
CICS Transaction Gateway
Version 9 Release 0

z/OS Administration

SC34-2832-02

���

CICS Transaction Gateway
Version 9 Release 0

z/OS Administration

SC34-2832-02

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 387.

This edition applies to Version 9.0 of the CICS Transaction Gateway for z/OS program number 5655-Y20 and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2000, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information vii

What's new in CICS Transaction
Gateway V9.0 ix

Chapter 1. Overview 1
Application programming interfaces (APIs) 1
Deployment topologies 2

Remote mode 3
Local mode 3
Connectivity to CICS 4

High availability 4
Security 6
Statistics and monitoring 6
Tooling and product integration 7

Chapter 2. Planning. 9
Hardware requirements. 9
Supported software 9

CICS Transaction Gateway core components . . . 9
CICS servers 10
JEE application servers 10
Java application runtime environments 11
Redistributable component runtime environments 11
Development environments 13
CICS Explorer 13
Applications compiled for earlier versions . . . 14

Which protocol can be used? 14
Which API can be used? 14
Sysplex restrictions 15
Using multiple releases of CICS TG 15
Compatibility. 15

Application compatibility 16
Resource adapter compatibility 18

National Language Support 18
Tools 18

Chapter 3. Installing 21
File path terminology 21
Actions after installation 21

Changing the code page 22
Redistributable components 22

Chapter 4. Upgrading 25
Upgrading from Version 8 Release 1 25
Upgrading from Version 8 Release 0 26

CICS Transaction Gateway .NET applications . . 28
Logical CICS server definitions 29

Upgrading from Version 7 Release 2 30
Upgrading from Version 7 Release 1 32

Upgrading XA configurations 35
Upgrading from Version 7 Release 0 37
Upgrading from Version 6 and earlier 39

Chapter 5. Security 41
Security considerations 41
CICS connection security 42

EXCI connection security 42
IPIC connection security 43

Connection security and SSL 44
Why use SSL? 44
What is SSL? 45
User authentication using SSL client certificates 49

Identity propagation 51
Benefits of using identity propagation 51
Configurations that support identity propagation 51

Chapter 6. Performance 55
Performance indicators and factors 55
Benefits of using a 64-bit Gateway. 56
Tuning the Gateway 57

Threading model 60
Tuning the gateway to avoid out of memory
conditions 61
Tuning the JVM 64
Tuning JEE 65
Configuring z/OS parameters 65
EXCI considerations 65
IPIC considerations 67
Client applications 68
Performance monitoring tools 69
Statistics and performance assessment 69

Investigating poor response times 70
Tracing 72

Chapter 7. High availability 73
TCP/IP load balancing 73

Port sharing 74
Sysplex Distributor 74
Health monitoring 74
Highly available Gateway group 76

Dynamic server selection 77
Default CICS server 77
Policy-based dynamic server selection 77
CICS request exit 78

Chapter 8. Configuring 81
Configuring the system environment 81

Increasing the MAXCPUTIME value 81
Configuring a local mode topology 81
Configuring a remote mode topology. 82

Configuring Gateway daemon settings 83
Setting Gateway daemon JVM options 97
Configuring Java shared classes 97

Setting environment variables 98
STDENV file 98
The ctgenvvar script 99
Environment variables: local and remote mode 100
Environment variables: remote mode 102

© Copyright IBM Corp. 2000, 2013 iii

||

|
||

Configuring identification using APPLID 105
Gateway identity considerations 105
Gateway APPLID 107
Gateway APPLID qualifier 107
Client APPLID and APPLID qualifier 108
IPIC server connections 109
EXCI server connections 110
SMF 110
z/OS console 110

Configuring CICS server connections 110
Configuring IPIC 110
Configuring EXCI 119

Configuring XA support. 126
Configuring for XA transaction support . . . 126
Enabling CTGRRMS services 127
Starting, stopping or refreshing the CTGRRMS
services 128
XA transaction support activate (xasupport) . . 131
Gateway start type 131

Configuring SSL 132
Creating and maintaining digital certificates . . 132
Using keytool for certificate management . . . 133
SSL key ring configuration 138
Using RACF key rings 139
Creating and maintaining hardware key ring
files 140
SSL configuration for IPIC connections 142
SP800-131A compliance 143

Configuring for client certificate mapping 143
Configuring identity propagation. 145

Configuring identity propagation on RACF . . 145
Configuring identity propagation on CICS. . . 146
Configuring identity propagation on WebSphere
Application Server 146
Configuring identity propagation for CICS
Transaction Gateway 148

Configuring high availability 148
Default server 148
Configuring a dynamic server selection policy 148
Configuring a CICS request exit 151

Configuring monitoring and statistics 151
Configuring request monitoring exits for the
Gateway daemon 151
Configuring request monitoring for the Gateway
classes. 152
Configuring statistics settings 152

Configuring bidirectional data support 156
Configuring trace settings 156
Configuration parameter reference 156

The configuration file. 157
PRODUCT section of the configuration file . . 158
GATEWAY section of the configuration file . . 158
IPICSERVER section of the configuration file 161
LOGICALSERVER section of the configuration
file 162
DSSPOLICY section of the configuration file . . 162
DSSGROUP section of the configuration file . . 163
Summary of environment variables 163

Testing your configuration 164
Using the sample batch jobs to check your
configuration 164

JCA resource adapter installation verification
test (IVT) 165
Using the sample programs to check your
configuration 167

Chapter 9. Deploying applications . . 169
Configuring remote Client application
environments 169
Deploying the CICS resource adapter 169

Transaction management models 170
ECI resource adapter deployment parameters 170
Deploying the ECI resource adapter on
WebSphere Application Server for z/OS . . . 173

Deploying remote Java client applications 174
Deploying ECI V2 and ESI V2 to remote systems 174
Deploying .NET applications to remote systems 175

Chapter 10. Scenarios. 177
Sample files 177
Configuring a secure autoinstalled IPIC connection
(SC01) 177

Prerequisites. 178
Configuring the IPIC server on CICS TG . . . 179
Configuring the IPCONN autoinstall user
program DFHISCIP on CICS TS 180
Configuring the TCPIPSERVICE on CICS TS 180
Configuring the IPCONN template on CICS TS 181
Testing your scenario 182
Optional: using the APPLID to identify your
CICS TG 183

Configuring a secure predefined IPIC connection
(SC02) 184

Prerequisites. 185
Configuring the IPIC server on CICS TG . . . 186
Configuring the TCPIPService on CICS TS. . . 187
Configuring the IPCONN on CICS TS 187
Testing your scenario 189
Optional: specifying CICSAPPLID and
CICSAPPLIDQUALIFIER in the IPICSERVER
definition. 190

Configuring a highly available Gateway group
with two-phase commit and IPIC (SC03) 190

Prerequisites. 192
Configuring CICS TG for high availability. . . 193
Configuring TCP/IP for port sharing 195
Configuring the TCPIPService on CICS TS. . . 195
Configuring WebSphere Application Server . . 196
Testing the scenario 205

Configuring identity propagation for a remote
mode topology (SC04) 207

Prerequisites. 208
Configuring identity propagation on CICS TS 209
Configuring identity propagation on CICS TG 211
Configuring identity propagation on WebSphere
Application Server. 211
Checking that the connection is secure 215
Configuring identity propagation on RACF . . 216
Testing your scenario 216

Configuring SSL security between a Java Client
and the Gateway daemon (SC05) 218

iv CICS Transaction Gateway for z/OS V9.0: z/OS Administration

||

||

Prerequisites for the SSL scenario. 219
Configure SSL server authentication - step 1 . . 220
Configure SSL server authentication - step 2 . . 221
Configure SSL client authentication (optional) 222
Configuring the Gateway daemon for SSL. . . 224
Verifying that SSL is enabled on the connection 224
Testing the SSL scenario 225

Configuring SSL between CICS TG and CICS
(SC07) 226

Prerequisites for the SSL scenario. 227
Configuring SSL server authentication on the
CICS server 227
Configuring SSL server authentication on the
client 229
Configuring SSL client authentication 230
Configuring the IPIC connection on CICS . . . 232
Verifying the connection 233
Configuring WebSphere Application Server . . 234
Testing the SSL scenario 236

Configuring an autoinstalled IPIC connection
(SC08) 237

Prerequisites. 238
Configuring the IPIC server on CICS TG . . . 239
Configuring the TCPIPSERVICE on CICS TS 239
Testing your scenario 240
Optional: using the APPLID to identify your
CICS TG 241

Chapter 11. Operating 243
Startup and shutdown 243

Starting CICS Transaction Gateway 244
Stopping the CICS Transaction Gateway . . . 256

Gateway daemon administration 258
Shutting down 258
Shutting down immediately 258
Controlling trace 259
Controlling health monitoring 260
Administration options 260

Administering XA transactions with Resource
Recovery Services 264
Administering transactions that use IPIC
connections 265
Understanding system time 265
Restarting Resource Recovery Services (RRS) . . . 266

Chapter 12. Resolving problems . . . 267
Preliminary checks 267
What to do next 268
Problem determination tools 269

JVM dump and system dump 269

TCP/IP diagnostic commands 269
Dealing with problems 270

Startup and shutdown problems 270
CICS connection problems 274
Security problems 278
Memory problems 286
Resource problems 288
Java problems 289
Application development problems 291
WebSphere Application Server problems . . . 292
Version problems 293

General information about messages 294
Tracing 295

Gateway daemon tracing 295
Tracing Java client applications 296
JNI tracing 296
JEE tracing 297
EXCI trace 298
Collecting SVC dumps of the Gateway daemon
address space 298

Problem solving and support 299
Searching knowledge bases 299
Contacting IBM Software Support 299

Chapter 13. Monitoring and statistics 303
Transaction tracking 303

Transaction tracking across a CICSPlex 303
Transaction tracking with Cross Component
Trace (XCT) 304

Request monitoring exits 307
Request monitoring exits configuration 309

Statistics 309
Statistics configuration 311
Displaying statistics 315
Statistics resource groups 316
Using the statistics 331
Recording statistics to SMF 338

CICS TG plug-in for CICS Explorer 354

Related literature 355

Accessibility 357

Glossary 359

Index 381

Notices 387
Trademarks 388

Contents v

|
|

vi CICS Transaction Gateway for z/OS V9.0: z/OS Administration

About this information

This information describes the planning, installation, configuration, and operation
of the IBM® CICS® Transaction Gateway product.

You should be familiar with the operating system on which CICS Transaction
Gateway runs and also with Internet terminology.

© Copyright IBM Corp. 2000, 2013 vii

viii CICS Transaction Gateway for z/OS V9.0: z/OS Administration

What's new in CICS Transaction Gateway V9.0

CICS Transaction Gateway includes enhancements in the areas of high availability,
monitoring, open integration, security, and user information.

Functional enhancements
v As an aid to migrating from EXCI to IPIC, an ECI timeout value can be set on

IPIC server definitions in the CICS Transaction Gateway configuration file. This
enables applications, that do not specify a timeout value, to be timed out when
connected to CICS over IPIC.

v All ECI V2 and ESI V2 functions can now be used by 64-bit applications as well
as by 32-bit applications. For more information, see CICS TG ECI and ESI Version
2 for C Overview in the online Information Center.

v ECI V2 applications now allow multiple threads to share a single Gateway
connection when using synchronous calls.

v ECI V2 has been enhanced with the addition of asynchronous call support, for
more information, see Programming Guide.

v Local mode JEE and Java™ applications can now set the maximum number of
send sessions that are used with IPIC connections to CICS. The number of send
sessions controls the number of simultaneous requests that are allowed over the
connection.

High availability and scalability
v CICS Transaction Gateway can now operate as a 31-bit or 64-bit address space.

With a 64-bit address space, the Gateway daemon can process workloads with
larger channels and can use more connection manager and worker threads
without exhausting address space resources. .

v When using the CICS request exit, the restrictions on the routing of XA
transactions have been removed. Similar to SYNCONRETURN and extended
LUW transactions, XA transactions can now be routed based on Transid,
Program, and PayloadType values, for example.

v Client application IP addresses are now available for use in CICS request exits.
The IP address information can be used in your CICS request exit routing
decisions, for example.

Monitoring
v You can use Cross Component Trace (XCT) to track individual requests as they

flow from WebSphere® Application Server to CICS and back, making it easier to
identify the responsible component when failures occur. XCT can be enabled for
applications using the ECI resource adapter in WebSphere Application Server
V8.5 or later.

v Request monitoring exits in the Gateway daemon have been extended to include
an exit that reports the actual target CICS server for a request. A new exit point,
RequestDetails, is called after any DSS routing decisions have been made but
before the request is sent to CICS. For more information, see the Programming
Guide.

v Channel and container information is now available to Java request monitoring
exits for ECI requests that have an associated channel. For more information, see
the Programming Guide.

© Copyright IBM Corp. 2000, 2013 ix

v The CTGSMFRD sample has been updated so that it can read and format
combinations of SMF records that have been generated by any release of CICS
Transaction Gateway from V7.1 or later. For more information, see the
Programming Guide.

v Assembler DSECTs for the CICS TG SMF111 records have been provided, in
library SCTGMAC, to simplify the use of SMF monitoring records by assembler
programs.

v The Gateway daemon start time is now output in SMF records, you can use this
to help identify a specific Gateway daemon instance from the SMF data.

Security
v The Gateway daemon now provides IPIC connections to CICS using SSL.
v Exclusion of weaker ciphers can now be enforced on SSL connections using the

JSSE SP800-131A transition support. For more information, see SP800-131A
Compliance.

v Password phrases can now be used for user ID authentication when using EXCI
connections to CICS.

v CICS TG jars are now signed for compatibility with the January 2014 CPU
(Oracle 7u51, IBM 7 SR6-FP1). For more information, see Signing Applets and
Web Start Applications.

Globalization
v CICS Transaction Gateway has been updated to support right-to-left

bidirectional (bidi) data in containers.

For other changes from previous releases see the Upgrading section.

x CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Chapter 1. Overview

CICS Transaction Gateway is a high-performing, secure, and scalable connector.
The product uses standards-based interfaces that enable client applications
deployed in various runtime environments to access CICS servers.

CICS Transaction Gateway also provides flexible deployment options for different
architectures, for example:

On all operating platforms, CICS Transaction Gateway provides a gateway to CICS
for remote clients and also complements IBM WebSphere Application Server on a
range of different platforms. In addition, CICS Transaction Gateway for z/OS® is
designed to exploit the qualities of service of the z/OS platform, including high
availability and workload management.

CICS Transaction Gateway offers these features and benefits:
v A simple programming model with minimal change to CICS programs
v Access to COMMAREA, channel and 3270 applications
v A rich set of client APIs for different runtime environments
v Support for standard network protocols
v Support for different operating platforms
v Managed qualities of service and high availability
v Access to statistics and request monitoring information
v Support for two-phase commit transactions from a JEE application server

For an explanation of the terms used in this information center, see Glossary..

Application programming interfaces (APIs)
The application programming interfaces provide access to CICS COMMAREA
programs, CICS channels and containers programs, and 3270 programs.

Figure 1. Access to CICS using CICS Transaction Gateway

© Copyright IBM Corp. 2000, 2013 1

APIs are included for the Java and C programming languages. JCA resource
adapters, and a .NET API for use in remote mode topologies are also included.
Using these APIs, client applications can make multiple concurrent program calls
to one or more CICS servers. Applications developed in C++ and COBOL
languages can call the C API.

External Call Interface (ECI)

The ECI enables client applications to send requests to CICS COMMAREA and
channel programs.

The ECI is available in all supported runtime environments. ECI is the most
commonly used mechanism for providing client access to CICS. An ECI request
results in a CICS distributed program link (DPL) call to the target program and
must follow the CICS rules of the DPL subset.

JEE applications using the ECI resource adapter can access CICS resources as part
of a two-phase commit transaction.

External Security Interface (ESI)

The ESI enables client applications to call CICS password expiry management
(PEM) functions. Client applications can access information about user IDs that are
held in the CICS External Security Manager (ESM) through this interface.

Statistics API

The statistics API enables applications to obtain dynamic, real-time statistical
information about the runtime performance of CICS Transaction Gateway.
Applications can be written in C or Java.

