queue's read cursor by one and reads that item number into a storage area
obtained by TS.

Input parameters
QUEUE_NAME is the name of the queue being read.
[TCTTE_ADDRESS]

is the address of the TCTTE - required if SET_STORAGE_CLASS(TERMINAL) is
specified.

[SET_STORAGE_CLASS]
specifies the type of storage into which the item will be read. This may be either TASK
(the default) or TERMINAL. If TERMINAL is specified, the item is read into a TIOA. It can
have either of these values:
TASK|TERMINAL

[CALLER] indicates whether this request originated from an EXEC or macro call. The default is
MACRO. It can have either of these values:
EXEC|MACRO

Output parameters
ITEM_DATA returns the address and length of the item data.
[ITEM_NUMBER]

returns the number of the item just read.
[TOTAL_ITEMS]

returns the total number of items in the queue.
[FMH] indicates whether the data contains an FMH. It can have either of these values:

YES|NO
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION IO_ERROR
INVALID_QUEUE_TYPE
QUEUE_NOT_FOUND
ITEM_NOT_FOUND
INVALID_QUEUE_NAME

TSQR gate, DELETE function
This function deletes the specified queue.

Input parameters
QUEUE_NAME is the name of the queue to be deleted. the request.
[CALLER] indicates whether this request originated from an EXEC or macro call. The default is

MACRO. It can have either of these values:
EXEC|MACRO

RESPONSE is the domain’s response to the call. It can have any of these values:

Temporary storage domain (TS)

Chapter 110. Temporary storage domain (TS) 1225

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_QUEUE_TYPE
QUEUE_NOT_FOUND
LOCKED
INVALID_QUEUE_NAME
QUEUE_DELETED

TSQR gate, ALLOCATE_SET_STORAGE function
This function allocates set storage of the requested length.

Input parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_QUEUE_TYPE
QUEUE_NOT_FOUND
LOCKED
INVALID_QUEUE_NAME
QUEUE_DELETED

TSPT gate, PUT function
If the queue does not already exist, this function creates a queue with the single item provided.

If the queue already exists, and is recoverable, a duplicate_name exception is returned. Otherwise, the
item is appended to the queue.

Input parameters
QUEUE_NAME is the name of the queue being created or appended to.
ITEM_DATA is the address and length of the item being written.
[IC_DATA] is the address and length of an optional ICE.
[BMS] this option indicates whether or not BMS owns this queue. If the queue already exists and

is a BMS queue then BMS(YES) must be specified on the request. Otherwise an INVALID
response is returned. It can have either of these values:
YES|NO

[IC] this option indicates whether or not Interval Control owns this queue. If the queue already
exists and is an IC queue then IC(YES) must be specified on the request. Otherwise an
INVALID response is returned. It can have either of these values:
YES|NO

[FMH] indicates whether the data contains an FMH. It can have either of these values:
YES|NO

SUSPEND indicates whether the request is to be suspended if there is insufficient auxiliary storage to
satisfy the request.

Output parameters
RECOVERABLE returns whether the queue is recoverable or not.
QUEUE_CREATION_TIME

returns the store clock time at which the queue was created.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Temporary storage domain (TS)

1226 CICS TS for z/OS: CICS Diagnosis Reference

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INSUFFICIENT_STORAGE
QUEUE_FULL
DUPLICATE_NAME
INVALID_LENGTH
IO_ERROR
INVALID_QUEUE_TYPE
LOCKED
INVALID_QUEUE_NAME
QUEUE_DELETED
QUEUE_REMOTE

TSPT gate, PUT_REPLACE function
If the queue does not exist, this function creates the queue with the item provided. If the queue does exist,
the first item in the queue is replaced by the item provided.

Input parameters
QUEUE_NAME is the name of the queue being created or written to.
ITEM_DATA is the address and length of the data item being written.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_LENGTH
IO_ERROR
INVALID_QUEUE_TYPE
LOCKED
INVALID_QUEUE_NAME
QUEUE_DELETED
QUEUE_REMOTE

TSPT gate, GET function
This function retrieves the first item in a "put" queue.

Input parameters
QUEUE_NAME is the name of the queue being accessed.
ITEM_BUFFER specifies the address (item_buffer_p) and maximum length (item_buffer_m) of the data

area into which the data will be read. The actual data length is returned in item_buffer_n.

Output parameters
[FMH] indicates whether the data contains an FMH. It can have either of these values:

YES|NO
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION IO_ERROR
INVALID_QUEUE_TYPE
QUEUE_NOT_FOUND
INVALID_QUEUE_NAME

Temporary storage domain (TS)

Chapter 110. Temporary storage domain (TS) 1227

TSPT gate, GET_SET function
This function retrieves the first item in a "put" queue into a set storage area.

Input parameters
QUEUE_NAME is the name of the queue being accessed.

Output parameters
ITEM_DATA returns the address and length of the item in set storage.
[FMH] indicates whether the data contains an FMH. It can have either of these values:

YES|NO
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION IO_ERROR
INVALID_QUEUE_TYPE
QUEUE_NOT_FOUND
INVALID_QUEUE_NAME

TSPT gate, GET_RELEASE function
This function retrieves and deletes the first item in a "put" queue. If the queue has one item, the queue is
deleted.

Input parameters
QUEUE_NAME is the name of the queue being accessed.
ITEM_BUFFER specifies the address (item_buffer_p) and maximum length (item_buffer_m) of the data

area into which the data will be read. The actual data length is returned in item_buffer_n.

Output parameters
[FMH] indicates whether the data contains an FMH. It can have either of these values:

YES|NO
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION IO_ERROR
INVALID_QUEUE_TYPE
QUEUE_NOT_FOUND
LOCKED
INVALID_QUEUE_NAME
QUEUE_DELETED

TSPT gate, GET_RELEASE_SET function
This function retrieves the first item in a "put" queue into set storage and then deletes it. If the queue has
one item, the queue is deleted.

Input parameters
QUEUE_NAME is the name of the queue being accessed.

Output parameters
ITEM_DATA returns the address and length of the item in set storage.
[FMH] indicates whether the data contains an FMH. It can have either of these values:

Temporary storage domain (TS)

1228 CICS TS for z/OS: CICS Diagnosis Reference

YES|NO
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION IO_ERROR
INVALID_QUEUE_TYPE
QUEUE_NOT_FOUND
LOCKED
INVALID_QUEUE_NAME
QUEUE_DELETED

TSPT gate, RELEASE function
This function deletes a "put" queue.

Input parameters
QUEUE_NAME is the name of the queue being deleted. the request.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_QUEUE_TYPE
QUEUE_NOT_FOUND
LOCKED
INVALID_QUEUE_NAME
QUEUE_DELETED

TSSH gate, INITIALIZE function
Initialize the Shared TS interface.

Input parameters

TSSH gate, INQUIRE_POOL_TOKEN function
Return token for the pool corresponding to the sysid provided.

Input parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SYSID_NOT_FOUND

TSSH gate, WRITE function
If the queue does not exist, this function creates a queue with the single item provided, and the queue's
"read cursor" is set to zero.

If the queue already exists, the item provided is appended to the queue, and the read cursor left
unchanged.

Temporary storage domain (TS)

Chapter 110. Temporary storage domain (TS) 1229

Input parameters
[POOL_TOKEN] is a token for the shared TS pool.
QUEUE_NAME is the name of the queue being created or appended to.
ITEM_DATA is the address and length of the item being written.
SUSPEND indicates whether or not the request will be suspended if there is insufficient storage to

satisfy the request.
FMH indicates whether the data contains an FMH.
[TRANSID] is the id of the transaction which issued this request.
[TRANSACTION_NUMBER]

is the 4-byte transaction number (in packed-decimal format).

Output parameters
TOTAL_ITEMS is the total number of items in the queue on completion of the operation.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_ERROR
IO_ERROR
QUEUE_FULL
INSUFFICIENT_STORAGE
INVALID_LENGTH
INVALID_QUEUE_NAME
MAXIMUM_QUEUES_REACHED

TSSH gate, REWRITE function
This function updates the specified item in an existing queue. The read cursor is unchanged.

Input parameters
[POOL_TOKEN] is a token for the shared TS pool.
QUEUE_NAME is the name of the queue being updated.
ITEM_NUMBER is the number of the item to be updated.
ITEM_DATA is the address and length of the item being written.
SUSPEND indicates whether the request will be suspended if there is insufficient storage to satisfy

the request.
FMH indicates whether the data contains an FMH.
[TRANSACTION_NUMBER]

is the 4-byte transaction number (in packed-decimal format).

Output parameters
TOTAL_ITEMS is the total number of items in the queue.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_ERROR
IO_ERROR
INSUFFICIENT_STORAGE
INVALID_LENGTH
QUEUE_NOT_FOUND
ITEM_NOT_FOUND
INVALID_QUEUE_NAME

Temporary storage domain (TS)

1230 CICS TS for z/OS: CICS Diagnosis Reference

TSSH gate, READ_INTO function
This function reads the specified queue item into a buffer provided by the caller. The read cursor for the
queue is set to the item number provided. The caller provides the address (item_buffer_p) and buffer
length (item_buffer_m). The actual length of the record is returned in item_buffer_n. If item_buffer_n is
greater than item_buffer_m, the data is truncated (but an OK response is returned).

Input parameters
[POOL_TOKEN] is a token for the shared TS pool.
QUEUE_NAME is the name of the queue being read.
ITEM_NUMBER is the number of the item to be read.
ITEM_BUFFER specifies the address (item_buffer_p) and maximum length (item_buffer_m) of the data

area into which the data will be read. The actual data length is returned in item_buffer_n.
[TRANSACTION_NUMBER]

is the 4-byte transaction number (in packed-decimal format).

Output parameters
TOTAL_ITEMS returns the total number of items in the queue.
FMH indicates whether the data contains an FMH.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_ERROR
IO_ERROR
QUEUE_NOT_FOUND
ITEM_NOT_FOUND
INVALID_QUEUE_NAME

TSSH gate, READ_SET function
This function reads the specified queue item into a storage area obtained by TS. The read cursor for the
queue is set to the input item number.

Input parameters
[POOL_TOKEN] is a token for the shared TS pool.
QUEUE_NAME is the name of the queue being read.
ITEM_NUMBER is the number of the item to be read.
[TRANSACTION_NUMBER]

is the 4-byte transaction number (in packed-decimal format).

Output parameters
ITEM_DATA returns the address and length of the item data.
TOTAL_ITEMS returns the total number of items in the queue.
FMH indicates whether the data contains an FMH.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION IO_ERROR
SERVER_ERROR
QUEUE_NOT_FOUND
ITEM_NOT_FOUND
INVALID_QUEUE_NAME

Temporary storage domain (TS)

Chapter 110. Temporary storage domain (TS) 1231

TSSH gate, READ_NEXT_INTO function
This function increments the read cursor by one and reads that item number into the buffer provided by
the caller. The caller provides the address (item_buffer_p) and buffer length (item_buffer_m). The actual
length of the record is returned in item_buffer_n. If item_buffer_n is greater than item_buffer_m, the data
will have been truncated.

Input parameters
[POOL_TOKEN] is a token for the shared TS pool.
QUEUE_NAME is the name of the queue being read.
ITEM_BUFFER specifies the address (item_buffer_p) and maximum length (item_buffer_m) of the data

area into which the data will be read. The actual data length is returned in item_buffer_n.
[TRANSACTION_NUMBER]

is the 4-byte transaction number (in packed-decimal format).
ITEM NUMBER returns the number of the item just read.

Output parameters
TOTAL_ITEMS returns the total number of items in the queue.
FMH indicates whether the data contains an FMH.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_ERROR
IO_ERROR
QUEUE_NOT_FOUND
ITEM_NOT_FOUND
INVALID_QUEUE_NAME

TSSH gate, READ_NEXT_SET function
This function increments the queue's read cursor by one and reads that item number into a storage area
obtained by TS.

Input parameters
[POOL_TOKEN] is a token for the shared TS pool.
QUEUE_NAME is the name of the queue being read.
[TRANSACTION_NUMBER]

is the 4-byte transaction number (in packed-decimal format).

Output parameters
ITEM_DATA returns the address and length of the item data.
ITEM_NUMBER returns the number of the item just read.
TOTAL_ITEMS returns the total number of items in the queue.
FMH indicates whether the data contains an FMH.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_ERROR
IO_ERROR
QUEUE_NOT_FOUND
ITEM_NOT_FOUND
INVALID_QUEUE_NAME

Temporary storage domain (TS)

1232 CICS TS for z/OS: CICS Diagnosis Reference

TSSH gate, DELETE function
This function deletes the specified queue.

Input parameters
[POOL_TOKEN] is a token for the shared TS pool.
QUEUE_NAME is the name of the queue to be deleted. the request.
[TRANSACTION_NUMBER]

is the 4-byte transaction number (in packed-decimal format).
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_ERROR
IO_ERROR
QUEUE_NOT_FOUND
INVALID_QUEUE_NAME

TSSH gate, INQUIRE_SYSID_TABLE_TOKEN function

Input parameters
[POOL_TOKEN] is a token for the shared TS pool.
QUEUE_NAME is the name of the queue to be deleted. the request.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SERVER_ERROR
IO_ERROR
QUEUE_NOT_FOUND
INVALID_QUEUE_NAME

TSSB gate, START_BROWSE function

Input parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION QUEUE_NOT_FOUND
BROWSE_END
SERVER_ERROR
IO_ERROR

TSSB gate, GET_NEXT function
Returns information about the next queue in the browse.

Input parameters
None

Temporary storage domain (TS)

Chapter 110. Temporary storage domain (TS) 1233

Output parameters
QUEUE_NAME is the name of the queue.
[LAST_REFERENCED_TIME]

is the time at which the queue was last referenced.
[TOTAL_ITEMS]

is the total number of items in the queue.
[TOTAL_LENGTH]

is the sum of the lengths of all the items in the queue.
[MAXIMUM_ITEM_LENGTH]

is the length of the longest item in the queue.
[MINIMUM_ITEM_LENGTH]

is the length of the shortest item in the queue.
[TRANSID] is the id of the transaction whcih created the queue.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION BROWSE_END
SERVER_ERROR
IO_ERROR

TSSB gate, END_BROWSE function
Ends the browse.

Input parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION BROWSE_END
SERVER_ERROR
IO_ERROR

TSSB gate, INQUIRE_QUEUE function

Input parameters
[POOL_TOKEN] is the token for the pool being inquired upon.
QUEUE_NAME is the name of the queue being inquired upon.
[KEY_COMPARISON]

specifies the constraints on the inquire. The default is KEY_COMPARISON(EQ). It can
have any one of these values:
EQ|GT|GTEQ

[TRANSACTION_NUMBER]
is the 4-byte transaction number (in packed-decimal format).

Output parameters
[OUTPUT_QUEUE_NAME]

is the name of the queue whose information is returned. Note that this may differ from
queue_name unless key_comparison(eq) is specified.

[LAST_REFERENCED_TIME]
is the time at which the queue was last referenced.

Temporary storage domain (TS)

1234 CICS TS for z/OS: CICS Diagnosis Reference

[TOTAL_ITEMS]
is the total number of items in the queue.

[TOTAL_LENGTH]
is the sum of the lengths of all the items in the queue.

[MAXIMUM_ITEM_LENGTH]
is the length of the longest item in the queue.

[MINIMUM_ITEM_LENGTH]
is the length of the shortest item in the queue.

[TRANSID] is the id of the transaction which created the queue.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION QUEUE_NOT_FOUND
SERVER_ERROR
IO_ERROR

TSSR gate, SET_START_TYPE function

Input parameters
START indicates the type of startup requested.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED

TSSR gate, SET_BUFFERS function
Sets the number of TS buffers to be used.

Input parameters
BUFFERS the number of buffers required.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED

TSSR gate, SET_STRINGS function
This function sets the number of strings to be used.

Input parameters
STRINGS the number of strings to be used.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED

TSBR gate, INQUIRE_QUEUE function

Input parameters
QUEUE_NAME is the name of the queue being inquired upon.

Output parameters
[CREATION_TIME]

is the time at which the queue was created.
[LAST_REFERENCED_TIME]

is the time at which the queue was last referenced.
[TRANSID] is the id of the transaction which created the queue.

Temporary storage domain (TS)

Chapter 110. Temporary storage domain (TS) 1235

[TOTAL_ITEMS]
is the total number of items in the queue.

[TOTAL_LENGTH]
is the sum of the lengths of all the items in the queue.

[MAXIMUM_ITEM_LENGTH]
is the length of the longest item in the queue.

[MINIMUM_ITEM_LENGTH]
is the length of the shortest item in the queue.

[STORAGE_TYPE]
indicates whether the queue is held in main or auxiliary storage. It can have either of
these values:
MAIN|AUXILIARY

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION QUEUE_NOT_FOUND

TSBR gate, START_BROWSE function

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION QUEUE_NOT_FOUND

TSBR gate, GET_NEXT function
Returns information about the next queue in the browse.

Input parameters
None

Output parameters
QUEUE_NAME is the name of the queue.
[CREATION_TIME]

is the time at which the queue was created.
[LAST_REFERENCED_TIME]

is the time at which the queue was last referenced.
[TRANSID] is the id of the transaction which created the queue.
[TOTAL_ITEMS]

is the total number of items in the queue.
[TOTAL_LENGTH]

is the sum of the lengths of all the items in the queue.
[MAXIMUM_ITEM_LENGTH]

is the length of the longest item in the queue.
[MINIMUM_ITEM_LENGTH]

is the length of the shortest item in the queue.
[STORAGE_TYPE]

indicates whether the queue is held in main or auxiliary storage. It can have either of
these values:

Temporary storage domain (TS)

1236 CICS TS for z/OS: CICS Diagnosis Reference

MAIN|AUXILIARY
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION BROWSE_END

TSBR gate, END_BROWSE function
Ends the browse.

Input parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION BROWSE_END

TSBR gate, CHECK_PREFIX function
Checks whether there are any queues with the prefix provided.

Input parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION DUPLICATE
NOT_FOUND

TSIC gate, DELIVER_IC_RECOVERY_DATA function

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED

TSIC gate, INQUIRE_QUEUE function

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED

TSIC gate, SOLICIT_INQUIRES function
This call is made from TS to IC to initiate inquire_queue requests from IC to TS.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED

Temporary storage domain (TS)

Chapter 110. Temporary storage domain (TS) 1237

Temporary storage domain’s generic gates
Table 111 summarizes the storage manager domain’s generic gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gates, the functions provided by the gates, and the generic
formats for calls to the gates.

Table 111. Temporary storage domain’s generic gates
Gate Trace Function Format

DMDM TS 0101
TS 0102

INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

STST TS 0501
TS 0502

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

APUE TS 0601
TS 0602

SET_EXIT_STATUS APUE

RMRO TS 0401
TS 0402

PERFORM_PREPARE
PERFORM_COMMIT
PERFORM_SHUNT
PERFORM_UNSHUNT
START_BACKOUT
END_BACKOUT

RMRO

RMDE TS 0401
TS 0402

START_DELIVERY
DELIVER_RECOVERY
END_DELIVERY

RMDE

RMKP TS 0401
TS 0402

TAKE_KEYPOINT RMKP

For descriptions of these functions and their input and output parameters, refer to the sections dealing with
the corresponding generic formats:

Functions and parameters

Format APUE—Chapter 70, “Application domain (AP),” on page 513

Format DMDM—Chapter 78, “Domain manager domain (DM),” on page 663

Format RMRO—Chapter 99, “Recovery Manager Domain (RM),” on page 1061

Format RMDE—Chapter 99, “Recovery Manager Domain (RM),” on page 1061

Format RMKP—Chapter 99, “Recovery Manager Domain (RM),” on page 1061

Format STST—Chapter 107, “Statistics domain (ST),” on page 1195

Modules

Module Function

DFHTSDM Handles the following requests:
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHTSQR Handles the following requests:

WRITE
REWRITE
READ_INTO
READ_SET
READ_NEXT_INTO
READ_NEXT_SET
DELETE

Temporary storage domain (TS)

1238 CICS TS for z/OS: CICS Diagnosis Reference

Module Function

DFHTSPT Handles the following requests:
PUT
PUT_REPLACE
GET
GET_SET
GET_RELEASE
GET_RELEASE_SET
RELEASE

DFHTSSH Handles the following requests:
INITIALIZE
INQUIRE_POOL_TOKEN
INQUIRE_SYSID_TABLE_TOKEN
WRITE
REWRITE
READ_INTO
READ_NEXT_INTO
READ_SET
READ_NEXT_SET
DELETE
START_BROWSE
GET_NEXT
END_BROWSE
INQUIRE_QUEUE

DFHTSSR Handles the following requests:
SET_START_TYPE
SET_BUFFERS
SET_STRINGS
SET_EXIT_STATUS

DFHTSRM Handles the following requests:
PERFORM_PREPARE
PERFORM_COMMIT
PERFORM_SHUNT
PERFORM_UNSHUNT
START_BACKOUT
END_BACKOUT
START_DELIVERY
DELIVER_RECOVERY
END_DELIVERY
TAKE_KEYPOINT

DFHTSBR Handles the following requests:
INQUIRE_QUEUE
START_BROWSE
GET_NEXT
END_BROWSE
CHECK_PREFIX

DFHTSST Handles the following requests:
COLLECT_STATISTICS
COLLECT_RESOURCE_STATISTICS

DFHTSDUF
DFHTSDUC
DFHTSDUS

TS domain offline dump formatting routines

DFHTSITR Interprets TS domain trace entries

Temporary storage domain (TS)

Chapter 110. Temporary storage domain (TS) 1239

Exits
The temporary storage domain has four global user exit points: XTSQRIN, XTSQROUT, XTSPTIN and
XTSPTOUT. For further information about these, see the CICS Customization Guide.

Trace
The point IDs for the temporary storage domain are of the form TS xxxx; the corresponding trace levels
are TS 1, TS 2 and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Temporary storage domain (TS)

1240 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 111. User domain

The user domain provides an optional facility for checking user authority to sign on to a terminal.

User domain’s specific gates
Table 112 summarizes the user domain’s specific gates. It shows the level-1 trace point IDs of the modules
providing the functions for the gates, the functions provided by the gates, and whether or not the functions
are available through the exit programming interface (XPI).

Table 112. User domain’s specific gates
Gate Trace Function XPI

USAD US 0201
US 0202

ADD_USER_WITH_PASSWORD
ADD_USER_WITHOUT_PASSWORD
DELETE_USER
INQUIRE_USER
INQUIRE_DEFAULT_USER
VALIDATE_USER

NO
NO
NO
NO
NO
NO

USFL US 0501
US 0502

FLATTEN_USER
UNFLATTEN_USER
TAKEOVER

NO
NO
NO

USIS US 0201
US 0202

SET_USER_DOMAIN_PARMS NO

USXM US 0401
US 0402

ADD_TRANSACTION_USER
DELETE_TRANSACTION_USER
END_TRANSACTION
FLATTEN_TRANSACTION_USER
INIT_TRANSACTION_USER
INQUIRE_TRANSACTION_USER
TERM_TRANSACTION_USER
UNFLATTEN_TRANSACTION_USER

NO
NO
NO
NO
NO

USAD gate, ADD_USER_WITH_PASSWORD function
The ADD_USER_WITH_PASSWORD function of the USAD gate is used to add a user to the CICS region
and verify the associated password or oidcard.

Input parameters
USERID is the identifier of the user (a userid of 1 through 10 alphanumeric

characters) to be added to the security domain.
USERID_LENGTH is the length of the USERID value.
[PASSWORD_TYPE] specifies if the password is masked. It can have either of these values:

CLEAR|MASKED
[PASSWORD] is the current password, 1 through 10 alphanumeric characters, for the

userid specified by the USERID value.
[PASSWORD_LENGTH] is the 8-bit length of the PASSWORD value. This parameter is only valid if

PASSWORD is also specified.
[NEW_PASSWORD] is a new password, 1 through 10 alphanumeric characters, to be assigned

to the userid (specified by the USERID value). This parameter is only valid
if PASSWORD is also specified.

[NEW_PASSWORD_LENGTH]
is the 8-bit length of the NEW_PASSWORD value. This parameter is only
valid if NEW_PASSWORD is also specified.

[OIDCARD] is an optional oidcard (operator identification card); a 65-byte field
containing further security data from a magnetic strip reader (MSR) on
32xx devices.

[GROUPID] is an optional identifier, 1 through 10 alphanumeric characters, of a RACF
user group to which the userid (specified by the USERID value) is to be
assigned.

© Copyright IBM Corp. 1997, 2011 1241

[GROUPID_LENGTH] is the 8-bit length of the GROUPID value. This parameter is only valid if
GROUPID is also specified.

[ENTRY_PORT_NAME] is an optional name of an entry port, 1 through 8 alphanumeric characters,
to be assigned to the userid (specified by the USERID value).

[ENTRY_PORT_TYPE] is the type of the optional entry port to be assigned to the userid (specified
by the USERID value). It can have either of these values:
TERMINAL|CONSOLE

This parameter is only valid if ENTRY_PORT_NAME is also specified.
[SCOPE_CHECK] indicates whether or not scope checking is to be performed for this

function call. It can have either of these values:
YES|NO

SIGNON_TYPE is the type of signon for the userid (specified by the USERID value). It can
have any of these values:
ATTACH_SIGN_ON|DEFAULT_SIGN_ON|IRC_SIGN_ON|
LU61_SIGN_ON|LU62_SIGN_ON|NON_TERMINAL_SIGN_ON|
PRESET_SIGN_ON|USER_SIGN_ON|XRF_SIGN_ON

APPLID is the application identifier for the CICS region.

Output parameters
USER_TOKEN is the token identifying the userid in the user domain.
[SAF_RESPONSE] is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE] is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible

values are:

RESPONSE Possible REASON values

DISASTER DEL_TIMEOUT_ENTRY_FAILED
EXTRACT_FAILED
GETMAIN_FAILED

EXCEPTION ALREADY_SIGNED_ON
PASSWORD_REQUIRED
NEW_PASSWORD_REQUIRED
OIDCARD_REQUIRED
INVALID_USERID
INVALID_PASSWORD
INVALID_NEW_PASSWORD
INVALID_OIDCARD
INVALID_GROUPID
INQUIRE_PW_DATA_FAILED
USERID_NOT_IN_GROUP
UNKNOWN_ESM_RESPONSE
SECURITY_INACTIVE
ESM_INACTIVE
ENTRY_PORT_NOTAUTH
APPLICATION_NOTAUTH
USERID_REVOKED
GROUP_ACCESS_REVOKED
SECLABEL_CHECK_FAILED
ESM_TRANQUIL
ENQ_LIMIT_EXCEEDED

User domain

1242 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION
INVALID_PARAMETERS

USAD gate, ADD_USER_WITHOUT_PASSWORD function
The ADD_USER_WITHOUT_PASSWORD function of the USAD gate is used to add a user to the CICS
region without verifying any password or oidcard.

Input parameters
USERID is the identifier of the user (a userid of 1 through 10 alphanumeric

characters) to be added to the security domain.
USERID_LENGTH is the 8-bit length of the USERID value.
[APPLID] is the application identifier for the CICS region.
[ENTRY_PORT_NAME] is an optional name of an entry port, 1 through 8 alphanumeric characters,

to be assigned to the userid (specified by the USERID value).
[ENTRY_PORT_TYPE] is the type of the optional entry port to be assigned to the userid (specified

by the USERID value). It can have either of these values:
TERMINAL|CONSOLE

This parameter is only valid if ENTRY_PORT_NAME is also specified.
[GROUPID] is an optional identifier, 1 through 10 alphanumeric characters, of a RACF

user group to which the userid (specified by the USERID value) is to be
assigned.

[GROUPID_LENGTH] is the 8-bit length of the GROUPID value. This parameter is only valid if
GROUPID is also specified.

[SCOPE_CHECK] indicates whether or not scope checking is to be performed for this
function call. It can have either of these values:
YES|NO

SIGNON_TYPE is the type of signon for the userid (specified by the USERID value). It can
have any of these values:
ATTACH_SIGN_ON|DEFAULT_SIGN_ON|IRC_SIGN_ON|
LU61_SIGN_ON|LU62_SIGN_ON|NON_TERMINAL_SIGN_ON|
PRESET_SIGN_ON|USER_SIGN_ON|XRF_SIGN_ON

[SUSPEND] indicates whether a wait during add user processing is acceptable. It can
have either of these values:
YES|NO

[UUID] is the unique universal ID (UUID) for the user.

Output parameters
USER_TOKEN is the token identifying the userid in the user domain.
[SAF_RESPONSE] is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE] is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID.

Possible values are:

RESPONSE Possible REASON values

DISASTER DEL_TIMEOUT_ENTRY_FAILED
EXTRACT_FAILED
GETMAIN_FAILED

User domain

Chapter 111. User domain 1243

RESPONSE Possible REASON values

EXCEPTION ALREADY_SIGNED_ON
APPLICATION_NOTAUTH
ENTRY_PORT_NOTAUTH
ESM_INACTIVE
ESM_TRANQUIL
GROUP_ACCESS_REVOKED
INVALID_GROUPID
INVALID_USERID
SECLABEL_CHECK_FAILED
SECURITY_INACTIVE
UNKNOWN_ESM_RESPONSE
USER_NOT_LOCATED
USERID_NOT_IN_GROUP
USERID_REVOKED
ENQ_LIMIT_EXCEEDED

INVALID INVALID_FORMAT
INVALID_FUNCTION
INVALID_PARAMETERS

USAD gate, DELETE_USER function
The DELETE_USER function of the USAD gate is used to delete the user from the CICS region.

Input parameters
USER_TOKEN is the token identifying the userid in the user domain.
SIGNOFF_TYPE is the type of signoff for the userid identified by the SECURITY_TOKEN

value. It can have any of these values:
ABNORMAL_SIGN_OFF|ATTACH_SIGN_OFF|DEFERRED_SIGN_OFF|
DELETE_SIGN_OFF|LINK_SIGN_OFF|NON_TERMINAL_SIGN_OFF|
PRESET_SIGN_OFF|UNFLATTEN_USER_SIGN_OFF|
USER_SIGN_OFF|XRF_SIGN_OFF

DELETE_IMMEDIATE indicates whether the user should be deleted immediately. It can have one
of these values:
YES|NO

Output parameters
[SAF_RESPONSE] is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE] is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible

values are:

RESPONSE Possible REASON values

DISASTER ADD_TIMEOUT_ENTRY_FAILED
FREEMAIN_FAILED

EXCEPTION INVALID_USER_TOKEN
DEFAULT_USER_TOKEN
SECURITY_INACTIVE
ESM_TRANQUIL
ESM_INACTIVE
UNKNOWN_ESM_RESPONSE

User domain

1244 CICS TS for z/OS: CICS Diagnosis Reference

USAD gate, INQUIRE_USER function
The INQUIRE_USER function of the USAD gate is used to inquire about the attributes of the user
represented by the user token.

Input parameters
USER_TOKEN is the token identifying the userid to the user domain.

Output parameters
[USERID] is the identifier of the user (a userid of 1 through 10 alphanumeric

characters).
[USERID_LENGTH] is the length of the USERID value.
[USERNAME] is an optional buffer into which the attributes of the user are placed.
[CURRENT_GROUPID] is the identifier, 1 through 10 alphanumeric characters, of the current

RACF user group to which the userid (specified by the
SECURITY_TOKEN value) is assigned.

[CURRENT_GROUPID_LENGTH]
is the 8-bit length of the GROUPID value.

[NATIONAL_LANGUAGE] is a three-character code identifying the national language for the userid. It
can have any of the values in Table 120 on page 1318.

[OPERATOR_CLASSES] identifies the operator classes to which the user belongs. This is a 24-bit
value, with each bit determining whether or not the user is a member of
that class.

[OPERATOR_IDENT] is the operator identification code, 1 through 3 alphanumeric characters,
for the userid.

[ENTRY_PORT_NAME] is the name of the entry port assigned to the userid.
[ENTRY_PORT_TYPE] is the type of the entry port assigned to the userid. It can have either of

these values:
TERMINAL|CONSOLE

This parameter is only valid if ENTRY_PORT_NAME is also specified.
[OPERATOR_PRIORITY] is the operator priority value, in the range 0 through 255 (where 255 is the

highest priority), for the userid.
[TIMEOUT] is the number of minutes, in the range 0 through 60, that must elapse

since the user last used the terminal before CICS "times-out" the terminal.

Notes:
1. CICS rounds values up to the nearest multiple of 5.
2. A TIMEOUT value of 0 means that the terminal is not timed out.

[XRF_REFLECTABLE] indicates whether or not you want CICS to sign off the userid following an
XRF takeover. It can have either of these values:
YES|NO

[ACEE_PTR] is a pointer to the access control environment element, the control block
that is generated by an external user (ESM) when the user signs on. If the
user is not signed on, the address of the CICS DFLTUSER's ACEEis
returned. If an ACEE does not exist, CICS sets the pointer reference to
the null value, X'FF000000'.

[SAF_RESPONSE] is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE] is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

User domain

Chapter 111. User domain 1245

RESPONSE Possible REASON values

EXCEPTION INVALID_USER_TOKEN

USAD gate, INQUIRE_DEFAULT_USER function
The INQUIRE_DEFAULT_USER function of the USAD gate is used to inquire about the attributes of the
default user (specified on the DFLTUSER system initialization parameter).

Input parameters
None

Output parameters
[USERID] is the identifier of the user (a userid of 1 through 10 alphanumeric

characters).
[USERID_LENGTH] is the length of the USERID value.
[USERNAME] is an optional buffer into which the attributes of the default user are

placed.
[CURRENT_GROUPID] is the identifier, 1 through 10 alphanumeric characters, of the current

RACF user group to which the userid (specified by the
SECURITY_TOKEN value) is assigned.

[CURRENT_GROUPID_LENGTH]
is the 8-bit length of the GROUPID value.

[NATIONAL_LANGUAGE] is a three-character code identifying the national language for the userid. It
can have any of the values in Table 120 on page 1318.

[OPERATOR_CLASSES] identifies the operator classes to which the user belongs. This is a 24-bit
value, with each bit determining whether or not the user is a member of
that class.

[OPERATOR_IDENT] is the operator identification code, 1 through 3 alphanumeric characters,
for the userid.

[OPERATOR_PRIORITY] is the operator priority value, in the range 0 through 255 (where 255 is the
highest priority), for the userid.

[TIMEOUT] is the number of minutes, in the range 0 through 60, that must elapse
since the user last used the terminal before CICS "times-out" the terminal.

Notes:
1. CICS rounds values up to the nearest multiple of 5.
2. A TIMEOUT value of 0 means that the terminal is not timed out.

[XRF_REFLECTABLE] indicates whether or not you want CICS to sign off the userid following an
XRF takeover. It can have either of these values:
YES|NO

[ACEE_PTR] is a pointer to the access control environment element, the control block
that is generated by an external user (ESM) when the default user signs
on. If an ACEE does not exist, CICS sets the pointer reference to the null
value, X'FF000000'.

[SAF_RESPONSE] is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE] is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

USAD gate, VALIDATE_USERID function
The VALIDATE_USERID function of the USAD gate is used to verify that the specified userid is a valid
userid.

User domain

1246 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
[USERID] is the userid to be validated.
[USERID_LENGTH] is the length of the userid to be validated.

Output parameters
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SECURITY_INACTIVE
USERID_NOT_DEFINED
USERID_NOT_DETERMINED

USFL gate, FLATTEN_USER function
The FLATTEN_USER function of the USFL gate is used to flatten the user’s security state and place into
the FLATTENED_USER buffer provided.

Input parameters
USER_TOKEN is the token identifying the userid.
FLATTENED_USER is the buffer into which the flattened security state is placed.

Output parameters
[SAF_RESPONSE] is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE] is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID.

Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
DIR_MANAGER_LOCATE_FAILED
SEC_DOM_FLATTEN_FAILED

EXCEPTION INVALID_USER_TOKEN
SECURITY_INACTIVE
ESM_INACTIVE
ESM_TRANQUIL
UNKNOWN_ESM_RESPONSE

INVALID INVALID_FORMAT
INVALID_FUNCTION
INVALID_FLATTENED_BUFFER

USFL gate, TAKEOVER function
The TAKEOVER function of the USFL gate is used, when an XRF takeover occurs, to obtain the
SNSCOPE ENQ resources for those users who could not obtain it during tracking, because the resources
were already held by the active region.

Input parameters
None.

User domain

Chapter 111. User domain 1247

Output parameters
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FORMAT
INVALID_FUNCTION

USFL gate, UNFLATTEN_USER function
The UNFLATTEN_USER function of the USFL gate is used to unflatten the user security state data in the
FLATTENED_USER buffer, and add the userid to the user domain.

Input parameters
FLATTENED_USER is a buffer containing flattened security state data for a userid.

Output parameters
USER_TOKEN is the token identifying the userid in the user domain.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION or INVALID.

Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
DEL_TIMEOUT_ENTRY_FAILED
DIR_MANAGER_ADD_FAILED
DIR_MANAGER_DELETE_FAILED
FREEMAIN_FAILED
GETMAIN_FAILED
SEC_DOMAIN_DELETE_FAILED
SEC_DOM_UNFLATTEN_FAILED

EXCEPTION ALREADY_SIGNED_ON
APPLICATION_NOTAUTH
ENTRY_PORT_NOTAUTH
ESM_INACTIVE
ESM_TRANQUIL
GROUP_ACCESS_REVOKED
SECLABEL_CHECK_FAILED
SECURITY_INACTIVE
UNKNOWN_ESM_RESPONSE
USERID_NOT_IN_GROUP
USERID_REVOKED
USERID_UNDEFINED

INVALID INVALID_FLATTENED_BUFFER
INVALID_FORMAT
INVALID_FUNCTION

User domain

1248 CICS TS for z/OS: CICS Diagnosis Reference

USIS gate, SET_USER_DOMAIN_PARMS function
At CICS startup, loads information for the user domain from the system initialization table (SIT) into the
user state data.

Input parameters
DEFAULT_USERID is the default userid, as 1 through 10 alphanumeric characters.
SIGNON_SCOPE is the scope for which the default userid can be signed on. It can have

any of these values:

NONE|CICS|MVSIMAGE|SYSPLEX
DIRECTORY_TIMEOUT_VALUE

is the intersystem refresh delay, in the range 0 through 10080 minutes (up
to 7 days), for the default userid.

APPLID is the application identifier for the CICS region.

Output parameters
RESPONSE is the domains response to the call. It can have any of these values:

OK|DISASTER
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

USXM gate, ADD_TRANSACTION_USER function
The ADD_TRANSACTION_USER function of the USXM gate sets the user characteristics (as security
tokens) for a transaction.

Input parameters
[PRINCIPAL_USER_TOKEN] is the optional principal user token representing the characteristics of the

principal user of the transaction.
[SESSION_USER_TOKEN] is the optional session user token representing the characteristics of the

session user of the transaction.
[EDF_USER_TOKEN] is the optional EDF user token representing the characteristics of the EDF

user of the transaction.

Output parameters
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID.

Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION ALREADY_SIGNED_ON
DUPLICATE_USER
INVALID_USER_TOKEN

INVALID INVALID_FORMAT
INVALID_FUNCTION

User domain

Chapter 111. User domain 1249

USXM gate, DELETE_TRANSACTION_USER function
The DELETE_TRANSACTION_USER function of the USXM gate deletes the user token of the specified
token type for the transaction.

Input parameters
TOKEN_TYPE is the type of user token for the transaction. It can have any of these

values:
PRINCIPAL|SESSION|EDF

Output parameters
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID.

Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION NO_USER_TOKEN

INVALID INVALID_FORMAT
INVALID_FUNCTION

USXM gate, END_TRANSACTION function
The END_TRANSACTION function of the USXM gate deletes all the user token to security token maps for
the transaction.

Input parameters
None.

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
FREEMAIN_FAILED
LOOP

INVALID INVALID_FORMAT
INVALID_FUNCTION

USXM gate, FLATTEN_TRANSACTION_USER function
The FLATTEN_TRANSACTION_USER function of the USXM gate creates the contents of a
FLAT_TRANSUSER buffer from the principal user of the current transaction.

Input parameters
FLAT_TRANSUSER is the buffer to be created.

Output parameters
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

User domain

1250 CICS TS for z/OS: CICS Diagnosis Reference

[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FLAT_TRANSUSER

USXM gate, INIT_TRANSACTION_USER function
The INIT_TRANSACTION_USER function of the USXM gate initializes the transaction for the user
characteristics identified by the PRINCIPAL_USER_TOKEN value.

Input parameters
PRINCIPAL_USER_TOKEN is the principal user token representing the characteristics of the principal

user of the transaction.
[SESSION_USER_TOKEN] is the optional session user token representing the characteristics of the

session user of the transaction.
[EDF_USER_TOKEN] is the optional EDF user token representing the characteristics of the EDF

user of the transaction.
[XMAT_CALL] indicates whether the function is called while a transaction is being

attached. It can have either of these values:
YES|NO

Output parameters
USDOM_TRANSACTION_TOKEN

is the user token to be used for reference to user characteristics only. It is
treated as the principal user token until the next
ADD_TRANSACTION_USER call for the transaction.

PRIORITY is the priority value, in the range 0 through 255 (where 255 is the highest
priority), for the user with the token identified by the
PRINCIPAL_USER_TOKEN value.

RESPONSE is the domains response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID.
Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
GETMAIN_FAILED
LOOP

EXCEPTION INVALID_USER_TOKEN

INVALID INVALID_FORMAT
INVALID_FUNCTION

USXM gate, INQUIRE_TRANSACTION_USER function
The INQUIRE_TRANSACTION_USER function of the USXM gate inquires about the user characteristics
associated with the transaction identified by the USDOM_TRANSACTION_TOKEN value.

Input parameters
USDOM_TRANSACTION_TOKEN

is the user token to be used for reference to user characteristics only.

User domain

Chapter 111. User domain 1251

Output parameters
[USERID] is the identifier of the user (a userid of 1 through 10 alphanumeric

characters).
USERID_LENGTH is the length of the USERID value.
[USERNAME] is an optional buffer that contains the attributes of the user.
[CURRENT_GROUPID] is the identifier, 1 through 10 alphanumeric characters, of the current

RACF user group to which the user is assigned.
[CURRENT_GROUPID_LENGTH]

is the 8-bit length of the GROUPID value.
[NATIONAL_LANGUAGE] is a three-character code identifying the national language for the user. It

can have any of the values in Table 120 on page 1318.
[OPERATOR_CLASSES] identifies the operator classes to which the user belongs. This is a 24-bit

value, with each bit determining whether or not the user is a member of
that class.

[OPERATOR_IDENT] is the operator identification code, 1 through 3 alphanumeric characters,
for the user.

[ENTRY_PORT_NAME] is the name of the entry port assigned to the userid.
[ENTRY_PORT_TYPE] is the type of the entry port assigned to the userid. It can have either of

these values:
TERMINAL|CONSOLE

This parameter is only valid if ENTRY_PORT_NAME is also specified.
[APPLID] is the application identifier for the CICS region.
[OPERATOR_PRIORITY] is the operator priority value, in the range 0 through 255 (where 255 is the

highest priority), for the user.
[TIMEOUT] is the number of minutes, in the range 0 through 60, that must elapse

since the user last used the terminal before CICS "times-out" the terminal.

Notes:
1. CICS rounds values up to the nearest multiple of 5.
2. A TIMEOUT value of 0 means that the terminal is not timed out.

[XRFSOFF] indicates whether or not you want CICS to sign off the user following an
XRF takeover. It can have either of these values:
YES|NO

[ACEE_PTR] is a pointer to the access control environment element, the control block
that is generated by an external user (ESM) when the user signs on. If the
user is not signed on, the address of the CICS DFLTUSER's ACEEis
returned. If an ACEE does not exist, CICS sets the pointer reference to
the null value, X'FF000000'.

PRINCIPAL_USER_TOKEN is the token identifying the userid in the user domain.
[SAF_RESPONSE] is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE] is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FORMAT
INVALID_FUNCTION

User domain

1252 CICS TS for z/OS: CICS Diagnosis Reference

USXM gate, TERM_TRANSACTION_USER function
The TERM_TRANSACTION_USER function of the USXM gate removes the state information created by
an INIT_TRANSACTION_USER function.

Input parameters
USDOM_TRANSACTION_TOKEN

is the token that identifies the state data to be removed.

Output parameters
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
FREEMAIN_FAILED
LOOP

INVALID INVALID_FORMAT
INVALID_FUNCTION

USXM gate, UNFLATTEN_TRANSACTION_USER function
The UNFLATTEN_TRANSACTION_USER function of the USXM gate adds (by the
ADD_USER_WITHOUT_PASSWORD function of the USAD gate) the user defined by the contents of the
supplied FLAT_TRANSUSER buffer.

Input parameters
FLAT_TRANUSER is the buffer containing data that defines the user to be added.
[SUSPEND] indicates whether a wait during add user processing is acceptable. It can

have either of these values:
YES|NO

Output parameters
PRINCIPAL_USER_TOKEN is the token identifying the userid in the user domain.
[SAF_RESPONSE] is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE] is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or EXCEPTION. Possible

values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

User domain

Chapter 111. User domain 1253

RESPONSE Possible REASON values

EXCEPTION APPLICATION_NOTAUTH
ENTRY_PORT_NOTAUTH
ESM_INACTIVE
ESM_TRANQUIL
GROUP_ACCESS_REVOKED
INVALID_GROUPID
INVALID_USERID
SECLABEL_CHECK_FAILED
SECURITY_INACTIVE
UNKNOWN_ESM_RESPONSE
USER_NOT_LOCATED
USERID_NOT_IN_GROUP
USERID_REVOKED

User domain’s generic gates
Table 113 summarizes the user domain’s generic gates. It shows the level-1 trace point IDs of the modules
providing the functions for the gates, the functions provided by the gates, and the generic formats for calls
to the gates.

Table 113. User domain’s generic gates
Gate Trace Function Format

DMDM US 0101
US 0102

INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

STST US 0601
US 0602

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

For descriptions of these functions and their input and output parameters, refer to the sections dealing with
the corresponding generic formats:

Functions and parameters

Format DMDM—“Domain manager domain’s generic formats” on page 669

Format STST—“Statistics domain’s generic format” on page 1198

In initialization processing, performs internal routines to set up the user domain, and gets the initial user
options, as for “USIS gate, SET_USER_DOMAIN_PARMS function” on page 1249.

For a cold start, the user options come from the system initialization parameters; for any other type of
start, the information comes from the local catalog, but is then modified by any relevant system
initialization parameters.

User domain also issues console messages during initialization to report whether or not security is active.

In quiesce and termination processing, the user domain performs only internal routines.

User domain

1254 CICS TS for z/OS: CICS Diagnosis Reference

Modules

Module Function

DFHUSAD Handles the following requests:
ADD_USER_WITH_PASSWORD
ADD_USER_WITHOUT_PASSWORD
DELETE_USER
INQUIRE_USER
INQUIRE_DEFAULT_USER
VALIDATE_USERID

DFHUSDM Handles the following requests:
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHUSDUF US domain offline dump formatting routine

DFHUSFL Handles the following requests:
FLATTEN_USER
UNFLATTEN_USER
TAKEOVER

DFHUSIS Handles the following requests:
SET_USER_DOMAIN_PARMS

DFHUSST Handles the following requests:
COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

DFHUSTI Handles user timeout processing.

DFHUSTRI Interprets US domain trace entries

DFHUSXM Handles the following requests:
ADD_TRANSACTION_USER
DELETE_TRANSACTION_USER
END_TRANSACTION
INIT_TRANSACTION_USER
INQUIRE_TRANSACTION_USER
FLATTEN_TRANSACTION_USER
UNFLATTEN_TRANSACTION_USER

Exits
No global user exit points are provided in this domain.

Trace
The point IDs for the user domain are of the form US xxxx; the corresponding trace levels are US 1 and
Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

User domain

Chapter 111. User domain 1255

1256 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 112. Web domain (WB)

The Web domain manages interaction betwen CICS and Web clients, or between CICS as an HTTP client
and servers on the Internet. For more information, see CICS Internet Guide.

Web domain’s specific gates
Table 114 summarizes the Web domain’s specific gates. It shows the level-1 trace point IDs of the
modules providing the functions for the gate, the functions provided by the gate, and whether or not the
functions are available through the exit programming interface (XPI).

Table 114. Web domain’s specific gates
Gate Trace Function XPI

WBAP WB 0300
WB 0301

START_BROWSE
READ_NEXT
END_BROWSE
GET_MESSAGE_BODY
GET_HTTP_RESPONSE
SEND_RESPONSE
READ_HEADER
WRITE_HEADER
INQUIRE

NO
NO
NO
NO
NO
NO
NO
NO
NO

WBCL WB 0700
WB 0701

PARSE_URL
OPEN_SESSION
WRITE_HEADER
WRITE_REQUEST
READ_RESPONSE
READ_HEADER
START_BROWSE_HEADERS
READ_NEXT_HEADER
END_BROWSE_HEADERS
INQUIRE_SESSION
CLOSE_SESSION

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

WBRP WB 0A00
WB 0A01

CATALOG_URIMAP
DELETE_URIMAP
CATALOG_HOST
DELETE_HOST
RECOVER_DEFINITIONS

NO
NO
NO
NO
NO

WBSR WB 0500
WB 0501

SEND
RECEIVE
SEND_STATIC_RESPONSE

NO
NO
NO

WBUR WB 0900
WB 0901

INITIALIZE_URIMAPS
ADD_REPLACE_URIMAP
DELETE_URIMAP
LOCATE_URIMAP
INQUIRE_URIMAP
SET_URIMAP
START_BROWSE_URIMAP
GET_NEXT_URIMAP
END_BROWSE_URIMAP
INQUIRE_HOST
SET_HOST
START_BROWSE_HOST
GET_NEXT_HOST
END_BROWSE_HOST

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

WBAP gate, START_BROWSE function
The START_BROWSE function starts a browse of the HTTP headers or the HTML forms data in an HTTP
request.

Input parameters
None

© Copyright IBM Corp. 1997, 2011 1257

||
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|

|
|
|
|
|

|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION INVALID_REQUEST_FORMAT
NON_WEB_TRANSACITON
HEADER_BROWSE_ACTIVE
FORMFLD_BROWSE_ACTIVE
CLIENT_CODEPAGE_UNSUPP
SERVER_CODEPAGE_UNSUPP
NO_FORMS_DATA
INVALID_CODEPAGE_COMBIN

DISASTER FORMFIELD_STRUCT_FORM_ERR
FORMFIELD_CANNOT_GET_BODY
FORMFIELD_STRUCT_CORRUPT
FORMFIELD_CORRUPT_HEADER
FORMFIELD_NO_BOUNDARY_STR
FORMFIELD_NO_CONTENT_HDR
FORMFIELD_UNKNOWN_FORMTYPE
NO_CONVERT_PARM

WBAP gate, READ_NEXT function
The READ_NEXT function returns the next HTTP header in a browse of HTTP headers.

Input parameters
None

Output parameters
HTTP_HEADER_BUFFER_NAME

returns the name of the next HTTP header
HTTP_HEADER_BUFFER_VALUE

returns the value of the next HTTP header
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION BROWSE_END
NON_WEB_TRANSACTION
HEADER_BROWSE_NOT_ACTIVE
FORMFLD_BROWSE_NOT_ACTIVE
HEADER_VALUE_LENGTH_ERROR
HEADER_NAME_LENGTH_ERROR
INVALID_HEADER
FORMFLD_VALUE_LENGTH_ERROR
FORMFLD_NAME_LENGTH_ERROR
NO_FORMS_DATA
INVALID_FORMFLD

DISASTER FORMFIELD_STRUCT_CORRUPT
FORMFIELD_CORRUPT_HEADER
NO_CONVERT_PARM

Web Domain (WB)

1258 CICS TS for z/OS: CICS Diagnosis Reference

WBAP gate, END_BROWSE function
The END_BROWSE function defines the end of a browse of the HTTP headers received for an HTTP
request.

Input parameters
None

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NON_WEB_TRANSACTION
HEADER_BROWSE_NOT_ACTIVE
FORMFLD_BROWSE_NOT_ACTIVE

WBAP gate, GET_MESSAGE_BODY function
The GET_MESSAGE_BODY function retrieves the previously constructed body of an HTTP response.

Input parameters
DATA_BUFFER Buffer into which the data is to be placed
TRUNCATE indicates whether or not data is to be truncated if the buffer is too small. It

can have the following values:
YES|NO

CLIENT_CODEPAGE ASCII Codepage into which the data is to be converted before being
passed back to the caller

SERVER_CODEPAGE EBCDIC Codepage of the data to be passed back
CONVERT indicates whether or not data is to undergo codepage conversion. It can

have the following values:
YES|NO

Output parameters
SET_BLOCK Address of a block of storage containing the message body
REQUEST_TYPE Indicates whether we are processing an HTTP Request It can have the

following values:
HTTP|NON_HTTP

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION CODEPAGE_NOT_FOUND
NON_WEB_TRANSACTION

WBAP gate, GET_HTTP_RESPONSE function
The GET_HTTP_RESPONSE function retrieves the HTTP Response which has been constructed by a
Web API application program.

Input parameters
DOCUMENT_TOKEN is the 8 byte field into which CICS places the document token identifying

the document which contains the body of the HTTP response

Web Domain (WB)

Chapter 112. Web domain (WB) 1259

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NON_WEB_TRANSACTION
NO_PREVIOUS_WEB_SEND

WBAP gate, SEND_RESPONSE function
The SEND_RESPONSE function identifies a CICS Document which is to be used as the body of a HTTP
response, and the HTTP reason code with which that response is to be returned.

Input parameters
DOCUMENT_TOKEN identifies the CICS document to be used as the body of the HTTP

response
CLIENT_CODEPAGE identifies the ASCII codepage into which the body of the HTTP response

is to be converted
STATUS_CODE HTTP response code with which the HTTP response is returned
STATUS_TEXT Text to accompany HTTP response code with which the HTTP response is

returned.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NON_WEB_TRANSACTION
DOCUMENT_NOT_FOUND
CODEPAGE_NOT_FOUND

WBAP gate, READ_HEADER function
The READ_HEADER function returns the value of a specific HTTP request header.

Input parameters
HTTP_HEADER_BLOCK_VALUE

Buffer containing name of the header for which a value is returned
HTTP_HEADER_BLOCK_VALUE

Buffer containing the value of the requested header

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION HEADER_NOT_FOUND
INVALID_REQUEST_FORMAT
NON_WEB_TRANSACTION

Web Domain (WB)

1260 CICS TS for z/OS: CICS Diagnosis Reference

WBAP gate, WRITE_HEADER function
The WRITE_HEADER function causes a HTTP response header to be stored by CICS.

Input parameters
HTTP_HEADER_BLOCK_NAME

Buffer containing name of header
HTTP_HEADER_BLOCK_VALUE

Buffer containing value of header

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NON_WEB_TRANSACTION

WBAP gate, INQUIRE function
The INQUIRE function passes back information pertaining to an HTTP request.

Input parameters
SERVER_NAME Buffer to contain TCP/IP name of CICS
CLIENT_NAME Buffer to contain TCP/IP name of client from which HTTP request was

received.
HTTP_METHOD Buffer to contain HTTP method specified on the HTTP request
HTTP_VERSION Buffer to contain HTTP version specified on the HTTP request
QUERYSTRING Buffer to contain HTTP query string specified on the HTTP request
URI Buffer to contain URI specified on the HTTP request

Output parameters
CLIENT_ADDR Fullword containing IP address of the client from which the HTTP request

was received
SERVER_ADDR Fullword containing IP address of the TCP/IP stack on which the HTTP

request was received
SERVER_PORT Fullword containing port number on which the HTTP request was received
CERTIFICATE_TOKEN eight byte token identifying SSL certificate of client issuing this HTTP

request
REQUEST_TYPE Indicates whether CICS recognized the incoming data as a valid HTTP

request. Can be set to:
HTTP|NON_HTTP

SSL_TYPE Indicates what level of SSL support applies to the incoming HTTP request.
Can be set to:
YES|NO|CLIENTAUTH

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NON_WEB_TRANSACTION
INVALID_REQUEST_FORMAT

WBCL gate, PARSE_URL function
The PARSE_URL function parses a URL into its constituent components.

Web Domain (WB)

Chapter 112. Web domain (WB) 1261

|

|

Input parameters
URL

Output parameters
SCHEME
[SCHEME_NAME]
HOST
PORT
PATH
QUERY_STRING
[IP_ADDRESS]
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBCL gate, OPEN_SESSION function
The OPEN_SESSION function opens a session with the HTTP server.

Input parameters
SCHEME
HOST
PORT
[URIMAP]
[HOST_CODEPAGE]
[CERTIFICATE_LABEL]
[CIPHER_COUNT, CIPHER_SUITES]
[PROXY_URL]

Output parameters
SESSION_TOKEN
[HTTP_VNUM]
[HTTP_RNUM]
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBCL gate, WRITE_HEADER function
The WRITE_HEADER function adds one HTTP header to the HTTP request being composed. It can be
called multiple times to add multiple headers.

Input parameters
SESSION_TOKEN
NAME
VALUE

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBCL gate, WRITE_REQUEST function
The WRITE_REQUEST function appends the request body to the HTTP request being composed, and
schedules it to be sent. It also handles sending a chunk of data.

Web Domain (WB)

1262 CICS TS for z/OS: CICS Diagnosis Reference

|
|

|
|
|
|
|
|
|
|
||

|
||

|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
||

|
||

|

|
|

|
|
|
|

|
||

|
||

|

|
|

Input parameters
SESSION_TOKEN
[CHUNK | BODY | CONTAINER_NAME CONTAINER_POOL]
[DOCUMENT_TOKEN]
[PATH]
[URIMAP]
[QUERY_STRING]
METHOD
[MEDIATYPE]
[ACTION_PARAMETER]
[TRANSLATE]
[CHARSET]
[HOST_CODEPAGE]
[ACTION]
[CLOSE]
[CONVERSE]

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBCL gate, READ_RESPONSE function
The READ_RESPONSE function waits for and then reads the HTTP response that is expected from the
HTTP server.

Input parameters
SESSION_TOKEN
[BODY | CONTAINER_NAME CONTAINER_POOL]
[TRANSLATE]
[HOST_CODEPAGE]
[TIME_OUT_VALUE]
[TRUNCATE]
[MAX_DATA_LENGTH]
[STATUS_TEXT]

Output parameters
STATUS_CODE
[SET_BUFFER]
[MEDIATYPE]
[CHARSET]
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBCL gate, READ_HEADER function
The READ_HEADER function reads a specific HTTP header from the HTTP response that has been
received.

Input parameters
SESSION_TOKEN
NAME
VALUE_BUFFER

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

Web Domain (WB)

Chapter 112. Web domain (WB) 1263

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
||

|
||

|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
||

|
||

|

|
|

|
|
|
|

|
||

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBCL gate, START_BROWSE_HEADERS function
The START_BROWSE_HEADERS function starts a browse of the HTTP headers for a response that has
been received.

Input parameters
SESSION_TOKEN

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBCL gate, READ_NEXT_HEADER function
The READ_NEXT_HEADER function reads the next HTTP header in the browse operation for an HTTP
response that has been received.

Input parameters
SESSION_TOKEN
NAME_BUFFER
VALUE_BUFFER

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBCL gate, END_BROWSE_HEADERS function
The END_BROWSE_HEADERS function ends a browse of the HTTP headers for an HTTP response that
has been received.

Input parameters
SESSION_TOKEN

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBCL gate, INQUIRE_SESSION function
The INQUIRE_SESSION function returns information about the specified connection to a server,
represented by the session token.

Input parameters
SESSION_TOKEN
[HOST_BUFFER]
[PATH_BUFFER]

Output parameters
[SCHEME]
[HTTP_VNUM]
[HTTP_RNUM]
[URIMAP]
[PORT]

Web Domain (WB)

1264 CICS TS for z/OS: CICS Diagnosis Reference

|
||

|

|
|

|
|

|
||

|
||

|

|
|

|
|
|
|

|
||

|
||

|

|
|

|
|

|
||

|
||

|

|
|

|
|
|
|

|
|
|
|
|
||

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION.

WBCL gate, CLOSE_SESSION function
The CLOSE_SESSION function ends the connection to the server by closing the socket and releasing the
session control block.

Input parameters
SESSION_TOKEN

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBRP gate, CATALOG_URIMAP function
The CATALOG_URIMAP function adds a URIMAP resource definition to the catalog.

Input parameters
URIMAP_DEFINITION

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION LOOP
ABEND
CATALOG_WRITE_FAILURE

WBRP gate, DELETE_URIMAP function
The DELETE_URIMAP function deletes a URIMAP resource definition from the catalog.

Input parameters
URIMAP

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION LOOP
ABEND
CATALOG_DELETE_FAILURE

WBRP gate, CATALOG_HOST function
The CATALOG_HOST function adds a virtual host to the catalog.

Input parameters
HOST_DEFINITION

Web Domain (WB)

Chapter 112. Web domain (WB) 1265

||

|
||

|

|
|

|
|

|
||

|
||

|

|

|
|

|
||

|
||

|||

||
|
|
|

|

|

|
|

|
||

|
||

|||

||
|
|
|

|

|

|
||

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION LOOP
ABEND
CATALOG_WRITE_FAILURE

WBRP gate, DELETE_HOST function
The DELETE_HOST function removes a virtual host from the catalog.

Input parameters
HOST_DEFINITION

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION LOOP
ABEND
CATALOG_DELETE_FAILURE

WBRP gate, RECOVER_DEFINITIONS function
The RECOVER_DEFINITIONS function recovers previously installed definitions from the global catalog on
a CICS warm start. URIMAP definitions and virtual hosts are recovered.

Input parameters
None

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER CATALOG_BROWSE_FAILURE
CATALOG_PURGE_FAILURE
LOGIC_ERROR
WAIT_PHASE_FAILURE
ABEND

WBSR gate, RECEIVE function
The RECEIVE function receives an HTTP Request off a socket, and parses it in order to determine what
to do with it.

Input parameters
INITIAL_RECEIVE Indicates whether this is the first receive issued by the caller, Can be set

any of these values:
YES|NO

Web Domain (WB)

1266 CICS TS for z/OS: CICS Diagnosis Reference

|
||

|
||

|||

||
|
|
|

|

|

|
|

|
||

|
||

|||

||
|
|
|

|

|
|

|
|

|
||

|
||

|||

||
|
|
|
|
|

|

Output parameters
TOKEN Token uniquely identifying the WebRequestBlock associated with this

HTTP request.
ATTACH_TRANSID Transaction ID of Web alias transaction to be attached to continue

processing the HTTP request.
FAILING_PROGRAM Name of program which returned an error in the course of receiving the

HTTP request.
CONNECTION_PERSIST Indicates whether the HTTP Request included the HTTP 1.0 Keepalive

header. Can be set to any of these values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NO_ANALYZER_SPECIFIED
ANALYZER_LINK_ERROR
ANALYZER_ERROR
ANALYZER_DATALENG_ERROR
HDR_LENGTH_ERROR
RECEIVE_ERROR
STORAGE_ERROR
CONNECTION_CLOSED
LOGIC_ERROR

WBSR gate, SEND function
The SEND function returns the response constructed following receipt of an HTTP request.

Input parameters
TOKEN Token identifying WebRequestBlock with which this SEND is associated

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION STORAGE_ERROR
SEND_ERROR
CONNECTION_CLOSED
LOGIC_ERROR

WBSR gate, SEND_STATIC_RESPONSE function
The SEND_STATIC_RESPONSE function returns a static response specified by a URIMAP definition
following receipt of an HTTP request.

Input parameters
None

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Web Domain (WB)

Chapter 112. Web domain (WB) 1267

|

|
|

|
|

|
||

|
||

RESPONSE Possible REASON values

EXCEPTION

WBUR gate, URIMAP attributes
This list of URIMAP parameters is common to several functions on the WBUR gate.

Parameters
[SCHEME]
[USAGE]
[STATUS]
[ANALYZER]
[TRANSACTION]
[CONVERTER]
[PROGRAM]
[PIPELINE_NAME]
[WEBSERVICE_NAME]
[USERID]
[MEDIATYPE]
[CHARACTERSET]
[HOSTCODEPAGE]
[TEMPLATENAME]
[CERTIFICATE_LABEL]
[CIPHER_COUNT CIPHER_SUITES]
[REDIRECTION_TYPE]

WBUR gate, INITIALIZE_URIMAPS function
The INITIALIZE_URIMAPS function initializes the Web domain state required by the URIMAP support.

Input parameters
None

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBUR gate, ADD_REPLACE_URIMAP function
The ADD_REPLACE_URIMAP function adds or replaces a URIMAP definition into the Web domain.

Input parameters
URIMAP
HOST
PATH
[HFSFILE]
[REDIRECTION_LOCATION]
URIMAP attributes see “WBUR gate, URIMAP attributes”
[TCPIPSERVICE]

Output parameters
[DUPLICATE_URIMAP]
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

Web Domain (WB)

1268 CICS TS for z/OS: CICS Diagnosis Reference

|||

||
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|
||

|
||

|

|

|
|
|
|
|
|
||
|

|
|
||

|
||

WBUR gate, DELETE_URIMAP function
The DELETE_URIMAP function deletes a URIMAP definition from the Web domain.

Input parameters
URIMAP

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBUR gate, LOCATE_URIMAP function
The LOCATE_URIMAP function is used to locate a URIMAP definition associated with a specified HOST
and PATH.

Input parameters
HOST
PATH
[HFSFILE]
[REDIRECTION_LOCATION]
[TCPIPSERVICE]

Output parameters
URIMAP
URIMAP attributes see “WBUR gate, URIMAP attributes” on page 1268
[UME_TOKEN]
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBUR gate, INQUIRE_URIMAP function
The INQUIRE_URIMAP function is used to inquire on the attributes of a URIMAP resource.

Input parameters
URIMAP
[HOST]
[PATH]
[HFSFILE]
[REDIRECTION_LOCATION]

Output parameters
URIMAP attributes see “WBUR gate, URIMAP attributes” on page 1268
[TCPIPSERVICE]
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBUR gate, SET_URIMAP function
The SET_URIMAP function is used to set the attributes of a URIMAP resource.

Input parameters
URIMAP
[HOST]
[PATH]
[HFSFILE]

Web Domain (WB)

Chapter 112. Web domain (WB) 1269

|

|

|
|

|
||

|
||

|

|
|

|
|
|
|
|
|

|
|
||
|
||

|
||

|

|

|
|
|
|
|
|

|
||
|
||

|
||

|

|

|
|
|
|
||

[REDIRECTION_LOCATION]
[TCPIPSERVICE]
URIMAP attributes see “WBUR gate, URIMAP attributes” on page 1268

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBUR gate, START_BROWSE_URIMAP function
The START_BROWSE_URIMAP function is used to begin a browse through the URIMAP resources in the
Web domain.

Input parameters
None

Output parameters
BROWSE_TOKEN
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBUR gate, GET_NEXT_URIMAP function
The GET_NEXT_URIMAP function is used to continue a browse through the URIMAP resources in the
Web domain.

Input parameters
BROWSE_TOKEN
[HOST]
[PATH]
[HFSFILE]
[REDIRECTION_LOCATION]

Output parameters
URIMAP
[TCPIPSERVICE]
URIMAP attributes see “WBUR gate, URIMAP attributes” on page 1268
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBUR gate, END_BROWSE_URIMAP function
The END_BROWSE_URIMAP function is used to end a browse through the URIMAP resources in the
Web domain.

Input parameters
BROWSE_TOKEN

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBUR gate, INQUIRE_HOST function
The INQUIRE_HOST function is used to inquire on the attributes of a virtual host.

Web Domain (WB)

1270 CICS TS for z/OS: CICS Diagnosis Reference

|
|
||

|
||

|
||

|

|
|

|
|

|
|
||

|
||

|

|
|

|
|
|
|
|
|

|
|
|
||
||

|
||

|

|
|

|
|

|
||

|
||

|

|

Input parameters
HOST
[TCPIPSERVICE]

Output parameters
STATUS
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBUR gate, SET_HOST function
The SET_HOST function is used to set the attributes of a virtual host.

Input parameters
HOST
[TCPIPSERVICE]
STATUS

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBUR gate, START_BROWSE_HOST function
The START_BROWSE_HOST function is used to begin a browse through the virtual host names in the
Web domain.

Input parameters
None

Output parameters
BROWSE_TOKEN
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBUR gate, GET_NEXT_HOST function
The GET_NEXT_HOST function is used to continue a browse through the virtual host names in the Web
domain.

Input parameters
BROWSE_TOKEN
HOST

Output parameters
TCPIPSERVICE
STATUS
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

WBUR gate, END_BROWSE_HOST function
The END_BROWSE_HOST function is used to end a browse of the virtual host names in the Web
domain.

Web Domain (WB)

Chapter 112. Web domain (WB) 1271

|
|
|

|
|
||

|
||

|

|

|
|
|
|

|
||

|
||

|

|
|

|
|

|
|
||

|
||

|

|
|

|
|
|

|
|
|
||

|
||

|

|
|

Input parameters
BROWSE_TOKEN

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|INVALID|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION.

Web domain’s generic gates
Table 115 summarizes the Web domain’s generic gates. It shows the level-1 trace point IDs of the modules
providing the functions for the gates, the functions provided by the gates, and the generic formats for calls
to the gates.

Table 115. Web domain’s generic gates
Gate Trace Function Format

DMDM WB 0100
WB 0101

INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

XMAC WB 0600
WB 0601

INIT_XM_CLIENT
BIND_XM_CLIENT
TRANSACTION_HANG
RELEASE_XM_CLIENT

XMAC

For descriptions of these functions and their input and output parameters, refer to the Sections dealing
with the corresponding generic formats:

Functions and parameters

Format DMDM—“Domain manager domain’s generic formats” on page 669

Format XMAC—Chapter 113, “Transaction manager domain (XM),” on page 1275

In initialization, quiesce, and termination processing, the Web domain performs only internal routines.

Modules

Module Function

DFHWBDM Handles the following requests:
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHWBAP Handles the following requests
START_BROWSE
READ_NEXT
END_BROWSE
GET_MESSAGE_BODY
GET_HTTP_RESPONSE
SEND_RESPONSE
READ
WRITE_HEADER
INQUIRE

Web Domain (WB)

1272 CICS TS for z/OS: CICS Diagnosis Reference

|
|

|
||

|
||

Module Function

DFHWBAPF Handles forms processing for:
START_BROWSE
READ_NEXT
END_BROWSE
READ

DFHWBSR Handles the following requests
SEND
RECEIVE
SEND_STATIC_RESPONSE

DFHWBXM Handles the following requests
INIT_XM_CLIENT
BIND_XM_CLIENT
TRANSACTION_HANG
RELEASE_XM_CLIENT

DFHWBQM Domain subroutine which writes Web data to TS. Handles the following requests:
PUT_QUEUE
GET_QUEUE
DELETE_QUEUE
GET_TOKEN

DFHWBCL Functions for HTTP client processing.

DFHWBUR Functions for handling the URIMAP resource, including virtual hosts.

DFHWBRP Web domain recovery program.

DFHWBRQ Shared code and data areas for Web domain functions.

Exits
Two global user exit points are provided in CICS Web support for HTTP client requests:

XWBOPEN, HTTP client open exit
XWBOPEN is called during processing of an EXEC CICS WEB OPEN command, which is used by
an application program to open a connection with a server. It is designed for use to specify proxy
servers that should be used for HTTP requests by CICS as an HTTP client, and to apply a
security policy to the host name specified for those requests.

XWBSNDO, HTTP client send exit
XWBSNDO is called during processing of an EXEC CICS WEB SEND or EXEC CICS WEB
CONVERSE command. It is designed for use to specify a security policy for HTTP requests, in
particular for the path component of the request.

The exits are described in the CICS Internet Guide.

Trace
The point IDs for the Web domain are of the form WB xxxx; the corresponding trace levels are WB 1,
WB 2, and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Web Domain (WB)

Chapter 112. Web domain (WB) 1273

||

||

||

||

|

|

|
|
|
|
|

|
|
|
|

|

1274 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 113. Transaction manager domain (XM)

The transaction manager domain (also sometimes known simply as “transaction manager”) provides
transaction-related services to:

v Create tasks

v Terminates tasks

v Purge tasks

v Inquire on tasks

v Manage transaction definitions

v Manage tranclass definitions.

The transaction manager domain also provides a transaction environment to enable other CICS
components to implement transaction-related services.

Transaction manager domain’s specific gates
Table 116 summarizes the transaction manager domain’s specific gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by the gates, and whether
or not the functions are available through the exit programming interface (XPI).

Table 116. Transaction manager domain’s specific gates

Gate Trace Function XPI

XMAT XM 1101
XM 1102

ATTACH NO

XMBD XM 0501
XM 0502

START_BROWSE_TRANDEF
GET_NEXT_TRANDEF
END_BROWSE_TRANDEF

NO
NO
NO

XMCL XM 0A01
XM 0A02

ADD_REPLACE_TCLASS
ADD_TCLASS
INQUIRE_TCLASS
INQUIRE_ALL_TCLASSES
SET_TCLASS
DELETE_TCLASS
START_BROWSE_TCLASS
GET_NEXT_TCLASS
END_BROWSE_TCLASS
REGISTER_TCLASS_USAGE
DEREGISTER_TCLASS_USAGE
LOCATE_AND_LOCK_TCLASS
UNLOCK_TCLASS

NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

XMDD XM 0601
XM 0602

DELETE_TRANDEF NO

XMER XM 1204
XM 1205

SET_DEFERRED_MESSAGE
INQUIRE_DEFERRED_MESSAGE
SET_DEFERRED_ABEND
INQUIRE_DEFERRED_ABEND
REPORT_MESSAGE
ABEND_TRANSACTION

NO
NO
NO
NO
NO
NO

XMFD XM 0701
XM 0702

FIND_PROFILE NO

© Copyright IBM Corp. 1997, 2011 1275

Table 116. Transaction manager domain’s specific gates (continued)

Gate Trace Function XPI

XMIQ XM 1001
XM 1002

INQUIRE_TRANSACTION
SET_TRANSACTION
START_BROWSE_TRANSACTION
GET_NEXT_TRANSACTION
END_BROWSE_TRANSACTION
START_BROWSE_TXN_TOKEN
GET_NEXT_TXN_TOKEN
END_BROWSE_TXN_TOKEN
INQUIRE_TRANSACTION_TOKEN
SET_TRANSACTION_TOKEN
PURGE_TRANSACTION

YES
YES
NO
NO
NO
NO
NO
NO

XMLD XM 0401
XM 0402

LOCATE_AND_LOCK_TRANDEF
UNLOCK_TRANDEF

NO
NO

XMSR XM 0801
XM 0802

INQUIRE_MXT
SET_MXT
INQUIRE_DTRTRAN
SET_DTRTRAN

YES
NO
YES
NO

XMXD XM 0201
XM 0202

ADD_REPLACE_TRANDEF
SET_TRANDEF
INQUIRE_TRANDEF
INQUIRE_REMOTE_TRANDEF

NO
NO
YES
NO

XMXE XM 1401
XM 1402

GET_TXN_ENVIRONMENT
FREE_TXN_ENVIRONMENT

NO
NO

XMAT gate, ATTACH function
The ATTACH function of the XMAT gate is used to attach a new transaction.

Input parameters
TRANSACTION_ID

The transaction identifier to attach.
TPNAME Alternative means of specifying the transaction identifier to attach.
[ATTACH_PARMS]

Parameters to be passed to the attached transaction.
[PRIORITY] Combined user and terminal priority to be added to that of the transaction definition to

determine the total priority of the attached transaction.
[TOTAL_PRIORITY]

The overriding priority to be associated with the attached transaction.
FACILITY_TYPE

The type of principal facility to be associated with the attached transaction. It can have any
of these values:
NONE|TERMINAL|TD|START

START_CODE Indicates the reason for the attach It can have any of these values:
C|T|TT|QD|S|SD|SZ|DF

[TF_TOKEN] Token identifying a terminal to be associated with the transaction.
[IC_TOKEN] Token identifying a START request to be associated with the transaction.
[TD_TOKEN] Token identifying a TDQ to be associated with the transaction.
[US_TOKEN] Token identifying a user to be associated with the transaction.
[SYSTEM_ATTACH]

Indicates whether the transaction should be attached as a system transaction. It can have
either of these values:
YES|NO

Transaction manager domain (XM)

1276 CICS TS for z/OS: CICS Diagnosis Reference

[SUSPEND] Indicates whether the attacher is willing to suspend during the attach. It can have either of
these values:
YES|NO

RETURN_NOT_FOUND
Indicates whether the attacher wishes to receive the NOT_FOUND exception. Default is to
attach CSAC in place of the requested transaction. It can have either of these values:
YES|NO

[RESTART_COUNT]
If the attach is for a restarted transaction then this count indicates the number of this
restart attempt.

Output parameters
[TRANSACTION_TOKEN]

Is the token identifying the newly attached transaction.
[TRANNUM] Is the transaction number assigned to the newly attached transaction.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION NOT_FOUND
DISABLED
INSUFFICIENT_STORAGE
NOT_ENABLED_FOR_SHUTDOWN

INVALID INVALID_FUNCTION

XMBD gate, START_BROWSE_TRANDEF function
The START_BROWSE_TRANDEF function of the XMBD gate is used to initiate a browse of installed
transaction definitions.

Input parameters
[START_AT] Identifies a transaction identifier that the browse is to start at.

Output parameters
BROWSE_TOKEN Token identifying this transaction definition browse.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

INVALID INVALID_FUNCTION

XMBD gate, GET_NEXT_TRANDEF function
The GET_NEXT_TRANDEF function of the XMBD gate is used to return information about the next
transaction definition in the browse.

Input parameters
BROWSE_TOKEN Token identifying this browse of the transaction definitions.

Transaction manager domain (XM)

Chapter 113. Transaction manager domain (XM) 1277

Output parameters
[TRANSACTION_ID]

Transaction identifier
[INITIAL_PROGRAM]

Initial program of transaction.
[PROFILE_NAME]

Profile of transaction.
[TWASIZE] Size of Transaction Work Area.
[TRAN_PRIORITY]

Transaction priority
[STATUS] The status of the transaction. It can have either of these values:

ENABLED|DISABLED
[PARTITIONSET]

The partitionset defined for the transaction. It can have any of these values:
NONE|NAMED|KEEP|OWN

[PARTITIONSET_NAME]
The name of the user defined partitionset used by the transaction.

[TASKDATAKEY]
The storage key that task-lifetime storage is allocated in. It can have either of these
values:
CICS|USER

[TASKDATALOC]
The location of task-lifetime storage. It can have either of these values:
BELOW|ANY

[STORAGE_CLEAR]
Whether task-lifetime storage is to be cleared before it is freemained. It can have either of
these values:
YES|NO

[SYSTEM_RUNAWAY]
Whether the transaction uses the default system runaway limit. It can have either of these
values:
YES|NO

[RUNAWAY_LIMIT]
The runaway limit associated with the transaction.

[DYNAMIC] Whether the transaction is defined to be dynamic. It can have either of these values:
YES|NO

[LOCAL_QUEUING]
Whether the transaction is eligible to queue locally when it is started on the remote
system. It can have either of these values:
YES|NO

[REMOTE] Whether the transaction is remote. It can have either of these values:
YES|NO

[REMOTE_SYSTEM]
The system that a remote transaction is to be routed to.

[REMOTE_NAME]
The name of a remote transaction on the remote system.

[TRAN_ROUTING_PROFILE]
Profile to be used to route a remote transaction to a remote system.

[TCLASS] Whether the transaction belongs to a tclass. It can have either of these values:
YES|NO

[TCLASS_NAME]
The name of the tclass that the transaction belongs to.

[INDOUBT] The action to take if work performed by the transaction becomes indoubt. It can have any
of these values:

Transaction manager domain (XM)

1278 CICS TS for z/OS: CICS Diagnosis Reference

BACKOUT|COMMIT|WAIT
[RESTART] Whether the transaction is restartable. It can have either of these values:

YES|NO
[SPURGE] Whether the transaction is system-purgeable. It can have either of these values:

YES|NO
[DTIMEOUT] The deadlock timeout value for the transaction.
[TPURGE] Whether the transaction can be purged after a terminal error. It can have either of these

values:
YES|NO

[DUMP] Whether transaction dumps are to be taken. It can have either of these values:
YES|NO

[TRACE] The level of tracing associated with the transaction. It can have any of these values:
STANDARD|SPECIAL|SUPPRESSED

[SHUTDOWN] Whether the transaction can be run during shutdown. It can have either of these values:
ENABLED|DISABLED

[RESSEC] Whether resource security checking is active. It can have either of these values:
YES|NO

[CMDSEC] Whether command security checking is active. It can have either of these values:
YES|NO

[STORAGE_FREEZE]
Whether storage freeze is on for the transaction. It can have either of these values:
YES|NO

[ISOLATE] Whether the transaction runs in its own subspace. It can have either of these values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

EXCEPTION BROWSE_END_TRANDEF

INVALID INVALID_BROWSE_TOKEN
INVALID_FUNCTION

XMBD gate, END_BROWSE_TRANDEF function
The END_BROWSE_TRANDEF function of the XMBD gate is used to terminate a browse of installed
transaction definitions.

Input parameters
BROWSE_TOKEN Token identifying this transaction definition browse.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

Transaction manager domain (XM)

Chapter 113. Transaction manager domain (XM) 1279

RESPONSE Possible REASON values

INVALID INVALID_BROWSE_TOKEN
INVALID_FUNCTION

XMCL gate, ADD_REPLACE_TCLASS function
The ADD_REPLACE_TCLASS function of the XMCL gate is used to install a tclass definition.

Input parameters
TCLASS_NAME The name of the tclass.
MAX_ACTIVE The max-active limit of the tclass.
[PURGE_THRESHOLD]

The purge-threshold limit of the tclass.

Output parameters
[TCLASS_TOKEN]

Token identifying the tclass.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

EXCEPTION INVALID_TCLASS_NAME
INVALID_MAX_ACTIVE
INVALID_PURGE_THRESHOLD

INVALID INVALID_FUNCTION

XMCL gate, ADD_TCLASS function
The ADD_TCLASS function of the XMCL gate is used to add an internal tclass definition.

Input parameters
[TCLASS_NAME]

The name of the tclass.
MAX_ACTIVE The max-active limit of the tclass.
[PURGE_THRESHOLD]

The purge-threshold limit of the tclass.

Output parameters
TCLASS_TOKEN Token identifying the tclass.
RESPONSE is the domain’s response to the call. Possible values are:

OK|EXCEPTION|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. It can have any of

these values:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

EXCEPTION DUPLICATE_TCLASS_NAME
INVALID_TCLASS_NAME
INVALID_MAX_ACTIVE
INVALID_PURGE_THRESHOLD

Transaction manager domain (XM)

1280 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

INVALID INVALID_FUNCTION

XMCL gate, INQUIRE_TCLASS function
The INQUIRE_TCLASS function of the XMCL gate is used to inquire upon a tclass.

Input parameters
INQ_TCLASS_NAME

The name of the tclass being inquired upon.
TCLASS_TOKEN Token identifying tclass being inquired upon.

Output parameters
[TCLASS_NAME]

The name of the tclass.
[MAX_ACTIVE] The max-active limit of the tclass.
[PURGE_THRESHOLD]

The purge-threshold limit of the tclass.
[CURRENT_ACTIVE]

The number of active transactions in the tclass.
[CURRENT_QUEUED]

The number of queuing transactions in the tclass.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

EXCEPTION UNKNOWN_TCLASS

INVALID INVALID_TCLASS_TOKEN
INVALID_FUNCTION

XMCL gate, INQUIRE_ALL_TCLASSES function
The INQUIRE_ALL_TCLASSES function of the XMCL gate is used to inquire about the current state of all
the tclasses in the system.

Input parameters
None.

Output parameters
[TOTAL_ACTIVE]

The number of transactions active in a tclass.
[TOTAL_QUEUED]

The number of transactions queueing for a tclass.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION or INVALID. Possible values

are:

Transaction manager domain (XM)

Chapter 113. Transaction manager domain (XM) 1281

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

EXCEPTION UNKNOWN_TCLASS

LOGIC_ERROR INVALID_FUNCTION

XMCL gate, SET_TCLASS function
The SET_TCLASS function of the XMCL gate is used to modify a tclass definition.

Input parameters
TCLASS_NAME The name of the tclass to be changed.
TCLASS_TOKEN Token identifying tclass to be changed.
[MAX_ACTIVE] The max-active limit of the tclass.
[PURGE_THRESHOLD]

The purge-threshold limit of the tclass.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

EXCEPTION UNKNOWN_TCLASS
INVALID_MAX_ACTIVE
INVALID_PURGE_THRESHOLD

INVALID INVALID_TCLASS_TOKEN
INVALID_FUNCTION

XMCL gate, DELETE_TCLASS function
The DELETE_TCLASS function of the XMCL gate is used to discard an installed tclass definition.

Input parameters
TCLASS_NAME The name of the tclass to be deleted.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

EXCEPTION UNKNOWN_TCLASS
TCLASS_BUSY

INVALID INVALID_FUNCTION

Transaction manager domain (XM)

1282 CICS TS for z/OS: CICS Diagnosis Reference

XMCL gate, START_BROWSE_TCLASS function
The START_BROWSE_TCLASS function of the XMCL gate is used to initiate a browse of installed tclass
definitions.

Input parameters
[START_AT] Identifies a tclass that the browse is to start at.

Output parameters
BROWSE_TOKEN Token identifying this tclass browse.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

INVALID INVALID_FUNCTION

XMCL gate, GET_NEXT_TCLASS function
The GET_NEXT_TCLASS function of the XMCL gate is used to return information about the next tclass
definition in the browse.

Input parameters
BROWSE_TOKEN Token identifying this browse of the tclass definitions.

Output parameters
[TCLASS_NAME]

The name of the tclass.
[MAX_ACTIVE] The max-active limit of the tclass.
[PURGE_THRESHOLD]

The purge-threshold limit of the tclass.
[CURRENT_ACTIVE]

The number of active transactions in the tclass.
[CURRENT_QUEUED]

The number of queuing transactions in the tclass.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

EXCEPTION BROWSE_END_TCLASS

INVALID INVALID_BROWSE_TOKEN
INVALID_FUNCTION

XMCL gate, END_BROWSE_TCLASS function
The END_BROWSE_TCLASS function of the XMCL gate is used to terminate a browse of installed tclass
definitions.

Transaction manager domain (XM)

Chapter 113. Transaction manager domain (XM) 1283

Input parameters
BROWSE_TOKEN Token identifying this tclass browse.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

INVALID INVALID_BROWSE_TOKEN
INVALID_FUNCTION

XMCL gate, REGISTER_TCLASS_USAGE function
The REGISTER_TCLASS_USAGE function of the XMCL gate is used to register usage of a tclass by a
transaction definition.

Input parameters
TCLASS_NAME The name of the tclass that is being used.
UNKNOWN_ACTION

Specifies the action to perform if the tclass hasn't been installed by the user: It can have
either of these values:
CREATE|ERROR

Output parameters
TCLASS_TOKEN Token identifying tclass.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

EXCEPTION UNKNOWN_TCLASS

INVALID INVALID_FUNCTION

XMCL gate, DEREGISTER_TCLASS_USAGE function
The DEREGISTER_TCLASS_USAGE function of the XMCL gate is used to deregister usage of a tclass
by a transaction definition.

Input parameters
TCLASS_TOKEN Token identifying tclass that is no longer being used.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_TCLASS_TOKEN, NOT_IN_USE, INVALID_FUNCTION

Transaction manager domain (XM)

1284 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR, ABEND, LOOP

XMCL gate, LOCATE_AND_LOCK_TCLASS function
The LOCATE_AND_LOCK_TCLASS function of the XMCL gate is used to locate a named tclass and lock
it against delete.

Input parameters
TCLASS_NAME Name of tclass to be located.

Output parameters
TCLASS_TOKEN Token identifying tclass.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

EXCEPTION UNKNOWN_TCLASS

INVALID INVALID_FUNCTION

XMCL gate, UNLOCK_TCLASS function
The UNLOCK_TCLASS function of the XMCL gate is used to unlock a previously locked tclass.

Input parameters
TCLASS_TOKEN Token identifying tclass to be unlocked.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR, ABEND, LOOP

INVALID INVALID_TCLASS_TOKEN, NOT_LOCKED, INVALID_FUNCTION

XMDD gate, DELETE_TRANDEF function
The DELETE_TRANDEF function of the XMDD gate is used to discard an installed transaction definition.

Input parameters
TRANSACTION_ID

The name of the transaction to be deleted.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

Transaction manager domain (XM)

Chapter 113. Transaction manager domain (XM) 1285

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND LOOP

EXCEPTION UNKNOWN_TRANSACTION_ID
ICE_PENDING
AID_PENDING
SIT_PARAMETER

INVALID INVALID_FUNCTION

XMER gate, SET_DEFERRED_MESSAGE function
The SET_DEFERRED_MESSAGE function of the XMER gate is used to store a message to be issued if
the attach of a transaction fails.

Input parameters
MESSAGE The message that is to be issued.
[TRANSACTION_TOKEN]

Optional token to identify the transaction that the message is to be sent to. Defaults to the
current transaction.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION MESSAGE_ALREADY_SET
DEFERRED_ABEND_ALREADY_SET
INVALID_TRANSACTION_TOKEN

INVALID INVALID_FUNCTION

XMER gate, INQUIRE_DEFERRED_MESSAGE function
The INQUIRE_DEFERRED_MESSAGE function of the XMER gate is used to retrieve the message that is
to be issued which will indicate the cause of a transaction attach failure.

Output parameters
MESSAGE The message that is to be issued.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION MESSAGE_NOT_FOUND

INVALID INVALID_FUNCTION

XMER gate, SET_DEFERRED_ABEND function
The SET_DEFERRED_ABEND function of the XMER gate is used to schedule an abend to be issued if
the attach of a transaction fails.

Transaction manager domain (XM)

1286 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
DEFERRED_ABEND_CODE

The abend code that is to be used.
[TRANSACTION_DUMP]

Indicates whether a transaction dump is to be taken for the abend. It can have either of
these values:
YES|NO

[TRANSACTION_TOKEN]
Optional token to identify the transaction that is to be abended. Defaults to the current
transaction.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION MESSAGE_ALREADY_SET
DEFERRED_ABEND_ALREADY_SET
INVALID_TRANSACTION_TOKEN

INVALID INVALID_ABEND_CODE
INVALID_FUNCTION

XMER gate, INQUIRE_DEFERRED_ABEND function
The INQUIRE_DEFERRED_ABEND function of the XMER gate is used to retrieve the abend that is to be
issued for the transaction whose attach has failed.

Output parameters
DEFERRED_ABEND_CODE

The abend code.
[TRANSACTION_DUMP]

Indicates whether a transaction dump is to be taken for the abend. It can have either of
these values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION DEFERRED_ABEND_NOT_FOUND

INVALID INVALID_FUNCTION

XMER gate, REPORT_MESSAGE function
The REPORT_MESSAGE function of the XMER gate is used send a deferred message if the attach of a
transaction has failed.

Input parameters
MESSAGE The message that is to be sent.

Transaction manager domain (XM)

Chapter 113. Transaction manager domain (XM) 1287

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION TRANSACTION_ABEND

INVALID INVALID_FUNCTION

XMER gate, ABEND_TRANSACTION function
The ABEND_TRANSACTION function of the XMER gate is used abend a transaction whose attach has
failed.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION

XMFD gate, FIND_PROFILE function
The FIND_PROFILE function of the XMFD gate is used to check whether the given profile is in use by a
transaction definition.

Input parameters
PROFILE_NAME The profile that is to be found.

Output parameters
[TRANSACTION_ID]

The name of a transaction definition that is using the profile.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

EXCEPTION PROFILE_NOT_FOUND

INVALID INVALID_FUNCTION

XMIQ gate, INQUIRE_TRANSACTION function
The INQUIRE_TRANSACTION function of the XMIQ gate is used to inquire upon a particular transaction.

Transaction manager domain (XM)

1288 CICS TS for z/OS: CICS Diagnosis Reference

Input parameters
[TRANSACTION_NUMBER]

The number of the transaction being inquired upon.
[TRANSACTION_TOKEN]

Or the token representing the transaction being inquired upon.

If neither TRANSACTION_NUMBER or TRANSACTION_TOKEN are specified the current
transaction is assumed.

[ATTACH_PARMS]
Specified if the parameter area passed on the transaction. attach are to be returned.

Output parameters
[ABEND_CODE] The abend code if the transaction is terminating abnormally.
[ABEND_IN_PROGRESS]

Indicates whether the transaction is in the process of terminating abnormally. It can have
either of these values:
YES|NO

[CICS_UOW_ID]
The CICS Unit Of Work Identifier associated with the transaction.

[CMDSEC] Whether command security checking is active. It can have either of these values:
YES|NO

[DTIMEOUT] The deadlock timeout value for the transaction.
[DUMP] Whether transaction dumps are to be taken for the transaction. It can have either of these

values:
YES|NO

[DYNAMIC] Whether the transaction is dynamic. It can have either of these values:
YES|NO

[FACILITY_NAME]
The name of the principal facility associated with the transaction.

[FACILITY_TYPE]
The type of the principal facility associated with the transaction. It can have either of these
values:
NONE|TERMINAL|TD|START

[INDOUBT] The action to take if work performed by the transaction becomes indoubt. It can have any
of these values:
BACKOUT|COMMIT|WAIT

[INITIAL_PROGRAM]
The initial program to linked to when the transaction started.

[ISOLATE] Whether the transaction runs in its own subspace. It can have either of these values:
YES|NO

[LOCAL_QUEUING]
Whether the transaction is eligible to queue locally if it is started on the remote system. It
can have either of these values:
YES|NO

[NETNAME] The network name of a terminal principal facility.
[ORIGINAL_TRANSACTION_ID]

The transid that was used to attach the transaction.
[OUT_TRANSACTION_TOKEN]

The token that represents this transaction.
[PHASE] The phase of the transaction. It can have one of these values:

PRE_INIT|INIT|BIND|TERM
[PROFILE_NAME]

The profile of the transaction.
[REMOTE] Whether the transaction is remote. It can have either of these values:

YES|NO

Transaction manager domain (XM)

Chapter 113. Transaction manager domain (XM) 1289

[REMOTE_NAME]
The name of a remote transaction on the remote system.

[REMOTE_SYSTEM]
The system that a remote transaction is to be routed to.

[RESOURCE_NAME]
The name of a resource that a suspended transaction is waiting for.

[RESOURCE_TYPE]
The type of resource that a suspended transaction is waiting for.

[RESSEC] Whether resource security checking is active for the transaction. It can have either of
these values:
YES|NO

[RESTART] Whether the transaction is restartable. It can have either of these values:
YES|NO

[RESTART_COUNT]
Contains the number of times this transaction instance has been restarted.

[RUNAWAY_LIMIT]
The runaway limit associated with the transaction.

[SPURGE] Whether the transaction is system-purgeable. It can have either of these values:
YES|NO

START_CODE Indicates the reason for the attach of the transaction. It can have any of these values:
C|T|TT|QD|S|SD|SZ|DF

[STATUS] The status of the transaction. It can have either of these values:
ENABLED|DISABLED

[STORAGE_CLEAR]
Whether task-lifetime storage will be cleared before it is freemained. It can have either of
these values:
YES|NO

[SUSPEND_TIME]
Contains the length of time that the transaction has currently been suspended for.

[SYSTEM_TRANSACTION]
Whether the transaction has been attached by CICS. It can have either of these values:
YES|NO

[TASK_PRIORITY]
The combined priority of the transaction.

[TASKDATAKEY]
The storage key that task-lifetime storage is allocated in. It can have either of these
values:
CICS|USER

[TASKDATALOC]
The location of task-lifetime storage. It can have either of these values:
BELOW|ANY

[TCLASS] Whether the transaction belongs to a tclass. It can have either of these values:
YES|NO

[TCLASS_NAME]
The name of the tclass that the transaction belongs to.

[TPURGE] Whether the transaction can be purged after a terminal error. It can have either of these
values:
YES|NO

[TRACE] The level of tracing associated with the transaction. It can have any of these values:
STANDARD|SPECIAL|SUPPRESSED

[TRAN_PRIORITY]
The priority of the transaction definition used to attach the transaction.

[TRAN_ROUTING_PROFILE]
Profile used to route the transaction to a remote system.

Transaction manager domain (XM)

1290 CICS TS for z/OS: CICS Diagnosis Reference

[TRANNUM] The transaction number of the transaction.
[TRANSACTION_ID]

The transaction identifier associated with the transaction.
[TWASIZE] Size of Transaction Work Area associated with the transaction.
[USERID] The userid of the user associated with the transaction.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION NO_TRANSACTION_ENVIRONMENT
BUFFER_TOO_SMALL
UNKNOWN_TRANSACTION_NUMBER
INVALID_TRANSACTION_TOKEN

INVALID INVALID_FUNCTION

XMIQ gate, SET_TRANSACTION function
The SET_TRANSACTION function of the XMIQ gate is used to change some attributes associated with a
particular transaction.

Input parameters
[TRANSACTION_NUMBER]

The number of the transaction being inquired upon.
[TRANSACTION_TOKEN]

Or the token representing the transaction being inquired upon.

If neither TRANSACTION_NUMBER or TRANSACTION_TOKEN are specified the current
transaction is assumed.

[ABEND_CODE] The abend code if the transaction is terminating abnormally.
[ABEND_IN_PROGRESS]

Whether the transaction is in the process of terminating abnormally. It can have either of
these values:
YES|NO

[FACILITY_TYPE]
The type of the principal facility associated with the transaction. It can have either of these
values:
NONE|TERMINAL|TD|START

START_CODE The reason for the attach of the transaction. It can have any of these values:
C|T|TT|QD|S|SD|SZ|DF

[STORAGE_VIOLATIONS]
Set to indicate that the transaction has suffered a storage violation.

[TASK_PRIORITY]
The combined priority of the transaction.

[TCLASS_NAME]
The name of the tclass that the transaction belongs to.

Reserved name DFHTCL00 is used to change a transaction so that it no longer belongs to
a tclass.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Transaction manager domain (XM)

Chapter 113. Transaction manager domain (XM) 1291

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION NO_TRANSACTION_ENVIRONMENT
UNKNOWN_TCLASS
UNKNOWN_TRANSACTION_NUMBER
INVALID_TRANSACTION_TOKEN

INVALID INVALID_FUNCTION

XMIQ gate, START_BROWSE_TRANSACTION function
The START_BROWSE_TRANSACTION function of the XMIQ gate is used to initiate a browse of all
transactions in the system.

Output parameters
BROWSE_TOKEN Token identifying this transaction browse.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION

XMIQ gate, GET_NEXT_TRANSACTION function
The GET_NEXT_TRANSACTION function of the XMIQ gate is used to inquire upon the next transaction in
a transaction browse.

Input parameters
BROWSE_TOKEN The token identifying this transaction browse.
[ATTACH_PARMS]

Specified if the parameter area passed on the transaction. attach is to be returned.

Output parameters
[ABEND_CODE] The abend code if the transaction is terminating abnormally.
[ABEND_IN_PROGRESS]

Indicates whether the transaction is in the process of terminating abnormally. It can have
either of these values:
YES|NO

[CICS_UOW_ID]
The CICS Unit Of Work Identifier associated with the transaction.

[CMDSEC] Whether command security checking is active. It can have either of these values:
YES|NO

[DTIMEOUT] The deadlock timeout value for the transaction.
[DUMP] Whether transaction dumps are to be taken for the transaction. It can have either of these

values:
YES|NO

[DYNAMIC] Whether the transaction is dynamic. It can have either of these values:
YES|NO

[FACILITY_NAME]
The name of the principal facility associated with the transaction.

Transaction manager domain (XM)

1292 CICS TS for z/OS: CICS Diagnosis Reference

[FACILITY_TYPE]
The type of the principal facility associated with the transaction. It can have either of these
values:
NONE|TERMINAL|TD|START

[INDOUBT] The action to take if work performed by the transaction becomes indoubt. It can have any
of these values:
BACKOUT|COMMIT|WAIT

[INITIAL_PROGRAM]
The initial program to linked to when the transaction started.

[ISOLATE] Whether the transaction runs in its own subspace. It can have either of these values:
YES|NO

[LOCAL_QUEUING]
Whether the transaction is eligible to queue locally if it is started on the remote system. It
can have either of these values:
YES|NO

[NETNAME] The network name of a terminal principal facility.
[ORIGINAL_TRANSACTION_ID]

The transid that was used to attach the transaction.
[OUT_TRANSACTION_TOKEN]

The token that represents this transaction.
[PHASE] The phase of the transaction. It can have one of these values:

PRE_INIT|INIT|BIND|TERM
[PROFILE_NAME]

The profile of the transaction.
[REMOTE] Whether the transaction is remote. It can have either of these values:

YES|NO
[REMOTE_NAME]

The name of a remote transaction on the remote system.
[REMOTE_SYSTEM]

The system that a remote transaction is to be routed to.
[RESOURCE_NAME]

The name of a resource that a suspended transaction is waiting for.
[RESOURCE_TYPE]

The type of resource that a suspended transaction is waiting for.
[RESSEC] Whether resource security checking is active for the transaction. It can have either of

these values:
YES|NO

[RESTART] Whether the transaction is restartable. It can have either of these values:
YES|NO

[RESTART_COUNT]
Contains the number of times this transaction instance has been restarted.

[RUNAWAY_LIMIT]
The runaway limit associated with the transaction.

[SPURGE] Whether the transaction is system-purgeable. It can have either of these values:
YES|NO

START_CODE Indicates the reason for the attach of the transaction. It can have any of these values:
C|T|TT|QD|S|SD|SZ|DF

[STATUS] The status of the transaction. It can have either of these values:
ENABLED|DISABLED

[STORAGE_CLEAR]
Whether task-lifetime storage will be cleared before it is freemained. It can have either of
these values:
YES|NO

Transaction manager domain (XM)

Chapter 113. Transaction manager domain (XM) 1293

[SUSPEND_TIME]
Contains the length of time that the transaction has currently been suspended for.

[SYSTEM_TRANSACTION]
Whether the transaction has been attached by CICS. It can have either of these values:
YES|NO

[TASK_PRIORITY]
The combined priority of the transaction.

[TASKDATAKEY]
The storage key that task-lifetime storage is allocated in. It can have either of these
values:
CICS|USER

[TASKDATALOC]
The location of task-lifetime storage. It can have either of these values:
BELOW|ANY

[TCLASS] Whether the transaction belongs to a tclass. It can have either of these values:
YES|NO

[TCLASS_NAME]
The name of the tclass that the transaction belongs to.

[TPURGE] Whether the transaction can be purged after a terminal error. It can have either of these
values:
YES|NO

[TRACE] The level of tracing associated with the transaction. It can have any of these values:
STANDARD|SPECIAL|SUPPRESSED

[TRAN_PRIORITY]
The priority of the transaction definition used to attach the transaction.

[TRAN_ROUTING_PROFILE]
Profile used to route the transaction to a remote system.

[TRANNUM] The transaction number of the transaction.
[TRANSACTION_ID]

The transaction identifier associated with the transaction.
[TWASIZE] Size of Transaction Work Area associated with the transaction.
[USERID] The userid of the user associated with the transaction.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION BROWSE_END

DISASTER ABEND
LOOP

INVALID INVALID_BROWSE_TOKEN
INVALID_FUNCTION

XMIQ gate, END_BROWSE_TRANSACTION function
The END_BROWSE_TRANSACTION function of the XMIQ gate is used to terminate a browse of all
transactions in the system.

Input parameters
BROWSE_TOKEN Token identifying the transaction browse to be terminated.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK||DISASTER|INVALID|KERNERROR|PURGED

Transaction manager domain (XM)

1294 CICS TS for z/OS: CICS Diagnosis Reference

[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_BROWSE_TOKEN
INVALID_FUNCTION

XMIQ gate, START_BROWSE_TXN_TOKEN function
The START_BROWSE_TXN_TOKEN function of the XMIQ gate is used to initiate a browse of a particular
components transaction token in all transactions in the system.

Input parameters
TOKEN_OWNER Identifies the particular transaction token that is to be browsed in the transactions. It can

have any of these values:
AP|SM|TD|MN|PG|IC|XS|US|RM|TF

Output parameters
BROWSE_TOKEN Token identifying this transaction token browse.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND, LOOP

INVALID INVALID_FUNCTION

XMIQ gate, GET_NEXT_TXN_TOKEN function
The GET_NEXT_TXN_TOKEN function of the XMIQ gate is used to return the transaction token
associated with the next transaction in the system.

Input parameters
BROWSE_TOKEN Identifies this browse of the transaction tokens.

Output parameters
OWNERS_TOKEN The transaction token associated with the current transaction.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION or INVALID. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION BROWSE_END

DISASTER ABEND
LOOP

INVALID INVALID_BROWSE_TOKEN
INVALID_FUNCTION

XMIQ gate, END_BROWSE_TXN_TOKEN function
The END_BROWSE_TXN_TOKEN function of the XMIQ gate is used to terminate a browse of transaction
tokens.

Transaction manager domain (XM)

Chapter 113. Transaction manager domain (XM) 1295

Input parameters
BROWSE_TOKEN Token identifying the transaction token browse to be terminated.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK||DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND, LOOP

INVALID INVALID_BROWSE_TOKEN, INVALID_FUNCTION

XMIQ gate, INQUIRE_TRANSACTION_TOKEN function
The INQUIRE_TRANSACTION_TOKEN function of the XMIQ gate is used to return a particular
transaction token associated with a particular transaction.

Input parameters
[TRANSACTION_TOKEN]

Token identifying the transaction being inquired upon.

If omitted defaults to the current transaction.
TOKEN_OWNER Identifies the particular transaction token that is to be returned. It can have any of these

values:
AP|SM|TD|MN|PG|IC|XS|US|RM|TF

Output parameters
OWNERS_TOKEN The transaction token associated with the transaction.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION or INVALID. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION NO_TRANSACTION_ENVIRONMENT

DISASTER ABEND
LOOP

INVALID INVALID_BROWSE_TOKEN
INVALID_FUNCTION

XMIQ gate, SET_TRANSACTION_TOKEN function
The SET_TRANSACTION_TOKEN function of the XMIQ gate is used to modify a particular transaction
token associated with a particular transaction.

Input parameters
[TRANSACTION_TOKEN]

Token identifying the transaction in which the token is to be modified.

If omitted defaults to the current transaction.
TOKEN_OWNER Identifies the particular transaction token that is to be changed. It can have any of these

values:
AP|SM|TD|MN|PG|IC|XS|US|RM|TF

OWNERS_TOKEN The new value for the transaction token.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

Transaction manager domain (XM)

1296 CICS TS for z/OS: CICS Diagnosis Reference

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION or INVALID. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION NO_TRANSACTION_ENVIRONMENT

DISASTER ABEND
LOOP

INVALID INVALID_BROWSE_TOKEN
INVALID_FUNCTION

XMIQ gate, PURGE_TRANSACTION function
The PURGE_TRANSACTION function of the XMIQ gate is used to purge a particular transaction in the
system.

Input parameters
TRANSACTION_NUMBER

The number of the transaction to be purged.
TRANSACTION_TOKEN

Or the token representing the transaction to be purged.
PURGE_TYPE The type of purge that is to be attempted. It can have either of these values:

NORMAL|FORCE

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_TRANSACTION_NUMBER
INVALID_TRANSACTION_TOKEN
PURGE_DEFERRED
TRANSACTION_INITIALIZING
TRANSACTION_TERMINATING
PURGE_SYSTEM_TRANSACTION
PURGE_ABENDING_TRANSACTION
SPURGE_PROTECTED
PURGE_INHIBITED
INVALID_STATE
FORCEPURGE_NOT_ATTEMPTED

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION

XMLD gate, LOCATE_AND_LOCK_TRANDEF function
The LOCATE_AND_LOCK_TRANDEF function of the XMLD gate is used to locate a particular transaction
definition instance.

Input parameters
TRANSACTION_ID

Transaction identifier to locate.
TPNAME Or alternatively a tpname alias of the transaction definition to locate.
[USE_DTRTRAN]

If the named transaction-id or tpname cannot be found then indicates whether the
DTRTRAN, if installed, should be used instead. It can have either of these values:

Transaction manager domain (XM)

Chapter 113. Transaction manager domain (XM) 1297

YES|NO

Output parameters
TRANDEF_TOKEN

The token representing the returned transaction definition.
[PRIMARY_TRANSACTION_ID]

The primary transaction identifier of the returned transaction. definition.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION or INVALID. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION NOT_FOUND

DISASTER LOGIC_ERROR
ABEND
LOOP

INVALID INVALID_TPNAME
INVALID_FUNCTION

XMLD gate, UNLOCK_TRANDEF function
The UNLOCK_TRANDEF function of the XMLD gate is used to unlock a previously located transaction
definition instance.

Input parameters
TRANDEF_TOKEN

Transaction definition instance to unlock.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

INVALID NOT_LOCKED
INVALID_TOKEN
INVALID_FUNCTION

XMSR gate, INQUIRE_MXT function
The INQUIRE_MXT function of the XMSR gate is used to inquire upon the state of MXT in the system.

Output parameters
[MXT_QUEUED] The number of user transactions queued for MXT.
[TCLASS_QUEUED]

The number of transactions queued for tclass membership.
[CURRENT_ACTIVE]

The number of active user transactions.
[CURRENT_ACTIVE]

The number of user transactions queued on MXT.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

Transaction manager domain (XM)

1298 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

INVALID INVALID_FUNCTION

XMSR gate, SET_MXT function
The SET_MXT function of the XMSR gate is used to change MXT in the system.

Input parameters
MXT_LIMIT The requested setting for MXT.

Output parameters
MXT_LIMIT_SET

The MXT limit that could be set.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION or INVALID. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION INVALID_MXT_LIMIT
LIMIT_TOO_HIGH

DISASTER LOGIC_ERROR
ABEND
LOOP

INVALID INVALID_FUNCTION

XMSR gate, INQUIRE_DTRTRAN function
The INQUIRE_DTRTRAN function of the XMSR gate returns the name of the dynamic transaction routing
transaction.

Output parameters
DTRTRAN The name of the dynamic transaction routing transaction definition.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

INVALID INVALID_FUNCTION

XMSR gate, SET_DTRTRAN function
The SET_DTRTRAN function of the XMSR gate changes the dynamic transaction routing transaction
definition.

Input parameters
DTRTRAN The name of the dynamic transaction routing transaction definition.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

Transaction manager domain (XM)

Chapter 113. Transaction manager domain (XM) 1299

OK|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

INVALID INVALID_FUNCTION

XMXD gate, ADD_REPLACE_TRANDEF function
The ADD_REPLACE_TRANDEF function of the XMXD gate is used to install a transaction definition.

Input parameters
TRANSACTION_ID

Name of transaction definition to install.
PROFILE_NAME Profile of transaction.
TRAN_PRIORITY

Transaction priority
[INITIAL_PROGRAM]

Initial program of transaction.
[TWASIZE] Size of Transaction Work Area.
[STATUS] The status of the transaction. It can have either of these values:

ENABLED|DISABLED
[PARTITIONSET]

The partitionset defined for the transaction. It can have any of these values:
NONE|NAMED|KEEP|OWN

[PARTITIONSET_NAME]
The name of the user defined partitionset used by the transaction.

[TASKDATAKEY]
The storage key that task-lifetime storage is allocated in. It can have either of these
values:
CICS|USER

[TASKDATALOC]
The location of task-lifetime storage. It can have either of these values:
BELOW|ANY

[STORAGE_CLEAR]
Whether task-lifetime storage is to be cleared before it is freemained. It can have either of
these values:
YES|NO

[SYSTEM_RUNAWAY]
Whether the transaction uses the default system runaway limit. It can have either of these
values:
YES|NO

[RUNAWAY_LIMIT]
The runaway limit associated with the transaction.

[DYNAMIC] Whether the transaction is defined to be dynamic. It can have either of these values:
YES|NO

[LOCAL_QUEUING]
Whether the transaction is eligible to queue locally when it is started on the remote
system. It can have either of these values:
YES|NO

[REMOTE_SYSTEM]
The system that a remote transaction is to be routed to.

Transaction manager domain (XM)

1300 CICS TS for z/OS: CICS Diagnosis Reference

[REMOTE_NAME]
The name of a remote transaction on the remote system.

[TRAN_ROUTING_PROFILE]
Profile to be used to route a remote transaction to a remote system.

[TCLASS] Whether the transaction belongs to a tclass. It can have either of these values:
YES|NO

[TCLASS_NAME]
The name of the tclass that the transaction belongs to.

[INDOUBT] The action to take if work performed by the transaction becomes indoubt. It can have any
of these values:
BACKOUT|COMMIT|WAIT

[RESTART] Whether the transaction is restartable. It can have either of these values:
YES|NO

[SPURGE] Whether the transaction is system-purgeable. It can have either of these values:
YES|NO

[DTIMEOUT] The deadlock timeout value for the transaction.
[TPURGE] Whether the transaction can be purged after a terminal error. It can have either of these

values:
YES|NO

[DUMP] Whether transaction dumps are to be taken. It can have either of these values:
YES|NO

[TRACE] The level of tracing associated with the transaction. It can have any of these values:
STANDARD|SPECIAL|SUPPRESSED

[SHUTDOWN] Whether the transaction can be run during shutdown. It can have either of these values:
ENABLED|DISABLED

[RESSEC] Whether resource security checking is active. It can have either of these values:
YES|NO

[CMDSEC] Whether command security checking is active. It can have either of these values:
YES|NO

[STORAGE_FREEZE]
Whether storage freeze is on for the transaction. It can have either of these values:
YES|NO

[ISOLATE] Whether the transaction runs in its own subspace. It can have either of these values:
YES|NO

[CATALOGUED_EXTERNALS]
Block of data specified as an alternative to the above parameters when a transaction
definition is being installed from the catalog.

[ALIAS] Alternative name for transaction definition.
[TASKREQ] Alternative name for transaction definition so that it can be invoked by PF/PA key, light

pen, etc.
[XTRANID] Alternative name for transaction definition originally specified in hexadecimal notation.
[TPNAME] Alternative name of transaction definition in form of a sixty four character transaction

program name.
[SYSTEN_DEFINITION]

Whether the definition is being added on behalf of CICS or not. It can have either of these
values:
YES|NO

Output parameters
[TRANDEF_TOKEN]

Token returned to represent the installed transaction. definition.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Transaction manager domain (XM)

Chapter 113. Transaction manager domain (XM) 1301

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION or INVALID. Possible values
are:

RESPONSE Possible REASON values

EXCEPTION TWASIZE_INVALID
RUNAWAY_LIMIT_INVALID
TRANSACTION_ID_INVALID
ALIAS_INVALID
XTRANID_INVALID
TASKREQ_INVALID
TPNAME_INVALID
RECOVERY_NOT_COMPLETE

DISASTER LOGIC_ERROR
ABEND
LOOP

INVALID INITIAL_PROGRAM_EXPECTED
REMOTE_SYSTEM_EXPECTED
REMOTE_NAME_EXPECTED
RUNAWAY_LIMIT_EXPECTED
TRAN_ROUTING_PROF_EXPECTED
TCLASS_NAME_EXPECTED
PARTITIONSET_NAME_EXPECTED
INVALID_FUNCTION

XMXD gate, SET_TRANDEF function
The SET_TRANDEF function of the XMXD gate is used to modify transaction definition creating a new
transaction. definition instance.

Input parameters
TRANSACTION_ID

Name of transaction definition to change.
[TRAN_PRIORITY]

Transaction priority.
[STATUS] The status of the transaction. It can have either of these values:

ENABLED|DISABLED
[SYSTEM_RUNAWAY]

Whether the transaction uses the default system runaway limit. It can have either of these
values:
YES|NO

[RUNAWAY_LIMIT]
The runaway limit associated with the transaction.

[TCLASS] Whether the transaction belongs to a tclass. It can have either of these values:
YES|NO

[TCLASS_NAME]
The name of the tclass that the transaction belongs to.

[SPURGE] Whether the transaction is system-purgeable. It can have either of these values:
YES|NO

[DUMP] Whether transaction dumps are to be taken. It can have either of these values:
YES|NO

[TRACE] The level of tracing associated with the transaction. It can have any of these values:
STANDARD|SPECIAL|SUPPRESSED

[SHUTDOWN] Whether the transaction can be run during shutdown. It can have either of these values:
ENABLED|DISABLED

[STORAGE_FREEZE]
Whether storage freeze is on for the transaction. It can have either of these values:
YES|NO

Transaction manager domain (XM)

1302 CICS TS for z/OS: CICS Diagnosis Reference

[SHUTDOWN_DISABLEOVERRIDE]
Whether to override a SHUTDOWN setting of DISABLED for the transaction definition. It
can have either of these values:
YES|NO

Output parameters
[TRANDEF_TOKEN]

Token returned to represent the new transaction. definition instance.
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION or INVALID. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_TRANSACTION_ID
RUNAWAY_LIMIT_INVALID
UNKNOWN_TCLASS

DISASTER LOGIC_ERROR
ABEND
LOOP

INVALID RUNAWAY_LIMIT_EXPECTED
TCLASS_NAME_EXPECTED
INVALID_FUNCTION

XMXD gate, INQUIRE_TRANDEF function
The INQUIRE_TRANDEF function of the XMXD gate is used to inquire upon a named transaction
definition.

Input parameters
INQ_TRANSACTION_ID

Transaction-id to inquire upon.
TRANDEF_TOKEN

Or alternatively token representing transaction definition to inquire upon.
[USE_DTRTRAN]

If the INQ_TRANSACTION_ID cannot be found then indicates whether the DTRTRAN, if
installed, should be used for the inquire instead. It can have either of these values:
YES|NO

Output parameters
[TRANSACTION_ID]

Transaction identifier.
[INITIAL_PROGRAM]

Initial program of transaction.
[PROFILE_NAME]

Profile of transaction.
[TWASIZE] Size of Transaction Work Area.
[TRAN_PRIORITY]

Transaction priority.
[STATUS] The status of the transaction. It can have either of these values:

ENABLED|DISABLED
[PARTITIONSET]

The partitionset defined for the transaction. It can have any of these values:
NONE|NAMED|KEEP|OWN

[PARTITIONSET_NAME]
The name of the user defined partitionset used by the transaction.

Transaction manager domain (XM)

Chapter 113. Transaction manager domain (XM) 1303

[TASKDATAKEY]
The storage key that task-lifetime storage is allocated in. It can have either of these
values:
CICS|USER

[TASKDATALOC]
The location of task-lifetime storage. It can have either of these values:
BELOW|ANY

[STORAGE_CLEAR]
Whether task-lifetime storage is to be cleared before it is freemained. It can have either of
these values:
YES|NO

[SYSTEM_RUNAWAY]
Whether the transaction uses the default system runaway limit. It can have either of these
values:
YES|NO

[RUNAWAY_LIMIT]
The runaway limit associated with the transaction.

[DYNAMIC] Whether the transaction is defined to be dynamic. It can have either of these values:
YES|NO

[LOCAL_QUEUING]
Whether the transaction is eligible to queue locally when it is started on the remote
system. It can have either of these values:
YES|NO

[REMOTE] Whether the transaction is remote. It can have either of these values:
YES|NO

[REMOTE_SYSTEM]
The system that a remote transaction is to be routed to.

[REMOTE_NAME]
The name of a remote transaction on the remote system.

[TRAN_ROUTING_PROFILE]
Profile to be used to route a remote transaction to a remote system.

[TCLASS] Whether the transaction belongs to a tclass. It can have either of these values:
YES|NO

[TCLASS_NAME]
The name of the tclass that the transaction belongs to.

[INDOUBT] The action to take if work performed by the transaction becomes indoubt. It can have any
of these values:
BACKOUT|COMMIT|WAIT

[RESTART] Whether the transaction is restartable. It can have either of these values:
YES|NO

[SPURGE] Whether the transaction is system-purgeable. It can have either of these values:
YES|NO

[DTIMEOUT] The deadlock timeout value for the transaction.
[TPURGE] Whether the transaction can be purged after a terminal error. It can have either of these

values:
YES|NO

[DUMP] Whether transaction dumps are to be taken. It can have either of these values:
YES|NO

[TRACE] The level of tracing associated with the transaction. It can have any of these values:
STANDARD|SPECIAL|SUPPRESSED

[SHUTDOWN] Whether the transaction can be run during shutdown. It can have either of these values:
ENABLED|DISABLED

[RESSEC] Whether resource security checking is active. It can have either of these values:

Transaction manager domain (XM)

1304 CICS TS for z/OS: CICS Diagnosis Reference

YES|NO
[CMDSEC] Whether command security checking is active. It can have either of these values:

YES|NO
[STORAGE_FREEZE]

Whether storage freeze is on for the transaction. It can have either of these values:
YES|NO

[ISOLATE] Whether the transaction runs in its own subspace. It can have either of these values:
YES|NO

[SYSTEM_ATTACH]
Whether a system task will be attached using this transaction definition It can have either
of these values:
YES|NO

[DTRTRAN] Indicates whether the returned transaction definition is the dynamic transaction routing
transaction definition or not. It can have either of these values:
YES|NO

TCB_HISTORY returns historical data indicating the frequency of usage of ic each subspace-inheriting
open TCB mode by tasks with the caller's these transaction id.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

EXCEPTION UNKNOWN_TRANSACTION_ID

INVALID INVALID_TOKEN
INVALID_FUNCTION

DISASTER LOGIC_ERROR
ABEND
LOOP

XMXD gate, INQUIRE_REMOTE_TRANDEF function
The INQUIRE_REMOTE_TRANDEF function of the XMXD gate is used to inquire upon a remote
transaction definition.

Input parameters
REMOTESYSTEM_KEY

Remote system of remote transaction definition to be found.
REMOTENAME_KEY

Remote name of remote transaction definition to be found.

Output parameters
[TRANSACTION_ID]

Transaction identifier.
[INITIAL_PROGRAM]

Initial program of transaction.
[PROFILE_NAME]

Profile of transaction.
[TWASIZE] Size of Transaction Work Area.
[TRAN_PRIORITY]

Transaction priority.
[STATUS] The status of the transaction. It can have either of these values:

ENABLED|DISABLED
[PARTITIONSET]

The partitionset defined for the transaction. It can have any of these values:

Transaction manager domain (XM)

Chapter 113. Transaction manager domain (XM) 1305

NONE|NAMED|KEEP|OWN
[PARTITIONSET_NAME]

The name of the user defined partitionset used by the transaction.
[TASKDATAKEY]

The storage key that task-lifetime storage is allocated in. It can have either of these
values:
CICS|USER

[TASKDATALOC]
The location of task-lifetime storage. It can have either of these values:
BELOW|ANY

[STORAGE_CLEAR]
Whether task-lifetime storage is to be cleared before it is freemained. It can have either of
these values:
YES|NO

[SYSTEM_RUNAWAY]
Whether the transaction uses the default system runaway limit. It can have either of these
values:
YES|NO

[RUNAWAY_LIMIT]
The runaway limit associated with the transaction.

[DYNAMIC] Whether the transaction is defined to be dynamic. It can have either of these values:
YES|NO

[LOCAL_QUEUING]
Whether the transaction is eligible to queue locally when it is started on the remote
system. It can have either of these values:
YES|NO

[REMOTE] Whether the transaction is remote. It can have either of these values:
YES|NO

[REMOTE_SYSTEM]
The system that a remote transaction is to be routed to.

[REMOTE_NAME]
The name of a remote transaction on the remote system.

[TRAN_ROUTING_PROFILE]
Profile to be used to route a remote transaction to a remote system.

[TCLASS] Whether the transaction belongs to a tclass. It can have either of these values:
YES|NO

[TCLASS_NAME]
The name of the tclass that the transaction belongs to.

[INDOUBT] The action to take if work performed by the transaction becomes indoubt. It can have any
of these values:
BACKOUT|COMMIT|WAIT

[RESTART] Whether the transaction is restartable. It can have either of these values:
YES|NO

[SPURGE] Whether the transaction is system-purgeable. It can have either of these values:
YES|NO

[DTIMEOUT] The deadlock timeout value for the transaction.
[TPURGE] Whether the transaction can be purged after a terminal error. It can have either of these

values:
YES|NO

[DUMP] Whether transaction dumps are to be taken. It can have either of these values:
YES|NO

[TRACE] The level of tracing associated with the transaction. It can have any of these values:
STANDARD|SPECIAL|SUPPRESSED

[SHUTDOWN] Whether the transaction can be run during shutdown. It can have either of these values:

Transaction manager domain (XM)

1306 CICS TS for z/OS: CICS Diagnosis Reference

ENABLED|DISABLED
[RESSEC] Whether resource security checking is active. It can have either of these values:

YES|NO
[CMDSEC] Whether command security checking is active. It can have either of these values:

YES|NO
[STORAGE_FREEZE]

Whether storage freeze is on for the transaction. It can have either of these values:
YES|NO

[ISOLATE] Whether the transaction runs in its own subspace. It can have either of these values:
YES|NO

[SYSTEM_ATTACH]
Whether a system task will be attached using this transaction definition It can have either
of these values:
YES|NO

[DTRTRAN] Indicates whether the returned transaction definition is the dynamic transaction routing
transaction definition or not. It can have either of these values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

EXCEPTION REMOTE_NOT_FOUND

INVALID INVALID_FUNCTION

DISASTER LOGIC_ERROR
ABEND
LOOP

XMXE gate, GET_TXN_ENVIRONMENT function
The GET_TXN_ENVIRONMENT function of the XMXE gate is used to acquire a transaction environment
for a task that was DS instead XM attached.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

EXCEPTION DUPLICATE_ENVIRONMENT
ATTACHED_TRANSACTION

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION

XMXE gate, FREE_TXN_ENVIRONMENT function
The FREE_TXN_ENVIRONMENT function of the XMXE gate is used to release a transaction environment
for a task that was DS instead XM attached.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Transaction manager domain (XM)

Chapter 113. Transaction manager domain (XM) 1307

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

EXCEPTION NO_ENVIRONMENT
ATTACHED_TRANSACTION

DISASTER ABEND
LOOP

INVALID INVALID_FUNCTION

Transaction manager domain’s generic gates
Table 117 summarizes the transaction manager domain’s generic gates. It shows the level-1 trace point
IDs of the modules providing the functions for the gates, the functions provided by the gates, and the
generic formats for calls to the gates.

Table 117. Transaction manager domain’s generic gates
Gate Trace Function Format

XMDM XM 0101
XM 0102

PRE_INITIALIZE
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

XMST XM 0C01
XM 0C02

COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

STST

For descriptions of these functions and their input and output parameters, refer to the sections dealing with
the corresponding generic formats:

Functions and parameters

Format DMDM—“Domain manager domain’s generic formats” on page 669

Format STST—“Statistics domain’s generic format” on page 1198

Transaction manager domain’s generic format
Table 118 shows the generic format owned by the transaction manager domain, and shows the function
performed on the call.

Table 118. Generic format owned by the transaction manager domain
Format Calling module Function

XMNT DFHXMSR
DFHXMAT
DFHXMTA
DFHXMCL

MXT_NOTIFY
MXT_CHANGE_NOTIFY

XMDN DFHXMXD
DFHXMQD
DFHXMDD

TRANDEF_NOTIFY
TRANDEF_DELETE_QUERY

XMPP DFHXMIQ FORCE_PURGE_INHIBIT_QUERY

In the descriptions of the format that follow, the “input” parameters are input not to the transaction
manager domain, but to the domain being called by the transaction manager. Similarly, the “output”
parameters are output by the domain that was called by the transaction manager domain, in response to
the call.

Transaction manager domain (XM)

1308 CICS TS for z/OS: CICS Diagnosis Reference

Format XMNT, MXT_NOTIFY function
The MXT_NOTIFY function of XMNT format is used to notify other domains when CICS is at, or no longer
at, the maximum task limit for user tasks.

Input parameters
MXTQUEUING Indicates whether queuing for MXT has just started or just stopped. It can have either of

these values:
STARTED|STOPPED

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

Format XMNT, MXT_CHANGE_NOTIFY function
The MXT_CHANGE_NOTIFY function of XMNT format is used to notify other domains of a change to the
MXT limit. The called domains indicate whether they can cope with the new limit.

Input parameters
REQUESTED_MXT

The new limit requested for MXT.

Output parameters
ALLOCATED_MXT

Indicates the limit that the called domain can cope with when the LIMIT_TOO_HIGH
exception is returned.

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values
are:

RESPONSE Possible REASON values

EXCEPTION LIMIT_TOO_HIGH

DISASTER LOGIC_ERROR
ABEND
LOOP

INVALID INVALID_FUNCTION

Format XMDN, TRANDEF_NOTIFY function
The TRANDEF_NOTIFY function of the XMDN format is used to notify other domains that a transaction
definition has been installed, changed, or deleted. The called domain's can then modify any transaction
definition related data they are keeping for that definition.

Input parameters
EVENT Indicates the event that has caused the notify to be sent. It can have any of the following

values:
INSTALL|CHANGE|DELETE

TRANDEF_TOKEN
Token identifying the transaction definition instance subject to the above event.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

Transaction manager domain (XM)

Chapter 113. Transaction manager domain (XM) 1309

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

INVALID INVALID_FUNCTION

Format XMDN, TRANDEF_DELETE_QUERY function
The TRANDEF_DELETE_QUERY function of the XMDN format allows other domains to object to the
deletion of the named transaction. definition.

Input parameters
TRANSACTION_ID

The transaction definition subject to the delete request.

Output parameters
INHIBIT_DELETE

Indicates whether the called domain wants to inhibit the deletion of the named transaction
definition. It can either of the following values:
YES|NO

INHIBIT_REASON
Indicates the reason why the called domain wants to inhibit the deletion of the named
transaction definition. It can have any of the following values:
AID_PENDING|ICE_PENDING|SIT_PARAMETER

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER LOGIC_ERROR
ABEND
LOOP

INVALID INVALID_FUNCTION

Format XMPP, FORCE_PURGE_INHIBIT_QUERY function
The FORCE_PURGE_INHIBIT_QUERY function of the XMPP format allows other domains to object to the
force purge request for the specified transaction.

Input parameters
TRANSACTION_TOKEN

Token identifying the transaction that is subject to the force purge request.

Output parameters
INHIBIT_PURGE

Indicates whether the called domain wants to inhibit the force purge of the transaction. It
can have either of the following values:
YES|NO

RESPONSE is the domain’s response to the call. It can have any of these values:
OK|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

Transaction manager domain (XM)

1310 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

INVALID INVALID_FUNCTION

Modules

Module Function

DFHXMAB XM domain abend program

DFHXMAT Handles the following requests:
ATTACH

DFHXMBD Handles the following requests:
START_BROWSE_TRANDEF
GET_NEXT_TRANDEF
END_BROWSE_TRANDEF

DFHXMCL Handles the following requests:
ADD_REPLACE_TCLASS
ADD_TCLASS
INQUIRE_TCLASS
SET_TCLASS
DELETE_TCLASS
START_BROWSE_TCLASS
GET_NEXT_TCLASS
END_BROWSE_TCLASS
REGISTER_TCLASS_USAGE
DEREGISTER_TCLASS_USAGE
LOCATE_AND_LOCK_TCLASS
UNLOCK_TCLASS

DFHXMDD Handles the following requests:
DELETE_TRANDEF

DFHXMDM Handles the following requests:
PRE_INITIALIZE
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHXMDUF XM domain offline dump formatting routine

DFHXMER Handles the following requests:
SET_DEFERRED_MESSAGE
INQUIRE_DEFERRED_MESSAGE
SET_DEFERRED_ABEND
INQUIRE_DEFERRED_ABEND
REPORT_MESSAGE
ABEND_TRANSACTION

DFHXMFD Handles the following requests:
FIND_PROFILE

DFHXMIQ Handles the following requests:
INQUIRE_TRANSACTION
SET_TRANSACTION
START_BROWSE_TRANSACTION
GET_NEXT_TRANSACTION
END_BROWSE_TRANSACTION
START_BROWSE_TXN_TOKEN
GET_NEXT_TXN_TOKEN
END_BROWSE_TXN_TOKEN
INQUIRE_TRANSACTION_TOKEN
SET_TRANSACTION_TOKEN
PURGE_TRANSACTION

DFHXMLD Handles the following requests:
LOCATE_AND_LOCK_TRANDEF
UNLOCK_TRANDEF

Transaction manager domain (XM)

Chapter 113. Transaction manager domain (XM) 1311

Module Function

DFHXMQC Is an internal module which handles the following requests:
TCLASS_ACQUIRE
TCLASS_RELEASE
TCLASS_LIMIT_CHANGE
TCLASS_QUEUE_CHANGE

DFHXMQD Is an internal module which handles the following requests:
QUIESCE_TRANDEF
DELETE_INSTANCE

DFHXMRP Is an internal module which handles the following requests:
DEFINITION_RECOVERY

DFHXMSR Handles the following requests:
INQUIRE_MXT
SET_MXT
INQUIRE_DTRTRAN
SET_DTRTRAN

DFHXMST Handles the following requests:
COLLECT_STATISTICS
COLLECT_RESOURCE_STATS

DFHXMTRI Interprets XM domain trace entries

DFHXMXD Handles the following requests:
ADD_REPLACE_TRANDEF
SET_TRANDEF
INQUIRE_TRANDEF
INQUIRE_REMOTE_TRANDEF

DFHXMXE Handles the following requests:
GET_TXN_ENVIRONMENT
FREE_TXN_ENVIRONMENT

Exits
There is one specific global user exit point in the transaction manager, XXMATT, which is called during
Attach processing.

Note also that the general resource install/discard exit, XRSINDI, is also called by transaction manager to
log installs and discards of transaction and tclass definitions.

For further information about both these exit points see the CICS Customization Guide.

Trace
The point IDs for the storage manager domain are of the form XMxxxx; the corresponding trace levels are
XM 1, XM 2 and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

Transaction manager domain (XM)

1312 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 114. Security manager domain

The security manager domain provides an optional facility for checking user authority to run transactions
and access resources.

Security manager domain’s specific gates
Table 119 summarizes the security manager domain’s specific gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gates, the functions provided by the gates, and whether or not
the functions are available through the exit programming interface (XPI).

Table 119. Security manager domain’s specific gates
Gate Trace Function XPI

XSAD XS 0201
XS 0202

ADD_USER_WITH_PASSWORD
ADD_USER_WITHOUT_PASSWORD
DELETE_USER_SECURITY
INQUIRE_USER_ATTRIBUTES
VALIDATE_USERID

NO
NO
NO
NO
NO

XSFL XS 0501
XS 0502

FLATTEN_USER_SECURITY
UNFLATTEN_USER_SECURITY
UNFLATTEN ESM_UTOKEN

NO
NO
NO

XSIS XS 0301
XS 0302

INQUIRE_REGION_USERID
INQ_SECURITY_DOMAIN_PARMS
SET_SECURITY_DOMAIN_PARMS
SET_NETWORK_IDENTIFIER
SET_SPECIAL_TOKENS INQUIRE_REALM_NAME

NO
NO
NO
NO
NO
NO

XSLU XS 0801
XS 0802

GENERATE_APPC_BIND
GENERATE_APPC_RESPONSE
VALIDATE_APPC_RESPONSE

NO
NO
NO

XSPW XS 0601
XS 0602

CREATE_PASSTICKET
INQUIRE_PASSWORD_DATA
UPDATE_PASSWORD
INQUIRE_CERTIFICATE_USERID
REGISTER_CERTIFICATE_USER

NO
NO
NO
NO
NO

XSRC XS 0701
XS 0702

CHECK_CICS_RESOURCE
CHECK_CICS_COMMAND
CHECK_NON_CICS_RESOURCE
CHECK_SURROGATE_USER
REBUILD_RESOURCE_CLASSES

NO
NO
NO
NO
NO

XSXM XS 0401
XS 0402

ADD_TRANSACTION_SECURITY
DEL_TRANSACTION_SECURITY
END_TRANSACTION

NO
NO
NO

XSAD gate, ADD_USER_WITH_PASSWORD function
The ADD_USER_WITH_PASSWORD function of the XSAD gate is used to add a user to the security
domain and verify the associated password or oidcard.

Input parameters
USERID is the identifier of the user (a userid of 1 through 10 alphanumeric characters) to be added

to the security domain.
USERID_LENGTH

is the length of the USERID value.
PASSWORD_TYPE

specifies if the password is masked. It can have either of these values:
CLEAR|MASKED

[PASSWORD] is the current password, 1 through 10 alphanumeric characters, for the userid specified by
the USERID value.

© Copyright IBM Corp. 1997, 2011 1313

[PASSWORD_LENGTH]
is the 8-bit length of the PASSWORD value. This parameter is only valid if PASSWORD is
also specified.

[NEW_PASSWORD]
is a new password, 1 through 10 alphanumeric characters, to be assigned to the userid
(specified by the USERID value). This parameter is only valid if PASSWORD is also
specified.

[NEW_PASSWORD_LENGTH]
is the 8-bit length of the NEW_PASSWORD value. This parameter is only valid if
NEW_PASSWORD is also specified.

APPLID is the application identifier for the CICS region.
[OIDCARD] is an optional oidcard (operator identification card); a 65-byte field containing further

security data from a magnetic strip reader (MSR) on 32xx devices.
[GROUPID] is an optional identifier, 1 through 10 alphanumeric characters, of a RACF user group to

which the userid (specified by the USERID value) is to be assigned.
[GROUPID_LENGTH]

is the 8-bit length of the GROUPID value. This parameter is only valid if GROUPID is also
specified.

[ENTRY_PORT_NAME]
is an optional name of an entry port, 1 through 8 alphanumeric characters, to be assigned
to the userid (specified by the USERID value).

[ENTRY_PORT_TYPE]
is the type of the optional entry port to be assigned to the userid (specified by the USERID
value). It can have either of these values:
TERMINAL|CONSOLE

This parameter is only valid if ENTRY_PORT_NAME is also specified.
SIGNON_TYPE is the type of signon for the userid (specified by the USERID value). It can have any of

these values:
ATTACH_SIGN_ON|DEFAULT_SIGN_ON|IRC_SIGN_ON|
LU61_SIGN_ON|LU62_SIGN_ON|NON_TERMINAL_SIGN_ON|
PRESET_SIGN_ON|USER_SIGN_ON|XRF_SIGN_ON

Output parameters
SECURITY_TOKEN

is the token identifying the userid.
[SAF_RESPONSE]

is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE]

is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Security manager domain

1314 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION APPLICATION_NOTAUTH
ENTRY_PORT_NOTAUTH
ESM_INACTIVE
ESM_TRANQUIL
GETMAIN_FAILURE
GROUP_ACCESS_REVOKED
INVALID_GROUPID
INVALID_NEW_PASSWORD
OIDCARD_NOTAUTH
OIDCARD_REQUIRED
PASSWORD_REQUIRED
PASSWORD_EXPIRED
PASSWORD_NOTAUTH
SECLABEL_FAILURE
SECURITY_INACTIVE
UNKNOWN_ESM_ERROR
USERID_NOT_IN_GROUP
USERID_REVOKED
USERID_NOT_DEFINED
INVALID_USERID

DISASTER ABEND
LOOP

INVALID INVALID_FORMAT
INVALID_FUNCTION

XSAD gate, ADD_USER_WITHOUT_PASSWORD function
The ADD_USER_WITHOUT_PASSWORD function of the XSAD gate is used to add a user to the security
domain without verification of a associated password or oidcard.

