
CICS Transaction Server for z/OS

CICS Business Transaction Services
Version 3 Release 1

SC34-6439-03

���

CICS Transaction Server for z/OS

CICS Business Transaction Services
Version 3 Release 1

SC34-6439-03

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
245.

This edition applies to Version 3 Release 1 of CICS Transaction Server for z/OS, program number 5655-M15, and
to all subsequent versions, releases, and modifications until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

© Copyright IBM Corporation 1999, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Dedication . ix

Preface . xi
What this book is about . xi
Who this book is for . xi
What you need to know to understand this book xi
Road map . xi
Syntax notation used in this book xi
A note on terminology . xii

Summary of changes . xiii
Changes for CICS Transaction Server for z/OS, Version 3 Release 1 xiii
Changes for CICS Transaction Server for z/OS, Version 2 Release 3 xiii
Changes for CICS Transaction Server for z/OS, Version 2 Release 2 xiii

Part 1. Overview of BTS . 1

Chapter 1. Why do I need CICS business transaction services? 3
Business transactions and CICS transactions 3

Business transactions . 3
CICS transactions . 4
The problems . 4
The solution . 5

Chapter 2. What are CICS business transaction services? 7
What is a BTS application? . 7

Control flow . 9
Recovery and restart in BTS . 10
Client/server support in BTS . 10
Web Interface support in BTS 10
Support for existing code in BTS 10
Sysplex support in BTS . 11

Dynamic routing of BTS activities 11
Audit trails. 11

Monitoring in BTS . 11
The BTS sample application . 12
Requirements for BTS . 12

Part 2. BTS Application Programming Guide 13

Chapter 3. Using the BTS API to write business applications 15
BTS activities and processes. 15

Names and identifiers . 15
Activation sequences . 16
Synchronous and asynchronous activations 17
Lifetime of activities . 18
Processing modes . 18
User syncpoints . 19

BTS data-containers . 20
Lifetime of data-containers 20

BTS timers . 20
Timer management tips. 21

© Copyright IBM Corp. 1999, 2010 iii

BTS events . 21
Atomic events . 21
Composite events . 22
Event pools . 24
Deleting events . 25
Reattachment events and activity activation 25

Chapter 4. The Sale example application 31
Overview of the Sale application 31

Data flows . 31
CICS transactions and programs 32

The initial request . 33
Creating the business transaction 34
Starting the business transaction 35

The root activity . 36
Transferring input and output data 42

Chapter 5. Dealing with BTS errors and response codes 45
Checking the response from a synchronous activity 45
Checking the response from an asynchronous activity 47
Getting details of activity ABENDs 47
Retrying failed activities. 47

Chapter 6. Running parallel BTS activities 49
An example of parallel activities. 49

Data flow . 49
The root activity . 50

Chapter 7. Interacting with BTS processes and activities 57
Introduction . 57

Acquiring processes and activities 57
Using client/server processing 58

A client/server example . 59
Acquiring an activity . 65

A user-related example . 66
Transferring data to asynchronous activations 78

Chapter 8. Compensation in BTS 79
Implementing compensation . 79
A compensation example . 80

Process flow . 80
The root activity . 82

Dealing with application locking 90

Chapter 9. Reusing existing 3270 applications in BTS 93
Running a 3270 transaction from BTS 93
Resource definition . 95
Running more complex transactions 95

Intermediate output messages 95
Conversational transactions 95
Pseudoconversational transactions 97

Things to consider . 99
Using timers . 99
Abend processing . 99
Transaction restart . 100

Sample programs . 100

iv CICS TS for z/OS: CICS Business Transaction Services

Part 3. Administering CICS business transaction services 103

Chapter 10. System definition for BTS 105
Defining BTS data sets . 105

Repository data sets . 105
Local request queue data set 106

Naming the routing program 109

Chapter 11. Resource definition for BTS 111
Defining the LRQ file to the CSD 111
Defining repository files to the CSD 113
CEDA DEFINE PROCESSTYPE 114

Chapter 12. Security in BTS 117
Resource security in BTS . 117
Process and activity userids. 117
Attach-time security for processes and activities 118
Command security in BTS . 118

Chapter 13. BTS operator commands 119
CBAM—BTS browser . 119

Running the transaction . 119
CEMT INQUIRE PROCESSTYPE 128
CEMT INQUIRE TASK . 131
CEMT SET PROCESSTYPE 134

Chapter 14. Using BTS in a sysplex 137
The scope of a BTS-set . 137

A note about audit logs . 137
Dynamic routing of BTS activities. 138

Which BTS activities can be dynamically routed? 138
Understanding distributed routing. 138
Controlling BTS dynamic routing 141

Creating a BTS-set . 141
Naming the routing program 143

Using a CICS distributed routing program 143
How the distributed routing program relates to the dynamic routing program 143
Writing a distributed routing program 144

Using CICSPlex SM with BTS 145
Overview of CICSPlex SM Workload Management 146
Using CICSPlex SM to route BTS activities 146

Part 4. BTS problems and performance 149

Chapter 15. Having problems? 151
Dealing with stuck processes 151

Application design errors . 151
Restarting stuck processes 152

Dealing with activity abends. 154
Dealing with unserviceable requests 154

Unserviceable routing requests 154
How CICS handles unserviceable requests 155
Resolving unserviceable requests 155

Dealing with CICS failures . 155
Emergency starts . 155

Contents v

Initial and cold starts . 156

Chapter 16. Creating a BTS audit trail 157
Introduction to BTS audit trails. 157
Specifying the level of audit logging 158
Audit trail constraints—using DASD-only logstreams. 160
Audit trail examples. 160

Process-level auditing . 162
Activity-level auditing . 162
Full auditing . 163

Using the audit trail utility program, DFHATUP 163
Using DFHATUP to read audit logs 163
Sample job stream to run the DFHATUP program 164
Example output from the DFHATUP utility 166

Chapter 17. Examining BTS repository records 181
Introduction to the repository utility program, DFHBARUP. 181

The repository utility program, DFHBARUP 181
Using DFHBARUP . 181

Sample job stream to run the DFHBARUP program 182
Example output from the DFHBARUP utility 184

Chapter 18. BTS messages, trace, and dump 193
BTS messages . 193
Using BTS trace . 193

Setting trace levels for BTS 193
The BTS trace points . 194

Extracting BTS information from a CICS system dump 194

Chapter 19. Tuning BTS performance 195
BTS monitoring data . 195

Performance class data . 195
Using the monitoring data print program, DFH$MOLS 195

Part 5. BTS Application Programming Reference 199

Chapter 20. Overview of BTS API commands 201
Process- and activity-related commands 201

Creating, activating, and terminating processes and activities 201
Retrieving information about activities 202
Relating UOWs and activities 202

Container commands . 202
Event-related commands . 203

Terminology . 203
The event-related commands 204

Browsing and inquiry commands 205
Browsing commands . 206
Inquiry commands . 206
Tokens and identifiers . 207
Commands which take identifiers returned by browse operations 207
Browsing examples . 208

System events . 211

Chapter 21. BTS application programming commands 213

vi CICS TS for z/OS: CICS Business Transaction Services

Part 6. BTS System Programming Reference 215

Chapter 22. Overview of BTS system programming commands 217
Control commands . 217
Inquiry command . 217

Chapter 23. BTS system programming commands 219
CREATE PROCESSTYPE . 220
DISCARD PROCESSTYPE . 222
INQUIRE PROCESSTYPE . 223
INQUIRE TASK . 225
SET PROCESSTYPE . 226

Part 7. Appendixes . 229

Appendix. The BTS sample application 231
Running the sample application from the WWW 232

Bibliography . 233
The CICS Transaction Server for z/OS library 233

The entitlement set . 233
PDF-only books . 233

Other CICS books . 235
Determining if a publication is current 235

Accessibility . 237

Index . 239

Notices . 245
Programming interface information 246
Trademarks. 246

Sending your comments to IBM 247

Contents vii

viii CICS TS for z/OS: CICS Business Transaction Services

Dedication

The CICS® business transaction services features described in this book were
inspired and anticipated by a software developer who joined IBM® in April 1974, and
who worked in the IBM Hursley Software Development Laboratory. The developers,
testers, reviewers, and writer wish to dedicate this book to the memory of Peter
Lupton.

© Copyright IBM Corp. 1999, 2010 ix

x CICS TS for z/OS: CICS Business Transaction Services

Preface

What this book is about
This book is about CICS business transaction services (BTS) of CICS Transaction
Server for z/OS®. CICS business transaction services consist of an application
programming interface (API) and support services that allow you to model and
manage complex business transactions.

The book contains introductory, guidance, and reference material.

Who this book is for
This book is intended for planners, application programmers, and system
programmers.

What you need to know to understand this book
This book assumes a conceptual understanding of CICS application programming,
system definition, resource definition, customization, and security.

Road map
Table 1. Getting started road map

If you want to... Refer to...

Read an introduction to CICS business
transaction services

Part 1, “Overview of BTS,” on page 1

Learn how to use the BTS application
programming interface

Part 2, “BTS Application Programming
Guide,” on page 13

Define and control the BTS environment Part 3, “Administering CICS business
transaction services,” on page 103

Resolve BTS-related problems, or tune BTS
performance

Part 4, “BTS problems and performance,” on
page 149

See detailed programming information about
any of the commands in the BTS API

Part 5, “BTS Application Programming
Reference,” on page 199

See detailed programming information about
any of the commands in the BTS SPI

Part 6, “BTS System Programming
Reference,” on page 215

Read about the CICS-supplied BTS sample
application

“The BTS sample application,” on page 231

Syntax notation used in this book

In the reference section of this book, the syntax of BTS application programming
commands is presented in a standard way.

The “EXEC CICS” that always precedes each command’s keyword is not included;
nor is the “END_EXEC” statement used in COBOL or the semicolon (;) used in PL/I
and C that you must code at the end of each CICS command. In the C language, a
null character can be used as an end-of-string marker, but CICS does not recognize
this; you must never, therefore, have a comma or period followed by a space (X'40')
in the middle of a coding line.

© Copyright IBM Corp. 1999, 2010 xi

You interpret the syntax by following the arrows from left to right. The conventions
are shown in the following table.

Symbol Action

�� A
B
C

��
A set of alternatives—one of which you
must code.

��
A
B
C

��
A set of alternatives—one of which you may
code.

�� �

A
B
C

��

A set of alternatives—any of which you may
code.

��
A

B
��

Alternatives where A is the default.

�� Name ��

Name:

A
B

Use with the named section in place of its
name.

Punctuation and uppercase characters Code exactly as shown.

Lowercase characters Code your own text, as appropriate (for
example, name).

$ (the dollar symbol) ...
In the character sets given in this book, the dollar symbol ($) is used as a
national currency symbol and is assumed to be assigned the EBCDIC code
point X'5B'. In some countries, a different currency symbol—for example,
the pound symbol (£) or the yen symbol (¥)—is assigned the same EBCDIC
code point. In these countries, the appropriate currency symbol should be
used instead of the dollar symbol.

A note on terminology
In this book, the term “MVS” refers to those services and functions that are
provided by the Base Control Program (BCP) of OS/390®. The BCP is a base
element of OS/390.

xii CICS TS for z/OS: CICS Business Transaction Services

Summary of changes

This book is based on the CICS Business Transaction Services for CICS
Transaction Server for z/OS, Version 2 Release 3, SC34-6237-00. Changes from
that edition are marked by vertical bars in the left margin.

This part lists briefly the changes that have been made for the following recent
releases:
v “Changes for CICS Transaction Server for z/OS, Version 3 Release 1.”
v “Changes for CICS Transaction Server for z/OS, Version 2 Release 3.”
v “Changes for CICS Transaction Server for z/OS, Version 2 Release 2.”

Changes for CICS Transaction Server for z/OS, Version 3 Release 1
The major changes for this edition are:

v The detailed descriptions of the syntax and parameters of the BTS application
programming commands have been moved from Part 5, “BTS Application
Programming Reference,” on page 199 to the CICS Application Programming
Reference.

Changes for CICS Transaction Server for z/OS, Version 2 Release 3
There were no major changes for this edition.

Changes for CICS Transaction Server for z/OS, Version 2 Release 2
The major changes for this edition were:

v You are no longer required to use VSAM record-level sharing (RLS) to share the
repository data set across the regions of a BTS-set. You can now use
function-shipping to a remote file-owning region instead. The two methods were
described in Chapter 11, “Resource definition for BTS,” on page 111 and “The
scope of a BTS-set” on page 137.

v The lifetimes of activities and data-containers were described in Chapter 3,
“Using the BTS API to write business applications,” on page 15.

v The sections on sizing and maintaining the LRQ data set, in “Local request
queue data set” on page 106, were expanded.

v Information about running the BTS sample application from a Web browser was
added to “The BTS sample application,” on page 231.

© Copyright IBM Corp. 1999, 2010 xiii

xiv CICS TS for z/OS: CICS Business Transaction Services

Part 1. Overview of BTS

This part of the manual contains introductory information about CICS business
transaction services (BTS).

Table 2. Concepts road map

If you want to... Refer to...

Understand the problems that BTS is
designed to solve

Chapter 1, “Why do I need CICS business
transaction services?,” on page 3

Get a high-level view of BTS Chapter 2, “What are CICS business
transaction services?,” on page 7

© Copyright IBM Corp. 1999, 2010 1

2 CICS TS for z/OS: CICS Business Transaction Services

Chapter 1. Why do I need CICS business transaction
services?

CICS has always provided a robust transaction processing environment. For
example, it:

v Allows you to create transactions with ACID properties 1 (atomicity, consistency,
isolation, and durability)

v Allows transactions to continue to run under all sorts of conditions.

In recent years, much emphasis has been placed on continuous operation and high
availability of CICS. Use of sophisticated technologies, such as the Parallel
Sysplex®, with resource managers sharing data across the sysplex, has led to
improved system availability through the elimination of single points-of-failure. CICS
business transaction services (BTS) bring a similar sophistication to the CICS
application programming interface (API), making it better able to model complex
business transactions.

Business transactions and CICS transactions
This section examines the ways in which business transactions have traditionally
been modeled by CICS transactions, and some of the shortcomings of the
traditional approach.

Business transactions
A business transaction is a self-contained business deal—for example, buying a
theatre ticket. Some business transactions—for example, buying a newspaper—are
simple and short-lived. However, many are not. Many involve multiple actions that
take place over an extended period. For example, selling a vacation may involve
the travel agent in actions such as:
v Recording customer details
v Booking seats on an aircraft
v Booking a hotel
v Booking a rental car
v Invoicing the customer
v Checking for receipt of payment
v Processing the payment
v Arranging foreign currency.

Both the customer and the travel agent regard the purchase of the vacation as a
single business transaction, as indeed it is, because each action only makes sense
in the context of the whole. The example illustrates some typical properties of
complex business transactions:

v They tend to be made up of a series of logical actions.

v Some actions may be taken days, weeks, or even months after the transaction
was started—arranging foreign currency, in this example.

v Some of the actions may be optional—not everyone wants to rent a car, for
example.

v At any point, an action could fail. For example, a communications failure could
mean that it’s not possible to book a hotel. In this case, the action must be
retried. Or the customer might fail to meet his final payment; this would require a

1. Jim Gray and Andreas Reuter, Transaction Processing: Concepts and Techniques, 1993

© Copyright IBM Corp. 1999, 2010 3

reminder to be sent. If the reminder produces no response, the vacation must be
canceled—that is, the actions that have already been taken must be undone.

v Data—for example, a customer account number—must be passed between the
individual actions that make up the business transaction.

v Some control logic is required, to “glue” the actions together. For example, there
must be logic to deal with the conditional invocation of actions, and with failures.

CICS transactions
The basic building blocks used by CICS applications are the CICS transaction and
the unit of work (UOW). Typically, a UOW is short-lived, because it is undesirable
for it to hold locks for long periods, thus causing other UOWs to wait on resources
and possibly abend. A CICS transaction consists of one or more UOWs. It provides
the environment in which its associated UOWs will run—for example, the transid,
program name, and userid. Typically, like the UOWs of which it consists, a CICS
transaction is short-lived, because the aim should be for it to use CICS resources
only while it is doing work—it should not spend long periods waiting for input, for
example.

Before CICS Transaction Server for OS/390 Release 3, the largest transaction
processing unit that CICS understood was the terminal-related pseudoconversation.
A pseudoconversational application appears to a terminal user as a continuous
conversation, but consists internally of multiple transactions.

The problems
Traditionally, application programmers have modeled business transactions using
the basic CICS building blocks, transactions and units of work. However, there are
problems. Here are some of them:

Application design
Typically, the individual actions that make up a complex business transaction are
mapped on to CICS transactions. Usually, it is not practicable to map a whole
business transaction on to a single, long-running CICS transaction (even if the
transaction is divided into multiple units of work), because of resource constraints.
The locks held by the UOWs would tend to be held for long periods; system
performance would suffer, and transaction abends become frequent, due to
deadlocks or contention for locked resources.

Mapping each individual action on to a CICS transaction is a more sensible option.
However, this approach ignores the overall structure of the business transaction.
Typically, the control logic necessary to glue the actions together ends up being
spread between the various CICS transactions. Thus, the high-level logic required
to control the overall progress of the business transaction and the low-level logic
required to implement a specific business action become blurred. One effect is that
the CICS transactions become less easy to reuse, because they are required to do
more than implement a particular business action.

An even better option might be to separate the control logic in a single, top-level
program that would be reinvoked whenever a new stage of the business transaction
was ready to run. Each time it was invoked, the top-level program could run a
transaction that implements a particular action of the business transaction. This
would work similarly to a terminal-related pseudoconversation, in which terminal
events cause successive transactions to be invoked. Unfortunately, in CICS
releases prior to CICS Transaction Server for OS/390, Version 1 Release 3 this was
not possible. A pseudoconversational application could be used only to simulate a
single conversation with a terminal.

Why do I need CICS business transaction services?

4 CICS TS for z/OS: CICS Business Transaction Services

Recovery and restart
Long-lived business transactions are much more likely than short-lived transactions
to span restarts of CICS (which may or may not be planned). To survive restarts,
state data relating to the business transaction’s flow of control must be saved to a
recoverable resource. Thought must also be given to how the business transaction
is to be restarted after a restart of CICS.

The solution
CICS business transaction services extend the CICS API and provides support
services that make it easier to model complex business transactions. How it does
this is the subject of Chapter 2, “What are CICS business transaction services?,” on
page 7.

Why do I need CICS business transaction services?

Chapter 1. Why do I need CICS business transaction services? 5

6 CICS TS for z/OS: CICS Business Transaction Services

Chapter 2. What are CICS business transaction services?

Terminology: This and the following chapter introduce a number of terms new to
CICS. These are explained in context, as they occur.

CICS business transaction services consist of an application programming interface
and support services that simplify the development of business transactions. As the
vacation example in the previous chapter illustrates, business transactions are often
made up of multiple actions, that may be spread over hours, days, or even months.

CICS business transaction services allow you to control the execution of complex
business transactions. Using BTS, each action that makes up the business
transaction is implemented as one or more CICS transactions, as in the traditional
approach. However, a top-level program is used to control the overall progress of
the business transaction. The top-level program manages the inter-relationship,
ordering, parallel execution, commit scope, recovery, and restart of the actions that
make up the business transaction. This brings a number of benefits:

v Management and control is at a business transaction level, as well as at an
action level.

v Control logic is separated from business logic. The individual CICS transactions
that make up the business transaction no longer need to be concerned with
“before and after” actions. This simplifies the development of such transactions
and makes it easier to reuse them.

What is a BTS application?
The components of an application written using the CICS business transaction
services API are illustrated, in simplified form, in Figure 1 on page 8. (For brevity, in
the rest of this book we shall refer to an application that uses the CICS business
transaction services API as “a BTS application”.)

© Copyright IBM Corp. 1999, 2010 7

The roles of the components are as follows:

Initial Request
A CICS transaction that starts a CICS business transaction services
process.

Process
A collection of one or more BTS activities. It has a unique name by which
it can be referenced and invoked. Typically, a process is an instance of a
business transaction.

In the vacation example, an instance of the business transaction may be
started to sell Jane Doe a vacation in Florida. To identify this particular
transaction as relating to Jane Doe, the process could be given the name of
Jane Doe’s account number.

Activity
The basic unit of BTS execution. Typically, it represents one of the actions
of a business transaction—in the vacation example, renting a car, for
instance.

Process

Child
Activity

Child
Activity

Activity

Child

Activity

Root
Activity

Parent

Child(Child)

Activity

(Parent)

Initial
request

Key: Input data-container Output data-container

Figure 1. Components of a BTS application

What are CICS business transaction services?

8 CICS TS for z/OS: CICS Business Transaction Services

A program that implements an activity differs from a traditional CICS
application program only in its being designed to respond to BTS events. It
can be written in any of the languages supported by CICS.

Activities can be hierarchically organized, in a tree structure. An activity that
starts another activity is known as a parent activity. An activity that is
started by another is known as a child activity.

Root activity
The activity at the top of the activity tree—it has no parent activity. A
process always contains a root activity. When a process is started, the
program that implements its root activity receives control. Typically, a root
activity is a parent activity that:

v Creates and controls a set of child activities—that is, it manages their
ordering, concurrent execution, and conditional execution

v Controls synchronization, parameter passing and saving of state data.

Data-container
A named area of storage, associated with a particular process or activity,
and maintained by BTS. Each process or activity can have any number of
data-containers. They are used to hold state data, and inputs and outputs
for the activity.

Event (not shown in Figure 1)
A BTS event is a means by which CICS business transaction services
signal progress in a process. It informs an activity that an action is required
or has completed. “Event” is used in its ordinary sense of “something that
happens”. To define an event recognizable by CICS business transaction
services, such a happening is given a name.

Timer (not shown in Figure 1)
A BTS object that expires when the system time becomes greater than a
specified date and time, or after a specified period has elapsed. Each timer
has an event associated with it. The event occurs (“fires”) when the timer
expires.

You can use a timer to, for example, cause an activity to be invoked at a
particular time in the future.

The preceding components are managed by CICS, which:

v Manages many business transactions (processes)

v Records the current status of each business transaction

v Ensures that each activity is invoked at the appropriate times.

The components of a BTS application, and how they relate to each other, are
described in more detail in Chapter 3, “Using the BTS API to write business
applications,” on page 15.

Control flow
The high-level control flow of a typical BTS business transaction is as follows:

1. A CICS transaction makes an initial request to start a process.

2. CICS initiates the appropriate root activity.

3. The root activity program, using the BTS API, creates a child activity—or several
child activities. It provides the child activity with some input data (by placing the
data in a data-container associated with the child), and requests CICS to start
the child activity.

What are CICS business transaction services?

Chapter 2. What are CICS business transaction services? 9

If, as is often the case, the child activity is to run asynchronously with the root
activity, the root activity program returns and becomes dormant.

4. The root activity is reinvoked when one of its child activities completes. It
determines which event caused it to be reinvoked—that is, the completion of the
activity that it started earlier. It retrieves, from the completed activity’s output
data-containers, any return data that the completed activity has placed there.

5. Steps 3 and 4 are repeated until all the child activities that make up the
business transaction have completed.

6. CICS terminates the root activity.

If the business transaction has completed normally, the process is no longer
known to CICS.

Recovery and restart in BTS
CICS maintains state data for BTS processes in a recoverable VSAM KSDS. This
file can be RLS-enabled.

On an emergency restart, CICS automatically restarts any BTS activities that were
in-flight at the time it failed.

Client/server support in BTS
CICS business transaction services support client/server processing. A server
process is one that is typically waiting for work. When work arrives, BTS restarts
the process, which retrieves any state data that it has previously saved.

BTS’s support for client/server is described in “Using client/server processing” on
page 58.

Web Interface support in BTS
The CICS Web Interface allows Internet users to run CICS transactions from a Web
browser. CICS business transaction services extend CICS support for the Internet.

In a typical current scenario, a Web-based business transaction might be
implemented as a pseudoconversational CICS application. The initial request from
the browser invokes a CICS transaction that does some setup work, returns a page
of HTML to the browser, and ends. Subsequent requests are handled by other
CICS transactions (or by further invocations of the same transaction). The CICS
application is responsible for maintaining state data between requests.

Using BTS, a Web-based business transaction could be implemented as a BTS
process. A major advantage of this approach is that state data is now maintained by
BTS. This is particularly useful if the business transaction is long-lived.

Support for existing code in BTS
BTS supports the 3270 bridge function. (The 3270 bridge is described in the CICS
External Interfaces Guide.) This means that BTS applications can be integrated
with, and make use of, existing 3270–based applications.

Even though BTS activities are not terminal-related (they are never started directly
from a terminal), a BTS activity can use a 3270–based program.

What are CICS business transaction services?

10 CICS TS for z/OS: CICS Business Transaction Services

BTS’s support for the 3270 bridge is described in Chapter 9, “Reusing existing 3270
applications in BTS,” on page 93.

Sysplex support in BTS
You can operate BTS in a single CICS region. However, BTS processes are
sysplex-enabled. In a sysplex, you can create one or more BTS-sets. A BTS-set is
a set of CICS regions across which related BTS processes and activities may
execute. For example, the activities that constitute a single process may execute on
several regions.

Dynamic routing of BTS activities
In a BTS-set, the CICS transactions that implement your BTS activities can be
routed dynamically across the participating regions. When an event is signalled, an
activity is activated in the most appropriate region in the BTS-set, based on one or
more of the following:
v Any workload separation specified by the system programmer
v Any affinities the activity's associated transaction has with a particular region
v The availability of regions
v The relative workload of regions.

You can control the dynamic routing of your BTS activities by either of the following
means:

1. Using the CICSPlex® System Manager/ESA (CICSPlex SM) component of
CICS Transaction Server for z/OS, Version 3 Release 1 to:
v Specify workload separation for your BTS processes
v Manage affinities
v Control workload balancing of the transactions that implement BTS activities.

2. Writing a CICS distributed routing program.

Dynamic routing of BTS activities is described in Chapter 14, “Using BTS in a
sysplex,” on page 137.

Audit trails
You can create an audit trail for the BTS processes and activities that run in your
CICS regions. Doing so allows you to, for example, track the progress of a complex
business transaction across the sysplex.

The CICS code contains BTS audit points in much the same way as it contains
trace points. However, because in a sysplex environment different parts of a
process may execute on different regions, each audit record contains system, date,
and time information. By sharing log streams across regions, you can gather audit
information from different regions in the same log.

Monitoring in BTS
CICS maintains monitoring information for both processes and activities. This
means, for example, that you can request information about a business
transaction’s use of resources without knowing the identifiers of all its constituent
CICS transactions. Information is now available at the business transaction level, as
well as at the CICS transaction level.

BTS monitoring is described in Chapter 19, “Tuning BTS performance,” on page
195.

What are CICS business transaction services?

Chapter 2. What are CICS business transaction services? 11

The BTS sample application
As well as the fragments of example code in this book, CICS supplies a sample
BTS application. The sample is a basic sales application, consisting of order, credit
check, stock check, delivery note, invoice, and payment-reminder activities. See
“The BTS sample application,” on page 231.

Requirements for BTS
To operate BTS, there are no additional requirements beyond those for CICS itself.

What are CICS business transaction services?

12 CICS TS for z/OS: CICS Business Transaction Services

Part 2. BTS Application Programming Guide

This part of the manual contains guidance information about using the BTS
application programming interface (API).

Table 3. Application programming road map

If you want to... Refer to...

Learn about the components of a BTS
application

Chapter 3, “Using the BTS API to write
business applications,” on page 15

See an example of a basic BTS application Chapter 4, “The Sale example application,”
on page 31

Learn how to check the state of BTS
activities

Chapter 5, “Dealing with BTS errors and
response codes,” on page 45

Learn how to run several activities
simultaneously

Chapter 6, “Running parallel BTS activities,”
on page 49

Learn how to access BTS activities from
outside BTS

Chapter 7, “Interacting with BTS processes
and activities,” on page 57

Learn how to back out BTS activities Chapter 8, “Compensation in BTS,” on page
79

Learn how to use existing code in BTS
applications

Chapter 9, “Reusing existing 3270
applications in BTS,” on page 93

© Copyright IBM Corp. 1999, 2010 13

14 CICS TS for z/OS: CICS Business Transaction Services

Chapter 3. Using the BTS API to write business applications

This chapter:

v Takes a more detailed look at the BTS application components that were
introduced in “What is a BTS application?” on page 7.

v Introduces some new components.

v Explains how the components can be used. Examples of how they are used
follow in Chapter 4, “The Sale example application,” on page 31.

The chapter contains:
v “BTS activities and processes”
v “BTS data-containers” on page 20
v “BTS timers” on page 20
v “BTS events” on page 21.

BTS activities and processes
An activity is the BTS unit of execution. It holds the environment for an instance of
the BTS equivalent of program execution. The state of a BTS activity is stored on
disk and re-instantiated in memory as required. Typically, it represents one of the
actions of a business transaction.

Activities can be hierarchically organized, in a tree structure that may be several
layers deep. The activity at the top of the hierarchy is called the root activity. An
activity that starts another activity is known as a parent activity. An activity that is
started by another is known as a child activity. For example, if activity A starts
activity B, B is a child of A; A is the parent of B. Notice that—with the exception of
the root activity, which has no parent—an activity can be both a parent and a child.

A process is the biggest entity recognized by BTS. It consists of a collection of one
or more activities. It always contains a root activity. When a process is run, the
program that implements its root activity receives control. Typically, a process is an
instance of a business transaction.

Processes can be categorized, using the PROCESSTYPE option of the DEFINE
PROCESS command. All the activities in a process inherit the same
PROCESSTYPE attribute. Categorizing processes makes it easier to find a
particular process—the BTS browsing commands allow filtering by process-type.

Names and identifiers
When a program defines a process, it gives the process a name (its process
name), which is used to reference the process from outside the BTS system. This
user-assigned name, which can be up to 36 characters long, must be unique within
the process-type to which the process belongs.

Similarly, when an activity program defines a child activity, it gives the child a name
(its activity name), which it will use to reference the child. This user-assigned name,
which can be up to 16 characters long, only needs to be unique within the set of
child activities defined by the parent. For example, it is perfectly valid for several
activities within the same process to each define a child called Invoice.

Note: A root activity always has the CICS-assigned name DFHROOT.

© Copyright IBM Corp. 1999, 2010 15

Besides its name, each activity has a CICS-assigned activity identifier. An activity
identifier, which is 52 characters long, is a means of uniquely referring to an
activity-instance. It is guaranteed to be unique across the sysplex, and its lifetime is
the same as the activity it refers to. Activity identifiers are frequently used as
arguments on inquiry and browsing commands. Only its parent can refer to a child
activity by name; other programs can access the activity by means of its identifier.

Activation sequences
To complete its entire work, an activity may need to execute as a sequence of
separate processing steps, or activations. For example, a parent activity typically
needs to execute for a while, finish execution temporarily, then continue execution
when one of its children has completed.

Each activation is “triggered” by a BTS event, and consists of a single transaction.
An activity’s first activation is triggered by the system event DFHINITIAL, supplied
by BTS after the first RUN or LINK command is issued against the activity. (In the
case of a root activity, DFHINITIAL occurs after the first RUN or LINK command is
issued against the process.2) When the last activation ends, the activity
completion event is “fired”, which may, in turn, trigger another activity’s activation.
See “BTS events” on page 21.

Figure 2 shows a BTS activity being reattached in a series of activations.

�1� The first event that “wakes up” the activity is DFHINITIAL. The activity
determines that the event which caused it to be activated was DFHINITIAL
and therefore performs its first processing step. Typically, this involves
defining further events for which it may be activated. The activity program
issues an EXEC CICS RETURN command to relinquish control. The activity
“sleeps”.

�2� The next event occurs and “wakes up” the activity. The activity program
determines which event caused it to be activated and performs the
processing step appropriate for that event. It issues an EXEC CICS
RETURN command to relinquish control.

�3� Eventually, no more processing steps are necessary. To confirm that its
current activation is the last, and that it is not to be reactivated for any
future events, the activity program issues an EXEC CICS RETURN
ENDACTIVITY command. The activity completion event is fired.

2. It is possible to issue multiple RUN or LINK commands against a process. However, this is not discussed in this chapter—see
“Using client/server processing” on page 58.

. . . .
EXEC CICS RETURN EXEC CICS RETURN

2

DFHINITIAL1

event

EXEC CICS RETURN
ENDACTIVITY

event

3

Activity
completion
event

Figure 2. A sequence of activations

BTS application components

16 CICS TS for z/OS: CICS Business Transaction Services

Note: Root activities do not have completion events.

Figure 3 is a comparison between a terminal-related pseudoconversation and a
BTS activity that is activated multiple times.

Note: The RETRIEVE REATTACH EVENT command issued by the activity
retrieves the name of an event that caused the activity to be reactivated. The
GET and PUT CONTAINER commands retrieve and store input and output
data.

Synchronous and asynchronous activations
You can cause an activity or process to be activated in one of two ways:

Synchronously
The activity or process is executed synchronously with the requestor. Exactly
how it is run varies, depending on which command is used to activate it:

LINK
The activity is included as part of the current unit of work; all locks and
resources are shared with the requestor. The activity runs with the
transaction attributes of the requestor; any transaction attributes (TRANSID
or USERID) specified on its resource definition are ignored. In other words,
there is no context-switch.

RUN SYNCHRONOUS
The activity is run in a separate unit of work from that of the requestor, and
with the transaction attributes (TRANSID and USERID) specified on its
resource definition. In other words, a context-switch takes place.

Pseudoconversation

EXEC CICS RECEIVE MAP

EXEC CICS ADDRESS
COMMAREA

select(some_state)
when(first_time)

:
:

when(xxxx)
:
:

when(finished)
:
:

end select

EXEC CICS SEND MAP

EXEC CICS RETURN
TRANSID(xxxx)

Loop controlled
by CICS via
the terminal

Activity

EXEC CICS RETRIEVE
REATTACH EVENT

EXEC CICS GET
CONTAINER

select(event)
when(’DFHINITIAL’)

:
:

when(xxxx)
:
:

when(finished)
:
:

end select

EXEC CICS PUT
CONTAINER

EXEC CICS RETURN

Loop controlled
by CICS via
the activity

Figure 3. Comparison between a terminal-related pseudoconversation and a BTS activity that is activated multiple
times

BTS application components

Chapter 3. Using the BTS API to write business applications 17

The two units of work are linked; if the requestor backs out, the activity is
backed out also.

Asynchronously
The activity or process is executed asynchronously with the requestor, following
a RUN ASYNCHRONOUS command.

The activity is run in a separate unit of work from that of the requestor, and with
the transaction attributes (TRANSID and USERID) specified on its resource
definition—that is, a context-switch takes place.

Checking the response from a child activity
After a parent has requested a child activity to be run, it must check the response
from the child by issuing a CHECK ACTIVITY command. This is because the
response to the request to run the activity does not contain any information about
the success or failure of the child activity itself—only about the success or failure of
the request to run it.

Typically, in the case of a synchronous child activity, the CHECK ACTIVITY
command is issued immediately after the RUN command. For an asynchronous
child activity, it could be issued:
v When the parent is reattached due to the firing of the child’s completion event.

(See “Reattachment events and activity activation” on page 25.)
v When the parent is reattached due to the expiry of a timer.

If the child activity needs more than one processing step (transaction) to complete
its work, on return from its first activation it will not be complete. The CHECK
ACTIVITY command returns the current completion status.

Following the execution of a CHECK ACTIVITY command issued by its parent, if
the child activity has completed, its completion event (and its name) is deleted by
CICS. The event cannot be deleted in any other way, because it is the completion
of the activity.

For further information about the uses of the CHECK ACTIVITY command, see
Chapter 5, “Dealing with BTS errors and response codes,” on page 45.

Lifetime of activities
A child activity is created when its parent issues a DEFINE ACTIVITY command. It
is destroyed:

v Automatically by CICS, when its parent completes.

v Before this, if its parent issues a DELETE ACTIVITY command against it.

Note: It is not usually necessary to delete an activity explicitly.

Processing modes
An activity is always in one of the following processing states or modes:

ACTIVE
An activation of the activity is running.

CANCELLING
CICS is waiting to cancel the activity. (A CANCEL ACTIVITY command has
been issued, but CICS cannot cancel the activity immediately because one
or more of the activity’s descendants are inaccessible. This can happen if,
for example, one of the activity’s children holds a retained lock.)

BTS application components

18 CICS TS for z/OS: CICS Business Transaction Services

COMPLETE
The activity has completed, either successfully or unsuccessfully. The value
returned on the COMPSTATUS option of a CHECK ACTIVITY command
tells you how it completed.

DORMANT
The activity is waiting for an event to fire its next activation.

INITIAL
No RUN or LINK command has yet been issued against the activity; or the
activity has been reset to its initial state by means of a RESET ACTIVITY
command.

Figure 4 is a (slightly simplified) view of how the processing modes relate to each
other. The BTS commands that cause an activity to move from one mode to
another are shown in uppercase.

To discover the current mode of an activity, use the CHECK ACTIVITY or INQUIRE
ACTIVITYID command.

User syncpoints
A program that is running as the activation of a BTS process cannot issue user
syncpoints (EXEC CICS SYNCPOINT commands). Some examples of programs
that may issue user syncpoints are:
v A “top-level” transaction that defines and runs a BTS process
v A program that runs as the activation of a child activity

Initial

Active Dormant

Complete Cancelling

DEFINE DELETE

DELETE

CANCELCANCEL

RESET

DELETE

RUN or LINK RUN or LINK

RUN or LINK

Figure 4. Activity mode transitions. The words in uppercase are the commands which cause the transitions.

BTS application components

Chapter 3. Using the BTS API to write business applications 19

|
|
|
|
|

v A program executing outside the BTS environment that acquires a process or
activity by means of an ACQUIRE command—see “Acquiring processes and
activities” on page 57.

BTS data-containers
A data-container is a named area of storage, maintained by BTS.

Each data-container is associated with an activity or process. It is identified by its
name and by the activity for which it is a container. An activity can have any
number of containers, as long as they all have different names within the scope of
the activity. For example, several activities can each have containers named “Input”,
“Output”, and “State”.

An activity’s data-containers serve as its working storage. They can be read and
updated by the activity itself, by the activity’s parent, or by a program that has
“acquired” the activity (see “Acquiring processes and activities” on page 57).
Because they are preserved across multiple activations of the activity, they can be
used to hold state data, or inputs and outputs for the activity. They are recoverable
resources, being written to disk as necessary, and restored at system restart.

Just like an activity, a process may have a set of data-containers associated with it.
These are called process containers: every activity in the process can access
them, but only the root activity3 can update them.

Note: A process’s containers are not the same as its root activity’s containers.

Before running a process, the program that creates it can:
v Create and set the process containers
v Create and set the root activity’s containers.

Alternatively, the root activity can create and set the process containers.

Lifetime of data-containers
An activity’s data-containers have the same lifetime as the activity itself. They are
only destroyed when the activity itself is destroyed. While a child activity exists, its
data-containers are always accessible to its parent, whatever processing mode the
child is in (including complete).

If you issue a DELETE ACTIVITY command against an activity, bear in mind that
you will destroy the activity’s containers. It’s usually best to allow activities to be
deleted automatically by CICS. For child activities, this happens when the activity’s
parent completes. At this stage, the parent no longer needs access to its children’s
containers. If the parent is reset and re-run, it will recreate its child activities.

BTS timers
A timer is a BTS object that expires when the system time becomes greater than a
specified date and time, or after a specified period has elapsed. You can use a
timer to, for example, cause an activity to be activated at a particular time.

3. Or a program that has “acquired” the process—see “Acquiring processes and activities” on page 57.

BTS application components

20 CICS TS for z/OS: CICS Business Transaction Services

|
|
|

Note: A timer that specifies a date and time that has already passed expires
immediately. Similarly, if the requested interval is zero, the timer expires
immediately.

To define a timer, use the DEFINE TIMER command. When you define a timer, a
timer event is automatically associated with it—see “Timer events” on page 22.

To force a timer to expire before its specified time, use the FORCE TIMER
command.

To check whether a timer has expired and, if it has, whether it expired normally or
following a FORCE TIMER command, use the CHECK TIMER command.

Timer management tips
1. If a piece of processing (for example, At midnight on 31st December, prepare

an annual customer statement) could result in a large number of timers being
set to expire at the same time, put the timers in groups and stagger the expiry
times. This spreads the load on CICS and improves performance.

2. If you shut down CICS at regular times, and know beforehand that at certain
times it will be unavailable, try not to set a large number of timers to expire at
these times. The timer events all fire when CICS is restarted, which could affect
CICS startup performance.

BTS events
A BTS event is a means by which CICS business transaction services signal
progress in a process. It informs an activity that an action is required or has
completed. “Event” is used in its ordinary sense of “something that happens”. To
define an event recognizable by CICS business transaction services, such a
happening is given a name. An activity program uses such commands as DEFINE
INPUT EVENT, DEFINE TIMER, and the EVENT option of DEFINE ACTIVITY to
name events about which it wants to be informed.

Named events have Boolean values—FIRED or NOTFIRED. When first defined, an
event has the NOTFIRED value. When an event occurs it is said to fire (that is, to
make the transition from NOTFIRED to FIRED). An activity can, for example:

v Discover the event (or events) whose firing caused it to be reattached
(RETRIEVE REATTACH EVENT)

v Test whether an event has fired (TEST EVENT).

BTS events can be atomic or composite.

Atomic events
An atomic event is a single, “low-level” occurrence (which may happen under the
control of BTS or outside the control of BTS). There are four types of atomic event:
v Input events
v Activity completion events
v Timer events
v System events.

Atomic events are the basic components out of which composite events (see
“Composite events” on page 22) can be constructed.

BTS application components

Chapter 3. Using the BTS API to write business applications 21

Input events
Input events tell activities why they are being run. A RUN or LINK ACTIVITY
command delivers an input event to an activity, and thus activates the activity. (The
INPUTEVENT option on the command names the input event and thus defines it to
the requestor.)

The first time an activity is run, CICS always sends it the DFHINITIAL system
event. DFHINITIAL tells the activity to perform its initial housekeeping. Typically,
this involves defining further events for which it may be activated.

An activity must use the RETRIEVE REATTACH EVENT command to discover the
event or events that caused it to be activated. On any activation (but typically on its
first, when it is invoked with DFHINITIAL), it may use the DEFINE INPUT EVENT
command to define some input events for which it can be activated subsequently.

Note: The RUN command can also be used to activate a process multiple times,
delivering a different input event on each activation. This is not discussed
here—see “Using client/server processing” on page 58.

Activity completion events
The completion of a child activity (but not a root activity) causes the activity
completion event to fire. (The EVENT option on the DEFINE ACTIVITY command
names the activity completion event and thus defines it. If EVENT is not specified,
the completion event is given the same name as the activity itself.)

Timer events
When you define a timer, a timer event is automatically associated with it. When
the timer expires, its associated event fires.

Note: If you do not specify the EVENT option of the DEFINE TIMER command, the
timer event is given the same name as the timer itself.

System events
All the other types of event described in this section (including composite events)
are referred to as user-defined events, because they are defined by the BTS
application programmer, using commands such as DEFINE INPUT EVENT, DEFINE
TIMER, DEFINE COMPOSITE EVENT, and the EVENT option of DEFINE
ACTIVITY. BTS system events, on the other hand, are defined by BTS. They are a
special kind of input event.

There is only one type of BTS system event—DFHINITIAL. See “System events” on
page 211.

System events cannot be included in composite events.

Composite events
A composite event is a “high-level” event, formed from zero or more user-defined
(that is, non-system) atomic events. When included in a composite event, an atomic
event is known as a sub-event.

The DEFINE COMPOSITE EVENT command defines a predicate, which is a logical
expression typically involving sub-events. At all times, the composite event’s fire
status reflects the value of the predicate. When the predicate becomes true, the
composite event fires; when it becomes false, the composite’s fire status reverts to
NOTFIRED.

BTS application components

22 CICS TS for z/OS: CICS Business Transaction Services

The logical operator that is applied to the composite event’s predicate is one of the
Boolean operators AND or OR. AND and OR cannot both be used.

When first defined, a composite event contains between zero and eight sub-events.
(A composite event that contains zero sub-events is said to be “empty”.) The ADD
SUBEVENT command can be used to add further sub-events to the composite
event. A composite event that uses the OR Boolean operator fires when any of its
sub-events fires. A composite event that uses the AND operator fires when all of its
sub-events have fired.4

Figure 5 shows four composite events, C1 through C4. Each composite event
contains two sub-events. C1 and C2 use the OR Boolean operator. C3 and C4 use
the AND operator. The shaded circles indicate the events that have fired.

Notes:

1. An empty composite event that uses the AND operator is always true (FIRED).
An empty composite event that uses the OR operator is always false
(NOTFIRED).

2. The following cannot be added as sub-events to a composite event:
v Composite events
v Sub-events of other composite events
v System events
v Input events, if the composite uses the AND operator.

The sub-event queue
The names of sub-events that fire are placed on the composite event’s sub-event
queue—from where they can be retrieved by issuing one or more RETRIEVE
SUBEVENT commands. Each composite event has a sub-event queue associated
with it. The sub-event queue:

v May be empty

v Contains only the names of those sub-events that have fired and not been
retrieved.

Figure 6 on page 24 shows all the events that are recognized by a particular
activity. Among them are two composite events, C1 and C2. The sub-event queue
for C1 contains the name T1. The sub-event queue for C2 contains the names S1
and S3.

4. Or when it is empty.

OR OR AND AND

C1 C2 C3 C4

Figure 5. Composite events. An OR composite event fires when any of its sub-events fires.
An AND composite event fires when all of its sub-events have fired.

BTS application components

Chapter 3. Using the BTS API to write business applications 23

Event pools
Events are defined within event pools. Each activity has an event pool, which
contains the set of events that it recognizes. The events that an activity recognizes
are:

1. Events that have been defined to it by means of:
v DEFINE COMPOSITE EVENT
v DEFINE INPUT EVENT
v DEFINE TIMER
v The EVENT option of the DEFINE ACTIVITY command.

2. System events.

An activity’s event pool is initialized when the activity is created, and deleted when
the activity is deleted. All the event-related commands described in “Event-related
commands” on page 203, except FORCE TIMER, operate on the event pool
associated with the current activity.

Figure 7 shows an activity’s event pool.

DFHINITIAL A1 A2 C1 A3 C2

T0 T1 S1 S2 S3

OR AND

Event pool

T1 S1
S3C1

sub-event
queue

C2
sub-event
queue

Figure 6. Sub-event queues. The sub-event queue for composite event C1 contains the
name T1. The sub-event queue for composite event C2 contains the names S1 and S3.

Event pool

DFHINITIAL A1 A2 C1 A3 C2

T0 T1 S1 S2 S3

OR AND

A = Atomic
C = Composite

Figure 7. An event pool

BTS application components

24 CICS TS for z/OS: CICS Business Transaction Services

Deleting events
You can delete an event (that is, discard both the event and its name). If the event
is a sub-event, the value of the composite event will be that of its predicate, after
the sub-event has been removed from the predicate’s Boolean expression.

The command you use to delete an event depends on the type of event to be
deleted:

v To delete an input event explicitly, use the DELETE EVENT command.

v To delete a composite event explicitly, use the DELETE EVENT command. Note
that deleting a composite event does not delete the composite’s sub-events.

v An activity completion event is implicitly deleted when a response from the
completed activity has been acknowledged by a CHECK ACTIVITY command
issued by the activity’s parent; or when a DELETE ACTIVITY command is issued.

v A timer event is implicitly deleted if its associated timer has expired and a
CHECK TIMER command is issued by the activity that owns it; or when a
DELETE TIMER command is issued.

v You cannot delete system events.

v If an activity program issues a RETURN ENDACTIVITY command, CICS
automatically deletes all user events—other than activity completion events,
which must always be deleted by means of CHECK ACTIVITY or DELETE
ACTIVITY commands—in the activity’s event pool. See “Using the ENDACTIVITY
option of the RETURN command” on page 30.

Table 4 summarizes the commands that can be used to delete each type of event.

Table 4. Commands used to delete events

Event type Deletion commands

Activity completion 1. CHECK ACTIVITY (if the activity has
completed)

2. DELETE ACTIVITY

Composite 1. DELETE EVENT
2. RETURN ENDACTIVITY

Input 1. DELETE EVENT
2. RETURN ENDACTIVITY

System Cannot be deleted

Timer 1. CHECK TIMER (if the timer has expired)
2. DELETE TIMER
3. RETURN ENDACTIVITY

Before it can complete normally, an activity must have deleted all the activity
completion events in its event pool. (That is, it must have dealt with all its child
activities—see “Activity completion” on page 29.)

Reattachment events and activity activation
An activity is reattached (reactivated) on the firing of any event (other than a
sub-event) that is in its event pool. In other words, an activity is reattached when
either of the following types of event occurs:

v A user-event that has been defined to the activity and not included in a
composite event. The user-event may be:
– An input event
– The completion event for a child activity

BTS application components

Chapter 3. Using the BTS API to write business applications 25

– A timer event
– A composite event.

v A system event.

An event that causes an activity to be reactivated is known as a reattachment
event.

Note: The firing of a sub-event never directly causes an activity to be
reattached—it is the firing of the associated composite event that does so.
Therefore, a sub-event can never be a reattachment event.

Handling reattachment events
When an activity is reattached, it should use the RETRIEVE REATTACH EVENT
command to discover the event that caused reattachment. If the event that caused
it to be reattached is composite, the activity may also need to issue one or more
RETRIEVE SUBEVENT commands to discover the sub-event or sub-events that
fired.

At times reattachment may occur because of the firing of more than one event.
When reattachment events occur, their names are placed on a queue—the
reattachment queue—from where they can be retrieved by means of RETRIEVE
REATTACH EVENT commands. Each activity has a reattachment queue, which:

v May be empty

v Contains only the names of those reattachment events that have fired and not
been retrieved.

Often, when an activity is reattached there will be only one event on the
reattachment queue, because activities are reactivated as each reattachment event
occurs. However, it is possible for the reattachment queue to contain more than one
event—if, for example, the activity has previously been suspended, and
reattachment events occurred while it was suspended; or if two or more timer
events fire simultaneously.

Figure 8 shows the event pool and reattachment queue for a particular activity. The
reattachment queue contains the names A1 and C1.