Sample applications written in the supported programming languages are
provided for all programming interfaces. For more information about working
with the APIs, see the CICS Transaction Gateway: Application Programming Guide.

Deployment topologies
CICS Transaction Gateway can be deployed in a local mode (two-tier) topology or
a remote mode (three-tier) topology. Each topology provides different qualities of
service.
Related concepts:
“Configuring CICS server connections” on page 110
The connections that CICS Transaction Gateway uses when forwarding client
requests to CICS must be configured for the supported protocol.
Related information:
“Configuring EXCI” on page 119
The configuration of EXCI server connections is the same for both local and remote
modes. A server definition is not required in the configuration file (ctg.ini) for
remote mode. EXCI configuration is achieved through setting of environment
variables.
“Which protocol can be used?” on page 14
This table shows what support is available for connecting to different version CICS
servers over IPIC and EXCI.

2 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Remote mode
The client application and CICS Transaction Gateway can be on different machines
and the Gateway daemon listens on a specific port for incoming client requests.
The Gateway daemon runs as a standalone process, handles the management of
connections and threads, and forwards client requests to CICS.

In a remote mode configuration, the CICS Transaction Gateway runs a process
known as a Gateway daemon which receives requests from client applications and
forwards those requests to CICS servers. Client applications send requests to a
Gateway daemon using either TCP/IP or SSL.

Features of remote mode

Remote mode is best suited to large-scale systems and has the following features:
v A common point of access to CICS for different applications and operating

systems
v A common point of configuration and administration for connections to CICS
v High availability with workload balancing across multiple CICS servers
v A lightweight client footprint
v Access to statistical information
v Supports the use of applets to connect to a Gateway daemon

Local mode
In local mode, the client application is installed and runs on the CICS Transaction
Gateway host machine and sends requests directly to CICS without using the
Gateway daemon.

Figure 2. An example of CICS Transaction Gateway for z/OS in remote mode

Chapter 1. Overview 3

Features of local mode

Local mode is best suited to smaller scale systems and has the following features
v Fewer components to manage than in remote mode
v Network topology is simplified

Connectivity to CICS
There is a choice of network protocols for connecting to CICS.

Note: In these descriptions, the terms “local mode” and “remote mode” refer to
whether the connection between Client application and Gateway uses a network
connection. See the related topics for more information on running in local mode
or remote mode.

All protocols support ECI COMMAREA requests.

IPIC This protocol can be used for ECI requests to CICS COMMAREA or
channel-based programs. IPIC supports two-phase commit transactions.
SSL can be configured on IPIC connections in a local mode (two-tier)
configuration. IPIC also supports the offload of work to a zSeries
Application Assist Processor (zAAP).

EXCI This protocol can be used for ECI requests to CICS COMMAREA
programs. EXCI also supports two-phase commit transactions.

High availability
High availability ensures that a single point of failure does not cause failure of the
total solution. High availability also allows increased capacity to be provided by
the addition of more components.

A high availability scenario can be implemented in remote mode using one or
more of these ways:
v TCP/IP load balancing where Gateway daemons use TCP/IP port sharing or the

IBM Sysplex Distributor
v Health reporting

Figure 3. An example of CICS Transaction Gateway for z/OS in local mode

4 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

v Dynamic server selection

CICS Transaction Gateway can exploit the high availability, load balancing, and
workload management characteristics of CICS Transaction Server for z/OS. CICS
Transaction Gateway also provides integration with the Internet Protocol (IP)
workload management functions of z/OS, including IBM z/OS Workload Manager
(WLM) and IBM Sysplex Distributor.

TCP/IP load balancing

TCP/IP load balancing can be achieved using TCP/IP port sharing or the Sysplex
Distributor. If TCP/IP load balancing is used, connections are shared between
several Gateway daemons listening on a single TCP/IP port and creating a highly
available Gateway group. This provides a single end point for client requests,
regardless of the type of transaction being handled.

Health reporting is an additional mechanism that can be used to influence the
TCP/IP load balancing algorithm so that unavailable CICS servers are not used.

Dynamic server selection

Dynamic server selection enables the Gateway daemon to dynamically select the
CICS server at run time for requests from client applications. This provides the
ability to avoid a single point of failure. Client applications can be written without
prior knowledge of the CICS server names at run time. Two-phase commit XA
transactions are eligible for dynamic server selection.

Figure 4. High availability

Chapter 1. Overview 5

Security
CICS Transaction Gateway provides a secure way of connecting to CICS using
standard security mechanisms. These mechanisms integrate with security provided
by the JEE application server and with security provided by CICS.

Network security

Network security is the ability to provide authentication and encryption over a
network connection using these security technologies:
v Secure Sockets Layer (SSL) or Transport Layer Security (TLS) from a Java client

application to CICS Transaction Gateway
v SSL or TLS from a Java client application to a CICS server using IPIC
v Security exits

Underlying security technologies such as Internet Protocol Security (IPSec) are also
supported.

User authentication

User authentication is the process by which a service verifies a user's authenticity.
Verification is through the use of credentials, usually a password or a certificate.
User authentication can be implemented for all protocols.

Link security

Link security prevents a remote user from attaching to a transaction in CICS, or
accessing a resource for which the link user ID has no authority. Link security
provides an additional check on user authentication through the use of a preset
user ID on the CICS server connection. Link security can be implemented for the
IPIC and EXCI protocols.

Bind security

Bind security prevents an unauthorized remote system from connecting to CICS.
Bind security can be implemented for the IPIC and EXCI protocols.

Statistics and monitoring
CICS Transaction Gateway provides statistics on the performance of runtime
components. Monitoring information on individual requests is also available.

Statistics

The information provided by statistics is used when performing the following
tasks:
v Capacity planning, where information about the resource usage is collected to

ensure adequate capacity is available
v Hosting services and billing, where information on resource usage enables

company or interdepartmental billing
v Runtime information, where a runtime “snapshot” of the system is used to

evaluate status or perform high-level problem diagnosis

6 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Statistics are retrieved by issuing local system administration commands, by using
the C or Java statistics API, or by using third-party tools. The statistics API
provides remote access from any platform.

Monitoring

Monitoring provides information about individual requests as they are processed
by CICS Transaction Gateway. The information collected during monitoring
includes:
v Key timestamps as a request passes through the CICS Transaction Gateway
v The client where each request originated
v The target CICS server for each request
v Request parameters such as the transaction identifier and program identifier
v The amount of data sent and received on each request
v Request tracking tokens

Monitoring is available through the use of user exit programs written in Java.
Sample request monitoring exits are supplied.

Tooling and product integration
CICS Transaction Gateway is closely integrated with tools for application
development and system monitoring.
v IBM Rational® Application Developer provides a J2C toolkit. The toolkit enables

you to generate code for use with the CICS Transaction Gateway ECI resource
adapter that JEE applications use when accessing CICS programs.

v IBM CICS Explorer® provides access to CICS Transaction Gateway runtime
statistics along with information from other CICS environments. The information
is displayed in integrated views that can be customized.

v IBM Tivoli® OMEGAMON® automatically detects and provides alerts if critical
transactions are not completed.

v IBM CICS Performance Analyzer provides statistics alert reporting. You can
define conditions, in terms of CICS Transaction Gateway statistics values, that
interest you. You can then use those conditions to report on statistics stored in
SMF records.

v IBM Tivoli System Automation for z/OS enables alerts to be generated based on
CICS Transaction Gateway messages written to the z/OS console. For more
information see “System automation messages” on page 248.

v IBM Tivoli Composite Application Manager can use CICS Transaction Gateway
request monitoring exits to obtain performance information, and to analyze
composite transactions occurring between a JEE application server and CICS.

Chapter 1. Overview 7

8 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Chapter 2. Planning

When planning a CICS Transaction Gateway installation, you must ensure that the
requisite system hardware is available for running the product. You must also
check that you have the correct software (for example, the correct operating
system, web browser, CICS system and JEE application server). Finally, you must
ensure that you use the correct communications protocols and interfaces for
connecting to CICS on the platform on which CICS has been installed.

For information about upgrading from an earlier version of CICS Transaction
Gateway, see Chapter 4, “Upgrading,” on page 25.

Hardware requirements
CICS Transaction Gateway requires an IBM System z® mainframe.

Supported software
CICS Transaction Gateway (CICS TG) products support various levels of IBM and
third-party software.

Minimum required service levels are listed where appropriate. If a specific level is
not listed, support is provided for the General Availability (GA) release of the
third-party product. Service levels later than those listed are also supported, if the
vendor provides upward compatibility between service releases.

Note: If CICS Transaction Gateway support information provided by product
vendors conflicts with the information provided here, or if you experience
unanticipated problems, consult your vendor's product support, and notify your
IBM support representative. For end of service information see
http://www-01.ibm.com/software/support/lifecycle/index_c.html.

CICS Transaction Gateway core components
The platforms and runtime environments supported by the core components
include the Gateway daemon, utilities installed with the product, and applications
that use the Java API in local mode.

Operating systems
The operating systems that CICS Transaction Gateway supports.

CICS Transaction Gateway for z/OS can be used with z/OS V1.12 and later.

Java runtime environments for core components
The Java runtime environments that can be used with the Gateway daemon and
local mode applications.
v IBM 31-bit SDK for z/OS, Java Technology Edition V7.0 SR1, and later service

refreshes
v IBM 64-bit SDK for z/OS, Java Technology Edition V7.0 SR1, and later service

refreshes

© Copyright IBM Corp. 2000, 2013 9

|
|
|

|
|

|
|

CICS servers
CICS Transaction Gateway can connect to a number of CICS servers.
v CICS Transaction Server for z/OS V3.1 and later
v TXSeries for Multiplatforms V7.1

Note: CICS Transaction Server for z/OS V4.1 requires APARs PK83741 and
PK95579 for identity propagation support.

JEE application servers
The CICS Transaction Gateway JEE resource adapters are compatible with a
number of JEE application servers.

WebSphere Application Server for Multiplatforms� V8.0 and V8.5

WebSphere Application Server for Multiplatforms� is supported in remote mode
only�.�

WebSphere Application Server for z/OS V8.0 and V8.5

Supported in local and remote modes.

WebSphere Application Server for Multiplatforms� V7.0

Supported in remote mode only�, using the CICS Transaction Gateway V8.0 or
earlier JCA 1.5 resource adapters connecting to CICS Transaction Gateway V9.0�.

WebSphere Application Server for z/OS V7.0

Supported in remote mode only�, using the CICS Transaction Gateway V8.0 or
earlier JCA 1.5 resource adapters connecting to CICS Transaction Gateway V9.0�.

JEE 6 application servers

Any JEE 6 or above certified application server that successfully runs the JCA
resource adapter IVT (installation verification test). �This includes all non-IBM
application servers such as Oracle WebLogic, Glassfish, JBoss and others. The IVT
test provided with CICS Transaction Gateway must run successfully before
problems can be reported to IBM.

JEE 5 application servers

Any JEE 5 or above certified application server that successfully runs the JCA
resource adapter IVT. �This includes all non-IBM application servers such as
Oracle WebLogic, Glassfish, JBoss and others. The IVT test provided with CICS
Transaction Gateway must run successfully before problems can be reported to
IBM. � Supported in remote mode only, using the CICS Transaction Gateway V8.0
or earlier JCA 1.5 resource adapters connecting to CICS Transaction Gateway V9.0�.

Note:

1. The CICS Transaction Gateway V8.0 and earlier resource adapters are available
for download in �SupportPac CC03�.� For more information see
http://www-01.ibm.com/support/docview.wss?uid=swg24008817

2. For more information about the JCA resource adapter IVT see “JCA resource
adapter installation verification test (IVT)” on page 165.

10 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Java application runtime environments
A number of Java Runtime Environments (JRE) support remote mode applications
that use the CICS Transaction Gateway Java or JEE APIs.

Java SE 7

All IBM provided Java SE environments are supported. � Any Java 7 compatible
SDK carrying the Java Compatible logo is supported.�

Java SE 6

All IBM provided Java SE environments are supported. � Any Java 6 compatible
SDK carrying the Java Compatible logo is supported.�

Java SE 5

All IBM provided Java SE environments are supported. � Any Java 5 compatible
SDK carrying the Java Compatible logo is supported.�

Note:

1. 32-bit (31-bit on z/OS) or 64-bit Java Runtime Environments can be used.
2. Supports the JCA resource adapters when used nonmanaged.
3. Use the latest Java update for your Java Runtime Environment (JRE).

Redistributable component runtime environments
A number of runtime environments can be used with CICS Transaction Gateway
redistributable components (the ECI V2, ESI V2, Statistics and .NET APIs).

AIX®

XL C/C++ V10.1, V11.1, and V12.1 compatible runtimes are supported on AIX V6.1
and later.

HP-UX

aC++ compatible runtime�s and ANSI C compatible runtimes are supported on:
v HP-UX 11i V2
v HP-UX 11i V3

Linux on Intel

XL C/C++ V10.1, V11.1, and V12.1 compatible runtime�s and gcc 4.1 compatible
runtimes are supported on:
v SuSE Linux Enterprise Server 10
v SuSE Linux Enterprise Server 11
v SuSE Linux Enterprise Desktop 10
v SuSE Linux Enterprise Desktop 11
v Red Hat Enterprise Linux V5
v Red Hat Enterprise Linux V6
v Red Hat Enterprise Linux compatible environments (see note 2 on page 12)
v Red Hat KVM with Red Hat Enterprise Linux (RHEL) operating system

Chapter 2. Planning 11

v SUSE KVM with SUSE Linux Enterprise Server (SLES) operating system

Linux on POWER®

XL C/C++ V10.1, V11.1, and V12.1 compatible runtimes and gcc 4.1 compatible
runtimes are supported on:
v SuSE Linux Enterprise Server 10
v SuSE Linux Enterprise Server 11
v Red Hat Enterprise Linux V5
v Red Hat Enterprise Linux V6
v Red Hat KVM with Red Hat Enterprise Linux (RHEL) operating system
v SUSE KVM with SUSE Linux Enterprise Server (SLES) operating system

Linux on System z

XL C/C++ V10.1, V11.1, and V12.1 compatible runtime�s and gcc 4.1 compatible
runtimes are supported on:
v SuSE Linux Enterprise Server 10
v SuSE Linux Enterprise Server 11
v Red Hat Enterprise Linux V5
v Red Hat Enterprise Linux V6
v Red Hat KVM with Red Hat Enterprise Linux (RHEL) operating system
v SUSE KVM with SUSE Linux Enterprise Server (SLES) operating system

Solaris

Oracle Solaris Studio 12.3 compatible runtime�s are supported on:
v Solaris 10

Windows

.NET Framework 4.0,� .NET Framework 3.5�, and Visual Studio 2010 Runtime
Libraries are supported in 32-bit and 64-bit environments on:
v Windows 8
v Windows Server 2012
v Windows 7
v Windows Server 2008 R2�
v Windows Server 2008
v Windows Vista�

Note:

1. CICS Transaction Gateway does not support security-enhanced Linux.
2. Red Hat Enterprise Linux compatible environments must be binary and source

compatible with a Red Hat Enterprise Linux version listed on this page as
supported for Linux on Intel.

3. Runtime environments later than those listed are supported, if the compiler
vendor provides upward compatibility.�

12 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Development environments
The CICS Transaction Gateway APIs support a number of development
environments.

Windows
v Microsoft Visual Studio 2012�
v Microsoft Visual Studio 2010�
v .NET Framework 4.5
v .NET Framework 4.0
v .NET Framework 3.5

AIX
v XL C/C++ for AIX V12.1
v XL C/C++ for AIX V11.1�
v XL C/C++ for AIX V10.1�

Solaris
v Oracle Solaris Studio 12.3

HP-UX
v aC++ compiler for HP-UX�
v ANSI C compiler for HP-UX�

Linux
v XL C/C++ for Linux, V12.1
v XL C/C++ for Linux, V11.1�
v XL C/C++ for Linux, V10.1�
v gcc 4.1 compatible runtime� for Linux

Java

All IBM provided Java SE environments are supported. �Any Java 7, Java 6 or Java
5 compatible SDK carrying the Java Compatible logo is supported. �
v Java SE 7�
v Java SE 6�
v Java SE 5�

Note:

1. Development using the .NET API is supported only on Windows.
2. C++ environments are supported for developing 32-bit applications only.
3. C environments are supported for developing 64-bit applications only with the

ECI and ESI V2 APIs
4. Use the latest Java update for your Java Run-time Environment (JRE).
5. Applications can be developed on any supported run-time platforms.�

CICS Explorer
CICS Transaction Gateway includes a plug-in for CICS Explorer.
v CICS Transaction Gateway plug-in for CICS Explorer V1.1 is supported in CICS

Explorer V1.1 and V1.1.1

Chapter 2. Planning 13

v CICS Transaction Gateway plug-in for CICS Explorer V2.0 is supported in CICS
Explorer V5.1.

v CICS Transaction Gateway plug-in for CICS Explorer V2.0.1 is supported in
CICS Explorer V5.1.1.