Input parameters
USERID is the identifier of the user (a userid of 1 through 10 alphanumeric characters) to be added

to the security domain.
USERID_LENGTH

is the 8-bit length of the USERID value.
[GROUPID] is an optional identifier, 1 through 10 alphanumeric characters, of a RACF user group to

which the userid (specified by the USERID value) is to be assigned.
[GROUPID_LENGTH]

is the 8-bit length of the GROUPID value. This parameter is only valid if GROUPID is also
specified.

[ENTRY_PORT_NAME]
is an optional name of an entry port, 1 through 8 alphanumeric characters, to be assigned
to the userid (specified by the USERID value).

[ENTRY_PORT_TYPE]
is the type of the optional entry port to be assigned to the userid (specified by the USERID
value). It can have either of these values:
TERMINAL|CONSOLE

This parameter is only valid if ENTRY_PORT_NAME is also specified.
SIGNON_TYPE is the type of signon for the userid (specified by the USERID value). It can have any of

these values:
ATTACH_SIGN_ON|DEFAULT_SIGN_ON|IRC_SIGN_ON|
LU61_SIGN_ON|LU62_SIGN_ON|NON_TERMINAL_SIGN_ON|
PRESET_SIGN_ON|USER_SIGN_ON|XRF_SIGN_ON

APPLID is the application identifier for the CICS region.

Security manager domain

Chapter 114. Security manager domain 1315

Output parameters
SECURITY_TOKEN

is the token identifying the userid.
[SAF_RESPONSE]

is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE]

is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION APPLICATION_NOTAUTH
ENTRY_PORT_NOTAUTH
ESM_INACTIVE
ESM_TRANQUIL
GETMAIN_FAILURE
GROUP_ACCESS_REVOKED
INVALID_GROUPID
SECLABEL_FAILURE
SECURITY_INACTIVE
UNKNOWN_ESM_ERROR
USERID_NOT_IN_GROUP
USERID_REVOKED
USERID_NOT_DEFINED
INVALID_USERID

DISASTER ABEND
LOOP

INVALID INVALID_FORMAT
INVALID_FUNCTION

XSAD gate, DELETE_USER_SECURITY function
The DELETE_USER_SECURITY function of the XSAD gate is used to delete the storage held to store the
ACEE and ACEE pointer for the user represented by the security token.

Input parameters
SECURITY_TOKEN

is the token identifying the userid.
SIGNOFF_TYPE is the type of signoff for the userid identified by the SECURITY_TOKEN value. It can have

any of these values:
ABNORMAL_SIGN_OFF|ATTACH_SIGN_OFF|DEFERRED_SIGN_OFF|
DELETE_SIGN_OFF|LINK_SIGN_OFF|NON_TERMINAL_SIGN_OFF|
PRESET_SIGN_OFF|UNFLATTEN_USER_SIGN_OFF|
USER_SIGN_OFF|XRF_SIGN_OFF

Output parameters
[SAF_RESPONSE]

is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE]

is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

Security manager domain

1316 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION ESM_INACTIVE
ESM_TRANQUIL
INVALID_SECURITY_TOKEN
SECURITY_INACTIVE
SECURITY_TOKEN_IN_USE
UNKNOWN_ESM_ERROR

DISASTER ABEND
LOOP

INVALID INVALID_FORMAT
INVALID_FUNCTION

XSAD gate, INQUIRE_USER_ATTRIBUTES function
The INQUIRE_USER_ATTRIBUTES function of the XSAD gate is used to inquire about the attributes of
the user represented by the security token.

Input parameters
SECURITY_TOKEN

is the token identifying the userid.

Output parameters
[USERID] is the identifier of the user (a userid of 1 through 10 alphanumeric characters). the userid

(specified by the SECURITY_TOKEN value) is assigned.
USERID_LENGTH

is the length of the USERID value.
[CURRENT_GROUPID]

is the identifier, 1 through 10 alphanumeric characters, of the current RACF user group to
which the userid (specified by the SECURITY_TOKEN value) is assigned.

[CURRENT_GROUPID_LENGTH]
is the 8-bit length of the GROUPID value.

[USERNAME] is an optional buffer into which the attributes of the user are placed.
[NATIONAL_LANGUAGE]

is a three-character code identifying the national language for the userid. It can have any
of the values in Table 120 on page 1318.

[OPCLASS] is the operator class, in the range 1 through 24, for the userid.
[OPIDENT] is the operator identification code, 1 through 3 alphanumeric characters, for the userid.
[OPPRTY] is the operator priority value, in the range 0 through 255 (where 255 is the highest

priority), for the userid.
[TIMEOUT] is the number of minutes, in the range 0 through 60, that must elapse since the user last

used the terminal before CICS "times-out" the terminal.

Notes:
1. CICS rounds values up to the nearest multiple of 5.
2. A TIMEOUT value of 0 means that the terminal is not timed out.

[XRFSOFF] indicates whether or not you want CICS to sign off the userid following an XRF takeover. It
can have either of these values:
FORCE|NOFORCE

[ACEE_PTR] is a pointer to the access control environment element, the control block that is generated
by an external security manager (ESM) when the user signs on. If the user is not signed
on, the address of the CICS DFLTUSER's ACEEis returned. If an ACEE does not exist,
CICS sets the pointer reference to the null value, X'FF000000'.

[SAF_RESPONSE]
is the optional 32-bit SAF response code to the call.

[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE]

is the optional 32-bit ESM response code to the call.

Security manager domain

Chapter 114. Security manager domain 1317

[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION ESTAE_FAILURE
EXTRACT_FAILURE
INVALID_ACEE
INVALID_ESM_PARAMETER
INVALID_SECURITY_TOKEN
NOTAUTH
PROFILE_UNKNOWN
SECURITY_INACTIVE

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP

Table 120. National language codes (three-characters)

Code Language Name Original Name

AFR Afrikaans Afrikaans
ARA Arabic Arabi
BEL Byelorussian Belaruskaja (mova)
BGR Bulgarian Bulgarski
CAT Catalan Catala
CHT Traditional Chinese Zhongwen
CHS Simplified Chinese
CSY Czech Cesky
DAN Danish Dansk
DEU German Deutsch
DES Swiss German Schweizer-Deutsch
ELL Greek Ellinika
ENA Australian English
ENG UK English English
ENU US English
ENP English Upper Case
ESP Spanish Espanol
FAR Farsi Persian
FIN Finnish Suomi
FRA French Francais
FRB Belgian French
FRC Canadian French
FRS Swiss French Suisse-francais
GAE Irish Gaelic (Irish) Gaeilge
HEB Hebrew Ivrith
HRV Croatian Hrvatski
HUN Hungarian Magyar
ISL Icelandic Islenska
ITA Italian Italiano
ITS Swiss Italian Italiano svizzero
JPN Japanese Nihongo
KOR Korean Choson-o; Hanguk-o
MKD Macedonian Makedonski
NLD Dutch Nederlands

Security manager domain

1318 CICS TS for z/OS: CICS Diagnosis Reference

Table 120. National language codes (three-characters) (continued)

Code Language Name Original Name

NLB Belgian Dutch
NOR Norwegian - Bokmal Norsk - Bokmal
NON Norwegian - Nynorsk Norsk - Nynorsk
PLK Polish Polski
PTG Portuguese Portugues
PTB Brazilian Portuguese
RMS Rhaeto-Romanic Romontsch
ROM Romanian Romana
RUS Russian Russkij
SHC Serbo-Croatian (Cyr) Srpsko-hrvatski
SHL Serbo-Croatian (Lat)
SKY Slovakian Slovensky
SLO Slovenian Slovenski
SRL Serbian (Latin) Srpski (Latin)
SRB Serbian Srpski
SQI Albanian Shqip
SVE Swedish Svenska
THA Thai Thai
TRK Turkish Turkce
UKR Ukrainian Ukrainska (mova)
URD Urdu Urdu

XSAD gate, VALIDATE_USERID function
The VALIDATE_USERID function of the XSAD gate is used to check whether the specified userid is valid.
It is used especially when the userid has to be validated without the user being added to the system;
usually because the userid was specified in a deferred START command, and the user does not need to
be added to the system until the started task actually begins to execute.

Input parameters
USERID is the identifier of the user (a userid of 1 through 10 alphanumeric characters) to be added

to the security domain.
USERID_LENGTH

is the length of the USERID value.

Output parameters
RESPONSE is the domain’s response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION SECURITY_INACTIVE
USERID_NOT_DEFINED
USERID_NOT_DETERMINED

INVALID INVALID_FORMAT
INVALID_FUNCTION

Security manager domain

Chapter 114. Security manager domain 1319

XSFL gate, FLATTEN_USER_SECURITY function
The FLATTEN_USER_SECURITY function of the XSFL gate is used to flatten the user’s security state and
place into the FLATTENED_SECURITY buffer provided.

Input parameters
SECURITY_TOKEN

is the token identifying the userid.
FLATTENED_SECURITY

is the buffer into which the flattened security state is placed.

Output parameters
[SAF_RESPONSE]

is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE]

is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ESM_ABENDED ABEND
LOOP

EXCEPTION INVALID_SECURITY_TOKEN
SECURITY_INACTIVE
UNKNOWN_ESM_RESPONSE

INVALID INVALID_FORMAT
INVALID_FUNCTION
INVALID_FLATTENED_BUFFER

XSFL gate, UNFLATTEN_USER_SECURITY function
The UNFLATTEN_USER_SECURITY function of the XSFL gate is used to unflatten the user security state
data in the FLATTENED_SECURITY buffer, and add the userid to the security domain.

Input parameters
FLATTENED_SECURITY

is a buffer containing flattened security state data for a userid.

Output parameters
SECURITY_TOKEN

is the token identifying the userid.
ACEE_PTR is a pointer to the access control environment element, the control block that is generated

by an external security manager (ESM) when the user signs on.
USERID is the identifier of the user (a userid of 1 through 10 alphanumeric characters). the userid

(specified by the SECURITY_TOKEN value) is assigned.
USERID_LENGTH

is the length of the USERID value.
CURRENT_GROUPID

is the identifier, 1 through 10 alphanumeric characters, of the current RACF user group to
which the userid is assigned.

CURRENT_GROUPID_LENGTH
is the 8-bit length of the GROUPID value.

ENTRY_PORT_NAME
is the name of an entry port, 1 through 8 alphanumeric characters, for the userid.

Security manager domain

1320 CICS TS for z/OS: CICS Diagnosis Reference

ENTRY_PORT_TYPE
is the type of the entry port for the userid. It can have either of these values:
TERMINAL|CONSOLE|NULL

[SAF_RESPONSE]
is the optional 32-bit SAF response code to the call.

[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE]

is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ESM_ABENDED
ABEND
LOOP

EXCEPTION SECURITY_INACTIVE
GETMAIN_FAILED
USERID_NOT_DEFINED
USERID_REVOKED
USERID_NOT_IN_GROUP
GROUP_ACCESS_REVOKED
ENTRY_PORT_NOTAUTH
APPLID_NOTAUTH
SECLABEL_CHECK_FAILED
ESM_INACTIVE
ESM_TRANQUIL
UNKNOWN_ESM_RESPONSE

INVALID INVALID_FLATTENED_BUFFER
INVALID_FORMAT
INVALID_FUNCTION

XSFL gate, UNFLATTEN_ESM_UTOKEN function
The UNFLATTEN_ESM_UTOKEN function of the XSFL gate returns userid and groupid information
associated with the external security manager's user token.

Input parameters
ESM_UTOKEN_PTR

is a pointer to a security manager user pointer.

Output parameters
USERID is the identifier of the user (a userid of 1 through 10 alphanumeric characters). the userid

(specified by the SECURITY_TOKEN value) is assigned.
USERID_LENGTH

is the length of the USERID value.
CURRENT_GROUPID

is the identifier, 1 through 10 alphanumeric characters, of the current RACF user group to
which the userid is assigned.

CURRENT_GROUPID_LENGTH
is the 8-bit length of the GROUPID value.

[SAF_RESPONSE]
is the optional 32-bit SAF response code to the call.

[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE]

is the optional 32-bit ESM response code to the call.

Security manager domain

Chapter 114. Security manager domain 1321

[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ESM_ABENDED
ABEND
LOOP

EXCEPTION SECURITY_INACTIVE
GETMAIN_FAILED
USERID_NOT_DEFINED
USERID_REVOKED
USERID_NOT_IN_GROUP
GROUP_ACCESS_REVOKED
ENTRY_PORT_NOTAUTH
APPLID_NOTAUTH
SECLABEL_CHECK_FAILED
ESM_INACTIVE
ESM_TRANQUIL
UNKNOWN_ESM_RESPONSE

INVALID INVALID_FLATTENED_BUFFER
INVALID_FORMAT
INVALID_FUNCTION

XSIS gate, INQUIRE_REGION_USERID function
The INQUIRE_REGION_USERID function of the XSIS gate is used to return the userid and groupid
associated with the jobstep that is currently executing this CICS region.

Input parameters
None.

Output parameters
REGION_USERID

is the user identifier of the CICS jobstep (a userid of 1 through 8 alphanumeric
characters).

REGION_USERID_LENGTH
is the length of the REGION_USERID value.

[REGION_GROUPID]
is the identifier, 1 through 8 alphanumeric characters, of the current RACF user group to
which the region userid is assigned.

[REGION_GROUPID_LENGTH]
is the 8-bit length of the REGION_GROUPID value.

RESPONSE is the domains response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID

[REASON] is returned when RESPONSE is DISASTER, EXCEPTION or INVALID. Possible values
are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FORMAT
INVALID_FUNCTION

Security manager domain

1322 CICS TS for z/OS: CICS Diagnosis Reference

XSIS gate, INQ_SECURITY_DOMAIN_PARMS function
The INQ_SECURITY_DOMAIN_PARMS function of the XSIS gate is used to return the current values of
parameters from the security state data.

Input parameters
None.

Output parameters
[APPLID] is the generic applid of the CICS region
[CMDSEC] indicates whether or the CICS region should obey the CMDSEC option specified on a

transaction’s resource definition. It can have either of these values:

YES|NO
[ESMEXITS] indicates whether or not installation data is to be passed via the RACROUTE interface to

the ESM for use in user exits written for the ESM. It can have either of these values:

YES|NO
[PREFIX] returns the value of the prefix that is being applied to all resource names in authorization

requests sent to the external security manager. It can contain 0 through 8 alphanumeric
characters.

[PSBCHK] indicates whether or not DL/I security checking is to be performed for a remote terminal
initiating a transaction with transaction routing. It can have either of these values:

YES|NO
[RESSEC] indicates whether the CICS region should obey the RESSEC option specified on a

transaction’s resource definition.
[SECURITY] indicates whether or not security is active for this CICS region. It can have either of these

values:

YES|NO
[XAPPC] indicates whether or not session security checking is used when establishing APPC

sessions. It can have either of these values:

YES|NO
[XCMD] indicates whether or not EXEC CICS commands are checked by the ESM. It can have any

of these values:

YES|name|NO

where name is your own resource class name for EXEC CICS commands.
[XDB2] indicates whether or not CICS performs DB2ENTRY security checking. It can have any of

these values:

YES|name|NO

where name is your own resource class name for DB2 entries.
[XDCT] indicates whether or not destination control entries are checked by the ESM. It can have

any of these values:

YES|name|NO

where name is your own resource class name for destination control entries.
[XEJB] indicates whether CICS support for enterprise bean security roles is enabled. It can have

either of these values:

YES|NO

Security manager domain

Chapter 114. Security manager domain 1323

[XFCT] indicates whether or not file control entries are checked by the ESM. It can have any of
these values:

YES|name|NO

where name is your own resource class name for file control entries.
[XJCT] indicates whether or not journal entries are checked by the ESM. It can have any of these

values:

YES|name|NO

where name is your own resource class name for journal entries.
[XPCT] indicates whether or not EXEC-started transactions entries are checked by the ESM. It

can have any of these values:

YES|name|NO

where name is your own resource class name for EXEC-started transactions entries.
[XPPT] indicates whether or not program entries are checked by the ESM. It can have any of

these values:

YES|name|NO

where name is your own resource class name for program entries.
[XPSB] indicates whether or not PSB entries are checked by the ESM. It can have any of these

values:

YES|name|NO

where name is your own resource class name for PSB entries.
[XTRAN] indicates whether or not attached transaction entries are checked by the ESM. It can have

any of these values:

YES|name|NO

where name is your own resource class name for attached transaction entries.
[XTST] indicates whether or not temporary storage entries are checked by the ESM. It can have

any of these values:

YES|name|NO

where name is your own resource class name for temporary storage entries.
XUSER indicates whether or not user entries are checked by the ESM. It can have any of these

values:

YES|name|NO

where name is your own resource class name for user entries.
KEYRING is the fully qualified name of the key ring that contains the keys and X.509 certificates

used to support the secure sockets layer (SSL).
EJBROLE_PREFIX

is the prefix that is used to qualify the security role defined in an enterprise bean's
deployment descriptor.

RESPONSE is the domains response to the call. It can have any of these values:
OK|DISASTER|INVALID

[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

Security manager domain

1324 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FORMAT
INVALID_FUNCTION

XSIS gate, SET_SECURITY_DOMAIN_PARMS function
At CICS startup, loads information for the security domain from the system initialization table (SIT) into the
security state data.

Input parameters
APPLID is the generic applid of the CICS region
[CMDSEC] indicates whether or the CICS region should obey the CMDSEC option specified on a

transaction’s resource definition. It can have either of these values:

YES|NO
ESMEXITS indicates whether or not installation data is to be passed via the RACROUTE interface to

the ESM for use in user exits written for the ESM. It can have either of these values:

YES|NO
[PREFIX] specifies the prefix to be applied to resource name in any authorization requests send to

the external security manager. It can be 1 through 8 alphanumeric characters, or the
single character '*', which indicates that the CICS region userid is to be used as the prefix.

PSBCHK indicates whether or not DL/I security checking is to be performed for a remote terminal
initiating a transaction with transaction routing. It can have either of these values:

YES|NO
[RESSEC] indicates whether the CICS region should obey the RESSEC option specified on a

transaction’s resource definition.
SECURITY indicates whether or not security is active for this CICS region. It can have either of these

values:

YES|NO
XAPPC indicates whether or not session security checking is used when establishing APPC

sessions. It can have either of these values:

YES|NO
[XCMD] indicates whether or not EXEC CICS commands are checked by the ESM. It can have any

of these values:

YES|name|NO

where name is your own resource class name for EXEC CICS commands.
[XDB2] indicates whether or not CICS performs DB2ENTRY security checking. It can have any of

these values:

YES|name|NO

where name is your own resource class name for DB2 entries.
[XDCT] indicates whether or not destination control entries are checked by the ESM. It can have

any of these values:

YES|name|NO

where name is your own resource class name for destination control entries.

Security manager domain

Chapter 114. Security manager domain 1325

[XEJB] indicates whether CICS support for enterprise bean security roles is enabled. It can have
either of these values:

YES|NO
[XFCT] indicates whether or not file control entries are checked by the ESM. It can have any of

these values:

YES|name|NO

where name is your own resource class name for file control entries.
[XJCT] indicates whether or not journal entries are checked by the ESM. It can have any of these

values:

YES|name|NO

where name is your own resource class name for journal entries.
[XPCT] indicates whether or not EXEC-started transactions entries are checked by the ESM. It

can have any of these values:

YES|name|NO

where name is your own resource class name for EXEC-started transactions entries.
[XPPT] indicates whether or not program entries are checked by the ESM. It can have any of

these values:

YES|name|NO

where name is your own resource class name for program entries.
[XPSB] indicates whether or not PSB entries are checked by the ESM. It can have any of these

values:

YES|name|NO

where name is your own resource class name for PSB entries.
[XTRAN] indicates whether or not attached transaction entries are checked by the ESM. It can have

any of these values:

YES|name|NO

where name is your own resource class name for attached transaction entries.
[XTST] indicates whether or not temporary storage entries are checked by the ESM. It can have

any of these values:

YES|name|NO

where name is your own resource class name for temporary storage entries.
XUSER indicates whether or not user entries are checked by the ESM. It can have any of these

values:

YES|name|NO

where name is your own resource class name for user entries.
KEYRING is the fully qualified name of the key ring that contains the keys and X.509 certificates

used to support the secure sockets layer (SSL).

Security manager domain

1326 CICS TS for z/OS: CICS Diagnosis Reference

EJBROLE_PREFIX
is the prefix that is used to qualify the security role defined in an enterprise bean's
deployment descriptor.

Output parameters
RESPONSE is the domains response to the call. It can have any of these values:

OK|DISASTER|INVALID
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION GETMAIN_FAILED
KEYRING_NOT_FOUND
KEYRING_NOT_AUTH

DISASTER CWA_WAIT_PHASE_FAILURE
INQUIRE_CWA_FAILURE
ABEND
LOOP

INVALID INVALID_FORMAT
INVALID_FUNCTION

XSIS gate, SET_NETWORK_IDENTIFIER function
When CICS issues an OPEN ACB for VTAM, the CICS SVC is invoked to store the name (netid) of the
local network combined with the local luname, and to RACLIST the profiles in the External Security
Manager (ESM) APPCLU Class. If you have specified either of the SEC=NO or XAPPC=NO system
initialization parameters, no action is performed, and the return code is set to OK.

If the RACLIST fails, and the CONDITIONAL parameter is NO, then CICS is terminated.

Input parameters
LOCAL_LUNAME is the VTAM LU name of the local CICS region.
LOCAL_LUNAME_LENGTH

is the length of the VTAM LU name specified by LOCAL_LUNAME.
CONDITIONAL indicates whether or not CICS can tolerate errors in XSIS calls due to the APPCLU

profiles not being in storage (LU6.2 connections cannot be validated). It can have either of
these values:

YES|NO

Output parameters
RESPONSE is the domains response to the call. It can have any of these values:

OK|DISASTER|INVALID|PURGED
[REASON] is returned when RESPONSE is DISASTER or INVALID. Possible values are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

INVALID INVALID_FORMAT
INVALID_FUNCTION

XSIS gate, SET_SPECIAL_TOKENS function
The SET_SPECIAL_TOKENS function of the XSIS gate sets the security tokens for the default user ID
and the region user ID.

Security manager domain

Chapter 114. Security manager domain 1327

Input parameters
DEFAULT_SECURITY_TOKEN

The security token for the default user ID.
REGION_SECURITY_TOKEN

The security token for the region user ID.

Output parameters
RESPONSE is the domains response to the call. It can have any of these values:

OK|DISASTER|INVALID
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

XSIS gate, INQUIRE_REALM_NAME function
Obtains the realm names under which the CICS system is executing; a realm is an environment in which a
userid and password pairing is valid.

Input parameters
REALM_TYPE Indicates that the request is for the Basic realm name. Possible values are:

BASIC

Output parameters
REALM_NAME Returns the name of the realsm under which CICS is executing.
RESPONSE is the domains response to the call. It can have any of these values:

OK|INVALID|PURGED|DISASTER
[REASON] is returned when RESPONSE is INVALID or DISASTER. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

DISASTER ABEND
LOOP

XSLU gate, GENERATE_APPC_BIND function
The GENERATE_APPC_BIND function of the XSLU gate generates a random number which is sent to the
partner LU for partner verification.

Input parameters
None

Output parameters
RANDOM_STRING

A random eight-character string.
RESPONSE is the domains response to the call. It can have any of these values:

OK|INVALID
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SECURITY_INACTIVE
BINDSECURITY_INACTIVE

INVALID INVALID_FORMAT
INVALID_FUNCTION

Security manager domain

1328 CICS TS for z/OS: CICS Diagnosis Reference

XSLU gate, GENERATE_APPC_RESPONSE function
The GENERATE_APPC_RESPONSE function of the XSLU gate encrypts the string received from the LU
partner, and generates a new random string for the partner to validate.

Input parameters
LOCAL_LUNAME is the VTAM LU name of the local CICS region (sending the response).
REMOTE_LUNAME

is the VTAM LU name of the remote CICS region (that sent the bind).
TEST_STRING is a random eight-character string receive with a bind request (RANDOM_STRING of the

GENERATE_APPC_BIND function).

Output parameters
ENCRYPTED_TEST_STRING

is an eight-character string formed by encrypting the test string using shared DES (Data
Encryption Standard/System) encryption keys.

RANDOM_STRING
is a random eight-character string.

[SAF_RESPONSE]
is the optional 32-bit SAF response code to the call.

[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE]

is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
ESM_ABENDED
ESTAE_FAILURE
EXTRACT_FAILURE

EXCEPTION NOTAUTH
PROFILE_UNKNOWN
PROFILE_LOCKED
PROFILE_EXPIRED
SESSION_KEY_NULL
SECURITY_INACTIVE
UNKNOWN_ESM_RESPONSE
BIND_SECURITY_INACTIVE

INVALID INVALID_FORMAT
INVALID_FUNCTION

XSLU gate, VALIDATE_APPC_RESPONSE function
The VALIDATE_APPC_RESPONSE function of the XSLU gate encrypts the string that was previously sent
to the partner, and compares it with the encrypted string received from the partner.

Input parameters
LOCAL_LUNAME is the VTAM LU name of the local CICS region (validating the response).
REMOTE_LUNAME

is the VTAM LU name of the remote CICS region (that sent the response).
TEST_STRING is a random eight-character string receive with a validate request (RANDOM_STRING of

the GENERATE_APPC_RESPONSE function).

Security manager domain

Chapter 114. Security manager domain 1329

ENCRYPTED_TEST_STRING
is an eight-character string formed by encrypting the test string using shared DES (Data
Encryption Standard/System) encryption keys.

Output parameters
[SAF_RESPONSE]

is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE]

is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
ESM_ABENDED
ESTAE_FAILURE
EXTRACT_FAILURE

EXCEPTION NOTAUTH
VALIDATION_ERROR
PROFILE_UNKNOWN
PROFILE_LOCKED
PROFILE_EXPIRED
SESSION_KEY_NULL
SECURITY_INACTIVE
UNKNOWN_ESM_RESPONSE
BIND_SECURITY_INACTIVE

INVALID INVALID_FORMAT
INVALID_FUNCTION

XSPW gate, CREATE_PASSTICKET function
The CREATE_PASSTICKET function of the XSPW gate is used to create a RACF PassTicket (an
alternative to a password). When created, the RACF PassTicket can be presented for userid verification
once only.

Input parameters
APPLID is the application identifier for the CICS region.
[TRANSACTION_NUMBER]

is an optional number that identifies a transaction from which the caller’s security token is
located. If not specified, the caller’s security token is located from the principal security
token associated with the current CICS task.

Output parameters
PASSTICKET is the 10-character passticket to be used for the CICS region specified by the APPLID

value.
PASSTICKET_LENGTH

is the 8-bit length of the PASSTICKET value.
ESM_RESPONSE is the optional 32-bit ESM response code to the call.
ESM_REASON is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

Security manager domain

1330 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

DISASTER ABEND
LOOP

EXCEPTION FUNCTION_UNAVAILABLE
PASSTICKET_NOT_CREATED
SECURITY_INACTIVE
TRANSACTION_NOT_FOUND
UNKNOWN_ESM_ERROR

INVALID INVALID_APPLID
INVALID_FORMAT
INVALID_FUNCTION

XSPW gate, INQUIRE_PASSWORD_DATA function
The INQUIRE_PASSWORD_DATA function of the XSPW gate provides information from the ESM.

Input parameters
USERID is the identifier of the user (a userid of 1 through 10 alphanumeric characters) requesting

the ESM information.
USERID_LENGTH

is the length of the USERID value.
PASSWORD is the password, 1 through 10 alphanumeric characters, for the userid specified by the

USERID value.
PASSWORD_LENGTH

is the 8-bit length of the PASSWORD value.
[PASSWORD_TYPE]

indicates whether the password is masked. It can have either of these values:
CLEAR|MASKED

OPTIMIZE indicates whether the user's revoke status is ignored. It can have any of these values:
YES|NO

Output parameters
[DAYS_LEFT] is the number of days left before the password must be changed.
[PASSWORD_FAILURES]

is the number of times that the user has unsuccessfully entered tried to enter the
password.

[EXPIRY_ABSTIME]
is the date and time of when the password will expire.

[LASTUSE_ABSTIME]
is the date and time of when the password was last used.

[CHANGE_ABSTIME]
is the date and time of when the password was last changed.

[SAF_RESPONSE]
is the optional 32-bit SAF response code to the call.

[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE]

is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

Security manager domain

Chapter 114. Security manager domain 1331

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
ESM_ABENDED
ESTAE_FAILURE
EXTRACT_FAILURE

EXCEPTION ESM_INACTIVE
PASSWORD_NOTAUTH
SECURITY_INACTIVE
UNKNOWN_ESM_ERROR
NOTAUTH
USERID_UNDEFINED
PASSWORD_EXPIRED
USERID_REVOKED
USERID_FORMAT_ERROR
APPLID_NOT_AUTH

INVALID INVALID_FORMAT
INVALID_FUNCTION

XSPW gate, UPDATE_PASSWORD_DATA function
The UPDATE_PASSWORD_DATA function of the XSPW gate assigns a new password to the userid, if the
current password is input correctly and the new password meets ESM and installation defined password
quality rules.

Input parameters
USERID is the identifier of the user (a userid of 1 through 10 alphanumeric characters) requesting

the ESM information.
USERID_LENGTH

is the length of the USERID value.
PASSWORD is the current password, 1 through 10 alphanumeric characters, for the userid specified by

the USERID value.
PASSWORD_LENGTH

is the 8-bit length of the PASSWORD value.
NEW_PASSWORD is the new password, 1 through 10 alphanumeric characters, for the userid specified by

the USERID value.
NEW_PASSWORD_LENGTH

is the 8-bit length of the NEW_PASSWORD value.

Output parameters
SAF_RESPONSE is the optional 32-bit SAF response code to the call.
SAF_REASON is the optional 32-bit SAF reason returned with SAF_RESPONSE.
ESM_RESPONSE is the optional 32-bit ESM response code to the call.
ESM_REASON is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
ESM_ABENDED
ESTAE_FAILURE
EXTRACT_FAILURE

Security manager domain

1332 CICS TS for z/OS: CICS Diagnosis Reference

RESPONSE Possible REASON values

EXCEPTION USERID_REVOKED
USERID_UNDEFINED
SECLABEL_FAILURE
PASSWORD_NOTAUTH
INVALID_NEW_PASSWORD
ESM_INACTIVE
SECURITY_INACTIVE
UNKNOWN_ESM_ERROR
GROUP_CONNECTION_REVOKED

INVALID INVALID_FORMAT
INVALID_FUNCTION

XSPW gate, INQUIRE_CERTIFICATE_USERID function
The INQUIRE_CERTIFICATE_USERID function of the XSPW gate obtains the userid associated with an
X.509 certificate that has been installed into the External Security Manager.

Input parameters
CERTIFICATE an X.509 certificate

Output parameters
USERID is the identifier of the user associated with the certificate.
USERID_LENGTH

is the length of the USERID value.
ESM_RESPONSE is the optional 32-bit ESM response code to the call.
ESM_REASON is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domain's response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
ESM_ABENDED
ESTAE_FAILURE
EXTRACT_FAILURE

EXCEPTION LENGTH_ERROR
GETMAIN_FAILED
FREEMAIN_FAILED
INVALID_CERTIFICATE
UNKNOWN_CERTIFICATE
UNTRUSTED_CERTIFICATE
NOTAUTH
SECURITY_INACTIVE
ESM_INACTIVE
UNKNOWN_ESM_ERROR

INVALID INVALID_FORMAT
INVALID_FUNCTION

XSPW gate, REGISTER_CERTIFICATE_USER function
The REGISTER_CERTIFICATE_USER function of the XSPW gate associates a user with an X.509
certificate that has been installed into the External Security Manager.

Input parameters
USERID is the identifier of the user to be associated with the certificate.

Security manager domain

Chapter 114. Security manager domain 1333

USERID_LENGTH
is the length of the USERID value.

PASSWORD is the current password, 1 through 10 alphanumeric characters, for the userid specified by
the USERID value.

PASSWORD_LENGTH
is the 8-bit length of the PASSWORD value.

CERTIFICATE the X.509 certificate that is to be registered to the specified userid.

Output parameters
ESM_RESPONSE is the optional 32-bit ESM response code to the call.
ESM_REASON is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domain's response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER ABEND
LOOP
ESM_ABENDED
ESTAE_FAILURE
EXTRACT_FAILURE

EXCEPTION GETMAIN_FAILED
FREEMAIN_FAILED
INVALID_CERTIFICATE
UNKNOWN_CERTIFICATE
UNTRUSTED_CERTIFICATE
NOTAUTH
SECURITY_INACTIVE
ESM_INACTIVE
UNKNOWN_ESM_ERROR

INVALID INVALID_FORMAT
INVALID_FUNCTION

XSRC gate, CHECK_CICS_RESOURCE function
The CHECK_CICS_RESOURCE function of the XSRC gate performs CICS resource access checks.

Input parameters
RESOURCE is the name of the resource, padded with blanks to eight-characters.
RESOURCE_TYPE

is the type of the resource. It can have any of these values:
DB2ENTRY|FILE|JOURNALNAME|PROGRAM|PSB|TDQUEUE|
TRANSACTION|TRANSATTACH|TSQUEUE

ACCESS is the type of access to be made on the resource. It can have any of these values:
EXECUTE|READ|UPDATE|INQUIRE|SET|COLLECT|DEFINE|
PERFORM|CREATE|DISCARD|INSTALL|DELETE

[LOGMESSAGE] indicates (optionally) whether access failures are logged to the CSCS transient data queue
and the MVS System Management Facility (SMF). It can have either of these values:
YES|NO

[FORCE] indicates (optionally) whether or not security checking is forced regardless of the setting of
RESSEC in the Security Domain’s transaction token. It can have either of these values:
YES|NO

Output parameters
[FAILING_USERID]

is the userid that failed to access the resource.

Security manager domain

1334 CICS TS for z/OS: CICS Diagnosis Reference

[FAILING_USERID_LENGTH]
is the length of the userid (specified by the FAILING_USERID value).

[SAF_RESPONSE]
is the optional 32-bit SAF response code to the call.

[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE]

is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOTAUTH

XSRC gate, CHECK_CICS_COMMAND function
The CHECK_CICS_COMMAND function of the XSRC gate performs CICS command access checks.

Input parameters
RESOURCE_TYPE

is the type of the resource. It can have any of these values:
AUTINSTMODEL|AUTOINSTALL|CFDTPOOL|CONNECTION|
DB2CONN|DB2ENTRY|DB2TRAN|DELETSHIPPED|
DOCTEMPLATE|DSNAME|DUMP|DUMPDS|ENQMODEL|
EXITPROGRAM|FEPIRESOURCE|FILE|IRBATCH|IRC|
JOURNALNAME|JOURNALMODEL|LINE|LSRPOOL|MAPSET|
MODENAME|MONITOR|NONVTAM|PARTITIONSET|PARTNER|
PROCESSTYPE|PROFILE|PROGRAM|PSB|REQID|
REQUESTMODEL|RESETTIME|RRMS|SECURITY|SESSIONS|
SHUTDOWN|STATISTICS|STORAGE|STREAMNAME|
SYSDUMPCODE|SYSTEM|TASK|TCLASS|TCPIP|TCPIPSERVICE|
TDQUEUE|TERMINAL|TIME|TRACE|TRACEDEST|TRACEFLAG|
TRACETYPE|TRANCLASS|TRANDUMPCODE|TRANSACTION|
TRANSATTACH|TSMODEL|TSPOOL|TSQUEUE|TYPETERM|UOW|
UOWDSNFAIL|UOWENQ|UOWLINK|VOLUME|VTAM|WEB|
CORBASERVER|DJAR|JVMPOOL|EXCI|BEAN|BRFACILITY|
DISPATCHER|CLASSCACHE|JVM|JVMPOOL|JVMPROFILE

ACCESS is the type of access to be made on the resource. It can have any of these values:
COLLECT|DEFINE|DISCARD|INQUIRE|PERFORM|SET|CREATE|INSTALL|DELETE

[LOGMESSAGE] indicates (optionally) whether access failures are logged to the CSCS transient data queue
and the MVS System Management Facility (SMF). It can have either of these values:
YES|NO

[FORCE] indicates (optionally) whether or not security checking is forced regardless of the setting of
RESSEC in the Security Domain’s transaction token. It can have either of these values:
YES|NO

Output parameters
[FAILING_USERID]

is the userid that failed to access the resource.
[FAILING_USERID_LENGTH]

is the length of the userid (specified by the FAILING_USERID value).
[SAF_RESPONSE]

is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE]

is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.

Security manager domain

Chapter 114. Security manager domain 1335

RESPONSE is the domains response to the call. It can have any of these values:
OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED

[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOTAUTH

XSRC gate, CHECK_SURROGATE_USER function
The CHECK_SURROGATE_USER function of the XSRC gate performs surrogate user checking.

Input parameters
USERID is the identifier of the surrogate user (a userid of 1 through 10 alphanumeric characters).
USERID_LENGTH

is the length of the USERID value.
ACCESS is the type of access requested. It can have any of these values:

INSTALL|START|CHANGE

Output parameters
[FAILING_USERID]

is the userid that failed to access the resource.
[FAILING_USERID_LENGTH]

is the length of the userid (specified by the FAILING_USERID value).
[SAF_RESPONSE]

is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE]

is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOTAUTH

XSRC gate, CHECK_NON_CICS_RESOURCE function
The CHECK_NON_CICS_RESOURCE function of the XSRC gate performs non-CICS resource access
checks.

Input parameters
RESOURCE_NAME

is the address and length of the resource name, in the form
RESOURCE_NAME(addr,length).

CLASSNAME is the ESM class name in which the resource is defined.
ACCESS is the type of access to be made on the resource. It can have any of these values:

ALTER|CONTROL|READ|UPDATE
[LOGMESSAGE] indicates (optionally) whether access failures are logged to the CSCS transient data queue

and the MVS System Management Facility (SMF). It can have either of these values:
YES|NO

Output parameters
[FAILING_USERID]

is the userid that failed to access the resource.

Security manager domain

1336 CICS TS for z/OS: CICS Diagnosis Reference

[FAILING_USERID_LENGTH]
is the length of the userid (specified by the FAILING_USERID value).

[SAF_RESPONSE]
is the optional 32-bit SAF response code to the call.

[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE]

is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION NOTAUTH
ESM_NOT_PRESENT
ESM_INACTIVE
RESOURCE_NOT_FOUND
CLASS_NOT_FOUND
INVALID_RESOURCE_NAME

XSRC gate, REBUILD_RESOURCE_CLASSES function
The REBUILD_RESOURCE_CLASSES function of the XSRC gate rebuilds the resource-class profiles.

Input parameters
None.

Output parameters
[SAF_RESPONSE]

is the optional 32-bit SAF response code to the call.
[SAF_REASON] is the optional 32-bit SAF reason returned with SAF_RESPONSE.
[ESM_RESPONSE]

is the optional 32-bit ESM response code to the call.
[ESM_REASON] is the optional 32-bit ESM reason returned with ESM_RESPONSE.
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is EXCEPTION. Possible values are:

RESPONSE Possible REASON values

EXCEPTION SECURITY_INACTIVE
REBUILD_ERROR
REBUILD_ALREADY_ACTIVE
REBUILD_NOT_NEEDED
ESM_INACTIVE

XSXM gate, ADD_TRANSACTION_SECURITY function
The ADD_TRANSACTION_SECURITY function of the XSXM gate sets the transaction options input to be
stored as extended security tokens maintained by the transaction manager.

Input parameters
[PRINCIPAL_SECURITY_TOKEN]

is the optional principal security token.
[SESSION_SECURITY_TOKEN]

is the optional session security token.
[EDF_SECURITY_TOKEN]

is the optional EDF security token.

Security manager domain

Chapter 114. Security manager domain 1337

Output parameters
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is DISASTER, EXCEPTION, or INVALID. Possible values

are:

RESPONSE Possible REASON values

DISASTER GETMAIN_FAILED

EXCEPTION NO_SECURITY_TOKEN

INVALID INVALID_FORMAT
INVALID_FUNCTION

XSXM gate, DEL_TRANSACTION_SECURITY function
The DEL_TRANSACTION_SECURITY function of the XSXM gate deletes the security token of the
specified token type for the transaction.

Input parameters
TOKEN_TYPE is the type of security token for the transaction. It can have any of these values:

PRINCIPAL|SESSION|EDF

Output parameters
RESPONSE is the domains response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

XSXM gate, END_TRANSACTION function
The END_TRANSACTION function of the XSXM gate deletes transaction-related data.

Input parameters
None

Output parameters
RESPONSE is the domain's response to the call. It can have any of these values:

OK|EXCEPTION|DISASTER|INVALID|KERNERROR|PURGED
[REASON] is returned when RESPONSE is INVALID. Possible values are:

RESPONSE Possible REASON values

INVALID INVALID_FORMAT
INVALID_FUNCTION

Security manager domain

1338 CICS TS for z/OS: CICS Diagnosis Reference

Security manager domain’s generic gates
Table 121 summarizes the security manager domain’s generic gates. It shows the level-1 trace point IDs of
the modules providing the functions for the gates, the functions provided by the gates, and the generic
formats for calls to the gates.

Table 121. Security manager domain’s generic gates
Gate Trace Function Format

XSDM XS 0101
XS 0102

INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DMDM

For descriptions of these functions and their input and output parameters, refer to the sections dealing with
the corresponding generic formats:

Functions and parameters

Format DMDM—“Domain manager domain’s generic formats” on page 669

In initialization processing, the security manager domain performs internal routines, and sets the initial
security options, as for “XSIS gate, SET_SECURITY_DOMAIN_PARMS function” on page 1325.

For all starts the information comes from the system initialization parameters.

Security manager domain also issues console messages during initialization to report whether or not
security is active.

In quiesce and termination processing, the security manager domain performs internal routines only.

Modules

Module Function

DFHXSAD Handles the following requests:
ADD_USER_WITH_PASSWORD
ADD_USER_WITHOUT_PASSWORD
DELETE_USER_SECURITY
INQUIRE_USER_ATTRIBUTES
VALIDATE_USERID

DFHXSDM Handles the following requests:
INITIALIZE_DOMAIN
QUIESCE_DOMAIN
TERMINATE_DOMAIN

DFHXSDUF XS domain offline dump formatting routine

DFHXSFL Handles the following requests:
FLATTEN_USER_SECURITY
UNFLATTEN_USER_SECURITY
UNFLATTEN_ESM_UTOKEN

DFHXSIS Handles the following requests:
INQUIRE_SECURITY_DOMAIN_PARMS
INQUIRE_REGION_USERID
SET_SECURITY_DOMAIN_PARMS
SET_NETWORK_IDENTIFIER
SET_SPECIAL_TOKENS
INQUIRE_REALM_NAME

Security manager domain

Chapter 114. Security manager domain 1339

Module Function

DFHXSLU Handles the following requests:
GENERATE_APPC_BIND
GENERATE_APPC_RESPONSE
VALIDATE_APPC_RESPONSE

DFHXSPW Handles the following requests:
INQUIRE_PASSWORD_DATA
UPDATE_PASSWORD
CREATE_PASSTICKET
INQUIRE_CERTIFICATE_USERID
REGISTER_CERTIFICATE_USER

DFHXSRC Handles the following requests:
CHECK_CICS_RESOURCE
CHECK_CICS_COMMAND
CHECK_NON_CICS_RESOURCE
CHECK_SURROGATE_USER
REBUILD_RESOURCE_CLASSES

DFHXSSA Manages the routing of all security domain supervisor requests, and handles those requests that are
concerned with adding and deleting users.

DFHXSSB Handles all the supervisor state interfaces with the ESM that are concerned with extracting data from the
ESM’s database.

DFHXSSC Handles all the supervisor state interfaces with the ESM that are concerned with resource checking,
including the building and deleting of in-storage profiles for the use of the resource check functions.

DFHXSSD Handles supervisor state interfaces with RACF that are concerned with PassTicket generation.

DFHXSSI Handles the following requests:
DEACTIVATE_SECURITY
INITIALIZE_SECURITY_SVC
TERMINATE_SECURITY_SVC

DFHXSTRI Interprets XS domain trace entries

Exits
No global user exit points are provided in this domain.

Trace
The point IDs for the security manager domain are of the form XS xxxx; the corresponding trace levels are
XS 1 and Exc.

For more information about the trace points, see the CICS Trace Entries. For more information about using
traces in problem determination, see the CICS Problem Determination Guide.

External interfaces
The following external call is used by the security manager:

v MVS RACROUTE macro to request ESM services

Security manager domain

1340 CICS TS for z/OS: CICS Diagnosis Reference

Part 4. CICS modules

Chapter 115. CICS directory . 1343
Classification of elements . 1343

Name . 1343
Type . 1343
Library . 1343

Optional listings . 1344
Contents of the distribution tapes. 1344

Chapter 116. CICS executable modules . 1449

This part contains:

© Copyright IBM Corp. 1997, 2011 1341

1342 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 115. CICS directory

This section lists, in alphanumeric order by element name, the contents of the distribution tapes listed in
Table 122.

The list shows, for each element:
v The name of the element
v The type of element
v A description of the element
v The names of the source and object distribution libraries containing the element.

Classification of elements

Name
This is the name of the element in the distribution library.

Type
The types of elements are:
CSECT. A control section or, in the case of a source element only, the first part of a

control section (other source elements may be copied by the CSECT).
Where an object module is OCO, this is indicated following the type
CSECT; no source code is provided for modules thus classified.

DSECT. A dummy section (or appropriate high-level language equivalent) defining
a CICS data area.

Macro. A macro definition.
Source. Source code that is not a CSECT.
Sample. Sample tables, programs, map sets, partition sets, or data files.
Symbolic. A definition (with no DSECT statement) of a CICS data area, or a group of

EQU statements that symbolically define values used throughout a
program.

Other. Job control language statements or cataloged procedures. See the CICS
Transaction Server for z/OS Installation Guide and the CICS System
Definition Guide for the handling of these elements.

Library
Two columns are given under the heading Library. These correspond to source code and object code
distribution respectively. The distribution tapes are in SMP/E RELFILE format, and a RELFILE number
indicates the position of each data set on a particular tape. For further details about the format of the
distribution tapes, see the CICS Transaction Server for z/OS Program Directory.

Some elements have several COBOL, PL/I, C, and assembler-language versions with the same name;
these elements are shown here as cataloged in more than one source distribution library.

The meanings of the letters in the library columns is given in Table 122.

Table 122. CICS Transaction Server for z/OS, Version 3 Release 1 distribution tapes

Letter Tape
volser

File name Library

02 CI6100 HCI6100.F2 CICSTS31.CICS.ADFHINST
03 CI6100 HCI6100.F3 CICSTS31.CICS.ADFHMOD *
04 CI6100 HCI6100.F4 CICSTS31.CICS.ADFHAPD1

© Copyright IBM Corp. 1997, 2011 1343

Table 122. CICS Transaction Server for z/OS, Version 3 Release 1 distribution tapes (continued)

Letter Tape
volser

File name Library

05 CI6100 HCI6100.F5 CICSTS31.CICS.ADFHAPD2
06 CI6100 HCI6100.F6 CICSTS31.CICS.ADFHCLIB
07 CI6100 HCI6100.F7 CICSTS31.CICS.ADFHCOB
08 CI6100 HCI6100.F8 CICSTS31.CICS.ADFHAC370
09 CI6100 HCI6100.F9 CICSTS31.CICS.ADFHENV
10 CI6100 HCI6100.F10 CICSTS31.CICS.ADFHLANG
11 CI6100 HCI6100.F11 CICSTS31.CICS.ADFHMAC
12 CI6100 HCI6100.F12 CICSTS31.CICS.ADFHMLIB
13 CI6100 HCI6100.F13 CICSTS31.CICS.ADFHMSGS
14 CI6100 HCI6100.F14 CICSTS31.CICS.ADFHMSRC
15 CI6100 HCI6100.F15 CICSTS31.CICS.ADFHPARM
16 CI6100 HCI6100.F16 CICSTS31.CICS.ADFHPLIB
17 CI6100 HCI6100.F17 CICSTS31.CICS.ADFHPL1
18 CI6100 HCI6100.F18 CICSTS31.CICS.ADFHPROC
19 CI6100 HCI6100.F19 CICSTS31.CICS.ADFHSAMP
20 CI6100 HCI6100.F20 CICSTS31.CICS.ADFHSDCK
C2 CI6100 JCI6101.F1 CICSTS31.CICS.ADFHCOB
C3 CI6100 JCI6101.F2 COBOL elements of CICSTS31.CICS.ADFHSAMP
C4 CI6100 JCI6101.F2 COBOL elements of CICSTS31.CICS.ADFHMOD
P2 CI6100 JCI6102.F1 CICSTS31.CICS.ADFHPLI
P3 CI6100 JCI6102.F2 PL/I elements of CICSTS31.CICS.ADFHSAMP
D2 CI6100 JCI6103.F1 CICSTS31.CICS.ADFHC370
D3 CI6100 JCI6103.F2 C elements of CICSTS31.CICS.ADFHSAMP
OS CI610S CICSTS31.CICS.OPTSRC01 -

An asterisk (*) following the RELFILE number indicates that the distribution library contains object
modules.

Note: Object modules only are supplied for the Japanese language feature; corresponding source code is
not provided for these modules.

Optional listings
Assembled listings of programs and source listings of macros, DSECTs, and symbolic definitions are
available with CICS, and can be supplied on CD-ROM or microfiche. For further information about the
optional listings, see the CICS Transaction Server for z/OS Program Directory

Contents of the distribution tapes
Table 123. CICS modules directory
Name Type Description Library
ACCTINDX Sample Primer - batch index file recovery - COBOL C3 -
ACCTREC Sample Primer - account record - COBOL C3 -
ACCTSET Sample Primer - map set - COBOL 19 -
ACCT00 Sample Primer - menu display - COBOL C3 -
ACCT01 Sample Primer - initial request processing - COBOL C3 -
ACCT02 Sample Primer - update processing - COBOL C3 -
ACCT03 Sample Primer - requests for printing - COBOL C3 -
ACCT04 Sample Primer - error processing - COBOL C3 -
ACIXREC Sample Primer - index record - COBOL C3 -

CICS directory

1344 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
AXMBF CSECT Buffer management routine - 03
AXMER CSECT Server task error recovery - 03
AXMEV CSECT Event control and task management routine - 03
AXMEV1 CSECT Event management MVS POST exit - 03
AXMFL CSECT Sequential file I/O routine - 03
AXMHP CSECT Heap storage routine - 03
AXMHS CSECT Hash value generation subroutine - 03
AXMLF CSECT Server environment LIFO storage routine - 03
AXMLFMVS CSECT LIFO storage routine - MVS batch version - 03
AXMLK CSECT Lock management routine - 03
AXMMS CSECT Message editing and processing routine - 03
AXMMSTAB CSECT Message filtering table - 03
AXMOP CSECT Operator communication routine - 03
AXMOS CSECT Server operating system interface - 03
AxphG CSECT Page storage routine - 03
AXMRM CSECT Resource manger initialization/termination - 03
AXMRS CSECT Resource tracking routine - 03
AXMSC CSECT Server connection routine - 03
AXMSC1 CSECT Locate server connection system area - 03
AXMSC2 CSECT Server connection services interface - 03
AXMSI CSECT Subsystem initialization routine - 03
AXMTI CSECT Timer interval service - 03
AXMTK CSECT Task attach and detach routine - 03
AXMTM CSECT Mode-independent time and date service - 03
AXMTR CSECT Server trace management routine - 03
AXMVS CSECT Variable sized shared storage routine - 03
AXMWH CSECT AXMWH - data areas - 03
AXMWT CSECT AXMWT - data areas - 03
AXMXM CSECT Cross memory interface - 03
AXMXM1 CSECT Cross memory interface POST module - 03
CALLDLI Macro CALL DL/I services 11 -
CAUBLD CSECT CAU builder front end - 03
CAUBLDIN CSECT CAU builder input processor - 03
CAUBLDMR CSECT CAU builder merge processor - 03
CAUBLDOT CSECT CAU builder output processor - 03
CAUCAFBE CSECT CAU CAFB abend exit - 03
CAUCAFB1 CSECT CAU CAFB main program - 03
CAUCAFB2 CSECT CAU CAFB data save program - 03
CAUCAFDT CSECT CAU CAFF date utility - 03
CAUCAFFE CSECT CAU CAFF abend exit - 03
CAUCAFF1 CSECT CAU CAFF main program - 03
CAUCAFF2 CSECT CAU CAFF options - 03
CAUCAFF3 CSECT CAU CAFF start program - 03
CAUCAFF4 CSECT CAU CAFF stop program - 03
CAUCAFF5 CSECT CAU CAFF pause program - 03
CAUCAFF6 CSECT CAU CAFF continue program - 03
CAUCAFF7 CSECT CAU CAFF help program - 03
CAUCAFP CSECT CAU CAFB request handler - 03
CAUJCLBL Sample Sample JCL for running CAU builder 02 -
CAUJCLCA Sample Sample JCL for CAU Affinity data files 02 -
CAUJCLCC Sample Sample JCL for CAU Affinity control file 02 -
CAUJCLLD Sample Sample JCL for running CAU scanner (Detail mode) 02 -
CAUJCLLS Sample Sample JCL for running CAU scanner (Summary

mode)
02 -

CICS directory

Chapter 115. CICS directory 1345

Table 123. CICS modules directory (continued)
Name Type Description Library
CAUJCLRP Sample Sample JCL for running CAU Reporter 02 -
CAULMS CSECT CAU load module scanner - 03
CAUMAP1 CSECT CAU BMS map CAFF01 - 03
CAUMAP1U CSECT CAU BMS map CAFF01 - 19
CAUMAP2 CSECT CAU BMS map CAFF02 - 03
CAUMAP2U CSECT CAU BMS map CAFF02 - 19
CAUMAP3 CSECT CAU BMS map CAFFH1 - 03
CAUMAP4 CSECT CAU BMS map CAFFH2 - 03
CAUMSGCS CSECT CAU message manager CICS stub - 03
CAUMSGMN CSECT CAU message manager - 03
CAUMSGTB CSECT CAU message table - 03
CAUREP CSECT CAU reporter main module - 03
CAUREPFM CSECT CAU reporter file manager - 03
CAUREPPM CSECT CAU reporter print manager - 03
CAUREPRM CSECT CAU reporter report manager - 03
CAUTABM CSECT CAU detector table manager - 03
CAUTABS CSECT CAU detector table storage manager - 03
CAUXDUMM CSECT CAU detector dummy exit - 03
CAUXITBA CSECT CAU detector BAM process exit - 03
CAUXITBB CSECT CAU detector BAM activity exit - 03
CAUXITB1 CSECT CAU detector XBADEACT exit - 03
CAUXITIR CSECT CAU detector pseudo-conv end exit - 03
CAUXITI1 CSECT CAU detector TRUE - 03
CAUXITML CSECT CAU detector logoff exit - 03
CAUXITMS CSECT CAU detector signoff exit - 03
CAUXITM1 CSECT CAU detector XMEOUT exit - 03
CAUXITOA CSECT CAU detector ADDRESS exit - 03
CAUXITOC CSECT CAU detector CANCEL exit - 03
CAUXITOE CSECT CAU detector ENQ/DEQ exit - 03
CAUXITOG CSECT CAU detector GETMAIN exit - 03
CAUXITOL CSECT CAU detector LOAD/RELEASE exit - 03
CAUXITOQ CSECT CAU detector TS exit - 03
CAUXITOR CSECT CAU detector RETRIEVE exit - 03
CAUXITOS CSECT CAU detector SPI exit - 03
CAUXITOW CSECT CAU detector WAIT exit - 03
CAUXITOY CSECT CAU detector LOAD/FREEMAIN exit - 03
CAUXITO1 CSECT CAU detector XEIOUT exit - 03
CAUXITXX CSECT CAU detector ICE expiry exit - 03
CAUXITX1 CSECT CAU detector XICEXP exit - 03
CMC Symbolic SAA communications pseudonyms for C D2 -
CMCOBOL Symbolic SAA communications pseudonyms for COBOL C2 -
CMHASM Symbolic SAA communications pseudonyms for assembler 11 -
CMPLI Symbolic SAA communications pseudonyms for PL/I P2 -
DFHABAB CSECT AP domain abend handling - 03
DFHABABA DSECT ABAB parameter list OS -
DFHABABM Macro ABAB request OS -
DFHABABT CSECT ABAB trace interpretation data - 03
DFHABEND Macro Issue an ABEND macro OS -
DFHABREV CSECT String abbreviation checker OS 03
DFHACP CSECT Abnormal condition program OS 03
DFHACPTB Macro ACP abend table OS -
DFHADINS CSECT AD EJB CICS resource definitions - 03
DFHADJAR CSECT AD JAR to DJAR mapping - 03
DFHADSTR CSECT AD JAR to DJAR mapping - 03

CICS directory

1346 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHADUR@ CSECT - 03
DFHADURM Sample Sample URM to set CICS user id (C version) 19 -
DFHAFCD Macro Authorized function control block (AFCB) 11 -
DFHAFCS Macro Authorized function common storage anchor OS -
DFHAIBD Macro Application interface control block 11 -
DFHAICB Macro Application interface control block 11 -
DFHAICBP CSECT Application interface control block module OS 03
DFHAID Symbolic 3270 attention identifiers 11 07
DFHAID Symbolic 3270 attention identifiers - COBOL C2 -
DFHAID Symbolic 3270 attention identifiers - PL/I P2 -
DFHAID Symbolic 3270 attention identifiers - C/370 D2 -
DFHAIDDS DSECT Automatic initiate descriptor 11 -
DFHAIDUF CSECT (OCO) Autoinstall terminal model manager (AITMM) SDUMP

formatter
- 03

DFHAIINA DSECT AIIN parameter list OS -
DFHAIINM Macro AIIN request OS -
DFHAIINT CSECT (OCO) AIIN trace interpretation data - 03
DFHAIIN1 CSECT (OCO) AITMM - initialization management program - 03
DFHAIIN2 CSECT (OCO) AITMM - initialization subtask program - 03
DFHAIIQ CSECT (OCO) AITMM - locate/unlock/inquire/browse - 03
DFHAIIQA DSECT AIIQ parameter list OS -
DFHAIIQM Macro AIIQ request OS -
DFHAIIQT CSECT (OCO) AIIQ trace interpretation data - 03
DFHAIRP CSECT (OCO) AITMM - initialization/recovery - 03
DFHAIRPA DSECT AIRP parameter list OS -
DFHAIRPM Macro AIRP request OS -
DFHAIRPT CSECT (OCO) AIRP trace interpretation data - 03
DFHAITDS DSECT AITMM - static storage OS -
DFHAITM CSECT (OCO) AITMM - add replace/delete - 03
DFHAITMA DSECT AITM parameter list OS -
DFHAITMM Macro AITM request OS -
DFHAITMT CSECT (OCO) AITM trace interpretation data - 03
DFHALP CSECT Terminal allocation OS 03
DFHALRC CSECT Automatic initiate descriptor recovery - 03
DFHALXM CSECT AL XM transaction attach - 03
DFHAM Macro Address mode switching macro - 11
DFHAMBA CSECT RDO install of Processtype resources - 03
DFHAMCSD CSECT RDO command logger - 03
DFHAMDH CSECT RDO install of Document resources - 03
DFHAMD2 CSECT - 03
DFHAMEJ CSECT RDO install of EJB objects OS 03
DFHAMER CSECT RDO error message builder - 03
DFHAMFC CSECT RDO install for FCT resources - 03
DFHAMGL CSECT RDO list generator - 03
DFHAMLM CSECT Program to install log manager objects - 03
DFHAMNQ CSECT RDO install of Enqmodel resources - 03
DFHAMOP CSECT RDO install of Requestmodel resources - 03
DFHAMPAB CSECT RDO AMP error handler OS 03
DFHAMPAD CSECT RDO add command - 03
DFHAMPAP CSECT RDO append command - 03
DFHAMPCH CSECT RDO check command - 03
DFHAMPCO CSECT RDO copy and rename commands - 03
DFHAMPC1 CSECT SPI generic names match - 03
DFHAMPC2 CSECT SPI check list name and produce list of groups - 03

CICS directory

Chapter 115. CICS directory 1347

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHAMPC3 CSECT SPI diagnose duplicate objects - 03
DFHAMPDF CSECT RDO define/redefine command OS 03
DFHAMPDI CSECT RDO display command OS 03
DFHAMPDL CSECT RDO delete/remove commands OS 03
DFHAMPEN CSECT RDO end AMP handler OS 03
DFHAMPEX CSECT RDO expand command OS 03
DFHAMPFI CSECT RDO begin AMP handler OS 03
DFHAMPG CSECT RDO install of PG resources - 03
DFHAMPIL CSECT RDO install command OS 03
DFHAMPLO CSECT RDO lock/unlock command OS 03
DFHAMPN CSECT RDO install for partner resources OS 03
DFHAMPVW CSECT RDO view command OS 03
DFHAMP00 CSECT RDO allocation manager (DFHAMP) OS 03
DFHAMRDI CSECT RDO install logger OS 03
DFHAMSN CSECT RDO set name/type/set/stype from arg list OS 03
DFHAMSO CSECT RDO install of TCPIP services - 03
DFHAMST CSECT RDO update time and date in arg list OS 03
DFHAMTD CSECT Program to install Transient Data objects - 03
DFHAMTP CSECT RDO AMP request processor OS 03
DFHAMTS CSECT RDO install of Tsmodel resources OS 03
DFHAMXM CSECT Install XM domain resources (transaction and tranclass

objects)
OS 03

DFHANRAT Macro 3270 attribute character resolution 11 -
DFHANRWC Macro 3270 control character resolution 11 -
DFHAPAC DSECT AP domain abnormal condition reporting interface - 03
DFHAPACA DSECT APAC parameter list OS -
DFHAPACM Macro APAC request OS -
DFHAPACT CSECT APAC translate table - 03
DFHAPAPA DSECT APAP parameter list OS -
DFHAPAPM Macro APAP request OS -
DFHAPAPT CSECT APAP trace interpretation data OS 03
DFHAPATT CSECT AP domain - entrypoint attach - 03
DFHAPCBT CSECT - 03
DFHAPDDS DSECT DFHAPDM static storage OS -
DFHAPDM CSECT AP domain - initialization/termination - 03
DFHAPDN CSECT AP domain - transaction definition notify - 03
DFHAPDUF CSECT (OCO) AP domain - formatted dump print - 03
DFHAPEVI Macro AP domain - environment initialization OS -
DFHAPEX CSECT AP domain - user exit service - 03
DFHAPEXA DSECT APEX parameter list OS -
DFHAPEXM Macro APEX request OS -
DFHAPEXT CSECT APEX trace interpretation data OS 03
DFHAPH8@ CSECT - 03
DFHAPH8O CSECT Java hotpooling runtime options 0 H8 PIPI 19 03
DFHAPID DSECT Inquire on AP data - 03
DFHAPIDS DSECT Interval control static storage OS -
DFHAPIDT DSECT - 03
DFHAPIN CSECT AP domain - special initialization for programs and

user-replaceable modules
OS 03

DFHAPIQ CSECT (OCO) AP domain - user exit data access service - 03
DFHAPIQT CSECT (OCO) APIQ trace interpretation data - 03
DFHAPIQX Macro APIQ request 11 -
DFHAPIQY DSECT APIQ parameter list 11 -
DFHAPJC CSECT AP domain - journal interface gate service OS 03

CICS directory

1348 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHAPLH1 CSECT - 03
DFHAPLH3 CSECT - 03
DFHAPLIA CSECT AP domain - language interface program OS -
DFHAPLIT CSECT (OCO) AP domain - language interface service - 03
DFHAPLI1 CSECT (OCO) AP domain - language interface functions 1 - 03
DFHAPLI2 CSECT (OCO) AP domain - language interface functions 2 - 03
DFHAPLI3 CSECT (OCO) AP domain - language interface functions 3 - 03
DFHAPLI4 CSECT - 03
DFHAPLI5 CSECT - 03
DFHAPLI6 CSECT - 03
DFHAPLI7 CSECT - 03
DFHAPLJ1 CSECT - 03
DFHAPLJ3 CSECT - 03
DFHAPNT CSECT AP domain - MXT notify gate OS 03
DFHAPPG CSECT AP domain - optimize initial_link for DFHMIRS - 03
DFHAPPIS CSECT Java hotpooling PIPI service routines - 03
DFHAPPIV CSECT Java hotpooling PIPI service routines - 03
DFHAPRC CSECT User log record recovery module - 03
DFHAPRDA CSECT APRD interface parameter area OS -
DFHAPRDR CSECT Resource definition recovery gate - 03
DFHAPRDT CSECT APRD translate table - 03
DFHAPRT CSECT AP Domain - route transaction gate OS 03
DFHAPRTA DSECT APRT parameter list OS -
DFHAPRTM Macro APRT request OS -
DFHAPRTT CSECT APRM trace interpretation data OS 03
DFHAPSDF CSECT AP domain - formatted dump print module OS 03
DFHAPSI CSECT AP domain - gate initialization OS 03
DFHAPSIP CSECT AP domain - system initialization program OS 03
DFHAPSM CSECT AP domain - storage notify gate OS 03
DFHAPST CSECT AP domain - statistics collection OS 03
DFHAPTC CSECT AP domain - TC transport for Requeststreams - 03
DFHAPTCA CSECT APTC interface parameter area OS -
DFHAPTCM CSECT APTC interface macro OS -
DFHAPTCT CSECT - 03
DFHAPTC1 CSECT AP TC trace interpretation - 03
DFHAPTI CSECT AP domain - timer notify gate OS 03
DFHAPTIM CSECT AP domain - interval control midnight task OS 03
DFHAPTIX CSECT AP domain - expiry analysis task OS 03
DFHAPTPA Symbolic IRC trace point ID aliases OS -
DFHAPTRA CSECT IRC trace interpreter OS 03
DFHAPTRB CSECT XRF trace interpreter OS 03
DFHAPTRC CSECT User exit trace interpreter OS 03
DFHAPTRD CSECT DFHAPDM/DFHAPAP trace interpreter OS 03
DFHAPTRE CSECT (OCO) Data tables trace interpreter - 03
DFHAPTRF CSECT (OCO) SAA communications and resource recovery interfaces

trace interpreter
- 03

DFHAPTRG CSECT ZC exception and VTAM exit trace interpreter OS 03
DFHAPTRI CSECT AP domain - trace interpretation router OS 03
DFHAPTRJ CSECT ZC VTAM interface trace interpreter OS 03
DFHAPTRK CSECT AP domain - resource definition interpretation module - 03
DFHAPTRL CSECT CICS OS/2 LU2 mirror trace interpreter OS 03
DFHAPTRN CSECT (OCO) Autoinstall terminal model manager trace interpreter - 03
DFHAPTRO CSECT LU6.2 application request logic trace interpreter OS 03
DFHAPTRP CSECT Program control trace interpreter OS 03

CICS directory

Chapter 115. CICS directory 1349

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHAPTRR CSECT (OCO) Partner resource manager trace interpreter - 03
DFHAPTRS CSECT (OCO) AP domain - DFHEISR trace interpreter - 03
DFHAPTRU CSECT ZC install trace interpretation OS 03
DFHAPTRV CSECT (OCO) AP domain - DFHSRP trace interpreter - 03
DFHAPTRW CSECT (OCO) AP domain - FEPI trace interpreter - 03
DFHAPTRX CSECT ZC persistent sessions trace interpretation OS 03
DFHAPTRY CSECT AP domain - trace formatting (APRM, APXM, ICXM,

and TDXM)
OS 03

DFHAPTR0 CSECT Trace interpreter for old-style AP trace OS 03
DFHAPTR2 CSECT AP domain - statistics trace interpreter OS 03
DFHAPTR5 CSECT File control trace interpreter OS 03
DFHAPTR6 CSECT DBCTL trace interpreter OS 03
DFHAPTR7 CSECT Transaction routing trace interpreter OS 03
DFHAPTR8 CSECT Security trace interpreter OS 03
DFHAPTR9 CSECT Interval control trace interpreter OS 03
DFHAPUEA DSECT APUE parameter list OS -
DFHAPUEM Macro APUE request OS -
DFHAPUET CSECT APUE trace interpretation data OS 03
DFHAPXDD CSECT AP domain - transaction definition extension OS -
DFHAPXM CSECT AP domain - transaction initialization and termination

services
OS 03

DFHAPXMA DSECT APXM parameter list OS -
DFHAPXME CSECT AP domain - XM exception handler OS 03
DFHAPXMT CSECT (OCO) APXM trace interpretation data - 03
DFHASMVS Other Cataloged procedure to assemble CICS programs and

user-written macro-level programs
18 -

DFHASSUA DSECT ASSU parameter list OS -
DFHASSUM Macro ASSU request OS -
DFHASSUT CSECT ASSU trace interpretation data OS 03
DFHASV CSECT Authorized services interface OS 03
DFHATUP CSECT Audit trail Utility Program - 03
DFHAUDUF CSECT - 03
DFHAUPLE Other Cataloged procedure to assemble and link-edit CICS

control tables, and provide information to SMP/E
02 -

DFHAUTH Macro Verify environment and activate CICS SVCs OS -
DFHAXI Macro XRF alternate subsystem identifier table OS -
DFHA03DS DSECT VTAM statistics 11 -
DFHA03DS DSECT VTAM statistics - COBOL C2 07
DFHA03DS DSECT VTAM statistics - PL/I P2 -
DFHA04DS DSECT Autoinstall statistics 11 -
DFHA04DS DSECT Autoinstall statistics - COBOL C2 07
DFHA04DS DSECT Autoinstall statistics - PL/I P2 -
DFHA06DS DSECT Terminal statistics 11 -
DFHA06DS DSECT Terminal statistics - COBOL C2 07
DFHA06DS DSECT Terminal statistics - PL/I P2 -
DFHA08DS DSECT LSR pool statistics 11 -
DFHA08DS DSECT LSR pool statistics - COBOL C2 07
DFHA08DS DSECT LSR pool statistics - PL/I P2 -
DFHA09DS DSECT LSR pool file-related statistics 11 -
DFHA09DS DSECT LSR pool file-related statistics C2 07
DFHA09DS DSECT LSR pool file-related statistics P2 -
DFHA14DS DSECT ISC/IRC statistics for system entries 11 -
DFHA14DS DSECT ISC/IRC statistics for system entries C2 07
DFHA14DS DSECT ISC/IRC statistics for system entries P2 -

CICS directory

1350 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHA16DS DSECT Table manager statistics 11 -
DFHA16DS DSECT Table manager statistics C2 07
DFHA16DS DSECT Table manager statistics P2 -
DFHA17DS DSECT File control statistics 11 -
DFHA17DS DSECT File control statistics C2 07
DFHA17DS DSECT File control statistics P2 -
DFHA20DS DSECT ISC/IRC statistics for mode entries 11 -
DFHA20DS DSECT ISC/IRC statistics for mode entries C2 07
DFHA20DS DSECT ISC/IRC statistics for mode entries P2 -
DFHA21DS DSECT ISC/IRC attach-time statistics 11 -
DFHA21DS DSECT ISC/IRC attach-time statistics C2 07
DFHA21DS DSECT ISC/IRC attach-time statistics P2 -
DFHA22DS DSECT FEPI pool statistics 11 -
DFHA22DS DSECT FEPI pool statistics C2 07
DFHA22DS DSECT FEPI pool statistics P2 -
DFHA23DS DSECT FEPI connection statistics 11 -
DFHA23DS DSECT FEPI connection statistics C2 07
DFHA23DS DSECT FEPI connection statistics P2 -
DFHA24DS DSECT FEPI target statistics 11 -
DFHA24DS DSECT FEPI target statistics C2 07
DFHA24DS DSECT FEPI target statistics P2 -
DFHBAAC CSECT BAAC CDURUN and Gate module - 03
DFHBAACT CSECT BAM Activity Class class declaration - 03
DFHBAAC0 CSECT - 03
DFHBAAC1 CSECT - 03
DFHBAAC2 CSECT - 03
DFHBAAC3 CSECT - 03
DFHBAAC4 CSECT - 03
DFHBAAC5 CSECT - 03
DFHBAAC6 CSECT - 03
DFHBAAR1 CSECT - 03
DFHBAAR2 CSECT - 03
DFHBAA10 CSECT - 03
DFHBAA11 CSECT - 03
DFHBAA12 CSECT - 03
DFHBABR CSECT BABR CDURUN and Gata Module - 03
DFHBABRA CSECT BABR interface parameter area OS -
DFHBABRM Macro BABR interface macro OS -
DFHBABRT CSECT - 03
DFHBABU1 CSECT - 03
DFHBACR CSECT BACR CDURUN and Gate Module - 03
DFHBACRT CSECT - 03
DFHBADM CSECT BA Domain Management - 03
DFHBADUF CSECT BA Domain Dump Formatting - 03
DFHBADU1 CSECT - 03
DFHBAGDT CSECT - 03
DFHBALR2 CSECT - 03
DFHBALR3 CSECT - 03
DFHBALR4 CSECT - 03
DFHBALR5 CSECT - 03
DFHBALR6 CSECT - 03
DFHBALR7 CSECT - 03
DFHBALR8 CSECT - 03
DFHBALR9 CSECT - 03

CICS directory

Chapter 115. CICS directory 1351

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHBAM51 CSECT CSDUP - SPI offline messages table (51xx) OS 03
DFHBAM52 CSECT CSDUP - SPI offline messages table (52xx) OS 03
DFHBAM55 CSECT CSDUP - SPI offline messages table (55xx) OS 03
DFHBAM56 CSECT CSDUP - SPI offline messages table (56xx) OS 03
DFHBAOFI CSECT - 03
DFHBAPR CSECT BAPR CDURUN and Gate Module - 03
DFHBAPRT CSECT - 03
DFHBAPR0 CSECT - 03
DFHBAPT1 CSECT - 03
DFHBAPT2 CSECT - 03
DFHBAPT3 CSECT - 03
DFHBARUC CSECT - 03
DFHBARUD CSECT - 03
DFHBARUP CSECT CBTS Repository Utility Program - 03
DFHBASCH CSECT BRDATA for CBTS Constants - 08
DFHBASCL CSECT BRDATA for CBTS Constants - 17
DFHBASCO CSECT BRDATA for CBTS Constants - 07
DFHBASDD CSECT BRDATA for CBTS Bridge Exit 11 -
DFHBASDH CSECT BRDATA for CBTS Bridge Exit - 08
DFHBASDL CSECT BRDATA for CBTS Bridge Exit - 17
DFHBASDO CSECT BRDATA for CBTS Bridge Exit - 19
DFHBASP CSECT BASP Gate Module and BA Context Class - 03
DFHBATRI CSECT BAM Domain Trace Interpretation - 03
DFHBATT CSECT BAM CDURUN and Gate Module - 03
DFHBATTT CSECT - 03
DFHBAUE CSECT BAUE Gate Module - 03
DFHBAVP1 CSECT - 03
DFHBAXM CSECT BA XM Interfaces - 03
DFHBAXMT CSECT - 03
DFHBEPB CSECT RDO batch error program OS 03
DFHBEPC CSECT RDO message formatting module OS 03
DFHBFTCA Macro Built-in functions TCA macro 11 -
DFHBMPIC Macro BMS picture analysis 11 -
DFHBMS Macro Basic mapping support request 11 -
DFHBMSCA Symbolic BMS attribute definitions 11 08
DFHBMSCA Symbolic BMS attribute definitions C2 07
DFHBMSU Macro - 18
DFHBMSUP Macro - 03
DFHBMUTM Macro Trace BMS module generation options OS -
DFHBPXPA Sample - 02
DFHBPXP0 Sample - 02
DFHBPXP1 Sample - 02
DFHBRACD Symbolic Bridge copybook 11 -
DFHBRACH Symbolic Bridge copybook D2 -
DFHBRACL Symbolic Bridge copybook P2 17
DFHBRACO Symbolic Bridge copybook C2 -
DFHBRARD Symbolic Bridge copybook 11 -
DFHBRARH Symbolic Bridge copybook D2 -
DFHBRARL Symbolic Bridge copybook P2 17
DFHBRARO Symbolic Bridge copybook C2 -
DFHBRAT CSECT Design Bridge - BRAT Gate Functions - 03
DFHBRATA CSECT BRAT interface parameter area OS -
DFHBRATM CSECT DFHBRAT interface macro OS -
DFHBRATT CSECT - 03

CICS directory

1352 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHBRBFB CSECT Bridge module OS -
DFHBRDCD CSECT OS -
DFHBRDUF CSECT Bridge module - 03
DFHBRFM CSECT Bridge module - 03
DFHBRFMT Symbolic Trace interpretation data - 03
DFHBRIC CSECT Bridge module - 03
DFHBRIQ CSECT Design Bridge - BRIQ Gate Functions - 03
DFHBRIQA CSECT BRIQ interface parameter area OS -
DFHBRIQI CSECT OS -
DFHBRIQM CSECT DFHBRIQ interface macro OS -
DFHBRIQT CSECT - 03
DFHBRIQX Macro Bridge XPI macro 11 -
DFHBRIQY Symbolic Copybook 11 -
DFHBRMCD Symbolic Bridge copybook 19 -
DFHBRMCH Symbolic Bridge copybook D3 -
DFHBRMCL Symbolic Bridge copybook P3 -
DFHBRMCO Symbolic Bridge copybook C3 -
DFHBRME CSECT BR Exit Program - 03
DFHBRMF CSECT BR Formatter Program - 03
DFHBRMHD Symbolic Bridge copybook 19 -
DFHBRMHH Symbolic Bridge copybook D3 -
DFHBRMHL Symbolic Bridge copybook P3 -
DFHBRMHO Symbolic Bridge copybook C3 -
DFHBRMQD Symbolic Bridge copybook 19 -
DFHBRMQH Symbolic Bridge copybook D3 -
DFHBRMQL Symbolic Bridge copybook P3 -
DFHBRMQO Symbolic Bridge copybook C3 -
DFHBRMS CSECT Bridge module - 03
DFHBRRM CSECT DFHBRRM Design Bridge - Recovery Manager - 03
DFHBRSCD Symbolic Bridge copybook 19 -
DFHBRSCH Symbolic Bridge copybook D3 -
DFHBRSCL Symbolic Bridge copybook P3 -
DFHBRSCO Symbolic Bridge copybook C3 -
DFHBRSDD Symbolic Bridge copybook 19 -
DFHBRSDH Symbolic Bridge copybook D3 -
DFHBRSDL Symbolic Bridge copybook P3 -
DFHBRSDO Symbolic Bridge copybook C3 -
DFHBRSP CSECT Bridge module - 03
DFHBRSPA Symbolic Bridge copybook OS -
DFHBRSPM Symbolic Bridge copybook OS -
DFHBRSPT Symbolic Bridge copybook - 03
DFHBRTB CSECT Bridge Virtual Terminal Buffer - 03
DFHBRTC CSECT Bridge module - 03
DFHBRTQ CSECT - 03
DFHBRTRI Macro Bridge module - 03
DFHBRXM CSECT BR XM Principal Client - 03
DFHBSC Macro Generate binary search code 11 -
DFHBSG Macro Switch subspace request OS -
DFHBSIB3 CSECT BMS 3270 builder OS 03
DFHBSIZ1 CSECT Add SCS support OS 03
DFHBSIZ3 CSECT Add DFHZCP 3270 support OS 03
DFHBSMIR CSECT Build terminal session OS 03
DFHBSMPP CSECT Build pipeline pool table entry OS 03
DFHBSM61 CSECT Generate sessions for modegroup OS 03

CICS directory

Chapter 115. CICS directory 1353

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHBSM62 CSECT Build a modegroup OS 03
DFHBSS CSECT Build a connection OS 03
DFHBSSA CSECT Build DFHKCP support in a system entry OS 03
DFHBSSF CSECT Build stats support in a system entry OS 03
DFHBSSS CSECT Build security support in a system entry OS 03
DFHBSSZ CSECT Build VTAM support in a system entry OS 03
DFHBSSZG CSECT Add an APPC single-session OS 03
DFHBSSZI CSECT Add an indirect terminal system OS 03
DFHBSSZL CSECT Add a local terminal system OS 03
DFHBSSZM CSECT Introduce new system to ZCP OS 03
DFHBSSZP CSECT Add an APPC parallel-session OS 03
DFHBSSZR CSECT Add an MRO system OS 03
DFHBSSZS CSECT Add an APPC OS 03
DFHBSSZ6 CSECT Add an LU6.1 connection OS 03
DFHBST CSECT Common TCTTE builder OS 03
DFHBSTB CSECT Add a resource for BMS OS 03
DFHBSTBL CSECT Add logical device support OS 03
DFHBSTB3 CSECT Add partition support OS 03
DFHBSTC CSECT Add install-time options support OS 03
DFHBSTD CSECT Add DFHDIP support OS 03
DFHBSTE CSECT Add EDF support OS 03
DFHBSTH CSECT EXEC interface builder OS 03
DFHBSTI CSECT Add DFHICP support OS 03
DFHBSTM CSECT Add DFHMGP support OS 03
DFHBSTO CSECT Spooler terminal builder OS 03
DFHBSTP3 CSECT Add 3270-copy support OS 03
DFHBSTS CSECT Add DFHSNT support OS 03
DFHBSTT CSECT Add DFHKCP support OS 03
DFHBSTZ CSECT Build terminal or session resource OS 03
DFHBSTZA CSECT Add DFHZCP support OS 03
DFHBSTZB CSECT Add or delete bind-image OS 03
DFHBSTZC CSECT Add single-session to APPC OS 03
DFHBSTZE CSECT Set error message writer fields OS 03
DFHBSTZL CSECT Add logical device code support OS 03
DFHBSTZO CSECT Add an MVS console OS 03
DFHBSTZP CSECT Pipeline terminal builder OS 03
DFHBSTZR CSECT Add IRC session OS 03
DFHBSTZS CSECT Add an APPC session OS 03
DFHBSTZV CSECT Add VTAM and IRC information OS 03
DFHBSTZZ CSECT Add non-APPC session OS 03
DFHBSTZ1 CSECT Add remote terminal support OS 03
DFHBSTZ2 CSECT Remote APPC builder OS 03
DFHBSTZ3 CSECT Add 3270 support OS 03
DFHBSZZ CSECT Add terminal or session OS 03
DFHBSZZS CSECT Add session to LU6.2 support OS 03
DFHBSZZV CSECT Add VTAM terminal or session OS 03
DFHBT Macro Parameter sublist translation 11 -
DFHCALLA CSECT CZ Direct-to-CICS - 03
DFHCAPB CSECT CSDUP - command analysis program (DFHCAP) OS 03
DFHCAPC CSECT RDO utility - RDL command locator OS 03
DFHCCCC CSECT (OCO) GC/LC domains - functions - 03
DFHCCCCA DSECT CCCC parameter list OS -
DFHCCCCM Macro CCCC request OS -
DFHCCCCT CSECT (OCO) CCCC trace interpretation data - 03

CICS directory

1354 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHCCDM CSECT (OCO) GC/LC domains - initialization/termination - 03
DFHCCDUF CSECT (OCO) SDUMP formatter for GC/LC domains - 03
DFHCCNV CSECT Data conversion for CICS OS/2 ISC users OS 03
DFHCCNVG CSECT Data conversion Gate - 03
DFHCCNVT CSECT - 03
DFHCCNV2 CSECT Convert characters in multi-byte representation OS 03
DFHCCTRI CSECT (OCO) Trace interpreter for GC/LC domains - 03
DFHCCUTL CSECT CICS local catalog initialization program OS 03
DFHCDBLK Symbolic CONVDATA area 11 D2
DFHCDBMI Other CDBM group file definition JCL - 02
DFHCDBTC Macro Domain call argument conversion 11 -
DFHCDC Macro Syntax analysis and code generation for DFHxxyyM/X

domain call macros
11 -

DFHCDCON CSECT Formatted parameter list translator OS 03
DFHCDEDA DSECT CDED parameter list OS -
DFHCDEDM Macro CDED request OS -
DFHCDEDT CSECT CDED trace interpretation data OS 03
DFHCDKRN CSECT KE Java to CDURUN Interface - 03
DFHCDMIK Macro Domain call inner macro - generate assignments for IN

keywords
11 -

DFHCDMOK Macro Domain call inner macro - generate assignments for
OUT keywords

11 -

DFHCDSPL Macro Domain call inner macro - subvalues of character list 11 -
DFHCDSUB Macro Domain call inner macro - subvalues of sub-parameter

list
11 -

DFHCDSYN Macro Syntax analysis on positional operands for
DFHxxyyM/X domain call macros

11 -

DFHCDTST Macro DFHTEST inner macro 11 -
DFHCDTYP Macro Determine domain call argument data type 11 -
DFHCEGN CSECT Goodnight transaction stub - 03
DFHCESC CSECT Terminal, XRF, and enable timeout routines - 03
DFHCESD CSECT CICS shutdown assist program 19 -
DFHCESDP CSECT CICS shutdown assist program - 03
DFHCETRA CSECT Trace control transaction (CETR) - main program OS 03
DFHCETRB CSECT CETR - trace component flags inquire/set OS 03
DFHCETRC CSECT CETR - terminal/transaction trace control OS 03
DFHCETRD CSECT CETR - common subroutines OS 03
DFHCFCF CSECT CFDT Server CF Interface - 03
DFHCFCN CSECT CFDT Server Client Connect/Disconnect - 03
DFHCFDF CSECT CFDT AXM Server Definitions - 03
DFHCFEN CSECT CFDT ENF event interface - 03
DFHCFIF CSECT CFDT Server Interface Module - 03
DFHCFIQ CSECT CFDT Table Inquire Routines - 03
DFHCFLW CSECT CFDT Server Lock Wait Routines - 03
DFHCFMN CSECT CFDT Server Main Program - 03
DFHCFMS CSECT CFDT Server Messages - 03
DFHCFOC CSECT CFDT Server Table Open/Close - 03
DFHCFOP CSECT CFDT Server Operator Command Support - 03
DFHCFPR CSECT CFDT Server Parameter Processing - 03
DFHCFRL CSECT CFDT Server Pool Reload routine - 03
DFHCFRQ CSECT CFDT Server Record Request Routines - 03
DFHCFRS CSECT CFDT ARM Restart Support - 03
DFHCFSP CSECT CFDT Server Syncpoint and Restart - 03
DFHCFST CSECT CFDT Server Statistics Routines - 03

CICS directory

Chapter 115. CICS directory 1355

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHCFS6D CSECT CFDT Statistics for list structure 11 -
DFHCFS7D CSECT CFDT Statistics for table accesses 11 -
DFHCFS8D CSECT CFDT Request statistics 11 -
DFHCFS9D CSECT CFDT Statistics for server storage 11 -
DFHCFUL CSECT CFDT Server Pool Unload Routine - 03
DFHCFXS CSECT CFDT Server External Security Support - 03
DFHCHS CSECT CICS mirror for CICS OS/2 and CICS/VM OS 03
DFHCJVMA CSECT JVM Interface assembler routines - 03
DFHCICS CSECT CICS copyright information OS 03
DFHCLID Macro CICS service-level identifier 11 -
DFHCLS3 CSECT (OCO) APPC signoff transaction program - 03
DFHCLS4 CSECT (OCO) APPC signon transaction program - 03
DFHCLS5 CSECT (OCO) Connection Quiesce Protocol - 03
DFHCLT Macro Command list table 11 -
DFHCLT1$ Sample Command list table 19 03
DFHCMAC CSECT (OCO) ME domain - CICS messages and codes transaction

(CMAC)
- 03

DFHCMACD Other Source data file for CMAC transaction 13 -
DFHCMACI Other JCL to install the CICS messages data set 02 -
DFHCMACU Other JCL to update the CICS messages data set 02 -
DFHCMASM Macro CPI pseudonym file for assembler 11 -
DFHCMC CSECT (OCO) CMAC transaction map set (C/370) - D2
DFHCMCM CSECT (OCO) CMAC transaction map set - 03
DFHCMCOB CSECT (OCO) CMAC transaction map set (COBOL) - C2
DFHCMP CSECT CICS monitoring compatibility interface OS 03
DFHCMPLI CSECT (OCO) CMAC transaction map set (PL/1) - P2
DFHCNEDS Macro TCT console control element 11 -
DFHCNV Macro ISC template definition 11 -
DFHCNVCA DSECT DFHCNV commarea layout OS -
DFHCNVE Macro DFHCNV data conversion tables OS -
DFHCNVH Macro DFHCNV data conversion tables OS -
DFHCNVW$ Macro 19 03
DFHCNVXX Macro DFHCNV data conversion related OS -
DFHCNV00 CSECT DFHCNV data conversion tables OS 03
DFHCNV01 CSECT DFHCNV data conversion tables OS 03
DFHCNV02 CSECT DFHCNV data conversion tables OS 03
DFHCNV03 CSECT DFHCNV data conversion tables OS 03
DFHCNV04 CSECT DFHCNV data conversion tables OS 03
DFHCNV05 CSECT DFHCNV data conversion tables OS 03
DFHCNV06 CSECT DFHCNV data conversion tables OS 03
DFHCNV07 CSECT DFHCNV data conversion tables OS 03
DFHCNV08 CSECT DFHCNV data conversion tables OS 03
DFHCNV09 CSECT DFHCNV data conversion tables OS 03
DFHCNV10 CSECT DFHCNV data conversion tables OS 03
DFHCNV11 CSECT DFHCNV data conversion tables OS 03
DFHCNV12 CSECT DFHCNV data conversion tables OS 03
DFHCNV13 CSECT DFHCNV data conversion tables OS 03
DFHCNV14 CSECT DFHCNV data conversion tables OS 03
DFHCNV15 CSECT DFHCNV data conversion tables OS 03
DFHCNV16 CSECT DFHCNV data conversion tables OS 03
DFHCNV17 CSECT DFHCNV data conversion tables OS 03
DFHCNV18 CSECT DFHCNV data conversion tables OS 03
DFHCNV19 CSECT DFHCNV data conversion tables OS 03
DFHCNV20 CSECT DFHCNV data conversion tables OS 03

CICS directory

1356 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHCNV21 CSECT DFHCNV data conversion tables OS 03
DFHCNV22 CSECT DFHCNV data conversion tables OS 03
DFHCNV23 CSECT DFHCNV data conversion tables OS 03
DFHCNV24 CSECT DFHCNV data conversion tables OS 03
DFHCNV25 CSECT DFHCNV data conversion tables OS 03
DFHCNV26 CSECT DFHCNV data conversion tables OS 03
DFHCNV27 CSECT DFHCNV data conversion tables OS 03
DFHCNV28 CSECT DFHCNV data conversion tables OS 03
DFHCNV29 CSECT DFHCNV data conversion tables OS 03
DFHCNV30 CSECT DFHCNV data conversion tables OS 03
DFHCNV31 CSECT DFHCNV data conversion tables OS 03
DFHCNV32 CSECT DFHCNV data conversion tables OS 03
DFHCNV33 CSECT DFHCNV data conversion tables OS 03
DFHCNV34 CSECT DFHCNV data conversion tables OS 03
DFHCNV35 CSECT DFHCNV data conversion tables OS 03
DFHCNV36 CSECT DFHCNV data conversion tables OS 03
DFHCNV37 CSECT DFHCNV data conversion tables OS 03
DFHCNV38 CSECT DFHCNV data conversion tables OS 03
DFHCNV39 CSECT DFHCNV data conversion tables OS 03
DFHCNV40 CSECT DFHCNV data conversion tables OS 03
DFHCNV41 CSECT DFHCNV data conversion tables OS 03
DFHCNV42 CSECT DFHCNV data conversion tables OS 03
DFHCNV43 CSECT DFHCNV data conversion tables OS 03
DFHCNV44 CSECT DFHCNV data conversion tables OS 03
DFHCNV45 CSECT DFHCNV data conversion tables OS 03
DFHCNV46 CSECT DFHCNV data conversion tables OS 03
DFHCNV47 CSECT DFHCNV data conversion tables OS 03
DFHCNV48 CSECT DFHCNV data conversion tables OS 03
DFHCNV49 CSECT DFHCNV data conversion tables OS 03
DFHCNV50 CSECT DFHCNV data conversion tables OS 03
DFHCNV51 CSECT DFHCNV data conversion tables OS 03
DFHCNV52 CSECT DFHCNV data conversion tables OS 03
DFHCNV53 CSECT DFHCNV data conversion tables OS 03
DFHCNV54 CSECT DFHCNV data conversion tables OS 03
DFHCNV55 CSECT DFHCNV data conversion tables OS 03
DFHCNV56 CSECT DFHCNV data conversion tables OS 03
DFHCNV57 CSECT DFHCNV data conversion tables OS 03
DFHCNV58 CSECT DFHCNV data conversion tables OS 03
DFHCNV59 CSECT DFHCNV data conversion tables OS 03
DFHCNV60 CSECT DFHCNV data conversion tables OS 03
DFHCNV61 CSECT DFHCNV data conversion tables OS 03
DFHCNV62 CSECT DFHCNV data conversion tables OS 03
DFHCNV63 CSECT DFHCNV data conversion tables OS 03
DFHCNV64 CSECT DFHCNV data conversion tables OS 03
DFHCNV65 CSECT DFHCNV data conversion tables OS 03
DFHCNV66 CSECT DFHCNV data conversion tables OS 03
DFHCNV67 CSECT DFHCNV data conversion tables OS 03
DFHCNV68 CSECT DFHCNV data conversion tables OS 03
DFHCNV69 CSECT DFHCNV data conversion tables OS 03
DFHCNV70 CSECT DFHCNV data conversion tables OS 03
DFHCNV71 CSECT DFHCNV data conversion tables OS 03
DFHCNV72 CSECT DFHCNV data conversion tables OS 03
DFHCNV75 CSECT DFHCNV data conversion tables OS 03
DFHCNV76 CSECT DFHCNV data conversion tables OS 03

CICS directory

Chapter 115. CICS directory 1357

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHCNV77 CSECT DFHCNV data conversion tables OS 03
DFHCN06A CSECT DFHCNV data conversion tables OS -
DFHCN06B CSECT DFHCNV data conversion tables OS -
DFHCN06C CSECT DFHCNV data conversion tables OS -
DFHCN06D CSECT DFHCNV data conversion tables OS -
DFHCN06E CSECT DFHCNV data conversion tables OS -
DFHCN06F CSECT DFHCNV data conversion tables OS -
DFHCN13A CSECT DFHCNV data conversion tables OS -
DFHCN13E CSECT DFHCNV data conversion tables OS -
DFHCN28A CSECT DFHCNV data conversion tables OS -
DFHCN28E CSECT DFHCNV data conversion tables OS -
DFHCN45A CSECT DFHCNV data conversion tables OS -
DFHCN45B CSECT DFHCNV data conversion tables OS -
DFHCN45E CSECT DFHCNV data conversion tables OS -
DFHCN45F CSECT DFHCNV data conversion tables OS -
DFHCN46A CSECT DFHCNV data conversion tables OS -
DFHCN46B CSECT DFHCNV data conversion tables OS -
DFHCN46E CSECT DFHCNV data conversion tables OS -
DFHCN46F CSECT DFHCNV data conversion tables OS -
DFHCOAP Other OS -
DFHCOMDS Other JCL to delete and recreate CICS system data sets

common to all regions
02 -

DFHCOMP Macro Generate compare equate values OS -
DFHCOVER Macro Cover page generator 11 -
DFHCPARH CSECT (OCO) CPIC - CMxxxx application request handler - 03
DFHCPCAC CSECT (OCO) CPIC - Accept_Conversation - 03
DFHCPCAL CSECT (OCO) CPIC - Allocate - 03
DFHCPCBA CSECT (OCO) CPIC - Create_CPC (Accept) - 03
DFHCPCBB CSECT (OCO) CPIC - Increment_Last_Convid - 03
DFHCPCBD CSECT (OCO) CPIC - Delete_Conversation - 03
DFHCPCBE CSECT (OCO) CPIC - Extract_Syncpoint_rc - 03
DFHCPCBG CSECT (OCO) CPIC - Initialize_CPC - 03
DFHCPCBI CSECT (OCO) CPIC - Create_CPC (Initialize) - 03
DFHCPCBL CSECT (OCO) CPIC - Locate_CPC - 03
DFHCPCBS CSECT (OCO) CPIC - Set_CPC_Log_Data - 03
DFHCPCBT CSECT (OCO) CPIC - Load module branch table - 03
DFHCPCCA DSECT CPCC parameter list OS -
DFHCPCCD CSECT (OCO) CPIC - Confirmed - 03
DFHCPCCF CSECT (OCO) CPIC - Confirm - 03
DFHCPCCM Macro CPCC request OS -
DFHCPCCT CSECT (OCO) CPCC trace interpretation data - 03
DFHCPCDE CSECT (OCO) CPIC - Deallocate - 03
DFHCPCEA CSECT (OCO) CPIC - Extract_Conversation_Type - 03
DFHCPCEB CSECT (OCO) CPIC - Extract_Mode_Name - 03
DFHCPCEC CSECT (OCO) CPIC - Extract_Partner_LU_Name - 03
DFHCPCED CSECT (OCO) CPIC - Extract_Sync_Level - 03
DFHCPCEE CSECT (OCO) CPIC - Extract_Conversation_State - 03
DFHCPCFL CSECT (OCO) CPIC - Flush - 03
DFHCPCFS CSECT (OCO) CPIC - finite state machine - 03
DFHCPCIC CSECT (OCO) CPIC - Initialize_Conversation - 03
DFHCPCLC CSECT (OCO) CPIC - interface to DFHLUC - 03
DFHCPCLM CSECT (OCO) CPIC - build send list - 03
DFHCPCLR CSECT (OCO) DFHLUC to CPIC return code conversion - 03
DFHCPCND CSECT (OCO) CPIC - Send_Data - 03

CICS directory

1358 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHCPCNE CSECT (OCO) CPIC - Send_Error - 03
DFHCPCN1 CSECT (OCO) CPIC - Send_and_Buffer - 03
DFHCPCN2 CSECT (OCO) CPIC - Send_and_Flush - 03
DFHCPCN3 CSECT (OCO) CPIC - Send_and_Prep_To_Receive - 03
DFHCPCN4 CSECT (OCO) CPIC - Send_and_Confirm - 03
DFHCPCN5 CSECT (OCO) CPIC - Send_and_Deallocate - 03
DFHCPCOJ CSECT (OCO) CPIC - Output_Journaling - 03
DFHCPCPR CSECT (OCO) CPIC - Prepare_To_Receive - 03
DFHCPCRA CSECT (OCO) CPIC - Receive mapped data - 03
DFHCPCRB CSECT (OCO) CPIC - Receive GDS header - 03
DFHCPCRC CSECT (OCO) CPIC - Receive basic data - 03
DFHCPCRI CSECT (OCO) CPIC - Receive_Immediate - 03
DFHCPCRS CSECT (OCO) CPIC - Request_To_Send - 03
DFHCPCRV CSECT (OCO) CPIC - Receive - 03
DFHCPCRW CSECT (OCO) CPIC - Receive_and_Wait - 03
DFHCPCSA CSECT (OCO) CPIC - Set_Conversation_Type - 03
DFHCPCSB CSECT (OCO) CPIC - Set_Deallocate_Type - 03
DFHCPCSC CSECT (OCO) CPIC - Set_Error_Direction - 03
DFHCPCSD CSECT (OCO) CPIC - Set_Fill - 03
DFHCPCSE CSECT (OCO) CPIC - Set_Log_Data - 03
DFHCPCSF CSECT (OCO) CPIC - Set_Mode_Name - 03
DFHCPCSG CSECT (OCO) CPIC - Set_Partner_LU_Name - 03
DFHCPCSH CSECT (OCO) CPIC - Set_Prepare_To_Receive - 03
DFHCPCSI CSECT (OCO) CPIC - Set_Receive_Type - 03
DFHCPCSJ CSECT (OCO) CPIC - Set_Return_Control - 03
DFHCPCSK CSECT (OCO) CPIC - Set_Send_Type - 03
DFHCPCSL CSECT (OCO) CPIC - Set_Sync_Level - 03
DFHCPCSM CSECT (OCO) CPIC - Set_TP_Name - 03
DFHCPCTE CSECT (OCO) CPIC - Test_Request_To_Send_Received - 03
DFHCPDUF CSECT (OCO) SDUMP formatter for CP keyword - 03
DFHCPI CSECT (OCO) Common programming interface (CPI) program - 03
DFHCPINA DSECT CPIN parameter list OS -
DFHCPINM Macro CPIN request OS -
DFHCPINT CSECT (OCO) CPIN trace interpretation data - 03
DFHCPIN1 CSECT (OCO) CPI initialization management program - 03
DFHCPIN2 CSECT (OCO) CPI initialization subtask program - 03
DFHCPIR CSECT (OCO) SRRxxxx application request processor - 03
DFHCPLC CSECT (OCO) Link-edit stub for application programs using SAA

communications interface
- 03

DFHCPLRR CSECT (OCO) Link-edit stub for application programs using SAA
resource recovery interface

- 03

DFHCPOST Macro POST macro for extended ECBs OS -
DFHCPSDS DSECT CPI static storage OS -
DFHCPSPA DSECT CPSP parameter list OS -
DFHCPSPM Macro CPSP request OS -
DFHCPSPT CSECT (OCO) CPSP trace interpretation data - 03
DFHCPSRH CSECT (OCO) CPIC - syncpoint request handler - 03
DFHCPY CSECT 3270 hard copy support OS 03
DFHCRBDS DSECT CICS region control block OS -
DFHCRBU CSECT UOW back-to-front processor module - 03
DFHCRC CSECT Interregion abnormal exit module OS 03
DFHCRD DSECT Communications recovery services declares 11 -
DFHCRERI DSECT AP domain - Communications recovery management -

resync
OS -

CICS directory

Chapter 115. CICS directory 1359

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHCRERP DSECT Perform unshunt invoked by RM - 03
DFHCRERS DSECT Session failure during syncpoint - 03
DFHCRESI DSECT AP domain - communication recovery management OS -
DFHCRIU CSECT IRC RMC syncpoint event processor - 03
DFHCRL CSECT RMC logging back-to-front processor - 03
DFHCRLB CSECT RMC bind time logging for old MRO/LU6.2 - 03
DFHCRLBA CSECT CRLB parameter list OS -
DFHCRLBM Macro CRLB parameter list OS -
DFHCRLBT CSECT CRLB translate tables - 03
DFHCRNP CSECT Interregion connection manager OS 03
DFHCRQ CSECT ATI purge program OS 03
DFHCRR CSECT Interregion session recovery program OS 03
DFHCRRSY CSECT Communications resynchronization - 03
DFHCRS CSECT Remote scheduler program OS 03
DFHCRSP CSECT CICS IRC startup module OS 03
DFHCRT CSECT Transaction routing relay program for OS 03
DFHCRTRI CSECT Offline trace formatting - interpretation routine

parameter list
- 03

DFHCR1U CSECT IRC LU61 syncpoint event processor - 03
DFHCR2U CSECT IRC LU62 RMC syncpoint event processor - 03
DFHCSA CSECT Common system area OS 03
DFHCSAD Macro Common system area 11 -
DFHCSADS DSECT Common system area definition 11 -
DFHCSCDS Symbolic CICS SVC startup return codes OS -
DFHCSDUF CSECT (OCO) SDUMP formatter for CSA and CSA optional features

list
- 03

DFHCSVC CSECT CICS SVC startup OS 03
DFHCTRH CSECT CETR transaction help screens map set OS 03
DFHCTRM CSECT CETR transaction main screens map set OS 03
DFHCTRMU Sample - 19
DFHCUADD CSECT CSDUP - add command OS 03
DFHCUALG CSECT RDO off-line generic alter utility program - 03
DFHCUALT CSECT CSDUP - alter command OS 03
DFHCUAPP CSECT CSDUP - append command OS 03
DFHCUCAB CSECT CSDUP - command analyzer (DFHCUCA) OS 03
DFHCUCAC CSECT CSD manager - return and reason codes OS 03
DFHCUCB CSECT CSDUP - command builder OS 03
DFHCUCCB CSECT CSDUP - RDL command locator (DFHCUCC) OS 03
DFHCUCDB CSECT CSDUP - default values (DFHCUCD) OS 03
DFHCUCDC CSECT CSD manager - return and reason codes OS 03
DFHCUCOG CSECT CSDUP - generic copy command OS 03
DFHCUCOM CSECT - 03
DFHCUCOP CSECT CSDUP - copy command OS 03
DFHCUCP CSECT CSDUP - command processor OS 03
DFHCUCS CSECT CSDUP - CSD open and close OS 03
DFHCUCSE CSECT CSDUP - CSD error check routine OS 03
DFHCUCV CSECT CSDUP - command validation OS 03
DFHCUDEF CSECT CSDUP - define command OS 03
DFHCUERA CSECT CSDUP - delete/erase command OS 03
DFHCUFA CSECT Offline utilities - free automatic storage OS 03
DFHCUFAM Macro Offline DFHPROC - free automatic storage OS -
DFHCUGA CSECT Offline utilities - get automatic storage OS 03
DFHCUGAM Macro Offline DFHPROC - get automatic storage OS -
DFHCUINI CSECT CSDUP - initialize command OS 03

CICS directory

1360 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHCULIS CSECT CSDUP - extract and list commands OS 03
DFHCULOC CSECT CSDUP - lock/unlock routine OS 03
DFHCUMD2 CSECT - 03
DFHCUMIG CSECT CSDUP - migrate command OS 03
DFHCUMT CSECT CSDUP - TCT migration OS 03
DFHCUMTD CSECT RDO migration utility program for the DCT - 03
DFHCUMTS CSECT RDO migration utility program for the TST OS 03
DFHCUMWR CSECT CSDUP - CSD record write routine OS 03
DFHCUMXI CSECT SPI offline utility for handling cross reference of IBM

groups
OS 03

DFHCUPRC CSECT RDO off line utility OS 03
DFHCUPRO CSECT CSDUP - CSD upgrade routine OS 03
DFHCURDD CSECT CSD utilities - delete all existing CICS- supplied groups

from previous releases
OS 03

DFHCURDI CSECT CSD utilities - RDL for basic initialize OS 03
DFHCURDM CSECT CSD utilities - RDL for maintenance OS 03
DFHCURDS CSECT CSD utilities - RDL for sample definitions OS 03
DFHCURDX CSECT CSD utilities - RDL for compatibility gp OS 03
DFHCUREM CSECT CSDUP - remove command OS 03
DFHCURUG CSECT CSDUP - upgrade command OS 03
DFHCUSER CSECT CSDUP - service command OS 03
DFHCUSHL CSECT CSDUP - short lock/unlock routine OS 03
DFHCUS1 CSECT CSD utilities - sample service request OS 03
DFHCUUSR CSECT OS 03
DFHCUVER CSECT CSDUP - verify command OS 03
DFHCUXRT CSECT RDO offline utility for building cross reference table of

IBM groups
OS 03

DFHCVDAA Symbolic System programming command cvda names OS -
DFHCVTRI CSECT CCNV Gate trace interpretation - 03
DFHCZTRI CSECT CICS Foundation Classes trace interpretation - 03
DFHCZTRT CSECT Foundation classes trace interprete tables - 03
DFHCWTO CSECT Write to console operator program OS 03
DFHCXCU CSECT XRF catch-up transaction OS 03
DFHC3TRI CSECT (OCO) Trace interpreter for DFHCLS3 trace points - 03
DFHC5TRI CSECT - 03
DFHDATE Macro Date formatting OS -
DFHDBAT CSECT CICS-DBCTL adapter/transformer OS 03
DFHDBCON CSECT CICS-DBCTL connection program OS 03
DFHDBCR CSECT CICS-DBCTL XRF tracking program OS 03
DFHDBCT CSECT CICS-DBCTL control program OS 03
DFHDBCTX CSECT CICS-DBCTL control exit OS 03
DFHDBDE CSECT CICS-DBCTL operator transaction map set - 03
DFHDBDI CSECT CICS-DBCTL disable program OS 03
DFHDBDSC CSECT CICS-DBCTL disconnection program OS 03
DFHDBDUF CSECT (OCO) SDUMP formatter for DBCTL, local DL/I, and remote

DL/I
- 03

DFHDBIE CSECT CICS-DBCTL inquiry screens map set OS 03
DFHDBIK CSECT (OCO) CICS-DBCTL inquiry screens map set - 03
DFHDBIQ CSECT CICS-DBCTL inquiry program OS 03
DFHDBME CSECT CICS-DBCTL menu program OS 03
DFHDBMOX CSECT CICS-DBCTL monitoring exit OS 03
DFHDBMP CSECT EDF browse map set - 03
DFHDBMS CSECT EDF browse map set OS 03
DFHDBNE CSECT CICS-DBCTL menu screens map set OS 03

CICS directory

Chapter 115. CICS directory 1361

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHDBNK CSECT (OCO) CICS-DBCTL menu screens map set - 03
DFHDBP CSECT Dynamic backout program OS 03
DFHDBREX CSECT CICS-DBCTL resume exit OS 03
DFHDBSPX CSECT CICS-DBCTL suspend exit OS 03
DFHDBSSX CSECT CICS-DBCTL status exit OS 03
DFHDBSTX CSECT CICS-DBCTL statistics exit OS 03
DFHDBTI CSECT EXEC DLI LD table OS 03
DFHDBTOX CSECT CICS-DBCTL token exit OS 03
DFHDBUCA DSECT COMMAREA passed to DFHDBUEX 11 -
DFHDBUDS DSECT DBCTL unsolicited statistics 11 07
DFHDBUDS DSECT DBCTL unsolicited statistics C2 -
DFHDBUEX CSECT User-replaceable CICS-DBCTL exit 19 03
DFHDC Macro Dump service request 11 -
DFHDCPR CSECT Transaction dump macro-compatibility program OS 03
DFHDCRDS DSECT Transaction dump control record format OS -
DFHDCT Macro Destination control table 11 -
DFHDCTD Macro Destination control table 11 -
DFHDCTDS DSECT Destination control table 11 -
DFHDDBR CSECT (OCO) DD domain - browse Services - 03
DFHDDBRT CSECT (OCO) DDBR trace interpretation data - 03
DFHDDDI CSECT (OCO) DD domain - directory services - 03
DFHDDDIA CSECT (OCO) DDDI parameter list OS -
DFHDDDIM CSECT (OCO) DDDI parameter list OS -
DFHDDDIT CSECT (OCO) DDDI trace interpretation data - 03
DFHDDDM CSECT (OCO) DD domain - domain services - 03
DFHDDDU CSECT (OCO) DD domain - dump browse services - 03
DFHDDDUF CSECT (OCO) DD domain - dump formatting - 03
DFHDDLO CSECT (OCO) DD domain - locate service - 03
DFHDDLOA CSECT (OCO) DDLO parameter list OS -
DFHDDLOM CSECT (OCO) DDLO parameter list OS -
DFHDDLOT CSECT (OCO) DDLO trace interpretation data - 03
DFHDDTRI CSECT (OCO) DD domain - trace interpretation - 03
DFHDEFDS Other JCL to delete and recreate CICS system data sets

unique to each region
02 -

DFHDEIST CSECT DEIS trace interpretation data - 03
DFHDESVT DSECT DESV trace interpretation data - 03
DFHDFST CSECT OS 03
DFHDHDH CSECT Document Handler Domain - 03
DFHDHDHT CSECT - 03
DFHDHDM CSECT Document Handler Domain - 03
DFHDHDUF CSECT DH Document System Dump Formatter - 03
DFHDHEI CSECT DH Document Template EXEC resources - 03
DFHDHPB CSECT - 03
DFHDHPD CSECT - 03
DFHDHPM CSECT - 03
DFHDHPR CSECT DH Document Handler Read PDS routine - 03
DFHDHPS CSECT - 03
DFHDHPT CSECT - 03
DFHDHPU CSECT - 03
DFHDHPX CSECT - 03
DFHDHRM CSECT DHRM CDURUN and Gate module - 03
DFHDHRP CSECT Document Handler Recovery Program - 03
DFHDHRPT CSECT - 03
DFHDHSL CSECT Document Handler Domain - 03

CICS directory

1362 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHDHSLT CSECT - 03
DFHDHTM CSECT DH Document Handler Template Manager - 03
DFHDHTMT CSECT - 03
DFHDHTRI CSECT DH Domain Trace Formatter - 03
DFHDHTXD CSECT 11 -
DFHDHTXH CSECT - 08
DFHDHTXL CSECT - 17
DFHDHTXO CSECT - 07
DFHDHUE CSECT Document Domain (DH) user Exit Services - 03
DFHDI Macro Data interchange request 11 -
DFHDIBDS Macro Data interchange OS -
DFHDIP CSECT Data interchange program OS 03
DFHDIPDY CSECT Data interchange program (dummy) OS 03
DFHDITOP Macro Data interchange internal macro OS -
DFHDKMRA DSECT DKMR parameter list OS -
DFHDKMRM Macro DKMR request OS -
DFHDKMRT CSECT DKMR trace interpretation data - 03
DFHDKTRI CSECT (OCO) DD domain - trace interpreter - 03
DFHDLI CSECT DL/I call router OS 03
DFHDLIAI CSECT Application interface for DL/I OS 03
DFHDLIDP CSECT DBCTL call processor OS 03
DFHDLIRP CSECT DL/I remote call processor OS 03
DFHDLLO@ CSECT - 03
DFHDLP Macro CICS-DL/I interface 11 -
DFHDLPSB Macro Generate DL/I PSB directory list 11 -
DFHDLXDF CSECT DU domain - transaction dump formatter for DL/I

related areas
OS 03

DFHDMDM CSECT (OCO) DM domain - domain initialization/quiesce - 03
DFHDMDMA DSECT DMDM parameter list OS -
DFHDMDMM Macro DMDM request OS -
DFHDMDMT CSECT (OCO) DMDM trace interpretation data - 03
DFHDMDS CSECT (OCO) DM domain - task reply handler - 03
DFHDMDUF CSECT (OCO) SDUMP formatter for DM domain - 03
DFHDMEN CSECT (OCO) Domain manager ENF support - 03
DFHDMENF CSECT (OCO) Domain manager event notification routine - 03
DFHDMENS CSECT (OCO) CICS ENF SRBEXIT - 03
DFHDMENT CSECT (OCO) DMEN translation tables - 03
DFHDMIQ CSECT (OCO) DM domain - browse and inquiry - 03
DFHDMIQA DSECT DMIQ parameter list OS -
DFHDMIQM Macro DMIQ request OS -
DFHDMIQT CSECT (OCO) DMIQ trace interpretation data - 03
DFHDMPB CSECT CSDUP - definition file (CSD) manager, batch

environment router (DFHDMP batch)
OS 03

DFHDMPBA CSECT CSDUP - batch environment adapter OS 03
DFHDMPC CSECT CSD manager - CICS environment router (DFHDMP

CICS)
OS 03

DFHDMPCA CSECT CSD manager - CICS environment adapter OS 03
DFHDMPH Symbolic DM domain - phase definitions OS -
DFHDMRM CSECT (OCO) CSD manager - CSD close routine - 03
DFHDMSVC CSECT (OCO) DM domain - SVC processing routine - 03
DFHDMTRI CSECT (OCO) DM domain - trace interpreter - 03
DFHDMWQ CSECT (OCO) DM domain - wait queue subroutine - 03
DFHDMWQA DSECT DMWQ parameter list OS -
DFHDMWQM Macro DMWQ request OS -

CICS directory

Chapter 115. CICS directory 1363

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHDMWQT CSECT (OCO) DMWQ trace interpretation data - 03
DFHDM01B CSECT CSDUP - connect (DFHDM01 batch) OS 03
DFHDM01C CSECT CSD manager - connect (DFHDM01 CICS) OS 03
DFHDM02B CSECT CSDUP - disconnect (DFHDM02 batch) OS 03
DFHDM02C CSECT CSD manager - disconnect (DFHDM02 CICS) OS 03
DFHDM03B CSECT CSDUP - write (DFHDM03 batch) OS 03
DFHDM03C CSECT CSD manager - write (DFHDM03 CICS) OS 03
DFHDM04B CSECT CSDUP - read (DFHDM04 batch) OS 03
DFHDM04C CSECT CSD manager - read (DFHDM04 CICS) OS 03
DFHDM05B CSECT CSDUP - delete (DFHDM05 batch) OS 03
DFHDM05C CSECT CSD manager - delete (DFHDM05 CICS) OS 03
DFHDM06B CSECT CSDUP - lock/unlock (DFHDM06 batch) OS 03
DFHDM06C CSECT CSD manager - lock/unlock (DFHDM06 CICS) OS 03
DFHDM08B CSECT CSDUP - setbrowse (DFHDM08 batch) OS 03
DFHDM08C CSECT CSD manager - setbrowse (DFHDM08 CICS) OS 03
DFHDM09B CSECT CSDUP - getnext (DFHDM09 batch) OS 03
DFHDM09C CSECT CSD manager - getnext (DFHDM09 CICS) OS 03
DFHDM10B CSECT CSDUP - endbrowse (DFHDM10 batch) OS 03
DFHDM10C CSECT CSD manager - endbrowse (DFHDM10 CICS) OS 03
DFHDM11B CSECT CSDUP - createset (DFHDM11 batch) OS 03
DFHDM11C CSECT CSD manager - createset (DFHDM11 CICS) OS 03
DFHDM12B CSECT CSDUP - eraseset (DFHDM12 batch only) OS 03
DFHDM13B CSECT CSDUP - queryset (DFHDM13 batch) OS 03
DFHDM13C CSECT CSD manager - queryset (DFHDM13 CICS) OS 03
DFHDM15B CSECT CSDUP - read/write control records (DFHDM15 batch) OS 03
DFHDM15C CSECT CSD manager - read/write control records (DFHDM15

CICS)
OS 03

DFHDM16B CSECT CSDUP - buildkey (DFHDM16 batch) OS 03
DFHDM16C CSECT CSD manager - buildkey (DFHDM16 CICS) OS 03
DFHDM17B CSECT CSDUP - relsekwa (DFHDM17 batch) OS 03
DFHDM17C CSECT CSD manager - relsekwa (DFHDM17 CICS) OS 03
DFHDM18B CSECT CSDUP - tokenize utilities (DFHDM18 batch) OS 03
DFHDM18C CSECT CSD manager - tokenize utilities (DFHDM18 CICS) OS 03
DFHDM19B CSECT CSDUP - free generic tokens chain (DFHDM19 batch) OS 03
DFHDM19C CSECT CSD manager - free generic tokens chain (DFHDM19

CICS)
OS 03

DFHDM21B CSECT CSDUP - generic qualification (DFHDM21 batch) OS 03
DFHDM21C CSECT CSD manager - generic qualification (DFHDM21 CICS) OS 03
DFHDM22B CSECT CSDUP - resequence utility (DFHDM22 batch) OS 03
DFHDM22C CSECT CSD manager - resequence utility (DFHDM22 CICS) OS 03
DFHDM23B CSECT CSDUP - verify key work area (DFHDM23 batch) OS 03
DFHDM23C CSECT CSD manager - verify key work area (DFHDM23

CICS)
OS 03

DFHDNSRT Macro Internal index sorting macro OS -
DFHDRX Macro DL/I resource table OS -
DFHDSAT CSECT (OCO) DS domain - attach, change mode, change/set priority,

cancel task
- 03

DFHDSATA DSECT DSAT parameter list OS -
DFHDSATM Macro DSAT request OS -
DFHDSATT CSECT (OCO) DSAT trace interpretation data - 03
DFHDSATX Macro DSAT request (XPI) 11 -
DFHDSATY DSECT DSAT parameter list (XPI) 11 -
DFHDSAUT CSECT (OCO) DS domain - authorized services - 03
DFHDSB CSECT BMS data stream build OS -

CICS directory

1364 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHDSBA$ CSECT BMS data stream build (standard) OS 03
DFHDSBR CSECT (OCO) DS domain - browse, inquire task - 03
DFHDSBRA DSECT DSBR parameter list OS -
DFHDSBRM Macro DSBR request OS -
DFHDSBRT CSECT (OCO) DSBR trace interpretation data - 03
DFHDSB1$ CSECT BMS data stream build (full) OS 03
DFHDSCPX CSECT (OCO) POST routine for DS WAIT_MVS requests - 03
DFHDSCSA CSECT (OCO) DS domain - update CSA on task dispatch - 03
DFHDSDM CSECT (OCO) DS domain - initialization/termination - 03
DFHDSDSA DSECT DSDS parameter list OS -
DFHDSDSM Macro DSDS request OS -
DFHDSDST CSECT (OCO) DSDS trace interpretation data - 03
DFHDSDS2 CSECT (OCO) DS domain - broadcast new max task limit - 03
DFHDSDS3 CSECT (OCO) DS domain - main dispatch loop - 03
DFHDSDS4 CSECT (OCO) DS domain - task purge routine - 03
DFHDSDUF CSECT (OCO) SDUMP formatter for DS domain - 03
DFHDSGDS DSECT DS domain - global statistics 11 07
DFHDSGDS DSECT DS domain - global statistics C2 -
DFHDSIT CSECT (OCO) DS domain - set/inquire DS parameters - 03
DFHDSITA DSECT DSIT parameter list OS -
DFHDSITM Macro DSIT request OS -
DFHDSITT CSECT (OCO) DSIT trace interpretation data - 03
DFHDSKE CSECT (OCO) DS domain - kernel interfaces - 03
DFHDSND Macro File control data set name 11 -
DFHDSPEX CSECT (OCO) DS domain - MVS POST exit stub - 03
DFHDSRP Sample Distributed Dynamic Routing Program (COBOL) - 07
DFHDSRP Sample Distributed Dynamic Routing Program (C) C2 08
DFHDSRP Sample Distributed Dynamic Routing Program (Asm) 19 03
DFHDSSM CSECT (OCO) DS domain - storage notify handler - 03
DFHDSSR CSECT (OCO) DS domain - suspend/resume/wait - 03
DFHDSSRA DSECT DSSR parameter list OS -
DFHDSSRM Macro DSSR request OS -
DFHDSSRT CSECT (OCO) DSSR trace interpretation data - 03
DFHDSSRV Macro DS domain - inline dispatcher services OS -
DFHDSSRX Macro DSSR request (XPI) 11 -
DFHDSSRY DSECT DSSR parameter list (XPI) 11 -
DFHDSST CSECT (OCO) DS domain - statistics collection - 03
DFHDSSTX CSECT (OCO) DS domain - STIMERM exit - 03
DFHDSTA Macro DBCTL statistics area (DFSDSTA) OS -
DFHDSTCB CSECT (OCO) DS domain - KEDS TCB_REPLY handler - 03
DFHDSTI CSECT DS domain Timer Domain Gate Service Module - 03
DFHDSTIQ Macro DS domain - obtain domain index of task issuing trace

put
OS -

DFHDSTRI CSECT (OCO) DS domain - Trace interpreter - 03
DFHDSTSD DSECT DS domain - Task Area OS -
DFHDSUE CSECT (OCO) DS domain - enable/disable user exits - 03
DFHDTCF CSECT (OCO) Shared data tables connect file PC function - 03
DFHDTCP CSECT (OCO) Shared data tables cell pool management - 03
DFHDTCV CSECT (OCO) Shared data tables connection validation - 03
DFHDTDA CSECT (OCO) Shared data tables data space and ALET code - 03
DFHDTDM CSECT (OCO) Shared data tables data management - 03
DFHDTINS CSECT (OCO) Shared data tables initialization - 03
DFHDTIX CSECT (OCO) Shared data tables index management - 03
DFHDTLA CSECT (OCO) Shared data table load attach - 03

CICS directory

Chapter 115. CICS directory 1365

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHDTLI CSECT (OCO) Shared data tables local initialization - 03
DFHDTLX CSECT (OCO) Shared data tables load transaction - 03
DFHDTPDS DSECT Data tables - services interface block OS -
DFHDTPC CSECT (OCO) Shared data tables program call stub - 03
DFHDTRC CSECT (OCO) Shared data tables remote file connection and

disconnection
- 03

DFHDTRE CSECT (OCO) Shared data tables remote file connection - 03
DFHDTRI CSECT (OCO) Shared data tables remote environment initialization - 03
DFHDTRM CSECT (OCO) Shared data tables record management - 03
DFHDTRR CSECT (OCO) Shared data tables remote retrieval - 03
DFHDTSR CSECT (OCO) Shared data tables shared retrieval - 03
DFHDTSS CSECT (OCO) Shared data table server status - 03
DFHDTST CSECT (OCO) Shared data table state services - 03
DFHDTSVS CSECT (OCO) Shared data tables SVC services - 03
DFHDTUP CSECT (OCO) Shared data tables update and syncpoint services - 03
DFHDTXS CSECT (OCO) Shared data tables connection security - 03
DFHDUDDA DSECT DUDD parameter list OS -
DFHDUDDM Macro DUDD request OS -
DFHDUDDT CSECT DUDD trace interpretation data OS 03
DFHDUDM CSECT DU domain - initialization/termination OS 03
DFHDUDT CSECT DU domain - dump table services OS 03
DFHDUDTA DSECT DUDT parameter list OS -
DFHDUDTM Macro DUDT request OS -
DFHDUDTT CSECT DUDT trace interpretation data OS 03
DFHDUDU CSECT DU domain - take system/transaction dump OS 03
DFHDUDUA DSECT DUDU parameter list OS -
DFHDUDUF CSECT (OCO) SDUMP formatter for DU domain - 03
DFHDUDUM Macro DUDU request OS -
DFHDUDUT CSECT DUDU trace interpretation data OS 03
DFHDUDUX Macro DUDU request (XPI) 11 -
DFHDUDUY DSECT DUDU parameter list (XPI) 11 -
DFHDUF CSECT (OCO) SDUMP formatting router - 03
DFHDUFFT CSECT (OCO) PRDUMP formatter - service functions OS 03
DFHDUFT CSECT (OCO) Dump domain services OS 03
DFHDUFTA DSECT DUFT parameter list OS -
DFHDUFTD DSECT Dump formatting routines parameter declares OS -
DFHDUFTM Macro DUFT macro OS -
DFHDUFTT DSECT (OCO) DUFT translate tables OS 03
DFHDUFTX Macro DUFT macro 11 -
DFHDUFTY DSECT DUFT call structured parameter list 11 -
DFHDUFUT CSECT (OCO) SDUMP formatting - service functions - 03
DFHDUIO CSECT DU domain - open/close/switch/write OS 03
DFHDUIOA DSECT DUIO parameter list OS -
DFHDUIOM Macro DUIO request OS -
DFHDUIOT CSECT DUIO trace interpretation data OS 03
DFHDUMPX CSECT DU domain - SDUMPX IEASDUMP.QUERY exit OS 03
DFHDUPH CSECT Dump utility program - dump index summary OS 03
DFHDUPM CSECT Dump utility program - module index OS 03
DFHDUPMC DSECT Dump utility program - parameter block for module

index routine
OS -

DFHDUPP CSECT Dump utility program - I/O routines OS 03
DFHDUPPC DSECT Dump utility program - parameter block for print routine OS -
DFHDUPR CSECT Dump utility program - main component OS 03
DFHDUPS CSECT Dump utility program - dump selection OS 03

CICS directory

1366 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHDUPSC DSECT Dump utility program - parameter block for dump

selection routine
OS -

DFHDUSR CSECT DU domain - dump services OS 03
DFHDUSRA DSECT DUSR parameter list OS -
DFHDUSRM Macro DUSR request OS -
DFHDUSRT CSECT DUSR trace interpretation data OS 03
DFHDUSU CSECT DU domain - subroutines OS 03
DFHDUSUA DSECT DUSU parameter list OS -
DFHDUSUM Macro DUSU request OS -
DFHDUSUT CSECT DUSU trace interpretation data OS 03
DFHDUSVC CSECT DU domain - SVC processing routine OS 03
DFHDUTM CSECT DU domain - dump table manager OS 03
DFHDUTRI CSECT Trace interpreter for DU domain OS 03
DFHDUXD CSECT DU domain - transaction dump control OS 03
DFHDUXFA DSECT DUXF parameter list OS -
DFHDUXFM Macro DUXF request OS -
DFHDUXFT CSECT DUXF trace interpretation data OS 03
DFHDUXW CSECT DU domain - transaction dump buffer control OS 03
DFHDUXWA DSECT DUXW parameter list OS -
DFHDUXWM Macro DUXW request OS -
DFHDUXWT CSECT DUXW trace interpretation data OS 03
DFHDWE Macro Deferred work element OS -
DFHDWEDS DSECT Deferred work element 11 -
DFHDXACH CSECT CICS-DBCTL XRF subtask router OS 03
DFHDXAX CSECT CICS-DBCTL XRF connection handling OS 03
DFHDXCU CSECT CICS-DBCTL XRF catch-up transaction OS 03
DFHDXSTM CSECT CICS-DBCTL XRF subtask manager OS 03
DFHDXUEP DSECT CICS-DBCTL XRF plist to global user exits 11 -
DFHDYP Sample Dynamic routing program C2 07
DFHDYP Sample Dynamic routing program D2 -
DFHDYP CSECT User-replaceable dynamic routing program 19 03
DFHDYPDS DSECT COMMAREA passed to DFHDYP 11 -
DFHDYPDS DSECT COMMAREA passed to DFHDYP C2 07
DFHDYPDS DSECT COMMAREA passed to DFHDYP D2 -
DFHD2CC CSECT DB2 module - 03
DFHD2CCT CSECT DB2 module - 03
DFHD2CMP CSECT DB2 module - 03
DFHD2CM0 CSECT DB2 module - 03
DFHD2CM1 CSECT DB2 module - 03
DFHD2CM2 CSECT DB2 module - 03
DFHD2CM3 CSECT DB2 module - 03
DFHD2COT CSECT DB2 module - 03
DFHD2DUF CSECT DB2 module - 03
DFHD2D2T CSECT DB2 module - 03
DFHD2EDF CSECT DB2 module - 03
DFHD2EXS CSECT DB2 module - 03
DFHD2EX1 CSECT DB2 module - 03
DFHD2EX2 CSECT DB2 module - 03
DFHD2EX3 CSECT DB2 module - 03
DFHD2GDS CSECT DB2 module 11 07
DFHD2INI CSECT DB2 module - 03
DFHD2IN1 CSECT DB2 module - 03
DFHD2IN2 CSECT DB2 module - 03
DFHD2LI CSECT CICS-DB2 stub (Language interface module) - 03

CICS directory

Chapter 115. CICS directory 1367

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHD2MSB CSECT DB2 module - 03
DFHD2RDS CSECT DB2 module 11 07
DFHD2RP CSECT DB2 module - 03
DFHD2SSD CSECT DB2 module OS -
DFHD2ST CSECT DB2 module - 03
DFHD2STP CSECT DB2 module - 03
DFHD2STR CSECT DB2 module - 03
DFHD2TM CSECT DB2 module - 03
DFHD2TMT CSECT DB2 module - 03
DFHD2TRI CSECT DB2 module - 03
DFHEAI CSECT EXEC interface link-edit stub for EXEC calls in

assembler language programs
OS 03

DFHEAI0 CSECT EXEC interface link-edit stub for prolog and epilog calls
in assembler language programs

OS 03

DFHEAMAA CSECT Assembler-language translator - advanced OS 03
DFHEAMEE CSECT Assembler-language translator - error editor OS 03
DFHEAMPA CSECT Assembler-language translator - primary code

generation functions
OS 03

DFHEAMSA CSECT Assembler-language translator - source scanner OS 03
DFHEAM02 CSECT Assembler-language translator - initialization OS 03
DFHEAM07 CSECT Assembler-language translator - options card OS 03
DFHEAM08 CSECT Assembler-language translator - check options OS 03
DFHEAM11 CSECT Assembler-language translator - atomization OS 03
DFHEBBND Sample Part of the CICS EJB sample - 19
DFHEBCBJ Sample Part of the CICS EJB sample - 19
DFHEBCB1 Sample COBOL source for V2ACTDB program - 19
DFHEBCB2 Sample COBOL source for V2CSTDB program - 19
DFHEBCNV Sample EJB Sample COMMAREA Conversion Table - 19
DFHEBDAT Sample Part of the CICS EJB sample - 19
DFHEBDEF Sample CICS EJB Sample Resource Definitions - 19
DFHEBF CSECT EXEC interface for BIF DEEDIT command OS 03
DFHEBGRT Sample Part of the CICS EJB sample - 19
DFHEBRCT CSECT CBRC LD table OS 03
DFHEBREB Sample Part of the CICS EJB sample - 19
DFHEBTAB Sample Part of the CICS EJB sample - 19
DFHEBTAL Other Cataloged procedure to translate, assemble and

link-edit assembler-language application programs that
use EXEC DLI and will run in a batch or CICS shared
database region

- 18

DFHEBTPL Other Cataloged procedure to translate, compile and link-edit
PL/I application programs that use EXEC DLI and will
run in a batch or CICS shared database region

- 18

DFHEBTVL Other Cataloged procedure to translate, compile and link-edit
VS COBOL II application programs that use EXEC DLI
and will run in a batch or CICS shared database region

- 18

DFHEBU CSECT EXEC FMH construction OS 03
DFHECADS DSECT Event control area for interval control elements OS -
DFHECALL Macro EXEC interface call macro for assembler-language 11 -
DFHECB Macro CICS posting and testing of operating system ECBs OS -
DFHECBAM CSECT OS 03
DFHECI CSECT EXEC interface stub for EXEC calls (COBOL) OS 03
DFHECMAC CSECT COBOL translator - advanced code generation

functions
OS 03

DFHECMEE CSECT COBOL translator - error editor OS 03

CICS directory

1368 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHECMPC CSECT COBOL translator - primary code generation functions OS 03
DFHECMSC CSECT COBOL translator - input scanner OS 03
DFHECM02 CSECT COBOL translator - initialization OS 03
DFHECM07 CSECT COBOL translator - options card OS 03
DFHECM08 CSECT COBOL translator - check options OS 03
DFHECM10 CSECT COBOL translator - analyze program OS 03
DFHECM11 CSECT COBOL translator - atomization OS 03
DFHECM14 CSECT COBOL translator - read input OS 03
DFHECM17 CSECT COBOL translator - generate output OS 03
DFHEDC CSECT EXEC interface for dump control OS 03
DFHEDCP CSECT (OCO) EXEC interface for dump system/transaction - 03
DFHEDFBR CSECT Temporary-storage browse transaction, CEBR OS 03
DFHEDFCB CSECT Build one page OS 03
DFHEDFCC CSECT Parameter copy program OS 03
DFHEDFCE CSECT Extract from one page OS 03
DFHEDFCR CSECT LD table utilities OS 03
DFHEDFCS CSECT CICS special cases OS 03
DFHEDFCX CSECT Display unformatted arguments OS 03
DFHEDFD CSECT EDF display program OS 03
DFHEDFDL CSECT DL/I special cases OS 03
DFHEDFDS DSECT EDF communication area OS -
DFHEDFE CSECT EDF attach error handler OS 03
DFHEDFM CSECT EDF map set OS 03
DFHEDFP CSECT EDF control program OS 03
DFHEDFR CSECT EDF response table OS 03
DFHEDFS CSECT EDF display handling routines OS 03
DFHEDFU CSECT Data utilities OS 03
DFHEDFW CSECT Display working storage OS 03
DFHEDFX CSECT EDF task switch program OS 03
DFHEDI CSECT EXEC interface for data interchange OS 03
DFHEDMAD CSECT C/370 translator - advanced code generation functions OS 03
DFHEDMEE CSECT C/370 translator - error editor OS 03
DFHEDMPD CSECT C/370 translator - primary code generation functions OS 03
DFHEDMSD CSECT C/370 translator - input scanner OS 03
DFHEDM02 CSECT C/370 translator - initialization OS 03
DFHEDM07 CSECT C/370 translator - options card OS 03
DFHEDM08 CSECT C/370 translator - check options OS 03
DFHEDM10 CSECT C/370 translator - analyze program OS 03
DFHEDM11 CSECT C/370 translator - atomization OS 03
DFHEDM14 CSECT C/370 translator - read input OS 03
DFHEDM17 CSECT C/370 translator - generate output OS 03
DFHEDP CSECT EXEC DLI command stub OS 03
DFHEEI CSECT EXEC interface for HANDLE, ADDRESS, ASSIGN OS 03
DFHEEX CSECT EXEC FMH extraction OS 03
DFHEGL CSECT EXEC interface for unmapped LU6.2 commands OS 03
DFHEIACQ CSECT (OCO) EXEC ACQUIRE TERMINAL - 03
DFHEIAR Macro EIP arguments macro OS -
DFHEIBAM CSECT - 03
DFHEIBLC DSECT EXEC interface block C2 07
DFHEIBLK DSECT EXEC interface block 11 -
DFHEIBLK DSECT EXEC interface block C2 07
DFHEICDS DSECT EXEC interface COMMAREA 11 -
DFHEICRE DSECT EXEC CICS CREATE command - 03
DFHEIDDS Macro EXEC interface argument 0 descriptor 11 -

CICS directory

Chapter 115. CICS directory 1369

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHEIDH CSECT Document Language Table and EI Layer - 03
DFHEIDI CSECT Address set for COBOL OS -
DFHEIDTI CSECT EXEC ask-time, format-time program OS 03
DFHEIEIA DSECT EIEI parameter list OS -
DFHEIEIM Macro EIEI request OS -
DFHEIEIT CSECT EIEI trace interpretation data OS 03
DFHEIEM CSECT DFHEIEM Design Exec EM request handler - 03
DFHEIEND Macro EXEC interface storage end macro 11 -
DFHEIENT Macro EXEC interface prolog macro 11 -
DFHEIFC Macro File control exec interface module - 03
DFHEIFSP Macro Free space OS -
DFHEIGBL Macro EXEC interface globals definition macro 11 -
DFHEIGDS CSECT Translator table (GDS commands) OS 03
DFHEIGSP Macro Get space OS -
DFHEIIC CSECT (OCO) EXEC interface IC module - 03
DFHEIIF Macro EXEC interface IF macro OS -
DFHEILIA Other Used by DFHEITAL cataloged procedure 11 -
DFHEILIC Other Used by DFHEITCL cataloged procedure C2 -
DFHEILID Other Used by DFHEITDL cataloged procedure D2 -
DFHEILIP Other Used by DFHEITPL cataloged procedure P2 -
DFHEIMDS Macro Master terminal return codes OS -
DFHEIMOP CSECT Translator options OS 03
DFHEIMSG Macro EXEC interface message macro 11 -
DFHEIMV Macro EXEC interface move macro OS -
DFHEIN00 CSECT Interpreter - CECI/CECS program OS 03
DFHEIN01 CSECT Interpreter - control module OS 03
DFHEIN02 CSECT Interpreter - initialization OS 03
DFHEIN03 CSECT CBRC/CECI/CEDA/CEMT - storage manager OS 03
DFHEIN11 CSECT CBRC/CECI - atomization OS 03
DFHEIN12 CSECT Interpreter - argument analysis OS 03
DFHEIN13 CSECT CECI/CEDA/CEMT - diagnosis OS 03
DFHEIN16 CSECT CECI/CEDA/CEMT - binary conversion OS 03
DFHEIN19 CSECT Interpreter - command analysis OS 03
DFHEIN20 CSECT Interpreter - table analysis OS 03
DFHEIN21 CSECT Interpreter - keyword analysis OS 03
DFHEIN22 CSECT Interpreter - special case code OS 03
DFHEIN23 CSECT Interpreter - plist generation OS 03
DFHEIN26 CSECT CECI/CEMT - message editor OS 03
DFHEIN27 CSECT Interpreter - spelling correction OS 03
DFHEIN28 CSECT Interpreter - basic messages OS 03
DFHEIN50 CSECT Interpreter - special displays OS 03
DFHEIN51 CSECT Interpreter - display extraction OS 03
DFHEIN52 CSECT Interpreter - syntax display OS 03
DFHEIN53 CSECT Interpreter - utilities OS 03
DFHEIN54 CSECT Interpreter - further utilities OS 03
DFHEIP CSECT EXEC (command-level) interface program - 03
DFHEIPA CSECT EXEC interface prolog and epilog code for

assembler-language programs
OS 03

DFHEIPAD Macro EXEC interface intermodule addressing OS -
DFHEIPDS DSECT EXEC interface control blocks 11 -
DFHEIPEL Source EXEC interface layer epilog code OS -
DFHEIPEQ Symbolic EXEC interface EQU statements OS -
DFHEIPER Source EXEC interface error handling data OS -
DFHEIPLR Macro EXEC interface epilog code OS -