Important: With one exception, each time it is activated an activity must deal with
at least one reattachment event. That is, it must issue at least one
RETRIEVE REATTACH EVENT command, and (if this is not done
automatically by CICS) reset the fire status of the retrieved event to

Event pool

DFHINITIAL A1 A2 C1 A3 C2

T0 T1 S1 S2 S3

OR AND

Reattachment
queue

A1
C1

Figure 8. A reattachment queue. The queue contains the names A1 and C1.

BTS application components

26 CICS TS for z/OS: CICS Business Transaction Services

NOTFIRED—see “Resetting and deleting reattachment events.” Failure
to do so results in the activity abending, because it has made no
progress—it has not reset any reattachment events and is therefore in
danger of getting into an unintentional loop.

The one exception to this general rule is if the activity program issues a
RETURN ENDACTIVITY command—in which case, it is not required to
have issued a RETRIEVE REATTACH EVENT command in the current
activation.

If there are multiple events on its reattachment queue, an activity can, by issuing
multiple RETRIEVE REATTACH EVENT commands, deal with several or all of them
in a single activation. Alternatively, it can deal with them singly, by issuing only one
RETRIEVE REATTACH EVENT command per activation and returning; it is then
reactivated to deal with the next event on its reattachment queue. Which approach
you choose is a matter of program design. Bear in mind, if you deal with several
reattachment events in the same activation, that a syncpoint does not occur until
the activation returns.

Resetting and deleting reattachment events: Retrieving an atomic event from
the reattachment queue automatically causes the event’s fire status to be reset to
NOTFIRED.

Retrieving a composite event from the reattachment queue does not reset the
event’s fire status to NOTFIRED, because a composite event is only reset when its
predicate becomes false. Thus, if an activity program retrieves a composite event, it
should reset the fire status of the sub-event or sub-events that have fired. (One way
of doing this is to issue one or more RETRIEVE SUBEVENT commands.) This in
turn causes the fire status of the composite event to be re-evaluated.

If the activity was reattached because of the completion of one of its children, it
should issue a CHECK ACTIVITY command to check whether the child activity
completed normally. On return from the CHECK ACTIVITY command, CICS deletes
the activity completion event from the parent’s event pool.

If the activity was reattached because of the expiry of a timer, it can issue a
CHECK TIMER command to check whether the timer expired normally. On return
from the CHECK TIMER command, CICS deletes the timer event from the activity’s
event pool.

If the activity wants to delete input and composite events from its event pool, it can
issue DELETE EVENT commands. Alternatively, it can rely on a RETURN
ENDACTIVITY command, issued on its final activation, to delete them.

Figure 9 on page 28 shows a typical sequence that an activity might use to handle
reattachment events. The “Handle atomic event” box is expanded in Figure 10 on
page 29.

BTS application components

Chapter 3. Using the BTS API to write business applications 27

Atomic event Composite event

RETRIEVE REATTACH EVENT

RETRIEVE SUBEVENT

Handle atomic event
(See next figure.)

Handle atomic event
(See next figure.)

More sub-events?Yes

Composite event
still required?

No

More reattachment events?

EXEC CICS RETURN

DELETE EVENT
(comp_event)

No

Yes

Yes

No

Figure 9. Handling reattachment events. The “Handle atomic event” box is expanded in Figure 10 on page 29. The
figure shows multiple reattachment events being handled in a single activation—you may prefer to handle one per
activation.

BTS application components

28 CICS TS for z/OS: CICS Business Transaction Services

Notes:

1. Figure 9 on page 28 shows multiple reattachment events being handled in a
single activation. This may not always be appropriate. You may want always to
retrieve only one reattachment event per activation, even if there is more than
one event on the reattachment queue. This could be the case if, for example,
you want a syncpoint to be taken between each processing step. (Note
especially that a child activity that is run asynchronously is not started until a
syncpoint occurs when its parent returns. Dealing with many reattachment
events in the same activation could delay the start of the child.)

2. The figures show input and composite events being explicitly deleted by means
of DELETE EVENT commands. This is not always strictly necessary—see
“Using the ENDACTIVITY option of the RETURN command” on page 30.
Similarly, it may not always be necessary to issue CHECK TIMER commands. If
you don’t, timer events can be deleted by means of a RETURN ENDACTIVITY
command issued on the activity’s final activation.

Activity completion
An activity completes normally when it returns with no user events in its event pool.

When an activity issues an EXEC CICS RETURN command (without the
ENDACTIVITY option):

1. If the activity has correctly dealt with at least one reattachment event during its
current activation (see “Handling reattachment events” on page 26):

If there are events on the reattachment queue
The activity is immediately reactivated to deal with the fired events.

SYSTEM INPUT ACTIVITY
COMPLETION

TIMER

Event still required? CHECK ACTIVITY CHECK TIMER

DELETE EVENT
(input_event)

No

Activity processing based on retrieved event

Yes

HANDLE ATOMIC EVENT

Figure 10. Handling atomic events

BTS application components

Chapter 3. Using the BTS API to write business applications 29

If there are no events on the reattachment queue

If there are user events in the event pool
The activity becomes dormant until a reattachment event occurs.

If there are no user events in the event pool
The activity completes normally.

2. If the activity has not correctly dealt with at least one reattachment event during
its current activation, it abends.

Using the ENDACTIVITY option of the RETURN command: Optionally, an
activity program can use the ENDACTIVITY option of the EXEC CICS RETURN
command to signal that it has completed all its processing steps and is not to be
reactivated. One advantage of using ENDACTIVITY is that the activity program
does not have to bother about deleting user events—other than activity completion
events—from its event pool before completing; the events are deleted automatically
by CICS.

When an activity issues an EXEC CICS RETURN ENDACTIVITY command:

If there are no user events in the activity’s event pool
The activity completes normally.

If there are user events (fired or unfired) in the activity’s event pool

v If one or more of the events are activity completion events, the activity
abends. Trying to force an activity to complete before it has dealt with one or
more of its child activities is a program logic error.

v If none of the events are activity completion events, the events are deleted
and the activity completes normally.

It is recommended that you issue a RETURN ENDACTIVITY command at the end
of the final activation of an activity, as a way of ensuring that the activity completes.
For example, if, through a program logic error, an activity returns from what it
believes to be its final activation with an unfired event in its event pool, it is possible
that the activity could go dormant forever, and never complete. Coding RETURN
ENDACTIVITY deletes the event and forces the activity to complete.

BTS application components

30 CICS TS for z/OS: CICS Business Transaction Services

Chapter 4. The Sale example application

The Sale example application is a set of programs that demonstrates how to use
CICS business transaction services to manage business transactions.

This chapter contains:
v “Overview of the Sale application”
v “The initial request” on page 33
v “The root activity” on page 36
v “Transferring input and output data” on page 42

Overview of the Sale application
The Sale example implements a Sale business transaction that is made up of four
basic actions:
v Order entry
v Delivery
v Invoice
v Payment.

A Sale business transaction is started by a terminal-user selecting the Sale option
from a menu of business transactions. This causes an instance of the transaction to
be created and its root activity to be started. The root activity creates and runs, in
sequence, four child activities that implement the four actions of the business
transaction:

1. The Order activity obtains order data from the user, and validates it.

2. Successful completion of the Order activity causes the Delivery activity to be
started.

3. Completion of the Delivery activity causes the Invoice activity to be started.

4. When payment is received and recorded by the Payment activity, the Sale
business transaction is complete.

Data flows
Figure 11 on page 32 shows, in simplified form, data flows in the Sale example
application.

© Copyright IBM Corp. 1999, 2010 31

1. Customer data (for example, an account number) collected after the terminal
user selects the Sale menu option is used as input to the Order activity.

2. Customer data collected by the Order activity is used as input to the Delivery
activity.

3. The output data produced by the Delivery activity is used as input to the Invoice
activity.

4. The output produced by the Invoice activity is used as input to the Payment
activity.

Note: The first activity (Order) requires input from the terminal user. For the
purposes of this chapter, subsequent activities (Delivery, Invoice and
Payment) are assumed not to require any user involvement and are
triggered serially in the background after the Order activity has completed
successfully. In later chapters, this assumption is changed to illustrate
additional function.

CICS transactions and programs
Table 5 on page 33 shows the CICS transactions and programs that make up the
basic Sale application described in this chapter.

Menu

Order

Delivery

Invoice

Payment

User Input

User Input
‘

comprising
four child
activities

Sale' business
Transaction

Input Data

Output Data

Input Data

Output Data

Input Data

Output Data

Input Data

Output Data

Figure 11. Data flow in the Sale example application. (The root activity is not shown.)

Sale example application

32 CICS TS for z/OS: CICS Business Transaction Services

Table 5. Transactions and programs in the basic Sale application

Transid Program Comments

MENU MNU001 Menu of business transactions

— SAL001
Creates and starts the Sale business
transaction

SALE SAL002
BTS root activity, manages the child
activities that comprise the Sale business
transaction

SORD ORD001 Order activity

SDEL DEL001 Delivery activity

SINV INV001 Invoice activity

SPAY PAY001 Payment activity

Notes:

1. In later chapters, the Sale example application is extended to illustrate more
advanced features of BTS, such as:
v Parallel activities
v User-related activities
v Compensation actions.

2. For the sake of clarity, the basic example does not include any error handling
code. As explained in “Checking the response from a child activity” on page 18,
in a real application, after a parent has requested a child activity to be run it
must issue a CHECK ACTIVITY command to:
v Check the response from the child
v Check the completion status of the child
v Delete the child’s completion event, if the child has completed.

The uses of the CHECK ACTIVITY command are fully described later, in
Chapter 5, “Dealing with BTS errors and response codes,” on page 45.

The initial request
The initial request to start a Sale business transaction is handled by the MNU001
and SAL001 programs. When a terminal user selects the Sale menu option, the
menu program MNU001 links to the SAL001 program to service the request.
SAL001 establishes a unique reference for this instance of the Sale business
transaction and starts it.

Figure 12 on page 34 shows, in COBOL pseudocode, how SAL001 creates and
starts an instance of the Sale business transaction.

Sale example application

Chapter 4. The Sale example application 33

Creating the business transaction
To create an instance of the Sale business transaction, SAL001 issues a DEFINE
PROCESS command. The PROGRAM option of DEFINE PROCESS defines a
program to run under the control of CICS business transaction services—a root
activity program that typically manages the ordering and execution of the child
activities that make up a business transaction. In this case, the program is SAL002,
which is the root activity program for the Sale business transaction.

The PROCESS option uniquely identifies this business transaction instance from
others. (The creation of a unique reference is managed by the user. Typically, you
might use a customer reference or account number.)

The PROCESSTYPE option categorizes the business transaction by assigning it a
process-type of 'Sales'. Categorizing your processes (business transactions) in this
way means that you can browse details of individual processes—and their
constituent activities—more easily.

The TRANSID option serves a number of purposes:

Security
If security is active, CICS performs a security check to see if the requestor
has authority to use the specified transaction identifier (transid). Thus, in
this example, there would be a check on whether the requestor is
authorized to create a new instance of the Sale business transaction.

Identification Division.
Program-id. SAL001.
Environment Division.
Data Division.
Working-Storage Section.
01 Sales-Reference pic x(36) value low-values.

.
01 Process-Type pic x(8) value ’Sales’.

.
Linkage Section.
01 DFHEIBLK.

.
01 DFHCOMMAREA.

.
Procedure Division using DFHEIBLK DFHCOMMAREA.
In-The-Beginning.

.

.. create unique sales reference ..

.
EXEC CICS DEFINE PROCESS(Sales-Reference) PROCESSTYPE(Process-Type)

TRANSID(’SALE’)
PROGRAM(’SAL002’)

RESP(data-area) RESP2(data-area) END-EXEC
.

EXEC CICS RUN ACQPROCESS
SYNCHRONOUS

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS RETURN END-EXEC

End Program.

Figure 12. Pseudocode for the SAL001 program. SAL001 creates and starts an instance of
the Sale business transaction.

Sale example application

34 CICS TS for z/OS: CICS Business Transaction Services

Externals
When a business transaction is started, its root activity program begins
executing, and any external inquiry such as CEMT shows work being done
under the root activity’s transaction identifier.

In the Sale application, the Sale business transaction is started under the
control of the MENU transaction; however, the actual start of an instance of
the Sale transaction occurs when control is passed to the root activity
program, SAL002. At this point, the transaction identifier changes from
MENU to SALE.

Root activity
Later restarts of a root activity may be required to deal with child activities
that are executed with the RUN ACTIVITY ASYNCHRONOUS command
(the child activities are executed asynchronously with the root activity, are
not included in its unit of work, and have different transaction identifiers).

In the Sale application, the SAL002 root activity program is attached under
the SALE transaction identifier to deal with the Delivery, Invoice, and
Payment activities, that all execute asynchronously, under separate UOW
scope, and under different transaction identifiers.

Monitoring and statistics
The transaction identifier can be used to track resource usage for
monitoring, statistics, and accounting purposes. It allows monitoring and
statistics information to be related to a CICS business transaction services
process.

DEFINE PROCESS is a synchronous request and control is returned to the
requesting program when BTS has accepted the request and added the process to
the set that it is currently managing.

The addition of the process is not committed until the current unit of work has taken
a successful syncpoint. If the requesting task abends before the syncpoint is taken,
the request to add the process is canceled. (Thus it is not possible to enquire on or
to browse the process until the syncpoint has been taken.)

Starting the business transaction
To start this instance of the Sale business transaction, on return from the DEFINE
PROCESS request SAL001 issues a RUN ACQPROCESS command. A program
can “acquire” a process in two ways: by defining it, or by issuing an ACQUIRE
PROCESS command. Here, SAL001 has acquired a process by defining it; thus the
RUN ACQPROCESS causes the SAL002 program specified on the DEFINE
PROCESS command to be executed.

Using RUN causes the process to be activated in a separate unit of work from that
of the requesting transaction, under the transaction identifier specified on the
TRANSID option of the DEFINE PROCESS command. (A LINK ACQPROCESS
command would have caused SAL002 to be executed in the same unit of work as
MNU001 and SAL001, and under the same TRANSID, MENU.) The advantages of
giving a process a separate TRANSID from that of its creator are explained in
“Creating the business transaction” on page 34. The SYNCHRONOUS option on
the RUN command causes SAL002 to be executed synchronously with SAL001.

Although a RUN ACQPROCESS command causes a process to be activated in a
separate unit of work from that of its requestor, the start and finish of the activation
are related to the requestor’s syncpoints. In the example application, the SAL002

Sale example application

Chapter 4. The Sale example application 35

root activity runs its first child activity (Order) synchronously and as part of its own
unit of work. If the Order activity is successfully completed (in the business sense
as well as the transactional sense), the Sale business transaction will be accepted.
If not, it will be rejected. “Accepted” means committed—this instance of the Sale
transaction will be ready to start its next activity. “Rejected” means rolled back—this
instance of the Sale transaction will no longer exist.

The root activity
The SAL001 program starts a new instance of the Sale business transaction by
starting the SAL002 program, running under the transid SALE. SAL002 implements
a root activity that manages the inter-relationship, ordering, and execution of the
child activities that make up the Sale business transaction.

A root activity program such as SAL002 is designed to be reattached by CICS
business transaction services when events in which it is interested are triggered.
The activity program determines which of the possible events caused it to be
attached and what to do as a result. A typical sequence (somewhat simplified) is:

1. The root activity requests BTS to run a child activity (possibly several child
activities), and to notify it when the child has completed.

2. The root activity “sleeps” while waiting for the child activity to complete.

3. BTS reattaches the root activity because the child activity has completed.

4. The root activity requests the next child activity to run.

5. Steps 1 through 4 are repeated until the business transaction is complete.

Thus, even though the root activity is not initiated from a terminal, you could think of
its style as being “pseudoconversational”.

Figure 13 on page 37 shows, in COBOL pseudocode, the Sale root activity
program, SAL002.

Sale example application

36 CICS TS for z/OS: CICS Business Transaction Services

Identification Division.
Program-id. SAL002.
Environment Division.
Data Division.
Working-Storage Section.
01 RC pic s9(8) comp.
01 Process-Name pic x(36).
01 Event-Name pic x(16).

88 DFH-Initial value ’DFHINITIAL’.
88 Delivery-Complete value ’Delivry-Complete’.
88 Invoice-Complete value ’Invoice-Complete’.
88 Payment-Complete value ’Payment-Complete’.

01 Sale-Container pic x(16) value ’Sale’.
01 Order-Container pic x(16) value ’Order’.
01 Order-Buffer pic x(..).
01 Delivery-Container pic x(16) value ’Delivery’.
01 Delivery-Buffer pic x(..).
01 Invoice-Container pic x(16) value ’Invoice’.
01 Invoice-Buffer pic x(..).
Linkage Section.
01 DFHEIBLK.

.
Procedure Division.
Begin-Process.

.
EXEC CICS RETRIEVE REATTACH EVENT(Event-Name)

RESP(RC) END-EXEC
.

If RC NOT = DFHRESP(NORMAL)
.

End-If.
.

Evaluate True
When DFH-Initial

Perform Initial-Activity
Perform Order-Activity
Perform Delivery-Activity

When Delivery-Complete
Perform Invoice-Activity

When Invoice-Complete
Perform Payment-Activity

When Payment-Complete
Perform End-Process

When Other
.

End Evaluate.
.

EXEC CICS RETURN END-EXEC
.

Figure 13. Pseudocode for SAL002, the root activity program for the Sale business
transaction (Part 1 of 3)

Sale example application

Chapter 4. The Sale example application 37

Initial-Activity.
.
EXEC CICS ASSIGN PROCESS(Process-Name)

RESP(data-area) RESP2(data-area) END-EXEC
.

Order-Activity.
.
EXEC CICS DEFINE ACTIVITY(’Order’)

TRANSID(’SORD’)
PROGRAM(’ORD001’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(Sale-Container)

ACTIVITY(’Order’) FROM(Process-Name)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS LINK ACTIVITY(’Order’)

RESP(data-area) RESP2(data-area) END-EXEC
.

Delivery-Activity.
.
EXEC CICS DEFINE ACTIVITY(’Delivery’)

TRANSID(’SDEL’)
EVENT(’Delivry-Complete’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS GET CONTAINER(Order-Container)

ACTIVITY(’Order’) INTO(Order-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS PUT CONTAINER(Order-Container)

ACTIVITY(’Delivery’) FROM(Order-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Delivery’)

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.

Figure 13. Pseudocode for SAL002, the root activity program for the Sale business
transaction (Part 2 of 3)

Sale example application

38 CICS TS for z/OS: CICS Business Transaction Services

The following discussion steps through the SAL002 pseudocode shown in Figure 13
on page 37:

1. The root activity determines what event caused it to be attached by issuing the
following command:

EXEC CICS RETRIEVE REATTACH EVENT(Event-Name)
RESP(data-area) RESP2(data-area) END-EXEC

The first time an activity is started during a process, the event returned is the
system event DFHINITIAL. This tells the activity that it should perform any
initial housekeeping.

In this example, CICS initially invokes the SAL002 root activity as a result of
the RUN ACQPROCESS command issued by the SAL001 program. As part of
its initial housekeeping, SAL002 uses the EXEC CICS ASSIGN PROCESS
command to discover the name of this instance of the business transaction
(process). (The name of the process instance was assigned by the DEFINE
PROCESS command, and might be, for example, a customer reference or
account number.)

Invoice-Activity.
.
EXEC CICS DEFINE ACTIVITY(’Invoice’)

TRANSID(’SINV’)
EVENT(’Invoice-Complete’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS GET CONTAINER(Delivery-Container)

ACTIVITY(’Delivery’) INTO(Delivery-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS PUT CONTAINER(Delivery-Container)

ACTIVITY(’Invoice’) FROM(Delivery-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Invoice’)

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.
Payment-Activity.

.
EXEC CICS DEFINE ACTIVITY(’Payment’)

TRANSID(’SPAY’)
EVENT(’Payment-Complete’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS GET CONTAINER(Invoice-Container)

ACTIVITY(’Invoice’) INTO(Invoice-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS PUT CONTAINER(Invoice-Container)

ACTIVITY(’Payment’) FROM(Invoice-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Payment’)

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.
End-Process.

.
EXEC CICS RETURN ENDACTIVITY

RESP(data-area) RESP2(data-area) END-EXEC
End Program.

Figure 13. Pseudocode for SAL002, the root activity program for the Sale business
transaction (Part 3 of 3)

Sale example application

Chapter 4. The Sale example application 39

2. The root activity creates its first child activity, which in this case is the Order
activity:

EXEC CICS DEFINE ACTIVITY(’Order’)
TRANSID(’SORD’)
PROGRAM(’ORD001’)

RESP(data-area) RESP2(data-area) END-EXEC

The DEFINE ACTIVITY command requests CICS business transaction
services to add an activity to a business transaction (process). In this example,
SAL002 adds an activity called Order to the Sale business transaction. It is
implemented by program ORD001. The TRANSID option specifies that, if the
Order activity is run in its own unit of work, it will run under transaction
identifier SORD.

3. When the Order activity has been added, SAL002 uses the PUT CONTAINER
command to provide it with some input data.

EXEC CICS PUT CONTAINER(Sale-Container)
ACTIVITY(’Order’) FROM(Process-Name)
RESP(data-area) RESP2(data-area) END-EXEC

The input data is placed in a data-container named Sale (the value of the
variable Sale-Container). The ACTIVITY option of PUT CONTAINER
associates the Sale data-container with the Order activity.

Note: An activity can have many data-containers associated with it. A
data-container is associated with an activity simply by being named on
a command (such as PUT CONTAINER) that specifies the activity.

Two or more activities can each have a data-container named, for
example, Order.

The data put into the Sale data-container is the process name—that is, the
unique reference that identifies this instance of the Sale business transaction.
The process name in this case is the customer reference or account number
specified on the DEFINE PROCESS command in SAL001.

4. SAL002 requests BTS to start the Order activity:
EXEC CICS LINK ACTIVITY(’Order’)

RESP(data-area) RESP2(data-area) END-EXEC

The LINK ACTIVITY command causes the ORD001 program to be executed
synchronously with SAL002 and to be included as part of the current unit of
work. The TRANSID option of the DEFINE ACTIVITY command is
ignored—LINK ACTIVITY causes the Order activity to run under the
requestor’s transaction identifier, SALE.

The Order activity collects order details from the terminal operator and
validates them. The ORD001 program converses with the terminal operator
until the order is accepted. It then returns the validated details in an output
data-container.

5. When the Order activity completes, SAL002 creates the Delivery activity:
EXEC CICS DEFINE ACTIVITY(’Delivery’)

TRANSID(’SDEL’)
EVENT(’Delivry-Complete’)

RESP(data-area) RESP2(data-area) END-EXEC

The Delivery activity is to be executed asynchronously with the root activity.
When an activity completes, its completion event fires. The EVENT option
names the Delivery activity’s completion event as Delivry-Complete, and thus
defines it. Defining the event allows it to be referenced and checked for.

CICS reattaches an activity on the firing of any event, other than a sub-event,
that is in its event pool. (An activity’s event pool contains events that have

Sale example application

40 CICS TS for z/OS: CICS Business Transaction Services

been defined to the activity, plus the DFHINITIAL system event.) Thus, the
SAL002 root activity will be reattached when the Delivery activity’s completion
event (Delivry-Complete) fires.

Note: All child activities have completion events, that fire when the activities
complete. If the EVENT option of DEFINE ACTIVITY is not used, CICS
gives the completion event the same name as the activity itself.

For child activities like the Order activity, that will always be executed
synchronously with the parent, the EVENT option is not often used.
Normally, the firing of a synchronous activity’s completion event does
not cause the parent to be reattached, because the event is deleted (by
a CHECK ACTIVITY command) during the parent’s current activation.
Therefore the event never needs to be tested for by name, among
several other possible reattachment events.

The CHECK ACTIVITY command is described in Chapter 5, “Dealing
with BTS errors and response codes,” on page 45.

6. SAL002 makes the data returned by the Order activity available to the Delivery
activity:

EXEC CICS GET CONTAINER(Order-Container)
ACTIVITY(’Order’) INTO(Order-Buffer)

RESP(data-area) RESP2(data-area) END-EXEC

EXEC CICS PUT CONTAINER(Order-Container)
ACTIVITY(’Delivery’) FROM(Order-Buffer)

RESP(data-area) RESP2(data-area) END-EXEC

Here, the GET and PUT commands are used to transfer data from the Order
activity’s output data-container to the Delivery activity’s input data-container
(both of which are named Order). Note that these are different
data-containers—although they share the same name, they are associated
with different activities.

7. SAL002 requests BTS to start the Delivery activity:
EXEC CICS RUN ACTIVITY(’Delivery’)

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

Because RUN rather than LINK is used, the Delivery activity will be executed
as a separate unit of work, and under the transaction identifier specified on the
TRANSID option of the DEFINE ACTIVITY command. (The RUN command
always activates the specified process or activity in a new unit of work.)
Because the ASYNCHRONOUS option is used, the Delivery activity will be
executed asynchronously with SAL002, and will start only if the current unit of
work completes successfully.

8. SAL002 issues an EXEC CICS RETURN command. Because there is a user
event in its event pool—the completion event for the Delivery activity—the root
activity does not complete but becomes dormant. Control is returned to
SAL001, then to MNU001, and finally to CICS. CICS takes a syncpoint and
commits the following:

v The creation of a new Sale business transaction

v Work done by the Order activity, and its input and output data-containers

v The request to run the Delivery activity, and its input data-container

v The condition under which the SAL002 root activity is to be reactivated.

After the CICS syncpoint, the menu of business transactions is redisplayed on
the user’s terminal, ready for further selection. The remaining activities will be

Sale example application

Chapter 4. The Sale example application 41

completed, without reference to the terminal user, under the control of CICS
business transaction services. The SAL002 program no longer exists in
memory, and the existence of this instance of the Sale business transaction is
known only to BTS.

CICS business transaction services start the Delivery activity (SDEL) as
requested. (BTS participates as a resource manager for the transaction.) On
completion of the Delivery activity, BTS reactivates the Sale root activity—that
is, the SAL002 program under the transaction identifier SALE.

9. The SAL002 program is entered at the top again, and so determines what
event caused it to be reactivated by issuing the RETRIEVE REATTACH
EVENT command. This time, however, the event returned is Delivry-Complete.
Having established which child activity has completed, SAL002 determines that
the next activity to be started is the Invoice activity.

As with the Delivery activity, SAL002 sets the Invoice activity’s parameters,
input data, and execution options before requesting the activity to be run. It
then issues an EXEC CICS RETURN command and becomes dormant,
waiting to be reactivated for this instance of the Sale business transaction.

10. The pattern implied in step 9 is repeated until the Payment activity completes,
at which point the Sale business transaction is complete. SAL002 issues an
EXEC CICS RETURN command on which the ENDACTIVITY option is
specified. This indicates to CICS that the root activity’s processing is complete,
and that it no longer wants to be reactivated if defined or system events occur.
The business transaction ends.

Transferring input and output data
This section illustrates how to transfer data between a parent and a child activity. It
uses the Sale application’s Delivery activity as an example.

The SAL002 root activity creates the Delivery child activity by issuing a DEFINE
ACTIVITY command.

The GET CONTAINER command retrieves the data returned by the Order activity,
and places it in a storage buffer. The data is retrieved from the Order activity’s
output data-container, which is named Order.

Note: A child activity’s data-containers are accessible to its parent even after the
child has completed. An activity’s containers are only destroyed when the
activity itself is destroyed. An activity is destroyed:
v Automatically by CICS, when its parent completes.
v Before this, if its parent issues a DELETE ACTIVITY command against it.

Delivery-Activity.
.
EXEC CICS DEFINE ACTIVITY(’Delivery’)

TRANSID(’SDEL’)
EVENT(’Delivry-Complete’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS GET CONTAINER(Order-Container)

ACTIVITY(’Order’) INTO(Order-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

EXEC CICS PUT CONTAINER(Order-Container)
ACTIVITY(’Delivery’) FROM(Order-Buffer)

RESP(data-area) RESP2(data-area) END-EXEC

Figure 14. Creating the Delivery activity

Sale example application

42 CICS TS for z/OS: CICS Business Transaction Services

The PUT CONTAINER command associates a data-container (also named Order)
with the Delivery activity, and places the retrieved data in it.

The implementation of the Delivery activity is shown in Figure 15.

Identification Division.
Program-id. DEL001.
Environment Division.
Data Division.
Working-Storage Section.
01 Event-Name pic x(16).

88 DFH-Initial value ’DFHINITIAL’.
01 Order-Ptr usage is pointer.
01 Order-Container pic x(16) value ’Order’.
01 Delivery-Container pic x(16) value ’Delivery’.
01 Deliver-Data.

.
Linkage Section.
01 DFHEIBLK.

.
01 Order-Details.

05 Order-Number pic 9(8).
.

Figure 15. Pseudocode for the Delivery activity (Part 1 of 2)

Sale example application

Chapter 4. The Sale example application 43

The Delivery activity issues a GET CONTAINER command to retrieve data from a
data-container named Order. Because the command does not specify the ACTIVITY
option, it references a data-container associated with the current activity; in other
words, it references the same Order data-container as that referenced by the PUT
CONTAINER command in Figure 14 on page 42.

The Delivery activity uses the input data to execute its logic. Then it issues a PUT
CONTAINER command to store its output in a data-container named Delivery.
Again, the ACTIVITY option is not specified, so the data-container is associated
with the current (Delivery) activity.

See also “Transferring data to asynchronous activations” on page 78.

Procedure Division..
Begin-Process.

.
EXEC CICS RETRIEVE REATTACH EVENT(Event-Name)

RESP(RC) END-EXEC
.
If RC NOT = DFHRESP(NORMAL)

.
End-If.
.
Evaluate True

When DFH-Initial
Perform Delivery-Work
Perform End-Activity

When Other
.

End Evaluate.
.
EXEC CICS RETURN END-EXEC
.

Delivery-Work.
.
EXEC CICS GET CONTAINER(Order-Container) SET(Order-Ptr)

RESP(data-area) RESP2(data-area) END-EXEC
.
set address of Order-Details to Order-Ptr.
.
EXEC CICS READ FILE

RESP(data-area) RESP2(data-area) END-EXEC
.
. logic to print delivery details
.
.
EXEC CICS PUT CONTAINER(Delivery-Container) FROM(Delivery-Data)

RESP(data-area) RESP2(data-area) END-EXEC
.

End-Activity.
.
EXEC CICS RETURN ENDACTIVITY

RESP(data-area) RESP2(data-area) END-EXEC

Figure 15. Pseudocode for the Delivery activity (Part 2 of 2)

Sale example application

44 CICS TS for z/OS: CICS Business Transaction Services

Chapter 5. Dealing with BTS errors and response codes

Each time one of your applications issues a CICS command, CICS automatically
raises a condition to tell it how the command worked. This condition (which is
usually NORMAL) is returned by the CICS EXEC interface in the RESP and RESP2
options of the command. If something out of the ordinary happens, the application
receives an exceptional condition, which simply means a condition other than
NORMAL. By testing this condition, it can tell what happened, and possibly why.

The rest of this chapter contains:
v “Checking the response from a synchronous activity”
v “Checking the response from an asynchronous activity” on page 47
v “Getting details of activity ABENDs” on page 47
v “Retrying failed activities” on page 47

Checking the response from a synchronous activity
Figure 16 shows the Sale application’s Order activity being created and run
synchronously with SAL002.

The RESP and RESP2 options on a RUN ACTIVITY or LINK ACTIVITY command
return any exceptional condition that is raised during the command’s processing.
However, what is processed is a request for BTS to run the activity—that is, for
BTS to accept and schedule the activity. Therefore, the RESP and RESP2 options
do not return any exceptional condition that may result from processing the activity
itself.

To check the response from the actual processing of any activity other than a root
activity, 5 you must issue one of the following commands:

CHECK ACTIVITY(child_name)
Used to check a child of the current activity.

CHECK ACQACTIVITY
Used to check the activity that the current unit of work has acquired by means
of an ACQUIRE ACTIVITYID command.

5. Root activities are a special case. They are activated automatically by BTS after a RUN ACQPROCESS or LINK ACQPROCESS
command is issued; also, they do not have completion events. To check the processing of a process (and therefore of a root
activity) use the CHECK ACQPROCESS command.

Order-Activity.
.
EXEC CICS DEFINE ACTIVITY(’Order’)

TRANSID(’SORD’)
PROGRAM(’ORD001’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(Sale-Container)

ACTIVITY(’Order’) FROM(Process-Name)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS LINK ACTIVITY(’Order’)

RESP(data-area) RESP2(data-area) END-EXEC
.

Figure 16. Requests to create and activate an activity. The conditions returned by the RESP
and RESP2 options on the LINK ACTIVITY command do not relate to the processing of the
activity itself.

© Copyright IBM Corp. 1999, 2010 45

For information about acquiring activities, see “Acquiring processes and
activities” on page 57.

The Sale root activity, SAL002, checks to see if the Order activity completed
successfully or whether an error occurred:

EXEC CICS CHECK ACTIVITY(’Order’) COMPSTATUS(status)
RESP(RC) RESP2(data-area) END-EXEC

.
If RC NOT = DFHRESP(NORMAL)

.
End-If.
.
If status NOT = DFHVALUE(NORMAL)

.
End-If.
.

Because Order is one of its child activities, SAL002 uses the CHECK
ACTIVITY(child_name) form of the command.

The RESP and RESP2 options on the CHECK ACTIVITY command return a
condition that tells you whether the CHECK command is understood by CICS—for
example, ACTIVITYERR occurs if an activity named Order has not been defined to
SAL002.

The COMPSTATUS option returns a CVDA value indicating the completion status of
the activity:
v NORMAL is returned if the activity has completed all its processing steps.
v FORCED is returned if the activity was forced to complete by means of a

CANCEL ACTIVITY command.
v INCOMPLETE is returned if the activity needs to be reactivated in order to

complete all its processing steps.
v ABEND is returned if the program that implements the activity abended.

If a child activity completes (either successfully or unsuccessfully), and its parent
issues a CHECK ACTIVITY command, the execution of the command causes CICS
to delete the activity-completion event. (Before a parent activity completes, it should
ensure that the completion events of all its child activities have been deleted.)

Note: If an activity completes and a CHECK ACQACTIVITY command is issued by
a program other than its parent, the activity-completion event is not deleted.
For example, a program executing outside a BTS process might issue an
ACQUIRE ACTIVITYID command to acquire control of an activity within the
process. It might then run the activity, and issue a CHECK ACQACTIVITY
command to check the outcome. If the activity has completed, its completion
event is not deleted.

The firing of the completion event causes the activity’s parent to be
activated. Only if the parent issues a CHECK ACTIVITY command does
CICS delete the completion event.

For an explanation of why a program executing outside a process might
want to acquire an activity within the process , see Chapter 7, “Interacting
with BTS processes and activities,” on page 57. For an example of the use
of the ACQUIRE ACTIVITYID and CHECK ACTIVITYID commands, see
“Acquiring an activity” on page 65.

handling errors and response codes

46 CICS TS for z/OS: CICS Business Transaction Services

Checking the response from an asynchronous activity
Asynchronous activities are treated almost identically to synchronous activities, the
only difference being in the point at which the CHECK ACTIVITY command is
issued. Typically, for a synchronous activity, the CHECK ACTIVITY command is
issued immediately after the RUN or LINK command. For an asynchronous activity,
it might, for example, be issued:

v When the parent is reattached due to the firing of the activity’s completion event.

v When the requestor is reattached due to the expiry of a timer. This could occur if
the requestor expects the activity to return without completing; the requestor may
then reactivate the activity by sending it an input event.

Getting details of activity ABENDs
If a CHECK ACTIVITY command returns a completion status (COMPSTATUS) of
ABEND, you can use the INQUIRE ACTIVITYID command to obtain further
information about how the activity abended. For example:

If status = DFHVALUE(ABEND)
.
To get the activity-identifier of the failed child,
start a browse of child activities
EXEC CICS STARTBROWSE ACTIVITY

BROWSETOKEN(root-token)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS GETNEXT ACTIVITY(child-name)

BROWSETOKEN(root-token)
ACTIVITYID(child-id)

RESP(data-area) RESP2(data-area) END-EXEC
.
loop until the failed child is found by name

EXEC CICS GETNEXT ACTIVITY(child-name)
BROWSETOKEN(root-token)
ACTIVITYID(child-id)

RESP(data-area) RESP2(data-area) END-EXEC
.

end child activity browse loop
Inquire on the failed child, using its activity-identifier
EXEC CICS INQUIRE ACTIVITYID(child-id)

ABCODE(data-area)
ABPROGRAM(data-area)

RESP(data-area) RESP2(data-area) END-EXEC

This example returns the name of the program in which the abend occurred,
together with the corresponding CICS abend code.

Note: A simpler way of obtaining the activity-identifier of the failed child activity
(used on the EXEC CICS INQUIRE ACTIVITYID command) would be to
code the ACTIVITYID option of the DEFINE ACTIVITY command used to
define the child, and to store the returned value.

Retrying failed activities
If a child activity fails, it may be appropriate to retry it. The parent should (if it has
not already done so) issue a CHECK ACTIVITY command to check the current
completion status of the child activity.

handling errors and response codes

Chapter 5. Dealing with BTS errors and response codes 47

To retry a child activity that has failed:

1. Issue a RESET ACTIVITY command. The child activity is reset to its initial state:
its completion event is added to the parent’s event pool, with the status set to
NOTFIRED; any children of the child activity are deleted. Note that the child
activity’s data-containers are not disturbed.

2. Issue a RUN ACTIVITY command. The child activity is invoked with a
DFHINITIAL event.

handling errors and response codes

48 CICS TS for z/OS: CICS Business Transaction Services

Chapter 6. Running parallel BTS activities

Many business transactions include activities that can run in parallel with one
another. To illustrate parallel activities, this chapter extends the Sale business
transaction to support multiple Delivery activities.

An example of parallel activities
The logic of the Sale business transaction is changed so that an order can include
multiple items, each potentially requiring delivery to a separate location. Each
delivery request (activity) can run in parallel, but the customer is not invoiced until
all of the items have been delivered.

Data flow
Figure 17 shows data flows in the Sale example application when parallel activities
are included.

v User data (an account number) collected after the user selects the Sale menu
option is used as input to the Order activity.

Menu

Order

Delivery

Invoice

Payment

Input Data

Output Data

Input Data

Output Data

Input Data

Output Data

Input Data

Output DataUser Input

User Input

Figure 17. Data flow for parallel activities. (The root activity is not shown.) Changes from the
basic Sale example described in Chapter 4 are shown in bold.

© Copyright IBM Corp. 1999, 2010 49

v User data collected by the Order activity is used as input to multiple Delivery
activities.

v The output data produced by the Delivery activities is used as input to the
Invoice activity.

v The output produced by the Invoice activity is used as input to the Payment
activity.

The root activity
Figure 18 shows, in COBOL pseudocode, the Sale root activity with modifications
for parallel activities. CHECK ACTIVITY commands have also been added, to check
the response from each child activity (and to delete its completion event). The
changes are in bold text.

Identification Division.
Program-id. SAL002.
Environment Division.
Data Division.
Working-Storage Section.
01 Switches.

05 No-More-Events pic x value space.
88 No-More-Events value ’y’.

01 Switch-Off Pic x value ’n’.
01 RC pic s9(8) comp.
01 Process-Name pic x(36).
01 Event-Name pic x(16).

88 DFH-Initial value ’DFHINITIAL’.
88 Delivery-Complete value ’Delivry-Complete’.
88 Invoice-Complete value ’Invoice-Complete’.
88 Payment-Complete value ’Payment-Complete’.

01 Sale-Container pic x(16) value ’Sale’.
01 Order-Container pic x(16) value ’Order’.
01 Order-Buffer.

05 Order-Count Pic 9(2).
05 Order-Item occurs 1 to 20 times

Depending on Order-Count Pic X(10).
01 Delivery-Container pic x(16) value ’Delivery’.
01 Delivery-Buffer.

05 Delivery-Count pic 9(2).
05 Delivery-Item occurs 1 to 20 times

Depending on Delivery-Count pic x(30).
01 Invoice-Container pic x(16) value ’Invoice’.
01 Invoice-Buffer Pic x(..).
01 Work-Activity.

05 Work-Name Pic x(8) value ’Delivery’.
05 Filler pic x(6) value ’-Item-’.
05 Work-Count pic 9(2) value zero.

01 Work-Event.
05 Event-Name pic x(8) value ’Del-Comp’.
05 Filler pic x(6) value ’-Item-’.
05 Event-Count pic x(2) value zero.

Linkage Section.
01 DFHEIBLK.

.

Figure 18. The SAL002 root activity program, with modifications for parallel activities
highlighted (Part 1 of 5)

parallel activities

50 CICS TS for z/OS: CICS Business Transaction Services

Procedure Division.
Begin-Process.

.
EXEC CICS RETRIEVE REATTACH EVENT(Event-Name)

RESP(RC) END-EXEC
.

If RC NOT = DFHRESP(NORMAL)
.

End-If.
.

Evaluate True
When DFH-Initial

Perform Initial-Activity
Perform Order-Activity
Perform Order-Response
Perform Delivery-Activity

When Delivery-Complete
Perform Delivery-Response
Perform Invoice-Activity

When Invoice-Complete
Perform Invoice-Response
Perform Payment-Activity

When Payment-Complete
Perform Payment-Response
Perform End-Process

When Other
.

End Evaluate.

EXEC CICS RETURN END-EXEC
.

Initial-Activity.
.
EXEC CICS ASSIGN PROCESS(Process-Name)

RESP(data-area) RESP2(data-area) END-EXEC
.

Order-Activity.
.
EXEC CICS DEFINE ACTIVITY(’Order’)

TRANSID(’SORD’)
PROGRAM(’ORD001’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(Sale-Container)

ACTIVITY(’Order’) FROM(Process-Name)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS LINK ACTIVITY(’Order’)

RESP(data-area) RESP2(data-area) END-EXEC
.

Figure 18. The SAL002 root activity program, with modifications for parallel activities
highlighted (Part 2 of 5)

parallel activities

Chapter 6. Running parallel BTS activities 51

Order-Response.
.
EXEC CICS CHECK ACTIVITY(’Order’) COMPSTATUS(status)

RESP(RC) RESP2(data-area) END-EXEC
.
If RC NOT = DFHRESP(NORMAL)

.
End-If.
.
If status NOT = DFHVALUE(NORMAL)

.
End-If.
.

Delivery-Activity.
.
EXEC CICS GET CONTAINER(Order-Container)

ACTIVITY(’Order’) INTO(Order-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS DEFINE COMPOSITE EVENT(’Delivry-Complete’) AND

RESP(data-area) RESP2(data-area) END-EXEC
.
Perform Delivery-Work varying Work-Count from 1 by 1

until Work-Count greater than Order-Count.
.

Delivery-Work.
.
Move Work-Count to Event-Count
.
EXEC CICS DEFINE ACTIVITY(Work-Activity)

TRANSID(’SDEL’)
PROGRAM(’DEL001’)
EVENT(Work-Event)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS ADD SUBEVENT(Work-Event) EVENT(’Delivry-Complete’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(Order-Container)

ACTIVITY(Work-Activity) FROM(Order-Item(Work-Count))
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(Work-Activity)

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.
Delivery-Response.

.
Move zeros to Delivery-Count
Move Switch-Off to No-More-Events
.
Perform until No-More-Events
EXEC CICS RETRIEVE SUBEVENT(Work-Event) EVENT(’Delivry-Complete’)

RESP(data-area) RESP2(data-area) END-EXEC

Figure 18. The SAL002 root activity program, with modifications for parallel activities
highlighted (Part 3 of 5)

parallel activities

52 CICS TS for z/OS: CICS Business Transaction Services

If RC NOT = DFHRESP(NORMAL)
.
If RC = DFHRESP(END)

Set No-More-Events to TRUE
EXEC CICS DELETE EVENT(’Delivry-Complete’)

Else
.

End-If
Else

Move Event-Count to Work-Count
Add 1 to Delivery-Count
.
EXEC CICS CHECK ACTIVITY(Work-Activity) COMPSTATUS(status)

RESP(RC) RESP2(data-area) END-EXEC
.
If RC NOT = DFHRESP(NORMAL)

.
End-If.
.
If status NOT = DFHVALUE(NORMAL)

.
End-If.
.
EXEC CICS GET CONTAINER(Delivery-Container)

ACTIVITY(Work-Activity)
INTO(Delivery-Item(Work-Count))

RESP(data-area) RESP2(data-area) END-EXEC
.
End-If
End-Perform
.

Invoice-Activity.
.
EXEC CICS DEFINE ACTIVITY(’Invoice’)

TRANSID(’SINV’)
EVENT(’Invoice-Complete’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(Delivery-Container)

ACTIVITY(’Invoice’) FROM(Delivery-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Invoice’)

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.
Invoice-Response.

.
EXEC CICS CHECK ACTIVITY(’Invoice’) COMPSTATUS(status)

RESP(RC) RESP2(data-area) END-EXEC
.
If RC NOT = DFHRESP(NORMAL)

.
End-If.
.
If status NOT = DFHVALUE(NORMAL)

.
End-If.
.

Figure 18. The SAL002 root activity program, with modifications for parallel activities
highlighted (Part 4 of 5)

parallel activities

Chapter 6. Running parallel BTS activities 53

The output from the Order activity (retrieved into the variable Order-Buffer) is now
an array of order items. There can be between 1 and 20 items in an order. Having
first defined a composite event (Delivry-Complete), SAL002 requests a delivery
activity to be run for each item ordered:

EXEC CICS DEFINE COMPOSITE EVENT(’Delivry-Complete’) AND
RESP(data-area) RESP2(data-area) END-EXEC

.
Perform Delivery-Work varying Work-Count from 1 by 1

until Work-Count greater than Order-Count.

All the delivery activities will run in parallel. The following set of requests are made
for each order item:
Delivery-Work.

.
Move Work-Count to Event-Count
.
EXEC CICS DEFINE ACTIVITY(Work-Activity)

TRANSID(’SDEL’)
PROGRAM(’DEL001’)
EVENT(Work-Event)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS ADD SUBEVENT(Work-Event) EVENT(’Delivry-Complete’)

RESP(data-area) RESP2(data-area) END-EXEC

Payment-Activity.
.
EXEC CICS DEFINE ACTIVITY(’Payment’)

TRANSID(’SPAY’)
EVENT(’Payment-Complete’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS GET CONTAINER(Invoice-Container)

ACTIVITY(’Invoice’) INTO(Invoice-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS PUT CONTAINER(Invoice-Container)

ACTIVITY(’Payment’) FROM(Invoice-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Payment’)

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.
Payment-Response.

.
EXEC CICS CHECK ACTIVITY(’Payment’) COMPSTATUS(status)

RESP(RC) RESP2(data-area) END-EXEC
.
If RC NOT = DFHRESP(NORMAL)

.
End-If.
.
If status NOT = DFHVALUE(NORMAL)

.
End-If.
.

End-Process.
.
EXEC CICS RETURN ENDACTIVITY

RESP(data-area) RESP2(data-area) END-EXEC
End Program.

Figure 18. The SAL002 root activity program, with modifications for parallel activities
highlighted (Part 5 of 5)

parallel activities

54 CICS TS for z/OS: CICS Business Transaction Services

.
EXEC CICS PUT CONTAINER(Order-Container)

ACTIVITY(Work-Activity) FROM(Order-Item(Work-Count))
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(Work-Activity)

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

Note that:

v The delivery activity for each order item is given a unique name
(Delivery-Item-n—the value of Work-Activity—where n is the 1-through-20 item
number).

v Each delivery activity is provided with an input data-container named Order,
which contains one of the order items from the Order-Buffer array.

v The completion event for each delivery activity is given a unique name
(Del-Comp-Item-n, the value of Work-Event). The ADD SUBEVENT command is
used to add the completion event for each delivery activity to the composite
event Delivry-Complete.

The completion of an individual delivery activity will not cause SAL002 to be
reattached—because the delivery activities’ completion events have been
specified as sub-events of the composite event Delivry-Complete. Instead,
SAL002 will be reattached when Delivry-Complete fires. Because
Delivry-Complete uses the AND Boolean operator, it will fire when all the
completion events of the individual delivery activities have fired.

Before the Invoice activity is run, the output from each of the delivery activities is
accumulated into a Delivery-Item array:
Delivery-Response.

.
Move zeros to Delivery-Count
Move Switch-Off to No-More-Events
.
Perform until No-More-Events
EXEC CICS RETRIEVE SUBEVENT(Work-Event) EVENT(’Delivry-Complete’)

RESP(data-area) RESP2(data-area) END-EXEC

If RC NOT = DFHRESP(NORMAL)
.
If RC = DFHRESP(END)

Set No-More-Events to TRUE
EXEC CICS DELETE EVENT(’Delivry-Complete’)

Else
.

End-If
Else

Move Event-Count to Work-Count
Add 1 to Delivery-Count
.
EXEC CICS CHECK ACTIVITY(Work-Activity) COMPSTATUS(status)

RESP(RC) RESP2(data-area) END-EXEC
.
If RC NOT = DFHRESP(NORMAL)

.
End-If.
.
If status NOT = DFHVALUE(NORMAL)

.
End-If.
.
EXEC CICS GET CONTAINER(Delivery-Container)

ACTIVITY(Work-Activity)

parallel activities

Chapter 6. Running parallel BTS activities 55

INTO(Delivery-Item(Work-Count))
RESP(data-area) RESP2(data-area) END-EXEC

.
End-If
End-Perform

The contents of the Delivery-Item array are placed in the input data-container of the
Invoice activity.

Note that:

v When SAL002 is reattached due to the firing of the Delivry-Complete composite
event, it uses a succession of EXEC CICS RETRIEVE SUBEVENT commands to
retrieve, in turn, each sub-event on the composite event’s sub-event queue—that
is, each sub-event whose firing was instrumental in the firing of the composite
event. These sub-events are, of course, the completion events for each of the
delivery activities. The number of each sub-event (contained in the Event-Count
field of Work-Event) is used to identify the particular delivery activity for which the
sub-event is the completion event.

v When all the sub-events have been retrieved, SAL002 deletes the composite
event Delivry-Complete. This is not strictly necessary, because user-defined
events—other than activity completion events—are automatically deleted by
CICS when a RETURN ENDACTIVITY command is issued.