Applications compiled for earlier versions
Applications that are compiled for use with earlier versions of CICS Transaction
Gateway, and which are dynamically linked to the API, are supported, and do not
have to be recompiled.

Which protocol can be used?
This table shows what support is available for connecting to different version CICS
servers over IPIC and EXCI.

To determine which connectivity scenarios are supported by CICS Transaction
Gateway, you should use this table in conjunction with the table “Which API can
be used?.”

Table 1. IPIC and EXCI communication with CICS servers

CICS server IPIC EXCI

CICS Transaction Server for z/OS V5.1
XA, ECI COMMAREA and channels,

ESI, password phrases
XA, ECI COMMAREA,

password phrases

CICS Transaction Server for z/OS V4.2
XA, ECI COMMAREA and channels,

ESI, password phrases
XA, ECI COMMAREA,

password phrases

CICS Transaction Server for z/OS V4.1
XA, ECI COMMAREA and channels,

ESI
XA, ECI COMMAREA,

password phrases

CICS Transaction Server for z/OS V3.2 XA, ECI COMMAREA and channels
XA, ECI COMMAREA,

password phrases

CICS Transaction Server for z/OS V3.1 Not supported
XA, ECI COMMAREA,

password phrases

TXSeries for Multiplatforms V7.1 ECI COMMAREA and channels Not supported

Which API can be used?
This table shows which APIs are supported over the IPIC and EXCI protocols in
local and remote mode.

To determine which scenarios are supported by CICS Transaction Gateway, you
should use this table in conjunction with the table in “Which protocol can be
used?”

API IPIC local mode IPIC remote mode EXCI local mode

EXCI
remote
mode

Java ECI U (see Note) U (see Note) U U

Java ESI U U x x

JEE non-XA U (see Note) U (see Note) U U

JEE XA U (see Note) U (see Note) U U

C ECI V2 x U (see Note) x U

C ESI V2 x U x x

14 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

API IPIC local mode IPIC remote mode EXCI local mode

EXCI
remote
mode

.NET ECI x U (see Note) x U

.NET ESI x U x x

Note: Includes channel application support. All ECI APIs and protocols support
COMMAREA based applications.

Sysplex restrictions
Restrictions apply when you are using CICS Transaction Gateway in a sysplex
environment.

The CICS Transaction Gateway instance must run on the same LPAR as the CICS
server to which it is sending requests if you are using EXCI connections with one
of the following:
v The ECI resource adapter for global transactions
v A Client application for extended LUW requests

You can start a Gateway daemon in an HA group in any LPAR in the sysplex but
you must ensure that the same RRS logging group is used in each LPAR.

Using multiple releases of CICS TG
You can run multiple versions of the Gateway in the same LPAR. To enable this
when using XA support, the CTGRRMS services must be running, and must be at
the level of the latest release of CICS Transaction Gateway installed on the LPAR.

You must use ctgasi or a Gateway from the latest release to start the CTGRRMS
services before you start any of the Gateways from the earlier releases. The
CTGRRMS service task stays active for the duration of the z/OS image. Therefore,
starting or refreshing the services must be done when the new release of the
Gateway is installed, or following a re-IPL of the LPAR.

Check that the LLA list contains the latest level of the SCTGLINK data set by using
this command:
DISPLAY LLA

and see “Refreshing CTGRRMS services” on page 129 if you need to refresh
CTGRRMS services.

If you need to re-IPL an LPAR, perform the procedure described in “LPAR IPLs in
an XA environment” on page 131.

Compatibility
CICS Transaction Gateway provides a high level of interoperability between
components, enabling applications, Gateways and CICS systems to be easily
upgraded without the need for extensive changes.

Chapter 2. Planning 15

Application compatibility
Compatibility of different versions of CICS Transaction Gateway Client
applications with the Gateway daemon and when recompilation is required.

.NET Framework application compatibility
Compatibility of Microsoft .NET Framework applications with different versions of
the CICS Transaction Gateway .NET API.

Client applications built using an earlier version of the CICS Transaction Gateway
.NET API can connect to a V9.0 Gateway daemon by using the CICS Transaction
Gateway .NET API assembly that they were compiled against.

To use the new CICS Transaction Gateway V9.0 .NET API assembly, client
applications that were built using the CICS Transaction Gateway V8.0 .NET API
and target Microsoft .NET Framework V4.0 must be recompiled. Client
applications that target Microsoft .NET Framework V3.5 or were built using the
CICS Transaction Gateway V8.1 .NET API can use the new CICS Transaction
Gateway V9.0 .NET API by using assembly redirection; these applications do not
require recompiling.

Assembly redirection can be configured at the application or machine level by
adding the following code to the application configuration file, web configuration
file, or machine configuration file:
<configuration>

<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<dependentAssembly>
<assemblyIdentity name="IBM.CTG.Client"

publicKeyToken="4f7d883847d47abe"
culture="neutral" />

<bindingRedirect oldVersion="x.x.0.0-x.x.0.9" newVersion="9.0.0.0" />
</dependentAssembly>

</assemblyBinding>
</runtime>

</configuration>

Replace “x.x” with the version of the CICS Transaction Gateway .NET API that the
application was compiled against.

If the CICS Transaction Gateway .NET API assembly is installed in the Global
Assembly Cache (GAC), assembly redirection can be configured by installing the
appropriate publisher policy file into the GAC. Policy files are provided in
install_path/Windows/lib/policy in the ctgredist package or in
install_path/lib/policy on a Windows machine with CICS Transaction Gateway
installed. For more information on publisher policy and assembly redirection, see
the Microsoft .NET Framework documentation.

For information on upgrading .NET applications from CICS Transaction Gateway
V8.0, see “CICS Transaction Gateway .NET applications” on page 28.

Java client application compatibility
Compatibility of Java client applications with different versions of the CICS
Transaction Gateway API.

You do not have to recompile Java client applications if you migrate them to a new
environment, for example if you:
v Upgrade the JVM on the client system

16 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

v Use a different operating system
v Update a remote CICS Transaction Gateway to a higher version
v Change the topology from local mode to remote mode

You must use a JRE version that is supported by the version of the ctgclient.jar that
you have deployed with your Java client application.

C application compatibility
Compatibility of C applications with different versions of the CICS Transaction
Gateway API.

C client applications do not have to be recompiled to run with a newer version of
CICS Transaction Gateway unless there is a specific requirement to do so for the
version of the product you are upgrading from. For more information see
Chapter 4, “Upgrading,” on page 25.

If you already have ECI V2 and ESI V2 applications deployed, and you upgrade
your CICS Transaction Gateway to a later level, you can continue to use the
existing version of ctgclient.dll on the remote machines or you can choose to
upgrade it. You should consider the following points when choosing whether to
upgrade ctgclient.dll on remote client machines:
v Is the latest maintenance required?
v Is the existing ctgclient.dll still at a supported level?
v Does the client application connect to multiple CICS Transaction Gateways? (ECI

V2 and ESI V2 client applications cannot connect to back-level Gateways).

Statistics application compatibility
Compatibility of statistical applications with different versions of the CICS
Transaction Gateway API.

C and Java statistics applications do not have to be recompiled to run with a
newer version of CICS Transaction Gateway. Statistics applications built using a
particular version of CICS Transaction Gateway can connect to both newer and
older version Gateway daemons.

If you already have a statistics application deployed, and you upgrade your CICS
Transaction Gateway to a later level, you can continue to use the existing version
of ctgclient.dll for C applications, or ctgstats.jar for Java applications on the remote
machines, or you can decide to upgrade. You should consider the following points
when deciding whether to upgrade ctgclient.dll or ctgstats.jar on remote client
machines:
v Is the latest maintenance required?
v Is the existing ctgclient.dll or ctgstats.jar still at a supported level?

For Java applications, you must use a JRE version supported by the version of the
ctgstats.jar that you have deployed.

User exit program compatibility
Compatibility of user exit programs with different versions of the CICS Transaction
Gateway API.

CICS request exit and request monitoring exit programs do not have to be
recompiled if you upgrade CICS Transaction Gateway, if the following conditions
are met:

Chapter 2. Planning 17

v The exit programs execute with the version of Java required by CICS Transaction
Gateway.

v There is no specific requirement to do so for the version of the product from
which you are upgrading. For more information see Upgrading.

Resource adapter compatibility
CICS Transaction Gateway can be used with earlier versions of the resource
adapters.

CICS Transaction Gateway can facilitate communications with CICS through
resource adapters that are at the same version as CICS Transaction Gateway or at
an earlier version. If you are migrating CICS Transaction Gateway to a later
version, you can optionally migrate the earlier version resource adapters to the
same level as CICS Transaction Gateway but this is not mandatory.

The following rules apply when using different versions of CICS Transaction
Gateway and resource adapters:
v You can use a remote Gateway daemon with earlier version resource adapters

that are still in support.
v You cannot use a remote Gateway daemon with later version resource adapters.
v When using local mode, the resource adapter and CICS Transaction Gateway

versions must be the same.
v You cannot mix earlier and later versions of resource adapters on the same JEE

application server node.

Note:

v To find out which version number a resource adapter has, see the information
provided by the application server for the resource adapter version. For example
if you are using WebSphere Application Server, use the Administration Console
to view the deployment descriptor for the installed resource adapter.

v The upward compatability for the resource adapters is maintained, so that older
resource adapters work with newer Gateway daemons, but after a release of
CICS TG is out of support, no compatability testing is done for the out of
support resource adapters.

National Language Support
CICS Transaction Gateway supports the same languages as CICS Transaction
Server for z/OS: English, Japanese and Simplified Chinese.

For information about code pages see “Supported code pages” on page 22.

Tools
Tools that support CICS Transaction Gateway.
v IBM CICS Performance Analyzer
v IBM Tivoli System Automation for z/OS
v IBM Tivoli OMEGAMON XE for CICS on z/OS
v IBM Tivoli Composite Application Manager for Transactions
v IBM Rational Developer for System z
v IBM Rational Application Developer for WebSphere Software
v IBM Rational Business Developer

18 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

v IBM Rational Software Architect for WebSphere Software
v IBM Integration Designer

For the latest details about supported software, visit: Supported software for CICS
Transaction Gateway products.

Chapter 2. Planning 19

http://www.ibm.com/support/docview.wss?uid=swg21239203
http://www.ibm.com/support/docview.wss?uid=swg21239203

20 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Chapter 3. Installing

Use the supplied SMP/E installation tape to transfer the CICS Transaction
Gateway code to your system, following the supplied program directory.

CICS Transaction Gateway runs in a nonswappable address space to prevent ECI
calls from failing if they are flowed when CICS Transaction Gateway is swapped
out. Ensure that the user who is running the CICS TG process has READ access to
the BPX.STOR.SWAP FACILITY class. For information about the
CTG_SWAPPABLE environment variable that controls this setting see
“Environment variables: local and remote mode” on page 100.

File path terminology
Generic file paths are used to describe the location of files used by CICS
Transaction Gateway.

Installation directory

The term <install_path> is used in file paths to represent the location where you
installed the product.

The <install_path> is /usr/lpp/cicstg/ctgversion where ctgversion is the product
version, and can be modified at installation time. A lowercase convention is
normally used for file paths.

Java home directory

The term <java_path> is used in file paths to represent the location of the Java
home directory, for example /usr/lpp/java/J7.0.

High level qualifier

The term hlq indicates the high-level qualifier used for MVS data sets, for example
hlq.SCTGLINK. The high level qualifier can be set during the SMP/E installation, for
example, if <install_path> is /usr/lpp/cicstg/ctg900/bin, you could set the hlq to
CICSTG.CTG900.

Actions after installation
When you have installed the CICS Transaction Gateway, configure and test your
installation.

To configure and test your installation follow these steps:
1. Configure your CICS Transaction Server for z/OS; see “Configuring CICS

server connections” on page 110.
2. Configure your CICS Transaction Gateway by creating these files:

v ctg.ini (required only if running in remote mode)
v ctg.env or ctgenvvar

See “Configuration parameter reference” on page 156.
3. Test your configuration; see Testing your configuration.

© Copyright IBM Corp. 2000, 2013 21

|

|
|

|

|
|

|
|
|

|

|
|

|

|
|
|
|

You must also configure READ access to the BPX.SMF facility as part of
installation and upgrading. The RACF and UNIX System Services (USS)
documentation gives further details about this permission.

An attempt is always made to write end-of-day and shutdown statistics to SMF,
regardless of whether the statsrecording parameter is on or off. A message is
logged if this attempt fails.

To write to SMF, the user ID under which the Gateway daemon runs, must be
permitted READ access to the BPX.SMF facility. An example of the syntax is shown
here:
PERMIT BPX.SMF CLASS(FACILITY) ACCESS(READ) ID(USERID)

Changing the code page
You can convert your CICS Transaction Gateway installation to use a different
EBCDIC code page if required, for example to change the language.

If the product was installed as IBM-1047 or another code page (code set), you can
convert the installation to use a different code page by running the following
command in the current code page of the installation:
<install_path>/bin/ctg2local

You need write access to the directory in which the CICS Transaction Gateway is
installed to run this command.

Converting the installation to another code page does not affect messages used by
the CTGBATCH program. See “CTGBATCH considerations” on page 250 for
details.

To display the supported language and code set combinations, issue the command:
<install_path>/bin/ctgmsgs -?

Supported code pages
The code ages supported for US English, Simplified Chinese and Japanese.

Language Supported code pages

US English IBM-1047

Simplified Chinese IBM-935

IBM-1388

IBM-9127

Japanese IBM-930

IBM-939

IBM-1930

IBM-1939

Redistributable components
A redistributable package is available that contains the components required for
developing and running remote C and .NET applications.

The ctgredist package is located in the <install_path>/deployable directory and
provides components for developing remote C and .NET applications that access

22 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

CICS servers using the CICS Transaction Gateway. Runtime libraries are provided
for application deployment on systems remote to the CICS Transaction Gateway.

For information on installing the ctgredist package, see the ctgredist.txt file in the
<install_path>/deployable directory.

Chapter 3. Installing 23

24 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Chapter 4. Upgrading

Use this information to plan and upgrade your environment and applications to
work in the latest release of CICS Transaction Gateway.

Before you begin your upgrade, check if there are any compatibility issues for your
applications or system resources. For more information, see Compatibility.

Upgrading from Version 8 Release 1
This information details changes that you need to consider when upgrading to the
current release from V8.1.

Java Version 7

Ensure the PATH environment variable in the STDENV file used during CICS TG
initialization contains the location of the IBM Java 7 runtime environment.

Removal of Gateway daemon resource parameters

The uowvalidation parameter is longer supported. This means that LUW tokens
are validated so that they can be used only from the client application connection
from which the LUW was started.

If the uowvalidation parameter is specified in the configuration file, the Gateway
daemon fails to start. You must remove the uowvalidation parameter from the
configuration file.

If any of your applications rely on the uowvalidation parameter being turned off,
the application receives the ECI_ERR_LUW_TOKEN error when trying to use the
LUW token on a connection, to the Gateway daemon, that did not start the LUW.

Removal of ciphersuites=128bitonly parameter

Use of the ciphersuites=128bitonly parameter is deprecated.

Removal of -noshareclasses option

The undocumented -noshareclasses option has been removed. If it is specified,
the Gateway daemon fails to start and the following message is written to
STDERR:

CTG6582E The command line option -noshareclasses is unknown or requires a
value

If there is a requirement to disable Java class caching, the documented Java
argument -Xshareclasses:none can be used.