CICS directory

1370 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHEIPLS Macro EXEC interface prolog code OS -
DFHEIPPL Source EXEC interface layer prolog code OS -
DFHEIPRT CSECT (OCO) EXEC interface for perform resettime - 03
DFHEIPSE CSECT (OCO) EXEC interface for perform security - 03
DFHEIPSH CSECT (OCO) EXEC interface for perform shutdown - 03
DFHEIQBA CSECT (OCO) EXEC inquire reqid - 03
DFHEIQCF CSECT (OCO) EXEC inquire cfdtpool - 03
DFHEIQDH CSECT (OCO) EXEC inquire doctemplate - 03
DFHEIQDN CSECT (OCO) EXEC inquire/set for external data sets - 03
DFHEIQDS CSECT (OCO) EXEC inquire/set/discard for files - 03
DFHEIQDU CSECT (OCO) EXEC inquire/set for dump data sets and dump codes - 03
DFHEIQD2 CSECT (OCO) - 03
DFHEIQEJ CSECT (OCO) - 03
DFHEIQIR CSECT (OCO) EXEC inquire/set for IRC - 03
DFHEIQMS CSECT (OCO) EXEC inquire/set for monitor and stats - 03
DFHEIQMT CSECT EXEC inquire/set for CEMT-only commands - 03
DFHEIQOP CSECT EXEC inquire requestmodel - 03
DFHEIQPF CSECT (OCO) EXEC inquire/discard for profiles - 03
DFHEIQPN CSECT (OCO) EXEC inquire/discard for partners - 03
DFHEIQRQ CSECT (OCO) EXEC inquire for queued requests (REQIDs) - 03
DFHEIQRR CSECT (OCO) SPI Inquire RRMS Processor - 03
DFHEIQSA CSECT (OCO) EXEC inquire/set for system attributes - 03
DFHEIQSC CSECT (OCO) EXEC inquire/set for connections - 03
DFHEIQSJ CSECT (OCO) EXEC inquire/set for journals or discard for

journalnames
- 03

DFHEIQSK CSECT (OCO) EXEC inquire/set for tasks - 03
DFHEIQSL CSECT (OCO) EXEC inquire/for journalmodel or streamname or

discard for journalmodel
- 03

DFHEIQSM CSECT (OCO) EXEC inquire/set for modenames - 03
DFHEIQSO CSECT (OCO) EXEC inquire tcpip - 03
DFHEIQSP CSECT (OCO) EXEC inquire/set/discard for programs - 03
DFHEIQSQ CSECT (OCO) EXEC inquire/set for TD queues - 03
DFHEIQST CSECT (OCO) EXEC inquire/set for terminals - 03
DFHEIQSV CSECT (OCO) EXEC inquire/set for volumes - 03
DFHEIQSX CSECT (OCO) EXEC inquire/set/discard for transactions - 03
DFHEIQSY CSECT (OCO) - 03
DFHEIQSZ CSECT (OCO) EXEC CICS SPI commands for FEPI - 03
DFHEIQTM CSECT (OCO) EXEC inquire/discard for autinstmodel - 03
DFHEIQTR CSECT (OCO) EXEC inquire/set for trace - 03
DFHEIQTS CSECT (OCO) EXEC inquire for TS queues - 03
DFHEIQUE CSECT (OCO) EXEC inquire for exit programs - 03
DFHEIQVT CSECT EXEC inquire/set for VTAM and autoinstall - 03
DFHEIRET Macro EXEC interface epilog macro 11 -
DFHEIS Macro EXEC interface storage 11 -
DFHEISDS DSECT EXEC interface storage definition 11 -
DFHEISEI DSECT EXEC interface structure entry I/F OS -
DFHEISO CSECT (OCO) Sockets Domain API - 03
DFHEISP CSECT (OCO) EXEC interface syncpoint processor - 03
DFHEISR CSECT (OCO) EXEC interface service routines - 03
DFHEISRA DSECT EISR parameter list OS -
DFHEISRM Macro EISR request OS -
DFHEISRT CSECT (OCO) EISR trace interpretation data - 03
DFHEISTG Macro EXEC interface storage start macro 11 -
DFHEITAB CSECT Translator table (basic commands) OS 03

CICS directory

Chapter 115. CICS directory 1371

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHEITAL Other Cataloged procedure to translate, assemble, and

link-edit assembler-language application programs
18 -

DFHEITBS CSECT Translator table (special commands) OS 03
DFHEITCU CSECT RDO offline LD table OS 03
DFHEITDL Other Cataloged procedure to translate, compile, and link-edit

C/370 application programs
18 -

DFHEITHG CSECT EXEC interface hired gun lookup table OS 03
DFHEITMT CSECT Command language table for CEMT OS 03
DFHEITOT CSECT Command language table for CEOT OS 03
DFHEITPL Other Cataloged procedure to translate, compile, and link-edit

PL/I application programs
18 -

DFHEITS CSECT Temporary storage exec layer - 03
DFHEITSP CSECT Language definition table OS 03
DFHEITRD DSECT Trace point IDs for DFHETC OS -
DFHEITST CSECT CEST language definition table OS 03
DFHEITSZ CSECT (OCO) EXEC CICS language definition table - 03
DFHEITTR CSECT EXEC interface lookup table OS 03
DFHEITT2 CSECT EXEC interface level 2 lookup table OS 03
DFHEITUT Source Definition of EIP trace entries OS -
DFHEITVL Other Cataloged procedure to translate, compile, and link-edit

VS COBOL II application programs
18 -

DFHEIUOW DSECT EXEC inquire/set uow, or inquire uoqenq uowlink and
uowdsnfail

- 03

DFHEIUS DSECT EXEC interface storage - USER part OS -
DFHEIVAR DSECT COBOL working storage C2 -
DFHEIWB CSECT CWI Language Table and EXEC Layer - 03
DFHEJBB CSECT EJ Bean Browse - 03
DFHEJBBT CSECT - 03
DFHEJBG CSECT EJ Bean General - 03
DFHEJBGT CSECT - 03
DFHEJC CSECT EXEC interface for journaling OS 03
DFHEJCB CSECT EJ CorbaServer Browse - 03
DFHEJCBT CSECT - 03
DFHEJCG CSECT EJ CorbaServer General - 03
DFHEJCGT CSECT - 03
DFHEJCPT CSECT - 03
DFHEJDB CSECT EJ DJar Browse - 03
DFHEJDBT CSECT - 03
DFHEJDG CSECT EJ DJar General - 03
DFHEJDGT CSECT - 03
DFHEJDI CSECT DFHEJDI Design EJ Domain EJDI gate functions - 03
DFHEJDIT CSECT - 03
DFHEJDM CSECT EJ Domain Functions - 03
DFHEJDND Sample Distinguished name URM - 19
DFHEJDNH Sample - 19
DFHEJDNL Sample Distinguished name URM - 19
DFHEJDNO Sample Distinguished name URM - 19
DFHEJDNX Sample Distinguished name URM - 03
DFHEJDN1 Sample Distinguished name URM - 19
DFHEJDN2 Sample CICS-supplied C-language version of DFHEJDNX - 19
DFHEJDU CSECT EJ domain EJDU gate functions - 03
DFHEJDUF CSECT Dump interpretation for EJ Domain - 03
DFHEJDUT CSECT - 03
DFHEJECT Macro Page eject/space option 11 -

CICS directory

1372 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHEJGE CSECT EJ General Operations - 03
DFHEJGET CSECT - 03
DFHEJIO CSECT EJ Domain Functions - 03
DFHEJIOT CSECT - 03
DFHEJIT CSECT EJ Transaction Functions - 03
DFHEJJO CSECT EJ Domain Functions - 03
DFHEJJOT CSECT - 03
DFHEJMI CSECT EJMI CDURUN and Gate Module - 03
DFHEJMID CSECT Message Numbers for the EJ Domain 11 -
DFHEJMIT CSECT - 03
DFHEJOB CSECT Object Store Browse - 03
DFHEJOBT CSECT - 03
DFHEJOS CSECT Object Store Program - 03
DFHEJOST CSECT - 03
DFHEJRDS CSECT 11 07
DFHEJST CSECT EJ Domain - Statistics (STST) gate - 03
DFHEJTBB CSECT - 03
DFHEJTBG CSECT - 03
DFHEJTB1 CSECT - 03
DFHEJTCB CSECT - 03
DFHEJTCG CSECT - 03
DFHEJTC1 CSECT - 03
DFHEJTDB CSECT - 03
DFHEJTDG CSECT - 03
DFHEJTDM CSECT - 03
DFHEJTD1 CSECT - 03
DFHEJTGE CSECT - 03
DFHEJTID Macro Trace Points for the EJ Domain 11 -
DFHEJTIO CSECT - 03
DFHEJTIT CSECT - 03
DFHEJTJO CSECT - 03
DFHEJTRI CSECT EJ Trace Domain interpretation - 03
DFHEJUPA Macro EJ XRSINDI Overlay 11 -
DFHEJXDF CSECT Transaction Dump - JRAS dump info - 03
DFHEKC CSECT EXEC interface for task control OS 03
DFHELII CSECT EXEC interface link-edit stub for C/370 application

programs
OS 03

DFHEMBA CSECT EM Domain - EMBA gate functions - 03
DFHEMBR CSECT EM Domain - EMBR gate functions - 03
DFHEMBRT CSECT - 03
DFHEMDM CSECT EM Domain - DMDM gate functions - 03
DFHEMDUF CSECT DFHEMDUF Design - 03
DFHEMEM CSECT EM Domain - EMEM gate functions - 03
DFHEMEMT CSECT - 03
DFHEMEX CSECT EXEC interface for ME domain - 03
DFHEMPID CSECT Monitoring emp-ids 11 -
DFHEMS CSECT EXEC interface for BMS OS 03
DFHEMT00 CSECT Master terminal - CEMT/CEOT/CEST program OS 03
DFHEMT01 CSECT Master terminal - control module OS 03
DFHEMT02 CSECT Master terminal - initialization OS 03
DFHEMT11 CSECT Master terminal - atomization OS 03
DFHEMT12 CSECT Master terminal - argument analysis OS 03
DFHEMT19 CSECT Master terminal - command analysis OS 03
DFHEMT20 CSECT Master terminal - table analysis OS 03

CICS directory

Chapter 115. CICS directory 1373

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHEMT21 CSECT Master terminal - keyword analysis OS 03
DFHEMT22 CSECT Master terminal - special case code OS 03
DFHEMT23 CSECT Master terminal - plist generation OS 03
DFHEMT27 CSECT Master terminal - spelling correction OS 03
DFHEMT50 CSECT Master terminal - special displays OS 03
DFHEMT51 CSECT Master terminal - display extraction OS 03
DFHEMT52 CSECT Master terminal - syntax display OS 03
DFHEMT53 CSECT Master terminal - utilities OS 03
DFHEMT54 CSECT Master terminal - further utilities OS 03
DFHEMT55 CSECT Master terminal - fulists OS 03
DFHEMT56 CSECT Master terminal - execution interface OS 03
DFHEMTRI CSECT DFHEMTRI Design - 03
DFHEND Macro Generate END statement 11 -
DFHENV Macro CICS environment service request OS -
DFHEOP CSECT (OCO) EXEC interface for write operator - 03
DFHEPC CSECT EXEC interface for program control - 03
DFHEPILO Macro Free automatic storage application epilog OS -
DFHEPMAP CSECT PL/I translator - advanced code generation functions OS 03
DFHEPMEE CSECT PL/I translator - error editor OS 03
DFHEPMPP CSECT PL/I translator - primary code generation functions OS 03
DFHEPMSP CSECT PL/I translator - input scanner OS 03
DFHEPM02 CSECT PL/I translator - initialization OS 03
DFHEPM07 CSECT PL/I translator - options card OS 03
DFHEPM08 CSECT PL/I translator - check options OS 03
DFHEPM10 CSECT PL/I translator - analyze program OS 03
DFHEPM11 CSECT PL/I translator - atomization OS 03
DFHEPM14 CSECT PL/I translator - read input OS 03
DFHEPM17 CSECT PL/I translator - generate output OS 03
DFHEPS CSECT System spooling interface stub OS 03
DFHERDUF CSECT (OCO) SDUMP error message index processor - 03
DFHERM CSECT Resource manager interface (RMI) module - 03
DFHERMRS CSECT ERM resync processor - 03
DFHERMSP CSECT ERM syncpoint processor - 03
DFHESC CSECT EXEC interface for storage control OS 03
DFHESE CSECT (OCO) EXEC interface for query security - 03
DFHESN CSECT (OCO) EXEC interface for signon and sign-off - 03
DFHESP00 CSECT RDO - CEDA/CEDB/CEDC program OS 03
DFHESP01 CSECT RDO - CEDA control module OS 03
DFHESP02 CSECT RDO - CEDA initialization OS 03
DFHESP11 CSECT RDO - CEDA atomization OS 03
DFHESP12 CSECT RDO - CEDA argument analysis OS 03
DFHESP19 CSECT RDO - CEDA command analysis OS 03
DFHESP20 CSECT RDO - CEDA table analysis OS 03
DFHESP21 CSECT RDO - CEDA keyword analysis OS 03
DFHESP22 CSECT RDO - CEDA special case code OS 03
DFHESP23 CSECT RDO - CEDA plist generation OS 03
DFHESP26 CSECT RDO - CEDA message editor OS 03
DFHESP27 CSECT RDO - CEDA spelling correction OS 03
DFHESP50 CSECT RDO - CEDA special displays OS 03
DFHESP51 CSECT RDO - CEDA display extraction OS 03
DFHESP52 CSECT RDO - CEDA syntax display OS 03
DFHESP53 CSECT RDO - CEDA utilities OS 03
DFHESP54 CSECT RDO - CEDA further utilities OS 03
DFHESP55 CSECT RDO - CEDA fulists OS 03

CICS directory

1374 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHESZ CSECT (OCO) EXEC CICS API commands for FEPI - 03
DFHETC CSECT EXEC interface for terminal control OS 03
DFHETCB Macro EXEC terminal control block macro OS -
DFHETD CSECT EXEC interface for transient data OS 03
DFHETL CSECT LU6.2 EXEC interface stub OS 03
DFHETR CSECT EXEC interface for trace control OS 03
DFHETRX CSECT (OCO) EXEC interface for enter tracenum, monitor - 03
DFHEXAI CSECT Link-edit stub for assembler-language programs using

CSD offline extract function
OS 03

DFHEXCI CSECT Link-edit stub for COBOL programs using CSD offline
extract function

OS 03

DFHEXDUF CSECT (OCO) EXCI dump formatting routine - 03
DFHEXI CSECT Terminal exceptional input program OS 03
DFHEXLE CSECT OS 03
DFHEXLI CSECT EXCI stub 11 -
DFHEXMAB CSECT Translators - default argument text build OS 03
DFHEXMAN CSECT Translators - statement syntax analysis OS 03
DFHEXMG1 CSECT Translators - EXEC DLI code generator OS 03
DFHEXMG2 CSECT Translators - EXEC CICS code generator OS 03
DFHEXMG3 CSECT Translators - EXEC CICS GDS code generator OS 03
DFHEXMG4 CSECT Translators - EXEC EXCI code generator OS 03
DFHEXMG5 CSECT Translators - CICSPlex SM EXEC CICS command

code generator
- 03

DFHEXMKW CSECT Translators - keyword analysis OS 03
DFHExphE CSECT Translators - fatal error handler OS 03
DFHEXMS1 CSECT Translators - DL/I WHERE operand code generator OS 03
DFHEXMS2 CSECT Translators - EXEC CICS special case code generator OS 03
DFHEXMS3 CSECT Translators - EXEC CICS GDS special case code

generator
OS 03

DFHEXMS4 CSECT Translators - EXEC EXCI special case code generator OS 03
DFHEXMS5 CSECT Translators - EXEC EXCI special case code generator

for CICSPlex SM
- 03

DFHEXMTD CSECT Translators - temporaries declaration OS 03
DFHEXMTG CSECT Translators - EXEC trigger detection OS 03
DFHEXMXK CSECT Translators - syntax checker OS 03
DFHEXMXM CSECT Translators - syntax check error messages OS 03
DFHEXMXS CSECT Translators - syntax check control module OS 03
DFHEXM00 CSECT Translators - control module OS 03
DFHEXM01 CSECT Translators - control module OS 03
DFHEXM05 CSECT Translators - PARM analysis OS 03
DFHEXM06 CSECT Translators - process single option OS 03
DFHEXM09 CSECT Translators - print options OS 03
DFHEXM12 CSECT Translators - match brackets OS 03
DFHEXM13 CSECT Translators - diagnosis OS 03
DFHEXM15 CSECT Translators - I/O module OS 03
DFHEXM16 CSECT Translators - conversions OS 03
DFHEXM18 CSECT Translators - insert in I/O buffer OS 03
DFHEXM25 CSECT Translators - print xref OS 03
DFHEXM27 CSECT Translators - spelling correction OS 03
DFHEXPI CSECT Link-edit stub for PL/I programs using CSD offline

extract function
OS 03

DFHEXTAL Other Cataloged procedure to translate, assemble, and
link-edit Assembler- language application programs
(EXCI)

18 -

CICS directory

Chapter 115. CICS directory 1375

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHEXTDL Other Cataloged procedure to translate, compile, and link-edit

C/370 application programs (EXCI)
18 -

DFHEXTM Macro Dummy macro for DOS compatibility OS -
DFHEXTPL Other Cataloged procedure to translate, compile, and link-edit

PL/I application programs (EXCI)
18 -

DFHEXTRI Macro EXCI trace interpretation routine - 03
DFHEXTVL Other Cataloged procedure to translate, compile, and link-edit

VS COBOL II application programs (EXCI)
18 -

DFHFAUED DSECT - 11
DFHFBPDS DSECT File buffer pool control block OS -
DFHFCAT CSECT File control catalog manager OS 03
DFHFCATA DSECT FCAT parameter list OS -
DFHFCATM Macro FCAT request OS -
DFHFCATT CSECT FCAT translate tables OS 03
DFHFCBD CSECT File control BDAM request processor OS 03
DFHFCCA CSECT (OCO) File control RLS control ACB manager - 03
DFHFCCAT CSECT (OCO) FCCA translate tables - 03
DFHFCCRT CSECT - 03
DFHFCCTT CSECT - 03
DFHFCCUT CSECT - 03
DFHFCDL CSECT File control CFDT Load - 03
DFHFCDN CSECT (OCO) File control DSN block manager - 03
DFHFCDNA DSECT FCDN parameter list OS -
DFHFCDNM Macro FCDN request OS -
DFHFCDNT CSECT (OCO) FCDN translate tables - 03
DFHFCDO CSECT File control CFDT Open/Close - 03
DFHFCDR CSECT FC CF data table request handler - 03
DFHFCDST CSECT - 03
DFHFCDTS CSECT (OCO) Shared data table request program - 03
DFHFCDTX CSECT (OCO) File control shared data table function ship program - 03
DFHFCDU CSECT File control CFDT Recovery Control - 03
DFHFCDUF CSECT (OCO) File control SDUMP formatter - 03
DFHFCDUT CSECT - 03
DFHFCDW CSECT File control CFDT Recovery Control - 03
DFHFCDY CSECT File control CFDT Recovery Resynchronization - 03
DFHFCDYT CSECT - 03
DFHFCEDS DSECT File control EXEC argument list 11 -
DFHFCES CSECT (OCO) File control ENF servicer - 03
DFHFCFL CSECT (OCO) File control FRAB/FLAB processor - 03
DFHFCFLA DSECT FCFL parameter list OS -
DFHFCFLI Macro File control test file user OS -
DFHFCFLM Macro FCFL request OS -
DFHFCFLT CSECT FCFL translate tables - 03
DFHFCFR CSECT File control file request handler OS 03
DFHFCFRA DSECT FCFR parameter list OS -
DFHFCFRM Macro FCFR request OS -
DFHFCFRT CSECT FCFR trace interpretation data OS 03
DFHFCFS CSECT File control file state program OS 03
DFHFCFSA DSECT FCFS parameter list OS -
DFHFCFSM Macro FCFS request OS -
DFHFCFST CSECT FCFS translate tables OS 03
DFHFCINA DSECT FCIN parameter list OS -
DFHFCINM Macro FCIN request OS -
DFHFCINT CSECT FCIN translate tables OS 03

CICS directory

1376 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHFCIN1 CSECT File control initialization program 1 OS 03
DFHFCIN2 CSECT File control initialization program 2 OS 03
DFHFCIR CSECT (OCO) File control initialize recovery module - 03
DFHFCL CSECT File control VSAM LSR pool processor OS 03
DFHFCLF CSECT (OCO) File control logger failures - 03
DFHFCLGD CSECT File control part of log record 11 -
DFHFCLJ CSECT (OCO) File control logging and journaling - 03
DFHFCLJA DSECT FCLJ parameter list OS -
DFHFCLJM Macro FCLJ request OS -
DFHFCLJT CSECT FCLJ translate tables - 03
DFHFCLTD DSECT File control logger user token 11 -
DFHFCM CSECT File control VSAM KSDS base open/close OS 03
DFHFCMT CSECT (OCO) File control table manager - 03
DFHFCMTA DSECT FCMT parameter list OS -
DFHFCMTM Macro FCMT request OS -
DFHFCMTT CSECT (OCO) FCMT translate tables - 03
DFHFCN CSECT File control open/close program OS 03
DFHFCNC Source File control - close request OS -
DFHFCNO Source File control - open request OS -
DFHFCNQ CSECT (OCO) File control non-RLS lock handler - 03
DFHFCOR CSECT (OCO) File control RLS offsite recovery completion - 03
DFHFCQI CSECT File control - VSAM RLS quiesce initiation module - 03
DFHFCQIT DSECT FCQI translate tables - 03
DFHFCQR CSECT (OCO) File control - VSAM RLS quiesce receive module - 03
DFHFCQRT DSECT FCQR translate tables - 03
DFHFCQS CSECT (OCO) File control - VSAM RLS quiesce send module - 03
DFHFCQST DSECT FCQS translate tables - 03
DFHFCQT CSECT (OCO) File control - VSAM RLS quiesce - common system

transaction
- 03

DFHFCQU CSECT (OCO) File control - VSAM RLS quiesce process module - 03
DFHFCQUT DSECT FCQU translate tables - 03
DFHFCQX CSECT (OCO) File control - VSAM RLS quiesce exit module - 03
DFHFCRC CSECT (OCO) File control recovery control - 03
DFHFCRD CSECT (OCO) File control VSAM RLS post server-failure recovery - 03
DFHFCRF CSECT File control Remote Interface - 03
DFHFCRFA CSECT FCRF interface parameter area 11 -
DFHFCRFM Macro DFHFCRF interface macro OS -
DFHFCRFT CSECT - 03
DFHFCRL CSECT (OCO) File control VSAM SHRCTL block manager - 03
DFHFCRLA DSECT FCRL parameter list OS -
DFHFCRLM Macro FCRL request OS -
DFHFCRLT CSECT (OCO) FCRL translate tables - 03
DFHFCRO CSECT (OCO) File control VSAM RLS open/close processor - 03
DFHFCRP CSECT File control restart program OS 03
DFHFCRPA DSECT FCRP parameter list OS -
DFHFCRPM Macro FCRP request OS -
DFHFCRPT CSECT FCRP translate tables OS 03
DFHFCRR CSECT (OCO) File control RLS restart program - 03
DFHFCRRT CSECT FCRR translate tables - 03
DFHFCRS CSECT (OCO) File control RLS record management program - 03
DFHFCRV CSECT (OCO) File control RLS VSAM interface program - 03
DFHFCSD CSECT File control shutdown program OS 03
DFHFCSDA DSECT FCSD parameter list OS -
DFHFCSDM Macro FCSD request OS -

CICS directory

Chapter 115. CICS directory 1377

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHFCSDS DSECT File control static storage 11 -
DFHFCSDT CSECT FCSD translate tables OS 03
DFHFCST CSECT File control statistics program OS 03
DFHFCSTA DSECT FCST parameter list OS -
DFHFCSTM Macro FCST request OS -
DFHFCSTT CSECT FCST translate tables OS 03
DFHFCT Macro File control table 11 -
DFHFCTDS DSECT File control table entry 11 -
DFHFCTRN Symbolic File control trace, message, and catalog OS -
DFHFCTSP Macro FCT shared resources control block generator 11 -
DFHFCTSR DSECT FCT shared resources control block 11 -
DFHFCU CSECT File open utility program OS 03
DFHFCVR CSECT File control VSAM interface program OS 03
DFHFCVS CSECT File access VSAM request processor OS 03
DFHFCWS Macro File control work areas OS -
DFHFCXDF CSECT DU domain - transaction dump formatter for file-related

areas
OS 03

DFHFEP CSECT Field engineering program OS 03
DFHFIOA DSECT File input/output area OS -
DFHFLABD DSECT File lasting access block OS -
DFHFMH Macro Function management header OS -
DFHFMHDS DSECT Function management header 11 -
DFHFMIDS Symbolic Function and module identifiers 11 -
DFHFORMS CSECT - 03
DFHFRABD DSECT File request anchor block OS -
DFHFRDUF CSECT (OCO) File control recoverable work elements SDUMP

formatter
- 03

DFHFRTED DSECT File request thread element OS -
DFHFTDUF CSECT (OCO) Print feature 'FT' keyword processor - 03
DFHFTTRI CSECT (OCO) Offline TR entries trace interpretation OS 03
DFHGCAA CSECT Language Environment - get common anchor area OS 03
DFHGDEFS Symbolic CICS global symbol definitions 11 -
DFHGMM CSECT VTAM LU startup message OS 03
DFHHASH Macro Locate TCTTE entries OS -
DFHHLPDS DSECT DL/I interface block D3 -
DFHHLPDS Macro CICS-IMS HLPI control blocks OS 08
DFHHMDCD DSECT Handle manager table block OS -
DFHHPSVC CSECT HPO type 6 SVC OS 03
DFHIC Macro Time service request 11 -
DFHICDUF CSECT (OCO) Interval control SDUMP formatter - 03
DFHICEDS DSECT Interval control element 11 -
DFHICP CSECT Interval control program OS 03
DFHICRC CSECT Interval control recovery module - 03
DFHICUED CSECT EXEC argument list for Interval Control 11 -
DFHICXM CSECT AP domain - bind, inquire, and release facility IC

functions
OS 03

DFHICXMA DSECT ICXM parameter list OS -
DFHICXMM Macro ICXM request OS -
DFHICXMT CSECT ICXM translate tables OS 03
DFHIEDM CSECT IE Domain Initialization/Termination - 03
DFHIEDUF CSECT IE Domain System Dump Formatting - 03
DFHIEIE CSECT IP ECI Listener - 03
DFHIEIEA CSECT IEIE interface parameter area OS -
DFHIEIEM Macro DFHIEIE interface macro OS -

CICS directory

1378 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHIEIET CSECT - 03
DFHIEP CSECT - 03
DFHIETRI CSECT IP ECI Domain Trace Interpretation - 03
DFHIEXM CSECT - 03
DFHIHFSA CSECT - 02
DFHIHFS0 CSECT - 02
DFHIHFS1 CSECT - 02
DFHIICP CSECT IIOP Command Processor - 03
DFHIIDM CSECT II Domain Initialization/Termination - 03
DFHIIDUF CSECT II Domain System Dump Formatting - 03
DFHIILST CSECT - 03
DFHIIMM CSECT DFHIIMM Design II domain - IIMM gate functs. - 03
DFHIIMT CSECT - 03
DFHIIP CSECT BMS non-3270 input mapping OS -
DFHIIPA$ CSECT BMS non-3270 input mapping (standard) OS 03
DFHIIP1$ CSECT BMS non-3270 input mapping (full) OS 03
DFHIIRDS DSECT 11 07
DFHIIRH DSECT IIOP Request Handler - 03
DFHIIRHT DSECT - 03
DFHIIRP CSECT IIOP Request Processor - 03
DFHIIRPT DSECT - 03
DFHIIRQ CSECT DFHIIRQ Design - 03
DFHIIRQT CSECT - 03
DFHIIRR CSECT IIOP Request Receiver - 03
DFHIIRRS CSECT - 03
DFHIIRRT CSECT - 03
DFHIIST CSECT II Domain - Statistics (STST) gate - 03
DFHIITRI CSECT IIOP Domain Trace Interpretation - 03
DFHIIURH CSECT - 08
DFHIIXM CSECT IIOP Attach Client - 03
DFHIJVME Other Customize a member of the SDFHENV library 02 -
DFHIJVMJ Other 02 -
DFHILG1 Other Define logstream CF structures to MVS logger 02 -
DFHILG2 Other Define logstream models for system log streams 02 -
DFHILG3 Other Define logstream models for individual CICS region 02 -
DFHILG4 Other Define specific logstream for log of logs 02 -
DFHILG5 Other 02 -
DFHILG6 Other 02 -
DFHILG7 Other 02 -
DFHIMSDS DSECT ISC message inserts 11 -
DFHINDAP CSECT Indoubt tool - 03
DFHINDSP CSECT Indoubt tool syncpoint processor - 03
DFHINDT CSECT Indoubt tool - 03
DFHINST Other TSO CLIST to generate installation jobs 02 -
DFHINSTA Other JCL to create an additional target zone, CSI, and set

of target libraries
02 -

DFHINSTJ Other JCL to RECEIVE, APPLY, and ACCEPT the Japanese
language feature

02 -

DFHINST1 Other JCL to allocate and catalog CICS target and
distribution libraries

02 -

DFHINST2 Other JCL to allocate and catalog CICS RELFILE data sets 02 -
DFHINST3 Other JCL to allocate and catalog CICS SMP/E data sets 02 -
DFHINST4 Other JCL to initialize CICS SMP/E data sets 02 -

CICS directory

Chapter 115. CICS directory 1379

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHINST5 Other JCL to RECEIVE the CICS base-level function

SYSMOD
02 -

DFHINST6 Other JCL to APPLY and ACCEPT the CICS base- level
function SYSMOD

02 -

DFHINTRU CSECT Indoubt tool task related user exit - 03
DFHIONCD Other Replace DDDEFS for Language Environment or

TCP/IP libraries in SMP/E target zone
02 -

DFHIONCL Other Relink-edit DFHRPRP load module outside SMP/E 02 -
DFHIPCSP Other IPCS parmlib imbed member for DFHPDxxxx - 15
DFHIPDUF CSECT (OCO) SDUMP formatter for kernel stack internal procedures - 03
DFHIPUBS Other 02 -
DFHIR Macro Interregion request - 11
DFHIRP CSECT Interregion communication program OS 03
DFHIRPAD Source IRC dynamic add of connections routines OS -
DFHIRPC Source IRC connect and disconnect routines OS -
DFHIRPCL Source IRC clear and logoff routines OS -
DFHIRPD Macro IRC program internal control blocks 11 -
DFHIRPL Source IRC logon routines OS -
DFHIRPM Source IRC subroutines OS -
DFHIRPQ Source IRC in-service and quiesce routines OS -
DFHIRPR Source IRC recovery routines OS -
DFHIRPS Source IRC subroutines OS -
DFHIRPSP Source IRC SRB processor OS -
DFHIRPSW Source IRC switch and pull routines OS -
DFHIRRDS Macro Interregion session recovery data stream 11 -
DFHIRRXD Sample IRC XCF retry DIE subroutine OS -
DFHIRRXP Sample IRC XCF termination subroutine OS -
DFHIRRXS Sample IRC XCF SRB processor OS -
DFHIRSDS DSECT Interregion subsystem control blocks 11 -
DFHIRW10 CSECT IRC work delivery exit program OS 03
DFHIS Macro ISC request OS -
DFHISCRQ Macro ISC request parameter list 11 -
DFHISMKD Other 02 -
DFHISP CSECT Intersystem communication program OS 03
DFHISTAR Other JCL to invoke DFHINST 02 -
DFHIVPBT Other IVP (batch) to verify CICS startup 02 -
DFHIVPDB Other IVP to verify CICS running with DBCTL 02 -
DFHIVPOL Other IVP (online) to verify CICS, without DL/I 02 -
DFHJC Macro Journal service request OS -
DFHJCA Macro Journal control area definition 11 -
DFHJCADS DSECT Journal control area 11 -
DFHJCDLG CSECT Autocall SCEEOBJ - 03
DFHJCDLL CSECT Autocall SCEEOBJ - 03
DFHJCIMP CSECT - 20
DFHJCJCA DSECT JCJC parameter list OS -
DFHJCJCM Macro JCJC request OS -
DFHJCJCT CSECT JCJC trace interpretation data OS 03
DFHJCJCX Macro JCJC request (XPI) 11 -
DFHJCJCY DSECT JCJC parameter list (XPI) 11 -
DFHJCP CSECT Journal control program - 03
DFHJCR Macro Journal control record 11 -
DFHJCSTC CSECT - 03
DFHJHPA@ CSECT - 03
DFHJHPAT Sample Java Hotpooling Pre-Call URM - 19

CICS directory

1380 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHJUP CSECT Journal control print utility OS 03
DFHJVCV@ CSECT - 03
DFHJVMA@ CSECT Autocall SCEEOBJ - 03
DFHJVMAT Sample CICS JVM Interface user replaceable module - 19
DFHJVMPR Other - 09
DFHJVMPS Other - 09
DFHJVTRI CSECT - 03
DFHKC Macro Task service request 11 -
DFHKCQ CSECT Transaction manager - secondary requests OS 03
DFHKCRP CSECT Task control restart program OS 03
DFHKCSC CSECT DFHKCQ chain scanning for discard OS 03
DFHKCSCA DSECT KCSC parameter list OS -
DFHKCSCM Macro KCSC request OS -
DFHKCSCT CSECT KCSC trace interpretation data OS 03
DFHKCSP CSECT Task SRB control program OS 03
DFHKEALI Macro KE domain - label alignment OS -
DFHKEAR CSECT (OCO) KE domain - MVS ARM support services - 03
DFHKEARA DSECT KEAR parameter list OS -
DFHKEARM Macro KEAR request OS -
DFHKEART CSECT (OCO) KEAR trace interpretation data - 03
DFHKEDCL CSECT (OCO) KE domain - domain call request handler - 03
DFHKEDD CSECT (OCO) KE domain - domain definition services - 03
DFHKEDDA DSECT KEDD parameter list OS -
DFHKEDDM Macro KEDD request OS -
DFHKEDDT CSECT (OCO) KEDD trace interpretation data - 03
DFHKEDRT CSECT (OCO) KE domain - domain return request handler - 03
DFHKEDS CSECT (OCO) KE domain - dispatcher interfaces - 03
DFHKEDSA DSECT KEDS parameter list OS -
DFHKEDSI Macro KE domain - optimize kernel path lengths OS -
DFHKEDSM Macro KEDS request OS -
DFHKEDST CSECT (OCO) KEDS trace interpretation data - 03
DFHKEDSX Macro KEDS request 11 -
DFHKEDSY CSECT KEDS parameter list 11 -
DFHKEDUF CSECT (OCO) SDUMP formatter for KE domain - 03
DFHKEEDA CSECT (OCO) KE domain - execute deferred abend - 03
DFHKEENV Macro KE domain - declare/switch environment 11 -
DFHKEGD CSECT (OCO) KE domain - global data services - 03
DFHKEGDA DSECT KEGD parameter list OS -
DFHKEGDM Macro KEGD request OS -
DFHKEGDT CSECT (OCO) KEGD trace interpretation data - 03
DFHKEIN CSECT (OCO) KE domain - initialization - 03
DFHKEINA DSECT KEIN parameter list OS -
DFHKEINM Macro KEIN request OS -
DFHKEINT CSECT (OCO) KEIN trace interpretation data - 03
DFHKELCL CSECT (OCO) KE domain - LIFO push simulation - 03
DFHKELOC CSECT (OCO) SDUMP routine for locating domain anchors - 03
DFHKELRT CSECT (OCO) KE domain - LIFO return/pop simulation - 03
DFHKEMD Macro KE domain - domain/subroutine prolog code OS -
DFHKEPUB DSECT KE domain - some control blocks OS -
DFHKERCD CSECT (OCO) KE domain - kernel error data construction - 03
DFHKERER CSECT (OCO) KE domain - record error routine - 03
DFHKERET CSECT (OCO) KE domain - reset address service - 03
DFHKERKE CSECT (OCO) KE domain - KERNERROR response handler - 03
DFHKERN Macro KE domain - generate call to kernel 11 -

CICS directory

Chapter 115. CICS directory 1381

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHKERPC CSECT (OCO) KE domain - recovery percolation - 03
DFHKERRI CSECT (OCO) KE domain - recovery invocation - 03
DFHKERRQ CSECT (OCO) KE domain - recovery request service - 03
DFHKERRU CSECT (OCO) KE domain - runaway task error handler - 03
DFHKERRX CSECT (OCO) KE domain - recovery exit service - 03
DFHKESCL CSECT (OCO) KE domain - subroutine call handler - 03
DFHKESFM CSECT (OCO) KE domain - disposable segments freemain - 03
DFHKESGM CSECT (OCO) KE domain - new stack segments getmain - 03
DFHKESIP CSECT (OCO) KE domain - system initialization program - 03
DFHKESRT CSECT (OCO) KE domain - subroutine return handler - 03
DFHKESTP DSECT KE domain - kernel stack structure OS -
DFHKESTX CSECT (OCO) KE domain - kernel ESTAE exit - 03
DFHKESVC CSECT (OCO) KE domain - authorized service routine - 03
DFHKETA CSECT (OCO) KE domain - task reply services - 03
DFHKETAB CSECT (OCO) KE domain - list of domains requiring preinitialization

on CICS run
- 03

DFHKETB2 CSECT (OCO) KE domain - list of domains requiring preinitialization
on DFHSTUP run

- 03

DFHKETCB CSECT (OCO) KE domain - kernel TCB startup routine - 03
DFHKETI CSECT (OCO) KE domain - timer services - 03
DFHKETIA DSECT KETI parameter list OS -
DFHKETIM Macro KETI request OS -
DFHKETIT CSECT (OCO) KETI trace interpretation data - 03
DFHKETIX CSECT (OCO) KE domain - STIMER exit - 03
DFHKETXR CSECT KE ETXR - 03
DFHKEXM CSECT (OCO) KE domain - XM domain services - 03
DFHKEXMA DSECT KEXM parameter list OS -
DFHKEXMM Macro KEXM request OS -
DFHKEXMT CSECT (OCO) KEXM trace interpretation data OS 03
DFHKETRI CSECT (OCO) Trace interpreter for KE domain - 03
DFHLANG Other List of National Languages for CICS - alias for

MEULANG
10 -

DFHLDDM CSECT (OCO) LD domain - initialization/termination - 03
DFHLDDMI CSECT (OCO) LD domain - secondary initialization - 03
DFHLDDUF CSECT (OCO) SDUMP formatter for LD domain - 03
DFHLDGDS DSECT LD domain - global statistics 11 -
DFHLDGDS DSECT LD domain - global statistics C2 07
DFHLDGDS DSECT LD domain - global statistics P2 -
DFHLDLDA DSECT LDLD parameter list OS -
DFHLDLDM Macro LDLD request OS -
DFHLDLDT CSECT (OCO) LDLD trace interpretation data - 03
DFHLDLDX Macro LDLD request (XPI) 11 -
DFHLDLDY DSECT LDLD parameter list (XPI) 11 -
DFHLDLD1 CSECT (OCO) LD domain - acquire/release/refresh - 03
DFHLDLD2 CSECT (OCO) LD domain - define/delete - 03
DFHLDLD3 CSECT (OCO) LD domain - general functions - 03
DFHLDNT CSECT (OCO) LD domain - storage notify handler - 03
DFHLDRDS DSECT LD domain - program statistics 11 -
DFHLDRDS DSECT LD domain - program statistics C2 07
DFHLDST CSECT (OCO) LD domain - statistics collection - 03
DFHLDSUA DSECT LDSU parameter list OS -
DFHLDSUM Macro LDSU request OS -
DFHLDSUT CSECT (OCO) LDSU trace interpretation data - 03
DFHLDSVC CSECT (OCO) LD domain - authorized service routine - 03

CICS directory

1382 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHLDTRI CSECT (OCO) Trace interpreter for LD domain - 03
DFHLEAS CSECT ADD SUBPOOL service - 03
DFHLEDS CSECT DELETE SUBPOOL service - 03
DFHLEDT CSECT Transaction Dump service - 03
DFHLEFM CSECT GETMAIN service - 03
DFHLEFQ CSECT Quickcell freemain service - 03
DFHLEGM CSECT GETMAIN service - 03
DFHLEGQ CSECT Quickcell getmain service - 03
DFHLERO CSECT Runtime options service - 03
DFHLESRV Macro CICS Service routine vector 11 -
DFHLETR CSECT Trace servicve routine - 03
DFHLETRM Macro LE Trace Service invocation macro 11 -
DFHLFM Macro LIFO macro 11 -
DFHLFT Macro LIFO trace macro 11 -
DFHLFX Macro LIFO stack entry 11 -
DFHLGBAA DSECT LGBA parameter list 11 -
DFHLGBAM Macro LGBA request OS -
DFHLGBAT DSECT (OCO) LGBA translate tables - 03
DFHLGCBT DSECT LGCB translate tables - 03
DFHLGCCA CSECT (OCO) LGCC parameter list OS -
DFHLGCCM Macro LGCC request OS -
DFHLGCCT DSECT (OCO) LGCC translate tables - 03
DFHLGDM CSECT (OCO) Logger domain - domain initialization - 03
DFHLGDUF CSECT (OCO) Log Manager domain dump formatting - 03
DFHLGFLD DSECT Log Manager log of log format 11 -
DFHLGGFD DSECT Log Manager general log format 11 -
DFHLGGL CSECT (OCO) Log Manager general log gate module - 03
DFHLGGLA CSECT (OCO) LGGL parameter list OS -
DFHLGGLI CSECT (OCO) Journal number to name conversion OS -
DFHLGGLM Macro LGGL request OS -
DFHLGGLT DSECT (OCO) LGGL translate tables - 03
DFHLGICV CSECT (OCO) LG SSI log record conversion to old format - 03
DFHLGIGT DSECT LG LOGR SSI dataset GET exit - 03
DFHLGILA CSECT (OCO) LG Subsytem exit - lexical analyzer - 03
DFHLGIMS CSECT (OCO) LG Subsytem exit - syntax message composer - 03
DFHLGIPA CSECT (OCO) LG Subsytem exit - parser - 03
DFHLGIPI CSECT (OCO) LG Subsytem exit - parse interface routine - 03
DFHLGISM CSECT (OCO) LG Subsytem exit - parse message exits - 03
DFHLGJN CSECT (OCO) Log Manager journal inventory gate module - 03
DFHLGJNT DSECT (OCO) LGJN translate tables - 03
DFHLGLBA CSECT (OCO) LGLB parameter list OS -
DFHLGLBM Macro LGLB request OS -
DFHLGLBT DSECT (OCO) LGLB translate tables - 03
DFHLGLD CSECT (OCO) Log Manager JournalModel gate - 03
DFHLGLDT DSECT (OCO) LGLD translate tables - 03
DFHLGMSD CSECT (OCO) Log Manager MVS SMF log format 11 -
DFHLGMVA CSECT (OCO) LGMV parameter list OS -
DFHLGMVM Macro LGMV request OS -
DFHLGMVT DSECT LGMV translate tables - 03
DFHLGPA CSECT (OCO) Logger Domain - inquire/set parameters - 03
DFHLGPAA CSECT (OCO) LGPA parameter list OS -
DFHLGPAM Macro LGPA request OS -
DFHLGPAT DSECT (OCO) LGPA translate tables - 03
DFHLGPAX Macro Log Manager parameter manager PLIST 11 -

CICS directory

Chapter 115. CICS directory 1383

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHLGPAY DSECT Log Manager parameter manager PLIST 11 -
DFHLGQC CSECT (OCO) Log Manager RLS cleanup - 03
DFHLGRDS CSECT (OCO) Log Manager journal statistics 11 -
DFHLGRDS CSECT (OCO) Log Manager journal statistics C2 07
DFHLGSC CSECT (OCO) Log Manager statistics collection - 03
DFHLGSDS CSECT (OCO) Log Manager logstream statistics 11 -
DFHLGSDS CSECT (OCO) Log Manager logstream statistics C2 07
DFHLGSRA CSECT (OCO) LGSR parameter list OS -
DFHLGSRT DSECT (OCO) LGSR translate tables OS 03
DFHLGSSI CSECT (OCO) Log Manager LOGR SSI dataset exit - 03
DFHLGST CSECT (OCO) Log Manager stream connection gate - 03
DFHLGSTT DSECT (OCO) LGST translate tables - 03
DFHLGTRI CSECT (OCO) Logger - trace interpretation - 03
DFHLGWFT DSECT LGWF translate tables - 03
DFHLIFO DSECT KE domain - LIFO control blocks OS -
DFHLILBD Source Language interface program language block OS -
DFHLILIA Source Language interface parameter list OS -
DFHLILII Source AP domain - Perform goto call to language interface OS -
DFHLILIM Source Language interface services OS -
DFHLILIT CSECT (OCO) Language interface trace interpretation data - 03
DFHLIRET CSECT (OCO) Language interface return program - 03
DFHLITRI CSECT (OCO) Language interface trace interpreter - 03
DFHLIWAD Source Language interface work area OS -
DFHLI000 Macro 11 -
DFHLLDC DSECT Local logical device code table 11 -
DFHLLDLI DSECT DLI call level api macro (alias of CALLDLI) 11 -
DFHLMDM CSECT (OCO) LM domain - initialization/termination - 03
DFHLMDS CSECT (OCO) LM domain - dispatcher notify handler - 03
DFHLMDUF CSECT (OCO) SDUMP formatter for LM domain - 03
DFHLMIQ CSECT (OCO) LM domain - browse and inquiry - 03
DFHLMIQA DSECT LMIQ parameter list OS -
DFHLMIQM Macro LMIQ request OS -
DFHLMIQT CSECT (OCO) LMIQ trace interpretation data - 03
DFHLMLM CSECT (OCO) LM domain - services - 03
DFHLMLMA DSECT LMLM parameter list OS -
DFHLMLMI CSECT OS -
DFHLMLMM Macro LMLM request OS -
DFHLMLMT CSECT (OCO) LMLM trace interpretation data - 03
DFHLMTRI CSECT (OCO) Trace interpreter for LM domain - 03
DFHLNKVS Other Cataloged procedure to link-edit CICS programs and

application programs
18 -

DFHLOCK Macro KE domain - lock/unlock TCB entry OS -
DFHLONGN Other LD dllload long name conversion - 03
DFHLPUMD Other JCL to RECEIVE and APPLY the DFH$UMOD SMP/E

USERMOD
02 -

DFHLSCU CSECT - 03
DFHLSTNT CSECT - 03
DFHLTRC CSECT Local terminal recovery module - 03
DFHLUC Macro LU6.2 service request OS -
DFHLUCM Macro LU6.2 migration request OS -
DFHLUS Macro LU6.2 services manager driver macro OS -
DFHL2BA CSECT (OCO) Log Manager LGBA gate - 03
DFHL2BL1 CSECT (OCO) Logger block initialize class procedure - 03
DFHL2BL2 CSECT (OCO) Logger block restore current position - 03

CICS directory

1384 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHL2BS1 CSECT (OCO) Obtain and initialize BrowseableStream class data - 03
DFHL2BS2 CSECT (OCO) Construct a BrowseableStream object and return to

caller
- 03

DFHL2BS3 CSECT (OCO) Destroy a BrowseableStream object - 03
DFHL2BS4 CSECT (OCO) Terminate all browseable stream instances known to

BrowseableStream class
- 03

DFHL2CB CSECT (OCO) Log Manager LGCB gate - 03
DFHL2CC CSECT (OCO) Log Manager LGCC gate - 03
DFHL2CHA CSECT (OCO) Logger chain start browse all procedure - 03
DFHL2CHE CSECT (OCO) Logger chain delete history procedure - 03
DFHL2CHG CSECT (OCO) Logger chain get next chain procedure - 03
DFHL2CHH CSECT (OCO) Logger chain start browse chains procedure - 03
DFHL2CHI CSECT (OCO) Logger chain end browse chains procedure - 03
DFHL2CHL CSECT (OCO) Logger chain end browse all procedure - 03
DFHL2CHM CSECT (OCO) Logger chain move procedure - 03
DFHL2CHN CSECT (OCO) Logger chain browse all get next procedure - 03
DFHL2CHO CSECT (OCO) - 03
DFHL2CHP CSECT (OCO) - 03
DFHL2CHR CSECT (OCO) Logger chain restore procedure - 03
DFHL2CHS CSECT (OCO) Logger chain set history procedure - 03
DFHL2CH1 CSECT (OCO) Logger chain initialize class procedure - 03
DFHL2CH2 CSECT (OCO) Logger chain create fresh procedure - 03
DFHL2CH3 CSECT (OCO) Logger chain start chain browse procedure - 03
DFHL2CH4 CSECT (OCO) Logger chain browse get next procedure - 03
DFHL2CH5 CSECT (OCO) Logger chain end chain browse procedure - 03
DFHL2DM CSECT (OCO) Log Manager L2 domain management - 03
DFHL2DU0 CSECT (OCO) Log Manager L2_Dump_Formatting_Module - 03
DFHL2HB CSECT (OCO) - 03
DFHL2HSF CSECT (OCO) Logger HardStream write MVS retry intro. - 03
DFHL2HSG CSECT (OCO) Logger HardStream read browse cursor - 03
DFHL2HSJ CSECT (OCO) Logger HardStream end browse cursor - 03
DFHL2HS2 CSECT (OCO) Logger HardStream connect procedure - 03
DFHL2HS3 CSECT (OCO) Logger HardStream disconnect procedure - 03
DFHL2HS4 CSECT (OCO) Logger HardStream delete all procedure - 03
DFHL2HS5 CSECT (OCO) Logger HardStream delete history procedure - 03
DFHL2HS6 CSECT (OCO) Logger HardStream start browse cursor - 03
DFHL2HS7 CSECT (OCO) Logger HardStream start read procedure - 03
DFHL2HS8 CSECT (OCO) Logger HardStream read block procedure - 03
DFHL2HS9 CSECT (OCO) Logger HardStream end read procedure - 03
DFHL2LB CSECT (OCO) Log Manager LGLB gate - 03
DFHL2MV CSECT (OCO) Log Manager LGMV gate - 03
DFHL2OFI CSECT (OCO) Logger object factory initialize procedure - 03
DFHL2SLE CSECT (OCO) Logger system log notify failure method - 03
DFHL2SLN CSECT (OCO) Logger system log open stream method - 03
DFHL2SL1 CSECT (OCO) Logger system log initialize class procedure - 03
DFHL2SR CSECT (OCO) Log Manager stream class class declaration - 03
DFHL2SR1 CSECT (OCO) Logger stream class initialize class - 03
DFHL2SR2 CSECT (OCO) Logger stream class construct procedure - 03
DFHL2SR3 CSECT (OCO) Logger stream class destruct procedure - 03
DFHL2SR4 CSECT (OCO) Logstream statistics module - 03
DFHL2SR5 CSECT (OCO) Logger stream class terminate all procedure - 03
DFHL2TI2 CSECT (OCO) - 03
DFHL2TRI CSECT (OCO) Log Manager trace interpretation - 03
DFHL2VP1 CSECT (OCO) Logger storage manager initialize class - 03

CICS directory

Chapter 115. CICS directory 1385

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHL2WF CSECT (OCO) Log Manager LGWF gate - 03
DFHMAPDS DSECT BMS map description OS -
DFHMAPS Other Cataloged procedure to prepare physical and symbolic

maps
18 -

DFHMAPT Other 18 -
DFHMBCDS DSECT Transient data buffer control OS -
DFHMBMBA DSECT File control DFHMBMBI parameter list OS -
DFHMBMBI Macro File control buffer management inline OS -
DFHMCAD Macro Map control area 11 -
DFHMCBDS DSECT BMS message control block 11 -
DFHMCP CSECT BMS mapping control program OS -
DFHMCPA$ CSECT BMS mapping control program (standard) OS 03
DFHMCPE CSECT BMS minimum function mapping control OS -
DFHMCPE$ CSECT BMS mapping control program (minimum) OS 03
DFHMCPIN CSECT BMS input mapping request handler OS -
DFHMCPLK Macro Linkage to BMS modules OS -
DFHMCP1$ CSECT BMS mapping control program (full) OS 03
DFHMCRDS DSECT BMS message control record 11 -
DFHMCT Macro Monitoring control table 11 -
DFHMCTA$ Sample Monitoring control table for an AOR 19 -
DFHMCTDR Macro Monitoring dictionary definition 11 -
DFHMCTDS Macro MCT root section definition 11 -
DFHMCTDT Macro Transaction monitoring field and dictionary entry

definition
11 -

DFHMCTD$ Sample Monitoring control table for an AOR with DBCTL 19 -
DFHMCTEN Macro MCT option macro 11 -
DFHMCTF$ Sample Monitoring control table for an FOR 19 -
DFHMCTMP Macro MCT class macro 11 -
DFHMCTNM Macro Monitoring numeric string check 11 -
DFHMCTSE Macro MCT option entry generator 11 -
DFHMCTT$ Sample Monitoring control table for a TOR 19 -
DFHMCT2$ Sample Monitoring control table 19 03
DFHMCX CSECT BMS fast path module OS 03
DFHMCY CSECT Process MAPPINGDEV Requests OS 03
DFHMDC Macro Build C language symbolic description map 11 -
DFHMDCL Macro Convert C field names to lowercase 11 -
DFHMDF Macro Generate BMS field definition 11 -
DFHMDI Macro Generate BMS map definition 11 -
DFHMDX Macro 11 -
DFHMEACC CSECT ME domain - DFHACxxxx message set simplified

Chinese version
14 03

DFHMEACE CSECT ME domain - DFHACxxxx message set 14 03
DFHMEACK CSECT (OCO) ME domain - DFHACxxxx message set 14 03
DFHMEADC CSECT ME domain - DFHADxxxx message set simplified

Chinese version
14 03

DFHMEADE CSECT ME domain - DFHADxxxx message set 14 03
DFHMEADK CSECT ME domain - DFHADxxxx message set 14 03
DFHMEAIC CSECT ME domain - DFHAIxxxx message set simplified

Chinese version
14 03

DFHMEAIE CSECT ME domain - DFHAIxxxx message set 14 03
DFHMEAIK CSECT (OCO) ME domain - DFHAIxxxx message set 14 03
DFHMEAMC CSECT ME domain - DFHAMxxxx message set simplified

Chinese version
14 03

DFHMEAME CSECT ME domain - DFHAMxxxx message set 14 03

CICS directory

1386 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHMEAMK CSECT (OCO) ME domain - DFHAMxxxx message set 14 03
DFHMEAPC CSECT ME domain - DFHAPxxxx message set simplified

Chinese version
14 03

DFHMEAPE CSECT ME domain - DFHAPxxxx message set 14 03
DFHMEAPK CSECT (OCO) ME domain - DFHAPxxxx message set 14 03
DFHMEAUE CSECT ME domain - DFHAUxxxx message set 14 -
DFHMEBAC CSECT ME domain - DFHBAxxxx message set simplified

Chinese version
14 03

DFHMEBAE CSECT ME domain - DFHBAxxxx message set 14 03
DFHMEBAK CSECT (OCO) ME domain - DFHBAxxxx message set 14 03
DFHMEBM CSECT (OCO) ME domain - batch message program - 03
DFHMEBMA DSECT MEBM parameter list OS -
DFHMEBMM Macro MEBM request OS -
DFHMEBMT CSECT (OCO) MEBM trace interpretation data - 03
DFHMEBRC CSECT (OCO) ME domain 14 03
DFHMEBRE CSECT (OCO) ME domain 14 03
DFHMEBRK CSECT (OCO) ME domain 14 03
DFHMEBU CSECT (OCO) ME domain - build message - 03
DFHMEBUA DSECT MEBU parameter list OS -
DFHMEBUM Macro MEBU request OS -
DFHMEBUT CSECT (OCO) MEBU trace interpretation data - 03
DFHMECAC CSECT ME domain - message set for GC/LC domains

simplified Chinese version
14 03

DFHMECAE CSECT ME domain - DFHCAxxxx message set 14 03
DFHMECAK CSECT ME domain - DFHCAxxxx message set Japanese

(Kanji) version
14 03

DFHMECCC CSECT ME domain - DFHCCxxxx message set simplified
Chinese version

14 03

DFHMECCE CSECT ME domain - message set for GC/LC domains 14 03
DFHMECCK CSECT (OCO) ME domain - message set for GC/LC domains 14 03
DFHMECEC CSECT ME domain - DFHCExxxx message set simplified

Chinese version
14 03

DFHMECEE CSECT ME domain - DFHCExxxx message set 14 03
DFHMECEK CSECT (OCO) ME domain - DFHCExxxx message set 14 03
DFHMECFE CSECT ME domain - DFHCFxxxx message set 14 -
DFHMECPC CSECT ME domain - DFHCPxxxx message set simplified

Chinese version
14 03

DFHMECPE CSECT ME domain - DFHCPxxxx message set 14 03
DFHMECPK CSECT (OCO) ME domain - DFHCPxxxx message set 14 03
DFHMECRC CSECT ME domain - DFHCRxxxx message set simplified

Chinese version
14 03

DFHMECRE CSECT ME domain - DFHCRxxxx message set 14 03
DFHMECRK CSECT (OCO) ME domain - DFHCRxxxx message set 14 03
DFHMECZC CSECT ME domain - DFHCZxxxx message set simplified

Chinese version
14 03

DFHMECZE CSECT ME domain - DFHCZxxxx message set 14 03
DFHMECZK CSECT (OCO) ME domain - DFHCZxxxx message set 14 03
DFHMEDBC CSECT ME domain - DFHDBxxxx message set simplified

Chinese version
14 03

DFHMEDBE CSECT ME domain - DFHDBxxxx message set 14 03
DFHMEDBK CSECT (OCO) ME domain - DFHDBxxxx message set 14 03
DFHMEDDC CSECT ME domain - message set for DD domain simplified

Chinese version
14 03

DFHMEDDE CSECT ME domain - message set for DD domain 14 03

CICS directory

Chapter 115. CICS directory 1387

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHMEDDK CSECT ME domain - message set for DD domain 14 03
DFHMEDHC CSECT ME domain - message set for DH domain simplified

Chinese version
14 03

DFHMEDHE CSECT ME domain - message set for DH domain 14 03
DFHMEDHK CSECT ME domain - message set for DH domain 14 03
DFHMEDM CSECT (OCO) ME domain - initialization/termination - 03
DFHMEDMC CSECT ME domain - message set for DM domain simplified

Chinese version
14 03

DFHMEDME CSECT ME domain - message set for DM domain 14 03
DFHMEDMK CSECT ME domain - message set for DM domain 14 03
DFHMEDSC CSECT ME domain - message set for DS domain simplified

Chinese version
14 03

DFHMEDSE CSECT ME domain - message set for DS domain 14 03
DFHMEDSK CSECT ME domain - message set for DS domain 14 03
DFHMEDUC CSECT ME domain - message set for DU domain simplified

Chinese version
14 03

DFHMEDUE CSECT ME domain - message set for DU domain 14 03
DFHMEDUF CSECT (OCO) SDUMP formatter for ME domain - 03
DFHMEDUK CSECT (OCO) ME domain - message set for DU domain 14 03
DFHMEDXC CSECT ME domain - DFHDXxxxx message set simplified

Chinese version
14 03

DFHMEDXE CSECT ME domain - DFHDXxxxx message set 14 03
DFHMEDXK CSECT (OCO) ME domain - DFHDXxxxx message set 14 03
DFHMEEJC CSECT ME domain - DFHEJxxxx message set simplified

Chinese version
14 03

DFHMEEJE CSECT ME domain - DFHEJxxxx message set 14 03
DFHMEEJK CSECT ME domain - DFHEJxxxx message set 14 03
DFHMEEMC CSECT ME domain - DFHEMxxxx message set simplified

Chinese version
14 03

DFHMEEME CSECT ME domain - DFHEMxxxx message set 14 03
DFHMEEMK CSECT ME domain - DFHEMxxxx message set 14 03
DFHMEERC CSECT ME domain - DFHERxxxx message set simplified

Chinese version
14 03

DFHMEERE CSECT ME domain - DFHERxxxx message set 14 03
DFHMEERK CSECT ME domain - DFHERxxxx message set 14 03
DFHMEEXE CSECT ME domain - DFHEXxxxx message set 14 03
DFHMEFAC CSECT ME domain - DFHFAxxxx message set simplified

Chinese version
14 03

DFHMEFAE CSECT ME domain - DFHFAxxxx message set 14 03
DFHMEFAK CSECT (OCO) ME domain - DFHFAxxxx message set 14 03
DFHMEFBC CSECT ME domain - DFHFBxxxx message set simplified

Chinese version
14 03

DFHMEFBE CSECT ME domain - DFHFBxxxx message set 14 03
DFHMEFBK CSECT (OCO) ME domain - DFHFBxxxx message set 14 03
DFHMEFCC CSECT ME domain - DFHFCxxxx message set simplified

Chinese version
14 03

DFHMEFCE CSECT ME domain - DFHFCxxxx message set 14 03
DFHMEFCK CSECT (OCO) ME domain - DFHFCxxxx message set 14 03
DFHMEFDC CSECT ME domain - DFHFDxxxx message set simplified

Chinese version
14 03

DFHMEFDE CSECT ME domain - DFHFDxxxx message set 14 03
DFHMEFDK CSECT (OCO) ME domain - DFHFDxxxx message set 14 03
DFHMEFEC CSECT ME domain - DFHFExxxx message set simplified

Chinese version
14 03

DFHMEFEE CSECT ME domain - DFHFExxxx message set 14 03

CICS directory

1388 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHMEFEK CSECT (OCO) ME domain - DFHFExxxx message set 14 03
DFHMEFO CSECT (OCO) ME domain - format message subroutine - 03
DFHMEFOA DSECT MEFO parameter list OS -
DFHMEFOM Macro MEFO request OS -
DFHMEFOT CSECT (OCO) MEFO trace interpretation data - 03
DFHMEICC CSECT ME domain - DFHICxxxx message set simplified

Chinese version
14 03

DFHMEICE CSECT ME domain - DFHICxxxx message set 14 03
DFHMEICK CSECT (OCO) ME domain - DFHICxxxx message set 14 03
DFHMEIEC CSECT ME domain - DFHIExxxx message set simplified

Chinese version
14 -

DFHMEIEE CSECT ME domain - DFHIExxxx message set 14 -
DFHMEIEK CSECT (OCO) ME domain - DFHIExxxx message set 14 -
DFHMEIIC CSECT ME domain - DFHIIxxxx message set simplified

Chinese version
14 03

DFHMEIIE CSECT ME domain - DFHIIxxxx message set 14 03
DFHMEIIK CSECT (OCO) ME domain - DFHIIxxxx message set 14 03
DFHMEIN CSECT (OCO) ME domain - inquire message data - 03
DFHMEINA DSECT MEIN parameter list OS -
DFHMEINC DSECT ME domain - DFHINxxxx message set simplified

Chinese version
14 03

DFHMEINE DSECT ME domain - DFHINxxxx message set 14 03
DFHMEINK DSECT ME domain - DFHINxxxx message set Japanese

(Kanji) version
14 03

DFHMEINM Macro MEIN request OS -
DFHMEINT CSECT (OCO) MEIN trace interpretation data - 03
DFHMEIRC CSECT ME domain - DFHIRxxxx message set simplified

Chinese version
14 03

DFHMEIRE CSECT ME domain - DFHIRxxxx message set 14 03
DFHMEIRK CSECT (OCO) ME domain - DFHIRxxxx message set Japanese

(Kanji) version
14 03

DFHMEJCC CSECT ME domain - DFHJCxxxx message set simplified
Chinese version

14 03

DFHMEJCE CSECT ME domain - DFHJCxxxx message set 14 03
DFHMEJCK CSECT (OCO) ME domain - DFHJCxxxx message set 14 03
DFHMEKCC CSECT ME domain - DFHKCxxxx message set simplified

chinese version
14 03

DFHMEKCE CSECT ME domain - DFHKCxxxx message set 14 03
DFHMEKCK CSECT (OCO) ME domain - DFHKCxxxx message set Japanese

(Kanji) version
14 03

DFHMEKEC CSECT ME domain - DFHKExxxx message set simplified
chinese version

14 03

DFHMEKEE CSECT ME domain - message set for KE domain 14 03
DFHMEKEK CSECT ME domain - message set for KE domain 14 03
DFHMELDC CSECT ME domain - DFHLDxxxx message set simplified

chinese version
14 03

DFHMELDE CSECT ME domain - message set for LD domain 14 03
DFHMELDK CSECT ME domain - message set for LD domain 14 03
DFHMELGC CSECT ME domain - DFHLGxxxx message set simplified

Chinese version
14 03

DFHMELGE CSECT ME domain - DFHLGxxxx message set 14 03
DFHMELGK CSECT ME domain - DFHLGxxxx message set Japanese

(Kanji) version
14 03

DFHMELMC CSECT ME domain - DFHLMxxxx message set simplified
Chinese version

14 03

CICS directory

Chapter 115. CICS directory 1389

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHMELME CSECT ME domain - message set for LM domain 14 03
DFHMELMK CSECT ME domain - DFHLMxxxx message set Japanese

(Kanji) version
14 03

DFHMEMCC CSECT ME domain - DFHMCxxxx message set simplified
Chinese version

14 03

DFHMEMCE CSECT ME domain - DFHMCxxxx message set 14 03
DFHMEMCK CSECT (OCO) ME domain - DFHMCxxxx message set Japanese

(Kanji) version
14 03

DFHMEME CSECT (OCO) ME domain - main functions - 03
DFHMEMEC CSECT ME domain - DFHMExxxx message set simplified

Chinese version
14 03

DFHMEMEA DSECT MEME parameter list OS -
DFHMEMEE CSECT ME domain - DFHMExxxx message set 14 03
DFHMEMEK CSECT (OCO) ME domain - main functions 14 03
DFHMEMEM Macro MEME request OS -
DFHMEMET CSECT (OCO) MEME trace interpretation data - 03
DFHMEMNC CSECT ME domain - DFHMNxxxx message set simplified

Chinese version
14 03

DFHMEMNE CSECT ME domain - message set for MN domain 14 03
DFHMEMNK CSECT ME domain - message set for MN domain 14 03
DFHMEMUC CSECT ME domain - DFHMUxxxx message set simplified

Chinese version
14 03

DFHMEMUE CSECT ME domain - DFHMUxxxx message set 14 03
DFHMEMUK CSECT ME domain - DFHMUxxxx message set 14 03
DFHMENCE CSECT ME domain - DFHNCxxxx message set 14 -
DFHMENQC CSECT ME domain - DFHMQxxxx message set simplified

Chinese version
14 03

DFHMENQE CSECT ME domain - DFHNQxxxx message set 14 03
DFHMENQK CSECT ME domain - DFHNQxxxx message set 14 03
DFHMEOTC CSECT ME domain - DFHOTxxxx message set simplified

Chinese version
14 03

DFHMEOTE CSECT ME domain - DFHOTxxxx message set 14 03
DFHMEOTK CSECT ME domain - DFHOTxxxx message set 14 03
DFHMEPAC CSECT ME domain - DFHPAxxxx message set simplified

Chinese version
14 03

DFHMEPAE CSECT ME domain - message set for PA domain 14 03
DFHMEPAK CSECT ME domain - message set for PA domain 14 03
DFHMEPCC CSECT ME domain - DFHPCxxxx message set simplified

Chinese version
14 03

DFHMEPCE CSECT ME domain - DFHPCxxxx message set 14 03
DFHMEPCK CSECT (OCO) ME domain - DFHPCxxxx message set Japanese

(Kanji) version
14 03

DFHMEPGC CSECT ME domain - DFHPGxxxx message set simplified
Chinese version

14 03

DFHMEPGE CSECT ME domain - DFHPGxxxx message set 14 03
DFHMEPGK CSECT (OCO) ME domain - DFHPGxxxx message set Japanese

(Kanji) version
14 03

DFHMEPRC CSECT ME domain - DFHPRxxxx message set simplified
Chinese version

14 03

DFHMEPRE CSECT ME domain - DFHPRxxxx message set 14 03
DFHMEPRK CSECT (OCO) ME domain - DFHPRxxxx message set Japanese

(Kanji) version
14 03

DFHMEPSC CSECT ME domain - DFHPSxxxx message set simplified
Chinese version

14 03

DFHMEPSE CSECT ME domain - DFHPSxxxx message set 14 03

CICS directory

1390 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHMEPSK CSECT (OCO) ME domain - DFHPSxxxx message set 14 03
DFHMERDC CSECT ME domain - DFHRDxxxx message set simplified

Chinese version
14 03

DFHMERDE CSECT ME domain - DFHRDxxxx message set 14 03
DFHMERDK CSECT (OCO) ME domain - DFHRDxxxx message set Japanese

(Kanji) version
14 03

DFHMERMC CSECT ME domain - DFHRMxxxx message set simplified
Chinese version

14 03

DFHMERME CSECT ME domain - DFHRMxxxx message set 14 03
DFHMERMK CSECT (OCO) ME domain - DFHRMxxxx message set Japanese

(Kanji) version
14 03

DFHMEROC CSECT ME domain - DFHRPxxxx message set simplified
Chinese version

14 03

DFHMEROE CSECT ME domain - DFHRPxxxx message set 14 03
DFHMEROK CSECT (OCO) ME domain - DFHRPxxxx message set Japanese

(Kanji) version
14 03

DFHMERPC CSECT ME domain - DFHRPxxxx message set simplified
Chinese version

14 03

DFHMERPE CSECT ME domain - DFHRPxxxx message set 14 03
DFHMERPK CSECT (OCO) ME domain - DFHRPxxxx message set Japanese

(Kanji) version
14 03

DFHMERQC CSECT ME domain - DFHRPxxxx message set simplified
Chinese version

14 03

DFHMERQE CSECT ME domain - DFHRPxxxx message set 14 03
DFHMERQK CSECT (OCO) ME domain - DFHRPxxxx message set Japanese

(Kanji) version
14 03

DFHMERRC CSECT ME domain - DFHRPxxxx message set simplified
Chinese version

14 03

DFHMERRE CSECT ME domain - DFHRPxxxx message set 14 03
DFHMERRK CSECT (OCO) ME domain - DFHRPxxxx message set Japanese

(Kanji) version
14 03

DFHMERSC CSECT ME domain - DFHRSxxxx message set simplified
Chinese version

14 03

DFHMERSE CSECT ME domain - DFHRSxxxx message set 14 03
DFHMERSK CSECT (OCO) ME domain - DFHRSxxxx message set Japanese

(Kanji) version
14 03

DFHMERTC CSECT ME domain - DFHRTxxxx message set simplified
Chinese version

14 03

DFHMERTE CSECT ME domain - DFHRTxxxx message set 14 03
DFHMERTK CSECT (OCO) ME domain - DFHRTxxxx message set Japanese

(Kanji) version
14 03

DFHMERUC CSECT ME domain - DFHRUxxxx message set simplified
Chinese version

14 03

DFHMERUE CSECT ME domain - DFHRUxxxx message set 14 03
DFHMERUK CSECT ME domain - DFHRUxxxx message set 14 03
DFHMERXC CSECT ME domain - DFHRXxxxx message set simplified

Chinese version
14 03

DFHMERXE CSECT ME domain - DFHRXxxxx message set 14 03
DFHMERXK CSECT ME domain - DFHRXxxxx message set 14 03
DFHMERZC CSECT ME domain - DFHRZxxxx message set simplified

Chinese version
14 03

DFHMERZE CSECT ME domain - DFHRZxxxx message set 14 03
DFHMERZK CSECT ME domain - DFHRZxxxx message set 14 03
DFHMESHC CSECT ME domain - DFHSHxxxx message set simplified

Chinese version
14 03

CICS directory

Chapter 115. CICS directory 1391

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHMESHE CSECT ME domain - DFHSHxxxx message set 14 03
DFHMESHK CSECT ME domain - DFHSHxxxx message set 14 03
DFHMESIC CSECT ME domain - DFHSIxxxx message set simplified

Chinese version
14 03

DFHMESIE CSECT ME domain - DFHSIxxxx message set 14 03
DFHMESIK CSECT (OCO) ME domain - DFHSIxxxx message set Japanese

(Kanji) version
14 03

DFHMESJC CSECT ME domain - DFHSJxxxx message set simplified
Chinese version

14 03

DFHMESJE CSECT ME domain - DFHSJxxxx message set 14 03
DFHMESJK CSECT (OCO) ME domain - DFHSJxxxx message set Japanese

(Kanji) version
14 03

DFHMESKC CSECT ME domain - DFHSKxxxx message set simplified
Chinese version

14 03

DFHMESKE CSECT ME domain - DFHSKxxxx message set 14 03
DFHMESKK CSECT ME domain - DFHSKxxxx message set 14 03
DFHMESMC CSECT ME domain - DFHSMxxxx message set simplified

Chinese version
14 03

DFHMESME CSECT ME domain - message set for SM domain 14 03
DFHMESMK CSECT ME domain - message set for SM domain 14 03
DFHMESNC CSECT ME domain - DFHSNxxxx message set simplified

Chinese version
14 03

DFHMESNE CSECT ME domain - DFHSNxxxx message set 14 03
DFHMESNK CSECT (OCO) ME domain - DFHSNxxxx message set Japanese

(Kanji) version
14 03

DFHMESOC CSECT ME domain - DFHSOxxxx message set simplified
Chinese version

14 03

DFHMESOE CSECT ME domain - DFHSOxxxx message set 14 03
DFHMESOK CSECT (OCO) ME domain - DFHSOxxxx message set Japanese

(Kanji) version
14 03

DFHMESR CSECT (OCO) ME domain - SIT overrides collection - 03
DFHMESRA DSECT MESR parameter list OS -
DFHMESRC CSECT ME domain - DFHSRxxxx message set simplified

Chinese version
14 03

DFHMESRE CSECT ME domain - DFHSRxxxx message set 14 03
DFHMESRK CSECT ME domain - DFHSRxxxx message set 14 03
DFHMESRM Macro MESR request OS -
DFHMESRT CSECT (OCO) MESR trace interpretation data - 03
DFHMESTC CSECT ME domain - message set for ST domain simplified

Chinese version
14 03

DFHMESTE CSECT ME domain - message set for ST domain 14 03
DFHMESTK CSECT (OCO) ME domain - message set for ST domain Japanese

(Kanji) version
14 03

DFHMESZC CSECT (OCO) ME domain - DFHSZxxxx message set (FEPI)
simplified Chinese version

14 03

DFHMESZE CSECT (OCO) ME domain - DFHSZxxxx message set (FEPI) 14 03
DFHMESZK CSECT (OCO) ME domain - DFHSZxxxx message set (FEPI)

Japanese (Kanji) version
14 03

DFHMETCC CSECT ME domain - DFHTCxxxx message set simplified
Chinese version

14 03

DFHMETCE CSECT ME domain - DFHTCxxxx message set 14 03
DFHMETCK CSECT (OCO) ME domain - DFHTCxxxx message set Japanese

(Kanji) version
14 03

DFHMETDC CSECT ME domain - DFHTDxxxx message set simplified
Chinese version

14 03

CICS directory

1392 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHMETDE CSECT ME domain - DFHTDxxxx message set 14 03
DFHMETDK CSECT ME domain - DFHTDxxxx message set Japanese

(Kanji) version
14 03

DFHMETFC CSECT ME domain - DFHTFxxxx message set simplified
Chinese version

14 03

DFHMETFE CSECT ME domain - DFHTFxxxx message set 14 03
DFHMETFK CSECT (OCO) ME domain - DFHTFxxxx message set Japanese

(Kanji) version
14 03

DFHMETIC CSECT ME domain - DFHTIxxxx message set simplified
Chinese version

14 03

DFHMETIE CSECT ME domain - message set for TI domain 14 03
DFHMETIK CSECT ME domain - message set for TI domain 14 03
DFHMETMC CSECT ME domain - DFHTMxxxx message set simplified

Chinese version
14 03

DFHMETME CSECT ME domain - DFHTMxxxx message set 14 03
DFHMETMK CSECT ME domain - DFHTMxxxx message set Japanese

(Kanji) version
14 03

DFHMETOC CSECT ME domain - DFHTOxxxx message set simplified
Chinese version

14 03

DFHMETOE CSECT ME domain - DFHTOxxxx message set 14 03
DFHMETOK CSECT (OCO) ME domain - DFHTOxxxx message set Japanese

(Kanji) version
14 03

DFHMETPC CSECT ME domain - DFHTPxxxx message set simplified
Chinese version

14 03

DFHMETPE CSECT ME domain - DFHTPxxxx message set 14 03
DFHMETPK CSECT (OCO) ME domain - DFHTPxxxx message set Japanese

(Kanji) version
14 03

DFHMETRC CSECT ME domain - message set for TR domain simplified
Chinese version

14 03

DFHMETRE CSECT ME domain - message set for TR domain 14 03
DFHMETRI CSECT (OCO) Trace interpreter for ME domain - 03
DFHMETRK CSECT (OCO) ME domain - message set for TR domain Japanese

(Kanji) version
14 03

DFHMETSC CSECT ME domain - DFHTSxxxx message set simplified
Chinese version

14 03

DFHMETSE CSECT ME domain - DFHTSxxxx message set 14 03
DFHMETSK CSECT (OCO) ME domain - DFHTSxxxx message set Japanese

(Kanji) version
14 03

DFHMET1 CSECT ME domain - DFHMET1x online message table 14 03
DFHMET1E CSECT DFHMEU base messages link-edit module 14 -
DFHMET2 CSECT (OCO) ME domain - DFHMET2x offline translator message

table
- 03

DFHMET3 CSECT (OCO) ME domain - DFHMET3x offline message table for
DFHSTUP

- 03

DFHMET4 CSECT (OCO) Offline message table for EXCI - 03
DFHMET5 CSECT ME domain - DFHMET5x online message table OS 03
DFHMET6 CSECT ME domain - DFHMET6x online message table - 03
DFHMET5E CSECT DFHMEU ONC RPS messages link-edit module 14 -
DFHMET9 CSECT ME domain - DFHMET9x online message table OS 03
DFHMEU CSECT Message translation utility program - 03
DFHMEUA DSECT (OCO) Message editing utility parameter list - 03
DFHMEUC CSECT (OCO) Message editing utility copy message dataset - 03
DFHMEUCL CSECT (OCO) Message editing utility copy message dataset 06 -
DFHMEUD CSECT (OCO) Message editing utility set/validate system defaults - 03
DFHMEUE CSECT (OCO) Message editing utility edit message - 03

CICS directory

Chapter 115. CICS directory 1393

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHMEUL CSECT (OCO) Message editing utility compile, assemble and link-edit

message data sets
- 03

DFHMEULT CSECT (OCO) Message editing utility CLIST to create language codes
table

06 -

DFHMEUM Macro (OCO) Message editing utility ISPF editor profile - 03
DFHMEUP CSECT (OCO) Message editing utility display PTF panel and submit

PTF job
- 03

DFHMEUPC CSECT ME domain - message set for UP domain simplified
Chinese version

14 03

DFHMEUPE CSECT (OCO) ME domain - DFHUPxxxx message set 14 03
DFHMEUPK CSECT (OCO) ME domain - DFHUPxxxx message set 14 03
DFHMEUSC CSECT (OCO) Message editing utility check state of message data

set simplified Chinese version
14 03

DFHMEUSE CSECT (OCO) Message editing utility check state of message data
set

14 03

DFHMEUSK CSECT (OCO) Message editing utility check state of message data
set Japanese (Kanji) version

14 03

DFHMEUU CSECT (OCO) Message editing utility compare PTF and English
message data sets

- 03

DFHMEU00 CSECT Message editing utility help index panel 16 -
DFHMEU01 CSECT Message editing utility main help panel 1 16 -
DFHMEU10 CSECT Message editing utility main panel 16 -
DFHMEU11 CSECT Message editing utility main help panel 2 16 -
DFHMEU12 CSECT Message editing utility main help panel 3 16 -
DFHMEU20 CSECT Message editing utility set defaults panel (part 1 of 2) 16 -
DFHMEU21 CSECT Message editing utility set defaults (part 1) help panel

1
16 -

DFHMEU22 CSECT Message editing utility set defaults (part 1) help panel
2

16 -

DFHMEU30 CSECT Message editing utility set defaults panel (part 2 of 2) 16 -
DFHMEU31 CSECT Message editing utility set defaults (part 2) help panel 16 -
DFHMEU40 CSECT Message editing utility language selection panel 16 -
DFHMEU41 CSECT Message editing utility language selection help panel 16 -
DFHMEU50 CSECT Message editing utility message selection panel 16 -
DFHMEU51 CSECT Message editing utility message selection help panel 16 -
DFHMEU60 CSECT Message editing utility message edit panel 16 -
DFHMEU61 CSECT Message editing utility message edit help panel 16 -
DFHMEU70 CSECT Message editing utility apply PTF updates panel 16 -
DFHMEU71 CSECT Message editing utility apply PTF updates help panel 16 -
DFHMEWBC CSECT (OCO) ME domain 14 03
DFHMEWBE CSECT (OCO) ME domain 14 03
DFHMEWBK CSECT (OCO) ME domain 14 03
DFHMEWS CSECT (OCO) ME domain - write symptom string to SYS1.LOGREC - 03
DFHMEWSA DSECT MEWS parameter list OS -
DFHMEWSM Macro MEWS request OS -
DFHMEWST CSECT (OCO) MEWS trace interpretation data - 03
DFHMEWT CSECT (OCO) ME domain - WTOR service routine - 03
DFHMEWTA DSECT MEWT parameter list OS -
DFHMEWTM Macro MEWT request OS -
DFHMEWTT CSECT (OCO) MEWT trace interpretation data - 03
DFHMEXAC CSECT ME domain - message set for XA domain simplified

Chinese version
14 03

DFHMEXAE CSECT ME domain - DFHXAxxxx message set 14 03
DFHMEXAK CSECT ME domain - DFHXAxxxx message set 14 03

CICS directory

1394 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHMEXCC CSECT ME domain - message set for XC domain simplified

Chinese version
14 03

DFHMEXCE CSECT ME domain - DFHXCxxxx message set 14 03
DFHMEXCK CSECT ME domain - DFHXCxxxx message set 14 03
DFHMEXGC CSECT ME domain - DFHXGxxxx message set simplified

Chinese version
14 03

DFHMEXGE CSECT ME domain - DFHXGxxxx message set 14 03
DFHMEXGK CSECT (OCO) ME domain - DFHXGxxxx message set Japanese

(Kanji) version
14 03

DFHMEXMC CSECT ME domain - DFHXMxxxx message set simplified
Chinese version

14 03

DFHMEXME CSECT ME domain - DFHXMxxxx message set 14 03
DFHMEXMK CSECT (OCO) ME domain - DFHXMxxxx message set Japanese

(Kanji) version
14 03

DFHMEXOC CSECT ME domain - DFHXOxxxx message set simplified
Chinese version

14 03

DFHMEXOE CSECT ME domain - DFHXOxxxx message set 14 03
DFHMEXOK CSECT ME domain - DFHXOxxxx message set 14 03
DFHMEXQE CSECT ME domain - DFHXQxxxx message set 14 -
DFHMEXSC CSECT ME domain - DFHXSxxxx message set simplified

Chinese version
14 03

DFHMEXSE CSECT ME domain - DFHXSxxxx message set 14 03
DFHMEXSK CSECT (OCO) ME domain - DFHXSxxxx message set Japanese

(Kanji) version
14 03

DFHMEZAC CSECT ME domain - DFHZAxxxx message set simplified
Chinese version

14 03

DFHMEZAE CSECT ME domain - DFHZAxxxx message set 14 03
DFHMEZAK CSECT (OCO) ME domain - DFHZAxxxx message set Japanese

(Kanji) version
14 03

DFHMEZBC CSECT ME domain - DFHZBxxxx message set simplified
Chinese version

14 03

DFHMEZBE CSECT ME domain - DFHZBxxxx message set 14 03
DFHMEZBK CSECT (OCO) ME domain - DFHZBxxxx message set Japanese

(Kanji) version
14 03

DFHMEZCC CSECT ME domain - DFHZCxxxx message set simplified
Chinese version

14 03

DFHMEZCE CSECT ME domain - DFHZCxxxx message set 14 03
DFHMEZCK CSECT (OCO) ME domain - DFHZCxxxx message set Japanese

(Kanji) version
14 03

DFHMEZDC CSECT ME domain - DFHZDxxxx message set simplified
Chinese version

14 03

DFHMEZDE CSECT ME domain - DFHZDxxxx message set 14 03
DFHMEZDK CSECT (OCO) ME domain - DFHZDxxxx message set Japanese

(Kanji) version
14 03

DFHMEZEC CSECT ME domain - DFHZExxxx message set simplified
Chinese version

14 03

DFHMEZEE CSECT ME domain - DFHZExxxx message set 14 03
DFHMEZEK CSECT (OCO) ME domain - DFHZExxxx message set Japanese

(Kanji) version
14 03

DFHMEZNC CSECT ME domain - DFHZNxxxx message set simplified
Chinese version

14 03

DFHMEZNE CSECT ME domain - DFHZNxxxx message set 14 03
DFHMEZNK CSECT (OCO) ME domain - DFHZNxxxx message set Japanese

(Kanji) version
14 03

CICS directory

Chapter 115. CICS directory 1395

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHME00C CSECT ME domain - NLS message language globals

simplified Chinese version
14 03

DFHME00E CSECT ME domain - NLS message language globals 14 03
DFHME00K CSECT (OCO) ME domain - NLS message language globals

Japanese (Kanji) version
14 03

DFHME01E CSECT ME domain - NLS message language globals 14 -
DFHME1UC CSECT ME domain 14 03
DFHME1UE CSECT ME domain - DFH1Uxx message set 14 03
DFHME1UK CSECT (OCO) ME domain - DFH1Uxx message set 14 03
DFHME42E CSECT ME domain - DFH42xx message set 14 -
DFHME70C CSECT ME domain - DFH70xx message set simplified Chinese

version
14 03

DFHME70E CSECT ME domain - DFH70xx message set 14 03
DFHME70K CSECT (OCO) ME domain - DFH70xx message set 14 03
DFHME71C CSECT ME domain - DFH71xx message set simplified Chinese

version
14 03

DFHME71E CSECT ME domain - DFH71xx message set 14 03
DFHME71K CSECT (OCO) ME domain - DFH71xx message set 14 03
DFHME72C CSECT ME domain - DFH72xx message set simplified Chinese

version
14 03

DFHME72E CSECT ME domain - DFH72xx message set 14 03
DFHME72K CSECT (OCO) ME domain - DFH72xx message set 14 03
DFHMGM Macro Message prototype macro 11 -
DFHMGMI0 Macro Message prototype literal macro-1 11 -
DFHMGMI1 Macro Message prototype literal macro-2 11 -
DFHMGPME CSECT DFHMGP NLS message support OS 03
DFHMGP00 CSECT DFHMGP error message find OS 03
DFHMGT CSECT Message generation table 11 03
DFHMGT01 CSECT Subsystem interface message table segment 11 -
DFHMGT20 CSECT Message generation table segment 11 -
DFHMGT21 CSECT Message generation table segment 11 -
DFHMGT22 CSECT Message generation table segment 11 -
DFHMGT24 CSECT Message generation table segment 11 -
DFHMGT26 CSECT Message generation table segment 11 -
DFHMGT33 CSECT Message generation table segment 11 -
DFHMGT34 CSECT Message generation table segment 11 -
DFHMGT35 CSECT Message generation table segment 11 -
DFHMGT37 CSECT Message generation table segment 11 -
DFHMGT44 CSECT Message generation table segment 11 -
DFHMGT49 CSECT Message generation table segment 11 -
DFHMGT50 CSECT Message generation table segment 11 -
DFHMGT85 CSECT Message generation table segment 11 -
DFHMGT90 CSECT Message generation table segment 11 -
DFHMIN Source BMS 3270 input mapping OS -
DFHMIRS CSECT ISC request shipping - mirror program OS 03
DFHMKDIR Other - 02
DFHMKEYS CSECT Alias for MEUKEYS 16 -
DFHML1 CSECT BMS LU1 printer mapping program OS 03
DFHMN Macro MN domain - inline request OS -
DFHMNDEF Macro MN domain - some control blocks OS -
DFHMNDM CSECT (OCO) MN domain - initialization/termination - 03
DFHMNDUF CSECT (OCO) SDUMP formatter for MN domain - 03
DFHMNDUP CSECT (OCO) Monitoring dictionary utility - 03
DFHMNEXC Macro MN domain - monitoring exception record 11 -

CICS directory

1396 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHMNGDS DSECT MN domain - global statistics 11 -
DFHMNGDS DSECT MN domain - global statistics C2 07
DFHMNMN CSECT (OCO) MN domain - functions - 03
DFHMNMNA DSECT MNMN parameter list OS -
DFHMNMNM Macro MNMN request OS -
DFHMNMNT CSECT MNMN trace interpretation data OS 03
DFHMNMNX Macro MNMN request (XPI) 11 -
DFHMNMNY DSECT MNMN parameter list (XPI) 11 -
DFHMNNT CSECT (OCO) MN domain - XM notify gate - 03
DFHMNPBI Macro MN domain - access to MVS WLM performance block

token
OS -

DFHMNPDA CSECT Monitoring facility performance class record 19 -
DFHMNSMF Macro MN domain - monitoring SMF header and SMF product

section
11 -

DFHMNSR CSECT (OCO) MN domain - services - 03
DFHMNSRA DSECT MNSR parameter list OS -
DFHMNSRM Macro MNSR request OS -
DFHMNSRT CSECT MNSR trace interpretation data OS 03
DFHMNST CSECT (OCO) MN domain - statistics services - 03
DFHMNSU CSECT (OCO) MN domain - subroutines - 03
DFHMNSUA DSECT MNSU parameter list OS -
DFHMNSUM Macro MNSU request OS -
DFHMNSUT CSECT MNSU trace interpretation data OS 03
DFHMNSVC CSECT (OCO) MN domain - authorized service routine - 03
DFHMNTDS DSECT MN domain - transaction monitoring data 11 -
DFHMNTDS DSECT MN domain - transaction monitoring data C2 07
DFHMNTI CSECT (OCO) MN domain - timer gate - 03
DFHMNTRI CSECT (OCO) Trace interpreter for MN domain - 03
DFHMNUE CSECT (OCO) MN domain - user exit service - 03
DFHMNXM CSECT (OCO) MN domain functional gate - 03
DFHMNXMT DSECT MNXM translate tables - 03
DFHMOVE Macro Domain call argument MOVE macro OS -
DFHMPARS CSECT Parameter syntax checking OS -
DFHMRCDS DSECT Transient data VSAM control OS -
DFHMRDUF CSECT (OCO) MRO SDUMP formatter - 03
DFHMROQM Macro MRO work queue manager interface OS -
DFHMROQP CSECT MRO work queue manager - enable/disable OS 03
DFHMROSM Macro MRO work queue manager quickcell interface OS -
DFHMRQDS DSECT MRO work queue manager control blocks OS -
DFHMRXM CSECT TF XM transaction attach - 03
DFHMSCAN CSECT Macro scan utility OS 03
DFHMSD Macro Generate BMS map set definition 11 -
DFHMSET CSECT Parameter syntax checking record OS -
DFHMSG Macro Generate a message 11 -
DFHMSGIF CSECT CZ Direct_to_CICS - 03
DFHMSG00 CSECT MEU MEU00x message set (alias MEU00) 12 -
DFHMSG01 CSECT MEU MEU01x message set (alias MEU01) 12 -
DFHMSG02 CSECT MEU MEU02x message set (alias MEU02) 12 -
DFHMSG03 CSECT MEU MEU03x message set (alias MEU03) 12 -
DFHMSG04 CSECT MEU MEU04x message set (alias MEU04) 12 -
DFHMSG05 CSECT MEU MEU05x message set (alias MEU05) 12 -
DFHMSGEN Macro Generate messages in BMS modules OS -
DFHMSP CSECT Message switching program OS 03
DFHMSPUT Macro Put messages to terminals in BMS OS -

CICS directory

Chapter 115. CICS directory 1397

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHMSRCA Symbolic Magnetic slot reader control values 11 -
DFHMSRCA Symbolic Magnetic slot reader control values C2 07
DFHMSRCA Symbolic Magnetic slot reader control values D3 08
DFHMSX Symbolic 11 -
DFHMVRMS CSECT (OCO) MVS recovery/termination manager RESMGR exit stub - 03
DFHMWCDS DSECT Transient data wait control OS -
DFHMXP CSECT Local queuing shipper OS 03
DFHM32 CSECT BMS 3270 mapping OS -
DFHM32A$ CSECT BMS 3270 mapping (standard) OS 03
DFHM321$ CSECT BMS 3270 mapping (full) OS 03
DFHNCASM Macro Named counter service interface 11 -
DFHNCC DSECT Named counter service interface - 08
DFHNCCF DSECT Named counter service interface - 03
DFHNCCN DSECT Named counter service interface - 03
DFHNCOB DSECT Named counter service interface - 07
DFHNCDF DSECT Named counter server AXM definitions - 03
DFHNCEN DSECT NC ENF event interface - 03
DFHNCEQU Macro Named counter server interface 11 -
DFHNCIF CSECT Named counter server interface - 03
DFHNCMN CSECT Named counter server main program - 03
DFHNCMS CSECT Named counter server messages - 03
DFHNCO Macro Named counter option table definition 11 -
DFHNCOP CSECT Named counter server operator commands - 03
DFHNCOPT CSECT Named counter server sample option table 19 03
DFHNCPLI CSECT Named counter service interface 17 -
DFHNCPR CSECT Named counter server parameter routine - 03
DFHNCPS CSECT Named counter server pool selection - 03
DFHNCRL CSECT Named counter server pool reload - 03
DFHNCRQ CSECT Named counter server request routine - 03
DFHNCRS CSECT NC ARM Restart Support - 03
DFHNCST CSECT Named counter server statistics support - 03
DFHNCS4D Macro Named counter server list str stats 11 -
DFHNCS5D Macro Named counter server storage statistics 11 -
DFHNCTR CSECT Named counter server interface stub - 03
DFHNCUL CSECT Named counter server pool unload - 03
DFHNEPCA DSECT NEP communication area D2 -
DFHNEPCA Macro NEP communication area 11 -
DFHNOTIT CSECT - 03
DFHNQDM CSECT NQ domain management - 03
DFHNQDUF CSECT NQ offline dump formatting - 03
DFHNQED CSECT NQED format enqueue/dequeue - 03
DFHNQEDA CSECT NQED parameter list OS -
DFHNQEDM Macro NQED request OS -
DFHNQEDT DSECT NQED translate tables - 03
DFHNQEDX Macro 11 -
DFHNQEDY Macro 11 -
DFHNQGDS CSECT NQ enqueue manager statistics 11 -
DFHNQGDS CSECT NQ enqueue manager statistics C2 07
DFHNQIB CSECT NQ inquire/browse module - 03
DFHNQIBA CSECT NQIB parameter list OS -
DFHNQIBM Macro NQIB request OS -
DFHNQIBT DSECT NQIB translate tables - 03
DFHNQIE CSECT NQ default enqueue interpreter - 03
DFHNQNQ CSECT NQ main functions - 03

CICS directory

1398 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHNQNQA CSECT NQNQ parameter list OS -
DFHNQNQM Macro NQNQ request OS -
DFHNQNQT DSECT NQNQ translate tables - 03
DFHNQRN CSECT Sysplex resource names services - 03
DFHNQRNA Other NQRN interface parameter area OS -
DFHNQRNM Macro DFHNQRN interface macro OS -
DFHNQRNT CSECT - 03
DFHNQST CSECT (OCO) NQ statistics - 03
DFHNQTRI CSECT (OCO) NQ offline trace interpretation - 03
DFHNQUED Macro EXEC arguement list for ENQ/DEQ user exits 11 -
DFHNXDUF CSECT (OCO) SDUMP control block index processor - 03
DFHOPSRC Other JCL to install optional source tapes 02 -
DFHOSPWA DSECT BMS common control area 11 -
DFHOTCO CSECT OTCO CDURUN and Gate Module - 03
DFHOTCOT CSECT - 03
DFHOTCPT CSECT - 03
DFHOTDM CSECT OT Domain Management - 03
DFHOTDUF CSECT OT Domain Dump Formatting - 03
DFHOTIS1 CSECT - 03
DFHOTIS2 CSECT - 03
DFHOTR CSECT OTS Resync Transaction - 03
DFHOTRM CSECT Run Transaction Syncpoint Processor - 03
DFHOTRP1 CSECT - 03
DFHOTRS CSECT OTRS CDURUN and Gate Module - 03
DFHOTRST CSECT - 03
DFHOTSU CSECT OTSU CDURUN and Gate Module - 03
DFHOTSUT CSECT - 03
DFHOTTR CSECT OTTR CDURUN and Gate Module - 03
DFHOTTRI CSECT OT Domain Trace Interpretation - 03
DFHOTTRT CSECT - 03
DFHOTVP1 CSECT - 03
DFHPADM CSECT (OCO) PA domain - initialization/termination - 03
DFHPADUF CSECT (OCO) SDUMP formatter for PA domain - 03
DFHPAGP CSECT (OCO) PA domain - get parameters service - 03
DFHPAGPA DSECT PAGP parameter list OS -
DFHPAGPM Macro PAGP request OS -
DFHPAGPT CSECT (OCO) PAGP trace interpretation data - 03
DFHPAIO CSECT (OCO) PA domain - communication with SYSIN data set and

operator console
- 03

DFHPAIOA DSECT PAIO parameter list OS -
DFHPAIOM Macro PAIO request OS -
DFHPAIOT CSECT (OCO) PAIO trace interpretation data - 03
DFHPAPL Macro DBCTL architected parameter list OS -
DFHPASY CSECT (OCO) PA domain - system initialization parameter checker

and syntax analyzer
- 03

DFHPASYA DSECT PASY parameter list OS -
DFHPASYM Macro PASY request OS -
DFHPASYT CSECT (OCO) PASY trace interpretation data - 03
DFHPATCH Macro Generate patch area 11 -
DFHPATRI CSECT (OCO) Trace interpreter for PA domain - 03
DFHPBP CSECT BMS page and text build OS -
DFHPBPA$ CSECT BMS page and text build (standard) OS 03
DFHPBP1$ CSECT BMS page and text build (full) OS 03
DFHPC Macro Program service request 11 -

CICS directory

Chapter 115. CICS directory 1399

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHPCEDS DSECT EXEC argument list for Program Control - 11
DFHPCEXT CSECT AP recovery point when called from kernel OS -
DFHPCOM Macro PEP communication area 11 -
DFHPCOMD DSECT PEP communication area - 08
DFHPCPC2 CSECT PCP interface to COBOL stub for OS/VS COBOL V1

R2.3 or R2.4 application programs
OS 03

DFHPCPG CSECT PM domain - interface program - 03
DFHPCTDS DSECT Program control table 11 -
DFHPCTPF Macro Generate a profile entry 11 -
DFHPCUE DSECT Program control data block for user exits 11 -
DFHPCXDF CSECT DU domain - transaction dump formatter for program

related areas
OS 03

DFHPDI Macro Generate BMS partition definition 11 -
DFHPDKW CSECT (OCO) SDUMP formatting - CICSDATA operand string

validation
- 03

DFHPDX1 CSECT (OCO) SDUMP formatting - control program - 03
DFHPEP CSECT User-replaceable program error program 19 03
DFHPEPD Sample Program error program - C/370 - 19
DFHPESAD Source Program environment save area (PESA) OS -
DFHPGACD Macro PG domain - autoinstall exit program parameter list -

Assembler
11 -

DFHPGACH CSECT PG domain - autoinstall exit program parameter list -
C/370

- 08

DFHPGACL CSECT PG domain - autoinstall exit program parameter list -
PL/I

P2 -

DFHPGACO CSECT PG domain - autoinstall exit program parameter list -
COBOL

C2 -

DFHPGADS DSECT BMS page control area OS -
DFHPGADX CSECT Program autoinstall exit - Assembler 19 03
DFHPGAHX Sample Program autoinstall exit - C/370 - 19
DFHPGAI CSECT Program autoinstall function - 03
DFHPGAIT CSECT PGAI trace interpretation data - 03
DFHPGALX Sample Program autoinstall exit - PL/I - 19
DFHPGAOX Sample Program autoinstall exit - COBOL - 19
DFHPGAQ CSECT PG domain - inquire/set autoinstall - 03
DFHPGAQA DSECT PGAQ parameter list OS -
DFHPGAQM Macro PGAQ request OS -
DFHPGAQT CSECT PGAQ trace interpretation data - 03
DFHPGAQX Macro PGAQ request 11 -
DFHPGAQY DSECT PGAQ parameter list 11 -
DFHPGDCD Source PG domain anchor block OS -
DFHPGDD CSECT (OCO) PG domain - define/delete program - 03
DFHPGDDA DSECT PGDD parameter list OS -
DFHPGDDM Macro PGDD request OS -
DFHPGDDT CSECT (OCO) PGDD trace interpretation data - 03
DFHPGDM CSECT PG domain - initialize, quiesce, and terminate domain

functions
- 03

DFHPGDUF CSECT (OCO) PG domain - SDUMP formatter - 03
DFHPGEX CSECT (OCO) PG domain - initialize and terminate exits functions - 03
DFHPGEXA DSECT PGEX parameter list OS -
DFHPGEXI Macro PGEX inline version of DFHPGEXM OS -
DFHPGEXM Macro PGEX request OS -
DFHPGEXT Macro (OCO) PGEX trace interpretation data - 03
DFHPGGDS Macro PG domain - statistics 11 -

CICS directory

1400 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHPGGDS Macro PG domain - statistics C2 07
DFHPGHM CSECT (OCO) PG domain - handle manager services - 03
DFHPGHMA DSECT PGHM parameter list OS -
DFHPGHMI Macro PGHM inline version of DFHPGHMM OS -
DFHPGHMM Macro PGHM request OS -
DFHPGHMT CSECT (OCO) PGHM trace interpretation data - 03
DFHPGIS CSECT (OCO) PG domain - PGIS functions - 03
DFHPGISA DSECT PGIS parameter list - 11
DFHPGISI Macro PGIS inline version of DFHPGHMM OS -
DFHPGISM Macro PGIS request - 11
DFHPGIST CSECT (OCO) PGIS trace interpretation data - 03
DFHPGISX Macro PGIS request 11 -
DFHPGISY CSECT PGIS parameter list 11 -
DFHPGLD CSECT (OCO) PG domain - load and release functions - 03
DFHPGLDA DSECT PGLD parameter list OS -
DFHPGLDM Macro PGLD request OS -
DFHPGLDT CSECT (OCO) PGLD trace interpretation data - 03
DFHPGLE CSECT (OCO) PG domain - link exec function - 03
DFHPGLEA DSECT PGLE parameter list OS -
DFHPGLEM Macro PGLE request OS -
DFHPGLET CSECT (OCO) PGLE trace interpretation data - 03
DFHPGLK CSECT (OCO) PG domain - link and link PLT functions - 03
DFHPGLKA DSECT PGLK parameter list OS -
DFHPGLKM Macro PGLK request OS -
DFHPGLKT CSECT (OCO) PGLK trace interpretation data - 03
DFHPGLU CSECT (OCO) PG domain - link URM function - 03
DFHPGLUA DSECT PGLU parameter list OS -
DFHPGLUM Macro PGLU request OS -
DFHPGLUT CSECT (OCO) PGLU trace interpretation data - 03
DFHPGP Macro Validate group name for PCT/PPT migrate 11 -
DFHPGPG CSECT (OCO) PG domain - initial link function - 03
DFHPGPGA DSECT PGPG parameter list OS -
DFHPGPGM Macro PGPG request OS -
DFHPGPGT CSECT (OCO) PGPG trace interpretation data - 03
DFHPGRE CSECT (OCO) PG domain - prepare return function - 03
DFHPGREA DSECT PGRE parameter list OS -
DFHPGREM Macro PGRE request OS -
DFHPGRET CSECT (OCO) PGRE trace interpretation data - 03
DFHPGRP CSECT (OCO) PG domain - recovery program - 03
DFHPGRPT CSECT (OCO) PGRP trace interpretation data - 03
DFHPGST CSECT (OCO) PG domain - statistics - 03
DFHPGTRI CSECT (OCO) PG domain - trace interpreter - 03
DFHPGUE CSECT (OCO) PG domain - service requests user exit - 03
DFHPGXE CSECT (OCO) PG domain - prepare XCTL function - 03
DFHPGXEA DSECT PGXE parameter list OS -
DFHPGXEM Macro PGXE request OS -
DFHPGXET CSECT (OCO) PGXE trace interpretation data - 03
DFHPGXM CSECT (OCO) PG domain - initialize and terminate transactions

functions
- 03

DFHPGXMT CSECT (OCO) PGXM trace interpretation data - 03
DFHPH Macro Partition handling macro 11 -
DFHPHN CSECT Phonetic code conversion OS 03
DFHPHP CSECT Partition handling program OS 03

CICS directory

Chapter 115. CICS directory 1401

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHPLARG DSECT Generalized domain call parameter list (header,

standard fields, responses)
OS -

DFHPLT Macro Program list table 11 -
DFHPLTDS DSECT Program list table definition OS -
DFHPPFDS DSECT KC domain - profile data OS -
DFHPRCM CSECT (OCO) Partner resource manager command interface - 03
DFHPRCMA DSECT PRCM parameter list OS -
DFHPRCMM Macro PRCM request OS -
DFHPRCMT CSECT (OCO) PRCM trace interpretation data - 03
DFHPRDUF CSECT (OCO) Partner resource manager SDUMP formatter SAA

communications interface
- 03

DFHPRFS CSECT (OCO) Partner resource manager interface to - 03
DFHPRFSA DSECT PRFS parameter list OS -
DFHPRFSM Macro PRFS request OS -
DFHPRFST CSECT (OCO) PRFS trace interpretation data - 03
DFHPRINA DSECT PRIN parameter list OS -
DFHPRINM Macro PRIN request OS -
DFHPRINT Macro DSECT print control 11 -
DFHPRINU CSECT (OCO) PRIN trace interpretation data - 03
DFHPRIN1 CSECT (OCO) Partner resource manager initialization management

program
- 03

DFHPRIN2 CSECT (OCO) Partner resource manager initialization subtask
program

- 03

DFHPRK CSECT 3270 print key program OS 03
DFHPRMCK Macro Parameter checking macro 11 -
DFHPROLG Source Prologue to DFHENTER OS -
DFHPROLM Source Acquire LIFO storage application prolog OS -
DFHPROLO Macro Acquire automatic storage appl prolog OS -
DFHPRPT CSECT (OCO) Partner resource table (PRT) manager - 03
DFHPRPTA DSECT PRPT parameter list OS -
DFHPRPTM Macro PRPT request OS -
DFHPRPTT CSECT (OCO) PRPT trace interpretation data - 03
DFHPRRP CSECT (OCO) Partner resource manager recovery program - 03
DFHPRRPA DSECT PRRP parameter list OS -
DFHPRRPM Macro PRRP request OS -
DFHPRRPT CSECT (OCO) PRRP trace interpretation data - 03
DFHPRSDS DSECT Partner static storage area OS -
DFHPS Macro System spooling interface OS -
DFHPSD Macro Generate BMS partition set definition 11 -
DFHPSDDS DSECT Partition set control block OS -
DFHPSGDS DSECT Spooler global control block 11 -
DFHPSIP CSECT Spooler initialization program OS 03
DFHPSP CSECT System spooling interface program OS 03
DFHPSPCK CSECT System spooling subsystem activator OS 03
DFHPSPDW CSECT System spooling interface, DWE processor OS 03
DFHPSPSS CSECT System spooling JES interface subtask OS 03
DFHPSPST CSECT System spooling JES interface control OS 03
DFHPSSVC CSECT System spooling interface, retrieve a data set name OS 03
DFHPTDUF CSECT (OCO) Program control table SDUMP formatter - 03
DFHPUPAB CSECT CSDUP - initialize RDO parameter fields and address

list (DFHPUPA)
OS 03

DFHPUPAC CSECT CSDUP - initialize RDO parameter fields and address
list (DFHPUPA)

OS 03

CICS directory

1402 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHPUPB CSECT CSDUP - RDO parameter utility program, batch

environment (DFHPUP batch)
- 03

DFHPUPC CSECT RDO parameter utility program, CICS environment
(DFHPUP CICS)

- 03

DFHPUPDB CSECT CSDUP - default parameter values lookup (DFHPUPD
batch)

OS 03

DFHPUPDC CSECT RDO parameter utility - default parameter values
lookup (DFHPUPD CICS)

OS 03

DFHPUPXB CSECT CSDUP - language table referencing functions
(DFHPUPX batch)

OS 03

DFHPUPXC CSECT RDO parameter utility - language table referencing
functions (DFHPUPX CICS)

OS 03

DFHP3270 CSECT 3270 print function support OS 03
DFHQRY CSECT Query transaction OS 03
DFHQSSS CSECT (OCO) Qualified subsystem services - 03
DFHRCEX CSECT Recovery control enable exit OS 03
DFHRCNO Other Used by DFHSTART cataloged procedure 19 -
DFHRCSDS DSECT Recovery control static storage OS -
DFHRCYES Other Used by DFHSTART cataloged procedure 19 -
DFHRDDUF CSECT Resource definition recovery offline dump exit - 03
DFHRDJPN CSECT (OCO) CSD utilities - RDL for Japanese language feature

upgrade
- 03

DFHREGS Macro Standard register name definition 11 -
DFHREQ Macro Attention ID coding macro 11 -
DFHREST CSECT User-replaceable restart program 19 03
DFHRITRI CSECT RMI trace interpretation routine - 03
DFHRKB CSECT 3270 release keyboard program OS 03
DFHRLR CSECT BMS route list resolution OS -
DFHRLRA$ CSECT BMS route list resolution (standard) OS 03
DFHRLR1$ CSECT BMS route list resolution (full) OS 03
DFHRMCAL Macro Resource manager call 11 -
DFHRMCD CSECT Recovery manager client directory - 03
DFHRMCDA CSECT RMCD parameter list OS -
DFHRMCDM Macro RMCD request OS -
DFHRMCDT DSECT RMCD translate tables - 03
DFHRMCD1 CSECT RM client directory class initialization - 03
DFHRMCD2 CSECT RM client directory class quiesce proc - 03
DFHRMCI2 CSECT RM client directory set gate procedure - 03
DFHRMCI3 CSECT RM client directory wait for client proc - 03
DFHRMCI4 CSECT RM client directory send procedure - 03
DFHRMDEA CSECT RMDE parameter list OS -
DFHRMDEM Macro RMDE request OS -
DFHRMDET DSECT RMDE translate tables - 03
DFHRMDM CSECT Recovery manager domain management - 03
DFHRMDMA CSECT RMDM parameter list OS -
DFHRMDMM Macro RMDM request OS -
DFHRMDMT DSECT RMDM translate tables - 03
DFHRMDU0 CSECT RMCI dump formatting - 03
DFHRMDU2 CSECT RMDU start work token browse procedure - 03
DFHRMDU3 CSECT RMDU get next work token procedure - 03
DFHRMDU4 CSECT RMDU end work token browse procedure - 03
DFHRMDU5 CSECT - 03
DFHRMGDS CSECT Recovery manager global statistics 11 -
DFHRMGDS CSECT Recovery manager global statistics C2 07

CICS directory

Chapter 115. CICS directory 1403

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHRMKDA CSECT RMKD parameter list OS -
DFHRMKDM Macro RMKD request OS -
DFHRMKDT DSECT RMKD translate tables - 03
DFHRMKPA CSECT RMKP parameter list OS -
DFHRMKPM Macro RMKP request OS -
DFHRMKPT DSECT RMKP translate tables - 03
DFHRMLKQ CSECT RMLK quiesce procedure - 03
DFHRMLKT DSECT RMLK translate tables - 03
DFHRMLK1 CSECT RMLK initialize class procedure - 03
DFHRMLK2 CSECT RMLK initiate recovery2 procedure - 03
DFHRMLK3 CSECT RMLK inquire logname procedure - 03
DFHRMLK4 CSECT RMLK clear pending2 procedure - 03
DFHRMLK5 CSECT RMLK collect statistics procedure - 03
DFHRMLN CSECT RMLN gate handler module - 03
DFHRMLNA CSECT RMLN parameter list OS -
DFHRMLNM Macro RMLN request OS -
DFHRMLNT DSECT RMLN translate table - 03
DFHRMLSD CSECT Recovery Manager LinkSet class declaration - 03
DFHRMLSF CSECT RMLS inquire awaiting forget procedure - 03
DFHRMLSO CSECT RMLS commit procedure - 03
DFHRMLSP CSECT RMLS prepare procedure - 03
DFHRMLSS CSECT RMLS shunt procedure - 03
DFHRMLSU CSECT RMLS unshunt procedure - 03
DFHRML1D CSECT RMLK deliver data procedure - 03
DFHRMNM CSECT Recovery Manager Lognames class - 03
DFHRMNMA CSECT RMNM parameter list OS -
DFHRMNMM Macro RMNM request OS -
DFHRMNMT DSECT RMNM translate tables - 03
DFHRMNM1 CSECT RMNM initialize class procedure - 03
DFHRMNS1 CSECT RMNS initialize class procedure - 03
DFHRMNS2 CSECT RMNS quiesce procedure - 03
DFHRMOFI CSECT RMOF initialize procedure - 03
DFHRMOT CSECT RMOT CDURUN and Gate Module - 03
DFHRMOTT CSECT - 03
DFHRMREA CSECT RMRE parameter list OS -
DFHRMREM Macro RMRE request OS -
DFHRMRET DSECT RMRE translate tables - 03
DFHRMRO CSECT RM resource owner class - 03
DFHRMROA CSECT RMRO parameter list OS -
DFHRMROM Macro RMRO request OS -
DFHRMROO CSECT RMRO forgotten procedure - 03
DFHRMROS CSECT RMRO shunt procedure - 03
DFHRMROT CSECT RMRO translate tables - 03
DFHRMROU CSECT RMRO unshunt procedure - 03
DFHRMROV CSECT RMRO avail procedure - 03
DFHRMRO1 CSECT RMRO initialize class procedure - 03
DFHRMRO2 CSECT RMRO start back out procedure - 03
DFHRMRO3 CSECT RMRO deliver back out data procedure - 03
DFHRMRO4 CSECT RMRO end back out procedure - 03
DFHRMRS CSECT RM RMC CDURUN and Gate Module - 03
DFHRMR1D CSECT RMRO deliver data procedure - 03
DFHRMR1E CSECT RMRO end delivery procedure - 03
DFHRMR1K CSECT RMRO take keypoint procedure - 03
DFHRMR1S CSECT RMRO start delivery procedure - 03

CICS directory

1404 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHRMSL CSECT RM system log class - 03
DFHRMSLA CSECT RMSL parameter list OS -
DFHRMSLF CSECT RMSL force procedure - 03
DFHRMSLJ CSECT RMSL notify disjoint chains procedure - 03
DFHRMSLL CSECT RMSL close chain procedure - 03
DFHRMSLM Macro RMSL request OS -
DFHRMSLO CSECT RMSL open chain procedure - 03
DFHRMSLT CSECT RMSL translate tables - 03
DFHRMSLV CSECT RMSL move chain procedure - 03
DFHRMSLW CSECT RMSL write procedure - 03
DFHRMSL1 CSECT RMSL initialize class procedure - 03
DFHRMSL2 CSECT RMSL start chain browse procedure - 03
DFHRMSL3 CSECT RMSL chain browse read procedure - 03
DFHRMSL4 CSECT RMSL end chain browse procedure - 03
DFHRMSL5 CSECT RMSL restart procedure - 03
DFHRMSL6 CSECT RMSL schedule keypoint procedure - 03
DFHRMSL7 CSECT RMSL take keypoint procedure - 03
DFHRMST CSECT RM statistics class - 03
DFHRMST1 CSECT RMST initialize class procedure - 03
DFHRMSY CSECT Resource Manager resynchronization program - 03
DFHRMTRI CSECT Offline trace formatting interpretation routine parameter

list
- 03

DFHRMUC CSECT Resource Manager create UOW - 03
DFHRMUO CSECT Resource Manager commit UOW - 03
DFHRMUW CSECT Resource Manager unit of work class - 03
DFHRMUTL CSECT Resource Manager batch utility program - 03
DFHRMUWA CSECT RMUW parameter list OS -
DFHRMUWB CSECT RMUW deliver backout procedure - 03
DFHRMUWE CSECT RMUW unshunt reply procedure - 03
DFHRMUWF CSECT RMUW force procedure - 03
DFHRMUWH CSECT RMUW hold procedure - 03
DFHRMUWI Macro RMUWI inquire UOQ ID OS -
DFHRMUWJ CSECT RMUW force heurism procedure - 03
DFHRMUWL CSECT RMUW forget links procedure - 03
DFHRMUWM Macro RMUW request OS -
DFHRMUWN CSECT RMUW unshunt procedure - 03
DFHRMUWP CSECT RMUW process avail procedure - 03
DFHRMUWQ CSECT RMUW process indoubt resolution procedure - 03
DFHRMUWS CSECT RMUW record decision procedure - 03
DFHRMUWT DSECT RM unit of work class (timeout) - 03
DFHRMUWU CSECT RMUW set local lu name procedure - 03
DFHRMUWV CSECT RMUW avail procedure - 03
DFHRMUWW CSECT RMUW write procedure - 03
DFHRMUW0 CSECT RMUW release procedure - 03
DFHRMUW1 CSECT RMUW initialize class procedure - 03
DFHRMUW2 CSECT RMUW collect statistics procedure - 03
DFHRMUW3 CSECT RMUW inquire work token procedure - 03
DFHRMUXD DSECT Define parts of UOW objects accessible by inline

macros
OS -

DFHRMU1C CSECT RMUW set chain token procedure - 03
DFHRMU1D CSECT RMUW deliver data procedure - 03
DFHRMU1E CSECT RMUW end delivery procedure - 03
DFHRMU1F CSECT RMUW wait timeout notify procedure - 03
DFHRMU1G CSECT RMUW - 03

CICS directory

Chapter 115. CICS directory 1405

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHRMU1J CSECT RMUW inquire disjoint chains procedure - 03
DFHRMU1K CSECT RMUW take keypoint procedure - 03
DFHRMU1L CSECT xphP force purge inhibit query gate - 03
DFHRMU1N CSECT RMU1 force purge query procedure - 03
DFHRMU1Q CSECT TISR notify gate - 03
DFHRMU1R CSECT RMUW restart procedure - 03
DFHRMU1S CSECT RMUW start delivery procedure - 03
DFHRMU1U CSECT RMUW process restart procedure - 03
DFHRMU1V CSECT RMUW request wait timeout procedure - 03
DFHRMU1W CSECT RMUW cancel wait timeout procedure - 03
DFHRMVP1 CSECT RMVP initialize class procedure - 03
DFHRMWTA CSECT RMWT parameter list OS -
DFHRMWTI Macro Supports the Inquire_work_token and Set_work_token

of RMWT CDURUN interface
OS -

DFHRMWTM Macro RMWT request OS -
DFHRMWTT DSECT RMWT translate tables - 03
DFHRMXNE CSECT RMXN reattach procedure - 03
DFHRMXN2 CSECT RMXN schedule keypoint procedure - 03
DFHRMXN3 CSECT RMXN keypoint transaction - 03
DFHRMXN4 CSECT RMXN restart procedure - 03
DFHRMXN5 CSECT RMXN inc trandef statistic procedure - 03
DFHROINA CSECT ROIN parameter list OS -
DFHROINM Macro ROIN request OS -
DFHROINT DSECT ROIN translate tables OS 03
DFHRPAL CSECT (OCO) ONC RPC Feature alias list - 03
DFHRPALT DSECT RPAL translate tables - 03
DFHRPAS CSECT (OCO) ONC RPC alias main program - 03
DFHRPCC CSECT (OCO) RPCC parameter list - 03
DFHRPCB Macro Extension to DL/I PCB control block - contains ISC

information about PCB
OS -

DFHRPCDH CSECT RPPC caller DFHRPCC parameter list - 08
DFHRPCDO CSECT RPPC caller DFHRPCC parameter list - 07
DFHRPC0A CSECT (OCO) CRPC dataset list processing - 03
DFHRPC0B CSECT (OCO) CRPC common subroutines - 03
DFHRPC0D CSECT (OCO) CRPC register remote procedures - 03
DFHRPC0E CSECT (OCO) CRPC register remote procedures - 03
DFHRPC01 CSECT (OCO) CRPC initial processing - 03
DFHRPC03 CSECT (OCO) CRPC manage feature dataset - 03
DFHRPC04 CSECT (OCO) CRPC disable processing - 03
DFHRPC05 CSECT (OCO) CRPC manage feature dataset - 03
DFHRPC06 CSECT (OCO) CRPC update feature - 03
DFHRPC08 CSECT (OCO) CRPC ONC RPC feature - 03
DFHRPC09 CSECT (OCO) ONC RPC registration table management - 03
DFHRPC10 CSECT (OCO) CRPC alias list processing - 03
DFHRPC4C CSECT (OCO) ONC RPC initialization - 03
DFHRPC42 CSECT (OCO) CRPC enable request processing - 03
DFHRPDUF CSECT (OCO) System dump formatting routine for ONC/RPC OS 03
DFHRPMS CSECT (OCO) ONC RPC feature server controller - 03
DFHRPRDH CSECT RPRSC parameter list - 08
DFHRPRDO CSECT RPRSC parameter list - 07
DFHRPRP CSECT (OCO) ONC RPC feature RPC caller - 03
DFHRPRPT CSECT (OCO) RPRP call structured parameter list - 03
DFHRPTRI CSECT (OCO) ONC RPC feature trace interpretation - 03
DFHRPTRU CSECT (OCO) ONC RPC task-related user exit - 03

CICS directory

1406 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHRPUCH CSECT Constants used by user replaceable programs - 08
DFHRPUCO CSECT Constants used by user replaceable programs - 07
DFHRP0 CSECT (OCO) BMS mapset for CRPC main panels - 03
DFHRP0H CSECT (OCO) CRPC DFHRP0 help panels - 03
DFHRST Macro DBCTL XRF recoverable service table 11 -
DFHRTC CSECT CRTE cancel command processor OS 03
DFHRTE CSECT Transaction routing program OS 03
DFHRTSU CSECT Surrogate terminal interface program - 03
DFHRTSUA CSECT RTSU parameter list OS -
DFHRTSUI CSECT Provide Assign/Relay relay link functions of DFHRTSU OS -
DFHRTSUM Macro RTSU request OS -
DFHRTSUT DSECT RTSU translate tables - 03
DFHRTTRI CSECT ISC transaction routing (APRT) trace interpreter OS 03
DFHRTTR1 CSECT RTSU trace interpretation - 03
DFHRXAST CSECT - 03
DFHRXDM CSECT RX Domain Management - 03
DFHRXDMA CSECT RXDM interface parameter area OS -
DFHRXDMM Macro DFHRXDM interface macro OS -
DFHRXDMT CSECT - 03
DFHRXDUF CSECT RX Domain Dump Formatting - 03
DFHRXSVC CSECT RX Domain Management - 03
DFHRXTRI CSECT DFHRXTRI Design - 03
DFHRXUW CSECT RX Domain UOW Manager - 03
DFHRXUWA Other RXUW interface parameter area OS -
DFHRXUWM Macro RXUW interface macro OS -
DFHRXUWT CSECT - 03
DFHRXXMA Other RXXM interface parameter area OS -
DFHRXXMM Macro DFHRXXM interface macro OS -
DFHRXXMT CSECT - 03
DFHRXXRG CSECT - 03
DFHRXXRM CSECT - 03
DFHRZDM CSECT - 03
DFHRZDUF CSECT RequestStreams remote join interface - 03
DFHRZIX CSECT - 03
DFHRZJN CSECT - 03
DFHRZLN CSECT - 03
DFHRZNR2 CSECT - 03
DFHRZOFI CSECT - 03
DFHRZRG2 CSECT - 03
DFHRZRJ CSECT RequestStreams remote join interface - 03
DFHRZRJT CSECT - 03
DFHRZRM CSECT RZRM Gate Module for RM RO callback - 03
DFHRZRS1 CSECT - 03
DFHRZRT CSECT RZRT CDURUN and Gate Module - 03
DFHRZRT1 CSECT - 03
DFHRZRT2 CSECT - 03
DFHRZSO CSECT - 03
DFHRZSOT CSECT - 03
DFHRZSO1 CSECT - 03
DFHRZTA CSECT - 03
DFHRZTAT CSECT - 03
DFHRZTCX CSECT - 03
DFHRZTRI CSECT RequestStreams Trace interpretation - 03
DFHRZTR1 CSECT - 03

CICS directory

Chapter 115. CICS directory 1407

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHRZVP1 CSECT - 03
DFHRZXM CSECT RequestStreams XM Attach Client - 03
DFHR2TRI CSECT - 03
DFHSAADS DSECT Storage accounting area 11 -
DFHSABDS DSECT Subsystem anchor block OS -
DFHSAIQ CSECT (OCO) AP domain - system data inquire and set - 03
DFHSAIQT CSECT (OCO) SAIQ trace interpretation data - 03
DFHSAIQX Macro SAIQ request 11 -
DFHSAIQY DSECT SAIQ parameter list 11 -
DFHSAXDF CSECT DU domain - transaction dump formatter for system

areas (CSA, TCA, and so on)
OS 03

DFHSC Macro Storage service request 11 -
DFHSCAA CSECT Language Environment - set common anchor area OS 03
DFHSCALL Macro EXEC interface call macro for CICSPlex SM

commands in assembler-language pgms
11 -

DFHSCCOS Symbolic Storage control class of storage OS -
DFHSDGDS DSECT System dump global statistics 11 -
DFHSDGDS DSECT System dump global statistics C2 07
DFHSDMP Macro SDUMP parameter area and MD=L expansion OS -
DFHSDRDS DSECT System dump statistics by dump code 11 -
DFHSDRDS DSECT System dump statistics by dump code C2 07
DFHSFP CSECT Sign-off program OS 03
DFHSFTC CSECT OS -
DFHSGTIM CSECT OS -
DFHSHDM CSECT SH Domain Management - 03
DFHSHDUF CSECT SH Domain Dump Formatting - 03
DFHSHOFI CSECT - 03
DFHSHPR CSECT SHPR CDURUN and Gate Module - 03
DFHSHPRT CSECT - 03
DFHSHRE1 CSECT - 03
DFHSHRM CSECT SHRM CDURUN and Gate Module - 03
DFHSHRQ CSECT Scheduler Services - Request Queue - 03
DFHSHRQA Other SHRQ interface parameter area OS -
DFHSHRQM Macro DFHSHRQ interface macro OS -
DFHSHRQT CSECT - 03
DFHSHRQ1 CSECT - 03
DFHSHRR CSECT SHRR CDURUN and Gate Module - 03
DFHSHRRP CSECT - 03
DFHSHRRT CSECT - 03
DFHSHRSP CSECT - 03
DFHSHRT CSECT SHRT CDURUN and Gate Module - 03
DFHSHRTT CSECT - 03
DFHSHRT1 CSECT - 03
DFHSHRT2 CSECT - 03
DFHSHSY CSECT Component modules - 03
DFHSHTC CSECT OS -
DFHSHTI CSECT - 03
DFHSHTRI CSECT SH Domain Trace Interpretation - 03
DFHSHVP1 CSECT - 03
DFHSHWPL DSECT File control SHOWCAT parameter list OS -
DFHSHXM CSECT Scheduler Services XM Attach Client - 03
DFHSIA1 CSECT System initialization - module A1 OS 03
DFHSIB1 CSECT System initialization - module B1 OS 03
DFHSIB1A Source DFHSIB1 pre-nucleus load routines OS -

CICS directory

1408 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHSIB1B Source DFHSIB1 nucleus load routine OS -
DFHSIB1C Source DFHSIB1 post-nucleus load routine OS -
DFHSIB1D Source DFHSIB1 subroutines OS -
DFHSICOM Macro System initialization definitions OS -
DFHSIC1 CSECT System initialization - module C1 OS 03
DFHSID1 CSECT System initialization - module D1 OS 03
DFHSIF1 CSECT System initialization - module F1 OS 03
DFHSIG1 CSECT System initialization - module G1 OS 03
DFHSIH1 CSECT System initialization - module H1 OS 03
DFHSII1 CSECT System initialization - module I1 OS 03
DFHSIJ1 CSECT System initialization - module J1 OS 03
DFHSIPD Macro Generate system initialization communication area OS -
DFHSIPDS DSECT SIP communication area OS -
DFHSIPLT CSECT System initialization - PLT processor OS 03
DFHSIT Macro System initialization table 11 -
DFHSIT$$ Sample Default system initialization table 19 03
DFHSIT6$ Sample System initialization table 19 03
DFHSJAS CSECT SJ Assembler routines for DFHSJCS - 03
DFHSJCS@ CSECT Autocall SCEEOBJ - 03
DFHSJDM CSECT SJ SJVM Domain - 03
DFHSJDUF CSECT SJ SJVM Domain - 03
DFHSJGDS DSECT Jvmpool Global Statistics 11 07
DFHSJIIN CSECT SJ JVM Domain - 03
DFHSJINT CSECT - 03
DFHSJIS CSECT SJ JVM Domain - 03
DFHSJIST CSECT - 03
DFHSJJ8H CSECT - 08
DFHSJJ8O CSECT SJ JVM Domain OS 03
DFHSJST CSECT (SOCKETS) Statistics functions - 03
DFHSJTRI CSECT SJ SJVM Domain - 03
DFHSK Macro Subtasking interface OS -
DFHSKC CSECT Subtask control program OS 03
DFHSKE CSECT Subtask execution program OS 03
DFHSKM CSECT Subtask manager OS 03
DFHSKR Macro Generate SKR table entries in SIT 11 -
DFHSKTSK CSECT General purpose subtask entry point OS 03
DFHSLDC DSECT System logical device code table 11 -
DFHSMAD CSECT (OCO) SM domain - add/delete subpool - 03
DFHSMADA DSECT SMAD parameter list OS -
DFHSMADM Macro SMAD request OS -
DFHSMADT CSECT (OCO) SMAD trace interpretation data - 03
DFHSMAFA DSECT SMAF parameter list OS -
DFHSMAFT CSECT (OCO) SMAF trace interpretation data - 03
DFHSMAR CSECT (OCO) SM domain - handle functions - 03
DFHSMART CSECT (OCO) SMAR trace interpretation data - 03
DFHSMCK CSECT (OCO) SM domain - storage checking/recovery - 03
DFHSMCKA DSECT SMCK parameter list OS -
DFHSMCKM Macro SMCK request OS -
DFHSMCKT CSECT (OCO) SMCK trace interpretation data - 03
DFHSMDDS DSECT SM domain - storage statistics for domain subpools 11 -
DFHSMDDS DSECT SM domain - storage statistics for domain subpools C2 07
DFHSMDM CSECT (OCO) SM domain - initialization/termination - 03
DFHSMDUF CSECT (OCO) SDUMP formatter for SM domain - 03
DFHSMFDS DSECT SMF header and product section (JC/MN/ST) 11 07

CICS directory

Chapter 115. CICS directory 1409

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHSMGF CSECT (OCO) SM domain - getmain/freemain - 03
DFHSMGFA DSECT SMGF parameter list OS -
DFHSMGFI Macro SM domain - inline getmain/freemain OS -
DFHSMGFM Macro SMGF request OS -
DFHSMGFT CSECT (OCO) SMGF trace interpretation data - 03
DFHSMMCA DSECT SMMC parameter list OS -
DFHSMMCI CSECT (OCO) SM domain - macro-compatibility initialize - 03
DFHSMMCM Macro SMMC request OS -
DFHSMMCT CSECT (OCO) SMMC trace interpretation data - 03
DFHSMMCX Macro SMMC request (XPI) 11 -
DFHSMMCY DSECT SMMC parameter list (XPI) 11 -
DFHSMMC2 CSECT (OCO) SM domain - macro-compatibility system freemain

functions
- 03

DFHSMMF CSECT (OCO) SM domain - macro-compatibility freemain interface - 03
DFHSMMG CSECT (OCO) SM domain - macro-compatibility getmain interface - 03
DFHSMNTA DSECT SMNT parameter list OS -
DFHSMNTM Macro SMNT request OS -
DFHSMNTT CSECT (OCO) SMNT trace interpretation data - 03
DFHSMPE Other Cataloged procedure to execute SMP/E 02 -
DFHSMPP CSECT (OCO) SM domain - pagepool manager functions 1 - 03
DFHSMPPT CSECT (OCO) SMPP trace interpretation data - 03
DFHSMPQ CSECT (OCO) SM domain - pagepool manager functions 2 - 03
DFHSMPQT CSECT (OCO) SMPQ trace interpretation data - 03
DFHSMPT Macro SMP/E control card generator 11 -
DFHSMSCP CSECT (OCO) Storage control program - 03
DFHSMSDS DSECT SM domain - storage statistics for DSAs 11 -
DFHSMSDS DSECT SM domain - storage statistics for DSAs C2 07
DFHSMSQ CSECT (OCO) SM domain - suspend queue manager function - 03
DFHSMSQT CSECT (OCO) SMSQ trace interpretation data - 03
DFHSMSR CSECT (OCO) SM domain - services - 03
DFHSMSRA DSECT SMSR parameter list OS -
DFHSMSRI CSECT SM domain - in-line INQUIRE_ACCESS OS -
DFHSMSRM Macro SMSR request OS -
DFHSMSRT CSECT (OCO) SMSR trace interpretation data - 03
DFHSMSRX Macro (OCO) SMSR request (XPI) 11 -
DFHSMSRY DSECT (OCO) SMSR parameter list 11 -
DFHSMST CSECT (OCO) SM domain - statistics collection - 03
DFHSMSU CSECT (OCO) Subspace manager - 03
DFHSMSUT CSECT (OCO) Subspace manager trace interpretation data - 03
DFHSMSVC CSECT (OCO) SM domain - authorized service routine - 03
DFHSMSY CSECT (OCO) SM domain - system task - 03
DFHSMTAB CSECT CICSPLex SM commands language table - 03
DFHSMTDS DSECT SM domain - storage statistics for task subpools 11 -
DFHSMTDS DSECT SM domain - storage statistics for task subpools C2 -
DFHSMTDS DSECT SM domain - storage statistics for task subpools P2 -
DFHSMTRI CSECT (OCO) Trace interpreter for SM domain - 03
DFHSMUTL CSECT SM Catalog Update Program OS 03
DFHSMXDF CSECT (OCO) Transaction dump - task subpools - 03
DFHSNAS CSECT create signon/sign-off ATI sessions - 03
DFHSNEP Macro Node error program generator 11 -
DFHSNEPH Macro NEP inner macro 11 -
DFHSNET Macro Node error table generator 11 -
DFHSNEX Macro Signon extension block generator 11 -
DFHSNEXD DSECT Signon extension to TCTTE OS -

CICS directory

1410 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHSNGND DSECT CEGN parameter list OS -
DFHSNGSD DSECT GNTRAN parameter list 11 -
DFHSNGSH DSECT GNTRAN parameter list (C/370) - 08
DFHSNGSL DSECT GNTRAN parameter list (PL/I) - 17
DFHSNGSO DSECT GNTRAN parameter list (COBOL) C2 -
DFHSNLE CSECT Signon large screens map set OS 03
DFHSNLK CSECT (OCO) Signon large screens map set - 03
DFHSNMIG CSECT Signon table migration utility OS 03
DFHSNNFY CSECT RACF CICS segment notify exit OS 03
DFHSNP CSECT Signon program OS 03
DFHSNPTO CSECT CICS segment (RACF) TIMEOUT keyword print exit

routine
- 03

DFHSNPU CSECT Preset userid signon/sign-off - 03
DFHSNSC CSECT Timeout transaction (CESC) scheduler - 03
DFHSNSCA CSECT SNSC parameter list OS -
DFHSNSCM Macro SNSC requests OS -
DFHSNSE CSECT Signon small screens map set OS 03
DFHSNSG CSECT Surrogate terminal signon/off - 03
DFHSNSGI Macro Surrogate terminals sign-on and signoff requests OS -
DFHSNSK CSECT (OCO) Signon small screens map set - 03
DFHSNSTA DSECT ISC/IRC attach-time statistics area OS -
DFHSNSU CSECT Session userid signon/sign-off - 03
DFHSNTRI CSECT SN trace interpreter - 03
DFHSNTU CSECT Terminal userid signon/sign-off - 03
DFHSNUS CSECT (OCO) US domain - local and remote signon - 03
DFHSNUSA DSECT SNUS parameter list OS -
DFHSNUSM Macro SNUS macro OS -
DFHSNUST CSECT (OCO) SNUS trace interpretation data - 03
DFHSNVCL CSECT RACF CICS segment OPCLASS validation exit OS 03
DFHSNVID CSECT RACF CICS segment OPIDENT validation exit OS 03
DFHSNVPR CSECT RACF CICS segment OPPRTY validation exit OS 03
DFHSNVTO CSECT RACF CICS segment TIMEOUT validation exit OS 03
DFHSNXR CSECT (OCO) XRF reflecting signon state - 03
DFHSNXRA DSECT SNXR parameter list OS -
DFHSNXRM Macro SNXR requests OS -
DFHSNXRT CSECT (OCO) SNXR trace interpretation data - 03
DFHSOAD CSECT SO Domain - SOAD gate functions - 03
DFHSOADT CSECT - 03
DFHSOCBT CSECT - 03
DFHSOCK CSECT Sockets send/receive/close - 03
DFHSOCKT CSECT - 03
DFHSODM CSECT Sockets Domain Initialization - 03
DFHSODUF CSECT Sockets Domain Dump Formatting - 03
DFHSOGDS DSECT Sockets Global Statistics 11 07
DFHSOGH@ DSECT - 03
DFHSOIS CSECT Sockets Domain Inquire/Set - 03
DFHSOIST CSECT - 03
DFHSOL CSECT Sockets Domain Listener Task - 03
DFHSOLS CSECT Sockets Listener - 03
DFHSOLST CSECT - 03
DFHSOLX CSECT Sockets Domain Asynchronous exit routine - 03
DFHSOPI CSECT SO Domain CEEPIPI service routines - 03
DFHSORD CSECT SO Domain Sockets Register/Deregister - 03
DFHSORDS Other SO Domain TCPIP Service Statistics 11 07