Note that deleting a composite event does not delete any associated sub-events.
In the example in this chapter, the sub-events are the completion events for child
activities. The completion event for a child activity is deleted automatically when,
as here, an EXEC CICS CHECK ACTIVITY command is issued by the parent
after the child has completed. The CHECK ACTIVITY command is described in
Chapter 5, “Dealing with BTS errors and response codes,” on page 45.

It is an error for an activity to issue an EXEC CICS RETURN ENDACTIVITY
command while there are still activity completion events in its event pool.

parallel activities

56 CICS TS for z/OS: CICS Business Transaction Services

Chapter 7. Interacting with BTS processes and activities

This chapter describes ways in which BTS processes and activities can interact with
the world outside the BTS environment. It contains:
v “Introduction”
v “Using client/server processing” on page 58
v “Acquiring an activity” on page 65
v “Transferring data to asynchronous activations” on page 78.

Introduction
In the examples we have looked at so far, after the initial order details have been
collected from a user terminal the Sale business transaction has proceeded without
further interaction with the outside world. Each activity has been started
automatically by CICS business transaction services, following the completion of its
predecessor.

In practice, many business transactions require some sort of interaction with things
external to themselves. For example, most business transactions include activities
that require human involvement. (Such activities are known as user-related
activities. They cannot be started automatically by BTS, because they rely on the
user being ready to process the work.) Other examples of external interactions are
dependencies on input from the World Wide Web or from MQ queues.

To permit interaction with the outside world, BTS allows a program executing
outside a process to acquire access to an activity within the process. This means,
for example, that CICS transactions can:

Use BTS processes as servers
A client transaction outside a process can “acquire” the root activity of the
process. This enables it to pass business data to the process in the process or
root activity’s containers. The transaction does not become part of the
process—rather, it is able to activate the process and use it as a server.

Acquire BTS activities
A transaction outside a process can acquire a descendant activity within the
process. Acquiring the activity gives the transaction access to the activity’s
containers, and allows it to activate the activity.

Both these examples use input events to signify that a process or activity requires
some external interaction to take place before it can complete.

Acquiring processes and activities
Before a program executing outside a process can activate an activity within the
process, it must acquire access to the activity. Acquiring an activity enables the
program to:
v Read and write to the activity’s containers
v Issue various commands, including RUN and LINK, against the activity.6

To gain access to an activity from outside the process that contains it, you use the
ACQUIRE command. An activity that a program accesses by means of an
ACQUIRE command is known as an acquired activity.

6. If the acquired activity is a root activity, against the process.

© Copyright IBM Corp. 1999, 2010 57

There are two forms of the ACQUIRE command:

ACQUIRE ACTIVITYID
Acquires the specified descendant (non-root) activity.

ACQUIRE PROCESS
Acquires the root activity of the specified process.

Note: When a program defines a process, it is automatically given access to
the process’s root activity. (This enables the defining program to access
the process containers and root activity containers before running the
process.) When a program gains access to a root activity by means of
either a DEFINE PROCESS or an ACQUIRE PROCESS command, the
process is known as the acquired process.

For definitive information about the ACQUIRE command, see the CICS Application
Programming Reference.

Some rules
1. A program can acquire only one activity within the same unit of work. The

activity remains acquired until the next syncpoint. This means, for example, that
a program:

v Cannot issue both a DEFINE PROCESS and an ACQUIRE PROCESS
command within the same unit of work.

v Cannot issue both an ACQUIRE PROCESS and an ACQUIRE ACTIVITYID
command within the same unit of work. That is, it can acquire either a
descendant activity or a root activity, not one of each.

2. If a program is executing as an activation of an activity, it cannot:

v Acquire an activity in the same process as itself. It cannot, for example, issue
ACQUIRE PROCESS for the current process.

v Use a LINK command to activate the activity that it has acquired.

3. An acquired activity’s process is accessible in the same way as the activity itself
can access it. Thus, if the acquired activity is a descendant activity:

v Its process’s containers may be read but not updated.

v The process may not be the subject of any command—such as RUN, LINK,
SUSPEND, RESUME, or RESET—that directly manipulates the process or its
root activity.

Conversely, if the acquired activity is a root activity:

v Its process’s containers may be both read and updated.

v The process may be the subject of commands such as RUN, LINK,
SUSPEND, RESUME, or RESET. The ACQPROCESS keyword on the
command identifies the subject process as the one the program that issues
the command has acquired in the current unit of work.

Using client/server processing
CICS business transaction services support client/server processing. A server
process is one that is typically waiting for work. When work arrives, BTS restarts
the process, which retrieves any state data that it has previously saved.

Typically, the client invokes the server with a named input event, and sends it some
input data in a data-container. From these inputs, the server determines what
actions it needs to take. It returns any output for the client in a data-container.

external interactions

58 CICS TS for z/OS: CICS Business Transaction Services

When the client has dealt with any output returned by the server, it releases the
server process. Releasing the server means that its in-memory instance is freed. At
this point, the server process is maintained only by BTS.

A client/server example
The client/server example in this section shows:

1. A client program initiating a server process and calling it with some work to do.

2. The server defining some input events for which it may be reinvoked; then
performing some work and returning output to the client.

3. After dealing with the output returned by the server, the client releasing the
in-memory instance of the server.

4. The client reacquiring the server process and requesting it to run again.

5. The server process determining the input event that caused it to be reinvoked,
and retrieving some state data that it saved when it last ran; then performing
some work and returning output to the client.

6. Eventually, the client telling the server to shut down, and the server responding
to this event by indicating that it should not be reinvoked.

The client program
Figure 19 shows, in COBOL pseudocode, the example client program, PRG001.

Identification Division.
Program-id. PRG001.
Environment Division.
Data Division.
Working-Storage Section.
01 RC pic s9(8) comp.
01 Unique-Reference pic x(36) value low-values.

.
01 Process-Type pic x(8) value ’Servers’.

.
01 Event-Name pic x(16) value low-values.

.
01 Work-Buffer.

.
01 Work-request Pic x.

88 Work-New value ’N’.
88 Work-Continue value ’C’.
88 Work-End value ’E’.

Linkage Section.
01 DFHEIBLK.

.
01 DFHCOMMAREA.

.

.

Figure 19. Example client program, PRG001 (Part 1 of 3)

client/server processing

Chapter 7. Interacting with BTS processes and activities 59

Procedure Division using DFHEIBLK DFHCOMMAREA.
In-The-Beginning.

.
EXEC CICS SEND ...

RESP(data-area) END-EXEC
.
EXEC CICS RECEIVE ...

RESP(data-area) END-EXEC
.
Move ..unique.. TO Unique-Reference
Move ..request.. TO Work-Request
.
Evaluate True

When Work-New
Perform New-Process

When Work-Continue
Move ’SRV-WORK’ TO Event-Name
Perform Existing-Process

When Work-End
Move ’SRV-SHUTDOWN’ TO Event-Name
Perform Existing-Process

When Other
.

End Evaluate.

.
EXEC CICS GET CONTAINER(’Server-Out’)

ACQPROCESS INTO(Work-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS SEND ...

RESP(data-area) END-EXEC
.
EXEC CICS RETURN END-EXEC
.

New-Process.
.
EXEC CICS DEFINE PROCESS(Unique-Reference) PROCESSTYPE(Process-Type)

TRANSID(’SERV’)
PROGRAM(’SRV001’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(’Server-In’)

ACQPROCESS FROM(Work-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACQPROCESS

SYNCHRONOUS
RESP(RC) RESP2(data-area) END-EXEC

.

Figure 19. Example client program, PRG001 (Part 2 of 3)

client/server processing

60 CICS TS for z/OS: CICS Business Transaction Services

First, PRG001 determines if this is the first time the server is to be called. If it is, it
establishes a unique name for this instance of the server process. Then it creates
the server process by issuing an DEFINE PROCESS command with that unique
name. PRG001 provides some input data for the server in a data-container named
Server-In:

EXEC CICS PUT CONTAINER(’Server-In’)
ACQPROCESS FROM(Work-Buffer)

RESP(data-area) RESP2(data-area) END-EXEC

The ACQPROCESS option associates the Server-In container with the process that
PRG001 has “acquired”. A program “acquires” access to a process in one of two
ways: either, as here, by defining it; or, if the process has already been defined, by
issuing an ACQUIRE PROCESS command.

Having created the server process, PRG001 issues a request to run it
synchronously. The RUN ACQPROCESS command causes the currently-acquired
process to be activated. Because RUN ACQPROCESS rather than LINK
ACQPROCESS is used, the server process is run in a separate unit of work from
that of the client. PRG001 waits for the server to run, and then retrieves any data
returned from a data-container named Server-Out.

PRG001 has now temporarily finished using the server process; the implicit
syncpoint at RETURN causes it to be released.

To use this instance of the server again, PRG001 must first acquire access to the
correct process. It does this by issuing an ACQUIRE PROCESS command which
specifies the unique combination of the process’s name and process-type:

EXEC CICS ACQUIRE PROCESS(Unique-Reference) PROCESSTYPE(Process-Type)
RESP(data-area) RESP2(data-area) END-EXEC

Once again, PRG001 provides input data for the server in a data-container named
Server-In, and requests the process to be run:

EXEC CICS RUN ACQPROCESS
SYNCHRONOUS
INPUTEVENT(Event-Name)

RESP(RC) RESP2(data-area) END-EXEC

PRG001 uses the INPUTEVENT option of the RUN command to tell the server why
it has been invoked—in this case, it is for SRV-WORK. (The server must have
defined an input event of that name.)

Existing-Process.
.
EXEC CICS ACQUIRE PROCESS(Unique-Reference) PROCESSTYPE(Process-Type)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(’Server-In’)

ACQPROCESS FROM(Work-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACQPROCESS

SYNCHRONOUS
INPUTEVENT(Event-Name)

RESP(RC) RESP2(data-area) END-EXEC
.

End Program.

Figure 19. Example client program, PRG001 (Part 3 of 3)

client/server processing

Chapter 7. Interacting with BTS processes and activities 61

Again, PRG001 waits for the process to complete, retrieves any returned data, and
releases the process.

Eventually, PRG001 tells the server to shut down by invoking it with an event of
SRV-SHUTDOWN.

The server program
Figure 20 shows, in COBOL pseudocode, the example server program, SRV001.

Identification Division.
Program-id. SRV001.
Environment Division.
Data Division.
Working-Storage Section.
01 Event-Name pic x(16).

88 DFH-Initial value ’DFHINITIAL’.
88 SRV-Request value ’SRV-REQUEST’.

01 Sub-Event-Name pic x(16).
88 SRV-Work value ’SRV-WORK’.
88 SRV-Shutdown value ’SRV-SHUTDOWN’.

01 Input-Buffer.
.

01 Output-Buffer.
.

01 State-Buffer.
.

Linkage Section.
01 DFHEIBLK.

.
Procedure Division.
Begin-Process.

.
EXEC CICS RETRIEVE REATTACH EVENT(Event-Name)

RESP(data-area) RESP2(data-area) END-EXEC
.

Evaluate True
When DFH-Initial

Perform Initial-Request
Perform Server-work

When SRV-Request
Perform Server-Event

When Other
.

End Evaluate.
.

EXEC CICS RETURN END-EXEC
.

Figure 20. Example server program, SRV001 (Part 1 of 3)

client/server processing

62 CICS TS for z/OS: CICS Business Transaction Services

Server-Event.
.

EXEC CICS RETRIEVE SUBEVENT(Sub-Event-Name) EVENT(Event-Name)
RESP(data-area) RESP2(data-area) END-EXEC

.
Evaluate True

When SRV-Work
Perform Server-Work

When SRV-Shutdown
Perform Server-Shutdown

When Other
.

End Evaluate.
.

Initial-Request.
.
EXEC CICS DEFINE INPUT EVENT(’SRV-WORK’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS DEFINE INPUT EVENT(’SRV-SHUTDOWN’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS DEFINE COMPOSITE EVENT(’SRV-REQUEST’) OR

SUBEVENT1(’SRV-WORK’)
SUBEVENT2(’SRV-SHUTDOWN’)

RESP(data-area) RESP2(data-area) END-EXEC
.
Server-Work.
.
EXEC CICS GET CONTAINER(’Server-In’) INTO(Input-Buffer)

RESP(data-area) RESP2(data-area) END-EXEC
.
If DFH-Initial

EXEC CICS DEFINE ACTIVITY(’Work’)
TRANSID(’SWRK’)
PROGRAM(’PRG002’)

RESP(data-area) RESP2(data-area) END-EXEC
.

Else
EXEC CICS GET CONTAINER(’Previous-State’) INTO(State-Buffer)

RESP(data-area) RESP2(data-area) END-EXEC
.

End-If.
.
EXEC CICS PUT CONTAINER(’Work-Input’)

ACTIVITY(’Work’) FROM(Input-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Work’)

SYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

Figure 20. Example server program, SRV001 (Part 2 of 3)

client/server processing

Chapter 7. Interacting with BTS processes and activities 63

The server program, SRV001, first issues a RETRIEVE REATTACH EVENT
command to determine the reason for its invocation. On its first invocation, the
event returned is DFHINITIAL, which tells SRV001 to perform any initial
housekeeping. SRV001’s housekeeping includes defining two input events for which
it could subsequently be reinvoked:

EXEC CICS DEFINE INPUT EVENT(’SRV-WORK’)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS DEFINE INPUT EVENT(’SRV-SHUTDOWN’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS DEFINE COMPOSITE EVENT(’SRV-REQUEST’) OR

SUBEVENT1(’SRV-WORK’)
SUBEVENT2(’SRV-SHUTDOWN’)

RESP(data-area) RESP2(data-area) END-EXEC
.

The DEFINE COMPOSITE EVENT command defines a third, composite, event
(SRV-REQUEST), and adds the two input events to it. Because the composite
event uses the OR Boolean operator, it will fire when either of the two input events
fires; SRV001 will be reattached.

SRV001 obtains its input data from a data-container named Server-In. It then
performs the work activity Work.

EXEC CICS CHECK ACTIVITY(’Work’) COMPSTATUS(status)
RESP(RC) RESP2(data-area) END-EXEC

.
If RC NOT = DFHRESP(NORMAL)

.
End-If.
.
If status NOT = DFHVALUE(NORMAL)

.
End-If.
.
EXEC CICS GET CONTAINER(’Work-Output’)

ACTIVITY(’Work’) INTO(Output-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS PUT CONTAINER(’Previous-State’) FROM(State-Buffer)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(’Server-Output’) FROM(Output-Buffer)

RESP(data-area) RESP2(data-area) END-EXEC
.

Server-Shutdown.
EXEC CICS DELETE EVENT(’SRV-WORK’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS DELETE EVENT(’SRV-SHUTDOWN’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS DELETE EVENT(’SRV-REQUEST’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS RETURN ENDACTIVITY

RESP(data-area) RESP2(data-area) END-EXEC
End Program.

Figure 20. Example server program, SRV001 (Part 3 of 3)

client/server processing

64 CICS TS for z/OS: CICS Business Transaction Services

When the work activity has completed, SRV001 saves some state data for the next
time it is run, and returns the output data produced by the work activity to the client
program in a data-container named Server-Output.

On subsequent invocations, SRV001 determines that it has been invoked to
perform work. (The RETRIEVE REATTACH EVENT command returns the
composite event SRV-REQUEST, and a RETRIEVE SUBEVENT command with an
event-name of SRV-REQUEST returns the sub-event SRV-WORK.)

Eventually, the RETRIEVE SUBEVENT command returns the sub-event
SRV-SHUTDOWN, and SRV001 responds by ending the server process. First it
deletes the user events that it has defined, then issues an EXEC CICS RETURN
ENDACTIVITY command to indicate that it has completed all its processing.

Acquiring an activity
Imagine a particular activity’s processing to be organized in two activations. The first
activation sets up the environment. The second activation is started when a defined
external interaction occurs.

To set up the environment to enable the second activation to take place, the first
activation must:

1. Define an input event that depicts the external interaction. The activity cannot
now complete until this input event has been dealt with.

2. Obtain an activity identifier that uniquely identifies this activity-instance. To do
this, it issues an ASSIGN command.

The transaction that will start the second activation must use this identifier to
gain access to the activity.

3. Save details of the activity identifier and input event to a suitable medium (for
example, a VSAM file or MQ queue) to which the transaction that will start the
second activation has access.

4. Return without completing. (That is, issue an EXEC CICS RETURN command
on which the ENDACTIVITY option is omitted. Because of the user event in its
event pool—the input event that it has defined—the activity does not complete
but becomes dormant.)

When the external interaction occurs—for example, a clerk enters some data at a
terminal—the transaction that will start the second activation of the activity is
invoked. This transaction must:

1. Retrieve the activity identifier and input event

2. Gain access to the activity—by issuing an ACQUIRE ACTIVITYID command that
specifies the activity identifier.

3. Re-activate the activity, and tell it why it is being activated—by issuing a RUN
ACQACTIVITY command that specifies the input event.

Figure 21 on page 66 shows an activity that interacts with the outside world. The
first activation sets up the environment, saves details of the activity identifier and
input event to a VSAM file, and returns without completing. Some time later, a user
starts the SPAR transaction from a terminal. The SPAR transaction retrieves the
activity identifier and input event, issues an ACQUIRE ACTIVITYID command to
gain access to the activity, supplies the activity with some input data, and
re-activates it.

client/server processing

Chapter 7. Interacting with BTS processes and activities 65

A user-related example
The Sale example application described in Chapter 4, “The Sale example
application,” on page 31 assumed that none of its later activities required human
involvement. (The only child activity to require human involvement was the first
(Order), and this was included as part of the initial terminal request to start the new
business transaction.)

To demonstrate user-related activities, this section changes the logic and process
flow of the Sale business transaction. Now, instead of the Invoice activity being
started automatically after the Delivery activity has completed, it is not started until
a user has notified the Sale transaction that the delivery has actually taken place. In
addition, the Payment activity requires user input.

Data flow
Figure 22 on page 67 shows data flows in the Sale example application when the
user actions described above are included.

SPAR

Pending
File

Activity Id

Input event

SPAR transaction

READ FILE(pending)

ACQUIRE ACTIVITYID(act-id)
.
PUT CONTAINER(in-con)

ACQACTIVITY FROM(in-area)
.
RUN ACQACTIVITY

INPUTEVENT(in-evnt)
.
.
.
.
EXEC CICS RETURN

.

.
Activity

.
Initial-Request
.
DEFINE INPUT EVENT (in-evnt)
.
ASSIGN ACTIVITYID(act-id)
.
WRITE FILE (pending)
.
EXEC CICS RETURN
.
.
Do-Work
.
.
EXEC CICS RETURN ENDACTIVITY

Process

Figure 21. Acquiring an activity. On its initial activation, the activity sets up the environment and returns without
completing. Some time later, the SPAR transaction is started from a terminal; it retrieves the activity identifier and input
event, issues an ACQUIRE ACTIVITYID command to gain access to the activity, and re-activates it.

acquiring an activity

66 CICS TS for z/OS: CICS Business Transaction Services

1. User data collected after the user selects the Sale menu option is used as input
to the Order activity.

2. The user data collected by the Order activity is used as input to the Delivery
activity.

3. The output data produced by the Delivery activity is used as input to the
Confirm activity.

4. The output produced by the Confirm activity (which requires user input) is used
as input to the Invoice activity.

5. The output produced by the Invoice activity is used as input to the Payment
activity.

The root activity
Figure 23 on page 68 shows, in COBOL pseudocode, the Sale root activity, with
modifications for user-related activities. The changes are in bold text.

Menu

Order

Delivery

Confirm

Invoice

Payment

User input

User input

User input

User input

Output Data

Input Data

Output Data

Input Data

Output Data

Input Data

Output Data

Input Data

Output Data

Input Data

‘Sale’ business
transaction

five
comprising

child
activities

Figure 22. Data flow in the Sale example application, showing user-related activities. (The
root activity is not shown.) Changes from the basic Sale example described in Chapter 4 are
shown in bold.

acquiring an activity

Chapter 7. Interacting with BTS processes and activities 67

Identification Division.
Program-id. SAL002.
Environment Division.
Data Division.
Working-Storage Section.
01 RC pic s9(8) comp.
01 Process-Name pic x(36).
01 Event-Name pic x(16).

88 DFH-Initial value ’DFHINITIAL’
88 Delivery-Complete value ’Delivry-Complete’.
88 Delivery-Confirmed value ’Delivry-Confirmd’.
88 Invoice-Complete value ’Invoice-Complete’.
88 Payment-Complete value ’Payment-Complete’.

01 Sale-Container pic x(16) value ’Sale’.
01 Order-Container pic x(16) value ’Order’.
01 Order-Buffer pic x(..).
01 Delivery-Container pic x(16) value ’Delivery’.
01 Delivery-Buffer pic x(..).
01 Confirm-Container pic x(16) value ’Confirm’.
01 Confirm-Buffer pic x(..).
01 Invoice-Container pic x(16) value ’Invoice’.
01 Invoice-Buffer pic x(..).
Linkage Section.
01 DFHEIBLK.

.
Procedure Division.
Begin-Process.

.
EXEC CICS RETRIEVE REATTACH EVENT(Event-Name)

RESP(RC) END-EXEC
.

If RC NOT = DFHRESP(NORMAL)
.

End-If.
.

Evaluate True
When DFH-Initial

Perform Initial-Activity
Perform Order-Activity
Perform Order-Response
Perform Delivery-Activity

When Delivery-Complete
Perform Delivery-Response
Perform Delivery-Confirmation

When Delivery-Confirmed
Perform Confirm-Response
Perform Invoice-Activity

When Invoice-Complete
Perform Invoice-Response
Perform Payment-Activity

Figure 23. The SAL002 root activity program, with user-related modifications highlighted (Part
1 of 5)

acquiring an activity

68 CICS TS for z/OS: CICS Business Transaction Services

When Payment-Complete
Perform Payment-Response
Perform End-Process

When Other
.

End Evaluate.
.

EXEC CICS RETURN END-EXEC
.

Initial-Activity.
.
EXEC CICS ASSIGN PROCESS(Process-Name)

RESP(data-area) RESP2(data-area) END-EXEC
.

Order-Activity.
.
EXEC CICS DEFINE ACTIVITY(’Order’)

TRANSID(’SORD’)
PROGRAM(’ORD001’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(Sale-Container)

ACTIVITY(’Order’) FROM(Process-Name)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS LINK ACTIVITY(’Order’)

RESP(data-area) RESP2(data-area) END-EXEC
.

Order-Response.
.
EXEC CICS CHECK ACTIVITY(’Order’) COMPSTATUS(status)

RESP(RC) RESP2(data-area) END-EXEC
.
If RC NOT = DFHRESP(NORMAL)

.
End-If.
.
If status NOT = DFHVALUE(NORMAL)

.
End-If.
.
.

Delivery-Activity.
.
EXEC CICS DEFINE ACTIVITY(’Delivery’)

TRANSID(’SDEL’)
EVENT(’Delivry-Complete’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS GET CONTAINER(Order-Container)

ACTIVITY(’Order’) INTO(Order-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS PUT CONTAINER(Order-Container)

ACTIVITY(’Delivery’) FROM(Order-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.

Figure 23. The SAL002 root activity program, with user-related modifications highlighted (Part
2 of 5)

acquiring an activity

Chapter 7. Interacting with BTS processes and activities 69

EXEC CICS RUN ACTIVITY(’Delivery’)
ASYNCHRONOUS

RESP(data-area) RESP2(data-area) END-EXEC
.

Delivery-Response.
.
EXEC CICS CHECK ACTIVITY(’Delivery’) COMPSTATUS(status)

RESP(RC) RESP2(data-area) END-EXEC
.
If RC NOT = DFHRESP(NORMAL)

.
End-If.
.
If status NOT = DFHVALUE(NORMAL)

.
End-If.
.
.

Delivery-Confirmation.
.
EXEC CICS DEFINE ACTIVITY(’Confirm’)

TRANSID(’SCON’)
PROGRAM(’CON001’)
EVENT(’Delivry-Confirmd’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS GET CONTAINER(Delivery-Container)

ACTIVITY(’Delivery’) INTO(Delivery-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS PUT CONTAINER(Delivery-Container)

ACTIVITY(’Confirm’) FROM(Delivery-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Confirm’)

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.
Confirm-Response.

.
EXEC CICS CHECK ACTIVITY(’Confirm’) COMPSTATUS(status)

RESP(RC) RESP2(data-area) END-EXEC
.
If RC NOT = DFHRESP(NORMAL)

.
End-If.
.
If status NOT = DFHVALUE(NORMAL)

.
End-If.
.
.

Invoice-Activity.
.
EXEC CICS DEFINE ACTIVITY(’Invoice’)

TRANSID(’SINV’)
EVENT(’Invoice-Complete’)

RESP(data-area) RESP2(data-area) END-EXEC
.

Figure 23. The SAL002 root activity program, with user-related modifications highlighted (Part
3 of 5)

acquiring an activity

70 CICS TS for z/OS: CICS Business Transaction Services

EXEC CICS GET CONTAINER(Confirm-Container)
ACTIVITY(’Confirm’) INTO(Confirm-Buffer)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(Confirm-Container)

ACTIVITY(’Invoice’) FROM(Confirm-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Invoice’)

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.
Invoice-Response.

.
EXEC CICS CHECK ACTIVITY(’Invoice’) COMPSTATUS(status)

RESP(RC) RESP2(data-area) END-EXEC
.
If RC NOT = DFHRESP(NORMAL)

.
End-If.
.
If status NOT = DFHVALUE(NORMAL)

.
End-If.
.
.

Payment-Activity.
.
EXEC CICS DEFINE ACTIVITY(’Payment’)

TRANSID(’SPAY’)
EVENT(’Payment-Complete’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS GET CONTAINER(Invoice-Container)

ACTIVITY(’Invoice’) INTO(Invoice-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS PUT CONTAINER(Invoice-Container)

ACTIVITY(’Payment’) FROM(Invoice-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Payment’)

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.
Payment-Response.

.
EXEC CICS CHECK ACTIVITY(’Payment’) COMPSTATUS(status)

RESP(RC) RESP2(data-area) END-EXEC
.
If RC NOT = DFHRESP(NORMAL)

.
End-If.
.
If status NOT = DFHVALUE(NORMAL)

.
End-If.
.
.

Figure 23. The SAL002 root activity program, with user-related modifications highlighted (Part
4 of 5)

acquiring an activity

Chapter 7. Interacting with BTS processes and activities 71

The main change to SAL002 is to introduce a new Confirm activity. The purpose of
the Confirm activity is to confirm that delivery has taken place, before the Invoice
activity is started. Confirmation requires user input. The following pseudocode
creates the Confirm activity:
Delivery-Confirmation.

.
EXEC CICS DEFINE ACTIVITY(’Confirm’)

TRANSID(’SCON’)
EVENT(’Delivry-Confirmd’)

RESP(data-area) RESP2(data-area) END-EXEC
.

Because the Confirm activity will be executed asynchronously with the root activity,
the EVENT option of DEFINE ACTIVITY is used to name the activity’s completion
event as Delivry-Confirmd. CICS will reattach SAL002 when this event fires—that is,
when the Confirm activity completes.

SAL002 places the input data for the Confirm activity into a data-container named
Delivery, and issues the RUN command:

EXEC CICS GET CONTAINER(Delivery-Container)
ACTIVITY(’Delivery’) INTO(Delivery-Buffer)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(Delivery-Container)

ACTIVITY(’Confirm’) FROM(Delivery-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Confirm’)

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

Now SAL002 terminates, returning control to CICS. BTS will reattach the root
activity only when the Confirm activity has completed.

Implementation of a user-related activity
The Confirm activity is used to notify the Sale business transaction that actual
delivery has taken place. Figure 24 on page 73 shows, in COBOL pseudocode, how
program CON001 implements the Confirm user-related activity.

End-Process.
.
EXEC CICS RETURN ENDACTIVITY

RESP(data-area) RESP2(data-area) END-EXEC
End Program.

Figure 23. The SAL002 root activity program, with user-related modifications highlighted (Part
5 of 5)

acquiring an activity

72 CICS TS for z/OS: CICS Business Transaction Services

Identification Division.
Program-id. CON001
Environment Division.
Data Division.
Working-Storage Section.
01 RC pic s9(8) comp.
01 Event-Name pic x(16).

88 DFH-Initial value ’DFHINITIAL’
88 User-Ready value ’User-Ready’.

01 Data-Record.
03 User-Reference pic x(60).
03 Act-Id pic x(52).
03 Usr-Event pic x(16).

01 Data-Record-Len pic s9(8) comp.
.

01 Delivery-Container pic x(16) value ’Delivery’.
01 User-Container pic x(16) value ’User’.
01 Confirm-Container pic x(16) value ’Confirm’.
01 Delivery-Details.

03 Deliv-Details ..
03 User-Details ..
.

Linkage Section.
01 DFHEIBLK.

.
Procedure Division.
In-The-Beginning.

.
EXEC CICS RETRIEVE REATTACH EVENT(Event-Name)

RESP(RC) END-EXEC
.

If RC NOT = DFHRESP(NORMAL)
.

End-If.
.

Evaluate True
When DFH-Initial

Perform Initialization
When User-Ready

Perform Do-Work
When Other

.
End Evaluate.

.
EXEC CICS RETURN END-EXEC
.

Initialization.
.
EXEC CICS DEFINE INPUT EVENT(User-Ready)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS ASSIGN ACTIVITYID(Act-Id)

RESP(data-area) RESP2(data-area) END-EXEC
.
MOVE User-Ready TO Usr-Event
MOVE LENGTH OF Data-Record TO Data-Record-Len
.

Figure 24. Pseudocode for the CON001 program, that implements the Confirm activity (Part 1
of 2)

acquiring an activity

Chapter 7. Interacting with BTS processes and activities 73

The initial activation of the Confirm activity: The Confirm activity is activated
for the first time after SAL002 issues the RUN ACTIVITY command. On this initial
activation, CON001:

1. Defines an input event for which the activity may subsequently be activated.

2. Obtains the activity identifier which uniquely identifies this activity-instance.

3. Saves the name of the input event and the activity identifier in a pending file.
The record in the pending file is given a key—which could, for instance, be the
customer reference number which has been used throughout to identify this
instance of the Sale business transaction.

4. Returns without completing.

EXEC CICS WRITE FILE(’PENDING’)
FROM(Data-Record) LENGTH(Data-Record-Len)
RIDFLD(User-Reference)

RESP(data-area) RESP2(data-area) END-EXEC
.

Do-Work.
.
Merge contents of two input data-containers into Delivery-Details
.
EXEC CICS GET CONTAINER(Delivery-Container)

INTO(Deliv-Details)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS GET CONTAINER(User-Container)

INTO(User-Details)
RESP(data-area) RESP2(data-area) END-EXEC

.
Set up the output data-container
.
EXEC CICS PUT CONTAINER(Confirm-Container)

FROM(Delivery-Details)
RESP(data-area) RESP2(data-area) END-EXEC

.
Clean up
.
EXEC CICS DELETE FILE(’PENDING’) RIDFLD(User-Reference)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS DELETE EVENT(User-Ready)

RESP(data-area) RESP2(data-area) END-EXEC
.
End the activity
.
EXEC CICS RETURN ENDACTIVITY

RESP(data-area) END-EXEC
.

End Program.

Figure 24. Pseudocode for the CON001 program, that implements the Confirm activity (Part 2
of 2)

acquiring an activity

74 CICS TS for z/OS: CICS Business Transaction Services

Initialization.
.
EXEC CICS DEFINE INPUT EVENT(User-Ready)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS ASSIGN ACTIVITYID(Act-Id)

RESP(data-area) RESP2(data-area) END-EXEC
.
MOVE User-Ready TO Usr-Event
MOVE LENGTH OF Data-Record TO Data-Record-Len
.
EXEC CICS WRITE FILE(’PENDING’)

FROM(Data-Record) LENGTH(Data-Record-Len)
RIDFLD(User-Reference)

RESP(data-area) RESP2(data-area) END-EXEC
.

The USRX user transaction: When the user is ready to confirm delivery, he or
she invokes the USRX user-written transaction, which starts the USRCON program.
USRCON executes outside the BTS environment—it is not part of the SAL001
process that contains the Confirm activity. Figure 25 shows, in COBOL pseudocode,
the USRCON program.

Identification Division.
Program-id. USRCON.
Environment Division.
Data Division.
Working-Storage Section.
01 Pending-Record.

03 User-Reference pic x(60).
03 Act-Id pic x(52).
03 Usr-Event pic x(16).
.

01 User-Container pic x(16) value ’User’.
01 Confirmation-Details.

03 ..
.

Linkage Section.
01 DFHEIBLK.

.
01 DFHCOMMAREA.

.

Figure 25. Pseudocode for the USRCON program, that implements the USRX transaction
(Part 1 of 2)

acquiring an activity

Chapter 7. Interacting with BTS processes and activities 75

First, USRCON sends a map to the user’s screen and requests a unique reference.
This must be the same as the key used by the CON001 program. It might be the
customer reference or account number that has been used throughout to identify
this instance of the Sale business transaction. However, it may need to be more
specific than this. This would be the case if, for example:
v The Sale business transaction has more than one user-related activity.
v The user-related activity has defined more than one input event.

Using the unique reference, USRCON selects the appropriate record from the
pending file. It then uses the value of Act-Id to acquire access to the Confirm
activity for the SAL001 instance of the Sale business transaction:

EXEC CICS ACQUIRE ACTIVITYID(Act-Id)
RESP(data-area) RESP2(data-area) END-EXEC

If the ACQUIRE command is successful, USRCON has access to the Confirm
activity’s containers. USRCON creates a new data-container for the Confirm activity
(User), and puts some confirmation details into it:

Procedure Division using DFHEIBLK DFHCOMMAREA.
In-The-Beginning.

.
EXEC CICS SEND MAP(’......’) MAPSET(’......’) ...
.
EXEC CICS RECEIVE MAP(’......’) MAPSET(’......) ..
.
Move ..unique.. to User-Reference.
.
EXEC CICS READ FILE(’PENDING’)

INTO(Pending-Record) RIDFLD(User-Reference)
RESP(data-area) RESP2(data-area) END-EXEC

.

. Acquire access to the Confirm activity of the SAL001 process

.
EXEC CICS ACQUIRE ACTIVITYID(Act-Id)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(User-Container)

ACQACTIVITY
FROM(Confirmation-Details)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS RUN ACQACTIVITY

INPUTEVENT(Usr-Event)
SYNCHRONOUS

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS CHECK ACQACTIVITY COMPSTATUS(status)

RESP(RC) RESP2(data-area) END-EXEC
.
If RC NOT = DFHRESP(NORMAL)

.
End-If.
.
If status NOT = DFHVALUE(NORMAL)

.
End-If.
.
EXEC CICS RETURN

RESP(data-area) END-EXEC
.

End Program.

Figure 25. Pseudocode for the USRCON program, that implements the USRX transaction
(Part 2 of 2)

acquiring an activity

76 CICS TS for z/OS: CICS Business Transaction Services

EXEC CICS PUT CONTAINER(User-Container)
ACQACTIVITY
FROM(Confirmation-Details)

RESP(data-area) RESP2(data-area) END-EXEC

The ACQACTIVITY option associates the new User container with the activity that
USERCON has acquired.

Finally, USERCON re-activates the Confirm activity, checks whether it completes
successfully, and ends:

.
EXEC CICS RUN ACQACTIVITY

INPUTEVENT(Usr-Event)
SYNCHRONOUS

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS CHECK ACQACTIVITY COMPSTATUS(status)

RESP(RC) RESP2(data-area) END-EXEC
.
EXEC CICS RETURN

RESP(data-area) END-EXEC
.

The value of the INPUTEVENT option of the RUN command is the name of the
input event previously defined by the Confirm activity. Note that although USRCON
can check whether the activity it has acquired completes successfully, the execution
of the CHECK ACQACTIVITY command does not cause CICS to delete the Confirm
activity’s completion event. CICS deletes a completed activity’s completion event
only after the execution of a CHECK ACTIVITY command issued by the activity’s
parent.

The second activation of the Confirm activity: The Confirm activity is activated
for a second, and final, time due to the RUN ACQACTIVITY command issued by
USRCON. On its second activation, CON001:

1. Establishes why it has been invoked.

2. Merges the contents of the two input data-containers, Delivery and User,
supplied by SAL002 and USRCON respectively.

3. Stores the updated delivery details into the Confirm activity’s output
data-container (Confirm).

See Figure 24 on page 73. Finally, CON001 does some clean-up work. It:

1. Deletes the entry from the pending file.

2. Deletes the input event defined on its previous invocation. (This is not strictly
necessary, because the event would be deleted automatically by CICS on the
execution of the RETURN ENDACTIVITY command that follows.)

3. Issues an EXEC CICS RETURN ENDACTIVITY command to indicate that its
processing is complete; the Confirm activity’s completion event
(Delivry-Confirmed) is fired.

CICS notes completion of the Confirm activity and reattaches the root activity,
because of the firing of the Delivry-Confirmd completion event defined by SAL002.
After the execution of the CHECK ACTIVITY command issued by SAL002, CICS
deletes the Confirm activity’s completion event.

acquiring an activity

Chapter 7. Interacting with BTS processes and activities 77

Transferring data to asynchronous activations
There are a number of ways in which your applications can handle the transfer of
data to and from activities that are run asynchronously with the requestor. In the
simplest case, a single data-container may be used for both input and output data.
If the activity will be activated only once, this presents no problems. Perhaps
separate containers are used, one for input and one for output data. Again, if the
activity will be activated only once, this presents no problems. However, if the
activity may be activated, asynchronously, multiple times, you must take care that
the contents of containers are not over-written inadvertently. You should take
particular care when designing client/server applications, and applications which
involve activities being acquired and run multiple times by transactions external to
their parent process.

If an application chooses to run a server process or an acquired activity
asynchronously, it needs to be aware of the state of the activity being activated. In
the normal case, the activity is dormant—awaiting the activation and ready to
perform its function. The activation occurs almost immediately, the activity program
executes and places any results in a container. In a client/server application, the
activity may then be left dormant, ready for the next request. If the activation is
triggered by an external interaction, it’s likely that the activity will complete; the firing
of its completion event causes its parent to be reactivated.

However, you should take account of the fact that, when the RUN
ASYNCHRONOUS command is executed, the target activity may not be dormant,
waiting for work—it may be in any of the other possible processing modes, or it
could be suspended. If, for example, the target activity has been suspended, the
asynchronous activation will not happen immediately. Thus, in a client/server
application, it’s possible for the client program to issue a request to the server
before a previous request has been serviced. You should be aware of these
possibilities when designing your applications. If, for example, the protocol between
a client program and its server activity relies on a single container for passing data,
the client needs to check that the container is not occupied by a previous request
before issuing subsequent requests. Another solution would be for the client to use
multiple containers to form a queue of requests for the server activity; the
containers could be named sequentially.

acquiring an activity

78 CICS TS for z/OS: CICS Business Transaction Services

Chapter 8. Compensation in BTS

If a single CICS transaction fails, any uncommitted changes that it has made to
recoverable resources are automatically backed out by the CICS recovery manager.
However, as we have already noted, it is usually not practicable for a business
transaction to be implemented as a single CICS transaction, due to the high rate of
transaction abends and performance degradation that would result from holding
locks for long periods. Instead, using CICS business transaction services, each part
of a business transaction is implemented as a separate BTS activity, consisting of
one or more CICS transactions. If an activity fails, the actions taken by preceding
activities may need to be reversed, or possibly modified. Similarly, if application
logic determines that the business transaction should be terminated, changes made
by activities that have already completed may need to be reversed.

Modifying the actions of completed activities is called compensation.

Implementing compensation
Compensation is the act of modifying (“compensating for”) the effects of a
completed activity. How compensation is implemented is decided by the designer of
the business transaction. Often, compensating for an activity means undoing the
actions that it took—for example, compensation for accepting an order might be to
cancel the order.

Compensation of an activity is always controlled and instigated by the activity’s
parent. 7

Here are two ways in which you could implement compensation of a completed
child activity.

1. Re-run the activity.

To do this, you must first issue a RESET ACTIVITY command, to reset the
activity to its initial state. You must then tell the activity that it is being invoked to
perform compensation; you could do this by placing a flag in an input
data-container. (Note that you cannot use the INPUTEVENT option of the RUN
command to tell the activity why it is being invoked; specifying INPUTEVENT is
invalid when an activity is in its initial state.)

In this method, the program used for compensation (the compensation
program) is the same program used for normal (forward) execution of the
activity.

2. Define and run a new, compensation, activity.

This is the more straightforward method. You could use a PUT CONTAINER
command to provide the compensation activity with the same input data that
was passed to the activity for which it compensates.

In this method, the program used for compensation is likely to be different from
that used for the execution of the activity that is compensated.

The compensation example in this chapter uses this method.

7. It is convenient to talk of compensation as an act that a parent performs on a child—as in “compensating an activity”. We use this
convention throughout the rest of the book. Strictly speaking, however, it is the parent that is compensated (it “receives
compensation” for some previous action taken by the child. The previous action of the child is compensated for—it is reversed or
modified.

© Copyright IBM Corp. 1999, 2010 79

A compensation example
In this chapter, the logic of the Sale business transaction is changed so that:

v When payment has not been received within one week of the invoice being
dispatched, a reminder is sent.

v If payment has still not been received two weeks after the reminder was sent,
compensation is instigated. Compensation means that:
1. The outstanding payment request is canceled.
2. A request is sent for the goods to be returned.
3. Confirmation of the goods being returned is required.
4. The original order is canceled.

Process flow
Figure 26 on page 81 shows, in schematic form, the Sale example application when
compensation actions are included.

compensation

80 CICS TS for z/OS: CICS Business Transaction Services

v The terminal user enters the customer’s order, which is accepted.

v The goods are delivered to the customer.

v The terminal user confirms that the goods have been delivered.

v An invoice is sent to the customer.

v A reminder is sent if payment has not been received within one week of the
invoice being sent.

v If payment has still not been received two weeks after the reminder was sent,
compensation is triggered. Compensation causes the following:
– The outstanding payment request is canceled.
– A letter is sent, requesting the goods to be returned.
– Confirmation that the goods have been returned is requested.
– The order is canceled.

User input Order

Confirm
Delivery

Confirm

Invoice

Payment

User input Confirm
return

Reminder

MenuUser input

User input

User input

Cancel
order

Request
return

Figure 26. Process flow with compensation actions included. (The root activity is not shown.)
Changes from the user-related example described in Chapter 7 are shown in bold.

compensation

Chapter 8. Compensation in BTS 81

The root activity
Figure 27 shows, in COBOL pseudocode, the Sale root activity, modified to include
compensation actions. The changes are in bold text.

Identification Division.
Program-id. SAL002.
Environment Division.
Data Division.
Working-Storage Section.
01 RC pic s9(8) comp.
01 Process-Name pic x(36).
01 Event-Name pic x(16).

88 DFH-Initial value ’DFHINITIAL’
88 Delivery-Complete value ’Delivry-Complete’.
88 Delivery-Confirmed value ’Delivry-Confirmd’.
88 Invoice-Complete value ’Invoice-Complete’.
88 Payment-Due value ’Payment-Due’.
88 Payment-Complete value ’Payment-Complete’.
88 Reminder-Expired value ’Remindr-Expired’.
88 Reminder-Complete value ’Remindr-Complete’.

01 Sale-Container pic x(16) value ’Sale’.
01 Order-Container pic x(16) value ’Order’.
01 Order-Buffer pic x(..).
01 Delivery-Container pic x(16) value ’Delivery’.
01 Delivery-Buffer pic x(..).
01 Confirm-Container pic x(16) value ’Confirm’.
01 Confirm-Buffer pic x(..).
01 Invoice-Container pic x(16) value ’Invoice’.
01 Invoice-Buffer pic x(..).
01 Reminder-Container pic x(16) value ’Reminder’.
01 Status pic x(16).
Linkage Section.
01 DFHEIBLK.

.

Figure 27. The SAL002 root activity program, including compensation actions (Part 1 of 8)

compensation

82 CICS TS for z/OS: CICS Business Transaction Services

Procedure Division.
Begin-Process.

.
EXEC CICS RETRIEVE REATTACH EVENT(Event-Name)

RESP(RC) END-EXEC
.

If RC NOT = DFHRESP(NORMAL)
.

End-If.
.

Evaluate True
When DFH-Initial

Perform Initial-Activity
Perform Order-Activity
Perform Order-Response
Perform Delivery-Activity

When Delivery-Complete
Perform Delivery-Response
Perform Delivery-Confirmation

When Delivery-Confirmed
Perform Confirm-Response
Perform Invoice-Activity

When Invoice-Complete
Perform Invoice-Response
Perform Payment-Activity

When Payment-Due
Perform Payment-Due-Response

When Payment-Complete
Perform Payment-Response

When Reminder-Expired
Perform Reminder-Expired-Response

When Reminder-Complete
Perform Reminder-Response

When Other
.

End Evaluate.
.

EXEC CICS RETURN END-EXEC
.

Initial-Activity.
.
EXEC CICS ASSIGN PROCESS(Process-Name)

RESP(data-area) RESP2(data-area) END-EXEC
.

Order-Activity.
.
EXEC CICS DEFINE ACTIVITY(’Order’)

TRANSID(’SORD’)
PROGRAM(’ORD001’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(Sale-Container)

ACTIVITY(’Order’) FROM(Process-Name)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS LINK ACTIVITY(’Order’)

RESP(data-area) RESP2(data-area) END-EXEC
.

Figure 27. The SAL002 root activity program, including compensation actions (Part 2 of 8)

compensation

Chapter 8. Compensation in BTS 83

Order-Response.
.
EXEC CICS CHECK ACTIVITY(’Order’) COMPSTATUS(status)

RESP(RC) RESP2(data-area) END-EXEC
.
If RC NOT = DFHRESP(NORMAL)

.
End-If.
.
If status NOT = DFHVALUE(NORMAL)

.
End-If.
.
.

Delivery-Activity.
.
EXEC CICS DEFINE ACTIVITY(’Delivery’)

TRANSID(’SDEL’)
PROGRAM(’DEL001’)
EVENT(’Delivry-Complete’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS GET CONTAINER(Order-Container)

ACTIVITY(Order-Container) INTO(Order-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS PUT CONTAINER(Order-Container)

ACTIVITY(’Delivery’) FROM(Order-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Delivery’)

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.
Delivery-Response.

.
EXEC CICS CHECK ACTIVITY(’Delivery’) COMPSTATUS(status)

RESP(RC) RESP2(data-area) END-EXEC
.
If RC NOT = DFHRESP(NORMAL)

.
End-If.
.
If status NOT = DFHVALUE(NORMAL)

.
End-If.
.

Delivery-Confirmation.
.
EXEC CICS DEFINE ACTIVITY(’Confirm’)

TRANSID(’FCON’)
PROGRAM(’CON001’)
EVENT(’Delivry-Confirmd’)

RESP(data-area) RESP2(data-area) END-EXEC
.

Figure 27. The SAL002 root activity program, including compensation actions (Part 3 of 8)

compensation

84 CICS TS for z/OS: CICS Business Transaction Services

EXEC CICS GET CONTAINER(Deliver-Container)
ACTIVITY(’Delivery’) INTO(Delivery-Buffer)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(Deliver-Container)

ACTIVITY(’Confirm’) FROM(Delivery-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Confirm’)

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.
Confirm-Response.

.
EXEC CICS CHECK ACTIVITY(’Confirm’) COMPSTATUS(status)

RESP(RC) RESP2(data-area) END-EXEC
.
If RC NOT = DFHRESP(NORMAL)

.
End-If.
.
If status NOT = DFHVALUE(NORMAL)

.
End-If.
.

Invoice-Activity.
.
EXEC CICS DEFINE ACTIVITY(’Invoice’)

TRANSID(’SINV’)
EVENT(’Invoice-Complete’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS GET CONTAINER(Confirm-Container)

ACTIVITY(’Confirm’) INTO(Confirm-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS PUT CONTAINER(Confirm-Container)

ACTIVITY(’Invoice’) FROM(Confirm-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Invoice’)

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.

Figure 27. The SAL002 root activity program, including compensation actions (Part 4 of 8)

compensation

Chapter 8. Compensation in BTS 85

Invoice-Response.
.
EXEC CICS CHECK ACTIVITY(’Invoice’) COMPSTATUS(status)

RESP(RC) RESP2(data-area) END-EXEC
.
If RC NOT = DFHRESP(NORMAL)

.
End-If.
.
If status NOT = DFHVALUE(NORMAL)

.
End-If.
.

Payment-Activity.
.
EXEC CICS DEFINE ACTIVITY(’Payment’)

TRANSID(’SPAY’)
EVENT(’Payment-Complete’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS DEFINE TIMER(’Payment-Due’)

AFTER DAYS(7)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS GET CONTAINER(Invoice-Container)

ACTIVITY(’Invoice’) INTO(Invoice-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS PUT CONTAINER(Invoice-Container)

ACTIVITY(’Payment’) FROM(Invoice-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Payment’)

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.

Figure 27. The SAL002 root activity program, including compensation actions (Part 5 of 8)

compensation

86 CICS TS for z/OS: CICS Business Transaction Services

Payment-Due-Response.
.
EXEC CICS DELETE TIMER(’Payment-Due’)

RESP(RC) RESP2(data-area) END-EXEC
.
Perform Reminder-Activity

Payment-Response.
.
EXEC CICS CHECK ACTIVITY(’Payment’) COMPSTATUS(status)

RESP(RC) RESP2(data-area) END-EXEC
.
If RC = DFHRESP(NORMAL)

If status = DFHVALUE(NORMAL)
EXEC CICS DELETE TIMER(’Payment-Due’)

RESP(RC) RESP2(data-area) END-EXEC
.
Perform End-process

Else
.
End-If

Else
.

End-If
.

Reminder-Activity.
.
EXEC CICS DEFINE ACTIVITY(’Reminder’)

TRANSID(’PAYR’)
EVENT(’Remindr-Complete’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS DEFINE TIMER(’Remindr-Expired’)

AFTER DAYS(14)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS GET CONTAINER(Invoice-Container)

ACTIVITY(’Invoice’) INTO(Invoice-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS PUT CONTAINER(Invoice-Container)

ACTIVITY(’Reminder’) FROM(Invoice-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Reminder’)

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.