SSL keyring settings moved

The SSL key ring settings are now product wide; they have been moved from the
SSL protocol handler in the GATEWAY section to the PRODUCT section of the
configuration file. The same SSL key ring settings are used for both SSL protocol

© Copyright IBM Corp. 2000, 2013 25

handler and IPIC server SSL connection definitions. The SSL key ring parameters
must be defined in the PRODUCT section in order to use IPIC over SSL. The
definition of the SSL key ring parameters in the GATEWAY section is supported, if
not using IPIC over SSL, for migration purposes. The SSL key ring settings are:
esmkeyring, hwcrypt, keyring, keyringpw, and keyringpwscrambled. The esmkeyring
and hwcrypt parameters now take a parameter value when defined in the
PRODUCT section.

TLS cipher suites

Cipher suites entered as TLS are no longer converted to SSL when CICS
Transaction Gateway starts.

IPIC server idle timeout default setting

The default setting of the server idle timeout period for IPIC server connections
(see “Server idle timeout” on page 117) has been changed to zero, so that the idle
timeout period is disabled. Previously, IPIC server connections would be closed if
idle for more than 60 minutes. This change affects local mode topologies, and also
remote mode topologies which do not configure an IPIC server idle timeout.

Message_Qualifier API removal

The deprecated field Message_Qualifier has been removed from the Java API.
Applications that used this field will need to use the getMessageQualifier() and
setMessageQualifier() methods instead.

Java client applications using the deprecated field can still connect to CICS TG
V9.0 when run in remote mode using a CICS TG V8.1 or earlier ctgclient.jar file

Upgrading from Version 8 Release 0
This information details changes that you need to consider when upgrading to the
current release from V8.0.

Java Version 7

Ensure the PATH environment variable in the STDENV file used during CICS TG
initialization contains the location of the IBM Java 7 runtime environment.

Removal of Gateway daemon resource parameters

The uowvalidation parameter is longer supported. This means that LUWs tokens
are validated so that they can be used only from the client application connection
from which the LUW was started.

If the uowvalidation parameter is specified in the configuration file, the Gateway
daemon fails to start. You must remove the uowvalidation parameter from the
configuration file

If any of your applications rely on the uowvalidation parameter being turned off,
the application receives the ECI_ERR_LUW_TOKEN error when trying to use the
LUW token on a connection, to the Gateway daemon, that did not start the LUW.

26 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Removal of ciphersuites=128bitonly parameter

Use of the ciphersuites=128bitonly parameter is deprecated.

SSL keyring settings moved

The SSL key ring settings are now product wide; they have been moved from the
SSL protocol handler in the GATEWAY section to the PRODUCT section of the
configuration file. The same SSL key ring settings are used for both SSL protocol
handler and IPIC server SSL connection definitions. The SSL key ring parameters
must be defined in the PRODUCT section in order to use IPIC over SSL. The
definition of the SSL key ring parameters in the GATEWAY section is supported, if
not using IPIC over SSL, for migration purposes. The SSL key ring settings are:
esmkeyring, hwcrypt, keyring, keyringpw, and keyringpwscrambled. The esmkeyring
and hwcrypt parameters now take a parameter value when defined in the
PRODUCT section.

TLS cipher suites

Cipher suites entered as TLS are no longer converted to SSL when CICS
Transaction Gateway starts

Removal of -noshareclasses option

The undocumented -noshareclasses option has been removed. If it is specified,
the Gateway daemon fails to start and the following message is written to
STDERR:

CTG6582E The command line option -noshareclasses is unknown or requires a
value

If there is a requirement to disable Java class caching, the documented Java
argument -Xshareclasses:none can be used.

Using the JEE interfaces in nonmanaged mode

The JAR file cicsj2ee.jar file is renamed to cicsjee.jar.

Supported characters in server names

Server names must now use characters from the supported character list to ensure
that all CICS TG functions work correctly. Existing configuration files containing
server names using unsupported characters can continue to be used as an aid to
migration but might not work in all scenarios. Configuration files containing server
names that use unsupported characters should be migrated as soon as possible.

For the list of supported characters, see the relevant page on configuring the server
name for the required protocol in Configuring CICS server connections.

IPIC server idle timeout default setting

The default setting of the server idle timeout period for IPIC server connections
has been changed to zero, so that the idle timeout period is disabled. Previously,
IPIC server connections would be closed if idle for more than 60 minutes. This
change affects local mode topologies, and also remote mode topologies which do
not configure an IPIC server idle timeout.

Chapter 4. Upgrading 27

Message_Qualifier API removal

The deprecated field Message_Qualifier has been removed from the Java API.
Applications that used this field will need to use the getMessageQualifier() and
setMessageQualifier() methods instead.

CICS Transaction Gateway .NET applications
The CICS Transaction Gateway .NET API has been upgraded to support Microsoft
32-bit and 64-bit Windows architectures from a single assembly
(IBM.CTG.Client.dll).

The upgraded assembly is included in the ctgredist package in Windows\lib. The
upgraded CICS Transaction Gateway .NET API does not depend on ECI V2 and
the upgraded IBM.CTG.Client.dll does not need ctgclient.dll referenced in the
PATH.

The behavior of the Gateway trace, ECI timeout, and ECI request extend mode
functions is different when compared with earlier versions of CICS Transaction
Gateway:
v Trace from the CICS Transaction Gateway .NET API is written using

System.Diagnostics.Trace; the traceFile attribute is no longer used by the
CtgTrace switch or corresponding IBM.CTG.Trace.SetTraceFile(string
fileName) method. The switch and the method can still be accessed by
applications but do not provide any function.

v The upgraded CICS Transaction Gateway .NET API does not support enabling
trace with environment variables.

v If the value of the IBM.CTG.EciRequest.Timeout property is negative an
ArgumentOutOfRangeException occurs.

v If the value of the IBM.CTG.EciRequest.ExtendMode property is not a defined
IBM.CTG.EciExtendMode enumeration an ArgumentOutOfRangeException occurs.

Applications that target Microsoft .NET Framework 3.5 do not require
modification; they can be left with their dependency on ctgclient.dll. Alternatively,
applications can use assembly redirection to access the upgraded assembly.
Assembly redirection is possible either at the application level or the machine level.
For an assembly redirection at the machine level using the Global Assembly Cache
(GAC), you must install the upgraded assembly, and the publisher policy assembly
policy.8.0.IBM.CTG.Client.dll, into the GAC. The assembly and the publisher
policy assembly are both located in <install_path>/Windows/lib/policy in the
ctgredist package or in on a Windows machine with CICS Transaction Gateway
installed. For more information see the .NET Microsoft documentation.

For an application level or machine level upgrade, you can optionally add the
following code to the application configuration file or machine configuration file:
<configuration>

<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<dependentAssembly>
<assemblyIdentity name="IBM.CTG.Client"

publicKeyToken="4f7d883847d47abe"
culture="neutral" />

<bindingRedirect oldVersion="8.0.0.0-8.0.0.9" newVersion="9.0.0.0" />
</dependentAssembly>

</assemblyBinding>
</runtime>

</configuration>

28 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

If you are using an application that targets Microsoft .NET Framework 4.0, to use
the upgraded assembly you must recompile the application.

Logical CICS server definitions
LOGICALSERVER section definitions are deprecated and superseded by
policy-based dynamic server selection definitions.

A LOGICALSERVER section definition in the configuration file (ctg.ini), provides a
mapping of a logical CICS server name to an actual CICS server name where work
is to be sent. The logical CICS server name is an alias that can be passed to CICS
Transaction Gateway on an ECI or ESI request. The function provided by
LOGICALSERVER section definitions is incorporated into policy-based dynamic
server selection and this new mechanism provides enhanced capability and
flexibility for dynamic server selection.

Replace LOGICALSERVER section definitions with policy-based DSS definitions.
For example the definitions:
SECTION LOGICALSERVER = PAYMONTH
Server = PAYROLLA
ENDSECTION

SECTION LOGICALSERVER = PAYWEEK
Server = PAYROLLB
ENDSECTION

can be replaced by the definitions:
SECTION GATEWAY
....
DSSPolicy = POLICY1
ENDSECTION

SECTION DSSPOLICY = POLICY1
SUBSECTION MAPPINGS
PAYMONTH=GROUP1
PAYWEEK=GROUP2
ENDSUBSECTION

SECTION DSSGROUP = GROUP1
Servers = PAYROLLA
Algorithm = Failover
ENDSECTION

SECTION DSSGROUP = GROUP2
Servers = PAYROLLB
Algorithm = Failover
ENDSECTION

When using LOGICALSERVER section definitions:
v If a request does not specify the name of a CICS server, CICS Transaction

Gateway uses the default CICS server, if one has been defined. The same applies
when using policy-based DSS, if a request does not specify the name of a CICS
server and no server group mapping is defined.

v If a request does not specify a name and a default CICS server has not been
defined, CICS Transaction Gateway assumes that the EXCI protocol is being
used, and delegates the decision about which CICS server to use, to EXCI. The
same applies when using policy-based DSS, if a request does not specify a name
that matches any server group mapping and a default CICS server has not been
defined.

For information about the LOGICALSERVER section of the configuration file see
“LOGICALSERVER section of the configuration file” on page 162.

Chapter 4. Upgrading 29

Configuring a logical CICS server
To configure a logical CICS server definition add a LOGICALSERVER section to
the configuration file.

LOGICALSERVER section definitions are deprecated and are superseded by
“Policy-based dynamic server selection” on page 77 definitions. For information
about configuring a logical CICS server definition see “LOGICALSERVER section
of the configuration file” on page 162.

Server name:

The LOGICALSERVER section parameter specifies a logical CICS server name that
is local to CICS Transaction Gateway.

LOGICALSERVER section definitions are deprecated and are superseded by
“Policy-based dynamic server selection” on page 77 definitions.

Set the value in the range of 1 to 8 characters. Supported characters are in the
ranges A-Z and 0-9, and '@', '#', '$'."

Description:

The description parameter is optional and can be used to describe the server
definition.

description=<string>

Description
Set the value to a text string. The string can be 1 - 60 characters. Use
characters in the range a through z, A through Z, and 0 through 9, and the
characters '@', '#', '$', '-'. The description is returned on list systems calls.

This parameter is in the “IPICSERVER section of the configuration file” on
page 161 and the .

Default value
There is no default value for this parameter.

CICS server name:

The name of the actual CICS server to which the logical server definition is to
resolve.

This is either the name of an IPIC server definition or a CICS APPLID to be used
for an EXCI connection. Specify an alphanumeric identifier, up to eight characters
in length.

Upgrading from Version 7 Release 2
This information details changes that you need to consider when upgrading to the
current release from V7.2.

Configuration files

CICS Transaction Gateway configurations that worked with previous releases
might not work after upgrade; configuration checking is enhanced to ensure that

30 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

the values used by CICS Transaction Gateway are the intended ones. Protocol
handlers are not started unless explicitly configured.

The Configuration Tool is removed from this version of CICS Transaction Gateway
for z/OS. To assist in configuring CICS Transaction Gateway additional scenario
configuration files are provided. For more information, see Scenarios.

Java Version 7

Ensure the PATH environment variable in the STDENV file used during CICS TG
initialization contains the location of the IBM Java 7 runtime environment.

Removal of Gateway daemon resource parameters

The uowvalidation parameter is longer supported. This means that LUW tokens
are validated so that they can be used only from the client application connection
from which the LUW was started.

If the uowvalidation parameter is specified in the configuration file, the Gateway
daemon fails to start. You must remove the uowvalidation parameter from the
configuration file.

If any of your applications rely on the uowvalidation parameter being turned off,
the application receives the ECI_ERR_LUW_TOKEN error when trying to use the
LUW token on a connection, to the Gateway daemon, that did not start the LUW.

Upgrading XA configurations

When you upgrade from Version 7 Release 2 and were previously using XA
support over IPIC connections without using CTGRRMS you must enable
CTGRRMS.

Determine whether you are using CTGRRMS by checking the xasupport parameter
in the Gateway daemon configuration file.
v If xasupport=off, or if the configuration file does not contain the xasupport

parameter, no upgrade steps are needed and the CICS Transaction Gateway will
work as it did before the upgrade.

v If xasupport=on, you are using XA and you must follow the upgrade steps. For
more information see “Configuring XA support” on page 126.

When you enable XA support, check the Gateway daemon log for message
CTG6737I which indicates that XA support is enabled.

User exits

CICS request exit
All CICS request exits must be updated to support the eventFired()
method. For more information, see the CICS Transaction Gateway for z/OS
Programming Guide.

Request monitoring exit
The CICSCorrelator in the RequestData map must be used to report the
CICS Network UOWID for EXCI synconreturn requests.

Chapter 4. Upgrading 31

Using the JEE interfaces in nonmanaged mode

The JAR file cicsj2ee.jar file is renamed to cicsjee.jar.

Supported characters in server names

Server names must now use characters from the supported character list (see
“Server name” on page 30) to ensure that all CICS TG functions work correctly.
Existing configuration files containing server names using unsupported characters
can continue to be used as an aid to migration but might not work in all scenarios.
Configuration files containing server names that use unsupported characters
should be migrated as soon as possible.

IPIC server idle timeout default setting

The default setting of the server idle timeout period for IPIC server connections
has been changed to zero, so that the idle timeout period is disabled. Previously,
IPIC server connections would be closed if idle for more than 60 minutes. This
change affects local mode topologies, and also remote mode topologies which do
not configure an IPIC server idle timeout.

Message_Qualifier API removal

The deprecated field Message_Qualifier has been removed from the Java API.
Applications that used this field will need to use the getMessageQualifier() and
setMessageQualifier() methods instead.

Removal of ciphersuites=128bitonly parameter

Use of the ciphersuites=128bitonly parameter is deprecated.

SSL keyring settings moved

The SSL key ring settings are now product wide; they have been moved from the
SSL protocol handler in the GATEWAY section to the PRODUCT section of the
configuration file. The same SSL key ring settings are used for both SSL protocol
handler and IPIC server SSL connection definitions. The SSL key ring parameters
must be defined in the PRODUCT section in order to use IPIC over SSL. The
definition of the SSL key ring parameters in the GATEWAY section is supported, if
not using IPIC over SSL, for migration purposes. The SSL key ring settings are:
esmkeyring, hwcrypt, keyring, keyringpw, and keyringpwscrambled. The esmkeyring
and hwcrypt parameters now take a parameter value when defined in the
PRODUCT section.

TLS cipher suites

Cipher suites entered as TLS are no longer converted to SSL when CICS
Transaction Gateway starts.

Upgrading from Version 7 Release 1
This information details changes that you need to consider when upgrading to the
current release from V7.1.

32 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Configuration files

CICS Transaction Gateway configurations that worked with previous releases
might not work after upgrade. Configuration checking is enhanced to ensure that
the values used by CICS Transaction Gateway are the intended ones. Protocol
handlers are not started unless explicitly configured.

The Configuration Tool is removed from this version of CICS Transaction Gateway
for z/OS. To assist in configuring CICS Transaction Gateway additional scenario
configuration files are provided. For more information, see Scenarios.

Java Version 7

Ensure the PATH environment variable in the STDENV file used during CICS TG
initialization contains the location of the IBM Java 7 runtime environment.

Removal of Gateway daemon resource parameters

The uowvalidation parameter is longer supported. This means that LUWs tokens
are validated so that they can be used only from the client application connection
from which the LUW was started.

If the uowvalidation parameter is specified in the configuration file, the Gateway
daemon fails to start. You must remove the uowvalidation parameter from the
configuration file.

If any of your applications rely on the uowvalidation parameter being turned off,
the application receives the ECI_ERR_LUW_TOKEN error when trying to use the
LUW token on a connection, to the Gateway daemon, that did not start the LUW.

Upgrading a statistics API port definition

If you configured a statistics API port defined by a statsport parameter in the
GATEWAY section of your configuration file, upgrade to using a full statistics API
protocol handler definition.

Previous releases of CICS Transaction Gateway bound the statistics API port
exclusively to localhost. These monitoring applications were restricted to running
on the same machine as the Gateway daemon. If you define a full statistics API
protocol handler the remote monitoring applications can connect to the Gateway
daemon. See Statistics API protocol settings for details on remote statistics API
connections.