CICS directory

Chapter 115. CICS directory 1411

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHSORDT CSECT - 03
DFHSORT Macro Auxiliary sort 11 -
DFHSOSE CSECT Sockets Domain Secure Sockets Layer - 03
DFHSOSET CSECT - 03
DFHSOSK@ CSECT - 03
DFHSOSKO CSECT - 03
DFHSOST CSECT Sockets Statistics Functions - 03
DFHSOS00 CSECT - 03
DFHSOS01 CSECT - 03
DFHSOS02 CSECT - 03
DFHSOS03 CSECT - 03
DFHSOS04 CSECT - 03
DFHSOS05 CSECT - 03
DFHSOS06 CSECT - 03
DFHSOS07 CSECT - 03
DFHSOS08 CSECT - 03
DFHSOS09 CSECT - 03
DFHSOS10 CSECT - 03
DFHSOS11 CSECT - 03
DFHSOS12 CSECT - 03
DFHSOS13 CSECT - 03
DFHSOS14 CSECT - 03
DFHSOS15 CSECT - 03
DFHSOS16 CSECT - 03
DFHSOS17 CSECT - 03
DFHSOS18 CSECT - 03
DFHSOS19 CSECT - 03
DFHSOS20 CSECT - 03
DFHSOS21 CSECT - 03
DFHSOS22 CSECT - 03
DFHSOS23 CSECT - 03
DFHSOTB CSECT SO Domain SOTB Gate Functions - 03
DFHSOTBT CSECT - 03
DFHSOTI CSECT Sockets Timer - 03
DFHSOTRI CSECT Sockets Domain Trace Interpretation - 03
DFHSOUE CSECT Sockets Domain User Exit Services - 03
DFHSOXM CSECT Sockets Attach Client - 03
DFHSP Macro Syncpoint service request 11 -
DFHSPBAB CSECT - 03
DFHSPBAC CSECT - 03
DFHSPBAE CSECT - 03
DFHSPDBB CSECT OS 03
DFHSPDBC CSECT OS 03
DFHSPDBE CSECT OS 03
DFHSPDHB CSECT - 03
DFHSPDHC CSECT - 03
DFHSPDHE CSECT - 03
DFHSPEJB CSECT - 03
DFHSPEJC CSECT - 03
DFHSPEJE CSECT - 03
DFHSPFIB CSECT CSDUP - cross-keyword validation for files OS 03
DFHSPFIC CSECT RDO - cross-keyword validation for files OS 03
DFHSPFIE CSECT RDO file definition validation OS 03

CICS directory

1412 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHSPKCB CSECT CSDUP - cross-keyword validation for transactions and

profiles
OS 03

DFHSPKCC CSECT RDO - cross-keyword validation for transactions and
profiles

OS 03

DFHSPKCE CSECT RDO txn control definition validation OS 03
DFHSPLMB CSECT RDO JournalModel definition validation - 03
DFHSPLMC CSECT RDO JournalModel definition validation - 03
DFHSPLME CSECT RDO JournalModel definition validation - 03
DFHSPLSB CSECT CSDUP - cross-keyword validation for LSR pools OS 03
DFHSPLSC CSECT RDO - cross-keyword validation for LSR pools OS 03
DFHSPLSE CSECT RDO - Lsrpool definition validation OS 03
DFHSPNQB CSECT OS 03
DFHSPNQC CSECT OS 03
DFHSPNQE CSECT OS 03
DFHSPOPB CSECT - 03
DFHSPOPC CSECT - 03
DFHSPOPE CSECT - 03
DFHSPPCB CSECT CSDUP - cross-keyword validation for programs, map

sets, and partition sets
OS 03

DFHSPPCC CSECT RDO - cross-keyword validation for programs, map
sets, and partition sets

OS 03

DFHSPPCE CSECT RDO - program definition validation OS 03
DFHSPPNB CSECT CSDUP - cross-keyword validation for partners OS 03
DFHSPPNC CSECT RDO - cross-keyword validation for partners OS 03
DFHSPPNE CSECT RDO - partner definition validation OS 03
DFHSPSOB CSECT - 03
DFHSPSOC CSECT - 03
DFHSPSOE CSECT - 03
DFHSPTCB CSECT CSDUP - cross-keyword validation for terminals OS 03
DFHSPTCC CSECT RDO - cross-keyword validation for terminals OS 03
DFHSPTCE CSECT RDO - terminal definition validation OS 03
DFHSPTDB CSECT RDO - TDQueue definition validation - 03
DFHSPTDC CSECT RDO - TDQueue definition validation - 03
DFHSPTDE CSECT RDO - TDQueue definition validation - 03
DFHSPTIB CSECT CSDUP - cross-keyword validation for sessions OS 03
DFHSPTIC CSECT RDO - cross-keyword validation for sessions OS 03
DFHSPTIE CSECT RDO - sessions definition validation OS 03
DFHSPTNB CSECT CSDUP - cross-keyword validation for connections OS 03
DFHSPTNE CSECT RDO - connection definition validation OS 03
DFHSPTNC CSECT RDO - cross-keyword validation for connections OS 03
DFHSPTRI CSECT SPI trace interpreter OS 03
DFHSPTSB CSECT OS 03
DFHSPTSC CSECT OS 03
DFHSPTSE CSECT OS 03
DFHSPTYB CSECT CSDUP - cross-keyword validation for typeterms OS 03
DFHSPTYC CSECT RDO - cross-keyword validation for typeterms OS 03
DFHSPTYE CSECT RDO - Typeterms definition validation OS 03
DFHSPP CSECT Syncpoint program - 03

DFHSPXMB CSECT CSDUP - cross-keyword validation for transactions - 03
DFHSPXMC CSECT RDO - cross-keyword validation for transactions - 03
DFHSPXME CSECT RDO - TranClass definition validation - 03
DFHSRADS DSECT SRB interface control area OS -

CICS directory

Chapter 115. CICS directory 1413

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHSRASM CSECT Alias for SRRHASM 11 -
DFHSRCOB CSECT Alias for SRRCOBOL C2 -
DFHSRED DSECT System recovery error data for XSRAB exit 11 -
DFHSRLI CSECT SRP LIFO storage subroutine OS 03
DFHSRLIA DSECT SRLI parameter list OS -
DFHSRLIM Macro SRLI request OS -
DFHSRLIT CSECT SRLI trace interpretation data OS 03
DFHSRP CSECT System recovery program OS 03
DFHSRPLI CSECT Alias for SRRPLI P2 -
DFHSRRC CSECT Alias for SRRC - 08
DFHSRSRA Source SRSR parameter list OS -
DFHSRSRM Source SRSR request OS -
DFHSRT Macro System recovery table 11 -
DFHSRTDS DSECT System recovery table OS -
DFHSRT1$ Sample System recovery table 19 03
DFHSRXDS DSECT SRB and extensions in SQA OS -
DFHSR1 CSECT System recovery program - 03
DFHSSAD Macro Static storage area address list 11 -
DFHSSDUF CSECT (OCO) SDUMP formatter for static storage areas - 03
DFHSSEN CSECT Subsystem interface EOT and EOM routine OS 03
DFHSSGC CSECT Subsystem interface generic connect OS 03
DFHSSIN CSECT CICS subsystem initialization OS 03
DFHSSMGP CSECT Subsystem interface message program OS 03
DFHSSMGT CSECT Subsystem interface message table OS 03
DFHSSREQ Macro Subsystem interface (SSI) request OS -
DFHSSWT CSECT Subsystem interface WTO router OS 03
DFHSSWTF CSECT SSI MODIFY command password suppression OS 03
DFHSSWTO CSECT SSI CICS console message reformatting OS 03
DFHSTAB Macro Table scan macro 11 -
DFHSTACK Macro Save/restore registers on subroutine calls OS -
DFHSTART Other CICS startup cataloged procedure 02 -
DFHSTDBX CSECT (OCO) STUP - DBCTL statistics summary formatter - 03
DFHSTDM CSECT (OCO) ST domain - initialization/termination - 03
DFHSTDSX CSECT (OCO) STUP - DS domain stats summary formatter - 03
DFHSTDUF CSECT (OCO) SDUMP formatter for ST domain - 03
DFHSTDUX CSECT (OCO) STUP - DU domain stats summary formatter - 03
DFHSTD2 Macro Standard names of domains, gates, formats 11 -
DFHSTD2X CSECT - 03
DFHSTEJX CSECT Stats.Util.EJ Domain Extended formatting - 03
DFHSTE15 CSECT (OCO) STUP - DFSORT interface to E15 user exit - 03
DFHSTE35 CSECT (OCO) STUP - DFSORT interface to E35 user exit - 03
DFHSTFC CSECT AP domain - file control statistics - 03
DFHSTGDS DSECT ST domain - global statistics 11 -
DFHSTGDS DSECT ST domain - global statistics C2 07
DFHSTIDS DSECT Statistics common record header and record identifiers 11 -
DFHSTIDS DSECT Statistics common record header and record identifiers C2 07
DFHSTIIX CSECT Stats.Util.II Domain Extended formatting - 03
DFHSTIN CSECT (OCO) STUP - DFSORT E15 user exit input routine - 03
DFHSTLDX CSECT (OCO) STUP - LD domain stats summary formatter - 03
DFHSTLGX CSECT (OCO) Logger Domain statistics extended - 03
DFHSTLK CSECT AP domain - ISC/IRC statistics - 03
DFHSTLS CSECT AP domain - LSR pool statistics - 03
DFHSTMNX CSECT (OCO) STUP - MN domain stats summary formatter - 03
DFHSTNDD Macro 11 -

CICS directory

1414 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHSTNQX CSECT (OCO) Enqueue Manager domain statistics - 03
DFHSTOT CSECT (OCO) STUP - DFSORT E35 user exit output routine - 03
DFHSTP CSECT System termination program OS 03
DFHSTPGX CSECT STUP - PG domain autoinstall statistics - 03
DFHSTRD CSECT (OCO) STUP - read interface - 03
DFHSTRDA DSECT STRD parameter list OS -
DFHSTRDM Macro STRD request OS -
DFHSTRMX CSECT (OCO) Recovery Manager domain statistics - 03
DFHSTSJX CSECT Stats.Util.JVM Domain Extended formatting - 03
DFHSTSMF Macro ST domain - statistics SMF header and SMF product

section
11 -

DFHSTSMX CSECT (OCO) STUP - SM domain stats summary formatter - 03
DFHSTSOX CSECT Stats.Util.SO Domain Extended formatting - 03
DFHSTST CSECT (OCO) ST domain - services - 03
DFHSTSTA DSECT STST parameter list OS -
DFHSTSTM Macro STST request OS -
DFHSTSTT CSECT STST trace interpretation data OS 03
DFHSTSTX CSECT (OCO) STUP - ST domain stats summary formatter - 03
DFHSTSZ CSECT AP domain - FEPI statistics - 03
DFHSTTD CSECT AP domain - transient data statistics - 03
DFHSTTI CSECT (OCO) ST domain - timer notify handler - 03
DFHSTTM CSECT AP domain - table manager statistics - 03
DFHSTTQX CSECT STUP - TDQueue id extended formatting - 03
DFHSTTR CSECT AP domain - terminal statistics - 03
DFHSTTRI CSECT (OCO) Trace interpreter for ST domain - 03
DFHSTTSX CSECT (OCO) Shared TS statistics - 03
DFHSTUDB CSECT (OCO) STUP - DBCTL statistics formatter - 03
DFHSTUDE CSECT (OCO) STUP - DE domain statistics formatter - 03
DFHSTUDS CSECT (OCO) STUP - DS domain statistics formatter - 03
DFHSTUDU CSECT (OCO) STUP - DU domain statistics formatter - 03
DFHSTUD2 CSECT (OCO) STUP - DU domain statistics formatter - 03
DFHSTUE CSECT (OCO) ST domain - user exit service - 03
DFHSTUEJ CSECT STUP - EJ Domain formatting routine - 03
DFHSTUII CSECT STUP - II Domain formatting routine - 03
DFHSTULD CSECT (OCO) STUP - LD domain statistics formatter - 03
DFHSTULG CSECT (OCO) STUP - Logger domain formatting routine - 03
DFHSTUMN CSECT (OCO) STUP - MN domain statistics formatter - 03
DFHSTUNQ CSECT (OCO) STUP - Enqueue manager domain statistics - 03
DFHSTUPG CSECT (OCO) STUP - PG domain autoinstall statistics formatter - 03
DFHSTUP1 CSECT (OCO) STUP - preinitialize - 03
DFHSTURM CSECT (OCO) STUP - Recovery manager domain statistics - 03
DFHSTURS CSECT (OCO) STUP - US domain statistics formatter - 03
DFHSTURX CSECT (OCO) STUP - US domain statistics summary formatter - 03
DFHSTUSJ CSECT STUP - Scaleable JVM Domain formatting - 03
DFHSTUSM CSECT (OCO) STUP - SM domain statistics formatter - 03
DFHSTUSO CSECT STUP - Sockets Domain formatting routine - 03
DFHSTUST CSECT (OCO) STUP - ST domain statistics formatter - 03
DFHSTUTQ CSECT (OCO) STUP - Transient data statistics - 03
DFHSTUTS CSECT (OCO) Shared TS statistics - 03
DFHSTUXC CSECT (OCO) STUP - Transaction manager domain statistics - 03
DFHSTUXM CSECT (OCO) STUP - XM domain statistics formatter - 03
DFHSTU03 CSECT (OCO) STUP - VTAM statistics formatter - 03
DFHSTU04 CSECT (OCO) STUP - autoinstall terminals statistics formatter - 03
DFHSTU06 CSECT (OCO) STUP - terminal statistics formatter - 03

CICS directory

Chapter 115. CICS directory 1415

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHSTU08 CSECT (OCO) STUP - LSRPOOL resource statistics formatter - 03
DFHSTU09 CSECT (OCO) STUP - LSRPOOL file statistics formatter - 03
DFHSTU14 CSECT (OCO) STUP - ISC/IRC statistics formatter - 03
DFHSTU16 CSECT (OCO) STUP - table manager statistics formatter - 03
DFHSTU17 CSECT (OCO) STUP - file control statistics formatter - 03
DFHSTU21 CSECT (OCO) STUP - ISC/IRC attach-time statistics formatter - 03
DFHSTU22 CSECT (OCO) STUP - FEPI statistics formatter - 03
DFHSTWR CSECT (OCO) STUP - write interface - 03
DFHSTWRA DSECT STWR parameter list OS -
DFHSTWRM Macro STWR request OS -
DFHSTXCX CSECT (OCO) STUP - Transaction manager domain extended

formatting routine for TranClass Stats
- 03

DFHSTXLE CSECT Off-line Statistics Utility Program - 03
DFHSTXMX CSECT (OCO) STUP - XM statistics extended formatter - 03
DFHST03X CSECT (OCO) STUP - VTAM statistics summary formatter - 03
DFHST04X CSECT (OCO) STUP - autoinstall terminals statistics summary

formatter
- 03

DFHST06X CSECT (OCO) STUP - terminal stats summary formatter - 03
DFHST08X CSECT (OCO) STUP - LSRPOOL resource statistics summary

formatter
- 03

DFHST09X CSECT (OCO) STUP - LSRPOOL file statistics summary formatter - 03
DFHST14X CSECT (OCO) STUP - ISC/IRC stats summary formatter - 03
DFHST16X CSECT (OCO) STUP - table manager statistics summary formatter - 03
DFHST17X CSECT (OCO) STUP - file control statistics summary formatter - 03
DFHST21X CSECT (OCO) STUP - ISC/IRC attach-time statistics summary

formatter
- 03

DFHST22X CSECT (OCO) STUP - FEPI statistics summary formatter - 03
DFHSUDUF CSECT (OCO) SDUMP formatter for DU domain summary - 03
DFHSUEX CSECT User exit handler subroutine - 03
DFHSUEXA DSECT SUEX parameter list OS -
DFHSUEXM Macro SUEX request OS -
DFHSUEXT CSECT SUEX trace interpretation data OS 03
DFHSUME CSECT (OCO) ME domain - produce and issue messages subroutine

(used by ME and LM domains)
- 03

DFHSUMEA DSECT SUME parameter list OS -
DFHSUMEM Macro SUME request OS -
DFHSUMET CSECT SUME trace interpretation data - 03
DFHSUNP Other OS -
DFHSUSX CSECT XRF signon OS 03
DFHSUSXA DSECT SUSX parameter list OS -
DFHSUSXM Macro SUSX request OS -
DFHSUSXT DSECT SUSX translate tables OS 03
DFHSUTRI CSECT WTO/WTOR subroutine trace interpreter OS 03
DFHSUWT CSECT WTO/WTOR interface subroutine OS 03
DFHSUWTA DSECT SUWT parameter list OS -
DFHSUWTM Macro SUWT request OS -
DFHSUWTT CSECT SUWT trace interpretation data OS 03
DFHSUZX CSECT ZC trace controller OS 03
DFHSUZXA DSECT SUZX parameter list OS -
DFHSUZXM Macro SUZX request OS -
DFHSUZXT CSECT SUZX trace interpretation data OS 03
DFHSVCHK Macro SVC level check 11 -
DFHSWXK Macro Switch execution key routine OS -
DFHSYS Macro System definition macro 11 -

CICS directory

1416 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHSZAPA DSECT FEPI programming copybook - assembler 11 -
DFHSZAPC DSECT FEPI programming copybook - C/370 - 08
DFHSZAPO DSECT FEPI programming copybook - COBOL C2 -
DFHSZAPP DSECT FEPI programming copybook - PL/I P2 17
DFHSZATC CSECT (OCO) FEPI adaptor command tables - 03
DFHSZATR CSECT (OCO) FEPI adaptor program - 03
DFHSZBCL CSECT (OCO) FEPI cleanup API requests at error routine - 03
DFHSZBCS CSECT (OCO) FEPI RM collect statistics - 03
DFHSZBFT CSECT (OCO) FEPI FREE transaction requests scheduler - 03
DFHSZBLO CSECT (OCO) FEPI lost session reporter - 03
DFHSZBRS CSECT (OCO) FEPI RM collect resource ID statistics - 03
DFHSZBSI CSECT (OCO) FEPI signon exit scheduler - 03
DFHSZBST CSECT (OCO) FEPI STSN transaction scheduler - 03
DFHSZBUN CSECT (OCO) FEPI unsolicited data transaction scheduler - 03
DFHSZBUS CSECT (OCO) FEPI RM unsolicited statistics recording - 03
DFHSZDUF CSECT (OCO) FEPI dump formatting routine - 03
DFHSZFRD CSECT (OCO) FEPI formatted 3270 RECEIVE support - 03
DFHSZFSD CSECT (OCO) FEPI formatted 3270 SEND support - 03
DFHSZIDX CSECT (OCO) FEPI SLU P queue install/discard exit - 03
DFHSZPCP CSECT (OCO) FEPI SLU P flow controller - 03
DFHSZPDX CSECT (OCO) FEPI SLU P drain completion exit - 03
DFHSZPID CSECT (OCO) FEPI SLU P send data processor - 03
DFHSZPIX CSECT (OCO) FEPI SLU P send completion exit - 03
DFHSZPOA CSECT (OCO) FEPI SLU P send response processor - 03
DFHSZPOD CSECT (OCO) FEPI SLU P receive data processor - 03
DFHSZPOR CSECT (OCO) FEPI SLU P response processor - 03
DFHSZPOX CSECT (OCO) FEPI SLU P receive specific response exit - 03
DFHSZPOY CSECT (OCO) FEPI SLU P receive specific response processor - 03
DFHSZPQS CSECT (OCO) FEPI SLU P REQSESS (request session) issuer - 03
DFHSZPQX CSECT (OCO) FEPI SLU P REQSESS exit - 03
DFHSZPSB CSECT (OCO) FEPI SLU P bind processor - 03
DFHSZPSC CSECT (OCO) FEPI SLU P session controller - 03
DFHSZPSD CSECT (OCO) FEPI SLU P SDT processor - 03
DFHSZPSH CSECT (OCO) FEPI SLU P SHUTC processor - 03
DFHSZPSQ CSECT (OCO) FEPI SLU P quiesce complete (QC) processor - 03
DFHSZPSR CSECT (OCO) FEPI RESETSR processor CSECT - 03
DFHSZPSS CSECT (OCO) FEPI SLU P STSN processor - 03
DFHSZPSX CSECT (OCO) FEPI SLU P OPNSEC completion exit - 03
DFHSZPTE CSECT (OCO) FEPI SLU P TERMSESS processor - 03
DFHSZRCA CSECT (OCO) FEPI node control processor - 03
DFHSZRCT CSECT (OCO) FEPI issue processor - 03
DFHSZRDC CSECT (OCO) FEPI delete connection processor - 03
DFHSZRDG CSECT (OCO) FEPI discard node processor - 03
DFHSZRDN CSECT (OCO) FEPI delete node processor - 03
DFHSZRDP CSECT (OCO) FEPI dispatcher - 03
DFHSZRDS CSECT (OCO) FEPI discard property set processor - 03
DFHSZRDT CSECT (OCO) FEPI discard target processor - 03
DFHSZREQ CSECT (OCO) FEPI request processor - 03
DFHSZRFC CSECT (OCO) FEPI FREE completion processor - 03
DFHSZRGR CSECT (OCO) FEPI Dispatcher work queue processor - 03
DFHSZRIA CSECT (OCO) FEPI allocate processor - 03
DFHSZRIC CSECT (OCO) FEPI define connection processor - 03
DFHSZRID CSECT (OCO) FEPI discard processor - 03
DFHSZRIF CSECT (OCO) FEPI install free processor - 03

CICS directory

Chapter 115. CICS directory 1417

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHSZRII CSECT (OCO) FEPI install processor - 03
DFHSZRIN CSECT (OCO) FEPI install node processor - 03
DFHSZRIO CSECT (OCO) FEPI ACB open processor - 03
DFHSZRIP CSECT (OCO) FEPI install pool processor - 03
DFHSZRIQ CSECT (OCO) FEPI inquire processor - 03
DFHSZRIS CSECT (OCO) FEPI install processor - 03
DFHSZRIT CSECT (OCO) FEPI install target processor - 03
DFHSZRIW CSECT (OCO) FEPI SET processor - 03
DFHSZRNC CSECT (OCO) FEPI NODE processor - 03
DFHSZRNO CSECT (OCO) FEPI NOOP processor - 03
DFHSZRPM CSECT (OCO) FEPI timer services - 03
DFHSZRPW CSECT (OCO) FEPI request preparation - 03
DFHSZRQR CSECT (OCO) FEPI queue for REQSESS processing - 03
DFHSZRQW CSECT (OCO) FEPI request queue processor - 03
DFHSZRRD CSECT (OCO) FEPI RECEIVE request processor - 03
DFHSZRRT CSECT (OCO) FEPI request release processor - 03
DFHSZRSC CSECT (OCO) FEPI connection processor - 03
DFHSZRSE CSECT (OCO) FEPI SEND request processor - 03
DFHSZRST CSECT (OCO) FEPI START request processor - 03
DFHSZRTM CSECT (OCO) FEPI recovery services - 03
DFHSZRXD CSECT (OCO) FEPI EXTRACT processor - 03
DFHSZRZZ CSECT (OCO) FEPI TERMINATE processor - 03
DFHSZSDS DSECT FEPI storage control block 11 -
DFHSZSIP CSECT (OCO) FEPI initialization processor - 03
DFHSZVBN CSECT (OCO) FEPI copy NIB mask to real NIB - 03
DFHSZVGF CSECT (OCO) FEPI get queue element FIFO - 03
DFHSZVQS CSECT (OCO) FEPI REQSESS dispatcher - 03
DFHSZVRA CSECT (OCO) FEPI VTAM receive_any processor - 03
DFHSZVRI CSECT (OCO) FEPI VTAM receive_any issuer - 03
DFHSZVSC CSECT (OCO) FEPI delayed bind processor - 03
DFHSZVSL CSECT (OCO) FEPI SETLOGON request issuer - 03
DFHSZVSQ CSECT (OCO) FEPI VTAM feedback interpreter - 03
DFHSZVSR CSECT (OCO) FEPI VTAM feedback interpreter - 03
DFHSZVSY CSECT (OCO) FEPI VTAM feedback interpreter - 03
DFHSZWSL CSECT (OCO) FEPI RPL exit after SETLOGON - 03
DFHSZXDA CSECT (OCO) FEPI VTAM DFASY exit - 03
DFHSZXFR CSECT (OCO) FEPI RPL exit to free request block - 03
DFHSZXLG CSECT (OCO) FEPI VTAM logon exit - 03
DFHSZXLT CSECT (OCO) FEPI VTAM LOSTERM (lost terminal) exit - 03
DFHSZXNS CSECT (OCO) FEPI VTAM NSEXIT (network services) exit - 03
DFHSZXPM CSECT (OCO) FEPI STIMER IRB exit routine - 03
DFHSZXRA CSECT (OCO) FEPI VTAM RECEIVE_ANY exit - 03
DFHSZXSC CSECT (OCO) FEPI VTAM SCIP (session control) exit - 03
DFHSZXTP CSECT (OCO) FEPI VTAM TPEND exit - 03
DFHSZYLG CSECT (OCO) FEPI RPL exit following logon reject - 03
DFHSZYQR CSECT (OCO) FEPI post for REQSESS processing - 03
DFHSZYRI CSECT (OCO) FEPI VTAM RECEIVE_ANY issuer - 03
DFHSZYSC CSECT (OCO) FEPI VTAM SCIP exit extension - 03
DFHSZYSR CSECT (OCO) FEPI VTAM feedback interpreter - 03
DFHSZYSY CSECT (OCO) FEPI VTAM feedback interpreter - 03
DFHSZZAG CSECT (OCO) FEPI get RECEIVE_ANY request block - 03
DFHSZZFR CSECT (OCO) FEPI free RECEIVE_ANY request block - 03
DFHSZZNG CSECT (OCO) FEPI get session control request block - 03
DFHSZZRG CSECT (OCO) FEPI get RPL request block - 03

CICS directory

1418 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHSZ2CP CSECT (OCO) FEPI SLU2 flow controller - 03
DFHSZ2DX CSECT (OCO) FEPI SLU2 drain completion exit - 03
DFHSZ2ID CSECT (OCO) FEPI SLU2 send data processor - 03
DFHSZ2IX CSECT (OCO) FEPI SLU2 send completion exit - 03
DFHSZ2OA CSECT (OCO) FEPI SLU2 send response processor - 03
DFHSZ2OD CSECT (OCO) FEPI SLU2 receive data processor - 03
DFHSZ2OR CSECT (OCO) FEPI SLU2 response processor - 03
DFHSZ2OX CSECT (OCO) FEPI SLU2 receive specific completion exit - 03
DFHSZ2OY CSECT (OCO) FEPI SLU2 receive specific action module - 03
DFHSZ2PX CSECT (OCO) FEPI SLU2 positive response drain exit - 03
DFHSZ2QS CSECT (OCO) FEPI SLU2 REQSESS issuer - 03
DFHSZ2QX CSECT (OCO) FEPI SLU2 REQSESS exit - 03
DFHSZ2SB CSECT (OCO) FEPI SLU2 bind processor - 03
DFHSZ2SC CSECT (OCO) FEPI SLU2 session controller - 03
DFHSZ2SD CSECT (OCO) FEPI SLU2 SDT processor - 03
DFHSZ2SH CSECT (OCO) FEPI SLU2 SHUTC processor - 03
DFHSZ2SQ CSECT (OCO) FEPI SLU2 QC processor - 03
DFHSZ2SR CSECT (OCO) FEPI SLU2 RESETSR processor - 03
DFHSZ2SX CSECT (OCO) FEPI SLU2 OPNSEC processor - 03
DFHSZ2TE CSECT (OCO) FEPI SLU2 TERMSESS processor - 03
DFHTACB Macro Task abend control block 11 -
DFHTACLE DSECT TCT line entry prefix 11 -
DFHTACP CSECT Terminal abnormal condition program OS 03
DFHTAJP CSECT Time adjustment program OS 03
DFHTBS Macro Builder interface OS -
DFHTBSB CSECT Add a node OS 03
DFHTBSBP CSECT Recursive part of DFHTBSB OS 03
DFHTBSD CSECT Delete node program OS 03
DFHTBSDP CSECT Recursive part of DFHTBSD OS 03
DFHTBSL CSECT Create recovery record for node OS 03
DFHTBSLP CSECT Recursive part of DFHTBSL OS 03
DFHTBSQ CSECT Builder inquire process OS 03
DFHTBSQP CSECT Recursive part of DFHTBSQ OS 03
DFHTBSR CSECT Builder restore process OS 03
DFHTBSRP CSECT Recursive part of DFHTBSR OS 03
DFHTBSS CSECT TBS syncpoint processor - 03
DFHTBSST DSECT TBSS translate tables - 03
DFHTBS00 CSECT Table builder services program OS 03
DFHTC Macro Terminal service request 11 -
DFHTCA Macro Task control area 11 -
DFHTCADS DSECT Task control area 11 -
DFHTCAM Source CICS-TCAM interface logic OS -
DFHTCCLC Source Common line control logic OS -
DFHTCCOM Source Input data length computation OS -
DFHTCCSS Source Start-stop event analysis OS -
DFHTCDEF Symbolic Terminal control definitions OS -
DFHTCDPF CSECT (OCO) Terminal control prefix SDUMP module - 03
DFHTCDUF CSECT (OCO) Terminal control SDUMP formatter - 03
DFHTCORS Source Terminal storage routine OS -
DFHTCP CSECT Terminal control program OS 03
DFHTCPCL Macro DFHZCP request OS -
DFHTCPCM Macro Common ZCP functions 11 -
DFHTCPLR Macro LU6.2 limited resources service OS -
DFHTCPQR Macro Queued response notification OS -

CICS directory

Chapter 115. CICS directory 1419

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHTCPRA DSECT Receive-any control element OS -
DFHTCPRT Macro DFHZCP RETURN macro OS -
DFHTCPSM Macro TCT generation - VTAM DSECTs 11 -
DFHTCPSV Macro DFHZCP SAVE macro OS -
DFHTCPZR Macro VTAM RPL extension for HPO 11 -
DFHTCQUE Macro DFHZCP QUEUE macro OS -
DFHTCRP CSECT Terminal control recovery program OS 03
DFHTCRPC CSECT XRF tracking interface for TCT contents OS 03
DFHTCRPL CSECT Install TCT macro definitions OS 03
DFHTCRPS CSECT XRF tracking interface for ZCP sessions OS 03
DFHTCRPU CSECT XRF tracking interface for SNTTEs OS 03
DFHTCRWE DSECT Remote install work element OS -
DFHTCSAM Source Sequential terminal logic OS -
DFHTCSRV Macro DFHTC inner service macro 11 -
DFHTCSUM CSECT Terminal control dump summary program - 03
DFHTCT Macro Terminal control table 11 -
DFHTCTDY CSECT Terminal control table (dummy) 19 03
DFHTCTFN Source TCT TYPE=FINAL (VTAM) 11 -
DFHTCTFX DSECT TCT prefix 11 -
DFHTCTI Source Terminal control task initiation logic OS -
DFHTCTLC Macro TCT inner macro 11 -
DFHTCTLE DSECT TCT line entry 11 -
DFHTCTME Macro Generate TCT mode group entries 11 -
DFHTCTPR Macro TCTTE partition extension builder 11 -
DFHTCTPS Macro TCT inner macro 11 -
DFHTCTPX Macro TCT inner macro 11 -
DFHTCTRD Macro VTAM RDO command list builder 11 -
DFHTCTRE Macro TCT definition macro 11 -
DFHTCTRN Source Terminal control translation tables OS -
DFHTCTSA Macro TCT inner macro 11 -
DFHTCTSB Macro TCT inner macro 11 -
DFHTCTSE Macro Generate ISC system entry 11 -
DFHTCTSK Macro Generate TCT skeleton entry 11 -
DFHTCTST Macro TCT inner macro 11 -
DFHTCTSV Macro TCT inner macro 11 -
DFHTCTTE DSECT TCT terminal entry 11 -
DFHTCTUA Macro TCT inner macro 11 -
DFHTCTUB Macro TCT inner macro 11 -
DFHTCTWA DSECT TC transaction work area 11 -
DFHTCTWE DSECT TCT autodefine work element OS -
DFHTCTZE Macro TCTTE definition 11 -
DFHTCT5$ Sample Terminal control table 19 03
DFHTCUDS DSECT COMMAREA passed to autoinstall exit 11 -
DFHTCUDS DSECT COMMAREA passed to autoinstall exit C2 07
DFHTCUDS DSECT COMMAREA passed to autoinstall exit P2 08
DFHTCV29 DSECT XRF session state data control vector OS -
DFHTCX Macro TCA extension for LU6.2 11 -
DFHTCXDF CSECT DU domain - transaction dump formatter for terminal

related areas
OS 03

DFHTD Macro Transient data service request 11 -
DFHTDA CSECT Transient data request processor - 03
DFHTDB CSECT Transient data request processor - 03
DFHTDCI DSECT Transient data VSAM CI map OS -
DFHTDDUF CSECT (OCO) Transient data SDUMP formatter - 03

CICS directory

1420 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHTDEXL CSECT Transient data DCB exit list and DCB abend exit

routine
OS 03

DFHTDGDS DSECT Transaction dump global statistics 11 -
DFHTDGDS DSECT Transaction dump global statistics C2 07
DFHTDOA DSECT Transient data output area 11 -
DFHTDOC CSECT Transient data open/close for extrapartition queues - 03
DFHTDOCA DSECT TDOC parameter list OS -
DFHTDOCM Macro TDOC request OS -
DFHTDOCT CSECT TDOC trace interpretation data - 03
DFHTDRDS DSECT Transaction dump statistics by dump code 11 -
DFHTDRDS DSECT Transaction dump statistics by dump code C2 07
DFHTDRDS DSECT Transaction dump statistics by dump code P2 -
DFHTDRP CSECT Transient data recovery program OS 03
DFHTDSDS DSECT Transient data static storage OS -
DFHTDTDA DSECT TDTD parameter list OS -
DFHTDTDM Macro TDTD request OS -
DFHTDTDT CSECT TDTD trace interpretation data - 03
DFHTDTM CSECT Transient data table management gate - 03
DFHTDTMA CSECT TDTM parameter list OS -
DFHTDTMM Macro TDTM request OS -
DFHTDTMT DSECT TDTM translate tables - 03
DFHTDTRI CSECT Transient data trace interpreter OS 03
DFHTDUED Macro TD user exits EXEC argument list 11 -
DFHTDX CSECT Transient data phase 1 initialization OS 03
DFHTDXM CSECT (OCO) XM domain - TD facility management services OS 03
DFHTDXMA DSECT TDXM parameter list OS -
DFHTDXMM Macro TDXM request OS -
DFHTDXMT CSECT (OCO) TDXM trace interpretation data OS 03
DFHTEPA Macro TEP inner macro 11 -
DFHTEPC Macro TEP inner macro 11 -
DFHTEPCA Macro TEP communication area 11 -
DFHTEPM Macro TEP module generator 11 -
DFHTEPS Macro TEP inner macro 11 -
DFHTEPT Macro TEP table generator 11 -
DFHTERID Symbolic Terminal error definitions 11 -
DFHTEST Macro Domain call argument TEST macro 11 -
DFHTFALA DSECT TFAL parameter list OS -
DFHTFALM Macro TFAL request OS -
DFHTFALT CSECT (OCO) TFAL trace interpretation data - 03
DFHTFBFA DSECT TFBF parameter list OS -
DFHTFBFM Macro TFBF request OS -
DFHTFBFT CSECT (OCO) TFBF trace interpretation data - 03
DFHTFIQ CSECT (OCO) Terminal facility manager inquire/set functions - 03
DFHTFIQA DSECT TFIQ parameter list OS -
DFHTFIQI DSECT TFIQ requests (inline form) OS -
DFHTFIQM DSECT TFIQ requests OS -
DFHTFIQT CSECT (OCO) TFIQ trace interpretation data - 03
DFHTFP CSECT Transaction failure program OS 03
DFHTFRF CSECT (OCO) Terminal facility manager release function - 03
DFHTFRFT CSECT (OCO) TFRF trace interpretation data - 03
DFHTFTRI CSECT (OCO) Terminal facility manager trace interpreter - 03
DFHTFXM CSECT TF XM transaction attach - 03
DFHTIDM CSECT (OCO) TI domain - initialization/termination - 03
DFHTIDUF CSECT (OCO) SDUMP formatter for TI domain - 03

CICS directory

Chapter 115. CICS directory 1421

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHTIEDS DSECT Task interface element OS -
DFHTIEM CSECT Resource manager interface TIE manager OS 03
DFHTIOA DSECT Terminal input/output area 11 -
DFHTIOA DSECT Terminal input/output area C2 07
DFHTISR CSECT (OCO) TI domain - services - 03
DFHTISRA DSECT TISR parameter list OS -
DFHTISRM Macro TISR request OS -
DFHTISRT CSECT TISR trace interpretation data - 03
DFHTITRI CSECT (OCO) Trace interpreter for TI domain - 03
DFHTLT Macro Terminal list table 11 -
DFHTM Macro Table manager interface 11 -
DFHTMDUF CSECT (OCO) Table manager SDUMP formatter - 03
DFHTMP01 CSECT (OCO) Table manager program - part 1 - 03
DFHTMP02 CSECT (OCO) Table manager program - part 2 - 03
DFHTMTRI CSECT (OCO) Table manager program trace interpreter - 03
DFHTOACN CSECT Terminal object resolution (TOR) - add connection OS 03
DFHTOAPT CSECT TOR - add pooled terminal - 03
DFHTOASE CSECT TOR - add session OS 03
DFHTOATM CSECT TOR - add (non-pooled) terminal - 03
DFHTOATY CSECT TOR - add typeterm - 03
DFHTOBPS CSECT TOR - create BPS and check attributes OS 03
DFHTOCAN CSECT TOR - dynamic backout processing - 03
DFHTOCMT CSECT TOR - syncpoint commit processing - 03
DFHTOLCR CSECT TOR - end logical unit of complex replacement - 03
DFHTOLUI CSECT TOR - end logical unit of installation - 03
DFHTOM Macro BMS terminal output OS -
DFHTON CSECT Terminal object resolution module - 03
DFHTONR CSECT Terminal object resolution recovery - 03
DFHTONRT DSECT TONR translate tables - 03
DFHTORP CSECT Terminal object recovery program - 03
DFHTOR00 CSECT Terminal object resolution program (DFHTOR) OS 03
DFHTOUT1 CSECT TOR - set operation utilities - 03
DFHTOUT2 CSECT TOR - map operation utilities - 03
DFHTPE DSECT Terminal partition extension OS -
DFHTPP CSECT BMS terminal page processor OS -
DFHTPPA$ CSECT BMS terminal page processor (standard) OS 03
DFHTPP1$ CSECT BMS terminal page processor (full) OS 03
DFHTPQ CSECT BMS terminal page cleanup program OS 03
DFHTQGDS CSECT Global statistics for Transient Data 11 -
DFHTQGDS CSECT Global statistics for Transient Data C2 07
DFHTQRDS CSECT Transient data queue statistics 11 -
DFHTQRDS CSECT Transient data queue statistics C2 07
DFHTPR CSECT BMS terminal page retrieval program OS 03
DFHTPS CSECT BMS terminal page scheduling program OS 03
DFHTR Macro Trace service request 11 -
DFHTRA DSECT TR domain - anchor block OS -
DFHTRACE Macro Trace system macro OS -
DFHTRADS DSECT TR domain - parameter list to DFHTRAP 11 -
DFHTRAO CSECT TR domain - auxiliary trace output OS 03
DFHTRAP CSECT TR domain - FE global trap/trace exit 11 03
DFHTRBL DSECT TR domain - internal trace table block OS -
DFHTRCIF CSECT CZ Direct-to-CICS - 03
DFHTRDM CSECT TR domain - initialization/termination OS 03
DFHTRDS DSECT TR domain - control blocks OS -

CICS directory

1422 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHTRDUB CSECT TR and DU keyword copybook OS -
DFHTRDUF CSECT (OCO) SDUMP formatter for TR domain - 03
DFHTREND DSECT TR domain - trace entry 11 -
DFHTREX DSECT - 03
DFHTRFCA DSECT Offline trace formatting control area OS -
DFHTRFFD CSECT Offline trace formatting - format data fields OS 03
DFHTRFFE CSECT Offline trace formatting - format trace entry OS 03
DFHTRFPB CSECT Offline trace formatting - process block OS 03
DFHTRFPP CSECT Offline trace formatting - process selective print

parameters
OS 03

DFHTRFT CSECT Trace put routine for features OS 03
DFHTRFTA CSECT TRFT parameter list OS -
DFHTRFTD CSECT TR feature trace entry header OS -
DFHTRFTM Macro TRFT macro OS -
DFHTRFTT CSECT TRFT translate tables OS 03
DFHTRFTX Macro TRFT macro 11 -
DFHTRFTY Macro TRFT call structured parameter list 11 -
DFHTRIB CSECT Trace interpretation string builder OS 03
DFHTRP CSECT Trace control program OS 03
DFHTRPRA CSECT Auxiliary trace offline formatting OS 03
DFHTRPRG CSECT GTF trace offline formatting OS 03
DFHTRPT CSECT TR domain - trace put (all destinations) OS 03
DFHTRPTA DSECT TRPT parameter list OS -
DFHTRPTM Macro TRPT request OS -
DFHTRPTT CSECT TRPT trace interpretation data OS 03
DFHTRPTX Macro TRPT request (XPI) 11 -
DFHTRPTY DSECT TRPT parameter list (XPI) 11 -
DFHTRPX CSECT TR domain - trace put (fast path) OS 03
DFHTRSR CSECT TR domain - trace destination services OS 03
DFHTRSRA DSECT TRSR parameter list OS -
DFHTRSRM Macro TRSR request OS -
DFHTRSRT CSECT TRSR trace interpretation data OS 03
DFHTRSU CSECT TR domain - subroutines OS 03
DFHTRSUA DSECT TRSU parameter list OS -
DFHTRSUM Macro TRSU request OS -
DFHTRSUT CSECT TRSU trace interpretation data OS 03
DFHTRTRI CSECT Trace interpreter for TR domain OS 03
DFHTRTST Macro TR domain - test if trace point active OS -
DFHTRUDS DSECT TRUE 24-bit parameter list save area 11 -
DFHTRXDF CSECT DU domain - transaction dump formatter for internal

trace table
OS 03

DFHTRZCP CSECT Terminal object builder OS 03
DFHTRZIP CSECT Session object builder OS 03
DFHTRZPP CSECT Pool object builder OS 03
DFHTRZXP CSECT Connection object builder OS 03
DFHTRZYP CSECT Typeterm object builder OS 03
DFHTRZZP CSECT Terminal object matching OS 03
DFHTS Macro Temporary-storage service request 11 -
DFHTSAD CSECT TS Domain - TSAD Gate Function - 03
DFHTSADT CSECT - 03
DFHTSAM CSECT TS auxiliary manager functions subroutine - 03
DFHTSAMT DSECT TSAM translate tables - 03
DFHTSBR CSECT TS browse functions - 03
DFHTSBRA CSECT TSBR parameter list OS -

CICS directory

Chapter 115. CICS directory 1423

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHTSBRM Macro TSBR request OS -
DFHTSBRT DSECT TSBR translate tables - 03
DFHTSDM CSECT TS domain manager functions (initialize, quiesce,

terminate)
- 03

DFHTSDQ CSECT Temporary Storage Delete Queue - 03
DFHTSDUC CSECT (OCO) Temporary-storage SDUMP analysis - 03
DFHTSDUF CSECT (OCO) Temporary-storage SDUMP formatter - 03
DFHTSDUS CSECT (OCO) Temporary-storage SDUMP summary - 03
DFHTSGDS DSECT Temporary-storage statistics DSECT (Assembler) 11 -
DFHTSGDS DSECT Temporary-storage statistics DSECT (COBOL) C2 07
DFHTSHD Macro Temporary-storage input/output area header OS -
DFHTSIOA DSECT Temporary-storage input/output area 11 -
DFHTSICT CSECT TSIC translate tables - 03
DFHTSITR CSECT TS trace interpretation - 03
DFHTSMB CSECT DFHTSMB Design - 03
DFHTSMBT CSECT - 03
DFHTSP CSECT Temporary-storage control program OS 03
DFHTSPT CSECT TS put functions - 03
DFHTSPTA CSECT TSPT request OS -
DFHTSPTM Macro TSPT request OS -
DFHTSPTT DSECT TSPT translate tables - 03
DFHTSQR CSECT TS mainline queue request functions - 03
DFHTSQRT DSECT TSQR translate tables - 03
DFHTSRM CSECT TS recovery manager functions - 03
DFHTSSBT DSECT TSSB translate tables - 03
DFHTSSH CSECT TS shared TS functions - 03
DFHTSSHT DSECT TSSH translate tables - 03
DFHTSSR CSECT TS service functions (inquire, set) - 03
DFHTSSRT DSECT TSSR translate tables - 03
DFHTSST CSECT TS statistics functions - 03
DFHTST Macro Temporary-storage table 11 -
DFHTSTDS DSECT Temporary-storage table OS -
DFHTSUED CSECT XTSEREQ and XTSEREQC EXEC parameter lists 11 -
DFHTSUTC DSECT TSUT abstract type internal control blocks OS -
DFHTSUTI Macro TSUT abstract type inline functions OS -
DFHTSWQ CSECT TS wait queue functions subroutine - 03
DFHTSWQT DSECT TSWQ translate tables - 03
DFHTTPDS DSECT BMS - terminal type parameter 11 -
DFHTUL DSECT Standard-labeled tape user labels - -
DFHTUTEN Macro Trace table generation macro OS -
DFHUCNV Sample CICS OS/2 user data conversion program 19 03
DFHUEDUF CSECT (OCO) User exit SDUMP formatter - 03
DFHUEFDS DSECT File control user exit file/data set info 11 -
DFHUEH CSECT User exit handler (AP domain) - 03
DFHUEHC Source User exit program invocation - -
DFHUEHWA DSECT User exit work areas OS -
DFHUEIQ CSECT User exit inquire exitprogram function - 03
DFHUEIQT CSECT EIQT trace interpreter - 03
DFHUEM CSECT User exit manager OS 03
DFHUEPBD DSECT User exit program block 11 -
DFHUEPLD DSECT User exit program link 11 -
DFHUERMD DSECT User exit resource manager 11 -
DFHUETED DSECT User exit table entry 11 -
DFHUETHD DSECT User exit table header 11 -

CICS directory

1424 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHUEXIT Macro User-exit-dependent code generator 11 -
DFHUEXPT Macro User exit point definition 11 -
DFHUIBA DSECT Assembler DSECT for User interface block 11 -
DFHUIBC CSECT C structure of the UIB - 08
DFHUIBO CSECT Cobol structure of the UIB C2 07
DFHUIBP CSECT PLI structure of the UIB P2 17
DFHUPDVS Other Cataloged procedure to update a temporary library

during system generation
18 -

DFHURLDS DSECT BMS - user-supplied route list 11 -
DFHURLDS DSECT BMS - user-supplied route list C2 07
DFHURLDS DSECT BMS - user-supplied route list D2 08
DFHUSAD CSECT (OCO) US domain - Add, Delete and Inquire User - 03
DFHUSADA DSECT USAD parameter list OS -
DFHUSADM Macro USAD request OS -
DFHUSADT CSECT (OCO) USAD trace interpretation data - 03
DFHUSAGE Macro Usage pricing code generation macro OS -
DFHUSAND CSECT (OCO) US domain - anchor block OS -
DFHUSBP CSECT User backout program OS 03
DFHUSDET DSECT USDE translate tables - 03
DFHUSDM CSECT (OCO) US domain - initialize, quiesce, and terminate domain

functions
- 03

DFHUSDUF CSECT (OCO) US domain - dump formatter - 03
DFHUSFL CSECT (OCO) US domain - Flatten and unflatten user - 03
DFHUSFLA DSECT USFL parameter list OS -
DFHUSFLM Macro USFL request OS -
DFHUSFLT CSECT (OCO) USFL trace interpretation data - 03
DFHUSGDS DSECT US domain - global statistics 11 -
DFHUSGDS DSECT US domain - global statistics C2 07
DFHUSIS CSECT (OCO) US domain - inquire and set functions - 03
DFHUSISA DSECT USIS parameter list OS -
DFHUSISM Macro USIS request OS -
DFHUSIST CSECT (OCO) USIS trace interpretation data - 03
DFHUSST CSECT (OCO) US domain - statistics - 03
DFHUSTI CSECT (OCO) US domain - timeout handler - 03
DFHUSTIA DSECT USTI parameter list OS -
DFHUSTIM Macro USTI request OS -
DFHUSTIT CSECT (OCO) USTI trace interpretation data - 03
DFHUSTRI CSECT (OCO) US domain - trace formatter - 03
DFHUSXM CSECT (OCO) US domain - transaction support - 03
DFHUSXMA DSECT USXM parameter list OS -
DFHUSXMI Macro USXM request (inline version of DFHUSXMM) OS -
DFHUSXMM Macro USXM request OS -
DFHUSXMT CSECT (OCO) USXM trace interpretation data - 03
DFHUT64 CSECT RU Base64 encoding and decoding - 03
DFHVM Macro Version/modification level generator 11 -
DFHVSWA DSECT VSAM work area 11 -
DFHVTWA DSECT NACP LIFO storage definition OS -
DFHWBA CSECT Web module - 03
DFHWBADX CSECT Web module 19 03
DFHWBAHX CSECT Web module - 19
DFHWBALX CSECT Web module - 19
DFHWBAOX CSECT Web module - 19
DFHWBAP CSECT WB Domain WBAP Gate Functions - 03
DFHWBAPF CSECT Web Module - 03

CICS directory

Chapter 115. CICS directory 1425

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHWBAPT CSECT Web Module - 03
DFHWBAP@ CSECT Web module - 03
DFHWBA1 CSECT Web module - 03
DFHWBA1D CSECT Web module 11 -
DFHWBA1H CSECT Web module - 08
DFHWBA1L CSECT Web module - 17
DFHWBA1O CSECT Web module - 07
DFHWBBLI CSECT Business Logic interfac program - 03
DFHWBBLL CSECT - 17
DFHWBBMS CSECT WB Web Interface BMS Support - 03
DFHWBCDD CSECT Web module - 11
DFHWBCDH CSECT Web module - 08
DFHWBCDL CSECT Web module - 17
DFHWBCDO CSECT Web module - 07
DFHWBCNV Macro WB CICS Web Interface codepage macro 11 -
DFHWBC01 CSECT Web module - 03
DFHWBDCD CSECT Web module OS -
DFHWBDL@ CSECT Autocall SCEEOBJ - 03
DFHWBDM CSECT Domain initialization - 03
DFHWBDUF CSECT Web module - 03
DFHWBENV CSECT Web module - 03
DFHWBEP CSECT Web error program - 03
DFHWBEPL CSECT - 17
DFHWBGB CSECT WB Web Interface Garbage Collection - 03
DFHWBIMG CSECT Web module - 03
DFHWBIP CSECT Web module - 03
DFHWBIPA CSECT Web module OS -
DFHWBIPM Macro DFHWBIP interface macro 11 -
DFHWBIPT CSECT Web module - 03
DFHWBLT CSECT Web module - 03
DFHWBOUT CSECT Web module 11 -
DFHWBPA CSECT Web module - 03
DFHWBQM CSECT Domain Initialization - 03
DFHWBQMT CSECT - 03
DFHWBRP CSECT Web module - 03
DFHWBSR CSECT WB Web Send/Receive - 03
DFHWBSRT CSECT - 03
DFHWBST CSECT Web module - 03
DFHWBSTT CSECT Web module - 03
DFHWBTC CSECT Web module - 03
DFHWBTC@ CSECT Web module - 03
DFHWBTCT CSECT Web module - 03
DFHWBTDD CSECT Web module 11 -
DFHWBTDH CSECT Web module - 08
DFHWBTDL CSECT Web module - 17
DFHWBTDO CSECT Web module - 07
DFHWBTL CSECT Web module - 03
DFHWBTLD CSECT Web module 11 -
DFHWBTLG CSECT Web module 11 -
DFHWBTLH CSECT Web module - 08
DFHWBTLL CSECT Web module - 17
DFHWBTLO CSECT Web module C2 -
DFHWBTRI CSECT Web module - 03
DFHWBTR1 CSECT Web GWAPI Trace Interpretation - 03

CICS directory

1426 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHWBTRU CSECT Web module - 03
DFHWBTTA CSECT Web module - 03
DFHWBUCD CSECT Web module 11 -
DFHWBUCH CSECT Web module - 08
DFHWBUCL CSECT Web module - 17
DFHWBUCO CSECT Web module - 07
DFHWBUN CSECT Web Interface Unescaping Program - 03
DFHWBUND CSECT Web Interface Unescaping parameter list 11 -
DFHWBUNH CSECT - 08
DFHWBUNL CSECT - 17
DFHWBUNO CSECT - 07
DFHWBXM CSECT Web Interface Attach Client - 03
DFHWBXMT CSECT - 03
DFHWBXN CSECT Web Attach Processing - 03
DFHWCCS CSECT CAVM common services OS 03
DFHWCGDS DSECT CAVM global control block OS -
DFHWCGNT CSECT CAVM entry point table for routines above 16MB line OS 03
DFHWCSDS DSECT XRF static storage OS -
DFHWDATT CSECT XRF process dispatcher attach control OS 03
DFHWDINA CSECT XRF process dispatcher initialization OS 03
DFHWDISP CSECT XRF process dispatcher OS 03
DFHWDSDS DSECT CAVM dispatcher interface parameter block OS -
DFHWDSRP CSECT PC/ABEND handler for XRF dispatcher OS 03
DFHWDWAT CSECT XRF process dispatcher wait services OS 03
DFHWFGDS DSECT CAVM file control block OS -
DFHWKP CSECT Warm keypoint program - 03
DFHWLF Macro XRF LIFO free storage request OS -
DFHWLFRE CSECT XRF LIFO free allocation service OS 03
DFHWLG Macro XRF LIFO get storage request OS -
DFHWLGET CSECT XRF LIFO get allocation service OS 03
DFHWLIST CSECT WORDLIST function (used by DFHDBME) OS 03
DFHWMG1 CSECT XRF message manager, GETMSG process OS 03
DFHWMI CSECT XRF message manager, signon initialization routine OS 03
DFHWMMT CSECT XRF message manager, I/O services OS 03
DFHWMPG CSECT XRF message manager, data copying service OS 03
DFHWMP1 CSECT XRF message manager, PUTMSG process OS 03
DFHWMQG CSECT XRF message manager, CICS TCB part of GETMSG

processing
OS 03

DFHWMQH CSECT XRF message manager, message block services for
GETMSG

OS 03

DFHWMQP CSECT XRF message manager, CICS TCB part of PUTMSG
processing

OS 03

DFHWMQS CSECT XRF message manager, work queue services OS 03
DFHWMRD CSECT XRF message manager, message reader OS 03
DFHWMS CSECT XRF message manager, request interface OS 03
DFHWMS20 CSECT XRF message manager, request router OS 03
DFHWMWR CSECT XRF message manager, output routine OS 03
DFHWNFDS DSECT CAVM NOTIFY exit parameter block OS -
DFHWORDS CSECT WORDS function (used by DFHDBME) OS 03
DFHWOS CSECT XRF overseer startup module OS 03
DFHWOSA CSECT XRF overseer initialization module OS 03
DFHWOSB CSECT XRF overseer services module OS 03
DFHWOSM Macro XRF overseer interface definition 11 -
DFHWSADS DSECT CAVM surveillance status control block OS -

CICS directory

Chapter 115. CICS directory 1427

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHWSCDS DSECT CAVM time-of-day difference control area OS -
DFHWSMDS DSECT CAVM state management record OS -
DFHWSNDS DSECT XRF table of entry points in load module DFHWSMS OS -
DFHWSRDS DSECT CAVM surveillance communication area OS -
DFHWSRTR CSECT CAVM state management request router and subtask

entry point
OS 03

DFHWSSDS DSECT CAVM state management parameter block OS -
DFHWSSN1 CSECT CAVM state management signon initial entry point OS 03
DFHWSSN2 CSECT CAVM state management signon request handler OS 03
DFHWSSN3 CSECT CAVM state management data set initialization routine OS 03
DFHWSSOF CSECT CAVM state management sign-off request handler OS 03
DFHWSSR CSECT CAVM surveillance status reader OS 03
DFHWSSW CSECT CAVM surveillance status writer OS 03
DFHWSTDS DSECT XRF takeover parameter area OS -
DFHWSTI CSECT CAVM surveillance tick generator and system status

monitor
OS 03

DFHWSTKV CSECT CAVM state management takeover request handler OS 03
DFHWSXDS DSECT NOTIFY exit control block OS -
DFHWSXPI CSECT CAVM state management CAVM process initialization OS 03
DFHWS2DS DSECT Parameter list for DFHWSSN2 OS -
DFHWS3DS DSECT Parameter list for DFHWSSN3 OS -
DFHWTADS DSECT XRF takeover initiation argument block OS -
DFHWTI CSECT XRF takeover initiation program OS 03
DFHWTIA Source XRF takeover initiation program - RST specific routines OS -
DFHWTIC Source XRF takeover initiation program - CLT specific routines OS -
DFHWTII Source XRF takeover initiation program - inquire job status OS -
DFHWTIJ Source XRF takeover initiation program - job termination/wait OS -
DFHWTO Macro Write to console operator 11 -
DFHWTRP CSECT XRF trace routine OS 03
DFHXBMDS Macro BMS User Exits Parameter List 11 -
DFHXCALL Macro EXCI EXEC Interface 11 -
DFHXCDMP CSECT (OCO) EXCI dump services - 03
DFHXCEIP CSECT (OCO) EXCI EXEC API handler - 03
DFHXCGUR CSECT EXCI Get Unit of Recovery Tokens - 03
DFHXCO Macro EXCI EXEC options 11 -
DFHXCOPT DSECT EXCI options table 19 03
DFHXCP CSECT Transaction manager (part) OS 03
DFHXCPLD Sample EXCI CALL parameter list (Assembler) 11 -
DFHXCPLH Sample EXCI CALL parameter list (C) - 08
DFHXCPLL Sample EXCI CALL parameter list (PL/I) - 17
DFHXCPLO Sample EXCI CALL parameter list (COBOL) - 07
DFHXCPRH DSECT EXCI program request handler - 03
DFHXCRCD Sample EXCI return codes (Assembler) 11 -
DFHXCRCH Sample EXCI return codes (C) D2 08
DFHXCRCL Sample EXCI return codes (PL/I) - 17
DFHXCRCO Sample EXCI return codes (COBOL) - 07
DFHXCSTB CSECT EXCI stub - 03
DFHXCSVC CSECT (OCO) EXCI SVC services - 03
DFHXCTAB CSECT (OCO) EXCI language table - 03
DFHXCTRA CSECT EXCI global trap program 11 03
DFHXCTRD DSECT EXCI global trap program parameter list 11 -
DFHXCTRI CSECT EXCI trace initialization termination, and recovery - 03
DFHXCTRP CSECT EXCI trace services - 03
DFHXCURM CSECT EXCI user-replaceable module 19 03

CICS directory

1428 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHXDTDS Sample Data Table User Exits Parameter List 11 -
DFHXDXDF CSECT DU domain - transaction dump formatter for headers

and general information
OS 03

DFHXFDL Macro DL/I function shipping OS -
DFHXFFC Macro FC function shipping OS -
DFHXFHED Macro Produce transformation program headings OS -
DFHXFIC Macro IC function shipping OS -
DFHXFIOA DSECT Transformer I/O area OS -
DFHXFJC Macro JC function shipping OS -
DFHXFMOD Macro Produce data transformation programs OS -
DFHXFP CSECT Online data transformation program OS 03
DFHXFPC Macro DFHXFMOD inner macro OS -
DFHXFQ CSECT Batch data transformation program OS 03
DFHXFQU Macro TD and TS function shipping OS -
DFHXFRM Macro Function shipping recovery module - 03
DFHXFSM Macro DFHXFMOD inner macro OS -
DFHXFSTG Macro XF control block and transformer 11 -
DFHXFX CSECT Optimized data transformation program OS 03
DFHXIS Sample XISCONA global user exit program 19 03
DFHXISDS Sample XISCONA data set information 19 -
DFHXLT Macro Transaction list table 11 -
DFHXLTDS DSECT Transaction list table OS -
DFHXMAB CSECT (OCO) XM domain - abend handler - 03
DFHXMACT CSECT - 03
DFHXMAT CSECT (OCO) XM domain - attach - 03
DFHXMATA Source XMAT parameter list OS -
DFHXMATM Source XMAT request OS -
DFHXMATT CSECT (OCO) XMAT trace interpretation data - 03
DFHXMBD CSECT (OCO) XM domain - browse - 03
DFHXMBDA Source XMBD parameter list OS -
DFHXMBDM Source XMBD request OS -
DFHXMBDT CSECT (OCO) XMBD trace interpretation data - 03
DFHXMCDS DSECT XM domain - TCLASS statistics 11 -
DFHXMCDS DSECT XM domain - TCLASS statistics C2 07
DFHXMCL CSECT (OCO) XM domain - transaction class functions - 03
DFHXMCLA Source XMCL parameter list OS -
DFHXMCLM Source XMCL request OS -
DFHXMCLT CSECT (OCO) XMCL trace interpretation data - 03
DFHXMCLX Macro XMCL request 11 -
DFHXMCLY DSECT XMCL parameter list 11 -
DFHXMDD CSECT (OCO) XM domain - delete installed transaction - 03
DFHXMDDA Source XMDD parameter list OS -
DFHXMDDM Source XMDD request OS -
DFHXMDDT CSECT (OCO) XMDD trace interpretation data - 03
DFHXMDM CSECT (OCO) XM domain - pre-initialize, initialize, and quiesce

domain functions
- 03

DFHXMDNA Source XMDN parameter list OS -
DFHXMDNT CSECT XMDN trace interpretation data - 03
DFHXMDUF CSECT (OCO) Transaction manager SDUMP formatter - 03
DFHXMER CSECT (OCO) XM domain - XMER gate functions - 03
DFHXMERA Source XMER parameter list OS -
DFHXMERM Source XMER request OS -
DFHXMERT CSECT XMER trace interpretation data - 03
DFHXMFD CSECT (OCO) XM domain - XMFD gate functions - 03

CICS directory

Chapter 115. CICS directory 1429

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHXMFDA Source XMFD parameter list OS -
DFHXMFDM Macro XMFD requests OS -
DFHXMFDT CSECT (OCO) XMFD trace interpretation data - 03
DFHXMGDS DSECT XM domain - global statistics 11 -
DFHXMGDS DSECT XM domain - global statistics C2 07
DFHXMIQ CSECT (OCO) XM domain - XMIQ gate functions - 03
DFHXMIQA Source XMIQ parameter list OS -
DFHXMIQI Source XMIQ request (inline form of DFHXMIQM) OS -
DFHXMIQM Source XMIQ requests OS -
DFHXMIQT CSECT (OCO) XMIQ trace interpretation data - 03
DFHXMIQX Macro XMIQ requests 11 -
DFHXMIQY DSECT XMIQ parameter list 11 -
DFHXMLD CSECT (OCO) XM domain - XMLD gate functions - 03
DFHXMLDA Source XMLD parameter list OS -
DFHXMLDM Source XMLD requests OS -
DFHXMLDT CSECT XMLD trace interpretation data - 03
DFHXMNTA DSECT XMNT parameter list OS -
DFHXMNTT CSECT XMNT trace interpretation data - 03
DFHxphPA DSECT xphP parameter list OS -
DFHxphPT CSECT xphP trace interpretation data - 03
DFHXMQC CSECT (OCO) XM domain - tclass functions subroutine - 03
DFHXMQCA Source XMQC parameter list OS -
DFHXMQCM Source XMQC request OS -
DFHXMQCT CSECT XMQC trace interpretation data - 03
DFHXMQD CSECT (OCO) XM domain - quiesce and delete transaction definitions

functions subroutine
- 03

DFHXMQDT CSECT (OCO) XMQD trace interpretation data - 03
DFHXMRDS DSECT XM domain - transaction statistics 11 -
DFHXMRDS DSECT XM domain - transaction statistics C2 07
DFHXMRM CSECT XM domain Run Transaction Syncpoint Process. - 03
DFHXMRM1 CSECT - 03
DFHXMRP CSECT (OCO) XM domain - definition recovery subroutine - 03
DFHXMRPT CSECT (OCO) XMRP trace interpretation data - 03
DFHXMRSD DSECT (OCO) XM domain - communications area for transaction

restart (Assembler)
11 -

DFHXMRSH DSECT (OCO) XM domain - communications area for transaction
restart (C/370)

- 08

DFHXMRSL DSECT (OCO) XM domain - communications area for transaction
restart (PL/I)

- 17

DFHXMRSO DSECT (OCO) XM domain - communications area for transaction
restart (COBOL)

- 07

DFHXMRU CSECT XMRU CDURUN and Gate Module - 03
DFHXMRUT CSECT - 03
DFHXMSG CSECT Default XRF recovery message OS 03
DFHXMSR CSECT (OCO) XM domain - XMSR gate functions - 03
DFHXMSRA Source XMSR parameter list OS -
DFHXMSRM Source XMSR request OS -
DFHXMSRT CSECT (OCO) XMSR trace interpretation data - 03
DFHXMSRX Macro XMSR request 11 -
DFHXMSRY DSECT XMSR parameter list 11 -
DFHXMST CSECT (OCO) XM domain - statistics services - 03
DFHXMSUA DSECT XMSU parameter list OS -
DFHXMSUM Macro XMSU request OS -
DFHXMSUT CSECT XMSU trace interpretation data OS 03

CICS directory

1430 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHXMTA CSECT (OCO) XM domain - task reply gate - 03
DFHXMTRI CSECT (OCO) XM domain - trace initialization, termination, and

recovery
- 03

DFHXMTRM Macro Obtain 3 character task number from TCA of task
issuing trace put

OS -

DFHXMXD CSECT (OCO) XM domain - XMXD gate functions - 03
DFHXMXDA Source XMXD parameter list OS -
DFHXMXDD Source XMXD transaction definition instance parameter list OS -
DFHXMXDI Source XMXD request (inline form of DFHXMXDM) OS -
DFHXMXDM Source XMXD request OS -
DFHXMXDT CSECT (OCO) XMXD trace interpretation data - 03
DFHXMXDX Macro XMXD request 11 -
DFHXMXDY DSECT XMXD parameter list 11 -
DFHXMXE CSECT (OCO) XM domain - XMXE gate functions - 03
DFHXMXEA Source XMXE parameter list OS -
DFHXMXEM Source XMXE request OS -
DFHXMXET CSECT (OCO) XMXE trace interpretation data - 03
DFHXMXM CSECT Run Transaction XM Attach Client - 03
DFHXMXND CSECT (OCO) XM domain - transaction storage OS -
DFHXOPU@ CSECT - 03
DFHXOPUS Sample Sample IIOP URM (C Version) - 19
DFHXQBF CSECT XQ queue server buffer pool routines - 03
DFHXQCF CSECT XQ queue server coupling facility I/O - 03
DFHXQCN CSECT XQ queue server connect/disconnect - 03
DFHXQDF CSECT XQ TS queue pool server definitions - 03
DFHXQEN CSECT XQ ENF event interface - 03
DFHXQIF CSECT XQ queue server interface module - 03
DFHXQIQ CSECT XQ queue server inquire module - 03
DFHXQMN CSECT XQ queue server mainline - 03
DFHXQMS CSECT XQ queue pool server messages - 03
DFHXQOP CSECT XQ queue server command processing - 03
DFHXQPR CSECT XQ queue server parameter processing - 03
DFHXQRL CSECT XQ queue server reload routine - 03
DFHXQRQ CSECT XQ queue server request routine - 03
DFHXQRS CSECT XQ ARM Restart Support - 03
DFHXQST CSECT XQ queue server statistics - 03
DFHXQS1D CSECT XQ list structure statistics record 11 -
DFHXQS2D CSECT XQ queue buffer statistics record 11 -
DFHXQS3D CSECT XQ main storage statistics record 11 -
DFHXQUL CSECT XQ queue server unload routine - 03
DFHXR Macro XRF code generation macro 11 -
DFHXRA CSECT XRF request processing program OS 03
DFHXRB CSECT XRF NOTIFY exit program OS 03
DFHXRC CSECT XRF inquire status exit program OS 03
DFHXRCP CSECT XRF console communication program OS 03
DFHXRDUF CSECT (OCO) XRF SDUMP formatter - 03
DFHXRE CSECT XRF startup program OS 03
DFHXRF CSECT XRF CAVM sign-off interface OS 03
DFHXRHDS DSECT XRF health data definition 11 -
DFHXROCL Other Used by DFHCRST cataloged procedure 11 -
DFHXRSP CSECT XRF surveillance program OS 03
DFHXRXDF CSECT DU domain - transaction dump formatter for XRF

related areas
OS 03

DFHXSAD CSECT (OCO) XS domain - XSAD gate functions - 03

CICS directory

Chapter 115. CICS directory 1431

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHXSADA Source XSAD parameter list OS -
DFHXSADM Source XSAD request OS -
DFHXSADT CSECT (OCO) XSAD trace interpretation data - 03
DFHXSDM CSECT (OCO) XS domain - initialize, quiesce, terminate domain

functions
- 03

DFHXSDUF CSECT (OCO) XS domain - SDUMP formatter - 03
DFHXSEAI CSECT Early verification stub program - 03
DFHXSEJ CSECT Security Interfaces for EJB - 03
DFHXSEJT CSECT - 03
DFHXSEV CSECT (OCO) XS domain - early verification support - 03
DFHXSFL CSECT (OCO) XS domain - XSFL gate functions - 03
DFHXSFLA Source XSFL parameter list OS -
DFHXSFLM Source XSFL request OS -
DFHXSFLT CSECT (OCO) XSFL trace interpretation data - 03
DFHXSIDT CSECT (OCO) XS domain - trace interpretation data - 03
DFHXSIS CSECT (OCO) XS domain - XSIS gate functions - 03
DFHXSISA Source XSIS parameter list OS -
DFHXSISM Source XSIS request OS -
DFHXSIST CSECT (OCO) XSIS trace interpretation data - 03
DFHXSLU CSECT (OCO) XS domain - XSLU gate functions - 03
DFHXSLUA Source XSLU parameter list OS -
DFHXSLUM Source XSLU request OS -
DFHXSLUT CSECT (OCO) XSLU trace interpretation data - 03
DFHXSPUB DSECT (OCO) XS domain - public storage fields OS -
DFHXSPW CSECT (OCO) XS domain - XSPW gate functions - 03
DFHXSPWA Source XSPW parameter list OS -
DFHXSPWM Source XSPW request OS -
DFHXSPWT CSECT (OCO) XSPW trace interpretation data - 03
DFHXSRC CSECT (OCO) XS domain - XSRC gate functions - 03
DFHXSRCA Source XSRC parameter list OS -
DFHXSRCI Source XSRC request (inline form of DFHXSRCM) OS -
DFHXSRCM Macro XSRC requests OS -
DFHXSRCT CSECT (OCO) XSRC trace interpretation data - 03
DFHXSSA CSECT (OCO) XS domain - supervisor request router - 03
DFHXSSAT CSECT (OCO) XSSA trace interpretation data - 03
DFHXSSB CSECT (OCO) XS domain - supervisor extraction services - 03
DFHXSSBT CSECT (OCO) XSSB trace interpretation data - 03
DFHXSSC CSECT (OCO) XS domain - resource checking functions - 03
DFHXSSCT CSECT (OCO) XSSC trace interpretation data - 03
DFHXSSD CSECT (OCO) XS domain - create passticket function - 03
DFHXSSDT CSECT (OCO) XSSD trace interpretation data - 03
DFHXSSE CSECT Security Supervisor Phase E Cert.Mgement - 03
DFHXSSET CSECT - 03
DFHXSSI CSECT (OCO) XS domain - storage initialization - 03
DFHXSSIT CSECT (OCO) XSSI trace interpretation data - 03
DFHXSTRI CSECT (OCO) XS domain - trace initialization, termination, and

recovery
- 03

DFHXSUXP Macro Installation data for ESM exits 11 -
DFHXSWM CSECT XRF message manager for security manager OS 03
DFHXSWMA CSECT XSWM parameter list OS -
DFHXSWMM Macro XSWM request OS -
DFHXSXM CSECT (OCO) XS domain - XM domain interface - 03
DFHXSXMA DSECT XSXM parameter list OS -
DFHXSXMI Macro XSXM requests (inline form) OS -

CICS directory

1432 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHXSXMM Macro XSXM requests OS -
DFHXSXMT CSECT (OCO) XSXM trace interpretation data - 03
DFHXT Macro DFHXTP internal table generator OS -
DFHXTAB Macro BMS internal macro 11 -
DFHXTCI CSECT XRF terminal switching OS 03
DFHXTENF Sample XICTENF/XALTENF global user exit program 19 03
DFHXTEP CSECT User-replaceable terminal error program 19 03
DFHXTEPT CSECT User-replaceable terminal error tables 19 03
DFHXTP CSECT Terminal sharing transformation program OS 03
DFHXTPD DSECT XTP internal control blocks OS -
DFHXTSTG Macro XTP parameter list OS -
DFHXTT Source XTP data transformation argument descriptions (used

by DFHXT macro)
OS -

DFHXTTT Macro DFHXTT inner macro OS -
DFHXZIDS DSECT XZIQUE exit data set information 11 -
DFHYBTPL Other Cataloged procedure to translate, compile, and link-edit

Language Environment PL/I application programs that
use EXEC DLI and will run in a batch or CICS shared
database region

18 -

DFHYBTVL Other Cataloged procedure to translate, compile, and link-edit
Language Environment COBOL application programs
that use EXEC DLI and will run in a batch or CICS
shared database region

18 -

DFHYITDL Other Cataloged procedure to translate, compile, and link-edit
Language Environment C application programs

18 -

DFHYITEL Other Cataloged procedure to translate, compile, and link-edit
C++ application programs using the Language
Environment compiler

18 -

DFHYITPL Other Cataloged procedure to translate, compile, and link-edit
Language Environment PL/I application programs

18 -

DFHYITVL Other Cataloged procedure to translate, compile, and link-edit
Language Environment COBOL application programs

18 -

DFHYXTDL Other Cataloged procedure to translate, compile, and link-edit
Language Environment C application programs that
are to use the external CICS interface

18 -

DFHYXTEL Other Cataloged procedure to translate (EXCI), compile, and
link-edit C++ application programs using the Language
Environment compiler

18 -

DFHYXTPL Other Cataloged procedure to translate, compile, and link-edit
Language Environment PL/I application programs that
are to use the external CICS interface

18 -

DFHYXTVL Other Cataloged procedure to translate, compile, and link-edit
Language Environment COBOL application programs
that are to use the external CICS interface

18 -

DFHZABD CSECT No VTAM support abend handler OS 03
DFHZACT CSECT Activate scan OS 03
DFHZAIT CSECT Attach initialization table OS -
DFHZAND CSECT Abend control block OS 03
DFHZAPB Sample 3770 application program 19 -
DFHZARER CSECT LU6.2 protocol error and exception handler OS 03
DFHZARL CSECT LU6.2 application request logic OS 03
DFHZARM CSECT LU6.2 migration logic OS 03
DFHZARQ CSECT Application request handler OS 03
DFHZARR CSECT LU6.2 application receive request logic OS 03
DFHZARRA CSECT LU6.2 application receive buffer support OS 03

CICS directory

Chapter 115. CICS directory 1433

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHZARRC CSECT LU6.2 classify what next to receive OS 03
DFHZARRF CSECT LU6.2 receive FMH7 and ER1 OS 03
DFHZASX CSECT DFASY exit OS 03
DFHZATA CSECT Autoinstall program OS 03
DFHZATA2 CSECT ZCINST Autoinstall Program - Console - 03
DFHZATD CSECT Autoinstall delete program OS 03
DFHZATDX CSECT User-replaceable autoinstall exit 19 03
DFHZATDY CSECT User-replaceable autoinstall exit with APPC 19 03
DFHZATI CSECT Automatic task initiation OS 03
DFHZATMD CSECT Automatic terminal remote definition program - 03
DFHZATMF CSECT Mass flag program for time-out delete - 03
DFHZATR CSECT Autoinstall restart program OS 03
DFHZATS CSECT Remote autoinstall/delete program OS 03
DFHZATT CSECT Task attach OS 03
DFHZBAN CSECT Terminal control bind analysis OS 03
DFHZBKT CSECT LU6.2 bracket state machine OS 03
DFHZBLX CSECT VTAM SCIP exit LU6.2 bind handling OS 03
DFHZBSM Macro LU6.2 bracket state macro OS -
DFHZCA CSECT VTAM working set module OS 03
DFHZCB CSECT VTAM working set module OS 03
DFHZCC CSECT VTAM working set module OS 03
DFHZCGRP CSECT (OCO) Attach CGRP task (for DFHZGRP) - 03
DFHZCHM Macro LU6.2 chain state macro OS -
DFHZCHS CSECT LU6.2 chain state machine OS 03
DFHZCLS CSECT CLSDST OS 03
DFHZCLX CSECT CLSDST exit OS 03
DFHZCNA CSECT System console activity control OS 03
DFHZCNM Macro LU6.2 contention state macro OS -
DFHZCNR CSECT System console application request OS 03
DFHZCNT CSECT LU6.2 contention state machine OS 03
DFHZCNVM Macro MRO application state setting OS -
DFHZCN1 CSECT CICS Client CCIN Transaction - 03
DFHZCN2 CSECT CICS Client CCIN ZC domain subroutine - 03
DFHZCN2T DSECT ZCN2 translate tables - 03
DFHZCTR1 CSECT ZC CICS Client trace interpretation - 03
DFHZCOVR CSECT Terminal control open VTAM retry - 03
DFHZCP CSECT Terminal management program OS 03
DFHZCPBK Macro Bracket control OS -
DFHZCPLR CSECT PL/AS call for TCPLR OS 03
DFHZCQ Macro Terminal control install interface 11 -
DFHZCQCH CSECT Catalog a TCT element OS 03
DFHZCQDL CSECT Dynamic delete TCT element OS 03
DFHZCQIN CSECT Initialize DFHZCQ OS 03
DFHZCQIQ CSECT Inquire about a TCTTE OS 03
DFHZCQIS CSECT Install a TCTTE OS 03
DFHZCQRS CSECT Restore a terminal control resource OS 03
DFHZCQRT CSECT ZC resource types table OS 03
DFHZCQ00 CSECT Dynamic add/replace TCT elements OS 03
DFHZCRM Macro LU6.2 RPL_B state macro OS -
DFHZCRQ CSECT CTYPE command request OS 03
DFHZCRT CSECT LU6.2 RPL_B state machine OS 03
DFHZCSTP CSECT Attach CSTP (TCP task) OS 03
DFHZCTDX Sample Autoinstall user exit - COBOL - 19
DFHZCTRI CSECT Persistent sessions trace interpreter - 03

CICS directory

1434 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHZCT1 CSECT CICS Client CTIN transaction - 03
DFHZCUT CSECT Persistent verification signed-on-from list management

program
OS 03

DFHZCUTA DSECT ZCUT parameter list OS -
DFHZCUTM Macro ZCUT request OS -
DFHZCUTT CSECT ZCUT trace interpretation data OS 03
DFHZCW CSECT VTAM nonworking set module OS 03
DFHZCX CSECT LOCATE, ISC/IRC request OS 03
DFHZCXR CSECT Transaction routing module address list OS 03
DFHZCY CSECT VTAM nonworking set module OS 03
DFHZCZ CSECT VTAM nonworking set module OS 03
DFHZDET CSECT Task detach OS 03
DFHZDSP CSECT Dispatcher OS 03
DFHZDST CSECT SNA-ASCII translator OS 03
DFHZDTDX Sample Autoinstall user exit - C/370 D3 -
DFHZEMW CSECT Error message writer OS 03
DFHZEPD DSECT TCP/ZCP module entry address list 11 -
DFHZEQU Symbolic ZCP equates 11 -
DFHZERH CSECT LU6.2 error program OS 03
DFHZERRM Macro ZCP error-handling macro OS -
DFHZETR Macro ZC VTAM exit GTF trace macro OS -
DFHZEV1 CSECT LU6.2 security encryption program part 1 OS 03
DFHZEV2 CSECT LU6.2 security encryption program part 2 OS 03
DFHZFRE CSECT FREEMAIN request OS 03
DFHZGAI CSECT (OCO) APPC autoinstall - create APPC clones - 03
DFHZGAIA Source ZGAI parameter list OS -
DFHZGAIM Source ZGAI request OS -
DFHZGAIT CSECT ZGAI trace interpretation data OS 03
DFHZGBM CSECT (OCO) APPC manipulate bitmap - 03
DFHZGBMA Source ZGBM parameter list OS -
DFHZGBMM Source ZGBM request OS -
DFHZGBMT CSECT (OCO) ZGBM trace interpretation data - 03
DFHZGCA CSECT (OCO) LU6.2 CNOS actioning - 03
DFHZGCAA Source ZGCA parameter list OS -
DFHZGCAM Source ZGCA request OS -
DFHZGCAT CSECT (OCO) ZGCA trace interpretation data - 03
DFHZGCC CSECT (OCO) Catalog CNOS services - 03
DFHZGCCA Source ZGCC parameter list OS -
DFHZGCCM Source ZGCC request OS -
DFHZGCCT CSECT (OCO) ZGCC trace interpretation data - 03
DFHZGCH CSECT ZC VTAM change macro domain subroutine - 03
DFHZGCHA CSECT ZGCH parameter list OS -
DFHZGCHM Macro ZGCH request OS -
DFHZGCHT DSECT ZGCH translate tables OS 03
DFHZGCN CSECT (OCO) LU6.2 CNOS negotiation - 03
DFHZGCNA Source ZGCN parameter list OS -
DFHZGCNM Source ZGCN request OS -
DFHZGCNT CSECT (OCO) ZGCN trace interpretation data - 03
DFHZGDA CSECT (OCO) VTAM persistent sessions deallocate abend functions - 03
DFHZGDAA Source ZGDA parameter list OS -
DFHZGDAM Macro ZGDA requests 11 -
DFHZGDAT CSECT (OCO) ZGDA trace interpretation data - 03
DFHZGDCD CSECT Terminal control subroutine constants OS -
DFHZGET CSECT GETMAIN request OS 03

CICS directory

Chapter 115. CICS directory 1435

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHZGIN CSECT ZC VTAM INQUIRE domain subroutine - 03
DFHZGINA CSECT ZGIN parameter list OS -
DFHZGINM Macro ZGIN request OS -
DFHZGINT DSECT ZGIN translate tables - 03
DFHZGPC CSECT (OCO) LU6.2 recover CNOS values for modegroups - 03
DFHZGPCA Source ZGPC parameter list OS -
DFHZGPCM Source ZGPC request OS -
DFHZGPCT CSECT (OCO) ZGPC trace interpretation data - 03
DFHZGPR CSECT (OCO) VTAM persistent sessions resource handler - 03
DFHZGPRA Source ZGPR parameter list OS -
DFHZGPRI Source ZGPR request (inline form of DFHZGPRM) OS -
DFHZGPRM Source ZGPR request OS -
DFHZGPRT CSECT (OCO) ZGPR trace interpretation data - 03
DFHZGRP CSECT (OCO) VTAM persistent sessions initialization - 03
DFHZGRPA Source ZGRP parameter list OS -
DFHZGRPD Source ZGRP control blocks OS -
DFHZGRPM Source ZGRP request OS -
DFHZGRPT CSECT (OCO) ZGRP trace interpretation data - 03
DFHZGSL CSECT (OCO) VTAM persistent sessions set logon - 03
DFHZGSLA Source ZGSL parameter list OS -
DFHZGSLM Source ZGSL request OS -
DFHZGSLT CSECT (OCO) ZGSL trace interpretation data - 03
DFHZGTA CSECT ZC TMP table alter gate - 03
DFHZGTAA CSECT ZGTA parameter list OS -
DFHZGTAM Macro ZGTA request OS -
DFHZGTAT DSECT ZGTA translate tables - 03
DFHZGTI CSECT ZC TMP table inquire gate - 03
DFHZGTIA CSECT ZGTI parameter list OS -
DFHZGTIC CSECT ZGTI create copybook OS -
DFHZGTIM Macro ZGTI request OS -
DFHZGTIT DSECT ZGTI translate tables - 03
DFHZGTRA DSECT ZGTR interface parameter area OS -
DFHZGTRM Macro DFHZGTR interface macro OS -
DFHZGTRT DSECT ZGTR translate tables - 03
DFHZGUB CSECT (OCO) VTAM persistent sessions terminate - 03
DFHZGUBA Source ZGUB parameter list OS -
DFHZGUBM Source ZGUB request OS -
DFHZGUBT CSECT (OCO) ZGUB trace interpretation data - 03
DFHZGURD CSECT (OCO) VTAM persistent sessions URD table OS -
DFHZGXA CSECT LU6.2 extended attach security - 03
DFHZGXAA DSECT ZGXA parameter list OS -
DFHZGXAM Macro ZGXA requests OS -
DFHZGXAT CSECT ZGXA trace interpretation data OS 03
DFHZHPCH Macro Generate authorized path CHECK or CHECK macro OS -
DFHZHPDS DSECT ZCP call plist for initialization of SRB facility (HPO) OS -
DFHZHPRV Macro Generate authorized path RECEIVE or RECEIVE

macro
OS -

DFHZHPRX CSECT Authorized path SRB mode VTAM EXECRPL OS 03
DFHZHPSD Macro Generate authorized path SEND or SEND macro OS -
DFHZHPSR CSECT Authorized path SRB requests OS 03
DFHZINT Source Terminal control initialization OS -
DFHZISP CSECT Allocate/free/point OS 03
DFHZIS1 CSECT Prepare/SPR/commit/abend OS 03
DFHZIS2 CSECT IRC internal requests OS 03

CICS directory

1436 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHZLEX CSECT LERAD exit OS 03
DFHZLGX CSECT Logon exit OS 03
DFHZLOC CSECT Locate OS 03
DFHZLRP CSECT Logical record presentation OS 03
DFHZLS1 CSECT LU6.2 CNOS request transaction program - 03
DFHZLS1M Macro LU6.2 CNOS request OS -
DFHZLTX CSECT LOSTERM exit OS 03
DFHZMJM Macro NACP sense code table generation macro OS -
DFHZNAC CSECT Node abnormal condition program (NACP) OS 03
DFHZNCA CSECT NACP message table generator OS -
DFHZNCE CSECT NACP interface to NEP OS -
DFHZNCM Macro NACP message table generation macro OS -
DFHZNCS CSECT Sense code analysis OS -
DFHZNCV CSECT VTAM return code analysis OS -
DFHZNEPI Macro NEP interface generator 11 -
DFHZNEPX Source Translated command-level default NEP 19 -
DFHZNEP0 CSECT User-replaceable node error program 19 03
DFHZNSET Other SMP/E zone setter (used by cataloged procedures) 11 -
DFHZNSP CSECT VTAM services procedure error exit OS 03
DFHZOPA CSECT Dynamic VTAM open OS 03
DFHZOPN CSECT OPNDST OS 03
DFHZOPX CSECT OPNDST exit OS 03
DFHZPTDX Sample Autoinstall user exit - PL/I - 19
DFHZQUE CSECT Attach chain and queue subroutine OS 03
DFHZRAC CSECT Receive-any completion OS 03
DFHZRAQ CSECT Read ahead queuing OS 03
DFHZRAR CSECT Read ahead retrieval OS 03
DFHZRAS CSECT Receive-any slowdown processing OS 03
DFHZRBDS DSECT LU6.2 application receive set buffer hdr OS -
DFHZRLP CSECT LU6.2 post-VTAM receive logic OS 03
DFHZRLX CSECT LU6.2 receive exit program OS 03
DFHZRPL Source TC build receive-any RPLs OS -
DFHZRQM Macro Add element to RPL completion queue 11 -
DFHZRRX CSECT Release request exit OS 03
DFHZRSP CSECT Resync send program OS 03
DFHZRST CSECT RESETSR OS 03
DFHZRSY1 CSECT VTAM LU6.1 resynchronization - 03
DFHZRSY2 CSECT VTAM LU6.1 resynchronization - 03
DFHZRSY3 CSECT VTAM LU6.1 resynchronization - 03
DFHZRSY4 CSECT VTAM LU6.1 resynchronization - 03
DFHZRSY5 CSECT VTAM LU6.1 resynchronization - 03
DFHZRSY6 CSECT VTAM LU6.1 resynchronization - 03
DFHZRTRI CSECT VTAM LU6.1 resynchronization trace interpretation - 03
DFHZRVL CSECT LU6.2 pre-VTAM receive logic OS 03
DFHZRVS CSECT Receive specific OS 03
DFHZRVX CSECT Receive specific exit OS 03
DFHZSAX CSECT Send DFASY exit OS 03
DFHZSCX CSECT Session control input exit OS 03
DFHZSDA CSECT Send asynchronous command OS 03
DFHZSDL CSECT LU6.2 send logic OS 03
DFHZSDR CSECT Send response OS 03
DFHZSDS CSECT Send DFSYN OS 03
DFHZSDX CSECT Send DFSYN data exit OS 03
DFHZSES CSECT SESSIONC OS 03

CICS directory

Chapter 115. CICS directory 1437

Table 123. CICS modules directory (continued)
Name Type Description Library
DFHZSEX CSECT SESSIONC exit OS 03
DFHZSHU CSECT Checks shutdown status for VTAM terminals OS 03
DFHZSIM CSECT SIMLOGON OS 03
DFHZSIX CSECT SIMLOGON exit OS 03
DFHZSKR CSECT Command response OS 03
DFHZSLDS Symbolic Send list data structure 11 -
DFHZSLS CSECT Set logon start OS 03
DFHZSLX CSECT LU6.2 send exit program OS 03
DFHZSSX CSECT Send DFSYN exit OS 03
DFHZSTAM Macro DFHZSTAP interface OS -
DFHZSTAP CSECT Conversation state determination OS 03
DFHZSTU CSECT Terminal control status change OS 03
DFHZSUP CSECT Startup task OS 03
DFHZSYN CSECT VTAM recovery module OS 03
DFHZSYX CSECT SYNAD exit OS 03
DFHZS1DS DSECT ZC SUBPOOL_TOKENs table OS -
DFHZTAX CSECT Turnaround exit OS 03
DFHZTPX CSECT TPEND exit OS 03
DFHZTR Macro ZCP trace macro OS -
DFHZTRA CSECT VTAM trace module OS 03
DFHZTSP CSECT Terminal sharing program OS 03
DFHZUCT CSECT Uppercase translate OS 03
DFHZUIX CSECT User input exit OS 03
DFHZUSR CSECT LU6.2 conversation state machine OS 03
DFHZUSRM Macro LU6.2 conversation state macro OS -
DFHZXCU CSECT VTAM XRF catch-up transaction OS 03
DFHZXDUF CSECT (OCO) XRF ZCP queue SDUMP formatter - 03
DFHZXPS CSECT VTAM persistent sessions APPC recovery - 03
DFHZXQO CSECT XRF ZCP tracking queue organizer OS 03
DFHZXQOS Symbolic DFHZXQO internal control blocks OS -
DFHZXRC CSECT XRF and Persistent sessions state data analysis OS 03
DFHZXRE0 CSECT VTAM reconnect transaction OS 03
DFHZXRL CSECT Transaction routing - LU6.2 command processor, AOR OS 03
DFHZXRPL Macro Clear RPL OS -
DFHZXRT CSECT Transaction routing - LU6.2 command processor, TOR OS 03
DFHZXS Macro Interface to DFHZXST OS -
DFHZXST CSECT XRF ZCP session-state tracking OS 03
DFHZXSTS CSECT SETLOGON routine OS 03
DFH0AZBC Sample FEPI sample: CICS back-end application 19 -
DFH0AZBI Sample FEPI sample: IMS back-end application 19 -
DFH0AZPA Sample FEPI sample: SLU P pseudo-conversational program

(Assembler)
19 -

DFH0AZPS Sample FEPI sample: SLU P one-out one-in program
(Assembler)

19 -

DFH0AZQS Sample FEPI sample: STSN processing 19 -
DFH0AZTD Sample FEPI sample: 3270 data stream pass through 19 -
DFH0AZXS Sample FEPI sample: setup program (Assembler) 19 -
DFH0BAT1 Sample Batch enabling sample BAT1 - disable transactions

coordinator
C3 -

DFH0BAT2 Sample Batch enabling sample BAT2 - inquire retained locks
coordinator

C3 -

DFH0BAT3 Sample Batch enabling sample BAT3 - force retained locks
coordinator

C3 -

CICS directory

1438 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFH0BAT4 Sample Batch enabling sample BAT1 - disable transactions

program
C3 -

DFH0BAT5 Sample Batch enabling sample BAT2 - inquire retained locks
program

C3 -

DFH0BAT6 Sample Batch enabling sample BAT3 - force indoubt UOWs
program

C3 -

DFH0BAT7 Sample Batch enabling sample BAT2 - retry backout failures
program

C3 -

DFH0BAT8 Sample Batch enabling sample BAT3 - forcibly release locks
program

C3 -

DFH0BCA Sample CUA communication area layout - COBOL C3 -
DFH0BCR Sample CUA customer record layout - COBOL C3 -
DFH0BC11 Sample Batch enabling sample BAT1 - disable transactions TS

queue
C3 -

DFH0BC12 Sample Batch enabling sample BAT1 - disable transactions
commarea

C3 -

DFH0BC21 Sample Batch enabling sample BAT2 - inquire retained locks
TS queue

C3 -

DFH0BC22 Sample Batch enabling sample BAT2 - inquire retained locks
commarea

C3 -

DFH0BC23 Sample Batch enabling sample BAT2 - inquire retained locks
map texts

C3 -

DFH0BC31 Sample Batch enabling sample BAT3 - force retained locks TS
queue

C3 -

DFH0BC32 Sample Batch enabling sample BAT3 - force retained locks
commarea

C3 -

DFH0BFKT Sample CUA variable function key layout - COBOL C3 -
DFH0BFPD Sample CUA redefinition of file pull-down - COBOL C3 -
DFH0BHP Sample CUA redefinition of help pop-up - COBOL C3 -
DFH0BHPD Sample CUA redefinition of help pull-down - COBOL C3 -
DFH0BHR Sample CUA help text TS queue layout - COBOL C3 -
DFH0BHT Sample CUA help file key table - COBOL C3 -
DFH0BLST Sample CUA redefinition of list base panel - COBOL C3 -
DFH0BMSG Sample CUA application message table - COBOL C3 -
DFH0BM1 Sample Batch enabling sample BAT1 - disable transactions

BMS mapset
19 -

DFH0BM1O Sample Batch enabling sample BAT1 - disable transactions
BMS mapset

C3 -

DFH0BM2 Sample Batch enabling sample BAT2 - inquire retained locks
BMS mapset

19 -

DFH0BM2O Sample Batch enabling sample BAT2 - inquire retained locks
BMS mapset

C3 -

DFH0BM3 Sample Batch enabling sample BAT3 - force retained locks
BMS mapset

19 -

DFH0BM3O Sample Batch enabling sample BAT3 - force retained locks
BMS mapset

C3 -

DFH0BRT Sample CUA program routing control table - COBOL C3 -
DFH0BTSQ Sample CUA TS queue details layout - COBOL C3 -
DFH0BZCA Sample FEPI sample: system definition and customization

(Assembler)
19 -

DFH0BZCC Sample FEPI sample: system definition and customization
(C/370)

D3 -

DFH0BZCO Sample FEPI sample: system definition and customization
(COBOL)

C3 -

CICS directory

Chapter 115. CICS directory 1439

Table 123. CICS modules directory (continued)
Name Type Description Library
DFH0BZCP Sample FEPI sample: system definition and customization

(PL/I)
P3 -

DFH0BZMA Sample FEPI sample: messages and text (Assembler) 19 -
DFH0BZMC Sample FEPI sample: messages and text (C/370) D3 -
DFH0BZMO Sample FEPI sample: messages and text (COBOL) C3 -
DFH0BZMP Sample FEPI sample: messages and text (PL/I) P3 -
DFH0BZ1O Sample FEPI sample: front-end terminal map (COBOL) C3 -
DFH0BZ2O Sample FEPI sample: front-end terminal map (COBOL) C3 -
DFH0BZ3A Sample FEPI sample: front-end terminal map (Assembler) 19 -
DFH0BZ4O Sample FEPI sample: front-end terminal map (COBOL) C3 -
DFH0BZ5O Sample FEPI sample: front-end terminal map (COBOL) C3 -
DFH0BZ6C Sample FEPI sample: front-end terminal map (C/370) D3 -
DFH0BZ7P Sample FEPI sample: front-end terminal map (PL/I) P3 -
DFH0BZ8A Sample FEPI sample: front-end terminal map 19 -
DFH0BZ9A Sample FEPI sample: front-end terminal map 19 -
DFH0CALL Sample Inquiry/update - COBOL C3 -
DFH0CBAC Sample Sample CICS BTS 3270 Transaction Client C3 -
DFH0CBAE Sample Sample Bridge Exit Routine C3 -
DFH0CBAI Sample Sample input routine for BTS 3270 txn C3 -
DFH0CBAO Sample Sample output routine for BTS 3270 txn C3 -
DFH0CBDC Sample CSD backup program - COBOL C3 -
DFH0CBRD Sample Sample bridge exit common area C3 -
DFH0CBRE Sample Sample bridge exit C3 -
DFH0CBRF Sample Sample bridge formatter C3 -
DFH0CBRU Sample Sample bridge exit user area C3 -
DFH0CBRW Sample Browse - COBOL C3 -
DFH0CCOM Sample Order entry queue print - COBOL C3 -
DFH0CESD Sample Shutdown assist program - COBOL C3 -
DFH0CFIL Sample Customer file (FILEA) record layout - COBOL C3 -
DFH0CLOG Sample Audit trail (log) record layout - COBOL C3 -
DFH0CL86 Sample Order entry queue record layout - COBOL C3 -
DFH0CMA Sample Operator instructions map set - COBOL 19 -
DFH0CMB Sample Customer details map set - COBOL 19 -
DFH0CMC Sample File browse map set - COBOL 19 -
DFH0CMD Sample Low balance inquiry map set - COBOL 19 -
DFH0CMK Sample Order entry map set - COBOL 19 -
DFH0CML Sample Order report map set - COBOL 19 -
DFH0CMNU Sample Operator instructions - COBOL C3 -
DFH0CONT Sample sample program for CICS BTS C3 -
DFH0CMP Sample Keystroke overlap/look-aside query - map set - COBOL 19 -
DFH0CPKO Sample Keystroke overlap - COBOL - 19
DFH0CPLA Sample Look-aside query - COBOL - 19
DFH0CREN Sample Order entry - COBOL - 19
DFH0CREP Sample Low balance inquiry - COBOL - 19
DFH0CRFC Sample CSD cross-reference program - COBOL - 19
DFH0CXCC Sample Keystroke overlap - COBOL - 19
DFH0CZTK Sample FEPI sample: keystroke CONVERSE program (C/370) D3 19
DFH0CZXS Sample FEPI sample: setup program (C/370) D3 19
DFH0DCUS Sample CUA customer details file contents 05 -
DFH0DEL1 Sample Sample program for CICS BTS - 19
DFH0DHLP Sample CUA help file contents 04 -
DFH0DHTX Sample Sample EXITPGM Template - 19
DFH0DLCC Sample CICS-DL/I program (CALL) - COBOL - 19
DFH0DLCE Sample CICS-DL/I program (EXEC) - COBOL - 19

CICS directory

1440 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFH0FORC Sample DB2 formatting program - COBOL - 19
DFH0GMAP Sample Sample goodnight program map set - 19
DFH0GNIT Sample Sample goodnight transaction - 19
DFH0INV1 Sample Sample program for CICS BTS - 19
DFH0IZRI Sample FEPI sample: RDO data for back-end IMS 19 -
DFH0IZRQ Sample FEPI sample: RDM data for front-end CICS 19 -
DFH0JCUS Other JCL to create CUA customer details file 02 -
DFH0JHLP Other JCL to create CUA help file 02 -
DFH0MAB Sample CUA abend handling - map set - COBOL 19 -
DFH0MABT Sample CUA about the sample application pop-up - map set -

COBOL
19 -

DFH0MBRW Sample CUA browse customer details, base panel - map set -
COBOL

19 -

DFH0MDEL Sample CUA delete a customer record, base panel - map set -
COBOL

19 -

DFH0MFPD Sample CUA file pull-down - map set - COBOL 19 -
DFH0MHLP Sample CUA help stub full-screen pop-up - map set - COBOL 19 -
DFH0MHP Sample CUA contextual help pop-up - map set - COBOL 19 -
DFH0MHPD Sample CUA help pull-down - map set - COBOL 19 -
DFH0MLST Sample CUA list processing, base panel - map set - COBOL 19 -
DFH0MNEW Sample CUA new customer record, base panel - map set -

COBOL
19 -

DFH0MOPN Sample CUA file open pop-up - map set - COBOL 19 -
DFH0MPRT Sample CUA print pop-up - map set - COBOL 19 -
DFH0MSAS Sample CUA save changed customer record pop-up - map set

- COBOL
19 -

DFH0MT1 Sample CUA primary panel for sample application - map set -
COBOL

19 -

DFH0MUPD Sample CUA update customer details, base panel - map set -
COBOL

19 -

DFH0MZ1 Sample FEPI sample: keystroke CONVERSE map (COBOL) 19 -
DFH0MZ2 Sample FEPI sample: send/start and receive map (COBOL) 19 -
DFH0MZ3 Sample FEPI sample: map for back-end CICS application

(Assembler)
19 -

DFH0MZ4 Sample FEPI sample: SLU P one-out one-in map (COBOL) 19 -
DFH0MZ5 Sample FEPI sample: SLU P pseudo-conversational map

(COBOL)
19 -

DFH0MZ6 Sample FEPI sample: keystroke CONVERSE map (C/370) 19 -
DFH0MZ7 Sample FEPI sample: keystroke CONVERSE map (PL/I) 19 -
DFH0MZ8 Sample FEPI sample: SLU P one-out one-in map (Assembler) 19 -
DFH0MZ9 Sample FEPI sample: SLU P pseudo-conversational map

(Assembler)
19 -

DFH0PAYC Sample Sample program for CICS BTS 19 -
DFH0PAYM Sample Sample program for CICS BTS 19 -
DFH0PAY0 Sample Sample program for CICS BTS 19 -
DFH0PAY1 Sample Sample program for CICS BTS 19 -
DFH0PS Sample Keystroke overlap/look-aside query - partition set -

COBOL
19 -

DFH0PZTK Sample FEPI sample: keystroke CONVERSE program (PL/I) - 19
DFH0RED1 Sample Sample program for CICS BTS 19 -
DFH0REM1 Sample Sample program for CICS BTS 19 -
DFH0SALC Sample Sample program for CICS BTS 19 -
DFH0SALM Sample Sample program for CICS BTS 19 -
DFH0SAL0 Sample Sample program for CICS BTS 19 -

CICS directory

Chapter 115. CICS directory 1441

Table 123. CICS modules directory (continued)
Name Type Description Library
DFH0SAL1 Sample Sample program for CICS BTS 19 -
DFH0SAL2 Sample Sample program for CICS BTS 19 -
DFH0SET Sample Menu map for sample application 19 -
DFH0SINX Sample Rebuild primer index from master file - 19
DFH0SIXR Sample Name index record for sample application - 19
DFH0SREC Sample Account file record for sample application - 19
DFH0STAT Sample Collect and print statistics - COBOL C3 03
DFH0STCM Sample Statistics sample (DFH0STAT) Commarea - 19
DFH0STLK Sample C3 03
DFH0STM Sample Collect and print stats map set - COBOL 19 03
DFH0STMD Sample 19 -
DFH0STMU Sample 19 -
DFH0STOC Sample Sample program for CICS BTS 19 -
DFH0STPR Sample Sample program for CICS BTS 19 03
DFH0STS Sample Statistics sample mapset - report selection 19 03
DFH0STSD Sample 19 -
DFH0STSU Sample 19 -
DFH0STSY Sample 19 03
DFH0STTP Sample 19 03
DFH0S00 Sample Online account menu sample program C3 -
DFH0S01 Sample File inquire for sample application C3 -
DFH0S02 Sample File update for sample application C3 -
DFH0S03 Sample Print customer record for sample application C3 -
DFH0S04 Sample Error routine for sample application C3 -
DFH0VAB Sample CUA abend handler - COBOL C3 -
DFH0VABT Sample CUA about pop-up handler - COBOL C3 -
DFH0VBRW Sample CUA browse customer details processing - COBOL C3 -
DFH0VDEL Sample CUA delete customer details processing - COBOL C3 -
DFH0VDQ Sample CUA temporary-storage cleanup - COBOL C3 -
DFH0VHLP Sample CUA help pop-up handler - COBOL C3 -
DFH0VHP Sample CUA contextual help pop-up handler - COBOL C3 -
DFH0VLIO Sample CUA help file handler - COBOL C3 -
DFH0VLST Sample CUA list panel handler - COBOL C3 -
DFH0VNEW Sample CUA new customer panel processing - COBOL C3 -
DFH0VOL Sample CUA overlay handler - COBOL C3 -
DFH0VOPN Sample CUA file open pop-up handler - COBOL C3 -
DFH0VPRT Sample CUA print pop-up handler - COBOL C3 -
DFH0VRIO Sample CUA customer detail file handler - COBOL C3 -
DFH0VSAS Sample CUA save customer details pop-up handler - COBOL C3 -
DFH0VTBL Sample CUA table router - COBOL C3 -
DFH0VT1 Sample CUA primary panel processing - COBOL C3 -
DFH0VUPD Sample CUA update customer record processing - COBOL C3 -
DFH0VZPA Sample FEPI sample: SLU P pseudo-conversational program

(COBOL)
C3 -

DFH0VZPS Sample FEPI sample: SLU P one-out one-in program (COBOL) C3 -
DFH0VZQS Sample FEPI sample: STSN handler (COBOL) C3 -
DFH0VZTD Sample FEPI sample: 3270 data stream pass through

(COBOL)
C3 -

DFH0VZTK Sample FEPI sample: keystroke CONVERSE program
(COBOL)

C3 -

DFH0VZTR Sample FEPI sample: screen image RECEIVE/ EXTRACT
FIELD (COBOL)

C3 -

DFH0VZTS Sample FEPI sample: screen image SEND/START (COBOL) C3 -
DFH0VZUC Sample FEPI sample: begin session handler (COBOL) C3 -

CICS directory

1442 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFH0VZUU Sample FEPI sample: end session handler (COBOL) C3 -
DFH0VZUX Sample FEPI sample: monitor unsolicited data handler

(COBOL)
C3 -

DFH0VZXS Sample FEPI sample: setup program (COBOL) C3 -
DFH0WBCA Sample Sample Client Authentication Program - 19
DFH2980 Symbolic Special characters for 2980 C2 07
DFH3QSS Sample OS 03
DFH62XM Sample 62 XM transaction attach - 03
DFH99BC Sample Dynamic allocation - convert to binary target 19 03
DFH99BLD Other Dyn alloc - JCL to build sample program 02 -
DFH99CC Sample Dyn alloc - character and numeric string conversion 19 03
DFH99DY Sample Dyn alloc - issue SVC and analyze 19 03
DFH99FP Sample Dyn alloc - process function keyword 19 03
DFH99GI Sample Dyn alloc - format display and get input 19 03
DFH99KC Sample Dyn alloc - keyword value conversion 19 03
DFH99KH Sample Dyn alloc - list keywords for help 19 03
DFH99KO Sample Dyn alloc - process operator keywords 19 03
DFH99KR Sample Dyn alloc - convert returned value to keyword 19 03
DFH99LK Sample Dyn alloc - search key set for given token 19 03
DFH99M Sample Dyn alloc - macro 11 -
DFH99MAC Sample Dyn alloc - macro 19 -
DFH99ML Sample Dyn alloc - build message text from token list 19 03
DFH99MM Sample Dyn alloc - main control program 19 03
DFH99MP Sample Dyn alloc - message filing routine 19 03
DFH99MT Sample Dyn alloc - match abbreviation with keyword 19 03
DFH99RP Sample Dyn alloc - process returned values 19 03
DFH99SVC Sample Dyn alloc - SVC services 19 -
DFH99T Sample Dyn alloc - table of keywords 19 03
DFH99TK Sample Dyn alloc - tokenize input command 19 03
DFH99TX Sample Dyn alloc - text display routine 19 03
DFH99VH Sample Dyn alloc - list description for help 19 03
DFH$AALL Sample Inquiry/update 19 03
DFH$ABRW Sample Browse 19 03
DFH$ACOM Sample Order entry queue print 19 03
DFH$ADSP Sample XRF overseer - display status 19 03
DFH$AFIL Sample Customer file (FILEA) record layout 19 -
DFH$AGA Sample Generated version of DFH$AMA 19 03
DFH$AGB Sample Generated version of DFH$AMB 19 03
DFH$AGC Sample Generated version of DFH$AMC 19 03
DFH$AGCB Sample XRF overseer - set up RPL 19 03
DFH$AGD Sample Generated version of DFH$AMD 19 03
DFH$AGK Sample Generated version of DFH$AMK 19 03
DFH$AGL Sample Generated version of DFH$AML 19 03
DFH$ALOG Sample Audit trail (log) record layout 19 -
DFH$AL86 Sample Order entry queue record layout 19 -
DFH$AMA Sample Operator instructions map set 19 -
DFH$AMAU Sample Operator instructions map set 19 -
DFH$AMB Sample Customer details map set 19 -
DFH$AMBU Sample Customer details map set 19 -
DFH$AMC Sample File browse map set 19 -
DFH$AMCU Sample File browse map set 19 -
DFH$AMD Sample Low balance inquiry map set 19 -
DFH$AMDU Sample Web Interface BMS screen emulation 19 -
DFH$AMK Sample Order entry map set 19 -

CICS directory

Chapter 115. CICS directory 1443

Table 123. CICS modules directory (continued)
Name Type Description Library
DFH$AMKU Sample Order entry map set 19 -
DFH$AML Sample Order report map set 19 -
DFH$AMNU Sample Operator instructions 19 03
DFH$AREN Sample Order entry 19 03
DFH$AREP Sample Low balance inquiry 19 03
DFH$ARES Sample XRF overseer - restart failed region 19 03
DFH$ATXC Sample EXCI batch client program (Assembler) 19 03
DFH$AXCC Sample EXCI batch client program (Assembler) 19 03
DFH$AXCS Sample EXCI batch server program (Assembler) 19 03
DFH$AXRO Sample XRF overseer program 19 03
DFH$AXVS Sample EXCI sample server 19 03
DFH$BMXT Sample Sample BMS global user exit 19 -
DFH$BTCH Sample Batch test data for DFHIVPBT 19 -
DFH$CAT1 Sample CLIST to create RACF profiles for CICS category 1

transactions
19 -

DFH$CAT2 Sample CLIST to create RACF profiles for CICS category 2
transactions

19 -

DFH$CESD Sample Shutdown assist program P3 -
DFH$CRFA Sample CSD cross-reference program 19 03
DFH$CRFP Sample CSD cross-reference program - PL/I P3 -
DFH$CSDU Sample RDO offline utilities 19 -
DFH$CUS1 Sample CSDUP invocation from TSO environment 19 03
DFH$DALL Sample Inquiry/update - C/370 D3 -
DFH$DBAN Sample Batch test data for DFHIVPDB (Assembler) 19 -
DFH$DBCB Sample Batch test data for DFHIVPDB (Cobol) 19 -
DFH$DBPL Sample Batch test data for DFHIVPDB (PL/I) 19 -
DFH$DBRW Sample Browse - C/370 D3 -
DFH$DB2T Sample DB2 table definitions for DFH$FORx 19 -
DFH$DCOM Sample Order entry queue print - C/370 D3 -
DFH$DCTD Sample DCT SDSCI entries 19 -
DFH$DCTR Sample DCT entries for basic facilities 19 -
DFH$DCTS Sample DCT entries for sample applications 19 -
DFH$DFIL Sample Customer file (FILEA) record layout -C/370 D3 -
DFH$DLAC Sample CICS-DL/I program using CALL interface 19 03
DFH$DLAE Sample CICS-DL/I program using EXEC DLI 19 03
DFH$DLPC Sample CICS-DL/I program (CALL) - PL/I P3 -
DFH$DLPE Sample CICS-DL/I program (EXEC) - PL/I P3 -
DFH$DL86 Sample Order entry queue record layout - C/370 D3 -
DFH$DMA Sample Operator instructions map set - C/370 19 -
DFH$DMB Sample Customer details map set - C/370 19 -
DFH$DMC Sample File browse map set - C/370 19 -
DFH$DMD Sample Low balance inquiry map set - C/370 19 -
DFH$DMK Sample Order entry map set - C/370 19 -
DFH$DML Sample Order report map set - C/370 19 -
DFH$DMNU Sample Operator instructions - C/370 D3 -
DFH$DREN Sample Order entry - C/370 D3 -
DFH$DREP Sample Low balance inquiry - C/370 D3 -
DFH$DTLC Sample Shared Data Tables XDTLC exit program 19 -
DFH$DTAD Sample Shared data tables XDTAD exit program 19 -
DFH$DTRD Sample Shared data tables XDTRD exit program 19 -
DFH$DXCC Sample Batch Client Program (C/370) D3 -
DFH$DXVC Sample EXCI client program - Java environment 19 03
DFH$FAIN Sample Data for batch load of FILEA 19 -
DFH$FCBF Sample Sample XFCBFAIL exit program 19 -

CICS directory

1444 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFH$FCBV Sample Sample XFCBOVER exit program 19 -
DFH$FCLD Sample Sample XFCLDEL exit program 19 -
DFH$FORA Sample DB2 formatting program 19 03
DFH$FORP Sample DB2 formatting program - PL/I P3 -
DFH$GMAP Sample Sample goodnight transaction BMS map 19 -
DFH$ICCN Sample Call to CPSM to issue cancel command 19 -
DFH$ICIC Sample CICS-CICS or CICS-IMS conversation 19 03
DFH$IFBL Sample Remote file browse - local processing 19 03
DFH$IFBR Sample Remote file browse - remote processing 19 03
DFH$IGB Sample Generated version of DFH$IMB 19 03
DFH$IGC Sample Generated version of DFH$IMC 19 03
DFH$IGS Sample Generated version of DFH$IMS 19 03
DFH$IGX Sample Generated version of DFH$IMX 19 03
DFH$IG1 Sample Generated version of DFH$IM1 19 03
DFH$IG2 Sample Generated version of DFH$IM2 19 03
DFH$IIAT Sample IIOP banking sample app.to C Account 19 -
DFH$IIBI Sample IIOP banking sample app.to C Init. 19 -
DFH$IIBQ Sample IIOP banking sample app.to C Query 19 -
DFH$IICC Sample IIOP banking sample app.to C Credit Check 19 -
DFH$IICH Sample IIOP banking sample app.to C Cr.Chk commarea 19 -
DFH$IIMA Sample IIOP banking sample app.to C BMS Map 19 -
DFH$IIQR Sample IIOP banking sample app.to C Comm_struct 19 -
DFH$IMB Sample Remote file browse - map set 19 -
DFH$IMC Sample CICS-CICS or CICS-IMS conversation - map set 19 -
DFH$IMS Sample CICS-IMS conversation/demand paged output - map

set
19 -

DFH$IMSN Sample CICS-IMS conversation 19 03
DFH$IMSO Sample CICS-IMS demand paged output 19 03
DFH$IMX Sample Local to remote temporary-storage queue transfer -

map set
19 -

DFH$IM1 Sample TS record retrieval - map set 1 19 -
DFH$IM2 Sample TS record retrieval - map set 2 19 -
DFH$IQRD Sample TS record retrieval - local display 19 03
DFH$IQRL Sample TS record retrieval - local request 19 03
DFH$IQRR Sample TS record retrieval - remote request 19 03
DFH$IQXL Sample Local to remote temporary-storage queue transfer -

local processing
19 03

DFH$IQXR Sample Local to remote temporary-storage queue transfer -
remote processing

19 03

DFH$JSAM Sample Java Sample Linker in C 19 -
DFH$LCCA Sample Java Sample COMMAREA checker in C 19 -
DFH$LDSP Sample Create FILEA data file 19 03
DFH$LGLS Sample Sample GLUE program for XLGSTRM 19 -
DFH$MCTD Sample MCT entry for DBCTL 19 -
DFH$MOLS Sample Offline processor of monitoring data 19 03
DFH$OFAR Sample 19 -
DFH$PALL Sample Inquiry/update - PL/I P3 -
DFH$PBRW Sample Browse - PL/I P3 -
DFH$PCEX Sample XPCFTCH global user exit program 19 03
DFH$PCGA Sample Global work area for DFH$PCEX 19 -
DFH$PCOM Sample Order entry queue print - PL/I P3 -
DFH$PCPI Sample Enabling program for DFH$PCEX and DFH$ZCAT 19 03
DFH$PCPL Sample DFH$PCEX global user exit invocation 19 03
DFH$PCTA Sample XPCTA user exit program 19 -

CICS directory

Chapter 115. CICS directory 1445

Table 123. CICS modules directory (continued)
Name Type Description Library
DFH$PDUM Sample Dummy main program for PL/I programs using CSD

offline extract function
P3 -

DFH$PFIL Sample Customer file (FILEA) record layout - PL/I P3 -
DFH$PLOG Sample Audit trail (log) record layout - PL/I P3 -
DFH$PL86 Sample Order entry queue record layout - PL/I P3 -
DFH$PMA Sample Operator instructions map set - PL/I 19 -
DFH$PMB Sample Customer details map set - PL/I 19 -
DFH$PMC Sample File browse map set - PL/I 19 -
DFH$PMD Sample Low balance inquiry map set - PL/I 19 -
DFH$PMK Sample Order entry map set - PL/I 19 -
DFH$PML Sample Order report map set - PL/I 19 -
DFH$PMNU Sample Operator instructions - PL/I P3 -
DFH$PMP Sample Keystroke overlap/look-aside query - map set - PL/I 19 -
DFH$PPKO Sample Keystroke overlap - PL/I P3 -
DFH$PPLA Sample Look-aside query - PL/I P3 -
DFH$PREN Sample Order entry - PL/I P3 -
DFH$PREP Sample Low balance inquiry PL/I P3 -
DFH$PS Sample Keystroke overlap/look-aside query - partition set - PL/I 19 -
DFH$PXCC Sample Batch client program (PL/I) P3 -
DFH$RACF Sample RACF class descriptor table 19 -
DFH$RING Sample Build KEYRING profiles in RACF 19 -
DFH$SIPA Other System initialization parameters for use with AOR and

default SIT
19 -

DFH$SIPD Other System initialization parameters for use with DOR and
default SIT

19 -

DFH$SIPT Other System initialization parameters for use with TOR and
default SIT

19 -

DFH$SIP1 Other System initialization parameters for use by DFHIVPOL
(online IVP)

19 -

DFH$SIP2 Other System initialization parameters for use by DFHIVPBT
(batch IVP)

19 -

DFH$SIP5 Other System initialization parameters for use by DFHIVPDB
(DBCTL IVP)

19 -

DFH$SNPW Sample Password expiration mgement for Windows/NT 19 -
DFH$SNP2 Sample Password expiration mgement for OS/2 Warp 19 -
DFH$SQLT Sample Input for DB2 table load utility 19 -
DFH$STAS Sample DFH0STAT storage statistics subroutine 19 03
DFH$STCN Sample DFH0STAT time calculations subroutine 19 03
DFH$STED Sample Stagger end-of-day time for statistics 19 03
DFH$STER Sample PLT program to print recovery statistics on CICS

emergency restart
19 03

DFH$STTB Sample Statistics sample user exit ID table 19 03
DFH$SXP1 Sample Suppress message by number (user exit) 19 03
DFH$SXP2 Sample Suppress message by destination route code 19 03
DFH$SXP3 Sample Suppress message by transient data queue 19 03
DFH$SXP4 Sample Reroute console message to transient data queue 19 03
DFH$SXP5 Sample Reroute message from one transient data queue to

another
19 03

DFH$SXP6 Sample Reroute message from transient data queue to list of
consoles

19 03

DFH$TCTS Sample TCT entries for sequential (CRLP) terminals 19 -
DFH$TDWT Sample Transient data write to terminal 19 03
DFH$ULPA Other Placeholder for DFH$ULPA 19 -

CICS directory

1446 CICS TS for z/OS: CICS Diagnosis Reference

Table 123. CICS modules directory (continued)
Name Type Description Library
DFH$UMOD Other SMP/E USERMOD to move LPA-eligible CICS

modules into LPA library
19 -

DFH$WBAU Sample Web module 19 03
DFH$WBSA Sample Web module 19 03
DFH$WBSB Sample Web module 19 03
DFH$WBSC Sample Web module 19 03
DFH$WBSN Sample Web module 19 03
DFH$WBSR Sample Web module 19 03
DFH$WBST Sample Web module 19 03
DFH$WB1A Sample Web module 19 03
DFH$WB1C Sample Web module D3 -
DFH$XDRQ Sample 19 03
DFH$XNQE Sample Exec ENQ/DEQ Sample XNQEREQ Exit 19 03
DFH$XRDS Sample XRF overseer control blocks 19 -
DFH$XTSE Sample XTSEREQ global user exit program 19 03
DFH$XZIQ Sample Sample XZIQUE global user exit program 19 03
DFH$ZCAT Sample Sample XZCATT global user exit program 19 03
DFH$ZCGA Sample Global work area for DFH$ZCAT 19 -
DFJ$UMOD Sample Place holder for DFJ$UMOD 19 -
DLIUIB DSECT DL/I user interface block C2 -
DLIUIB DSECT DL/I user interface block P2 -
DLIUIB DSECT DL/I user interface block D3 -
DLIUIB Macro DL/I user interface block 12 -
DFH99SVC CSECT Dyn alloc - SVC services - 03
DSNCPRMA Macro CICS-DB2 connect dynamic plan selection parmlist

(Assembler)
12 -

DSNCPRMC Macro CICS-DB2 connect dynamic plan selection parmlist
(COBOL)

C2 -

DSNCPRMP Macro CICS-DB2 connect dynamic plan selection parmlist
(PL/I)

P2 -

DSNCRCT Macro CICS-DB2 connect RCT macro 12 -
DSNCUEXT CSECT CICS-DB2 connect dynamic plan selection 19 03
MEUKEYS CSECT MEU key definitions 17 -
MEULANG CSECT MEU language table 11 -
MEU00 CSECT MEU MEU00x message set 13 -
MEU01 CSECT MEU MEU01x message set 13 -
MEU02 CSECT MEU MEU02x message set 13 -
MEU03 CSECT MEU MEU03x message set 13 -
MEU04 CSECT MEU MEU04x message set 13 -
MEU05 CSECT MEU MEU05x message set 13 -
SRRC Symbolic SAA resource recovery pseudonyms for C D3 -
SRRCOBOL Symbolic SAA resource recovery pseudonyms for COBOL C2 -
SRRHASM Symbolic SAA resource recovery pseudonyms for

assembler-language
12 -

SRRPLI Symbolic SAA pseudonym file for PL/I P2 -

CICS directory

Chapter 115. CICS directory 1447

CICS directory

1448 CICS TS for z/OS: CICS Diagnosis Reference

Chapter 116. CICS executable modules

The following list shows, for each module:

1. The name of the module

2. Its entry points

3. Callers of the module

4. A brief description of the module

5. Where the module returns to. This information is omitted where the module returns to its caller (the
normal situation).

In general, this list is restricted to non-OCO modules. In the few cases where OCO modules are included,
no design details are given.

DFHACP

Entry points: DFHACPNA

Called by: DFHAPRM, DFHAPXME

Description: The abnormal condition program writes a
message to the terminal and to the CSMT destination if
a transaction abends or cannot be started. Subject to
tests on the type of terminal, DFHACP invokes
DFHMGP to output the message. It calls DFHPEP and,
depending on the result, may disable the transaction.
For each error, there is an entry in a table which
contains the number of the message to be written to the
principal facility (terminal) and the number of the
message to be written to CSMT. If, in either case, there
is no message, zero is entered.

The main subroutines of DFHACP are:

ABCSMTWT - Write to CSMT
ACPCALMG - Use DFHMGP to output a message
ACPCLPEP - Invoke DFHPEP
ACPFENTY - Identify message for terminal
TERMERR - Terminal error.

DFHAICBP

Entry points: DFHAICB

Called by: User application program

Description: The application interface control block
program acts both as a control block and, for
compatibility with early releases of CICS/VS, as
executable code. DFHAICBP provides addressability
between application programs and CICS entry points,
namely those of the EXEC interface and the common
programming interface. DFHAICBP is link-edited with
the EXEC interface programs (DFHEIP and DFHEIPA),
and the common programming interface program
(DFHCPI) to form the application interface program
(DFHAIP) load module.

DFHALP

Entry points: DFHALPNA

Called by: DFHCRQ, DFHCRS, DFHICP, DFHTPQ,
DFHTPR, DFHTPS, DFHZATI, DFHZISP, DFHZNAC,
DFHZTSP

Description: The terminal allocation program contains
the logic to allocate TCTTE resources to requesting
transactions. The request operates in a multiple
exchange between the requesting transaction and
terminal control. DFHALP passes a SCHEDULE request
to terminal control as an ATI terminal control, then
responds with an AVAIL command. The requests are
represented by AIDs (AID chain manipulations being
performed by calls to DFHALP). For LU6.2, DFHALP
issues a terminal control allocate mode name macro.

DFHAMP

Entry points: DFHAMPNA

Called by: DFHEIP, DFHSII1

Description: The allocation management program is
invoked by the CEDA transaction. It analyzes
commands and calls the definition file management
program, DFHDMP, to process changes to records in
the CSD. For the INSTALL command, DFHAMP also
calls program manager, transaction manager, and
DFHSPP. DFHPUP is called to convert data between
address list format and the CSD record format.

DFHAPJC

Entry points: DFHAPJCN

Called by: User

Description: The AP domain journal control gate
service module handles WRITE_JOURNAL_DATA calls
made by the user exit’s XPI. It gets a TCA if the task
doesn’t currently have one, and also a JCA. If the task
already has a JCA, this is stacked. It then copies the
parameter list passed in the domain call, to the JCA,
and then issues one of four journal writes, depending on
the request. Finally the return code from the JC write is
copied into the domain parameter list, and the JCA and
TCA are released if they were obtained by DFHAPJC.

© Copyright IBM Corp. 1997, 2011 1449

DFHAPSIP

Entry points: DFHSIPNA

Called by: DFHAPDM

Description: The main AP domain initialization
program provides DFHWTO support and common
subroutines used by DFHSIA1 through DFHSIJ1. In
sequence, DFHAPSIP performs the following functions:
v Defines the AP domain subpools
v Acquires the SIT address
v Passes control to the DFHSIA1, DFHSIB1, and so

on.

The main subroutines of DFHAPSIP are:

CHKRLVLR - Check release level
OVERLSUP - Overlay supervisor
SIGETCOR - Storage allocation
SILOADR - Program loader
SIPCONS - Console WRITE.

DFHAPST

Entry points: DFHAPST

Called by: DFHEIP, DFHSTST

Description: The supervisory statistics program within
the AP domain accepts a request for and then
supervises the copying/resetting of statistics counters in
the AP domain by calling the appropriate DFHSTxx
modules to access the counters.

This module is called when:

v Statistics domain is collecting INTERVAL statistics
and calls this module to pass it copies of and to reset
all statistics in AP domain. This module then
sequentially calls all of the DFHSTxx modules to do
the copying and resetting.

v A CEMT PERFORM STATISTICS command results in
a call to the statistics domain which then makes an
appropriate call to this module to pass it copies of the
requested statistics. This module then calls the
DFHSTxx modules required to do the copying.

v An EXEC CICS COLLECT STATISTICS command
results in a call to this module which then calls the
DFHSTxx module required to pass copies of the
statistics back to the application program.

Thus, this module is called only by the statistics domain
or by DFHEIP.

This module provides two functions:

COLLECT_STATISTICS
collects statistics for all resources in the AP
domain and calls the statistics domain to write
them out to the SMF data set.

COLLECT_RESOURCE_STATS
collects statistics for the named resource type
(optionally qualified by the resource identifier)

and either copies them to a buffer available
through the API, or causes them to be written
to the SMF data set.

DFHAPTD

Entry points: DFHAPTD

Called by: DFHETD, DFHTDA, DFHTDB, ME domain

Description: DFHAPTD handles DFHTDTDM macro
requests; as such, it provides the transient data gate
into the AP domain. DFHTDTDM macro requests are
routed from DFHAPTD to DFHTDP using the
corresponding DFHTD CTYPE requests.

DFHAPTI

Entry points: DFHAPTI

Called by: the timer domain to handle NOTIFY calls
for the application domain.

Description: The DFHAPTO module looks at the
token passed by the timer domain and resumes either
the DFHAPTI or DFHAPTIX module, as appropriate.

DFHAPTIM

Entry points: DFHAPTIM

Called by: runs as a system task attached by the
DFHSII1 module.

Description: The DFHAPTIM module is part of the
interval control mechanism. When it first gets control, it
suspends itself to wait for an interval control ICE to
expire. Interval control uses the timer domain to handle
time intervals. When the timer domain detects the expiry
of an interval control related interval, it calls the
DFHAPTI module, which in turn resumes the
DFHAPTIM module. The DFHAPTIM module then
makes an “expiry analysis” call to the DFHICP module,
which processes any expired ICEs. On return, the
DFHAPTIM module suspends itself again to wait for the
next ICE to expire.

DFHAPTIX

Entry points: DFHAPTIX

Called by: runs as a system task attached by the
DFHSII1 module.

Description: The DFHAPTIX module is part of the
interval control mechanism. When it first gets control, it
tells the timer domain that it wants to be told every time
it is midnight. It then suspends itself to wait for the next
midnight. When that occurs, the timer domain calls the
DFHAPTI module, which resumes the DFHAPTIX
module, which in turn calls the DFHICP module to do
midnight processing.

1450 CICS TS for z/OS: CICS Diagnosis Reference

DFHASV

Entry points: DFHASVNA

Called by: DFHCSVC

Description: DFHASV is one of the modules that run
under the CICS type 3 SVC. On entry to DFHASV,
register 0 contains one of the following request codes:

0 - Paging request
8 - SRB termination
9 - HPO initialization
24 - Monitoring services
64 - Authorize general purpose subtask TCB
80 - Issue SDUMP
136 - Bind AP domain.

DFHBSIB3

Entry points: DFHBSIB3

Called by: DFHTBSxx

Description: DFHBSIB3 adds BMS 3270 support to a
TCT table entry.

DFHBSIZ1

Entry points: DFHBSIZ1

Called by: DFHTBSxx

Description: DFHBSIZ1 adds SCS support to a TCT
table entry.

DFHBSIZ3

Entry points: DFHBSIZ3

Called by: DFHTBSxx

Description: DFHBSIZ3 adds DFHZCP 3270 support
to a TCT table entry.

DFHBSMIR

Entry points: DFHBSMIR

Called by: DFHTBSxx

Description: DFHBSMIR builds a TCT table entry for
a session.

DFHBSMPP

Entry points: DFHBSMPP

Called by: DFHTBSxx

Description: DFHBSMPP builds a TCT table entry for
a pipeline pool entry.

DFHBSM61

Entry points: DFHBSM61

Called by: DFHTBSxx

Description: DFHBSM61 builds sessions for an LU6.2
mode group.

DFHBSM62

Entry points: DFHBSM62

Called by: DFHTBSxx

Description: DFHBSM62 builds the mode entry for an
LU6.2 mode group.

DFHBSS

Entry points: DFHBSS

Called by: DFHTBSxx

Description: DFHBSS adds a new connection (system
entry) to a CICS system.

DFHBSSA

Entry points: DFHBSSA

Called by: DFHTBSxx

Description: DFHBSSA initializes DFHKCP support in
a new TCT system entry.

DFHBSSF

Entry points: DFHBSSF

Called by: DFHTBSxx

Description: DFHBSSF initializes the statistics
counters in a new TCT system entry.

DFHBSSS

Entry points: DFHBSSS

Called by: DFHTBSxx

Description: DFHBSSS builds security support for a
new TCT system entry.

DFHBSSZ

Entry points: DFHBSSZ

Called by: DFHTBSxx

Description: DFHBSSZ builds VTAM interface support
for a new TCT system entry.

Chapter 116. CICS executable modules 1451

DFHBSSZB

Entry points: DFHBSSZB

Called by: DFHTBSxx

Description: DFHBSSZB adds a new batch
interregion connection to a CICS system.

DFHBSSZG

Entry points: DFHBSSZG

Called by: DFHTBSxx

Description: DFHBSSZG adds a new advanced
program-to-program communication (APPC)
single-session connection to a CICS system.

DFHBSSZI

Entry points: DFHBSSZI

Called by: DFHTBSxx

Description: DFHBSSZI adds an indirect terminal
control system table entry to a CICS system.

DFHBSSZL

Entry points: DFHBSSZL

Called by: DFHTBSxx

Description: DFHBSSZL adds a local terminal control
system table entry to a CICS system.

DFHBSSZM

Entry points: DFHBSSZM

Called by: DFHTBSxx

Description: DFHBSSZM introduces a new
connection (system) to ZCP.

DFHBSSZP

Entry points: DFHBSSZP

Called by: DFHTBSxx

Description: DFHBSSZP builds an advanced
program-to-program communication (APPC)
parallel-session connection to a CICS system.

DFHBSSZR

Entry points: DFHBSSZR

Called by: DFHTBSxx

Description: DFHBSSZR builds an MRO session
entry.

DFHBSSZS

Entry points: DFHBSSZS

Called by: DFHTBSxx

Description: DFHBSSZS builds an advanced
program-to-program communication (APPC) session
entry.

DFHBSSZ6

Entry points: DFHBSSZ6

Called by: DFHTBSxx

Description: DFHBSSZ6 builds an LU6.1 connection
entry.

DFHBST

Entry points: DFHBST

Called by: DFHTBSxx

Description: DFHBST performs TCTTE initialization
common to terminals, pipeline pool entries, and
sessions for IRC and ISC.

DFHBSTB

Entry points: DFHBSTB

Called by: DFHTBSxx

Description: DFHBSTB adds support for BMS to a
new TCT terminal or session entry.

DFHBSTBL

Entry points: DFHBSTBL

Called by: DFHTBSxx

Description: DFHBSTBL adds support for logical
device components (LDCs).

DFHBSTB3

Entry points: DFHBSTB3

Called by: DFHTBSxx

Description: DFHBSTB3 adds partition support to a
new TCT terminal or session entry.

DFHBSTC

Entry points: DFHBSTC

Called by: DFHTBSxx

Description: DFHBSTC performs those operations
that are executed after the installation of a terminal.

1452 CICS TS for z/OS: CICS Diagnosis Reference

DFHBSTD

Entry points: DFHBSTD

Called by: DFHTBSxx

Description: DFHBSTD adds data interchange
program (DFHDIP) support for a new TCT table entry.

DFHBSTE

Entry points: DFHBSTE

Called by: DFHTBSxx

Description: DFHBSTE adds EXEC diagnostic facility
(EDF) support for a new TCT table entry.

DFHBSTH

Entry points: DFHBSTH

Called by: DFHTBSxx

Description: DFHBSTH initializes EXEC interface
fields for a new TCT table entry.

DFHBSTI

Entry points: DFHBSTI

Called by: DFHTBSxx

Description: DFHBSTI adds interval control program
(DFHICP) support for a new TCT table entry.

DFHBSTM

Entry points: DFHBSTM

Called by: DFHTBSxx

Description: DFHBSTM adds message generation
program (DFHMGP) support for a new TCT table entry.

DFHBSTO

Entry points: DFHBSTO

Called by: DFHTBSxx

Description: DFHBSTO is the spooler builder.

DFHBSTP3

Entry points: DFHBSTP3

Called by: DFHTBSxx

Description: DFHBST adds 3270-copy support for a
new TCT table entry.

DFHBSTS

Entry points: DFHBSTS

Called by: DFHTBSxx

Description: DFHBSTS adds signon program
(DFHSNP) support for a new TCT table entry.

DFHBSTT

Entry points: DFHBSTT

Called by: DFHTBSxx

Description: DFHBSTT adds task control program
(DFHKCP) support for a new TCT table entry.

DFHBSTZ

Entry points: DFHBSTZ

Called by: DFHTBSxx

Description: DFHBSTZ builds a session or terminal
resource.

DFHBSTZA

Entry points: DFHBSTZA

Called by: DFHTBSxx

Description: DFHBSTZA adds DFHZCP activity scan
support to a new TCT terminal or session entry.

DFHBSTZB

Entry points: DFHBSTZB

Called by: DFHTBSxx

Description: DFHBSTZB appends or deletes a BIND
image for a TCT terminal or session entry.

DFHBSTZC

Entry points: DFHBSTZC

Called by: DFHTBSxx

Description: DFHBSTZC adds a single-session LU6.2
system as an advanced program-to-program
communication (APPC) terminal.

DFHBSTZE

Entry points: DFHBSTZE

Called by: DFHTBSxx

Description: DFHBSTZE sets error message writer
fields for a new TCT table entry.

Chapter 116. CICS executable modules 1453

DFHBSTZH

Entry points: DFHBSTZH

Called by: DFHTBSxx

Description: DFHBSTZH adds an interregion (IRC)
batch session to a CICS system.

DFHBSTZL

Entry points: DFHBSTZL

Called by: DFHTBSxx

Description: DFHBSTZL adds logical device code
support to a new TCT terminal or session entry.

DFHBSTZO

Entry points: DFHBSTZO

Called by: DFHTBSxx

Description: DFHBSTZO adds an MVS console to a
CICS system.

DFHBSTZP

Entry points: DFHBSTZP

Called by: DFHTBSxx

Description: DFHBSTZP adds a pipeline pool entry to
a CICS system.

DFHBSTZR

Entry points: DFHBSTZR

Called by: DFHTBSxx

Description: DFHBSTZR adds an interregion (IRC)
session to a CICS system.

DFHBSTZS

Entry points: DFHBSTZS

Called by: DFHTBSxx

Description: DFHBSTZS adds an advanced
program-to-program communication (APPC) session to
the terminal control program.