Figure 27. The SAL002 root activity program, including compensation actions (Part 6 of 8)

compensation

Chapter 8. Compensation in BTS 87

Reminder-Expired-Response.
.
EXEC CICS DELETE TIMER(’Remindr-Expired’)

RESP(RC) RESP2(data-area) END-EXEC
.
Perform Compensation

Reminder-Response.
.
EXEC CICS CHECK ACTIVITY(’Reminder’) COMPSTATUS(status)

RESP(RC) RESP2(data-area) END-EXEC
.
If RC = DFHRESP(NORMAL)

If status = DFHVALUE(NORMAL)
EXEC CICS DELETE TIMER(’Remindr-Expired’)

RESP(RC) RESP2(data-area) END-EXEC
.
Perform End-process

Else
.

End-If
Else

.
End-If
.

Compensation.
.
EXEC CICS DEFINE ACTIVITY(’Payment-Compen’)

TRANSID(’PAYC’)
PROGRAM(’PEX001’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(Invoice-Container)

ACTIVITY(’Payment-Compen’) FROM(Invoice-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Payment-Compen’)

SYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS DEFINE ACTIVITY(’Confirm-Compen’)

TRANSID(’CONC’)
PROGRAM(’REQ001’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(Deliver-Container)

ACTIVITY(’Confirm-Compen’) FROM(Delivery-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Confirm-Compen’)

SYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.

Figure 27. The SAL002 root activity program, including compensation actions (Part 7 of 8)

compensation

88 CICS TS for z/OS: CICS Business Transaction Services

Note the following:

v A reminder is set for the Payment activity:
.
EXEC CICS DEFINE TIMER(’Payment-Due’)

AFTER DAYS(7)
RESP(data-area) RESP2(data-area) END-EXEC

.

The DEFINE TIMER command defines a timer which will expire in one week.
Because the EVENT option is not specified, the event associated with the
timer—the timer event—is given the same name as the timer itself
(Payment-Due). Now, SAL002 will be reattached when either of the following
happens:

1. The Payment activity completes. Because Payment is a user-related activity,
it will complete only if a terminal user confirms that payment has been
received.

2. The timer expires.

v If SAL002 is invoked because the timer expires, it requests the Reminder activity
to run. The Reminder activity too is user-related—the request to run it drives the
first part of the activity, which sends a reminder letter to the customer, records
the activity’s details on a pending file, and waits to be reactivated by user input.

As for the Payment activity, a timer is set for the Reminder activity. Now, SAL002
will be reattached when either of the following happens:

1. The Reminder activity completes. Because Reminder is a user-related
activity, it will complete only if a terminal user confirms that payment has
been received.

2. The timer expires.

EXEC CICS DEFINE ACTIVITY(’Delivery-Compen’)
TRANSID(’DELC’)
PROGRAM(’RTN001’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(Order-Container)

ACTIVITY(’Delivery-Compen’) FROM(Order-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Delivery-Compen’)

SYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS DEFINE ACTIVITY(’Order-Compen’)

TRANSID(’ORDC’)
PROGRAM(’CAN001’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(Sale-Container)

ACTIVITY(’Order-Compen’) FROM(Process-Name)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Order-Compen’)

SYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.
End-Process.

.
EXEC CICS RETURN ENDACTIVITY

RESP(data-area) RESP2(data-area) END-EXEC
End Program.

Figure 27. The SAL002 root activity program, including compensation actions (Part 8 of 8)

compensation

Chapter 8. Compensation in BTS 89

v If SAL002 is next invoked because the timer expires, it compensates its
completed child activities. For each child activity to be compensated, SAL002
defines a new (compensation) activity, provides the compensation activity with
some input data, and runs it:

EXEC CICS DEFINE ACTIVITY(’Payment-Compen’)
TRANSID(’PAYC’)
PROGRAM(’PEX001’)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(Invoice-Container)

ACTIVITY(’Payment-Compen’) FROM(Invoice-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY(’Payment-Compen’)

SYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

Notice that the program used to execute the Payment-Compen compensation
activity is different from that used for the Payment activity that is compensated.
The PUT CONTAINER command provides the Payment-Compen activity with the
same input data that was passed to the Payment activity.

Table 6 shows which activities are compensated, and the actions taken by the
compensation activity in each case.

Table 6. Compensation activities

Completed child
activity

Compensation activity Actions taken by compensation activity

Payment Payment-Compen Cancels the outstanding payment request

Confirm Confirm-Compen Sends a letter requesting return of goods

Delivery Delivery-Compen Requests confirmation that the goods have
been returned

Order Order-Compen Cancels the original order request

v The user-defined timers (Payment-Due and Remindr-Expired) are deleted as
soon as they are no longer required. This has the side effect of automatically
deleting the timer events associated with them.

v The CHECK ACTIVITY command is used to check the response from each child
activity. This has the side effect of automatically deleting the activity completion
event, if the child has completed. (An activity must delete the completion events
for all its child activities before it completes.)

Note: In a real application, it would be necessary to issue CHECK ACTIVITY
commands for the compensation activities. For the sake of brevity, these
have been omitted from the example.

Dealing with application locking
When an activity completes, any updates it has made to data are committed and
the database manager releases its locks on the data. The updated data is then
available to other activities—including activities which are part of other business
applications. These other activities may make decisions based on the state of the
data. If you later compensate the completed activity and return the data to its
previous state, some activities may have executed based on data which is no
longer valid. If these activities are part of the same process as the compensated
activity, you can code your application to compensate them too. However, to cope

compensation

90 CICS TS for z/OS: CICS Business Transaction Services

with the possibility that activities in other applications may take decisions based on
data that is later changed by compensation, your application must be coded
differently.

If your applications include compensation activities which reverse
previously-committed data updates, they may need to include logic to provide
logical record locking. This “application lock” does not need to be a hard lock
preventing access to the data, but simply a flag which indicates that the data is part
of an incomplete business process which may be reversed. All activities working
with the “in-process” data could be coded to check this flag and then follow
appropriate logic. To support this, when you design your database you need to
include a “locked” field in your data records.

For example, you might have a “Welcome letter” application which scans the
customer database for new customers who have placed their first order, and sends
each a welcoming letter thanking them for their order and asking them to complete
a customer satisfaction questionnaire. Perhaps your company considers it
inappropriate to send such a letter if the order is not yet complete and payment
received, because the welcome letter might be received along with less friendly
letters demanding payment! Therefore, the Order activity of the Sale business
application could set an order-in-progress flag on the order record, which would
exclude the order from consideration by a “Welcome letter” process. Later, the
Payment activity of the Sale application could unset the order-in-progress flag.

compensation

Chapter 8. Compensation in BTS 91

92 CICS TS for z/OS: CICS Business Transaction Services

Chapter 9. Reusing existing 3270 applications in BTS

This chapter describes how you can use BTS’s support for the 3270 bridge to
integrate existing transactions into BTS applications. It contains:
v “Running a 3270 transaction from BTS”
v “Resource definition” on page 95
v “Running more complex transactions” on page 95
v “Things to consider” on page 99
v “Sample programs” on page 100.

Important: The 3270 bridge is described in the CICS External Interfaces Guide.
This chapter is intended to be read in conjunction with that book.

Running a 3270 transaction from BTS
BTS supports the 3270 bridge function. This means that BTS applications can be
integrated with, and make use of, existing 3270-based applications.

Even though BTS activities are not terminal-related (they are never started directly
from a terminal), a BTS activity can be implemented by a 3270-based transaction.
The bridge exit program is used to put a “BTS wrapper” around the original 3270
transaction.

Figure 28 shows the basic mechanism for running a 3270 transaction from a BTS
application.

1. A BTS activity, known in bridge terminology as the client, creates data to run a
3270 transaction. It puts the data in a container associated with a child activity.

2. The client runs the child activity—which is implemented by the 3270
transaction—asynchronously.

3. The BTS XM client identifies that the transaction should use the 3270 bridge
and calls the bridge XM client.

When(brxa_bind)
GET CONTAINER

When(brxa_term)
PUT CONTAINER
RETURN

Bridge exit program 3270 transaction
When(’DFHINITIAL’)

PUT CONTAINER

RUN ACTIVITY ASYNC

RETURN

When(’ENDOFTASK’)

GET CONTAINER

RETURN ENDACTIVITY

BTS client activity
(Parent)

Child activity

Figure 28. Running a 3270-based transaction as a BTS activity

© Copyright IBM Corp. 1999, 2010 93

4. On the 'bind' call to the bridge exit, the bridge exit program issues a GET
CONTAINER command to retrieve the data to run the 3270 transaction.

Note: In a bridge environment, the bridge exit program becomes part of the
3270 transaction. Thus, the exit program does not need to acquire the
child activity before issuing the GET CONTAINER command—it is itself
part of the child activity.

5. The 3270 transaction is run using the retrieved data. Any output data it
produces is saved in an output message.

6. When the bridge exit program is invoked for termination of the 3270 transaction,
it issues:
a. A PUT CONTAINER command, to put the output message into a named

data-container
b. A RETURN command, which causes the child activity to complete.

7. The firing of the child activity’s completion event causes the parent (client)
activity to be reactivated.

8. The client issues a GET CONTAINER command to retrieve the output from the
3270 transaction.

Figure 29 contains example pseudocode for running a 3270-based transaction as a
BTS activity.

Note that the child activity is implemented by the 3270 transaction and the bridge
exit program. All the required BTS commands are issued by the exit program.

Client activity Bridge exit program

When DFH-Initial
encode msg-in-buffer
EXEC CICS DEFINE ACTIVITY (’3270-act’)

TRANSID(’T327’) EVENT(’3270-Complete’)
RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(’Message’)

ACTIVITY(’3270-act’) FROM(msg-in-buffer)
RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS RUN ACTIVITY(’3270-act’)

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS RETURN END-EXEC
.
.

When 3270-Complete
EXEC CICS GET CONTAINER(’Message’)

ACTIVITY(’3270-act’) INTO(msg-out-buffer)
RESP(data-area) RESP2(data-area) END-EXEC
.
decode msg-out-buffer
EXEC CICS RETURN ENDACTIVITY

Init.
pass userdata from the brdata to BRXA

.

.
Bind.

EXEC CICS GET CONTAINER(’Message’)
INTO(3270-msg-in-buffer)

RESP(data-area) RESP2(data-area) END-EXEC
.
.

Term.
EXEC CICS PUT CONTAINER(’Message’)

FROM(3270-msg-out-buffer)
RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS RETURN END-EXEC

Figure 29. Pseudocode for running a 3270-based transaction as a BTS activity

3270 bridge support

94 CICS TS for z/OS: CICS Business Transaction Services

Resource definition
To enable BTS 3270 bridge support, you must specify the name of a bridge exit
program on the BREXIT option of the TRANSACTION definition for the 3270
transaction that you want to run.

If two or more bridge transport mechanisms require the BREXIT parameter to be
specified on the transaction definition, you can use an alias transaction definition.
For information about how other bridge transport mechanisms support specification
of the BREXIT parameter, see the CICS External Interfaces Guide.

Running more complex transactions
The basic mechanism described in “Running a 3270 transaction from BTS” on page
93 assumed a straightforward, “one shot” transaction, where the 3270 transaction
does an EXEC CICS RECEIVE MAP, followed by one or more EXEC CICS SEND
MAP requests, and ends with an EXEC CICS RETURN. In practice, things are not
always so simple. For example, you may want to run 3270 transactions that:
1. Output intermediate messages
2. Are conversational in design
3. Are pseudoconversational.

Intermediate output messages
For a non-conversational 3270 transaction, the bridge exit program could be called
to write an intermediate message for either of two reasons:
1. The 3270 transaction has specified WAIT on the EXEC CICS SEND command.
2. The output message buffer is full.

Under some bridge transport mechanisms, it makes sense for the bridge exit
program to write an intermediate message containing the data so far. However,
under BTS there is no point in trying to send an intermediate message back to the
user.

If the exit program is called because of the WAIT option, it can simply do nothing
and return.

If the exit program is called because the message buffer is full, it should:
1. Obtain a new, larger output buffer (by issuing a GETMAIN command).
2. Copy the contents of the original buffer into the new buffer.
3. Release the original buffer (by issuing a FREEMAIN command).

Using this approach, all output from the 3270 transaction is sent to the client at
transaction end.

The sample bridge exit program, DFH0CBAE (see “Sample programs” on page
100) obtains all its storage—including that for its output buffer—at the same time. It
saves the address of the output buffer in field BRXA-OUTPUT-MESSAGE-PTR of the
bridge exit area (BRXA) user area. We recommend that your exit programs do the
same.

Note: When the exit program is called because the output buffer is full, field
BRXA-FMT-RESPONSE of the BRXA is set to BRXA-FMT-OUTPUT-BUFFER-FULL. The
current size of the storage is in field BRXA-OUTPUT-MESSAGE-LEN.

Conversational transactions
This section describes how to run a conversational 3270 transaction.

3270 bridge support

Chapter 9. Reusing existing 3270 applications in BTS 95

A potential problem is that, at one or more stages, the 3270 transaction requires
further data to continue. The bridge exit program cannot obtain this data from the
client. That is, it cannot end its current activation, to be reactivated with the required
data—because the 3270 transaction has not completed, issuing an EXEC CICS
RETURN command would merely return control to the latter. Nor can the exit
program get information back to the client by issuing an EXEC CICS SYNCPOINT
command, because this would modify the 3270 transaction.

One solution is for the bridge exit program itself to obtain (or compute) the required
data. Perhaps a better solution is for the exit program to create a subtask to obtain
the data. It could, for example, create a separate child activity (a grandchild of the
client) to deal with each request for data—each intermediate map—sent by the
3270 transaction. (For convenience, we’ll refer to such child activities as
“conversational activities”.) Figure 30 illustrates this approach.

One possible problem of creating a separate activity to deal with each intermediate
map is that the output message sent to the client by the exit program at transaction
end contains only the final 3270 map. If it’s important that intermediate messages
should be preserved, the conversational activities could put them in other containers
associated with the client.

Figure 31 on page 97 contains example pseudocode for running a 3270
conversational transaction.

Client activity

Conversational activity
(grandchild of Client)

3270 transaction

Bridge exit program
Message container

Request container

Child
activity

Figure 30. Running a 3270 conversational transaction as a BTS activity. The bridge exit
program creates a child activity to deal with each map sent by the 3270 transaction.

3270 bridge support

96 CICS TS for z/OS: CICS Business Transaction Services

|

Note that the exit program issues a LINK ACTIVITY, rather than a RUN ACTIVITY
SYNCHRONOUS, command to activate the “conversational” child activity. This is
necessary to ensure that the child executes in the same unit of work as the exit
program.

Pseudoconversational transactions
This section describes how to run a pseudoconversational 3270 transaction.

A pseudoconversation is indicated by the fact that the output data returned to the
client by the exit program contains a bridge facility token (and possibly a
next-transaction ID). It is the client’s responsibility to check the appropriate field in
the output message and to start the next transaction.

Figure 32 on page 98 contains example pseudocode for running a 3270
pseudoconversational transaction.

Bridge exit program “Conversational” activity

Read_Message.
encode conv-in-buffer from 3270-msg-out-buffer
EXEC CICS DEFINE ACTIVITY (next-conv-act-name)

TRANSID(conv-transaction-id)
RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(’Request’)

ACTIVITY(next-conv-act-name)
FROM(conv-in-buffer)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS LINK ACTIVITY(next-conv-act-name)
RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS CHECK ACTIVITY(next-conv-act-name)

COMPSTATUS(status) ABCODE(a)
RESP(data-area) RESP2(data-area) END-EXEC
If status NOT = DFHVALUE(NORMAL)

EXEC CICS ABEND ABCODE(a)
NODUMP

RESP(data-area) RESP2(data-area) END-EXEC
End-If.
.
EXEC CICS GET CONTAINER(’Request’)

ACTIVITY(next-conv-act-name)
INTO(3270-msg-in-buffer)

RESP(data-area) RESP2(data-area) END-EXEC
.
.

Write_Message.
Intermediate writes cannot be sent
to the client.
EXEC CICS NOOP
RESP(data-area) RESP2(data-area) END-EXEC
.

WHEN DFH-Initial
EXEC CICS GET CONTAINER(’Request’)

INTO(msg-in-buffer)
RESP(data-area) RESP2(data-area) END-EXEC
.
decode msg-in-buffer
encode msg-out-buffer
.
EXEC CICS PUT CONTAINER(’Request’)

FROM(msg-out-buffer)
RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS RETURN END-EXEC

Figure 31. Pseudocode for running a 3270 conversational transaction as a BTS activity. The bridge exit program
creates a child activity to deal with each map sent by the 3270 transaction.

3270 bridge support

Chapter 9. Reusing existing 3270 applications in BTS 97

Note that:

v The client starts each transaction in the pseudoconversation by defining and
running a new child activity, rather than by reactivating the same child activity
with a different input event. This is necessary, in case the next-transaction IDs
returned by the 3270 application are different—that is, in case each step of the

Client activity Bridge exit program

When DFH-Initial
encode msg-in-buffer
EXEC CICS DEFINE ACTIVITY (3270-act-name)

TRANSID(transaction-id) EVENT(3270-Complete)
RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(’Message’)

ACTIVITY(3270-act-name) FROM(msg-in-buffer)
RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS RUN ACTIVITY(3270-act-name)

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS RETURN END-EXEC
.
.

When 3270-Complete
EXEC CICS CHECK ACTIVITY(3270-act-name)

COMPSTATUS(status) ABCODE(a)
RESP(data-area) RESP2(data-area) END-EXEC
If status NOT = DFHVALUE(NORMAL)

EXEC CICS ABEND ABCODE(a)
NODUMP

RESP(data-area) RESP2(data-area) END-EXEC
End-If.
.
EXEC CICS GET CONTAINER(’Message’)

ACTIVITY(3270-act-name) INTO(msg-out-buffer)
RESP(data-area) RESP2(data-area) END-EXEC
.
decode msg-out-buffer
If mqcih-facility = blank

EXEC CICS RETURN ENDACTIVITY END-EXEC
Else

encode msg-in-buffer
EXEC CICS DEFINE ACTIVITY (3270-act-name)

TRANSID(next-transaction-id)
EVENT(3270-Complete)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(’Message’)

ACTIVITY(3270-act-name)
FROM(msg-in-buffer)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS RUN ACTIVITY(3270-act-name)

ASYNCHRONOUS
FACILITYTOKN(8-byte token)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS RETURN END-EXEC

End-If.

Init.
pass userdata from the brdata to BRXA

.

.
Bind.

EXEC CICS GET CONTAINER(’Message’)
INTO(3270-msg-in-buffer)

RESP(data-area) RESP2(data-area) END-EXEC
.
.

Term.
EXEC CICS PUT CONTAINER(’Message’)

FROM(3270-msg-out-buffer)
RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS RETURN END-EXEC

Figure 32. Pseudocode for running a 3270 pseudoconversational transaction as a BTS activity

3270 bridge support

98 CICS TS for z/OS: CICS Business Transaction Services

pseudoconversation is implemented by a differently-named transaction. (The
variable next-transaction-id is used to name the transaction that implements each
new child activity.)

v In this example, the variable 3270-act-name is used to name each child activity
differently. An alternative approach might be to delete the completed child activity
before redefining it with a different TRANSID.

v In this example, the variable 3270-Complete is used to name each activity
completion event differently. This is not strictly necessary, because if the previous
child activity completed normally its completion event will have been deleted from
the client’s event pool following the CHECK ACTIVITY command.

v The output message returned by the bridge exit program should contain an
8-byte token representing the bridge facility. So that the bridge facility is reused
for the next transaction in the pseudoconversation, the client uses the
FACILITYTOKN option of the RUN ACTIVITY command to pass the token to the
next child activity.

Transaction routing of pseudoconversations
The 3270 bridge does not support transaction routing of pseudoconversations. If a
3270 transaction is pseudoconversational, and is started from BTS, it is essential
that all its constituent transactions run in the same CICS region. If one of the
transactions is routed to a different region, an ABRH abend occurs.

One way to ensure that all the transactions execute in the same region is for the
client to run the child activities synchronously. Activities that are run synchronously
always run in the local region—they are never routed.

However, although all the transactions in a pseudoconversation have to run in the
same region, they do not have to run in the same region as the client; nor do they
have to run in a specific region (though, of course, it must be a CICS TS OS/390,
Version 1 Release 3 or later region). If you use CICSPlex SM for routing purposes,
you can define all the 3270 transactions in a pseudoconversation as part of the
same transaction group. This gives you two options:

1. You can define the transaction group to run on a specific named region.

2. You can define the transaction group to run on whichever region the first
transaction within a BTS process runs on. This is the preferred option.

Things to consider
This section discusses things that you need to consider when using the 3270 bridge
from BTS.

Using timers
To avoid indefinite waits for a 3270 transaction to reply, the client could set a timer.
If the timer expires, the client is reactivated and assumes that an error has
occurred. The client can cancel the 3270 transaction— by issuing a CANCEL
ACTIVITY command if the activity hasn’t started, or a SET TASK PURGE command
if it has.

Abend processing
If the 3270 transaction ends abnormally, an abend call is made to the bridge exit.
Note that this call occurs at the end of the transaction—it cannot be used to
implement an abend handler.

3270 bridge support

Chapter 9. Reusing existing 3270 applications in BTS 99

If it is necessary for the exit program to reply to the client, it cannot do so simply by
issuing a PUT CONTAINER command. Because BTS activities are always
recoverable, the command would be backed out. One solution is for the exit
program to write a message to a non-recoverable transient data or temporary
storage queue. It could, for example, delegate this task to a child activity.

Figure 33 contains example pseudocode for dealing with an abend of the 3270
transaction. The Requestor activity is a child of the bridge exit; it handles the
abend.

Note that the exit program issues a LINK ACTIVITY, rather than a RUN ACTIVITY
SYNCHRONOUS, command to activate the Requestor activity. This is necessary
because the child must execute in the same unit of work as the exit program.

Transaction restart
The 3270 bridge does not support transaction restart. If a client activity is restarted
and tries to reuse a bridge facility token, an ABRH abend occurs.

Sample programs
CICS supplies sample programs that demonstrate how to integrate 3270-based
transactions into BTS applications. The samples are:
v DFH0CBAC, a client activity program
v DFH0CBAE, a bridge exit program
v DFH0CBAI, creates an input message
v DFH0CBAO, processes an output message.

Bridge exit program Requestor activity

Abend.
encode abend-in-buffer from 3270-msg-out-buffer
EXEC CICS DEFINE ACTIVITY (’Requestor’)

TRANSID(’ABE1’)
RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(’Abend’)

ACTIVITY(’Requestor’)
FROM(abend-in-buffer)

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS LINK ACTIVITY(’Requestor’)
RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS CHECK ACTIVITY(’Requestor’)

COMPSTATUS(status) ABCODE(a)
RESP(data-area) RESP2(data-area) END-EXEC
If status NOT = DFHVALUE(NORMAL)

EXEC CICS ABEND ABCODE(a)
NODUMP

RESP(data-area) RESP2(data-area) END-EXEC
.

End-If.
.
EXEC CICS RETURN END-EXEC

WHEN DFH-Initial
EXEC CICS GET CONTAINER(’Abend’)

INTO(msg-in-buffer)
RESP(data-area) RESP2(data-area) END-EXEC
.
decode msg-in-buffer
output a message to a non-recoverable
TD or TS queue
.
EXEC CICS RETURN END-EXEC

Figure 33. Pseudocode for dealing with an abend of the 3270 transaction

3270 bridge support

100 CICS TS for z/OS: CICS Business Transaction Services

The samples are supplied, in COBOL source code, in the SDFHSAMP library. They
contain explanatory comments. Like the pseudocode examples in this chapter, the
samples use containers named Message, Request, and Abend.

Note: To use the samples, you will also need to compile the 3270 bridge formatter
program, DFH0CBRF.

Sample resource definitions are in RDO group DFH$BABR.

The sample programs are compatible with the 3270 bridge support pack, CA1E.
The BTS passthrough transaction is BRCB.

3270 bridge support

Chapter 9. Reusing existing 3270 applications in BTS 101

102 CICS TS for z/OS: CICS Business Transaction Services

Part 3. Administering CICS business transaction services

This part of the manual tells you how to define and control the CICS business
transaction services environment.

Table 7. Administration road map

If you want to... Refer to...

v Define BTS data sets to CICS

v Specify the program used to route BTS
activities dynamically around a BTS-set

Chapter 10, “System definition for BTS,” on
page 105

Define BTS process-types to CICS Chapter 11, “Resource definition for BTS,” on
page 111

Make your BTS processes and activities
secure

Chapter 12, “Security in BTS,” on page 117

Use CEMT commands to control BTS
resources

Chapter 13, “BTS operator commands,” on
page 119

Learn how to operate BTS in a sysplex Chapter 14, “Using BTS in a sysplex,” on
page 137

© Copyright IBM Corp. 1999, 2010 103

104 CICS TS for z/OS: CICS Business Transaction Services

Chapter 10. System definition for BTS

This chapter contains:

v “Defining BTS data sets”

v “Naming the routing program” on page 109.

Defining BTS data sets
You need to define two types of BTS data set:
v Repository data sets
v A local request queue data set.

Use the IDCAMS program to define your BTS data sets to MVS™.

Repository data sets
When a process is not executing under the control of the CICS business transaction
services domain, its state and the states of its constituent activities are preserved
by being written to a VSAM data set known as a repository.

The states of all processes of a particular process-type (and of their activity
instances) are stored on the same repository data set. Records for multiple
process-types can be written to the same repository. You specify the repository on
which processes of a particular process-type are stored when you define the
process-type—see “CEDA DEFINE PROCESSTYPE” on page 114.

You must define at least one BTS repository data set to MVS. You may decide to
define more than one, assigning a different set of process-types to each. One
reason for doing this might be storage efficiency—maybe some of your
process-types tend to produce longer records than others.

Note: To enable you to distinguish between process-types during a browse, you
don’t need to assign each process-type to a separate repository.

If you operate BTS in a sysplex, several CICS regions may share access to one or
more repository data sets. This enables requests for the processes and activities
stored on the data sets to be routed across the participating regions—see
Chapter 14, “Using BTS in a sysplex,” on page 137.

You must define the repository file as recoverable.

Specify the following parameters to IDCAMS:

INDEXED
BTS repository data sets must be in KSDS format.

KEYS(50 0)
The file key. The file key is 50 bytes in length and is located at offset X'0' in the
record.

LOG(UNDO|ALL)
The recovery options for the data set:

UNDO The data set is recoverable.

ALL Forward recovery is required. If you specify LOG(ALL), you must also
specify a log stream on the LOGSTREAMID parameter.

© Copyright IBM Corp. 1999, 2010 105

|

LOGSTREAMID(log_stream_ID)
The identifier of the log stream to which forward recovery records are to be
written. This parameter is required only if you specify LOG(ALL).

RECORDSIZE(average maximum)
The average and maximum size of records on the data set, in bytes.

Specify maximum as 16384 bytes. (CICS automatically splits any records that
are larger than 16KB.)

It is difficult to predict the average size of repository records. (A notional record
of 20000 bytes, for example, will be split into one record of 16384 bytes and
one of 3616 bytes.) Initially, specify average as 8KB. If you find in practice that
the average size of records is markedly different from this, you can specify a
different value.

SPANNED
A single record may span control intervals. Specify this parameter if the record
size is larger than the CI.

Figure 34 shows example JCL for defining a BTS repository data set. Note that the
JCL is for illustration only.

To ensure that your repositories are continuously available, you are recommended
to define them to use the backup while open (BWO) facility provided by DFSMSdss
and DFSMShsm. For details of BWO, and how to define VSAM data sets to use it,
see the CICS System Definition Guide.

Local request queue data set
The local request queue data set is used to store pending BTS requests—for
example, timer requests, or requests to run activities. It is recoverable, and is used
to ensure that, if CICS fails, no pending requests are lost.

//SMITHGOT JOB (WINVMC,SMITH),CLASS=E,USER=username
//IJMRBTS EXEC PGM=IDCAMS,REGION=6144K
//SYSPRINT DD SYSOUT=A
//AMSDUMP DD SYSOUT=A
//SYSIN DD *

DELETE (’CICSTS31.CICS.BTS’) PURGE CLUSTER
DEFINE CLUSTER (-

NAME(CICSTS31.CICS.BTS) -
LOG(UNDO) -
CYL(2,1) -
CISZ(4096) -
SPANNED -
VOLUMES (P2DA62) -
KEYS(50 0) -
INDEXED -
RECORDSIZE(8192 16384) -
FREESPACE(5 5) -
SHAREOPTIONS(2 3) -
) -

INDEX (-
NAME(CICSTS31.CICS.BTS.INDEX) -
) -

DATA (-
NAME(CICSTS31.CICS.BTS.DATA) -
)

/*
//

Figure 34. Example JCL for defining a BTS repository data set. The numbers are for
illustration only.

system definition

106 CICS TS for z/OS: CICS Business Transaction Services

Requests that CICS can execute immediately—for example, requests to run
activities—are stored on the data set only briefly. Requests that CICS cannot
execute immediately—for example, timer or unserviceable requests—may be stored
for longer periods. When CICS has processed a request, the request is deleted
from the data set.

The local request queue data set differs from repository data sets, in that:

v It is a mandatory CICS data set—you must define one even if you don’t use
BTS.

Note: Procedure DFHDEFDS in library SDFHINST contains a definition of the
LRQ. For information about how to use DFHDEFDS, see the CICS
Transaction Server for z/OS Installation Guide.

v You must define one, and only one, to each CICS region.

v It is never shared. The local request queue data set relates solely to requests
generated on the local region.

Specify the following parameters to IDCAMS:

INDEXED
BTS local request queue data sets must be in KSDS format.

KEYS(40 0)
The file key. The file key is 40 bytes in length and is located at offset X'0' in the
record.

LOG(UNDO|ALL)
The recovery options for the data set:

UNDO The data set is recoverable.

ALL Forward recovery is required. If you specify LOG(ALL), you must also
specify a log stream on the LOGSTREAMID parameter.

LOGSTREAMID(log_stream_ID)
The identifier of the log stream to which forward recovery records are to be
written. This parameter is required only if you specify LOG(ALL).

RECORDSIZE(average maximum)
The average and maximum size of records on the data set, in bytes.

Specify average as 2232 bytes and maximum as 2400 bytes.

Figure 35 on page 108 shows example JCL for defining a BTS local request queue
data set.

system definition

Chapter 10. System definition for BTS 107

#

The LRQ data set is critical to the operation of BTS. Because its loss could
severely impact the progression of BTS activities, you should consider defining it to
use backup while open (BWO) and forward recovery.

Note: For information about how to define the LRQ file to the CICS CSD, see
“Defining the LRQ file to the CSD” on page 111.

Sizing and maintaining the LRQ data set

Sizing: The space you allocate for the LRQ data set depends on how often you
plan to trim the file (see “Maintenance”) and the amount of BTS work likely to be
undertaken in the periods between maintenance. Each RUN ASYNCHRONOUS or
DEFINE TIMER request causes a record to be written to the LRQ file, each record
being 2KB in length.

You are recommended to allow plenty of space for contingencies. Remember that
records representing timers that are defined to expire far in the future will remain on
the data set until their timers expire. And even after records have expired, VSAM
still maintains control interval key ranges for their key values, even though the
records for these keys have been deleted by CICS. These key ranges will never be
reused because they represent time in the past, and their control interval space can
only be recovered by periodic maintenance of the data set (see below).

Maintenance: The key of the LRQ data set includes a time stamp. This means
that BTS generally adds requests to the end of the file. Although BTS deletes
requests when they have completed, VSAM does not physically delete the records;
so the space is not reused. Therefore, unless the LRQ data set is regularly
maintained, it may become very large.

You can use an AMS command such as REPRO to shrink the data set—that is, to
remove the records that have been logically-deleted by VSAM. Before doing this,

//SMITHGOT JOB (WINVMC,SMITH),CLASS=E,USER=username
//IJMRLRQ EXEC PGM=IDCAMS,REGION=6144K
//SYSPRINT DD SYSOUT=A
//AMSDUMP DD SYSOUT=A
//SYSIN DD *

DEFINE CLUSTER (-
NAME(CICSTS31.CICS.LRQ) -
LOG(UNDO) -
CYL(2,1) -
VOLUME (SYSDAV) -
KEYS(40 0) -
INDEXED -
RECORDSIZE(2232 2400) -
FREESPACE(0 10) -
SHAREOPTIONS(2 3) -
) -

DATA (-
NAME(CICSTS31.CICS.LRQ.DATA) -
CISZ(2560) -
)

INDEX (-
NAME(CICSTS31.CICS.LRQ.INDEX) -
) -

/*
//

Figure 35. Example JCL for defining a BTS local request queue data set. The numbers are
for illustration only.

system definition

108 CICS TS for z/OS: CICS Business Transaction Services

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

you must quiesce CICS. (Disabling the LRQ file definition is not sufficient—if you do
only this, activations may fail with ASP7 abends.)

Before undertaking maintenance, quiesce the CICS region. If you use
CICSPlex SM for routing BTS activities, you could route work away from the region
by altering a CICSPlex SM workload definition (WLMDEF). If you use a CICS
distributed routing program, you could alter your routing program. Although the
region has been temporarily quiesced, BTS operations within the sysplex will be
uninterrupted.

When reorganizing the data set, consider the percentage of control areas specified
on the FREESPACE parameter on the cluster definition. If there are a large number
of records representing timers far in the future, and new timers are to be added for
events that will expire earlier than these existing records, a large FREESPACE
percentage will decrease the number of likely control area splits that may occur. If
the majority of new timer events are added for times later than existing events, the
freespace percentage for control areas may be set to 0.

Naming the routing program
If you are using BTS in a sysplex (see Chapter 14, “Using BTS in a sysplex,” on
page 137), you must name the routing program that will be used to dynamically
route BTS activities around the BTS-set. To do this, you use the DSRTPGM system
initialization parameter.

Table 8. The DSRTPGM system initialization parameter
DFHSIT [TYPE={CSECT|DSECT}]

...

[,DSRTPGM={NONE|DFHDSRP|program-name|EYU9XLOP}]
...

END DFHSITBA

DSRTPGM={NONE|DFHDSRP|program-name|EYU9XLOP}
specifies the name of the distributed routing program to be used for dynamically
routing:
v Eligible CICS business transaction services (BTS) processes and activities.

For information about which BTS processes and activities are eligible for
dynamic routing, see “Which BTS activities can be dynamically routed?” on
page 138.

v Eligible non-terminal-related EXEC CICS START requests.

For information about which non-terminal-related START requests are eligible
for dynamic routing, see the CICS Intercommunication Guide.

DFHDSRP
The CICS sample distributed routing program.

EYU9XLOP
The CICSPlex SM routing program.

NONE For eligible BTS processes and activities, no routing program is
invoked. BTS processes and activities cannot be dynamically routed.

For eligible non-terminal-related START requests, the CICS sample
distributed routing program, DFHDSRP, is invoked.

system definition

Chapter 10. System definition for BTS 109

program-name
The name of a user-written program.

Note: See also the DTRPGM parameter, used to name the dynamic routing
program.

system definition

110 CICS TS for z/OS: CICS Business Transaction Services

Chapter 11. Resource definition for BTS

Most BTS resources (processes, activities, events, and containers) are defined at
run time, using BTS API commands. The only BTS resources that must be defined
on the CICS system definition file (CSD) are:

Process-types
See “CEDA DEFINE PROCESSTYPE” on page 114.

Note: As an alternative to using RDO CEDA DEFINE PROCESSTYPE
commands to define your process-types, you can use the
CICSPlex SM Business Application Services (BAS) PROCDEF
object. You may want to do this if you are using BTS in a sysplex,
with routing of processes and activities controlled by CICSPlex SM.
For information about BAS, see the CICSPlex System Manager
Managing Business Applications manual.

The BTS data set files
The CICS files that relate to the physical VSAM data sets used by BTS
must be defined to CICS file control in the standard way, as described in
the CICS Resource Definition Guide.

BTS uses two kinds of data set:

Local request queue data set
is described in “Local request queue data set” on page 106.

For information about how to define the LRQ to the CSD, see “Defining
the LRQ file to the CSD.”

Repository data sets
on which process and activity records are stored, are described in
“Repository data sets” on page 105.

For information about how to define repository files to the CSD, see
“Defining repository files to the CSD” on page 113.

Audit logs
The journals used for auditing purposes must be defined to the CICS log
manager in the standard way, as described in the CICS Resource Definition
Guide.

Defining the LRQ file to the CSD
There is a default FILE definition, DFHLRQ, for the local request queue data set in
the CICS-supplied RDO group DFHCBTS. DFHCBTS is included in the default
CICS startup group list, DFHLIST. Figure 36 on page 112 shows the default
definition.

© Copyright IBM Corp. 1999, 2010 111

For performance reasons, you may want to change the default definition. For
example, because the LRQ is frequently accessed it may be sensible to put the file
in its own LSR pool, or to define it to use VSAM nonshared resources. This way,
BTS operations will not be affected by other file accesses.

If it’s possible that, in your BTS system, many activities may be initiated at the
same time (consider a banking application that produces a statement for each
customer at the same time each month), it may be a good idea to set the number
of strings and buffers to the value of the MXT system initialization parameter. Doing
so would avoid string and buffer waits. (You could also use TRANCLASS definitions
to further throttle the number of concurrent transaction instances and thus LRQ file
accesses.)

To alter the definition of DFHLRQ, you can do either of the following:

1. Edit the supplied default FILE definition in the DFHCBTS group, and cold- or
initial-start your CICS region. (The DFHCBTS group is supplied by IBM but you
are not prevented from modifying it.)

If you use this method, you are recommended to take a backup copy of the
definition after you have altered it, to prevent your changes being lost if
maintenance is applied to the CSD.

2. Create your own FILE definition for DFHLRQ in a CSD group other than
DFHCBTS, and cold- or initial-start your CICS region. Your CSD group must be
installed before the DFHCBTS group. (On startup, when CICS encounters the
definition in the DFHCBTS group after your own definition has been installed, it
issues message DFHAM4803 as a warning.)

Note: To change the operational attributes of the DFHLRQ file by means of SPI
commands while CICS is running, you must first close the file, which may
affect BTS operation. Not all attributes can be changed by SPI commands.

DEFINE FILE(DFHLRQ) GROUP(DFHCBTS)
DESCRIPTION(Scheduler Services - Local Request Queue)

RLSACCESS(NO) LSRPOOLID(1)
READINTEG(UNCOMMITTED) DSNSHARING(ACCREQS)
STRINGS(10) STATUS(ENABLED)
OPENTIME(FIRSTREF) DISPOSITION(OLD)
DATABUFFERS(11) INDEXBUFFERS(10)
TABLE(NO) RECORDFORMAT(V)
ADD(YES) BROWSE(YES)
DELETE(YES) READ(YES)
UPDATE(YES) JOURNAL(NO)
JNLREAD(NONE) JNLSYNCREAD(NO)
JNLUPDATE(NONE) JNLADD(NONE)
JNLSYNCWRITE(NONE) RECOVERY(BACKOUTONLY)
FWDRECOVLOG(NO) BACKUPTYPE(STATIC)

Figure 36. The supplied, default, FILE definition for the LRQ

defining the LRQ to CICS

112 CICS TS for z/OS: CICS Business Transaction Services

Defining repository files to the CSD
On the FILE definition that defines the repository file to CICS:

v Specify that ADD, BROWSE, DELETE, READ, and UPDATE operations are all
permitted.

v Specify the value of the STRINGS option to reflect the likely number of
concurrent activations of processes that use the repository. (The default is
STRINGS(1), which is unlikely to be high enough.)

v If you are using VSAM record-level sharing (RLS) to share the repository data
between the regions of a BTS-set, specify RLSACCESS(YES).

If you are using function-shipping to a file-owning region (FOR) to share the
repository data between the regions of a BTS-set, specify
REMOTESYSTEM(name_of_FOR).

For information about BTS-sets, see Chapter 14, “Using BTS in a sysplex,” on
page 137.

defining repository files to CICS

Chapter 11. Resource definition for BTS 113

CEDA DEFINE PROCESSTYPE
Using the CICS business transaction services (BTS) API, you can define and
execute complex business applications called processes. A process is represented
in memory as a block of storage containing information relevant to its execution. It
also has associated with it at least one additional block of information called an
activity instance. When not executing under the control of the CICS business
transaction services domain, a process and its activity instances are written to a
data set known as a repository.

You can categorize your BTS processes by assigning them to different
process-types. This is useful, for example, for browsing purposes. The activities that
constitute a process are of the same process-type as the process itself.

A PROCESSTYPE definition defines a BTS process-type. It names the CICS file
which relates to the physical VSAM data set (repository) on which details of all
processes of this type (and their activity instances) are to be stored.

Note: Records for multiple process-types can be written to the same repository
data set.

You may want to record the progress of BTS processes and activities for audit
purposes, and to help diagnose errors in BTS applications. If so, you can name the
CICS journal to which audit records are to be written, and the level of auditing that
is required, for processes of the specified type.

Figure 37 on page 115 shows the relationship between PROCESSTYPE definitions,
FILE definitions, and BTS data sets. Notice that multiple PROCESSTYPE
definitions can reference the same FILE definition; and that multiple FILE definitions
can reference the same BTS data set.

CEDA DEFINE PROCESSTYPE

114 CICS TS for z/OS: CICS Business Transaction Services

DEFINE panel

Options
AUDITLEVEL({OFF|PROCESS|ACTIVITY|FULL})

specifies the initial level of audit logging for processes of this type. If you
specify any value other than OFF, you must also specify the AUDITLOG option.

A B

PROCESSTYPE

C

PROCESSTYPE

D

PROCESSTYPE

FILE 1 FILE 2 FILE 3

REPOSITORY
DATA SET X
REPOSITORY
DATA SET X

REPOSITORY
DATA SET Y
REPOSITORY
DATA SET Y

PROCESSTYPE

A

Figure 37. PROCESSTYPE definitions, FILE definitions, and repository data sets

Processtype ==>
Group ==>
DEScription ==>

INITIAL STATUS
STAtus ==> Enabled Enabled | Disabled
DATA SET PARAMETERS
File ==>
AUDIT TRAIL
Auditlog ==>
Auditlevel ==> Off Off | Process | Activity | Full

Figure 38. The DEFINE panel for PROCESSTYPE

CEDA DEFINE PROCESSTYPE

Chapter 11. Resource definition for BTS 115

ACTIVITY
Activity-level auditing. Audit records will be written from:
1. The process audit points
2. The activity primary audit points.

FULL Full auditing. Audit records will be written from:
1. The process audit points
2. The activity primary and secondary audit points.

OFF No audit trail records will be written.

PROCESS
Process-level auditing. Audit records will be written from the process
audit points only.

For details of the records that are written from the process, activity primary, and
activity secondary audit points, see “Specifying the level of audit logging” on
page 158.

AUDITLOG(name)
specifies the name of a CICS journal to which audit trail records will be written,
for processes of this type and their constituent activities. The name can be up
to eight characters long. If you do not specify an audit log, no audit records will
be kept for processes of this type.

DESCRIPTION(text)
You can provide a description of the resource you are defining in this field. The
DESCRIPTION text can be up to 58 characters in length. There are no
restrictions on the characters that you may use. However, if you use
parentheses, ensure that for each left parenthesis there is a matching right one.
For each single apostrophe in the text, code two apostrophes.

FILE(name)
specifies the name of the CICS file definition that will be used to write the
process and activity records of this process-type to its associated repository
data set. The name can be up to eight characters long. The acceptable
characters are A-Z 0-9 $ @ and #. Lowercase characters are converted to
uppercase.

You must specify the FILE option.

PROCESSTYPE(name)
specifies the name of this PROCESSTYPE definition. The name can be up to
eight characters in length. The acceptable characters are A-Z a-z 0-9 $ @ # . /
-_ % & ? ! : | " = ¬ , ; < >. Leading and embedded blank characters are not
permitted. If the name supplied is less than eight characters, it is padded with
trailing blanks up to eight characters.

STATUS({ENABLED|DISABLED})
specifies the initial status of the process-type following a CICS initialization with
START=COLD or START=INITIAL. After initialization, you can use the CEMT
SET PROCESSTYPE command to change the status of the process-type. The
status of the process-type following a restart is recovered to its status at the
previous shutdown.

DISABLED
Processes of this type cannot be created. An EXEC CICS DEFINE
PROCESS request that tries to create a process of this type results in
the INVREQ condition being returned to the application program.

ENABLED
Processes of this type can be created.

CEDA DEFINE PROCESSTYPE

116 CICS TS for z/OS: CICS Business Transaction Services

Chapter 12. Security in BTS

Important: CICS security is described in the CICS RACF® Security Guide. This
chapter is intended to be read in conjunction with that manual.

Users of external security managers (ESMs) other than the Resource
Access Control Facility (RACF) should read this chapter in conjunction
with the documentation for their own ESM.

The security considerations for CICS business transaction services are:
v The authority to access BTS resources
v The userid under which a process (business transaction) runs
v The userid under which the process’s constituent activities run
v The authority to attach the process and its constituent activities
v The authority to use BTS system programming commands.

Resource security in BTS
BTS resources (processes, activities, and containers) are protected in the same
way as resources accessed by CICS file control commands. That is, resource-level
security for a process, its activities, and their containers is based on the CICS file
definition that specifies the repository data set to which records for processes of this
type are written.

Users who run programs that define or acquire processes or activities of a particular
process-type need UPDATE access to the corresponding CICS file.

Note: When a task issues an ACQUIRE command, CICS allows the appropriate
record to be read from the BTS repository, even if the userid associated with
the request has only READ access. However, when the task issues a
syncpoint the record is written back to the data set and, if the userid does
not have UPDATE access, the task abends.

Users who inquire on or browse processes or activities of a particular process-type
need at least READ access to the corresponding CICS file.

Process and activity userids
To activate a process or activity, you can use either the RUN or LINK command.
Which you use affects the userid under which the process or activity runs.

Userids for activities activated by RUN commands
When a process or activity is activated by a RUN command, it may run under a
different userid from that of the transaction that issues the RUN.

The application programmer can specify under whose authority a process or
activity is to run, when it is activated by a RUN command, by coding the
USERID option of the DEFINE PROCESS or DEFINE ACTIVITY command. If
the USERID option is omitted, its value defaults to the userid of the transaction
that issues the DEFINE command.

The userid obtained from the DEFINE command is referred to as the defined
process userid or the defined activity userid. (In the remainder of this
section, we use the term “defined userid” to mean either a defined process
userid or a defined activity userid.)

© Copyright IBM Corp. 1999, 2010 117

If the USERID option of DEFINE PROCESS or ACTIVITY is specified, CICS
performs (at define time) a surrogate security check to verify that the userid of
the transaction that issued the DEFINE command is authorized to use the
defined userid. The RACF profile used for surrogate checking of a BTS process
or activity is userid.DFHSTART in the SURROGAT class.

The following example RACF commands authorize a user as a surrogate user
of a defined process userid and of a defined activity userid:
RDEFINE SURROGAT defined_process_userid.DFHSTART UACC(NONE)

OWNER(defined_process_userid)

PERMIT defined_process_userid.DFHSTART CLASS(SURROGAT)
ID(define_process_command_userid) ACCESS(READ)

RDEFINE SURROGAT defined_activity_userid.DFHSTART UACC(NONE)
OWNER(defined_activity_userid)

PERMIT defined_activity_userid.DFHSTART CLASS(SURROGAT)
ID(define_activity_command_userid) ACCESS(READ)

Userids for activities activated by LINK commands
When a process or activity is activated by a LINK command, it runs under the
userid of the transaction that issues the LINK.

Resource-level security checking within a process or activity is based on the userid
under whose authority the process or activity is run—that is, the defined userid or
the userid of the transaction that issues the LINK command. This userid must have
UPDATE access to the CICS file that corresponds to the process-type.

Attach-time security for processes and activities
Attach-time security means the checking of a transaction’s authority to attach
(activate) a process or activity. It applies only when a process or activity is activated
by a RUN command, not when it is activated by a LINK.

If attach-time security is required for a process, the defined userid—that is, the
userid obtained from the DEFINE PROCESS command—must be given UPDATE
access to the CICS file that corresponds to the BTS data set on which details of the
process and its constituent activities are stored.

Command security in BTS
You can use CICS command-level security to protect the following BTS system
programming commands:
v EXEC CICS CREATE PROCESSTYPE
v EXEC CICS DISCARD PROCESSTYPE
v EXEC CICS INQUIRE PROCESSTYPE
v EXEC CICS SET PROCESSTYPE

security

118 CICS TS for z/OS: CICS Business Transaction Services

Chapter 13. BTS operator commands

This chapter describes the operator commands that can be used to inquire on and
control CICS business transaction services resources. It contains:
v “CBAM—BTS browser”
v “CEMT INQUIRE PROCESSTYPE” on page 128
v “CEMT INQUIRE TASK” on page 131
v “CEMT SET PROCESSTYPE” on page 134.

For introductory and guidance information about the CICS master terminal
transaction, CEMT, see the CICS Supplied Transactions manual.

CBAM—BTS browser
Use CBAM to browse the CICS business transaction services objects
(process-types, processes, activities, containers, events and timers) known to this
region.

CBAM is a menu-driven transaction. The menus are hierarchically organized. By
navigating downwards through the menus, you can display:

1. All the process-types that have been defined to this region by means of installed
PROCESSTYPE definitions.

2. All the processes of a selected process-type. These are the processes of the
selected type that currently exist on the repository data set pointed to by the
installed PROCESSTYPE definition.

Note that, if you are operating BTS in a sysplex and the repository is shared
with one or more other regions, some of the processes may have been defined
on other regions.

3. The constituent activities of a selected process.

4. The details (program, transid, userid) of a selected activity.

5. One of the following:
v The containers associated with a selected activity or process, or
v The events in a selected activity’s event pool, or
v The timers defined to a selected activity.

Note: This overview of the CBAM menu hierarchy is slightly simplified. Selectable
fields allow you to bypass some screens.

CBAM is a “read-only” transaction—you cannot update any of the displayed
attributes by overtyping them.

Running the transaction
Start the transaction by typing CBAM on the command line and pressing the
ENTER key. This gives you a list of all the process-types that have been defined to
this region, as shown in Figure 39 on page 120.

© Copyright IBM Corp. 1999, 2010 119

Process-types screen

The displayed fields mean:

Auditlevel
The level of audit logging currently active for processes of this type:
Activity

Activity-level auditing. Audit records are written from:
1. The process audit points
2. The activity primary audit points.

Full Full auditing. Audit records are written from:
1. The process audit points
2. The activity primary and secondary audit points.

Off No audit records are written.
Process

Process-level auditing. Audit records are written from the process audit
points only.