Upgrading XA configurations

When you upgrade from Version 7 Release 1 and were previously using XA
support over IPIC connections without using CTGRRMS you must enable
CTGRRMS.

Determine whether you are using CTGRRMS by checking the xasupport parameter
in the Gateway daemon configuration file.
v If xasupport=off, or if the configuration file does not contain the xasupport

parameter, no upgrade steps are needed and the CICS Transaction Gateway will
work as it did before the upgrade.

Chapter 4. Upgrading 33

v If xasupport=on, you are using XA and you must follow the upgrade steps. For
more information see “Configuring XA support” on page 126.

When you enable XA support, check the Gateway daemon log for message
CTG6737I which indicates that XA support is enabled.

When you upgrade from Version 7 Release 1 or earlier, if you have a Gateway
daemon configuration using XA support, you must change the configuration
settings. For more information see “Upgrading XA configurations” on page 35.

Using the JEE interfaces in nonmanaged mode

The JAR file cicsj2ee.jar file is renamed to cicsjee.jar.

Supported characters in server names

Server names must now use characters from the supported character list (see
“Server name” on page 30) to ensure that all CICS TG functions work correctly.
Existing configuration files containing server names using unsupported characters
can continue to be used as an aid to migration but might not work in all scenarios.
Configuration files containing server names that use unsupported characters
should be migrated as soon as possible.

IPIC server idle timeout default setting

The default setting of the server idle timeout period for IPIC server connections
has been changed to zero, so that the idle timeout period is disabled. Previously,
IPIC server connections would be closed if idle for more than 60 minutes. This
change affects local mode topologies, and also remote mode topologies which do
not configure an IPIC server idle timeout.

Message_Qualifier API removal

The deprecated field Message_Qualifier has been removed from the Java API.
Applications that used this field will need to use the getMessageQualifier() and
setMessageQualifier() methods instead.

Removal of ciphersuites=128bitonly parameter

Use of the ciphersuites=128bitonly parameter is deprecated.

SSL keyring settings moved

The SSL key ring settings are now product wide; they have been moved from the
SSL protocol handler in the GATEWAY section to the PRODUCT section of the
configuration file. The same SSL key ring settings are used for both SSL protocol
handler and IPIC server SSL connection definitions. The SSL key ring parameters
must be defined in the PRODUCT section in order to use IPIC over SSL. The
definition of the SSL key ring parameters in the GATEWAY section is supported, if
not using IPIC over SSL, for migration purposes. The SSL key ring settings are:
esmkeyring, hwcrypt, keyring, keyringpw, and keyringpwscrambled. The esmkeyring
and hwcrypt parameters now take a parameter value when defined in the
PRODUCT section.

34 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

TLS cipher suites

Cipher suites entered as TLS are no longer converted to SSL when CICS
Transaction Gateway starts.

Upgrading XA configurations
When you upgrade from Version 7 Release 1 or earlier, if you have a Gateway
daemon configuration using XA support, you must change the configuration
settings.

Analyze your existing configuration to determine the upgrade steps required
1. Determine whether or not you are using XA support by checking the xasupport

parameter in the Gateway daemon configuration file.
v If xasupport=off, or if the configuration file does not contain the xasupport

parameter, no upgrade steps are needed and the CICS Transaction Gateway
will work as it did before the upgrade.

v If xasupport=on, you are using XA and you must follow the upgrade steps.

You can also check the Gateway daemon log for message CTG6737I which
indicates that XA support is enabled.

2. Analyze the configuration to determine if the Gateway daemon is part of a
Gateway group by looking for the CTG_RRMNAME and CTG_MASTER_RRMNAME
environment variables in the STDENV DD card of the JCL for the CTGBATCH
job step. Older configurations might have set the same environment variables
in a ctgenvvar script that is located on the HFS. You can also check the
Gateway daemon log for message CTG9214I which indicates that the Gateway
daemon is part of a Gateway group.
v The Gateway is not configured to be part of a Gateway group if CTG_RRMNAME

is specified and CTG_MASTER_RRMNAME is not specified.
v The Gateway is configured to part of a Gateway group if both CTG_RRMNAME

and CTG_MASTER_RRMNAME are specified. All Gateways that share the same
CTG_MASTER_RRMNAME are in the same Gateway group.

Related reference:
“Using multiple releases of CICS TG” on page 15
You can run multiple versions of the Gateway in the same LPAR. To enable this
when using XA support, the CTGRRMS services must be running, and must be at
the level of the latest release of CICS Transaction Gateway installed on the LPAR.

Upgrading a Gateway with XA support
To upgrade a Gateway with XA support and not a member of a Gateway group.

About this task
1. Refresh the CTGRRMS services, follow the steps in “Refreshing CTGRRMS

services” on page 129.
2. Remove the CTG_RRMNAME from the STDENV file.
3. Specify an APPLID and APPLIDQUALIFIER. The fully qualified APPLID must be

unique within the sysplex.
See Configuring identification using APPLID for a general explanation of
APPLID and APPLIDQUALIFIER. See EXCI server connections for details about
what APPLID and APPLIDQUALIFIER must be set to when XA support is enabled.

4. The Gateway registers with the following resource manager name:
CICSTG.<APPLIDQUALIFIER>.<APPLID>.

Chapter 4. Upgrading 35

5. You must permit access for the Gateway daemon USERID to one of the
following RACF® facilities when XA support is enabled:
v ALTER access to the MVSADMIN.RRS.COMMANDS.** facility.
v ALTER access to the MVSADMIN.RRS.COMMANDS.gname.sysname facility.

gname
is the logging group name and corresponds to the logging group in
the RRS administrative panels in ISPF. Set gname to the value for the
sysplex where the Gateway is running.

sysname
is the system name. Set sysname to the value for the LPAR where
the Gateway is running

If you give ALTER access to MVSADMIN.RRS.COMMANDS.** the Gateway
daemon is permitted to perform recovery operations for transactions associated
with any system name or logging group. This option requires less
administration but does not provide granularity of control.
If you give ALTER access to MVSADMIN.RRS.COMMANDS.gname.sysname
the Gateway daemon is permitted to perform recovery operations for
transactions associated with the specified system name or logging group. This
option allows for greater granularity of control but requires a greater amount of
administration.

Related reference:
“Using multiple releases of CICS TG” on page 15
You can run multiple versions of the Gateway in the same LPAR. To enable this
when using XA support, the CTGRRMS services must be running, and must be at
the level of the latest release of CICS Transaction Gateway installed on the LPAR.

Upgrading a Gateway group with XA support
1. Refresh the CTGRRMS services, follow the steps in “Refreshing CTGRRMS

services” on page 129.
2. Determine all Gateway instances that use the same CTG_MASTER_RRMNAME value.

All Gateways with the same value are in the same Gateway group.
3. Remove the CTG_RRMNAME and CTG_MASTER_RRMNAME parameters from the

STDENV file for each Gateway within the group.
4. Specify the same APPLID qualifier for each Gateway daemon which is to be a

member of a Gateway in the group. It must be unique within the sysplex for
this Gateway group. A Gateway daemon group is identified by the
APPLIDQUALIFIER parameter. See Configuring identification using APPLID for a
general explanation of APPLID and APPLIDQUALIFIER. See EXCI server
connections for details on setting APPLID and APPLIDQUALIFIER when XA
support is enabled.

5. You must permit access for the Gateway daemon USERID to one of the
following RACF facilities when XA support is enabled:

ALTER access to the MVSADMIN.RRS.COMMANDS.** facility.
ALTER access to the MVSADMIN.RRS.COMMANDS.gname.sysname
facility.

gname
is the logging group name and corresponds to the logging group in the
RRS administrative panels in ISPF. Set gname to the value for the sysplex
where the Gateway is running.

36 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

sysname
is the system name. Set sysname to the value for the LPAR where the
Gateway is running

If you give ALTER access to MVSADMIN.RRS.COMMANDS.** the Gateway
daemon is permitted to perform recovery operations for transactions associated
with any system name or logging group. This option requires less administration
but does not provide granularity of control.

If you give ALTER access to MVSADMIN.RRS.COMMANDS.gname.sysname the
Gateway daemon is permitted to perform recovery operations for transactions
associated with the specified system name or logging group. This option allows for
greater granularity of control but requires a greater amount of administration.
Related reference:
“Using multiple releases of CICS TG” on page 15
You can run multiple versions of the Gateway in the same LPAR. To enable this
when using XA support, the CTGRRMS services must be running, and must be at
the level of the latest release of CICS Transaction Gateway installed on the LPAR.

Upgrading from Version 7 Release 0
This information details changes that you need to consider when upgrading to the
current release from V7.0.

Configuration files

CICS Transaction Gateway configurations that worked with previous releases
might not work after upgrade; configuration checking is enhanced to ensure that
the values used by CICS Transaction Gateway are the intended ones. Protocol
handlers are not started unless explicitly configured.

The Configuration Tool is removed from this version of CICS Transaction Gateway
for z/OS. To assist in configuring CICS Transaction Gateway additional scenario
configuration files are provided. For more information, see Scenarios.

Java Version 7

Ensure the PATH environment variable in the STDENV file used during CICS TG
initialization contains the location of the IBM Java 7 runtime environment.

Removal of Gateway daemon resource parameters

The uowvalidation parameter is no longer supported. This means that LUWs
tokens are validated so that they can be used only from the client application
connection from which the LUW was started.

If the uowvalidation parameter is specified in the configuration file, the Gateway
daemon fails to start. You must remove the uowvalidation parameter from the
configuration file.

If any of your applications rely on the uowvalidation parameter being turned off,
the application receives the ECI_ERR_LUW_TOKEN error when trying to use the
LUW token on a connection, to the Gateway daemon, that did not start the LUW.

Chapter 4. Upgrading 37

Upgrading a statistics API port definition

If you configured a statistics API port defined by a statsport parameter in the
GATEWAY section of your configuration file, upgrade to using a full statistics API
protocol handler definition.

Previous releases of CICS Transaction Gateway bound the statistics API port
exclusively to localhost. These monitoring applications were restricted to running
on the same machine as the Gateway daemon. If you define a full statistics API
protocol handler the remote monitoring applications can connect to the Gateway
daemon. See Statistics API protocol settings for details on remote statistics API
connections.

Message_Qualifier API removal

The deprecated field Message_Qualifier has been removed from the Java API.
Applications that used this field will need to use the getMessageQualifier() and
setMessageQualifier() methods instead.

Using the JEE interfaces in nonmanaged mode

The JAR file cicsj2ee.jar file is renamed to cicsjee.jar.

Supported characters in server names

Server names must now use characters from the supported character list (see
“Server name” on page 30) to ensure that all CICS TG functions work correctly.
Existing configuration files containing server names using unsupported characters
can continue to be used as an aid to migration but might not work in all scenarios.
Configuration files containing server names that use unsupported characters
should be migrated as soon as possible.

Removal of ciphersuites=128bitonly parameter

Use of the ciphersuites=128bitonly parameter is deprecated.

SSL keyring settings moved

The SSL key ring settings are now product wide; they have been moved from the
SSL protocol handler in the GATEWAY section to the PRODUCT section of the
configuration file. The same SSL key ring settings are used for both SSL protocol
handler and IPIC server SSL connection definitions. The SSL key ring parameters
must be defined in the PRODUCT section in order to use IPIC over SSL. The
definition of the SSL key ring parameters in the GATEWAY section is supported, if
not using IPIC over SSL, for migration purposes. The SSL key ring settings are:
esmkeyring, hwcrypt, keyring, keyringpw, and keyringpwscrambled. The esmkeyring
and hwcrypt parameters now take a parameter value when defined in the
PRODUCT section.

TLS cipher suites

Cipher suites entered as TLS are no longer converted to SSL when CICS
Transaction Gateway starts.

38 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Upgrading from Version 6 and earlier
For product changes from Version 6 and earlier, to Version 7 and later, refer to the
appropriate information center.

For more information, seeCICS Transaction Gateway Information Center Library.

Chapter 4. Upgrading 39

http://www.ibm.com/software/sw-library/en_US/products/G158593Z87967N09/

40 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Chapter 5. Security

Security mechanisms include link, bind and user security on connections, SSL
client authentication, SSL server authentication, and identity propagation.

Security considerations
CICS Transaction Gateway can perform authentication and authorization checks at
different points during the processing of requests

Authentication verifies that the user is who they say they are. Depending on
topology, authentication can be based on the user ID passed with the ECI request,
an SSL client certificate, or a distributed identity (identity propagation).

Authorization verifies that a user is allowed to access a particular resource for a
given intent. For example to execute a method in a bean or to update a CICS
resource.

Security in a remote mode topology

The following figure shows the locations in a remote mode topology where the
system performs authentication and authorization. In this topology, WebSphere
Application Server is running on Windows and CICS Transaction Gateway is
running on z/OS. The EJB application in WebSphere uses the ECI resource adapter
and the Gateway daemon to access the CICS COMMAREA application.

Figure 5. Security in a remote topology

© Copyright IBM Corp. 2000, 2013 41

The following authentication options are available in this topology:
v User authentication by CICS Transaction Gateway. The user ID can be passed to

CICS without a password.
v Identity propagation. This is a unified security solution that enables additional

user auditing and authorization by passing a distributed identity to CICS
instead of a user ID and password.

v SSL client authentication. A trust relationship is established between WebSphere
Application Server and the Gateway daemon so that the application server can
be trusted to pass the user ID on an ECI request to CICS.

The following authorization options are available in this topology:
v Component-managed sign-on. With this option, security credentials are

propagated to CICS by application.
v Container-managed sign-on. With this option, security credentials are

propagated to CICS by a Web or EJB container.
v Link user ID authorization checking. This provides an additional check on

whether the link user ID is authorized to access the CICS resource.
v MRO bind security. This prevents unauthorized attached MRO regions from

starting transactions in a CICS server, and determines whether or not a
particular CICS Transaction Gateway can connect (bind) to a particular CICS
server.

v Link security. This Ensures that the link user ID used for authorization checks in
CICS is the user ID associated with the started task of the Gateway daemon.

v Surrogate security. This authorizes the user ID associated with the CICS
Transaction Gateway started task to switch the security context of an EXCI
request to the user ID that was passed to CICS.

The following data integrity and confidentiality options are available in this topology:
v RACF keyring support. With this option SSL key stores are stored in RACF.
v System z hardware cryptographic support. SSL handshakes can be offloaded to

hardware to reduce the CPU load due to handshakes and encryption.
v SSL cipher suite selection. This allows only certain algorithms and strengths of

ciphers to be used for SSL connections

CICS connection security
Different security options are available on the connection when CICS Transaction
Gateway is used for connecting client applications to CICS; the available options
are platform and protocol dependent.

EXCI connection security
EXCI connections enforce link, bind and user security. Link security restricts the
resources that can be accessed over a connection to a CICS server, bind security
prevents an unauthorized client system from connecting to CICS, and user security
restricts the CICS resources that can be accessed by a user.

Link security

By default, the link user ID that CICS uses for these security checks is the user ID
under which the Gateway daemon runs; to override this, specify a USERID
parameter in the SESSIONS definition.

42 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Bind security

The client application is treated in the same way as a CICS server for MRO logon
and connect (bind-time) security checking; when the client connects, the CICS
interregion communication program (IRP) performs logon and bind-time security
checks against the user ID under which the client is running.

User security

A number of settings and security checks ensure validation of user IDs and
passwords.
v The user ID and password or password phrase coded on the ECI request object

can be validated in the CICS Transaction Gateway through RACF for every EXCI
call. This is controlled through the setting of the AUTH_USERID_PASSWORD
environment variable. For more information, see the CICS Transaction Gateway:
z/OS Administration.

v The ECI user ID can then be subjected to an optional surrogate security check, if
the flowed user ID is different from the user ID in the EXCI address space. This
option is specified using the SURROGCHK parameter in the EXCI options
module DFHXCOPT, for more information, see the CICS Transaction Server
Information Center. Note that any password supplied on an ECI request is not
flowed on to CICS from CICS Transaction Gateway.

v The flowed user ID is subject to CICS authorization checks, for more details, see
the CICS Transaction Server for z/OS RACF Security Guide.