DFHBSTZV

Entry points: DFHBSTZV

Called by: DFHTBSxx

Description: DFHBSTZV adds the parts of a terminal
or session TCT table entry that are special to VTAM and
IRC.

DFHBSTZZ

Entry points: DFHBSTZZ

Called by: DFHTBSxx

Description: DFHBSTZZ adds a non-APPC session to
the TCT. (APPC is advanced program-to-program
communication.)

DFHBSTZ1

Entry points: DFHBSTZ1

Called by: DFHTBSxx

Description: DFHBSTZ1 adds support for a remote
terminal to a CICS system.

DFHBSTZ2

Entry points: DFHBSTZ2

Called by: DFHTBSxx

Description: DFHBSTZ2 adds support for a remote
advanced program-to-program communication (APPC)
connection.

DFHBSTZ3

Entry points: DFHBSTZ3

Called by: DFHTBSxx

Description: DFHBSTZ3 adds a 3270 to the TCT.

DFHBSXGS

Entry points: DFHBSXGS

Called by: DFHBSMIR, DFHZTSP

Description: DFHBSXGS generates a unique session
name for an LU6.2 TCTTE.

DFHBSZZ

Entry points: DFHBSZZ

Called by: DFHTBSxx

Description: DFHBSZZ adds a terminal or session to
the TCT.

DFHBSZZS

Entry points: DFHBSZZS

Called by: DFHTBSxx

Description: DFHBSZZS adds a new session to
LU6.2 support.

1454 CICS TS for z/OS: CICS Diagnosis Reference

DFHBSZZV

Entry points: DFHBSZZV

Called by: DFHTBSxx

Description: DFHBSZZV adds a VTAM terminal or
session to the TCT.

DFHCAPB

Entry points: DFHCAPNA

Called by: DFHTCRP

Description: DFHCAPB processes command analysis
for VTAM terminal definitions contained in a load
module table DFHRDTxx for TCT migration.

DFHCCNV

Entry points: DFHCCNV

Called by: DFHCHS, DFHMIRS

Description: DFHCCNV provides conversion of user
data from ASCII to EBCDIC and from EBCDIC to ASCII
for function-shipped requests from CICS OS/2 users. It
is called from either the LU2 remote server program
DFHCHS or the mirror program DFHMIRS, for EXEC
CICS requests and replies originating from the identified
server or mirror. For any function-shipped request it is
invoked twice, once on the inbound side and once on
the outbound path. DFHCCNV is passed the EXEC
CICS parameter list by its caller. On the request side,
this occurs after DFHCHS or DFHMIRS has called
transformer 2 but before DFHEIP is invoked. On the
response side, this occurs after DFHEIP returns to
DFHCHS or DFHMIRS but before transformer 3 is
invoked. External reference is made to a pregenerated
CICS OS/2 conversion table, DFHCNV.

DFHCMP

Entry points: DFHCMPNA

Called by: DFHETR

Description: The CICS monitoring compatibility
module is invoked by the old event monitoring point of
EXEC CICS ENTER TRACEID to interface to the
monitoring domain.

DFHCPY

Entry points: DFHCPYNA

Called by: DFHPRK

Description: The 3270 copy program (transaction
CSCY) causes data to be copied from screen to printer
in a (VTAM) 3270 system. DFHCPY is invoked by
DFHPRK (only if the 3270 has the copy feature) and
issues a DFHTC TYPE=COPY macro to the printer.
DFHCPY then initiates DFHRKB.

DFHCRC

Entry points: DFHCRCNA

Called by: MVS

Description: The interregion abnormal exit module is
a CICS module that contains an ESTAE exit to
terminate interregion communication in abnormal
conditions. DFHCRC issues a CLEAR request to the
interregion SVC.

DFHCRNP

Entry points: DFHCRNNA

Called by: DFHCRSP, dispatcher

Description: DFHCRNP, the connection manager
(transaction CSNC), controls IRC connections. It
establishes and breaks these connections and
processes inbound requests to attach tasks (for
example, mirror) to communicate with connected
systems.

DFHCRQ

Entry points: DFHCRQNA

Called by: transaction CRSQ

Description: The remote schedule page program is
invoked periodically to delete requests to attach a
transaction on a remotely owned terminal if those
requests have been outstanding for more than the ATI
purge delay interval.

DFHCRR

Entry points: DFHCRRNA

Called by: DFHCRNP

Description: The interregion session recovery
program performs session recovery on behalf of primary
or secondary IRC sessions.

DFHCRS

Entry points: DFHCRSNA

Called by: transaction CRSR

Description: The remote scheduler program builds
and ships AIDs for automatic transaction initiation when
the terminal is in a remote address space. It receives
requests to schedule an AID shipped to it from a remote
address space.

DFHCRSP

Entry points: DFHCRSNA

Called by: DFHEIP, DFHSIJ1

Description: The interregion communication startup

Chapter 116. CICS executable modules 1455

module can be invoked, either at system initialization or
by a CEMT request, in order to make the CICS address
space available for communication by other address
spaces. DFHCRSP issues a logon request to the
interregion communication SVC routine and attaches
transaction CSNC (DFHCRNP).

DFHCRT

Entry points: DFHCRTNA

Called by: transaction CXRT

Description: DFHCRT is the relay program used
when a transaction attempts to allocate a conversation
to a remote advanced program-to-program (APPC)
terminal.

DFHCSA

Entry points: DFHCSANA

Called by: Not applicable

Description: The DFHCSA module contains the
common system area (CSA) and CSA optional features
list, the queue control area (QCA) and, for HPO
systems, the SRB interface control area.

DFHCSDUP

Entry points: DFHCUCNA

Called by: MVS

Description: The CSD utility program is an offline
program that provides services for the CSD. The utility
command processor (DFHCUCP) validates commands
and invokes the appropriate routine to execute the
requested function. DFHCSDUP calls DFHDMP to
access the CSD.

DFHCSSC

Entry points: DFHCSSNA

Called by: DFHSIJ1, DFHSNSN, DFHSUSN,
DFHTCRP, DFHZCUT

Description: DFHCSSC, the signon time-out program,
is invoked as a system task by DFHSIJ1 and DFHTCRP
to perform XRF takeover sign-off time-out processing. It
is invoked elsewhere as the CSSC transaction for
time-out processing of the following:
v Terminals signed on with the TIMEOUT option
v Entries in the internally managed signon table (SNT)
v Entries in the local userid tables (LUITs).

The CSSC transaction is scheduled when task
termination determines that a time-out is necessary.
When DFHCSSC is executed, it examines all signed-on
terminals, all entries in the SNT managed by DFHTMP,
and all entries in the LUITs. It signs off or deletes

expired entries as appropriate, and then reschedules
itself to perform later time-outs if required.

DFHCSVC

Entry points: DFHCSVC

Called by: MVS

Description: This module is a type 3 SVC that passes
control to the various required routines, dependent on
the parameter passed to it. On a first request for a
particular function, it loads the required module and puts
its address in the AFCB and then branches to that code.
Further calls result in the address in the AFCB being
branched to.

Returns to: Type 3 SVC

DFHCUCAB

Entry points: DFHCUCA

Called by: DFHCAPB

Description: The resource definition online command
analyzer interprets a VTAM resource definition in
command form and produces a parameter list.

DFHCUCB

Entry points: DFHCUCB

Called by: DFHCUCP

Description: The resource definition online command
builder receives commands and transforms them to a
format for use by the command processors.

DFHCUCCB

Entry points: DFHCUCC

Called by: DFHCAPB

Description: This program extracts a single entry from
a loaded RDT table containing VTAM resource
definitions for TCT migration.

DFHCUCDB

Entry points: DFHCUCD

Called by: DFHCAPB

Description: The resource definition online command
default values program modifies the parameter list
produced by DFHCUCAB by inserting the default
values.

DFHCWTO

Entry points: DFHCWTNA

Called by: CWTO transaction

1456 CICS TS for z/OS: CICS Diagnosis Reference

Description: The console write-to-operator module is
a CICS-supplied transaction that allows an operator to
send a message to the console operator. DFHCWTO
issues SVC 35 (WTO) to pass the message to the
operator’s console.

DFHDBAT

Entry points: AENTRY

Called by: DFHERM, IMS database resource adapter
(DRA).

Description: This program provides a mapping
between the external architectures of CICS (the
resource manager interface (RMI) and of DBCTL (the
database resource adapter (DRA)). Both are
independently defined and different. DFHDBAT is part of
the support for the CICS-DBCTL interface and runs in
an application program environment. DFHDBAT is
invoked by a DFHRMCAL request through the CICS
RMI. The RMI supplies DFHDBAT with a parameter list
from which DFHDBAT constructs the DRA INIT, DRA
TERM, and DRA THREAD parameter lists. It must also
transform the DRA parameter list back, after a DL/I call
to the format expected by CICS. Thus, DFHDBAT is
also referred to as the CICS-DBCTL
adapter-transformer.

DFHDBCON

Entry points: DFHDBCON

Called by: DFHDBME

Description: This program issues a CICS-DBCTL
interface connection request to the CICS-DBCTL
adapter-transformer, DFHDBAT. DFHDBCON is part of
the support for the CICS-DBCTL interface and runs in
an application program environment.

DFHDBCR

Entry points: DFHDBCR

Called by: DFHSII1 via attach

Description: DFHDBCR is the CICS/DBCTL XRF
tracking program. DFHDBCR runs in an alternate CICS
system during the tracking phase. DFHDBCR receives
messages from the active CICS system regarding the
state of the connection to DBCTL, and drives the
XXDFB and XXDTO exits and takes appropriate action.

DFHDBCT

Entry points: DFHDBCT

Called by: DFHDBCTX, DFHDBAT

Description: This program processes any elements
placed on the CICS-DBCTL control work element
(CWE) chain. DFHDBCT is part of the support for the
CICS-DBCTL interface and runs in an application

program environment. It is invoked when the
CICS-DBCTL connection program, DFHDBCON,
attempts to connect to DBCTL. The program then
issues a wait. The DFHDBCT program is posted
whenever an element is placed on the CWE chain.

DFHDBCTX

Entry points: DFHDBCTX

Called by: DFHDBAT

Description: This program notifies the CICS-DBCTL
control transaction of changes in the state of the
CICS-DBCTL interface. DFHDBCTX is part of the
support for the CICS-DBCTL interface. It does not run in
a CICS environment and thus does not use any CICS
services. This exit is invoked by the DBCTL adapter on
behalf of the DBCTL DRA.

DFHDBDI

Entry points: DFHDBDI

Called by: DFHDBCT

Description: This program disables the CICS-DBCTL
adapter program and cleans up the storage used by the
CICS-DBCTL interface programs. DFHDBDI is part of
the support for the CICS-DBCTL interface and runs in
an application program environment. DFHDBDI is
invoked by the CICS/VS DBCTL control program,
DFHDBCT, just before it terminates.

DFHDBDSC

Entry points: DFHDBDSC

Called by: DFHDBCT, DFHDBME

Description: This program issues a CICS-DBCTL
interface disconnection request to the CICS-DBCTL
adapter-transformer. DFHDBDSC is part of the support
for the CICS-DBCTL interface and runs in an application
program environment.

DFHDBIQ

Entry points: DFHDBIQ

Called by: CDBI transaction

Description: This program is the CDBI CICS-supplied
transaction. Its function is to inquire on the current
status of the CICS-DBCTL interface. DFHDBIQ is part
of the support for the CICS-DBCTL interface.

DFHDBME

Entry points: DFHDBME

Called by: CDBC transaction

Description: This program is the CDBC
CICS-supplied transaction. Its function is to provide a

Chapter 116. CICS executable modules 1457

front end for making certain changes to the status of the
CICS-DBCTL interface. DFHDBME is part of the
support for the CICS-DBCTL interface.

DFHDBMOX

Entry points: DFHDBMOX

Called by: DFHDBAT

Description: This program outputs monitoring
information supplied by DBCTL to the monitoring
domain, using monitoring domain services. The
information is supplied by DBCTL when it has
processed a PSB schedule request and a thread
termination request. This exit forms part of the support
for the CICS-DBCTL interface. It runs in a CICS
application environment. This exit is invoked by the
CICS-DBCTL adapter.

DFHDBP

Entry points: DFHDBPNA

Called by: DFHAPRC

Description: This program invokes DWE processors
when a UOW backs out.

DFHDBREX

Entry points: DFHDBREX

Called by: DFHDBAT

Description: This program is the CICS-DBCTL
resume exit. The resume exit is driven whenever the
adapter or the DRA requires to resume a task which
they have suspended. This exit forms part of the
support for the CICS-DBCTL interface. It does not run in
a CICS environment and thus cannot use CICS
services.

DFHDBSPX

Entry points: DFHDBSPX

Called by: DFHDBAT

Description: This program is the CICS-DBCTL
suspend exit. The suspend exit is driven whenever the
adapter or the DRA requires to suspend a task.
DFHDBSPX forms part of the support for the
CICS-DBCTL interface. It runs in a CICS application
environment.

DFHDBSSX

Entry points: DFHDBSSX

Called by: DFHDBAT

Description: DFHDBSSX is the CICS/DBCTL status
exit. In the event of a DRA thread failure, DFHDBSSX is
called to transfer ownership of PCB storage to CICS.

When the task ends, DFHDBSSX is called to release
this storage.

DFHDBSTX

Entry points: DFHDBSTX

Called by: DFHDBAT

Description: This program is the CICS-DBCTL
statistics exit. The exit outputs CICS-DBCTL session
termination statistics to the statistics domain.
DFHDBSTX forms part of the support for the
CICS-DBCTL interface. It runs in a CICS application
environment, but it can also be invoked during CICS
orderly termination. This exit is invoked by the
CICS-DBCTL adapter.

DFHDBTOX

Entry points: DFHDBTOX

Called by: DFHDBAT

Description: This program is the CICS-DBCTL token
exit. The function of this exit is to provide the
CICS-DBCTL adapter with task tokens for tasks that
have not been through the DBCTL call processor
,DFHDLIDP, or the DBCTL connection program,
DFHDBCON, or the DBCTL disconnection program,
DFHDBDSC, where task tokens are usually generated.
DFHDBTOX forms part of the support for the
CICS-DBCTL interface. It runs in a CICS application
environment. This exit is invoked by the CICS-DBCTL
adapter.

DFHDBUEX

Entry points: DFHDBUEX

Called by: DFHDBCT, DFHDBDSC

Description: DFHDBUEX is the user-replaceable
CICS-DBCTL exit program. It is invoked whenever CICS
successfully connects to DBCTL and whenever CICS
disconnects from DBCTL. DFHDBUEX forms part of the
support for the CICS-DBCTL interface. It runs in a CICS
application environment.

DFHDCP

Entry points: DFHDCPNA

Called by: DFHDC macro, DFHEDC

Description: DFHDCP translates DFHDC macro
requests for a transaction dump to DU domain
TRANSACTION_DUMP calls.

1458 CICS TS for z/OS: CICS Diagnosis Reference

DFHDES

Entry points: DFHDESNA

Called by: DFHZEV1, DFHZEV2, DFHZOPN

Description: DFHDES performs data encryption and
bind-time security.

DFHDIP

Entry points: DFHDIPNA

Called by: DFHACP, DFHDI macro, DFHEDI,
DFHKCP, DFHMCP, DFHTOM, DFHZEMW, DFHZRSP,
DFHZSUP

Description: The data interchange program acts as a
function manager when transactions want to
communicate with batch devices using SNA support.
DFHDIP builds and receives FMHs, which control the
data set selection and function currently being
performed by the batch device.

The main subroutines of DFHDIP are:

DESTCHEK - Destination change
D1ABORTE - Abort
D1CONRTE - Continue
D1ENDRTE - End
D1INARTE - Transaction attach
D1INPRTE - Input
D1NOTRTE - Note
D1QUERTE - Query.

DFHDLI

Entry points: DFHDLINA

Called by: User application, DFHMIRS, DFHSPP

Description: DFHDLI is the DL/I call router program. It
decides which call processor is to be used for the
request: DBCTL or REMOTE. It then invokes the
appropriate processor: DFHDLIDP or DFHDLIRP.

DFHDLIAI

Entry points: ASMTDLI, CBLTDLI, PLITDLI

Called by: User application using DL/I CALL interface

Description: This module is used by the CICS-DL/I
interface. It is link-edited with the application program to
provide D/I communication between the application and
the CICS-DL/I interface routine DFHDLI. Calls for DL/I
to the ASMTDLI, CBLTDLI, or PLITDLI entry points are
resolved by this processor.

DFHDLIDP

Entry points: DFHDLIDP

Called by: DFHDLI

Description: DFHDLIDP is the DBCTL call processor.
It services DL/I calls for PSBs that are owned by a

DBCTL subsystem, and invokes the DL/I task-related
user exit (adapter) to interface with DBCTL.

DFHDLIRP

Entry points: DFHDLIRP

Called by: DFHDLI

Description: DFHDLIRP is the remote call processor.
It services DL/I calls that are function-shipped to
another CICS system.

DFHDMP

Entry points: DFHDMPNA

Called by: DFHAMP, DFHCSDUP

Description: The definition file management program
handles physical changes to the CSD. The main
processes in DFHDMP are:

BUILDKWA (DM16) - Build key work area
CONNECT (DM01) - CONNECT
CREATSET (DM11) - Create SET
DELETE (DM05) - DELETE
DISCONN (DM02) - DISCONNECT
ENDBRO (DM10) - End BROWSE
ERASESET (DM12) - Delete SET
GETNEXT (DM09) - Get next record
LOCK (DM06) - LOCK
QUERYSET (DM13) - QUERYSET
READ (DM04) - Read CSD control records
RELSEKWA (DM17) - Free key work area
SETBRO (DM08) - Set browse
UNLOCK (DM06) - UNLOCK
WRITE (DM03) - WRITE.

DFHDRPG

Entry points: DFHDRPNA

Called by: DFHEIP

Description: DFHDRPG is the EXEC interface
processor for EXEC DLI commands for database
sharing. It receives the parameters of the command and
from them builds a list that is appropriate to call
DFHDRPE, the program request handler. On return
from DFHDRPE, the status code in the PCB is
examined. For some codes, an MVS abend is executed;
the other codes are passed back to the application
program.

DFHDSBA$, DFHDSB1$

Entry points: DFHDSBNA

Called by: DFHPBP

Description: The data stream build program produces
the final device-dependent data stream for each page of
BMS output. It is invoked only for processing data
streams that are not in 3270 format. DFHDSB removes
blanks from the ends of lines, converts logical new-line

Chapter 116. CICS executable modules 1459

characters into the device-dependent equivalents
(adding idle characters where necessary), and inserts
horizontal and vertical tab characters if supported.

DFHDU640

Entry points: DFHDUPNA

Called by: MVS

Description: The dump utility program formats and
prints transaction dumps from a CICS transaction dump
data set (DFHDMPA or DFHDMPB). The transaction
dumps are written to the data set by the dump domain.
They contain information about the state of a particular
transaction at the time of a transaction abend or
user-requested dump.

DFHDXACH

Entry points: DFHDXACH

Called by: DFHDBCR, DFHDBCT

Description: DFHDXACH is a stub that is also
MVS-attached, and which branches to an input address.

DFHDXSTM

Entry points: DFHDXSTM

Called by: DFHDBCT, DFHDBCR

Description: DFHDXSTM is used to attach, detach,
and inquire on MVS subtasks attached by DFHDBCR
and DFHDBCT.

DFHDYP

Entry points: DFHDYP

Called by: DFHAPRT

Description: This is the system-provided (default)
dynamic routing program invoked from the CICS relay
program (DFHAPRT) when a remote transaction is
defined as being dynamic.

DFHEAI

Entry points: DFHEI1

Called by: User application

Description: This is a stub that is link-edited with an
assembler-language application program to provide
communication with DFHEIP. The command-language
translator turns each EXEC CICS command into a call
statement. The external entry point invoked by the call
is resolved to an entry point in this stub. The address of
the entry point in DFHEIP (DFHEIPCN) is found through
a chain of system and CICS control blocks.

The DFHEAI stub must be included at the beginning of
the program in the output from the link edit. To achieve
this, ORDER and INCLUDE statements for DFHEAI

must be in the link-edit step of your JCL. When you use
the CICS-supplied assembler procedure DFHEITAL in
the SDFHPROC library to translate, assemble, and
link-edit application programs written in assembler
language, the COPYLINK step of this procedure copies
SDFHMAC(DFHEILIA). DFHEILIA contains the following
statements that must be included:

ORDER DFHEAI
INCLUDE SYSLIB(DFHEAI)

The statements are put into a temporary file that is
concatenated before the assembled application program
in the LKED step of the procedure.

DFHEAI0

Entry points: DFHEAI0

Called by: User application

Description: This is a stub that is link-edited with an
assembler-language application program to provide
communication with DFHEIPA, part of the EXEC
interface layer, for the prolog and epilog calls generated
by the command-language translator in the application
program. The external entry point invoked by the calls is
resolved to an entry point in this stub. The address of
the entry point in DFHEIPA (DFHEIPAN) is found using
a chain of system and CICS control blocks.

DFHEAP1$

Entry points: PREPROC

Description: The assembler-language translator
module performs the following functions:
v Runs offline.
v Takes on an input file.
v Produces an output or listing file.
v Gives a return code according to the highest severity

of the message produced:

0 - no message
4 - warning
8 - error

12 - severe error
16 - translator failure.

v Replaces CICS commands by invocations of the
DFHECALL macro, and inserts invocations of
DFHEIENT, DFHEIRET, DFHEISTG, and DFHEIEND
macros at appropriate places.

v Inserts diagnostics resulting from errors in
commands, as comments in the output program that
are not listed on the listing file.

DFHEBF

Entry points: DFHEBFNA

Called by: DFHEIP

Description: DFHEBF is the EXEC interface
processor for the field edit built-in function, DEEDIT.

1460 CICS TS for z/OS: CICS Diagnosis Reference

#
#
#

#
#
#
#
#
#
#

#
#

#
#
#

DFHEBU

Entry points: DFHEBUNA

Called by: DFHETL, DFHETC

Description: The EXEC function management header
(FMH) construction module is called by DFHETC when
a SEND or CONVERSE command is being processed,
and ATTACH function management headers have to be
built and concatenated ahead of user data.

DFHECI

Entry points: DFHEI1

Called by: User application

Description: This is a link-edit stub similar to DFHEAI,
except that it is used for COBOL application programs.

DFHECID

Entry points: DFHEIN01

Called by: DFHECIP

Description: The command interpreter module
analyzes CECI commands, and manages its displays. It
uses the EXEC interface to invoke other CICS
functions.

DFHECIP

Entry points: DFHEIN00

Called by: CECI transaction

Description: The command interpreter program
performs preliminary validation and initialization for the
CECI transaction, and links to DFHECID.

DFHECP1$

Entry points: PREPROC

Description: The COBOL translator module performs
the following functions:
v Runs offline.
v Takes on an input file.
v Produces an output or listing file.
v Gives a return code according to the highest severity

of the message produced:

0 - no message
4 - warning
8 - error
12 - severe error
16 - translator failure.

v Inserts DFHEIBLK and COMMAREA declarations in
the LINKAGE section.

v Inserts the EIB definition in the LINKAGE section.
v Inserts the DIB definition (for DL/I HLPI) in the

WORKING_STORAGE section.

v In the PROCEDURE DIVISION, the translator inserts
a USING clause in the DIVISION statement, and
replaces all CICS and DL/I commands by COBOL
CALL statements.

v Inserts diagnostics resulting from any errors in
commands, as messages in the translator listing file.

DFHEDAD

Entry points: DFHESP01

Called by: DFHEDAP

Description: The resource definition online (RDO)
transactions module analyzes the commands, and
manages the displays for CEDA, CEDB, and CEDC. It
uses the EXEC interface.

DFHEDAP

Entry points: DFHESP00

Called by: CEDA, CEDB, CEDC transaction

Description: The resource definition online (RDO)
transactions program performs preliminary validation
and initialization for CEDA, and links to DFHEDAD.

Returns to: DFHEIP

DFHEDC

Entry points: DFHEDCNA

Called by: DFHEIP

Description: DFHEDC is the EXEC interface
processor for dump commands.

DFHEDFBR

Entry points: DFHEDFBR

Called by: CEBR transaction, DFHEDFD

Description: The temporary-storage browse
transaction browses, copies, or deletes entries in a
temporary-storage queue. It interprets commands and
PF key actions.

DFHEDFD

Entry points: DFHEDFD

Called by: DFHEDFP

Description: The EDF display program is invoked
from DFHEDFP to analyze and display the current
status of the user program. DFHEDFD stores control
information about a temporary-storage message queue
and uses BMS to format the display screen. DFHEDFD
interfaces with other CICS control programs using the
EXEC interface.

Chapter 116. CICS executable modules 1461

DFHEDFM

Description: The EDF map set contains BMS maps
used by DFHEDFD to format the EDF display.

DFHEDFP

Entry points: DFHEDFNA

Called by: transaction CEDF

Description: The EDF main program is the control
program for EDF. DFHEDFP can be invoked in one of
two ways:
1. Directly from the EDF display terminal by entering

the CEDF transaction identification
2. By pressing the user-defined PF key.

DFHEDFP is also attached by DFHEDFX as the main
program of the EDF task.

DFHEDFR

Entry points: DFHEDFNA

Called by: Not applicable

Description: The EDF response table contains a
description of the exception responses for each EXEC
command and the abend codes associated with error
responses. DFHEDFR is used by DFHEDFD to interpret
the responses obtained from an EXEC command.

DFHEDFX

Entry points: DFHEDFNA

Called by: DFHACP, DFHEIP, program manager

Description: The EDF task switch program is invoked
from DFHACP, DFHEIP, or program manager when a
program is running in debug mode. DFHEDFX
suspends the user task and attaches the debugging
task, passing it information about the user task in the
TWA of the debugging task.

DFHEDI

Entry points: DFHEDINA

Called by: DFHEIP

Description: DFHEDI is the EXEC interface processor
for data interchange commands.

DFHEDP

Entry points: DFHEDPNA

Called by: DFHERM

Description: DFHEDP converts command-level DL/I
statements into a call parameter list acceptable to DL/I.
In addition, it provides 31-bit application support by

moving segment I/O areas above and below the 16MB
line as required.

DFHEDP1$

Entry points: PREPROC

Description: The C translator module performs the
following functions:
v Runs offline.
v Takes on an input file.
v Produces an output or listing file.
v Gives a return code according to the highest severity

of the message produced:

0 - no message
4 - warning
8 - error

12 - severe error
16 - translator failure.

v Inserts the EIB definition at the head of the translated
output.

v If the DLI translator option is specified, inserts the
DIB definition

v Replaces all CICS and DL/I commands in the input
program by function calls (dfhexec) in the output
program.

v Inserts diagnostics from any errors in commands, as
messages on the translator listing file.

DFHEEI

Entry points: DFHEEINA

Called by: DFHEIP

Description: DFHEEI is the EXEC interface processor
for DFHEIP ADDRESS, ASSIGN, PUSH, POP, and
HANDLE commands.

DFHEEX

Entry points: DFHEEXNA

Called by: DFHETC

Description: The EXEC function management header
(FMH) extraction module is called by DFHETC when a
RECEIVE or CONVERSE command is being processed,
and when data has to be extracted from ATTACH
function management headers.

DFHEFRM

Entry points: DFHEFRM

Called by: DFHDBP, DFHSPP

Description: DFHEFRM is the EXEC interface file
control syncpoint processor. At syncpoint commit or
rollback time, DFHEFRM deletes the FFLE entries that
were created by DFHFCEI for the task.

1462 CICS TS for z/OS: CICS Diagnosis Reference

DFHEGL

Entry points: DFHEGLNA

Called by: DFHEIP

Description: DFHEGL is the EXEC interface
processor for unmapped LU6.2 commands.

DFHEIIC

Entry points: DFHEICNA

Called by: DFHEIP

Description: DFHEIIC is the EXEC interface
processor for interval control commands.

DFHEIDTI

Entry points: DFHEIDTI

Called by: DFHEIP

Description: DFHEIDTI is the EXEC interface
processor for ASKTIME and FORMATTIME. DFHEIDTI
updates the time and date fields in the EIB and certain
time fields in the CSA, and returns the current time, or
date, to the application.

DFHEIP

Entry points: DFHEIPNA

Called by: application programs

Description: DFHEIP is the main EXEC interface
module. See Chapter 19, “EXEC interface,” on page
135 for further information.

DFHEIPA

Entry points: DFHEIPAN

Called by: DFHEAI0

Description: DFHEIPA is part of the EXEC interface
layer. It acquires and partially initializes the DFHEISTG
dynamic storage when called from the DFHEIENT
macro in an assembler-language application program. It
frees this storage when called from the DFHEIRET
macro.

DFHEIFC

Entry points: DFHEIFC

Called by: DFHEIP

Description: DFHEIFC is the file control EXEC
interface module, providing an interface between
DFHEIP and file control. It locates the AFCTE, and
performs the security check. For a remote file,
DFHEIFC passes the request to a transformer, which
then ships the request to the other system. For a local
file, DFHEIFC converts the EXEC argument list to an

FCFR parameter list (as defined by the DFHFCFRA
DSECT) and calls DFHFCFR, the file control file request
handler. After the request completes, DFHEIFC builds
return code information in the EIB.

DFHEISR

Entry points: DFHEISR

Called by: DFHEDI, DFHEGL, DFHEIQMS, DFHEMS,
DFHEOP, DFHETC, DFHETL, DFHTDB, DFHXFFC,
DFHXFX

Description: DFHEISR obtains buffers and copies
data for the calling EXEC interface modules, at the
location and in the storage key required by the
application.

DFHEJC

Entry points: DFHEJCNA

Called by: DFHEIP

Description: DFHEJC is the EXEC interface
processor for journaling commands.

DFHEKC

Entry points: DFHEKCNA

Called by: DFHEIP

Description: DFHEKC is the EXEC interface
processor for task control commands.

DFHELII

Entry points: DFHEI1

Called by: User application

Description: This is a link-edit stub similar to DFHEAI,
except that it is used for C application programs.

DFHEMS

Entry points: DFHEMSNA

Called by: DFHEIP

Description: DFHEMS is the EXEC interface
processor for BMS commands.

DFHEMTA

Entry points: DFHEMT00

Called by: User application

Description: The master terminal programmed
interface program is a special version of DFHEMTP that
a user application can link to for master terminal
services.

Chapter 116. CICS executable modules 1463

DFHEMTD

Entry points: DFHEMT01

Called by: DFHEMTA, DFHEMTP, DFHEOTP,
DFHESTP

Description: The master terminal module analyzes the
commands, and manages displays for CEMT, CEOT,
and CEST transactions. It uses the EXEC interface.

DFHEMTP

Entry points: DFHEMT00

Called by: CEMT transaction

Description: The master terminal program performs
preliminary validation and initialization for the CEMT
transaction, and links to DFHEMTD.

DFHEOTP

Entry points: DFHEMT00

Called by: CEOT transaction

Description: The master terminal program performs
preliminary validation and initialization for the CEOT
transaction, and links to DFHEMTD.

DFHEPC

Entry points: DFHEPCNA

Called by: DFHEIP

Description: DFHEPC is the EXEC interface
processor for program control commands.

DFHEPI

Entry points: DFHEI1

Called by: User application

Description: This is a link-edit stub similar to DFHEAI,
except that it is used for PL/I application programs.

DFHEPP1$

Entry points: PREPROC

Description: The PL/I translator module performs the
following functions:
v Runs offline.
v Takes on an input file.
v Produces an output or listing file.
v Gives a return code according to the highest severity

of the message produced:

0 - no message
4 - warning
8 - error
12 - severe error
16 - translator failure.

v If the input program is a MAIN procedure, inserts
DFHEIPTR as the first parameter on the
PROCEDURE statement to address the EIB. The
translator also inserts declarations of the EIB and
certain temporary variables.

v Replaces all CICS and DL/I commands in the input
program by CALL statements in the output program.

v Inserts diagnostics from any errors in commands, as
messages on the translator listing file.

DFHEPS

Entry points: DFHEPSNA

Called by: DFHEIP

Description: DFHEPS is the link between DFHEIP
and the JES interface program, DFHPSP.

DFHERM

Entry points: DFHERMNA

Called by: DFHEIP

Description: DFHERM is called by DFHEIP on behalf
of the other components of CICS to manage the
connection between CICS and non-CICS products.

DFHESC

Entry points: DFHESCNA

Called by: DFHEIP

Description: DFHESC is the EXEC interface
processor for storage control commands.

DFHEISP

Entry points: DFHESPNA

Called by: DFHEIP

Description: DFHEISP is the EXEC interface
processor for syncpoint commands.

DFHESTP

Entry points: DFHEMT00

Called by: CEST transaction

Description: The master terminal program performs
preliminary validation and initialization for the CEST
transaction, and links to DFHEMTD.

DFHETC

Entry points: DFHETCNA

Called by: DFHEIP

Description: DFHETC is the EXEC interface
processor for terminal control commands.

1464 CICS TS for z/OS: CICS Diagnosis Reference

DFHETD

Entry points: DFHETDNA

Called by: DFHEIP

Description: DFHETD is the EXEC interface
processor for transient data commands. The EXEC
requests are routed from DFHETD to DFHTDP using
the corresponding DFHTD CTYPE requests.

DFHETL

Entry points: DFHETLNA

Called by: DFHETC

Description: DFHETL is the EXEC interface processor
for mapped LU6.2 commands.

DFHETR

Entry points: DFHETRNA

Called by: DFHEIP

Description: DFHETR is the EXEC interface
processor for trace commands.

DFHETS

Entry points: DFHETSNA

Called by: DFHEIP

Description: DFHETS is the EXEC interface
processor for temporary-storage commands.

DFHEXI

Entry points: DFHEXINA

Called by: DFHZARQ

Description: The exceptional input program is invoked
from DFHZCP when unexpected input is received from
a VTAM 3270 terminal that has a task attached.
DFHEXI checks whether the input is the result of a
3270 print function key being pressed; if so, DFHEXI
issues a DFHTC TYPE=PRINT macro, and then unlocks
the keyboard; in any case, DFHEXI then passes control
back to DFHZCP.

DFHFCAT

Entry points: DFHFCAT

Called by: DFHFCDN, DFHFCN

Description: DFHFCAT processes inquire and update
requests on the state of the backup while open (BWO)
attributes in the ICF catalog for VSAM data sets, and
inquires on the quiesce state in the ICF catalog.

DFHFCBD

Entry points: DFHFCBD

Called by: DFHFCFR

Description: DFHFCBD handles BDAM file control
requests except for OPEN and CLOSE.

DFHFCDN

Entry points: DFHFCDN

Called by: DFHAMFC, DFHAMPFI, DFHEIQDN,
DFHEIQDS, DFHFCLF, DFHFCMT, DFHFCN,
DFHFCRC, DFHFCRO, DFHFCRD, DFHFCRP

Description: DFHFCDN builds data set name blocks
at cold start or in response to CEDA requests. It also
examines or modifies data set name blocks in response
to EXEC CICS INQUIRE or EXEC CICS SET
commands.

DFHFCDTS

Entry points: DFHFCDTS

Called by: DFHFCFR

Description: DFHFCDTS processes file control
requests to access data table records for READ-ONLY
requests against CICS-maintained tables, and for all
record requests against user-maintained tables. It calls
data table services to retrieve or modify table records,
calls DFHFCVS to retrieve data from the VSAM source
data set if it is not in the table, and calls DFHFCDTX to
function ship requests that cannot be satisfied by
sharing.

DFHFCFR

Entry points: DFHFCFR

Called by: DFHAPLI, DFHAPSM, DFHDTLX,
DFHDMPCA, DFHEIFC, DFHERM, DFHFCDTS,
DFHFCFR, DFHFCFS, DFHFCRC, DFHFCRP,
DFHUEH

Description: DFHFCFR is the central module in the
file control component. It handles file control requests
issued by DFHFCEI (requests from application
programs), or by other CICS modules (internal file
control requests). DFHFCFR ensures that the file is
both opened and enabled, acquires an FRTE as
necessary, performs request validity checking, and then
routes the request to the appropriate access-method
dependent module (DFHFCBD for BDAM, DFHFCVS for
non-RLS VSAM and also for update or browse requests
against a CICS-maintained data table, DFHFCRS for
RLS VSAM, and DFHFCDTS for all other data table
requests).

Chapter 116. CICS executable modules 1465

DFHFCFS

Entry points: DFHFCFS

Called by: DFHAMFC, DFHDMPCA, DFHDMRM,
DFHDTLX, DFHEIQDS, DFHFCDTS, DFHFCFR,
DFHFCLF, DFHFCQU, DFHFCRC, DFHFCRD,
DFHFCRU, DFHFCSD, DFHFCU, DFHFCVS

Description: DFHFCFS changes the state of a file. It
invokes DFHFCN to open, or close, files.

DFHFCL

Entry points: DFHFCLNA

Called by: DFHFCN

Description: DFHFCL is a file control program that is
link-edited into DFHFCFS. DFHFCL builds and deletes
VSAM LSR pools. It is called by DFHFCN with a
parameter list that specifies the pool number (1 through
8) and the action to be taken (build or delete).

DFHFCM

Entry points: DFHFCMNA

Called by: DFHFCFS

Description: DFHFCM is a file control program that is
link-edited into DFHFCFS. When records are added via
a VSAM path, DFHFCM is called to open the base
associated with the path.

DFHFCMT

Entry points: DFHFCMT

Called by: DFHAFMT, DFHAMFC, DFHAMPFI,
DFHDMPCA, DFHEDFX, DFHEIQDS

Description: DFHFCMT builds file control table entries
in response to CEDA commands. It also examines or
modifies FCT entries in response to EXEC CICS
INQUIRE or EXEC CICS SET commands.

DFHFCN

Entry points: DFHFCNNA

Called by: DFHFCFS

Description: DFHFCN is a file control program that is
link-edited into DFHFCFS. DFHFCN opens and closes
files. If a file has not been allocated, DFHFCN allocates
it, and frees it on closure.

DFHFCRL

Entry points: DFHFCRL

Called by: DFHAMFC

Description: DFHFCRL modifies SHRCTL blocks

(describing VSAM LSR pools) in response to CEDA
requests.

DFHFCRP

Entry points: DFHFCRP

Called by: DFHFCIN2

Description: The file control restart program builds the
file control environment and initializes file control.

DFHFCSD

Entry points: DFHFCSD

Called by: DFHSTP

Description: DFHFCSD is called during CICS
controlled shutdown processing to close all open files
managed by CICS file control.

DFHFCST

Entry points: DFHFCST

Called by: DFHSTFC, DFHSTLS

Description: DFHFCST is called to collect or reset file
or LSRPOOL statistics on request from DFHSTFC or
DFHSTLS.

DFHFCU

Entry points: DFHFCUNA

Called by: CSFU transaction

Description: DFHFCU issues an OPEN for files
specified in the file control table (FCT). This program
examines the FCT, and calls DFHFCFS to open all
specified files.

DFHFCVR

Entry points: DFHFCVR, UPADEXIT

Called by: DFHFCBD, DFHFCFR, DFHFCVR,
DFHFCVS, VSAM

Description: DFHFCVR is a file control program that
is link-edited into DFHFCVS. It handles requests to
VSAM, and also contains the VSAM UPAD exit.

DFHFCVS

Entry points: DFHFCVS

Called by: DFHFCDTS, DFHFCFR

Description: DFHFCVS handles requests for file
control services made against VSAM files. These
services include:
v Communication with files defined in the file control

table

1466 CICS TS for z/OS: CICS Diagnosis Reference

v Logging of changes to these files by DFHFCJL and
the log manager.

v Syncpoint services.

DFHFDP

Entry points: DFHFDPNA

Called by: DFHFD macro

Description: DFHFDP translates DFHFD macro
requests for a system dump to DU domain
SYSTEM_DUMP calls.

DFHFEP

Entry points: DFHFEPNA

Called by: CSFE transaction

Description: The FE terminal test program can be
used to send a complete character set to a terminal or
to echo input or to turn tracing on or off. This program is
an application program and does not exit to any other
CICS modules. However it does use CICS facilities.

DFHGMM

Entry points: DFHGMMNA

Called by: DFHKCP

Description: The “good morning” program is invoked
by the CSGM system transaction to write a “good
morning” message to VTAM logical units when a
satisfactory OPNDST has occurred (and if the message
has been requested in the TCT TYPE=TERMINAL
entry).

DFHHPSVC

Entry points: IGCnnn

Called by: DFHZHPSR (via an SVC call)

Description: This is a type 6 SVC module used only
on MVS. Its sole purpose is to cause MVS to dispatch
an SRB. DFHHPSVC provides part of the CICS high
performance option (HPO) code, and is invoked only if
HPO is in use. In the entry point name, nnn is the
number of the SVC.

Returns to: MVS

DFHICP

Entry points: DFHICPNA

Called by: DFHEIIC, DFHIC macro

Description: The interval control program is used for
time management and has two main functions:
1. Services DFHIC macros under the control of a

requesting task’s TCA
2. Detects the expiration of time-dependent events, as

defined in ICEs.

The main subroutines of DFHICP are:

ICCANCLN - Cancel a time-ordered request
ICEXPANL - Time expiration analysis
ICGTIMEN - Current time of day
ICGTTTDM - Data retrieval
ICICECRN - Build basic ICE
ICPCTSN - Task initiation
ICPOSTN - Signal expiration of a specified time
ICRESETN - Time of day clock reset support
ICSCHEDN - ICE schedule
ICWAITN - Delay processing of a task.

DFHIIPA$, DFHIIP1$

Entry points: DFHIIPNA

Called by: DFHMCP

Description: The non-3270 input mapping program
performs all BMS input mapping functions for all devices
except the 3270. On exit from the module, the input
data has been mapped into a newly acquired TIOA that
is returned to the application program and is then
addressable using BMS DSECTs in the application.

The main subsections of DFHIIP are:

IIMID - GETMAINs TIOA to return to user, and maps
page buffer into it using specified map.

IIREAD - Reads input data, issuing DFHTC or DFHDI
requests to get data from the terminal.

IISCAN - Scans data stream for device-dependent
control characters and creates page
buffer.

DFHIRP

Entry points: DFHIRPNA

Called by: DFHCRC, DFHCRNP, DFHCRSP,
DFHDRPD, DFHDRPE, DFHDRPF, DFHSRP, DFHSTP,
DFHZCX

Description: The interregion communication program
is used to pass data from one region to another in the
same CEC. The programs being run in the regions are
usually CICS programs, but DFHIRP does not assume
this.

DFHIRW10

Entry points: As defined in interest ladder 8

Called by: DFHIRP, DFHXMP

Description: The interregion work exit delivers work to
the IRC control task (CSNC). DFHIRW10 is called
whenever DFHIRP or DFHXMP has work to deliver to a
system that logged on with DFHIRW10 as its interregion
work exit. This module checks whether the work being
delivered to the target system requires that work be
enqueued on CSNC; if so, it enqueues the work and

8. Interest ladder: ladder within DFHIRW10 that expresses
interest in all types of MRO work.

Chapter 116. CICS executable modules 1467

posts CSNC. DFHIRW10 is invoked in access register
(AR) mode and user key.

DFHISP

Entry points: DFHISPNA

Called by: DFHDLI, DFHEIP, DFHEIFC

Description: The intersystem communication program
is invoked when a request to access resource has to be
shipped to a remote system (through ISC or MRO).

The requests passed to DFHISP are:
v File control
v Interval control
v Temporary storage
v Transient data
v DL/I.

DFHISP controls the acquisition, use, and freeing of a
session to the remote system, and invokes DFHXFP or
DFHXFX to process requests and replies. Two user
exits are provided in DFHISP: XISCONA can be used to
control the queuing of requests from DFHISP to allocate
intersystems sessions, and XISLCLQ can be used to
override the LOCALQ option of the transaction
attributes. XISCONA is invoked for any function-shipping
requests that cannot be processed immediately.
XISLCLQ is provided to support the local queuing of
function-shipped START NOCHECK requests when the
link to the remote system is out of service. If a START
NOCHECK request is queued, DFHISP starts the
CMPX transaction when the link is brought in to service.

DFHJCP

Entry points: DFHJCPNA

Called by: DFHEJC, DFHJC macro

Description: The journal control program (DFHJCP)
either processes a request to get a JCA control block,
or has been called to write to a journal. In the latter
case it examines the information in the JCA that is
passed with the request and decides whether to call the
recovery manager or the log manager based on
whether it finds journalname DFHLOG in the JCA or
not. There are three separate calls to the DFHLGGL
gate of the log manager: one for a write, a put or a wait
request. The same is true for the recovery manager
calls, which use the DFHRMRE gate. In addition there
is a call to this gate for requests which have keypoint
record data with them.

When control returns from either of these domains, the
domain's outcome is mapped onto a valid return code
which is put into the JCA before control returns back to
the calling program

DFHJUP

Entry points: DFHJUPNA

Called by: MVS

Description: The journal print utility program
examines, selects, and displays data in QSAM data
sets, such as the CICS and IMS logs. Data selection is
controlled by input parameters, and an optional user
exit. DFHJUP provides access to the MVS log streams
via the SUBSYS keyword in the JCL.

DFHKCP

Entry points: DFHKCPNA

Called by: DFHEKC, DFHKC macro

Description: This is a startup routine that passes
control to either DFHXCP or DFHXCPC. It also deals
with some ENQ and DEQ calls.

DFHKCQ

Entry points: DFHKCQNA

Called by: DFHXCPC

Description: DFHKCQ processes DFHKC INITIALIZE,
REPLACE, WAITINIT, and DISCARD macro calls to the
transaction manager.

DFHKCRP

Entry points: DFHKCRP

Called by: DFHKCP (attaches DFHKCRP as a CICS
task)

Description: DFHKCRP is the task control restart
program.

DFHKCSC

Entry points: DFHKCSC

Called by: DFHKCQ

Description: This module forms part of the transaction
manager. It provides the QUERY_TRANSACTION and
QUERY_PROFILE functions for use in determining
whether the transaction or profile specified on a
DISCARD TRANSACTION or DISCARD PROFILE
command respectively can validly be discarded. For the
QUERY_TRANSACTION function, DFHKCSC examines
the ICE chain, the AID chains, and the SIT, looking for
references to the transaction that is the subject of the
DISCARD. For the QUERY_PROFILE function,
DFHKCSC examines the PCT for a reference to the
profile that is the subject of the DISCARD.

1468 CICS TS for z/OS: CICS Diagnosis Reference

DFHKCSP

Entry points: DFHKCSPA, DFHKCSPI, DFHKCSPD,
DFHKCSPF, DFHKCSPP

Description: The task SRB control program is part of
the high performance option (HPO) code available on
CICS on MVS. It runs in SRB mode and resides in
protected storage.

DFHLIP

Entry points: DFHLINA

Called by: DFHEDFX, DFHEIP, DFHPCPS, DFHSIJ1,
DFHSTP

Description: The language interface program acts as
a single point of contact between CICS and AD/Cycle
Language Environment/370, and also between CICS
and the language environments for VS COBOL II and
C/370. To invoke a Run-Time Language Interface (RTLI)
or Extended Run-Time Language Interface (ERTLI)
function, the requesting module calls DFHLIP by issuing
a DFHCEE FUNCTION= macro. DFHLIP performs all
the interface work with the language, including the
handling of any errors.

The interface functions driven by DFHLIP and the
modules that call DFHLIP for those functions are as
follows. An asterisk (*) after a function name shows that
the function call is handled entirely within DFHLIP itself,
and control remains in DFHLIP upon successful
completion of the thread initialization function.

Unless otherwise indicated, each function is used for all
three environments. Where alternative function names
are given, the name applicable to Language
Environment/370 is used in the requesting module’s
DFHCEE macro call regardless of the language
environment.

DFHEDFX - Determine working storage
(Language Environment/370)

OR Working storage locate
(VS COBOL II and C/370)

DFHEIP - Perform GOTO
(Language Environment/370 only)

DFHPCPS - Establish ownership type
(Language Environment/370)

OR Determine program type
(VS COBOL II and C/370)

- Thread initialization
- Run-unit initialization *
- Run-unit begin invocation *

(Language Environment/370 only)
- Run-unit end invocation

(Language Environment/370 only)
- Run-unit termination
- Thread termination

DFHSIJ1 - Partition initialization
DFHSTP - Partition termination.

DFHLUP

Entry points: DFHLUPNA

Description: DFHLUP is the LU6.2 services manager.
It initializes and shuts down a network, and
resynchronizes flows.

DFHMCPA$, DFHMCPE$, DFHMCP1$

Entry points: DFHMCPNA

Called by: DFHBMS macro, DFHEMS

Description: The mapping control program processes
DFHBMS macro requests and completes the processing
of a logical message when a task terminates without
issuing a DFHBMS TYPE=PAGEOUT. DFHMCP’s main
function is to analyze DFHBMS requests and to pass
control to the appropriate modules. Other functions
include the loading of maps and partition sets, and
scheduling of output messages transmitted by
temporary storage.

The main subsections of DFHMCP are:

MCPCPO - Completes logical message build message
control record for temporary storage

MCPDWEXT - DWE processing, invoked by DFHKCP to
complete BMS processing at application
termination

MCPINPT - Handles all input requests
MCPIN - TYPE=IN (EXEC CICS RECEIVE MAP)
MCPMAPLO - Loads map set and locates map
MCPPGBLD - TYPE=PAGEBLD|TEXTBLD (EXEC SEND TEXT)
MCPPGOUT - TYPE=PAGEOUT (EXEC CICS SEND PAGE)
MCPPURGE - TYPE=PURGE (EXEC CICS PURGE MESSAGE)
MCPROUTE - TYPE=ROUTE (EXEC CICS ROUTE).

DFHMCX

Entry points: DFHMCXNA

Called by: DFHMCP

Description: DFHMCX is the BMS fast path module
for standard and full-function BMS, and the program for
minimum BMS support. It is called by DFHMCP if the
request satisfies one of the following conditions:
v It is a noncumulative direct terminal send map or

receive map issued by a command-level program.
v It is for a 3270 display or an LU3 printer which does

not support outboard formatting. If the terminal
supports partitions, it is in the base state.

v The CSPQ transaction has been started.
v The message disposition has not changed.

DFHMGP

Entry points: DFHMGPNA

Called by: DFHACP, DFHCRQ, DFHCRT, DFHEOP,
DFHFEP, DFHRTC, DFHRTE, DFHZEMW, DFHZERH,
DFHZIS1, DFHZTSP, DFHZXRL

Description: The message generation program

Chapter 116. CICS executable modules 1469

provides an interface for sending CICS messages to the
terminal end user.

DFHMGT

Entry points: DFHMGTNA

Called by: DFHMGP

Description: The message prototype control table, or
message generation table, consists of a series of
copybooks, DFHMGTnn, each of which contains up to
100 messages that are issued by DFHMGP.

DFHMIRS

Entry points: DFHMIRNA

Called by: Task initiation

Description: The mirror program is invoked when a
request to access a resource is received from a remote
ISC system or from a remote MRO system. DFHMIRS
may be thought of as returning the answer to the
requesting actions of DFHISP. It is DFHMIRS that
controls the receipt of requests and transmission of
replies.

DFHMIRS processes requests from:
v MRO-connected systems
v LU6.1 connected systems
v LU6.2 sync level 1 connected systems
v LU6.2 sync level 2 connected systems.

The input to DFHMIRS consists of a TCTTE
representing the session between CICS and its session
partner, and a TIOA containing the function shipping
request.

The TIOA is passed to DFHXFP (transformer 2) for
conversion of the request from transmission format to
the parameter list format required for DFHEIP or
DFHDLI. If the data requires conversion (transaction
CPMI), an EXEC CICS LINK is used to link to the data
conversion program DFHCCNV, passing a COMMAREA
that contains the EXEC CICS parameter list for the
request where applicable. DFHMIRS then passes the
request to DFHEIP or DFHDLI for execution.

On return from DFHEIP or DFHDLI the data conversion
program is called to convert the reply (if applicable), and
then the transformer program DFHXFP (transformer 3)
is called to convert the reply parameter list to
transmission format. DFHMIRS then determines the
DFC to send with the reply and transmits the reply to
the requesting system. If the mirror task has modified
protected resources, it continues receiving requests and
transmitting replies until a syncpoint request is received
from the remote system.

A mirror task on an IRC link suspends itself on
completion of a request and it is then available for use

by any other MRO function-shipped request. The
dispatcher terminates the mirror task if it is not reused
within ten seconds.

DFHML1

Entry points: DFHML1NA

Called by: DFHMCP, DFHPBP

Description: The SCSPRT logical unit type 1 output
mapping routine is called by DFHPBP to build a page of
data stream from a chain of map and application data
structure copies. The data contains only features that
the TTP says are supported by the target terminal. This
routine is called when NLEOM is specified for 3270
printers or LU3 printers.

The main subsections of DFHML1 are:
ML1SPACE

Calculate space for chaining and mapping
ML1FMCA

Format the chains that describe the maps
ML1PF Process map fields

DFHMROQP

Entry points: DFHMRONA

Called by: DFHCRNP, DFHCRSP

Description: The MRO work queue enable/disable
program is invoked by the DFHMROQM macro for
ENABLE and DISABLE requests (other requests are
processed by an inline expansion). DFHMROQP is
called by DFHCRSP to enable the MRO work queues
when starting interregion communication, and by either
DFHCRSP or DFHCRNP to disable the work queues
when stopping interregion communication. MRO work
queues are used to deliver work to the IRC control task
(CSNC).

DFHMSP

Entry points: DFHMSPNA

Called by: CMSG transaction

Description: The message switching program routes a
message entered at the terminal to one or more
operator-defined terminals or to other operators.
DFHMSP can be used in conversational mode to
process operands entered from separate input
operations. In this case the operands already processed
are preserved in temporary storage.

The main sections and subroutines of DFHMSP are:

MSBMSRT - Check for complete operands
MSCNVRS - Issue conversational response
MSCONTIN - Process conversational response
MSMSG4 - MSG operand
MSNTRY - Process operands
MSROUTE - Route operand.

1470 CICS TS for z/OS: CICS Diagnosis Reference

DFHMXP

Entry points: DFHMXPNA

Called by: Automatic transaction initiation

Description: The local queuing shipper provides the
means of transferring to a remote system a START
request that has been temporarily deferred by use of
the local queuing option.

DFHM32A$, DFHM321$

Entry points: DFHM32NA

Called by: DFHMCP, DFHPBP

Description: For a BMS output request, the 3270
mapping program generates the appropriate data
stream for a 3270 device, and returns control to
DFHPBP which invokes the DFHTPP module to send
the data to the appropriate destination, which is either to
the direct terminal, or to temporary storage, or back to
the caller. For a BMS input request, the data stream
from a 3270 device is examined and mapped into a
user application TIOA format.

The main subsections of DFHM32 are:

BMFMHTST - Create beginning of 3270 data stream
(FMH cursor positioning)

BMMID - Input mapping
BMMMS - Merge maps (output mapping)
M32PF - Process field.

DFHPBPA$, DFHPBP1$

Entry points: DFHPBPNA

Called by: DFHMCP

Description: The page and text build program
positions maps or text, including header or trailer maps
or text, within a page of output. For non-3270 devices,
the module creates a page buffer containing the user’s
data which is then passed to DFHDSB to produce a
device-dependent data stream. When mapping, this
includes merging the data supplied by the application
with the constant data included in the map. For 3270
devices, copies of the maps and application-supplied
data for a page are chained together, to be processed
by module DFHM32, to produce a 3270 data stream.
The page and text build program creates dummy maps,
and chains them in the same way for 3270 text building.
For LU1 printers with extended attributes, copies of the
maps and application-supplied data for a page are
chained together, to be processed by module DFHML1
to produce an SCS data stream. The page and text
build program creates dummy maps, and chains them in
the same way for text building. After the maps have
been processed by DFHDSB, DFHM32, or DFHML1,
DFHPBP calls DFHTPP to write them out.

The main subroutines of DFHPBP are:
PBDOUTPT

Mapping/text build complete, decide whether to

call data stream generator and which one
(DFHDSB or DFHM32). Return to caller
(DFHMCP)

PBD00005
Main control logic, request analysis.

PBD01000
Map placement logic (3270 and non-3270
mapping).

PBD01130
Non-3270 mapping.

PBD10000
Pageout routine.

PBD11000
Modify field positions within map (used by 3270
and non-3270 mapping).

PBD20000
Text processing (3270 and non-3270).

PBD30000
3270 mapping.

PBFMHBLD
Build FMH if FMHPARM specified (non-3270
text and map processing).

DFHPD640

Entry points: DFHPD640

Called by: MVS IPCS program

Description: DFHPD640 runs as an exit from the
MVS IPCS program. It formats an MVS system dump
(SDUMP) using the IPCS service routines to extract
data and print output, including interpreted trace.

DFHPEP

Entry points: DFHPEPNA

Called by: DFHACP

Description: The program error program is
CICS-supplied and establishes a base register,
establishes addressability to the COMMAREA passed
from DFHACP using a DFHPC CTYPE=LINK_URM
macro call, and returns control to DFHACP. DFHPEP
can be modified by the user to perform further recovery
operations.

DFHPHP

Entry points: DFHPHPNA

Called by: DFHMCP, DFHTOM

Description: The partition handling program has one
entry point, and starts with a branch table that passes
control to the required routine according to the request.

The main routines of DFHPHP are:

PHPPSI - Loads a partition set
PHPPSC - Destroys any existing partitions and

creates new partitions
PHPPIN - Extracts the AID, cursor position, and

Chapter 116. CICS executable modules 1471

partition ID
PHPPXE - Activates the appropriate partition if

data is received from an unexpected
partition.

DFHPL1OI

Description: The PL/I interface module contains the
following routines:
DFHPL1N

Initial entry point for PL/I programs under CICS
DFHPL1I

CICS macro service interface
DFHPL1C

Set the CSA address
IBMBOCLA/B/C

Startup routines for open/close functions.

DFHPRK

Entry points: DFHPRKNA

Called by: DFHZATT

Description: The 3270 print key program (transaction
CSPK) is invoked when, under VTAM, the 3270
program access key designated as the print key is
pressed and no task is attached to the terminal. If the
3270 hardware copy feature is present, DFHPRK
attaches task CSCY to the printer designated in the
TCTTE, and DFHCPY is executed. If the copy feature is
not present, DFHPRK executes a DFHTC TYPE=PRINT
macro.

DFHPSP

Entry points: DFHPSPNA

Called by: DFHEPS

Description: DFHPSP is the system spooling interface
control module.

DFHPSPDW

Entry points: DFHPSPDW

Called by: DFHSPP

Description: DFHPSPDW is the system spooling
interface DWE.

DFHPSPSS

Entry points: DFHPSPSS

Called by: DFHPSP

Description: The system spooling JES interface
subtask module attaches a subtask to check whether a
writer name and a token have been supplied. It opens
and closes JES data sets, reads a record, and writes a
record.

DFHPSPST

Entry points: DFHPSPST

Called by: DFHPSPSS

Description: DFHPSPST is the system spooling JES
interface control module.

DFHPSSVC

Entry points: DFHPSSNA

Called by: DFHPSPSS, DFHPSPST

Description: DFHPSSVC is the system spooling
interface module that retrieves a data set name for a
given external writer name, dynamically allocates it, and
returns its DDNAME.

DFHPUP

Entry points: DFHPUPNA

Called by: DFHAMP, DFHCSDUP

Description: The parameter utility program transforms
the definition data of the CSD. In the CSD, the data is
held in a compacted form and each field is
self-identifying. Elsewhere in the processing, these
fields are handled in parameterized form, using an
argument address list. It also serves to transform the
resource definition to the original high-level command.

DFHP3270

Entry points: DFHP32NA

Called by: CSPP transaction, DFHTCP, DFHZCP

Description: The 3270 print program prints 3270 data
received from a screen on a 3270 printer. The data is
compressed where possible and then transmitted to the
printer.

DFHQRY

Entry points: DFHQRY

Called by: DFHALP, DFHTCTI, DFHZATT

Description: The query transaction (DFHQRY) sends
a READ PARTITION QUERY structured field to a 3270,
analyzes the response, and completes information in
the corresponding TCTTE. DFHQRY can be attached by
DFHALP, DFHTCTI, or DFHZATT.

DFHRCEX

Entry points: DFHRCEX

Called by: DFHFCBP, DFHTCBP, DFHUSBP

Description: DFHRCEX enables the global user exits
for emergency restart processing.

1472 CICS TS for z/OS: CICS Diagnosis Reference

DFHRKB

Entry points: DFHRKBNA

Called by: DFHCPY

Description: The release 3270 keyboard program is
initiated by DFHCPY to release a 3270 keyboard. It
does this by issuing a DFHTC TYPE=WRITE macro
that sends a 3270 write control character.

DFHREST

Entry points: DFHREST

Called by: DFHXMTA

Description: The transaction restart program,
DFHREST, is a user-replaceable module that helps you
to determine whether or not a transaction is restarted.
The default DFHREST module requests a transaction
restart under certain conditions; for example, for a
program isolation deadlock, one of the tasks is backed
out and automatically restarted, and the other is allowed
to complete its update.

DFHRLRA$, DFHRLR1$

Entry points: DFHRLRNA

Called by: DFHMCP

Description: The route list resolution program builds a
terminal type parameter (TTP) control block for each
type of terminal for which a message is to be built. A
TTP is acquired for each terminal type in the user route
list and the direct terminal if there is one.

The main subsections of DFHRLR are:

RLRALL - Routing with ROUTE=ALL specified in
application

RLRLIST - Routing with route list specified in
application

RLROPCL - Routing with OPCLASS= specified in
application

RLRRTEBY - Nonrouting, non-LDC device (that is
direct terminal)

RLR3601 - Nonrouting LDC device.

DFHRMSY

Entry points: DFHRMSNA

Called by: DFHERMSP, DFHERMRS

Description: The purpose of task-related user exit
resynchronization is to resolve any in-doubt LUWs.
Task-related user exit resynchronization is called by
DFHERMRS during execution of the RESYNC
command to restore the CICS end of the thread that
was interrupted by the failure of the connection with the
resource manager.

It is also called by DFHERMSP when a wait is
unshunted and requires RMI resynchronization with a
resource manager.

DFHRTC

Entry points: DFHRTCNA

Called by: CSSF transaction

Description: The CSSF transaction is invoked on the
remote system when a CRTE routing session is to be
canceled. CSSF runs the CRTE cancel command
processor, DFHRTC, to sign off the user and terminate
the extended routing session. DFHRTC calls DFHSUSN
to sign off the surrogate.

DFHRTE

Entry points: DFHRTENA

Called by: transaction CRTE, DFHSNTU

Description: The transaction routing program
establishes a transaction routing session with a remote
region specified by the user. Subsequent input is
analyzed by DFHRTE, the transaction code extracted,
and a request issued to DFHZTSP to route the
transaction to the required system.

DFHSFP

Entry points: DFHSFP

Called by: CESF trans.

Description: The sign-off program signs off the user
who invoked the CESF transaction.

DFHSIA1

Entry points: DFHSIANA

Called by: DFHAPSIP

Description: The DFHSIA1 system initialization
program loads and initializes the CSA.

DFHSIB1

Entry points: DFHSIBNA

Called by: DFHAPSIP

Description: The DFHSIB1 system initialization
program loads the CICS nucleus.

DFHSIC1

Entry points: DFHSICNA

Called by: DFHAPSIP

Description: The DFHSIC1 system initialization
program initializes the transaction manager and the
storage manager domain’s macro compatibility interface,
acquires a TCA for LIFO functions during initialization,
initializes user exits, and processes the START
parameter.

Chapter 116. CICS executable modules 1473

DFHSID1

Entry points: DFHSIDNA

Called by: DFHAPSIP

Description: The DFHSID1 system initialization
program performs the following functions:
v Adds storage subpools for transient data use
v Allocates storage for transient data control blocks:

– TDST
– MBCA, MBCBs, and MQCBs, I/O buffers if

required
– MRCA, ACBs, MRCBs, and RPLs

v Creates the DCTE and SDSCI for CXRF.

DFHSIF1

Entry points: DFHSIFNA

Called by: DFHAPSIP

Description: The DFHSIF1 system initialization
program initializes terminal control. DFHSIF1:
v Opens the VTAM ACB
v Builds hash-table entries for non-VTAM terminals
v Constructs a DFHZCP module list in the TCT prefix
v Initializes the attach tables.

DFHSIG1

Entry points: DFHSIGNA

Called by: DFHAPSIP

Description: The DFHSIG1 system initialization
program opens the dump data set.

DFHSIH1

Entry points: DFHSIHNA

Called by: DFHAPSIP

Description: The DFHSIH1 system initialization
program:
v Loads the DBCTL call processor (DFHDLIDP)
v Loads the remote DBCTL call processor (DFHDLIRP)

if necessary
v Attaches the TCP task.

DFHSII1

Entry points: DFHSIINA

Called by: DFHAPSIP

Description: The DFHSII1 system initialization
program establishes AP domain recovery routines in
DFHSRP and calls DFHICRC to initialise Interval
Control services. It attaches the CPLT transaction to run
the first stage PLTPI programs, the CSTP transaction
(the TCP task) and a system transaction to run the rest
of AP initialization (the III task). The rest of DFHSII1,
running as the III task:

v Starts XRF control transactions if required
v Attaches the CICS restart tasks to run in parallel:

– Security interface
– Transient data
– Terminal control
– Program control
– Task control
– File control
– Common programming interface (CPI)
– Partner resource manager
– Object recovery
– Autoinstall terminal model manager

v Waits for the restart tasks to complete
v Processes the GRPLIST parameter

DFHSIJ1

Entry points: DFHSIJNA

Called by: DFHAPSIP

Description: DFHSIJ1 is the last to be executed in the
process of system initialization. It issues the message
‘CONTROL IS BEING GIVEN TO CICS’ and passes
control back to DFHAPSIP. DFHSIJ1:
v Links to DFHCRSP, if IRCSTRT=YES is specified as

a system initialization parameter, to start up the
interregion communication session

v Links to DFHPSIP to enable the system spooling
interface

v Enables the DL/I high-level programming interface by
acquiring an exit program block and addressing
DFHEDP

v Enables AUTOINSTALL
v Links to the second-stage PLT programs listed in

DFHPLT, then deletes this table
v Issues a DFHLDLDM SET_OPTIONS call to instruct

the loader domain to write all outstanding program
definitions to the catalogs.

DFHSIP

Entry points: DFHKESIP

Called by: MVS

Description: DFHSIP initializes CICS and also
contains code for the following domains:
v Kernel (KE)
v Domain manager (DM)
v Dispatcher (DS)
v Dump (DU)
v Global catalog (GC)
v Local catalog (LC)
v Loader (LD)
v Lock manager (LM)
v Message (ME)
v Parameter manager (PA)
v Storage manager (SM)
v Trace (TR).

1474 CICS TS for z/OS: CICS Diagnosis Reference

DFHSKP

Entry points: DFHSKMNA, DFHSKC, DFHSKE

Called by: MVS, DFHFCL, DFHFCM, DFHFCN,
DFHPSPSS, DFHSTP, DFHXSMX

Description: DFHSKP consists of these modules,
which are link-edited together:

DFHSKM - subtask manager
DFHSKC - subtask control program
DFHSKE - subtask execution program.

DFHSKM calls and, if necessary, attaches DFHSKC to
process the created work queue element (WQE).
DFHSKM also causes termination of the subtask when
requested, and handles DWE processing and task
cancel requests. DFHSKC starts an operating system
subtask, DFHSKE, and waits for its completion.
DFHSKE processes WQEs, looking at in-progress and
waiting queues on a first-in, first-out basis. DFHSKE
intercepts program checks and operating system
abends.

DFHSMSCP

Entry points: DFHSMSCP

Called by: DFHSC macro

Description: The storage control program is called as
a result of DFHSC GETMAIN and FREEMAIN macro
requests issued from CICS modules.

DFHSNAT

Entry points: DFHSNAT

Called by: DFHCRNP, DFHZISP, DFHZSUP (via
DFHSUSN)

Description: The attach-time signon/sign off interface
program provides support for the signon and sign off of
LU6.2 sessions.

DFHSNNFY

Entry points: DFHSNNFY

Called by: IRRDPR10

Description: The CICS segment notify exit is called by
RACF whenever a change is made to a user’s CICS
segment in the RACF database.

DFHSNMIG

Entry points: DFHSNMIG

Called by: MVS

Description: The signon table migration utility program
produces a CLIST file containing ADDUSER and
ALTUSER commands that provide RACF with all the
user attributes for each user entry in the signon table

(SNT). This CLIST file is run by a TSO user to migrate
the user information to RACF.

DFHSNP

Entry points: DFHSNP

Called by: CESN transaction

Description: The signon program is called in response
to a CESN signon request. DFHSNP interprets the
signon parameters, prompts the operator for more
parameters if needed, and passes the values to the
security manager for verification.

DFHSNSN

Entry points: DFHSNSN

Called by: DFHCSSC, DFHSNAT (via DFHSUSN)

Description: The optimized signon/sign off interface
program provides a mechanism for optimizing calls to
the security manager. It achieves this optimization using
the signon table (SNT).

DFHSNVCL

Entry points: DFHSNVCL

Called by: IRRDPR02

Description: The OPCLASS validation exit is called by
RACF to validate the operands of the OPCLASS
subparameter of the CICS parameter in the ADDUSER
or ALTUSER TSO commands. DFHSNVCL checks
whether the operands are in the range 1 through 24.

DFHSNVID

Entry points: DFHSNVID

Called by: IRRDPR02

Description: The OPIDENT validation exit is called by
RACF to validate the operand of the OPIDENT
subparameter of the CICS parameter in the ADDUSER
or ALTUSER TSO commands.

DFHSNVPR

Entry points: DFHSNVPR

Called by: IRRDPR02

Description: The OPPRTY validation exit is called by
RACF to validate the operand of the OPPRTY
subparameter of the CICS parameter in the ADDUSER
or ALTUSER TSO commands. DFHSNVPR checks
whether the operand is in the range 0 through 255.

Chapter 116. CICS executable modules 1475

DFHSNVTO

Entry points: DFHSNVTO

Called by: IRRDPR02

Description: The TIMEOUT validation exit is called by
RACF to validate the operand of the TIMEOUT
subparameter of the CICS parameter in the ADDUSER
or ALTUSER TSO commands. DFHSNVTO checks
whether the operand is in the range 1 through 60.

DFHSPP

Entry points: DFHSPPNA

Called by: DFHESP, DFHSP macro

Description: The syncpoint program is invoked during
a user-specified syncpoint (by a DFHSP macro) or at
task termination. For a rollback request only, DFHSPP
calls DFHDBP to restore recoverable resources. It
scans the DWE chain invoking the appropriate DWE
processors, and performs the necessary syncpoint
logging. It dequeues all resources enqueued by the
transaction. DFHSPP processes any DWEs connected
with the resource manager, and processes the RESYNC
command.

The main subroutines of DFHSPP are:

SPP00005 - Write DWE log data
SPP02020 - Build a DWE chain that can be logged
SPP03000 - End.

DFHSRLI

Entry points: DFHSRLI

Called by: DFHSRP

Description: DFHSRLI is called during recovery
processing after a system abend has occurred, to build
the SRP_ERROR_DATA block and pass control to the
XSRAB global user exit.

DFHSRP

Entry points: DFHSRPNA

Called by: AP domain recovery routines

Description: The system recovery program deals with
program check interrupts, system abends, and runaway
tasks in the AP domain. For a program check, DFHSRP
abends the task with abend code ASRA. For a system
abend, DFHSRP searches the SRT for the abend code
that has arisen and, if a match is found, calls DFHSRLI
to invoke the XSRAB global user exit (if active).
Afterwards, DFHSRP can either abend CICS or attempt
to keep it running with only the faulty task abended
(ASRB). For a runaway task, DFHSRP abends the task
with abend code AICA.

DFHSSEN

Entry points: DFHSSEN

Called by: MVS subsystem interface

Description: The subsystem end-of-memory routine is
invoked by the MVS subsystem interface at all
end-of-task (EOT) and end-of-memory (EOM) events
when the CICS subsystem has been initialized by
module DFHSSIN. It cleans up any subsystem control
blocks owned by the terminating CICS region.

DFHSSGC

Entry points: DFHSSGC

Called by: DFHCSVC, DFHSSEN (through the
subsystem interface)

Description: The subsystem generic connect routine
records the existence of active CICS address spaces.
When the first CICS address space becomes active in
an MVS image, DFHSSGC enables the subsystem
broadcast facility of MVS console management. When
the last CICS address space becomes inactive in an
MVS image, it disables the broadcast facility.

DFHSSIN

Entry points: DFHSSIN

Called by: MVS master scheduler initialization

Description: The CICS subsystem initialization routine
reads subsystem parameters from SYS1.PARMLIB, and
creates a subsystem vector table (SSVT) for the CICS
subsystem. DFHSSIN loads modules DFHSSEN,
DFHSSGC, and DFHSSWT into MVS common storage,
and saves their addresses in the SSVT.

DFHSSMGP

Entry points: DFHSSMGP

Called by: DFHSSIN

Description: The subsystem interface message
program provides message formatting support for the
subsystem interface routines, analogous to DFHMGP
within CICS. (Neither DFHMGP nor the message
domain can be used in this environment because CICS
is not active.)

DFHSSMGT

Entry points: DFHSSMNA

Called by: DFHSSMGP

Description: The subsystem interface message table
contains the text of messages that are issued by
DFHSSMGP.

1476 CICS TS for z/OS: CICS Diagnosis Reference

DFHSSWT

Entry points: DFHSSWTA

Called by: MVS console support

Description: The subsystem interface WTO router is
invoked for all MVS console messages when the
console message broadcast facility has been enabled
by DFHSSGC. DFHSSWT routes DFH messages to
DFHSSWTO, and routes MODIFY command text to
DFHSSWTF.

DFHSSWTF

Entry points: DFHSSWTF

Called by: DFHSSWT

Description: This module suppresses signon
passwords that are supplied on CESN transactions
entered through MODIFY commands on an MVS
console. Any passwords are replaced by eight asterisks.

DFHSSWTO

Entry points: DFHSSWTO

Called by: DFHSSWT

Description: This module inserts the CICS region’s
applid into all DFH messages issued under a CICS TCB
whose applid can be determined.

DFHSTDT

Entry points: DFHSTDT

Called by: DFHAPST

Description: This module is called by DFHAPST to
collect or reset dynamic transaction backout statistics.
Statistics are written to the SMF data set or made
available on the API according to the type of request.

DFHSTFC

Entry points: DFHSTFC

Called by: DFHAPST

Description: This module is called by DFHAPST to
collect or reset file control statistics. Statistics are
written to the SMF data set or made available on the
API according to the type of request.

DFHSTIB

Entry points: DFHSTIB

Called by: DFHAPST

Description: This module and called by DFHAPST to
collect or reset IRC batch system connected statistics.
Statistics are written to the SMF data set or made
available on the API according to the type of request.

DFHSTJC

Entry points: DFHSTJC

Called by: DFHAPST

Description: This module is called by DFHAPST to
collect or reset journal control statistics. Statistics are
written to the SMF data set or made available on the
API according to the type of request.

DFHSTLK

Entry points: DFHSTLK

Called by: DFHAPST

Description: This module is called by DFHAPST to
collect or reset ISC/IRC statistics. Statistics are written
to the SMF data set or made available on the API
according to the type of request.

DFHSTLS

Entry points: DFHSTLS

Called by: DFHAPST

Description: This module is called by DFHAPST to
collect or reset LSRPOOL statistics. Statistics are
written to the SMF data set or made available on the
API according to the type of request.

DFHSTP

Entry points: DFHSTPNA

Called by: DFHEMTP

Description: The main function of the system
termination program is to shut down CICS. In sequence,
DFHSTP performs the following functions (according to
options specified):
1. Collects statistics now if immediate shutdown
2. Shuts down the resource managers
3. Terminates subsystem interface
4. Resumes suspended tasks
5. Executes the programs defined in the first part of

DFHPLT
6. Rebuilds AIDs for paging sessions
7. Breaks the ICE and AID chains
8. Quiesces IRC
9. Executes the programs defined in the second part

of DFHPLT
10. Closes all open files managed by CICS file control
11. Synchronize with Recovery Manager shutdown

keypoint
12. Call WKP to catalog terminals and profiles
13. Terminate extra partition TD
14. Signs off from the CAVM
15. Terminates general-purpose subtasking facility
16. Calls the kernel to terminate the system.

Returns to: MVS

Chapter 116. CICS executable modules 1477

DFHSTSZ

Entry points: DFHSTSZ

Called by: DFHAPST

Description: DFHSTSZ is called by DFHAPST to
collect or reset FEPI statistics. Statistics are written to
the SMF data set or made available on the API
according to the type of request.

DFHSTTD

Entry points: DFHSTTD

Called by: DFHAPST

Description: DFHSTTD is called by DFHAPST to
collect or reset transient data statistics. Statistics are
written to the SMF data set or made available on the
API according to the type of request.

DFHSTTM

Entry points: DFHSTTM

Called by: DFHAPST

Description: DFHSTTM is called by DFHAPST to
collect or reset table manager statistics. Statistics are
written to the SMF data set or made available on the
API according to the type of request.

DFHSTTR

Entry points: DFHSTTR

Called by: DFHAPST

Description: DFHSTTR is called by DFHAPST to
collect or reset terminal statistics. Statistics are written
to the SMF data set or made available on the API
according to the type of request.

DFHSTTS

Entry points: DFHSTTS

Called by: DFHAPST

Description: DFHSTTS is called by DFHAPST to
collect or reset temporary-storage statistics. Statistics
are written to the SMF data set or made available on
the API according to the type of request.

DFHSUSN

Entry points: DFHSUSN

Called by: DFHACP, DFHBSTS, DFHCRNP,
DFHCSSC, DFHEEI, DFHEIQST, DFHERM, DFHESN,
DFHMGPME, DFHMGP00, DFHRTC, DFHSUSX,
DFHTCTI, DFHTPQ, DFHTPR, DFHXSMN, DFHZCUT,
DFHZEV1, DFHZEV2, DFHZISP, DFHZIS2, DFHZNAC,
DFHZOPN, DFHZSUP, DFHZTSP, DFHZXCU

Description: DFHSUSN is used to create, destroy,
and query the contents of a signon table element
(SNTTE). It calls DFHSUSX to notify the XRF alternate
system of the creation and destruction of SNTTEs. It
also provides an interface for the creation and validation
of encrypted passwords used in LU6.2 bind password
processing.

DFHSUSX

Entry points: DFHSUSX

Called by: DFHTCRPU, DFHZXCU, DFHSUSN

Description: DFHSUSX provides tracking for SNTTEs.
This module is responsible for:
v Sending messages to an alternate system to reflect

the current state of the SNTTEs in the active system
v Actioning an add or delete of an SNTTE in an

alternate system, based on information tracked from
another CICS system

v Making changes to the signed-on state in an
alternate system, based on information tracked from
another CICS system.

Entry points: DFHSUWT

Called by: DFHMEME, DFHSUWT

Description: The DFHSUWT module provides the
following support for executing MVS WTO and WTOR
SVCs:

v SEND support for Write To Operator (WTO)

v CONVERSE support for Write To Operator With
Reply (WTOR).

For further information about DFHSUWT, see
Chapter 68, “WTO and WTOR,” on page 503.

DFHSUZX

Entry points: DFHSUZX

Called by: DFHBSTZV, DFHEIQSC, DFHEIQST,
DFHEIQTR

Description: The ZC trace controller is responsible for
actioning set, cancel, and inquire requests for the CICS
VTAM exit tracing facility. It sets or unsets the control
flags and gets or releases the storage used by the
DFHZETR function located in the ACB and RPL exits.

DFHTACP

Entry points: DFHTACNA

Called by: DFHTCP

Description: The terminal abnormal condition program
is invoked by DFHTCP and performs the following
functions:
v Analyzes error codes in the TACLE

1478 CICS TS for z/OS: CICS Diagnosis Reference

v Sends appropriate messages to the CSMT transient
data destination (for terminal errors), or to the CSTL
transient data destination (for logical errors)

v Invokes the user-supplied (or sample) terminal error
program (DFHTEP)

v Takes the appropriate actions resulting from the
defaults which may have been modified by the
terminal error program.

DFHTAJP

Entry points: DFHTAJNA

Description: The time adjustment program calls
DFHICP to reset the CSA’s time fields according to the
host-supplied time-of-day. DFHTAJP then scans the ICE
chain and adjusts the expiry time of interval-controlled
ICEs. Time-controlled ICEs are not adjusted but the ICE
chain is reordered so that it is left in order by expiry
time. Times held in the TCT and CSATCNDT are
decreased, and negative times are made zero. Lastly,
DFHTAJP writes a message.

DFHTBSB

Entry points: DFHTBSB

Called by: DFHZCQIS

Description: DFHTBSB adds a node to the
control-block structure. It is called during the dynamic
installation of TCT resources, and calls routines in the
control block builder.

DFHTBSBP

Entry points: DFHTBSBP

Called by: DFHTBSB, DFHTBSBP

Description: DFHTBSBP is the recursive part of
DFHTBSB.

DFHTBSD

Entry points: DFHTBSD

Called by: DFHZCQDL

Description: DFHTBSD deletes a node in a CICS
terminal network.

DFHTBSDP

Entry points: DFHTBSDP

Called by: DFHTBSD, DFHTBSDP

Description: DFHTBSDP is the recursive part of
DFHTBSD.

DFHTBSL

Entry points: DFHTBSL

Called by: DFHTBSR, DFHZCQCH

Description: DFHTBSL creates the recovery record
for a node during the dynamic installation of a TCT
table entry using the CEDA INSTALL command, for
example, and calls routines in the control-block builder.

DFHTBSLP

Entry points: DFHTBSLP

Called by: DFHTBSL, DFHTBSLP, DFHTBSSP

Description: DFHTBSLP is the recursive part of
DFHTBSL.

DFHTBSQ

Entry points: DFHTBSQ

Called by: DFHZCQIQ

Description: DFHTBSQ is called to retrieve the
parameters that were supplied to a TCT table entry at
build time.

DFHTBSQP

Entry points: DFHTBSQP

Called by: DFHTBSQ

Description: DFHTBSQP is called by DFHTBSQ to
retrieve parameters that were supplied to a TCT table
entry at build time.

DFHTBSR

Entry points: DFHTBSR

Called by: DFHZCQRS

Description: DFHTBSR takes a table-builder recovery
record and re-creates the corresponding table entry. It is
called during warm or emergency restart.

DFHTBSRP

Entry points: DFHTBSRP

Called by: DFHTBSR

Description: DFHTBSRP is called by DFHTBSR.

DFHTBSSP

Entry points: DFHTBSSP

Description: DFHTBSSP performs a commit or
rollback action for a previous table-builder change
according to the outcome of a logical unit of work. Each
action is dequeued from a DWE.

Chapter 116. CICS executable modules 1479

DFHTBS00

Entry points: DFHTBS

Description: DFHTBS00 is the main routine for
DFHTBS and holds the addresses of the modules used
to build control blocks for the dynamic installation of
TCT resources.

DFHTCBP

Entry points: DFHTCBNA

Description: The terminal control backout program
restores TCTTEs and other ISC state data during
emergency restart.

DFHTCP

Entry points: DFHTCPNA

Description: DFHTCP is the terminal control program.
The terminal control task is attached during system
initialization and remains until termination. DFHTCP
manages all non-VTAM terminals, which involves:
v Ensuring that I/O operations are started when

possible on the lines
v Analyzing completion information
v Attaching transactions when data is received from a

terminal and no task is attached to that terminal
v Servicing terminal control requests from user

transactions.

The modules and subsections of DFHTCP are:
DFHTCAM

Terminal control TCAM device dependent
DFHTCCLC

Terminal control line control scan routine
DFHTCCOM

Terminal control common logic
DFHTCCSS

Terminal control start-stop common logic
DFHTCDEF

Terminal control symbol definition
DFHTCORS

Terminal control storage handling
DFHTCSAM

Terminal control sequential terminal device
dependent

DFHTCTI
Terminal control task initiation

DFHTCTRN
Terminal control translate tables

DFHTCRP

Entry points: DFHTCRP

Description: DFHTCRP initializes and recovers
terminal control definitions and protected messages. It is
run as a task during CICS initialization.

DFHTCRPC

Entry points: DFHTCRPC

Called by: DFHZXQO

Description: DFHTCRPC is the XRF tracking interface
for TCT contents. It is one of a set of routines called by
DFHZXQO from the same CALL statement, the entry
point address having been passed to DFHZXQO. This
routine calls ZC RESTORE to add or delete a TCT entry
based on information from another CICS system using
the log, the catalog, or the XRF tracking queues.

DFHTCRPL

Entry points: DFHTCRPL

Called by: DFHTCRP

Description: DFHTCRPL installs TCT resources
defined by the TCT macros.

DFHTCRPS

Entry points: DFHTCRPS

Called by: DFHZXQO

Description: DFHTCRPS is the XRF tracking interface
for ZCP sessions. It is one of a set of routines called by
DFHZXQO from the same CALL statement, the entry
point address having been passed to DFHZXQO. This
routine calls DFHZXST (through DFHZXS) to make
changes to the session state.

DFHTCRPU

Entry points: DFHTCRPU

Called by: DFHZXQO

Description: DFHTCRPU is the XRF tracking interface
for signon table elements (SNTTEs). It is one of a set of
routines called by DFHZXQO from the same CALL
statement, the entry point address having been passed
to DFHZXQO. This routine calls DFHSUSX to add or
delete tracked SNTTEs, and to make changes to the
signed-on state.

DFHTDA

Entry points: DFHTDANA

Called by: DFHAKP, DFHAMCSD, DFHAPTD,
DFHCRNP, DFHCRQ, DFHDBP, DFHEIQMS,
DFHEIQSQ, DFHESE, DFHETD, DFHJCP, DFHMCP,
DFHMGP00, DFHRCRP, DFHRUP, DFHSII1, DFHSTP,
DFHSTTD, DFHTCAP, DFHTDRP, DFHTEPM,
DFHTPQ, DFHTRP, DFHTSRP, DFHWKP, DFHZNAC

Description: DFHTDA, which is link-edited with
RMODE(24), handles DFHTD macro requests. In
particular:

1480 CICS TS for z/OS: CICS Diagnosis Reference

v DFHTD TYPE=GET|PUT|PURGE requests are
converted to the corresponding DFHTD
CTYPE=GET|PUT|PURGE requests.

v DFHTD CTYPE=GET|PUT|PURGE requests for
intrapartition queues are routed to DFHTDQ for
further processing.

v All of the processing for DFHTD CTYPE=GET|PUT
for extrapartition queues is done under the QR TCB.

v Much of the processing for DFHTD
CTYPE=OPEN|CLOSE for extrapartition queues is
done under the RO TCB.

CICS Transaction Server for z/OS, Version 3 Release 1
uses QSAM GL|PL mode processing, unlike previous
CICS releases which used QSAM GL|PM mode
processing.

DFHTDB

Entry points: DFHTDBNA

Called by: DFHTDA

Description: DFHTDB, which is link-edited with
RMODE(ANY), handles DFHTD macro requests for
intrapartition queues. In particular, DFHTDB:
v Manages the input and output cursors for each queue
v Manages space on the intrapartition data set
v Initiates transactions when trigger levels are reached
v Manages the buffers; processing is done under the

QR TCB
v Manages the strings; processing is done under the

CO TCB.

DFHTDEXL

Entry points: EX11RTNE

Called by: QSAM

Description: DFHTDEXL contains the DCB abend exit
routine used for extrapartition processing.

DFHTDP

Entry points: DFHTDANA

Called by: DFHAKP, DFHAMCSD, DFHAPTD,
DFHCRNP, DFHCRQ, DFHDBP, DFHEIQMS,
DFHEIQSQ, DFHESE, DFHETD, DFHMCP,
DFHMGP00, DFHRCRP, DFHRUP, DFHSII1, DFHSTP,
DFHSTTD, DFHTACP, DFHTDRP, DFHTEPM,
DFHTPQ, DFHTRP, DFHTSRP, DFHWKP, DFHZNAC

Description: DFHTDP is a load module link-edited
from object modules for DFHTDA, DFHTDEXL, and
DFHTDX.

DFHTDQ

Entry points: DFHTDBNA

Called by: DFHTDA

Description: DFHTDQ is a load module link-edited
from object modules for DFHTDB.

DFHTDRM

Entry points: DFHTDRM

Called by: DFHDBP

Description: DFHTDRM is the transient data recovery
manager processor. If transient data has any
outstanding resources, DFHTDRM is called at phase 1
syncpoint (or backout). For phase 1 syncpoint (or
backout) requests, DFHTDRM issues a request to
mainline transient data(DFHTDA) to reset any resources
that have not yet been released.

DFHTDRP

Entry points: DFHTDRNA

Called by: DFHTDX

Description: DFHTDRP handles transient data
recovery during CICS initialization. In particular,
DFHTDRP:
v Adds the entries found in the DCT load module by

calling the DFHTDTM gate.
v Restores input and output cursors for intrapartition

queues on warm start; the cursors are recovered by
DFHRUP on emergency restart

v Restores the CI state map on warm start
v Opens extrapartition queues
v Opens the intrapartition data set
v Recovers the CI state map on emergency restart.

DFHTDTM

Entry points: DFHTDTM

Called by: DFHALP, DFHEIQMS, DFHEIQSQ,
DFHESE, DFHSZRPM, DFHTDRP

Description: DFHTDTM manages the entries in the
destination control table. It is used to add, update and
delete entries in this table and records images of each
entry on the global catalog for use during a warm start
or emergency restart. It allows table entries to be
inquired upon.

DFHTDX

Entry points: DFHTDXNA

Called by: Task initiation

Description: DFHTDX is the initial program invoked
by the transient data recovery task. It links to program
DFHTDRP.

Chapter 116. CICS executable modules 1481

DFHTEP

Entry points: DFHTEPNA

Called by: DFHTACP

Description: The terminal error program is invoked by
DFHTACP using a DFHPC CTYPE=LINK_URM macro.
The sample DFHTEP (invoked only if there is no
customer-supplied version) puts a terminal out of
service if the number of terminal errors detected by
DFHTACP exceeds default values contained in
DFHTEP tables.

DFHTMP

Entry points: DFHTMPNA

Called by: DFHTM macro

Description: The table management program
performs locates, adds, deletes, locks, and unlocks to
entries in certain CICS tables. DFHTMP uses a hash
table for these operations.

The main subroutines of DFHTMP are:
CHKTTC - Check table type code
COMMIT - Commit table changes
CRTCLE - Create a change list element
CRTDWE - Create deferred work element
DELDWE - Cancel deferred work element
DEQALLDE - Dequeue on directory element
DEQUEUE - Dequeue on table modification
DYNHASH - Dynamic re-hash
ENQDEQDE - Enqueue/dequeue on directory element
ENQUEUE - Enqueue on table modification
GET_STORAGE - Get storage from the CICS shared subpool
GET_TASK_STORAGE - Get task lifetime 31-bit storage
GET_TASK_STORAGE_COND - Get task lifetime 31-bit storage

(conditionally)
GET_STORAGE_FAILURE - Get storage failure routine
FREE_STORAGE - Release storage from the CICS shared subpool
FREE_TASK_STORAGE - Release task lifetime 31-bit storage
LOCATE_PREVIOUS_DE - Locate previous directory

element in collating series
LOCATETE - Locate a table/directory entry
LOCFDIRE - Locate a free directory element
NOTERL - Note Read Lock
SETABORD - Set up alphabetic ordering pointer

for a given table type
TMFINDLOCK - Find a read lock
TMPDWEEP - Deferred work element processor
TMSETLOCK - Set a read lock
TMUNLOCK - Release a read lock
UNQUIES - Unquiesce a directory element.

DFHTON

Entry points: DFHTONNA

Called by: DFHDBP, DFHSPP

Description: The terminal object resolution module is
called by DFHDBP or DFHSPP during DWE processing
for DFHTOR. It calls DFHTOR with end-LUW-cancel or
end-LUW-commit code to perform cancel or commit of
changes to TERMINAL, TYPETERM, CONNECTION, or
SESSIONS definitions.

DFHTOR

Entry points: DFHTORNA

Called by: DFHAMP, DFHTON

Description: DFHTOR is the terminal object resolution
program. DFHAMP calls DFHTOR for a TERMINAL,
TYPETERM, CONNECTION, or SESSIONS object in a
CICS system definition (CSD) file that is being installed,
or when DFHAMP encounters an end-of-group.
DFHTOR processes the objects and passes them to the
terminal control builder program (DFHZCQ). The
DFHTON entry is used for DWE processing.

DFHTORP

Entry points: DFHTORNA

Called by: DFHSII1

Description: DFHTORP is the terminal object
recovery program. It is called during CICS initialization
to purge TYPETERM and model terminal definitions
from the catalog on a cold start, and to recover these
definitions on an emergency restart.

DFHTPPA$, DFHTPP1$

Entry points: DFHTPPNA

Called by: DFHDSB, DFHM32

Description: The terminal page processor program
handles DFHBMS TYPE=OUT, STORE, and RETURN
requests. If OUT, DFHTPP sends the complete page
using DFHTC macro requests; if STORE, the page is
sent to temporary storage; and if RETURN, no output
operation takes place but the page is returned to the
application program.

The main subroutines of DFHTPP are:

TPNODDS - TYPE=STORE (PAGING) requests
TPOUT - TYPE=OUT (TERMINAL) requests (the macro

DFHTOM is used by both DFHTPP and DFHTPR
to handle output to terminals)

TPRETPG - TYPE=RETURN (SET) requests.

Returns to: DFHPBP

DFHTPQ

Entry points: DFHTPQNA

Called by: DFHICP, DFHMCP, DFHTCP

Description: The undelivered messages cleanup
program is initiated periodically in order to cancel the
delivery of BMS messages that have been placed in
temporary storage, but have remained undelivered for
an interval exceeding the purge delay time interval
specified by the PRGDLAY system initialization
parameter, if this has a nonzero value.

1482 CICS TS for z/OS: CICS Diagnosis Reference

DFHTPR

Entry points: DFHTPRNA

Called by: DFHMCP, DFHTCP

Description: The terminal page retrieval program
(transaction CSPG) is invoked:
v By automatic transaction initiation as a result of a

SCHEDULE issued by DFHTPS
v By a DFHPGLK LINK from DFHMCP, when

CTRL=RETAIN or RELEASE on DFHBMS
TYPE=PAGEOUT (RETAIN or RELEASE on SEND
PAGE at command level)

v When CSPG or an operator paging command is
entered at a terminal.

If the message is autopaged, DFHTPR retrieves the
pages of the message in order, transmits them to the
terminal, and then purges the message. Otherwise
DFHTPR runs pseudo-conversationally. All further input
is passed to DFHTPR, until the message is purged
explicitly or implicitly. If the input is a valid paging
command (page retrieval, page copy, page purge, or
page chaining), it is processed. It is rejected if explicit
purge is required, or passed back to normal task
initiation if automatic purge is allowed.

The main subsections of DFHTPR are:

DFHMSPUT - Send error message to terminal
TPENCCHN - Encode and execute page chain
TPENCCOP - Encode and execute page copy
TPENCPUR - Execute page purge
TPENCRET - Encode page retrieval
TPERETA - Reset to autopaging
TPERETQ - Page query
TPEXIT - Exit from program
TPEXPUR - Execute page purge
TPEXRET - Execute page retrieval
TPTSGET - Get MCR or page from temporary storage.

DFHTPS

Entry points: DFHTPSNA

Called by: DFHICP, DFHMCP

Description: The terminal page scheduling program
(transaction CSPS) is invoked for each terminal type to
which a BMS logical message built with TYPE=STORE
is to be sent. For each terminal designated by the
originating application program, DFHTPR is scheduled
to display the first page of the logical message if the
terminal is in paging status, or the complete message if
it is in autopage status. DFHTPS contains the following
major subsections, each dealing with a separate
function:

v DFHTPSNA—used when DFHTPS is invoked by
automatic initiation on expiry of ICE, and as a result
of an IC PUT request issued by DFHMCP (there is
no associated terminal). This invocation schedules
CSPG for terminals on this system, and schedules
CSPS on the link to each remote system which owns

terminals contained in the route list for the message
(that is the function of TPS02000).

v TPS01000—used when DFHTPS is linked to from
DFHMCP for direct paging requests to a terminal on
a remote system. The task has a surrogate TCTTE
as its primary facility, and owns a relay link
connected to the terminal owning system. This
section ships the pages of the message to the
terminal-owning region, where it is re-created by the
relay program (DFHAPRT) which issues BMS,
STORE, TEXT, NOEDIT, and PAGEOUT requests.

v TPS02000—used when DFHTPS is scheduled by
TPS01000 to run against the link to a remote system.
This routine ships the logical message to the remote
system and deletes the terminals on the remote
system from the terminal list in the original message
control record. (TPS03000 receives the information at
the remote system.)

v TPS03000—used when DFHTPS is invoked by an
ATTACH request from a remote system (that is,
originated by TPS01000 or TPS02000). This routine
receives the shipped logical message and issues
BMS ROUTE, TEXTBLD, NOEDIT, and PAGEOUT
requests to re-create the logical message on the
terminal-owning region.

DFHTPS contains the following subroutine:
v TPSSHIPM—ships a complete logical message.

DFHTRAP

Entry points: DFHTRANA

Called by: DFHTRPT

Description: The FE global trap/trace exit is provided
for diagnostic use only under the guidance of service
personnel.

DFHTR640/AMDUSREF

Entry points: DFHTRPRG

Called by: IPCS

Description: The CICS GTF trace formatting routine is
invoked by IPCS processing of the GTFTRACE keyword
when a CICS entry (USR F6C, format ID X'EF') is
encountered. For each entry, it writes a line containing
the job name and then formats the entry in the same
form as DFHTU640 does for an auxiliary trace print.
AMDUSREF is defined as an alias for DFHTR640
because IPCS looks for a program called AMDUSRxx to
format entries with format ID xx.

DFHTRP

Entry points: DFHTRPNA

Called by: Many AP domain modules

Description: The trace control program translates
DFHTR, DFHTRACE, and DFHLFM macro requests to

Chapter 116. CICS executable modules 1483

write trace entries into TR domain TRACE_PUT
requests. DFHTRP collects the data required in the
trace for the specified trace ID into a standard layout
and issues the TRACE_PUT call. For requests to
change the various trace flags that control tracing,
DFHTRP issues KEDD format calls to the kernel
domain.

DFHTRZCP

Entry points: DFHTRZCP

Called by: CEDA transaction, DFHTCRP, DFHTOR

Description: DFHTRZCP builds a terminal builder
parameter set.

DFHTRZIP

Entry points: DFHTRZIP

Called by: CEDA transaction, DFHTCRP, DFHTOR

Description: DFHTRZIP builds a chain of builder
parameter sets for sessions.

DFHTRZPP

Entry points: DFHTRZPP

Called by: CEDA transaction, DFHTCRP, DFHTOR

Description: DFHTRZPP builds a pool builder
parameter set.

DFHTRZXP

Entry points: DFHTRZXP

Called by: CEDA transaction, DFHTCRP, DFHTOR

Description: DFHTRZXP builds a connection builder
parameter set.

DFHTRZYP

Entry points: DFHTRZYP

Called by: CEDA transaction, DFHTCRP, DFHTOR

Description: DFHTRZYP builds a TYPETERM builder
parameter set.

DFHTRZZP

Entry points: DFHTRZZP

Called by: CEDA transaction, DFHTCRP, DFHTOR

Description: DFHTRZZP merges a TYPETERM
builder parameter set into a terminal builder parameter
set.

DFHTSP

Entry points: DFHTSPNA

Called by: DFHACP, DFHAKP, DFHALP, DFHCRQ,
DFHDBP, DFHDIP, DFHEDFP, DFHESE, DFHETS,
DFHICP, DFHMCP, DFHMSP, DFHRTE, DFHSII1,
DFHSTP, DFHTCBP, DFHTPP, DFHTPQ, DFHTPR,
DFHTPS, DFHTSBP, DFHTSP, DFHTSRP, DFHZISP,
DFHZRAQ, DFHZRAR, DFHZRSP

Description: The temporary-storage program services
DFHTS requests. It maintains the tables, directories,
and maps necessary to keep track of every
temporary-storage record and of available space on the
VSAM auxiliary storage or in main storage. The main
subroutine of DFHTSP is DFHTSPAM, which manages
auxiliary storage (including multiple buffers and strings).

DFHTU640

Entry points: DFHTRPRA

Called by: MVS

Description: The trace utility program formats and
prints trace records stored on the auxiliary trace data
set. This utility program is run as a separate job, and
extracts selected trace entries as specified on
parameter statements supplied as part of the input to
the program.

DFHUCNV

Entry points: DFHUCNV

Called by: DFHCCNV

Description: DFHUCNV is a sample program for
CICS OS/2 user data conversion. Users can write their
own version of DFHUCNV to apply any conversion. If
specified, a user-supplied conversion is applied before
the standard conversion. DFHUCNV is invoked for each
EXEC CICS request and reply that has resulted from a
CICS OS/2 function shipping request and may require
conversion of user data from ASCII to EBCDIC (inbound
from CICS OS/2) or from EBCDIC to ASCII (outbound).
DFHCCNV issues an EXEC CICS LINK to DFHUCNV
before attempting any standard conversions. This allows
a user program to convert data of type USERDATA, as
defined in the CICS OS/2 conversion macros
(DFHCNV).

The sample program obtains addressability to the
COMMAREA passed to it, and checks that the request
is a temporary-storage (TS) request. Then it checks that
DFHCCNV managed to locate a conversion template for
the resource (a TS queue) with this name, and scans
and checks the template using the supplied template
pointer and length. If the check is successful, the
program translates the user data field as appropriate.

1484 CICS TS for z/OS: CICS Diagnosis Reference

DFHUEH

Entry points: DFHUEHNA

Called by: CICS management modules containing exit
points

Description: The user exit handler is the link between
an exit point in a CICS management module in the AP
domain, and the user code. DFHUEH invokes in turn
each started exit program for that exit point, passing a
parameter list defined in the CICS management module.

DFHUEM

Entry points: DFHUEMNA

Called by: DFHEIP

Description: The EXEC interface processor for the
ENABLE, DISABLE, and EXTRACT user exit
commands.

DFHUSBP

Entry points: DFHUSBNA

Called by: DFHRCRP

Description: The user backout program sends
records, journaled by the user to the system log, to a
user exit during emergency restart. The records are
extracted by DFHRUP from the restart data set. They
may exist for any logical unit of work, whether in flight
or not, depending on the JCRSTRID value specified
when the record was written.

DFHWCCS

Entry points: DFHWCCS

Called by: Many CAVM modules

Description: DFHWCCS provides common services
for the CAVM:
v MVS FREEMAIN
v MVS GETMAIN
v MVS POST
v Message or MVS ABEND
v Create CAVM process block.

Returns to: MVS abend, caller

DFHWCGNT

Entry points: DFHWCGNA

Description: DFHWCGNT is the entry point list for
CAVM modules above the 16MB line.

DFHWDATT

Entry points: DFHWDATT

Called by: DFHWDINA, DFHWMG1, DFHWMP1,
DFHWSXPI

Description: DFHWDATT creates the CAVM process.

DFHWDINA

Entry points: DFHWDINA

Called by: DFHWSRTR

Description: DFHWDINA attaches the initial CAVM
process. It sets up lock tables, the dispatcher control
area, the LIFO control area, and the dispatcher ESPIE
and ESTAE exits.

Returns to: DFHWDISP

DFHWDISP

Entry points: DFHWDISP, DFHWDIND

Called by: DFHWDWAT, DFHWDINA

Description: DFHWDISP is the CAVM process
dispatcher. It dispatches the next ready CAVM process,
or waits for an external event. It dispatches the initial
CAVM process.

Returns to: Dispatched process, caller of DFHWDINA

DFHWDSRP

Entry points: DFHWDSRP

Called by: DFHWDINA, CAVM program check/abend

Description: DFHWDSRP establishes the
ESPIE/ESTAE CAVM process. It performs CAVM
process error handling for processes with ESPIE or
ESTAE routines.

DFHWDWAT

Entry points: DFHWDWAT

Called by: Many CAVM modules

Description: DFHWDWAT causes the current CAVM
process to wait for specific events.

Returns to: DFHWDISP

DFHWKP

Entry points: DFHWKPNA

Called by: DFHSTP

Description: DFHWKP takes a warm keypoint at the
normal termination of CICS. This program is part of the
restart component.

Chapter 116. CICS executable modules 1485

DFHWLFRE

Entry points: DFHWLFRE

Called by: Many CAVM modules

Description: DFHWLFRE frees the LIFO stack entry
for CAVM modules running above the 16MB line.

DFHWLGET

Entry points: DFHWLGET

Called by: Many CAVM modules

Description: DFHWLGET gets the LIFO stack entry
for CAVM modules running above the 16MB line.

DFHWMG1

Entry points: DFHWMG1

Called by: DFHWMI, DFHWDISP, DFHWDSRP

Description: DFHWMG1 is the main module of the
CAVM message manager GET MESSAGE service. It is
called by DFHWMI to initialize service, and attach itself
as a message-reader CAVM process; by DFHWDISP to
run as a message-reader CAVM process that reads
messages and stores them; and by DFHWDSRP to
handle ESPIE/ESTAE exits for the message reader.

DFHWMI

Entry points: DFHWMI

Called by: DFHWSXPI

Description: DFHWMI allocates the CAVM
message-manager communication area. It calls each of
the main message-manager modules, which then
initialize themselves.

DFHWMMT

Entry points: DFHWMMT

Called by: DFHWMRD, DFHWMWR

Description: DFHWMMT provides VSAM GET and
PUT services for the CAVM message data set.

DFHWMPG

Entry points: DFHWMPG

Called by: DFHWMP1, DFHWMWR

Description: DFHWMPG copies message data into
the buffer provided by the user of PUTMSG, PUTREQ,
PUTRSP, and CAVM message-manager services. It
provides an ESPIE routine to handle program checks
occurring during the copying.

DFHWMP1

Entry points: DFHWMP1

Called by: DFHWMI, DFHWDISP, DFHWDSRP

Description: DFHWMP1 is the main module of the
CAVM message-manager PUT MESSAGE service. It is
called by DFHWMI to initialize service, and attach itself
as a message-writer CAVM process; by DFHWDISP to
run as a message-writer CAVM process that writes
messages to the CAVM message data set; and by
DFHWDSRP to handle ESPIE and ESTAE exits for the
message writer.

DFHWMQG

Entry points: DFHWMQG

Called by: DFHWMS20

Description: DFHWMQG runs under the CICS TCB
above the 16MB line. It processes GETMSG CAVM
message-manager requests. It waits for a message to
arrive, then copies from the main-memory message
queue created by the CAVM message-reader process.

DFHWMQH

Entry points: DFHWMQH

Called by: DFHWMG1, DFHWMQG

Description: The CAVM message-manager message
input queue handler locates or creates message-queue
anchor blocks, and adds copies of messages read by
the CAVM reader process to the main-memory message
queues.

DFHWMQP

Entry points: DFHWMQP

Called by: DFHWMS20

Description: DFHWMQP runs under the CICS TCB
above the 16MB line. It processes CAVM
message-manager PUTMSG, PUTREQ, and PUTRSP
requests; places the request in the appropriate queue;
and posts the queue to awaken CAVM process to
handle request, waits for completion, and returns
response to the caller.

DFHWMQS

Entry points: DFHWMQS

Called by: DFHWMP1, DFHWMWR

Description: The CAVM message-manager message
output queue handler provides services to select the
next work item to process, and posts items complete.

1486 CICS TS for z/OS: CICS Diagnosis Reference

DFHWMRD

Entry points: DFHWMRD

Called by: DFHWMG1

Description: The CAVM message-manager message
read routine reads messages from the CAVM message
data set, taking account of the position of the active
write cursor, and creates message blocks for copies of
messages that have been read.

DFHWMS

Entry points: DFHWMSNA

Called by: Users of CAVM message services

Description: The CAVM message-manager service
interface routine runs under the CICS TCB above the
16MB line. It builds a dummy CAVM process block, so
that subsequent modules can run in an XRF LIFO
environment, and calls DFHWMS20 to process a
request passed by the caller.

DFHWMS20

Entry points: DFHWMS20

Description: The CAVM message manager services
interface selects the request type and passes requests
to DFHWMQP (PUTMSG, PUTREQ, PUTRSP) or
DFHWMQG (GETMSG).

DFHWMWR

Entry points: DFHWMWR

Called by: DFHWMP1

Description: The CAVM message-manager message
write routine takes data from PUTMSG requests and
copies them into CI buffers to be written to the CAVM
message data sets.

DFHWOS

Entry points: DFHWOSNA

Description: The overseer startup module loads
DFHWOSA and passes control to it.

DFHWOSA

Entry points: DFHWOSNA

Called by: DFHWOS

Description: The overseer services initialization
module processes control parameters, loads
DFHWOSB, and sets up entry points for overseer
services.

DFHWOSB

Entry points: DFHWOSNA

Called by: Overseer program

Description: The overseer service module processes
requests from the overseer program which are issued
by the DFHWOSM macro.

DFHWSRTR

Entry points: DFHWSMNA

Called by: DFHXRA, MVS after attach of new TCB

Description: The CAVM state-management request
router and subtask entry point is the initial entry point
for a CAVM task attached by DFHWSSN1 to process
the CAVM SIGNON command. It calls DFHWSSN2 to
continue the processing of the SIGNON request and, if
it is accepted, calls DFHWDINA to attach the tick
generator module DFHWSTI as the first and
highest-priority CAVM process. It is called under the
CICS TCB to queue the CAVM TAKEOVER command
for processing by the CAVM task, and to initiate
processing of the CAVM SIGNOFF command by
detaching the CAVM task. DFHWSRTR is the initial
entry point for MVS subtasks attached by the CAVM
task to perform various functions, such as issuing
requests for CSVC services, or formatting new CAVM
data sets when they are used for the first time.

DFHWSSN1

Entry points: DFHWSSNA

Called by: DFHXRA

Description: DFHWSSN1 is the CAVM state
management SIGNON initial entry point. The CICS task
issues an MVS LINK, specifying load module
DFHWSSON to perform a CAVM SIGNON request.
DFHWSSN1 attaches the CAVM task to execute the
request, waits to see if it is successful, detaches the
task and, if it is not successful, reports the result to
CICS.

DFHWSSN2

Entry points: DFHWSSN2

Called by: DFHWSRTR

Description: The CAVM state management SIGNON
request handler is entered under the CAVM TCB to
process a CAVM SIGNON request. It allocates storage
for, and initializes, key CAVM control blocks, sets up
DFHWSSOF as an ESTAE exit, calls DFHWSSN3 to
OPEN the CAVM data sets, reads the state
management record from the control data set, uses the
JES inquire-job-status CSVC service provided by
DFHWTI, and looks for surveillance signals from other
CAVM users to check whether the environment is such

Chapter 116. CICS executable modules 1487

that the requested SIGNON can be accepted. It prompts
the operator for job status information if necessary. If
SIGNON is accepted, it updates the state management
record and status CIs to record that this job has signed
on to the CAVM. When possible, it also cleans up
out-of-date information in the CAVM data sets left
behind by jobs that were unable to sign off properly
before terminating.

DFHWSSN3

Entry points: DFHWSSN3

Called by: DFHWSSN2

Description: The CAVM state management data set
initialization routine builds ACBs, and opens and
validates the CAVM control and message data sets for
CAVM SIGNON. It builds the reserve parameter list for
serializing accesses to the control data set. If new
CAVM data sets are being used for the first time, it
attaches an MVS subtask to record relevant information
in each data set’s control interval, and to format the CIs
needed by state management.

DFHWSSOF

Entry points: DFHWSSOF

Called by: MVS recovery/termination manager

Description: DFHWSSOF is the CAVM state
management SIGNOFF request handler. During
SIGNON processing, this module is established as an
ESTAE exit for the CAVM task. It purges outstanding
I/O requests, reads the state management record from
the control data set, and searches it to see if this job
has signed on to the CAVM. If so, it updates the status
CI and state management record to indicate that the job
has signed off. It makes the TAKEOVER message
available to DFHWSRTR when an active system signs
off after takeover has started.

DFHWSSR

Entry points: DFHWSSR

Called by: DFHWDISP

Description: The CAVM surveillance status reader
runs as a process controlled by the XRF dispatcher,
DFHWDISP. It reads the status CI of the partner system
from the control data set or the message data set,
generates internal CAVM events, and drives the
NOTIFY exit when the partner’s status changes, or its
surveillance signals cease. For an alternate system, it
monitors and records the time-of-day clock difference
when the active system is running in a different CEC.

DFHWSSW

Entry points: DFHWSSW

Called by: DFHWDISP

Description: The CAVM surveillance status writer runs
as a CAVM process controlled by the CAVM dispatcher,
DFHWDISP. It writes a system’s current status to its
status CI in the control data set, or the message data
set, to make it available to its partner and to provide a
surveillance signal; generates an internal CAVM event
when a status write completes; and puts the current
time-of-day clock reading in the status CI to permit
DFHWSSR to deduce the time-of-day clock difference
when the active system and the alternate system are
running in different CECs.

DFHWSTI

Entry points: DFHWSTI

Called by: DFHWDISP

Description: The CAVM surveillance tick generator
and CICS status monitor runs as a CAVM process
controlled by the CAVM dispatcher DFHWDISP. It
issues an MVS STIMER for the surveillance interval
and, when this expires, generates an internal CAVM
clock-tick event, calls the inquire-CICS-status exit, and
schedules the surveillance status writer processes, to
cause a surveillance signal reporting this system’s
current status to be written to the control data set or the
message data set.

DFHWSTKV

Entry points: DFHWSTKV

Called by: DFHWDISP

Description: The CAVM state management
TAKEOVER request handler runs as a CAVM process
controlled by the CAVM dispatcher DFHWDISP. When a
new active SIGNON has been detected, it reads the
state management record from the control data set and
attaches an MVS subtask to invoke DFHWTI’s
validate-CLT CSVC service. When a TAKEOVER
command has been issued, it reads the state
management record, validates the TAKEOVER request,
and attaches an MVS subtask to use DFHWTI’s JES
inquire-job-status service to determine the current state
of the active system.

If the active system is still signed on to CAVM, it
updates the state management record to indicate that a
takeover is in progress, places the TAKEOVER
message for the active system in the alternate system’s
status, and attaches an MVS subtask to invoke
DFHWTI’s TAKEOVER-initiate service.

After the active system has signed off (or terminated), it
requests DFHWSSR to read the active system’s final
status, quiesces surveillance processing, and updates
the state management record and status CIs to indicate

1488 CICS TS for z/OS: CICS Diagnosis Reference

the stage reached by takeover. It then arranges for
surveillance processing to be resumed in active mode. It
attaches an MVS subtask to invoke DFHWTI’s
process-CLT CSVC service if necessary.

When the active system has finally terminated, it
updates the state management record to take its place
as the new active system, generates internal CAVM
events, and calls the NOTIFY exit to report the progress
of the TAKEOVER request, including acceptability of the
time-of-day clock reading. It terminates by returning to
DFHWDISP.

DFHWSXPI

Entry points: DFHWSXPI

Called by: DFHWSTI

Description: The CAVM state management CAVM
process initialization runs under the tick generator
CAVM process towards the end of SIGNON. It attaches
the TAKEOVER CAVM process (alternate systems
only), two status writer CAVM processes, and two status
reader CAVM processes, and then calls the CAVM
message management initialization module.

DFHWTI

Entry points: DFHWTINA

Called by: DFHCSVC from: DFHWSSN2,
DFHWSTKV, DFHZXSTS

Description: Takeover initiation is the primary function
of this module, and is requested by CAVM state
management at takeover to terminate the CICS active
system issue commands in the CLT, and wait until the
CICS active system terminates. Other XRF services
provided by this module are to determine whether a job
is running, to issue the operator commands for the
overseer program, to issue MODIFY USERVAR to
VTAM, to validate the CLT, and to process the CLT.

DFHWTRP

Entry points: DFHWTRP

Called by: Many CAVM modules

Description: DFHWTRP makes a trace entry in the
CAVM main-memory trace table.

DFHXCP

Entry points: DFHXCPNA

Called by: DFHKCP

Description: DFHXCP processes DFHKC CANCEL,
CHAP, RESUME, SUSPEND, and WAIT macro calls to
the transaction manager.

DFHXCPC

Entry points: DFHXCPC

Called by: DFHKCP

Description: DFHXCPC processes DFHKC ATTACH,
CHANGE, DEQ, DEQALL, ENQ, and SRB macro calls
to the transaction manager. It receives DFHKC
INITIALIZE, REPLACE, and WAITINIT macro calls to
the transaction manager and passes them on to
DFHKCQ.

DFHXCP1

Entry points: DFHXCP1

Called by: DFHXCPC

Description: DFHXCP1 finds a new range of free
transaction numbers when the current range has been
used up.

DFHXFP

Entry points: DFHXFPNA

Called by: DFHISP, DFHMIRS

Description: The online data transformation program
takes data addressed from a parameter list
(command-level or DL/I), and constructs an FMH
suitable for transmission to a remote ISC or MRO
system; DFHXFP also performs the reverse
transformation.

DFHXFQ

Entry points: DFHXFQNA

Called by: DFHXEPRH

Description: The batch data transformation program
executes in an EXCI region. DFHXFQ takes data
addressed from a DPL parameter list and constructs an
FMH suitable for passing to the online region; DFHXFQ
also performs the reverse transformation.

DFHXFX

Entry points: DFHXFXNA

Called by: DFHISP, DFHMIRS

Description: DFHXFX performs the same logical
transformations of function shipping requests as
DFHXFP but in a manner that is optimized for the MRO
environment. It is not used for the transformation of DL/I
requests; these are processed by DFHXFP.

Chapter 116. CICS executable modules 1489

DFHXMP

Entry points: DFHXMPNA

Called by: DFHDRPE, DFHZCX

Description: The cross-memory program is invoked
by a program call (PC) instruction and uses MVS
cross-memory services to pass data from one
subsystem to another within the same processing unit.
The communicating subsystems are usually in CICS
address spaces, but DFHXMP does not assume this.

DFHXRA

Entry points: DFHXRANA

Called by: DFHAPDM, DFHCSSC, DFHCXCU,
DFHDBCR, DFHDBCT, DFHSIC1, DFHSII1, DFHSTP,
DFHTCRP, DFHTDRP, DFHXRCP, DFHXRSP,
DFHZNAC, DFHZOPN, DFHZSLS

Description: DFHXRA is the program that executes
the DFHXR macro. It runs under the CICS TCB in
AMODE(24). In general, it uses CICS macros to invoke
other services. Exceptions are MVS LINK to
DFHWSSON to sign on to the CAVM, and MVS LOAD
and DELETE for DFHWSMS to sign off from the CAVM,
and to initiate takeover. It invokes global user exit
XXRSTAT, which can lead to the abend 208.

DFHXRB

Entry points: DFHXRBNA

Called by: DFHWDSRP, DFHWMQH, DFHWMRD,
DFHWSSR, DFHWSTKV

Description: DFHXRB is the XRF notify exit program.
Its address is passed to the CAVM when CICS signs on
to the CAVM. It runs under the CAVM TCB in
AMODE(31); reacts to events detected by various
CAVM modules; and creates a queue of work elements
(chained from XRWECHN) to be processed by
DFHXRSP.

DFHXRC

Entry points: DFHXRCNA

Called by: DFHWSSN2, DFHWSTI

Description: DFHXRC is the CICS-status exit
program. Its address is passed to the CAVM when
CICS signs on to the CAVM. It runs under the CAVM
TCB in AMODE(31), and returns the latest CICS-status
data to be written to the state management data set.

DFHXRCP

Entry points: DFHXRCNA

Description: The XRF console communication task
runs under the CICS TCB in AMODE(24). It processes
MODIFY commands received by CICS during

initialization of the alternate system. It initiates takeover,
shuts down the active system, and manages trace and
dump as required.

DFHXRE

Entry points: DFHXRENA

Called by: DFHPCP

Description: The XRF startup program is the entry
point for the system task attached by DFHXRA. It links
to DFHXRE, whichever module was indicated by
DFHXRA.

DFHXRP

Entry points: DFHXRANA

Called by: Not applicable

Description: DFHXRP consists of six object modules
link-edited together:

DFHXRA - XRF request processor
DFHXRB - XRF NOTIFY exit program
DFHXRC - XRF inquire status exit program
DFHXRE - XRF startup program
DFHXRF - XRF CAVM sign-off interface
DFHWMS - CAVM message manager service interface.

It is loaded by DFHSIB1.

DFHXRSP

Entry points: DFHXRSNA

Called by: DFHXRA

Description: DFHXRSP is the XRF surveillance
program, which runs as a program under a CICS
transaction. It runs under the CICS TCB in AMODE(31);
processes the queue of work elements created by
DFHXRB; attaches the catch-up transaction CXCU,
initiates takeover, and shuts down CICS as required;
and can issue abends 206 and 207.

DFHXSMN

Entry points: DFHXSMNA

Called by: DFHBSTS, DFHCRNP, DFHDLIDP,
DFHDLIRP, DFHEDFP, DFHEIPSE, DFHSII1,
DFHSUSN, DFHSUXS, DFHTACP, DFHZSUP

Description: The security manager is invoked by the
DFHSEC macro, and provides an interface to the
external security manager (ESM). DFHXSMN validates
the parameters passed, then calls DFHXSMX as a
general-purpose subroutine to invoke the ESM.

1490 CICS TS for z/OS: CICS Diagnosis Reference

DFHXSMX

Entry points: DFHXSMNA

Called by: DFHXSMN

Description: DFHXSMX is the subroutine used by the
security manager to invoke the external security
manager (ESM). For resource checking, this routine first
issues the MVS RACROUTE REQUEST=FASTAUTH
macro, which calls the ESM in problem state. All other
security functions require the caller to be in supervisor
state. For these functions, and for a failed FASTAUTH
call that requires logging, the CICS SVC is issued under
a general purpose subtask, entered by the DFHSK
macro, to shield the main CICS task from any imbedded
waits that may occur in the ESM.

DFHXSS

Entry points: DFHXSSNA

Called by: DFHCSVC

Description: DFHXSS invokes the external security
manager (ESM) for all functions that need to be invoked
while authorized, except for the EXTRACT functions for
which it passes control to DFHXSSB.

DFHXSSB

Entry points: DFHXSSB

Called by: DFHXSS

Description: This module extracts data from the
ESM’s database. DFHXSSB extracts userid-related data
at signon time, and session key information at LU6.2
session bind time. It uses the MVS RACROUTE
REQUEST=EXTRACT macro.

DFHXSWM

Entry points: DFHXSWM

Called by: DFHXSMN

Description: DFHXSWM passes and retrieves
messages to and from the XRF alternate system to see
if security initialization is required in the XRF
environment.

DFHXTCI

Entry points: DFHXTCI

Description: DFHXTCI is the transaction invoked
when the alternate system begins a takeover. It
examines the TCT to locate the terminals with XRF
backup sessions, and queues these TCTTEs to
DFHZSES for the SESSIONC CONTROL=SWITCH
command.

DFHXTP

Entry points: DFHXTPNA

Called by: DFHTPS, DFHZTSP, DFHZXRL, DFHZXRT

Description: The terminal sharing transformation
program comprises four logical modules (known as
transformers 1 through 4). DFHXTP transforms routing
requests into the LU type 6 format for shipping to a
remote CICS address space.

DFHZABD

Entry points: DFHZABD1

Called by: TC CTYPE= requests

Description: If a TC CTYPE request is issued when
ZCP has been generated without VTAM support,
DFHZABD is invoked to abend the transaction.

DFHZACT

Entry points: DFHZACT1

Called by: DFHZDSP

Description: The activate scan routine scans the four
TCTTE activity queues: activate, log, wait, and NACP.
DFHZACT scans the activate queue for request bits that
may be set in the TCTTEs; for each request, DFHZACT
calls the appropriate module. If no requests are
outstanding, the TCTTE is removed from the queue. If
the NACP queue is not empty, DFHZACT attaches
DFHZNAC (if not already attached). Similarly, if the log
queue is not empty, DFHZACT attaches DFHZRLG.
DFHZACT scans the wait queue. If automatic resource
definition is in the system, DFHZACT looks for any
corresponding work elements. For each work element,
DFHZATA is attached.

DFHZAIT

Entry points: DFHZAIT1

Called by: DFHSIF1

Description: The attach initialization tables routine
initializes local tables used by the mainline task-attach
routine, DFHZATT. DFHZAIT generates the page
command table from information supplied by the system
initialization table, modifying it for use by DFHZATT.
DFHZAIT also initializes the transaction code delimiter
table.

DFHZAND

Entry points: DFHZAND1

Called by: DFHZARQ

Description: The abend control block builder is used
to assist in building the transaction abend block when
an abend has occurred in an interconnected system. Its

Chapter 116. CICS executable modules 1491

function is to extract the error sense bytes, and the
diagnostic message sent by the other system, and to
copy these into the block. As an initial step in its
processing, DFHZAND acquires storage for the block
itself.

DFHZARER

Entry points: DFHZARER

Called by: DFHZARL, DFHZARR, DFHZARRA

Description: DFHZARER tidies up after an LU6.2
protocol error or session failure has been detected. For
some errors, it calls DFHZNAC.

DFHZARL

Entry points: DFHZARL1

Called by: DFHACP, DFHCPCBA, DFHCPCLC,
DFHCRS, DFHEGL, DFHETL, DFHLUP, DFHXFP,
DFHXTP, DFHZARL, DFHZARM, DFHZERH, DFHZISP,
DFHZLUS, DFHZSUP, DFHZTSP, DFHZXRL,
DFHZXRT

Description: DFHZARL is called via the DFHLUC
macro, which passes the LU6.2 request in a parameter
list mapped by the DFHLUCDS DSECT. If the request is
for a remote APPC device, DFHZARL passes the
parameter list to DFHZXRL for processing. (APPC is
advanced program-to-program communication.)
Otherwise, it examines the parameter list to determine
the function required. Most functions are processed by
DFHZARL. However, it calls the following modules as
indicated:

DFHZARER - Protocol errors and exceptions
DFHZARR - RECEIVE requests
DFHZARRA - FREE-STORE requests
DFHZERH - Handling FMH7s and negative responses
DFHZISP - ALLOCATE and FREE requests
DFHZRVL - Receiving SNA indicators from VTAM
DFHZSDL - Sending data to VTAM.

It also manages the logical receive buffer pointers
TCTERBLA and TCTERBLL in a consistent manner with
the physical receive buffer pointers TCTERBA and
TCTERBDL, as (address, length) pairs.

DFHZARM

Entry points: DFHZARM1

Called by: DFHZARQ, DFHETL, DFHZISP

Description: DFHZARM handles DFHTC macros for
LU6.2 sessions.

DFHZARQ

Entry points: DFHZARQ1

Called by: DFHETC, DFHTC macro

Description: The application request interface module

analyzes the terminal control request from the
application. For a VTAM terminal, it sets the appropriate
flags and calls the required module or adds the TCTTE
to the activate chain.

DFHZARR

Entry points: DFHZARR

Called by: DFHZARL

Description: DFHZARR controls the receive function
for LU6.2 application requests. It calls DFHZARRC to
decide what to process next, or whether it is necessary
to call its inline subroutine DFHZARR1 to receive more
data. Then it processes the returned item, and decides
whether the receive is complete. If the receive is not
complete, DFHZARR loops, calling DFHZARRC and
processing the returned item, until enough data has
been received. DFHZARR uses the inline subroutine
DFHZARR0 and the DFHZARRA module to control
various receive buffers. It also uses DFHZARRF to
receive FMH7s and negative responses, DFHZUSR to
control the conversation state, and the inline subroutine
DFHZARR1 to handle the type of receive and how
much data is to be received.

DFHZARR0 is responsible for updating the logical buffer
pointers TCTERBLA and TCTERBLL, shifting up data in
the LU6.2 receive buffer, and resetting associated
indicators, for example, TCTECCDR in the TCTTE LUC
extension.

DFHZARR1 is responsible for setting fields TCTEMINL
and TCTEMAXL in the TCTTE LUC extension to inform
DFHZRVL how much data to receive and whether the
request is a receive immediate or a receive and wait.
DFHZARR1 calls DFHZARR0 to shift up data in the
LU6.2 receive buffer, and then calls DFHZRVL to
receive RUs from VTAM by placing requests on the
active chain.

DFHZARRA

Entry points: DFHZARRA

Called by: DFHZARL, DFHZARR

Description: DFHZARRA controls all functions
concerned with the LU6.2 application receive buffer.
These include GETMAIN and FREEMAIN of buffers,
copying data into a buffer, and updating the pointer to
the next free slot.

DFHZARRC

Entry points: DFHZARRC

Called by: DFHZARR

Description: DFHZARRC is responsible for examining
what has been received from VTAM on a particular
session (for example, data, PS headers, FMH7s, and
indicators), and for deciding what should be processed

1492 CICS TS for z/OS: CICS Diagnosis Reference

next on behalf of the application. The result is returned
to DFHZARR.

DFHZARRF

Entry points: DFHZARRF

Called by: DFHZARR

Description: DFHZARRF receives LU6.2 FMH7s and
negative responses. It calls the DFHZARR0 subroutine
to shift up data in the LU6.2 receive buffer, and then
calls DFHZERH.

DFHZASX

Entry points: DFHZASX1

Called by: VTAM

Description: The asynchronous command exit module
is called by VTAM if an asynchronous command is
received. The only such commands are request
shutdown, quiesce at end of chain, release quiesce,
and signal. DFHZASX sets up the TCTTE appropriately
and returns control to VTAM.

DFHZATA

Entry points: DFHZATA

Called by: DFHZACT

Description: The autoinstall program runs as the
CATA transaction and performs operations necessary to
INSTALL autoinstallable terminals. It requests
information from a user program where appropriate.

DFHZATD

Entry points: DFHZATD

Called by: DFHZACT, DFHZNAC

Description: The autoinstall delete program runs as
the CATD transaction and performs operations
necessary to DELETE autoinstalled terminals. It
requests information from a user program where
appropriate.

DFHZATDX

Entry points: DFHZATDX

Called by: DFHZATA, DFHZATD

Description: DFHZATDX is the user program for
autoinstall. It is called when:

v An autoinstall INSTALL is in progress

v An autoinstall DELETE has just completed

v An autoinstall INSTALL has failed.

For INSTALL, DFHZATDX selects a model name and
the corresponding TRMIDNT to be used by the terminal

control builder program (DFHTBSxx). This program can
be used as a model for a user program.

DFHZATI

Entry points: DFHZATI1

Called by: DFHZACT

Description: The automatic task initiation module
checks for stress conditions, calls DFHZSIM if the node
is not in session, acquires an RPL if necessary, and
issues a conditional DFHKC TYPE=AVAIL macro.
DFHZATI initiates bid protocols to decide whether the
LU is available.

DFHZATMD

Entry points: DFHZATMD

Called by: DFHZATMF

Description: This program deletes all remote terminal
definitions that are flagged (by DFHZATMF) for deletion.

DFHZATMF

Entry points: DFHZATMF

Called by:

Description: This program flags remote terminals for
Mass-deletion (by DFHZATMD). It is a part of the
transaction routing component, and is started to flag all
skeletons that have been unused for more than the
terminal latency period for deletion.

DFHZATR

Entry points: DFHZATR

Called by: DFHZATR, DFHZXRE0

Description: The autoinstall restart program runs as
the CATR transaction at CICS startup after the time
period specified in the AIRDELAY parameter. DFHZATR
scans all autoinstalled terminals, and causes the CATD
transaction to be called to delete any autoinstalled
terminals that have not been used during the AIRDELAY
interval.

DFHZATS

Entry points: DFHZATS

Called by: DFHZTSP, DFHCRS

Description: The remote autoinstall program runs as
the following four transactions:

CITS The remote autoinstall function that is attached
by DFHZTSP.

CDTS The remote delete function that is attached by
DFHZTSP or DFHCRS.

CFTS The remote reset function that flags terminals

Chapter 116. CICS executable modules 1493

for mass deletion after a CICS restart and is
attached by DFHZTSP or DFHCRS.

CMTS The mass delete function of remote terminals
that is attached by DFHZATS transaction CFTS
if it finds any terminals for deletion.

DFHZATT

Entry points: DFHZATT1

Called by: DFHZACT

Description: The task attach module checks for stress
conditions, allocates an RPL if necessary, and
determines the task to be attached either from the data,
or from the TCTTE (if the previous transaction specified
TRANID), or from the AID (for a 3270). DFHZATT also
checks for paging commands (having been modified by
DFHZAIT). Finally a conditional ATTACH is issued. The
module is applicable for VTAM, SRL, and MVS console
support.

DFHZBAN

Entry points: DFHZBAN

Called by: DFHZOPN

Description: The terminal control bind analysis
program checks that a bind is valid and supportable
and, if requested, sets the TCTTE information that
supports the session parameters.

DFHZBKT

Entry points: DFHZBKT1

Called by: DFHZSDL, DFHZSLX, DFHZRLX,
DFHZLUS

Description: DFHZBKT maintains the bracket state for
LU6.2.

DFHZBLX

Entry points: DFHZBLX

Called by: DFHZSCX

Description: DFHZBLX is the part of of SCIP exit
which processes LU6.2 binds. It matches a TCTTE to
the BIND and schedules DFHZOPN to complete the
BIND process. This module returns to VTAM.

DFHZCA

Entry points: DFHZCANA

Called by: See component submodules

Description: DFHZCA is the name of the load module
created when the following modules are link-edited
together:

DFHZACT - Activate scan
DFHZFRE - FREEMAIN request
DFHZGET - GETMAIN request
DFHZQUE - Chaining
DFHZRST - RESETSR.

DFHZCB

Entry points: DFHZCBNA

Called by: See component submodules

Description: DFHZCB is the name of the load module
created when the following modules are link-edited
together:
DFHZATI

Automatic task initiation
DFHZDET

Task detach
DFHZHPSR

HPO send/receive
DFHZLRP

Logical record presentation
DFHZRAC

Receive-any completion
DFHZRAS

Receive-any slowdown processing
DFHZRVS

Receive specific
DFHZRVX

Receive specific exit
DFHZSDR

Send response
DFHZSDS

Send DFSYN
DFHZSDX

Send DFSYN data exit
DFHZSSX

Send DFSYN exit
DFHZUIX

User input exit

DFHZCC

Entry points: DFHZCCNA

Called by: See component submodules

Description: DFHZCC is the name of the load module
created when the following modules are link-edited
together:
DFHZARER

LU6.2 protocol error and exception handler
DFHZARL

LU6.2 application request logic
DFHZARM

LU6.2 migration logic
DFHZARR

LU6.2 application receive request logic
DFHZARRA

LU6.2 application receive buffer support
DFHZARRC

LU6.2 classify what next to receive

1494 CICS TS for z/OS: CICS Diagnosis Reference

DFHZARRF
LU6.2 receive FMH7 and ER1

DFHZBKT
LU6.2 bracket state machine

DFHZCHS
LU6.2 chain state machine

DFHZCNT
LU6.2 contention state machine

DFHZCRT
LU6.2 RPL_B state machine

DFHZRLP
LU6.2 post-VTAM receive logic

DFHZRLX
LU6.2 receive exit program

DFHZRVL
LU6.2 pre-VTAM receive logic

DFHZSDL
LU6.2 send logic

DFHZSLX
LU6.2 send exit program

DFHZSTAP
MRO or LU6.2 conversation state
determination

DFHZUSR
LU6.2 conversation state machine

DFHZCHS

Entry points: DFHZCHS1

Called by: DFHZRLX, DFHZSDL, DFHZSLX

Description: DFHZCHS maintains the chain state for
LU6.2.

DFHZCLS

Entry points: DFHZCLS1

Called by: DFHZACT

Description: The close destination module obtains an
RPL if necessary, issues CLSDST to VTAM, and checks
if it was accepted. The CLSDST exit handles the
completion of the request. DFHZCLS performs a normal
closedown procedure according to the LU type (for
example, LU6 sends SBI and BIS). In the case of an
abnormal closedown, DFHZCLS performs immediate
termination, using CLSDST or TERMSESS commands.
If the terminal was automatically defined, it is put out of
service.

DFHZCLX

Entry points: DFHZCLX1

Called by: VTAM

Description: The close destination exit module
receives control from VTAM when a CLSDST or
TERMSESS request completes. If the CLSDST or
TERMSESS was successful, DFHZCLX cleans up
TCTTE and returns to VTAM; otherwise it enqueues the
TCTTE to DFHZNAC and then returns to VTAM.

DFHZCNA

Entry points: DFHZCNA1

Called by: DFHZDSP

Description: The system console activity control
program is responsible for CICS system requests. It
performs the following functions:

v Shutdown—when all other access method terminals
have been quiesced, quiesces console support,
allowing CICS to terminate.

v Resume—resumes tasks waiting on read request
when they are completed.

v Detach—releases all TIOAs associated with a
completed task.

v Attach—passes the data associated with a MODIFY
command (in a TIOA attached to a console TCTTE)
to DFHZATT to create a task.

v ATI—determines whether a console TCTTE is
available for automatic task initiation.

DFHZCNR

Entry points: DFHZCNR1

Called by: DFHZARQ

Description: The system console application request
program performs READ, WRITE, and CONVERSE
operations to an MVS system console that is used as a
terminal.

DFHZCNT

Entry points: DFHZCNT1

Called by: DFHZLUS, DFHZRLX

Description: DFHZCNT maintains the contention state
for LU6.2.

DFHZCP

Entry points: DFHZCPNA

Called by: See component submodules

Description: DFHZCP is the name of the load module
created when the following modules are link-edited
together:

DFHZARQ - Application request handler
DFHZATT - Attach routine
DFHZCNA - System console activity control
DFHZDSP - Dispatcher
DFHZISP - Allocate/free/point routine
DFHZSUP - Startup task
DFHZUCT - 3270 uppercase translation.

Chapter 116. CICS executable modules 1495

DFHZCQ

Entry points: DFHZCQ

Called by: DFHAMTP, DFHCRS, DFHQRY,
DFHTCRP, DFHWKP, DFHZATA, DFHZATD, DFHZTSP,
DFHZXCU

Description: DFHZCQ is the control program for all
requests for the dynamic add and delete of terminal
control table entries. It is called by resource definition
online (RDO) to:
v Cold start group lists
v Cold or warm start nonmigrated VTAM resources
v Dynamically install using the CEDA transaction.

The main subroutines of DFHZCQ are:

DFHZCQCH - Catalog a TCT element
DFHZCQDL - Delete
DFHZCQIN - Initialize DFHZCQ
DFHZCQIQ - Inquire about TCTTE
DFHZCQIS - Install TCTTE
DFHZCQIT - Add macro-generated TCTTE
DFHZCQRS - Restore ZC resource.

DFHZCQDL

Entry points: DFHZCQDL

Called by: DFHZCQ00, DFHZNAC, RDO

Description: DFHZCQDL dynamically deletes a TCT
entry when the entry is quiesced. This module is part of
DFHZCQ.

DFHZCQIN

Entry points: DFHZCQIN

Called by: DFHTCRP

Description: DFHZCQIN initializes DFHZCQ for all its
operations. This module is part of DFHZCQ.