For details of the records that are written from the process, activity primary, and
activity secondary audit points, see “Specifying the level of audit logging” on
page 158.

File
The CICS repository file on which records for processes of this type are stored.

Status
Whether the PROCESSTYPE is enabled or disabled—that is, whether new
processes of this process-type can be defined.

Processtype
The name of a process-type.

CBAM

Processtype File Status Auditlevel

CBTSAUDA DFHBARF Enabled Activity
CBTSSHR DFHBSHR Enabled Off
CBTSSHRF DFHBSHR Disabled Activity
CBTSSHR2 DFHBSHR2 Disabled Off
MORTLOANS DFHMORT Enabled Process

Use cursor and Enter for Processes

PF3=Return 7=Back 8=Forward

Figure 39. CBAM transaction: initial screen, showing the process-types defined to this region

CBAM browser

120 CICS TS for z/OS: CICS Business Transaction Services

If you place the cursor on the name of a process-type 8 and press ENTER, you get
a list of all the processes of that type that currently exist on the repository data set
pointed to by the installed PROCESSTYPE definition—see Figure 40.

Processes screen

The displayed fields mean:

Comp
The completion status of the process:
Abend

The program that implements the root activity abended.
Forced

The process was forced to complete—for example, it was canceled with
a CANCEL ACQPROCESS command.

Incomplete
The process is incomplete.

Normal
The process completed normally.

Conts
A selectable field. If you place the cursor on this field and press ENTER, you
get a list of the process-containers for the process named in the Process field.
For an example of the CBAM Containers screen, see Figure 43 on page 124.

Mode
The mode of the process. One of:

Active
Cancelling
Complete
Dormant

8. Or anywhere on the same line.

CBAM Processtype MORTLOANS

Process Mode Comp Susp Conts

MORT000000014 Dormant Incomplete No _
MORT000000015 Complete Forced No _
MORT000000016 Dormant Incomplete Sus _
MORT000000017 Active Incomplete No _
PERS000000114 Initial Incomplete No _

Use cursor and Enter for Activities or Containers (tab to Conts)

PF3=Return 7=Back 8=Forward

Figure 40. CBAM transaction: processes screen

CBAM browser

Chapter 13. BTS operator commands 121

Initial.

For an explanation of each of these modes, see “Processing modes” on page
18.

Process
The name of a process.

Susp
Whether the process is currently suspended:
No The process is not currently suspended.
Sus The process is currently suspended.

If you place the cursor on the name of a process and press ENTER, you get a list
of the process’s constituent activities—see Figure 41.

Activities screen

The displayed fields mean:

Activity
The name of an activity.

The list of constituent activities is indented. The amount by which an activity is
indented represents its level in the process’s activity tree.

Comp
The completion status of the activity:
Abend

The activity abended.
Forced

The activity was forced to complete—for example, it was canceled with
a CANCEL ACTIVITY command.

Incomplete
The activity is incomplete.

CBAM Process MORT000000017 Processtype MORTLOANS

Activity Mode Comp Susp

DFHROOT Dormant Incomplete No
NEWMORT Complete Normal No
PAYMENT-RECEIVED Complete Normal No
PAYMENT-OVERDUE Complete Normal No
INTEREST-CHANGE Complete Normal No
CAPITAL-REPAYMNT Dormant Incomplete No
Credit-Account Complete Normal No
Adjust-Interest Active Incomplete No

Use cursor and Enter for details

PF3=Return 7=Back 8=Forward

Figure 41. CBAM transaction: activities screen

CBAM browser

122 CICS TS for z/OS: CICS Business Transaction Services

Normal
The activity completed normally.

Mode
The mode of the activity. One of:

Active
Cancelling
Complete
Dormant
Initial.

For an explanation of each of these modes, see “Processing modes” on page
18.

Susp
Whether the activity is currently suspended:
No The activity is not currently suspended.
Sus The activity is currently suspended.

If you place the cursor on the name of an activity and press ENTER, you get details
of the activity—see Figure 42.

Activity details screen

The Activity details screen tells you the name of the program that implements the
selected activity, plus the transaction identifier and userid under which the activity
runs.

There are also three selectable fields:

Containers
Pressing ENTER on this field gives you a list of the containers associated
with the selected activity—see Figure 44 on page 125.

CBAM Process MORT000000017 Processtype MORTLOANS

Activity DFHROOT

Program MORTGAGE
Transid MORT
Userid CBTSMOR

Containers
Events
Timers

Use cursor and Enter for Containers, Events or Timers

PF3=Return 7=Back 8=Forward

Figure 42. CBAM transaction: activity details screen

CBAM browser

Chapter 13. BTS operator commands 123

Events
Pressing ENTER on this field gives you a list of the events in the event pool
of the selected activity—see Figure 45 on page 125.

Timers
Pressing ENTER on this field gives you a list of the timers defined to the
selected activity—see Figure 46 on page 127.

Containers screen
The Containers screen lists each container associated with a specified process or
activity and tells you the length, in bytes, of the data contained in it.

CBAM Process MORT000000017 Processtype MORTLOANS

Container Datalength

ACCOUNT-NO 36
BORROWER-INFO 1000

PF3=Return 7=Back 8=Forward

Figure 43. CBAM transaction: containers screen for a process

CBAM browser

124 CICS TS for z/OS: CICS Business Transaction Services

Events screen

The Events screen lists the events in a specified activity’s event pool. (Note that the
events listed are those that are currently in the event pool. Events that have been
deleted do not appear in the list.)

CBAM Process MORT000000017 Processtype MORTLOANS

Activity DFHROOT

Container Datalength

STATUS 500

PF3=Return 7=Back 8=Forward

Figure 44. CBAM transaction: containers screen for an activity

CBAM Process MORT000000017 Processtype MORTLOANS

Activity DFHROOT

Event Type Fired Composite Timer

ALL-TIMERS Composite Yes OR
ANNUAL-STATMNT Timer Yes ALL-TIMERS ANNUAL-STATEMENT
ANNUAL-ST-DONE Activity No
CAPITAL-REPAYMNT Input No
CAP-REPT-DONE Activity No
DFHINITIAL System Yes
INTEREST-CHANGE Input No
PAYMENT-OVRDUE Timer No ALL-TIMERS PAYMENT-OVERDUE
PAYMENT-RECEIVED Input No

PF3=Return 7=Back 8=Forward

Figure 45. CBAM transaction: events screen

CBAM browser

Chapter 13. BTS operator commands 125

The displayed fields mean:

Composite
If the event is a composite, the Boolean operator (AND or OR) applied to its
predicate.

If the event is a sub-event, the name of the composite event of which it forms
part.

Event
The name of an event.

Fired
The fire status of the event.

Note that this field shows the current fire status of the event, not whether the
event has ever fired in the past. For example, the fire status of an atomic event
that has fired and been retrieved (but not deleted) will be shown as 'No',
because the act of retrieving the event will have reset its fire status to
NOTFIRED.
No Not fired
Yes Fired

Timer
If the event is a timer event, the name of its associated timer.

Type
The type of the event:
Activity

Activity completion
Composite

Composite
Input Input
System

System
Timer Event associated with a timer

CBAM browser

126 CICS TS for z/OS: CICS Business Transaction Services

Timers screen

The Timers screen lists the timers currently defined to a specified activity.

The displayed fields mean:

Date
The expiry date of the timer, in the form mmddyyyy.

Event
The name of the event associated with the timer.

Status
The state of the timer:
Expired

The timer expired normally.
Forced

Expiry of the timer was forced by means of a FORCE TIMER
command.

Unexpired
The timer has not yet expired.

Time
The expiry time of the timer, in the form hhmmss.

Timer
The name of a timer.

CBAM Process MORT000000017 Processtype MORTLOANS

Activity DFHROOT

Timer Status Event Date Time

ANNUAL-STATMNT Expired ANNUAL-STATEMENT 12151998 235959
PAYMENT-OVRDUE Unexpired PAYMENT-OVERDUE 06301999 235959

PF3=Return 7=Back 8=Forward

Figure 46. CBAM transaction: timers screen

CBAM browser

Chapter 13. BTS operator commands 127

CEMT INQUIRE PROCESSTYPE

Function
Retrieve information about a CICS business transaction services process-type.

Description
INQUIRE PROCESSTYPE returns information about the BTS PROCESSTYPE
definitions installed on this CICS region. In particular, it shows the current state of
audit logging for each displayed process-type.

Input
Press the Clear key to clear the screen. There are two ways of commencing this
transaction:

v Type CEMT INQUIRE PROCESSTYPE (the minimum abbreviation is CEMT I PROC). You
get a screen that lists the current status.

v Type CEMT INQUIRE PROCESSTYPE (CEMT I PROC) followed by as many of the other
attributes as are necessary to limit the range of information that you require. So,
for example, if you enter cemt i proc en, the resulting display will show you the
details of only those process-types that are enabled.

To change various attributes, you can:

v Overtype your changes on the INQUIRE screen after tabbing to the appropriate
field.

v Use the CEMT SET PROCESSTYPE command.

CEMT INQUIRE PROCESSTYPE

�� CEMT Inquire PROCesstype
ALl

(value) File (value)
�

�
AUditlog (value) ACtivity

FUll
Off
Process

Enabled
Disabled

��

ALl
is the default. Information about all process-types is displayed, unless you
specify a selection of process-types to be queried.

(value)
is the name (1-8 characters) of one or more PROCESSTYPE definitions
installed in the process-type table (PTT).

CEMT INQUIRE PROCESSTYPE

128 CICS TS for z/OS: CICS Business Transaction Services

Sample screen

If you place the cursor against a specific entry in the list and press ENTER, CICS
displays an expanded format as shown in Figure 48.

Displayed fields
Auditlevel

displays the level of audit logging currently active for processes of this type.
The values are:

ACtivity
Activity-level auditing. Audit records are written from:
1. The process audit points
2. The activity primary audit points.

FUll Full auditing. Audit records are written from:
1. The process audit points
2. The activity primary and secondary audit points.

Off No audit trail records are written.

Process
Process-level auditing. Audit records are written from the process audit
points only.

For details of the records that are written from the process, activity primary, and
activity secondary audit points, see “Specifying the level of audit logging” on
page 158.

AUditlog(value)
displays the 8-character name of the CICS journal used as the audit log for
processes of this type.

File(value)
displays the 8-character name of the CICS repository file on which the process
and activity records for processes of this type are stored.

I PROC
STATUS: RESULTS - OVERTYPE TO MODIFY
Pro(PROCESSTYPE12) Fil(FILE12) Aud(ADTLOG12) Pro Ena
Pro(PROCESSTYPE13) Fil(FILE13) Aud(ADTLOG12) Off Ena
Pro(PTYPE2B) Fil(FILE2B) Aud(DFHJ2B) Ful Ena
Pro(PTYPE39) Fil(FILE39) Aud(DFHJ39) Off Ena
Pro(SALESTYPE1) Fil(SALESF1) Aud(PLOG51) Off Dis
Pro(SALESTYPE4) Fil(SALESF4) Aud(PLOG51) Act Ena
Pro(SALESTYPE6) Fil(SALESF6) Aud(PLOG51) Off Ena

Figure 47. CEMT INQUIRE PROCESSTYPE screen

I PROCESSTYPE(*)
RESULT - OVERTYPE TO MODIFY
Processtype(SALESTYPE4)
File(SALESF4)
Auditlog(PLOG51)
Auditlevel(Activity)
Status(Enabled)

Figure 48. The expanded display of an individual entry

CEMT INQUIRE PROCESSTYPE

Chapter 13. BTS operator commands 129

PROCesstype(value)
indicates that this panel relates to a PROCESSTYPE inquiry and displays the
8-character name of a process-type.

Status
displays whether new processes of this type can be created. The values are:

Disabled
The installed definition of the process-type is disabled. New processes
of this type cannot be defined.

Enabled
The installed definition of the process-type is enabled. New processes
of this type can be defined.

CEMT INQUIRE PROCESSTYPE

130 CICS TS for z/OS: CICS Business Transaction Services

CEMT INQUIRE TASK

Function
Retrieve information about a user task.

Command options: This section describes only the options of the CEMT INQUIRE
TASK command that relate specifically to BTS. For full details
of the INQUIRE TASK command, see the CICS Supplied
Transactions manual.

Description
INQUIRE TASK returns information about user tasks. Only information about user
tasks can be displayed or changed; information about CICS-generated system tasks
or subtasks cannot be displayed or changed. System tasks are those tasks started
(and used internally) by CICS, and not as a result of a user transaction.

Input
Press the Clear key to clear the screen. There are two ways of commencing this
transaction:

v Type CEMT INQUIRE TASK (the minimum abbreviation is CEMT I TA). You get a
display that lists the current status.

v Type CEMT INQUIRE TASK (CEMT I TA) followed by as many of the other attributes
as are necessary to limit the range of information that you require. So, for
example, if you enter cemt i ta i, the resulting display will show you the details
of only those tasks for which the data is not shared with other tasks (isolated).

To change various attributes, you can:

v Overtype your changes on the INQUIRE screen after tabbing to the appropriate
field.

v Use the CEMT SET TASK command.

CEMT INQUIRE TASK

�� CEMT Inquire TAsk
ALl

(value)
TClass(value)

(....) ACTIVITYId(value)
�

�
ACTIVITY(value) PROCESS(value) PROCESSType(value)

��

(value)
is the CICS-generated task number, in the range 1–99999.

ALl
is the default. The maximum number of tasks that can be displayed is 32000.

TClass(value)
is the 8-character transaction class name to which the transactions belong. The
maximum number of tasks that can be displayed is 32000.

You cannot specify a list of identifiers, nor can you use the symbols * and + to
specify a family of tasks.

CEMT INQUIRE TASK

Chapter 13. BTS operator commands 131

Sample screen

Note: Blank fields on the screen indicate that a value does not apply or is
‘negative’; that is, it begins with ‘No’. Underscores indicate input-only fields.

If you place the cursor against a specific entry in the list and press ENTER, CICS
displays an expanded format as shown in Figure 50.

Displayed fields
Activityid(value)

displays the 52-character, CICS-assigned, identifier of the CICS business
transaction services activity that this task is executing on behalf of.

Activity(value)
displays the 16-character, user-assigned, name of the CICS business
transaction services activity that this task is executing on behalf of.

Process(value)
displays the 36-character name of the CICS business transaction services
process that this task is executing on behalf of.

IN TASK
STATUS: RESULTS - OVERTYPE TO MODIFY
Tas(0000033) Tra(CEMT) Fac(944D) Sus Ter Pri(255)

Sta(TO) Use(BELL) Uow(AB9001D5F56CC800) Hty(ZCIOWAIT) Hva(DFHZARQ
Tas(0000037) Tra(CEMT) Fac(S21D) Run Ter Pri(255)

Sta(TO) Use(BELL) Uow(AB9002E745F93A00)

Figure 49. CEMT INQUIRE TASK screen

IN TASK
RESULT - OVERTYPE TO MODIFY
Task(0000033)
Tranid(CEMT)
Facility(944D)
Runstatus(Suspended)
Ftype(Term)
Priority(255)
Purgetype()
Startcode(TO)
Userid(BELL)
Uow(AB9001D5F56CC800)
Htype()
Hvalue()
Htime()
Indoubt(Backout)
Indoubtwait(Wait)
Bridge()
Activityid()
Activity()
Process()
Processtype()

Figure 50. The expanded display of an individual entry

CEMT INQUIRE TASK

132 CICS TS for z/OS: CICS Business Transaction Services

Processtype(value)
displays the 8-character process-type of the CICS business transaction services
process that this task is executing on behalf of.

CEMT INQUIRE TASK

Chapter 13. BTS operator commands 133

CEMT SET PROCESSTYPE

Function
Change the attributes of a CICS business transaction services process-type.

Description
SET PROCESSTYPE enables you to change the current state of audit logging and
the enablement status of BTS PROCESSTYPE definitions installed on this CICS
region.

Note: Process-types are defined in the process-type table (PTT). CICS uses the
entries in this table to maintain its records of processes (and their constituent
activities) on external data sets. If you are using BTS in a single CICS
region, you can freely use the SET PROCESSTYPE command to modify
your process-types. However, if you are using BTS in a sysplex, it is strongly
recommended that you use CPSM to make such changes. This is because it
is essential to keep resource definitions in step with each other, across the
sysplex.

Syntax

CEMT SET PROCESSTYPE

�� CEMT Set PROCesstype
ALl

(value) ACtivity
FUll
Off
Process

Enabled
Disabled

��

Options
ACtivity|FUll|Off|Process

specifies the level of audit logging to be applied to processes of this type.

Note: If the AUDITLOG attribute of the installed PROCESSTYPE definition is
not set to the name of a CICS journal, an error is returned if you try to
specify any value other than OFF.

The values are:

ACtivity
Activity-level auditing. Audit records will be written from:
1. The process audit points
2. The activity primary audit points.

FUll Full auditing. Audit records will be written from:
1. The process audit points
2. The activity primary and secondary audit points.

Off No audit trail records will be written.

Process
Process-level auditing. Audit records will be written from the process
audit points only.

CEMT SET PROCESSTYPE

134 CICS TS for z/OS: CICS Business Transaction Services

For details of the records that are written from the process, activity primary, and
activity secondary audit points, see “Specifying the level of audit logging” on
page 158.

ALl
specifies that any changes you specify are made to all process-types that you
are authorized to access.

Enabled|Disabled
specifies whether new processes of this type can be created. The values are:

Disabled
The installed definition of the process-type is disabled. New processes
of this type cannot be defined.

Enabled
The installed definition of the process-type is enabled. New processes
of this type can be defined.

PROCesstype(value)
specifies the 8-character name of the process-type whose attributes are to be
changed.

CEMT SET PROCESSTYPE

Chapter 13. BTS operator commands 135

CEMT SET PROCESSTYPE

136 CICS TS for z/OS: CICS Business Transaction Services

Chapter 14. Using BTS in a sysplex

Terminology: This chapter assumes that you are familiar with the terminology and
concepts of CICS dynamic routing. For introductory information
about dynamic routing, see the CICS Intercommunication Guide.

You can operate BTS in a single CICS region. However, CICS business transaction
services are sysplex-enabled. Within a sysplex you can, for example:

v Use workload separation to ensure that processes of the same process-type are
handled by a particular set of regions.

v Use workload balancing to route activity requests across a set of regions. This
means that, within a single process:
– The activities that constitute the process may execute on several regions.
– Different activations of the same activity may execute on different regions.

The scope of a BTS-set
By BTS-set we mean the set of CICS regions across which related BTS processes
and activities may execute. All the regions in a BTS-set:

v Must be interconnected (to support routing of activities between the regions).
This means, not simply that the regions must be in the same CICSplex, but that
each region in the BTS-set must be connected to every other region—see
“Understanding distributed routing” on page 138.

v Must have access to the BTS repository data set (or data sets) on which details
of the relevant processes are stored.

There are two methods of sharing the repository data set:

1. Using VSAM record-level sharing (RLS). To use this method, all the regions
of the BTS-set must be within the same MVS Parallel Sysplex. (A “Parallel
Sysplex” is a sysplex in which the MVS images are linked through a coupling
facility). VSAM RLS requires a coupling facility. Each region in the BTS-set
must open the shared repository file or files in RLS mode.

2. Using function-shipping to a file-owning region (FOR).

Within an MVS sysplex, it is possible to have multiple BTS-sets—see Figure 53 on
page 142. Imagine, for example, that within your sysplex you operate two
CICSplexes. You could decide to divide your BTS processes by process-type,
between the two CICSplexes. Alternatively, you could decide to set up two BTS-sets
within the same CICSplex.

Using separate BTS-sets is a high-level form of workload separation. By definition,
routing of activities between BTS-sets is not possible.

A note about audit logs
When you create a BTS-set, the activities that constitute a single process may
execute on several regions. Therefore, in order to collate the audit data for each
process, your audit logs should use MVS shared logstreams.

If all the CICS regions in your BTS-set are in the same MVS image, you can define
the logstreams to use either coupling facility structures or DASD-only logging.
However, if the CICS regions are on different MVS images, the logstreams should
use coupling facility structures rather than DASD-only logging. This is because
CICS regions on different MVS images cannot access the same DASD-only
logstream at the same time.

© Copyright IBM Corp. 1999, 2010 137

If your BTS-set spans multiple MVS images and you use DASD-only logstreams for
your BTS logs, you will not be able to use shared logstreams. In this case, the audit
records for a particular process could be split between several logstreams; you
have to collate the data yourself.

For further information about audit logs, see Chapter 16, “Creating a BTS audit
trail,” on page 157.

Dynamic routing of BTS activities
Within a BTS-set, your BTS processes and activities can be routed dynamically
across the participating regions.

Note that BTS routing is at the activation level; for example, within the same
process, different activations of the same activity may execute on different regions.
When an event is signalled, the relevant activity is activated in the most appropriate
region in the BTS-set, based on one or more of the following:
v Any workload separation specified by the system programmer
v Any affinities its associated transaction has with a particular region
v The availability of regions
v The relative workload of regions.

Which BTS activities can be dynamically routed?
Not all activations of BTS processes and activities can be routed.

Processes and activities that are activated asynchronously with the requestor—by
means of a RUN ASYNCHRONOUS command—can be routed either dynamically
or statically.

Processes and activities that are activated synchronously with the requestor—by
means of a RUN SYNCHRONOUS or LINK command—are always run locally. They
cannot be routed, neither dynamically nor statically. A RUN SYNCHRONOUS or
LINK command issued against an activity whose associated transaction is defined
as DYNAMIC(YES), or as remote, results in the activity being run locally. (When an
activity is activated by a LINK command, all the attributes of its associated
transaction are ignored, because the activity runs under its parent's
TRANSID—there is no context-switch.)

Thus, to be eligible for dynamic routing:

v A process or activity must be run asynchronously with the requestor, by means of
a RUN ASYNCHRONOUS command.

v The TRANSACTION definition for the CICS transaction associated with the
process or activity must specify DYNAMIC(YES).

“Daisy-chaining” is not supported. That is, once a BTS process or activity has been
routed to a target region it cannot be re-routed from the target to a third region,
even though its associated transaction is defined as DYNAMIC(YES) in the target.

Understanding distributed routing
CICS has two dynamic routing models—the “hub routing model” and the
distributed routing model. Likewise, there are two user-replaceable sample
routing programs—the dynamic routing program, DFHDYP, which implements the
“hub” model, and the distributed routing program, DFHDSRP, which implements

BTS in a sysplex

138 CICS TS for z/OS: CICS Business Transaction Services

the distributed model. Both models and their associated routing programs are
described in detail in the CICS Intercommunication Guide.

The CICSPlex SM routing program, EYU9XLOP, can be used with either routing
model—that is, it can function as either a dynamic routing program, a distributed
routing program, or both.

BTS routing uses the distributed routing model. It is important to understand how
this differs from the traditional “hub” model.

The hub model
The “hub” is the model that has traditionally been used with CICS dynamic
transaction routing. A dynamic routing program running in a terminal-owning region
(TOR) routes transactions between several application-owning regions (AORs).
Usually, the AORs (unless they are AOR/TORs) do no dynamic routing. Figure 51
shows a “hub” routing model.

The “hub” model applies to the routing of:

v Transactions started from terminals

v Transactions started by terminal-related EXEC CICS START commands

v Program-link requests received from outside CICS. (The receiving region acts as
a “hub” or “TOR” because it routes the requests among a set of back-end server
regions.)

The “hub” model is a hierarchical system—routing is controlled by one region (the
TOR); normally, a routing program runs only in the TOR.

Advantage of the hub model: It is a relatively simple model to implement. For
example, compared to the distributed model, there are few inter-region connections
to maintain.

TOR

Possible
Target region

Possible
Target region

Possible
Target region

Possible
Target region

Routing region

Requesting region Dynamic
routing
program

Figure 51. Dynamic routing using a hub routing model. One routing region (the TOR) selects
between several target regions.

BTS in a sysplex

Chapter 14. Using BTS in a sysplex 139

Disadvantages of the hub model:

v If you use only one “hub” to route transactions and program-link requests across
your AORs, the “hub” TOR is a single point-of-failure.

v If you use more than one “hub” to route transactions and program-link requests
across the same set of AORs, you may have problems with distributed data. For
example, if the routing program keeps a count of routed transactions for
load-balancing purposes, each “hub” TOR will need access to this data.

The distributed model
In the distributed model used for BTS routing, each participating CICS region may
be both a routing region and a target region. A distributed routing program runs in
each region. Figure 52 shows a distributed routing model.

The distributed model applies to the routing of:

v BTS processes and activities

v Method requests for enterprise beans and CORBA stateless objects

Requesting region
Routing region
Target region

Requesting region
Routing region
Target region

Requesting region
Routing region
Target region

Requesting region
Routing region
Target region

Distributed
routing
program

Distributed
routing
program

Distributed
routing
program

Distributed
routing
program

Figure 52. Dynamic routing using a distributed routing model. Each region may be both a
routing region and a target region.

BTS in a sysplex

140 CICS TS for z/OS: CICS Business Transaction Services

v Non-terminal-related EXEC CICS START requests.

The distributed model is a peer-to-peer system—each participating CICS region
may be both a routing region and a target region. A distributed routing program runs
in each region.

Advantage of the distributed model: There is no single point-of-failure.

Disadvantages of the distributed model:

v Compared to the “hub” model, there are a great many inter-region connections to
maintain.

v You may have problems with distributed data. For example, any data used to
make routing decisions must be available to all the regions. (CICSPlex SM
solves this problem by using dataspaces.)

Controlling BTS dynamic routing
You can control the dynamic routing of your BTS activities by either of the following
means:

1. Writing your own CICS distributed routing program—see “Using a CICS
distributed routing program” on page 143.

2. Using the CICSPlex System Manager (CICSPlex SM) product to:
v Specify workload separation for your BTS processes
v Manage affinities
v Control workload balancing of the transactions associated with BTS activities.

See “Using CICSPlex SM with BTS” on page 145.

Creating a BTS-set
The recommended method of using BTS in a sysplex is to have several sets of
BTS regions (BTS-sets). Each set is designed to deal with one or more
process-types (types of business transaction). The easiest way to create the sets is
by cloning individual regions.

Figure 53 on page 142 shows a sysplex that contains two BTS-sets. BTS-set 1
handles all processes of type PAYROLL. All the regions in BTS-set 1 are
interconnected and have access to the BTS repository that contains details of
PAYROLL-type processes. BTS-set 2 handles all processes of types TRAVEL and
MISC. All the regions in BTS-set 2 are interconnected and have access to the BTS
repository that contains details of TRAVEL and MISC-type processes.

BTS in a sysplex

Chapter 14. Using BTS in a sysplex 141

The number of regions in a BTS-set will be related to:

v The number of process-types handled by the BTS-set

v The workload associated with each process-type.

To create each BTS-set, on each of the regions in the set:

1. Define a connection to every other region in the BTS-set. For performance
reasons, you are recommended to use MRO or MRO/XCF rather than APPC
connections.

2. Give the region access to the BTS repository that contains details of the
process-types it is servicing. The name of the repository file is specified on the
PROCESSTYPE definition or definitions.

If you are using VSAM RLS to share the repository file, on the FILE definition
that defines the repository file to CICS, specify RLSACCESS(YES).

If you are using function-shipping to share the repository file, on the FILE
definition that defines the repository file to CICS, specify
REMOTESYSTEM(name_of_file-owning_region).

3. On the TRANSACTION definition for each transaction associated with a BTS
activity, specify DYNAMIC(YES). Do not specify the REMOTESYSTEM option.

CICS 1

CICS 3

CICS 2

PAYROLL BTS-set

PAYROLL

CICS 4

CICS 6

CICS 5

TRAVEL and MISC BTS-set

TRAVEL
MISCBTS repository

data set
BTS repository
data set

MVS sysplex

Figure 53. A sysplex containing two BTS-sets. BTS-set 1 handles all processes of type PAYROLL. BTS-set 2 handles
all processes of types TRAVEL and MISC.

BTS in a sysplex

142 CICS TS for z/OS: CICS Business Transaction Services

For general information about defining transactions for transaction routing, and
specific information about defining transactions associated with BTS activities,
see the CICS Intercommunication Guide.

4. Enable the distributed routing program—see the next section.

Naming the routing program
You specify which distributed routing program CICS is to use on the DSRTPGM
system initialization parameter. The name you specify might be that of the
CICSPlex SM routing program, EYU9XLOP, or of your own user-written program.
For information about DSRTPGM, see “Naming the routing program” on page 109.

After CICS has initialized, you can discover which distributed routing program, if
any, is in use by issuing an EXEC CICS or CEMT INQUIRE SYSTEM command.
The DSRTPROGRAM option returns the program name.

After CICS has initialized, you can change the distributed routing program currently
in use by issuing an EXEC CICS or CEMT SET SYSTEM command. The
DSRTPROGRAM option specifies the program name.

Using a CICS distributed routing program
This section describes some of the things you need to consider if you decide to
write your own distributed routing program.

How the distributed routing program relates to the dynamic routing
program

The two CICS-supplied user-replaceable programs for dynamic routing complement
each other.

The dynamic routing program, DFHDYP
Can be used to route:
v Transactions started from terminals
v Transactions started by terminal-related START commands
v Program-link requests.

The distributed routing program, DFHDSRP
Can be used to route:
v BTS processes and activities
v Method requests for enterprise beans and CORBA stateless objects
v Non-terminal-related START requests.

The two routing programs:

1. Are specified on separate system initialization parameters.

2. Are passed the same communications area. (Certain fields that are meaningful
to one program are not meaningful to the other.)

3. Are invoked at similar points—for example, for route selection, route selection
error, and (optionally) at termination of the routed transaction or program-link
request.

Together, these three factors give you a good deal of flexibility. You could, for
example, do any of the following:

1. Use different user-written programs for dynamic and distributed routing.

2. Use the same user-written program for both dynamic and distributed routing.

BTS in a sysplex

Chapter 14. Using BTS in a sysplex 143

3. Use a user-written program for dynamic routing and the CICSPlex SM routing
program for distributed routing, or vice versa.

The distributed routing program differs from the dynamic routing program in several
important ways:

1. The dynamic routing program is invoked only if the resource (the transaction or
program) is defined as DYNAMIC(YES). The distributed routing program, on the
other hand, is invoked (for eligible non-terminal-related START requests, BTS
activities, and method requests for enterprise beans and CORBA stateless
objects) even if the associated transaction is defined as DYNAMIC(NO)—though
it cannot route the request. This means that the distributed routing program is
better able to monitor the effect of statically-routed requests on the relative
workloads of the target regions.

2. Because the dynamic routing program uses the hierarchical “hub” routing
model—one routing program controls access to resources on several target
regions—the routing program that is invoked at termination of a routed request
is the same that was invoked for route selection.

The distributed routing program, on the other hand, uses the distributed model,
which is a peer-to-peer system—the routing program itself is distributed. The
routing program that is invoked at initiation, termination, or abend of a routed
transaction is not the same program that was invoked for route selection—it is
the routing program on the target region.

3. The distributed routing program is invoked at more points than the dynamic
routing program. Figure 54 on page 145 shows the points at which the
distributed routing program is invoked, and the region on which each invocation
occurs.

Writing a distributed routing program
You can use the CICS-supplied default distributed routing program, DFHDSRP, as a
model when writing your own version. For general information about
user-replaceable programs, and specific information about how to write a distributed
routing program, see the CICS Customization Guide.

When your routing program is invoked
For processes and activities started by RUN ASYNCHRONOUS commands, your
distributed routing program is invoked at the following points:

On the requesting region:

1. Either of the following:

v For routing the activity. This occurs when the transaction associated with
the activity is defined as DYNAMIC(YES).

v For notification of a statically-routed activity. This occurs when the
transaction associated with the activity is defined as DYNAMIC(NO). The
routing program is not able to route the activity. It could, however, do
other things.

2. If an error occurs in route selection. For example, if the target region
returned by the routing program on the route selection call is unavailable.
This gives the routing program the opportunity to specify an alternate target.
This process iterates until the routing program selects a target that is
available or sets a non-zero return code.

3. After CICS has tried (successfully or unsuccessfully) to route the activity to
the target region.

This invocation signals that (unless the requesting region and the target
region are one and the same) the requesting region’s responsibility for the

BTS in a sysplex

144 CICS TS for z/OS: CICS Business Transaction Services

transaction has been discharged. The routing program might, for example,
use this invocation to release any resources that it has acquired on behalf
of the transaction.

On the target region:
These invocations occur only if the routing program on the requesting region
has specified that it should be reinvoked on the target region:

1. When the activation starts on the target region (that is, when the transaction
that implements the activity starts).

2. If the routed activation (transaction) ends successfully.

3. If the routed activation (transaction) abends.

Figure 54 shows the points at which the distributed routing program is invoked, and
the region on which each invocation occurs. Note that the “target region” is not
necessarily remote—it could be the local (requesting) region, if the routing program
chooses to run the activity locally.

When it is invoked on the target region for transaction initiation, termination, or
abend, the routing program can update a count of BTS activities that are currently
running on that region. When it is invoked on the requesting region for route
selection, the routing program can use the counts maintained by all the regions in
the routing set (including itself) as input to its routing decision. This requires that all
the regions in the BTS-set have access to a common data store on which the
counts are stored. For further details, see the CICS Customization Guide.

Restrictions on the routing program
Because the distributed routing program executes outside a unit of work
environment, your program must not:
v Alter any recoverable resources
v Issue file control or temporary storage requests.

Using CICSPlex SM with BTS
Rather than writing your own distributed routing program, you can use CICSPlex
SM services to route BTS activities around your BTS-sets. For BTS support, you
need the CICSPlex SM component of CICS Transaction Server for OS/390, Version
1 Release 3.

Route selection

Notification

Route selection error

Routing attempt complete

Requesting region

Transaction initiation

Transaction termination

Transaction abend

Target region

Figure 54. When and where the distributed routing program is invoked

BTS in a sysplex

Chapter 14. Using BTS in a sysplex 145

Overview of CICSPlex SM Workload Management
CICSPlex SM’s workload management (WLM) function provides a dynamic routing
program that can route eligible transactions (those defined as dynamic) from a
requesting region to a suitable target region selected at the time the transaction is
initiated.

WLM functions
CICSPlex SM’s dynamic routing program supports:

v Workload separation, which is the routing of particular transactions to a particular
group of target regions based on BTS process-type, or a combination of
process-type and transaction name, or any combination of user ID, terminal ID,
and transaction name. For example, using CICSPlex SM’s workload separation
function, you can specify that transactions beginning with the characters 'SAL'
and initiated by members of your sales department must be routed to the group
of target regions, SALESGRP, allocated to that department.

v Workload balancing, which is the routing of transactions among a group of target
regions according to the availability and activity levels of those regions. Workload
balancing can be used in addition to, or in place of, workload separation. For
example, CICSPlex SM can balance the transaction workload among the
SALESGRP regions by selecting, as each transaction is initiated, the target
region that is likely to deliver the best performance.

v Inter-transaction affinity, which is the requirement for related transactions to be
processed by the same target region. The IBM CICS Interdependency Analyzer
for z/OS can be used to identify affinities between transactions. For information
about the IBM CICS Interdependency Analyzer for z/OS, see the CICS
Interdependency Analyzer for z/OS User's Guide and Reference.

For further introductory information about CICSPlex SM and workload management,
see the CICSPlex System Manager Concepts and Planning manual, GC33-0786.

Using CICSPlex SM to route BTS activities
When routing BTS activities around a BTS-set, CICSPlex SM Workload
Management selects a target region based on:
v Any workload separation criteria that you have defined
v The current workloads of the eligible regions
v Any active affinities
v The speed of the communication links to the eligible regions.

The CICSPlex SM component of CICS Transaction Server for OS/390, Version 1
Release 3 understands BTS processes and activities. This makes it possible to
separate a BTS workload based on process-type. For example, you could specify
that WLM is to route all processes of process-type 'TRAVEL' to one region in the
BTS-set, and all processes of type 'PAYROLL' to another region.

CICSPlex SM WLM and the IBM CICS Interdependency Analyzer for z/OS
understand affinities between BTS activities and processes. Although BTS itself
does not introduce any affinities, and discourages programming techniques that do,
it does support legacy code, which may introduce affinities. You must define such
affinities to CICSPlex SM WLM, so that it is able to make sensible routing
decisions. It is particularly important to specify each affinity’s lifetime; failure to do
so may restrict WLM’s routing options unnecessarily.

BTS in a sysplex

146 CICS TS for z/OS: CICS Business Transaction Services

|
|
|
|
|

|

Note that:

v A single CICSPlex SM may control routing within multiple BTS-sets. It cannot
route activities across BTS-sets.

v Workload separation can be performed at two levels:

1. By creating multiple BTS-sets.

2. By CICSPlex SM within a BTS-set.

BTS in a sysplex

Chapter 14. Using BTS in a sysplex 147

BTS in a sysplex

148 CICS TS for z/OS: CICS Business Transaction Services

Part 4. BTS problems and performance

This part of the manual contains advice on how to:

v Solve BTS-related problems

v Measure and tune BTS performance.

Table 9. Problems and performance road map

If you want to... Refer to...

Find solutions to some common problems Chapter 15, “Having problems?,” on page
151

Track the progress of BTS applications
across a BTS-set

Chapter 16, “Creating a BTS audit trail,” on
page 157

Examine records on a repository data set Chapter 17, “Examining BTS repository
records,” on page 181

Know where to find the meaning of a BTS
message, or how to control BTS trace or
dump

Chapter 18, “BTS messages, trace, and
dump,” on page 193

Know where to find BTS monitoring data Chapter 19, “Tuning BTS performance,” on
page 195

© Copyright IBM Corp. 1999, 2010 149

150 CICS TS for z/OS: CICS Business Transaction Services

Chapter 15. Having problems?

This chapter suggests solutions for some of the more common problems that you
might meet when running a BTS system. It contains:
v “Dealing with stuck processes”
v “Dealing with activity abends” on page 154
v “Dealing with unserviceable requests” on page 154
v “Dealing with CICS failures” on page 155.

Dealing with stuck processes
A process is said to be “stuck” when it cannot proceed because it is waiting for an
event that cannot, or does not, occur. There are several possible causes:

v A faulty application design—see “Application design errors.”

v A request to start an activity on a remote system is “unserviceable”—see
“Dealing with unserviceable requests” on page 154.

v A CICS region fails—see “Dealing with CICS failures” on page 155.

Application design errors
A stuck process may be caused by a program logic error. For example, consider the
following scenarios:

1. Outstanding user events:

a. One of the process’s activities returns from what it believes to be its final
activation. It issues an EXEC CICS RETURN command without the
ENDACTIVITY option.

b. There are no events on the activity’s reattachment queue, but there is a
user event in its event pool.

c. There is no means for the event to be fired. Perhaps it is an input event
which has fired, caused reattachment, and been retrieved, but which the
activity has neglected to delete.

In a case like this, the activity becomes dormant, and there is no way for it to
reactivated. The process is stuck.

The recommended way to prevent this scenario is to add the ENDACTIVITY
option to the EXEC CICS RETURN command that ends the final activation of
the activity. Coding RETURN ENDACTIVITY deletes any outstanding
events—other than activity completion events for child activities, which the
activity must deal with properly—and allows the activity to complete normally.

2. Waiting for an external interaction:

A user-related activity returns from its initial activation and becomes dormant,
waiting for an external interaction to occur. (User-related activities are described
in “Acquiring an activity” on page 65.) However, the expected user input doesn’t
happen. Perhaps the clerk is sick, or the data she requires is not available. The
process is stuck.

The recommended way to recover from this scenario is to set a timer which, if
the expected external interaction does not occur within a specified period, will
cause the activity (or its parent) to be reactivated anyway.

© Copyright IBM Corp. 1999, 2010 151

3. Timer error:

A programming error results in a timer being set to expire in five days rather
than five minutes. The process is stuck. See “Restarting stuck processes.”

Note: To force a timer to expire before its specified time, use the FORCE
TIMER command.

Restarting stuck processes
For advice on restarting processes that are stuck because of unserviceable
requests, see “Dealing with unserviceable requests” on page 154.

For advice on restarting processes that are stuck because of a CICS failure, see
“Dealing with CICS failures” on page 155.

Using activity timers
The best way to restart processes that are stuck for other reasons—including
application errors—is to use timers. For example, a parent may set a timer which
will cause it to be reactivated after a specified period, if a particular child activity
does not complete. (The parent names the timer in a way that associates it with a
particular child. If the child completes within the specified period, the parent deletes
the timer.)

One reason for making the application responsible for restarting itself is that it is
difficult from outside a process to tell whether the process is stuck or merely
dormant, particularly if the process is long-lived. Processes of different types may
have varying “natural” lifespans; and these lifespans may vary according to system
load, availability of remote regions, and so on. The application itself is best placed
to know how long each of its activities should run before they can be assumed to
be stuck.

You will probably not want to set timers for all your activities. For example, you
might think it unnecessary to set a timer for a simple activity that completes its
processing in one activation, has no children, and is to be run synchronously. On
the other hand, you might want to set a timer for an activity to which one or more of
the following apply:
v It is to be run asynchronously.
v It requires multiple activations to complete its processing.
v It is long-lived.
v It involves external interaction—for example, user input.

Using process timers
As well as, or instead of, setting timers for individual child activities, you could set a
timer for the process itself. That is, the root activity could set a timer with an expiry
time some time after the whole process could reasonably be expected to have
completed.

If the process is short-lived, you may decide not to set any activity timers, but to set
a process timer instead.

If the process is long-lived, do not set a process timer without also setting timers for
at least some individual activities. This prevents the possibility of a delay in
restarting the process. For example, if a process that is expected to last six months
becomes stuck after one day while processing its first activity, and you have set
only a process timer, the process could lie dormant for, say, seven months before
the root activity is reactivated to deal with the problem.

problem determination

152 CICS TS for z/OS: CICS Business Transaction Services

If the root activity is activated by the process timer, it could, for example:

1. Browse and inquire on each of its descendant activities, checking completion
status and mode. (For examples of the use of the BTS browsing and inquiry
commands, see “Browsing examples” on page 208.)

2. If it succeeds in identifying the stuck activity, issue a CANCEL command to
cancel it. (If the stuck activity is not a child but a lower-level descendant of the
root activity, the root must first acquire the stuck activity.)

3. The stuck activity’s completion event fires, causing the parent activity to be
reactivated. The CHECK ACTIVITY command issued by the parent returns a
completion status of FORCED. The parent should be coded to handle the
abnormal completion of one of its children. The process is no longer stuck.

Using status containers
To make it easier for a root activity to identify which of its descendant activities are
stuck, you could use status containers. Status containers are simply
data-containers that contain information about what an activity is currently doing.
Whereas you can use an INQUIRE ACTIVITYID command to discover the mode
and completion status of an activity, the information in a status container is likely to
be at a more detailed level. For example, each activity in a process might have a
data-container called, perhaps, STATUS, which it regularly updates—perhaps at the
beginning and end of each activation, and each time it starts new work. A status
container might, for instance, contain the date and time, and a string describing the
work that the activity has just started or ended, or the fact that it is dormant
because it is waiting for the completion of a particular child activity.

You can think of an activity as a finite state machine—it will always be in one of a
limited number of processing states. (The “processing states” we refer to here are
application-dependent and quite distinct from the BTS-defined modes of an activity.)
Each activity could regularly update its status container with its current processing
state.

Using a utility program
We have said that it is difficult from outside a process to tell whether the process is
stuck or merely dormant. To help you decide, you can use a utility program.

CICS-supplied utility programs: CICS supplies two utility programs for diagnostic
purposes:

The audit trail utility, DFHATUP
You can use DFHATUP to print selected audit records from a logstream. If you
use auditing to track the progress of your processes across the sysplex, to
investigate a stuck process you could print its audit records.

DFHATUP is described in Chapter 16, “Creating a BTS audit trail,” on page 157.

The repository utility, DFHBARUP
You can use DFHBARUP to print selected records from a repository. To
investigate a stuck process, you could print its repository records.

DFHBARUP is described in Chapter 17, “Examining BTS repository records,” on
page 181.

User-written utility programs: You could write a utility program that could check
for and restart stuck processes, particularly if your activities use status containers.
Your utility program could, for example:

1. Browse all processes of a specified process-type.

2. Browse the descendant activities of each process returned in step 1.

problem determination

Chapter 15. Having problems? 153

3. Inquire on the status data-container of each activity, and retrieve its contents.

4. Identify a stuck activity from the contents of its status container.

5. Issue an ACQUIRE command to acquire the stuck activity.

6. Issue a CANCEL command to cancel the stuck activity. The latter’s completion
event fires, causing its parent to be reactivated. The CHECK ACTIVITY
command issued by the parent returns a completion status of FORCED. The
parent should be coded to handle the abnormal completion of one of its
children. The process is no longer stuck.

Dealing with activity abends
If a program that implements an activity abends, the activity’s parent receives
control. (If the failed activity was run asynchronously, the parent is reactivated.) The
CHECK ACTIVITY command issued by the parent returns a COMPSTATUS of
ABEND—see Chapter 5, “Dealing with BTS errors and response codes,” on page
45.

Your application should be coded to deal with an activity abend. The parent of the
failed activity might, for example, choose to do either of the following:
v Retry the failed activity—see “Retrying failed activities” on page 47
v Compensate the siblings of the failed activity—see Chapter 8, “Compensation in

BTS,” on page 79.

Dealing with unserviceable requests
An unserviceable request is a request that cannot currently be satisfied. It may
be, for example, that an activity is not available, or that the region on which the
request is to execute is not accessible.

Unserviceable routing requests
If you operate BTS in a sysplex, it is possible to route processes and activities
across a set of CICS regions called a BTS-set. (For detailed information about
routing processes and activities, see Chapter 14, “Using BTS in a sysplex,” on page
137.)

When a process or activity is started by a RUN ASYNCHRONOUS command, it
may be routed either statically or dynamically. Mostly, you will probably choose
dynamic rather than static routing.

Static routing
Using static routing, you name the target region to which the activity is to be routed
on the REMOTESYSTEM option of the installed transaction definition (for the
transaction associated with the activity). If the target region is unavailable at the
time the activity is to be started, CICS treats the request as unserviceable.

Dynamic routing
Using dynamic routing, the target region is chosen by your routing program (the
distributed routing program or the CICSPlex SM routing program). If the target
region that it returns is unavailable, the routing program is reinvoked and can select
a different target. Alternatively, it can (by setting a non-zero return code) indicate
that the request is to be treated as unserviceable.

For definitive information about writing a distributed routing program, see the CICS
Customization Guide.

problem determination

154 CICS TS for z/OS: CICS Business Transaction Services

Why classify requests as unserviceable?: Why should your routing program
classify requests as “unserviceable”? Why should it not simply re-route the request
to an alternative region, assuming that alternatives are available?

Sometimes, perhaps due to a transaction affinity, it may be essential that an
activation should run on a specific region, and no other. If this is the case, rather
than selecting an alternative target region, your routing program can return the
same target (even though it is currently unavailable), and classify the request as
unserviceable.

How CICS handles unserviceable requests
When a request is “unserviceable”, CICS:

1. Issues message DFHSH0105, which identifies the request and indicates that it
cannot be serviced.

2. Retries the request every minute. If the request is successfully serviced, CICS
issues message DFHSH0108.

3. Each hour, if the request still cannot be serviced, issues message DFHSH0106.
This message indicates the time remaining before CICS will purge the request,
if it has not been serviced in the meantime.

4. After 24 hours, if the request still cannot be serviced, stops trying to service it
and issues message DFHSH0107. The request is discarded.

Resolving unserviceable requests
In many cases, CICS will resolve unserviceable requests automatically. If, for
example, an unavailable target region becomes available within 24 hours of the
request being issued, CICS routes the request correctly.

Your operators should watch for occurrences of DFHSH0105 and DFHSH0106
messages. They should investigate why the request is unserviceable, and take any
necessary corrective action. It may be, for example, that a resource required to
satisfy the request (an activity or process) is inaccessible; or that a remote region,
or a link to it, is unavailable.

Dealing with CICS failures
If one of your CICS regions fails, not only are all BTS processes on the failing
region halted, but processes on other regions may also become stuck, because
expected events are not generated.

If a CICS region fails, you should perform an emergency restart.

Only in very rare circumstances—for example, if the CICS global catalog or system
log is corrupted—should it be necessary to perform an initial or cold start after a
failure. If it is necessary, perform a cold start in preference to an initial start.

Emergency starts
At an emergency restart, CICS automatically restores BTS processes to the state
they were in prior to the failure. Any activities that were active at the time of the
failure are re-run. That is, if an activation (transaction) was running, it is backed out
and restarted. The activity is sent the same reattachment event that caused the
failed activation. Its data-containers contain the same data they held at the start of
the failed activation.

problem determination

Chapter 15. Having problems? 155

Initial and cold starts
At an initial or cold start:

v BTS repository data sets are unchanged.

Note: Repository data sets are never re-initialized at CICS startup, because they
may be shared.

v The local request queue data set is unchanged. All information about BTS timers,
pending and unserviceable requests is preserved. However, it’s likely that some
of this information will now be irrelevant or invalid, because it refers to processes
that no longer exist.

problem determination

156 CICS TS for z/OS: CICS Business Transaction Services

Chapter 16. Creating a BTS audit trail

This chapter tells you how to create an audit trail for BTS processes and activities.
It contains:
v “Introduction to BTS audit trails”
v “Specifying the level of audit logging” on page 158
v “Audit trail constraints—using DASD-only logstreams” on page 160
v “Audit trail examples” on page 160
v “Using the audit trail utility program, DFHATUP” on page 163.

Introduction to BTS audit trails
You may want to create an audit trail for the BTS processes and activities that run
in your CICS systems. Doing so allows you to:

v Track the progress of complex business transactions

v Diagnose problems in programs that are being developed to form a new
business application.

The CICS code contains BTS audit points in much the same way as it contains
trace points. However, there are three main differences between audit records and
trace entries:

1. Trace entries are written to an internal trace table within the CICS address
space. In contrast, the audit trail of a process is written to a CICS journal, which
resides on an MVS logstream.

2. Trace entries record the progress of tasks over a relatively short period of time,
typically seconds, minutes, or hours. In contrast, the audit trail of a process can
extend to days, weeks, or even months.