See also “Configuring for client certificate mapping” on page 143.

A user ID can also be obtained from a mapping of an SSL client certificate. For
more information, see “User authentication using SSL client certificates” on page
49.

IPIC connection security
IPIC connections enforce link security to restrict the resources that can be accessed
over a connection to a CICS server, bind security to prevent an unauthorized client
system from connecting to CICS, and user security to restrict the CICS resources
that can be accessed by a user. If the CICS server supports password phrases, a
password phrase can be used for user security.

Link security

There are two ways that you can specify the link user for IPIC connections. You
can use the SECURITYNAME attribute, or an SSL certificate in the IPCONN
definition in CICS. You can use an SSL certificate if you have a client authenticated
SSL connection. The client's certificate is mapped by RACF to a specific user ID,
which is defined as the link user. This means that you can specify different link
users, depending on which certificate you are using.

To specify a link user, set LINKAUTH in the IPCONN definition in CICS to one of
the following settings:
1. SECUSER to use the user ID that is specified in the SECURITYNAME attribute

to establish link security.
2. CERTUSER to use an SSL client certificate mapped to a user ID to establish link

security.

Chapter 5. Security 43

https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

The IPCONN resource must refer to a TCPIPSERVICE definition that is
configured for SSL and client authentication. The certificate must be mapped in
RACF to your chosen user ID. For more information on certificate mapping, see
the CICS Transaction Server Information Center.

Bind security

For IPIC connections bind security is implemented using a client authenticated SSL
connection. In this configuration the Java client application or CICS Transaction
Gateway need to be authenticated by the CICS server before they are able to
successfully connect. This prevents an unauthorized system from connecting.

User security

IPIC connections enforce user security to restrict the CICS resources that can be
accessed by a user. The level of user security checking is specified by setting the
USERAUTH attribute in the IPCONN definition in CICS. The USERAUTH setting
in the IPCONN definition is comparable to the ATTACHSEC setting on other
connection definitions.
v If USERAUTH=IDENTIFY is specified, a user ID that is already verified must be

supplied. If the CICS TG and CICS server are not in the same sysplex, an SSL
connection is required.

v If USERAUTH=VERIFY is specified, a user ID and password or password
phrase must be supplied. If password phrases are used the CICS server must
support password phrases.

If you are using the ECI base classes, set the user ID and password or password
phrase (if required) on the ECIRequest.

To set custom properties for the ECI resource adapter set the following properties:
1. Set the flowed user ID in the UserName property.
2. Set the password or password phrase (if required) in the Password property.

To override ECIConnectionSpec settings:
1. Create an ECIConnectionSpec object with the required user ID and password.
2. Use this object for requests on the selected connection and in the

getConnection() method of your ECI ConnectionFactory.

Identity propagation can be used as an alternative to specifying a user ID, for more
information, see “Identity propagation” on page 51.

A user ID can also be obtained from a mapping of an SSL client certificate.

Connection security and SSL
CICS Transaction Gateway can secure a network connection using SSL (Secure
Sockets Layer).

Java clients can connect over SSL to the Gateway daemon. In addition, SSL can be
used in both local mode and remote mode for IPIC connections to CICS.

Why use SSL?
The Secure Sockets Layer (SSL) transport protocol provides authenticated, reliable,
private data communications over a network connection.

44 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

Authentication

To make an environment secure, communication must be with “trusted” sites
whose identities are known. SSL uses digital certificates for authentication — these
are digitally signed documents which bind a public key to the identity of the
private key owner.

Authentication happens at connection time, and is independent of the application
or the application protocol. Authentication involves verifying that sites with which
communications are established are who they claim to be. SSL authentication is
performed by an exchange of certificates (blocks of data in a format described in
the X.509 standard). X.509 certificates are issued and digitally signed by an external
authority known as a certificate authority (CA).

Authorization

Checks are made to ensure that the authenticated users are permitted to access the
system resources needed by the tasks they are performing. These resources can
include computer systems, application functions, transactions, programs, databases,
files, and other CICS resources.

Data integrity

Information cannot be modified during transmission.

Confidentiality

Information remains private as it passes over the connection. The information
exchanged between the sender and receiver is encrypted. Only the client and the
server can interpret the information.

Accountability (non-repudiation)

The sender and the receiver both agree that the information exchange took place.
Accountability settles any disputes about whether or not the information was sent
and received. Digital signatures ensure accountability by enabling the identification
of who is responsible if something goes wrong.

What is SSL?
SSL is a security protocol that provides communications privacy. SSL enables client
and server applications to communicate in a way that is designed to prevent
eavesdropping, tampering, and message forgery.

How an SSL connection is established
An SSL connection is established though a handshake (a series of communications
exchanges) between the client and the server.

SSL handshake

The following diagram shows what happens during an SSL handshake:

Chapter 5. Security 45

1. The client sends a request to the server for a secure session. The server
responds by sending its X.509 digital certificate to the client.

2. The client receives the server's X.509 digital certificate.
3. The client authenticates the server, using a list of known certificate authorities.
4. The client generates a random symmetric key and encrypts it using server's

public key.
5. The client and server now both know the symmetric key and can use the SSL

encryption process to encrypt and decrypt the information contained in the
client request and the server response.

CICS Transaction Gateway supports the JSSE implementation of SSL. JSSE as
supplied with the Java SDK is the only supported option. For more information,
see Chapter 5, “Security,” on page 41.

Authentication

During server authentication, a connection is only established if the client trusts
the server based on the information presented by the server to the client in its
certificate.

During client authentication (if activated) the client sends its certificate information
to the server. A connection is then only established if the client trusts the server
and the server trusts the client, based on the information exchanged in both
certificates.

Transport Layer Security (TLS):

Network connections between a JEE client and CICS can be secured by the Secure
Sockets Layer (SSL) protocol, or the Transport Layer Security (TLS) protocol.

Figure 6. SSL handshake

46 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

TLS is an industry-standard SSL protocol. The TLS specification is documented in
RFC2246; for more information, see . http://www.rfc-editor.org/rfcsearch.html

All references to SSL in this information center also apply to TLS. Connections that
require encryption automatically use the TLS protocol, unless the client specifically
requests SSL. For more information on configuring CICS Transaction Gateway to
use network security, see “Configuring SSL” on page 132.

No special configuration or upgrade tasks are required for using TLS, when
compared with SSL.

Encryption:

Cryptography is the scientific discipline for the study and development of ciphers,
in particular, encryption and decryption algorithms. These cryptographic
procedures are the essential components that enable secure communication to take
place across networks that are not secure. SSL encryption uses both symmetric and
asymmetric keys.

Symmetric (secret) key

Secret key cryptography means that the sender and receiver share the same
(symmetric) key, which is used to encrypt and decrypt the data.

The secret key encryption and decryption process is often used to provide privacy
for high-volume data transmissions.

Asymmetric (public/private) key

Public/private key cryptography uses an asymmetric algorithm. The private key is
known only by its owner and is never disclosed. The corresponding public key can
be known by anyone. The public key is derived from the private key, but it cannot
be used to deduce the private key. Either key of the pair can be used to encrypt a
message, but decryption is only possible with the other key.

Digital signatures, certificates and key rings:

SSL uses digital signatures and digital certificates for establishing a trusted
relationship between a sender and a receiver of information sent over a network
connection.

Digital signature

A digital signature is a unique, mathematically computed, signature that
demonstrates the authenticity of a transmission.

Digital certificate

A digital certificate allows unique identification. It is essentially an electronic ID
card, issued by a trusted third party known as a certificate authority. Digital
certificates form part of the ISO authentication framework, also known as the X.509
protocol. This framework provides for authentication across networks. A digital
certificate serves two purposes: it establishes the owner's identity and it makes the
owner's public key available.

A digital certificate contains the following information:

Chapter 5. Security 47

v public key of the person being certified
v name and address of the person being certified, also known as the Distinguished

Name (DN)
v digital signature of the certificate authority
v issue date
v expiry date

If you send your digital certificate, containing your public key, to someone else,
your private key prevents that person from misusing your digital certificate and
posing as you.

A digital certificate alone is not proof of an identity; it allows verification of the
owner's identity, by providing the public key needed to check the owner's digital
signature. Therefore, the digital certificate owner must protect the private key that
belongs with the public key in the digital certificate. If the private key is stolen,
anyone could pose as the legitimate owner of the digital certificate.

Certificate authority (CA)

A digital certificate is issued by a CA and has an expiry date. When requesting a
digital certificate, you supply your distinguished name. The digitally signed
certificate includes your distinguished name and the distinguished name of the
CA. This allows verification of the CA.

To communicate securely, the receiver must trust the CA that issued the certificate
that the sender is using. Therefore, when a sender signs a message, the receiver
must have the corresponding CA's signer certificate and public key designated as a
trusted root key. Your Web browser has a default list of signer certificates for
trusted CAs. If you want to trust certificates from another CA, you must receive a
certificate from that CA and designate it as a trusted root key.

Key ring

A key ring is a file that contains the digital certificates, public keys, private keys,
and trusted root keys used by a network communications security protocol such as
SSL. Each certificate consists of a public key and a private key. A root certificate
contains a trusted root key.

SSL requires access to key rings for the establishment of secure connections. The
key rings used by the Java Secure Socket Extension (JSSE) implementation of SSL
are known as KeyStores.

For information on how to create key rings, see “Configuring SSL” on page 132.

Cipher suites:

A cipher suite is a set of ciphers (encryption algorithms) used for encrypting
sensitive information. SSL uses cipher suites to ensure security and integrity of
information transmitted over a network connection. Different cipher suites provide
different levels of encryption.

To allow users to select the level of security that suits their needs, and to enable
communication with others who might have different needs, SSL defines cipher
suites, or sets of ciphers. When an SSL connection is established, the client and
server exchange information about which cipher suites they have in common. They

48 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

then communicate using the common cipher suite that offers the highest level of
security. If they do not have a cipher suite in common, secure communication is
not possible.

There are many different algorithms that can be used for encrypting data, and for
computing the message authentication code. Some provide the highest levels of
security, but require a large amount of computation for encryption and decryption;
others are less secure, but provide rapid encryption and decryption. The length of
the key used for encryption affects the level of security; the longer the key, the
more secure the data.

The individual ciphers that can be used by CICS are dependent on the CICS
Transaction Server ENCRYPTION parameter. This is a system initialization
parameter which can be set for weak, medium or strong encryption.

User authentication using SSL client certificates
You can optionally use client certificates with SSL to allow the server to
authenticate the client during the SSL handshake.

A client certificate can be used with or without another authentication mechanism
such as a user ID and password. When a client certificate has been authenticated it
can be made available on each ECI request, and can be used by the Gateway
daemon security exit to authorize the request. This is achieved by mapping the
certificate to a RACF user ID.

To obtain the client certificate, client authentication must be enabled on the SSL
protocol handler in the Gateway daemon. To run the CICS transaction under the
RACF user ID which has been mapped to the client certificate, ensure that the
CICS connection has been defined with Attachsec set to Identify.

To map a certificate to a RACF user ID, you must first associate the certificate with
a RACF user ID, using one of the following procedures:
v By using the RACF command RACDCERT. If you use this procedure, the client

certificates are stored in the RACF database, and a user ID is associated with
them. This is an excellent way to create a one-to-one mapping between client
certificates and user IDs, but it does not scale well if large numbers of
certificates must be mapped to a small number of user IDs. For more
information, see “Associating a client certificate with a RACF user ID.”

v By using RACF certificate name filtering. If you use this procedure, rules are
applied to allow multiple certificates to be assigned to a single user ID with one
profile. For more information, see “RACF certificate name filtering” on page 50.

For more information on certificate mapping, see the IBM Redpaper J2C Security on
z/OS at:
http://www.redbooks.ibm.com/redpapers/pdfs/redp4202.pdf

Associating a client certificate with a RACF user ID
You can create a profile that associates a client certificate with a specified user ID.
The profile can then be used for translating a certificate to a user ID, without the
need for a password.
1. Perform the actions described in “Configuring for client certificate mapping” on

page 143.

Chapter 5. Security 49

2. Copy the certificate that you wish to process into an MVS™ sequential file. The
file must have a variable length, blocked records (RECFM=VB) and be
accessible from TSO.

3. Run the RACDCERT command in TSO. The syntax of RACDCERT is:
RACDCERT ADD(’datasetname’) TRUST [ID(userid)]

where:

datasetname
is the name of the data set containing the client certificate.

userid is the user ID to be associated with the certificate. This parameter is
optional. If omitted, the certificate is associated with the user issuing
the RACDCERT command.

When you issue the RACDCERT command, RACF creates a profile in the DIGTCERT
class. This profile associates the certificate with the user ID. You can then use the
profile to translate a certificate to a user ID without giving a password.

For further information on the RACDCERT command, including the format of data
allowed in the downloaded certificate data set, see z/OS Security Server (RACF)
Command Language Reference.

RACF certificate name filtering
With certificate name filtering, distinct client certificates do not have to be defined
to RACF for every individual user.

The association between one or more certificates and a RACF user ID is achieved
by defining a filter rule that matches the distinguished name of the certificate
owner or issuer (CA). A sample filter rule might look like this:
RACDCERT ID(DEPT3USR) MAP SDNFILTER(OU=DEPT1.OU=DEPT2.O=IBM.L=LOC.SP=NY.C=US)

This sample filter rule would associate user ID DEPT3USR with all certificates
when the distinguished name of the certificate owner contains the organizational
unit DEPT1 and DEPT2, the organization IBM, the locality LOC, the state/province
NY and the country US.

Determining the RACF user ID associated with a certificate
The RACFUserid class can be used in conjunction with the CICS Transaction
Gateway security exit to map an ECI request to a RACF user ID, based on the
distinguished name in the SSL client certificate. The class has the following
methods:
v setCertificate(byte[] clientCertificateData);

v getRACFUserid();

Create a RACFUserid as follows:
RACFUserid myUseridObject = new RACFUserid(myCertificate);

This creates an object and automatically populates it with certificate data, without
needing to call the setCertificate(byte[] clientCertificateData); method. When the
object has been created, the getRACFUserid() method can be used to make a
native RACF call to determine the user ID associated with the certificate data. If
successful, it returns a string containing the user ID.

50 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

The SSLServerCompression.java class in the <install_path>/samples/java/com/
ibm/ctg/samples/security subdirectory shows an example of how to use the
RACFUserid class.

For more information on the com.ibm.ctg.util.RACFUserid class, see the
information about Class RACFUserid in the Javadoc.
Related information:
CICS Transaction Gateway security classes

Identity propagation
CICS Transaction Gateway can pass user security identity information (a
distributed identity) from a JEE client in WebSphere Application Server across the
network to CICS Transaction Server for z/OS. The security identity of the user is
preserved for use during CICS authorization and for subsequent accountability and
trace purposes.

Identity propagation provides a way of authorizing requests by associating security
information in WebSphere Application Server with security information in CICS
Transaction Server for z/OS.

CICS Transaction Gateway supports identity propagation for JEE client requests
from WebSphere Application Server to CICS Transaction Server for z/OS. Identity
propagation is supported when using a CICS Transaction Gateway ECI resource
adapter and an IPIC connection to CICS.

Distributed identities can be tracked using the request monitoring exits, see
“Request monitoring exits” on page 307 for more information.

Benefits of using identity propagation
Identity propagation provides end-to-end security and consistent accountability,
when applications in WebSphere Application Server are connected to CICS.

Identity propagation provides the following benefits:
v An end-to-end solution for security when connecting WebSphere Application

Server to CICS Transaction Server for z/OS.
v A unified mechanism for authentication using security information stored in

different formats on different user registries such as IBM Tivoli Directory Server
or WebSphere Portal. For more information, see the documentation for
WebSphere Application Server.

v “Single sign-on” authentication of users in WebSphere Application Server before
they are authorized in CICS Transaction Server for z/OS.

v Consistent accountability.

Configurations that support identity propagation
A range of products and network topologies support identity propagation.

Products that support identity propagation

The following IBM products support identity propagation:
v All versions of WebSphere Application Server supported by CICS Transaction

Gateway. For more information, see “JEE application servers” on page 10.