DFHZCQIQ

Entry points: DFHZCQIQ

Called by: DFHZTSP

Description: DFHZCQIQ obtains the parameters for a
TCT resource and is called by DFHZTSP in the
terminal-owning node as part of the process of shipping
a TCT definition to a remote system. This module is part
of DFHZCQ.

DFHZCQIS

Entry points: DFHZCQIS

Description: DFHZCQIS installs a TCTTE. If the
resource already exists, the old resource is deleted.

DFHZCQIT

Entry points: DFHZCQIT

Description: DFHZCQIT adds a macro-generated
TCTTE to a CICS system.

DFHZCQRS

Entry points: DFHZCQRS

Description: During emergency restart or warm start,
DFHTCRP restores terminal control resources to the
state they were in before the last shutdown of CICS,
using the restart data set.

DFHZCRQ

Entry points: DFHZCRQ1

Called by: TC CTYPE requests

Description: The CTYPE request module analyzes
DFHTC CTYPE commands, and calls or links to the
appropriate send module.

DFHZCRT

Entry points: DFHZCRT1

Called by: DFHZACT, DFHZARL, DFHZFRE,
DFHZNAC, DFHZRAC, DFHZRLP, DFHZRVL,
DFHZSDL, DFHZSHU, DFHZSTU, DFHZTPX

Description: DFHZCRT maintains the RPL_B state for
LU6.2.

DFHZCUT

Entry points: DFHZCUT

Called by: DFHCSSC, DFHLUP, DFHSNAT,
DFHTCPLR

Description: DFHZCUT manages the persistent
verification signed-on-from list, also known as the local
userid table (LUIT). There is one LUIT per connection
supporting persistent verification.

DFHZCW

Entry points: DFHZCWNA

Called by: See component submodules

Description: DFHZCW is the name of the load
module created when the following modules are
link-edited together:

DFHZERH - LU6.2 error program
DFHZEV1 - LU6.2 BIND security
DFHZEV2 - LU6.2 BIND security
DFHZLUS - LU6.2 session management program.

1496 CICS TS for z/OS: CICS Diagnosis Reference

DFHZCX

Entry points: DFHZCXNA

Called by: See component submodules

Description: DFHZCX is the name of the load module
created when the following modules are link-edited
together:

DFHZABD - Abend routine for incorrect requests
DFHZAND - Build TACB before issuing PC abends
DFHZCNR - System console application request
DFHZIS1 - ISC or IRC syncpoint
DFHZIS2 - IRC internal requests
DFHZLOC - Locate TCTTE and ATI requests
DFHZSTU - Terminal control status change.

DFHZCXR

Entry points: DFHZCXRA

Called by: See component submodules

Description: DFHZCXR is the generic name allocated
to a composite module that is not called by any other
code. It includes the following transaction-routing related
modules:

DFHZTSP - Terminal-sharing program
DFHZXRL - Routes LU6.2 commands to TOR
DFHZXRT - Receives LU6.2 commands from AOR.

DFHZCY

Entry points: DFHZCYNA

Called by: See component submodules

Description: DFHZCY is the name of the load module
created when the following modules are link-edited
together:
DFHZASX

DFASY exit
DFHZDST

SNA-ASCII translation
DFHZLEX

LERAD exit
DFHZLGX

LOGON exit
DFHZLTX

LOSTERM exit
DFHZNSP

Network services exit
DFHZOPA

Open VTAM ACB
DFHZRRX

Release request exit
DFHZRSY

Resynchronization
DFHZSAX

Send synchronous command exit
DFHZSCX

SESSION control input exit
DFHZSDA

Send synchronous command

DFHZSES
SESSIONC

DFHZSEX
SESSIONC exit

DFHZSHU
Shutdown VTAM

DFHZSIM
SIMLOGON

DFHZSIX
SIMLOGON exit

DFHZSKR
Send response to command

DFHZSLS
Set logon start

DFHZSYN
Handle CTYPE=SYNC or CTYPE=RECOVER
request

DFHZSYX
SYNAD exit

DFHZTPX
TPEND exit

DFHZTRA
Create ZCP or VIO trace requests

DFHZXRC
XRF session state data analysis

DFHZCZ

Entry points: DFHZCZNA

Called by: See component submodules

Description: DFHZCZ is the name of the load module
created when the following modules are link-edited
together:

DFHZCLS - CLSDST
DFHZCLX - CLSDST exit
DFHZCRQ - Command request
DFHZEMW - Error message writer
DFHZOPN - OPNDST
DFHZOPX - OPNDST exit
DFHZRAQ - Read-ahead queuing
DFHZRAR - Read-ahead retrieval
DFHZTAX - Turnaround exit.

DFHZDET

Entry points: DFHZDET1

Called by: DFHZACT, DFHZISP

Description: The task detach module receives control
when a detach request is issued by DFHZISP. If a
WRITE is pending (deferred write or any write), the
SEND routine is called. If the SEND cannot complete,
the DETACH request is left on the activate queue. If
requests are queued then DFHZACT drives DFHZDET
when the operation is complete. If the node is in
between bracket state, an end bracket is sent.

Chapter 116. CICS executable modules 1497

DFHZDSP

Entry points: DFHZDSP1

Called by: DFHSII1

Description: The dispatcher module handles the
dispatching of modules for execution, and gives control
to VTAM modules of ZCP using DFHZACT.

DFHZDST

Entry points: DFHZDST1

Called by: DFHZRVX, DFHZSDS

Description: The data stream translator module
translates data between EBCDIC and ASCII code while
that data is being sent and received on VTAM sessions.

DFHZEMW

Entry points: DFHZEMW1

Called by: DFHACP, DFHZDET, DFHZNAC,
DFHZRAC

Description: The error message writer module
handles all requests for error messages on VTAM
supported terminals/LUs. According to the request flags,
it:
v Sends a negative response
v Purges unprocessed inbound data until EOC or

CANCEL is received
v Sends an error message.

DFHZERH

Entry points: DFHZERH1

Called by: DFHZARL, DFHZARRF

Description: DFHZERH handles the sending and
receiving of LU6.2 FMH7s and negative responses. It
also manages the logical receive buffer pointers
TCTERBLA and TCTERBLL in a consistent manner with
the physical receive buffer pointers TCTERBA and
TCTERBDL, as (address, length) pairs.

DFHZEV1

Entry points: DFHZEV11

Description: DFHZEV1 is the LU6.2 bind-time security
encryption validation program, part 1.

DFHZEV2

Entry points: DFHZEV21

Description: DFHZEV2 is the LU6.2 bind-time security
encryption validation program, part 2.

DFHZFRE

Entry points: DFHZFRE1

Called by: DFHZACT, DFHZEMW, DFHZCLS,
DFHZCLX

Description: The FREEMAIN module is used to free
storage (RPLs, NIBs, bind areas, TIOAs, buffer lists,
LUC send/receive buffers, and extract logon data)
acquired by ZC modules. Some storage is also freed by
other ZC modules.

DFHZGET

Entry points: DFHZGET1

Called by: DFHZACT, DFHZARL, DFHZATI,
DFHZATT, DFHZCLS, DFHZISP, DFHZOPN,
DFHZRAC, DFHZRST, DFHZRSY, DFHZRVL,
DFHZRVS, DFHZSDA, DFHZSDL, DFHZSDR,
DFHZSDS, DFHZSES, DFHZSKR

Description: The GETMAIN module is used to acquire
an RPL, NIB, bind area, TIOA, buffer list, or LUC
send/receive buffer. DFHZGET also sets up the
dynamic NIB using the information in the NIB descriptor
block. Normally, when a ZC module requires some of
the above storage, it invokes DFHZGET to obtain the
storage; if this is unsuccessful, it may queue the
request, and then DFHZACT calls DFHZGET on behalf
of the caller.

DFHZHPRX

Entry points: DFHZHPNA

Called by: DFHKCSP (via DFHZHPSR and DFHKCP)

Description: In authorized path SRB mode,
DFHZHPRX issues VTAM EXECRPL.

DFHZHPSR

Entry points: DFHZHPS1

Called by: DFHZRVS, DFHZSDS

Description: DFHZHPSR is the SEND and RECEIVE
module for the HPO environment.

DFHZISP

Entry points: DFHZISP1

Called by: DFHISP, DFHKCP

Description: The intersystem program services ISC
requests to free, or point to, a particular TCTTE within a
specified system, or to allocate a TCTTE within a
specified system. DFHZISP also handles ATI requests,
and checks for a terminal time-out.

1498 CICS TS for z/OS: CICS Diagnosis Reference

DFHZIS1

Entry points: DFHZIS11

Description: DFHZIS1 handles the transmissions
control CTYPE requests of Prepare, Syncpoint Request
(SPR), Commit, and Abort. Each request is translated
into the appropriate ISC/IRC action and is transmitted to
the connected system.

DFHZIS2

Entry points: DFHZIS21

Called by: DFHZARQ, DFHZIS1

Description: The intersystem program provides
services for CICS system code that wants to use
intersystem or interregion (IRC) function requests:
RECEIVE Is invoked when DFHCRNP gets input

data as a result of a ‘switch first’ SVC
request.

IOR The IRC input/output routine. This
interfaces with the IRC SVC in order
to send data to the other end of the
connection, or await data from there.

GETDATA Is used to fetch input data into a
TIOA.

DISCONNECT Disconnects a given IRC link.
STOP Quiesces interregion activity, either for

connections to a given system, or for
the whole of IRC.

LOGOFF Issues a logoff request to the IRC
SVC. This completes IRC activity for
this CICS system.

OPERATIVE Allows connections to be made to a
given system.

RECABRT processes input abend FMHs
(FMH07).

DFHZLEX

Entry points: DFHZLEX1

Called by: VTAM

Description: The logical error address (LERAD) exit
module receives control from VTAM when a logical error
is detected. Logical errors are usually the result of an
incorrectly defined terminal table.

DFHZLGX

Entry points: DFHZLGX1

Called by: VTAM

Description: The logon exit module receives control
from VTAM when a terminal logs on to the network.
DFHZLGX scans the CICS NIBs and, if a match is
found, sets an OPNDST request in the corresponding
TCTTE and places it on the activate queue. If no match
is found, DFHZLGX defines a terminal automatically, if
possible, by allocating an autodefine work element

which holds the CINIT_RU. The work element is then
queued for activate scan processing. Otherwise, a
dummy TCTTE is placed on the NACP queue to write
an error message.

DFHZLOC

Entry points: DFHZLOC1

Called by: DFHTC CTYPE=LOCATE

Description: The locate module provides two
functions:
v Locates specific TCTTEs, TCTSEs, and SESSIONs

in the TCT
v Locates LDC information.

DFHZLRP

Entry points: DFHZLRP1

Called by: DFHZARQ, DFHZSUP

Description: The logical record presentation module
handles deblocking of input data. The delimiters that are
recognized are new line (NL), interchange record
separator (IRS), and transparent (TRN). One logical
record is returned for each DFHTC TYPE=READ
request.

DFHZLTX

Entry points: DFHZLTX1

Called by: VTAM

Description: The lost terminal (LOSTERM) exit
module receives control when VTAM detects a loss of
contact with a node. There are three possible return
codes set by VTAM on entry to this routine:
node lost, recovery in progress The terminal is

placed out of service
with no further
action taken.

node lost, recovery successful The TCTTE is
queued to the
NACP queue with a
‘successful’ error
code set; NACP
issues a CLSDST,
schedules a
SIMLOGON, and
issues an
information
message.

node lost, no recovery or unsuccessful recovery
The TCTTE is
queued to the
NACP queue with
an ‘unsuccessful’
error code set;
NACP issues a

Chapter 116. CICS executable modules 1499

CLSDST and also
the appropriate
message.

DFHZLUS

Entry points: DFHZLUS1

Description: DFHZLUS handles session management
for LU6.2 sessions.

DFHZNAC

Entry points: DFHZNANA

Called by: DFHZACT

Description: The node abnormal condition program is
attached by DFHZACT when an error in communication
with a logical unit occurs. DFHZNAC performs the
following functions:
v Analyzes abnormal conditions
v Sends appropriate messages to the CSNE transient

data destination
v Invokes the user-supplied (or sample) node error

program
v Takes the appropriate actions resulting from the

defaults which may have been modified by the node
error program.

DFHZNAC consists of the following copybooks:

DFHZNCA - Primary error action table and exits
DFHZNCE - Take action routine
DFHZNCS - Sense decode routine
DFHZNCV - VTAM return code routine.

DFHZNEP

Entry points: DFHZNENA

Called by: DFHZNAC

Description: The user-replaceable node error program
provides:
v A general environment within which it is easy for

users to add their own error processors
v Fundamental error recovery actions for a VTAM 3270

network
v The default NEP where the user selects a NEP at

system initialization.

DFHZNSP

Entry points: DFHZNSP1

Called by: VTAM

Description: The network service program is invoked
when VTAM detects a network service error; for
example, when attempting to connect two nodes
together, or when the link between two nodes is broken
unexpectedly. This module receives control from the
VTAM NSEXIT.

DFHZOPA

Entry points: DFHZOPA1

Called by: DFHEIQVT

Description: The open VTAM ACB module is invoked
by DFHEIQVT when the master terminal command
VTAM OPEN is issued. The ACB is opened and
DFHZSLS is called to accept logon requests.

DFHZOPN

Entry points: DFHZOPN1

Called by: DFHZACT

Description: The open destination module acquires
storage for an RPL and NIB and BIND areas if the
TCTTE does not have these resources already, and
sets up the BIND image if required. DFHZOPN then
issues a VTAM OPNDST macro (or OPNSEC macro if
secondary, to respond to an incoming BIND) to
establish a session between CICS and the remote LU.

DFHZOPX

Entry points: DFHZOPX1

Called by: VTAM

Description: The open destination exit module
receives control from VTAM on completion of the
OPNDST macro in DFHZOPN. If the OPNDST was
successful, it indicates in the TCTTE that SDT (start
data transfer) is to be sent and checks whether a “good
morning” message should be triggered. It then returns
to VTAM.

DFHZQUE

Entry points: DFHZQUE1

Called by: All ZCP exits called by VTAM, DFHTCQUE
macro

Description: The queue manipulation module
processes all requests to add or remove a TCTTE to or
from a ZCP activate queue. Additions to the activate
queue made by mainline modules use
compare-and-swap (CS), because an exit routine may
also be adding to the queue asynchronously.

DFHZRAC

Entry points: DFHZRAC1

Called by: DFHZDSP

Description: The receive-any completion module
processes the completion of receive-any requests, sets
up the TIOA to be passed to attach, and reissues the
RECEIVE_ANY macro.

1500 CICS TS for z/OS: CICS Diagnosis Reference

DFHZRAQ

Entry points: DFHZRAQ1

Called by: DFHZARQ, DFHZSYN

Description: The read-ahead queuing module is used
to save the inbound data stream in temporary storage
when an interlock is caused by both the host and the
terminal wanting to send data at the same time.

DFHZRAR

Entry points: DFHZRAR1

Called by: DFHZARQ

Description: The read-ahead retrieval module is
called to retrieve data previously saved in temporary
storage by DFHZRAQ.

DFHZRAS

Entry points: DFHZRAS1

Called by: DFHZRAC

Description: The receive-any slowdown processing
module issues RECEIVE SPEC NQs on LU6.2 sessions
for connections and modegroups for which there are
ALLOCATE requests queued. This is only done on
sessions considered most likely to lead to freeing a
“flooding” situation that occurred when LU6.2
connections were reestablished after a failure.

DFHZRLG

Entry points: DFHZRLNA

Called by: DFHZACT

Description: The response logger program logs
responses received for protected data sent to an APB.
DFHZRLG processes TCTTEs on the log queue when
attached by DFHZACT.

DFHZRLP

Entry points: DFHZRLP1

Called by: DFHZDSP

Description: DFHZRLP handles the completion of
LU6.2 RECEIVE requests, using the receive RPL
addressed by field TCTERPLB in the TCTTE LUC
extension. It also manages the logical receive buffer
pointers TCTERBLA and TCTERBLL in a consistent
manner with the physical receive buffer pointers
TCTERBA and TCTERBDL, as (address, length) pairs.

DFHZRLX

Entry points: DFHZRLX1

Called by: VTAM

Description: DFHZRLX is a VTAM exit routine that
queues the completed RPL for (post-VTAM) processing
by DFHZRLP.

DFHZRRX

Entry points: DFHZRRX1

Called by: VTAM

Description: The release request exit module receives
control from VTAM when another application program
has requested connection to a terminal currently
connected to CICS. If the terminal is not busy, a
CLSDST request is queued to the activate chain.
Otherwise the release request indicator is set and the
request is processed later by module DFHZDET.

DFHZRSP

Entry points: DFHZRSNA

Description: The resynchronization send program
performs 3614-dependent actions and is also used to
retransmit committed output messages. The message is
retrieved from temporary storage if necessary.

DFHZRST

Entry points: DFHZRST1

Called by: DFHZACT, DFHZATI, DFHZCRQ,
DFHZDET, DFHZEMW, DFHZERH, DFHZNAC,
DFHZRAC, DFHZRSY, DFHZSTU

Description: The RESETSR module changes the
mode of a session with a terminal and cancels
unsatisfied RECEIVE requests. The mode that is set
can be Continue Any (CA) or Continue Specific (CS)
and RTYPE=DFSYN, DFASY, or RESP.

DFHZRSY

Entry points: DFHZRSY1

Called by: DFHZACT

Description: The resynchronize module
resynchronizes CICS and other nodes of the network.
DFHZRSY checks whether inbound and outbound
sequence numbers are valid.

DFHZRVL

Entry points: DFHZRVL1

Called by: DFHZARL, DFHZARRL

Description: DFHZRVL processes RECEIVE
commands for LU6.2 sessions, using the receive RPL

Chapter 116. CICS executable modules 1501

(RPL_B) addressed by field TCTERPLB in the TCTTE
LUC extension. The processing state of the receive RPL
is held in the RPL_B state machine field TCTERPBS,
also in the TCTTE LUC extension.

DFHZRVS

Entry points: DFHZRVS1

Called by: DFHZACT

Description: The receive specific module initiates a
DFSYN receive specific to obtain the next logical record
from a node when a user application issues a RECEIVE
command.

DFHZRVX

Entry points: DFHZRVX1

Called by: VTAM

Description: The receive specific exit module receives
control from VTAM when a receive specific is
completed. If the data received is too long for the TIOA
provided, the overlength data flag is turned on in the
TCTTE and the TCTTE is put back on the activate
chain. Otherwise, the response is checked and marked
in the TCTTE. The data length is set in the TIOA and
the FMH is removed.

DFHZSAX

Entry points: DFHZSAX1

Called by: VTAM

Description: The send DFASY exit module receives
control from VTAM when an asynchronous command
has completed. It places the TCTTE on the NACP
queue if recovery is needed.

DFHZSCX

Entry points: DFHZSCX1

Called by: VTAM

Description: The SCIP exit module is entered
whenever the following asynchronous commands are
received:
v Non-LU6.2 BIND (as secondary)
v UNBIND (as secondary)
v STSN (as secondary)
v Clear (as secondary)
v SDT (as secondary)
v Request recovery (as primary).

The module correlates BINDs to a TCTTE and
schedules DFHZOPN to complete the BIND process.
For the other commands, it takes appropriate action and
then schedules DFHZNAC using the NACP queue. This
module calls DFHZBLX to process LU6.2 binds.

DFHZSDA

Entry points: DFHZSDA1

Called by: DFHZACT, DFHZSDS

Description: The send data flow asynchronous
module handles asynchronous command requests. It
ensures that an RPL is allocated, primes the RPL for
the requested command, and issues the VTAM
asynchronous send macro.

DFHZSDL

Entry points: DFHZSDL1

Called by: DFHZARL

Description: DFHZSDL processes SEND commands
for LU6.2 sessions, using the RPL addressed by field
TCTERPLA in the TCTTE.

DFHZSDR

Entry points: DFHZSDR1

Called by: DFHZACT, DFHZCRQ, DFHZDET,
DFHZRVS, DFHZSDA, DFHZSDS

Description: The send response module sends
responses to nodes when a synchronization request for
a terminal is made and a response is outstanding from
a previous operation. If errors occur during task
initiation, this module is responsible for the negative
response.

DFHZSDS

Entry points: DFHZSDS1

Called by: DFHZACT, DFHZARQ, DFHZATI,
DFHZATT, DFHZDET

Description: The send data synchronous module sets
up and issues the appropriate VTAM send macro for
requests of “send data” or an SNA synchronous
command.

DFHZSDX

Entry points: DFHZSDX1

Called by: VTAM

Description: The send data synchronous exit module
receives control from VTAM when a SEND request is
complete. It checks the RPL for successful completion
of the message sent and takes appropriate action.

DFHZSES

Entry points: DFHZSES1

Called by: DFHZACT, DFHZRSY

Description: The session control module is entered

1502 CICS TS for z/OS: CICS Diagnosis Reference

whenever a session control command is requested by
CICS. It sets up and issues the VTAM SESSIONC
command.

DFHZSEX

Entry points: DFHZSEX1

Called by: VTAM

Description: The SESSIONC exit module receives
control from VTAM when a SESSIONC command has
completed. If the command was successful, it turns off
the corresponding flags and enqueues the TCTTE on
the activate chain. If the completion was not successful,
the TCTTE is placed on the NACP queue for recovery
processing.

DFHZSHU

Entry points: DFHZSHU1

Called by: DFHZDSP

Description: The close VTAM ACB module is invoked
whenever CICS and VTAM are being uncoupled. This
may be as a result of DFHZTPX being driven as the
result of a VTAM halt command or the issue of the
master terminal command SET
VTAM,CLOSE|IMMCLOSE. The status of all sessions is
checked and, when all are inactive, the ACB is closed.

DFHZSIM

Entry points: DFHZSIM1

Called by: DFHZACT

Description: The simulate logon module is entered to
issue a VTAM SIMLOGON or REQSESS (if secondary)
request to place a node in session without the operator
having to logon. LU6.2 can be selected by mode name.

DFHZSIX

Entry points: DFHZSIX1

Called by: VTAM

Description: Whenever a SIMLOGON or REQSESS
command has been completed, this exit routine is
scheduled by VTAM. On successful completion, it turns
off the SIMLOGON requested flag and enqueues the
TCTTE or TCTME on the activate chain or, if NACP is
required, for NACP processing.

DFHZSKR

Entry points: DFHZSKR1

Called by: DFHZACT

Description: The send command response module
sends responses to VTAM commands including
response to BIND, STSN, and SDT. A positive or

negative response can be sent. The module is for
secondary LU support only.

DFHZSLS

Entry points: DFHZSLS1

Called by: DFHZDSP, DFHZOPA

Description: The SETLOGON start module issues
SETLOGON to cause VTAM to accept automatic logon
requests, and issues the initial RECEIVE ANYs for
RPLs in the receive-any pool. DFHZSLS also examines
the SIT to determine whether autodefine is used. If it is,
the appropriate system initialization parameters are
copied to the TCT prefix.

DFHZSLX

Entry points: DFHZSLX1

Called by: VTAM

Description: DFHZSLX is a VTAM exit routine that
handles the completion of LU6.2 SEND requests.

DFHZSSX

Entry points: DFHZSSX1

Called by: VTAM

Description: The send data flow synchronous exit
module receives control when the send of a DFSYN
command has been completed.

DFHZSTAP

Entry points: DFHZSTA1

Called by: DFHEGL, DFHETC, DFHETL

Description: DFHZSTAP determines the state of an
MRO or LU6.2 conversation from an application
viewpoint.

DFHZSTU

Entry points: DFHZSTU1

Called by: DFHTC CTYPE=STATUS, DFHEIQMT,
DFHEIQSC, DFHEIQST

Description: DFHZSTU changes the status of
TCTTEs and TCTSEs. It can change the following
statuses:
v Inservice
v Outservice
v Intlog | No intlog
v Page | Autopage
v ATI | NATI.

Chapter 116. CICS executable modules 1503

DFHZSUP

Entry points: DFHZSUP1

Called by: DFHKCP

Description: The startup task module is the entry
point for all terminal-related tasks. DFHZSUP performs
the following functions:
v Sets up the TCTTE status
v Performs security checking
v Performs logging of the TCTTE status and input

TIOA
v Performs PCT option checking
v Passes control to transaction program, for example,

user application, DFHACP, DFHAPRT.

DFHZSYN

Entry points: DFHZSYN1

Called by: DFHDBP

Description: DFHZSYN handles CTYPE=SYNC and
RECOVER requests. For protected message support,
DFHSPP issues CTYPE=SYNC to clear protected
messages. For RECOVER requests, DFHZSYN ensures
that no further I/O is issued to that session, and that
UNBIND flows.

DFHZSYX

Entry points: DFHZSYX1

Called by: VTAM

Description: The SYNAD exit module receives control
from VTAM when a catastrophic error is encountered.
DFHZSYX determines the type of error and the
appropriate action to be taken, and schedules NACP
using the NACP queue to complete the recovery
processing.

DFHZTAX

Entry points: DFHZTAX1

Called by: VTAM

Description: The turnaround exit module is called by
VTAM on completion of the SEND operation initiated by
DFHZRVS in order to perform a turnaround in flip-flop
protocol.

DFHZTPX

Entry points: DFHZTPX1

Called by: VTAM

Description: The TPEND exit module receives control
when VTAM is terminating. It schedules a CLSDST for
each active session if quick shutdown is required, and
sets bits in the TCT prefix so that DFHZSHU is invoked.

DFHZTRA

Entry points: DFHZTRA1

Called by: DFHZACT, DFHZDET, DFHZRAC,
DFHZRLP, DFHZRVS, DFHZSDL, DFHZSDR,
DFHZSDS

Description: DFHZTRA creates VIO trace entries.

DFHZTSP

Entry points: DFHZTSP1

Called by: DFHAPRT, DFHISP, DFHRTE, DFHTPS,
DFHZARQ, DFHZCQ, DFHZSUP

Description: The terminal sharing program acquires a
TCTTE for a link to a remote CICS address space, and
transfers request data to that space. DFHZTSP also
receives requests from the remote address space.

DFHZUCT

Entry points: DFHZUCT1

Called by: DFHAPRT, DFHZARQ, DFHZCNA,
DFHZRAC, DFHZRVX, DFHZSUP

Description: The uppercase translate module converts
a VTAM 3270 data stream into uppercase.

DFHZUIX

Entry points: DFHZUIX1

Called by: DFHZACT, DFHZRAC, DFHZRVX

Description: The user input exit module is called
directly (by DFHZRAC) or indirectly (by DFHZRVX via
DFHZACT) to link to the user’s XZCIN exit.

DFHZUSR

Entry points: DFHZUSR1

Called by: DFHACP, DFHETL, DFHZARER,
DFHZARL, DFHZARM, DFHZARR, DFHZARRF,
DFHZERH, DFHZOPX, DFHZSTAP, DFHZSUP,
DFHZUSR, DFHZXRL, DFHZXRT

Description: DFHZUSR maintains the conversation
state for LU6.2.

DFHZXCU

Entry points: DFHZXCU

Description: The VTAM XRF catch-up program is
used to send messages that allow a new alternate
system to catch up with the current state of the active
system for:
v TCT contents
v Bound/unbound state of sessions.

1504 CICS TS for z/OS: CICS Diagnosis Reference

The program is invoked when a new alternate system
signs on.

DFHZXQO

Entry points: DFHZXQO

Called by: DFHTCRP, DFHZXST

Description: The XRF ZCP tracking queue organizer
allows pending XRF tracking activity to be stored in a
way that honors interdependencies, while allowing such
requests to be met as soon as all their prerequisites are
fulfilled. This component consists of a data structure
and accessing program that uses the CICS catalog key
structure to identify all the actions for a single resource
and the dependencies between them. Actions are put
into the structure on receipt in DFHTCRP, and removed
by DFHTCRP and at the end of DFHZNAC processing
for standby BIND and CLSDST completion. The
structure is freed at the end of DFHTCRP tracking.

DFHZXRC

Entry points: DFHZXRC1

Called by: DFHZACT

Description: DFHZXRC analyzes the data received in
response to the SESSIONC CONTROL=SWITCH
command. It determines the state of the session at the
point when it was switched, and initiates the necessary
action to clean up and recover the session.

DFHZXRE0

Entry points: DFHZXRE0

Called by: System

Description: DFHZXRE0 runs the CXRE transaction
to perform autoconnect and XRF reconnect processing.
It also starts the acquire process for terminals with flag
TCTEXRE set.

DFHZXRL

Entry points: DFHZXRL1

Called by: DFHZARL, DFHZISP

Description: DFHZXRL is executed in an
application-owning region. It routes LU6.2 commands to
the terminal-owning region.

DFHZXRT

Entry points: DFHZXRT1

Called by: DFHZTSP

Description: DFHZXRT executes in a terminal-owning
region. It receives LU6.2 commands from the
application-owning region, and issues them to an APPC
device.

DFHZXST

Entry points: DFHZXST

Called by: DFHETC, DFHSIJ1, DFHTCRP,
DFHTCRPS, DFHZNAC, DFHZOPA, DFHZXCU

Description: XRF ZCP session-state tracking is called
by:
v DFHZNAC for BIND/UNBIND completion in the active

system, and for standby-BIND and UNBIND in the
alternate system

v DFHETC for logon data freed in the active system
v DFHTCRPS to handle a tracking message
v DFHTCRP to terminate session tracking
v DFHZXCU for BIND/UNBIND catch-up in the active

system
v DFHSIJ1 and DFHZOPA to issue a SETLOGON

START command.

Chapter 116. CICS executable modules 1505

1506 CICS TS for z/OS: CICS Diagnosis Reference

Part 5. Appendixes

© Copyright IBM Corp. 1997, 2011 1507

1508 CICS TS for z/OS: CICS Diagnosis Reference

Bibliography

The CICS Transaction Server for z/OS library
The published information for CICS Transaction Server for z/OS is delivered in the following forms:

The CICS Transaction Server for z/OS Information Center
The CICS Transaction Server for z/OS Information Center is the primary source of user information for
CICS Transaction Server. The Information Center contains:

v Information for CICS Transaction Server in HTML format.

v Licensed and unlicensed CICS Transaction Server books provided as Adobe Portable Document
Format (PDF) files. You can use these files to print hardcopy of the books. For more information,
see “PDF-only books.”

v Information for related products in HTML format and PDF files.

One copy of the CICS Information Center, on a CD-ROM, is provided automatically with the product.
Further copies can be ordered, at no additional charge, by specifying the Information Center feature
number, 7014.

Licensed documentation is available only to licensees of the product. A version of the Information
Center that contains only unlicensed information is available through the publications ordering system,
order number SK3T-6945.

Entitlement hardcopy books
The following essential publications, in hardcopy form, are provided automatically with the product. For
more information, see “The entitlement set.”

The entitlement set
The entitlement set comprises the following hardcopy books, which are provided automatically when you
order CICS Transaction Server for z/OS, Version 3 Release 1:

Memo to Licensees, GI10-2559
CICS Transaction Server for z/OS Program Directory, GI10-2586
CICS Transaction Server for z/OS Release Guide, GC34-6421
CICS Transaction Server for z/OS Installation Guide, GC34-6426
CICS Transaction Server for z/OS Licensed Program Specification, GC34-6608

You can order further copies of the following books in the entitlement set, using the order number quoted
above:

CICS Transaction Server for z/OS Release Guide
CICS Transaction Server for z/OS Installation Guide
CICS Transaction Server for z/OS Licensed Program Specification

PDF-only books
The following books are available in the CICS Information Center as Adobe Portable Document Format
(PDF) files:

CICS books for CICS Transaction Server for z/OS
General

CICS Transaction Server for z/OS Program Directory, GI10-2586
CICS Transaction Server for z/OS Release Guide, GC34-6421
CICS Transaction Server for z/OS Migration from CICS TS Version 2.3, GC34-6425
CICS Transaction Server for z/OS Migration from CICS TS Version 1.3, GC34-6423
CICS Transaction Server for z/OS Migration from CICS TS Version 2.2, GC34-6424
CICS Transaction Server for z/OS Installation Guide, GC34-6426

Administration
CICS System Definition Guide, SC34-6428

© Copyright IBM Corp. 1997, 2011 1509

CICS Customization Guide, SC34-6429
CICS Resource Definition Guide, SC34-6430
CICS Operations and Utilities Guide, SC34-6431
CICS Supplied Transactions, SC34-6432

Programming
CICS Application Programming Guide, SC34-6433
CICS Application Programming Reference, SC34-6434
CICS System Programming Reference, SC34-6435
CICS Front End Programming Interface User's Guide, SC34-6436
CICS C++ OO Class Libraries, SC34-6437
CICS Distributed Transaction Programming Guide, SC34-6438
CICS Business Transaction Services, SC34-6439
Java Applications in CICS, SC34-6440
JCICS Class Reference, SC34-6001

Diagnosis
CICS Problem Determination Guide, SC34-6441
CICS Messages and Codes, GC34-6442
CICS Diagnosis Reference, GC34-6899
CICS Data Areas, GC34-6902
CICS Trace Entries, SC34-6443
CICS Supplementary Data Areas, GC34-6905

Communication
CICS Intercommunication Guide, SC34-6448
CICS External Interfaces Guide, SC34-6449
CICS Internet Guide, SC34-6450

Special topics
CICS Recovery and Restart Guide, SC34-6451
CICS Performance Guide, SC34-6452
CICS IMS Database Control Guide, SC34-6453
CICS RACF Security Guide, SC34-6454
CICS Shared Data Tables Guide, SC34-6455
CICS DB2 Guide, SC34-6457
CICS Debugging Tools Interfaces Reference, GC34-6908

CICSPlex SM books for CICS Transaction Server for z/OS
General

CICSPlex SM Concepts and Planning, SC34-6459
CICSPlex SM User Interface Guide, SC34-6460
CICSPlex SM Web User Interface Guide, SC34-6461

Administration and Management
CICSPlex SM Administration, SC34-6462
CICSPlex SM Operations Views Reference, SC34-6463
CICSPlex SM Monitor Views Reference, SC34-6464
CICSPlex SM Managing Workloads, SC34-6465
CICSPlex SM Managing Resource Usage, SC34-6466
CICSPlex SM Managing Business Applications, SC34-6467

Programming
CICSPlex SM Application Programming Guide, SC34-6468
CICSPlex SM Application Programming Reference, SC34-6469

Diagnosis
CICSPlex SM Resource Tables Reference, SC34-6470
CICSPlex SM Messages and Codes, GC34-6471
CICSPlex SM Problem Determination, GC34-6472

1510 CICS TS for z/OS: CICS Diagnosis Reference

CICS family books
Communication

CICS Family: Interproduct Communication, SC34-6473
CICS Family: Communicating from CICS on System/390, SC34-6474

Licensed publications
The following licensed publications are not included in the unlicensed version of the Information Center:

CICS Diagnosis Reference, GC34-6899
CICS Data Areas, GC34-6902
CICS Supplementary Data Areas, GC34-6905
CICS Debugging Tools Interfaces Reference, GC34-6908

Other CICS books
The following publications contain further information about CICS, but are not provided as part of CICS
Transaction Server for z/OS, Version 3 Release 1.

Designing and Programming CICS Applications SR23-9692
CICS Application Migration Aid Guide SC33-0768
CICS Family: API Structure SC33-1007
CICS Family: Client/Server Programming SC33-1435
CICS Transaction Gateway for z/OS Administration SC34-5528
CICS Family: General Information GC33-0155
CICS 4.1 Sample Applications Guide SC33-1173
CICS/ESA 3.3 XRF Guide SC33-0661

Determining if a publication is current
IBM regularly updates its publications with new and changed information. When first published, both
hardcopy and BookManager® softcopy versions of a publication are usually in step. However, due to the
time required to print and distribute hardcopy books, the BookManager version is more likely to have had
last-minute changes made to it before publication.

Subsequent updates will probably be available in softcopy before they are available in hardcopy. This
means that at any time from the availability of a release, softcopy versions should be regarded as the
most up-to-date.

For CICS Transaction Server books, these softcopy updates appear regularly on the Transaction
Processing and Data Collection Kit CD-ROM, SK2T-0730-xx. Each reissue of the collection kit is indicated
by an updated order number suffix (the -xx part). For example, collection kit SK2T-0730-06 is more
up-to-date than SK2T-0730-05. The collection kit is also clearly dated on the cover.

Updates to the softcopy are clearly marked by revision codes (usually a # character) to the left of the
changes.

Bibliography 1511

1512 CICS TS for z/OS: CICS Diagnosis Reference

Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision,
to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS system in one of these ways:

v using a 3270 emulator logged on to CICS

v using a 3270 emulator logged on to TSO

v using a 3270 emulator as an MVS system console

IBM Personal Communications provides 3270 emulation with accessibility features for people with
disabilities. You can use this product to provide the accessibility features you need in your CICS system.

© Copyright IBM Corp. 1997, 2011 1513

1514 CICS TS for z/OS: CICS Diagnosis Reference

Index

Special characters
“good morning” message program 291

Numerics
62XM gate

BIND_XM_CLIENT function 561
INIT_XM_CLIENT function 561

A
ABAB gate

CREATE_ABEND_RECORD function 515
INQUIRE_ABEND_RECORD function 518
START_ABEND function 518
TAKE_TRANSACTION_DUMP function 520
UPDATE_ABEND_RECORD function 517

ABEND_TRANSACTION function, XMER gate 1288
abnormal termination

system recovery program (SRP) 375
transaction failure program (TFP) 435

ABNORMALLY_TERMINATE_TASK function, KEDS
gate 839

ACB (access control block) 272
ACB (access method control block), VSAM 176
ACB (access method control block), VTAM 417
access control block (ACB) 272
access method control block (ACB), VSAM 176
access method control block (ACB), VTAM 417
access methods, terminal control 409
ACCUMULATE_RMI_TIME function, MNMN gate 913
ACP (abnormal condition program) 435

node 327
ACQUIRE_ACTIVITY function, BAAC gate 616
ACQUIRE_PROCESS function, BAPR gate 609
ACQUIRE_PROGRAM function, LDLD gate 854
ACTION_CORBASERVER function, EJCG gate 763
ACTION_DJAR function, EJDG gate 773
activate scan (DFHZACT) 12
ACTIVATE_DEBUG_PROFILE function, DPFM

gate 676
ACTIVATE_MODE function, DSIT gate 707
ACTIVATE_OBJECT function, EJOS gate 790
ACTIVATE_TRAP function, TRSR gate 1215
adapter, FEPI 263

logic flow 265
ADD ENTRY function, EJDI gate 779
ADD function, CCCC gate 633
ADD_ACTIVITY function, BAAC gate 611
ADD_BEAN function, EJBG gate 756
ADD_BEAN function, EJMI gate 785
ADD_BEAN_STATS function, EJBG gate 757
ADD_CORBASERVER function, EJCG gate 763
ADD_DJAR function, EJDG gate 774
ADD_DOMAIN function, DMDM gate 665
ADD_DOMAIN function, KEDD gate 833
ADD_ENTRY function, DDDI gate 641

ADD_GATE function, KEDD gate 835
ADD_LINK function, RMLN gate 1068
ADD_LOCK function, LMLM gate 897
ADD_LOGICAL_SERVER function, IILS gate 815
ADD_METHOD function, EJMI gate 785
ADD_PENDING_REQUEST function, SHPR gate 1119
ADD_PIPELINE function, PIPL gate 1017
ADD_PROCESS function, BAPR gate 607
ADD_REATTACH_ACQUIRED function, BAAC

gate 616
ADD_REPL_TERM_MODEL, AITM format 26
ADD_REPLACE_DOCTEMPLATE function, DHTM

gate 656
ADD_REPLACE_PARTNER function, PRPT

format 1047
ADD_REPLACE_PROCESSTYPE function, BATT

gate 604
ADD_REPLACE_RQMODEL function, IIMM gate 817
ADD_REPLACE_TCLASS function, XMCL gate 1280
ADD_REPLACE_TCPIPSERVICE function, SOAD

gate 1185
ADD_REPLACE_TDQUEUE function, TDTM gate 566
ADD_REPLACE_TRANDEF function, XMXD

gate 1300
ADD_REPLACE_URIMAP function, WBUR gate 1268
ADD_SUBEVENT function, EMEM gate 799
ADD_SUBORDINATE function, OTSU gate 941
ADD_SUBPOOL function, SMAD gate 1143
ADD_SUSPEND function, DSSR gate 710
ADD_SYMBOL_LIST function, DHSL gate 654
ADD_SYSTEM_DUMPCODE function, DUDT gate 728
ADD_TCB function, DSIT gate 708
ADD_TCLASS function, XMCL gate 1280
ADD_TIMER_REQUEST function, BAAC gate 616
ADD_TO_ACTIVE_JVMSET function, SJCC gate 1130
ADD_TRAN_DUMPCODE function, DUDT gate 722
ADD_TRANSACTION_SECURITY function, XSXM

gate 1337
ADD_TRANSACTION_USER function , USXM

gate 1249
ADD_USER_WITH_PASSWORD function, USAD

gate 1241
ADD_USER_WITH_PASSWORD function, XSAD

gate 1313
ADD_USER_WITHOUT_PASSWORD function, USAD

gate 1243
ADD_USER_WITHOUT_PASSWORD function, XSAD

gate 1315
address space modules 300

MVS cross-memory program (DFHXMP) 300
ADDRESS_DATA function, BAGD format 627
ADFHAPD1 distribution library 1343
ADFHC370 distribution library 1344
ADFHCLIB distribution library 1344
ADFHCOB distribution library 1344
ADFHENV distribution library 1344
ADFHINST distribution library 1343
ADFHLANG distribution library 1344

© Copyright IBM Corp. 1997, 2011 1515

ADFHMAC distribution library 1344
ADFHMOD distribution library 1343

COBOL elements 1344
ADFHMSGS distribution library 1344
ADFHMSRC distribution library 1344
ADFHPARM distribution library 1344
ADFHPL1 distribution library 1344
ADFHPLI distribution library 1344
ADFHPLIB distribution library 1344
ADFHPROC distribution library 1344
ADFHSAMP distribution library 1344

ADFHAPD2 distibution elements 1344
C elements 1344
COBOL elements 1344
PL/I elements 1344

ADFHSDCK distribution library 1344
advanced program-to-program communication

(APPC) 17, 442
AID (automatic initiate descriptor)

AP domain termination program (STP) 601
chain 601

AIIN format
COMPLETE_INIT function 23
START_INIT function 23

AIIQ format
END_BROWSE function 25
GET_NEXT function 25
INQUIRE_TERM_MODEL function 24
LOCATE_TERM_MODEL function 24
START_BROWSE function 25
UNLOCK_TERM_MODEL function 24

AITM format
ADD_REPL_TERM_MODEL 26
DELETE_TERM_MODEL 26

AITM manager 23
AIX (alternate index)

REWRITE processing 170
ALLOCATE function, TFAL gate 574
ALLOCATE processing in application-owning

region 446
ALLOCATE processing in terminal-owning region 450
ALLOCATE_BRIDGE_FACILITY function, BRFR

gate, 548
ALLOCATE_SET_STORAGE function, TSQR

gate 1226
ALLOCATE_TRANSACTION_STG function, SMAR

gate 1146
allocation of TCTTE, function shipping 287
allocation program

undelivered messages cleanup program (TPQ) 48
AMDUSREF 1483
AMEND_CORBASERVER function, EJCG gate 764
AMEND_DJAR function, EJDG gate 775
AOR (application-owning region) 17, 442

ALLOCATE processing in 446
APPC command processing in 447
ATTACH processing in 444
DETACH processing in 446
FREE processing in 447
LU6.2 command processing in 447

AP (application) domain 7, 513

AP domain initialization program (DFHAPSIP) 597
AP domain KC subcomponent 599
AP domain sign-on component 1163
APAP gate

TRANSFER_SIT function 520
APEX gate

INVOKE_USER_EXIT function 527
APID gate

PROFILE function 527
QUERY_NETNAME function 528

APIQ gate
INQ_APPLICATION_DATA function 528

APJC gate
WRITE_JOURNAL_DATA function 529

APLH gate
ESTABLISH_LANGUAGE function 529
NOTIFY_REFRESH function 531
START_PROGRAM function 530

APLI gate
ESTABLISH_LANGUAGE function 532
START_PROGRAM function 533

APLJ gate
ESTABLISH_LANGUAGE function 534
PIPI_CALL_SUB function 537
PIPI_INIT_SUB_DP function 536
PIPI_TERM function 537
START_PROGRAM function 535

APPC
command processing in application-owning

region 447
command processing in terminal-owning region 451
daisy chaining 448
transaction routing 458
VTAM 479

APPC (advanced program-to-program
communication) 17, 442

APPC autoinstall
call of builders 74

APPC connections, autoinstall 11
APPC control blocks 443
APPC devices, autoinstall disconnection flow 16
APPC devices, autoinstall logon flow 13
APPC devices, LU6.2

transaction routing for 458
APPEND function, RMRE gate 1083
application (AP) domain 7, 513
application programming commands, FEPI

logic flow 263
application programming functions with function

shipping 277
application programs

mapping control program (MCP) 38
application services

basic mapping support (BMS) 29
built-in functions 77
command interpreter 87
data interchange program (DIP) 105
SAA Communications interface 347
SAA Resource Recovery interface 347
temporary-storage browse transaction 151

application-owning region (AOR) 17

1516 CICS TS for z/OS: CICS Diagnosis Reference

APRT gate
ROUTE_TRANSACTION function 538

APTC gate
CANCEL function 539
CLOSE function 539
EXTRACT_PROCESS function 539
ISSUE_NOTIFY function 540
LISTEN function 540
OPEN function 540
RECEIVE function 541
SEND function 541
SET_SESSION function 541

APTD gate
DELETE_TRANSIENT_DATA function 543
INITIALISE_TRANSIENT_DATA function 544
READ_TRANSIENT_DATA function 543
RESET_TRIGGER_LEVEL function 544
WRITE_TRANSIENT_DATA function 542

APUE format
SET_EXIT_STATUS function 594

APXM gate
RMI_START_OF_TASK function 545
TRANSACTION_INITIALIZATION function 545
TRANSACTION_TERMINATION function 546

ATI (automatic transaction initiation) 307, 405, 462
atom (resource definition) 56
ATTACH function, BRAT gate 547
ATTACH function, DSAT gate 697
ATTACH function, XMAT gate 1276
ATTACH processing in application-owning region 444
ATTACH processing in terminal-owning region 449
audit trail 68
autoinstall

APPC call of builders 74
APPC connections 11
diagnosing problems 19
logoff call of builders 74
logon call of builders 74
rejection of BIND parameters 19
rejection of logon request 19
terminals 11

autoinstall disconnection flow, LU-initiated 15
autoinstall logon flow

APPC devices 13
terminals 11

autoinstall of a generic resource connection 14
autoinstall of consoles install flow 14
autoinstall program (DFHZATA) 12
autoinstall terminal model manager 345
autoinstall terminal model manager (AITM) 12, 23
autoinstall work element (AWE) 12
autoinstalled consoles deletion

autoinstalled consoles deletion 17
automatic journaling 165
automatic logging 165
automatic transaction initiation (ATI) 307, 405, 462
auxiliary trace 1205
AVAIL function, RMRE gate 1085
AWE (autoinstall work element) 12

B
BAAC gate

ACQUIRE_ACTIVITY function 616
ADD_ACTIVITY function 611
ADD_REATTACH_ACQUIRED function 616
ADD_TIMER_REQUEST function 616
CANCEL_ACTIVITY function 613
CHECK_ACTIVITY function 614
DELETE_ACTIVITY function 615
LINK_ACTIVITY function 612
RESET_ACTIVITY function 615
RESUME_ACTIVITY function 614
RETURN_END_ACTIVITY function 615
RUN_ACTIVITY function 612
SUSPEND_ACTIVITY function 613

BABR gate
COMMIT_BROWSE function 623
ENDBR_ACTIVITY function 618
ENDBR_CONTAINER function 620
ENDBR_PROCESS function 621
GETNEXT_ACTIVITY function 617
GETNEXT_CONTAINER function 619
GETNEXT_PROCESS function 621
INQUIRE_ACTIVATION function 622
INQUIRE_ACTIVITY function 618
INQUIRE_CONTAINER function 620
INQUIRE_PROCESS function 622
STARTBR_ACTIVITY function 617
STARTBR_CONTAINER function 619
STARTBR_PROCESS function 621

backout logging 165
BACKOUT_UOW function, RMUW gate 1067
backup while open (BWO) 186, 189, 202, 211
BACM gate

MOVE_CONTAINER function 625
BACR gate

DELETE_CONTAINER function 623
GET_CONTAINER_INTO function 623
GET_CONTAINER_LENGTH function 624
GET_CONTAINER_SET function 624
PUT_CONTAINER function 625

BAGD format
ADDRESS_DATA function 627
DESTROY_TOKEN function 626
INQUIRE_DATA_LENGTH function 626
RELEASE_DATA function 627

BAM (business application manager) domain 603
BAPR gate

ACQUIRE_PROCESS function 609
ADD_PROCESS function 607
CANCEL_PROCESS function 609
CHECK_PROCESS function 610
LINK_PROCESS function 608
RESET_PROCESS function 611
RESUME_PROCESS function 610
RUN_PROCESS function 608
SUSPEND_PROCESS function 610

basic direct access method (BDAM) 163
BATT gate

ADD_REPLACE_PROCESSTYPE function 604
COMMIT_PROCESSTYPE_TABLE function 606

Index 1517

BATT gate (continued)
DISCARD_PROCESSTYPE function 606
END_BROWSE_PROCESSTYPE function 605
GET_NEXT_PROCESSTYPE function 605
INQUIRE_PROCESSTYPE function 604
SET_PROCESSTYPE function 606
START_BROWSE_PROCESSTYPE function 605

BAXM gate
BIND_ACTIVITY_REQUEST function 607
INIT_ACTIVITY_REQUEST function 607

BDAM
ENDBR request processing 173
READ request processing 168
READNEXT request processing 173
RESETBR request processing 172
REWRITE request processing 171
STARTBR request processing 172
UNLOCK request processing 171
WRITE request processing 170

BDAM (basic direct access method) 163
BDAM request processor, file control (DFHFCBD) 187
BEGIN_TRAN function, OTTR gate 940
BIND_ACTIVITY_REQUEST function, BAXM gate 607
BIND_FACILITY function, TDXM gate 573
BIND_FACILITY function, TFBF gate 590
BIND_SECONDARY function, TDXM gate 573
BIND_UOW_TO_TXN function, RMUW gate 1068
BIND_XM_CLIENT function, 62XM gate 561
BIND_XM_CLIENT function, DPXM gate 693
BIND_XM_CLIENT function, MRXM gate 560
BIND_XM_CLIENT function, TFXM gate 560
BMS (basic mapping support) 29

3270 mapping (M32) 41
control blocks, illustrated 33
data stream build (DSB) 36
full version, modules used 35
LU1 printer with extended attributes mapping

program (ML1) 40
mapping control program (MCP) 37
message switching 324
minimum version, modules used 35
modules 34
modules and routines, organization 35
non-3270 input mapping (IIP) 36
page and text build (PBP) 42
partition handling program (PHP) 44
route list resolution program (RLR) 45
standard version, modules used 35
terminal page processor (TPP) 46
terminal page retrieval program (TPR) 48
terminal page scheduling program (TPS) 50
undelivered messages cleanup program (TPQ) 48

BPS (builder parameter set) 53
BRAI gate

DELETE_BRIDGE_FACILITY function 547
INQUIRE_AUTOINSTALL function 546
INSTALL_BRIDGE_FACILITY function 546
SET_AUTOINSTALL function 546

BRAT gate
ATTACH function 547

BREAK_PARTNERSHIP function, PTTW gate, 1056

BRFR gate
ALLOCATE_BRIDGE_FACILITY function 548
DETACH_BRIDGE_FACILITY function 549
INQUIRE_BRIDGE_FACILITY function 549
REALLOCATE_BRIDGE_FACILITY function 548
SET_BRIDGE_FACILITY function 549
STARTBR_BRIDGE_FACILITY function 550

BRIQ gate
INQUIR_CONTEXT function 551

browse token table (BTT) 748
browse token, table manager 385
BROWSE_ALL_GET_NEXT function, LGBA gate 868
BROWSE_CHAINS_GET_NEXT function, LGCC

gate 871
BSAM (basic sequential access method) 405

and testing facility 407
BTT (browse token table) 748
build/delete terminals 73
builder parameter list 73
builder parameter set (BPS) 53
builders 53

description 53
purpose 60

builders for 3277 remote terminal
calling sequence 72

built-in functions
description 77
field edit 77
phonetic conversion 77

business application manager (BAM) domain 603
BWO (backup while open) 186, 189, 202, 211

C
CALL macro

DL/I interface 119
CALLDLI macro

DL/I interface 119
calling sequence builders for 3277 remote terminal 72
CANCEL function, APTC gate 539
CANCEL function, TISR gate 1202
CANCEL_ACTIVITY function, BAAC gate 613
CANCEL_AID function, TFAL gate 575
CANCEL_AIDS_FOR_CONNECTION function, TFAL

gate 575
CANCEL_AIDS_FOR_TERMINAL function, TFAL

gate 576
CANCEL_PROCESS function, BAPR gate 609
CANCEL_TASK function, DSAT gate 701
CATA transaction 12, 54, 58, 1493
catalog (CC/GC) domains 633
catalog manager, file control (DFHFCAT) 186
CATALOG_HOST function, WBRP gate 1265
CATALOG_PROGRAMS function, LDLD gate 863
CATALOG_URIMAP function, WBRP gate 1265
catalogs

global 633
local 633

CATD transaction 1493
CATR transaction 1493
CATS transaction 1493

1518 CICS TS for z/OS: CICS Diagnosis Reference

CC (local catalog) domain 633
CCB (connection control block) 297
CCCC gate

ADD function 633
DELETE function 634
END_BROWSE function 636
END_WRITE function 637
GET function 634
GET_NEXT function 636
GET_UPDATE function 635
PUT_REPLACE function 635
START_BROWSE function 636
START_WRITE function 637
TYPE_PURGE function 636
WRITE function 634
WRITE_NEXT function 637

CCE (console control element) 413
CD-ROM, optional source listings 1344
CEBR transaction 151
CECI transaction 87
CECS transaction 87
CEDA install 74
CEDA transaction 343
CEDB transaction 343
CEDC transaction 343
CEMT SHUTDOWN request

AP domain termination program (STP) 601
CEMT transaction 319, 353
CEOT transaction 319
CEST transaction 319
CFDT load program, file control (DFHFCDL) 188
CFDT open/close program, file control

(DFHFCDO) 190
CFDT request processor, file control (DFHFCDR) 191
CFDT resynchronization program, file control

(DFHFCDY) 191
CFDT RMC program, file control (DFHFCDW) 191
CFDT UOW calls program, file control

(DFHFCDU) 191
CHAIN_BROWSE_GET_NEXT function, LGCB

gate 869
CHANGE_MODE function, DSAT gate 698
CHANGE_PRIORITY function, DSAT gate 700
CHECK_ACTIVITY function, BAAC gate 614
CHECK_CICS_COMMAND function, XSRC gate 1335
CHECK_CICS_RESOURCE function, XSRC

gate 1334
CHECK_NON_CICS_RESOURCE function, XSRC

gate 1336
CHECK_PREFIX function, TSBR gate 1237
CHECK_PROCESS function, BAPR gate 610
CHECK_STORAGE function, SMCK gate 1147
CHECK_SURROGATE_USER function, XSRC

gate 1336
CHECK_TIMER function, EMEM gate 799
CHECK_TRANID_IN_USE function, TFAL gate 576
checkpoint and restart 406
CIB (command input buffer) 414
CICS business logic interface 505
CICS catalog (CC/GC) domains 633
CICS Web support 505

CICS-DB2 Attachment facility 79
CICS-DB2 Attachment Facility 84
CICS-DB2 DB2ENTRY block (D2ENT) 84
CICS-DB2 DB2TRAN block (D2TRN) 84
CICS-DB2 Global block (D2GLB) 84
CICS-DB2 global work area (D2GWA) 85
CICS-DB2 life of task block (D2LOT) 85
CICS-DB2 static storage (D2SS) 84
CICS-DB2 subtask block (D2CSB) 84
CICS-DB2 support 79
CICS-DBCTL interface 101
class of service, LU6.2 479
CLEAR_LABELS function, PGHM gate 983
CLEAR_MATCH function, DSAT gate 700
CLEAR_PENDING function, RMNM gate 1079
close destination program, DFHZCLS 15
CLOSE function, APTC gate 539
CLOSE function, LGGL gate 875
CLOSE function, SOCK gate 1177
CLOSE_ALL_EXTRA_TD_QUEUES function, TDOC

gate 566
CLOSE_OBJECT_STORE function, EJOS gate 791
CLOSE_SESSION function, WBCL gate 1265
CLOSE_TRANSIENT_DATA function, TDOC gate 565
CLT (command list table) 155
CMAC transaction 909
CMPX transaction 284
CMSG transaction 323, 324
cold start 74
COLLECT_RESOURCE_STATS function, STST

format 1199
COLLECT_STATISTICS function, STST format 1199
command input buffer (CIB) 414
command list table (CLT) 155
command-language translator 339
COMMIT function, OTTR gate 940
commit process

single-phase 398
two-phase 397

COMMIT_ONE_PHASE function, OTTR gate 940
COMMIT_PROCESSTYPE_TABLE function, BATT

gate 606
COMMIT_RQMODELS function, IIMM gate 817
COMMIT_SURROGATE function, RTSU gate 561
COMMIT_TDQDEFS function, TDTM gate 573
COMMIT_UOW function, RMUW gate 1065
common programming interface (CPI) 347
COMMT_BROWSE function, BABR gate 623
communication with remote system 279
Communications interface, SAA 347
COMPLETE_INIT function, AIIN format 23
COMPLETE_INIT function, CPIN format 350
COMPLETE_INIT function, PRIN format 1047
COMPLETE_PIPELINE function, PIPL gate 1018
components of CICS

organization 3
concurrency control 163
concurrent tasks 165
CONFIRM_ALL_BEANS function, EJBG gate 758
CONNECT for IRC 300
CONNECT function, LGLB gate 883

Index 1519

CONNECT function, LGST gate 890
connection control block (CCB) 297
console control element (CCE) 413
console message handling 359
contention update model 164
control blocks

for BMS, illustrated 33
for file control, illustrated 173
for interregion communication (IRC), illustrated 293
for JVM domain, illustrated 1139
for relay transaction, illustrated 457
for subsystem interface, illustrated 361
for table manager, illustrated 387
for terminal control, illustrated 421
for user exit interface, illustrated 470

conversation
session recovery 301

CONVERSE function, MEME gate 903
CONVERSE function, PITG gate 1033
CONVERT_TO_DECIMAL_TIME function, KETI

gate 847
CONVERT_TO_STCK_FORMAT function, KETI

gate 848
COUNT_FOR_CS function, EJDG gate 775
coupling facility data table 164
coupling facility data tables server 166
CPI (common programming interface) 347
CPIN format

COMPLETE_INIT function 350
START_INIT function 349

CPMI transaction 278
CPSP format

SYNCPOINT_REQUEST 350
CRB (cross-region block) 293
CREATE function, RZSO gate 1105
CREATE_ABEND_RECORD function, ABAB gate 515
CREATE_CHAIN_TOKEN function, LGCC gate 870
CREATE_CONTEXT function, PIAT gate 1008
CREATE_CONTEXT_RESP function, PIAT gate 1008
CREATE_DIRECTORY function, DDDI gate 641
CREATE_DOCUMENT function, DHDH gate 647
CREATE_NON_TERMINAL_MSG function, PIAT

gate 1009
CREATE_PARTNERSHIP function, PTTW gate, 1054
CREATE_PASSTICKET function, XSPW gate 1330
CREATE_POOL function, PTTW gate 1051
CREATE_REGISTER_REQUEST function, PIAT

gate 1010
CREATE_REGISTER_RESP function, PIAT gate 1010
CREATE_TASK function, KEDS gate 839
CREATE_TCB function, KEDS gate 840
CREATE_TERMINAL_MSG function, PIAT gate 1011
CREATE_UOW function, RMUW gate 1062
CREATE_WEBSERVICE function, PIWR gate 1035
create, EXEC CICS 74
creation/deletion state machine 64
CROSS_SYSTEM_DUMP_AVAIL function, DUSR

gate 738
cross-region block (CRB) 293
cross-system coupling facility (XCF)

used for interregion communication 293

CSA (common system area) 594
AP domain termination program (STP) 601

CSA optional features list (CSAOPFL) 594
CSAOPFL (CSA optional features list) 594
CSD utility program (DFHCSDUP) 89

commands 89
CSFE transaction 161
CSGM transaction 291
CSM1 transaction 278
CSM2 transaction 278
CSM3 transaction 278
CSM5 transaction 278
CSMI transaction 278
CSNC transaction 300

delay-queue 301
quiesce of interregion facility 301
suspension 301
termination 301

CSNE transaction 327
CSPG transaction 49
CSPQ transaction 39, 48
CSPS transaction 39
CSZI transaction 263
CVMI transaction 278
CXRT transaction 450

D
D2CSB (CICS-DB2 subtask block) 84
D2ENT (CICS-DB2 DB2ENTRY block) 84
D2GLB (CICS-DB2 global block) 84
D2GWA (CICS-DB2 global work area) 85
D2LOT (CICS-DB2 life of task block) 85
D2SS (CICS-DB2 static storage) 84
D2TRN (CICS-DB2 DB2TRAN block) 84
daisy chaining

APPC 448
LU6.2 448

data control block (DCB) 176
data event control block (DECB) 409
data for function shipping, formatting 280
data format

transaction-routed 454
data interchange block (DIB) 106
data services

transient 462
data set name block (DSNB) 177
data streams for transaction routing 453
data table request processor, file control

(DFHFCDTS) 191
data tables, processing using 166
database resource adapter (DRA) 93
database support 79, 93, 119, 341
DB2 79
DBCTL (database control) 93

PSB scheduling 101
PSB termination 101
system definition 101

DBCTL call processor 98
DBCTL global block (DGB) 102
DBCTL scheduling block (DSB) 102

1520 CICS TS for z/OS: CICS Diagnosis Reference

DBCTL user-replaceable program 97
DCB (data control block) 176
DD (directory manager) domain 641
DDBR gate

END_BROWSE function 644
GET_NEXT_ENTRY function 643
START_BROWSE function 643

DDDI gate
ADD_ENTRY function 641
CREATE_DIRECTORY function 641
DELETE_ENTRY function 642
REPLACE_DATA function 642

DDLO gate
LOCATE function 643

DEACTIVATE_TRAP function, TRSR gate 1216
DEBKEY option

READ request processing 168
READNEXT request processing 173
RESETBR request 172
STARTBR request 172

deblocking
DEBKEY option 168
DEBREC option 168
READ request processing 168
RESETBR request 172
STARTBR request 172

deblocking for BDAM data sets 163
DEBREC option

READ request processing 168
READNEXT request processing 173
RESETBR request 172
STARTBR request 172

Debugging profile (DP) domain 673
DECB (data event control block) 409
DECREMENT_USE_COUNT function, PIWR

gate 1036
deferred work element (DWE) 368
DEFINE_ATOMIC_EVENT function, EMEM gate 800
DEFINE_COMPOSITE_EVENT function, EMEM

gate 800
DEFINE_PROGRAM function, LDLD gate 856
DEFINE_PROGRAM function, PGDD gate 974
DEFINE_TIMER function, EMEM gate 801
DEL_TRANSACTION_SECURITY function, XSXM

gate 1338
DELETE function, CCCC gate 634
DELETE function, TSQR gate 1225
DELETE function, TSSH gate 1233
delete lock 171
DELETE_ACTIVITY function, BAAC gate 615
DELETE_ALL function, LGCC gate 871
DELETE_ALL_BEANS function, EJBG gate 758
DELETE_ALL_DJARS function, EJDG gate 777
DELETE_ALL_OPEN_TCBS function, DSIT gate 710
DELETE_BEAN function, EJBG gate 759
DELETE_BOOKMARK function, DHDH gate 652
DELETE_BRIDGE_FACILITY function, BRAI gate, 547
DELETE_CERTIFICATE_DATA function, SOIS

gate 1184
DELETE_CERTIFICATE_DATA function, SOSE

gate 1192

DELETE_CONTAINER function, BACR gate 623
DELETE_CORBASERVER function, EJCG gate 765
DELETE_DATA function, DHDH gate 651
DELETE_DEBUG_PROFILE function, DPFM gate 676
DELETE_DJAR function, EJDG gate 776
DELETE_DOCTEMPLATE function, DHTM gate 657
DELETE_DOCUMENT function, DHDH gate 651
DELETE_ENTRY function, DDDI gate 642
DELETE_EVENT function, EMEM gate 801
DELETE_GATE function, KEDD gate 835
DELETE_HISTORY function, LGCC gate 872
DELETE_HOST function, WBRP gate 1266
DELETE_INACTIVE_JVMS function, SJIS gate 1137
DELETE_LINK function, RMLN gate 1069
DELETE_LOCK function, LMLM gate 899
DELETE_LOGICAL_SERVER function, IILS gate 816
DELETE_OPEN_TCB function, DSIT gate 709
DELETE_PARTNER function, PRPT format 1048
DELETE_PENDING_REQUEST function, SHPR

gate 1119
DELETE_PROGRAM function, LDLD gate 858
DELETE_PROGRAM function, PGDD gate 976
DELETE_RQMODEL function, IIMM gate 817
DELETE_SUBPOOL function, SMAD gate 1144
DELETE_SUBSPACE_TCBS function, DSAT gate 701
DELETE_SUSPEND function, DSSR gate 711
DELETE_SYSTEM_DUMPCODE function, DUDT

gate 729
DELETE_TCB function, DSIT gate 709
DELETE_TCLASS function, XMCL gate 1282
DELETE_TCPIPSERVICE function, SOAD gate 1185
DELETE_TERM_MODEL, AITM format 26
DELETE_TIMER function, EMEM gate 802
DELETE_TRAN_DUMPCODE function, DUDT

gate 723
DELETE_TRANDEF function, XMDD gate 1285
DELETE_TRANSACTION_USER function, USXM

gate 1250
DELETE_TRANSIENT_DATA function, APTD gate 543
DELETE_URIMAP function, WBRP gate 1265
DELETE_URIMAP function, WBUR gate 1269
DELETE_USER function, USAD gate 1244
DELETE_USER_SECURITY function, XSAD

gate 1316
deletion of autoinstalled APPC devices 16
deletion of autoinstalled consoles 17
DELIVER_BACKOUT_DATA function, RMRO

gate 1089
DELIVER_FORGET function, RMDE gate 1092
DELIVER_IC_RECOVERY_DATA function, TSIC

gate 1237
DELIVER_RECOVERY function, RMDE gate 1091
DEREGISTER function, KEAR gate 832
DEREGISTER function, SORD gate 1179
DEREGISTER_TCLASS_USAGE function, XMCL

gate 1284
DESTROY_PARTNERSHIP function, PTTW

gate, 1054
DESTROY_POOL function, PTTW gate, 1052
DESTROY_TOKEN function, BAGD format 626
DESTROY_VAULT function, IIRR gate 827

Index 1521

DETACH processing in application-owning region 446
DETACH_BRIDGE_FACILITY function, BRFR

gate, 549
DETACH_TERMINATED_OWN_TCBS function, KEDS

gate 841
device independence 31
DFH£STXA 354, 355
DFH0STXC 354, 355
DFH0STXR 354, 355
DFH99BC 128
DFH99CC 128
DFH99DY 128
DFH99FP 128
DFH99GI 128
DFH99KC 128
DFH99KH 128
DFH99KO 128
DFH99KR 128
DFH99LK 128
DFH99M 127
DFH99ML 128
DFH99MM 128
DFH99MP 128
DFH99MT 128
DFH99RP 128
DFH99T 128
DFH99TK 128
DFH99TX 128
DFH99VH 128
DFHACP 435, 437, 1449
DFHAICBP 1449
DFHAIDUF 27, 371
DFHAIIN1 27
DFHAIIN2 27
DFHAIIQ 27
DFHAIRP 27
DFHAITM 27
DFHALP 1449
DFHAMP 343, 344, 419, 1449
DFHAMPIL 419
DFHAMTP 54, 416, 419
DFHAMXM 344
DFHAPAC 437
DFHAPDM 595
DFHAPEX 469, 471, 595
DFHAPID 595
DFHAPIQ 595
DFHAPJC 595, 1449
DFHAPPIJ 595
DFHAPRC 369
DFHAPRDR 55, 57, 419
DFHAPRT 441, 450, 458
DFHAPSIP 597, 1450
DFHAPSM 595
DFHAPST 595, 1450
DFHAPTC 595
DFHAPTD 1450
DFHAPTI 595, 1450
DFHAPTIM 308, 595, 1450
DFHAPTIX 308, 595, 1450
DFHAPTR0 371, 432

DFHAPTR2 371, 432
DFHAPTR4 371, 432
DFHAPTR5 371, 432
DFHAPTR6 371, 432
DFHAPTR7 371, 432
DFHAPTR8 371, 432
DFHAPTR9 371, 432
DFHAPTRA 371, 432
DFHAPTRB 371, 432
DFHAPTRC 371, 432
DFHAPTRD 371, 432
DFHAPTRE 371, 432
DFHAPTRF 350, 371, 432
DFHAPTRG 371, 432
DFHAPTRI 371, 432
DFHAPTRJ 371, 432
DFHAPTRL 371, 432
DFHAPTRN 27, 371, 432
DFHAPTRO 371, 432
DFHAPTRP 371, 432
DFHAPTRR 371, 432, 1048
DFHAPTRS 371, 432
DFHAPTRV 371, 432, 749
DFHAPTRW 371, 432
DFHAPTRX 749
DFHAPTRY 749
DFHAPXM 595
DFHAPXME 437
DFHASV 1451
DFHBAA10 630
DFHBAA11 630
DFHBAA12 630
DFHBAAC 629
DFHBAAC0 630
DFHBAAC1 630
DFHBAAC2 630
DFHBAAC3 630
DFHBAAC4 630
DFHBAAC5 630
DFHBAAC6 630
DFHBAAR1 630
DFHBAAR2 630
DFHBABR 630
DFHBABU1 630
DFHBACR 629
DFHBADM 628
DFHBADU1 631
DFHBADUF 631
DFHBAGD 629
DFHBALR2 631
DFHBALR3 631
DFHBALR4 631
DFHBALR5 631
DFHBALR6 631
DFHBALR7 631
DFHBALR8 631
DFHBALR9 631
DFHBAOFI 630
DFHBAPR 629
DFHBAPR0 630
DFHBAPT1 630

1522 CICS TS for z/OS: CICS Diagnosis Reference

DFHBAPT2 630
DFHBAPT3 631
DFHBARUC 631
DFHBARUD 631
DFHBARUP 631
DFHBASP 630
DFHBATRI 631
DFHBATT 628
DFHBAUE 630
DFHBAVP1 630
DFHBAXM 629
DFHBMSCA 50
DFHBS* builder programs 55, 417
DFHBSIB3 1451
DFHBSIZ1 1451
DFHBSIZ3 1451
DFHBSM61 1451
DFHBSM62 1451
DFHBSMIR 1451
DFHBSMPP 1451
DFHBSS 1451
DFHBSSA 1451
DFHBSSF 1451
DFHBSSS 1451
DFHBSSZ 1451
DFHBSSZ6 1452
DFHBSSZB 1452
DFHBSSZG 1452
DFHBSSZI 1452
DFHBSSZL 1452
DFHBSSZM 1452
DFHBSSZP 1452
DFHBSSZR 1452
DFHBSSZS 1452
DFHBST 1452
DFHBSTB 1452
DFHBSTB3 1452
DFHBSTBL 1452
DFHBSTC 1452
DFHBSTD 1453
DFHBSTE 1453
DFHBSTH 1453
DFHBSTI 1453
DFHBSTM 1453
DFHBSTO 1453
DFHBSTP3 1453
DFHBSTS 1453
DFHBSTT 1453
DFHBSTZ 1453
DFHBSTZ1 1454
DFHBSTZ2 1454
DFHBSTZ3 1454
DFHBSTZA 1453
DFHBSTZB 1453
DFHBSTZC 1453
DFHBSTZE 1453
DFHBSTZH 1454
DFHBSTZL 1454
DFHBSTZO 1454
DFHBSTZP 1454
DFHBSTZR 1454

DFHBSTZS 1454
DFHBSTZV 1454
DFHBSTZZ 1454
DFHBSXGS 1454
DFHBSZZ 1454
DFHBSZZS 1454
DFHBSZZV 1455
DFHCAPB 1455
DFHCCCC 638
DFHCCDM 638
DFHCCDUF 371, 638
DFHCCNV 1455
DFHCCTRI 372, 432, 639
DFHCCUTL 639
DFHCDCON 432
DFHCLS3 479, 485
DFHCMAC 909
DFHCMP 1455
DFHCPARH 350
DFHCPCxx 350
DFHCPDUF 350, 372
DFHCPI 350
DFHCPIN1 350
DFHCPIN2 350
DFHCPIR 350
DFHCPLC 350
DFHCPLRR 350
DFHCPSRH 350
DFHCPY 1455
DFHCRC 302, 1455
DFHCRNP 300, 1455
DFHCRQ 1455
DFHCRR 301, 1455
DFHCRS 1455
DFHCRSP 300, 1455
DFHCRT 450, 458, 1456
DFHCSA 1456
DFHCSDUF 372
DFHCSDUP 90, 345, 1456
DFHCSSC 1456
DFHCSVC 1456
DFHCTRI 18
DFHCUCAB 1456
DFHCUCB 1456
DFHCUCCB 1456
DFHCUCDB 1456
DFHCWTO 1456
DFHD2CC 85
DFHD2CM0 85
DFHD2CM1 85
DFHD2CM2 85
DFHD2CM3 85
DFHD2CO 85
DFHD2D2 85
DFHD2EDF 85
DFHD2EX1 85
DFHD2EX2 85
DFHD2EX3 85
DFHD2IN1 85
DFHD2IN2 85
DFHD2INI 85

Index 1523

DFHD2MSB 85
DFHD2RP 85
DFHD2ST 85
DFHD2STP 85
DFHD2STR 85
DFHD2TM 85
DFHDBAT 102, 1457
DFHDBCON 102, 1457
DFHDBCR 1457
DFHDBCT 102, 1457
DFHDBCTX 102, 1457
DFHDBDI 102, 1457
DFHDBDSC 102, 1457
DFHDBDUF 372
DFHDBIE 102
DFHDBIQ 102, 1457
DFHDBME 102, 1457
DFHDBMOX 102, 1458
DFHDBNE 102
DFHDBP 369, 1458
DFHDBREX 102, 1458
DFHDBSPX 102, 1458
DFHDBSSX 102, 1458
DFHDBSTX 102, 1458
DFHDBTOX 102, 1458
DFHDBUEX 102, 1458
DFHDCP 1458
DFHDDDUF 372
DFHDDTRI 372, 432
DFHDES 1459
DFHDHDH 660
DFHDHDM 660
DFHDHDUF 661
DFHDHEI 661
DFHDHPB 661
DFHDHPD 661
DFHDHPM 661
DFHDHPR 661
DFHDHPS 661
DFHDHPT 661
DFHDHPU 661
DFHDHPX 661
DFHDHRM 661
DFHDHSL 660
DFHDHTM 661
DFHDHTRI 661
DFHDHUE 661
DFHDIP 105, 1459
DFHDLI 102, 120, 122, 1459
DFHDLIAI 1459
DFHDLIDP 102, 122, 1459
DFHDLIRP 122, 341, 1459
DFHDMDM 671
DFHDMDS 671
DFHDMDUF 372, 671
DFHDMEN 671
DFHDMENF 672
DFHDMIQ 672
DFHDMP 343, 344, 1459
DFHDMPBA 90
DFHDMSVC 672

DFHDMTRI 372, 432, 672
DFHDMWQ 672
DFHDRPG 1459
DFHDSAT 718
DFHDSB 33, 36
DFHDSB1$ 1459
DFHDSBA$ 1459
DFHDSBR 719
DFHDSDM 719
DFHDSDUF 372
DFHDSIT 719
DFHDSKE 719
DFHDSSM 719
DFHDSSR 719
DFHDSST 719
DFHDSTRI 372, 432
DFHDSUE 719
DFHDU640 125, 432, 1460
DFHDUDCC 750
DFHDUDM 749
DFHDUDT 749
DFHDUDU 749
DFHDUDUF 372
DFHDUF 372
DFHDUFUT 372
DFHDUIO 749
DFHDUPH 126
DFHDUPM 126
DFHDUPMC 126
DFHDUPP 126
DFHDUPPC 126
DFHDUPR 126
DFHDUPS 126
DFHDUPSC 126
DFHDUSR 749
DFHDUSU 749
DFHDUSVC 749
DFHDUTM 749
DFHDUTRI 372, 432
DFHDUXD 749
DFHDUXDC 750
DFHDUXDS 750
DFHDUXDV 750
DFHDUXW 749
DFHDXACH 1460
DFHDXSTM 1460
DFHDYP 1460
DFHEAI 1460
DFHEAI0 1460
DFHEAP1$ 339, 1460
DFHEBF 77, 144, 1460
DFHEBU 1461
DFHECI 1461
DFHECID 87, 1461
DFHECIP 87, 1461
DFHECP1$ 339, 1461
DFHECSP 87
DFHEDAD 344, 1461
DFHEDAP 344, 1461
DFHEDC 144, 1461
DFHEDCP 146

1524 CICS TS for z/OS: CICS Diagnosis Reference

DFHEDFBR 151, 1461
DFHEDFD 151, 1461
DFHEDFM 152, 1462
DFHEDFP 152, 1462
DFHEDFR 153, 1462
DFHEDFX 153, 312, 1462
DFHEDI 144, 1462
DFHEDP 1462
DFHEDP1$ 339, 1462
DFHEEI 142, 1462
DFHEEX 1462
DFHEFRM 1462
DFHEGL 110, 111, 144, 1463
DFHEIBLK 135
DFHEICDS 136
DFHEIDTI 145, 1463
DFHEIFC 186, 277, 1463
DFHEIIC 1463
DFHEIP 108, 135, 312, 382, 1463
DFHEIPA 135, 1463
DFHEIPRT 146
DFHEIPSE 145
DFHEIPSH 146, 601
DFHEIQDN 146
DFHEIQDS 145
DFHEIQDU 145
DFHEIQIR 146
DFHEIQMS 146
DFHEIQPF 145
DFHEIQPN 144
DFHEIQSA 145
DFHEIQSC 145, 416
DFHEIQSJ 145
DFHEIQSK 145
DFHEIQSM 145
DFHEIQSP 145
DFHEIQSQ 145
DFHEIQST 145, 416
DFHEIQSX 145
DFHEIQSZ, FEPI EXEC stub 263
DFHEIQTM 144
DFHEIQTR 146
DFHEIQVT 145
DFHEISDS 136
DFHEISP 1464
DFHEISR 1463
DFHEITAB 87
DFHEITBS 87
DFHEITMT 319
DFHEITOT 319
DFHEITST 319
DFHEJBB 797
DFHEJBG 797
DFHEJC 143, 1463
DFHEJCB 797
DFHEJCG 797
DFHEJCP 797
DFHEJDB 797
DFHEJDG 797
DFHEJDI 797
DFHEJDM 797

DFHEJDU 797
DFHEJGE 797
DFHEJIO 797
DFHEJJO 797
DFHEJMI 797
DFHEJOB 797
DFHEJOS 797
DFHEJST 797
DFHEKC 143, 1463
DFHELII 1463
DFHEMBA 809
DFHEMBR 809
DFHEMDM 808
DFHEMDUF 809
DFHEMEM 809
DFHEMS 33, 143, 1463
DFHEMTA 1463
DFHEMTD 319, 1464
DFHEMTP 319, 1464
DFHEMTRI 809
DFHEOP 146
DFHEOTP 319, 1464
DFHEPC 108, 333, 1464

EXEC CICS LINK command 143
DFHEPI 1464
DFHEPP1$ 339, 1464
DFHEPS 145, 382, 1464
DFHERDUF 372
DFHERM 394, 1464
DFHERMRS 367, 399
DFHESC 143, 1464
DFHESE 146
DFHESN 146
DFHESP 143
DFHESTP 319, 1464
DFHESZ, FEPI EXEC stub 263
DFHETC 109, 110, 111, 142, 1464
DFHETD 143, 466, 1465
DFHETL 110, 111, 1465
DFHETR 144, 1465
DFHETRX 145
DFHETS 143, 1465
DFHEXI 1465
DFHFCAT 186, 1465
DFHFCBD 187, 1465
DFHFCCA 188
DFHFCDL 188
DFHFCDN 188, 1465
DFHFCDO 190
DFHFCDR 191
DFHFCDTS 191, 1465
DFHFCDTX 191
DFHFCDU 191
DFHFCDUF 372
DFHFCDW 191
DFHFCDY 191
DFHFCES 191
DFHFCFL 191
DFHFCFR 191, 1465
DFHFCFS 193, 1466
DFHFCIN1 195

Index 1525

DFHFCIN2 196
DFHFCIR 197
DFHFCL 197, 1466
DFHFCLF 198
DFHFCLJ 198
DFHFCM 1466
DFHFCMT 199, 1466
DFHFCN 201, 1466
DFHFCNQ 204
DFHFCOR 205
DFHFCQI 205
DFHFCQR 205
DFHFCQS 205
DFHFCQT 205
DFHFCQU 206
DFHFCRC 206
DFHFCRD 208
DFHFCRF 208
DFHFCRL 206, 209, 1466
DFHFCRO 210
DFHFCRP 210, 1466
DFHFCRR 212
DFHFCRS 212
DFHFCRV 212
DFHFCSD 212, 1466
DFHFCST 213, 1466
DFHFCU 1466
DFHFCVR 165, 214, 1466
DFHFCVS 215, 1466
DFHFDP 1467
DFHFEP 161, 1467
DFHFRDUF 372
DFHGMM 291, 1467
DFHHPSVC 1467
DFHICDUF 372
DFHICP 308, 1467
DFHICRC 308
DFHICXM 595
DFHIICP 828
DFHIIDM 828
DFHIIDUF 828
DFHIILS 828
DFHIIMM 828
DFHIIP 33, 36
DFHIIP1$ 1467
DFHIIPA$ 1467
DFHIIRH 828
DFHIIRP 828
DFHIIRQ 828
DFHIIRR 828
DFHIIST 828
DFHIITRI 828
DFHIIXM 828
DFHIPCSP 372
DFHIPDUF 372
DFHIR3762 message 301
DFHIRP 279, 299, 1467
DFHIRW10 1467
DFHISP 108, 277, 1468
DFHJCP 1468
DFHJUP 1468

DFHKCP 599, 1468
DFHKCQ 600, 1468
DFHKCRP 1468
DFHKCSC 600, 1468
DFHKCSP 1469
DFHKEAR 851
DFHKEDCL 851
DFHKEDD 851
DFHKEDRT 851
DFHKEDS 851
DFHKEDUF 372, 851
DFHKEEDA 851
DFHKEGD 851
DFHKEIN 851
DFHKELCL 851
DFHKELOC 372, 851
DFHKELRT 851
DFHKERCD 851
DFHKERER 851
DFHKERET 851
DFHKERKE 851
DFHKERPC 851
DFHKERRI 851
DFHKERRQ 851
DFHKERRU 851
DFHKERRX 851
DFHKESCL 851
DFHKESFM 851
DFHKESGM 851
DFHKESIP 851
DFHKESRT 851
DFHKESTX 851
DFHKESVC 851
DFHKETA 851
DFHKETCB 851
DFHKETI 851
DFHKETIX 851
DFHKETRI 372, 432, 851
DFHKETXR 851
DFHKEXM 851
DFHL2BA 894
DFHL2BL1 894
DFHL2BL2 894
DFHL2BS1 894
DFHL2BS2 894
DFHL2BS3 894
DFHL2BS4 894
DFHL2CB 894
DFHL2CC 894
DFHL2CH1 894
DFHL2CH2 894
DFHL2CH3 894
DFHL2CH4 894
DFHL2CH5 894
DFHL2CHA 894
DFHL2CHE 894
DFHL2CHG 894
DFHL2CHH 894
DFHL2CHI 894
DFHL2CHL 894
DFHL2CHM 894

1526 CICS TS for z/OS: CICS Diagnosis Reference

DFHL2CHN 894
DFHL2CHR 894
DFHL2CHS 894
DFHL2DM 894
DFHL2HS2 894
DFHL2HS3 894
DFHL2HS4 894
DFHL2HS5 894
DFHL2HS6 894
DFHL2HS7 894
DFHL2HS8 895
DFHL2HS9 895
DFHL2HSG 895
DFHL2HSJ 895
DFHL2LB 894
DFHL2MV 894
DFHL2OFI 895
DFHL2SL1 895
DFHL2SLE 895
DFHL2SLN 895
DFHL2SR 894
DFHL2SR1 895
DFHL2SR2 895
DFHL2SR3 895
DFHL2SR4 895
DFHL2SR5 895
DFHL2TRI 432, 894
DFHL2VPX 895
DFHL2WF 894
DFHLDDM 864
DFHLDDMI 864
DFHLDDUF 372, 864
DFHLDLD 864
DFHLDLD1 864
DFHLDLD2 864
DFHLDLD3 864
DFHLDNT 865
DFHLDST 865
DFHLDSVC 865
DFHLDTRI 372, 432, 865
DFHLGDM 893
DFHLGDUF 893
DFHLGGL 893
DFHLGHB 893
DFHLGICV 893
DFHLGIGT 893
DFHLGILA 893
DFHLGIMS 893
DFHLGIPA 893
DFHLGIPI 893
DFHLGISM 893
DFHLGJN 893
DFHLGPA 893
DFHLGSC 894
DFHLGST 894
DFHLGTRI 432, 894
DFHLIP 1469
DFHLMDM 900
DFHLMDS 900
DFHLMDUF 372, 900
DFHLMLM 900

DFHLMTRI 372, 432, 900
DFHLSSI 894
DFHLUC requests 447
DFHLUP 1469
DFHM32 34, 41
DFHM321$ 1471
DFHM32A$ 1471
DFHMAPDS 31
DFHMCAD 31
DFHMCBDS 31
DFHMCP 34, 37
DFHMCP1$ 1469
DFHMCPA$ 1469
DFHMCPE 50
DFHMCPE$ 1469
DFHMCPIN 50
DFHMCRDS 31
DFHMCX 34, 1469
DFHMEBM 909
DFHMEBU 909
DFHMEDM 909
DFHMEDUF 372, 909
DFHMEFO 909
DFHMEIN 909
DFHMEME 910
DFHMESR 910
DFHMETRI 372, 432, 910
DFHMEWS 910
DFHMEWT 910
DFHMGP 321, 1469
DFHMGT 321, 1470
DFHMIN 50
DFHMIRS 108, 277, 1470
DFHML1 40, 1470
DFHMNDM 918
DFHMNDUF 372, 918
DFHMNMN 918
DFHMNNT 918
DFHMNSR 918
DFHMNST 918
DFHMNSU 918
DFHMNSVC 918
DFHMNTI 918
DFHMNTRI 372, 432, 918
DFHMNUE 918
DFHMNXM 918
DFHMRDUF 372
DFHMROQP 1470
DFHMSP 323, 324, 1470
DFHMSRCA 50
DFHMXP 1471
DFHNQDM 937
DFHNQDUF 937
DFHNQED 937
DFHNQEDI 937
DFHNQIB 937
DFHNQIE 937
DFHNQNQ 937
DFHNQRN 937
DFHNQST 937
DFHNQTRI 432, 937

Index 1527

DFHNXDUF 372
DFHOSPWA 32
DFHOTCO 943
DFHOTDM 943
DFHOTDUF 943
DFHOTRM 943
DFHOTSU 943
DFHOTTR 943
DFHOTTRI 943
DFHP3270 1472
DFHPADM 947
DFHPADUF 372, 947
DFHPAGP 947
DFHPAIO 947
DFHPASY 947
DFHPATRI 372, 432, 947
DFHPBP 34, 42
DFHPBP1$ 1471
DFHPBPA$ 1471
DFHPCP 333
DFHPD510 371
DFHPD640 1471
DFHPDKW 372
DFHPDX1 372
DFHPEP 337, 1471
DFHPGADS 32
DFHPGAI 1004
DFHPGAQ 1004
DFHPGDD 344, 1004
DFHPGDM 1004
DFHPGDUF 372, 1004
DFHPGEX 1004
DFHPGHM 1004
DFHPGIS 1004
DFHPGLD 1004
DFHPGLE 1004
DFHPGLK 1005
DFHPGLU 1005
DFHPGPG 1005
DFHPGRE 1005
DFHPGRP 1005
DFHPGST 1005
DFHPGTRI 372, 432, 1005
DFHPGUE 1005
DFHPGXE 1005
DFHPGXM 1005
DFHPHN 77
DFHPHP 34, 44, 1471
DFHPIAP 1043
DFHPIAT 1043
DFHPICC 1043
DFHPIDM 1043
DFHPIDSH 1043
DFHPIDUF 1043
DFHPIEP 1043
DFHPIII 1043
DFHPIIT 1043
DFHPIIW 1043
DFHPILN 1043
DFHPIPA 1043
DFHPIPL 1043

DFHPIPM 1043
DFHPIRT 1043
DFHPISB 1043
DFHPISF 1043
DFHPISN 1043
DFHPISN1 1043
DFHPISN2 1043
DFHPIST 1043
DFHPITH 1043
DFHPITL 1043
DFHPITP 1044
DFHPITQ 1044
DFHPITQ1 1044
DFHPITRI 1044
DFHPIWR 1044
DFHPIWT 1044
DFHPIXE 1044
DFHPL1OI 1472
DFHPRCM 1048
DFHPRDUF 372, 1048
DFHPRFS 1048
DFHPRIN1 1048
DFHPRIN2 1048
DFHPRK 1472
DFHPRPT 1048
DFHPRRP 1048
DFHPSDDS 32
DFHPSP 382, 1472
DFHPSPCK 382
DFHPSPDW 382, 1472
DFHPSPSS 382, 1472
DFHPSPST 382, 1472
DFHPSSVC 382, 1472
DFHPTDM 1059
DFHPTDUF 372
DFHPTTW 1059
DFHPUP 344, 1472
DFHQRY 417, 419, 1472
DFHRCEX 1472
DFHRDXM 1103
DFHREST 440, 1473
DFHRKB 1473
DFHRLR 34, 45
DFHRLR1$ 1473
DFHRLRA$ 1473
DFHRMCAL 391
DFHRMCD 1096
DFHRMCD1 1096
DFHRMCD2 1096
DFHRMCI2 1096
DFHRMCI3 1096
DFHRMCI4 1096
DFHRMDM 1096
DFHRMDU0 1096
DFHRMDU2 1096
DFHRMDU3 1096
DFHRMDU4 1096
DFHRMDUF 372
DFHRML1D 1097
DFHRMLK1 1096
DFHRMLK2 1096

1528 CICS TS for z/OS: CICS Diagnosis Reference

DFHRMLK3 1096
DFHRMLK4 1096
DFHRMLK5 1096
DFHRMLKQ 1096
DFHRMLN 1096
DFHRMLSD 1096
DFHRMLSF 1097
DFHRMLSO 1097
DFHRMLSP 1097
DFHRMLSS 1097
DFHRMLSU 1097
DFHRMNM 1097
DFHRMNM1 1097
DFHRMNS1 1097
DFHRMNS2 1097
DFHRMOFI 1097
DFHRMR1D 1097
DFHRMR1E 1097
DFHRMR1K 1097
DFHRMR1S 1097
DFHRMRO 1097
DFHRMRO1 1097
DFHRMRO2 1097
DFHRMRO3 1097
DFHRMRO4 1097
DFHRMROO 1097
DFHRMROS 1097
DFHRMROU 1097
DFHRMROV 1097
DFHRMSL 1097
DFHRMSL1 1097
DFHRMSL2 1097
DFHRMSL3 1097
DFHRMSL4 1097
DFHRMSL5 1097
DFHRMSL6 1097
DFHRMSL7 1097
DFHRMSLF 1097
DFHRMSLJ 1097
DFHRMSLL 1097
DFHRMSLO 1097
DFHRMSLV 1097
DFHRMSLW 1097
DFHRMST 1097
DFHRMST1 1097
DFHRMSY 367, 399, 1473
DFHRMTRI 432, 1097
DFHRMU1C 1098
DFHRMU1D 1098
DFHRMU1E 1098
DFHRMU1F 1098
DFHRMU1J 1098
DFHRMU1K 1098
DFHRMU1L 1098
DFHRMU1N 1098
DFHRMU1Q 1098
DFHRMU1R 1098
DFHRMU1S 1098
DFHRMU1U 1098
DFHRMU1V 1098
DFHRMU1W 1098

DFHRMUC 1098
DFHRMUO 1098
DFHRMUTL 1096
DFHRMUW 1098
DFHRMUW0 1098
DFHRMUW1 1098
DFHRMUW2 1098
DFHRMUW3 1098
DFHRMUWB 1098
DFHRMUWE 1098
DFHRMUWF 1098
DFHRMUWH 1098
DFHRMUWJ 1098
DFHRMUWL 1098
DFHRMUWN 1098
DFHRMUWP 1098
DFHRMUWQ 1098
DFHRMUWS 1098
DFHRMUWU 1098
DFHRMUWV 1098
DFHRMUWW 1098
DFHRMVP1 1098
DFHRMXN2 1098
DFHRMXN3 1098
DFHRMXN4 1098
DFHRMXN5 1098
DFHRMXNE 1098
DFHRTC 1473
DFHRTE 1473
DFHRTSU 458
DFHRXDUF 1103
DFHRXSVC 1103
DFHRXTRI 1103
DFHRXUW 1103
DFHRXXRG 1103
DFHRXXRM 1103
DFHS22RX 355
DFHSABDS 360
DFHSAIQ 595
DFHSFP 1473
DFHSHDM 1124
DFHSHDUF 1125
DFHSHOFI 1125
DFHSHPR 1124
DFHSHRE1 1125
DFHSHRM 1124
DFHSHRQ 1124
DFHSHRQ1 1125
DFHSHRR 1125
DFHSHRRP 1125
DFHSHRT 1124
DFHSHRT1 1125
DFHSHRT2 1125
DFHSHSY 1125
DFHSHTI 1124
DFHSHTRI 1125
DFHSHVP1 1125
DFHSHXM 1124
DFHSIA1 597, 1473
DFHSIB1 597, 1473
DFHSIC1 597, 1473

Index 1529

DFHSID1 597, 1474
DFHSIE1 597
DFHSIF1 597, 1474
DFHSIG1 597, 1474
DFHSIH1 597, 1474
DFHSII1 344, 597, 1474
DFHSIJ1 312, 597, 1474
DFHSIP 1474
DFHSJCS 1140
DFHSJDM 1140
DFHSJIN 1140
DFHSJIS 1140
DFHSJJM 1140
DFHSJPJP 1140
DFHSJSM 1140
DFHSKC 364, 365
DFHSKE 364, 365
DFHSKM 363, 365
DFHSKP 363, 1475
DFHSMAD 1161
DFHSMAR 1161
DFHSMCK 1161
DFHSMDM 1162
DFHSMDUF 372, 1162
DFHSMGF 1162
DFHSMMC2 1162
DFHSMMCI 1162
DFHSMMF 1162
DFHSMMG 1162
DFHSMSCP 357, 1475
DFHSMSR 1162
DFHSMST 1162
DFHSMSVC 1162
DFHSMSY 1162
DFHSMTRI 372, 432, 1162
DFHSMVN 1162
DFHSMVP 1162
DFHSNAS 1173
DFHSNAS subroutine

SIGNOFF_ATI_SESSION function 1165
SIGNON_ATI_SESSION function 1164

DFHSNAT 1475
DFHSNDUF 1173
DFHSNEP 331
DFHSNMIG 1475
DFHSNNFY 1475
DFHSNP 1475
DFHSNPU 1173
DFHSNPU subroutine

SIGNOFF_PRESET_USERID function 1166
SIGNON_PRESET_USERID function 1165

DFHSNSG 1173
DFHSNSG subroutine

SIGNOFF_SURROGATE function 1167
DFHSNSN 1475
DFHSNSU 1173
DFHSNSU subroutine

SIGNOFF_SESSION_USERID function 1168
SIGNON_SESSION_USERID function 1167

DFHSNTRI 372, 433, 1173
DFHSNTU 1173

DFHSNTU subroutine
SIGNOFF_TERMINAL_USER function 1170
SIGNON_TERMINAL_USER function 1169

DFHSNUS 1173
DFHSNUS subroutine

SIGNOFF_ATTACH_HEADER function 1172
SIGNON_ATTACH_HEADER function 1171

DFHSNVCL 1475
DFHSNVID 1475
DFHSNVPR 1475
DFHSNVTO 1476
DFHSOAD 1194
DFHSOCK 1193
DFHSODM 1193
DFHSODUF 1194
DFHSOIS 1193
DFHSORD 1193
DFHSOSE 1194
DFHSOTB 1194
DFHSOTRI 1194
DFHSPP 367, 368, 480, 1476
DFHSR1 379
DFHSRLI 379, 1476
DFHSRP 375, 379, 595, 1476
DFHSSDUF 372
DFHSSEN 361, 1476
DFHSSGC 362, 1476
DFHSSIN 359, 361, 1476
DFHSSMGP 362, 1476
DFHSSMGT 362, 1476
DFHSSWT 362, 1477
DFHSSWTF 362, 1477
DFHSSWTO 362, 1477
DFHST03X 355
DFHST04X 355
DFHST06X 355
DFHST08X 355
DFHST09X 355
DFHST14X 355
DFHST16X 355
DFHST17X 355
DFHST21X 355
DFHSTD2X 355
DFHSTDBX 355
DFHSTDM 1200
DFHSTDSX 355
DFHSTDT 1477
DFHSTDUF 372, 1200
DFHSTDUX 355
DFHSTE15 355
DFHSTE35 355
DFHSTEJX 355
DFHSTFC 1477
DFHSTIB 1477
DFHSTIIX 355
DFHSTIN 355
DFHSTJC 1477
DFHSTLDX 355
DFHSTLGX 355
DFHSTLK 1477
DFHSTLS 1477

1530 CICS TS for z/OS: CICS Diagnosis Reference

DFHSTMNX 355
DFHSTOT 355
DFHSTP 312, 601, 602, 1477
DFHSTPGX 355
DFHSTRD 355
DFHSTRMX 355
DFHSTSJX 355
DFHSTSMX 355
DFHSTSOX 355
DFHSTST 1200
DFHSTSTX 355
DFHSTSZ 1478
DFHSTTD 1478
DFHSTTI 1200
DFHSTTM 1478
DFHSTTQX 355
DFHSTTR 1478
DFHSTTRI 372, 433, 1200
DFHSTTS 1478
DFHSTTSX 355
DFHSTU03 355
DFHSTU04 355
DFHSTU06 355
DFHSTU08 355
DFHSTU09 355
DFHSTU14 355
DFHSTU16 355
DFHSTU17 355
DFHSTU21 355
DFHSTU22 355
DFHSTUD2 355
DFHSTUDB 356
DFHSTUDS 356
DFHSTUDU 356
DFHSTUE 1200
DFHSTUEJ 356
DFHSTUII 356
DFHSTULD 356
DFHSTULG 356
DFHSTUMN 356
DFHSTUP 353
DFHSTUP1 356
DFHSTUPG 356
DFHSTURM 356
DFHSTURS 356
DFHSTURX 356
DFHSTUSJ 356
DFHSTUSM 356
DFHSTUSO 356
DFHSTUST 356
DFHSTUTQ 356
DFHSTUTS 356
DFHSTUXM 356
DFHSTWR 356
DFHSTXMX 356
DFHSUDUF 372
DFHSUEX 470, 471
DFHSUSN 1478
DFHSUSX 1478
DFHSUTRI 372
DFHSUWT 503, 1478

DFHSUZX 1478
DFHSZ2CP 276
DFHSZ2DX 276
DFHSZ2ID 276
DFHSZ2IX 276
DFHSZ2OA 276
DFHSZ2OD 276
DFHSZ2OR 276
DFHSZ2OX 276
DFHSZ2OY 276
DFHSZ2QS 276
DFHSZ2QX 276
DFHSZ2SB 276
DFHSZ2SC 276
DFHSZ2SD 276
DFHSZ2SH 276
DFHSZ2SQ 276
DFHSZ2SR 276
DFHSZ2SX 276
DFHSZ2TE 276
DFHSZATC 273
DFHSZATR 273
DFHSZBCL 273
DFHSZBCS 273
DFHSZBFT 273
DFHSZBLO 273
DFHSZBRS 273
DFHSZBSI 273
DFHSZBST 273
DFHSZBUN 273
DFHSZBUS 273
DFHSZDUF 273, 372
DFHSZFRD 273
DFHSZFSD 273
DFHSZIDX 273
DFHSZPCP 273
DFHSZPDX 273
DFHSZPID 273
DFHSZPIX 274
DFHSZPOA 274
DFHSZPOD 274
DFHSZPOR 274
DFHSZPOX 274
DFHSZPOY 274
DFHSZPQS 274
DFHSZPQX 274
DFHSZPSB 274
DFHSZPSC 274
DFHSZPSD 274
DFHSZPSH 274
DFHSZPSQ 274
DFHSZPSR 274
DFHSZPSS 274
DFHSZPSX 274
DFHSZPTE 274
DFHSZRCA 274
DFHSZRCT 274
DFHSZRDC 274
DFHSZRDG 274
DFHSZRDN 274
DFHSZRDP 274

Index 1531

DFHSZRDS 274
DFHSZRDT 274
DFHSZREQ 274
DFHSZRFC 274
DFHSZRGR 274
DFHSZRIA 274
DFHSZRIC 274
DFHSZRID 274
DFHSZRIF 274
DFHSZRII 274
DFHSZRIN 274
DFHSZRIO 274
DFHSZRIP 274
DFHSZRIQ 274
DFHSZRIS 274
DFHSZRIT 274
DFHSZRIW 274
DFHSZRNC 274
DFHSZRNO 275
DFHSZRPM 275
DFHSZRPW 275
DFHSZRQR 275
DFHSZRQW 275
DFHSZRRD 275
DFHSZRRT 275
DFHSZRSC 275
DFHSZRSE 275
DFHSZRST 275
DFHSZRTM 275
DFHSZRXD 275
DFHSZRZZ 275
DFHSZSIP 275
DFHSZVBN 275
DFHSZVGF 275
DFHSZVQS 275
DFHSZVRA 275
DFHSZVRI 275
DFHSZVSC 275
DFHSZVSL 275
DFHSZVSQ 275
DFHSZVSR 275
DFHSZVSY 275
DFHSZWSL 275
DFHSZXDA 275
DFHSZXFR 275
DFHSZXLG 275
DFHSZXLT 275
DFHSZXNS 275
DFHSZXPM 275
DFHSZXRA 275
DFHSZXSC 275
DFHSZXTP 275
DFHSZYLG 275
DFHSZYQR 275
DFHSZYRI 275
DFHSZYSC 275
DFHSZYSR 275
DFHSZYSY 275
DFHSZZAG 275
DFHSZZFR 276
DFHSZZNG 276

DFHSZZRG 276
DFHTACP 401, 403, 1478
DFHTAJP 307, 308, 1479
DFHTBS 55, 57
DFHTBS00 1480
DFHTBSB 1479
DFHTBSBP 56, 1479
DFHTBSD 1479
DFHTBSDP 1479
DFHTBSL 1479
DFHTBSLP 1479
DFHTBSQ 1479
DFHTBSQP 1479
DFHTBSR 1479
DFHTBSRP 1479
DFHTBSS 55, 57, 69, 416, 419
DFHTBSSP 1479
DFHTC macro 447
DFHTCBP 1480
DFHTCDUF 372
DFHTCP 407, 424, 1480
DFHTCRP 54, 418, 1480
DFHTCRPC 1480
DFHTCRPL 1480
DFHTCRPS 1480
DFHTCRPU 1480
DFHTCT 415
DFHTDA 466, 1480
DFHTDB 466, 1481
DFHTDDUF 372
DFHTDEXC 466
DFHTDEXL 1481
DFHTDOC 466
DFHTDP 465, 1481
DFHTDQ 1481
DFHTDRM 466, 1481
DFHTDRP 1481
DFHTDSUC 466
DFHTDTM 466, 1481
DFHTDTRI 372
DFHTDX 1481
DFHTDXM 595
DFHTEP 425, 1482
DFHTFBF 596
DFHTFIQ 596
DFHTFP 435, 437
DFHTFRF 596
DFHTIDM 1204
DFHTIDUF 373, 1204
DFHTIEM 394
DFHTISR 1204
DFHTITRI 373, 433, 1204
DFHTMDUF 373
DFHTMP 387, 418, 1482
DFHTOAxx 419
DFHTOBPS 419
DFHTON 1482
DFHTONR 55, 58
DFHTOR 344, 419, 1482
DFHTORP 1482
DFHTPE 32

1532 CICS TS for z/OS: CICS Diagnosis Reference

DFHTPP 34, 46
DFHTPP1$ 1482
DFHTPPA$ 1482
DFHTPQ 34, 48, 1482
DFHTPR 34, 48, 1483
DFHTPS 34, 50, 1483
DFHTR640 1483
DFHTRADS 1218
DFHTRAO 1218
DFHTRAP 1218, 1483
DFHTRDM 1218
DFHTRDS 1218
DFHTRDUF 373, 432
DFHTREN 1218
DFHTRFFD 373, 432
DFHTRFFE 373, 432
DFHTRFPB 373, 432
DFHTRFPP 373, 432
DFHTRIB 373, 432
DFHTRP 427, 1483
DFHTRPRA 432
DFHTRPRG 432
DFHTRPT 1218
DFHTRPX 1205, 1206, 1211, 1218
DFHTRSR 1218
DFHTRSU 1218
DFHTRTRI 373, 433
DFHTRZCP 1484
DFHTRZIP 1484
DFHTRZPP 1484
DFHTRZxP 419
DFHTRZXP 1484
DFHTRZYP 1484
DFHTRZZP 1484
DFHTSBR 1239
DFHTSDM 1238
DFHTSDUC 1239
DFHTSDUF 373, 1239
DFHTSDUS 1239
DFHTSITR 433, 1239
DFHTSP 1484
DFHTSPT 1239
DFHTSQR 1238
DFHTSRM 1239
DFHTSSH 1239
DFHTSSR 1239
DFHTSST 1239
DFHTTPDS 32
DFHTU640 430, 1484
DFHUCNV 1484
DFHUEDUF 373
DFHUEH 469, 471, 1485
DFHUEM 144, 391, 394, 468, 471, 1485
DFHUSAD 1255
DFHUSBP 1485
DFHUSDM 1255
DFHUSDUF 373, 1255
DFHUSFL 1255
DFHUSIS 1255
DFHUSST 1255
DFHUSTI 1255

DFHUSTRI 373, 433, 1255
DFHUSXM 1255
DFHWBA 507
DFHWBA1 508
DFHWBAAX 507
DFHWBADX 507
DFHWBAP 1272
DFHWBAPF 1273
DFHWBBLI 508
DFHWBCL 508, 1273
DFHWBDM 1272
DFHWBEP 508
DFHWBERX 507
DFHWBGB 509
DFHWBIP 507
DFHWBLT 509
DFHWBQM 1273
DFHWBRP 1273
DFHWBRQ 1273
DFHWBSR 1273
DFHWBST 509
DFHWBTC 509
DFHWBTTA 509
DFHWBTTB 509
DFHWBTTC 509
DFHWBUN 509
DFHWBUR 1273
DFHWBXM 1273
DFHWBXN 507
DFHWCCS 1485
DFHWCGNT 1485
DFHWDATT 1485
DFHWDINA 1485
DFHWDISP 1485
DFHWDSRP 1485
DFHWDWAT 1485
DFHWKP 417, 1485
DFHWLFRE 1486
DFHWLGET 1486
DFHWMG1 1486
DFHWMI 1486
DFHWMMT 1486
DFHWMP1 1486
DFHWMPG 1486
DFHWMQG 1486
DFHWMQH 1486
DFHWMQP 1486
DFHWMQS 1486
DFHWMRD 1487
DFHWMS 156, 1487
DFHWMS20 1487
DFHWMWR 1487
DFHWOS 1487
DFHWOSA 1487
DFHWOSB 1487
DFHWSRTR 1487
DFHWSSN1 1487
DFHWSSN2 1487
DFHWSSN3 1488
DFHWSSOF 1488
DFHWSSR 1488

Index 1533

DFHWSSW 1488
DFHWSTI 1488
DFHWSTKV 1488
DFHWSXPI 1489
DFHWTI 1489
DFHWTO 503
DFHWTRP 1489
DFHXCALL 159
DFHXCDMP 159
DFHXCEIP 159
DFHXCO 159
DFHXCOPT 159
DFHXCP 599, 1489
DFHXCP1 1489
DFHXCPC 600, 1489
DFHXCPLD 159
DFHXCPLH 159
DFHXCPLL 159
DFHXCPLO 159
DFHXCPRH 159
DFHXCRCD 159
DFHXCRCH 159
DFHXCRCL 159
DFHXCRCO 159
DFHXCSTB 159
DFHXCSVC 159
DFHXCTAB 159
DFHXCTRA 160
DFHXCTRD 160
DFHXCTRI 160
DFHXCTRP 160
DFHXCURM 160
DFHXFP 277, 1489
DFHXFQ 1489
DFHXFX 277, 1489
DFHXMAB 1311
DFHXMAT 1311
DFHXMBD 1311
DFHXMCL 1311
DFHXMDD 1311
DFHXMDM 1311
DFHXMDUF 373, 1311
DFHXMER 1311
DFHXMFD 1311
DFHXMIQ 1311
DFHXMLD 1311
DFHXMP 279, 300, 1490
DFHXMQC 1312
DFHXMQD 1312
DFHXMRP 1312
DFHXMSR 1312
DFHXMST 1312
DFHXMTRI 373, 433, 1312
DFHXMXD 1312
DFHXMXE 1312
DFHXRA 156, 1490
DFHXRB 1490
DFHXRC 1490
DFHXRCP 156, 1490
DFHXRDUF 373
DFHXRE 1490

DFHXRP 1490
DFHXRSP 156, 1490
DFHXSAD 1339
DFHXSDM 1339
DFHXSDUF 373, 1339
DFHXSFL 1339
DFHXSIS 1339
DFHXSLU 1340
DFHXSMN 1490
DFHXSMX 1491
DFHXSPW 1340
DFHXSRC 1340
DFHXSS 1491
DFHXSSA 1340
DFHXSSB 1340, 1491
DFHXSSC 1340
DFHXSSD 1340
DFHXSSI 1340
DFHXSTRI 433, 1340
DFHXSWM 1491
DFHXTCI 156, 1491
DFHXTP 452, 458, 1491
DFHZABD 1491
DFHZACT 12, 327, 1491
DFHZAIT 1491
DFHZAND 1491
DFHZARER 115, 1492
DFHZARL 110, 112, 115, 1492
DFHZARM 110, 113, 1492
DFHZARQ 109, 115, 302, 1492
DFHZARR 110, 115, 1492
DFHZARR0 115, 1492
DFHZARR1 116, 1492
DFHZARRA 115, 1492
DFHZARRC 115, 116, 1492
DFHZARRF 115, 1493
DFHZASX 1493
DFHZATA 12, 18, 54, 416, 1493
DFHZATA2 18
DFHZATD 18, 416, 1493
DFHZATDX 18, 19, 1493
DFHZATDY 18
DFHZATI 1493
DFHZATMD 1493
DFHZATMF 1493
DFHZATR 18, 1493
DFHZATS 18, 416, 1493
DFHZATT 1494
DFHZBAN 1494
DFHZBKT 481, 1494
DFHZBLX 475, 1494
DFHZCA 1494
DFHZCB 1494
DFHZCC 1494
DFHZCHS 481, 1495
DFHZCLS 1495
DFHZCLS, close destination program 15
DFHZCLX 15, 1495
DFHZCNA 414, 1495
DFHZCNR 414, 1495
DFHZCNT 481, 1495

1534 CICS TS for z/OS: CICS Diagnosis Reference

DFHZCP 302, 407, 424, 1495
DFHZCQ 54, 70, 344, 416, 1496
DFHZCQDL 1496
DFHZCQIN 1496
DFHZCQIQ 1496
DFHZCQIS 1496
DFHZCQIT 1496
DFHZCQRS 1496
DFHZCQRT 56
DFHZCRQ 1496
DFHZCRT 481, 1496
DFHZCUT 1496
DFHZCW 1496
DFHZCX 302, 1497
DFHZCXR 1497
DFHZCY 1497
DFHZCZ 1497
DFHZDET 1497
DFHZDSP 1498
DFHZDST 1498
DFHZEMW 1498
DFHZERH 110, 115, 116, 1498
DFHZEV1 1498
DFHZEV2 1498
DFHZFRE 1498
DFHZGAI 18
DFHZGCA 488, 495
DFHZGCC 495
DFHZGCH 476
DFHZGCN 486, 495
DFHZGDA 495
DFHZGET 1498
DFHZGIN 476
DFHZGPC 495
DFHZGPR 495
DFHZGRP 496
DFHZGSL 496
DFHZGTA 55, 58
DFHZGTI (terminal location) 417
DFHZGUB 496
DFHZHPRX 1498
DFHZHPSR 1498
DFHZIS1 302, 1499
DFHZIS2 302, 1499
DFHZISP 109, 110, 117, 302, 1498
DFHZLEX 1499
DFHZLGX 1499
DFHZLGX, logon exit 11
DFHZLOC 1499
DFHZLOC (terminal location) 417
DFHZLRP 1499
DFHZLS1 486
DFHZLTX 1499
DFHZLUS 1500
DFHZMJM 329
DFHZNAC 327, 329, 410, 1500
DFHZNCA 16, 329
DFHZNCE 329
DFHZNCM 329
DFHZNCS 329
DFHZNCV 329

DFHZNEP 331, 1500
DFHZNSP 1500
DFHZOPA 1500
DFHZOPN 1500
DFHZOPX 1500
DFHZQUE 1500
DFHZRAC 1500
DFHZRAQ 1501
DFHZRAR 1501
DFHZRAS 1501
DFHZRLG 1501
DFHZRLP 483, 1501
DFHZRLX 481, 485, 1501
DFHZRRX 1501
DFHZRSP 1501
DFHZRST 1501
DFHZRSY 1501
DFHZRVL 481, 482, 1501
DFHZRVS 1502
DFHZRVX 1502
DFHZSAX 1502
DFHZSCX 1502
DFHZSDA 1502
DFHZSDL 481, 484, 1502
DFHZSDR 1502
DFHZSDS 1502
DFHZSDX 1502
DFHZSES 1502
DFHZSEX 1503
DFHZSHU 1503
DFHZSIM 1503
DFHZSIX 1503
DFHZSKR 1503
DFHZSLS 1503
DFHZSLX 481, 485, 1503
DFHZSSX 1503
DFHZSTAP 109, 110, 117, 1503
DFHZSTU 1503
DFHZSUP 302, 444, 449, 1504
DFHZSYN 1504
DFHZSYX 1504
DFHZTAX 1504
DFHZTPX 1504
DFHZTRA 1504
DFHZTSP 54, 416, 445, 450, 458, 1504
DFHZUCT 1504
DFHZUIX 1504
DFHZUSR 1504
DFHZXCU 156, 1504
DFHZXDUF 373
DFHZXPS 496
DFHZXQO 1505
DFHZXRC 496, 1505
DFHZXRE0 1505
DFHZXRL 444, 446, 448, 458, 1505
DFHZXRT 458, 1505
DFHZXST 1505
DFXUSTRI 373
DGB (DBCTL global block) 102
DH (document handler) domain 647

Index 1535

DHDH gate
CREATE_DOCUMENT function 647
DELETE_BOOKMARK function 652
DELETE_DATA function 651
DELETE_DOCUMENT function 651
INQUIRE_DOCUMENT function 653
INSERT_BOOKMARK function 649
INSERT_DATA function 648
REPLACE_DATA function 650
RETRIEVE_WITH_CTLINFO function 652
RETRIEVE_WITHOUT_CTLINFO function 653

DHRP gate
RECOVER_DEFINITIONS function 659

DHSL gate
ADD_SYMBOL_LIST function 654
EXPORT_SYMBOL_LIST function 655
IMPORT_SYMBOL_LIST function 655
SET_SYMBOL_VALUE_BY_API function 653
SET_SYMBOL_VALUE_BY_SSI function 654

DHTM gate
ADD_REPLACE_DOCTEMPLATE function 656
DELETE_DOCTEMPLATE function 657
END_BROWSE function 658
GET_NEXT function 658
INITIALIZE_DOCTEMPLATES function 655
INQUIRE_DOCTEMPLATE function 657
INQUIRE_TEMPLATE_STATUS function 657
READ_TEMPLATE function 656
START_BROWSE function 658

DIB (data interchange block) 106
DIB (DL/I interface block) 121
DIP (data interchange program) 105

storage control 106
temporary-storage control 106
terminal control 106
trace control 106

directory manager (DD) domain 641
DISABLE routine of DFHUEM 469
DISABLE_STATISTICS function, STST gate 1197
DISCARD function, LGJN gate 880
DISCARD function, LGLD gate 887
DISCARD_AIDS function, TFAL gate 577
DISCARD_DJAR function, EJCP gate 769
DISCARD_METHOD_INFO function, EJMI gate 786
DISCARD_PIPELINE function, PIPL gate 1019
DISCARD_PROCESSTYPE function, BATT gate 606
DISCARD_TDQDEF function, TDTM gate 572
DISCARD_WEBSERVICE function, PIWR gate 1036
discard, EXEC CICS 74
DISCONNECT for IRC 300
DISCONNECT function, LGLB gate 883
DISCONNECT function, LGST gate 890
DISCONNECT_ALL function, LGLB gate 884
disconnection flow for terminals, LU-initiated 15
dispatcher (DS) domain 697
distributed program link (DPL) 107
distributed transaction processing (DTP)

logical unit type 6.1 (LU6.1) protocol 109
session failures 109
system failures 109

distribution tapes, modules supplied 1343

DL/I
PSB scheduling 101, 341
PSB termination 101, 341
remote 341
system definition 341

DL/I database support 93, 119, 341
DL/I interface

CALL macro 119
CALLDLI macro 119
EXEC DLI command 119
IMS service modules 119
program specification block (PSB) 119

DL/I interface block (DIB) 121
DL/I interface parameter list (DLP) 102, 121
DL/I interface program 119
DL/I request handling, function shipping 285
DL/I support 93, 119, 341
DLP (DL/I interface parameter list) 102, 121
DM (domain manager) domain 663
DMDM format

INITIALIZE_DOMAIN function 670
PRE_INITIALIZE function 669
QUIESCE_DOMAIN function 670
TERMINATE_DOMAIN function 671

DMDM gate
ADD_DOMAIN function 665
QUIESCE_SYSTEM function 665
SET_PHASE function 665
WAIT_PHASE function 666

DMIQ gate
END_BROWSE function 667
GET_NEXT function 667
INQ_DOMAIN_BY_ID function 668
INQ_DOMAIN_BY_NAME function 668
INQ_DOMAIN_BY_TOKEN function 668
START_BROWSE function 666

document handler (DH) domain 647
domain calls 3

formats 5
generic 6
responses 6
specific 6
tokens 6

domain gates 4
domain manager (DM) domain 663
domains 3

application (AP) 7, 513
business application manager (BAM) 603
Debugging profile (DP) 673
directory manager (DD) 641
dispatcher (DS) 697
document handler (DH) 647
domain manager (DM) 663
dump (DU) 721
event manager (EM) 799
global catalog (GC) 633
IIOP domain (II) 815
JVM (SJ) 1127
kernel (KE) 831
loader (LD) 853
local catalog (CC) 633

1536 CICS TS for z/OS: CICS Diagnosis Reference

domains (continued)
lock manager (LM) 897
log manager (LG) 867
message (ME) 901
monitoring (MN) 911
object transaction service(OT) 939
parameter manager (PA) 945
partner(PT) 1051
Pipeline Manager Domain (PI) 1007
program manager (PG) 949
Recovery Manager (RM) 1061
scheduler services (SH) 1119
security manager (XS) 1313
socket (SO) 1175
statistics (ST) 1195
storage manager (SM) 1143
temporary storage domain (TS) 1221
timer (TI) 1201
trace (TR) 1205
transaction manager (XM) 1275
user (US) 1241
Web (WB) 1257

DP (Debugging profile) domain 673
DPFM gate

ACTIVATE_DEBUG_PROFILE function 676
DELETE_DEBUG_PROFILE function 676
END_PM_BROWSE function 680
GET_DEBUG_PROFILE function 673
INACTIVATE_DEBUG_PROFILE function 677
READNEXT_PM_PROFILE function 679
REPLACE_DEBUG_PROFILE function 677
SAVE_DEBUG_PROFILE function 674
START_PM_BROWSE function 678

DPIQ gate
INQUIRE_DEBUG_TASK function 680
INQUIRE_PARAMETERS function 680
SET_DEBUG_PROFILE function 681
SET_PARAMETERS function 680

DPLM gate
ENDBR_DEBUG_PROFILES function 684
READNEXT_DEBUG_PROFILES function 682
READNEXT_INPUT function 683
RESTARTBR_DEBUG_PROFILES function 684
STARTBR_DEBUG_PROFILES function 681
UPDATE_PROFILE_IN_LIST function 685

DPPM gate
PATTERN_MATCH_PROFILE function 686
PATTERN_MATCH_TASK function 685

DPUM gate
GET_USER_DEFAULTS function 687
SAVE_USER_DEFAULTS function 688

DPWD gate
PROCESS_PAGE function 689
PROCESS_SUBMIT function 689

DPWE gate
PROCESS_PAGE function 690
PROCESS_SUBMIT function 690

DPWJ gate
PROCESS_PAGE function 691
PROCESS_SUBMIT function 691

DPWL gate
PROCESS_PAGE function 692
PROCESS_SUBMIT function 692

DPXM gate
BIND_XM_CLIENT function 693
INIT_XM_CLIENT function 693
RELEASE_XM_CLIENT function 694

DRA (database resource adapter) 93
DS (dispatcher) domain 697
DSAT format

FORCE_PURGE_INHIBIT_QUERY function 718
NOTIFY_DELETE_TCB function 718
PURGE_INHIBIT_QUERY function 718
TASK_REPLY function 717

DSAT gate
ATTACH function 697
CANCEL_TASK function 701
CHANGE_MODE function 698
CHANGE_PRIORITY function 700
CLEAR_MATCH function 700
DELETE_SUBSPACE_TCBS function 701
FREE_SUBSPACE_TCBS function 701
RELEASE_OPEN_TCB function 702
SET_PRIORITY function 700
SET_TRANSACTION_TOKEN function 702
TCB_POOL_MANAGEMENT function 702

DSB (data stream build) 36
interfaces, illustrated 36
page and text build (PBP) 36
terminal page processor (TPP) 36

DSB (DBCTL scheduling block) 102
DSBR gate

END_BROWSE function 703
GET_NEXT function 703
INQUIRE_TASK function 704
INQUIRE_TCB function 705
SET_TASK function 705
SET_TCB function 706
START_BROWSE function 703

DSIT gate
ACTIVATE_MODE function 707
ADD_TCB function 708
DELETE_ALL_OPEN_TCBS function 710
DELETE_OPEN_TCB function 709
DELETE_TCB function 709
FREE_TCB function 710
INQUIRE_DISPATCHER function 706
PROCESS_DEAD_TCBS function 710
SET_DISPATCHER function 707

DSNAME block manager, file control (DFHFCDN) 188
DSNB (data set name block) 177
DSNCUEXT 85
DSNT (data set name block table)

finding in dump 386
DSSR gate

ADD_SUSPEND function 710
DELETE_SUSPEND function 711
RESUME function 712
SUSPEND function 711
WAIT_MVS function 713
WAIT_OLDC function 715

Index 1537

DSSR gate (continued)
WAIT_OLDW function 714

DU (dump) domain 721
DUA (dump domain anchor block) 748
DUDT gate

ADD_SYSTEM_DUMPCODE function 728
ADD_TRAN_DUMPCODE function 722
DELETE_SYSTEM_DUMPCODE function 729
DELETE_TRAN_DUMPCODE function 723
ENDBR_SYSTEM_DUMPCODE function 733
ENDBR_TRAN_DUMPCODE function 728
GETNEXT_SYSTEM_DUMPCODE function 732
GETNEXT_TRAN_DUMPCODE function 726
INQUIRE_SYSTEM_DUMPCODE function 730
INQUIRE_TRAN_DUMPCODE function 724
SET_SYSTEM_DUMPCODE function 731
SET_TRAN_DUMPCODE function 725
STARTBR_SYSTEM_DUMPCODE function 732
STARTBR_TRAN_DUMPCODE function 726

DUDU gate
SYSTEM_DUMP function 736
TRANSACTION_DUMP function 734

dump (DU) domain 721
dump domain anchor block (DUA) 748
dump domain open block 748
dump utility program (DFHDU640) 125
DUMP_DATA function, EJDU gate 781
DUMP_STACK function, EJDU gate 782
DUMPDS_CLOSE function, DUSR gate 739
DUMPDS_OPEN function, DUSR gate 739
DUMPDS_SWITCH function, DUSR gate 739
dumps

finding FCT, or TCT in 386
finding in dump 386
system 721, 831
transaction 721

dumps, FEPI
interpreted areas 267

common area 269
connections 271
conversations 272
DQEs 272
nodes 270
pools 269
property sets 269
static area 268
targets 270

DUSR gate
CROSS_SYSTEM_DUMP_AVAIL function 738
DUMPDS_CLOSE function 739
DUMPDS_OPEN function 739
DUMPDS_SWITCH function 739
INQUIRE_CURRENT_DUMPDS function 740
INQUIRE_DUMPDS_AUTOSWITCH function 741
INQUIRE_DUMPDS_OPEN_STATUS function 741
INQUIRE_INITIAL_DUMPDS function 741
INQUIRE_RETRY_TIME function 743
INQUIRE_SYSTEM_DUMP function 743
SET_DUMPDS_AUTOSWITCH function 741
SET_DUMPTABLE_DEFAULTS function 742
SET_INITIAL_DUMPDS function 742

DUSR gate (continued)
SET_RETRY_TIME function 744
SET_SYSTEM_DUMP function 743

DWE (deferred work element) 368
DYN_CREATE_WEBSERVICE function, PISC

gate 1028
dynamic allocation sample program (DYNALLOC) 127
dynamic log

as used by file control 165
for restartable transactions 439

dynamic transaction backout
READ UPDATE request 168
WRITE request 169

dynamic transaction backout (DTB)
transaction restart 439

E
EDF (execution diagnostic facility) 151
EIB (EXEC interface block) 135
EIC (EXEC interface communication area) 136
EIP (EXEC interface program) 135
EIS (EXEC interface storage) 136
EJ domain 753

EJCB, EJCG, EJDG, EJBG Gates (EJ) 753
EJ domain (EJ) 753
EJBB gate

END_BROWSE 756
GET_NEXT 755
START_BROWSE 754

EJBG gate
ADD_BEAN 756
ADD_BEAN_STATS 757
CONFIRM_ALL_BEANS 758
DELETE_ALL_BEANS 758
DELETE_BEAN 759
GET_BEAN_DD 759
INQUIRE_BEAN 760
RESET_BEAN_STATS 760

EJCB gate
END_BROWSE 762
GET_NEXT 761
START_BROWSE 761

EJCG gate
ACTION_CORBASERVER function 763
ADD_CORBASERVER function 763
AMEND_CORBASERVER function 764
ESTABLISH 766
INQUIRE_CORBASERVER function 766
RELINQUISH 767
RESOLVE_CORBASERVER function 767
SET_ALL_STATE function 768
WAIT_FOR_CORBASERVER function 768

EJCP gate
DISCARD_DJAR function 769
INSTALL_DJAR function 769
PRE_INSTALL_DJAR function 770
PUBLISH_CORBASERVER function 770
PUBLISH_DJAR function 771
RETRACT_CORBASERVER function 771
RETRACT_DJAR function 771

1538 CICS TS for z/OS: CICS Diagnosis Reference

EJDB gate
END_BROWSE 773
GET_NEXT 772
START_BROWSE 772

EJDG gate
ACTION_DJAR 773
ADD_DJAR 774
AMEND_DJAR 775
COUNT_FOR_CS 775
DELETE_ALL_DJARS 777
DELETE_DJAR 776
INQUIRE_DJAR 777
SET_ALL_STATE 778
WAIT_FOR__USABLE_DJARS 779
WAIT_FOR_DJAR 778

EJDI gate
ADD_ENTRY 779
INITIALIZE 780
LOOKUP_ENTRY 780
REMOVE_ENTRY 781

EJDU gate
DUMP_DATA 781
DUMP_STACK 782
INQUIRE_TRACE_FLAGS 782

EJGC gate
DELETE_CORBASERVER function 765

EJGE gate
INITIALIZE 782
QUIESCE 783
TERMINATE 783

EJIO gate
RESOLVE 784
RESOLVE_CSERVERS 784
RESOLVE_DJARS 784

EJJO gate 785
EJMI gate

ADD_BEAN 785
ADD_METHOD 785
DISCARD_METHOD_INFO 786
GET_METHOD_INFO 786
INITIALIZE 787

EJOB gate
END_BROWSE_OBJECT 787
GET_NEXT_OBJECT 787
INQUIRE_OBJECT 788
INQUIRE_STORES 789
RETRIEVE_STATISTICS 789
START_BROWSE_OBJECT 790

EJOS gate
ACTIVATE_OBJECT 790
CLOSE_OBJECT_STORE 791
OPEN_OBJECT_STORE 791
REMOVE_OBJECT 792
REMOVE_STORE 792
STORE_OBJECT 793

elements list 1343
types of elements 1343

EM (event manager) domain 799
EMBR gate

END_BROWSE_EVENT function 806
END_BROWSE_TIMER function 808

EMBR gate (continued)
GET_NEXT_EVENT function 806
GET_NEXT_TIMER function 807
INQUIRE_EVENT function 805
INQUIRE_TIMER function 806
START_BROWSE_EVENT function 805
START_BROWSE_TIMER function 807

EMEM gate
ADD_SUBEVENT function 799
CHECK_TIMER function 799
DEFINE_ATOMIC_EVENT function 800
DEFINE_COMPOSITE_EVENT function 800
DEFINE_TIMER function 801
DELETE_EVENT function 801
DELETE_TIMER function 802
FIRE_EVENT function 802
FORCE_TIMER function 802
INQUIRE_STATUS function 803
REMOVE_SUBEVENT function 803
RETRIEVE_REATTACH_EVENT function 804
RETRIEVE_SUBEVENT function 804
TEST_EVENT function 804

emergency restart 74
after 74

ENABLE routine of DFHUEM 468
END_BACKOUT function, RMRO gate 1090
END_BROWSE function, AIIQ format 25
END_BROWSE function, CCCC gate 636
END_BROWSE function, DDBR gate 644
END_BROWSE function, DHTM gate 658
END_BROWSE function, DMIQ gate 667
END_BROWSE function, DSBR gate 703
END_BROWSE function, EJBB gate 756
END_BROWSE function, EJCB gate 762
END_BROWSE function, EJDB gate 773
END_BROWSE function, IIMM gate 824
END_BROWSE function, LDLD gate 860
END_BROWSE function, LGJN gate 879
END_BROWSE function, LGLD gate 886
END_BROWSE function, LGST gate 889
END_BROWSE function, SOTB gate 1187
END_BROWSE function, TSBR gate 1237
END_BROWSE function, TSSB gate 1234
END_BROWSE function, WBAP gate 1259
END_BROWSE_ALL function, LGBA gate 868
END_BROWSE_CHAINS function, LGCC gate 871
END_BROWSE_EVENT function, EMBR gate 806
END_BROWSE_HEADERS function, WBCL gate 1264
END_BROWSE_HOST function, WBUR gate 1271
END_BROWSE_JVM function, SJIS gate 1134
END_BROWSE_JVMPROFILE function, SJIS

gate 1136
END_BROWSE_OBJECT function, EJOB gate 787
END_BROWSE_PIPELINE function, PIPL gate 1019
END_BROWSE_PROCESSTYPE function, BATT

gate 605
END_BROWSE_PROGRAM function, PGIS gate 993
END_BROWSE_TCLASS function, XMCL gate 1283
END_BROWSE_TDQDEF function, TDTM gate 571
END_BROWSE_TIMER function, EMBR gate 808
END_BROWSE_TRANDEF function, XMBD gate 1279

Index 1539

END_BROWSE_TRANSACTION function, XMIQ
gate 1294

END_BROWSE_TXN_TOKEN function, XMIQ
gate 1295

END_BROWSE_URIMAP function, WBUR gate 1270
END_BROWSE_WEBSERVICE function, PIWR

gate 1037
END_CHAIN_BROWSE function, LGCB gate 869
END_DELIVERY function, RMDE gate 1092
END_LINK_BROWSE function, RMLN gate 1078
END_PARTNER_BROWSE function, PRCM

format 1046
END_PM_BROWSE function, DPFM gate 680
END_POOL_BROWSE function, PTTW gate, 1053
END_SUBPOOL_BROWSE function, SMAD gate 1145
END_TASK function, KEDS gate 841
END_TRANSACTION function, USXM gate 1250
END_UOW_BROWSE function, RMUW gate 1067
END_WORK_TOKEN_BROWSE function, RMWT

gate 1087
END_WRITE function, CCCC gate 637
ENDBR_ACTIVITY function, BABR gate 618
ENDBR_CONTAINER function, BABR gate 620
ENDBR_DEBUG_PROFILES function, DPLM gate 684
ENDBR_PROCESS function, BABR gate 621
ENDBR_SYSTEM_DUMPCODE function, DUDT

gate 733
ENDBR_TRAN_DUMPCODE function, DUDT gate 728
ENF servicer, file control (DFHFCES) 191
environment, function shipping 280
EPB (exit program block) 389, 393, 467
EPL (exit program link) 467
ERROR function, LGGL gate 893
ESDS (entry-sequenced data set)

invalid DELETE request 171
WRITE request processing 168

ESTABLISH function, EJCG gate 766
ESTABLISH_LANGUAGE function, APLH gate 529
ESTABLISH_LANGUAGE function, APLI gate 532
ESTABLISH_LANGUAGE function, APLJ gate 534
ESTABLISH_PIPELINE function, PIPL gate 1020
ESTAE exit routine 299, 365, 366, 671, 851
event manager (EM) domain 799
EXCEPTION_DATA_PUT function, MNMN gate 911
exchange log name (XLN) 480
EXCI (external CICS interface) 157

design overview 157
EXEC CALL interface 157
EXEC CICS interface 158
programming interfaces 157

EXEC CALL interface of EXCI 157
EXEC CICS CREATE 74
EXEC CICS DELETE command 171
EXEC CICS DISCARD 74
EXEC CICS ENDBR command 173
EXEC CICS interface of EXCI 158
EXEC CICS READ command 167
EXEC CICS READNEXT command 172
EXEC CICS READPREV command 172
EXEC CICS RESETBR command 172
EXEC CICS REWRITE command 170

EXEC CICS STARTBR command 172
EXEC CICS UNLOCK command 171
EXEC CICS WRITE command 168
EXEC DLI command

DL/I interface 119
EXEC interface block (EIB) 135
EXEC interface communication area (EIC) 136
EXEC interface module, file control (DFHEIFC) 186
EXEC interface program (EIP) 135
EXEC interface storage (EIS) 136
execution diagnostic facility (EDF) 151
exit interface, user

control blocks, illustrated 470
exit program block (EPB) 389, 393, 467
exit program link (EPL) 467
exits

VTAM 21, 502
EXPLICIT_OPEN function, LGJN gate 880
EXPORT_CERTIFICATE_DATA function, SOIS

gate 1183
EXPORT_CERTIFICATE_DATA function, SOSE

gate 1191
EXPORT_SYMBOL_LIST function, DHSL gate 655
extended recovery facility (XRF) 155
external CICS interface (EXCI) 157

design overview 157
EXEC CALL interface 157
EXEC CICS interface 158
programming interfaces 157

extract statistics reporting function 354
EXTRACT_PROCESS function, APTC gate 539
EXTRACT-EXIT routine of DFHUEM 469
extrapartition transient data queues 462

interfaces, illustrated 465
referencing using indirect queues 462

F
facility control area associated address

task control area (TCA)
terminal control 408

fast file locate element (FFLE) 173
FBWA (file browse work area)

FREEMAIN in ENDBR request processing 173
RESETBR request 172
STARTBR request 172

FC static (file control static storage) 178
FCCA CHECK

file control 216
file control, FCCA CHECK function 216

FCCA COLD_START_RLS
file control 217
file control, FCCA COLD_START_RLS function 217