3. Trace entries relate to activity in a single CICS region. In contrast, in a sysplex
the execution of different parts of a process may take place on different regions
within the sysplex. Therefore, each audit record contains system, date, and time
information. Typically, an audit record for a BTS activity also contains:

v The identifier of the activity

v The process to which the activity belongs

v Information about the event which caused the activity to be invoked,
canceled, suspended, or resumed; or that fired when it completed.

Because logstreams can be shared by more than one region, it is possible to
write audit records from different regions to the same log.

There are four, incremental, auditing levels:
1. None
2. Process-level
3. Activity-level
4. Full.

How to specify the levels, and what they mean, is described in “Specifying the level
of audit logging” on page 158.

Audit log records are written to an MVS logstream by the CICS Log Manager. You
can read the records off-line using the CICS audit trail utility program, DFHATUP.
DFHATUP allows you to:
v Filter records for specific process-types, processes, and activities
v Interpret records into a readable format.

© Copyright IBM Corp. 1999, 2010 157

You can use the CICS journal utility program, DFHJUP, to copy the audit logstream
to a backup file and to delete the logstream. By editing the JCL used to run
DFHATUP, you can make DFHATUP accept the backup file as input.

Audit records are buffered; they are written to the logstream only when the buffer is
full or a syncpoint occurs. This means that, when multiple CICS regions share the
same logstream, audit records may not be in exact date and time order.

Specifying the level of audit logging
You control the amount of audit logging that CICS performs for each process, using
the AUDITLOG and AUDITLEVEL attributes of the PROCESSTYPE definition. For
detailed information about defining process-types, see “CEDA DEFINE
PROCESSTYPE” on page 114. However, note the following:

v When a process is first defined, BTS obtains the process’s audit level and audit
log information from the installed PROCESSTYPE definition, and copies it into
the process record. During the lifetime of the process, this copy of the audit
information is used to determine auditing. If the auditing information is changed
(by, for example, a CEMT SET PROCESSTYPE command), this has no effect on
existing processes.

v If an installed PROCESSTYPE definition does not specify a CICS journal name
in its AUDITLOG field, CICS does not do any audit logging for processes and
activities of that type until the definition is replaced with one that does contain the
name of an audit log.

v The AUDITLOG field should not specify the SMF data set.

v Several process-types can share the same audit log.

v In a sysplex, different parts of a process may run on different CICS regions. If
you want to write audit records for all the parts, you must ensure that all the
regions have the same audit log information in their installed PROCESSTYPE
definitions. However, see “Audit trail constraints—using DASD-only logstreams”
on page 160.

The AUDITLEVEL option of the PROCESSTYPE definition allows you to specify
one of four logging levels for processes of the defined type:

ACTIVITY
Specifies activity-level auditing. Audit records will be written from:
1. The process audit points
2. The activity primary audit points.

That is, an audit record will be written:

1. Whenever a process of this type:
v Is defined
v Is requested to run
v Is requested to link
v Is acquired
v Completes
v Is reset
v Is canceled
v Is suspended
v Is resumed

2. Each time data is placed in a process container belonging to a process
of this type—that is, each time a PUT CONTAINER PROCESS or PUT
CONTAINER ACQPROCESS command is issued against a process of
this type

creating an audit trail

158 CICS TS for z/OS: CICS Business Transaction Services

3. Each time a process container belonging to a process of this type is
deleted

4. Each time a root activity (DFHROOT) of this type of process is
activated.

5. Every time a non-root activity belonging to a process of this type:
v Is requested to link
v Is activated
v Completes.

FULL Specifies full auditing. Audit records will be written from:
1. The process audit points
2. The activity primary and secondary audit points.

That is, an audit record will be written:

1. Whenever a process of this type:
v Is defined
v Is requested to run
v Is requested to link
v Is acquired
v Completes
v Is reset
v Is canceled
v Is suspended
v Is resumed

Each time data is placed in a process container belonging to a process
of this type

Each time a process container belonging to a process of this type is
deleted

Each time a root activity (DFHROOT) of this type of process is activated

2. Every time a non-root activity belonging to a process of this type:
v Is defined
v Is requested to run
v Is requested to link
v Is activated
v Completes
v Is acquired
v Is reset
v Is canceled
v Is suspended
v Is resumed
v Is deleted.

OFF Specifies that no audit trail records will be written. This is the default value.

PROCESS
Specifies process-level auditing. Audit records will be written from the
process audit points only. That is, an audit record will be written whenever a
process of this type:
v Is defined
v Is requested to run
v Is requested to link
v Is acquired
v Completes
v Is reset
v Is canceled
v Is suspended

creating an audit trail

Chapter 16. Creating a BTS audit trail 159

v Is resumed

Each time data is placed in a process container belonging to a process of
this type

Each time a process container belonging to a process of this type is deleted

Each time a root activity (DFHROOT) of this type of process is activated

Note: If you specify any value for AUDITLEVEL other than OFF, you must also
specify the AUDITLOG option of the PROCESSTYPE definition.

You must choose a level of auditing that suits your needs. The more records that
are written to the audit log, the longer your business transaction will take to run.
The fewer records written, the less information there will be for auditing or
diagnostic purposes.

To reset the AUDITLEVEL attribute of an installed PROCESSTYPE definition, use
the CEMT SET PROCESSTYPE command. Changes are preserved across a
restart of CICS. Note that changes to an installed PROCESSTYPE definition have
no effect on existing processes.

If a request to write an audit record fails:

v CICS issues an error message.

v Auditing for processes of this process-type is suspended until the audit error is
corrected and a CEMT SET JOURNALNAME(journal) ACTION(RESET)
command is issued. If this is done successfully, auditing is resumed and a CICS
message is issued to this effect. Some audit records will have been lost.

Audit trail constraints—using DASD-only logstreams
If you are running BTS in a sysplex, the activities that make up a process may run
on different CICS regions. If you want to use audit logging, you should ensure that
audit records can be written to a single logstream from any region that any of the
activities run on.

If the CICS regions are in the same MVS image, you can define the logstream to
use either a coupling facility structure or DASD-only logging. However, if the CICS
regions are on different MVS images, the logstream should use a coupling facility
structure rather than DASD-only logging. This is because CICS regions on different
MVS images cannot access the same DASD-only logstream at the same time.

If the regions are in different MVS images and you use DASD-only logging, you will
not be able to use shared logstreams for your BTS logs. This means that audit
records for a single process may be split across several logstreams; you will have
to collate them yourself.

Audit trail examples
Figure 55 on page 161 shows the sequence of activations of a BTS process,
SALES1234567890. The activities that make up the process run on two CICS
regions. For the sake of clarity, the example does not show the activations of any
other processes that might also be running in these regions.

creating an audit trail

160 CICS TS for z/OS: CICS Business Transaction Services

O P A F
F R C U
F O T L

C V L
E I
S T
S I

SYSTEM SYS1 SYSTEM SYS2 Y

R R R

R R R

B
B

B B
B B

C
C
D
D

C C
E
E

D D
G
G
F
F

E E
E E

F F
F F

C C

G G

G G

G
G

C
ACTIVATION
DEFINE E
RUN E ASYNC

DEFINE F
RUN F ASYNC

D
ACTIVATION
DEFINE G
RUN G ASYNC

ACTIVATION
C

DEFINE PROCESS(SALES1234567890)
PROCESSTYPE(SALES)

RUN PROCESS PP P

P P P

CC

DD

DD
DD

RR R
RR R

ACTIVATION
DFHROOT

DEFINE B
RUN B SYNC

DEFINE C
RUN C ASYNC
DEFINE D
RUN D ASYNC

B
ACTIVATION
COMPLETION

E
ACTIVATION
COMPLETION

F
ACTIVATION
COMPLETION

ACTIVATION
COMPLETION

C

ACTIVATION
G

COMPLETION
G

ACTIVATION
DFHROOT

D

DEFINE H
RUN H ASYNC

ACTIVATION

ACQUIRE ACTIVITYID(G)
CANCEL ACQACTIVITY

ACTIVATION
COMPLETION

H

ACTIVATION
COMPLETION

D

ACTIVATION
COMPLETION

DFHROOT

C C

H
H

H H
H H

Figure 55. Example audit trails. The right-hand columns show, for each audit level setting, the points at which audit
records would be written. The letters in these columns are the names of the activities for which records are being
written.

creating an audit trail

Chapter 16. Creating a BTS audit trail 161

In this example, an application running on region SYS1 defines a new process,
SALES1234567890, and requests it to run. The root activity of the new process
begins running on SYS1. It defines and runs an activity B, which executes
synchronously. When control returns to the root activity, it defines activities C and D
and schedules them to run asynchronously. After the root activity has returned,
activity C starts on SYS1 and activity D starts on SYS2.

Activity C schedules child activities E and F to run asynchronously and returns. E
and F run on different systems. When each of its child activities completes, C is
reactivated and checks the child’s completion status. Lastly, C completes normally,
which causes the root activity to be reactivated.

Activity D defines a child activity G and schedules it to run asynchronously. Later,
another transaction issues ACQUIRE ACTIVITYID and CANCEL ACQACTIVITY
commands against activity G. G completes in a FORCED state. D is reactivated
and discovers what has happened to G by means of a CHECK ACTIVITY
command. In response to G’s failure, D defines a new activity H and requests it to
run asynchronously. D then returns and H runs on the other region. When H
completes normally, D is reactivated and completes normally. This causes the root
activity to be reactivated. The root activity issues a CHECK ACTIVITY command to
see how D completed, and then completes normally, ending the process.

Note: For the sake of brevity, some commands that could result in audit records
being written—for example, PUT CONTAINER ACQPROCESS and
SUSPEND—are omitted from the example.

Process-level auditing
A setting of PROCESS on the AUDITLEVEL attribute of a PROCESSTYPE
definition specifies process-level auditing for processes of the defined type. Records
are written from the audit points for processes.

If process-level auditing is set for the process in the example, only six records are
written to the audit log (see Figure 55 on page 161):
1. When the process is defined
2. When the process is requested to run
3. When the root activity of the process is activated for the first time
4. When the root activity of the process is activated for the second time
5. When the root activity of the process is activated for the third time
6. When the process completes.

Activity-level auditing
A setting of ACTIVITY on the AUDITLEVEL attribute of a PROCESSTYPE definition
specifies activity-level auditing for processes of the defined type. Records are
written from:
v The audit points for processes
v The primary audit points for activities.

If activity-level auditing is set for the process in the example, the following records
are written to the audit log:

v The six records described in “Process-level auditing.”

v Each time one of DFHROOT’s descendant activities is activated.

v When each descendant activity completes. This includes the completion of
activity G, which has a completion status of FORCED.

creating an audit trail

162 CICS TS for z/OS: CICS Business Transaction Services

Note: Records are not written when an activation ends in an incomplete state.
Thus, in the example, a record is not issued when the root activity ends
after defining activity D.

Full auditing
A setting of FULL on the AUDITLEVEL attribute of a PROCESSTYPE definition
specifies full auditing for processes of the defined type. Records are written from:
v The audit points for processes
v The primary audit points for activities
v The secondary audit points for activities.

If full auditing is set for the process in the example, the following records are written
to the audit log:
v All those written for activity-level auditing
v When each activity is defined
v When each activity is scheduled to run
v When activity G is acquired
v When activity G is canceled.

Note: Full auditing has an adverse effect on performance. It is intended to provide
the maximum amount of information to help track down problems when
applications are being developed. It is not intended to be used on production
systems.

Using the audit trail utility program, DFHATUP
The audit trail utility program, DFHATUP, allows you to read BTS audit records from
a logstream and to print them. It allows you to filter selected records. It formats the
records to make them easier to interpret.

Using DFHATUP to read audit logs
You should run DFHATUP as a batch job against a logstream that is not in use by
any CICS regions. (If you run it against a logstream that is connected to CICS,
DFHATUP will not find any records that CICS has in its buffers.)

DFHATUP reads the records in the order that they were written to the MVS
logstream. By including control statements in the SYSIN data set, you can select
the records that DFHATUP writes to the output data set, SYSPRINT. DFHATUP
formats the selected records before writing them to SYSPRINT.

DFHATUP ignores any records that it does not recognize as BTS audit records.

creating an audit trail

Chapter 16. Creating a BTS audit trail 163

Sample job stream to run the DFHATUP program
Figure 56 shows an example job stream to run the DFHATUP program. The job
stream should include DD statements for the following data sets:

The audit log
The audit log data set to be examined to produce the output data.
(Figure 56 shows a DD name of 'AUDITLOG'.)

If you do not specify the BLKSIZE parameter its value defaults to 80, which
causes audit records to be truncated.

STEPLIB
A partitioned data set (DSORG=PO) that contains the DFHATUP program
module. If the module is in a library in the link list, this statement is not
required.

SYSIN The input control data set. This file must be in 80-byte record format. The
control statements that you can use in this data set are described in
“SYSIN control statements” on page 165.

Control statements can be continued on to the next line by including any
non-blank character in column 72. If the line that follows a continuation
character is empty or contains control arguments which conflict with those
that make up the preceding part of the control statement, an error is
reported and execution of the utility ends. Any characters which occur
beyond column 72 are ignored.

SYSPRINT
The output data set to which the formatted audit records and control
messages are to be sent.

//***
//* RUN DFHATUP (AUDIT LOG UTILITY PROGRAM)
//*
//*
//***
//ATUP EXEC PGM=DFHATUP,PARM=’N(EN),P(30),T(M)’
//STEPLIB DD DSN=CTS130.CICS530.SDFHLOAD,DISP=SHR
//***
//* The output will go to SYSPRINT
//***
//SYSPRINT DD SYSOUT=A,DCB=RECFM=FBA
//AUDITLOG DD DSN=CICSAA#.CICSDC1.JRNL001,
// SUBSYS=(LOGR,DFHLGCNV),
// DCB=BLKSIZE=32760
//SYSIN DD *
PTYPE(SALES) +
PROCESS(CUST_SALES_1999.13872977829728.QA)
ACTIVITY(activity-name)
PROCESS(CUST_SALES_1999.11103847635637.QB) +
PTYPE(SALES)
/*
//*

Figure 56. Sample job to run the DFHATUP utility program

creating an audit trail

164 CICS TS for z/OS: CICS Business Transaction Services

EXEC parameters
You can use the PARM keyword on the EXEC statement to pass one or more of the
following parameters to the DFHATUP utility. The form of the EXEC statement is:
EXEC PGM=DFHATUP,PARM=’parm1,...,parmn’

NATLANG({EN|CS|KA})
The language in which messages are to be issued.

The minimum abbreviation of this parameter is N. The possible values are:
CS Traditional Chinese
EN English. This is the default.
KA Kanji.

PAGESIZE({60|nn})
The number of lines to be printed per page, when the output from the utility is
sent to a printer. Valid values are in the range 20–99. The default is 60.

The minimum abbreviation of this parameter is P.

TRANSLATE({MIXEDCASE|UPPERCASE})
Whether the output from the utility is to be in mixed-case or uppercase. The
default is mixed-case.

The minimum abbreviation of this parameter is T. The minimum abbreviations of
MIXEDCASE and UPPERCASE are M and U respectively.

SYSIN control statements
The SYSIN data set is used to pass information to DFHATUP. You can include
statements to select specific sets of records to be formatted. Comments are
identified by an asterisk (*) in the first position—anything entered on the SYSIN
card after the asterisk is ignored by DFHATUP. The SYSIN data set must be
defined.

Format of the SYSIN control statements:
SYSIN DD *
[AUDITLOG(name)]
[PTYPE(name) <PROCESS(name)>]
[PROCESS(name)]
[ACTIVITY(name)]

An AUDITLOG statement cannot contain additional arguments. Other statements
may consist of multiple arguments. When using multiple arguments, put each
argument on a separate line; use a non-blank character in column 72 to indicate
that this argument and the following one are to be treated as a single control
statement. An illegal combination of arguments generates an error message and the
utility is not run against the logstream.

ACTIVITY(name)
The 1-16 name of an activity. Records for this activity will be formatted. No
further arguments are needed to make up a control statement; if none are
provided, all audit records containing this activity name are selected. To limit the
scope of the search, you can add a PTYPE and/or a PROCESS argument on
adjoining lines, using a continuation character in column 72.

AUDITLOG(name)
The 1-8 character DD name that identifies the audit log data set to be
searched. The default is 'AUDITLOG'. This argument must not be specified
more than once. It cannot be used with any other in a control statement.

creating an audit trail

Chapter 16. Creating a BTS audit trail 165

If the specified audit log cannot be located or connected to, or if more than one
AUDITLOG statement is found in the SYSIN data set, an error occurs and
DFHATUP terminates.

PROCESS(name)
The 1-36 character name of a BTS process. No further arguments are needed
to make up a control statement; if none are provided, all audit records
containing this process name are selected. To limit the scope of the search, you
can add a PTYPE and/or an ACTIVITY argument on adjoining lines, using a
continuation character in column 72.

PTYPE(name)
The 1-8 character name of a BTS process-type. No additional arguments are
needed; if none are provided, all audit records containing this process-type are
selected. To limit the scope of the search, you can add a PROCESS and/or an
ACTIVITY argument on adjoining lines, using a continuation character in column
72.

Example output from the DFHATUP utility
CICS writes records to an audit log in chronological order. Particularly on busy
systems within a sysplex, records from different processes or from different
activities within the same process are likely to become interleaved. In order to find
out what has taken place during the execution of a specific process, you may want
to select particular sets of records.

“Audit trail examples” on page 160 shows the points at which records are written to
an audit log, depending on the level of auditing specified for the relevant
process-type. The example control statements in Figure 57 would format all the
records written to the audit log for the SALES1234567890 process (which is of the
SALES process-type).

//SALESLOG DD DSN=CICSAA#.CICSDC1.JRNL001,
// SUBSYS=(LOGR,DFHLGCNV),
// DCB=BLKSIZE=32760
//SYSIN DD *
AUDITLOG(SALESLOG)
PTYPE(SALES) +
PROCESS(SALES1234567890)
/*
//*

Figure 57. Example control statements, to format all the records for the SALES1234567890
process

creating an audit trail

166 CICS TS for z/OS: CICS Business Transaction Services

Example audit trail—process-level auditing
Extending our previous example, Figure 58 shows the output that would be
produced if:

v On both regions SYS1 and SYS2, the AUDITLEVEL attribute of the
PROCESSTYPE definition for the SALES process-type was set to 'PROCESS'

v The control statements in the SYSIN data set specified that all records for the
SALES1234567890 process should be formatted.

CBTS Audit Trail Utility - Parameter Validation Date : 29/01/1999 Time : 15:59:30 Page 000001

Exec Parm Options: Natlang (EN)
Translate (mixedcase)
Pagesize (60)

Figure 58. Example audit trail, showing the types of record written for process-level auditing (Part 1 of 3)

creating an audit trail

Chapter 16. Creating a BTS audit trail 167

CBTS Audit Trail Utility - Audit Print Date : 29/01/1999 Time : 15:59:30 Page 000002

Ptype(SALES) Function(Define Process) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000072) Activity(DFHROOT) Transid(R) Program(R) Userid(CICSUSER)

ActivityId(BAMFILE1..GBIBMIYA.IYCWTC39....;f..DFHROOT)
(CCDCCDCF11CCCCDCEC4CECEECFFB3235800CCCDDDE444444444)
(21469351A172924981B98363339AA51E6014689663000000000)

Current: Transid(P) Program(P) Userid(CICSUSER) Date(1999.029) Time(15:59:20.798300)

Ptype(SALES) Function(Run Process) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000072) Activity(DFHROOT) Asynchronous

ActivityId(BAMFILE1..GBIBMIYA.IYCWTC39....;f..DFHROOT)
(CCDCCDCF11CCCCDCEC4CECEECFFB3235800CCCDDDE444444444)
(21469351A172924981B98363339AA51E6014689663000000000)

Current: Transid(P) Program(P) Userid(CICSUSER) Date(1999.029) Time(15:59:20.798565)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000073) Activity(DFHROOT) Event(DFHINITIAL)

ActivityId(BAMFILE1..GBIBMIYA.IYCWTC39....;f..DFHROOT)
(CCDCCDCF11CCCCDCEC4CECEECFFB3235800CCCDDDE444444444)
(21469351A172924981B98363339AA51E6014689663000000000)

Current: Transid(R) Program(R) Userid(CICSUSER) Date(1999.029) Time(15:59:20.865320)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000082) Activity(DFHROOT) Event(C)

ActivityId(BAMFILE1..GBIBMIYA.IYCWTC39....;f..DFHROOT)
(CCDCCDCF11CCCCDCEC4CECEECFFB3235800CCCDDDE444444444)
(21469351A172924981B98363339AA51E6014689663000000000)

Current: Transid(R) Program(R) Userid(CICSUSER) Date(1999.029) Time(15:59:25.978683)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000087) Activity(DFHROOT) Event(D)

ActivityId(BAMFILE1..GBIBMIYA.IYCWTC39....;f..DFHROOT)
(CCDCCDCF11CCCCDCEC4CECEECFFB3235800CCCDDDE444444444)
(21469351A172924981B98363339AA51E6014689663000000000)

Current: Transid(R) Program(R) Userid(CICSUSER) Date(1999.029) Time(15:59:26.824560)

Ptype(SALES) Function(Completion) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000087) Activity(DFHROOT) Compstatus(Normal)

ActivityId(BAMFILE1..GBIBMIYA.IYCWTC39....;f..DFHROOT)
(CCDCCDCF11CCCCDCEC4CECEECFFB3235800CCCDDDE444444444)
(21469351A172924981B98363339AA51E6014689663000000000)

Current: Transid(R) Userid(CICSUSER) Date(1999.029) Time(15:59:26.849330)

Figure 58. Example audit trail, showing the types of record written for process-level auditing (Part 2 of 3)

CBTS Audit Trail Utility - Selection Results Date : 29/01/1999 Time : 15:59:30 Page 000003

Number of Audit records read : 6
Number of records selected : 6
Processing Complete

Figure 58. Example audit trail, showing the types of record written for process-level auditing (Part 3 of 3)

creating an audit trail

168 CICS TS for z/OS: CICS Business Transaction Services

Example audit trail—activity-level auditing
Figure 59 shows the output that would be produced if:

v On both regions SYS1 and SYS2, the AUDITLEVEL attribute of the
PROCESSTYPE definition for the SALES process-type was set to 'ACTIVITY'

v The control statements in the SYSIN data set specified that all records for the
SALES1234567890 process should be formatted.

CBTS Audit Trail Utility - Parameter Validation Date : 29/01/1999 Time : 15:24:02 Page 000001

Exec Parm Options: Natlang (EN)
Translate (mixedcase)
Pagesize (60)

Figure 59. Example audit trail, showing the types of record written for activity-level auditing (Part 1 of 5)

creating an audit trail

Chapter 16. Creating a BTS audit trail 169

CBTS Audit Trail Utility - Audit Print Date : 29/01/1999 Time : 15:24:02 Page 000002

Ptype(SALES) Function(Define Process) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000053) Activity(DFHROOT) Transid(R) Program(R) Userid(CICSUSER)

ActivityId(BAMFILE1..GBIBMIYA.IYCWTC39.....F..DFHROOT)
(CCDCCDCF11CCCCDCEC4CECEECFFB3349C00CCCDDDE444444444)
(21469351A172924981B98363339A28606014689663000000000)

Current: Transid(P) Program(P) Userid(CICSUSER) Date(1999.029) Time(15:23:53.323766)

Ptype(SALES) Function(Run Process) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000053) Activity(DFHROOT) Asynchronous

ActivityId(BAMFILE1..GBIBMIYA.IYCWTC39.....F..DFHROOT)
(CCDCCDCF11CCCCDCEC4CECEECFFB3349C00CCCDDDE444444444)
(21469351A172924981B98363339A28606014689663000000000)

Current: Transid(P) Program(P) Userid(CICSUSER) Date(1999.029) Time(15:23:53.324025)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000054) Activity(DFHROOT) Event(DFHINITIAL)

ActivityId(BAMFILE1..GBIBMIYA.IYCWTC39.....F..DFHROOT)
(CCDCCDCF11CCCCDCEC4CECEECFFB3349C00CCCDDDE444444444)
(21469351A172924981B98363339A28606014689663000000000)

Current: Transid(R) Program(R) Userid(CICSUSER) Date(1999.029) Time(15:23:53.433036)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000055) Activity(B) Event(DFHINITIAL)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2........B)
(CCDCCDCF11CCCCDCEC4CEDFECEFB3360A00C444444444444444)
(21469351A172924981B98229672A283CE012000000000000000)

Current: Transid(B) Program(B) Userid(CICSUSER) Date(1999.029) Time(15:23:53.440627)

Ptype(SALES) Function(Completion) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000055) Activity(B) Compstatus(Normal)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2........B)
(CCDCCDCF11CCCCDCEC4CEDFECEFB3360A00C444444444444444)
(21469351A172924981B98229672A283CE012000000000000000)

Current: Transid(B) Userid(CICSUSER) Date(1999.029) Time(15:23:53.440834)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000056) Activity(C) Event(DFHINITIAL)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2....<-..C)
(CCDCCDCF11CCCCDCEC4CEDFECEFB3364600C444444444444444)
(21469351A172924981B98229672A286C0013000000000000000)

Current: Transid(C) Program(C) Userid(CICSUSER) Date(1999.029) Time(15:23:53.549149)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS2) Auditlog(BAMAUDIT)
Taskno(0000057) Activity(D) Event(DFHINITIAL)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2.....x..D)
(CCDCCDCF11CCCCDCEC4CEDFECEFB336FA00C444444444444444)
(21469351A172924981B98229672A287C7014000000000000000)

Current: Transid(D) Program(D) Userid(CICSUSER) Date(1999.029) Time(15:23:54.116600)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000058) Activity(E) Event(DFHINITIAL)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..."_K..E)
(CCDCCDCF11CCCCDCEC4CEDFECEFB3376D00C444444444444444)
(21469351A172924981B98229672A28FD2015000000000000000)

Current: Transid(E) Program(E) Userid(CICSUSER) Date(1999.029) Time(15:23:54.185211)

Figure 59. Example audit trail, showing the types of record written for activity-level auditing (Part 2 of 5)

creating an audit trail

170 CICS TS for z/OS: CICS Business Transaction Services

CBTS Audit Trail Utility - Audit Print Date : 29/01/1999 Time : 15:24:02 Page 000003

Ptype(SALES) Function(Completion) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000058) Activity(E) Compstatus(Normal)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..."_K..E)
(CCDCCDCF11CCCCDCEC4CEDFECEFB3376D00C444444444444444)
(21469351A172924981B98229672A28FD2015000000000000000)

Current: Transid(E) Userid(CICSUSER) Date(1999.029) Time(15:23:54.185619)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS2) Auditlog(BAMAUDIT)
Taskno(0000059) Activity(F) Event(DFHINITIAL)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2...f."..F)
(CCDCCDCF11CCCCDCEC4CEDFECEFB3381700C444444444444444)
(21469351A172924981B98229672A2865F016000000000000000)

Current: Transid(F) Program(F) Userid(CICSUSER) Date(1999.029) Time(15:23:54.198352)

Ptype(SALES) Function(Completion) Process(SALES1234567890) System(SYS2) Auditlog(BAMAUDIT)
Taskno(0000059) Activity(F) Compstatus(Normal)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2...f."..F)
(CCDCCDCF11CCCCDCEC4CEDFECEFB3381700C444444444444444)
(21469351A172924981B98229672A2865F016000000000000000)

Current: Transid(F) Userid(CICSUSER) Date(1999.029) Time(15:23:54.198609)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS2) Auditlog(BAMAUDIT)
Taskno(0000060) Activity(G) Event(DFHINITIAL)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2....0...G)
(CCDCCDCF11CCCCDCEC4CEDFECEFB330FC00C444444444444444)
(21469351A172924981B98229672A2990D017000000000000000)

Current: Transid(G) Program(G) Userid(CICSUSER) Date(1999.029) Time(15:23:58.581394)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000061) Activity(C) Event(E)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2....<-..C)
(CCDCCDCF11CCCCDCEC4CEDFECEFB3364600C444444444444444)
(21469351A172924981B98229672A286C0013000000000000000)

Current: Transid(C) Program(C) Userid(CICSUSER) Date(1999.029) Time(15:23:58.591807)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000062) Activity(C) Event(F)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2....<-..C)
(CCDCCDCF11CCCCDCEC4CEDFECEFB3364600C444444444444444)
(21469351A172924981B98229672A286C0013000000000000000)

Current: Transid(C) Program(C) Userid(CICSUSER) Date(1999.029) Time(15:23:58.620666)

Ptype(SALES) Function(Completion) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000062) Activity(C) Compstatus(Normal)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2....<-..C)
(CCDCCDCF11CCCCDCEC4CEDFECEFB3364600C444444444444444)
(21469351A172924981B98229672A286C0013000000000000000)

Current: Transid(C) Userid(CICSUSER) Date(1999.029) Time(15:23:58.636578)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000063) Activity(DFHROOT) Event(C)

ActivityId(BAMFILE1..GBIBMIYA.IYCWTC39.....F..DFHROOT)
(CCDCCDCF11CCCCDCEC4CECEECFFB3349C00CCCDDDE444444444)
(21469351A172924981B98363339A28606014689663000000000)

Current: Transid(R) Program(R) Userid(CICSUSER) Date(1999.029) Time(15:23:58.661620)

Figure 59. Example audit trail, showing the types of record written for activity-level auditing (Part 3 of 5)

creating an audit trail

Chapter 16. Creating a BTS audit trail 171

CBTS Audit Trail Utility - Audit Print Date : 29/01/1999 Time : 15:24:02 Page 000004

Ptype(SALES) Function(Completion) Process(SALES1234567890) System(SYS2) Auditlog(BAMAUDIT)
Taskno(0000064) Activity(G) Compstatus(Forced)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2....0...G)
(CCDCCDCF11CCCCDCEC4CEDFECEFB330FC00C444444444444444)
(21469351A172924981B98229672A2990D017000000000000000)

Current: Transid(I) Program(I) Userid(CICSUSER) Date(1999.029) Time(15:24:00.664584)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000065) Activity(D) Event(G)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2.....x..D)
(CCDCCDCF11CCCCDCEC4CEDFECEFB336FA00C444444444444444)
(21469351A172924981B98229672A287C7014000000000000000)

Current: Transid(D) Program(D) Userid(CICSUSER) Date(1999.029) Time(15:24:00.725741)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS2) Auditlog(BAMAUDIT)
Taskno(0000066) Activity(H) Event(DFHINITIAL)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2....l...H)
(CCDCCDCF11CCCCDCEC4CEDFECEFB3359000C444444444444444)
(21469351A172924981B98229672A2F737018000000000000000)

Current: Transid(H) Program(H) Userid(CICSUSER) Date(1999.029) Time(15:24:00.784073)

Ptype(SALES) Function(Completion) Process(SALES1234567890) System(SYS2) Auditlog(BAMAUDIT)
Taskno(0000066) Activity(H) Compstatus(Normal)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2....l...H)
(CCDCCDCF11CCCCDCEC4CEDFECEFB3359000C444444444444444)
(21469351A172924981B98229672A2F737018000000000000000)

Current: Transid(H) Userid(CICSUSER) Date(1999.029) Time(15:24:00.784346)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000067) Activity(D) Event(H)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2.....x..D)
(CCDCCDCF11CCCCDCEC4CEDFECEFB336FA00C444444444444444)
(21469351A172924981B98229672A287C7014000000000000000)

Current: Transid(D) Program(D) Userid(CICSUSER) Date(1999.029) Time(15:24:00.813682)

Ptype(SALES) Function(Completion) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000067) Activity(D) Compstatus(Normal)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2.....x..D)
(CCDCCDCF11CCCCDCEC4CEDFECEFB336FA00C444444444444444)
(21469351A172924981B98229672A287C7014000000000000000)

Current: Transid(D) Userid(CICSUSER) Date(1999.029) Time(15:24:02.478498)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000068) Activity(DFHROOT) Event(D)

ActivityId(BAMFILE1..GBIBMIYA.IYCWTC39.....F..DFHROOT)
(CCDCCDCF11CCCCDCEC4CECEECFFB3349C00CCCDDDE444444444)
(21469351A172924981B98363339A28606014689663000000000)

Current: Transid(R) Program(R) Userid(CICSUSER) Date(1999.029) Time(15:24:02.511054)

Ptype(SALES) Function(Completion) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000068) Activity(DFHROOT) Compstatus(Normal)

ActivityId(BAMFILE1..GBIBMIYA.IYCWTC39.....F..DFHROOT)
(CCDCCDCF11CCCCDCEC4CECEECFFB3349C00CCCDDDE444444444)
(21469351A172924981B98363339A28606014689663000000000)

Current: Transid(R) Userid(CICSUSER) Date(1999.029) Time(15:24:02.571838)

Figure 59. Example audit trail, showing the types of record written for activity-level auditing (Part 4 of 5)

CBTS Audit Trail Utility - Selection Results Date : 29/01/1999 Time : 15:24:02 Page 000005

Number of Audit records read : 24
Number of records selected : 24
Processing Complete

Figure 59. Example audit trail, showing the types of record written for activity-level auditing (Part 5 of 5)

creating an audit trail

172 CICS TS for z/OS: CICS Business Transaction Services

Example audit trail—full auditing
Figure 60 shows the output that would be produced if:

v On both regions SYS1 and SYS2, the AUDITLEVEL attribute of the
PROCESSTYPE definition for the SALES process-type was set to 'FULL'

v The control statements in the SYSIN data set specified that all records for the
SALES1234567890 process should be formatted.

CBTS Audit Trail Utility - Parameter Validation Date : 29/01/1999 Time : 14:39:04 Page 000001

Exec Parm Options: Natlang (EN)
Translate (mixedcase)
Pagesize (60)

Figure 60. Example audit trail, showing the types of record written for full auditing (Part 1 of 7)

creating an audit trail

Chapter 16. Creating a BTS audit trail 173

CBTS Audit Trail Utility - Audit Print Date : 29/01/1999 Time : 14:39:04 Page 000002

Ptype(SALES) Function(Define Process) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000033) Activity(DFHROOT) Transid(R) Program(R) Userid(CICSUSER)

ActivityId(BAMFILE1..GBIBMIYA.IYCWTC39.....v..DFHROOT)
(CCDCCDCF11CCCCDCEC4CECEECFFB2902A00CCCDDDE444444444)
(21469351A172924981B98363339A709F5014689663000000000)

Current: Transid(P) Program(P) Userid(CICSUSER) Date(1999.029) Time(14:36:12.557162)

Ptype(SALES) Function(Run Process) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000033) Activity(DFHROOT) Asynchronous

ActivityId(BAMFILE1..GBIBMIYA.IYCWTC39.....v..DFHROOT)
(CCDCCDCF11CCCCDCEC4CECEECFFB2902A00CCCDDDE444444444)
(21469351A172924981B98363339A709F5014689663000000000)

Current: Transid(P) Program(P) Userid(CICSUSER) Date(1999.029) Time(14:36:13.921790)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000034) Activity(DFHROOT) Event(DFHINITIAL)

ActivityId(BAMFILE1..GBIBMIYA.IYCWTC39.....v..DFHROOT)
(CCDCCDCF11CCCCDCEC4CECEECFFB2902A00CCCDDDE444444444)
(21469351A172924981B98363339A709F5014689663000000000)

Current: Transid(R) Program(R) Userid(CICSUSER) Date(1999.029) Time(14:36:14.142640)

Ptype(SALES) Function(Define Activity) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000034) Activity(B) CompletionEvent(B) Transid(B) Program(B) Userid(CICSUSER)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..j.....B)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29B0300C444444444444444)
(21469351A172924981B98229672A7111C012000000000000000)

Current: Transid(R) Program(R) Userid(CICSUSER) Date(1999.029) Time(14:36:14.295419) Activity(DFHROOT)

Ptype(SALES) Function(Run Activity) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000034) Activity(B) Synchronous

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..j.....B)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29B0300C444444444444444)
(21469351A172924981B98229672A7111C012000000000000000)

Current: Transid(R) Program(R) Userid(CICSUSER) Date(1999.029) Time(14:36:14.295549) Activity(DFHROOT)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000035) Activity(B) Event(DFHINITIAL)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..j.....B)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29B0300C444444444444444)
(21469351A172924981B98229672A7111C012000000000000000)

Current: Transid(B) Program(B) Userid(CICSUSER) Date(1999.029) Time(14:36:14.296323)

Ptype(SALES) Function(Completion) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000035) Activity(B) Compstatus(Normal)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..j.....B)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29B0300C444444444444444)
(21469351A172924981B98229672A7111C012000000000000000)

Current: Transid(B) Userid(CICSUSER) Date(1999.029) Time(14:36:14.408739)

Ptype(SALES) Function(Define Activity) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000034) Activity(C) CompletionEvent(C) Transid(C) Program(C) Userid(CICSUSER)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..j.6...C)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29DF500C444444444444444)
(21469351A172924981B98229672A71C69013000000000000000)

Current: Transid(R) Program(R) Userid(CICSUSER) Date(1999.029) Time(14:36:14.472960) Activity(DFHROOT)

Figure 60. Example audit trail, showing the types of record written for full auditing (Part 2 of 7)

creating an audit trail

174 CICS TS for z/OS: CICS Business Transaction Services

CBTS Audit Trail Utility - Audit Print Date : 29/01/1999 Time : 14:39:04 Page 000003

Ptype(SALES) Function(Run Activity) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000034) Activity(C) Asynchronous

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..j.6...C)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29DF500C444444444444444)
(21469351A172924981B98229672A71C69013000000000000000)

Current: Transid(R) Program(R) Userid(CICSUSER) Date(1999.029) Time(14:36:14.473066) Activity(DFHROOT)

Ptype(SALES) Function(Define Activity) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000034) Activity(D) CompletionEvent(D) Transid(D) Program(D) Userid(CICSUSER)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..j..9..D)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29DBF00C444444444444444)
(21469351A172924981B98229672A71EE9014000000000000000)

Current: Transid(R) Program(R) Userid(CICSUSER) Date(1999.029) Time(14:36:14.482228) Activity(DFHROOT)

Ptype(SALES) Function(Run Activity) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000034) Activity(D) Asynchronous

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..j..9..D)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29DBF00C444444444444444)
(21469351A172924981B98229672A71EE9014000000000000000)

Current: Transid(R) Program(R) Userid(CICSUSER) Date(1999.029) Time(14:36:14.482346) Activity(DFHROOT)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000036) Activity(C) Event(DFHINITIAL)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..j.6...C)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29DF500C444444444444444)
(21469351A172924981B98229672A71C69013000000000000000)

Current: Transid(C) Program(C) Userid(CICSUSER) Date(1999.029) Time(14:36:14.556761)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS2) Auditlog(BAMAUDIT)
Taskno(0000037) Activity(D) Event(DFHINITIAL)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..j..9..D)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29DBF00C444444444444444)
(21469351A172924981B98229672A71EE9014000000000000000)

Current: Transid(D) Program(D) Userid(CICSUSER) Date(1999.029) Time(14:36:14.569775)

Ptype(SALES) Function(Define Activity) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000036) Activity(E) CompletionEvent(E) Transid(E) Program(E) Userid(CICSUSER)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..k..o..E)
(CCDCCDCF11CCCCDCEC4CEDFECEFB2906900C444444444444444)
(21469351A172924981B98229672A72946015000000000000000)

Current: Transid(C) Program(C) Userid(CICSUSER) Date(1999.029) Time(14:36:14.656929) Activity(C)

Ptype(SALES) Function(Run Activity) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000036) Activity(E) Asynchronous

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..k..o..E)
(CCDCCDCF11CCCCDCEC4CEDFECEFB2906900C444444444444444)
(21469351A172924981B98229672A72946015000000000000000)

Current: Transid(C) Program(C) Userid(CICSUSER) Date(1999.029) Time(14:36:14.657049) Activity(C)

Ptype(SALES) Function(Define Activity) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000036) Activity(F) CompletionEvent(F) Transid(F) Program(F) Userid(CICSUSER)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..k..I..F)
(CCDCCDCF11CCCCDCEC4CEDFECEFB290AC00C444444444444444)
(21469351A172924981B98229672A72BA9016000000000000000)

Current: Transid(C) Program(C) Userid(CICSUSER) Date(1999.029) Time(14:36:14.668485) Activity(C)

Figure 60. Example audit trail, showing the types of record written for full auditing (Part 3 of 7)

creating an audit trail

Chapter 16. Creating a BTS audit trail 175

CBTS Audit Trail Utility - Audit Print Date : 29/01/1999 Time : 14:39:04 Page 000004

Ptype(SALES) Function(Run Activity) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000036) Activity(F) Asynchronous

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..k..I..F)
(CCDCCDCF11CCCCDCEC4CEDFECEFB290AC00C444444444444444)
(21469351A172924981B98229672A72BA9016000000000000000)

Current: Transid(C) Program(C) Userid(CICSUSER) Date(1999.029) Time(14:36:14.668584) Activity(C)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000038) Activity(E) Event(DFHINITIAL)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..k..o..E)
(CCDCCDCF11CCCCDCEC4CEDFECEFB2906900C444444444444444)
(21469351A172924981B98229672A72946015000000000000000)

Current: Transid(E) Program(E) Userid(CICSUSER) Date(1999.029) Time(14:36:14.757748)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS2) Auditlog(BAMAUDIT)
Taskno(0000039) Activity(F) Event(DFHINITIAL)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..k..I..F)
(CCDCCDCF11CCCCDCEC4CEDFECEFB290AC00C444444444444444)
(21469351A172924981B98229672A72BA9016000000000000000)

Current: Transid(F) Program(F) Userid(CICSUSER) Date(1999.029) Time(14:36:14.790932)

Ptype(SALES) Function(Define Activity) Process(SALES1234567890) System(SYS2) Auditlog(BAMAUDIT)
Taskno(0000037) Activity(G) CompletionEvent(G) Transid(G) Program(G) Userid(CICSUSER)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..k.....G)
(CCDCCDCF11CCCCDCEC4CEDFECEFB2925000C444444444444444)
(21469351A172924981B98229672A72F75017000000000000000)

Current: Transid(D) Program(D) Userid(CICSUSER) Date(1999.029) Time(14:36:14.811252) Activity(D)

Ptype(SALES) Function(Run Activity) Process(SALES1234567890) System(SYS2) Auditlog(BAMAUDIT)
Taskno(0000037) Activity(G) Asynchronous

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..k.....G)
(CCDCCDCF11CCCCDCEC4CEDFECEFB2925000C444444444444444)
(21469351A172924981B98229672A72F75017000000000000000)

Current: Transid(D) Program(D) Userid(CICSUSER) Date(1999.029) Time(14:36:14.811377) Activity(D)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS2) Auditlog(BAMAUDIT)
Taskno(0000040) Activity(G) Event(DFHINITIAL)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..k.....G)
(CCDCCDCF11CCCCDCEC4CEDFECEFB2925000C444444444444444)
(21469351A172924981B98229672A72F75017000000000000000)

Current: Transid(G) Program(G) Userid(CICSUSER) Date(1999.029) Time(14:36:14.844281)

Ptype(SALES) Function(Completion) Process(SALES1234567890) System(SYS2) Auditlog(BAMAUDIT)
Taskno(0000039) Activity(F) Compstatus(Normal)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..k..I..F)
(CCDCCDCF11CCCCDCEC4CEDFECEFB290AC00C444444444444444)
(21469351A172924981B98229672A72BA9016000000000000000)

Current: Transid(F) Userid(CICSUSER) Date(1999.029) Time(14:36:14.887329)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000041) Activity(C) Event(F)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..j.6...C)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29DF500C444444444444444)
(21469351A172924981B98229672A71C69013000000000000000)

Current: Transid(C) Program(C) Userid(CICSUSER) Date(1999.029) Time(14:36:14.979781)

Figure 60. Example audit trail, showing the types of record written for full auditing (Part 4 of 7)

creating an audit trail

176 CICS TS for z/OS: CICS Business Transaction Services

CBTS Audit Trail Utility - Audit Print Date : 29/01/1999 Time : 14:39:04 Page 000005

Ptype(SALES) Function(Completion) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000038) Activity(E) Compstatus(Normal)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..k..o..E)
(CCDCCDCF11CCCCDCEC4CEDFECEFB2906900C444444444444444)
(21469351A172924981B98229672A72946015000000000000000)

Current: Transid(E) Userid(CICSUSER) Date(1999.029) Time(14:36:15.070372)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000042) Activity(C) Event(E)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..j.6...C)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29DF500C444444444444444)
(21469351A172924981B98229672A71C69013000000000000000)

Current: Transid(C) Program(C) Userid(CICSUSER) Date(1999.029) Time(14:36:15.117121)

Ptype(SALES) Function(Completion) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000042) Activity(C) Compstatus(Normal)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..j.6...C)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29DF500C444444444444444)
(21469351A172924981B98229672A71C69013000000000000000)

Current: Transid(C) Userid(CICSUSER) Date(1999.029) Time(14:36:15.135971)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000043) Activity(DFHROOT) Event(C)

ActivityId(BAMFILE1..GBIBMIYA.IYCWTC39.....v..DFHROOT)
(CCDCCDCF11CCCCDCEC4CECEECFFB2902A00CCCDDDE444444444)
(21469351A172924981B98363339A709F5014689663000000000)

Current: Transid(R) Program(R) Userid(CICSUSER) Date(1999.029) Time(14:36:15.169265)

Ptype(SALES) Function(Acquire ActId) Process(SALES1234567890) System(SYS2) Auditlog(BAMAUDIT)
Taskno(0000045) Activity(G)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..k.....G)
(CCDCCDCF11CCCCDCEC4CEDFECEFB2925000C444444444444444)
(21469351A172924981B98229672A72F75017000000000000000)

Current: Transid(I) Program(I) Userid(CICSUSER) Date(1999.029) Time(14:36:21.922942)

Ptype(SALES) Function(Cancel Activity) Process(SALES1234567890) System(SYS2) Auditlog(BAMAUDIT)
Taskno(0000045) Activity(G)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..k.....G)
(CCDCCDCF11CCCCDCEC4CEDFECEFB2925000C444444444444444)
(21469351A172924981B98229672A72F75017000000000000000)

Current: Transid(I) Program(I) Userid(CICSUSER) Date(1999.029) Time(14:36:21.923045)

Ptype(SALES) Function(Completion) Process(SALES1234567890) System(SYS2) Auditlog(BAMAUDIT)
Taskno(0000045) Activity(G) Compstatus(Forced)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..k.....G)
(CCDCCDCF11CCCCDCEC4CEDFECEFB2925000C444444444444444)
(21469351A172924981B98229672A72F75017000000000000000)

Current: Transid(I) Program(I) Userid(CICSUSER) Date(1999.029) Time(14:36:21.923093)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000046) Activity(D) Event(G)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..j..9..D)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29DBF00C444444444444444)
(21469351A172924981B98229672A71EE9014000000000000000)

Current: Transid(D) Program(D) Userid(CICSUSER) Date(1999.029) Time(14:36:21.948512)

Figure 60. Example audit trail, showing the types of record written for full auditing (Part 5 of 7)

creating an audit trail

Chapter 16. Creating a BTS audit trail 177

CBTS Audit Trail Utility - Audit Print Date : 29/01/1999 Time : 14:39:04 Page 000006

Ptype(SALES) Function(Define Activity) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000046) Activity(H) CompletionEvent(H) Transid(H) Program(H) Userid(CICSUSER)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..q.X...H)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29FED00C444444444444444)
(21469351A172924981B98229672A78F7F018000000000000000)

Current: Transid(D) Program(D) Userid(CICSUSER) Date(1999.029) Time(14:36:21.990993) Activity(D)

Ptype(SALES) Function(Run Activity) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000046) Activity(H) Asynchronous

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..q.X...H)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29FED00C444444444444444)
(21469351A172924981B98229672A78F7F018000000000000000)

Current: Transid(D) Program(D) Userid(CICSUSER) Date(1999.029) Time(14:36:21.991119) Activity(D)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS2) Auditlog(BAMAUDIT)
Taskno(0000047) Activity(H) Event(DFHINITIAL)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..q.X...H)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29FED00C444444444444444)
(21469351A172924981B98229672A78F7F018000000000000000)

Current: Transid(H) Program(H) Userid(CICSUSER) Date(1999.029) Time(14:36:22.052659)

Ptype(SALES) Function(Completion) Process(SALES1234567890) System(SYS2) Auditlog(BAMAUDIT)
Taskno(0000047) Activity(H) Compstatus(Normal)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..q.X...H)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29FED00C444444444444444)
(21469351A172924981B98229672A78F7F018000000000000000)

Current: Transid(H) Userid(CICSUSER) Date(1999.029) Time(14:36:22.123737)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000048) Activity(D) Event(H)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..j..9..D)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29DBF00C444444444444444)
(21469351A172924981B98229672A71EE9014000000000000000)

Current: Transid(D) Program(D) Userid(CICSUSER) Date(1999.029) Time(14:36:22.147332)

Ptype(SALES) Function(Completion) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000048) Activity(D) Compstatus(Normal)

ActivityId(BAMFILE1..GBIBMIYA.IYK2ZFX2..j..9..D)
(CCDCCDCF11CCCCDCEC4CEDFECEFB29DBF00C444444444444444)
(21469351A172924981B98229672A71EE9014000000000000000)

Current: Transid(D) Userid(CICSUSER) Date(1999.029) Time(14:36:22.162148)

Ptype(SALES) Function(Activation) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000049) Activity(DFHROOT) Event(D)

ActivityId(BAMFILE1..GBIBMIYA.IYCWTC39.....v..DFHROOT)
(CCDCCDCF11CCCCDCEC4CECEECFFB2902A00CCCDDDE444444444)
(21469351A172924981B98363339A709F5014689663000000000)

Current: Transid(R) Program(R) Userid(CICSUSER) Date(1999.029) Time(14:36:22.185932)

Ptype(SALES) Function(Completion) Process(SALES1234567890) System(SYS1) Auditlog(BAMAUDIT)
Taskno(0000049) Activity(DFHROOT) Compstatus(Normal)

ActivityId(BAMFILE1..GBIBMIYA.IYCWTC39.....v..DFHROOT)
(CCDCCDCF11CCCCDCEC4CECEECFFB2902A00CCCDDDE444444444)
(21469351A172924981B98363339A709F5014689663000000000)

Current: Transid(R) Userid(CICSUSER) Date(1999.029) Time(14:36:22.482472)

Figure 60. Example audit trail, showing the types of record written for full auditing (Part 6 of 7)

CBTS Audit Trail Utility - Selection Results Date : 29/01/1999 Time : 14:39:04 Page 000007

Number of Audit records read : 40
Number of records selected : 40
Processing Complete

Figure 60. Example audit trail, showing the types of record written for full auditing (Part 7 of 7)

creating an audit trail

178 CICS TS for z/OS: CICS Business Transaction Services

Notes:

1. All times in the audit trails refer to Greenwich Mean Time (GMT).

2. As the example audit trails show, the detailed information within the audit report
varies according to the audit point taken.