Chapter 5. Security 51

http://www-01.ibm.com/software/webservers/appserv/was/library/index.html

v Any user registry that is supported by WebSphere Application Server. For more
information, see the documentation for WebSphere Application Server.

v CICS Transaction Server for z/OS Version 4.1 (with APAR PK83741 and APAR
PK95579), or later. For more information, see the CICS Transaction Server for
z/OS information center.

v IBM z/OS Version 1.11 or later.
v IBM RACF Security Server for z/OS Version 5 or later. For more information, see

Introduction to CICS Security with RACF in the CICS Transaction Server for z/OS
information center.

Network topology for using identity propagation

Identity propagation is supported when connecting to CICS using an IPIC
connection. A client authenticated SSL connection is required unless CICS
Transaction Gateway and CICS Transaction Server are on z/OS and on the same
sysplex

For more information about the topologies that are supported by CICS Transaction
Gateway, see “Deployment topologies” on page 2.

The following example shows identity propagation in a remote mode topology:

The user security information consists of a distinguished name and a realm name.
The distinguished name uniquely identifies an entry within a user registry. The
realm name represents a named collection of users and groups that can be used in
a specific security context.

When the user has been authenticated in WebSphere Application Server, the
security information is passed unchanged as a distributed identity to CICS. The
distributed identity is mapped to a RACF user ID, which is used for authorization
by CICS.

Figure 7. Example of identity propagation in a remote mode topology

52 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

http://www-01.ibm.com/software/webservers/appserv/was/library/index.html
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

Precedence of distributed identities over asserted user IDs
A distributed identity takes precedence over user IDs that have been asserted
directly using other mechanisms.

The identity used by CICS Transaction Server depends on whether a distributed
identity has been specified and whether a valid mapping exists:

Distributed identity
supplied and valid RACF
mapping exists

Distributed identity
supplied but valid RACF
mapping does not exist

Distributed identity not
supplied

The distributed identity is
used and any specified user
ID is ignored.

If a user ID is specified and
is valid, that user ID is used.

If a user ID is specified and
is valid, that user ID is used.

If a user is not authenticated by the WebSphere Application Server user registry, a
distributed identity is not used even if the CICS Transaction Gateway identity
propagation login module is enabled. In this situation, if a user ID has been
specified in the connection factory or application, that user ID is used.

Chapter 5. Security 53

54 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Chapter 6. Performance

The performance of individual components, including CICS Transaction Gateway,
can affect overall system performance.
Related reference:
“List of statistics” on page 319
These statistics are available from the CICS Transaction Gateway.
Related information:
“Displaying statistics” on page 315
You can use MVS system commands to display statistical information about the
CICS Transaction Gateway, or obtain statistics using either the C or Java Statistics
API interface.

Performance indicators and factors
The performance of CICS Transaction Gateway can be measured to understand the
factors that affect performance, and to use the information provided to optimize
that performance.

Performance indicators

Performance indicators provide an understanding of which system components
most affect performance and include the following information:
v Processor loading
v Data transfer rates
v Response times.

This information helps you understand the factors that affect CICS Transaction
Gateway performance and achieve the best performance from your system.

EXCI or IPIC

Performance over EXCI is generally better than IPIC. However, IPIC performance
can be greatly improved if a zAAP is deployed which will significantly reduce the
CPU cost per transaction. EXCI is limited to 32K payloads using a COMMAREA,
whereas IPIC payloads can be as large as 50MB using channels and containers.

Factors that can affect performance

System components that can affect performance include:
v Web browsers
v Routers and firewalls
v Application servers
v CICS Transaction Gateway
v CICS servers

The performance of CICS Transaction Gateway also depends on whether:
v Connections are reused
v CICS Transaction Gateway is running in local or remote mode

© Copyright IBM Corp. 2000, 2013 55

v Requests are synchronous or asynchronous, and whether requests are part of
two-phase commit transactions

v Tracing is enabled

Factors that can improve performance

Factors that can help improve performance include:
v The multithreaded model and thread pooling to ensure the efficient reuse of

connections
v Performance tuning and the use of default values to give a good balance

between resource use and the ability to handle increased workload (scalability)
v Data compression can reduce the amount of data flowed over network

connections. For more information see . the client and server compression
sample information in the Programming Guide.

Monitoring performance

Ways of monitoring performance include:
v Performance monitoring tools such as RMF (Resource Management Facility),

request monitoring exits, and IBM Tivoli OMEGAMON XE for CICS (on z/OS)
v Statistics for monitoring and managing system resources.
v For more information see “Statistics and monitoring” on page 6.

Benefits of using a 64-bit Gateway
If you run your Gateway with large numbers of clients and large container
payloads, for example, 2 MB or more, you should consider using a 64-bit z/OS
Gateway.

For the Gateway daemon running under the 64-bit SDK for z/OS. the memory
requirements vary based on environmental factors or the characteristics of the
workload. This topic describes a configuration which could not be achieved with a
Gateway daemon using the 31-bit SDK for z/OS.

In this example, a workload of 250 concurrent clients each sending ECI requests
with 2 MB containers to CICS TS, requires a Gateway daemon defined with 250
connection managers, 250 worker threads, and 250 IPIC send sessions. To avoid
running out of memory you would require a maximum heap size (-Xmx), of at least
1536 MB. Better performance is obtained with a maximum heap size of 2048 MB,
to avoid excessive garbage collection. A Gateway daemon with a heap size of 2048
MB is only possible with the 64-bit SDK for z/OS.

The maximum heap size directly affects the value that must be used for
MEMLIMIT, and the Gateway daemon threads still utilize 31-bit storage. In this
example, the REGION size was set to 300 MB, tuned by reviewing the SE_CELOAL
statistic, and MEMLIMIT set to 3.3 GB.

To tune the heap size, you should review the SE_CHEAPGCMIN statistic as a
percentage of SE_SHEAPMAX to ensure the value is in the range 40-70%. If the
percentage goes above 70% you can increase the maximum heap size. If the
percentage is below 40% then you can reduce the maximum heap size.

Increasing the ECI payload size to 4 MB containers, the heap size needs to be
increased to avoid excessive garbage collection. In the example of 250 clients, -Xmx

56 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

was set to 2048 MB. Increasing the heap size requires MEMLIMIT to be increased. In
this example, 3.73 GB was used, so MEMLIMIT was set to 4 GB.

Gateway daemon performance improvements may also be gained using the Java
directive -Xcompressedrefs with 64-bit SDK for z/OS. The compressed references
feature was added to the IBM Developer Kit for Java 6, 64-bit edition, J9 Java
virtual machine (JVM) and Just-in-Time (JIT) compiler to provide relief for memory
footprint growth incurred when migrating from a 31-bit JVM to a 64-bit JVM.

Table 1 contains some example scenarios displaying the benefits of using a 64-bit
gateway with increasing channel sizes: All scenarios use 200 clients, with 250
connection managers, 250 worker threads and 250 IPIC Send Sessions defined in
the configuration file.

Table 2. Scenarios using 64 bit Gateway. Benefits of using a 64-bit gateway with increasing
channel sizes.

Channel
Size

MEM
LIMIT

REGIO
N

SE_CEL
OAL

SE_C31
MAX

Max
Heap

SE_CHE
APGC
MIN

SE_S
HEAP
MAX

Heap
Occu
pancy

1 MB 4 GB 300 MB 262 MB 1688 MB 2048
MB

320010016 2147483648 15%

2 MB 4 GB 300 MB 262 MB 1688 MB 2048
MB

315898512 2147483648 15%

3 MB 4 GB 300 MB 262 MB 1688 MB 2048
MB

492042016 2147483648 23%

4 MB 4 GB 300 MB 262 MB 1688 MB 2048
MB

451839424 2147483648 21%

For optimum performance you should aim for a heap occupancy of between 30%
and 70%.

In a similar scenario with a 31-bit Gateway, only a 1 MB channel with 200 clients is
possible. 2 MB channels caused the Gateway daemon to run out of memory. See
Table 2.

Table 3. Scenarios using 31 bit Gateway. A scenario using 31-bit gateway to compare with
64-bit gateway.

Channel
Size

MEM
LIMIT

REGIO
N

SE_CEL
OAL

SE_C31
MAX

Max
Heap

SE_CHE
APGC
MIN

SE_S
HEAP
MAX

Heap
Occu
pancy

1 MB n/a 800 MB 800 MB 1688 MB 500
MB

195826792 524288000 37%

Tuning the Gateway
You can tune the performance of your system by modifying values such as the
number of connection manager threads and worker threads. Other values can also
be modified to improve performance.

The default values that have been chosen for configuration and tuning aim to give
a compromise between:
v Limiting the system resources used by CICS Transaction Gateway after it has

started

Chapter 6. Performance 57

v Giving the CICS Transaction Gateway the flexibility to handle increases in
workload

The following factors affect performance; you might need to alter the default
configuration to suit your system environment:
v Connection manager threads
v Worker threads
v Communications protocol
v Display TCP/IP host names
v Timeout values
v Connection logging settings

Connection manager threads

If the value specified for Initial number of connection manager threads is too
high, your system will waste resources managing the threads that are not needed.
See “Initial number of connection manager threads” on page 84 for more
information.

If the value for Maximum number of connection manager threads is too low to
meet all requests from applications, each new request that requires a connection
manager thread must wait for a thread to become available. If the waiting time
exceeds the value specified in the Connection timeout parameter, the CICS
Transaction Gateway refuses the connection. See “Maximum number of connection
manager threads” on page 84 for more information.

The design of your applications determines the number of connection manager
threads you need. Incoming connections to CICS Transaction Gateway could be
from a servlet, with each copy of the servlet issuing its own ECI requests, but
sharing a single connection manager thread. Alternatively, the application might
create a pool of connections, and ECI requests could be issued onto any connection
from the pool.

CICS Transaction Gateway creates a new TCP/IP connection, each time a Java
client side application creates a new JavaGateway object. This means that system
performance is better if your applications issue many ECI requests using the same
JavaGateway object, and from within the same thread, than if they create a new
JavaGateway object for each request.

Flowing multiple requests through the same JavaGateway object also reduces the
system resources required to create, and to destroy, JavaGateway objects.

Worker threads

Worker threads handle outbound connections between CICS Transaction Gateway
and your CICS server. The design of your applications, and the workload that you
need to support, affects the number of worker threads you need: the longer your
CICS transactions remain in process, the more worker threads you need to
maintain a given transaction rate.

If the value specified for Initial number of worker threads is too high, CICS
Transaction Gateway uses resources to manage threads that it does not need.

58 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

If the value is too low, CICS Transaction Gateway uses resources to search for
available worker threads.

See “Initial number of worker threads” on page 84 for more information about the
Initial number of worker threads setting.

When using ECI to call the same CICS program, you can estimate the number of
worker threads you need to support a given workload by multiplying the
following values:
v The number of transactions per second passing through CICS Transaction

Gateway
v The average transaction response time through CICS Transaction Gateway in

seconds. You can use the CS_LAVRESP statistic to calculate this response time.

An MVS address space cannot open more than the maximum number of EXCI
pipes set by CICS. This means that you cannot improve performance by specifying
a value greater than that set by CICS for “Maximum number of worker threads”
on page 85. However, if your CICS transactions remain in process for a long time,
all of the EXCI connections could become busy, leaving no worker threads
available.

You can increase performance by starting multiple gateways; see “Starting multiple
CICS Transaction Gateways” on page 254.

Display TCP/IP host names

Selecting this option might cause severe performance reduction on some systems.
See “Display TCP/IP hostnames” on page 87.

Timeout values

It is unlikely that you can improve performance by changing the default timeout
values. However, you might need to change them for particular applications. See
“Configuring Gateway daemon settings” on page 83 for more information on these
configuration parameters.

Connection logging

The Gateway configuration setting, Log Client connections and disconnections,
controls whether or not CICS Transaction Gateway writes a message each time that
a client application program connects to, or disconnects from, the Gateway
daemon. The default is for these messages not to be written. Selecting this setting
can significantly reduce performance, especially in a system where client
application programs connect and disconnect frequently. See “Log Client
connections and disconnections” on page 87.

Local mode

Design your system configuration to use local mode communication between
components wherever possible.

In local mode, WebSphere Application Server and the CICS Transaction Gateway
are installed on the same z/OS image. Calls to the CICS Transaction Gateway are
made using a local protocol. This allows calls from the CICS resource adapters to
go directly to the CICS Transaction Gateway JNI layer.

Chapter 6. Performance 59

Remote mode

In remote mode, all calls to the CICS Transaction Gateway are made using a
standard network protocol such as TCP or SSL. This will happen even if
WebSphere Application Server and the CICS Transaction Gateway are installed on
the same machine. If your configuration has components running in remote mode,
additional service provider daemons will be running to process and forward
requests between components. These extra demands on the system can have an
adverse effect on performance.
Related reference:
“List of statistics” on page 319
These statistics are available from the CICS Transaction Gateway.
Related information:
“Displaying statistics” on page 315
You can use MVS system commands to display statistical information about the
CICS Transaction Gateway, or obtain statistics using either the C or Java Statistics
API interface.

Threading model
A multithreaded model provides threads that are used for handling network
connections. Threads are also assigned to the requests made by remote clients and
the replies received from CICS.

The threading model uses the following objects:
v Connection manager threads. These threads manage the connections from a

particular remote Client. When it receives a request, it allocates a worker thread
from a pool of available worker threads to run the request.

v Worker threads. These threads are allocated to run requests from remote Clients.
When a worker thread finishes processing it returns to the pool of available
worker threads.

You can set both the initial and maximum sizes of the resource pools for these
objects; see “Gateway daemon resources” on page 83 for information on setting
configuration parameters.

You can also specify these limits when you start CICS Transaction Gateway. For
more information see “Starting from a command line” on page 254.

Consider these thread limits when setting the number of connection manager and
worker threads:

System-wide limit of the
maximum number of threads

Process limit of the number of threads

This might be restricted by
the total number of MVS Task
Control Blocks (one is created
for each UNIX System
Services thread.)

This limit is governed by the UNIX System Services
parameters MAXTHREADS and MAXTHREADTASKS.

The total number of threads in use by the Gateway daemon can be displayed
using the MVS system command /D OMVS,L,PID=nnnn , where nnnn is the
process ID of the JVM running the Gateway daemon, as displayed using the SDSF
PS menu option. You can also determine what values are set for the UNIX System

60 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Services parameters MAXTHREADS and MAXTHREADSTASK by examining the
appropriate BPXPRMxx member of SYS1.PARMLIB. For more information about
these parameters, see the z/OS UNIX System Services Planning.

The threading model is illustrated in the following figure:

For information on how EXCI pipes constrain the maximum number of threads,
see “Maximum number of worker threads” on page 85.
Related reference:
“List of statistics” on page 319
These statistics are available from the CICS Transaction Gateway.
Related information:
“Displaying statistics” on page 315
You can use MVS system commands to display statistical information about the
CICS Transaction Gateway, or obtain statistics using either the C or Java Statistics
API interface.

Tuning the gateway to avoid out of memory conditions
The CICS Transaction Gateway statistics provide information to help you avoid out
of memory conditions.

You can use the statistics that are generated by CICS Transaction Gateway to
establish whether the amount of available virtual storage being used by CICS
Transaction Gateway might exceed the amount that is available to the CICS
Transaction Gateway address space.
v CM_CCURR
v CM_SMAX
v SE_SELIM

Figure 8. CICS Transaction Gateway Threading model for TCP/IP and SSL protocols using a persistent socket

Chapter 6. Performance 61

|

|
|

|
|
|
|

|

|

|

v SE_CELOAL
v SE_C31MAX
v SE_SHEAPMAX
v WT_SMAX
v WT_CCURR

Gateway daemon storage requirements, with 31-bit Java

The numbers quoted are based upon observations with 31-bit SDK for z/OS, Java
Technology Edition, V7 (SR1), running with the default operating system thread
stack size 256K.