FCCA DRAIN_CONTROL_ACB
file control 217
file control, FCCA DRAIN_CONTROL_ACB

function 217
FCCA INQUIRE_RECOVERY

file control 218
file control, FCCA INQUIRE-RECOVERY

function 218

1540 CICS TS for z/OS: CICS Diagnosis Reference

FCCA LOST_LOCKS_COMPLETE
file control 218
file control, FCCA LOST_LOCKS_COMPLETE

function 218
FCCA QUIESCE_COMPLETE

file control 218
file control, FCCA QUIESCE_COMPLETE

function 218
FCCA QUIESCE_REQUEST

file control 219
file control, FCCA QUIESCE_REQUEST

function 219
FCCA REGISTER_CONTROL_ACB

file control 220
file control, FCCA REGISTER_CONTROL_ACB

function 220
FCCA RELEASE_LOCKS

file control 220
file control, FCCA RELEASE_LOCKS function 220

FCCA RESET_NONRLS_BATCH
file control 221
file control, FCCA RESET_NONRLS_BATCH

function 221
FCCA RETAIN_DATASET_LOCKS

file control 221
file control, FCCA RETAIN_DATASET_LOCKS

function 221
FCCA RETAIN_UOW_LOCKS

file control 221
file control, FCCA RETAIN_UOW_LOCKS

function 221
FCCA UNREGISTER_CONTROL_ACB

file control 222
file control, FCCA UNREGISTER_CONTROL_ACB

function 222
FCCI INQUIRE

file control 222
file control, FCCI INQUIRE function 222

FCCR DELETE
file control 228
file control, FCCR DELETE function 228

FCCR DELETE_MULTIPLE
file control 229
file control, FCCR DELETE_MULTIPLE

function 229
FCCR HIGHEST

file control 223
file control, FCCR HIGHEST function 223

FCCR LOAD
file control 225
file control, FCCR LOAD function 225

FCCR POINT
file control 222
file control, FCCR POINT function 222

FCCR READ
file control 223
file control, FCCR READ function 223

FCCR READ_DELETE
file control 224
file control, FCCR READ_DELETE function 224

FCCR REWRITE
file control 227
file control, FCCR REWRITE function 227

FCCR UNLOCK
file control 225
file control, FCCR UNLOCK function 225

FCCR WRITE
file control 226
file control, FCCR WRITE function 226

FCCT CLOSE
file control 232
file control, FCCT CLOSE function 232

FCCT DELETE
file control 232
file control, FCCT DELETE function 232

FCCT EXTRACT_STATISTICS
file control 234
file control, FCCT EXTRACT_STATISTICS

function 234
FCCT OPEN

file control 230
file control, FCCT OPEN function 230

FCCT SET
file control 233
file control, FCCT SET function 233

FCCU BACKOUT
file control 236
file control, FCCU BACKOUT function 236

FCCU COMMIT
file control 235
file control, FCCU COMMIT function 235

FCCU INQUIRE
file control 236
file control, FCCU INQUIRE function 236

FCCU PREPARE
file control 234
file control, FCCU PREPARE function 234

FCCU RESTART
file control 237
file control, FCCU RESTART function 237

FCCU RETAIN
file control 235
file control, FCCU RETAIN function 235

FCDS DISCONNECT_CFDT_POOLS
file control 239
file control, FCDS DISCONNECT_CFDT_POOLS

function 239
FCDS EXTRACT_CFDT_STATS

file control 238
file control, FCDS EXTRACT_CFDT_STATS

function 238
FCDU BACKOUT

file control 241
file control, FCDU BACKOUT function 241

FCDU COMMIT
file control 240
file control, FCDU COMMIT function 240

FCDU INQUIRE
file control 242
file control, FCDU INQUIRE function 242

Index 1541

FCDU PREPARE
file control 239
file control, FCDU PREPARE function 239

FCDU RESTART
file control 243
file control, FCDU RESTART function 243

FCDU RETAIN
file control 240
file control, FCDU RETAIN function 240

FCDY RESYNC_CFDT_LINK
file control 244
file control, FCDY RESYNC_CFDT_LINK

function 244
FCDY RESYNC_CFDT_POOL

file control 244
file control, FCDY RESYNC_CFDT_POOL

function 244
FCDY RETURN_CFDT_ENTRY_POINTS

file control 244
file control, FCDY RETURN_CFDT_ENTRY_POINTS

function 244
FCFL END_UOWDSN_BROWSE

file control 245
file control, FCFL END_UOWDSN_BROWSE

function 245
FCFL FIND_RETAINED

file control 245
file control, FCFL FIND_RETAINED function 245

FCFL FORCE_INDOUBTS
file control 246
file control, FCFL FORCE_INDOUBTS function 246

FCFL GET_NEXT_UOWDSN
file control 246
file control, FCFL GET_NEXT_UOWDSN

function 246
FCFL RESET_BFAILS

file control 247
file control, FCFL RESET_BFAILS function 247

FCFL RETRY
file control 247
file control, FCFL RETRY function 247

FCFL START_UOWDSN_BROWSE
file control 247
file control, FCFL START_UOWDSN_BROWSE

function 247
FCFL TEST_USER

file control 248
file control, FCFL TEST_USER function 248

FCLJ DATASET_COPY
file control 254
file control, FCLJ DATASET_COPY function 254

FCLJ FILE_CLOSE
file control 248
file control, FCLJ FILE_CLOSE function 248

FCLJ FILE_OPEN
file control 248
file control, FCLJ FILE_OPEN function 248

FCLJ READ_ONLY
file control 249
file control, FCLJ READ_ONLY function 249

FCLJ READ_UPDATE
file control 249
file control, FCLJ READ_UPDATE function 249

FCLJ SYNCHRONIZE_READ_UPDATE
file control 253
file control, FCLJ SYNCHRONIZE_READ_UPDATE

function 253
FCLJ TAKE_KEYPOINT

file control 253
file control, FCLJ TAKE_KEYPOINT function 253

FCLJ WRITE_ADD
file control 251
file control, FCLJ WRITE_ADD function 251

FCLJ WRITE_ADD_COMPLETE
file control 251
file control, FCLJ WRITE_ADD_COMPLETE

function 251
FCLJ WRITE_DELETE

file control 252
file control, FCLJ WRITE_DELETE function 252

FCLJ WRITE_UPDATE
file control 250
file control, FCLJ WRITE_UPDATE function 250

FCQI COMPLETE_QUIESCE
file control 255
file control, FCQI COMPLETE_QUIESCE

function 255
FCQI INITIATE_QUIESCE

file control 254
file control, FCQI INITIATE_QUIESCE function 254

FCQI INQUIRE_QUIESCE
file control 255
file control, FCQI INQUIRE_QUIESCE function 255

FCQR RECEIVE_QUIESCES
file control 256
file control, FCQR RECEIVE_QUIESCES

function 256
FCQRE (file control quiesce receive element)

file control quiesce receive element (FCQRE) 173
FCQS SEND_QUIESCES

file control 256
file control, FCQS SEND_QUIESCES function 256

FCQSE (file control quiesce send element)
file control quiesce send element (FCQSE) 173

FCQU PROCESS_QUIESCE
file control 257
file control, FCQU PROCESS_QUIESCE

function 257
FCRR LOST_LOCKS_RECOVERED

file control 260
file control, FCRR LOST_LOCKS_RECOVERED

function 260
FCRR RESOURCE_AVAILABLE

file control 260
file control, FCRR RESOURCE_AVAILABLE

function 260
FCRR RESTART_RLS

file control 259
file control, FCRR RESTART_RLS function 259

FCT (file control table) 173
finding in dump 386

1542 CICS TS for z/OS: CICS Diagnosis Reference

FCXCWAIT resource type
READ request processing 168
REWRITE request processing 170

FEPI as a CICS transaction 263
FEPI dumps

interpreted areas 267
FEPI module directory 1343
FFLE (fast file locate element) 173
FHM5

sign on for 1171
field edit built-in function 77
field engineering program 161
file control 163

BDAM request processor (DFHFCBD) 187
catalog manager (DFHFCAT) 186
CFDT UOW pool block (FCUP) 180
control blocks, illustrated 173
coupling facility data table load program

(DFHFCDL) 188
coupling facility data table open/close program

(DFHFCDO) 190
coupling facility data table request processor

(DFHFCDR) 191
coupling facility data table resynchronization program

(DFHFCDY) 191
coupling facility data table RMC program

(DFHFCDW) 191
coupling facility data table UOW calls program

(DFHFCDU) 191
data table request processor (DFHFCDTS) 191
DELETE request 171
DSNAME block manager (DFHFCDN) 188
ENDBR request 173
ENF servicer (DFHFCES) 191
EXEC interface module (DFHEIFC) 186
FBWA (file browse work area) 177
FCPE (file control CFDT pool element) 178
FCPW (file control CFDT pool wait element) 179
FCQRE (file control quiesce receive element) 178
FCQSE (file control quiesce send element) 178
FCTE (file control table entry) 179
FCUP (file control CFDT UOW pool block) 180
file browse work area (FBWA) 177
file control CFDT pool element (FCPE) 178
file control CFDT pool wait element (FCPW) 179
file control CFDT UOW pool block (FCUP) 180
file control locks locator blocks (FLLBs) 181
file control quiesce receive element (FCQRE) 178
file control quiesce send element (FCQSE) 178
file control table entry (FCTE) 179
file lasting access block (FLAB) 180
file request handler (DFHFCFR) 191
file state program (DFHFCFS) 193
FLAB (file lasting access block) 180
FLLBs (file control locks locator blocks) 181
FRAB and FLAB processor (DFHFCFL) 191
function shipping interface module (DFHFCRF) 208
initialization program 1 (DFHFCIN1) 195
initialization program 2 (DFHFCIN2) 196
initialize recovery (DFHFCIR) 197
locks locator blocks (FLLBs) 181

file control (continued)
log failures handler (DFHFCLF) 198
logging and journaling program (DFHFCLJ) 198
modules, organization 185
non-RLS lock handler (DFHFCNQ) 204
offsite recovery completion (DFHFCOR) 205
open/close program (DFHFCN) 201
pool element (FCPE) 178
pool wait element (FCPW) 179
quiesce receive element (FCQRE) 178
quiesce receive transaction (DFHFCQR) 205
quiesce send element (FCQSE) 178
READ request 167
READNEXT request 172
READPREV request 172
recovery control program (DFHFCRC) 206
request processing 166
RESETBR request 172
restart program (DFHFCRP) 210
REWRITE request 170
RLS cleanup transaction (DFHFCRD) 208
RLS control ACB manager (DFHFCCA) 188
RLS open/close program (DFHFCRO) 210
RLS quiesce common system transaction

(DFHFCQT) 205
RLS quiesce exit (DFHFCQX) 206
RLS quiesce initiation (DFHFCQI) 205
RLS quiesce processor (DFHFCQU) 206
RLS quiesce send transaction (DFHFCQS) 205
RLS record management processor

(DFHFCRS) 212
RLS restart (DFHFCRR) 212
RLS VSAM interface processor (DFHFCRV) 212
share control block manager (DFHFCRL) 209
shared data table function ship program

(DFHFCDTX) 191
shared resources pool processor (DFHFCL) 197
shutdown program (DFHFCSD) 212
STARTBR request 172
static storage (FC static) 178
statistics program (DFHFCST) 213
table entry (FCTE) 179
table manager (DFHFCMT) 199
UNLOCK request 171
user exits 262
VSAM interface program (DFHFCVR) 214
VSAM request processor (DFHFCVS) 215
WRITE request 168

file input/output area (FIOA) 173, 180
file lasting access block (FLAB) 173
file request anchor block (FRAB) 173, 182
file request handler, file control (DFHFCFR) 191
file request thread element (FRTE) 173, 182
file state program, file control (DFHFCFS) 193
files

DELETE request 171
LSR (local shared resources) 166
READ request 166

FIND_PROFILE, XMFD gate 1288
FIND_PROGRAM_ATTRIBUTES function, LILI

gate 558

Index 1543

FIND_REQUEST_STREAM function, IIRH gate 818
FIND_SIGNATURE function, PICC gate 1013
FIND_TRANSACTION_OWNER function, TFAL

gate 577
FIOA (file input/output area) 173, 180

FREEMAIN after REWRITE request 171
FREEMAIN after WRITE request 170
FREEMAIN during UNLOCK request

processing 171
FREEMAIN in ENDBR request processing 173
READ request 168
RESETBR request 172
STARTBR request 172
WRITE request 170, 171

FIRE_EVENT function, EMEM gate 802
FLAB (file lasting access block) 173
FLATTEN process

FLATTEN 69
FLATTEN_TRANSACTION_USER function, USXM

gate 1250
FLATTEN_USER function, USFL gate 1247
FLATTEN_USER_SECURITY function, XSFL

gate 1320
FLLBs (file control locks locator blocks)

file control locks locator blocks (FLLBs) 173
flow for sign-on to consoles

flow for sign-on to consoles 14
FORCE function, LGGL gate 875
FORCE function, RMRE gate 1084
FORCE_DATA function, LGWF gate 891
FORCE_JNL function, LGGL gate 876
FORCE_PURGE_INHIBIT_QUERY function, DSAT

format 718
FORCE_PURGE_INHIBIT_QUERY function, XMPP

format 1310
FORCE_START function, PAGP gate 945
FORCE_TIMER function, EMEM gate 802
FORCE_UOW function, RMUW gate 1065
FORGET function, OTCO gate 943
FORGET function, OTSU gate 942
formats, domain call

generic 6
ownership of 6
specific 6

formatting data for function shipping 280
forward recovery logging 165
FRAB (file request anchor block) 173, 182
FRAB and FLAB processor, file control

(DFHFCFL) 191
FREE processing in application-owning region 447
FREE processing in terminal-owning region 451
FREE_HANDLE_TABLES function, PGHM gate 983
FREE_SUBSPACE_TCBS function, DSAT gate 701
FREE_SURROGATE function, RTSU gate 562
FREE_TCB function, DSIT gate 710
FREE_TCBS function, KEDS gate 841
FREE_TXN_ENVIRONMENT function, XMXE

gate 1307
FREEMAIN function, SMGF gate 1148
FREEMAIN function, SMMC gate 1152

FREEMAIN_ALL_TERMINAL function, SMMC
gate 1152

FRTE (file request thread element) 173, 182
function management header

type 5 1171
function shipping 277

communication with remote system 279
data transformations 280
distributed program link 107
handling of CICS requests 281

receiving a reply from a remote system 285
receiving a request at a remote system 284
sending a reply at a remote system 284
sending a request to a remote system 282

handling of DL/I requests 285
receiving a DL/I reply from a remote system 287
receiving a DL/I request at a remote system 287
sending a DL/I reply at a remote system 287
sending a DL/I request to a remote system 286

initialization 278
local and remote resource names 278
programming functions with 277
protocols 279

resynchronization protocol 279
sender error recovery protocol 279
shutdown protocol 279
symmetrical bracket protocol 279

syncpoint functions
ABORT 288
COMMIT 288
PREPARE 288
SPR (syncpoint request) 288

terminal control 287
terminal control functions

ALLOCATE 287
FREE 288
POINT 288
TERM=YES operand 288

function shipping interface module, file control
(DFHFCRF) 208

functional layout of FEPI 263
functions of CICS, organization 3, 7
functions provided by gates 5
FWA (file work area)

FREEMAIN during REWRITE processing 171
FREEMAIN during UNLOCK request

processing 171
FREEMAIN during WRITE request 170
FREEMAIN in BDAM ENDBR request

processing 173
FREEMAIN in VSAM ENDBR request

processing 173
READ request 167
RESETBR request 172
STARTBR request 172

G
gates, domain

functions provided by 5
generic 5

1544 CICS TS for z/OS: CICS Diagnosis Reference

gates, domain (continued)
specific 5

GC (global catalog) domain 633
GCD (global catalog data set) 633
general request processing 166
generalized trace facility (GTF) 1205
GENERATE_APPC_BIND function, XSLU gate 1328
GENERATE_APPC_RESPONSE function, XSLU

gate 1329
generic formats 6
generic gates 5
GENERIC option of DELETE request 171
generic resource

VTAM 473
Generic Resource - autoinstall 14
Generic resource and ATI 475
GET function, CCCC gate 634
GET function, TSPT gate 1227
GET_BEAN_DD function, EJBG gate 759
GET_CONTAINER_INTO function, BACR gate 623
GET_CONTAINER_LENGTH function, BACR gate 624
GET_CONTAINER_SET function, BACR gate 624
GET_DEBUG_PROFILE function, DPFM gate 673
GET_HTTP_RESPONSE function, WBAP gate 1259
GET_INITIAL_DATA function, IIRP gate 819
GET_MESSAGE function, TFAL gate 577
GET_MESSAGE_BODY function, WBAP gate 1259
GET_METHOD_INFO function, EJMI gate 786
GET_NEXT function, AIIQ format 25
GET_NEXT function, CCCC gate 636
GET_NEXT function, DHTM gate 658
GET_NEXT function, DMIQ gate 667
GET_NEXT function, DSBR gate 703
GET_NEXT function, EJBB gate 755
GET_NEXT function, EJCB gate 761
GET_NEXT function, EJDB gate 772
GET_NEXT function, IIMM gate 824
GET_NEXT function, LGJN gate 878
GET_NEXT function, LGLD gate 885
GET_NEXT function, LGST gate 889
GET_NEXT function, SOTB gate 1187
GET_NEXT function, TSBR gate 1236
GET_NEXT function, TSSB gate 1233
GET_NEXT_ENTRY function, DDBR gate 643
GET_NEXT_EVENT function, EMBR gate 806
GET_NEXT_HOST function, WBUR gate 1271
GET_NEXT_INSTANCE function, LDLD gate 859
GET_NEXT_JVM function, SJIS gate 1134
GET_NEXT_JVMPROFILE function, SJIS gate 1136
GET_NEXT_LINK function, RMLN gate 1077
GET_NEXT_OBJECT function, EJOB gate 787
GET_NEXT_PARTNER function, PRCM format 1046
GET_NEXT_PIPELINE function, PIPL gate 1020
GET_NEXT_POOL function, PTTW gate, 1053
GET_NEXT_PROCESSTYPE function, BATT gate 605
GET_NEXT_PROGRAM function, LDLD gate 859
GET_NEXT_PROGRAM function, PGIS gate 991
GET_NEXT_SUBPOOL function, SMAD gate 1145
GET_NEXT_TCLASS function, XMCL gate 1283
GET_NEXT_TDQDEF function, TDTM gate 570
GET_NEXT_TIMER function, EMBR gate 807

GET_NEXT_TRANDEF function, XMBD gate 1277
GET_NEXT_TRANSACTION, XMIQ gate 1292
GET_NEXT_TXN_TOKEN function, XMIQ gate 1295
GET_NEXT_UOW function, RMUW gate 1066
GET_NEXT_URIMAP function, WBUR gate 1270
GET_NEXT_WEBSERVICE function, PIWR gate 1037
GET_NEXT_WORK_TOKEN function, RMWT

gate 1087
GET_PARAMETERS function, PAGP gate 945
GET_RECOVERY_STATUS function, RTSU gate 562
GET_RELEASE function, TSPT gate 1228
GET_RELEASE_SET function, TSPT gate 1228
GET_SET function, TSPT gate 1228
GET_TXN_ENVIRONMENT function, XMXE gate 1307
GET_UPDATE function, CCCC gate 635
GET_USER_DEFAULTS function, DPUM gate 687
GETMAIN function, SMGF gate 1148
GETMAIN function, SMMC gate 1151
GETNEXT_ACTIVITY function, BABR gate 617
GETNEXT_CONTAINER function, BABR gate 619
GETNEXT_PROCESS function, BABR gate 621
GETNEXT_SYSTEM_DUMPCODE function, DUDT

gate 732
GETNEXT_TRAN_DUMPCODE function, DUDT

gate 726
GL_FORCE function, LGLB gate 884
GL_WRITE function, LGLB gate 883
global catalog (GC) domain 633
global catalog data set (GCD) 633
global trap working storage (TRGTW) 1217
global user exits 394

XFCREQ 166, 168
GO_TO function, LILI gate 559
GTF (generalized trace facility) 1205
GTF buffer 1217

H
HANDLE_PARSE_EVENT function, PICC gate 1014
HANDLE_SECURITY_CONTEXT function, IIRS

gate 826
hash table 383
high-performance option (HPO) 413
horizontal tabs

and device independence 31
HPO (high-performance option) 413

I
ICE (interval control element) 308

chain, and AP domain termination program
(STP) 601

ICP (interval control program)
mapping control program (MCP) 39
terminal page retrieval program (TPR) 50
undelivered messages cleanup program (TPQ) 48

ICXM gate
INQUIRE_FACILITY function 557

IDENTIFY_PROGRAM function, LDLD gate 861
IEFJSCVT 360
IEFJSSVT 360

Index 1545

IGNORE_CONDITIONS function, PGHM gate 979
II (IIOP) domain 815
IILS gate

ADD_LOGICAL_SERVER function 815
DELETE_LOGICAL_SERVER function 816
PUBLISH_LOGICAL_SERVER function 816
RETRACT_LOGICAL_SERVER function 816

IIMM gate
ADD_REPLACE_RQMODEL function 817
COMMIT_RQMODELS function 817
DELETE_RQMODEL function 817

IIOP domain (II) domain 815
IIP (non-3270 input mapping) 36

interfaces, illustrated 37
mapping control program (MCP) 37, 39
storage control 37
terminal control 37

IIRH gate
FIND_REQUEST_STREAM function 818
PARSE function 818

IIRP gate
GET_INITIAL_DATA function 819
INITIALISE function 822
INVOKE function 820
RECEIVE_REPLY function 821
RECEIVE_REQUEST function 820
SEND_REPLY function 822
TERMINATE function 823

IIRQ gate
END_BROWSE function 824
GET_NEXT function 824
INQUIRE_RQMODEL function 823
MATCH_RQMODEL function 825
START_BROWSE function 824

IIRR gate
PROCESS_REQUESTS function 825

IIRS gate
DESTROY_VAULT function 827
HANDLE_SECURITY_CONTEXT function 826

IMMCLOSE function, SORD gate 1180
IMPLICIT_OPEN function, LGJN gate 881
IMPORT_CERTIFICATE_DATA function, SOIS

gate 1184
IMPORT_CERTIFICATE_DATA function, SOSE

gate 1192
IMPORT_SYMBOL_LIST function, DHSL gate 655
IMPORT_TRAN function, OTTR gate 939
IMS service modules

DL/I interface 119
in-doubts, resolution of 397
INACTIVATE_DEBUG_PROFILE function, DPFM

gate 677
INBOUND_FLOW function, RMLN gate 1073
INCREMENT_USE_COUNT function, PIWR gate 1038
indexes 417
indirect transient data queues 462
INIT_ACTIVITY_REQUEST function, BAXM gate 607
INIT_TRANSACTION_USER function, USXM

gate 1251
INIT_XM_CLIENT function, 62XM gate 561
INIT_XM_CLIENT function, DPXM gate 693

INIT_XM_CLIENT function, MRXM gate 560
INIT_XM_CLIENT function, TFXM gate 559
INITIAL_LINK function, PGPG gate 1000
INITIALISE function, IIRP gate 822
INITIALISE_TRANSIENT_DATA function, APTD

gate 544
INITIALISE_WEBSERVICE function, PIWR gate 1039
INITIALIZE function, EJDI gate 780
INITIALIZE function, EJGE gate 782
INITIALIZE function, EJMI gate 787
INITIALIZE function, LGGL gate 877
INITIALIZE function, LGJN gate 882
INITIALIZE function, LGLD gate 887
INITIALIZE function, LGST gate 890
INITIALIZE function, SMMC gate 1151
INITIALIZE function, TSSH gate 1229
initialize recovery, file control (DFHFCIR) 197
INITIALIZE_AID_POINTERS function, TFAL gate 578
INITIALIZE_DOCTEMPLATES function, DHTM

gate 655
INITIALIZE_DOMAIN function, DMDM format 670
INITIALIZE_ENVIRONMENT function, SOIS gate 1181
INITIALIZE_EXIT function, PGEX gate 976
INITIALIZE_LANGUAGES function, LILI gate 557
INITIALIZE_SSL function, SOSE gate 1188
INITIALIZE_TRANSACTION function, PGXM

gate 1002
INITIALIZE_URIMAPS function, WBUR gate 1268
INITIATE_RECOVERY function, RMLN gate 1073
initiation of transactions

automatic 462
time ordered 307

input TIOA
message switching 323

INQ_ABEND function, PGHM gate 981
INQ_AID function, PGHM gate 980
INQ_APPLICATION_DATA function, APIQ gate 528
INQ_CONDITION function, PGHM gate 978
INQ_DOMAIN_BY_ID function, DMIQ gate 668
INQ_DOMAIN_BY_NAME function, DMIQ gate 668
INQ_DOMAIN_BY_TOKEN function, DMIQ gate 668
INQ_LOCAL_DATETIME_DECIMAL function, KETI

gate 847
INQ_MONITORING function, MNSR gate 915
INQ_SECURITY_DOMAIN_PARMS function, XSIS

gate 1323
INQ_STATISTICS_OPTIONS function, STST

gate 1195
INQUIRE function, LGJN gate 877
INQUIRE function, LGLD gate 884
INQUIRE function, LGST gate 888
INQUIRE function, SOIS gate 1181
INQUIRE function, WBAP gate 1261
INQUIRE_ABEND_RECORD function, ABAB gate 518
INQUIRE_ACCESS function, SMSR gate 1157
INQUIRE_ACCESS_TOKEN function, SMSR

gate 1158
INQUIRE_ACTIVATION function, BABR gate 622
INQUIRE_ACTIVITY function, BABR gate 618
INQUIRE_ALL_TCLASSES function, XMCL gate 1281
INQUIRE_ALLOCATE_AID function, TFAL gate 578

1546 CICS TS for z/OS: CICS Diagnosis Reference

INQUIRE_ANCHOR function, KEDD gate 834
INQUIRE_AUTOINSTALL function, BRAI gate, 546
INQUIRE_AUTOINSTALL function, PGAQ gate 950
INQUIRE_AUXILIARY_TRACE function, TRSR

gate 1214
INQUIRE_BEAN function, EJBG gate 760
INQUIRE_BRIDGE_FACILITY function, BRFR

gate, 549
INQUIRE_CERTIFICATE_USERID function, XSPW

gate 1333
INQUIRE_CLASSCACHE function, SJIS gate 1134
INQUIRE_CLIENT_DATA function, RMCD gate 1081
INQUIRE_CONTAINER function, BABR gate 620
INQUIRE_CONTEXT function, BRIQ gate 551
INQUIRE_CORBASERVER function, EJCG gate 766
INQUIRE_CURRENT_DUMPDS function, DUSR

gate 740
INQUIRE_CURRENT_PROGRAM function, PGIS

gate 986
INQUIRE_DATA_LENGTH function, BAGD format 626
INQUIRE_DATE_FORMAT function, KETI gate 847
INQUIRE_DEBUG_TASK function, DPIQ gate 680
INQUIRE_DEFAULT_USER function, USAD gate 1246
INQUIRE_DEFER_INTERVAL function, LGCC

gate 873
INQUIRE_DEFERRED_ABEND function, XMER

gate 1287
INQUIRE_DEFERRED_MESSAGE function, XMER

gate 1286
INQUIRE_DISPATCHER function, DSIT gate 706
INQUIRE_DJAR function, EJDG gate 777
INQUIRE_DOCTEMPLATE function, DHTM gate 657
INQUIRE_DOCUMENT function, DHDH gate 653
INQUIRE_DOMAIN_BY_NAME function, KEDD

gate 834
INQUIRE_DOMAIN_BY_TOKEN function, KEDD

gate 833
INQUIRE_DOMAIN_TRACE function, KEDD gate 836
INQUIRE_DSA_LIMIT function, SMSR gate 1155
INQUIRE_DSA_SIZE function, SMSR gate 1154
INQUIRE_DTRTRAN function, XMSR gate 1299
INQUIRE_DUMPDS_AUTOSWITCH function, DUSR

gate 741
INQUIRE_DUMPDS_OPEN_STATUS function, DUSR

gate 741
INQUIRE_ELEMENT_LENGTH function, SMGF

gate 1149
INQUIRE_ELEMENT_LENGTH function, SMMC

gate 1150
INQUIRE_EVENT function, EMBR gate 805
INQUIRE_EXIT_PROGRAM function, SHRT gate 1120
INQUIRE_EXPIRATION_TOKEN function, TISR

gate 1203
INQUIRE_FACILITY function, ICXM gate 557
INQUIRE_FACILITY function, TDXM gate 574
INQUIRE_GARBAGE_INTERVAL function, PTTW

gate, 1059
INQUIRE_GLOBAL_TRACE function, KEDD gate 835
INQUIRE_GTF_TRACE function, TRSR gate 1215
INQUIRE_HOST function, WBUR gate 1270
INQUIRE_INITIAL_DUMPDS function, DUSR gate 741

INQUIRE_INTERNAL_TRACE function, TRSR
gate 1212

INQUIRE_ISOLATION_TOKEN function, SMSR
gate 1153

INQUIRE_JVM function, SJIS gate 1133
INQUIRE_JVMPOOL function, SJIS gate 1131
INQUIRE_JVMPROFILE function, SJIS gate 1135
INQUIRE_KERNEL function, KEGD gate 845
INQUIRE_KEYPOINT_FREQUENCY function, LGCC

gate 872
INQUIRE_KEYPOINT_STATS function, LGCC

gate 873
INQUIRE_LINK function, RMLN gate 1070
INQUIRE_LOGNAME function, RMNM gate 1078
INQUIRE_MESSAGE function, MEME gate 908
INQUIRE_MESSAGE_DEFINITION function, MEBM

gate 902
INQUIRE_MESSAGE_LENGTH function, MEBM

gate 902
INQUIRE_MESSAGE_LENGTH function, MEME

gate 905
INQUIRE_MONITOR_DATA function, TFIQ gate 592
INQUIRE_MONITORING_DATA function, MNMN

gate 912
INQUIRE_MXT function, XMSR gate 1298
INQUIRE_OBJECT function, EJOB gate 788
INQUIRE_OPTIONS function, LDLD gate 862
INQUIRE_PARAMETERS function, DPIQ gate 680
INQUIRE_PARAMETERS function, LGPA gate 887
INQUIRE_PARTNER function, PRCM format 1045
INQUIRE_PASSWORD_DATA function, XSPW

gate 1331
INQUIRE_PIPELINE function, PIPL gate 1021
INQUIRE_POOL_TOKEN function, TSSH gate 1229
INQUIRE_PROCESS function, BABR gate 622
INQUIRE_PROCESSTYPE function, BATT gate 604
INQUIRE_PROGRAM function, LDLD gate 857
INQUIRE_PROGRAM function, PGIS gate 983
INQUIRE_QUEUE function, TSBR gate 1235
INQUIRE_QUEUE function, TSIC gate 1237
INQUIRE_QUEUE function, TSSB gate 1234
INQUIRE_REALM_NAME function, XSIS gate 1328
INQUIRE_REENTRANT_PROGRAM function, SMSR

gate 1153
INQUIRE_REGION_USERID function, XSIS gate 1322
INQUIRE_REMOTE_TRANDEF function, XMXD

gate 1305
INQUIRE_RESOURCE_DATAfunction, MNMN

gate 913
INQUIRE_RETRY_TIME function, DUSR gate 743
INQUIRE_RQMODEL function, IIRQ gate 823
INQUIRE_SESSION function, WBCL gate 1264
INQUIRE_SHORT_ON_STORAGE function, SMSR

gate 1154
INQUIRE_START function, PAGP gate 946
INQUIRE_STARTUP function, RMDM gate 1081
INQUIRE_STATISTICS function, SOIS gate 1182
INQUIRE_STATUS function, EMEM gate 803
INQUIRE_STORAGE_PROTECT function, SMSR

gate 1157
INQUIRE_STORES function, EJOB gate 789

Index 1547

INQUIRE_SUBPOOL function, SMAD gate 1145
INQUIRE_SYSID_TABLE_TOKEN function, TSSH

gate 1233
INQUIRE_SYSTEM function, SAIQ gate 563
INQUIRE_SYSTEM_DUMP function, DUSR gate 743
INQUIRE_SYSTEM_DUMPCODE function, DUDT

gate 730
INQUIRE_TASK function, DSBR gate 704
INQUIRE_TASK_STORAGE function, SMMC

gate 1150
INQUIRE_TASK_TRACE function, KEDD gate 837
INQUIRE_TCB function, DSBR gate 705
INQUIRE_TCLASS function, XMCL gate 1281
INQUIRE_TCPIPSERVICE function, SOTB gate 1186
INQUIRE_TDQUEUE function, TDTM gate 568
INQUIRE_TEMPLATE_STATUS function, DHTM

gate 657
INQUIRE_TERM_MODEL function, AIIQ format 24
INQUIRE_TERMINAL_FACILITY function, TFIQ

gate 591
INQUIRE_TIMER function, EMBR gate 806
INQUIRE_TRACE_FLAGS function, EJDU gate 782
INQUIRE_TRAN_DUMPCODE function, DUDT

gate 724
INQUIRE_TRANDEF function, XMXD gate 1303
INQUIRE_TRANSACTION_TOKEN function, XMIQ

gate 1296
INQUIRE_TRANSACTION_USER function, USXM

gate 1251
INQUIRE_TRANSACTION, XMIQ gate 1288
INQUIRE_UOW function, RMUW gate 1063
INQUIRE_UOW_ID function, RMUW gate 1062
INQUIRE_UOW_TOKEN function, RMUW gate 1062
INQUIRE_URIMAP function, WBUR gate 1269
INQUIRE_USER function, USAD gate 1245
INQUIRE_USER_ATTRIBUTES function, XSAD

gate 1317
INQUIRE_USER_TOKEN function, PTTW gate, 1055
INQUIRE_WEBSERVICE function, PIWR gate 1039
INQUIRE_WORK_TOKEN function, RMWT gate 1086
INSERT_BOOKMARK function, DHDH gate 649
INSERT_DATA function, DHDH gate 648
install flow for autoinstall of consoles

install flow of console autoinstall 14
INSTALL function, LGLD gate 886
INSTALL_BRIDGE_FACILITY function, BRAI gate, 546
INSTALL_DJAR function, EJCP gate 769
install, CEDA 74
intercommunication facilities

distributed program link 107
distributed transaction processing 109
transaction routing 441

internal trace 1205
interregion communication (IRC) 293, 325
interval control 307
interval control element (ICE) 308
intrapartition transient data queues 461

interfaces, illustrated 463
recovery of 461
referencing using indirect queues 462

INVOKE function, IIRP gate 820

INVOKE_JAVA_PROGRAM function, SJIN gate 1131
INVOKE_PROGRAM function, PIPM gate 1025
INVOKE_STUB function, PIPM gate 1026
INVOKE_USER_EXIT function, APEX gate 527
INVOKE_WEBSERVICE function, PIIW gate 1016
IOINFO area 311, 316
IRC (interregion communication) 293

CICS address space modules 300
DFHCRC 302
DFHCRNP 300
DFHCRR 301
DFHZCP 302
DFHZCX 302
DFHZIS2 302

control blocks, illustrated 293
delay-queue 301
input data stream 301
interregion program (DFHIRP) 299
MVS cross-memory program (DFHXMP) 300
new conversation 301
quiesce 301

ISC (intersystem communication) 305
secondary half session support 288

ISSUE_NOTIFY function, APTC gate 540
ISSUE_PREPARE function, RMLN gate 1072

J
Japanese language feature 1343
JES 360
journaling, automatic 165
JVM (SJ) domain 1127
JVM control block (SJTCB) 1138
JVM domain

control blocks, illustrated 1139
JVM domain anchor block (SJA) 1138

K
KCP (task control program)

deferred work element (DWE) 38
mapping control program (MCP) 38, 39
terminal control 408, 409
terminal page retrieval program (TPR) 50

KE (kernel) domain 831
KEAR gate

DEREGISTER function 832
READY function 832
REGISTER function 833
WAITPRED function 833

KEDD gate
ADD_DOMAIN function 833
ADD_GATE function 835
DELETE_GATE function 835
INQUIRE_ANCHOR function 834
INQUIRE_DOMAIN_BY_NAME function 834
INQUIRE_DOMAIN_BY_TOKEN function 833
INQUIRE_DOMAIN_TRACE function 836
INQUIRE_GLOBAL_TRACE function 835
INQUIRE_TASK_TRACE function 837
PERFORM_SYSTEM_ACTION function 838

1548 CICS TS for z/OS: CICS Diagnosis Reference

KEDD gate (continued)
SET_ANCHOR function 834
SET_DEFAULT_RECOVERY function 838
SET_DOMAIN_TRACE function 836
SET_GLOBAL_TRACE function 836
SET_TASK_TRACE function 837
SET_TRAP_OFF function 838
SET_TRAP_ON function 838

KEDS format
TASK_REPLY function 849
TCB_REPLY function 849

KEDS gate
ABNORMALLY_TERMINATE_TASK function 839
CREATE_TASK function 839
CREATE_TCB function 840
DETACH_TERMINATED_OWN_TCBS function 841
END_TASK function 841
FREE_TCBS function 841
POP_TASK function 841
PROCESS_KETA_ERROR function 845
PUSH_TASK function 841
READ_TIME function 842
RESET_RUNAWAY_TIMER function 842
RESET_TIME function 842
RESTORE_STIMER function 843
SEND_DEFERRED_ABEND function 843
START_FORCEPURGE_PROTECTION

function 844
START_PURGE_PROTECTION function 843
START_RUNAWAY_TIMER function 843
STOP_FORCEPURGE_PROTECTION function 844
STOP_PURGE_PROTECTION function 844
STOP_RUNAWAY_TIMER function 842

KEGD gate
INQUIRE_KERNEL function 845
SET_KERNEL function 846

kernel (KE) domain 831
kernel linkage routines 3
KETI format

NOTIFY_RESET function 849
KETI gate

CONVERT_TO_DECIMAL_TIME function 847
CONVERT_TO_STCK_FORMAT function 848
INQ_LOCAL_DATETIME_DECIMAL function 847
INQUIRE_DATE_FORMAT function 847
REQUEST_NOTIFY_OF_A_RESET function 846
RESET_LOCAL_TIME function 846
SET_DATE_FORMAT function 847

KEXM gate
TRANSACTION_INITIALISATION function 848

keypoint list element (KPLE) block 183
KEYPOINT_DATA function, RMKD gate 1083
KPLE (keypoint list element) block 183
KSDS (key-sequenced data set)

GENERIC option of DELETE request 171
WRITE request for KSDS file 169

L
LACB (logon address control block) 296
Language Environment interface 309

Language Environment interface (continued)
establishing connection 310
function calls 309
parameter lists 313
storage acquisition 311
storage for transaction 311

LCB (logon control block) 297
LCBE (logon control block entry) 297
LCD (local catalog data set) 633
LD (loader) domain 853
LDLD gate

ACQUIRE_PROGRAM function 854
CATALOG_PROGRAMS function 863
DEFINE_PROGRAM function 856
DELETE_PROGRAM function 858
END_BROWSE function 860
GET_NEXT_INSTANCE function 859
GET_NEXT_PROGRAM function 859
IDENTIFY_PROGRAM function 861
INQUIRE_OPTIONS function 862
INQUIRE_PROGRAM function 857
REFRESH_PROGRAM function 855
RELEASE_PROGRAM function 855
SET_OPTIONS function 862
START_BROWSE function 858

LG (log manager) domain 867
LGbA gate

START_BROWSE_ALL function 869
LGBA gate

BROWSE_ALL_GET_NEXT function 868
END_BROWSE_ALL function 868

LGCB gate
CHAIN_BROWSE_GET_NEXT function 869
END_CHAIN_BROWSE function 869
START_CHAIN_BROWSE function 869

LGCC gate
BROWSE_CHAINS_GET_NEXT function 871
CREATE_CHAIN_TOKEN function 870
DELETE_ALL function 871
DELETE_HISTORY function 872
END_BROWSE_CHAINS function 871
INQUIRE_DEFER_INTERVAL function 873
INQUIRE_KEYPOINT_FREQUENCY function 872
INQUIRE_KEYPOINT_STATS function 873
RELEASE__CHAIN_TOKEN function 870
RESET_KEYPOINT_STATS function 873
RESTORE_CHAIN_TOKEN function 870
SET_DEFER_INTERVAL function 872
SET_HISTORY function 871
SET_KEYPOINT_FREQUENCY function 872
START_BROWSE_CHAINS function 870
SYSINI function 870

LGGL gate
CLOSE function 875
ERROR function 893
FORCE function 875
FORCE_JNL function 876
INITIALIZE function 877
OPEN function 873
UOW_TIME function 877
WRITE function 874

Index 1549

LGGL gate (continued)
WRITE_JNL function 875

LGJN gate
DISCARD function 880
END_BROWSE function 879
EXPLICIT_OPEN function 880
GET_NEXT function 878
IMPLICIT_OPEN function 881
INITIALIZE function 882
INQUIRE function 877
PROCESS_STATISTICS function 882
SET function 879
START_BROWSE function 878
STREAM_FAIL function 882

LGLB gate
CONNECT function 883
DISCONNECT function 883
DISCONNECT_ALL function 884
GL_FORCE function 884
GL_WRITE function 883

LGLD gate
DISCARD function 887
END_BROWSE function 886
GET_NEXT function 885
INITIALIZE function 887
INQUIRE function 884
INSTALL function 886
MATCH function 886
START_BROWSE function 885

LGMV gate
MOVE_CHAIN function 887

LGPA gate
INQUIRE_PARAMETERS function 887
SET_PARAMETERS function 888

LGSR gate
LOGSTREAM_STATS function 888

LGST gate
CONNECT function 890
DISCONNECT function 890
END_BROWSE function 889
GET_NEXT function 889
INITIALIZE function 890
INQUIRE function 888
START_BROWSE function 889

LGWF gate
FORCE_DATA function 891
WRITE function 891

LILI gate
FIND_PROGRAM_ATTRIBUTES function 558
GO_TO function 559
INITIALIZE_LANGUAGES function 557
TERMINATE_LANGUAGES function 558

limited resources, LU6.2 481
LINK function, PGLK gate 998
LINK_ACTIVITY function, BAAC gate 612
LINK_EXEC function, PGLE gate 997
LINK_PLT function, PGLK gate 999
LINK_PROCESS function, BAPR gate 608
LINK_URM function, PGLU gate 999
linkage routines, kernel 3
LISTEN function, APTC gate 540

LISTEN function, SOCK gate 1178
LM (lock manager) domain 897
LMLM gate

ADD_LOCK function 897
DELETE_LOCK function 899
LOCK function 897
TEST_LOCK_OWNER function 898
UNLOCK function 898

LOAD function, PGLD gate 995
LOAD_EXEC function, PGLD gate 994
loader (LD) domain 853
local catalog (CC) domain 633
local catalog data set (LCD) 633
local resource names in function shipping 278
local shared resources (LSR) 166, 175
LOCATE function, DDLO gate 643
LOCATE_AID function, TFAL gate 579
LOCATE_AND_LOCK_PARTNER function, PRFS

format 1046
LOCATE_AND_LOCK_TCLASS function, XMCL

gate 1285
LOCATE_AND_LOCK_TRANDEF function, XMLD

gate 1297
LOCATE_REMDEL_AID function, TFAL gate 579
LOCATE_SHIPPABLE_AID function, TFAL gate 580
LOCATE_TERM_MODEL function, AIIQ format 24
LOCATE_URIMAP function, WBUR gate 1269
LOCK function, LMLM gate 897
lock manager (LM) domain 897
locking update model 164
locks 418
log failures handler, file control (DFHFCLF) 198
log manager (LG) domain 867
logging and journaling program, file control

(DFHFCLJ) 198
logging, automatic 165
logical unit type 6.1 (LU6.1) protocols

distributed transaction processing 109
function shipping 279

logical unit type 6.2 (LU6.2) 479
LOGOFF for IRC 300
logon address control block (LACB) 296
logon control block (LCB) 297
logon control block entry (LCBE) 297
logon exit, DFHZLGX 11
LOGON for IRC 300
LOGSTREAM_STATS function, LGSR gate 888
LOOKUP_ENTRY function, EJDI gate 780
lower objects first, rule 62
LSR (local shared resources) 166, 175
LU-initiated autoinstall disconnection flow 15
LU6.1 288
LU6.2

class of service 479
command processing in application-owning

region 447
command processing in terminal-owning region 451
daisy chaining 448
exchange log name (XLN) 480
limited resources 481
modules 482

1550 CICS TS for z/OS: CICS Diagnosis Reference

LU6.2 (continued)
RECEIVE processing 481
SEND processing 481
session management 479
session states 481
transaction routing for APPC devices 458
VTAM 479

M
M32 (3270 mapping) 41

interfaces, illustrated 41
mapping control program (MCP) 39, 41
page and text build (PBP) 41
storage control 41
terminal control 41
terminal input/output area (TIOA) 41
terminal page processor (TPP) 42

MAKE_PARTNERSHIP function, PTTW gate, 1055
MASSINSERT option of WRITE request 169
master JVM control block (SJVMS) 1138
MATCH function, LGLD gate 886
MATCH_RQMODEL function, IIRQ gate 825
MATCH_TASK_TO_AID function, TFAL gate 580
MCB (message control block) 33
MCP (mapping control program) 37

3270 mapping (M32) 39, 41
application programs 38
BMS fast-path module (MCX) 39
interfaces, illustrated 38
interval control 39
LU1 printer with extended attributes mapping

program (ML1) 40
non-3270 input mapping (IIP) 37, 39
page and text build (PBP) 39, 43
partition handling program (PHP) 39, 45
program manager 39
route list resolution program (RLR) 39, 46
storage control 38
task control 38, 39
temporary-storage control 38
terminal page retrieval program (TPR) 49
transient data control 39
undelivered messages cleanup program (TPQ) 48

MCX (BMS fast path module)
mapping control program (MCP) 39

ME (message) domain 901
MEBM gate

INQUIRE_MESSAGE_DEFINITION function 902
INQUIRE_MESSAGE_LENGTH function 902
RETRIEVE_MESSAGE function 901

MEME gate
CONVERSE function 903
INQUIRE_MESSAGE function 908
INQUIRE_MESSAGE_LENGTH function 905
RETRIEVE_MESSAGE function 904
SEND_MESSAGE function 902
VALIDATE_LANGUAGE_CODE function 906
VALIDATE_LANGUAGE_SUFFIX function 907

MESR gate
SET_MESSAGE_OPTIONS function 908

message (ME) domain 901
message control block (MCB) 33
message generation program (MGP) 321
message routing 30
message switching 323

BMS 324
input TIOA 323
program control 323
ROUTE operand 323
storage control 323
task control area (TCA) 324
temporary-storage control 323
terminal list table (TLT) 323

Message translation utility
ADFHCLIB distribution library 1344
ADFHMLIB distribution library 1344
ADFHMSRC distribution library 1344
ADFHPARM distribution library 1344
ADFHPL1 distribution library 1344
ADFHPLIB distribution library 1344
ADFHPROC distribution library 1344
ADFHSDCK distribution library 1344

messages
DFHIR3762 301

MGP (message generation program) 321
microfiche, optional source listings 1344
mirror transaction 278
ML1 (LU1 printer with extended attributes mapping

program) 40
interfaces, illustrated 40
mapping control program (MCP) 40
page and text build (PBP) 40
storage control 40
terminal input/output area (TIOA) 40
terminal page processor (TPP) 41

MN (monitoring) domain 911
MNMN gate

ACCUMULATE_RMI_TIME function 913
EXCEPTION_DATA_PUT function 911
INQUIRE_MONITORING_DATA function 912
INQUIRE_RESOURCE_DATA function 913
MONITOR function 912
PERFORMANCE_DATA_PUT function 912

MNSR gate
INQ_MONITORING function 915
SET_MCT_SUFFIX function 913
SET_MONITORING function 914

MNXM gate
TRANSACTION_INITIALIZATION function 916
TRANSACTION_TERMINATION function 916

model terminal support (MTS) 12
modules

PI domain 1043
modules list 1449
modules supplied on the CICS distribution tapes 1343
MONITOR function, MNMN gate 912
monitoring (MN) domain 911
MOVE CONTAINER function, BACM gate 625
MOVE_CHAIN function, LGMV gate 887
MRO (multiregion operation) 325

interregion communication 293, 325

Index 1551

MRXM gate
BIND_XM_CLIENT function 560
INIT_XM_CLIENT function 560

multiregion operation (MRO) 325
MVS image

MRO links between images, in a sysplex 293
MVS_STORAGE_NOTIFY function, SMNT

format 1160
MXT_CHANGE_NOTIFY function, XMNT format 1309
MXT_NOTIFY function, XMNT format 1309

N
NACP (node abnormal condition program) 327, 407

terminal control 410
VTAM 327

NEP (node error program) 331, 407
skeleton sample 331
terminal control 410
user-written 331
VTAM 331

NIB (node initialization block) 12, 53, 273, 417
node initialization block (NIB) 12, 53, 273, 417
non-RLS lock handler, file control (DFHFCNQ) 204
NOTIFY function, TISR format 1204
NOTIFY_CLASSCACHE function, SJCC gate 1130
NOTIFY_DELETE_TCB function, DSAT format 718
NOTIFY_REFRESH function, APLHI gate 531
NOTIFY_RESET function, KETI format 849

O
object code only (OCO) 1, 4
object transaction service (OT) domain 939
OCO (object code only) 1, 4
OCO components 4
offsite recovery completion, file control

(DFHFCOR) 205
OPEN function, APTC gate 540
OPEN function, LGGL gate 873
OPEN_OBJECT_STORE function, EJOS gate 791
OPEN_SESSION function, WBCL gate 1262
OPEN_TRANSIENT_DATA function, TDOC gate 565
open/close program, file control (DFHFCN) 201
operator error

abnormal condition program (ACP) 435
optional source listings, CD-ROM and microfiche 1344
OSPWA (output services processor work area) 33

partition handling program (PHP) 45
OT (Object Transaction Service) domain 939
OTCO gate

FORGET function 943
SET_COORDINATOR function 942

OTSU gate
ADD_SUBORDINATE function 941
FORGET function 942
RESYNC function 942
SET_VOTE function 941

OTTR gate
BEGIN_TRAN function 940
COMMIT function 940

OTTR gate (continued)
COMMIT_ONE_PHASE function 940
IMPORT_TRAN function 939
PREPARE function 940
SET_ROLLBACK_ONLY function 941

ownership of formats 6

P
PA (parameter manager) domain 945
PAGP gate

FORCE_START function 945
GET_PARAMETERS function 945
INQUIRE_START function 946

parallel sessions
allocation 287

parameter manager (PA) domain 945
PARSE function, IIRH gate 818
PARSE_ICM function, PIII gate 1016
PARSE_URL function, WBCL gate 1261
partner (PT) domain 1051
partner resource manager 345, 348, 1045
partner resource table (PRT) 1045
paths

REWRITE processing 170
pattern structure 60
PATTERN_MATCH_PROFILE function, DPPM

gate 686
PATTERN_MATCH_TASK function, DPPM gate 685
patterns 59, 72
patterns and subpatterns 60
PAUSE_AUXILIARY_TRACE function, TRSR

gate 1213
PBP (page and text build) 42

3270 mapping (M32) 41
data stream build (DSB) 36
interfaces, illustrated 43
LU1 printer with extended attributes mapping

program (ML1) 40
mapping control program (MCP) 39, 43
program manager 44
storage control 43

PCP (program control program) 333
AP domain termination program (STP) 601
message switching 323

PEP (program error program) 337
transaction failure program (TFP) 436

PERFORM_COMMIT function, RMLK gate 1094
PERFORM_COMMIT function, RMRO gate 1088
PERFORM_PIPELINE function, PIPL gate 1022
PERFORM_PRELOGGING function, RMLK gate 1092
PERFORM_PREPARE function, RMLK gate 1093
PERFORM_PREPARE function, RMRO gate 1089
PERFORM_REGULAR_DREDGE function, SHRQ

gate 1121
PERFORM_RESTART_DREDGE function, SHRQ

gate 1121
PERFORM_RESYNC function, PIRE gate 1028
PERFORM_SHUNT function, RMLK gate 1095
PERFORM_SHUNT function, RMRO gate 1090
PERFORM_SHUTDOWN function, SHRQ gate 1121

1552 CICS TS for z/OS: CICS Diagnosis Reference

PERFORM_SYSTEM_ACTION function, KEDD
gate 838

PERFORM_UNSHUNT function, RMLK gate 1096
PERFORM_UNSHUNT function, RMRO gate 1091
PERFORM_XML_PARSE function, PICC gate 1015
PERFORMANCE_DATA_PUT function, MNMN

gate 912
Persistent Sessions

diagnosing problems 496
sessions unbind during restart 496

persistent sessions restart flow 490
PG (program manager) domain 949
PGAQ gate

INQUIRE_AUTOINSTALL function 950
SET_AUTOINSTALL function 951

PGDD gate
DEFINE_PROGRAM function 974
DELETE_PROGRAM function 976

PGEX gate
INITIALIZE_EXIT function 976
TERMINATE_EXIT function 977

PGHM gate
CLEAR_LABELS function 983
FREE_HANDLE_TABLES function 983
IGNORE_CONDITIONS function 979
INQ_ABEND function 981
INQ_AID function 980
INQ_CONDITION function 978
POP_HANDLE function 982
PUSH_HANDLE function 982
SET_ABEND function 981
SET_AIDS function 979
SET_CONDITIONS function 978

PGIS gate
END_BROWSE_PROGRAM function 993
GET_NEXT_PROGRAM function 991
INQUIRE_CURRENT_PROGRAM function 986
INQUIRE_PROGRAM function 983
REFRESH_PROGRAM function 994
SET_PROGRAM function 989
START_BROWSE_PROGRAM function 990

PGLD gate
LOAD function 995
LOAD_EXEC function 994
RELEASE function 996
RELEASE_EXEC function 996

PGLE gate
LINK_EXEC function 997

PGLK gate
LINK function 998
LINK_PLT function 999

PGLU gate
LINK_URM function 999

PGMINFO1 area 311, 316
PGMINFO2 area 317
PGPG gate

INITIAL_LINK function 1000
PGRE gate

PREPARE_RETURN_EXEC function 1001
PGXE gate

PREPARE_XCTL_EXEC function 1001

PGXM gate
INITIALIZE_TRANSACTION function 1002
TERMINATE_TRANSACTION function 1002

phonetic conversion subroutine 77
PHP (partition handling program) 44

interfaces, illustrated 45
mapping control program (MCP) 39, 45
output services processor work area (OSPWA) 45
program manager 45
storage control 45
terminal control table terminal entry (TCTTE) 45
terminal output macro (TOM) 45
terminal partition extension (TPE) 45

PHPPIN 44
PHPPSC 44
PHPPSI 44
PHPPXE 44
PI (Pipeline Manager Domain) domain 1007
PI domain

modules 1043
PIAT gate

CREATE_CONTEXT function 1008
CREATE_CONTEXT_RESP function 1008
CREATE_NON_TERMINAL_MSG function 1009
CREATE_REGISTER_REQUEST function 1010
CREATE_REGISTER_RESP function 1010
CREATE_TERMINAL_MSG function 1011
PROCESS_CONTEXT function 1012
PROCESS_CONTEXT_RESP function 1012
PROCESS_MSG function 1013

PICC gate
FIND_SIGNATURE function 1013
HANDLE_PARSE_EVENT function 1014
PERFORM_XML_PARSE function 1015

PIII gate
PARSE_ICM function 1016

PIIW gate
INVOKE_WEBSERVICE function 1016

Pipeline Manager Domain (PI) domain 1007
PIPI_CALL_SUB function, APLJ gate 537
PIPI_INIT_SUB_DP function, APLJ gate 536
PIPI_TERM function, APLJ gate 537
PIPL gate

ADD_PIPELINE function 1017
COMPLETE_PIPELINE function 1018
DISCARD_PIPELINE function 1019
END_BROWSE_PIPELINE function 1019
ESTABLISH_PIPELINE function 1020
GET_NEXT_PIPELINE function 1020
INQUIRE_PIPELINE function 1021
PERFORM_PIPELINE function 1022
RELINQUISH_PIPELINE function 1023
RESOLVE_PIPELINE function 1023
SET_PIPELINE function 1024
START_BROWSE_PIPELINE function 1024

PIPM gate
INVOKE_PROGRAM function 1025
INVOKE_STUB function 1026
START_PIPELINE function 1026

PIRE gate
PERFORM_RESYNC function 1028

Index 1553

PISC gate
DYN_CREATE_WEBSERVICE function 1028
UPDATE_WEBSERVICE function 1029

PISF gate
SOAPFAULT_ADD function 1029
SOAPFAULT_CREATE function 1030
SOAPFAULT_DELETE function 1031

PISN gate
SOAP_11 function 1031
SOAP_12 function 1031

PITG gate
CONVERSE function 1033
RECEIVE_REQUEST function 1033
SEND_ERROR_RESPONSE function 1034
SEND_REQUEST function 1032
SEND_RESPONSE function 1032

PITL gate
PROCESS_SOAP_REQUEST function 1034

PIWR gate
CREATE_WEBSERVICE function 1035
DECREMENT_USE_COUNT function 1036
DISCARD_WEBSERVICE function 1036
END_BROWSE_WEBSERVICE function 1037
GET_NEXT_WEBSERVICE function 1037
INCREMENT_USE_COUNT function 1038
INITIALISE_WEBSERVICE function 1039
INQUIRE_WEBSERVICE function 1039
RESOLVE_ALL_WEBSERVICES function 1041
SET_WEBSERVICE function 1041
START_BROWSE_WEBSERVICE function 1042

PLT (program list table)
AP domain termination program (STP) 601

POP_HANDLE function, PGHM gate 982
POP_TASK function, KEDS gate 841
PRCM format

END_PARTNER_BROWSE function 1046
GET_NEXT_PARTNER function 1046
INQUIRE_PARTNER function 1045
START_PARTNER_BROWSE function 1045

PRE_INITIALIZE function, DMDM format 669
PRE_INSTALL_DJAR function, EJCP gate 770
PREPARE function, OTTR gate 940
PREPARE_RETURN_EXEC function, PGRE

gate 1001
PREPARE_SURROGATE function, RTSU gate 562
PREPARE_XCTL_EXEC function, PGXE gate 1001
PRFS format

LOCATE_AND_LOCK_PARTNER function 1046
PRIN format

COMPLETE_INIT function 1047
START_INIT function 1047

Problem solving for generic resource
generic resource 477
problem solving 477

process overview
adapter 263
EXEC stubs 263
FEPI as CICS transaction 263
logic flow

FEPI application programming commands 263
FEPI system programming commands 264

process overview (continued)
logic flow (continued)

within adapter 265
Resource Manager 263

PROCESS_CONTEXT function, PIAT gate 1012
PROCESS_CONTEXT_RESP function, PIAT

gate 1012
PROCESS_DEAD__TCBS function, DSIT gate 710
PROCESS_KETA_ERROR function, KEDS gate 845
PROCESS_MSG function, PIAT gate 1013
PROCESS_PAGE function, DPWD gate 689
PROCESS_PAGE function, DPWE gate 690
PROCESS_PAGE function, DPWJ gate 691
PROCESS_PAGE function, DPWL gate 692
PROCESS_REQUESTS function, IIRR gate 825
PROCESS_SOAP_REQUEST function, PITL

gate 1034
PROCESS_STATISTICS function, LGJN gate 882
PROCESS_SUBMIT function, DPWD gate 689
PROCESS_SUBMIT function, DPWE gate 690
PROCESS_SUBMIT function, DPWJ gate 691
PROCESS_SUBMIT function, DPWL gate 692
processing using data tables 166
processing using VSAM 166
processors 392
PROFILE function, APID gate 527
program check interrupt

system recovery program (SRP) 375
program isolation deadlock 439
program manager (PG) domain 949
program preparation utilities

command-language translator 339
program termination block (PTB) 311, 318
programming functions with function shipping 277
protocols, function shipping 279
protocols, LU6.1

function shipping 279
PRPT format

ADD_REPLACE_PARTNER function 1047
DELETE_PARTNER function 1048

PRT (partner resource table) 1045
PSB (program specification block)

DL/I interface 119
PSB scheduling, DBCTL 101
PSB scheduling, DL/I 101, 341
PSB termination, DBCTL 101
PSB termination, DL/I 101, 341
PTB (program termination block) 311, 318
PTTW gate

, INQUIRE_USER_TOKEN function 1055
BREAK_PARTNERSHIP function 1056
CREATE_PARTNERSHIP function 1054
CREATE_POOL function 1051
DESTROY_PARTNERSHIP function 1054
DESTROY_POOL function 1052
END_POOL_BROWSE function 1053
GET_NEXT_POOL function 1053
INQUIRE_GARBAGE_INTERVAL function 1059
MAKE_PARTNERSHIP function 1055
QUERY_PARTNERSHIP function 1058
QUERY_POOL function 1052

1554 CICS TS for z/OS: CICS Diagnosis Reference

PTTW gate (continued)
SET_GARBAGE_INTERVAL function 1058
SET_USER_TOKEN function 1054
START_POOL_BROWSE function 1053
TRIGGER_PARTNER function 1056
WAIT_FOR_PARTNER function 1057

PUBLISH_CORBASERVER function, EJCP gate 770
PUBLISH_DJAR function, EJCP gate 771
PUBLISH_LOGICAL_SERVER function, IILS gate 816
PURGE_ALLOCATE_AIDS function, TFAL gate 580
PURGE_INHIBIT_QUERY function, DSAT format 718
PURGE_TRANSACTION, XMIQ gate 1297
PUSH_HANDLE function, PGHM gate 982
PUSH_TASK function, KEDS gate 841
PUT function, TSPT gate 1226
PUT_CONTAINER function, BACR gate 625
PUT_REPLACE function, CCCC gate 635
PUT_REPLACE function, TSPT gate 1227

Q
QUERY function 419
QUERY_NETNAME function, APID gate 528
QUERY_PARTNERSHIP function, PTTW gate, 1058
QUERY_POOL function, PTTW gate, 1052
queues, transient data

extrapartition 462, 465
indirect 462
intrapartition 461, 463

QUIESCE function, EJGE gate 783
quiesce receive transaction, file control

(DFHFCQR) 205
QUIESCE_DOMAIN function, DMDM format 670
QUIESCE_SYSTEM function, DMDM gate 665
quiesce, table manager 386

R
RABN (Resource definition Atom Block Name) 56
RACB (receive-any control block) 417
RACE (receive-any RPL pool) 422
range table 383
RDO (resource definition online) 343

CEDA transaction 343
terminal control autoinstallation 343

RDUB (Resource Definition Update Block) 57
read integrity 164
read locks, table manager 385
READ_HEADER function, WBAP gate 1260
READ_HEADER function, WBCL gate 1263
READ_INTO function, TSQR gate 1223
READ_INTO function, TSSH gate 1231
READ_NEXT function, WBAP gate 1258
READ_NEXT_HEADER function, WBCL gate 1264
READ_NEXT_INTO function, TSQR gate 1224
READ_NEXT_INTO function, TSSH gate 1232
READ_NEXT_SET function, TSQR gate 1225
READ_NEXT_SET function, TSSH gate 1232
READ_RESPONSE function, WBCL gate 1263
READ_SET function, TSQR gate 1223
READ_SET function, TSSH gate 1231

READ_TEMPLATE function, DHTM gate 656
READ_TIME function, KEDS gate 842
READ_TRANSIENT_DATA function, APTD gate 543
READNEXT_DEBUG_PROFILES function, DPLM

gate 682
READNEXT_INPUT function, DPLM gate 683
READNEXT_PM_PROFILE function, DPFM gate 679
READY function, KEAR gate 832
REALLOCATE_BRIDGE_FACILITY function, BRFR

gate, 548
REATTACH_REPLY function, RMUW gate 1068
REBUILD_RESOURCE_CLASSES function, XSRC

gate 1337
RECEIVE function, APTC gate 541
RECEIVE function, SOCK gate 1176
RECEIVE function, WBSR gate 1266
RECEIVE processing, LU6.2 481
RECEIVE_REPLY funciton, IIRP gate 821
RECEIVE_REQUEST function, IIRP gate 820
RECEIVE_REQUEST function, PITG gate 1033
RECEIVE_REQUEST function, SHRR gate 1122
RECEIVE_SSL_DATA function, SOCK gate 1177
receive-any control block (RACB) 417
receive-any RPL pool (RACE) 422
record locking

DELETE request processing 171
READ UPDATE request 168
WRITE request for BDAM file 170
WRITE request for ESDS file 169

RECORD_STATISTICS function, STST gate 1196
RECOVER_DEFINITIONS function, DHRP gate 659
RECOVER_DEFINITIONS function, WBRP gate 1266
RECOVER_START_DATA function, TFAL gate 581
RECOVER_STORAGE function, SMCK gate 1147
recoverable data set

DELETE request processing 171
READ request 168
REWRITE processing 170
WRITE request 168

recovery
resource manager interface 397
task-related user exits 397

recovery control program, file control (DFHFCRC) 206
Recovery Manager (RM) domain 1061
recovery of intrapartition transient data queues 461

logical 461
physical 461

recovery point 190
recovery/restart

transaction restart program, DFHREST 439
REFRESH_PROGRAM function, LDLD gate 855
REFRESH_PROGRAM function, PGIS gate 994
REGISTER function, KEAR gate 833
REGISTER function, RMCD gate 1080
REGISTER function, SORD gate 1178
REGISTER_CERTIFICATE_USER function, XSPW

gate, 1333
REGISTER_TCLASS_USAGE function, XMCL

gate 1284
reinstall

example 62

Index 1555

reinstall (continued)
process 63

relay transaction 441
relay transaction control blocks 457
RELEASE function, PGLD gate 996
RELEASE function, TSPT gate 1229
RELEASE__CHAIN_TOKEN function, LGCC gate 870
RELEASE_DATA function, BAGD format 627
RELEASE_EXEC function, PGLD gate 996
RELEASE_FACILITY function, TDXM gate 574
RELEASE_OPEN_TCB function, DSAT gate 702
RELEASE_PROGRAM function, LDLD gate 855
RELEASE_TRANSACTION_STG function, SMAR

gate 1146
RELEASE_XM_CLIENT function, DPXM gate 694
RELINQUISH function, EJCG gate 767
RELINQUISH_PIPELINE function, PIPL gate 1023
RELOAD_CLASSCACHE function, SJCC gate 1130
remote DL/I 341
remote resource names in function shipping 278
remote system entry 443
REMOTE_DELETE function, TFAL gate 581
REMOVE function, RMRE gate 1084
REMOVE_ENTRY function, EJDI gate 781
REMOVE_EXPIRED_AID function, TFAL gate 582
REMOVE_EXPIRED_REMOTE_AID function, TFAL

gate 582
REMOVE_FROM_JVMSET function, SJCC gate 1131
REMOVE_MESSAGE function, TFAL gate 583
REMOVE_OBJECT function, EJOS gate 792
REMOVE_REMOTE_DELETES function, TFAL

gate 583
REMOVE_STORE function, EJOS gate 792
REMOVE_SUBEVENT function, EMEM gate 803
REPLACE_DATA function, DDDI gate 642
REPLACE_DATA function, DHDH gate 650
REPLACE_DEBUG_PROFILE function, DPFM

gate 677
REPLY_DO_COMMIT function, RMLK gate 1093
REPORT_MESSAGE function, XMER gate 1287
REPORT_RECOVERY_STATUS function, RMLN

gate 1075
request parameter list (RPL), VSAM 183
request processing, general 166
REQUEST_FORGET function, RMRE gate 1085
REQUEST_NOTIFY_INTERVAL function, TISR

gate 1201
REQUEST_NOTIFY_OF_A_RESET function, KETI

gate 846
REQUEST_NOTIFY_TIME_OF_DAY function, TISR

gate 1202
REQUEST_STATISTICS function, STST gate 1196
requeststream (RZ) domain 1105
REROUTE_SHIPPABLE_AIDS function, TFAL

gate 584
RESCHEDULE_BMS function, TFAL gate 584
RESET_ACTIVUTY function, BAAC gate 615
RESET_AID_QUEUE function, TFAL gate 585
RESET_BEAN_STATS function, EJBG gate 760
RESET_KEYPOINT_STATS function, LGCC gate 873
RESET_LOCAL_TIME function, KETI gate 846

RESET_PROCESS function, BAPR gate 611
RESET_RUNAWAY_TIMER function, KEDS gate 842
RESET_SURROGATE function, RTSU gate 563
RESET_TIME function, KEDS gate 842
RESET_TRIGGER_LEVEL function, APTD gate 544
RESOLVE function, EJIO gate 784
RESOLVE_ALL_WEBSERVICES function, PIWR

gate 1041
RESOLVE_CORBASERVER function, EJCG gate 767
RESOLVE_CSERVERS function, EJIO gate 784
RESOLVE_DJARS function, EJIO gate 784
RESOLVE_PIPELINE function, PIPL gate 1023
Resource Definition Atom 56
resource definition atom block name (RABN) 56
resource definition recovery anchor block (RRAB) 56
resource definition update block (RDUB) 57
resource manager interface (RMI) 389
resource manager interface (RMI) recovery 397
Resource Manager, FEPI 263
Resource Recovery interface, SAA 347
resource recovery table 173
responses, domain call 6
restart

emergency 74
restart of transactions

DFHREST 439
restart program, file control (DFHFCRP) 210
RESTARTBR_DEBUG_PROFILES function, DPLM

gate 684
RESTORE_CHAIN_TOKEN function, LGCC gate 870
RESTORE_FROM_KEYPOINT function, TFAL

gate 585
RESTORE_STIMER function, KEDS gate 843
RESUME function, DSSR gate 712
RESUME_ACTIVITY function, BAAC gate 614
RESUME_PROCESS function, BAPR gate 610
RESYNC function, OTSU gate 942
resynchronization protocol 279
RETRACT_CORBASERVER function, EJCP gate 771
RETRACT_DJAR function, EJCP gate 771
RETRACT_LOGICAL_SERVER function, IILS

gate 816
RETRIEVE_MESSAGE function, MEBM gate 901
RETRIEVE_MESSAGE function, MEME gate 904
RETRIEVE_REATTACH_EVENT function, EMEM

gate 804
RETRIEVE_START_DATA function, TFAL gate 585
RETRIEVE_STATISTICS function, EJOB gate 789
RETRIEVE_SUBEVENT function, EMEM gate 804
RETRIEVE_WITH_CTLINFO function, DHDH gate 652
RETRIEVE_WITHOUT_CTLINFO function, DHDH

gate 653
RETRY_REQUEST function, SHRR gate 1122
RETURN_END_ACTIVITY function, BAAC gate 615
REWRITE function, TSQR gate 1222
REWRITE function, TSSH gate 1230
RIDFLD

READ request 168
READNEXT request processing 173
recoverable data set 168

RLA (route list area) 33

1556 CICS TS for z/OS: CICS Diagnosis Reference

RLR (route list resolution program) 45
interfaces, illustrated 46
mapping control program (MCP) 39, 46
program manager 46
storage control 46

RLS cleanup transaction, file control (DFHFCRD) 208
RLS control ACB manager, file control

(DFHFCCA) 188
RLS open/close program, file control (DFHFCRO) 210
RLS quiesce common system transaction, file control

(DFHFCQT) 205
RLS quiesce exit, file control (DFHFCQX) 206
RLS quiesce initiation, file control (DFHFCQI) 205
RLS quiesce processor, file control (DFHFCQU) 206
RLS quiesce send transaction, file control

(DFHFCQS) 205
RLS record management processor, file control

(DFHFCRS) 212
RLS restart, file control (DFHFCRR) 212
RLS VSAM interface processor, file control

(DFHFCRV) 212
RM (Recovery Manager) domain 1061
RMCD gate

INQUIRE_CLIENT_DATA function 1081
REGISTER function 1080
SET_CLIENT_DATA function 1081
SET_GATE function 1080

RMDE gate
DELIVER_FORGET function 1092
DELIVER_RECOVERY function 1091
END_DELIVERY function 1092
START_DELIVERY function 1091

RMDM gate
INQUIRE_STARTUP function 1081
SET_LOCAL_LU_NAME function 1082
SET_PARAMETERS function 1082
SET_STARTUP function 1082

RMI (resource manager interface) 389
RMI (resource manager interface) recovery 397
RMI_START_OF_TASK function, APXM gate 545
RMKD gate

KEYPOINT_DATA function 1083
RMKP gate

TAKE_KEYPOINT function 1092
RMLK gate

PERFORM_COMMIT function 1094
PERFORM_PRELOGGING function 1092
PERFORM_PREPARE function 1093
PERFORM_SHUNT function 1095
PERFORM_UNSHUNT function 1096
REPLY_DO_COMMIT function 1093
SEND_DO_COMMIT function 1094

RMLN gate
ADD_LINK function 1068
DELETE_LINK function 1069
END_LINK_BROWSE function 1078
GET_NEXT_LINK function 1077
INBOUND_FLOW function 1073
INITIATE_RECOVERY function 1073
INQUIRE_LINK function 1070
ISSUE_PREPARE function 1072

RMLN gate (continued)
REPORT_RECOVERY_STATUS function 1075
SET_LINK function 1071
SET_MARK function 1076
SET_RECOVERY_STATUS function 1074
START_LINK_BROWSE function 1076
TERMINATE_RECOVERY function 1075

RMNM gate
CLEAR_PENDING function 1079
INQUIRE_LOGNAME function 1078
SET_LOGNAME function 1079

RMRE gate
APPEND function 1083
AVAIL function 1085
FORCE function 1084
REMOVE function 1084
REQUEST_FORGET function 1085

RMRO gate
DELIVER_BACKOUT_DATA function 1089
END_BACKOUT function 1090
PERFORM_COMMIT function 1088
PERFORM_PREPARE function 1089
PERFORM_SHUNT function 1090
PERFORM_UNSHUNT function 1091
START_BACKOUT function 1089

RMSL gate
TAKE_ACTIVITY_KEYPOINT function 1086

RMUW gate
BACKOUT_UOW function 1067
BIND_UOW_TO_TXN function 1068
COMMIT_UOW function 1065
CREATE_UOW function 1062
END_UOW_BROWSE function 1067
FORCE_UOW function 1065
GET_NEXT_UOW function 1066
INQUIRE_UOW function 1063
INQUIRE_UOW_ID function 1062
INQUIRE_UOW_TOKEN function 1062
REATTACH_REPLY function 1068
SET_UOW function 1064
START_UOW_BROWSE function 1066

RMWT gate
END_WORK_TOKEN_BROWSE function 1087
GET_NEXT_WORK_TOKEN function 1087
INQUIRE_WORK_TOKEN function 1086
START_WORK_TOKEN_BROWSE function 1086

ROLLBACK 67
route list area (RLA) 33
ROUTE_REQUEST function, SHRR gate 1121
ROUTE_TRANSACTION function, APRT gate 538
RPL (request parameter list), VSAM 183
RPL (request parameter list), VTAM 409

receive-any RPL 422
RRAB (Resource definition Recovery Anchor Block) 56
RRDS (relative record data set)

WRITE request for RRDS file 169
RTSU gate

COMMIT_SURROGATE function 561
FREE_SURROGATE function 562
GET_RECOVERY_STATUS function 562
PREPARE_SURROGATE function 562

Index 1557

RTSU gate (continued)
RESET_SURROGATE function 563

RUN_ACTIVITY function, BAAC gate 612
RUN_PROCESS function, BAPR gate 608
runaway task

system recovery program (SRP) 375
RZ (requeststream) domain 1105
RZ domain

requeststream (RZ) 1105
RZSO gate

CREATE function 1105

S
SAA Communications interface 347
SAA Resource Recovery interface 347
SAB (subsystem anchor block) 360
SAIQ gate

INQUIRE_SYSTEM function 563
SET_SYSTEM function 564

SAVE_DEBUG_PROFILE function, DPFM gate 674
SAVE_USER_DEFAULTS function, DPUM gate 688
SCACB (subsystem connection address control

block) 297
SCCB (subsystem connection control block) 297
SCHEDULE_BMS function, TFAL gate 586
SCHEDULE_START function, TFAL gate 586
SCHEDULE_TDP function, TFAL gate 587
scheduler services (SH) domain 1119
SCP (storage control program)

3270 mapping (M32) 41
data interchange program (DIP) 106
LU1 printer with extended attributes mapping

program (ML1) 40
mapping control program (MCP) 38
message switching 323
non-3270 input mapping (IIP) 37
page and text build (PBP) 43
partition handling program (PHP) 45
route list resolution program (RLR) 46
terminal control 409
terminal page processor (TPP) 47
terminal page retrieval program (TPR) 49
transaction failure program (TFP) 436
undelivered messages cleanup program (TPQ) 48

SCTE (subsystem control table extension) 296, 360
SDT (system dump table) 748
secondary index 384
SECURE_SOC_CLOSE function, SOSE gate 1190
SECURE_SOC_INIT function, SOSE gate 1189
SECURE_SOC_READ function, SOSE gate 1189
SECURE_SOC_RESET function, SOSE gate 1190
SECURE_SOC_WRITE function, SOSE gate 1190
security manager (XS) domain 1313
SEND function, APTC gate 541
SEND function, SOCK gate 1175
SEND function, WBSR gate 1267
SEND processing, LU6.2 481
SEND_DEFERRED_ABEND function, KEDS gate 843
SEND_DO_COMMIT function, RMLK gate 1094

SEND_ERROR_RESPONSE function, PITG
gate 1034

SEND_MESSAGE function, MEME gate 902
SEND_REPLY function, IIRP gate 822
SEND_REQUEST function, PITG gate 1032
SEND_RESPONSE function, PITG gate 1032
SEND_RESPONSE function, WBAP gate 1260
SEND_SSL_DATA function, SOCK gate 1176
SEND_STATIC_RESPONSE function, WBSR

gate 1267
sequential retrieval 164
service request block (SRB) 409
SERVREQ attribute of file

DELETE request 171
READ request 166

session management, LU6.2 479
session states, LU6.2 481
sessions

recovery 301
SET function, LGJN gate 879
SET function, SOIS gate 1182
SET_ABEND function, PGHM gate 981
SET_AIDS function, PGHM gate 979
SET_ALL_STATE function, EJCG gate 768
SET_ALL_STATE function, EJDG gate 778
SET_ANCHOR function, KEDD gate 834
SET_AUTOINSTALL function, BRAI gate, 546
SET_AUTOINSTALL function, PGAQ gate 951
SET_AUX_TRACE_AUTOSWITCH function, TRSR

gate 1213
SET_BOUND_REQUEST function, SHPR gate 1120
SET_BRIDGE_FACILITY function, BRFR gate, 549
SET_BUFFERS function, TSSR gate 1235
SET_CLASSCACHE function, SJIS gate 1135
SET_CLIENT_DATA function, RMCD gate 1081
SET_CONDITIONS function, PGHM gate 978
SET_COORDINATOR function, OTCO gate 942
SET_DATE_FORMAT function, KETI gate 847
SET_DEBUG_PROFILE function, DPIQ gate 681
SET_DEFAULT_RECOVERY function, KEDD gate 838
SET_DEFER_INTERVAL function, LGCC gate 872
SET_DEFERRED_ABEND function, XMER gate 1286
SET_DEFERRED_MESSAGE function, XMER

gate 1286
SET_DISPATCHER function, DSIT gate 707
SET_DOMAIN_TRACE function, KEDD gate 836
SET_DSA_LIMIT function, SMSR gate 1156
SET_DTRTRAN function, XMSR gate 1299
SET_DUMPDS_AUTOSWITCH function, DUSR

gate 741
SET_DUMPTABLE_DEFAULTS function, DUSR

gate 742
SET_EXIT_PROGRAM function, SHRT gate 1120
SET_EXIT_STATUS function, APUE format 594
SET_GARBAGE_INTERVAL function, PTTW

gate, 1058
SET_GATE function, RMCD gate 1080
SET_GLOBAL_TRACE function, KEDD gate 836
SET_HISTORY function, LGCC gate 871
SET_HOST function, WBUR gate 1271
SET_INITIAL_DUMPDS function, DUSR gate 742

1558 CICS TS for z/OS: CICS Diagnosis Reference

SET_INTERNAL_TABLE_SIZE function, TRSR
gate 1211

SET_JVMPOOL function, SJIS gate 1132
SET_JVMPROFILEDIR function, SJIS gate 1137
SET_KERNEL function, KEGD gate 846
SET_KEYPOINT_FREQUENCY function, LGCC

gate 872
SET_LINK function, RMLN gate 1071
SET_LOCAL_LU_NAME function, RMDM gate 1082
SET_LOGNAME function, RMNM gate 1079
SET_MARK function, RMLN gate 1076
SET_MCT_SUFFIX function, MNSR gate 913
SET_MESSAGE_OPTIONS function, MESR gate 908
SET_MONITORING function, MNSR gate 914
SET_MXT function, XMSR gate 1299
SET_NETWORK_IDENTIFIER function, XSIS

gate 1327
SET_OPTIONS function, LDLD gate 862
SET_PARAMETERS function, DPIQ gate 680
SET_PARAMETERS function, LGPA gate 888
SET_PARAMETERS function, RMDM gate 1082
SET_PARAMETERS function, SOIS gate 1180
SET_PHASE function, DMDM gate 665
SET_PIPELINE function, PIPL gate 1024
SET_PRIORITY function, DSAT gate 700
SET_PROCESSTYPE function, BATT gate 606
SET_PROGRAM function, PGIS gate 989
SET_RECOVERY_STATUS function, RMLN gate 1074
SET_REENTRANT_PROGRAM function, SMSR

gate 1157
SET_RETRY_TIME function, DUSR gate 744
SET_ROLLBACK_ONLY function, OTTR gate 941
SET_SECURITY_DOMAIN function, XSIS gate 1325
SET_SESSION function, APTC gate 541
SET_SPECIAL_TOKENS function, XSIS gate 1327
SET_START_TYPE function, TSSR gate 1235
SET_STARTUP function, RMDM gate 1082
SET_STATISTICS_OPTIONS function, STST

gate 1195
SET_STORAGE_PROTECT function, SMSR

gate 1156
SET_STORAGE_RECOVERY function, SMSR

gate 1154
SET_STRINGS function, TSSR gate 1235
SET_SYMBOL_VALUE_BY_API function, DHSL

gate 653
SET_SYMBOL_VALUE_BY_SSI function, DHSL

gate 654
SET_SYSTEM function, SAIQ gate 564
SET_SYSTEM_DUMP function, DUSR gate 743
SET_SYSTEM_DUMPCODE function, DUDT gate 731
SET_TASK function, DSBR gate 705
SET_TASK_TRACE function, KEDD gate 837
SET_TCB function, DSBR gate 706
SET_TCLASS function, XMCL gate 1282
SET_TCPIPSERVICE function, SOTB gate 1188
SET_TDQUEUE function, TDTM gate 572
SET_TERMINAL_FACILITY function, TFIQ gate 591
SET_TRAN_DUMPCODE function, DUDT gate 725
SET_TRANDEF function, XMXD gate 1302

SET_TRANSACTION_ISOLATION function, SMSR
gate 1155

SET_TRANSACTION_TOKEN function, DSAT
gate 702

SET_TRANSACTION_TOKEN function, XMIQ
gate 1296

SET_TRANSACTION, XMIQ gate 1291
SET_TRAP_OFF function, KEDD gate 838
SET_TRAP_ON function, KEDD gate 838
SET_UOW function, RMUW gate 1064
SET_URIMAP function, WBUR gate 1269
SET_USER_DOMAIN_PARMS function, USIS

gate 1249
SET_USER_TOKEN function, PTTW gate, 1054
SET_VOTE function, OTSU gate 941
SET_WEBSERVICE function, PIWR gate 1041
SH (scheduler services) domain 1119
share control block manager, file control

(DFHFCRL) 209
shared class cache control block (SJCCH) 1138
shared data table function ship program, file control

(DFHFCDTX) 191
shared data table services 165
shared resources control (SHRCTL) block 183
shared resources pool processor, file control

(DFHFCL) 197
shipping TCTTE for transaction routing 17
SHPR gate

ADD_PENDING_REQUEST function 1119
DELETE_PENDING_REQUEST function 1119
SET_BOUND_REQUEST function 1120

SHRCTL (shared resources control) block 183
SHRQ gate

PERFORM_REGULAR_DREDGE function 1121
PERFORM_RESTART_DREDGE function 1121
PERFORM_SHUTDOWN function 1121

SHRR gate
RECEIVE_REQUEST function 1122
RETRY_REQUEST function 1122
ROUTE_REQUEST function 1121

SHRT gate
INQUIRE_EXIT_PROGRAM function 1120
SET_EXIT_PROGRAM function 1120

shutdown 75
shutdown program, file control (DFHFCSD) 212
side information (partner) 348
sign-on (SN) routine 1163
sign-on to consoles flow 14
SIGNOFF_ATI_SESSION function, DFHSNAS

subroutine 1165
SIGNOFF_ATTACH_HEADER function, DFHSNUS

subroutine 1172
SIGNOFF_PRESET_USERID function, DFHSNPU

subroutine 1166
SIGNOFF_SESSION_USERID function, DFHSNSU

subroutine 1168
SIGNOFF_SURROGATE function, DFHSNSG

subroutine 1167
SIGNOFF_TERMINAL_USER function, DFHSNTU

subroutine 1170

Index 1559

SIGNON_ATI_SESSION function, DFHSNAS
subroutine 1164

SIGNON_ATTACH_HEADER function, DFHSNUS
subroutine 1171

SIGNON_PRESET_USERID function, DFHSNPU
subroutine 1165

SIGNON_SESSION_USERID function, DFHSNSU
subroutine 1167

SIGNON_TERMINAL_USER function, DFHSNTU
subroutine 1169

single-phase commit process 398
SJ (JVM) domain 1127
SJA (JVM domain anchor block) 1138
SJCC gate

ADD_TO_ACTIVE_JVMSET function 1130
NOTIFY_CLASSCACHE function 1130
RELOAD_CLASSCACHE function 1130
REMOVE_FROM_JVMSET function 1131
START_CLASSCACHE function 1129
STOP_CLASSCACHE function 1129

SJCCH (shared class cache control block) 1138
SJIN gate

INVOKE_JAVA_PROGRAM function 1131
SJIS gate

DELETE_INACTIVE_JVMS function 1137
END_BROWSE_JVM function 1134
END_BROWSE_JVMPROFILE function 1136
GET_NEXT_JVM function 1134
GET_NEXT_JVMPROFILE function 1136
INQUIRE_CLASSCACHE function 1134
INQUIRE_JVM function 1133
INQUIRE_JVMPOOL function 1131
INQUIRE_JVMPROFILE function 1135
SET_CLASSCACHE function 1135
SET_JVMPOOL function 1132
SET_JVMPROFILEDIR function 1137
START_BROWSE_JVM function 1133
START_BROWSE_JVMPROFILE function 1136

SJTCB (JVM control block) 1138
SJVMS (master JVM control block) 1138
SLCB (subsystem logon control block) 297
SLOWDOWN_PURGE function, TFAL gate 588
SM (storage manager) domain 1143
SMAD gate

ADD_SUBPOOL function 1143
DELETE_SUBPOOL function 1144
END_SUBPOOL_BROWSE function 1145
GET_NEXT_SUBPOOL function 1145
INQUIRE_SUBPOOL function 1145
START_SUBPOOL_BROWSE function 1145

SMAR gate
ALLOCATE_TRANSACTION_STG function 1146
RELEASE_TRANSACTION_STG function 1146

SMCK gate
CHECK_STORAGE function 1147
RECOVER_STORAGE function 1147

SMGF gate
FREEMAIN function 1148
GETMAIN function 1148
INQUIRE_ELEMENT_LENGTH function 1149

SMMC gate
FREEMAIN function 1152
FREEMAIN_ALL_TERMINAL function 1152
GETMAIN function 1151
INITIALIZE function 1151
INQUIRE_ELEMENT_LENGTH function 1150
INQUIRE_TASK_STORAGE function 1150

SMNT format
MVS_STORAGE_NOTIFY function 1160
STORAGE_NOTIFY function 1160

SMSR gate
INQUIRE_ACCESS function 1157
INQUIRE_ACCESS_TOKEN function 1158
INQUIRE_DSA_LIMIT function 1155
INQUIRE_DSA_SIZE function 1154
INQUIRE_ISOLATION_TOKEN function 1153
INQUIRE_REENTRANT_PROGRAM function 1153
INQUIRE_SHORT_ON_STORAGE function 1154
INQUIRE_STORAGE_PROTECT function 1157
SET_DSA_LIMIT function 1156
SET_REENTRANT_PROGRAM function 1157
SET_STORAGE_PROTECT function 1156
SET_STORAGE_RECOVERY function 1154
SET_TRANSACTION_ISOLATION function 1155
SWITCH_SUBSPACE function 1155
UPDATE_SUBSPACE_TCB_INFO function 1158

SN (sign-on) routine 1163
SO (socket) domain 1175
SOAD gate

ADD_REPLACE_TCPIPSERVICE function 1185
DELETE_TCPIPSERVICE function 1185

SOAP_11 function, PISN gate 1031
SOAP_12 function, PISN gate 1031
SOAPFAULT_ADD function, PISF gate 1029
SOAPFAULT_CREATE function, PISF gate 1030
SOAPFAULT_DELETE function, PISF gate 1031
SOCK gate

CLOSE function 1177
LISTEN function 1178
RECEIVE function 1176
RECEIVE_SSL_DATA function 1177
SEND function 1175
SEND_SSL_DATA function 1176

socket (SO) domain 1175
SOIS gate

DELETE_CERTIFICATE_DATA function 1184
EXPORT_CERTIFICATE_DATA function 1183
IMPORT_CERTIFICATE_DATA function 1184
INITIALIZE_ENVIRONMENT function 1181
INQUIRE function 1181
INQUIRE_STATISTICS function 1182
SET function 1182
SET_PARAMETERS function 1180
VERIFY function 1183

SOLICIT_INQUIRES function, TSIC gate 1237
SORD gate

DEREGISTER function 1179
IMMCLOSE function 1180
REGISTER function 1178

SOSE gate
DELETE_CERTIFICATE_DATA function 1192

1560 CICS TS for z/OS: CICS Diagnosis Reference

SOSE gate (continued)
EXPORT_CERTIFICATE_DATA function 1191
IMPORT_CERTIFICATE_DATA function 1192
INITIALIZE_SSL function 1188
SECURE_SOC_CLOSE function 1190
SECURE_SOC_INIT function 1189
SECURE_SOC_READ function 1189
SECURE_SOC_RESET function 1190
SECURE_SOC_WRITE function 1190
TERMINATE_SSL function 1191

SOTB gate
END_BROWSE function 1187
GET_NEXT function 1187
INQUIRE_TCPIPSERVICE function 1186
SET_TCPIPSERVICE function 1188
START_BROWSE function 1186

specific formats 6
specific gates 5
SPIE exit routine 365
SPP (syncpoint program) 287, 367, 390, 397, 480
SRB (service request block) 409
SRP (system recovery program)

abnormal termination 375
program check interrupt 375
runaway task 375
system abend 375
system recovery table (SRT) 375

SRT (system recovery table) 375
SSA (static storage area) 599
SSCT (subsystem communication table) 359, 360
SSVT (subsystem vector table) 359, 360
ST (statistics) domain 1195
START_ABEND function, ABAB gate 518
START_AUXILIARY_TRACE function, TRSR

gate 1213
START_BACKOUT function, RMRO gate 1089
START_BROWSE function, AIIQ format 25
START_BROWSE function, CCCC gate 636
START_BROWSE function, DDBR gate 643
START_BROWSE function, DHTM gate 658
START_BROWSE function, DMIQ gate 666
START_BROWSE function, DSBR gate 703
START_BROWSE function, EJBB gate 754
START_BROWSE function, EJCB gate 761
START_BROWSE function, EJDB gate 772
START_BROWSE function, IIMM gate 824
START_BROWSE function, LDLD gate 858
START_BROWSE function, LGJN gate 878
START_BROWSE function, LGLD gate 885
START_BROWSE function, LGST gate 889
START_BROWSE function, SOTB gate 1186
START_BROWSE function, TSBR gate 1236
START_BROWSE function, TSSB gate 1233
START_BROWSE function, WBAP gate 1257
START_BROWSE_ALL function, LGBA gate 869
START_BROWSE_CHAINS function, LGCC gate 870
START_BROWSE_EVENT function, EMBR gate 805
START_BROWSE_HEADERS function, WBCL

gate 1264
START_BROWSE_HOST function, WBUR gate 1271
START_BROWSE_JVM function, SJIS gate 1133

START_BROWSE_JVMPROFILE function, SJIS
gate 1136

START_BROWSE_OBJECT function, EJOB gate 790
START_BROWSE_PIPELINE function, PIPL gate 1024
START_BROWSE_PROCESSTYPE function, BATT

gate 605
START_BROWSE_PROGRAM function, PGIS

gate 990
START_BROWSE_TCLASS function, XMCL gate 1283
START_BROWSE_TDQDEF function, TDTM gate 569
START_BROWSE_TIMER function, EMBR gate 807
START_BROWSE_TRANDEF function, XMBD

gate 1277
START_BROWSE_TRANSACTION function, XMIQ

gate 1292
START_BROWSE_TXN_TOKEN function, XMIQ

gate 1295
START_BROWSE_URIMAP function, WBUR

gate 1270
START_BROWSE_WEBSERVICE function, PIWR

gate 1042
START_CHAIN_BROWSE function, LGCB gate 869
START_CLASSCACHE function, SJCC gate 1129
START_DELIVERY function, RMDE gate 1091
START_FORCEPURGE_PROTECTION function, KEDS

gate 844
START_GTF_TRACE function, TRSR gate 1215
START_INIT function, AIIN format 23
START_INIT function, CPIN format 349
START_INIT function, PRIN format 1047
START_INTERNAL_TRACE function, TRSR gate 1212
START_LINK_BROWSE function, RMLN gate 1076
START_PARTNER_BROWSE function, PRCM

format 1045
START_PIPELINE function, PIPM gate 1026
START_PM_BROWSE function, DPFM gate 678
START_POOL_BROWSE function, PTTW gate, 1053
START_PROGRAM function, APLH gate 530
START_PROGRAM function, APLI gate 533
START_PROGRAM function, APLJ gate 535
START_PURGE_PROTECTION function, KEDS

gate 843
START_RUNAWAY_TIMER function, KEDS gate 843
START_SUBPOOL_BROWSE function, SMAD

gate 1145
START_UOW_BROWSE function, RMUW gate 1066
START_WORK_TOKEN_BROWSE function, RMWT

gate 1086
START_WRITE function, CCCC gate 637
start, cold 74
start, warm 74
STARTBR_ACTIVITY function, BABR gate 617
STARTBR_BRIDGE_FACILITY function, BRFR

gate, 550
STARTBR_CONTAINER function, BABR gate 619
STARTBR_DEBUG_PROFILES function, DPLM

gate 681
STARTBR_PROCESS function, BABR gate 621
STARTBR_SYSTEM_DUMPCODE function, DUDT

gate 732

Index 1561

STARTBR_TRAN_DUMPCODE function, DUDT
gate 726

static storage area (SSA) 599
static storage, file control (FC static) 178
statistics

CICS-DB2 86
statistics (ST) domain 1195
statistics collection 353
statistics program, file control (DFHFCST) 213
statistics utility program (DFHSTUP) 353
STATISTICS_COLLECTION function, STST gate 1197
STOP_AUXILIARY_TRACE function, TRSR gate 1213
STOP_CLASSCACHE function, SJCC gate 1129
STOP_FORCEPURGE_PROTECTION function, KEDS

gate 844
STOP_GTF_TRACE function, TRSR gate 1215
STOP_INTERNAL_TRACE function, TRSR gate 1212
STOP_PURGE_PROTECTION function, KEDS

gate 844
STOP_RUNAWAY_TIMER function, KEDS gate 842
storage control macro-compatibility interface 357
storage manager (SM) domain 1143
STORAGE_NOTIFY function, SMNT format 1160
STORE_OBJECT function, EJOS gate 793
STP (system termination program) 601

AID chain 601
CEMT SHUTDOWN request 601
common system area (CSA) 601
ICE chain 601
invocation from DFHEIPSH 601
program control 601
program list table (PLT) 601
transaction list table (XLT) 601

STREAM_FAIL function, LGJN gate 882
STST format

COLLECT_RESOURCE_STATS function 1199
COLLECT_STATISTICS function 1199

STST gate
DISABLE_STATISTICS function 1197
INQ_STATISTICS_OPTIONS function 1195
RECORD_STATISTICS function 1196
REQUEST_STATISTICS function 1196
SET_STATISTICS_OPTIONS function 1195
STATISTICS_COLLECTION function 1197

subsystem anchor block (SAB) 360
subsystem communication table (SSCT) 359, 360
subsystem connection address control block

(SCACB) 297
subsystem connection control block (SCCB) 297
subsystem control table extension (SCTE) 296, 360
subsystem definition 359
subsystem interface 359

console message handling 359
control blocks, illustrated 361

subsystem logon control block (SLCB) 297
subsystem user definition block (SUDB) 297
subsystem vector table (SSVT) 359, 360
subtask control 363
SUDB (subsystem user definition block) 297
surrogate session entry 443
surrogate TCTTE 457

SUSPEND function, DSSR gate 711
SUSPEND_ACTIVITY function, BAAC gate 613
SUSPEND_PROCESS function, BAPR gate 610
SVC 53

REWRITE request processing 171
UNLOCK request processing 171
WRITE request processing 170

SWITCH_AUXILIARY_EXTENTS function, TRSR
gate 1214

SWITCH_SUBSPACE function, SMSR gate 1155
synchronization of tasks

time 307
synchronization processing, initiating 120
syncpoint 57

function shipping 288
SYNCPOINT_REQUEST, CPSP format 350
SYSINI function, LGCC gate 870
sysplex, MVS

cross-system coupling facility (XCF)
for MRO links across MVS images 293

system abend
system recovery program (SRP) 375

system control
AP domain KC subcomponent 599
AP domain termination program (STP) 601
autoinstall terminal model manager 23
CICS-DB2 Attachment facility 79
DL/I database support 93, 119, 341
EXEC interface program (EIP) 135
file control 163
interval control 307
partner resource manager 1045
program control 333
storage control macro-compatibility interface 357
subtask control 363
syncpoint program (SPP) 367
table manager 383
task-related user exit control 389
terminal control 405
trace control macro-compatibility interface 427
transient data control 461
user exit control 467

system definition, DBCTL 101
system definition, DL/I 341
system dump formatting program 371
system dump table (SDT) 748
system dumps 721, 831
system EIB 135
system entries, TCT (terminal control table) 280
system programming commands, FEPI

logic flow 264
system reliability

node abnormal condition program (VTAM) 327
node error program (VTAM) 331
program error program (PEP) 337
system recovery program (SRP) 375
task-related user exit recovery 397
terminal abnormal condition program (BSAM) 401
terminal error program 425
transaction failure program (TFP/ACP) 435
transaction restart program, DFHREST 439

1562 CICS TS for z/OS: CICS Diagnosis Reference

system services
dynamic allocation sample program

(DYNALLOC) 127
field engineering program 161
master terminal 319
message switching 323
operator terminal 319
resource definition online (RDO) 343
security interface 1313
subsystem interface 359
supervisory terminal 319
system spooling interface 381

system spooling interface 381
system utilities

command-language translator 339
CSD utility program 89
dump utility program 125
statistics utility program 353
system dump formatting program 371
trace utility program 430

SYSTEM_DUMP function, DUDU gate 736

T
table management program (TMP) 418
table manager, file control (DFHFCMT) 199
tabs, horizontal

and device independence 31
tabs, vertical

and device independence 31
TACLE (terminal abnormal condition line entry)

terminal control 410
TACP (terminal abnormal condition program) 401, 407

BSAM 401
default error handling 403
message construction matrix 402
message routines 401
terminal control 410

TAKE_ACTIVITY_KEYPOINT function, RMRE
gate 1086

TAKE_KEYPOINT function, RMKP gate 1092
TAKE_KEYPOINT function, TFAL gate 588
TAKE_TRANSACTION_DUMP function, ABAB

gate 520
TAKEOVER function, USFL gate 1247
task abnormal condition

abnormal condition program (DFHACP) 435
transaction failure program (DFHTFP) 435

task control area facility control area associated address
(TCAFCAAA) 408

task control block (TCB) 849
task interface element (TIE) 367, 389, 393
task synchronization, time 307
TASK_REPLY function, DSAT format 717
TASK_REPLY function, KEDS format 849
task-related user exits 389, 397

control 389
control blocks, illustrated 393
entry to 391
implementation 391
recovery 397

task-related user exits (continued)
recovery token 397
resynchronization 367
state of 391

TCA (task control area)
message switching 324
terminal control 410
user 410

TCAFCAAA (task control area facility control area
associated address) 408

TCB (task control block) 849
TCB_POOL_MANAGEMENT function, DSAT gate 702
TCB_REPLY function, KEDS format 849
TCT (terminal control table) 405, 417

finding in dump 386
terminal control table prefix 422
terminal control table wait list 422

TCTLE (terminal control table line entry) 409, 422
TCTSE (terminal control table system entry) 280
TCTTE (terminal control table terminal entry) 422

allocation in function shipping 287
partition handling program (PHP) 45
shipping for transaction routing 17
surrogate 457

TCTTE creation and deletion 53
TCTTE generation

DFHZCQ 55
TCTTE layout 70
TCTTE structure 59
TDOC gate

CLOSE_ALL_EXTRA_TD_QUEUES function 566
CLOSE_TRANSIENT_DATA function 565
OPEN_TRANSIENT_DATA function 565

TDT (transaction dump table) 748
TDTM gate

ADD_REPLACE_TDQUEUE function 566
COMMIT_TDQDEFS function 573
DISCARD_TDQDEF function 572
END_BROWSE_TDQDEF function 571
GET_NEXT_TDQDEF function 570
INQUIRE_TDQUEUE function 568
SET_TDQUEUE function 572
START_BROWSE_TDQDEF function 569

TDXM gate
BIND_FACILITY function 573
BIND_SECONDARY function 573
INQUIRE_FACILITY function 574
RELEASE_FACILITY function 574

temporary storage (TS) domain 1221
temporary-storage browse transaction, CEBR 151
temporary-storage control

data interchange program (DIP) 106
mapping control program (MCP) 38
message switching 323
terminal page processor (TPP) 47
terminal page retrieval program (TPR) 50
undelivered messages cleanup program (TPQ) 48

TEP (terminal error program) 407, 425
TERM_AVAILABLE_FOR_QUEUE function, TFAL

gate 589

Index 1563

TERM_TRANSACTION_USER function, USXM
gate 1253

terminal control 405
3270 mapping (M32) 41
access method dependent interface 409
access methods 409
autoinstallation 343
BSAM routines, illustrated 412
builder parameter set 53
common interface 408
control blocks, illustrated 421
data interchange program (DIP) 106
flow through device-dependent modules,

illustrated 413
for function shipping 287
indexes 417
interfaces, illustrated 408
locks 418
node abnormal condition program (NACP) 410
node error program (NEP) 410
non-3270 input mapping (IIP) 37
service request facilities 406
sign-on component 1163
storage control 409
system console support 413
system control services 406
task control 408, 409
task control area (TCA)

facility control area associated address 408
task control area, user 410
TCA (task control area), terminal control 410
terminal abnormal condition line entry (TACLE) 410
terminal abnormal condition program (TACP) 410
terminal page retrieval program (TPR) 50
transmission facilities

VTAM 406
VTAM/non-VTAM 406

WAIT request 408
ZCP and TCP common control routines,

illustrated 411
terminal control table line entry (TCTLE) 409, 422
terminal control table system entry (TCTSE) 280
terminal definition 70

installing 415
terminal error program (TEP) 407, 425
terminal error recovery 407
terminal location (DFHZGTI) 417
terminal location (DFHZLOC) 417
terminal page scheduling program (TPS) 50
terminal paging 31
terminal query transaction 419
terminal storage, builders 69
TERMINAL_NOW_UNAVAILABLE function, TFAL

gate 589
terminal-owning region (TOR) 17
terminals

build/delete 73
Terminals

autoinstall 11
LU-initiated disconnection flow 15

terminals, autoinstall logon flow 11

TERMINATE function, EJGE gate 783
TERMINATE function, IIRP gate 823
TERMINATE_DOMAIN function, DMDM format 671
TERMINATE_EXIT function, PGEX gate 977
TERMINATE_LANGUAGES function, LILI gate 558
TERMINATE_RECOVERY function, RMLN gate 1075
TERMINATE_SSL function, SOSE gate 1191
TERMINATE_TRANSACTION function, PGXM

gate 1002
TEST_EVENT function, EMEM gate 804
TEST_LOCK_OWNER function, LMLM gate 898
testing facility, and sequential access method

(BSAM) 407
TFAL gate

ALLOCATE function 574
CANCEL_AID function 575
CANCEL_AIDS_FOR_CONNECTION function 575
CANCEL_AIDS_FOR_TERMINAL function 576
CHECK_TRANID_IN_USE function 576
DISCARD_AIDS function 577
FIND_TRANSACTION_OWNER function 577
GET_MESSAGE function 577
INITIALIZE_AID_POINTERS function 578
INQUIRE_ALLOCATE_AID function 578
LOCATE_AID function 579
LOCATE_REMDEL_AID function 579
LOCATE_SHIPPABLE_AID function 580
MATCH_TASK_TO_AID function 580
PURGE_ALLOCATE_AIDS function 580
RECOVER_START_DATA function 581
REMOTE_DELETE function 581
REMOVE_EXPIRED_AID function 582
REMOVE_EXPIRED_REMOTE_AID function 582
REMOVE_MESSAGE function 583
REMOVE_REMOTE_DELETES function 583
REROUTE_SHIPPABLE_AIDS function 584
RESCHEDULE_BMS function 584
RESET_AID_QUEUE function 585
RESTORE_FROM_KEYPOINT function 585
RETRIEVE_START_DATA function 585
SCHEDULE_BMS function 586
SCHEDULE_START function 586
SCHEDULE_TDP function 587
SLOWDOWN_PURGE function 588
TAKE_KEYPOINT function 588
TERM_AVAILABLE_FOR_QUEUE function 589
TERMINAL_NOW_UNAVAILABLE function 589
UNCHAIN_AID function 589
UPDATE_TRANNUM_FOR_RESTART function 590

TFBF gate
BIND_FACILITY function 590

TFIQ gate
INQUIRE_MONITOR_DATA function 592
INQUIRE_TERMINAL_FACILITY function 591
SET_TERMINAL_FACILITY function 591

TFP (transaction failure program) 435
TFP/ACP (transaction failure program)

functions 435
TFXM gate

BIND_XM_CLIENT function 560
INIT_XM_CLIENT function 559

1564 CICS TS for z/OS: CICS Diagnosis Reference

TI (timer) domain 1201
TIE (task interface element) 367, 389, 393
time-dependent task synchronization 307
time-of-day

retrieval 307
time-of-day control 307
timer (TI) domain 1201
TIOA (terminal input/output area) 422

3270 mapping (M32) 41
LU1 printer with extended attributes mapping

program (ML1) 40
TISR format

NOTIFY function 1204
TISR gate

CANCEL function 1202
INQUIRE_EXPIRATION_TOKEN function 1203
REQUEST_NOTIFY_INTERVAL function 1201
REQUEST_NOTIFY_TIME_OF_DAY function 1202

TLT (terminal list table)
message switching 323

TMP (table management program) 383, 418
browse token 385
control blocks, illustrated 387
hash table 383
quiesce 386
range table 383
read locks 385
secondary index 384
token, browse 385

token browse, table manager 385
tokens, domain call 6
TOM (terminal output macro)

partition handling program (PHP) 45
terminal page processor (TPP) 47
terminal page retrieval program (TPR) 50

TOR (terminal-owning region) 17, 449
ALLOCATE processing in 450
APPC command processing in 451
ATTACH processing in 449
FREE processing in 451
LU6.2 command processing in 451

TPE (terminal partition extension)
partition handling program (PHP) 45

TPP (terminal page processor) 46
3270 mapping (M32) 42
data stream build (DSB) 36
interfaces, illustrated 47
LU1 printer with extended attributes mapping

program (ML1) 41
storage control 47
temporary-storage control 47
terminal output macro (TOM) 47
terminal type parameter 47

TPQ (undelivered messages cleanup program) 48
allocation program 48
interfaces, illustrated 48
interval control 48
mapping control program (MCP) 48
storage control 48
temporary-storage control 48
transient data control 48

TPR (terminal page retrieval program) 48
interfaces, illustrated 49
interval control 50
mapping control program (MCP) 49
program manager 49
storage control 49
task control 50
temporary-storage control 50
terminal control 50
terminal output macro (TOM) 50
transient data control 50

TPS (terminal page scheduling program) 50
TR (trace) domain 1205
TRA (trace domain anchor block) 1217
trace

CICS-DB2 86
trace (TR) domain 1205
trace block (TRBL) 1217
trace control

data interchange program (DIP) 106
trace control macro-compatibility interface 427
trace domain anchor block (TRA) 1217
trace entry (TREN) 1217
trace formatting 429
trace formatting control area (TRFCA) 431
trace point IDs

AP 00C4 156
AP 00C5 156
AP 00C6 156
AP 00C7 156
AP 00CB 369
AP 00CD 51
AP 00CF 51
AP 00D7 106
AP 00DC 437
AP 00DE 366
AP 00DF 289
AP 00E0 321
AP 00E2 345
AP 00E3 382
AP 00E6 403, 424
AP 00E7 395, 399
AP 00EA 387
AP 00EB 345
AP 00EC 345
AP 00EF 345
AP 00F2 335
AP 00F3 308
AP 00F6 466
AP 00FA 51
AP 00FB 78
AP 00FC 75, 424
AP 00FE 428
AP 00FF 428
AP 03xx 123
AP 04xx 262
AP 0700 597
AP 0701 379
AP 0702 379
AP 0780 379
AP 0781 379

Index 1565

trace point IDs (continued)
AP 0782 379
AP 0783 379
AP 0790 379
AP 0791 379
AP 0792 379
AP 0793 379
AP 0794 379
AP 0795 379
AP 0796 379
AP 0797 379
AP 0798 379
AP 0799 379
AP 079A 379
AP 08xx 459
AP 0Axx 156
AP 0Bxx 262
AP 0Cxx 351
AP 0F0x 27
AP 0F1x 27
AP 0F2x 1048
AP 0F3x 1048
AP 23xx 262
AP 24xx 262
AP D5xx 471
AP D8xx 369
AP D9xx 289
AP DBxx 459
AP DDxx 303
AP E00E1 149
AP F0xx 600
AP F1xx 357
AP F2xx 335
AP F6xx 466
AP FBxx 502
AP FC71 331
AP FC72 331
AP FCxx 21, 329, 424
AP FD7E 329
AP FDxx 117, 424
AP FExx 117, 424
AP FF0x 503
BA xxxx 631
DD xxxx 645
DH xxxx 661
DM xxxx 672
DP xxxx 694
DS xxxx 719
DU xxxx 750
EJ xxxx 798
EM xxxx 809
GC xxxx 639
II xxxx 829
KE xxxx 852
LC xxxx 639
LD xxxx 865
LG xxxx 895
LM xxxx 900
ME xxxx 910
MN xxxx 919
NQ xxxx 937

trace point IDs (continued)
OT xxxx 943
PA xxxx 947
PG xxxx 1005
PI xxxx 1045
PT xxxx 1060
RE trace points 21
RM xxxx 1099
RX xxxx 1103
RZ xxxx 1118
SH xxxx 1125
SJ xxxx 1140
SM xxxx 1162
SN xxxx 1173
ST xxxx 1200
TI xxxx 1204
TR xxxx 1218
TS xxxx 1240
UE trace points 21
US xxxx 1255
WB xxxx 509, 1273
XM xxxx 1312
XS xxxx 1340

trace utility program (DFHTU640) 430
TRACE_PUT function, TRPT gate 1211
TRANDEF_DELETE_QUERY function, XMDN

format 1310
TRANDEF_NOTIFY function, XMDN format 1309
transaction dump table (TDT) 748
transaction dumps 721
transaction initiation, automatic (ATI) 462
transaction manager (XM) domain 1275

invocation of abnormal condition program 436
transaction restart program, DFHREST 439
transaction routing 74, 441

data streams for 453
DFHAPRT 441
for APPC devices, LU6.2 458
relay transaction 441
shipping TCTTE for 17
surrogate TCTTE 457

TRANSACTION_DUMP function, DUDU gate 734
TRANSACTION_INITIALISATION function, KEXM

gate 848
TRANSACTION_INITIALIZATION function, APXM

gate 545
TRANSACTION_INITIALIZATION function, MNXM

gate 916
TRANSACTION_TERMINATION function, APXM

gate 546
TRANSACTION_TERMINATION function, MNXM

gate 916
transaction-routed data format 454
transactions

CATA 12, 54, 58, 1493
CATD 1493
CATR 1493
CEBR 151
CECI 87
CECS 87
CEDA 343

1566 CICS TS for z/OS: CICS Diagnosis Reference

transactions (continued)
CEDB 343
CEDC 343
CEMT 319, 353
CEOT 319
CEST 319
CITS 1493
CMAC 909
CMPX 284
CMSG 323, 324
CPMI 278
CSFE 161
CSGM 291
CSM1 278
CSM2 278
CSM3 278
CSM5 278
CSMI 278
CSNC 300
CSNE 327
CSPG 49
CSPQ 39, 48
CSPS 39
CSZI 263
CVMI 278
CXRT 450
mirror 278

TRANSFER_SIT function, APAP gate 520
transformations of data for function shipping 280
transformer program (DFHXTP) 452
transient data control

abnormal condition program (ACP) 436
mapping control program (MCP) 39
terminal page retrieval program (TPR) 50
undelivered messages cleanup program (TPQ) 48

transient data program (TDP)
deferred work element (DWE) 461

transient data services 462
translator, command-language 339
TRBL (trace block) 1217
TREN (trace entry) 1217
TRFCA (trace formatting control area) 431
TRGTW (global trap working storage) 1217
TRIGGER_PARTNER function, PTTW gate, 1056
TRPT gate

TRACE_PUT function 1211
TRSR gate

ACTIVATE_TRAP function 1215
DEACTIVATE_TRAP function 1216
INQUIRE_AUXILIARY_TRACE function 1214
INQUIRE_GTF_TRACE function 1215
INQUIRE_INTERNAL_TRACE function 1212
PAUSE_AUXILIARY_TRACE function 1213
SET_AUX_TRACE_AUTOSWITCH function 1213
SET_INTERNAL_TABLE_SIZE function 1211
START_AUXILIARY_TRACE function 1213
START_GTF_TRACE function 1215
START_INTERNAL_TRACE function 1212
STOP_AUXILIARY_TRACE function 1213
STOP_GTF_TRACE function 1215
STOP_INTERNAL_TRACE function 1212

TRSR gate (continued)
SWITCH_AUXILIARY_EXTENTS function 1214

TS (temporary storage) domain 1221
TSBR gate

CHECK_PREFIX function 1237
END_BROWSE function 1237
GET_NEXT function 1236
INQUIRE_QUEUE function 1235
START_BROWSE function 1236

TSIC gate
DELIVER_IC_RECOVERY_DATA function 1237
INQUIRE_QUEUE function 1237
SOLICIT_INQUIRES function 1237

TSPT gate
GET function 1227
GET_RELEASE function 1228
GET_RELEASE_SET function 1228
GET_SET function 1228
PUT function 1226
PUT_REPLACE function 1227
RELEASE function 1229

TSQR gate
ALLOCATE_SET_STORAGE function 1226
DELETE function 1225
READ_INTO function 1223
READ_NEXT_INTO function 1224
READ_NEXT_SET function 1225
READ_SET function 1223
REWRITE function 1222
WRITE function 1221

TSSB gate
END_BROWSE function 1234
GET_NEXT function 1233
INQUIRE_QUEUE function 1234
START_BROWSE function 1233

TSSH gate
DELETE function 1233
INITIALIZE function 1229
INQUIRE_POOL_TOKEN function 1229
INQUIRE_SYSID_TABLE_TOKEN function 1233
READ_INTO function 1231
READ_NEXT_INTO function 1232
READ_NEXT_SET function 1232
READ_SET function 1231
REWRITE function 1230
WRITE function 1229

TSSR gate
SET_BUFFERS function 1235
SET_START_TYPE function 1235
SET_STRINGS function 1235

TTP (terminal type parameter)
illustration of 33
terminal page processor (TPP) 47

two-phase commit process 397
type 3 SVC routine

used for interregion communication 293
TYPE_PURGE function, CCCC gate 636

Index 1567

U
UEH (user exit handler) 469
UEM (user exit manager) 468
UET (user exit table) 393, 467
UIB (user interface block) 121
UNCHAIN_AID function, TFAL gate 589
UNFLATTEN_ESM_TOKEN function, XSFL gate 1321
UNFLATTEN_TRANSACTION_USER function, USXM

gate 1253
UNFLATTEN_USER function, USFL gate 1248
UNFLATTEN_USER_SECURITY function, XSFL

gate 1320
unit of recovery descriptor (URD) 367, 397
UNLOCK function, LMLM gate 898
UNLOCK_TCLASS function, XMCL gate 1285
UNLOCK_TERM_MODEL function, AIIQ format 24
UNLOCK_TRANDEF function, XMLD gate 1298
UOW_TIME function, LGGL gate 877
UPDATE option of READ request

backout processing 168
exclusive control of control interval 168
processing 167

UPDATE_ABEND_RECORD function, ABAB gate 517
UPDATE_PASSWORD_DATA function, XSPW

gate 1332
UPDATE_PROFILE_IN_LIST function, DPLM gate 685
UPDATE_SUBSPACE_TCB_INFO function, SMSR

gate 1158
UPDATE_TRANNUM_FOR_RESTART function, TFAL

gate 590
UPDATE_WEBSERVICE function, PISC gate 1029
URD (unit of recovery descriptor) 367, 397
URIMAP attributes, WBUR gate 1268
US (user) domain 1241
USAD gate

ADD_USER_WITH_PASSWORD function 1241
ADD_USER_WITHOUT_PASSWORD

function 1243
DELETE_USER function 1244
INQUIRE_DEFAULT_USER function 1246
INQUIRE_USER function 1245
VALIDATE_USERID function 1246

user (US) domain 1241
user exit control 467
user exit handler (UEH) 469
user exit interface

control blocks, illustrated 470
user exit manager (UEM) 468
user exit service module (DFHAPEX) 469
user exit subroutine (DFHSUEX) 470
user exit table (UET) 393, 467
user exits

“good morning” message program 291
AP domain termination 602
CICS-DB2 85
data tables 262
database control (DBCTL) 102
DFHCSDUP 90
dispatcher domain 719
DL/I database support 122
dump domain 750

user exits (continued)
exec interface 148
extended recovery facility (XRF) 156
file control 262
function shipping 289
interval control 308
message domain 910
monitoring domain 919
program control 335
statistics domain 1200
system recovery program 379
terminal control 424
transient data control 466

user interface block (UIB) 121
USFL gate

FLATTEN_USER function 1247
TAKEOVER function 1247
UNFLATTEN_USER function 1248

USIS gate
SET_USER_DOMAIN_PARMS function 1249

USXM gate
ADD_TRANSACTION_USER function 1249
DELETE_TRANSACTION_USER function 1250
END_TRANSACTION function 1250
FLATTEN_TRANSACTION_USER function 1250
INIT_TRANSACTION_USER function 1251
INQUIRE_TRANSACTION_USER function 1251
TERM_TRANSACTION_USER function 1253
UNFLATTEN_TRANSACTION_USER function 1253

V
VALIDATE_APPC_RESPONSE function, XSLU

gate 1329
VALIDATE_LANGUAGE_CODE function, MEME

gate 906
VALIDATE_LANGUAGE_SUFFIX function, MEME

gate 907
VALIDATE_USERID function, USAD gate 1246
VALIDATE_USERID function, XSAD gate 1319
VERIFY function, SOIS gate 1183
vertical tabs

and device independence 31
virtual storage access method (VSAM) 163
Virtual Telecommunications Method (VTAM) 405

and node abnormal condition program (NACP) 327
and node error program (NEP) 331
transmission facilities 406

VSAM
ENDBR request processing 173
READ request processing 167
READNEXT request processing 172
READPREV request processing 172
RESETBR request processing 172
REWRITE request processing 170
STARTBR request processing 172
UNLOCK request processing 171
WRITE request processing 168

VSAM (virtual storage access method) 163
VSAM interface program, file control (DFHFCVR) 214
VSAM request processor, file control (DFHFCVS) 215

1568 CICS TS for z/OS: CICS Diagnosis Reference

VSAM work area (VSWA) 173, 183
VSAM, processing using 166
VSWA (VSAM work area) 173, 183

FREEMAIN during DELETE processing 172
FREEMAIN during UNLOCK request

processing 171
FREEMAIN in ENDBR request processing 173
READ request 167
WRITE request 168

VTAM
control blocks

ACBs 272
NIBs 273
RPLs 273

exits
DFASY 273
LOGON 273
LOSTERM 273
NSEXIT 273
SCIP 273
TPEND 273

VTAM asynchronous receive exit (DFHZASX) 15
VTAM asynchronous send exit (DFHZSAX) 15
VTAM exits 21, 502
VTAM generic resource 473
VTAM LU6.2 479
VTAM persistent sessions 489

W
WAIT request

terminal control 408
WAIT_FOR_CORBASERVER function, EJCG

gate 768
WAIT_FOR_DJAR function, EJDG gate 778
WAIT_FOR_PARTNER function, PTTW gate, 1057
WAIT_FOR_USABLE_DJARS function, EJDG

gate 779
WAIT_MVS function, DSSR gate 713
WAIT_OLDC function, DSSR gate 715
WAIT_OLDW function, DSSR gate 714
WAIT_PHASE function, DMDM gate 666
WAITPRED function, KEAR gate 833
warm start 74
WB (Web) domain 1257
WBAP gate

END_BROWSE function 1259
GET_HTTP_RESPONSE function 1259
GET_MESSAGE_BODY function 1259
INQUIRE function 1261
READ_HEADER function 1260
READ_NEXT function 1258
SEND_RESPONSE function 1260
START_BROWSE function 1257
WRITE_HEADER function 1261

WBCL gate
CLOSE_SESSION function 1265
END_BROWSE_HEADERS function 1264
INQUIRE_SESSION function 1264
OPEN_SESSION function 1262
PARSE_URL function 1261

WBCL gate (continued)
READ_HEADER function 1263
READ_NEXT_HEADER function 1264
READ_RESPONSE function 1263
START_BROWSE_HEADERS function 1264
WRITE_HEADER function 1262
WRITE_REQUEST function 1262

WBRP gate
CATALOG_HOST function 1265
CATALOG_URIMAP function 1265
DELETE_HOST function 1266
DELETE_URIMAP function 1265
RECOVER_DEFINITIONS function 1266

WBSR gate
RECEIVE function 1266
SEND function 1267
SEND_STATIC_RESPONSE function 1267

WBUR gate
ADD_REPLACE_URIMAP function 1268
DELETE_URIMAP function 1269
END_BROWSE_HOST function 1271
END_BROWSE_URIMAP function 1270
GET_NEXT_HOST function 1271
GET_NEXT_URIMAP function 1270
INITIALIZE_URIMAPS function 1268
INQUIRE_HOST function 1270
INQUIRE_URIMAP function 1269
LOCATE_URIMAP function 1269
SET_HOST function 1271
SET_URIMAP function 1269
START_BROWSE_HOST function 1271
START_BROWSE_URIMAP function 1270
URIMAP attributes 1268

Web (WB) domain 1257
WRITE function, CCCC gate 634
WRITE function, LGGL gate 874
WRITE function, LGWF gate 891
WRITE function, TSQR gate 1221
WRITE function, TSSH gate 1229
WRITE_HEADER function, WBAP gate 1261
WRITE_HEADER function, WBCL gate 1262
WRITE_JNL function, LGGL gate 875
WRITE_JOURNAL_DATA function, APJC gate 529
WRITE_NEXT function, CCCC gate 637
WRITE_REQUEST function, WBCL gate 1262
WRITE_TRANSIENT_DATA function, APTD gate 542
WTO macro 503
WTOR macro 503

X
XFCREQ, global user exit

READ request 166
WRITE request 168

XLN (exchange log name) 480
XLT (transaction list table)

AP domain termination program (STP) 601
XM (transaction manager) domain 1275

invocation of abnormal condition program 436
XMAT gate

ATTACH function 1276

Index 1569

XMBD gate
END_BROWSE_TRANDEF function 1279
GET_NEXT_TRANDEF function 1277
START_BROWSE_TRANDEF function 1277

XMCL gate
ADD_REPLACE_TCLASS function 1280
ADD_TCLASS function 1280
DELETE_TCLASS function 1282
DEREGISTER_TCLASS_USAGE function 1284
END_BROWSE_TCLASS function 1283
GET_NEXT_TCLASS function 1283
INQUIRE_ALL_TCLASSES function 1281
INQUIRE_TCLASS function 1281
LOCATE_AND_LOCK_TCLASS function 1285
REGISTER_TCLASS_USAGE function 1284
SET_TCLASS function 1282
START_BROWSE_TCLASS function 1283
UNLOCK_TCLASS function 1285

XMDD gate
DELETE_TRANDEF function 1285

XMDN format
TRANDEF_DELETE_QUERY function 1310
TRANDEF_NOTIFY function 1309

XMER gate
ABEND_TRANSACTION function 1288
INQUIRE_DEFERRED_ABEND function 1287
INQUIRE_DEFERRED_MESSAGE function 1286
REPORT_MESSAGE function 1287
SET_DEFERRED_ABEND function 1286
SET_DEFERRED_MESSAGE function 1286

XMFD gate
FIND_PROFILE function 1288

XMIQ gate
END_BROWSE_TRANSACTION function 1294
END_BROWSE_TXN_TOKEN function 1295
GET_NEXT_TRANSACTION function 1292
GET_NEXT_TXN_TOKEN function 1295
INQUIRE_TRANSACTION function 1288
INQUIRE_TRANSACTION_TOKEN function 1296
PURGE_TRANSACTION function 1297
SET_TRANSACTION function 1291
SET_TRANSACTION_TOKEN function 1296
START_BROWSE_TRANSACTION function 1292
START_BROWSE_TXN_TOKEN function 1295

XMLD gate
LOCATE_AND_LOCK_TRANDEF function 1297
UNLOCK_TRANDEF function 1298

XMNT format
MXT_CHANGE_NOTIFY function 1309
MXT_NOTIFY function 1309

XMPP format
FORCE_PURGE_INHIBIT_QUERY function 1310

XMSR gate
INQUIRE_DTRTRAN function 1299
INQUIRE_MXT function 1298
SET_DTRTRAN function 1299
SET_MXT function 1299

XMXD gate
ADD_REPLACE_TRANDEF function 1300
INQUIRE_REMOTE_TRANDEF function 1305
INQUIRE_TRANDEF function 1303

XMXD gate (continued)
SET_TRANDEF function 1302

XMXE gate
FREE_TXN_ENVIRONMENT function 1307
GET_TXN_ENVIRONMENT function 1307

XRF (extended recovery facility) 155
XS (security manager) domain 1313
XSAD gate

ADD_USER_WITH_PASSWORD function 1313
ADD_USER_WITHOUT_PASSWORD

function 1315
DELETE_USER_SECURITY function 1316
INQUIRE_USER_ATTRIBUTES function 1317
VALIDATE_USERID function 1319

XSFL gate
FLATTEN_USER_SECURITY function 1320
UNFLATTEN_ESM_TOKEN function 1321
UNFLATTEN_USER_SECURITY function 1320

XSIS gate
INQ_SECURITY_DOMAIN_PARMS function 1323
INQUIRE_REALM_NAME function 1328
INQUIRE_REGION_USERID function 1322
SET_NETWORK_IDENTIFIER function 1327
SET_SECURITY_DOMAIN function 1325
SET_SPECIAL_TOKENS function 1327

XSLU gate
GENERATE_APPC_BIND function 1328
GENERATE_APPC_RESPONSE function 1329
VALIDATE_APPC_RESPONSE function 1329

XSPW gate
CREATE_PASSTICKET function 1330
INQUIRE_CERTIFICATE_USERID function 1333
INQUIRE_PASSWORD_DATA function 1331
REGISTER_CERTIFICATE_USER function 1333
UPDATE_PASSWORD_DATA function 1332

XSRC gate
CHECK_CICS_COMMAND function 1335
CHECK_CICS_RESOURCE function 1334
CHECK_NON_CICS_RESOURCE function 1336
CHECK_SURROGATE_USER function 1336
REBUILD_RESOURCE_CLASSES function 1337

XSXM gate
ADD_TRANSACTION_SECURITY function 1337
DEL_TRANSACTION_SECURITY function 1338

XWBOPEN 509, 1273
XWBSNDO 509, 1273

1570 CICS TS for z/OS: CICS Diagnosis Reference

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN. Such information may
be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or
any equivalent agreement between us.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. A current list of IBM trademarks is available on
the Web at Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

© Copyright IBM Corp. 1997, 2011 1571

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks
of Adobe Systems Incorporated in the United States, and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Microsoft, and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other product and service names might be trademarks of IBM or other companies.

1572 CICS TS for z/OS: CICS Diagnosis Reference

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the information is
presented.

To ask questions, make comments about the functions of IBM products or systems, or to request
additional publications, contact your IBM representative or your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

IBM United Kingdom Limited
User Technologies Department (MP095)
Hursley Park
Winchester
Hampshire
SO21 2JN
United Kingdom

v By fax:

– From outside the U.K., after your international access code use 44–1962–816151

– From within the U.K., use 01962–816151

v Electronically, use the appropriate network ID:

– IBMLink: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

v The publication title and order number

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1997, 2011 1573

1574 CICS TS for z/OS: CICS Diagnosis Reference

����

Product Number: 5655-M15

GC34-6899-03

Sp
in
e
in
fo
rm
at
io
n:

�
�

�
C

IC
S

T
S

fo
r

z/
O

S
C

IC
S

D
ia

gn
os

is
R

ef
er

en
ce

Ve
rs

io
n

3
R

el
ea

se
1

	Contents
	Preface
	What this book is about
	Who this book is for
	What you need to know to use this book
	Notes on terminology

	Summary of changes
	Changes for CICS Transaction Server for z/OS Version 3 Release 1
	Changes for CICS Transaction Server for z/OS, Version 2 Release 2
	Changes for CICS Transaction Server for z/OS, Version 2 Release 1

	Part 1. Introduction
	Chapter 1. CICS domains
	Domain gates
	Functions provided by gates
	Specific gates, generic and call-back gates
	Domain call formats
	Ownership of formats
	Tokens
	Responses

	Chapter 2. Application domain
	Part 2. CICS components
	Chapter 3. Autoinstall for terminals, consoles and APPC connections
	Design overview
	Autoinstall of a terminal logon flow
	Autoinstall of APPC device logon flow
	Autoinstall of an APPC Generic Resource connection

	Autoinstall of consoles install flow
	Sign-on to consoles flow
	Disconnection flow for terminals (LU-initiated)
	Deletion of autoinstalled APPC devices.
	Disconnection flow (APPC devices)

	Deletion of autoinstalled consoles
	Shipping a TCTTE for transaction routing
	The first time a transaction is invoked
	When an autoinstalled TCTTE in a TOR is deleted

	Modules
	DFHZATDX
	DFHZATDY

	Diagnosing autoinstall problems
	Diagnosing APPC autoinstall problems

	Diagnosing console autoinstall problems
	VTAM exits
	Trace

	Chapter 4. Autoinstall terminal model manager
	Functions provided by the autoinstall terminal model manager
	AIIN format, START_INIT function
	Input parameters
	Output parameters

	AIIN format, COMPLETE_INIT function
	Input parameters
	Output parameters

	AIIQ format, LOCATE_TERM_MODEL function
	Input parameters
	Output parameters

	AIIQ format, UNLOCK_TERM_MODEL function
	Input parameters
	Output parameters

	AIIQ format, INQUIRE_TERM_MODEL function
	Input parameters
	Output parameters

	AIIQ format, START_BROWSE function
	Input parameters
	Output parameters

	AIIQ format, GET_NEXT function
	Input parameters
	Output parameters

	AIIQ format, END_BROWSE function
	Input parameters
	Output parameters

	AITM format, ADD_REPL_TERM_MODEL function
	Input parameters
	Output parameters

	AITM format, DELETE_TERM_MODEL function
	Input parameters
	Output parameters

	Modules
	Exits
	Trace

	Chapter 5. Basic mapping support
	Design overview
	Message routing
	Terminal paging
	Device independence

	Control blocks
	Modules
	DFHDSB (data stream build)
	DFHIIP (non-3270 input mapping)
	DFHMCP (mapping control program)
	DFHML1 (LU1 printer with extended attributes mapping)
	DFHM32 (3270 mapping)
	DFHPBP (page and text build)
	DFHPHP (partition handling program)
	DFHRLR (route list resolution program)
	DFHTPP (terminal page processor)
	DFHTPQ (undelivered messages cleanup program)
	DFHTPR (terminal page retrieval program)
	DFHTPS (terminal page scheduling program)

	Copy books
	Exits
	Trace

	Chapter 6. Builders
	Design overview
	What is a builder (DFHBS*)?
	Builder parameter set (BPS)
	TCTTE creation and deletion
	Component overview
	DFHTCRP
	DFHAMTP
	DFHZATA and the CATA transaction
	DFHZTSP
	DFHZCQ
	DFHBS* builder programs
	DFHTBS
	DFHAPRDR
	DFHTBSS
	DFHTONR
	DFHZGTA

	DFHZCQ and TCTTE generation
	What is DFHZCQRT?
	What does DFHTBSBP do?
	What is the RRAB used for?
	What is a resource definition 'atom'?
	What is a Resource definition Atom Name block (RABN)?
	What is a Resource Definition Update Block (RDUB)?
	What is syncpointing?
	DFHTBS
	DFHAPRDR
	DFHTBSS
	DFHTONR
	DFHZGTA
	Summary
	Example of an autoinstall

	Patterns, hierarchies, nodes, and builders
	What is a hierarchy?
	What is a pattern?
	The purpose of the builders
	How does DFHTBSBP do its work?