3. When an activity is activated, in some cases the name of the event that caused
the activation is not available. In these cases, the request type and reason for
the activation are reported. The possible request types are:
v Dispatch
v Cancel
v Delete

The possible reasons are:
v Fire complete
v Fire input
v Fire timer
v Delete command
v Delete complete
v Delete reset
v Delete tree
v Cancel command
v Cancel complete
v Cancel force
v Reattach acq
v Unknown. “Unknown” applies only to “dispatch” requests. It means that the

activation has not been triggered by a specific event. This can happen, for
example, in any of the following cases:

– An application issues a RESUME command against a child activity. In this
case, BTS does a speculative dispatch, to see if there are any events to
be serviced; it doesn’t know, at the time the activation is started, whether
or not there are any.

– An activation terminates but there are several more fired events that it
needs to service. BTS reactivates the activity immediately, but doesn’t
regard the activation as being caused by any particular event.

– A timer is forced. Although a particular timer event fires, this firing occurs
in the application that issued the FORCE TIMER command; it is not part
of the request that starts the activation.

creating an audit trail

Chapter 16. Creating a BTS audit trail 179

creating an audit trail

180 CICS TS for z/OS: CICS Business Transaction Services

Chapter 17. Examining BTS repository records

This chapter tells you how to examine records on a BTS repository data set. It
contains:
v “Introduction to the repository utility program, DFHBARUP”
v “Using DFHBARUP.”

Introduction to the repository utility program, DFHBARUP
There may be times when you need to examine records on a repository. This may
be necessary for diagnostic purposes, for example.

You can use the repository utility program, DFHBARUP, to print selected records
from a specified repository data set.

The repository utility program, DFHBARUP
By default, DFHBARUP prints all the records currently on the specified repository.
Thus, you could use it to take a “snapshot” of your BTS system9 at the time the
utility is run. Bear in mind that the state of a repository may change from moment to
moment—especially if it is shared across a busy sysplex. For example, records for
new processes and activities may be added constantly; conversely, as processes
complete and events are deleted their associated records will disappear from the
repository.

DFHBARUP allows you to filter selected records—you could, for example, print only
the records associated with a specific process. Doing so would give you the current
state of:
v The activities that have been defined to the process, and have not yet been

deleted
v The containers associated with the activities—that is, the data they contain
v The events in the activities’ event pools.

Alternatively, you could print only the records associated with a specific activity.
Doing so would give you the current state of:
v The activity itself
v The containers associated with the activity
v The events in the activity’s event pool.

DFHBARUP formats the records it extracts, to make them easier to interpret.

Using DFHBARUP
Run DFHBARUP as a batch job.

DFHBARUP reads the records in the order they are stored on the repository—that
is, in keyed-sequence order. To select the records that DFHBARUP writes to the
output data set, SYSPRINT, you include control statements in the SYSIN data set.
By default, DFHBARUP prints all records currently on the data set. DFHBARUP
formats the selected records before writing them to SYSPRINT.

9. If you have more than one repository, it will be a snapshot of the processes served by the specified repository.

© Copyright IBM Corp. 1999, 2010 181

Sample job stream to run the DFHBARUP program
Figure 61 shows an example job stream to run the DFHBARUP program. The job
stream should include DD statements for the following data sets:

The repository
The repository data set to be examined to produce the output data.
(Figure 61 shows a DD name of 'REPOS'.)

STEPLIB
A partitioned data set (DSORG=PO) that contains the DFHBARUP program
module. If the module is in a library in the link list, this statement is not
required.

SYSIN The input control data set. This file must be in 80-byte record format. The
control statements that you can use in this data set are described in
“SYSIN control statements” on page 183.

Control statements can be continued on to the next line by including any
non-blank character in column 72. If the line that follows a continuation
character is empty or contains control arguments which conflict with those
that make up the preceding part of the control statement, an error is
reported and execution of the utility ends. Any characters which occur
beyond column 72 are ignored.

SYSPRINT
The output data set to which the formatted audit records and control
messages are to be sent.

EXEC parameters
You can use the PARM keyword on the EXEC statement to pass one or more of the
following parameters to the DFHBARUP utility. The form of the EXEC statement is:
EXEC PGM=DFHBARUP,PARM=’parm1,...,parmn’

NATLANG({EN|CS|KA})
The language in which messages are to be issued.

The minimum abbreviation of this parameter is N. The possible values are:
CS Traditional Chinese
EN English. This is the default.

//***
//* RUN DFHBARUP (REPOSITORY UTILITY PROGRAM)
//*
//*
//***
//ARUP EXEC PGM=DFHBARUP,PARM=’N(EN),P(60),T(M)’
//STEPLIB DD DSN=CTS130.CICS530.SDFHLOAD,DISP=SHR
//***
//* The output will go to SYSPRINT
//***
//SYSPRINT DD SYSOUT=A,DCB=RECFM=FBA
//REPOS DD DISP=SHR,DSN=CICS530.CBTS.SALESREP
//SYSIN DD *
PTYPE(SALES) +
PROCESS(CUSTSALES1999.13872977829728.QA) +
ACTIVITY(ORDER)
/*
//*

Figure 61. Sample job to run the DFHBARUP utility program. This job prints all the records
for the ORDER activity of the CUSTSALES1999.13872977829728.QA process.

repository utility program, DFHBARUP

182 CICS TS for z/OS: CICS Business Transaction Services

KA Kanji.

PAGESIZE({60|nn})
The number of lines to be printed per page, when the output from the utility is
sent to a printer. Valid values are in the range 20–99. The default is 60.

The minimum abbreviation of this parameter is P.

TRANSLATE({MIXEDCASE|UPPERCASE})
Whether the output from the utility is to be in mixed-case or uppercase. The
default is mixed-case.

The minimum abbreviation of this parameter is T. The minimum abbreviations of
MIXEDCASE and UPPERCASE are M and U respectively.

SYSIN control statements
The SYSIN data set is used to pass information to DFHBARUP. You can include
statements to select specific sets of records to be formatted. Comments are
identified by an asterisk in the first position. The SYSIN data set must be defined.

Format of the SYSIN control statements:
SYSIN DD *
[REPOSITORY(name)]
[PTYPE(name)]
[PROCESS(name)]
[ACTIVITY(name)]

The REPOSITORY statement cannot contain additional arguments. Other
statements may consist of multiple arguments. When using multiple arguments, put
each argument on a separate line; use a non-blank character in column 72 to
indicate that this argument and the following one are to be treated as a single
control statement. An illegal combination of arguments generates an error message
and the utility is not run against the logstream.

ACTIVITY(name)
The 1-16 character name of an activity. Only records for activities of this name
will be formatted. To limit the scope of the search, specify a PROCESS or
PTYPE argument in conjunction with ACTIVITY.

PROCESS(name)
The 1-36 character name of a BTS process. No further arguments are needed
to make up a control statement; if none are provided, all records containing this
process name are selected. To limit the scope of the search, you can add a
PTYPE argument on an adjoining line, using a continuation character in column
72.

PTYPE(name)
The 1-8 character name of a BTS process-type. No additional arguments are
needed; if none are provided, all records containing this process-type are
selected. To limit the scope of the search, you can add a PROCESS argument
on an adjoining line, using a continuation character in column 72.

REPOSITORY(name)
The 1-8 character DD name that identifies the repository data set to be
searched. The default is 'REPOS'. This argument must not be specified more
than once. It cannot be used with any other in a control statement.

If the specified repository file cannot be opened, or if more than one
REPOSITORY statement is found in the SYSIN data set, an error occurs and
DFHBARUP terminates.

repository utility program, DFHBARUP

Chapter 17. Examining BTS repository records 183

Example output from the DFHBARUP utility
The example control statements in Figure 62 would format all the records currently
on the SALEREP repository for the SALES1234567890 process (which is of the
SALES process-type).

Figure 63 shows the output that might be produced by the control statements in
Figure 62.

.

.
//SALESREP DD DISP=SHR,DSN=CICS530.CBTS.SALESREP
//SYSIN DD *
REPOSITORY(SALESREP)
PTYPE(SALES) +
PROCESS(SALES1234567890)
/*

Figure 62. Example control statements, to format all records on the SALEREP repository for
the SALES1234567890 process

CICS Business Transaction Services - Parameter Validation Date : 29/01/1999 Time : 14:39:04 Page 0001
Exec Parm Options: Natlang (EN)

Translate (mixedcase)
Pagesize (60)

REPOSITORY(SALEREP)

Figure 63. Example output from the DFHBARUP utility (Part 1 of 9)

repository utility program, DFHBARUP

184 CICS TS for z/OS: CICS Business Transaction Services

CICS Business Transaction Services - Repository File Report Date : 29/01/1999 Time : 14:39:04 Page 0002
Activity Name : DFHROOT Id : ..GBIBMIYA.IYCWTC37........DFHROOT Generation : 0000001

11CCCCDCEC4CECEECFF44042F00CCCDDDE4444444444
A172924981B98363337BB0C1B0146896630000000000

Definitional Attributes
Program : ABU081D
Transid : RUP4
Userid : CICSUSER
Comp Event :

Current State
Mode : Dormant (Initial, Active, Dormant, Cancelling, Complete)
Suspended : No (Yes, No)
Generation : 0000001
Child Count : 0000002

Completion Status
Completion Response : Incomplete

000000 C1401A11 C7C2C9C2 D4C9E8C1 4BC9E8C3 E6E3C3F3 F74B4B00 4C21FB00 01C4C6C8 *A ..GBIBMIYA.IYCWTC37...<....DFH*
000020 D9D6D6E3 40404040 40404040 40400000 00000004 00004000 000005E0 01500000 *ROOT\.&..*
000040 6EC4C6C8 C2C1C1C3 E3C9E5C9 00000000 FFFFFFFF 01500001 00000000 D740D7E3 *>DFHBAACTIVI.........&......P SA*
000060 E8D7C5F1 4040D7D9 D6C36DC6 D6E4D940 40404040 40404040 40404040 40404040 *LES SALES1234567890 *
000080 40404040 40404040 40400000 00000000 00000000 00000000 00000000 00000000 **
0000A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
0000C0 1A11C7C2 C9C2D4C9 E8C14BC9 E8C3E6E3 C3F3F74B 4B004C21 FB000103 00000000 *..GBIBMIYA.IYCWTC37...<.........*
0000E0 00000000 00000000 00000000 00000000 00000002 00000000 00000000 000003C4 *...............................D*
000100 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
000120 00000000 10C2011C 10C2011C 00000000 00000000 10C2012C 10C2012C C1C2E4F0 *.....B...B...........B...B..ABU0*
000140 F8F1C440 00000000 00000000 D9E4D7F4 C3C9C3E2 E4E2C5D9 40404040 40404040 *81DRUP4CICSUSER *
000160 40404040 40404040 01404040 40404040 40404040 4003C2C1 D4C1E4C4 C9E30000 * . .BAMAUDIT..*
000180 00000000 0000FFFF FFFFFFFF *............ *
Related BTS Objects
Process Type : SALES Name : SALES1234567890
No Parent
Child Name : ACT_3 Id : ..GBIBMIYA.IYK2ZFX2........ACT_3 Generation : 0000001

11CCCCDCEC4CEDFECEF440F3A00CCE6F444444444444
A172924981B98229672BBCF9F01133D3000000000000

Child Name : ACT_ONE Id : ..GBIBMIYA.IYK2ZFX2........ACT_ONE Generation : 0000001
11CCCCDCEC4CEDFECEF44068A00CCE6DDC4444444444
A172924981B98229672BBB35A01133D6550000000000

Eventpool
Event : (Reattach)
Type : Activity
Fired : No
Reattach : Yes
Retrieve : No
Subevent : No

Figure 63. Example output from the DFHBARUP utility (Part 2 of 9)

repository utility program, DFHBARUP

Chapter 17. Examining BTS repository records 185

CICS Business Transaction Services - Repository File Report Date : 29/01/1999 Time : 14:39:04 Page 0003
Event : DFHINITIAL
Type : Activity
Fired : No
Reattach : Yes
Retrieve : No
Subevent : No

Event : ACT_ONE
Type : Activity
Fired : No
Reattach : Yes
Retrieve : No
Subevent : No

Event : ACT_3
Type : Activity
Fired : No
Reattach : Yes
Retrieve : No
Subevent : No

Containers

No Containers

Figure 63. Example output from the DFHBARUP utility (Part 3 of 9)

repository utility program, DFHBARUP

186 CICS TS for z/OS: CICS Business Transaction Services

CICS Business Transaction Services - Repository File Report Date : 29/01/1999 Time : 14:39:04 Page 0004
Activity Name : ACT_ONE Id : ..GBIBMIYA.IYK2ZFX2........ACT_ONE Generation : 0000001

11CCCCDCEC4CEDFECEF44068A00CCE6DDC4444444444
A172924981B98229672BBB35A01133D6550000000000

Definitional Attributes
Program : ABU081E
Transid : RUP5
Userid : CICSUSER
Comp Event : ACT_ONE

Current State
Mode : Dormant (Initial, Active, Dormant, Cancelling, Complete)
Suspended : No (Yes, No)
Generation : 0000001
Child Count : 0000000

Completion Status
Completion Response : Incomplete

000000 C1401A11 C7C2C9C2 D4C9E8C1 4BC9E8D2 F2E9C6E7 F24B4B0B 6385AA00 01C1C3E3 *A ..GBIBMIYA.IYK2ZFX2....e...ACT*
000020 6DD6D5C5 40404040 40404040 40400000 00008081 00004000 00003E88 01500000 *_ONEa..h.&..*
000040 6EC4C6C8 C2C1C1C3 E3C9E5C9 00000000 FFFFFFFF 01500001 00000000 D740D7E3 *>DFHBAACTIVI.........&......P SA*
000060 E8D7C5F1 4040D7D9 D6C36DC6 D6E4D940 40404040 40404040 40404040 40404040 *LES SALES1234567890 *
000080 40404040 40404040 40400000 0000C140 1A11C7C2 C9C2D4C9 E8C14BC9 E8C3E6E3 *A ..GBIBMIYA.IYCWT*
0000A0 C3F3F74B 4B004C21 FB0001C4 C6C8D9D6 D6E34040 40404040 40404040 00000000 *C37...<....DFHROOT*
0000C0 1A11C7C2 C9C2D4C9 E8C14BC9 E8C3E6E3 C3F3F74B 4B004C21 FB000103 D9E4D7F4 *..GBIBMIYA.IYCWTC37...<.....RUP4*
0000E0 C3C9C3E2 E4E2C5D9 00000000 00000001 00000000 00000000 00000000 000003C4 *CICSUSER.......................D*
000100 00000001 00000003 000084A9 00000000 00000000 00000000 00000000 00000000 *..........dz....................*
000120 00000000 108F911C 108F911C 00000000 00000000 10C20C10 101465E0 C1C2E4F0 *......j...j..........B.....\ABU0*
000140 F8F1C540 00000000 00000000 D9E4D7F5 C3C9C3E2 E4E2C5D9 C1C3E36D D6D5C540 *81ERUP5CICSUSERACT_ONE *
000160 40404040 40404040 01404040 40404040 40404040 4003C2C1 D4C1E4C4 C9E30000 * . .BAMAUDIT..*
000180 00000000 0000FFFF FFFFFFFF *............ *
Related BTS Objects
Process Type : SALES Name : SALES1234567890
Parent Name : DFHROOT Id : ..GBIBMIYA.IYCWTC37........DFHROOT Generation : 0000001

11CCCCDCEC4CECEECFF44042F00CCCDDDE4444444444
A172924981B98363337BB0C1B0146896630000000000

No Children
Eventpool
Event : (Reattach)
Type : Activity
Fired : No
Reattach : Yes
Retrieve : No
Subevent : No

Figure 63. Example output from the DFHBARUP utility (Part 4 of 9)

repository utility program, DFHBARUP

Chapter 17. Examining BTS repository records 187

CICS Business Transaction Services - Repository File Report Date : 29/01/1999 Time : 14:39:04 Page 0005
Event : DFHINITIAL
Type : Activity
Fired : No
Reattach : Yes
Retrieve : No
Subevent : No

Event : ACT1_CONTINUE
Type : Activity
Fired : No
Reattach : Yes
Retrieve : No
Subevent : No

Event : ACT1_END
Type : Activity
Fired : No
Reattach : Yes
Retrieve : No
Subevent : No

Event : ACT2_DEF
Type : Activity
Fired : No
Reattach : Yes
Retrieve : No
Subevent : No

Event : ACT2_CAN
Type : Activity
Fired : No
Reattach : Yes
Retrieve : No
Subevent : No

Event : ACT2_SUS
Type : Activity
Fired : No
Reattach : Yes
Retrieve : No
Subevent : No

Event : ACT2_RES
Type : Activity
Fired : No
Reattach : Yes
Retrieve : No
Subevent : No

Containers

Container Name : ACT_CONT_1 Container Length : x’00008000’

000000 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF *................................*
.
lines omitted
.

07FE0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF *................................*
Container Name : ACT_CONT_2 Container Length : x’00000400’

000000 22222222 22222222 22222222 22222222 22222222 22222222 22222222 22222222 *................................*
.
lines omitted

0003E0 22222222 22222222 22222222 22222222 22222222 22222222 22222222 22222222 *................................*
Container Name : ACT_CONT_3 Container Length : x’00000019’

000000 10101010 10101010 10101010 10101010 10101010 10101010 10 *......................... *

Figure 63. Example output from the DFHBARUP utility (Part 5 of 9)

repository utility program, DFHBARUP

188 CICS TS for z/OS: CICS Business Transaction Services

CICS Business Transaction Services - Repository File Report Date : 29/01/1999 Time : 14:39:04 Page 0006
Activity Name : ACT_3 Id : ..GBIBMIYA.IYK2ZFX2........ACT_3 Generation : 0000001

11CCCCDCEC4CEDFECEF440F3A00CCE6F444444444444
A172924981B98229672BBCF9F01133D3000000000000

Definitional Attributes
Program : ABU081Z
Transid : RUPZ
Userid : CICSUSER
Comp Event : ACT_3

Current State
Mode : Dormant (Initial, Active, Dormant, Cancelling, Complete)
Suspended : No (Yes, No)
Generation : 0000001
Child Count : 0000000

Completion Status
Completion Response : Incomplete

000000 C1401A11 C7C2C9C2 D4C9E8C1 4BC9E8D2 F2E9C6E7 F24B4B0C FF39AF00 01C1C3E3 *A ..GBIBMIYA.IYK2ZFX2........ACT*
000020 6DF34040 40404040 40404040 40400000 00000000 00004000 00000550 01500000 *_3&.&..*
000040 6EC4C6C8 C2C1C1C3 E3C9E5C9 00000000 D9D4E4E6 01500001 00000000 D740D7E3 *>DFHBAACTIVI....RMUW.&......P SA*
000060 E8D7C5F1 4040D7D9 D6C36DC6 D6E4D940 40404040 40404040 40404040 40404040 *LES SALES1234567890 *
000080 40404040 40404040 40400000 0000C140 1A11C7C2 C9C2D4C9 E8C14BC9 E8C3E6E3 *A ..GBIBMIYA.IYCWT*
0000A0 C3F3F74B 4B004C21 FB0001C4 C6C8D9D6 D6E34040 40404040 40404040 00000000 *C37...<....DFHROOT*
0000C0 1A11C7C2 C9C2D4C9 E8C14BC9 E8C3E6E3 C3F3F74B 4B004C21 FB000103 D9E4D7F4 *..GBIBMIYA.IYCWTC37...<.....RUP4*
0000E0 C3C9C3E2 E4E2C5D9 00000000 00000001 00000000 00000000 00000000 000003C4 *CICSUSER.......................D*
000100 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
000120 00000000 10C2911C 10C2911C 00000000 00000000 10C2912C 10C2912C C1C2E4F0 *.....Bj..Bj..........Bj..Bj.ABU0*
000140 F8F1E940 00000000 00000000 D9E4D7E9 C3C9C3E2 E4E2C5D9 C1C3E36D F3404040 *81ZRUPZCICSUSERACT_3 *
000160 40404040 40404040 01404040 40404040 40404040 4003C2C1 D4C1E4C4 C9E30000 * . .BAMAUDIT..*
000180 00000000 00000000 00000000 *............ *
Related BTS Objects
Process Type : SALES Name : SALES1234567890
Parent Name : DFHROOT Id : ..GBIBMIYA.IYCWTC37........DFHROOT Generation : 0000001

11CCCCDCEC4CECEECFF44042F00CCCDDDE4444444444
A172924981B98363337BB0C1B0146896630000000000

No Children
Eventpool
Event : (Reattach)
Type : Activity
Fired : No
Reattach : Yes
Retrieve : No
Subevent : No

Figure 63. Example output from the DFHBARUP utility (Part 6 of 9)

repository utility program, DFHBARUP

Chapter 17. Examining BTS repository records 189

CICS Business Transaction Services - Repository File Report Date : 29/01/1999 Time : 14:39:04 Page 0007
Event : DFHINITIAL
Type : Activity
Fired : No
Reattach : Yes
Retrieve : No
Subevent : No

Event : T1
Type : Activity
Fired : No
Reattach : Yes
Retrieve : No
Subevent : No
Timer : TIMER_ONE

Event : T2
Type : Activity
Fired : No
Reattach : Yes
Retrieve : No
Subevent : No
Timer : TIMER_TWO

Event : T3
Type : Activity
Fired : No
Reattach : Yes
Retrieve : No
Subevent : No
Timer : TIMER_3

Timer : TIMER_ONE
Status : Unexpired
Date : 05/11/1998 Time : 10:23:46
Event : T1

Timer : TIMER_TWO
Status : Unexpired
Date : 08/11/1998 Time : 10:23:49
Event : T2

Timer : TIMER_3
Status : Unexpired
Date : 27/11/1998 Time : 10:23:52
Event : T3

Containers

No Containers

Figure 63. Example output from the DFHBARUP utility (Part 7 of 9)

repository utility program, DFHBARUP

190 CICS TS for z/OS: CICS Business Transaction Services

CICS Business Transaction Services - Repository File Report Date : 29/01/1999 Time : 14:39:04 Page 0008
Process : SALES1234567890 Process Type : SALES
Root Id : ..GBIBMIYA.IYCWTC37........DFHROOT

11CCCCDCEC4CECEECFF44042F00CCCDDDE4444444444
A172924981B98363337BB0C1B0146896630000000000

Audit Level : Full (Off, Pro, Act, Full)
Audit Log : BAMAUDIT
000000 D740D7E3 E8D7C5F1 4040D7D9 D6C36DC6 D6E4D940 40404040 40404040 40404040 *P SALES SALES1234567890 *
000020 40404040 40404040 40404040 40400000 00008004 00004000 00003E14 00A00000 **
000040 6EC4C6C8 C2C1D7D9 D6C3C5E2 00000000 00000000 00000000 00000000 C1401A11 *>DFHBAPROCES................A ..*
000060 C7C2C9C2 D4C9E8C1 4BC9E8C3 E6E3C3F3 F74B4B00 4C21FB00 01C4C6C8 D9D6D6E3 *GBIBMIYA.IYCWTC37...<....DFHROOT*
000080 40404040 40404040 40400000 0000776F 10C2003C 00000003 000084A9 00000000 *?.B........dz....*
0000A0 00000000 00000000 00000000 00000000 00000000 108F90AC 108F90AC 00000000 *................................*
0000C0 00000000 10146C90 10146710 03C2C1D4 C1E4C4C9 E3000001 00000000 *......%......BAMAUDIT....... *
Containers
Container Name : Container_one Container Length : x’00008000’

000000 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF *................................*

...
lines omitted

...
007FE0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF *................................*

Figure 63. Example output from the DFHBARUP utility (Part 8 of 9)

repository utility program, DFHBARUP

Chapter 17. Examining BTS repository records 191

Note: A DFHBARUP report shows activity identifiers in the form they are stored on
the repository. Unlike the activity identifiers returned by commands such as
ASSIGN and GETNEXT ACTIVITY, those shown by DFHBARUP are not
prefixed with the CICS file name of the repository.

CICS Business Transaction Services - Repository File Report Date : 29/01/1999 Time : 14:39:04 Page 0009
Container Name : Container_two Container Length : x’00000400’

000000 22222222 22222222 22222222 22222222 22222222 22222222 22222222 22222222 *................................*

...
lines omitted

...
0003E0 22222222 22222222 22222222 22222222 22222222 22222222 22222222 22222222 *................................*
Container Name : Container_three Container Length : x’00000019’

000000 10101010 10101010 10101010 10101010 10101010 10101010 10 *......................... *

Figure 63. Example output from the DFHBARUP utility (Part 9 of 9)

repository utility program, DFHBARUP

192 CICS TS for z/OS: CICS Business Transaction Services

Chapter 18. BTS messages, trace, and dump

This chapter contains:
v “BTS messages”
v “Using BTS trace”
v “Extracting BTS information from a CICS system dump” on page 194.

BTS messages

BTS messages are identified by the following prefixes:
v DFHBA
v DFHEM
v DFHSH

All CICS messages, including BTS messages, are listed in the CICS Messages and
Codes manual. To discover the meaning of a particular message, refer to that book.

Using BTS trace

Setting trace levels for BTS
BTS consists of three CICS domains:

Domain name CICS Component
code

Business application manager BA

Event manager EM

Scheduler services SH

You can use the CICS component codes to specify the level of standard and
special tracing for BTS. For detailed information about using component codes to
set the level of tracing to be applied to particular CICS components, see the CICS
Problem Determination Guide.

Defining tracing levels at system initialization
You can code any of the following parameters to define, at CICS system
initialization time, the level of tracing required for BTS:

v SPCTR, to indicate the level of special tracing required for CICS as a whole.

v SPCTRBA, to specify the level of special tracing required for the BTS business
application manager domain.

v SPCTREM, to specify the level of special tracing required for the BTS event
manager domain.

v SPCTRSH, to specify the level of special tracing required for the BTS scheduler
services domain.

v STNTR, to indicate the level of standard tracing required for CICS as a whole.

v STNTRBA, to specify the level of standard tracing required for the BTS business
application manager domain.

v STNTREM, to specify the level of standard tracing required for the BTS event
manager domain.

© Copyright IBM Corp. 1999, 2010 193

v STNTRSH, to specify the level of standard tracing required for the BTS scheduler
services domain.

For more information about system initialization parameters, see the CICS System
Definition Guide.

Defining tracing levels when CICS is running
You can use the CETR transaction to define, dynamically on the running CICS
system, the level of tracing required for BTS.

Figure 64 shows you what the CETR Component Trace Options screen looks like.
To make changes, you overtype the settings shown on the screen, and then press
ENTER.

With the settings shown, BTS trace entries are made as follows:

v With standard task tracing in effect, from level-1 trace points.

v With special task tracing in effect, from both level-1 and level-2 trace points.

For detailed information about the CETR transaction, see the CICS Supplied
Transactions manual.

The BTS trace points
BTS trace points are listed in the CICS Trace Entries manual.

Extracting BTS information from a CICS system dump
For information about the dump formatting keywords used to extract BTS
information from a CICS system dump, see the CICS Problem Determination Guide.

CETR Component Trace Options
Overtype where required and press ENTER. PAGE 1 OF 2
Component Standard Special
-------- ------------------------------- ---------------------------
AP 1 1-2
BA 1 1-2
BF 1 OFF
BM 1 OFF
BR 1 1-2
CP 1 1-2
DC 1 OFF
DD 1 1-2
DI 1 1
DM 1 1-2
DS 1 1-2
DU 1 1-2
EI 1 1
EM 1 1-2
FC 1 1-2
GC 1 1-2
IC 1 1

PF: 1=Help 3=Quit 7=Back 8=Forward 9=Messages ENTER=Change

Figure 64. CETR screen for specifying component trace options

messages, trace, and dump

194 CICS TS for z/OS: CICS Business Transaction Services

Chapter 19. Tuning BTS performance

You can use the monitoring data produced by CICS to improve the performance of
BTS.

BTS monitoring data
For introductory information about CICS monitoring, see the CICS Performance
Guide.

Performance class data
The CICS-defined fields in performance class monitoring records are organized in
groups. The BTS-related fields are in group DFHCBTS. All the CICS-defined fields,
including those in the DFHCBTS group, are listed in the CICS Performance Guide.
In the CICS Performance Guide, each of the data fields is presented as a field
description, followed by an explanation of the contents. The field description has the
format shown in Figure 65.

For information about how to add your own fields to performance class monitoring
records, and how to include or exclude specific CICS-defined groups of fields, see
the CICS Customization Guide.

Using the monitoring data print program, DFH$MOLS
DFH$MOLS is a CICS-supplied sample utility program for printing monitoring data.
You can select and sort the monitoring records to be printed by means of control
statements. For definitive information about DFH$MOLS, see the CICS Operations
and Utilities Guide. This section describes only the BTS-related options of the

001 (TYPE-C, ’TRAN’, 4 BYTES)
| | | |
| | | Length of the field (as re-
| | | presented by CMODLENG in the
| | | dictionary entry).
| | |
| | Informal name for the field, as used,
| | perhaps, in column headings when the
| | monitoring output is processed
| | (CMODHEAD of the dictionary entry).
| |
| Data type, which may be one of the following:
| A - a 32-bit count
| C - a byte string
| P - a packed decimal value
| S - a clock comprising a 32-bit accumulation
| of 16-microsecond units followed by an
| 8-bit flag followed by a 24-bit count
| (modulo-16 777 216) of the number of
| intervals included in the accumulation.
| T - a time stamp derived directly from the
| output of an STCK instruction.
| (CMODTYPE of the dictionary entry)
|
Field identifier by which the field may be individually
excluded or included during MCT preparation (CMODIDNT of
the dictionary entry).

Figure 65. Format of the descriptions of the data fields

© Copyright IBM Corp. 1999, 2010 195

DFH$MOLS control statements. These allow you to specify that DFH$MOLS should
include or exclude BTS-related monitoring records in the set of records to be
printed.

DFH$MOLS control statements that include BTS options
IGNORE[APPLID|PRCSTYPE|TERMID|TRANID|USERID]

specifies that all records from a CICS region that has the specified generic
APPLID, or all records associated with a specified process-type, terminal,
transaction, or user identifier, are to be excluded.

APPLID=xxxxxxxx[,yyyyyyyy,.,.]
Specify one or more generic APPLIDs to exclude monitoring data from
a CICS region, or regions.

PRCSTYPE=xxxxxxxx[,yyyyyyyy,.,.]
Specify one or more 8-character process-type identifiers to exclude
monitoring data associated with these BTS process-types.

TERMID=xxxx[,yyyy,.,.]
Specify one or more terminal identifiers to exclude monitoring data
associated with these terminals.

TRANID=xxxx[,yyyy,.,.]
Specify one or more transaction identifiers to exclude monitoring data
for these transactions.

USERID=xxxxxxxx[,yyyyyyyy,.,.]
Specify one or more user identifiers to exclude monitoring data for
transactions submitted by these users.

You can specify each of the APPLID, PRCSTYPE, TERMID, TRANID, and
USERID parameters in the same SELECT/IGNORE GROUP, but you cannot
specify an IGNORE and SELECT for the same type of parameter. For example,
you can specify SELECT TERMID= and IGNORE PRCSTYPE=, but you
cannot specify SELECT PRCSTYPE= and IGNORE PRCSTYPE=.

The DFH$MOLS program pads, with trailing blanks, operands that have less
characters than the permitted maximum. You cannot continue control statements on
another line, but the program logically chains multiple control statements of the
same keyword in the same IGNORE group. If you specify IGNORE for more than
one parameter, those IGNORE statements form a logical OR function.

Examples:

If you specify:
IGNORE TRANID=CEMT
IGNORE USERID=OP7

the program excludes all records for transaction CEMT (regardless of user ID), and
exclude all records containing userid OP7 (regardless of transaction ID). It includes
all other records.

If you specify:
SELECT TRANID=CEMT
IGNORE TERMID=TRM3

the program includes only records for transaction CEMT, except for those from
terminal TRM3.

monitoring data

196 CICS TS for z/OS: CICS Business Transaction Services

SELECT [APPLID|PRCSTYPE|TERMID|TRANID|USERID]
specifies that all records from a CICS region that has the specified generic
APPLID, or all records associated with a specified process-type, terminal,
transaction, or user identifier, are to be included.

APPLID=xxxxxxxx[,yyyyyyyy,.,.]
Specify one or more generic APPLIDs to include monitoring data from
the CICS regions identified by these APPLIDs.

PRCSTYPE=xxxxxxxx[,yyyyyyyy,.,.]
Specify one or more 8-character process-type identifiers to include
monitoring data associated with these BTS process-types.

TERMID=xxxx[,yyyy,.,.]
Specify one or more terminal identifiers to include monitoring data
associated with these terminals.

TRANID=xxxx[,yyyy,.,.]
Specify one or more transaction identifiers to include monitoring data for
these transactions.

USERID=xxxxxxxx[,yyyyyyyy,.,.]
Specify one or more user identifiers to include monitoring data for
transactions submitted by these users.

You can specify each of the APPLID, PRCSTYPE, TERMID, TRANID, and USERID
parameters in the same SELECT/IGNORE GROUP, but you cannot specify an
IGNORE and SELECT for the same type of parameter. For example, you can
specify SELECT TERMID= and IGNORE PRCSTYPE=, but you cannot specify
SELECT PRCSTYPE= and IGNORE PRCSTYPE=.

You cannot continue control statements on another line, but the program logically
chains multiple control statements of the same keyword in the same SELECT
group. If you specify SELECT for more than one parameter, those SELECT
statements form a logical AND function.

Examples:

If you specify:
SELECT TERMID=TRM3
SELECT TRANID=CEMT

the program includes only records with a transaction identifier of CEMT and with a
terminal identifier of TRM3. It does not include any other records.

If you specify:
SELECT APPLID=DBDCCICS
SELECT TRANID=CEMT
IGNORE TERMID=TRM3

the program includes only those records that are from the CICS region with the
generic APPLID DBDCCICS, and are for transaction CEMT, but do not have the
terminal identifier TRM3.

monitoring data

Chapter 19. Tuning BTS performance 197

198 CICS TS for z/OS: CICS Business Transaction Services

Part 5. BTS Application Programming Reference

This part of the manual contains programming information about the CICS business
transaction services application programming interface (API).

Table 10. API reference road map

If you want to... Refer to...

Understand how the BTS API commands fall
into functional groups

Chapter 20, “Overview of BTS API
commands,” on page 201

Check the syntax of an API command Chapter 21, “BTS application programming
commands,” on page 213

© Copyright IBM Corp. 1999, 2010 199

200 CICS TS for z/OS: CICS Business Transaction Services

Chapter 20. Overview of BTS API commands

This chapter introduces the CICS business transaction services application
programming interface (API) commands. It contains:
v “Process- and activity-related commands”
v “Container commands” on page 202
v “Event-related commands” on page 203
v “Browsing and inquiry commands” on page 205
v “System events” on page 211.

This chapter groups the API commands by function, giving a brief overview of what
each can be used for. For an alphabetical listing of the commands, or for detailed
programming information, see Chapter 21, “BTS application programming
commands,” on page 213.

Process- and activity-related commands
This section describes the CICS business transaction services commands that
relate to processes and activities.

Creating, activating, and terminating processes and activities
Use these commands to create processes and activities:

DEFINE PROCESS
Creates a new process.

DEFINE ACTIVITY
Creates a new child activity.

Use these commands to activate a process or activity:

RUN Invokes a program that implements a process or activity. Runs it
synchronously or asynchronously with the requestor, in a separate unit of
work, and with the transaction attributes specified on the DEFINE
PROCESS or DEFINE ACTIVITY command.

LINK ACTIVITY
Invokes a program that implements an activity. Runs it synchronously with
the requestor, in the same unit of work, and with the same transaction
attributes as the requestor.

LINK ACQPROCESS
Invokes the program that implements the process that is currently acquired
by the requestor. Runs the program synchronously with the requestor, in the
same unit of work, and with the same transaction attributes as the
requestor.

Use these commands to return a process or activity to its initial state:

RESET ACQPROCESS
Resets the currently-acquired process to its initial state—used before
retrying the process.

RESET ACTIVITY
Resets an activity to its initial state—used before retrying an activity.

Use these commands to control the progress of a process or activity:

© Copyright IBM Corp. 1999, 2010 201

SUSPEND (BTS)
Prevents a process or activity being reattached if events in its event pool
fire.

RESUME
Allows a suspended process or activity to be reattached if events in its
event pool fire.

Use these commands to terminate an activity:

RETURN ENDACTIVITY
Indicates that a process or activity is complete.

CANCEL (BTS)
Forces a process or activity to complete.

Use this command to destroy an activity:

DELETE ACTIVITY
Removes a child activity from the BTS repository data set where it is
defined.

Retrieving information about activities
Use this command to discover the activity the current unit of work is acting for:

ASSIGN
Returns information about the activity the current unit of work is acting for.

Use these commands to check the response from a process or activity:

CHECK ACQPROCESS
Returns the completion status of the process that is currently acquired by
the requestor.

CHECK ACTIVITY
Returns the completion status of an activity.

See also “Browsing and inquiry commands” on page 205.

Relating UOWs and activities
Use this command to give a unit of work access to an activity:

ACQUIRE
Allows a unit of work executing outside a BTS process to gain access to an
activity within the process.

Container commands
The CICS business transaction services commands that act on data-containers are:

PUT CONTAINER (BTS)
Use this command to save data in a data-container associated with a
specified BTS activity or process. If the named container does not already
exist, it is created. If the named container already exists, its previous
contents are overwritten.

GET CONTAINER (BTS)
Use this command to read data from a data-container associated with a
specified BTS activity or process.

activity-related commands

202 CICS TS for z/OS: CICS Business Transaction Services

MOVE CONTAINER (BTS)
Use this command, instead of GET CONTAINER (BTS) and PUT
CONTAINER (BTS), as a more efficient way of transferring data between
activities. Using GET CONTAINER and PUT CONTAINER, you must:
1. Issue a GET CONTAINER NODATA command to retrieve the length of

the data in the source container.
2. Allocate an area of working storage sufficient to hold the data.
3. Issue a GET CONTAINER command to retrieve the data into working

storage.
4. Issue a PUT CONTAINER command to store the data in the target

container.

Using MOVE CONTAINER, only one command is required and no working
storage needs to be allocated. No data is actually moved; only CICS
internal references are changed.

Use MOVE CONTAINER, rather than GET CONTAINER and PUT
CONTAINER, if you have no need to keep the source container.

DELETE CONTAINER (BTS)
Use this command to delete a BTS data-container and discard any data
that it contains.

Event-related commands
This section describes the CICS business transaction services event-related
commands.

Terminology
This section is a brief reminder of some of the terms used to describe BTS events.
For a more detailed introduction to BTS events, see “BTS events” on page 21.

Event states
An event can be in one of two states: FIRED (true) or NOTFIRED (false). Which
state it is in is known as the event’s fire status.

Atomic events
Atomic events are simple, “low-level” events. The BTS atomic events are:

Activity completion events
Events that fire on completion of an activity.

Input events
Events delivered to an activity when it is activated, conveying the reason for
its attachment.

Timer events
Events that fire when a timer expires.

System events
Input events defined by the BTS system.

Note: Activity, input, timer, and composite events are referred to as user-defined
events, because they are defined by the programmer. System events are
defined by BTS.

Composite events
A composite event is a method of grouping user-defined (that is, non-system)
atomic events in a logical expression, which is named. An atomic event that is

container commands

Chapter 20. Overview of BTS API commands 203

included in a composite event is known as a sub-event. Sub-events that fire are
placed on the composite event’s sub-event queue. Each composite event has a
sub-event queue associated with it. The sub-event queue:

v May be empty

v Contains only those sub-events that have fired and not been retrieved.

Reattachment events
An event that fires, and thereby causes an activity to be reattached, is known as a
reattachment event. All user-defined events except sub-events cause the activity to
which they are defined to be reattached when they fire. Thus, all user-defined
events (both atomic and composite, but excluding sub-events) are potentially
reattachment events. All system events are reattachment events.

At times, reattachment may occur because of the firing of more than one event.
Reattachment events are placed on the activity’s reattachment queue, from which
they can be retrieved. Each activity has a reattachment queue, which:

v May be empty

v Contains only those reattachment events that have fired and not been retrieved.

Timers
A timer is a BTS object that expires when the system time becomes greater than a
specified time, or after a specified period has elapsed. When you define a timer, a
timer event is automatically associated with it. When the timer expires, its
associated event fires.

Event pools
Events are defined within event pools. Each activity has an event pool, which
contains the set of events that it recognizes (that is, events that have been defined
to it, and system events). An activity’s event pool is initialized when the activity is
created, and deleted when the activity is deleted. All the event-related commands
except FORCE TIMER operate on the event pool associated with the current
activity.

The event-related commands
All the event-related commands operate on the current activity’s event pool.

Use these commands to define user events other than activity completion and timer
events:

DEFINE INPUT EVENT
Defines an input event.

DEFINE COMPOSITE EVENT
Defines a composite event.

Use these commands to control timers and timer events:

DEFINE TIMER
Defines a timer, and associates an event with it.

FORCE TIMER
Forces early expiry of a timer, and causes the timer’s associated event to
fire.

CHECK TIMER
Returns the status of a timer and, if the timer has expired, deletes its
associated event.

event-related commands

204 CICS TS for z/OS: CICS Business Transaction Services

DELETE TIMER
Deletes a timer and its associated event (if any).

Use these commands to manipulate events:

ADD SUBEVENT
Adds a sub-event to a composite event.

REMOVE SUBEVENT
Removes a sub-event from a composite event.

DELETE EVENT
Removes an input or composite event from the current activity’s event pool.

Note: DELETE EVENT cannot be used to delete activity completion events
(which are implicitly deleted when a response from the completed
activity has been acknowledged by a CHECK ACTIVITY command,
or when a DELETE ACTIVITY command is issued), timer events, or
system events.

RETRIEVE REATTACH EVENT
Retrieves the name of an event that caused the current activity to be
reattached and, if the event is atomic, resets its fire status to NOTFIRED.

RETRIEVE SUBEVENT
Retrieves the name of the next sub-event in a composite event’s sub-event
queue, and resets the retrieved sub-event’s fire status to NOTFIRED.

Use this command to check whether an event has fired:

TEST EVENT
Tests whether an event has fired.

Browsing and inquiry commands

Important: The API commands described here are different in kind from the
commands described previously in this chapter.

The commands described previously in this chapter are the basic
commands used by application programmers to create BTS
applications.

The commands described here have more specialized uses. They
might be used, for example, in a utility program written to investigate a
stuck process. A typical BTS business application should not need to
inquire on or browse the objects it creates, and therefore will not use
these commands.

??

CICS business transaction services provide a set of commands that enable
programs to search for and examine BTS objects. These commands can be
summarized as:

Browsing commands
Used to locate BTS objects, and to retrieve some or all of their attributes.

event-related commands

Chapter 20. Overview of BTS API commands 205

Inquiry commands
Used to retrieve the attributes of specific BTS objects (which may have
been located by browsing).

The object-identifiers and names retrieved from the browsing or inquiry commands
can be specified on a subset of the other BTS API commands. This allows actions
to be started against specified activities, processes, and data-containers.

Browsing commands
The browsing commands allow BTS objects to be located and their relationships to
each other examined. The objects that can be browsed are:
v Activities
v Data-containers
v Events
v Processes
v Process-types.10

Each browse has three commands associated with it:10

STARTBROWSE
STARTBROWSE:

1. Tells CICS to begin a browse of a specified type of BTS object.

2. Defines the scope of the browse. In most cases, 11 an absence of additional
arguments indicates that the browse is to have the scope of the current
activity.

3. Returns a browse token which must be included on the remaining
commands within the browse.

GETNEXT
Locates the next object within the scope of the browse, or returns the END
condition if there are no more to be found.

GETNEXT always returns sufficient information to allow additional actions to be
taken. For example, in a browse of the children of a specified parent activity,
the GETNEXT ACTIVITY command returns both the name and the identifier
(ACTIVITYID) of the next child activity that it finds. The name could be used to
decide where the current browse should be paused. The identifier could be
used to start a new browse—which might be of the child activity’s containers,
for instance.

ENDBROWSE
Ends the browse.

Inquiry commands
A program can get details of a specific BTS object by issuing an INQUIRE
command. You can inquire on:
v Activities
v Data-containers
v Events
v Processes
v Process-types
v Timers.

10. Process-types are a special case. They are browsed using the START, NEXT, and END options of the INQUIRE PROCESSTYPE
command. INQUIRE PROCESSTYPE is described in Chapter 23, “BTS system programming commands,” on page 219.

11. That is, apart from browses of processes and process-types.

browsing and inquiry commands

206 CICS TS for z/OS: CICS Business Transaction Services

The object inquired upon may have been located by browsing. For example, a
program can use a browse to locate an activity, then issue an INQUIRE
ACTIVITYID command to find out the name of the program associated with the
activity, the userid under whose authority it runs, or its current completion status.

Note: All INQUIRE commands try to locate a record on a BTS repository data set,
and to read information from it if found. This operation does not obtain an
exclusive control lock for the record; therefore the data in the record may
change while the operation is taking place.

Be careful when issuing INQUIRE commands from within programs that
execute as part of an activity, if the commands refer to records which may
be modified by the same program. The INQUIRE command always goes to
the repository for the record it needs, and may not see changes made by the
program. This can lead to unexpected results. For example, a program might
define a new activity and then issue a command to inquire upon it, only to be
told that the activity does not exist (because the activity-record has not yet
been committed to the repository).

Tokens and identifiers
A browse token uniquely identifies a browse within a CICS region. The same token
returned on a STARTBROWSE command must be supplied on the corresponding
GETNEXT and ENDBROWSE commands. CICS discards it after the
ENDBROWSE.

The lifetime of a browse token is from a STARTBROWSE to an ENDBROWSE or
syncpoint, whichever comes first. Therefore, your applications:

v Should not attempt to use a token after the browse has ended

v Should not attempt to use a token if a syncpoint is encountered before the
browse has completed

An activity identifier is a means of uniquely referring to an instance of an activity
that has been retrieved from a BTS repository data set. Once an activity identifier or
a process name is known, it can be used as a scoping argument to a new browse.
It can also be specified on certain API commands which cause actions to be taken
against existing activities or processes, or their containers and events—see
“Commands which take identifiers returned by browse operations.” The lifetime of
an activity identifier is the same as that of the activity it refers to. Thus, it can be
used after an ENDBROWSE and after a syncpoint.

A data-container or an event cannot be identified in the same way as an activity or
a process, because it forms part of a record on a BTS repository data set. Instead,
it must be referenced through the activity or process to which it belongs.

Commands which take identifiers returned by browse operations
It is essential that the systems programmer should be able to modify a business
transaction after it has started. This is particularly important if the transaction gets
into a state where it cannot complete. A user-written utility program could, for
example:

1. Use a series of browses to locate a particular process or activity

2. When the process or activity is found, inquire about its state

3. Gain control of the process or activity by issuing an ACQUIRE command

4. Correct a processing problem by issuing a further command or commands.

browsing and inquiry commands

Chapter 20. Overview of BTS API commands 207

You can specify the activity identifier returned by a GETNEXT ACTIVITY, GETNEXT
PROCESS, or INQUIRE PROCESS command on any of the following commands:
v ACQUIRE
v INQUIRE ACTIVITYID
v INQUIRE CONTAINER
v INQUIRE EVENT
v INQUIRE TIMER
v STARTBROWSE ACTIVITY
v STARTBROWSE CONTAINER
v STARTBROWSE EVENT

You can specify the process name returned by a GETNEXT PROCESS (or
INQUIRE ACTIVITYID) command on any of the following commands:
v ACQUIRE
v INQUIRE CONTAINER
v INQUIRE PROCESS
v STARTBROWSE ACTIVITY
v STARTBROWSE CONTAINER

After you have acquired a process or activity, you could, for example, issue one or
more of the following commands against it:
v CANCEL (BTS)
v CHECK
v DELETE ACTIVITY
v DELETE CONTAINER (BTS)
v FORCE TIMER
v GET CONTAINER (BTS)
v LINK
v MOVE CONTAINER (BTS)
v PUT CONTAINER (BTS)
v RESET ACQPROCESS
v RESUME
v RUN
v SUSPEND (BTS)

Browsing examples
This section contains some examples of how the browsing and inquiry commands
can be used.

Example 1
An application, which has not issued any requests to BTS, wants to see if a
particular container belongs to a child of the root activity of a particular process,
whose name and type are known.

browsing and inquiry commands

208 CICS TS for z/OS: CICS Business Transaction Services

|

EXEC CICS INQUIRE PROCESS(pname)
PROCESSTYPE(ptype)
ACTIVITYID(root_id)

if process found then browse the children of its root activity
EXEC CICS STARTBROWSE ACTIVITY

ACTIVITYID(root_id)
BROWSETOKEN(root_token)

EXEC CICS GETNEXT ACTIVITY(child_name)
BROWSETOKEN(root_token)
ACTIVITYID(child_id)

loop while the child is not found and there are more activities
EXEC CICS GETNEXT ACTIVITY(child_name)

BROWSETOKEN(root_token)
ACTIVITYID(child_id)

end child activity browse loop

if the child we are looking for is found then browse its containers
EXEC CICS STARTBROWSE CONTAINER

ACTIVITYID(child_id)
BROWSETOKEN(c_token)

EXEC CICS GETNEXT CONTAINER(c_name)
BROWSETOKEN(c_token)

loop while container not found and there are more containers
EXEC CICS GETNEXT CONTAINER(c_name)

BROWSETOKEN(c_token)
end container browse loop

EXEC CICS ENDBROWSE CONTAINER BROWSETOKEN(c_token)
EXEC CICS ENDBROWSE ACTIVITY BROWSETOKEN(root_token)

Figure 66. Browsing example 1

browsing and inquiry commands

Chapter 20. Overview of BTS API commands 209

Example 2
An application, which has not issued any requests to BTS, wants to know whether a
particular data-container is one of the global containers associated with a particular
process. If it is not, the program wants to know whether the container is owned by
the root activity of that process.