	The DELETE process
	What about the “lower objects first” rule?
	Example of a reinstall

	Completing the process description
	CONNECT
	READY
	The creation/deletion state machine

	The hierarchy and its effect upon the creation process
	Recursion
	Simple recursion example

	ROLLBACK
	Catalog records and the CICS global catalog data set
	Overview
	The key and the recovery record
	More about the audit trail
	DFHTBSS and the FLATTEN process
	The RESTORE process

	Control blocks
	Terminal storage acquired by the builders
	TCTTE layout
	Terminal definition

	Modules
	Module entry
	Subroutine entry
	Subroutine exit (return to module entry)
	Patterns
	Calling sequence of builders for a 3277 remote terminal
	Builder parameter list
	When the builders are called
	Cold start
	Warm start
	Emergency restart
	After emergency restart
	APPC autoinstall
	Autoinstall logon and logoff
	CEDA INSTALL
	EXEC CICS CREATE
	EXEC CICS DISCARD
	Transaction routing
	Shutdown

	Diagnosing problems with the builders
	Exits
	Trace
	Messages
	Message sets
	How messages show up in a trace

	Chapter 7. Built-in functions
	Design overview
	Field edit (DEEDIT)
	Phonetic conversion

	Modules
	Exits
	Trace

	Chapter 8. CICS-DB2 Attachment Facility
	Design overview
	CICS Initialization
	CICS-DB2 initialization gate DFHD2IN1
	CICS-DB2 recovery task DFHD2IN2
	CICS-DB2 restart program DFHD2RP

	CICS-DB2 Attachment startup
	CICS-DB2 startup program DFHD2STR

	CICS-DB2 attachment shutdown
	CICS-DB2 shutdown program DFHD2STP

	CICS-DB2 mainline processing
	CICS-DB2 task related user exit (TRUE) DFHD2EX1
	CICS-DB2 coordinator program DFHD2CO
	CICS-DB2 master subtask program DFHD2MSB
	CICS-DB2 subtask program DFHD2EX3
	CICS-DB2 thread processor DFHD2D2
	CICS-DB2 service task program DFHD2EX2
	CICS-DB2 PLTPI program DFHD2CM0
	CICS-DB2 comand processor DFHD2CM1
	CICS-DB2 shutdown quiesce program DFHD2CM2
	CICS-DB2 shutdown force program DFHD2CM3
	CICS-DB2 table manager DFHD2TM
	CICS DB2 statistics program DFHD2ST
	CICS DB2 connection control program DFHD2CC
	CICS DB2 EDF processor DFHD2EDF

	Control blocks
	DFHD2SS (CICS-DB2 static storage)
	DFHD2GLB (CICS-DB2 global block)
	DFHD2ENT (CICS-DB2 DB2ENTRY block)
	DFHD2TRN (CICS-DB2 DB2TRAN block)
	DFHD2CSB (CICS-DB2 connection block)
	DFHD2GWA (CICS-DB2 global work area)
	DFHD2LOT (CICS-DB2 life of task block)

	Modules
	Exits
	Trace
	Statistics

	Chapter 9. Command interpreter
	Design overview
	Modules
	Exits
	Trace

	Chapter 10. CSD utility program (DFHCSDUP)
	Design overview
	Modules
	Exits
	Trace
	Statistics

	Chapter 11. Database control (DBCTL)
	Design overview
	The connection process
	Connection and disconnection programs
	Control program (DFHDBCT)
	DRA control exit (DFHDBCTX)
	DBCTL user-replaceable program (DFHDBUEX)
	Disable program (DFHDBDI)
	The DBCTL call processor program (DFHDLIDP)

	The interface layer
	Adapter (DFHDBAT)
	Suspend exit (DFHDBSPX)
	Resume exit (DFHDBREX)
	Adapter exits

	DBCTL system definition
	DBCTL PSB scheduling
	Database calls
	DBCTL PSB termination
	System termination

	Control blocks
	Modules
	Exits

	Chapter 12. Data interchange program
	Design overview
	Modules
	Exits
	Trace

	Chapter 13. Distributed program link
	Modules
	Exits
	Trace

	Chapter 14. Distributed transaction processing
	Design overview
	Distributed transaction processing with MRO and LU6.1
	Mapped and unmapped conversations (LU6.2)

	Modules
	DFHEGL
	DFHETC and DFHETL
	DFHZARL
	INITIAL_CALL function
	ALLOCATE function
	SEND function
	RECEIVE function
	ISSUE ERROR or ABEND function

	DFHZARM
	SEND function
	RECEIVE function
	FREE function
	INVALID_ID function
	LU6.1 chains

	DFHZARQ
	DFHZARR
	RECEIVE function

	DFHZERH
	Outbound errors
	Inbound errors

	DFHZISP
	DFHZSTAP

	Exits
	Trace

	Chapter 15. DL/I database support
	Design overview
	The router component (DFHDLI)
	Deciding where to process a request
	Initiating synchronization processing
	Generating CICS trace records

	Control blocks
	DL/I interface block (DIB)
	DL/I interface parameter list (DLP)
	User interface block (UIB)

	Modules
	Exits
	Trace

	Chapter 16. Dump utility program (DFHDU640)
	Design overview
	Data sets
	Processing

	Modules
	Copy books
	Exits
	Trace

	Chapter 17. Dynamic allocation sample program (IBM 3270 only)
	Design overview
	Control blocks
	Modules
	Exits
	Trace
	External interfaces

	Chapter 18. ECI over TCP/IP
	Design Overview
	Listener task, CIEP
	Request header settings

	Mirror task, CPMI
	PING
	Notes
	Modules

	Chapter 19. EXEC interface
	Design overview
	Control blocks
	Modules
	DFHEIP
	Method of calling processor modules

	Exits
	Trace

	Chapter 20. Execution diagnostic facility (EDF)
	Design overview
	Modules
	CEBR transaction (DFHEDFBR)
	EDF display (DFHEDFD)
	Method

	EDF map set (DFHEDFM)
	EDF control program (DFHEDFP)
	Input
	Output
	Method

	EDF response table (DFHEDFR)
	EDF task switch program (DFHEDFX)
	Method

	Exits
	Trace

	Chapter 21. Extended recovery facility (XRF)
	Design overview
	Control blocks
	Modules
	Exits
	Trace

	Chapter 22. External CICS interface
	Design overview
	The programming interfaces

	Modules
	Exits
	Trace

	Chapter 23. Field engineering program
	Design overview
	Modules
	Exits
	Trace

	Chapter 24. File control
	Design overview
	Deblocking services for BDAM data sets
	Concurrency control
	Concurrency control for coupling facility data tables

	Sequential retrieval
	Read Integrity
	Backout logging
	Forward Recovery Logging
	Automatic journaling and logging
	Use of concurrent tasks
	Shared Data table services
	Coupling facility data tables server
	How CICS processes file control requests
	Processing using VSAM
	Processing using Data Tables
	General request processing
	READ request processing
	WRITE request processing
	REWRITE request processing
	UNLOCK request processing
	DELETE request processing
	STARTBR and RESETBR request processing
	READNEXT and READPREV request processing
	ENDBR request processing

	Control blocks
	Access method control block (ACB)
	Data control block (DCB)
	Data set name block (DSNB)
	File browse work area (FBWA)
	File control static storage (FC static)
	File control quiesce receive element (FCQRE)
	File control quiesce send element (FCQSE)
	File control coupling facility data table pool element (FCPE)
	File control coupling facility data table pool wait element (FCPW)
	File control table entry (FCTE)
	File control table entry (FCPW)
	File control coupling facility data tables UOW pool block (FCUP)
	File input/output area (FIOA)
	File lasting access block (FLAB)
	File control locks locator blocks (FLLBs)
	File request anchor block (FRAB)
	File request thread elements (FRTEs)
	Keypoint list element (KPLE)
	Shared resources control (SHRCTL) block
	VSAM work area (VSWA)

	Modules
	DFHEIFC (file control EXEC interface module)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCAT (file control catalog manager)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCBD (file control BDAM request processor)
	Call mechanism
	Entry address
	Addressing mode
	Residency mode
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCCA (file control RLS control ACB manager)
	DFHFCDL (file control CFDT load program)
	DFHFCDN (file control DSN block manager)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCDO (file control CFDT open/close program)
	DFHFCDR (file control CFDT request processor)
	DFHFCDTS (file control shared data table request program)
	DFHFCDTX (file control shared data table function ship program)
	DFHFCDU (file control CFDT UOW calls program)
	DFHFCDW (file control CFDT RMC program)
	DFHFCDY (file control CFDT resynchronization program)
	DFHFCES (file control ENF servicer)
	DFHFCFL (file control FRAB and FLAB processor)
	DFHFCFR (file control file request handler)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCFS (file control file state program)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCIN1 (file control initialization program 1)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCIN2 (file control initialization program 2)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCIR (file control initialize recovery)
	DFHFCL (file control shared resources pool processor)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCLF (file control log failures handler)
	DFHFCLJ (file control logging and journaling program
	DFHFCMT (file control table manager)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCN (file control open/close program)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCNQ (file control non-RLS lock handler)
	Lock retention
	Lock name interpretation

	DFHFCOR (file control offsite recovery completion)
	DFHFCQI (file control RLS quiesce initiation)
	DFHFCQR (file control quiesce receive transaction)
	DFHFCQS (file control RLS quiesce send transaction)
	DFHFCQT (file control RLS quiesce common system transaction)
	DFHFCQU (file control RLS quiesce processor)
	DFHFCQX (file control RLS quiesce exit)
	DFHFCRC (file control recovery control program)
	PERFORM_PREPARE
	PERFORM_COMMIT
	START_BACKOUT
	DELIVER_BACKOUT_DATA
	END_BACKOUT
	PERFORM_SHUNT
	PERFORM_UNSHUNT
	TAKE_KEYPOINT
	START_DELIVERY
	DELIVER_RECOVERY
	DELIVER_FORGET
	END_DELIVERY

	DFHFCRD (file control RLS cleanup transaction)
	DFHFCRF (file control function shipping interface module)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCRL (file control share control block manager)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCRO (file control RLS open/close program)
	DFHFCRP (file control restart program)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCRR (file control RLS restart)
	DFHFCRS (file control RLS record management processor)
	DFHFCRV (file control RLS VSAM interface processor)
	DFHFCSD (file control shutdown program)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCST (file control statistics program)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCVR (file control VSAM interface program)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	DFHFCVS (file control VSAM request processor)
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	Parameter lists
	FCCA CHECK function
	Input parameters
	Output parameters

	FCCA COLD_START_RLS function
	Input parameters
	Output parameters

	FCCA DRAIN_CONTROL_ACB function
	Input parameters
	Output parameters

	FCCA INQUIRE_RECOVERY function
	Input parameters
	Output parameters

	FCCA LOST_LOCKS_COMPLETE function
	Input parameters
	Output parameters

	FCCA QUIESCE_COMPLETE function
	Input parameters
	Output parameters

	FCCA QUIESCE_REQUEST function
	Input parameters
	Output parameters

	FCCA REGISTER_CONTROL_ACB function
	Input parameters
	Output parameters

	FCCA RELEASE_LOCKS function
	Input parameters
	Output parameters

	FCCA RESET_NONRLS_BATCH function
	Input parameters
	Output parameters

	FCCA RETAIN_DATASET_LOCKS function
	Input parameters
	Output parameters

	FCCA RETAIN_UOW_LOCKS function
	Input parameters
	Output parameters

	FCCA UNREGISTER_CONTROL_ACB function
	Input parameters
	Output parameters

	FCCI INQUIRE function
	FCCR POINT function
	Input parameters
	Output parameters

	FCCR HIGHEST function
	Input parameters
	Output parameters

	FCCR READ function
	Input parameters
	Output parameters

	FCCR READ_DELETE function
	FCCR UNLOCK function
	Input parameters
	Output parameters

	FCCR LOAD function
	Input parameters
	Output parameters

	FCCR WRITE function
	Input parameters
	Output parameters

	FCCR REWRITE function
	Input parameters
	Output parameters

	FCCR DELETE function
	Input parameters
	Output parameters

	FCCR DELETE_MULTIPLE function
	Input parameters
	Output parameters

	FCCT OPEN function
	Input parameters
	Output parameters

	FCCT CLOSE function
	Input parameters
	Output parameters

	FCCT DELETE function
	Input parameters
	Output parameters

	FCCT SET function
	Input parameters
	Output parameters

	FCCT EXTRACT_STATISTICS function
	Input parameters
	Output parameters

	FCCU PREPARE function
	Input parameters
	Output parameters

	FCCU RETAIN function
	Input parameters
	Output parameters

	FCCU COMMIT function
	Input parameters
	Output parameters

	FCCU BACKOUT function
	Input parameters
	Output parameters

	FCCU INQUIRE function
	Input parameters
	Output parameters

	FCCU RESTART function
	Input parameters
	Output parameters

	FCDS EXTRACT_CFDT_STATS function
	Input parameters
	Output parameters

	FCDS DISCONNECT_CFDT_POOLS function
	Input parameters
	Output parameters

	FCDU PREPARE function
	Input parameters
	Output parameters

	FCDU RETAIN function
	Input parameters
	Output parameters

	FCDU COMMIT function
	Input parameters
	Output parameters

	FCDU BACKOUT function
	Input parameters
	Output parameters

	FCDU INQUIRE function
	Input parameters
	Output parameters

	FCDU RESTART function
	Input parameters
	Output parameters

	FCDY RESYNC_CFDT_POOL function
	Input parameters
	Output parameters

	FCDY RESYNC_CFDT_LINK function
	Input parameters
	Output parameters

	FCDY RETURN_CFDT_ENTRY_POINTS function
	Input parameters
	Output parameters

	FCFL END_UOWDSN_BROWSE function
	Input parameters
	Output parameters

	FCFL FIND_RETAINED function
	Input parameters
	Output parameters

	FCFL FORCE_INDOUBTS function
	Input parameters
	Output parameters

	FCFL GET_NEXT_UOWDSN function
	Input parameters
	Output parameters

	FCFL RESET_BFAILS function
	Input parameters
	Output parameters

	FCFL RETRY function
	Input parameters
	Output parameters

	FCFL START_UOWDSN_BROWSE function
	Input parameters
	Output parameters

	FCFL TEST_USER function
	Input parameters
	Output parameters

	FCLJ FILE_OPEN function
	Input parameters
	Output parameters

	FCLJ FILE_CLOSE Function
	Input parameters
	Output parameters

	FCLJ READ_ONLY Function
	Input parameters
	Output parameters

	FCLJ READ_UPDATE Function
	Input parameters
	Output parameters

	FCLJ WRITE_UPDATE Function
	Input parameters
	Output parameters

	FCLJ WRITE_ADD Function
	Input parameters
	Output parameters

	FCLJ WRITE_ADD_COMPLETE Function
	Input parameters
	Output parameters

	FCLJ WRITE_DELETE Function
	Input parameters
	Output parameters

	FCLJ SYNCHRONIZE_READ_UPDATE Function
	Input parameters
	Output parameters

	FCLJ TAKE_KEYPOINT Function
	Input parameters
	Output parameters

	FCLJ DATASET_COPY Function
	Input parameters
	Output parameters

	FCQI INITIATE_QUIESCE Function
	Input parameters
	Output parameters

	FCQI INQUIRE_QUIESCE Function
	Input parameters
	Output parameters

	FCQI COMPLETE_QUIESCE Function
	Input parameters
	Output parameters

	FCQR RECEIVE_QUIESCES Function
	Input parameters
	Output parameters

	FCQS SEND_QUIESCES Function
	Input parameters
	Output parameters

	FCQU PROCESS_QUIESCE Function
	Input parameters
	Output parameters

	FCRR RESTART_RLS Function
	COLD and INITIAL
	WARM and EMERGENCY
	DYNAMIC
	Input parameters
	Output parameters

	FCRR RESOURCE_AVAILABLE function
	Input parameters
	Output parameters

	FCRR LOST_LOCKS_RECOVERED function
	Input parameters
	Output parameters

	File Control’s call back gates
	Exits
	Trace

	Chapter 25. Front end programming interface (FEPI)
	Design overview
	FEPI as a CICS transaction
	Application flows
	Application programming command flows
	System programming command flows
	Logic flow within the FEPI adapter
	The FEPI adapter and Resource Manager

	The FEPI Resource Manager work queues
	Summary of Resource Manager work queues

	Control blocks
	Dump
	The static area
	The common area
	Property sets
	Pools
	Nodes
	Targets
	Connections
	Conversations
	DQEs

	FEPI and VTAM
	VTAM control blocks
	VTAM exits

	Modules

	Chapter 26. Function shipping
	Design overview
	Application programming functions with CICS function shipping
	Local and remote names
	Mirror transactions
	Initialization of CICS for CICS function shipping
	Communication with a remote system
	Protocols
	Symmetrical bracket protocol
	Shutdown protocol
	Sender error recovery protocol (ERP)
	Resynchronization protocol

	CICS function shipping environment
	System entries in the terminal control table
	Transformation of requests and replies for transmission between systems

	CICS function shipping—handling of EXEC CICS commands
	Sending a request to a remote system
	Receiving a request at a remote system
	Sending a reply at a remote system
	Receiving a reply from a remote system

	CICS function shipping—handling of DL/I requests
	Sending a DL/I request to a remote system
	Receiving a DL/I request at a remote system
	Sending a DL/I reply at a remote system
	Receiving a DL/I reply from a remote system

	Terminal control support for CICS function shipping
	TCTTE allocation functions
	Syncpoint functions
	VTAM secondary half-session support

	NOCHECK option function handling

	Exits
	Trace

	Chapter 27. “Good morning” message program
	Design overview
	Modules
	Exits
	Trace

	Chapter 28. Interregion communication (IRC)
	Design overview
	Control blocks
	Terminal control layer
	DFHIR layer
	Terminal control layer and DFHIR layer
	MRO ECB summary

	Modules
	Interregion programs
	DFHIRP (interregion communication (SVC) program)
	DFHXMP (MVS cross-memory program)

	CICS address space modules
	DFHCRSP (CICS IRC startup module)
	DFHCRNP (connection manager—CSNC transaction)
	DFHCRR (CICS session recovery module)
	DFHCRC (interregion abnormal exit module)
	DFHZCX (CICS terminal control routines)
	DFHZCP (CICS terminal management program)

	Exits
	Trace

	Chapter 29. Intersystem communication (ISC)
	Chapter 30. Interval control
	Design overview
	Time of day
	Time-dependent task synchronization
	Automatic time-ordered transaction initiation
	Time-of-day control

	Control blocks
	Modules
	Exits
	Trace

	Chapter 31. Language Environment interface
	Design overview
	Establishing the connection
	Storage for the transaction
	Storage acquisition

	Control blocks
	Modules
	Exits
	Trace
	External interfaces
	Language Environment interface parameter lists
	Work areas
	IOINFO
	PGMINFO1

	PGMINFO2
	Program termination block

	Chapter 32. Master terminal program
	Design overview
	Modules
	Exits
	Trace

	Chapter 33. Message generation program
	Design overview
	Modules
	Exits
	Trace

	Chapter 34. Message switching
	Design overview
	Control blocks
	Modules
	Exits
	Trace
	External interfaces

	Chapter 35. Multiregion operation (MRO)
	Chapter 36. Node abnormal condition program
	Design overview
	Control blocks
	Modules
	Exits
	Trace
	Statistics

	Chapter 37. Node error program
	Design overview
	Modules
	Exits
	Trace

	Chapter 38. Program control
	Design overview
	Services in response to requests

	Modules
	DFHEPC
	Call mechanism
	Entry address
	Purpose
	Called by
	Inputs
	Outputs
	Operation
	How loaded

	Exits
	Trace

	Chapter 39. Program error program
	Design overview
	Control blocks
	Modules
	Exits
	Trace

	Chapter 40. Program preparation utilities
	Design overview
	Modules
	Exits
	Trace

	Chapter 41. Remote DL/I
	Design overview
	System definition
	DL/I PSB scheduling
	Database calls
	DL/I PSB termination

	Control blocks

	Chapter 42. Resource definition online (RDO)
	Design overview
	Modules
	Exits
	Trace

	Chapter 43. SAA Communications and Resource Recovery interfaces
	Design overview
	The SAA Communications interface
	Using the SAA Communications interface on recoverable conversations

	The SAA Resource Recovery interface

	Functions provided by the CPI component
	CPIN format, START_INIT function
	Input parameters
	Output parameters

	CPIN format, COMPLETE_INIT function
	Input parameters
	Output parameters

	CPSP format, SYNCPOINT_REQUEST function
	Input parameters
	Output parameters

	Modules
	Exits
	Trace

	Chapter 44. Statistics utility program (DFHSTUP)
	Design overview
	DFHSTUP operation

	Modules

	Chapter 45. Storage control macro-compatibility interface
	Design overview
	Modules
	Exits
	Trace

	Chapter 46. Subsystem interface
	Functional overview
	Subsystem definition

	Design overview
	Console message handling

	Control Blocks
	Modules
	Exits
	Trace
	External interfaces

	Chapter 47. Subtask control
	Design overview
	DFHSKM (subtask manager program)
	DFHSKC (subtask control program)
	DFHSKE (subtask exit program)

	Control blocks
	Modules
	Exits
	Trace
	External interfaces

	Chapter 48. Syncpoint program
	Design overview
	Task-related user exit resynchronization

	Control blocks
	Deferred work element (DWE)

	Modules
	DFHSPP
	DFHDBP
	DFHAPRC

	Exits
	Trace

	Chapter 49. System dump formatting program
	Design overview
	Modules
	Exits
	Trace
	External interfaces

	Chapter 50. System recovery program
	Design overview
	System recovery table
	Recovery initialization
	Error handling
	Program check
	Operating system abend
	Runaway task
	Kernel gate error
	kernel stack GETMAIN error
	Deferred abend

	DFHSRLIM interface
	INVOKE_XSRAB
	DIAGNOSE_ABEND

	System dump suppression

	Modules
	Exits
	Trace

	Chapter 51. System spooler interface
	Design overview
	System spooler interface modules
	Normal flow
	Abnormal flow

	Modules
	Exits
	Trace

	Chapter 52. Table manager
	Design overview
	Hash table
	Range table and getnext chain
	Secondary indexes
	Functions of the table manager
	Read locks
	Browse token
	Quiesce state
	Finding FCT, or TCT entries in a partition dump

	Control blocks
	Modules
	Exits
	Trace
	Statistics

	Chapter 53. Task-related user exit control
	Functional overview
	Design overview
	Task-related user exit implementation
	Processors

	Control blocks
	Modules
	Exits
	Trace
	External interfaces

	Chapter 54. Task-related user exit recovery
	Design overview
	The two-phase commit process
	Resolution of in-doubts

	The single-phase commit process
	Single-phase commit for read-only UOWs
	Single-phase commit for the single updater

	Modules
	Exits
	Trace
	External interfaces

	Chapter 55. Terminal abnormal condition program
	Design overview
	Modules
	Exits
	Trace

	Chapter 56. Terminal control
	Design overview
	Terminal control services
	Service request facilities
	System control services
	Transmission facilities—VTAM
	Transmission facilities—VTAM/non-VTAM

	Terminal error recovery
	Testing facility—BSAM
	Terminal control modules (DFHZCP, DFHTCP)
	High-performance option
	System console support
	Console support control modules

	Defining terminals to CICS
	DFHZCQ
	DFHBS* builder programs
	Contents of the TCT
	TCT indexing(DFHZGTI and DFHZLOC)
	Locks
	System initialization (DFHTCRP, DFHAPRDR and DFHTBSS)
	CEDA INSTALL and EXEC CICS CREATE (DFHAMTP)

	Autoinstall
	QUERY function (DFHQRY)

	Control blocks
	Modules
	Exits
	Trace

	Chapter 57. Terminal error program
	Design overview
	Modules
	Exits
	Trace

	Chapter 58. Trace control macro-compatibility interface
	Design overview
	Modules
	Exits
	Trace

	Chapter 59. Trace formatting
	Design overview
	Segmented entries on GTF

	Control blocks
	Modules
	Exits

	Chapter 60. Transaction Failure program
	Design overview
	Modules
	Exits
	Trace

	Chapter 61. Transaction restart program
	Design overview
	Control blocks
	Modules
	Exits
	Trace
	Statistics

	Chapter 62. Transaction routing
	Design overview
	Overview of operation in the application-owning region for APPC transaction routing
	APPC control blocks
	DFHZXRL
	ATTACH processing in the application-owning region
	DETACH processing in the application-owning region
	ALLOCATE processing in the application-owning region
	FREE processing in the application-owning region
	Other LU6.2 command processing in the application-owning region
	LU6.2 daisy-chaining considerations

	Overview of operation in the terminal-owning region for APPC transaction routing
	ATTACH processing in the terminal-owning region
	ALLOCATE processing in the terminal-owning region
	FREE processing in the terminal-owning region
	Other LU6.2 command processing in the terminal-owning region

	Transformer program (DFHXTP)
	Data streams for transaction routing
	Transaction-routed data format

	Control blocks
	Relay transaction control blocks
	User transaction control blocks

	Modules
	Exits
	Trace

	Chapter 63. Transient data control
	Design overview
	Intrapartition queues
	Recovery of intrapartition transient data queues

	Extrapartition queues
	Indirect queues
	Automatic transaction initiation
	Transient data services
	Transient data
	Intrapartition queues
	Extrapartition queues

	Modules
	Exits
	Trace

	Chapter 64. User exit control
	Design overview
	User exit control modules
	DFHUEM (user exit manager)
	DFHUEH (user exit handler)
	DFHAPEX (user exit service module)
	DFHSUEX (user exit subroutine)

	Control blocks
	Modules
	Exits
	Trace

	Chapter 65. VTAM generic resource
	Design Overview
	Generic resource and LU6.1/LU6.2
	LU6.2 GR to GR connections
	LU6.2 GR to non-GR connections
	LU6.1

	Ending affinities
	Generic resource and ATI
	Modules
	DFHZBLX
	DFHZGCH
	DFHZGIN

	Problem solving for generic resource
	Generic resource status byte (TCTV_GRSTATUS)
	Generic resource flag byte (TCSEI_GR)
	Trace
	Waits

	Chapter 66. VTAM LU6.2
	Design overview
	Session management
	Change Number Of Sessions (CNOS)
	Exchange Log Name (XLN)

	LU6.2 session states
	LU6.2 SEND and RECEIVE processing
	Limited resources

	Modules
	DFHZRVL
	DFHZRLP
	Data received
	Command received
	Response received

	DFHZSDL
	Data transmission
	Command transmission
	Response transmission

	DFHZSLX
	DFHZRLX
	DFHCLS3
	DFHZLS1
	DFHZGCN
	INITIALIZE_SESSION_LIMIT
	RESET_SESSION_LIMIT
	CHANGE_SESSION_LIMIT
	PROCESS_SESSION_LIMIT

	DFHZGCA
	ACTION_CNOS_AND_CONNECT
	SET_NEGOTIATED_VALUES
	ENSURE_SESSIONS_BOUND

	Exits
	Trace

	Chapter 67. VTAM persistent sessions
	Design overview
	Persistent Sessions Restart flow
	Enabling of persistence
	Sessions that persist at start up time
	Sessions that persist at Dynamic Open
	TCB Concurrency
	Persistent Signon under Persistent Sessions

	Modules
	Diagnosing Persistent Sessions Problems
	Persistent Sessions status byte (TCTE_PRSS)
	Bid status byte (TCTE_BID_STATUS)
	Summary of persistent session waits
	VTAM exits
	Trace
	Statistics

	Chapter 68. WTO and WTOR
	Design overview
	Modules
	Exits
	Trace

	Chapter 69. CICS Web support and the CICS business logic interface
	Design overview
	Control blocks
	Modules
	Initialization, DFHWBIP
	Web attach processing, DFHWBXN
	Default analyzer program, DFHWBAAX
	Alias transaction, DFHWBA
	Web error program, DFHWBEP
	HTTP client processing, DFHWBCL
	CICS business logic interface, DFHWBBLI
	CICS Web support for 3270 display applications
	Unescaping function, DFHWBUN

	Exits
	Trace

	Part 3. CICS domains
	Chapter 70. Application domain (AP)
	Application domain’s specific gates
	ABAB gate, CREATE_ABEND_RECORD function
	Input parameters
	Output parameters

	ABAB gate, UPDATE_ABEND_RECORD function
	Input parameters
	Output parameters

	ABAB gate, START_ABEND function
	Input parameters
	Output parameters

	ABAB gate, INQUIRE_ABEND_RECORD function
	Input parameters
	Output parameters

	ABAB gate, TAKE_TRANSACTION_DUMP function
	Input parameters
	Output parameters

	APAP gate, TRANSFER_SIT function
	Input parameters
	Output parameters

	APCR gate, ESTIMATE_ALL function
	Input parameters
	Output parameters

	APCR gate, ESTIMATE_CHANGED function
	Input parameters
	Output parameters

	APCR gate, EXPORT_ALL function
	Input parameters
	Output parameters

	APCR gate, EXPORT_CHANGED function
	Input parameters
	Output parameters

	APCR gate, IMPORT_ALL function
	Input parameters
	Output parameters

	APCR gate, IMPORT_CHANGED function
	Input parameters
	Output parameters

	APEX gate, INVOKE_USER_EXIT function
	Input parameters
	Output parameters

	APID gate, PROFILE function
	Input parameters
	Output parameters

	APID gate, QUERY_NETNAME function
	Input parameters
	Output parameters

	APIQ gate, INQ_APPLICATION_DATA function
	Input parameters
	Output parameters

	APJC gate, WRITE_JOURNAL_DATA function
	Input parameters
	Output parameters

	APLH gate, ESTABLISH_LANGUAGE function
	Input parameters
	Output parameters

	APLH gate, START_PROGRAM function
	Input parameters
	Output parameters

	APLH gate, NOTIFY_REFRESH function
	Input parameters
	Output parameters

	APLI gate, ESTABLISH_LANGUAGE function
	Input parameters
	Output parameters

	APLI gate, START_PROGRAM function
	Input parameters
	Output parameters

	APLJ gate, ESTABLISH_LANGUAGE function
	Input parameters
	Output parameters

	APLJ gate, START_PROGRAM function
	Input parameters
	Output parameters

	APLJ gate, PIPI_INIT_SUB_DP function
	Input parameters
	Output parameters

	APLJ gate, PIPI_CALL_SUB function
	Input parameters
	Output parameters

	APLJ gate, PIPI_TERM function
	Input parameters
	Output parameters

	APRT gate, ROUTE_TRANSACTION function
	Input parameters
	Output parameters

	APTC gate, CANCEL function
	Input parameters
	Output parameters

	APTC gate, CLOSE function
	Input parameters
	Output parameters

	APTC gate, EXTRACT_PROCESS function
	Input parameters
	Output parameters

	APTC gate, ISSUE_NOTIFY function
	Input parameters
	Output parameters

	APTC gate, LISTEN function
	Input parameters
	Output parameters

	APTC gate, OPEN function
	Input parameters
	Output parameters

	APTC gate, RECEIVE function
	Input parameters
	Output parameters

	APTC gate, SEND function
	Input parameters
	Output parameters

	APTC gate, SET_SESSION function
	Input parameters
	Output parameters

	APTD gate, WRITE_TRANSIENT_DATA function
	Input parameters
	Output parameters

	APTD gate, READ_TRANSIENT_DATA function
	Input parameters
	Output parameters

	APTD gate, DELETE_TRANSIENT_DATA function
	Input parameters
	Output parameters

	APTD gate, RESET_TRIGGER_LEVEL function
	Input parameters
	Output parameters

	APTD gate, INITIALISE_TRANSIENT_DATA function
	Input parameters
	Output parameters

	APXM gate, TRANSACTION_INITIALIZATION function
	Input parameters
	Output parameters

	APXM gate, TRANSACTION_INITIALIZATION function
	Input parameters
	Output parameters

	APXM gate, RMI_START_OF_TASK function
	Input parameters
	Output parameters

	APXM gate, TRANSACTION_TERMINATION function
	Input parameters
	Output parameters

	BRAI gate, INQUIRE_AUTOINSTALL function
	Input parameters
	Output parameters

	BRAI gate, SET_AUTOINSTALL function
	Input parameters
	Output parameters

	BRAI gate, INSTALL_BRIDGE_FACILITY function
	Input parameters
	Output parameters

	BRAI gate, DELETE_BRIDGE_FACILITY function
	Input parameters
	Output parameters

	BRAT gate, ATTACH function
	Input parameters
	Output parameters

	BRFR gate, ALLOCATE_BRIDGE_FACILITY function
	Input parameters
	Output parameters

	BRFR gate, REALLOCATE_BRIDGE_FACILITY function
	Input parameters
	Output parameters

	BRFR gate, DETACH_BRIDGE_FACILITY function
	Input parameters
	Output parameters

	BRFR gate, SET_BRIDGE_FACILITY function
	Input parameters
	Output parameters

	BRFR gate, INQUIRE_BRIDGE_FACILITY function
	Input parameters
	Output parameters

	BRFR gate, STARTBR_BRIDGE_FACILITY function
	Output parameters

	BRFR gate, GET_NEXT_BRIDGE_FACILITY function
	Input parameters
	Output parameters

	BRFR gate, ENDBR_BRIDGE_FACILITY function
	Input parameters
	Output parameters

	BRFR gate, GARBAGE_COLLECT function
	Output parameters

	BRIQ gate, INQUIRE_CONTEXT function
	Input parameters
	Output parameters

	BRLK gate, START_BRIDGE function
	Input parameters
	Output parameters

	BRLK gate, CONTINUE_BRIDGE function
	Input parameters
	Output parameters

	BRLK gate, ABEND_BRIDGE function
	Input parameters
	Output parameters

	BRME gate, API_EMULATOR function
	Input parameters
	Output parameters

	BRMF gate, FORMATTER function
	Input parameters
	Output parameters

	BRMG gate, ALLOCATE_MESSAGE function
	Input parameters
	Output parameters

	BRMG gate, REALLOCATE_MESSAGE function
	Input parameters
	Output parameters

	BRMG gate, OUTPUT_MESSAGE function
	Input parameters
	Output parameters

	BRMG gate, RESEND_MESSAGE function
	Input parameters
	Output parameters

	BRMG gate, DELETE_MESSAGE function
	Input parameters
	Output parameters

	BRMG gate, READ_VECTOR function
	Input parameters
	Output parameters

	BRMG gate, ALLOCATE_VECTOR function
	Input parameters
	Output parameters

	BRMG gate, ERASE_OUTPUT_VECTORS function
	Input parameters
	Output parameters

	BRNS gate, INITIALISE_NUMBER function
	Output parameters

	BRNS gate, CONNECT_NUMBER function
	Input parameters
	Output parameters

	BRNS gate, DISCONNECT_NUMBER function
	Input parameters
	Output parameters

	BRNS gate, ALLOCATE_NUMBER function
	Input parameters
	Output parameters

	BRNS gate, RELEASE_NUMBER function
	Input parameters
	Output parameters

	ICXM gate, INQUIRE_FACILITY function
	Input parameters
	Output parameters

	LILI gate, INITIALIZE_LANGUAGES function
	Input parameters
	Output parameters

	LILI gate, TERMINATE_LANGUAGES function
	Input parameters
	Output parameters

	LILI gate, FIND_PROGRAM_ATTRIBUTES function
	Input parameters
	Output parameters

	LILI gate, GO_TO function
	Input parameters
	Output parameters

	TFXM gate, INIT_XM_CLIENT function
	Input parameters
	Output parameters

	TFXM gate, BIND_XM_CLIENT function
	Input parameters
	Output parameters

	MRXM gate, INIT_XM_CLIENT function
	Input parameters
	Output parameters

	MRXM gate, BIND_XM_CLIENT function
	Input parameters
	Output parameters

	62XM gate, INIT_XM_CLIENT function
	Input parameters
	Output parameters

	62XM gate, BIND_XM_CLIENT function
	Input parameters
	Output parameters

	RTSU gate, COMMIT_SURROGATE function
	Input parameters
	Output parameters

	RTSU gate, FREE_SURROGATE function
	Input parameters
	Output parameters

	RTSU gate, GET_RECOVERY_STATUS function
	Input parameters
	Output parameters

	RTSU gate, PREPARE_SURROGATE function
	Input parameters
	Output parameters

	RTSU gate, RESET_SURROGATE function
	Input parameters
	Output parameters

	SAIQ gate, INQUIRE_SYSTEM function
	Input parameters
	Output parameters

	SAIQ gate, SET_SYSTEM function
	Input parameters
	Output parameters

	TDOC gate, OPEN_TRANSIENT_DATA function
	Input parameters
	Output parameters

	TDOC gate, CLOSE_TRANSIENT_DATA function
	Input parameters
	Output parameters

	TDOC gate, CLOSE_ALL_EXTRA_TD_QUEUES function
	Input parameters
	Output parameters

	TDTM gate, ADD_REPLACE_TDQUEUE function
	Input parameters
	Output parameters

	TDTM gate, INQUIRE_TDQUEUE function
	Input parameters
	Output parameters

	TDTM gate, START_BROWSE_TDQDEF function
	Input parameters
	Output parameters

	TDTM gate, GET_NEXT_TDQDEF function
	Input parameters
	Output parameters

	TDTM gate, END_BROWSE_TDQDEF function
	Input parameters
	Output parameters

	TDTM gate, SET_TDQUEUE function
	Input parameters
	Output parameters

	TDTM gate, DISCARD_TDQDEF function
	Input parameters
	Output parameters

	TDTM gate, COMMIT_TDQDEFS function
	Input parameters
	Output parameters

	TDXM gate, BIND_FACILITY function
	Input parameters
	Output parameters

	TDXM gate, BIND_SECONDARY_FACILITY function
	Input parameters
	Output parameters

	TDXM gate, RELEASE_FACILITY function
	Input parameters
	Output parameters

	TDXM gate, INQUIRE_FACILITY function
	Input parameters
	Output parameters

	TFAL gate, ALLOCATE function
	Input parameters
	Output parameters

	TFAL gate, CANCEL_AID function
	Input parameters
	Output parameters

	TFAL gate, CANCEL_AIDS_FOR_CONNECTION function
	Input parameters
	Output parameters

	TFAL gate, CANCEL_AIDS_FOR_TERMINAL function
	Input parameters
	Output parameters

	TFAL gate, CHECK_TRANID_IN_USE function
	Input parameters
	Output parameters

	TFAL gate, DISCARD_AIDS function
	Input parameters
	Output parameters

	TFAL gate, FIND_TRANSACTION_OWNER function
	Input parameters
	Output parameters

	TFAL gate, GET_MESSAGE function
	Input parameters
	Output parameters

	TFAL gate, INITIALIZE_AID_POINTERS function
	Input parameters
	Output parameters

	TFAL gate, INQUIRE_ALLOCATE_AID function
	Input parameters
	Output parameters

	TFAL gate, LOCATE_AID
	Input parameters
	Output parameters

	TFAL gate, LOCATE_REMDEL_AID
	Input parameters
	Output parameters

	TFAL gate, LOCATE_SHIPPABLE_AID
	Input parameters
	Output parameters

	TFAL gate, MATCH_TASK_TO_AID function
	Input parameters
	Output parameters

	TFAL gate, PURGE_ALLOCATE_AIDS
	Input parameters
	Output parameters

	TFAL gate, RECOVER_START_DATA
	Input parameters
	Output parameters

	TFAL gate, REMOTE_DELETE
	Input parameters
	Output parameters

	TFAL gate, REMOVE_EXPIRED_AID
	Input parameters
	Output parameters

	TFAL gate, REMOVE_EXPIRED_REMOTE_AID
	Input parameters
	Output parameters

	TFAL gate, REMOVE_MESSAGE
	Input parameters
	Output parameters

	TFAL gate, REMOVE_REMOTE_DELETES
	Input parameters
	Output parameters

	TFAL gate, REROUTE_SHIPPABLE_AIDS
	Input parameters
	Output parameters

	TFAL gate, RESCHEDULE_BMS
	Input parameters
	Output parameters

	TFAL gate, RESET_AID_QUEUE
	Input parameters
	Output parameters

	TFAL gate, RESTORE_FROM_KEYPOINT
	Input parameters
	Output parameters

	TFAL gate, RETRIEVE_START_DATA
	Input parameters
	Output parameters

	TFAL gate, SCHEDULE_BMS
	Input parameters
	Output parameters

	TFAL gate, SCHEDULE_START
	Input parameters
	Output parameters

	TFAL gate, SCHEDULE_TDP
	Input parameters
	Output parameters

	TFAL gate, SLOWDOWN_PURGE
	Input parameters
	Output parameters

	TFAL gate, TAKE_KEYPOINT
	Input parameters
	Output parameters

	TFAL gate, TERM_AVAILABLE_FOR_QUEUE
	Input parameters
	Output parameters

	TFAL gate, TERMINAL_NOW_UNAVAILABLE
	Input parameters
	Output parameters

	TFAL gate, UNCHAIN_AID
	Input parameters
	Output parameters

	TFAL gate, UPDATE_TRANNUM_FOR_RESTART
	Input parameters
	Output parameters

	TFBF gate, BIND_FACILITY function
	Input parameters
	Output parameters

	TFIQ gate, INQUIRE_TERMINAL_FACILITY function
	Input parameters
	Output parameters

	TFIQ gate, SET_TERMINAL_FACILITY function
	Input parameters
	Output parameters

	TFIQ gate, INQUIRE_MONITOR_DATA function
	Input parameters
	Output parameters

	Application domain’s generic gates
	Application domain’s generic formats
	APUE format, SET_EXIT_STATUS function
	Input parameters
	Output parameters

	Control blocks
	Modules
	Exits
	Trace

	Chapter 71. AP domain initialization program
	Modules
	Exits
	Trace

	Chapter 72. AP domain KC subcomponent
	Design overview
	DFHKC macro calls

	Control blocks
	Modules
	Exits
	Trace
	Dumps
	External interfaces
	Statistics

	Chapter 73. AP domain termination program
	Design overview
	Modules
	Exits
	Trace

	Chapter 74. Business Application Manager domain (BAM)
	Business application manager domain’s specific gate
	BATT gate, ADD_REPLACE_PROCESSTYPE function
	Input parameters
	Output parameters

	BATT gate, INQUIRE_PROCESSTYPE function
	Input parameters
	Output parameters

	BATT gate, START_BROWSE_PROCESSTYPE function
	Input parameters
	Output parameters

	BATT gate, GET_NEXT_PROCESSTYPE function
	Input parameters
	Output parameters

	BATT gate, END_BROWSE_PROCESSTYPE function
	Input parameters
	Output parameters

	BATT gate, SET_PROCESSTYPE function
	Input parameters
	Output parameters

	BATT gate, DISCARD_PROCESSTYPE function
	Input parameters
	Output parameters

	BATT gate, COMMIT_PROCESSTYPE_TABLE function
	Input parameters
	Output parameters

	BAXM gate, INIT_ACTIVITY_REQUEST function
	Input parameters
	Output parameters

	BAXM gate, BIND_ACTIVITY_REQUEST function
	Input parameters
	Output parameters

	BAPR gate, ADD_PROCESS function
	Input parameters
	Output parameters

	BAPR gate, RUN_PROCESS function
	Input parameters
	Output parameters

	BAPR gate, LINK_PROCESS function
	Input parameters
	Output parameters

	BAPR gate, ACQUIRE_PROCESS function
	Input parameters
	Output parameters

	BAPR gate, CANCEL_PROCESS function
	Input parameters
	Output parameters

	BAPR gate, SUSPEND_PROCESS function
	Input parameters
	Output parameters

	BAPR gate, RESUME_PROCESS function
	Input parameters
	Output parameters

	BAPR gate, CHECK_PROCESS function
	Input parameters
	Output parameters

	BAPR gate, REST_PROCESS function
	Input parameters
	Output parameters

	BAAC gate, ADD_ACTIVITY function
	Input parameters
	Output parameters

	BAAC gate, RUN_ACTIVITY function
	Input parameters
	Output parameters

	BAAC gate, LINK_ACTIVITY function
	Input parameters
	Output parameters

	BAAC gate, CANCEL_ACTIVITY function
	Input parameters
	Output parameters

	BAAC gate, SUSPEND_ACTIVITY function
	Input parameters
	Output parameters

	BAAC gate, RESUME_ACTIVITY function
	Input parameters
	Output parameters

	BAAC gate, CHECK_ACTIVITY function
	Input parameters
	Output parameters

	BAAC gate, RESET_ACTIVITY function
	Input parameters
	Output parameters

	BAAC gate, RETURN_END_ACTIVITY function
	Input parameters
	Output parameters

	BAAC gate, DELETE_ACTIVITY function
	Input parameters
	Output parameters

	BAAC gate, ACQUIRE_ACTIVITY function
	Input parameters
	Output parameters

	BAAC gate, ADD_TIMER_REQUEST function
	Input parameters
	Output parameters

	BAAC gate, ADD_REATTACH_ACQUIRED function
	Input parameters
	Output parameters

	BABR gate, STARTBR_ACTIVITY function
	Input parameters
	Output parameters

	BABR gate, GETNEXT_ACTIVITY function
	Input parameters
	Output parameters

	BABR gate, ENDBR_ACTIVITY function
	Input parameters
	Output parameters

	BABR gate, INQUIRE_ACTIVITY function
	Input parameters
	Output parameters

	BABR gate, STARTBR_CONTAINER function
	Input parameters
	Output parameters

	BABR gate, GETNEXT_CONTAINER function
	Input parameters
	Output parameters

	BABR gate, ENDBR_CONTAINER function
	Input parameters
	Output parameters

	BABR gate, INQUIRE_CONTAINER function
	Input parameters
	Output parameters

	BABR gate, STARTBR_PROCESS function
	Input parameters
	Output parameters

	BABR gate, GETNEXT_PROCESS function
	Input parameters
	Output parameters

	BABR gate, ENDBR_PROCESS function
	Input parameters
	Output parameters

	BABR gate, INQUIRE_PROCESS function
	Input parameters
	Output parameters

	BABR gate, INQUIRE_ACTIVATION function
	Input parameters
	Output parameters

	BABR gate, COMMIT_BROWSE function
	Input parameters
	Output parameters

	BACR gate, DELETE_CONTAINER function
	Input parameters
	Output parameters

	BACR gate, GET_CONTAINER_INTO function
	Input parameters
	Output parameters

	BACR gate, GET_CONTAINER_LENGTH function
	Input parameters
	Output parameters

	BACR gate, GET_CONTAINER_SET function
	Input parameters
	Output parameters

	BACR gate, PUT_CONTAINER function
	Input parameters
	Output parameters

	BACM gate, MOVE_CONTAINER function
	Input parameters
	Output parameters

	BAGD format, INQUIRE_DATA_LENGTH function
	Input parameters
	Output parameters

	BAGD format, DESTROY_TOKEN function
	Input parameters
	Output parameters

	BAGD format, ADDRESS_DATA function
	Input parameters
	Output parameters

	BAGD format, RELEASE_DATA function
	Input parameters
	Output parameters

	Business application manager domain’s generic gates
	Modules
	Exits
	Trace

	Chapter 75. CICS catalog domains (CC/GC)
	CICS catalog domains’ specific gate
	CCCC gate, ADD function
	Input parameters
	Output parameters

	CCCC gate, DELETE function
	Input parameters
	Output parameters

	CCCC gate, GET function
	Input parameters
	Output parameters

	CCCC gate, WRITE function
	Input parameters
	Output parameters

	CCCC gate, GET_UPDATE function
	Input parameters
	Output parameters

	CCCC gate, PUT_REPLACE function
	Input parameters
	Output parameters

	CCCC gate, START_BROWSE function
	Input parameters
	Output parameters

	CCCC gate, GET_NEXT function
	Input parameters
	Output parameters

	CCCC gate, END_BROWSE function
	Input parameters
	Output parameters

	CCCC gate, TYPE_PURGE function
	Input parameters
	Output parameters

	CCCC gate, START_WRITE function
	Input parameters
	Output parameters

	CCCC gate, WRITE_NEXT function
	Input parameters
	Output parameters

	CCCC gate, END_WRITE function
	Input parameters
	Output parameters

	CICS catalog domains’ generic gate
	Modules
	Exits
	Trace

	Chapter 76. Directory manager domain (DD)
	Directory manager domain’s specific gates
	DDDI gate, CREATE_DIRECTORY function
	Input parameters
	Output parameters

	DDDI gate, ADD_ENTRY function
	Input parameters
	Output parameters

	DDDI gate, DELETE_ENTRY function
	Input parameters
	Output parameters

	DDDI gate, REPLACE_DATA function
	Input parameters
	Output parameters

	DDLO gate, LOCATE function
	Input parameters
	Output parameters

	DDBR gate, START_BROWSE function
	Input parameters
	Output parameters

	DDBR gate, GET_NEXT_ENTRY function
	Input parameters
	Output parameters

	DDBR gate, END_BROWSE function
	Input parameters
	Output parameters

	Directory manager domain’s generic gates
	Exits
	Trace

	Chapter 77. Document Handler domain (DH)
	Document Handler domain’s specific gates
	DHDH gate, CREATE_DOCUMENT function
	Input parameters
	Output parameters

	DHDH gate, INSERT_DATA function
	Input parameters
	Output parameters

	DHDH gate, INSERT_BOOKMARK function
	Input parameters
	Output parameters

	DHDH gate, REPLACE_DATA function
	Input parameters
	Output parameters

	DHDH gate, DELETE_DOCUMENT function
	Input parameters
	Output parameters

	DHDH gate, DELETE_DATA function
	Input parameters
	Output parameters

	DHDH gate, DELETE_BOOKMARK function
	Input parameters
	Output parameters

	DHDH gate, RETRIEVE_WITH_CTLINFO function
	Input parameters
	Output parameters

	DHDH gate, RETRIEVE_WITHOUT_CTLINFO function
	Input parameters
	Output parameters

	DHDH gate, INQUIRE_DOCUMENT function
	Input parameters
	Output parameters

	DHSL gate, SET_SYMBOL_VALUE_BY_API function
	Input parameters
	Output parameters

	DHSL gate, SET_SYMBOL_VALUE_BY_SSI function
	Input parameters
	Output parameters

	DHSL gate, ADD_SYMBOL_LIST function
	Input parameters
	Output parameters

	DHSL gate, EXPORT_SYMBOL_LIST function
	Input parameters
	Output parameters

	DHSL gate, IMPORT_SYMBOL_LIST function
	Input parameters
	Output parameters

	DHTM gate, INITIALIZE_DOCTEMPLATES function
	Output parameters

	DHTM gate, ADD_REPLACE_DOCTEMPLATE function
	Input parameters
	Output parameters

	DHTM gate, READ_TEMPLATE function
	Input parameters
	Output parameters

	DHTM gate, INQUIRE_DOCTEMPLATE function
	Input parameters
	Output parameters

	DHTM gate, INQUIRE_TEMPLATE_STATUS function
	Input parameters
	Output parameters

	DHTM gate, DELETE_DOCTEMPLATE function
	Input parameters
	Output parameters

	DHTM gate, START_BROWSE function
	Output parameters

	DHTM gate, GET_NEXT function
	Input parameters
	Output parameters

	DHTM gate, END_BROWSE function
	Input parameters
	Output parameters

	DHRP gate, RECOVER_DEFINITIONS function
	Output parameters

	Document Handler domain’s generic gates
	Modules
	Exits
	Trace

	Chapter 78. Domain manager domain (DM)
	Domain manager domain’s specific gates
	DMEN gate, LISTEN function
	Input parameters
	Output parameters

	DMEN gate, DELETE function
	Input parameters
	Output parameters

	DMEN gate, NOTIFY_SMSVSAM_OPERATIONAL function
	Input parameters
	Output parameters

	DMDM gate, ADD_DOMAIN function
	Input parameters
	Output parameters

	DMDM gate, QUIESCE_SYSTEM function
	Input parameters
	Output parameters

	DMDM gate, SET_PHASE function
	Input parameters
	Output parameters

	DMDM gate, WAIT_PHASE function
	Input parameters
	Output parameters

	DMIQ gate, START_BROWSE function
	Input parameters
	Output parameters

	DMIQ gate, GET_NEXT function
	Input parameters
	Output parameters

	DMIQ gate, END_BROWSE function
	Input parameters
	Output parameters

	DMIQ gate, INQ_DOMAIN_BY_NAME function
	Input parameters
	Output parameters

	DMIQ gate, INQ_DOMAIN_BY_TOKEN function
	Input parameters
	Output parameters

	DMIQ gate, INQ_DOMAIN_BY_ID function
	Input parameters
	Output parameters

	Domain manager domain’s generic gates
	Domain manager domain’s generic formats
	DMDM format, PRE_INITIALIZE function
	Input parameters
	Output parameters

	DMDM format, INITIALIZE_DOMAIN function
	Input parameters
	Output parameters

	DMDM format, QUIESCE_DOMAIN function
	Input parameters
	Output parameters

	DMDM format, TERMINATE_DOMAIN function
	Input parameters
	Output parameters

	Modules
	Exits
	Trace

	Chapter 79. Debugging profile domain (DP)
	Debugging profile domain’s specific gates
	DPFM gate, GET_DEBUG_PROFILE function
	Input parameters
	Output parameters

	DPFM gate, SAVE_DEBUG_PROFILE function
	Input parameters
	Output parameters

	DPFM gate, DELETE_DEBUG_PROFILE function
	Input parameters
	Output parameters

	DPFM gate, ACTIVATE_DEBUG_PROFILE function
	Input parameters
	Output parameters

	DPFM gate, INACTIVATE_DEBUG_PROFILE function
	Input parameters
	Output parameters

	DPFM gate, REPLACE_DEBUG_PROFILE function
	Input parameters
	Output parameters

	DPFM gate, START_PM_BROWSE function
	Input parameters
	Output parameters

	DPFM gate, READNEXT_PM_PROFILE function
	Input parameters
	Output parameters

	DPFM gate, END_PM_BROWSE function
	Input parameters
	Output parameters

	DPIQ gate, INQUIRE_PARAMETERS function
	Input parameters
	Output parameters

	DPIQ gate, SET_PARAMETERS function
	Input parameters
	Output parameters

	DPIQ gate, INQUIRE_DEBUG_TASK function
	Input parameters
	Output parameters

	DPIQ gate, SET_DEBUG_PROFILE function
	Input parameters
	Output parameters

	DPLM gate, STARTBR_DEBUG_PROFILES function
	Input parameters
	Output parameters

	DPLM gate, READNEXT_DEBUG_PROFILE function
	Input parameters
	Output parameters

	DPLM gate, READNEXT_INPUT function
	Input parameters
	Output parameters

	DPLM gate, ENDBR_DEBUG_PROFILES function
	Input parameters
	Output parameters

	DPLM gate, RESTARTBR_DEBUG_PROFILES function
	Input parameters
	Output parameters

	DPLM gate, UPDATE_PROFILE_IN_LIST function
	Input parameters
	Output parameters

	DPPM gate, PATTERN_MATCH_TASK function
	Input parameters
	Output parameters

	DPPM gate, PATTERN_MATCH_PROFILE function
	Input parameters
	Output parameters

	DPUM gate, GET_USER_DEFAULTS function
	Input parameters
	Output parameters

	DPUM gate, SAVE_USER_DEFAULTS function
	Input parameters
	Output parameters

	DPWD gate, PROCESS_PAGE function
	Input parameters
	Output parameters

	DPWD gate, PROCESS_SUBMIT function
	Input parameters
	Output parameters

	DPWE gate, PROCESS_PAGE function
	Input parameters
	Output parameters

	DPWE gate, PROCESS_SUBMIT function
	Input parameters
	Output parameters

	DPWJ gate, PROCESS_PAGE function
	Input parameters
	Output parameters

	DPWJ gate, PROCESS_SUBMIT function
	Input parameters
	Output parameters

	DPWL gate, PROCESS_PAGE function
	Input parameters
	Output parameters

	DPWL gate, PROCESS_SUBMIT function
	Input parameters
	Output parameters

	DPXM gate, INIT_XM_CLIENT function
	Input parameters
	Output parameters

	DPXM gate, BIND_XM_CLIENT function
	Input parameters
	Output parameters

	DPXM gate, RELEASE_XM_CLIENT function
	Input parameters
	Output parameters

	Debugging profile domain’s generic gates
	Exits
	Trace

	Chapter 80. Dispatcher domain (DS)
	Dispatcher domain’s specific gates
	DSAT gate, ATTACH function
	Input parameters
	Output parameters

	DSAT gate, CHANGE_MODE function
	Input parameters
	Output parameters

	DSAT gate, CLEAR_MATCH function
	Input parameters
	Output parameters

	DSAT gate, CHANGE_PRIORITY function
	Input parameters
	Output parameters

	DSAT gate, SET_PRIORITY function
	Input parameters
	Output parameters

	DSAT gate, CANCEL_TASK function
	Input parameters
	Output parameters

	DSAT gate, FREE_SUBSPACE_TCBS function
	Input parameters
	Output parameters

	DSAT gate, DELETE_SUBSPACE_TCBS function
	Input parameters
	Output parameters

	DSAT gate, TCB_POOL_MANAGEMENT function
	Input parameters
	Output parameters

	DSAT gate, RELEASE_OPEN_TCB function
	Input parameters
	Output parameters

	DSAT gate, SET_TRANSACTION_TOKEN function
	Input parameters
	Output parameters

	DSBR gate, START_BROWSE function
	Input parameters
	Output parameters

	DSBR gate, END_BROWSE function
	Input parameters
	Output parameters

	DSBR gate, GET_NEXT function
	Input parameters
	Output parameters

	DSBR gate, INQUIRE_TASK function
	Input parameters
	Output parameters

	DSBR gate, SET_TASK function
	Input parameters
	Output parameters

	DSBR gate, INQUIRE_TCB function
	Input parameters
	Output parameters

	DSBR gate, SET_TCB function
	Input parameters
	Output parameters

	DSIT gate, INQUIRE_DISPATCHER function
	Input parameters
	Output parameters

	DSIT gate, SET_DISPATCHER function
	Input parameters
	Output parameters

	DSIT gate, ACTIVATE_MODE function
	Input parameters
	Output parameters

	DSIT gate, ADD_TCB function
	Input parameters
	Output parameters

	DSIT gate, DELETE_TCB function
	Input parameters
	Output parameters

	DSIT gate, DELETE_ OPEN_TCB function
	Input parameters
	Output parameters

	DSIT gate, DELETE_ALL_OPEN_TCBS function
	Input parameters
	Output parameters

	DSIT gate, FREE_TCB function
	Input parameters
	Output parameters

	DSIT gate, PROCESS_DEAD_TCBS function
	Input parameters
	Output parameters

	DSSR gate, ADD_SUSPEND function
	Input parameters
	Output parameters

	DSSR gate, DELETE_SUSPEND function
	Input parameters
	Output parameters

	DSSR gate, SUSPEND function
	Input parameters
	Output parameters

	DSSR gate, RESUME function
	Input parameters
	Output parameters

	DSSR gate, WAIT_MVS function
	Input parameters
	Output parameters

	DSSR gate, WAIT_OLDW function
	Input parameters
	Output parameters

	DSSR gate, WAIT_OLDC function
	Input parameters
	Output parameters

	Dispatcher domain’s generic gates
	Dispatcher domain’s generic formats
	DSAT format, TASK_REPLY function
	Input parameters
	Output parameters

	DSAT format, PURGE_INHIBIT_QUERY function
	Input parameters
	Output parameters

	DSAT format, FORCE_PURGE_INHIBIT_QUERY function
	Input parameters
	Output parameters

	DSAT format, NOTIFY_DELETE_TCB function
	Input parameters
	Output parameters

	Modules
	Exits
	Trace

	Chapter 81. Dump domain (DU)
	Design overview
	Dump domain’s specific gates
	DUDT gate, ADD_TRAN_DUMPCODE function
	Input parameters
	Output parameters
	Process flow
	DFHDUTM process flow

	DUDT gate, DELETE_TRAN_DUMPCODE function
	Input parameters
	Output parameters
	Process flow
	DFHDUTM process flow
	DUDT LOCATE_TRAN_DUMPCODE process flow

	DUDT gate, INQUIRE_TRAN_DUMPCODE function
	Input parameters
	Output parameters
	Process flow
	DFHDUTM process flow

	DUDT gate, SET_TRAN_DUMPCODE function
	Input parameters
	Output parameters
	Process flow
	DFHDUTM process flow

	DUDT gate, STARTBR_TRAN_DUMPCODE function
	Input parameters
	Output parameters
	Process flow
	DFHDUTM process flow

	DUDT gate, GETNEXT_TRAN_DUMPCODE function
	Input parameters
	Output parameters
	Process flow
	DFHDUTM process flow

	DUDT gate, ENDBR_TRAN_DUMPCODE function
	Input parameters
	Output parameters
	Process flow
	DFHDUTM process flow

	DUDT gate, ADD_SYSTEM_DUMPCODE function
	Input parameters
	Output parameters
	Process flow
	DFHDUTM process flow

	DUDT gate, DELETE_SYSTEM_DUMPCODE function
	Input parameters
	Output parameters
	Process flow
	DFHDUTM process flow
	DUDT LOCATE_SYSTEM_DUMPCODE process flow

	DUDT gate, INQUIRE_SYSTEM_DUMPCODE function
	Input parameters
	Output parameters
	Process flow
	DFHDUTM process flow

	DUDT gate, SET_SYSTEM_DUMPCODE function
	Input parameters
	Output parameters
	Process flow
	DFHDUTM process flow

	DUDT gate, STARTBR_SYSTEM_DUMPCODE function
	Input parameters
	Output parameters
	Process flow
	DFHDUTM process flow

	DUDT gate, GETNEXT_SYSTEM_DUMPCODE function
	Input parameters
	Output parameters
	Process flow
	DFHDUTM process flow

	DUDT gate, ENDBR_SYSTEM_DUMPCODE function
	Input parameters
	Output parameters
	Process flow
	DFHDUTM process flow

	DUDU gate, TRANSACTION_DUMP function
	Input parameters
	Output parameters
	Process flow
	DUDD TAKE_DUMP process flow
	DUDT COMMIT_TRAN_DUMPCODE process flow

	DUDU gate, SYSTEM_DUMP function
	Input parameters
	Output parameters
	Process flow
	DUDT COMMIT_SYSTEM_DUMPCODE process flow

	DUSR gate, CROSS_SYSTEM_DUMP_AVAIL function
	Input parameters
	Output parameters
	Process flow

	DUSR gate, DUMPDS_OPEN function
	Input parameters
	Output parameters
	Process flow

	DUSR gate, DUMPDS_CLOSE function
	Input parameters
	Output parameters
	Process flow

	DUSR gate, DUMPDS_SWITCH function
	Input parameters
	Output parameters
	Process flow
	DUSU SWITCH process flow
	DUSU OPEN process flow
	DUSU CLOSE process flow
	DUIO OPEN process flow
	DUIO CLOSE process flow
	DUIO ALLOC_STG process flow

	DUSR gate, INQUIRE_CURRENT_DUMPDS function
	Input parameters
	Output parameters

	DUSR gate, INQUIRE_DUMPDS_OPEN_STATUS function
	Input parameters
	Output parameters

	DUSR gate, INQUIRE_DUMPDS_AUTOSWITCH function
	Input parameters
	Output parameters

	DUSR gate, SET_DUMPDS_AUTOSWITCH function
	Input parameters
	Output parameters
	Process flow

	DUSR gate, INQUIRE_INITIAL_DUMPDS function
	Input parameters
	Output parameters

	DUSR gate, SET_INITIAL_DUMPDS function
	Input parameters
	Output parameters
	Process flow

	DUSR gate, SET_DUMPTABLE_DEFAULTS function
	Input parameters
	Output parameters
	Process flow

	DUSR gate, INQUIRE_SYSTEM_DUMP function
	Input parameters
	Output parameters

	DUSR gate, SET_SYSTEM_DUMP function
	Input parameters
	Output parameters
	Process flow

	DUSR gate, INQUIRE_RETRY_TIME function
	Input parameters
	Output parameters

	DUSR gate, SET_RETRY_TIME function
	Input parameters
	Output parameters
	Process flow

	Miscellaneous process flows
	DUIO format, WRITE function
	DUSU format, WRITE function
	DUXF format, FORMAT function
	DUXW format, HEX function
	DUXW format, NON_HEX function

	Dump domain’s generic gates
	DMDM PRE_INITIALIZE function
	DMDM INITIALIZE_DOMAIN function
	DMDM QUIESCE_DOMAIN function
	DMDM TERMINATE_DOMAIN function
	APUE SET_EXIT_STATUS function
	STST COLLECT_STATISTICS function
	DFHDUTM process flow

	STST COLLECT_RESOURCE_STATS function
	DFHDUTM process flow

	Control blocks
	Modules
	Transaction dump formatting routines

	Copy books
	Exits
	Trace
	Dumps

	Chapter 82. Enterprise Java domain (EJ)
	EJ domain's specific gates
	EJBB gate, START_BROWSE Function
	Input parameters
	Output parameters

	EJBB gate, GET_NEXT Function
	Input parameters
	Output parameters

	EJBB gate, END_BROWSE Function
	Input parameters
	Output parameters

	EJBG gate, ADD_BEAN function
	Input parameters
	Output parameters

	EJBG gate, ADD_BEAN_STATS function
	Input parameters
	Output parameters

	EJBG gate, CONFIRM_ALL_BEANS Function
	Input parameters
	Output parameters

	EJBG gate, DELETE_ALL_BEANS Function
	Input parameters
	Output parameters

	EJBG gate, DELETE_BEAN Function
	Input parameters
	Output parameters

	EJBG gate, GET_BEAN_DD Function
	Input parameters
	Output parameters

	EJBG gate, INQUIRE_BEAN Function
	Input parameters
	Output parameters

	EJBG gate, RESET_BEAN_STATS function
	Input parameters
	Output parameters

	EJCB gate, START_BROWSE function
	Input parameters
	Output parameters

	EJCB gate, GET_NEXT function
	Input parameters
	Output parameters

	EJCB gate, END_BROWSE function
	Input parameters
	Output parameters

	EJCG gate, ACTION_CORBASERVER function
	Input parameters
	Output parameters

	EJCG gate, ADD_CORBASERVER function
	Input parameters
	Output parameters

	EJCG gate, AMEND_CORBASERVER function
	Input parameters
	Output parameters

	EJCG gate, DELETE_CORBASERVER function
	Input parameters
	Output parameters

	EJCG gate, ESTABLISH function
	Input parameters
	Output parameters

	EJCG gate, INQUIRE_CORBASERVER function
	Input parameters
	Output parameters

	EJCG gate, RELINQUISH function
	Input parameters
	Output parameters

	EJCG gate, RESOLVE_CORBASERVER function
	Input parameters
	Output parameters

	EJCG gate, SET_ALL_STATE function
	input parameters
	Output parameters

	EJCG gate, WAIT_FOR_CORBASERVER function
	Input parameters
	Output parameters

	EJCP gate, DISCARD_DJAR function
	Input parameters
	Output parameters

	EJCP gate, INSTALL_DJAR function
	Input parameters
	Output parameters

	EJCP gate, PRE_INSTALL_DJAR function
	Input parameters
	Output parameters

	EJCP gate, PUBLISH_CORBASERVER function
	Input parameters
	Output parameters

	EJCP gate, PUBLISH_DJAR function
	Input parameters
	Output parameters

	EJCP gate, RETRACT_CORBASERVER function
	Input parameters
	Output parameters

	EJCP gate, RETRACT_DJAR function
	Input parameters
	Output parameters

	EJDB gate, START_BROWSE function
	Input parameters
	Output parameters

	EJDB gate, GET_NEXT function
	Input parameters
	Output parameters

	EJDB gate, END_BROWSE function
	Input parameters
	Output parameters

	EJDG gate, ACTION_DJAR function
	Input parameters
	Output parameters

	EJDG gate, ADD_DJAR function
	Input parameters
	Output parameters

	EJDG gate, AMEND_DJAR function
	Input parameters
	Output parameters

	EJDG gate, COUNT_FOR_CS function
	Input parameters
	Output parameters

	EJDG gate, DELETE_DJAR function
	Input parameters
	Output parameters

	EJDG gate, DELETE_ALL_DJARS function
	Input parameters
	Output parameters

	EJDG gate, INQUIRE_DJAR function
	Input parameters
	Output parameters

	EJDG gate, SET_ALL_STATE function
	Input parameters
	Output parameters

	EJDG gate, WAIT_FOR_DJAR function
	Input parameters
	Output parameters

	EJDG gate, WAIT_FOR_USABLE_DJARS function
	Input parameters
	Output parameters

	EJDI gate, ADD_ENTRY Function
	Input parameters
	Output parameters

	EJDI gate, INITIALIZE Function
	Input parameters
	Output parameters

	EJDI gate, LOOKUP_ENTRY Function
	Input parameters
	Output parameters

	EJDI gate, REMOVE_ENTRY Function
	Input parameters
	Output parameters

	EJDU gate, DUMP_DATA Function
	Input parameters
	Output parameters

	EJDU gate, DUMP_STACK Function
	Input parameters
	Output parameters

	EJDU gate, INQUIRE_TRACE_FLAGS Function
	Input parameters
	Output parameters

	EJGE gate, INITIALIZE Function
	Input parameters
	Output parameters

	EJGE gate, QUIESCE Function
	Input parameters
	Output parameters

	EJGE gate, TERMINATE Function
	Input parameters
	Output parameters

	EJIO gate, RESOLVE Function
	Input parameters
	Output parameters

	EJIO gate, RESOLVE_CSERVERS Function
	Input parameters
	Output parameters

	EJIO gate, RESOLVE_DJARS Function
	Input parameters
	Output parameters

	EJJO gate
	EJMI gate, ADD_BEAN Function
	Input parameters
	Output parameters

	EJMI gate, ADD_METHOD Function
	Input parameters
	Output parameters

	EJMI gate, DISCARD_METHOD_INFO Function
	Input parameters
	Output parameters

	EJMI gate, GET_METHOD_INFO Function
	Input parameters
	Output parameters

	EJMI gate, INITIALIZE Function
	Input parameters
	Output parameters

	EJOB gate, END_BROWSE_OBJECT Function
	Input parameters
	Output parameters

	EJOB gate, GET_NEXT_OBJECT Function
	Input parameters
	Output parameters

	EJOB gate, INQUIRE_OBJECT Function
	Input parameters
	Output parameters

	EJOB gate, INQUIRE_STORES Function
	Input parameters
	Output parameters

	EJOB gate, RETRIEVE_STATISTICS Function
	Input parameters
	Output parameters

	EJOB gate, START_BROWSE_OBJECT Function
	Input parameters
	Output parameters

	EJOS gate, ACTIVATE_OBJECT Function
	Input parameters
	Output parameters

	EJOS gate, CLOSE_OBJECT_STORE Function
	Input parameters
	Output parameters

	EJOS gate, OPEN_OBJECT_STORE Function
	Input parameters
	Output parameters

	EJOS gate, REMOVE_OBJECT Function
	Input parameters
	Output parameters

	EJOS gate, REMOVE_STORE Function
	Input parameters
	Output parameters

	EJOS gate, STORE_OBJECT Function
	Input parameters
	Output parameters

	EJSO gate, INQUIRE_CORBASERVER function
	Input parameters
	Output parameters

	EJSO gate, AMEND_CORBASERVER function
	Input parameters
	Output parameters

	EJ domain's generic gates
	Modules
	Exits
	Trace

	Chapter 83. Event manager domain (EM)
	Event manager domain’s specific gates
	EMEM gate, ADD_SUBEVENT function
	Input parameters
	Output parameters

	EMEM gate, CHECK_TIMER function
	Input parameters
	Output parameters

	EMEM gate, DEFINE_ATOMIC_EVENT function
	Input parameters
	Output parameters

	EMEM gate, DEFINE_COMPOSITE_EVENT function
	Input parameters
	Output parameters

	EMEM gate, DEFINE_TIMER function
	Input parameters
	Output parameters

	EMEM gate, DELETE_EVENT function
	Input parameters
	Output parameters

	EMEM gate, DELETE_TIMER function
	Input parameters
	Output parameters

	EMEM gate, FIRE_EVENT function
	Input parameters
	Output parameters

	EMEM gate, FORCE_TIMER function
	Input parameters
	Output parameters

	EMEM gate, INQUIRE_STATUS function
	Output parameters

	EMEM gate, REMOVE_SUBEVENT function
	Input parameters
	Output parameters

	EMEM gate, RETRIEVE_REATTACH_EVENT function
	Output parameters

	EMEM gate, RETRIEVE_SUBEVENT function
	Input parameters
	Output parameters

	EMEM gate, TEST_EVENT function
	Input parameters
	Output parameters

	EMBR gate, INQUIRE_EVENT function
	Input parameters
	Output parameters

	EMBR gate, START_BROWSE_EVENT function
	Input parameters
	Output parameters

	EMBR gate, GET_NEXT_EVENT function
	Input parameters
	Output parameters

	EMBR gate, END_BROWSE_EVENT function
	Input parameters
	Output parameters

	EMBR gate, INQUIRE_TIMER function
	Input parameters
	Output parameters

	EMBR gate, START_BROWSE_TIMER function
	Input parameters
	Output parameters

	EMBR gate, GET_NEXT_TIMER function
	Input parameters
	Output parameters

	EMBR gate, END_BROWSE_TIMER function
	Input parameters
	Output parameters

	Event manager domain’s generic gates
	Modules
	Exits
	Trace

	Chapter 84. IP ECI (IE) domain
	IE domain's generic gates
	IE domain's specific gates
	IEIE gate, PROCESS_ECI_FLOW function
	Input parameters
	Output parameters

	IEIE gate, RECEIVE function
	Input parameters
	Output parameters

	IEIE gate, SEND function
	Input parameters
	Output parameters

	IEIE gate, SEND_ERROR function
	Input parameters
	Output parameters

	Control blocks
	Modules
	Exits
	Trace

	Chapter 85. IIOP domain (II)
	IIOP domain’s specific gates
	IILS gate, ADD_LOGICAL_SERVER function
	Input parameters
	Output parameters

	IILS gate, DELETE_LOGICAL_SERVER function
	Input parameters
	Output parameters

	IILS gate, PUBLISH_LOGICAL_SERVER function
	Input parameters
	Output parameters

	IILS gate, RETRACT_LOGICAL_SERVER function
	Input parameters
	Output parameters

	IIMM gate, ADD_REPLACE_RQMODEL function
	Input parameters
	Output parameters

	IIMM gate, DELETE_RQMODEL function
	Input parameters
	Output parameters

	IIMM gate, COMMIT_RQMODELS function
	input parameters
	Output parameters

	IIRH gate, FIND_REQUEST_STREAM function
	Input parameters
	Output parameters

	IIRH gate, PARSE function
	Input parameters
	Output parameters

	IIRP gate, GET_INITIAL_DATA function
	Input parameters
	Output parameters

	IIRP gate, RECEIVE_REQUEST function
	Input parameters
	Output parameters

	IIRP gate, INVOKE function
	Input parameters
	Output parameters

	IIRP gate, RECEIVE_REPLY function
	Input parameters
	Output parameters

	IIRP gate, SEND_REPLY function
	Input parameters
	Output parameters

	IIRP gate, INITIALISE function
	Input parameters
	Output parameters

	IIRP gate, TERMINATE function
	Input parameters
	Output parameters

	IIRQ gate, INQUIRE_RQMODEL function
	Input parameters
	Output parameters

	IIRQ gate, START_BROWSE function
	Input parameters
	Output parameters

	IIRQ gate, GET_NEXT function
	Input parameters
	Output parameters

	IIRQ gate, END_BROWSE function
	Input parameters
	Output parameters

	IIRQ gate, MATCH_RQMODEL function
	Input parameters
	Output parameters

	IIRR gate, PROCESS_REQUESTS function
	Input parameters
	Output parameters

	IIRS gate, HANDLE_SECURITY_CONTEXT function
	Input parameters
	Output parameters

	IIRS gate, DESTROY_VAULT function
	Input parameters
	Output parameters

	IIOP domain’s generic gates
	Modules
	Exits
	Trace

	Chapter 86. Kernel domain (KE)
	Kernel domain’s specific gates
	KEAR gate, DEREGISTER function
	Input parameters
	Output parameters

	KEAR gate, READY function
	Input parameters
	Output parameters

	KEAR gate, REGISTER function
	Input parameters
	Output parameters

	KEAR gate, WAITPRED function
	Input parameters
	Output parameters

	KEDD gate, ADD_DOMAIN function
	Input parameters
	Output parameters

	KEDD gate, INQUIRE_DOMAIN_BY_TOKEN function
	Input parameters
	Output parameters

	KEDD gate, INQUIRE_DOMAIN_BY_NAME function
	Input parameters
	Output parameters

	KEDD gate, SET_ANCHOR function
	Input parameters
	Output parameters

	KEDD gate, INQUIRE_ANCHOR function
	Input parameters
	Output parameters

	KEDD gate, ADD_GATE function
	Input parameters
	Output parameters

	KEDD gate, DELETE_GATE function
	Input parameters
	Output parameters

	KEDD gate, INQUIRE_GLOBAL_TRACE function
	Input parameters
	Output parameters

	KEDD gate, SET_GLOBAL_TRACE function
	Input parameters
	Output parameters

	KEDD gate, INQUIRE_DOMAIN_TRACE function
	Input parameters
	Output parameters

	KEDD gate, SET_DOMAIN_TRACE function
	Input parameters
	Output parameters

	KEDD gate, INQUIRE_TASK_TRACE function
	Input parameters
	Output parameters

	KEDD gate, SET_TASK_TRACE function
	Input parameters
	Output parameters

	KEDD gate, PERFORM_SYSTEM_ACTION function
	Input parameters
	Output parameters

	KEDD gate, SET_TRAP_OFF function
	Input parameters
	Output parameters

	KEDD gate, SET_TRAP_ON function
	Input parameters
	Output parameters

	KEDD gate, SET_DEFAULT_RECOVERY function
	Input parameters
	Output parameters

	KEDS gate, ABNORMALLY_TERMINATE_TASK function
	Input parameters
	Output parameters

	KEDS gate, CREATE_TASK function
	Input parameters
	Output parameters

	KEDS gate, CREATE_TCB function
	Input parameters
	Output parameters

	KEDS gate, DETACH_TERMINATED_OWN_TCBS function
	Input parameters
	Output parameters

	KEDS gate, END_TASK function
	Input parameters
	Output parameters

	KEDS gate, FREE_TCBS function
	Input parameters
	Output parameters

	KEDS gate, PUSH_TASK function
	Input parameters
	Output parameters

	KEDS gate, POP_TASK function
	Input parameters
	Output parameters

	KEDS gate, READ_TIME function
	Input parameters
	Output parameters

	KEDS gate, RESET_RUNAWAY_TIMER function
	Input parameters
	Output parameters

	KEDS gate, RESET_TIME function
	Input parameters
	Output parameters

	KEDS gate, STOP_RUNAWAY_TIMER function
	Input parameters
	Output parameters

	KEDS gate, START_RUNAWAY_TIMER function
	Input parameters
	Output parameters

	KEDS gate, RESTORE_STIMER function
	Input parameters
	Output parameters

	KEDS gate, SEND_DEFERRED_ABEND function
	Input parameters
	Output parameters

	KEDS gate, START_PURGE_PROTECTION function
	Input parameters
	Output parameters

	KEDS gate, STOP_PURGE_PROTECTION function
	Input parameters
	Output parameters

	KEDS gate, START_FORCEPURGE_PROTECTION function
	Input parameters
	Output parameters

	KEDS gate, STOP_FORCEPURGE_PROTECTION function
	Input parameters
	Output parameters

	KEDS gate, PROCESS_KETA_ERROR function
	Input parameters
	Output parameters

	KEGD gate, INQUIRE_KERNEL function
	Input parameters
	Output parameters

	KEGD gate, SET_KERNEL function
	Input parameters
	Output parameters

	KETI gate, RESET_LOCAL_TIME function
	Input parameters
	Output parameters

	KETI gate, REQUEST_NOTIFY_OF_A_RESET function
	Input parameters
	Output parameters

	KETI gate, SET_DATE_FORMAT function
	Input parameters
	Output parameters

	KETI gate, INQUIRE_DATE_FORMAT function
	Input parameters
	Output parameters

	KETI gate, INQ_LOCAL_DATETIME_DECIMAL function
	Input parameters
	Output parameters

	KETI gate, CONVERT_TO_DECIMAL_TIME function
	Input parameters
	Output parameters

	KETI gate, CONVERT_TO_STCK_FORMAT function
	Input parameters
	Output parameters

	KEXM gate, TRANSACTION_INITIALISATION function
	Input parameters
	Output parameters

	Kernel domain’s generic formats
	KEDS format, TASK_REPLY function
	Input parameters
	Output parameters

	KEDS format, TCB_REPLY function
	Input parameters
	Output parameters

	KETI format, NOTIFY_RESET function
	Input parameters
	Output parameters

	Control blocks
	Modules
	Exits
	Trace

	Chapter 87. Loader domain (LD)
	Loader domain’s specific gate
	LDLD gate, ACQUIRE_PROGRAM function
	Input parameters
	Output parameters

	LDLD gate, RELEASE_PROGRAM function
	Input parameters
	Output parameters

	LDLD gate, REFRESH_PROGRAM function
	Input parameters
	Output parameters

	LDLD gate, DEFINE_PROGRAM function
	Input parameters
	Output parameters

	LDLD gate, INQUIRE_PROGRAM function
	Input parameters
	Output parameters

	LDLD gate, DELETE_PROGRAM function
	Input parameters
	Output parameters

	LDLD gate, START_BROWSE function
	Input parameters
	Output parameters

	LDLD gate, GET_NEXT_PROGRAM function
	Input parameters
	Output parameters

	LDLD gate, GET_NEXT_INSTANCE function
	Input parameters
	Output parameters

	LDLD gate, END_BROWSE function
	Input parameters
	Output parameters

	LDLD gate, IDENTIFY_PROGRAM function
	Input parameters
	Output parameters

	LDLD gate, SET_OPTIONS function
	Input parameters
	Output parameters

	LDLD gate, INQUIRE_OPTIONS function
	Input parameters
	Output parameters

	LDLD gate, CATALOG_PROGRAMS function
	Input parameters
	Output parameters

	Loader domain’s generic gates
	Modules
	Exits
	Trace

	Chapter 88. Log manager domain (LG)
	Log manager domain’s specific gates
	LGBA gate, BROWSE_ALL_GET_NEXT function
	Input parameters
	Output parameters

	LGBA gate, END_BROWSE_ALL function
	Input parameters
	Output parameters

	LGBA gate, START_BROWSE_ALL function
	Input parameters
	Output parameters

	LGCB gate, CHAIN_BROWSE_GET_NEXT function
	Input parameters
	Output parameters

	LGCB gate, END_CHAIN_BROWSE function
	Input parameters
	Output parameters

	LGCB gate, START_CHAIN_BROWSE function
	Input parameters
	Output parameters

	LGCC gate, SYSINI function
	Input parameters
	Output parameters

	LGCC gate, CREATE_CHAIN_TOKEN function
	Input parameters
	Output parameters

	LGCC gate, RELEASE_CHAIN_TOKEN function
	Input parameters
	Output parameters

	LGCC gate, RESTORE_CHAIN_TOKEN function
	Input parameters
	Output parameters

	LGCC gate, START_BROWSE_CHAINS function
	Input parameters
	Output parameters

	LGCC gate, BROWSE_CHAINS_GET_NEXT function
	Input parameters
	Output parameters

	LGCC gate, END_BROWSE_CHAINS function
	Input parameters
	Output parameters

	LGCC gate, DELETE_ALL function
	Input parameters
	Output parameters

	LGCC gate, SET_HISTORY function
	Input parameters
	Output parameters

	LGCC gate, DELETE_HISTORY function
	Input parameters
	Output parameters

	LGCC gate, SET_KEYPOINT_FREQUENCY function
	Input parameters
	Output parameters

	LGCC gate, INQUIRE_KEYPOINT_FREQUENCY function
	Input parameters
	Output parameters

	LGCC gate, SET_DEFER_INTERVAL function
	Input parameters
	Output parameters

	LGCC gate, INQUIRE_DEFER_INTERVAL function
	Input parameters
	Output parameters

	LGCC gate, INQUIRE_KEYPOINT_STATS function
	Input parameters
	Output parameters

	LGCC gate, RESET_KEYPOINT_STATS function
	Input parameters
	Output parameters

	LGGL gate, OPEN function
	Input parameters
	Output parameters

	LGGL gate, WRITE function
	Input parameters
	Output parameters

	LGGL gate, FORCE function
	Input parameters
	Output parameters

	LGGL gate, CLOSE function
	Input parameters
	Output parameters

	LGGL gate, WRITE_JNL function
	Input parameters
	Output parameters

	LGGL gate, FORCE_JNL function
	Input parameters
	Output parameters

	LGGL gate, UOW_TIME function
	Input parameters
	Output parameters

	LGGL gate, INITIALIZE function
	Input parameters
	Output parameters

	LGJN gate, INQUIRE function
	Input parameters
	Output parameters

	LGJN gate, START_BROWSE function
	Input parameters
	Output parameters

	LGJN gate, GET_NEXT function
	Input parameters
	Output parameters

	LGJN gate, END_BROWSE function
	Input parameters
	Output parameters

	LGJN gate, SET function
	Input parameters
	Output parameters

	LGJN gate, DISCARD function
	Input parameters
	Output parameters

	LGJN gate, EXPLICIT_OPEN function
	Input parameters
	Output parameters

	LGJN gate, IMPLICIT_OPEN function
	Input parameters
	Output parameters

	LGJN gate, INITIALIZE function
	Input parameters
	Output parameters

	LGJN gate, STREAM_FAIL function
	Input parameters
	Output parameters

	LGJN gate, PROCESS_STATISTICS function
	Input parameters
	Output parameters

	LGLB gate, CONNECT function
	Input parameters
	Output parameters

	LGLB gate, DISCONNECT function
	Input parameters
	Output parameters

	LGLB gate, GL_WRITE function
	Input parameters
	Output parameters

	LGLB gate, GL_FORCE function
	Input parameters
	Output parameters

	LGLB gate, DISCONNECT_ALL function
	Input parameters
	Output parameters

	LGLD gate, INQUIRE function
	Input parameters
	Output parameters

	LGLD gate, START_BROWSE function
	Input parameters
	Output parameters

	LGLD gate, GET_NEXT function
	Input parameters
	Output parameters

	LGLD gate, END_BROWSE function
	Input parameters
	Output parameters

	LGLD gate, MATCH function
	Input parameters
	Output parameters

	LGLD gate, INSTALL function
	Input parameters
	Output parameters

	LGLD gate, DISCARD function
	Input parameters
	Output parameters

	LGLD gate, INITIALIZE function
	Input parameters
	Output parameters

	LGMV gate, MOVE_CHAIN function
	Input parameters
	Output parameters

	LGPA gate, INQUIRE_PARAMETERS function
	Input parameters
	Output parameters

	LGPA gate, SET_PARAMETERS function
	Input parameters
	Output parameters

	LGSR gate, LOGSTREAM_STATS function
	Input parameters
	Output parameters

	LGST gate, INQUIRE function
	Input parameters
	Output parameters

	LGST gate, START_BROWSE function
	Input parameters
	Output parameters

	LGST gate, GET_NEXT function
	Input parameters
	Output parameters

	LGST gate, END_BROWSE function
	Input parameters
	Output parameters

	LGST gate, CONNECT function
	Input parameters
	Output parameters

	LGST gate, DISCONNECT function
	Input parameters
	Output parameters

	LGST gate, INITIALIZE function
	Input parameters
	Output parameters

	LGWF gate, FORCE_DATA function
	Input parameters
	Output parameters

	LGWF gate, WRITE function
	Input parameters
	Output parameters

	Log manager domain’s generic gates
	Log manager domain’s call back gates
	Log manager domain’s call back format
	LGGL gate, ERROR function
	Input parameters
	Output parameters

	Modules
	Exits
	Trace

	Chapter 89. Lock manager domain (LM)
	Lock manager domain’s specific gate
	LMLM gate, ADD_LOCK function
	Input parameters
	Output parameters

	LMLM gate, LOCK function
	Input parameters
	Output parameters

	LMLM gate, UNLOCK function
	Input parameters
	Output parameters

	LMLM gate, TEST_LOCK_OWNER function
	Input parameters
	Output parameters

	LMLM gate, DELETE_LOCK function
	Input parameters
	Output parameters

	Lock manager domain’s generic gates
	Modules
	Exits
	Trace

	Chapter 90. Message domain (ME)
	Message domain’s specific gates
	MEBM gate, RETRIEVE_MESSAGE function
	Input parameters
	Output parameters

	MEBM gate, INQUIRE_MESSAGE_LENGTH function
	Input parameters
	Output parameters

	MEBM gate, INQUIRE_MESSAGE_DEFINITION function
	Input parameters
	Output parameters

	MEME gate, SEND_MESSAGE function
	Input parameters
	Output parameters

	MEME gate, CONVERSE function
	Input parameters
	Output parameters

	MEME gate, RETRIEVE_MESSAGE function
	Input parameters
	Output parameters

	MEME gate, INQUIRE_MESSAGE_LENGTH function
	Input parameters
	Output parameters

	MEME gate, VALIDATE_LANGUAGE_CODE function
	Input parameters
	Output parameters

	MEME gate, VALIDATE_LANGUAGE_SUFFIX function
	Input parameters
	Output parameters

	MEME gate, INQUIRE_MESSAGE function
	Input parameters
	Output parameters

	MESR gate, SET_MESSAGE_OPTIONS function
	Input parameters
	Output parameters

	Message domain’s generic gate
	Modules
	Exits
	Trace

	Chapter 91. Monitoring domain (MN)
	Monitoring domain’s specific gates
	MNMN gate, EXCEPTION_DATA_PUT function
	Input parameters
	Output parameters

	MNMN gate, PERFORMANCE_DATA_PUT function
	Input parameters
	Output parameters

	MNMN gate, INQUIRE_MONITORING_DATA function
	Input parameters
	Output parameters

	MNMN gate, MONITOR function
	Input parameters
	Output parameters

	MNMN gate, INQUIRE_RESOURCE_DATA function
	Input parameters
	Output parameters

	MNMN gate, ACCUMULATE_RMI_TIME function
	Input parameters
	Output parameters

	MNSR gate, SET_MCT_SUFFIX function
	Input parameters
	Output parameters

	MNSR gate, SET_MONITORING function
	Input parameters
	Output parameters

	MNSR gate, INQ_MONITORING function
	Input parameters
	Output parameters

	MNXM gate, TRANSACTION_INITIALIZATION function
	Input parameters
	Output parameters

	MNXM gate, TRANSACTION_TERMINATION function
	Input parameters
	Output parameters

	Monitoring domain’s generic gates
	Modules
	Exits
	Trace

	Chapter 92. Enqueue Domain (NQ)
	Enqueue domain's specific gates
	NQNQ gate, CREATE_ENQUEUE_POOL function
	Input parameters:
	Output parameters:

	NQNQ gate, DEACTIVATE function
	Input parameters:
	Output parameters:

	NQNQ gate, REACQUIRE_ENQUEUE function
	Input parameters:
	Output parameters:

	NQNQ gate, SET_NQRNAME_LIST function
	Input parameters:
	Output parameters:

	NQED gate, ENQUEUE function
	Input parameters:
	Output parameters:

	NQED gate, DEQUEUE function
	Input parameters:
	Output parameters:

	NQIB gate, INQUIRE_ENQUEUE function
	Input parameters:
	Output parameters:

	NQIB gate, START_BROWSE_ENQUEUE function
	Input parameters:
	Output parameters:

	NQIB gate, GET_NEXT_ENQUEUE function
	Input parameters:
	Output parameters:

	NQIB gate, END_BROWSE_ENQUEUE function
	Input parameters:
	Output parameters:

	NQRN gate, ENQUEUE function
	Input parameters:
	Output parameters:

	NQRN gate, ADD_REPLACE_ENQMODEL function
	Input parameters:
	Output parameters:

	NQRN gate, DISCARD_ENQMODEL function
	Input parameters:
	Output parameters:

	NQRN gate, INQUIRE_ENQMODEL function
	Input parameters:
	Output parameters:

	NQRN gate, SET_ENQMODEL function
	Input parameters:
	Output parameters:

	NQIE gate, INTERPRET_ENQUEUE function
	Input parameters:
	Output parameters:

	Enqueue domain’s generic gates
	Modules
	Exits
	Trace

	Chapter 93. Object Transaction Service domain (OT)
	Object Transaction Service domain’s specific gates
	OTTR gate, IMPORT_TRAN function
	Input parameters
	Output parameters

	OTTR gate, BEGIN_TRAN function
	Input parameters
	Output parameters

	OTTR gate, COMMIT_ONE_PHASE function
	Input parameters
	Output parameters

	OTTR gate, PREPARE function
	Input parameters
	Output parameters

	OTTR gate, COMMIT function
	Input parameters
	Output parameters

	OTTR gate, SET_ROLLBACK_ONLY function
	Input parameters
	Output parameters

	OTSU gate, ADD_SUBORDINATE function
	Input parameters
	Output parameters

	OTSU gate, SET_VOTE function
	Input parameters
	Output parameters

	OTSU gate, FORGET function
	Input parameters
	Output parameters

	OTSU gate, RESYNC function
	Input parameters
	Output parameters

	OTCO gate, SET_COORDINATOR function
	Input parameters
	Output parameters

	OTCO gate, FORGET function
	Input parameters
	Output parameters

	Modules
	Exits
	Trace

	Chapter 94. Parameter manager domain (PA)
	Parameter manager domain’s specific gate
	PAGP gate, FORCE_START function
	Input parameters
	Output parameters

	PAGP gate, GET_PARAMETERS function
	Input parameters
	Output parameters

	PAGP gate, INQUIRE_START function
	Input parameters
	Output parameters

	Parameter manager domain’s generic gate
	Modules
	Exits
	Trace

	Chapter 95. Program manager domain (PG)
	Program manager domain’s specific gates
	PGAQ gate, INQUIRE_AUTOINSTALL function
	Input parameters
	Output parameters

	PGAQ gate, SET_AUTOINSTALL function
	Input parameters
	Output parameters

	PGCH gate, BIND_CHANNEL function
	Input parameters
	Output parameters

	PGCH gate, COPY_CHANNEL function
	Input parameters
	Output parameters

	PGCH gate, CREATE_CHANNEL function
	Input parameters
	Output parameters

	PGCH gate, DELETE_CHANNEL function
	Input parameters
	Output parameters

	PGCH gate, DELETE_OWNED_CHANNELS function
	Output parameters

	PGCH gate, DETACH_CHANNEL function
	Input parameters
	Output parameters

	PGCH gate, INQUIRE_BOUND_CHANNEL function
	Output parameters

	PGCH gate, INQUIRE_CHANNEL function
	Input parameters
	Output parameters

	PGCH gate, INQUIRE_CHANNEL_BY_TOKEN function
	Input parameters
	Output parameters

	PGCH gate, INQUIRE_CURRENT_CHANNEL function
	Output parameters

	PGCH gate, RENAME_CHANNEL function
	Input parameters
	Output parameters

	PGCH gate, SET_CURRENT_CHANNEL function
	Input parameters
	Output parameters

	PGCP gate, COPY_CONTAINER_POOL function
	Input parameters
	Output parameters

	PGCP gate, CREATE_CONTAINER_POOL function
	Input parameters
	Output parameters

	PGCP gate, DELETE_CONTAINER_POOL function
	Input parameters
	Output parameters

	PGCP gate, INQUIRE_CONTAINER_POOL function
	Input parameters
	Output parameters

	PGCR gate, COPY_CONTAINER function
	Input parameters
	Output parameters

	PGCR gate, DELETE_CONTAINER function
	Input parameters
	Output parameters

	PGCR gate, ENDBR_CONTAINER function
	Input parameters
	Output parameters

	PGCR gate, GET_CONTAINER_INTO function
	Input parameters
	Output parameters

	PGCR gate, GET_CONTAINER_LENGTH function
	Input parameters
	Output parameters

	PGCR gate, GET_CONTAINER_SET function
	Input parameters
	Output parameters

	PGCR gate, GETNEXT_CONTAINER function
	Input parameters
	Output parameters

	PGCR gate, INQUIRE_BROWSE_CONTEXT function
	Input parameters
	Output parameters

	PGCR gate, INQUIRE_CONTAINER function
	Input parameters
	Output parameters

	PGCR gate, INQUIRE_CONTAINER_BY_TOKEN function
	Input parameters
	Output parameters

	PGCR gate, MOVE_CONTAINER function
	Input parameters
	Output parameters

	PGCR gate, PUT_CONTAINER function
	Input parameters
	Output parameters

	PGCR gate, SET_CONTAINER function
	Input parameters
	Output parameters

	PGCR gate, STARTBR_CONTAINER function
	Input parameters
	Output parameters

	PGCR gate, TRACE_CONTAINERS function
	Input parameters
	Output parameters

	PGDD gate, DEFINE_PROGRAM function
	Input parameters
	Output parameters

	PGDD gate, DELETE_PROGRAM function
	Input parameters
	Output parameters

	PGEX gate, INITIALIZE_EXIT function
	Input parameters
	Output parameters

	PGEX gate, TERMINATE_EXIT function
	Input parameters
	Output parameters

	PGHM gate, SET_CONDITIONS function
	Input parameters
	Output parameters

	PGHM gate, INQ_CONDITION function
	Input parameters
	Output parameters

	PGHM gate, IGNORE_CONDITIONS function
	Input parameters
	Output parameters

	PGHM gate, SET_AIDS function
	Input parameters
	Output parameters

	PGHM gate, INQ_AID function
	Input parameters
	Output parameters

	PGHM gate, SET_ABEND function
	Input parameters
	Output parameters

	PGHM gate, INQ_ABEND function
	Input parameters
	Output parameters

	PGHM gate, PUSH_HANDLE function
	Input parameters
	Output parameters

	PGHM gate, POP_HANDLE function
	Input parameters
	Output parameters

	PGHM gate, FREE_HANDLE_TABLES function
	Input parameters
	Output parameters

	PGHM gate, CLEAR_LABELS function
	Input parameters
	Output parameters

	PGIS gate, INQUIRE_PROGRAM function
	Input parameters
	Output parameters

	PGIS gate, INQUIRE_CURRENT_PROGRAM function
	Input parameters
	Output parameters

	PGIS gate, SET_PROGRAM function
	Input parameters
	Output parameters

	PGIS gate, START_BROWSE_PROGRAM function
	Input parameters
	Output parameters

	PGIS gate, GET_NEXT_PROGRAM function
	Input parameters
	Output parameters

	PGIS gate, END_BROWSE_PROGRAM function
	Input parameters
	Output parameters

	PGIS gate, REFRESH_PROGRAM function
	Input parameters
	Output parameters

	PGLD gate, LOAD_EXEC function
	Input parameters
	Output parameters

	PGLD gate, LOAD function
	Input parameters
	Output parameters

	PGLD gate, RELEASE_EXEC function
	Input parameters
	Output parameters

	PGLD gate, RELEASE function
	Input parameters
	Output parameters

	PGLE gate, LINK_EXEC function
	Input parameters
	Output parameters

	PGLK gate, LINK function
	Input parameters
	Output parameters

	PGLK gate, LINK_PLT function
	Input parameters
	Output parameters

	PGLU gate, LINK_URM function
	Input parameters
	Output parameters

	PGPG gate, INITIAL_LINK function
	Input parameters
	Output parameters

	PGRE gate, PREPARE_RETURN_EXEC function
	Input parameters
	Output parameters

	PGXE gate, PREPARE_XCTL_EXEC function
	Input parameters
	Output parameters

	PGXM gate, INITIALIZE_TRANSACTION function
	Input parameters
	Output parameters

	PGXM gate, TERMINATE_TRANSACTION function
	Input parameters
	Output parameters

	Program manager domain’s generic gates
	Initialize domain
	Quiesce domain
	Terminate domain

	Modules
	Exits
	Trace

	Chapter 96. Pipeline Manager Domain (PI)
	Pipeline Manager Domain's specific gates
	PIAT gate, CREATE_CONTEXT function
	PIAT gate, CREATE_CONTEXT_RESP function
	PIAT gate, CREATE_NON_TERMINAL_MSG function
	PIAT gate, CREATE_REGISTER_REQUEST function
	PIAT gate, CREATE_REGISTER_RESP function
	PIAT gate, CREATE_TERMINAL_MSG function
	PIAT gate, PROCESS_CONTEXT function
	PIAT gate, PROCESS_CONTEXT_RESP function
	PIAT gate, PROCESS_MSG function
	PICC gate, FIND_SIGNATURE function
	PICC gate, HANDLE_PARSE_EVENT function
	PICC gate, PERFORM_XML_PARSE function
	PIII gate, PARSE_ICM function
	PIIW gate, INVOKE_WEBSERVICE function
	PIPL gate, ADD_PIPELINE function
	PIPL gate, COMPLETE_PIPELINE function
	PIPL gate, DISCARD_PIPELINE function
	PIPL gate, END_BROWSE_PIPELINE function
	PIPL gate, ESTABLISH_PIPELINE function
	PIPL gate, GET_NEXT_PIPELINE function
	PIPL gate, INQUIRE_PIPELINE function
	PIPL gate, PERFORM_PIPELINE function
	PIPL gate, RELINQUISH_PIPELINE function
	PIPL gate, RESOLVE_PIPELINE function
	PIPL gate, SET_PIPELINE function
	PIPL gate, START_BROWSE_PIPELINE function
	PIPM gate, INVOKE_PROGRAM function
	PIPM gate, INVOKE_STUB function
	PIPM gate, START_PIPELINE function
	PIRE gate, PERFORM_RESYNC function
	PISC gate, DYN_CREATE_WEBSERVICE function
	PISC gate, UPDATE_WEBSERVICE function
	PISF gate, SOAPFAULT_ADD function
	PISF gate, SOAPFAULT_CREATE function
	PISF gate, SOAPFAULT_DELETE function
	PISN gate, SOAP_11 function
	PISN gate, SOAP_12 function
	PITG gate, SEND_REQUEST function
	PITG gate, SEND_RESPONSE function
	PITG gate, CONVERSE function
	RECEIVE_REQUEST
	PITG gate, SEND_ERROR_RESPONSE function
	PITL gate, PROCESS_SOAP_REQUEST function
	PIWR gate, CREATE_WEBSERVICE function
	PIWR gate, DECREMENT_USE_COUNT function
	PIWR gate, DISCARD_WEBSERVICE function
	PIWR gate, END_BROWSE_WEBSERVICE function
	PIWR gate, GET_NEXT_WEBSERVICE function
	PIWR gate, INCREMENT_USE_COUNT function
	PIWR gate, INITIALISE_WEBSERVICE function
	PIWR gate, INQUIRE_WEBSERVICE function
	PIWR gate, RESOLVE_ALL_WEBSERVICES function
	PIWR gate, SET_WEBSERVICE function
	PIWR gate, START_BROWSE_WEBSERVICE function

	Pipeline Manager domain's generic gates
	Modules
	Exits
	Trace

	Chapter 97. Partner resource manager
	Functions provided by the partner resource manager
	PRCM format, INQUIRE_PARTNER function
	Input parameters
	Output parameters

	PRCM format, START_PARTNER_BROWSE function
	Input parameters
	Output parameters

	PRCM format, GET_NEXT_PARTNER function
	Input parameters
	Output parameters

	PRCM format, END_PARTNER_BROWSE function
	Input parameters
	Output parameters

	PRFS format, LOCATE_AND_LOCK_PARTNER function
	Input parameters
	Output parameters

	PRIN format, START_INIT function
	Input parameters
	Output parameters

	PRIN format, COMPLETE_INIT function
	Input parameters
	Output parameters

	PRPT format, ADD_REPLACE_PARTNER function
	Input parameters
	Output parameters

	PRPT format, DELETE_PARTNER function
	Input parameters
	Output parameters

	Modules
	Exits
	Trace

	Chapter 98. Partner domain (PT)
	Partner domain’s specific gates
	PTTW gate, CREATE_POOL function
	Input parameters
	Output parameters

	PTTW gate, DESTROY_POOL function
	Input parameters
	Output parameters

	PTTW gate, QUERY_POOL function
	Input parameters
	Output parameters

	PTTW gate, START_POOL_BROWSE function
	Output parameters

	PTTW gate, GET_NEXT_POOL function
	Input parameters
	Output parameters

	PTTW gate, END_POOL_BROWSE function
	Input parameters
	Output parameters

	PTTW gate, CREATE_PARTNERSHIP function
	Input parameters
	Output parameters

	PTTW gate, DESTROY_PARTNERSHIP function
	Input parameters
	Output parameters

	PTTW gate, SET_USER_TOKEN function
	Input parameters
	Output parameters

	PTTW gate, INQUIRE_USER_TOKEN function
	Input parameters
	Output parameters

	PTTW gate, MAKE_PARTNERSHIP function
	Input parameters
	Output parameters

	PTTW gate, BREAK_PARTNERSHIP function
	Input parameters
	Output parameters

	PTTW gate, TRIGGER_PARTNER function
	Input parameters
	Output parameters

	PTTW gate, WAIT_FOR_PARTNER function
	Input parameters
	Output parameters

	PTTW gate, QUERY_PARTNERSHIP function
	Input parameters
	Output parameters

	PTTW gate, SET_GARBAGE_INTERVAL function
	Input parameters
	Output parameters

	PTTW gate, INQUIRE_GARBAGE_INTERVAL function
	Input parameters
	Output parameters

	Modules
	Exits
	Trace

	Chapter 99. Recovery Manager Domain (RM)
	Recovery Manager Domain’s specific gates
	RMUW gate, CREATE_UOW function
	Input parameters
	Output parameters

	RMUW gate, INQUIRE_UOW_ID function
	Input parameters
	Output parameters

	RMUW gate, INQUIRE_UOW_TOKEN function
	Input parameters
	Output parameters

	RMUW INQUIRE_UOW function
	Input parameters
	Output parameters

	RMUW gate, SET_UOW function
	Input parameters
	Output parameters

	RMUW gate, COMMIT_UOW function
	Input parameters
	Output parameters

	RMUW gate, FORCE_UOW function
	Input parameters
	Output parameters

	RMUW gate, START_UOW_BROWSE function
	Input parameters
	Output parameters

	RMUW gate, GET_NEXT_UOW function
	Input parameters
	Output parameters

	RMUW gate, END_UOW_BROWSE function
	Input parameters
	Output parameters

	RMUW gate, BACKOUT_UOW function
	Input parameters
	Output parameters

	RMUW gate, BIND_UOW_TO_TXN function
	Input parameters
	Output parameters

	RMUW gate, REATTACH_REPLY function
	Input parameters
	Output parameters

	RMLN gate, ADD_LINK function
	Input parameters
	Output parameters

	RMLN gate, DELETE_LINK function
	Input parameters
	Output parameters

	RMLN gate, INQUIRE_LINK function
	Input parameters
	Output parameters

	RMLN gate, SET_LINK function
	Input parameters
	Output parameters

	RMLN gate, ISSUE_PREPARE function
	Input parameters
	Output parameters

	RMLN gate, INBOUND_FLOW function
	Input parameters
	Output parameters

	RMLN gate, INITIATE_RECOVERY function
	Input parameters
	Output parameters

	RMLN gate, SET_RECOVERY_STATUS function
	Input parameters
	Output parameters

	RMLN gate, REPORT_RECOVERY_STATUS function
	Input parameters
	Output parameters

	RMLN gate, TERMINATE_RECOVERY function
	Input parameters
	Output parameters

	RMLN gate, SET_MARK function
	Input parameters
	Output parameters

	RMLN gate, START_LINK_BROWSE function
	Input parameters
	Output parameters

	RMLN gate, GET_NEXT_LINK function
	Input parameters
	Output parameters

	RMLN gate, END_LINK_BROWSE function
	Input parameters
	Output parameters

	RMNM gate, INQUIRE_LOGNAME function
	Input parameters
	Output parameters

	RMNM gate, SET_LOGNAME function
	Input parameters
	Output parameters

	RMNM gate, CLEAR_PENDING function
	Input parameters
	Output parameters

	RMCD gate, REGISTER function
	Input parameters
	Output parameters

	RMCD gate, SET_GATE function
	Input parameters
	Output parameters

	RMCD gate, INQUIRE_CLIENT_DATA function
	Input parameters
	Output parameters

	RMCD gate, SET_CLIENT_DATA function
	Input parameters
	Output parameters

	RMDM gate, INQUIRE_STARTUP function
	Input parameters
	Output parameters

	RMDM gate, SET_STARTUP function
	Input parameters
	Output parameters

	RMDM gate, SET_LOCAL_LU_NAME function
	Input parameters
	Output parameters

	RMDM gate, SET_PARAMETERS function
	Input parameters
	Output parameters

	RMKD gate, KEYPOINT_DATA function
	Input parameters
	Output parameters

	RMRE gate, APPEND function
	Input parameters
	Output parameters

	RMRE gate, FORCE function
	Input parameters
	Output parameters

	RMRE gate, REMOVE function
	Input parameters
	Output parameters

	RMRE gate, AVAIL function
	Input parameters
	Output parameters

	RMRE gate, REQUEST_FORGET function
	Input parameters
	Output parameters

	RMSL gate, TAKE_ACTIVITY_KEYPOINT function
	Input parameters
	Output parameters

	RMWT gate, INQUIRE_WORK_TOKEN function
	Input parameters
	Output parameters

	RMWT gate, START_WORK_TOKEN_BROWSE function
	Input parameters
	Output parameters

	RMWT gate, GET_NEXT_WORK_TOKEN function
	Input parameters
	Output parameters

	RMWT gate, END_WORK_TOKEN_BROWSE function
	Input parameters
	Output parameters

	Recovery Manager domain’s generic gates
	Recovery Manager domain’s call back formats
	RMRO gate, PERFORM_COMMIT function
	Input parameters
	Output parameters

	RMRO gate, PERFORM_PREPARE function
	Input parameters
	Output parameters

	RMRO gate, START_BACKOUT function
	Input parameters
	Output parameters

	RMRO gate, DELIVER_BACKOUT_DATA function
	Input parameters
	Output parameters

	RMRO gate, END_BACKOUT function
	Input parameters
	Output parameters

	RMRO gate, PERFORM_SHUNT function
	Input parameters
	Output parameters

	RMRO gate, PERFORM_UNSHUNT function
	Input parameters
	Output parameters

	RMDE gate, START_DELIVERY function
	Input parameters
	Output parameters

	RMDE gate, DELIVER_RECOVERY function
	Input parameters
	Output parameters

	RMDE gate, END_DELIVERY function
	Input parameters
	Output parameters

	RMDE gate, DELIVER_FORGET function
	Input parameters
	Output parameters

	RMKP gate, TAKE_KEYPOINT function
	Input parameters
	Output parameters

	RMLK gate, PERFORM_PRELOGGING function
	Input parameters
	Output parameters

	RMLK gate, PERFORM_PREPARE function
	Input parameters
	Output parameters

	RMLK gate, REPLY_DO_COMMIT function
	Input parameters
	Output parameters

	RMLK gate, SEND_DO_COMMIT function
	Input parameters
	Output parameters

	RMLK gate, PERFORM_COMMIT function
	Input parameters
	Output parameters

	RMLK gate, PERFORM_SHUNT function
	Input parameters
	Output parameters

	RMLK gate, PERFORM_UNSHUNT function
	Input parameters
	Output parameters

	Modules
	Exits
	Trace

	Chapter 100. RRMS domain (RX)
	RRMS domain's specific gates
	RXDM gate, INQUIRE_RRS function
	Output Parameters

	RXDM gate, SET_PARAMETERS function
	Input Parameters
	Output Parameters

	RXUW gate, PUT_CLIENT_REQUEST function
	Input parameters
	Output parameters

	RXUW gate, GET_CLIENT_REQUEST function
	Input parameters
	Output paramters

	RXUW gate, INQUIRE function
	Input parameters
	Output parameters

	Modules
	Exits
	Trace

	Chapter 101. RequestStream domain (RZ)
	RequestStream domain’s specific gates
	RZSO gate, CREATE function
	Input parameters
	Output parameters

	RZSO gate, SEND_REQUEST function
	Input parameters
	Output parameters

	RZSO gate, RECEIVE_REPLY function
	Input parameters
	Output parameters

	RZSO gate, LEAVE function
	Input parameters
	Output parameters

	RZSO gate, JOIN function
	Input parameters
	Output parameters

	RZSO gate, IS_ID_LOCAL function
	Input parameters
	Output parameters

	RZTA gate, RECEIVE_REQUEST function
	Input parameters
	Output parameters

	RZTA gate, SEND_REPLY function
	Input parameters
	Output parameters

	RZTA gate, GET_SERVER_DATA function
	Input parameters
	Output parameters

	RZTA gate, GET_PUBLIC_ID function
	Output parameters

	RZTA gate, GET_CURRENT function
	Output parameters

	RZTA gate, GET_JOIN_DATA function
	Output parameters

	RZTA gate, TERMINATE function
	Output parameters

	RZRT gate, SET_EXIT_PROGRAM function
	Input parameters
	Output parameters

	RZRJ gate, PERFORM_JOIN function
	Output parameters

	RequestStream domain’s generic gates
	RequestStream domain formats
	LSTN gate, REGISTER function
	Input parameters
	Output parameters

	LSTN gate, LISTEN function
	Input parameters
	Output parameters

	LSTN gate, CANCEL function
	Input parameters
	Output parameters

	LSTN gate, DEREGISTER function
	Input parameters
	Output parameters

	NOTI gate, NOTIFY function
	Input parameters
	Output parameters

	Modules
	Exits
	User-replaceable programs
	Trace

	Chapter 102. Scheduler Services domain (SH)
	Scheduler services domain’s specific gate
	SHPR gate, ADD_PENDING_REQUEST function
	Input parameters
	Output parameters

	SHPR gate, DELETE_PENDING_REQUEST function
	Input parameters
	Output parameters

	SHPR gate, SET_BOUND_REQUEST function
	Input parameters
	Output parameters

	SHRT gate, SET_EXIT_PROGRAM function
	Input parameters
	Output parameters

	SHRT gate, INQUIRE_EXIT_PROGRAM function
	Input parameters
	Output parameters

	SHRQ gate, PERFORM_RESTART_DREDGE function
	Output parameters

	SHRQ gate, PERFORM_REGULAR_DREDGE function
	Output parameters

	SHRQ gate, PERFORM_SHUTDOWN function
	Output parameters

	SHRR gate, ROUTE_REQUEST function
	Input parameters
	Output parameters

	SHRR gate, RECEIVE_REQUEST function
	Input parameters
	Output parameters

	SHRR gate, RETRY_REQUEST function
	Input parameters
	Output parameters

	Scheduler service domain’s generic gates
	Modules
	Exits
	Trace

	Chapter 103. JVM domain (SJ)
	SJ domain: Design overview
	SJ domain’s specific gates
	SJCC gate, START_CLASSCACHE function
	Input parameters
	Output parameters

	SJCC gate, STOP_CLASSCACHE function
	Input parameters
	Output parameters

	SJCC gate, RELOAD_CLASSCACHE function
	Input parameters
	Output parameters

	SJCC gate, NOTIFY_CLASSCACHE function
	Input parameters
	Output parameters

	SJCC gate, ADD_TO_ACTIVE_JVMSET function
	Input parameters
	Output parameters

	SJCC gate, REMOVE_FROM_JVMSET function
	Input parameters
	Output parameters

	SJIN gate, INVOKE_JAVA_PROGRAM function
	Input parameters
	Output parameters

	SJIS gate, INQUIRE_JVMPOOL function
	Input parameters
	Output parameters

	SJIS gate, SET_JVMPOOL function
	Input parameters
	Output parameters

	SJIS gate, INQUIRE_JVM function
	Input parameters
	Output parameters

	SJIS gate, START_BROWSE_JVM function
	Input parameters
	Output parameters

	SJIS gate, GET_NEXT_JVM function
	Input parameters
	Output parameters

	SJIS gate, END_BROWSE_JVM function
	Input parameters
	Output parameters

	SJIS gate, INQUIRE_CLASSCACHE function
	Input parameters
	Output parameters

	SJIS gate, SET_CLASSCACHE function
	Input parameters
	Output parameters

	SJIS gate, INQUIRE_JVMPROFILE function
	Input parameters
	Output parameters

	SJIS gate, START_BROWSE_JVMPROFILE function
	Input parameters
	Output parameters

	SJIS gate, GET_NEXT_JVMPROFILE function
	Input parameters
	Output parameters

	SJIS gate, END_BROWSE_JVMPROFILE function
	Input parameters
	Output parameters

	SJIS gate, SET_JVMPROFILEDIR function
	Input parameters
	Output parameters

	SJIS gate, DELETE_INACTIVE_JVMS function
	Input parameters
	Output parameters

	SJ domain’s generic gates
	SJ domain: Control blocks
	SJ domain: Modules
	SJ domain: Exits
	SJ domain: Trace

	Chapter 104. Storage manager domain (SM)
	Storage manager domain’s specific gates
	SMAD gate, ADD_SUBPOOL function
	Input parameters
	Output parameters

	SMAD gate, DELETE_SUBPOOL function
	Input parameters
	Output parameters

	SMAD gate, START_SUBPOOL_BROWSE function
	Input parameters
	Output parameters

	SMAD gate, GET_NEXT_SUBPOOL function
	Input parameters
	Output parameters

	SMAD gate, END_SUBPOOL_BROWSE function
	Input parameters
	Output parameters

	SMAD gate, INQUIRE_SUBPOOL function
	Input parameters
	Output parameters

	SMAR gate, ALLOCATE_TRANSACTION_STG function
	Input parameters
	Output parameters

	SMAR gate, RELEASE_TRANSACTION_STG function
	Input parameters
	Output parameters

	SMCK gate, CHECK_STORAGE function
	Input parameters
	Output parameters

	SMCK gate, RECOVER_STORAGE function
	Input parameters
	Output parameters

	SMGF gate, GETMAIN function
	Input parameters
	Output parameters

	SMGF gate, FREEMAIN function
	Input parameters
	Output parameters

	SMGF gate, INQUIRE_ELEMENT_LENGTH function
	Input parameters
	Output parameters

	SMMC gate, INQUIRE_ELEMENT_LENGTH function
	Input parameters
	Output parameters

	SMMC gate, INQUIRE_TASK_STORAGE function
	Input parameters
	Output parameters

	SMMC gate, INITIALIZE function
	Input parameters
	Output parameters

	SMMC gate, GETMAIN function
	Input parameters
	Output parameters

	SMMC gate, FREEMAIN function
	Input parameters
	Output parameters

	SMMC gate, FREEMAIN_ALL_TERMINAL function
	Input parameters
	Output parameters

	SMSR gate, INQUIRE_ISOLATION_TOKEN function
	Input parameters
	Output parameters

	SMSR gate, INQUIRE_REENTRANT_PROGRAM function
	Input parameters
	Output parameters

	SMSR gate, INQUIRE_SHORT_ON_STORAGE function
	Input parameters
	Output parameters

	SMSR gate, INQUIRE_DSA_SIZE function
	Input parameters
	Output parameters

	SMSR gate, SET_STORAGE_RECOVERY function
	Input parameters
	Output parameters

	SMSR gate, SET_TRANSACTION_ISOLATION function
	Input parameters
	Output parameters

	SMSR gate, SWITCH_SUBSPACE function
	Input parameters
	Output parameters

	SMSR gate, INQUIRE_DSA_LIMIT function
	Input parameters
	Output parameters

	SMSR gate, SET_DSA_LIMIT function
	Input parameters
	Output parameters

	SMSR gate, SET_STORAGE_PROTECT function
	Input parameters
	Output parameters

	SMSR gate, INQUIRE_STORAGE_PROTECT function
	Input parameters
	Output parameters

	SMSR gate, INQUIRE_ACCESS function
	Input parameters
	Output parameters

	SMSR gate, SET_REENTRANT_PROGRAM function
	Input parameters
	Output parameters

	SMSR gate, INQUIRE_ACCESS_TOKEN function
	Input parameters
	Output parameters

	SMSR gate, UPDATE_SUBSPACE_TCB_INFO function
	Input parameters
	Output parameters

	Storage manager domain’s generic gates
	Storage manager domain’s generic formats
	Format SMNT, STORAGE_NOTIFY function
	Input parameters
	Output parameters

	Format SMNT, MVS_STORAGE_NOTIFY function
	Input parameters
	Output parameters

	Modules
	Exits
	Trace

	Chapter 105. Sign-on component
	Sign-on component’s subroutines
	DFHSNAS subroutine, SIGNON_ATI_SESSION function
	Input parameters
	Output parameters

	DFHSNAS subroutine, SIGNOFF_ATI_SESSION function
	Input parameters
	Output parameters

	DFHSNPU subroutine, SIGNON_PRESET_USERID function
	Input parameters
	Output parameters

	DFHSNPU subroutine, SIGNOFF_PRESET_USERID function
	Input parameters
	Output parameters

	DFHSNSG subroutine, SIGNOFF_SURROGATE function
	Input parameters
	Output parameters

	DFHSNSU subroutine, SIGNON_SESSION_USERID function
	Input parameters
	Output parameters

	DFHSNSU subroutine, SIGNOFF_SESSION_USERID function
	Input parameters
	Output parameters

	DFHSNTU subroutine, SIGNON_TERMINAL_USER function
	Input parameters
	Output parameters

	DFHSNTU subroutine, SIGNOFF_TERMINAL_USER function
	Input parameters
	Output parameters

	DFHSNUS subroutine, SIGNON_ATTACH_HEADER function
	Input parameters
	Output parameters

	DFHSNUS subroutine, SIGNOFF_ATTACH_HEADER function
	Input parameters
	Output parameters

	Modules
	Exits
	Trace

	Chapter 106. Socket domain (SO)
	Socket domain’s specific gates
	SOCK gate, SEND function
	Input parameters
	Output parameters

	SOCK gate, SEND_SSL_DATA function
	Input parameters
	Output parameters

	SOCK gate, RECEIVE function
	Input parameters
	Output parameters

	SOCK gate, RECEIVE_SSL_DATA function
	Input parameters
	Output parameters

	SOCK gate, CLOSE function
	Output parameters

	SOCK gate, LISTEN function
	Output parameters

	SORD gate, REGISTER function
	Input parameters
	Output parameters

	SORD gate, DEREGISTER function
	Input parameters
	Output parameters

	SORD gate, IMMCLOSE function
	Input parameters
	Output parameters

	SOIS gate, SET_PARAMETERS function
	Input parameters
	Output parameters

	SOIS gate, INITIALIZE_ENVIRONMENT function
	Output parameters

	SOIS gate, INQUIRE function
	Input parameters
	Output parameters

	SOIS gate, SET function
	Input parameters
	Output parameters

	SOIS gate, INQUIRE_STATISTICS function
	Input parameters
	Output parameters

	SOIS gate, VERIFY function
	Input parameters
	Output parameters

	SOIS gate, EXPORT_CERTIFICATE_DATA function
	Input parameters
	Output parameters

	SOIS gate, IMPORT_CERTIFICATE_DATA function
	Input parameters
	Output parameters

	SOIS gate, DELETE_CERTIFICATE_DATA function
	Input parameters
	Output parameters

	SOAD gate, ADD_REPLACE_TCPIPSERVICE function
	Input parameters
	Output parameters

	SOAD gate, DELETE_TCPIPSERVICE function
	Input parameters
	Output parameters

	SOTB gate, INQUIRE_TCPIPSERVICE function
	Input parameters
	Output parameters

	SOTB gate, START_BROWSE function
	Output parameters

	SOTB gate, GET_NEXT function
	Input parameters
	Output parameters

	SOTB gate, END_BROWSE function
	Input parameters
	Output parameters

	SOTB gate, SET_TCPIPSERVICE function
	Input parameters
	Output parameters

	SOSE gate, INITIALIZE_SSL function
	Output parameters

	SOSE gate, SECURE_SOC_INIT function
	Output parameters

	SOSE gate, SECURE_SOC_READ function
	Input parameters
	Output parameters

	SOSE gate, SECURE_SOC_WRITE function
	Input parameters
	Output parameters

	SOSE gate, SECURE_SOC_CLOSE function
	Output parameters

	SOSE gate, SECURE_SOC_RESET function
	Output parameters

	SOSE gate, TERMINATE_SSL function
	Output parameters

	SOSE gate, EXPORT_CERTIFICATE_DATA function
	Input parameters
	Output parameters

	SOSE gate, IMPORT_CERTIFICATE_DATA function
	Input parameters
	Output parameters

	SOSE gate, DELETE_CERTIFICATE_DATA function
	Input parameters
	Output parameters

	Socket domain’s generic gates
	Modules
	Exits

	Chapter 107. Statistics domain (ST)
	Statistics domain’s specific gate
	STST gate, INQ_STATISTICS_OPTIONS function
	Input parameters
	Output parameters

	STST gate, SET_STATISTICS_OPTIONS function
	Input parameters
	Output parameters

	STST gate, REQUEST_STATISTICS function
	Input parameters
	Output parameters

	STST gate, RECORD_STATISTICS function
	Input parameters
	Output parameters

	STST gate, STATISTICS_COLLECTION function
	Input parameters
	Output parameters

	STST gate, DISABLE_STATISTICS function
	Input parameters
	Output parameters

	Statistics domain’s generic gates
	Statistics domain’s generic format
	STST format, COLLECT_STATISTICS function
	Input parameters
	Output parameters

	STST format, COLLECT_RESOURCE_STATS function
	Input parameters
	Output parameters

	Modules
	Exits
	Trace

	Chapter 108. Timer domain (TI)
	Timer domain’s specific gate
	TISR gate, REQUEST_NOTIFY_INTERVAL function
	Input parameters
	Output parameters

	TISR gate, REQUEST_NOTIFY_TIME_OF_DAY function
	Input parameters
	Output parameters

	TISR gate, CANCEL function
	Input parameters
	Output parameters

	TISR gate, INQUIRE_EXPIRATION_TOKEN function
	Input parameters
	Output parameters

	Timer domain’s generic gate
	Timer domain’s generic format
	TISR format, NOTIFY function
	Input parameters
	Output parameters

	Modules
	Exits
	Trace

	Chapter 109. Trace domain (TR)
	Design overview
	TRACE_PUT handling
	Locking
	Selectivity
	Domain calls
	DMDM gate, PRE_INITIALIZE function
	DMDM gate, INITIALIZE_DOMAIN function
	DMDM gate, QUIESCE_DOMAIN function
	DMDM gate, TERMINATE_DOMAIN function
	KETI gate, NOTIFY_RESET function
	TRPT gate, TRACE_PUT function
	TRSR gate, SET_INTERNAL_TABLE_SIZE function
	TRSR gate, START_INTERNAL_TRACE function
	TRSR gate, STOP_INTERNAL_TRACE function
	TRSR gate, INQUIRE_INTERNAL_TRACE function
	TRSR gate, START_AUXILIARY_TRACE function
	TRSR gate, STOP_AUXILIARY_TRACE function
	TRSR gate, PAUSE_AUXILIARY_TRACE function
	TRSR gate, SET_AUX_TRACE_AUTOSWITCH function
	TRSR gate, SWITCH_AUXILIARY_EXTENTS function
	TRSR gate, INQUIRE_AUXILIARY_TRACE function
	TRSR gate, START_GTF_TRACE function
	TRSR gate, STOP_GTF_TRACE function
	TRSR gate, INQUIRE_GTF_TRACE function
	TRSR gate, ACTIVATE_TRAP function
	TRSR gate, DEACTIVATE_TRAP function

	Subroutine calls
	TRSU format, WRITE_AUX_BUFFER function
	TRSU format, TERMINATE_AUXILIARY_TRACE function
	TRSU format, GET_GTF_BUFFER function
	TRSU format, SET_UP_INTERNAL_TABLE function

	DFHTRAO functions
	DFHTRAO, OPEN function
	DFHTRAO, CLOSE function
	DFHTRAO, CHECK function
	DFHTRAO, WRITE function

	Trace domain’s specific gates
	TRPT gate, TRACE_PUT function
	Input parameters
	Output parameters

	TRSR gate, SET_INTERNAL_TABLE_SIZE function
	Input parameters
	Output parameters

	TRSR gate, START_INTERNAL_TRACE function
	Input parameters
	Output parameters

	TRSR gate, STOP_INTERNAL_TRACE function
	Input parameters
	Output parameters

	TRSR gate, INQUIRE_INTERNAL_TRACE function
	Input parameters
	Output parameters

	TRSR gate, START_AUXILIARY_TRACE function
	Input parameters
	Output parameters

	TRSR gate, STOP_AUXILIARY_TRACE function
	Input parameters
	Output parameters

	TRSR gate, PAUSE_AUXILIARY_TRACE function
	Input parameters
	Output parameters

	TRSR gate, SET_AUX_TRACE_AUTOSWITCH function
	Input parameters
	Output parameters

	TRSR gate, SWITCH_AUXILIARY_EXTENTS function
	Input parameters
	Output parameters

	TRSR gate, INQUIRE_AUXILIARY_TRACE function
	Input parameters
	Output parameters

	TRSR gate, START_GTF_TRACE function
	Input parameters
	Output parameters

	TRSR gate, STOP_GTF_TRACE function
	Input parameters
	Output parameters

	TRSR gate, INQUIRE_GTF_TRACE function
	Input parameters
	Output parameters

	TRSR gate, ACTIVATE_TRAP function
	Input parameters
	Output parameters

	TRSR gate, DEACTIVATE_TRAP function
	Input parameters
	Output parameters

	Trace domain’s generic gates
	Control blocks
	Modules
	Copy books
	Exits
	Trace
	Dumps

	Chapter 110. Temporary storage domain (TS)
	Temporary storage domain’s specific gates
	TSQR gate, WRITE function
	Input parameters
	Output parameters

	TSQR gate, REWRITE function
	Input parameters
	Output parameters

	TSQR gate, READ_INTO function
	Input parameters
	Output parameters

	TSQR gate, READ_SET function
	Input parameters
	Output parameters

	TSQR gate, READ_NEXT_INTO function
	Input parameters
	Output parameters

	TSQR gate, READ_NEXT_SET function
	Input parameters
	Output parameters

	TSQR gate, DELETE function
	Input parameters

	TSQR gate, ALLOCATE_SET_STORAGE function
	Input parameters

	TSPT gate, PUT function
	Input parameters
	Output parameters

	TSPT gate, PUT_REPLACE function
	Input parameters

	TSPT gate, GET function
	Input parameters
	Output parameters

	TSPT gate, GET_SET function
	Input parameters
	Output parameters

	TSPT gate, GET_RELEASE function
	Input parameters
	Output parameters

	TSPT gate, GET_RELEASE_SET function
	Input parameters
	Output parameters

	TSPT gate, RELEASE function
	Input parameters

	TSSH gate, INITIALIZE function
	Input parameters

	TSSH gate, INQUIRE_POOL_TOKEN function
	Input parameters

	TSSH gate, WRITE function
	Input parameters
	Output parameters

	TSSH gate, REWRITE function
	Input parameters
	Output parameters

	TSSH gate, READ_INTO function
	Input parameters
	Output parameters

	TSSH gate, READ_SET function
	Input parameters
	Output parameters

	TSSH gate, READ_NEXT_INTO function
	Input parameters
	Output parameters

	TSSH gate, READ_NEXT_SET function
	Input parameters
	Output parameters

	TSSH gate, DELETE function
	Input parameters

	TSSH gate, INQUIRE_SYSID_TABLE_TOKEN function
	Input parameters

	TSSB gate, START_BROWSE function
	Input parameters

	TSSB gate, GET_NEXT function
	Input parameters
	Output parameters

	TSSB gate, END_BROWSE function
	Input parameters

	TSSB gate, INQUIRE_QUEUE function
	Input parameters
	Output parameters

	TSSR gate, SET_START_TYPE function
	Input parameters

	TSSR gate, SET_BUFFERS function
	Input parameters

	TSSR gate, SET_STRINGS function
	Input parameters

	TSBR gate, INQUIRE_QUEUE function
	Input parameters
	Output parameters

	TSBR gate, START_BROWSE function
	Output parameters

	TSBR gate, GET_NEXT function
	Input parameters
	Output parameters

	TSBR gate, END_BROWSE function
	Input parameters

	TSBR gate, CHECK_PREFIX function
	Input parameters

	TSIC gate, DELIVER_IC_RECOVERY_DATA function
	Output parameters

	TSIC gate, INQUIRE_QUEUE function
	Output parameters

	TSIC gate, SOLICIT_INQUIRES function
	Output parameters

	Temporary storage domain’s generic gates
	Modules
	Exits
	Trace

	Chapter 111. User domain
	User domain’s specific gates
	USAD gate, ADD_USER_WITH_PASSWORD function
	Input parameters
	Output parameters

	USAD gate, ADD_USER_WITHOUT_PASSWORD function
	Input parameters
	Output parameters

	USAD gate, DELETE_USER function
	Input parameters
	Output parameters

	USAD gate, INQUIRE_USER function
	Input parameters
	Output parameters

	USAD gate, INQUIRE_DEFAULT_USER function
	Input parameters
	Output parameters

	USAD gate, VALIDATE_USERID function
	Input parameters
	Output parameters

	USFL gate, FLATTEN_USER function
	Input parameters
	Output parameters

	USFL gate, TAKEOVER function
	Input parameters
	Output parameters

	USFL gate, UNFLATTEN_USER function
	Input parameters
	Output parameters

	USIS gate, SET_USER_DOMAIN_PARMS function
	Input parameters
	Output parameters

	USXM gate, ADD_TRANSACTION_USER function
	Input parameters
	Output parameters

	USXM gate, DELETE_TRANSACTION_USER function
	Input parameters
	Output parameters

	USXM gate, END_TRANSACTION function
	Input parameters
	Output parameters

	USXM gate, FLATTEN_TRANSACTION_USER function
	Input parameters
	Output parameters

	USXM gate, INIT_TRANSACTION_USER function
	Input parameters
	Output parameters

	USXM gate, INQUIRE_TRANSACTION_USER function
	Input parameters
	Output parameters

	USXM gate, TERM_TRANSACTION_USER function
	Input parameters
	Output parameters

	USXM gate, UNFLATTEN_TRANSACTION_USER function
	Input parameters
	Output parameters

	User domain’s generic gates
	Modules
	Exits
	Trace

	Chapter 112. Web domain (WB)
	Web domain’s specific gates
	WBAP gate, START_BROWSE function
	Input parameters
	Output parameters

	WBAP gate, READ_NEXT function
	Input parameters
	Output parameters

	WBAP gate, END_BROWSE function
	Input parameters
	Output parameters

	WBAP gate, GET_MESSAGE_BODY function
	Input parameters
	Output parameters

	WBAP gate, GET_HTTP_RESPONSE function
	Input parameters
	Output parameters

	WBAP gate, SEND_RESPONSE function
	Input parameters
	Output parameters

	WBAP gate, READ_HEADER function
	Input parameters
	Output parameters

	WBAP gate, WRITE_HEADER function
	Input parameters
	Output parameters

	WBAP gate, INQUIRE function
	Input parameters
	Output parameters

	WBCL gate, PARSE_URL function
	Input parameters
	Output parameters

	WBCL gate, OPEN_SESSION function
	Input parameters
	Output parameters

	WBCL gate, WRITE_HEADER function
	Input parameters
	Output parameters

	WBCL gate, WRITE_REQUEST function
	Input parameters
	Output parameters

	WBCL gate, READ_RESPONSE function
	Input parameters
	Output parameters

	WBCL gate, READ_HEADER function
	Input parameters
	Output parameters

	WBCL gate, START_BROWSE_HEADERS function
	Input parameters
	Output parameters

	WBCL gate, READ_NEXT_HEADER function
	Input parameters
	Output parameters

	WBCL gate, END_BROWSE_HEADERS function
	Input parameters
	Output parameters

	WBCL gate, INQUIRE_SESSION function
	Input parameters
	Output parameters

	WBCL gate, CLOSE_SESSION function
	Input parameters
	Output parameters

	WBRP gate, CATALOG_URIMAP function
	Input parameters
	Output parameters

	WBRP gate, DELETE_URIMAP function
	Input parameters
	Output parameters

	WBRP gate, CATALOG_HOST function
	Input parameters
	Output parameters

	WBRP gate, DELETE_HOST function
	Input parameters
	Output parameters

	WBRP gate, RECOVER_DEFINITIONS function
	Input parameters
	Output parameters

	WBSR gate, RECEIVE function
	Input parameters
	Output parameters

	WBSR gate, SEND function
	Input parameters
	Output parameters

	WBSR gate, SEND_STATIC_RESPONSE function
	Input parameters
	Output parameters

	WBUR gate, URIMAP attributes
	Parameters

	WBUR gate, INITIALIZE_URIMAPS function
	Input parameters
	Output parameters

	WBUR gate, ADD_REPLACE_URIMAP function
	Input parameters
	Output parameters

	WBUR gate, DELETE_URIMAP function
	Input parameters
	Output parameters

	WBUR gate, LOCATE_URIMAP function
	Input parameters
	Output parameters

	WBUR gate, INQUIRE_URIMAP function
	Input parameters
	Output parameters

	WBUR gate, SET_URIMAP function
	Input parameters
	Output parameters

	WBUR gate, START_BROWSE_URIMAP function
	Input parameters
	Output parameters

	WBUR gate, GET_NEXT_URIMAP function
	Input parameters
	Output parameters

	WBUR gate, END_BROWSE_URIMAP function
	Input parameters
	Output parameters

	WBUR gate, INQUIRE_HOST function
	Input parameters
	Output parameters

	WBUR gate, SET_HOST function
	Input parameters
	Output parameters

	WBUR gate, START_BROWSE_HOST function
	Input parameters
	Output parameters

	WBUR gate, GET_NEXT_HOST function
	Input parameters
	Output parameters

	WBUR gate, END_BROWSE_HOST function
	Input parameters
	Output parameters

	Web domain’s generic gates
	Modules
	Exits
	Trace

	Chapter 113. Transaction manager domain (XM)
	Transaction manager domain’s specific gates
	XMAT gate, ATTACH function
	Input parameters
	Output parameters

	XMBD gate, START_BROWSE_TRANDEF function
	Input parameters
	Output parameters

	XMBD gate, GET_NEXT_TRANDEF function
	Input parameters
	Output parameters

	XMBD gate, END_BROWSE_TRANDEF function
	Input parameters
	Output parameters

	XMCL gate, ADD_REPLACE_TCLASS function
	Input parameters
	Output parameters

	XMCL gate, ADD_TCLASS function
	Input parameters
	Output parameters

	XMCL gate, INQUIRE_TCLASS function
	Input parameters
	Output parameters

	XMCL gate, INQUIRE_ALL_TCLASSES function
	Input parameters
	Output parameters

	XMCL gate, SET_TCLASS function
	Input parameters
	Output parameters

	XMCL gate, DELETE_TCLASS function
	Input parameters
	Output parameters

	XMCL gate, START_BROWSE_TCLASS function
	Input parameters
	Output parameters

	XMCL gate, GET_NEXT_TCLASS function
	Input parameters
	Output parameters

	XMCL gate, END_BROWSE_TCLASS function
	Input parameters
	Output parameters

	XMCL gate, REGISTER_TCLASS_USAGE function
	Input parameters
	Output parameters

	XMCL gate, DEREGISTER_TCLASS_USAGE function
	Input parameters
	Output parameters

	XMCL gate, LOCATE_AND_LOCK_TCLASS function
	Input parameters
	Output parameters

	XMCL gate, UNLOCK_TCLASS function
	Input parameters
	Output parameters

	XMDD gate, DELETE_TRANDEF function
	Input parameters
	Output parameters

	XMER gate, SET_DEFERRED_MESSAGE function
	Input parameters
	Output parameters

	XMER gate, INQUIRE_DEFERRED_MESSAGE function
	Output parameters

	XMER gate, SET_DEFERRED_ABEND function
	Input parameters
	Output parameters

	XMER gate, INQUIRE_DEFERRED_ABEND function
	Output parameters

	XMER gate, REPORT_MESSAGE function
	Input parameters
	Output parameters

	XMER gate, ABEND_TRANSACTION function
	Output parameters

	XMFD gate, FIND_PROFILE function
	Input parameters
	Output parameters

	XMIQ gate, INQUIRE_TRANSACTION function
	Input parameters
	Output parameters

	XMIQ gate, SET_TRANSACTION function
	Input parameters
	Output parameters

	XMIQ gate, START_BROWSE_TRANSACTION function
	Output parameters

	XMIQ gate, GET_NEXT_TRANSACTION function
	Input parameters
	Output parameters

	XMIQ gate, END_BROWSE_TRANSACTION function
	Input parameters
	Output parameters

	XMIQ gate, START_BROWSE_TXN_TOKEN function
	Input parameters
	Output parameters

	XMIQ gate, GET_NEXT_TXN_TOKEN function
	Input parameters
	Output parameters

	XMIQ gate, END_BROWSE_TXN_TOKEN function
	Input parameters
	Output parameters

	XMIQ gate, INQUIRE_TRANSACTION_TOKEN function
	Input parameters
	Output parameters

	XMIQ gate, SET_TRANSACTION_TOKEN function
	Input parameters
	Output parameters

	XMIQ gate, PURGE_TRANSACTION function
	Input parameters
	Output parameters

	XMLD gate, LOCATE_AND_LOCK_TRANDEF function
	Input parameters
	Output parameters

	XMLD gate, UNLOCK_TRANDEF function
	Input parameters
	Output parameters

	XMSR gate, INQUIRE_MXT function
	Output parameters

	XMSR gate, SET_MXT function
	Input parameters
	Output parameters

	XMSR gate, INQUIRE_DTRTRAN function
	Output parameters

	XMSR gate, SET_DTRTRAN function
	Input parameters
	Output parameters

	XMXD gate, ADD_REPLACE_TRANDEF function
	Input parameters
	Output parameters

	XMXD gate, SET_TRANDEF function
	Input parameters
	Output parameters

	XMXD gate, INQUIRE_TRANDEF function
	Input parameters
	Output parameters

	XMXD gate, INQUIRE_REMOTE_TRANDEF function
	Input parameters
	Output parameters

	XMXE gate, GET_TXN_ENVIRONMENT function
	Output parameters

	XMXE gate, FREE_TXN_ENVIRONMENT function
	Output parameters

	Transaction manager domain’s generic gates
	Transaction manager domain’s generic format
	Format XMNT, MXT_NOTIFY function
	Input parameters
	Output parameters

	Format XMNT, MXT_CHANGE_NOTIFY function
	Input parameters
	Output parameters

	Format XMDN, TRANDEF_NOTIFY function
	Input parameters
	Output parameters

	Format XMDN, TRANDEF_DELETE_QUERY function
	Input parameters
	Output parameters

	Format XMPP, FORCE_PURGE_INHIBIT_QUERY function
	Input parameters
	Output parameters

	Modules
	Exits
	Trace

	Chapter 114. Security manager domain
	Security manager domain’s specific gates
	XSAD gate, ADD_USER_WITH_PASSWORD function
	Input parameters
	Output parameters

	XSAD gate, ADD_USER_WITHOUT_PASSWORD function
	Input parameters
	Output parameters

	XSAD gate, DELETE_USER_SECURITY function
	Input parameters
	Output parameters

	XSAD gate, INQUIRE_USER_ATTRIBUTES function
	Input parameters
	Output parameters

	XSAD gate, VALIDATE_USERID function
	Input parameters
	Output parameters

	XSFL gate, FLATTEN_USER_SECURITY function
	Input parameters
	Output parameters

	XSFL gate, UNFLATTEN_USER_SECURITY function
	Input parameters
	Output parameters

	XSFL gate, UNFLATTEN_ESM_UTOKEN function
	Input parameters
	Output parameters

	XSIS gate, INQUIRE_REGION_USERID function
	Input parameters
	Output parameters

	XSIS gate, INQ_SECURITY_DOMAIN_PARMS function
	Input parameters
	Output parameters

	XSIS gate, SET_SECURITY_DOMAIN_PARMS function
	Input parameters
	Output parameters

	XSIS gate, SET_NETWORK_IDENTIFIER function
	Input parameters
	Output parameters

	XSIS gate, SET_SPECIAL_TOKENS function
	Input parameters
	Output parameters

	XSIS gate, INQUIRE_REALM_NAME function
	Input parameters
	Output parameters

	XSLU gate, GENERATE_APPC_BIND function
	Input parameters
	Output parameters

	XSLU gate, GENERATE_APPC_RESPONSE function
	Input parameters
	Output parameters

	XSLU gate, VALIDATE_APPC_RESPONSE function
	Input parameters
	Output parameters

	XSPW gate, CREATE_PASSTICKET function
	Input parameters
	Output parameters

	XSPW gate, INQUIRE_PASSWORD_DATA function
	Input parameters
	Output parameters

	XSPW gate, UPDATE_PASSWORD_DATA function
	Input parameters
	Output parameters

	XSPW gate, INQUIRE_CERTIFICATE_USERID function
	Input parameters
	Output parameters

	XSPW gate, REGISTER_CERTIFICATE_USER function
	Input parameters
	Output parameters

	XSRC gate, CHECK_CICS_RESOURCE function
	Input parameters
	Output parameters

	XSRC gate, CHECK_CICS_COMMAND function
	Input parameters
	Output parameters

	XSRC gate, CHECK_SURROGATE_USER function
	Input parameters
	Output parameters

	XSRC gate, CHECK_NON_CICS_RESOURCE function
	Input parameters
	Output parameters

	XSRC gate, REBUILD_RESOURCE_CLASSES function
	Input parameters
	Output parameters

	XSXM gate, ADD_TRANSACTION_SECURITY function
	Input parameters
	Output parameters

	XSXM gate, DEL_TRANSACTION_SECURITY function
	Input parameters
	Output parameters

	XSXM gate, END_TRANSACTION function
	Input parameters
	Output parameters

	Security manager domain’s generic gates
	Modules
	Exits
	Trace
	External interfaces

	Part 4. CICS modules
	Chapter 115. CICS directory
	Classification of elements
	Name
	Type
	Library

	Optional listings
	Contents of the distribution tapes

	Chapter 116. CICS executable modules
	Part 5. Appendixes
	Bibliography
	The CICS Transaction Server for z/OS library
	The entitlement set
	PDF-only books
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	CICS family books
	Licensed publications

	Other CICS books
	Determining if a publication is current

	Accessibility
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Notices
	Trademarks

	Sending your comments to IBM