EXEC CICS INQUIRE PROCESS(pname) PROCESSTYPE(ptype)
ACTIVITYID(root_id)

if process found then browse its containers
EXEC CICS STARTBROWSE CONTAINER PROCESS(pname) PROCESSTYPE(ptype)

BROWSETOKEN(c_token_1)
EXEC CICS GET NEXT CONTAINER(c_name)

BROWSETOKEN(c_token_1)
loop while container not found and there are more containers

EXEC CICS GET NEXT CONTAINER(c_name)
BROWSETOKEN(c_token_1)

end process container browse loop

if container not found browse the root activity’s containers
EXEC CICS STARTBROWSE CONTAINER ACTIVITYID(root_id)

BROWSETOKEN(c_token_2)
EXEC CICS GETNEXT CONTAINER(c_name)

BROWSETOKEN(c_token_2)
loop while container not found and there are more containers

EXEC CICS GETNEXT CONTAINER(c_name)
BROWSETOKEN(c_token_2)

end root activity’s container browse loop

EXEC CICS ENDBROWSE CONTAINER BROWSETOKEN(c_token_2)
EXEC CICS ENDBROWSE CONTAINER BROWSETOKEN(c_token_1)

Figure 67. Browsing example 2

browsing and inquiry commands

210 CICS TS for z/OS: CICS Business Transaction Services

Example 3
A program running as an activation of an activity wants to find whether a named
event has been defined to any of its children—that is, whether the event exists in
any of the children’s event pools. If the event exists, the program wants to retrieve
its fire status.

Because the program starts an activity browse on which no activity identifier or
process name is specified, BTS browses the current activity. The program retrieves
the identifier of each child activity, and uses this to browse the child’s events.

Activity identifiers remain valid after the browse that obtained them has ended.
(They are valid for the life of the activity itself.) To illustrate this, the program uses
the identifier of the activity whose event pool contains the named event, on an
INQUIRE EVENT command, after it has ended the browse.

System events
BTS produces system events as a result of its own processing. BTS system events
are identified by the prefix 'DFH'. Currently, there is only one type of system event:

DFHINITIAL
The activity is being attached for the first time in this process, or it is being
retried after being reset with a RESET ACTIVITY command. An activity must be
coded to cope with this event, which tells it that it should perform any initial
housekeeping.

EXEC CICS STARTBROWSE ACTIVITY BROWSETOKEN(parent_token)
loop until the event is found or there are no more child activities

EXEC CICS GETNEXT ACTIVITY(child_activity_name)
BROWSETOKEN(parent_token)
ACTIVITYID(child_activity_id)

EXEC CICS STARTBROWSE EVENT ACTIVITYID(child_activity_id)
BROWSETOKEN(event_token)

loop until event found or there are no more events
EXEC CICS GETNEXT EVENT(event_name)

BROWSETOKEN(event_token)
end event browse loop

EXEC CICS ENDBROWSE EVENT BROWSETOKEN(event_token)

end child activity browse loop
EXEC CICS ENDBROWSE ACTIVITY BROWSETOKEN(parent_token)
EXEC CICS INQUIRE EVENT(event_name)

ACTIVITYID(child_activity_id)
FIRESTATUS(fstatus)

Figure 68. Browsing example 3

browsing and inquiry commands

Chapter 20. Overview of BTS API commands 211

system events

212 CICS TS for z/OS: CICS Business Transaction Services

Chapter 21. BTS application programming commands

For detailed programming information about each of the CICS business transaction
services application programming commands, see the CICS Application
Programming Reference. The BTS commands described in the CICS Application
Programming Reference are:
v ACQUIRE
v ADD SUBEVENT
v ASSIGN
v CANCEL (BTS)
v CHECK ACQPROCESS
v CHECK ACTIVITY
v CHECK TIMER
v DEFINE ACTIVITY
v DEFINE COMPOSITE EVENT
v DEFINE INPUT EVENT
v DEFINE PROCESS
v DEFINE TIMER
v DELETE ACTIVITY
v DELETE CONTAINER (BTS)
v DELETE EVENT
v DELETE TIMER
v ENDBROWSE ACTIVITY
v ENDBROWSE CONTAINER
v ENDBROWSE EVENT
v ENDBROWSE PROCESS
v FORCE TIMER
v GET CONTAINER (BTS)
v GETNEXT ACTIVITY
v GETNEXT CONTAINER
v GETNEXT EVENT
v GETNEXT PROCESS
v INQUIRE ACTIVITYID
v INQUIRE CONTAINER
v INQUIRE EVENT
v INQUIRE PROCESS
v INQUIRE TIMER
v LINK ACQPROCESS
v LINK ACTIVITY
v MOVE CONTAINER (BTS)
v PUT CONTAINER (BTS)
v REMOVE SUBEVENT
v RESET ACQPROCESS
v RESET ACTIVITY
v RESUME
v RETRIEVE REATTACH EVENT
v RETRIEVE SUBEVENT
v RETURN
v RUN
v STARTBROWSE ACTIVITY
v STARTBROWSE CONTAINER
v STARTBROWSE EVENT
v STARTBROWSE PROCESS
v SUSPEND (BTS)
v TEST EVENT

© Copyright IBM Corp. 1999, 2010 213

None of the BTS commands are threadsafe.

214 CICS TS for z/OS: CICS Business Transaction Services

#

Part 6. BTS System Programming Reference

This part of the manual contains detailed programming information about the CICS
business transaction services system programming commands.

Table 11. System programming reference road map

If you want to... Refer to...

Understand how the BTS system
programming commands fall into functional
groups

Chapter 22, “Overview of BTS system
programming commands,” on page 217

Check the syntax of a system programming
command

Chapter 23, “BTS system programming
commands,” on page 219

© Copyright IBM Corp. 1999, 2010 215

216 CICS TS for z/OS: CICS Business Transaction Services

Chapter 22. Overview of BTS system programming commands

This chapter introduces the CICS business transaction services system
programming commands. It contains:
v “Control commands”
v “Inquiry command.”

You can use CICS command security to restrict access to the commands described
in this chapter.

This chapter groups the commands by function, giving a brief overview of what
each can be used for. For an alphabetical listing of the commands, or for detailed
programming information, see Chapter 23, “BTS system programming commands,”
on page 219.

Control commands
CICS business transaction services provide a set of commands that enable
programs to create and modify BTS process-types. These commands are:

CREATE PROCESSTYPE
Builds a PROCESSTYPE definition in the local CICS region, without
reference to data in the CICS system definition (CSD) file

DISCARD PROCESSTYPE
Removes a PROCESSTYPE definition from the local CICS region

SET PROCESSTYPE
Modifies the attributes of a PROCESSTYPE definition.

Inquiry command
You can use the INQUIRE PROCESSTYPE command to retrieve the attributes of a
process-type.

For information about the other BTS inquiry commands, see “Browsing and inquiry
commands” on page 205.

© Copyright IBM Corp. 1999, 2010 217

218 CICS TS for z/OS: CICS Business Transaction Services

Chapter 23. BTS system programming commands

This chapter contains detailed programming information about each of the CICS
business transaction services system programming commands. It contains:
v “CREATE PROCESSTYPE” on page 220
v “DISCARD PROCESSTYPE” on page 222
v “INQUIRE PROCESSTYPE” on page 223
v “INQUIRE TASK” on page 225
v “SET PROCESSTYPE” on page 226.

© Copyright IBM Corp. 1999, 2010 219

CREATE PROCESSTYPE
Define a PROCESSTYPE in the local CICS region.

Description
CREATE PROCESSTYPE adds the definition of a BTS process-type to the local
CICS region. The definition is built without reference to data stored on the CSD file.
If there is already a process-type by the name you specify in the local CICS region,
the new definition replaces the old one; if not, the new definition is added.

A syncpoint is implicit in CREATE PROCESSTYPE processing, except when an
exception condition is detected early in processing the command. Uncommitted
changes to recoverable resources made up to that point in the task are committed if
the CREATE executes successfully and rolled back if not. For other general rules
about CREATE commands, see the CICS System Programming Reference manual.

Options
ATTRIBUTES(data-value)

specifies the attributes of the PROCESSTYPE being added. The list of
attributes must be coded as a single character string using the syntax shown in
PROCESSTYPE attributes. For general rules for specifying attributes, see the
CICS System Programming Reference manual. For details of specific attributes,
see “CEDA DEFINE PROCESSTYPE” on page 114.

ATTRLEN(data-value)
specifies the length in bytes of the character string supplied in the ATTRIBUTES
option, as a halfword binary value. The length can be from 0 to 32767.

PROCESSTYPE(data-value)
specifies the name (1-8 characters) of the PROCESSTYPE definition to be
added to the CICS region. The acceptable characters are A-Z a-z 0-9 $ @ # . /

CREATE PROCESSTYPE

�� CREATE PROCESSTYPE(data-value) ATTRIBUTES(data-value) ATTRLEN(data-value) ��

Conditions: ILLOGIC, INVREQ, LENGERR, NOTAUTH

CREATE PROCESSTYPE

�� ��

PROCESSTYPE attributes:

DESCRIPTION(char58)
FILE(char8)

AUDITLOG(char8)

AUDITLEVEL(OFF)

AUDITLEVEL(ACTIVITY)
AUDITLEVEL(FULL)
AUDITLEVEL(PROCESS)

�

�
STATUS(ENABLED)

STATUS(DISABLED)

CREATE PROCESSTYPE

220 CICS TS for z/OS: CICS Business Transaction Services

-_ % & ? ! : | " = ¬ , ; < >. Leading and embedded blank characters are not
permitted. If the name supplied is less than eight characters, it is padded with
trailing blanks up to eight characters.

Conditions
ILLOGIC

RESP2 values:
2 The command cannot be executed because an earlier CONNECTION

or TERMINAL pool definition has not yet been completed.

INVREQ
RESP2 values:
n There is a syntax error in the ATTRIBUTES string, or an error occurred

during either the discard or resource definition phase of the processing.
200 The command was executed in a program defined with an

EXECUTIONSET value of DPLSUBSET or a program invoked from a
remote system by a distributed program link without the
SYNCONRETURN option.

LENGERR
RESP2 values:
1 The length you have specified in ATTRLEN is negative.

NOTAUTH
RESP2 values:
100 The user associated with the issuing task is not authorized to use this

command.
101 The user associated with the issuing task is not authorized to create a

PROCESSTYPE definition with this name.
102 The caller does not have surrogate authority to install the resource with

the particular userid.

CREATE PROCESSTYPE

Chapter 23. BTS system programming commands 221

DISCARD PROCESSTYPE
Remove a PROCESSTYPE definition.

Description
DISCARD PROCESSTYPE removes the definition of a specified process-type from
the local CICS region.

Notes:

1. Only disabled process-types can be discarded.

2. If you are using BTS in a single CICS region, you can use the DISCARD
PROCESSTYPE command to remove process-types. However, if you are using
BTS in a sysplex, it is strongly recommended that you use CPSM to remove
them. If you don’t use CPSM, problems could arise if Scheduler Services routes
to this region work that requires a discarded definition.

Options
PROCESSTYPE(data-value)

specifies the name (1-8 characters) of the process-type to be removed.

Conditions
INVREQ

RESP2 values:
2 The process-type named in the PROCESSTYPE option is not disabled.

NOTAUTH
RESP2 values:
100 The user associated with the issuing task is not authorized to use this

command.

PROCESSERR
RESP2 values:
1 The process-type named in the PROCESSTYPE option is not defined in

the process-type table (PTT).

DISCARD PROCESSTYPE

�� DISCARD PROCESSTYPE(data-value) ��

Conditions: INVREQ, NOTAUTH, PROCESSERR

DISCARD PROCESSTYPE

222 CICS TS for z/OS: CICS Business Transaction Services

INQUIRE PROCESSTYPE
Retrieve the attributes of a process-type.

Description
INQUIRE PROCESSTYPE returns the attributes of a specified process-type.

Browsing
You can also browse through all of the process-type definitions in your system by
using the browse options (START, NEXT, and END) on INQUIRE PROCESSTYPE
commands. In browse mode, the definitions are returned in alphabetical order. For
general information about browsing, syntax, exception conditions, and examples,
see the CICS System Programming Reference manual.

Options
AUDITLEVEL(cvda)

indicates the level of audit currently active for processes of the specified type.
CVDA values are:

ACTIVITY
Activity-level auditing. Audit records are written from:
1. The process audit points
2. The activity primary audit points.

FULL Full auditing. Audit records are written from:
1. The process audit points
2. The activity primary and secondary audit points.

OFF No audit trail records are written.

PROCESS
Process-level auditing. Audit records are written from the process audit
points only.

For details of the records that are written from the process, activity primary, and
activity secondary audit points, see “Specifying the level of audit logging” on
page 158.

AUDITLOG(data-area)
returns the 8-character name of the CICS journal used as the audit log for
processes of the specified type.

FILE(data-area)
returns the 8-character name of the CICS file associated with the process-type.

PROCESSTYPE(data-value)
specifies the name (1–8 characters) of the process-type being inquired upon.

INQUIRE PROCESSTYPE

�� INQUIRE PROCESSTYPE(data-value)
FILE(data-area) AUDITLOG(data-area)

�

�
AUDITLEVEL(cvda) STATUS(cvda)

��

Conditions: NOTAUTH, PROCESSERR

INQUIRE PROCESSTYPE

Chapter 23. BTS system programming commands 223

STATUS(cvda)
indicates whether new processes of the specified type can currently be defined.
CVDA values are:

DISABLED
The installed definition of the process-type is disabled. New processes
of this type cannot be defined.

ENABLED
The installed definition of the process-type is enabled. New processes
of this type can be defined.

Conditions
NOTAUTH

RESP2 values:
100 The user associated with the issuing task is not authorized to use this

command.

PROCESSERR
RESP2 values:
1 The process-type specified on the PROCESSTYPE option could not be

found.

INQUIRE PROCESSTYPE

224 CICS TS for z/OS: CICS Business Transaction Services

INQUIRE TASK
Retrieve information about a user task.

Command options: This section describes only the options of the INQUIRE TASK
command that relate to BTS. For full details of the INQUIRE
TASK command, see the CICS System Programming
Reference manual.

Description
The INQUIRE TASK command returns information about a specific user task. User
tasks are those associated with user-defined transactions or with CICS-supplied
transactions that are normally invoked by an operator.

Options
ACTIVITY(data-area)

returns the 16-character, user-assigned, name of the CICS business transaction
services activity that this task is executing on behalf of.

ACTIVITYID(data-area)
returns the 52-character, CICS-assigned, identifier of the CICS business
transaction services activity that this task is executing on behalf of.

PROCESS(data-area)
returns the 36-character name of the CICS business transaction services
process of which this task is a part.

PROCESSTYPE(data-area)
returns the 8-character process-type of the CICS business transaction services
process of which this task is a part.

Conditions
NOTAUTH

RESP2 values:
100 The user associated with the issuing task is not authorized to use this

command.

TASKIDERR
RESP2 values:
1 The task cannot be found.
2 The task is executing a type of transaction which is not subject to this

command.

�� INQUIRE TASK(data-value) �

....
ACTIVITY(data-area)
ACTIVITYID(data-area)
PROCESS(data-area)
PROCESSTYPE(data-area)
....

��

Conditions: NOTAUTH, TASKIDERR

INQUIRE TASK

Chapter 23. BTS system programming commands 225

SET PROCESSTYPE
Change the attributes of a process-type.

Description
SET PROCESSTYPE allows you to change the current state of audit logging and
the enablement status of PROCESSTYPE definitions installed on this CICS region.

Note: Process-types are defined in the process-type table (PTT). CICS uses the
entries in this table to maintain its records of processes (and their constituent
activities) on external data sets. If you are using BTS in a single CICS
region, you can use the SET PROCESSTYPE command to modify your
process-types. However, if you are using BTS in a sysplex, it is strongly
recommended that you use CPSM to make such changes. This is because it
is essential to keep resource definitions in step with each other, across the
sysplex.

Options
AUDITLEVEL(cvda)

specifies the level of audit logging to be applied to processes of this type.

Note: If the AUDITLOG attribute of the installed PROCESSTYPE definition is
not set to the name of a CICS journal, an error is returned if you try to
specify any value other than OFF.

The CVDA values are:

ACTIVITY
Activity-level auditing. Audit records will be written from:
1. The process audit points
2. The activity primary audit points.

FULL Full auditing. Audit records will be written from:
1. The process audit points
2. The activity primary and secondary audit points.

OFF No audit trail records will be written.

PROCESS
Process-level auditing. Audit records will be written from the process
audit points only.

For details of the records that are written from the process, activity primary, and
activity secondary audit points, see “Specifying the level of audit logging” on
page 158.

SET PROCESSTYPE

�� SET PROCESSTYPE(data-value)
STATUS(cvda)
DISABLED
ENABLED

AUDITLEVEL(cvda)
ACTIVITY
FULL
OFF
PROCESS

��

Conditions: INVREQ, NOTAUTH, PROCESSERR

SET PROCESSTYPE

226 CICS TS for z/OS: CICS Business Transaction Services

PROCESSTYPE(value)
specifies the 8-character name of a process-type defined in the process-type
table (PTT), whose attributes are to be changed.

STATUS(cvda)
specifies whether new processes of this type can be created. The CVDA values
are:

DISABLED
The installed definition of the process-type is disabled. New processes
of this type cannot be defined.

ENABLED
The installed definition of the process-type is enabled. New processes
of this type can be defined.

Conditions
INVREQ

RESP2 values:
2 The process-type is not disabled, and therefore cannot be enabled.
3 You have specified an invalid CVDA value on the AUDITLEVEL option.
5 You have specified an invalid CVDA value on the STATUS option.
6 You have specified a value of FULL, PROCESS, or ACTIVITY on the

AUDITLEVEL option, but the AUDITLOG attribute of the
PROCESSTYPE definition does not specify an audit log.

NOTAUTH
RESP2 values:
100 The user associated with the issuing task is not authorized to use this

command.

PROCESSERR
RESP2 values:
1 The process-type named in the PROCESSTYPE option is not defined in

the process-type table (PTT).

SET PROCESSTYPE

Chapter 23. BTS system programming commands 227

SET PROCESSTYPE

228 CICS TS for z/OS: CICS Business Transaction Services

Part 7. Appendixes

© Copyright IBM Corp. 1999, 2010 229

230 CICS TS for z/OS: CICS Business Transaction Services

Appendix. The BTS sample application

The CICS-supplied sample BTS application is a skeleton sales application,
consisting of order, credit check, stock check, delivery note, invoice, and
payment-not-received-reminder activities. The user enters an order, and is checked
for credit-worthiness. If all is well, and the required goods are in stock, a delivery
note and invoice are produced. A timer is set, to check for payment of the invoice. If
the timer expires, a reminder is produced and the timer is reset. A container is used
to keep track of the number of reminders sent. If payment is received, the timer is
canceled and the process completes.

The sample is implemented as a set of COBOL programs. These are supplied, in
source code, in the SDFHSAMP library, together with copybooks and BMS maps
and mapsets. Resource definitions are in RDO group DFH$CBTS.

The sample uses a repository file called DFHBARF. RDO group DFH$BARF
contains a definition of DFHBARF.

Note: The supplied definition of DFHBARF uses LSRPOOL 1. Ensure that
LSRPOOL 1 is defined on your system with a MAXKEYLENGTH of at least
50.

Table 12 shows the transactions and programs that make up the sample
application.

Table 12. Transactions and programs in the BTS sample application

Transaction Program Function

SALM DFH0SAL0
Order entry. This is a regular CICS transaction
running outside the BTS environment.

SAL1 DFH0SAL1
Accepts the order and defines and runs the SALE
process.

SALE DFH0SAL2

The root activity of the SALE process. This is the
main logic-control program. It defines and runs the
following activities:
v Customer credit-check, run synchronously with the

root activity
v Stock check, run synchronously
v Delivery note, run asynchronously
v Invoice, run asynchronously
v Payment-not-received reminder, run

asynchronously (if payment is not received before
the timer expires).

RED1 DFH0RED1 Implements the customer credit-check activity.

STOC DFH0STOC Implements the stock-level check activity.

DEL1 DFH0DEL1 Implements the delivery note activity.

INV1 DFH0INV1 Implements the invoice activity.

REM1 DFH0REM1
Implements the payment-not-received reminder
activity.

PAYM DFH0PAY0
Payment input. This is a regular CICS transaction
running outside the BTS environment.

© Copyright IBM Corp. 1999, 2010 231

Table 12. Transactions and programs in the BTS sample application (continued)

Transaction Program Function

PAY1 DFH0PAY1
Accepts the payment information, then acquires and
runs the appropriate SALE process. This causes the
SALE process to complete.

Table 13 shows the copybooks, maps and mapsets supplied with the sample
application.

Table 13. Copybooks, maps and mapsets supplied with the BTS sample application

Type Module Description

Copybook DFH0CONT Container definitions.

Copybook DFH0SALC Defines BMS map fields for the SALM transaction.

Copybook DFH0PAYC Defines BMS map fields for the PAYM transaction.

Map/Mapset DFH0SALM
Source of the BMS map for the SALM transaction.
The mapset is DFH0SAS. The name of the map is
ORDER.

Map/Mapset DFH0PAYM
Source of the BMS map for the PAYM transaction.
The mapset is DFH0PAS. The name of the map is
PAYMENT.

The source code modules contain explanatory comments.

You can use the sample as the basis of your own sales application. However,
before using it in a production environment you need to add installation-specific
code.

Running the sample application from the WWW
You can run the sample application from a Web browser.

The source code of the DFH0SAL0 program contains detailed instructions on how
to put a Web front end on to the two BTS processes used in the sample.

sample application

232 CICS TS for z/OS: CICS Business Transaction Services

Bibliography

The CICS Transaction Server for z/OS library
The published information for CICS Transaction Server for z/OS is delivered in the
following forms:

The CICS Transaction Server for z/OS Information Center
The CICS Transaction Server for z/OS Information Center is the primary source
of user information for CICS Transaction Server. The Information Center
contains:

v Information for CICS Transaction Server in HTML format.

v Licensed and unlicensed CICS Transaction Server books provided as Adobe
Portable Document Format (PDF) files. You can use these files to print
hardcopy of the books. For more information, see “PDF-only books.”

v Information for related products in HTML format and PDF files.

One copy of the CICS Information Center, on a CD-ROM, is provided
automatically with the product. Further copies can be ordered, at no additional
charge, by specifying the Information Center feature number, 7014.

Licensed documentation is available only to licensees of the product. A version
of the Information Center that contains only unlicensed information is available
through the publications ordering system, order number SK3T-6945.

Entitlement hardcopy books
The following essential publications, in hardcopy form, are provided
automatically with the product. For more information, see “The entitlement set.”

The entitlement set
The entitlement set comprises the following hardcopy books, which are provided
automatically when you order CICS Transaction Server for z/OS, Version 3 Release
1:

Memo to Licensees, GI10-2559
CICS Transaction Server for z/OS Program Directory, GI10-2586
CICS Transaction Server for z/OS Release Guide, GC34-6421
CICS Transaction Server for z/OS Installation Guide, GC34-6426
CICS Transaction Server for z/OS Licensed Program Specification, GC34-6608

You can order further copies of the following books in the entitlement set, using the
order number quoted above:

CICS Transaction Server for z/OS Release Guide
CICS Transaction Server for z/OS Installation Guide
CICS Transaction Server for z/OS Licensed Program Specification

PDF-only books
The following books are available in the CICS Information Center as Adobe
Portable Document Format (PDF) files:

CICS books for CICS Transaction Server for z/OS
General

CICS Transaction Server for z/OS Program Directory, GI10-2586
CICS Transaction Server for z/OS Release Guide, GC34-6421
CICS Transaction Server for z/OS Migration from CICS TS Version 2.3,
GC34-6425

© Copyright IBM Corp. 1999, 2010 233

CICS Transaction Server for z/OS Migration from CICS TS Version 1.3,
GC34-6423
CICS Transaction Server for z/OS Migration from CICS TS Version 2.2,
GC34-6424
CICS Transaction Server for z/OS Installation Guide, GC34-6426

Administration
CICS System Definition Guide, SC34-6428
CICS Customization Guide, SC34-6429
CICS Resource Definition Guide, SC34-6430
CICS Operations and Utilities Guide, SC34-6431
CICS Supplied Transactions, SC34-6432

Programming
CICS Application Programming Guide, SC34-6433
CICS Application Programming Reference, SC34-6434
CICS System Programming Reference, SC34-6435
CICS Front End Programming Interface User's Guide, SC34-6436
CICS C++ OO Class Libraries, SC34-6437
CICS Distributed Transaction Programming Guide, SC34-6438
CICS Business Transaction Services, SC34-6439
Java Applications in CICS, SC34-6440
JCICS Class Reference, SC34-6001

Diagnosis
CICS Problem Determination Guide, SC34-6441
CICS Messages and Codes, GC34-6442
CICS Diagnosis Reference, GC34-6899
CICS Data Areas, GC34-6902
CICS Trace Entries, SC34-6443
CICS Supplementary Data Areas, GC34-6905

Communication
CICS Intercommunication Guide, SC34-6448
CICS External Interfaces Guide, SC34-6449
CICS Internet Guide, SC34-6450

Special topics
CICS Recovery and Restart Guide, SC34-6451
CICS Performance Guide, SC34-6452
CICS IMS Database Control Guide, SC34-6453
CICS RACF Security Guide, SC34-6454
CICS Shared Data Tables Guide, SC34-6455
CICS DB2 Guide, SC34-6457
CICS Debugging Tools Interfaces Reference, GC34-6908

CICSPlex SM books for CICS Transaction Server for z/OS
General

CICSPlex SM Concepts and Planning, SC34-6459
CICSPlex SM User Interface Guide, SC34-6460
CICSPlex SM Web User Interface Guide, SC34-6461

Administration and Management
CICSPlex SM Administration, SC34-6462
CICSPlex SM Operations Views Reference, SC34-6463
CICSPlex SM Monitor Views Reference, SC34-6464
CICSPlex SM Managing Workloads, SC34-6465
CICSPlex SM Managing Resource Usage, SC34-6466
CICSPlex SM Managing Business Applications, SC34-6467

Programming
CICSPlex SM Application Programming Guide, SC34-6468
CICSPlex SM Application Programming Reference, SC34-6469

234 CICS TS for z/OS: CICS Business Transaction Services

Diagnosis
CICSPlex SM Resource Tables Reference, SC34-6470
CICSPlex SM Messages and Codes, GC34-6471
CICSPlex SM Problem Determination, GC34-6472

CICS family books
Communication

CICS Family: Interproduct Communication, SC34-6473
CICS Family: Communicating from CICS on System/390, SC34-6474

Licensed publications
The following licensed publications are not included in the unlicensed version of the
Information Center:

CICS Diagnosis Reference, GC34-6899
CICS Data Areas, GC34-6902
CICS Supplementary Data Areas, GC34-6905
CICS Debugging Tools Interfaces Reference, GC34-6908

Other CICS books
The following publications contain further information about CICS, but are not
provided as part of CICS Transaction Server for z/OS, Version 3 Release 1.

Designing and Programming CICS Applications SR23-9692
CICS Application Migration Aid Guide SC33-0768
CICS Family: API Structure SC33-1007
CICS Family: Client/Server Programming SC33-1435
CICS Transaction Gateway for z/OS Administration SC34-5528
CICS Family: General Information GC33-0155
CICS 4.1 Sample Applications Guide SC33-1173
CICS/ESA 3.3 XRF Guide SC33-0661

Determining if a publication is current
IBM regularly updates its publications with new and changed information. When first
published, both hardcopy and BookManager® softcopy versions of a publication are
usually in step. However, due to the time required to print and distribute hardcopy
books, the BookManager version is more likely to have had last-minute changes
made to it before publication.

Subsequent updates will probably be available in softcopy before they are available
in hardcopy. This means that at any time from the availability of a release, softcopy
versions should be regarded as the most up-to-date.

For CICS Transaction Server books, these softcopy updates appear regularly on the
Transaction Processing and Data Collection Kit CD-ROM, SK2T-0730-xx. Each
reissue of the collection kit is indicated by an updated order number suffix (the -xx
part). For example, collection kit SK2T-0730-06 is more up-to-date than
SK2T-0730-05. The collection kit is also clearly dated on the cover.

Updates to the softcopy are clearly marked by revision codes (usually a #
character) to the left of the changes.

Bibliography 235

236 CICS TS for z/OS: CICS Business Transaction Services

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS system
in one of these ways:

v using a 3270 emulator logged on to CICS

v using a 3270 emulator logged on to TSO

v using a 3270 emulator as an MVS system console

IBM Personal Communications provides 3270 emulation with accessibility features
for people with disabilities. You can use this product to provide the accessibility
features you need in your CICS system.

© Copyright IBM Corp. 1999, 2010 237

238 CICS TS for z/OS: CICS Business Transaction Services

Index

Numerics
3270 bridge support

conversational transactions 95
introduction 10, 93
processing considerations 99
pseudoconversational transactions 97
resource definition 95
running a 3270 transaction 93
sample programs 100

A
abends, of activities 154
acquiring a process 57
acquiring an activity 57, 65
activities

abends 154
acquiring access to 57
activation of 17
asynchronous 17

checking response from 18
auditing of

introduction 157
specifying the logging level 158

browsing with CBAM 119
checking response from

asynchronous 47
synchronous 45

child 15
compared with terminal-related

pseudoconversations 17
compensation 79
completion event 22
data-containers 20
described 15
destruction of 18, 42
identifiers 207
implementation by existing 3270–based

transactions 93
input event 22
lifetime of 18
modes 18
parallel 49
parent 15
processing states 18
root 15
security of 117, 118
synchronous 17

checking response from 18
syncpoint 19
transferring input and output data 42
unserviceable requests 154

activity abends 154
activity completion event 22
activity identifiers

described 207

activity-related commands
INQUIRE PROCESSTYPE 223
overview 201

administration
controlling BTS

operator commands 119
resource definition 111
security 117
sysplex considerations

dealing with affinities 146
using CPSM 145

system definition
defining local request queue data set 106
defining repository data sets 105
naming the distributed routing program 109

affinities, in a sysplex 146
ALL

CEMT INQUIRE TASK 131
API commands

activity-related 201
browse tokens 207
browsing commands 206
container 202
event-related 203
examples 208
inquiry commands 206
overview 201
that take activity identifiers 207

asynchronous activities
checking response from 47
how invoked 17

atomic event
activity completion 22
input 22
system 22
timer 22

attach-time security 118
audit commands

introduction to 157
audit trail

examples 160
introduction to 157
sharing a logstream between CICS regions 160
specifying the logging level 158
utility program, DFHATUP 163

audit trail utility program, DFHATUP 163
AUDITLEVEL attribute

PROCESSTYPE definition 115
AUDITLOG attribute

PROCESSTYPE definition 116

B
browse tokens 207
browsing commands

CBAM 119
INQUIRE PROCESSTYPE 223
INQUIRE TASK 225

© Copyright IBM Corp. 1999, 2010 239

BTS messages 193
BTS sample application 231
BTS-set

dealing with affinities 146
how to create 141
introduction to 137
scope of 137

business transaction
described 3
Sale example application 31
sample BTS application 231

C
CBAM, CICS-supplied transaction 119
CEDA DEFINE PROCESSTYPE command 114
CEMT INQUIRE PROCESSTYPE

ALL 128
AUDITLEVEL 129
AUDITLOG 129
FILE 129
STATUS 130
value 128

CEMT INQUIRE TASK
ACTIVITY 132
ACTIVITYID 132
PROCESS 132
PROCESSTYPE 133

CEMT SET PROCESSTYPE
(value) 135
ACTIVITY 134
ALL 135
DISABLED 135
ENABLED 135
FULL 134
OFF 134
PROCESS 134

CEMT transaction
PROCESSTYPE 128, 134
TASK 131

child activity
described 15

CICS business transaction services
3270 bridge support 93
administration

controlling BTS 119
defining local request queue data set 106
defining repository data sets 105
performance tuning 195
resource definition 111
security 117
sysplex considerations 137
system definition 105

browsing BTS objects 119
client/server processing 10
components

activities 15
data-containers 20
events 21
introduction to 7
processes 15

CICS business transaction services (continued)
external interactions

acquiring activities 57
acquiring an activity 65
acquiring processes 57
client/server processing 58

introduction to 7
monitoring 195
parallel activities 49
problem determination 151
recovery and restart 10
reusing existing code 93
sample application 231
security

attach-time 118
command-level 118
resource-level 117

sysplex support 11
user-related activities 66
Web Interface support 10

CICS-supplied transactions
CBAM 119
CEMT INQUIRE PROCESSTYPE 128
CEMT INQUIRE TASK 131
CEMT SET PROCESSTYPE 134

CICSPlex SM
use with BTS 11, 145

client/server processing
example 59
introduction 10, 58

cold start, of CICS 155
command-level security 118
compensation

example 80
how to implement 79
introduction to 79

components of BTS
activities 15
data-containers 20
events 21
introduction to 7
processes 15

composite event
described 22

conditions
CREATE PROCESSTYPE command 221
DISCARD PROCESSTYPE command 222
INQUIRE PROCESSTYPE command 224
INQUIRE TASK command 225
SET PROCESSTYPE command 227

container commands
overview 202

controlling BTS
operator commands 119

CPSM, use with BTS 145
CREATE PROCESSTYPE command 220

conditions 221

D
DASD-only logstreams, restrictions on sharing 160

240 CICS TS for z/OS: CICS Business Transaction Services

data flow
in basic Sale application 31
in parallel activities example 49
in user-related example 66

data sets
local request queue 106
repository 105

data-container
described 20

data-containers
destruction of 20, 42
lifetime of 20

defined activity userid 117
defined process userid 117
defining BTS resources to CICS

local request queue data set 106
process-types 114
repository data sets 105

deleting an event 25
DESCRIPTION attribute

PROCESSTYPE definition 116
destruction of activities 18, 42
destruction of data-containers 20, 42
DFH$MOLS, sample monitoring data print

program 195
DFH0CBAC, sample client activity program for 3270

bridge 100
DFH0CBAE, sample bridge exit program 100
DFHATUP, audit trail utility program 163
DFHBARUP, repository utility program 181
DFHDSRP, distributed routing program 109

how to write 144
relation to dynamic routing program 143

DFHINITIAL system event 211
DISCARD PROCESSTYPE command 222

conditions 222
distributed routing

introduction to 138
of BTS activities 143, 144

creating a BTS-set 141
which activities can be dynamically routed? 138

routing program, DFHDSRP 143, 144
distributed routing program, DFHDSRP 109

how to write 144
relation to dynamic routing program 143

DSRTPGM, system initialization parameter 109
dump formatting keywords, for BTS 194
dynamic routing

of BTS activities
creating a BTS-set 141
naming the distributed routing program 109
using a distributed routing program 143
using CPSM 145
which activities can be dynamically routed? 138

E
emergency restart, of CICS 155
errors

checking response from asynchronous activities 47
checking response from synchronous activities 45

event
atomic

activity completion 22
input 22
system 22
timer 22

composite 22
deleting 25
described 21
reattaching an activity on firing of 25

event-related commands
overview 203

examples
API commands 208
attach-time security 118
audit trails 160
basic Sale application

data flow 31
initial request 33
overview 31
root activity 36
transferring data to activities 42

browsing 208
client/server processing

client program 59
server program 62

compensation 80
error handling 47
output from DFHATUP 167, 169
output from DFHBARUP 184
parallel activities

data flow 49
root activity 50

RACF commands 117, 118
surrogate security checking 117
user-related activities

data flow 66
implementation of activity 72
root activity 67

exceptional conditions
checking response from asynchronous activities 47
checking response from synchronous activities 45

existing code, reuse in BTS applications
3270 bridge support

conversational transactions 95
introduction 10, 93
processing considerations 99
pseudoconversational transactions 97
resource definition 95
running a 3270 transaction 93
sample programs 100

F
failure, of CICS 155
FILE attribute

PROCESSTYPE definition 116

Index 241

I
initial request

in basic Sale application 33
initial start, of CICS 155
input and output data, transfer of 42
input event 22
INQUIRE PROCESSTYPE command 223

conditions 224
INQUIRE TASK command 225

conditions 225
interacting with non-BTS code

acquiring activities 57
acquiring an activity 65
acquiring processes 57
client/server processing 58

introduction to BTS 7

L
lifetime of activities 18
lifetime of data-containers 20
local request queue

data set, definition of 106

M
messages, BTS-related 193
modes, of an activity

described 18
monitoring

performance class data 195
using DFH$MOLS 195

monitoring data print program, DFH$MOLS 195

N
notation, syntax xi

O
operator commands

CBAM 119
CEMT INQUIRE PROCESSTYPE 128
CEMT INQUIRE TASK 131
CEMT SET PROCESSTYPE 134

P
parallel activities

data flow 49
example 50
introduction 49

parent activity
described 15
transferring data to child activities 42

performance class monitoring data 195
performance tuning

introduction 195
problem determination

activity abends 154

problem determination (continued)
BTS trace points 193
BTS-related messages 193
CICS failures

cold starts 155
emergency starts 155
initial starts 155

dump formatting keywords 194
examining repository records

utility program, DFHBARUP 181
introduction to 151
stuck processes

due to application errors 151
due to unserviceable requests 154

trace levels 193
unserviceable requests 154
using an audit trail

examples 160
introduction 157
sharing a logstream between CICS regions 160
specifying the logging level 158
utility program, DFHATUP 163

process
acquiring access to 57
auditing of

introduction 157
specifying the logging level 158

browsing with CBAM 119
categorizing 15
data-containers 20
described 15
identifier 207
security of 117, 118
stuck 151
unserviceable requests 154

process identifiers 207
process-type

browsing with CBAM 119
CBAM requests 119
CEMT INQUIRE requests 128
CEMT SET requests 134

PROCESSTYPE attribute
PROCESSTYPE definition 116

PROCESSTYPE command
CEMT INQUIRE transaction 128
CEMT SET transaction 134

PROCESSTYPE definition
AUDITLEVEL attribute 115
AUDITLOG attribute 116
DESCRIPTION attribute 116
FILE attribute 116
PROCESSTYPE attribute 116
STATUS attribute 116

pseudoconversational
terminal-related pseudoconversation

comparison with multiple activations of an
activity 17

242 CICS TS for z/OS: CICS Business Transaction Services

R
RACF

example commands 117, 118
RDO commands

PROCESSTYPE 114
reattaching an activity on firing of an event 25
recovery and restart

introduction to 10
repository

data sets, definition of 105
examining records on 181
utility program, DFHBARUP 181

repository utility program, DFHBARUP 181
resource definition

defining BTS resources to CICS 111
RDO commands

CEDA DEFINE PROCESSTYPE 114
resource-control commands

CREATE PROCESSTYPE 220
DISCARD PROCESSTYPE 222
SET PROCESSTYPE 226

resource-level security 117
reusing existing code

3270 bridge support
conversational transactions 95
introduction 10, 93
processing considerations 99
pseudoconversational transactions 97
resource definition 95
running a 3270 transaction 93
sample programs 100

root activity
described 15
in basic Sale application 36
in compensation example 82
in parallel activities example 50
in user-related example 67

routing of BTS activities
naming the distributed routing program 109
unserviceable requests 154

S
Sale example application

compensation 80
data flow 31
error handling 47
initial request 33
overview 31
parallel activities 49
root activity 36
transferring data to activities 42
user-related activities 66

sample BTS application 231
sample programs

BTS application 231
for 3270 bridge support

DFH0CBAC, client activity 100
DFH0CBAE, bridge exit 100

security
of activities

attach-time 118
defined activity userid 117
resource-level 117

of BTS commands 118
of processes

attach-time 118
defined process userid 117
resource-level 117

SET PROCESSTYPE command 226
conditions 227

sharing an audit logstream between CICS regions 160
SPCTR, system initialization parameter 193
special trace, setting the level of 193
standard trace, setting the level of 193
STATUS attribute

PROCESSTYPE definition 116
stuck processes 151
surrogate security checking 117
synchronous activities

checking response from 45
how invoked 17

syncpoint
user, issued by an activity 19

syntax notation xi
sysplex considerations

BTS’s sysplex support 11, 137
dealing with affinities 146
introduction 11
using CPSM 145

system definition 105
system events

described 22
DFHINITIAL 211

system initialization parameters
DSRTPGM 109
SPCTR 193
SPCTRBA 193
STNTR 193
STNTRBA 193

system programming commands
control commands 217
CREATE PROCESSTYPE 220
DISCARD PROCESSTYPE 222
INQUIRE PROCESSTYPE 223
INQUIRE TASK 225
inquiry command 217
overview 217
SET PROCESSTYPE 226

T
task

CEMT INQUIRE requests 131
TASK command

CEMT INQUIRE transaction 131
TCLASS

CEMT INQUIRE TASK 131

Index 243

terminal-related pseudoconversation
comparison with an activity that is activated multiple

times 17
timer

described 20
timer event

described 22
trace

BTS trace points 193
special, setting the level of 193
standard, setting the level of 193

transaction affinities, in a sysplex 146
transferring data to child activities 42

U
unserviceable requests 154
user-related activities

example 66
utility programs

audit trail utility, DFHATUP 153, 163
repository utility, DFHBARUP 153, 181

V
value

CEMT INQUIRE TASK 131

W
Web Interface

introduction 10

244 CICS TS for z/OS: CICS Business Transaction Services

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user's responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM United Kingdom Laboratories,
MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN. Such
information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

© Copyright IBM Corp. 1999, 2010 245

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Programming License Agreement, or any equivalent agreement
between us.

Programming interface information
This book is intended to help you use CICS business transaction services. This
book documents General-use Programming Interface and Associated Guidance
Information provided by CICS.

General-use programming interfaces allow you to write programs that obtain the
services of CICS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide. A
current list of IBM trademarks is available on the Web at Copyright and trademark
information at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Other product and service names might be trademarks of IBM or other companies.

246 CICS TS for z/OS: CICS Business Transaction Services

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the
information is presented.

To ask questions, make comments about the functions of IBM products or systems,
or to request additional publications, contact your IBM representative or your IBM
authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring any
obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

IBM United Kingdom Limited
User Technologies Department (MP095)
Hursley Park
Winchester
Hampshire
SO21 2JN
United Kingdom

v By fax:

– From outside the U.K., after your international access code use
44–1962–816151

– From within the U.K., use 01962–816151

v Electronically, use the appropriate network ID:

– IBMLink: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

v The publication title and order number

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1999, 2010 247

248 CICS TS for z/OS: CICS Business Transaction Services

����

Product Number: 5655-M15

SC34-6439-03

Sp
in
e
in
fo
rm
at
io
n:

�
�

�
C

IC
S

T
S

fo
r

z/
O

S
C

IC
S

Bu
si

ne
ss

Tr
an

sa
ct

io
n

Se
rv

ic
es

Ve
rs

io
n

3
R

el
ea

se
1

	Contents
	Dedication
	Preface
	What this book is about
	Who this book is for
	What you need to know to understand this book
	Road map
	Syntax notation used in this book
	A note on terminology

	Summary of changes
	Changes for CICS Transaction Server for z/OS, Version 3 Release 1
	Changes for CICS Transaction Server for z/OS, Version 2 Release 3
	Changes for CICS Transaction Server for z/OS, Version 2 Release 2

	Part 1. Overview of BTS
	Chapter 1. Why do I need CICS business transaction services?
	Business transactions and CICS transactions
	Business transactions
	CICS transactions
	The problems
	Application design
	Recovery and restart

	The solution

	Chapter 2. What are CICS business transaction services?
	What is a BTS application?
	Control flow

	Recovery and restart in BTS
	Client/server support in BTS
	Web Interface support in BTS
	Support for existing code in BTS
	Sysplex support in BTS
	Dynamic routing of BTS activities
	Audit trails

	Monitoring in BTS
	The BTS sample application
	Requirements for BTS

	Part 2. BTS Application Programming Guide
	Chapter 3. Using the BTS API to write business applications
	BTS activities and processes
	Names and identifiers
	Activation sequences
	Synchronous and asynchronous activations
	Checking the response from a child activity

	Lifetime of activities
	Processing modes
	User syncpoints

	BTS data-containers
	Lifetime of data-containers

	BTS timers
	Timer management tips

	BTS events
	Atomic events
	Input events
	Activity completion events
	Timer events
	System events

	Composite events
	The sub-event queue

	Event pools
	Deleting events
	Reattachment events and activity activation
	Handling reattachment events
	Activity completion

	Chapter 4. The Sale example application
	Overview of the Sale application
	Data flows
	CICS transactions and programs

	The initial request
	Creating the business transaction
	Starting the business transaction

	The root activity
	Transferring input and output data

	Chapter 5. Dealing with BTS errors and response codes
	Checking the response from a synchronous activity
	Checking the response from an asynchronous activity
	Getting details of activity ABENDs
	Retrying failed activities

	Chapter 6. Running parallel BTS activities
	An example of parallel activities
	Data flow
	The root activity

	Chapter 7. Interacting with BTS processes and activities
	Introduction
	Acquiring processes and activities
	Some rules

	Using client/server processing
	A client/server example
	The client program
	The server program

	Acquiring an activity
	A user-related example
	Data flow
	The root activity
	Implementation of a user-related activity

	Transferring data to asynchronous activations

	Chapter 8. Compensation in BTS
	Implementing compensation
	A compensation example
	Process flow
	The root activity

	Dealing with application locking

	Chapter 9. Reusing existing 3270 applications in BTS
	Running a 3270 transaction from BTS
	Resource definition
	Running more complex transactions
	Intermediate output messages
	Conversational transactions
	Pseudoconversational transactions
	Transaction routing of pseudoconversations

	Things to consider
	Using timers
	Abend processing
	Transaction restart

	Sample programs

	Part 3. Administering CICS business transaction services
	Chapter 10. System definition for BTS
	Defining BTS data sets
	Repository data sets
	Local request queue data set
	Sizing and maintaining the LRQ data set

	Naming the routing program

	Chapter 11. Resource definition for BTS
	Defining the LRQ file to the CSD
	Defining repository files to the CSD
	CEDA DEFINE PROCESSTYPE

	Chapter 12. Security in BTS
	Resource security in BTS
	Process and activity userids
	Attach-time security for processes and activities
	Command security in BTS

	Chapter 13. BTS operator commands
	CBAM—BTS browser
	Running the transaction
	Process-types screen
	Processes screen
	Activities screen
	Activity details screen
	Containers screen
	Events screen
	Timers screen

	CEMT INQUIRE PROCESSTYPE
	CEMT INQUIRE TASK
	CEMT SET PROCESSTYPE

	Chapter 14. Using BTS in a sysplex
	The scope of a BTS-set
	A note about audit logs

	Dynamic routing of BTS activities
	Which BTS activities can be dynamically routed?
	Understanding distributed routing
	The hub model
	The distributed model

	Controlling BTS dynamic routing

	Creating a BTS-set
	Naming the routing program

	Using a CICS distributed routing program
	How the distributed routing program relates to the dynamic routing program
	Writing a distributed routing program
	When your routing program is invoked
	Restrictions on the routing program

	Using CICSPlex SM with BTS
	Overview of CICSPlex SM Workload Management
	WLM functions

	Using CICSPlex SM to route BTS activities

	Part 4. BTS problems and performance
	Chapter 15. Having problems?
	Dealing with stuck processes
	Application design errors
	Restarting stuck processes
	Using activity timers
	Using process timers
	Using status containers
	Using a utility program

	Dealing with activity abends
	Dealing with unserviceable requests
	Unserviceable routing requests
	Static routing
	Dynamic routing

	How CICS handles unserviceable requests
	Resolving unserviceable requests

	Dealing with CICS failures
	Emergency starts
	Initial and cold starts

	Chapter 16. Creating a BTS audit trail
	Introduction to BTS audit trails
	Specifying the level of audit logging
	Audit trail constraints—using DASD-only logstreams
	Audit trail examples
	Process-level auditing
	Activity-level auditing
	Full auditing

	Using the audit trail utility program, DFHATUP
	Using DFHATUP to read audit logs
	Sample job stream to run the DFHATUP program
	EXEC parameters
	SYSIN control statements

	Example output from the DFHATUP utility
	Example audit trail—process-level auditing
	Example audit trail—activity-level auditing
	Example audit trail—full auditing

	Chapter 17. Examining BTS repository records
	Introduction to the repository utility program, DFHBARUP
	The repository utility program, DFHBARUP

	Using DFHBARUP
	Sample job stream to run the DFHBARUP program
	EXEC parameters
	SYSIN control statements

	Example output from the DFHBARUP utility

	Chapter 18. BTS messages, trace, and dump
	BTS messages
	Using BTS trace
	Setting trace levels for BTS
	Defining tracing levels at system initialization
	Defining tracing levels when CICS is running

	The BTS trace points

	Extracting BTS information from a CICS system dump

	Chapter 19. Tuning BTS performance
	BTS monitoring data
	Performance class data
	Using the monitoring data print program, DFH$MOLS
	DFH$MOLS control statements that include BTS options

	Part 5. BTS Application Programming Reference
	Chapter 20. Overview of BTS API commands
	Process- and activity-related commands
	Creating, activating, and terminating processes and activities
	Retrieving information about activities
	Relating UOWs and activities

	Container commands
	Event-related commands
	Terminology
	Event states
	Atomic events
	Composite events
	Reattachment events
	Timers
	Event pools

	The event-related commands

	Browsing and inquiry commands
	Browsing commands
	Inquiry commands
	Tokens and identifiers
	Commands which take identifiers returned by browse operations
	Browsing examples
	Example 1
	Example 2
	Example 3

	System events

	Chapter 21. BTS application programming commands
	Part 6. BTS System Programming Reference
	Chapter 22. Overview of BTS system programming commands
	Control commands
	Inquiry command

	Chapter 23. BTS system programming commands
	CREATE PROCESSTYPE
	DISCARD PROCESSTYPE
	INQUIRE PROCESSTYPE
	INQUIRE TASK
	SET PROCESSTYPE

	Part 7. Appendixes
	Appendix. The BTS sample application
	Running the sample application from the WWW

	Bibliography
	The CICS Transaction Server for z/OS library
	The entitlement set
	PDF-only books
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	CICS family books
	Licensed publications

	Other CICS books
	Determining if a publication is current

	Accessibility
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Notices
	Programming interface information
	Trademarks

	Sending your comments to IBM