Three factors affect the 31-bit virtual storage requirements of a Gateway daemon
address space:
v The maximum JVM heap size, SE_SHEAPMAX. The default value is 128 MB;

this is sufficient for the default values of the thread parameters (100 connection
manager, 100 worker threads). Larger heaps must be considered where IPIC
connections are used, and the workload includes larger channel payloads. You
should allow 300KB for each IPIC SENDSESSION.

v The stack storage used by the Gateway daemon threads; plan for 128 KB per
Connection Manager thread, and 1200 KB per worker thread. If EXCI is disabled,
allow 650 KB per Worker thread.

v The storage footprint required to run the Gateway daemon; this is
approximately 70 MB per Gateway but it varies if you use additional functions
such as XA, WLM health reporting, SMF recording, and SSL.

If a Gateway daemon attempts to create a new thread and the additional stack
storage needed requires more virtual storage than is available to the address space,
an out of memory condition is produced. This condition is likely to cause the
Gateway daemon to shut down. Use the following calculation to avoid these out of
memory conditions; it estimates the potential maximum virtual storage
requirements of the Gateway daemon. The calculation gives a result in kilobytes.

When EXCI is enabled (by default):
70000 + (SE_SHEAPMAX / 1024) + (128 * CM_SMAX) + (1200 * WT_SMAX)

When EXCI is disabled (environment variable CTG_EXCI_INIT=NO):
70000 + (SE_SHEAPMAX / 1024) + (128 * CM_SMAX) + (650 * WT_SMAX)

When an application requires the use of very large numbers of connection manager
and worker threads, and demands on memory usage are high, consider splitting
the application across a number of LPARs, or across several machines. Servicing
very large numbers of Java threads within a single JVM imposes significant
performance overheads.

If you increase the JVM maximum heap size, ensure that you also increase the
address space limit by the same amount. Increasing the JVM maximum heap size
reduces the amount of memory that is available for the creation of worker threads
and connection manager threads, and an out of memory condition might occur
unless you have increased the address space limit by the same amount.

A small saving per thread can be made by using the minimum operating system
thread stack size of 128k (-j-Xmso=128K via CTGSTART_OPTS).

62 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

|

|

|

|

|

|

|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|

|

|

|

|
|
|
|
|

|
|
|
|
|

|
|

Gateway daemon storage requirements, with 64-bit Java

The Gateway daemon memory requirements when running under 64-bit SDK for
z/OS, Java Technology Edition, V7 are very different from 31-bit. For more
information, see “Benefits of using a 64-bit Gateway” on page 56.

31-bit storage tuning

This information applies to 31-bit storage tuning, when you run the Gateway
daemon for z/OS with 31- or 64-bit Java. However, this is most relevant if you are
use 31-bit Java. The 31-bit virtual storage used by a Gateway daemon address
space, that is reported by the SE_CELOAL statistic, cannot exceed the available
31-bit storage. Precisely how much 31-bit storage is available, and how to tune the
31-bit storage for a Gateway daemon system depends upon whether a specific
limit is imposed, for example; REGION=500M, or if the Gateway daemon is set to
use the maximum available, for example; REGION=0M.

Running with a 31-bit storage constraint

Running a Gateway daemon with an upper limit on 31-bit storage set, that is with
a non-zero REGION parameter, the amount of 31-bit storage that is currently used
by the Gateway daemon, statistic SE_CELOAL, must not approach the available
limit, SE_SELIM. When these two statistics become too near in value,
OutOfMemoryExceptions might occur that cause the Gateway daemon to fail.

In this case, statistic SE_C31MAX provides a dynamic indication of the limit of the
available 31-bit storage. Therefore, you can use SE_C31MAX as a guide for
increasing REGION size, and it represents the largest size that REGION can
achieve. However, SE_C31MAX is a dynamic value, and is at a lowest value
during peak workload. You should adopt this lowest value as guidance if your
goal is to maximize the 31-bit storage usage in a single Gateway daemon.

Typically, when REGION is set to a non-zero value you will observe the following
relation between the SE resource group statistics:
SE_CELOAL < SE_SELIM < SE_C31MAX

These three statistics identify:
v How close the Gateway daemon is to the configured 31-bit storage constraint,

SE_CELOAL vs SE_SELIM .
v By how much the Gateway daemon 31-bit storage constraint can be increased,

SE_SELIM vs SE_C31MAX.

Running without a 31-bit storage constraint

Running a Gateway daemon with no upper limit on 31-bit storage set, for example;
REGION=0M, the amount of 31-bit storage that is currently used by the Gateway
daemon, statistic SE_CELOAL, must not approach the limit of 31-bit storage,
SE_C31MAX. When these two statistics become too near in value,
OutOfMemoryExceptions might occur that cause the Gateway daemon to fail.

In this case, statistic SE_C31MAX provides the only accurate upper limit of the
amount of 31-bit storage that is currently used by the Gateway daemon, statistic
SE_CELOAL. This is because when REGION=0M is used, the SE_SELIM value
does not account for ELSQA storage, which varies dynamically in relation to
workload.

Chapter 6. Performance 63

|

|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|
|

|

|

|
|

|
|

|

|
|
|
|
|

|
|
|
|
|

Typically, when REGION is set to zero, REGION=0M, then you can observe the
following relation between SE resource group statistics:
SE_CELOAL < SE_C31MAX < SE_SELIM

Observing statistics SE_CELOAL and SE_C31MAX can help you to:
v Evaluate the potential for increasing numbers of thread or heap size in a

particular Gateway daemon.
v Move to a configuration with a constraint on 31-bit virtual storage.

The lowest value of SE_C31MAX, observed at peak workload, represents the
highest value which you might impose as a constraint on 31-bit virtual storage for
a Gateway daemon. The maximum value of SE_CELOAL, observed at peak
workload, represents the lowest value which you might impose as a constraint on
virtual 31-bit storage for a Gateway daemon.

Tuning the JVM
Performance considerations related to Java include the size of the Java heap,
whether JIT (Just In Time compiler) is enabled, and whether client applications are
using persistent connections.

Maximum heap size

If your system requires large numbers of connection manager threads you might
need to increase the heap size to improve performance. For more information, see
“Configuring Java shared classes” on page 97.

“System environment statistics” on page 330 are available to show the following
Java statistical information:
v Region storage usage on z/OS
v JVM minimum and maximum heap settings
v JVM heap size after last garbage collection (GC)
v Garbage collection statistics

Just-In-Time (JIT) compiler

Use the java -version command to find whether the JIT is enabled; it is enabled
by default. Immediately after a CICS Transaction Gateway starts, performance
might be relatively slow because of JIT overheads. See your JVM documentation
for information about JIT techniques.

JavaGateway objects

Performance is better if you flow multiple requests using the same JavaGateway
object than if you create a JavaGateway object with each request. Whenever you
create and destroy a new JavaGateway object you use additional system resources
for creation and destruction of the object itself, creation and destruction of any
associated sockets, and garbage collection.

Client connections

Performance is improved if client applications that flow multiple requests to the
CICS TG use the same connection for all of the requests. Whenever a connection is
closed and reopened there is an overhead of cleaning up the resources from the old
connections and allocating new resources for the new connection.

64 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

|
|

|

|

|
|

|

|
|
|
|
|

Tuning JEE
Because of the overheads associated with XA transactions, the use of network and
processor resources is higher when using the XA transactional support provided by
cicseci.rar with the xasupport custom connection factory property set to on.

The decision on how to configure the resource adapter depends on the transaction
support required by the JEE application. For more information see“Transaction
management models” on page 170.

For transactions that use XA, set xasupport to on in the connection factory. For
performance reasons, you should define a second connection factory with
xasupport set to off for those transactions that do not use XA.

WebSphere Application Server connection pooling

If the Client application is running under WebSphere Application Server,
connection pooling can be used in remote mode to reduce the overheads associated
with establishing connections.

Configuring z/OS parameters
z/OS configuration parameters needed to run CICS Transaction Gateway

Unlike EXCI connections, IPIC provides the ability to use more than 250 worker
threads in a single Gateway. To enable this function the Gateway daemon must be
started with environment variable CTG_EXCI_INIT=NO. If CTG_EXCI_INIT=NO is not
set, EXCI support is loaded at Gateway daemon startup which restricts the
maximum number of threads to the maximum EXCI LOGONLIM of 250.

Region size

The JVM runs within the CICS Transaction Gateway address space. This means
that, if your application requires CICS Transaction Gateway to create large
numbers of threads, for example connection manager threads, you might need to
increase the region size. You define the region size with the REGION parameter in
the EXEC statement in the CICS Transaction Gateway start JCL. See “Region size
considerations” on page 252 for more information on this parameter.

EXCI considerations
For EXCI workloads, CICS Transaction Gateway and CICS must be configured to
ensure there are is not an EXCI pipe shortage.

A connection manager uses one worker thread for every request to run a
transaction in CICS. A worker thread allocates one EXCI pipe (MRO session) to
every CICS server (APPLID) with which it communicates. This can be limited to a
single pipe using the setting CTG_PIPE_REUSE.

Configure your system as follows:
v Set the maximum number of connection manager threads (maxconnect) in the

Gateway daemon to the same value as the maximum number of connections in
all connection factories that connect to the Gateway daemon.

Chapter 6. Performance 65

v Set the initial number of connection manager threads (initconnect) to the same
value as the minimum number of managed connections in the connection pool
in all connection factories that connect to the Gateway daemon.

v Set the maximum number of worker threads to a value that meets both the
following criteria:
– Less than or equal to the maximum number of connection manager threads.
– Less than or equal to the EXCI LOGONLIM.

v Set the initial number of worker threads to the same value as the initial number
of connection manager threads.

v Set the RECEIVECOUNT for the CICS SESSIONS definition to a value that
meets both the following criteria:
– No less than the value for EXCI LOGONLIM.
– The same value as the number of worker threads in the Gateway daemons

that can connect through this connection (if multiple Gateway daemons share
a connection).

When EXCI connections are used by a Gateway daemon, the maximum number of
worker threads is restricted to LOGONLIM. Because all CICS server connections
share the same pool of worker threads, this restriction also affects any IPIC
connections. If EXCI has been disabled using the CTG_EXCI_INIT parameter, this
restriction does not apply.

EXCI connections

When you define your EXCI connections you can choose between generic EXCI
pipes and specific EXCI pipes. Specific EXCI pipes give slightly better performance.
See “CICS server connection definition” on page 122 for more information on
selecting your EXCI connections.

EXCI resource shortage

An insufficient number of EXCI pipes causes intermittent resource shortage errors
to be reported to the API. Requests receive ECI_ERR_RESOURCE_SHORTAGE
errors. This can occur when any of the following events is happening.
v Several CICS servers are being used by each Gateway and the

CTG_PIPE_REUSE=ALL model is in use.
v Large numbers of worker threads are being used.
v Requests receive EXCI return code 608 if the value of LOGONLIM is exceeded, or

EXCI return code 202 if the number of CICS receive sessions is exhausted.
v Significant numbers of requests are being timed out by the EXCI timeout

mechanism.
v Requests receive EXCI return code 202 if the number of CICS receive sessions is

exhausted.

The EXCI options table, generated by the DFHXCOPT macro, enables you to
specify the time interval, in hundredths of a second, during which the EXCI waits
for a DPL command to complete.

If CS_CALLOC = CS_SLOGONLIM all EXCI pipes are in use. Resource shortage errors
might occur because there are not enough EXCI pipes available to support the
number of incoming requests from the worker threads.

66 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

If several CICS servers are being used by each Gateway, change the CICS
Transaction Gateway pipe usage model by setting the CTG_PIPE_REUSE=ONE
configuration parameter.

If large numbers of worker threads are being used, increase the value of the CICS
LOGONLIM system parameter for the LPAR.

If large numbers of worker threads are in use, or significant numbers of requests
are being timed out by the EXCI timeout mechanism, and the value of the
RECEIVECOUNT parameter in the CICS SESSIONS definition is less than double the
value of the number of worker threads created (WT_CCURR), increase the value of
the RECEIVECOUNT parameter in the CICS SESSIONS definition to be at least double
the value of WT_CCURR.

Other factors

When you define your EXCI connections you can choose between generic EXCI
pipes and specific EXCI pipes. Specific EXCI pipes give slightly better performance.
See “CICS server connection definition” on page 122 for more information on
selecting your EXCI connections.

IPIC considerations
When running the Gateway daemon under load and using IPIC connected servers,
you might need to increase the size of the JVM heap for the Gateway daemon if
performance problems are encountered.

When running with container sizes greater than 1 MB, it might be necessary to
increase the JVM resources for the Gateway daemon and CICS.

The -Xmx and -Xss parameters might need to be changed for the Gateway daemon.
v Increase the maximum amount of heap memory available to the Gateway

daemon using the -Xmx parameter. Failure to increase the heap could result in a
JVM exception as a result of a java.lang.OutOfMemory error. Be aware that
increasing the maximum heap size will reduce the amount of available process
memory and therefore the number of Java threads that can be created. See
“Tuning the gateway to avoid out of memory conditions” on page 61 for more
information.

v Increase the stack available to the Java threads using the -Xss parameter. The
default value of -Xss is 256 KB with Java V7 31-bit, and 512 KB with Java V7
64-bit. The default settings can be found in the Java Diagnostics Guide. Running
with the a 256 KB setting for -Xss is suitable for container sizes up to 50 MB.
Failure to increase the Java thread stack size might result in a JVM exception as
a result of a java.lang.StackOverflowError.

The following values might need to increase for a CICS TS server.
v MEMLIMIT - Is the limit for above-the-bar storage for the CICS server. Abend

codes AITJ and APCG are an indication that MEMLIMIT might be too small.
v EDSALIM - The EDSALIM system initialization parameter specifies the

upper-limit of the total amount of storage within which CICS can allocate the
individual extended dynamic storage areas (EDSAs) that reside above 16 MB but
below 2 GB. Abend code AIPE is an indication that the EDSALIM memory
might be too small.

Chapter 6. Performance 67

For more information about abend codes and their meaning, see CICS Transaction
Servers.

For information about how statistics might indicate that a JVM is short of heap
storage see JVM stress causing poor performance in the Gateway daemon.

While the default maximum heap size (128MB) is adequate for an EXCI workload,
it might be necessary to increase this to 256MB or 512MB for an IPIC workload.
Ensure that the region size is increased accordingly to match any increases in heap
size, otherwise the Gateway daemon might fail with a java.lang.OutOfMemory
error. See “Configuring Java shared classes” on page 97.

Client applications
The parameters you set for your application can affect performance.

ECI COMMAREA size

The size of the ECI COMMAREA has a large effect on performance. If you make
the COMMAREA larger, you need more system resources to process it, and your
response times are longer.

The setCommareaOutboundLength method, which is part of the ECIRequest
object, is particularly important to performance. The amount of data that an
application sends in the COMMAREA flow to CICS might be small, and the
amount of data expected from CICS in return might be unknown. To improve
performance significantly, and reduce network loading:
v Use the setCommareaOutboundLength method to ensure that you send only

the required data in the outbound flow to CICS, and not the full
Commarea_Length.
CICS removes any null data from the COMMAREA in the return flow, and the
CICS Transaction Gateway automatically pads out the nulls and returns the full
COMMAREA to the application.

v Use the getInboundDataLength method to show the amount of non-null data
returned.

v You can use either the setCommareaInbound method or null stripping. Use
setCommareaInbound when the size of inbound data is known in advance.

See the information about ECI performance considerations when using
COMMAREAs in the CICS Transaction Gateway for z/OS: Programming Guide for
more information.

ECI containers

The number and size of ECI containers have an effect on performance. As you
increase the number and size of your containers, you need more system resources
to process them, and your response times are longer. Load balancing can help
control the flow of your data if you use large containers with multiple
simultaneous requests across a single gateway.

Synchronous or asynchronous ECI calls

CICS Transaction Gateway has to do less processing to handle a synchronous ECI
call than to handle an equivalent asynchronous call. Also, synchronous ECI calls
create fewer network flows than asynchronous calls. This means that synchronous

68 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

http://www-01.ibm.com/software/htp/cics/tserver/
http://www-01.ibm.com/software/htp/cics/tserver/

ECI calls give better performance than asynchronous calls.

Extended logical units of work

Take care when extending a logical unit of work across multiple program link calls
that might span a long time period (for example, user thinking time). The logical
unit of work holds various locks, and other CICS resources, on the server. This
might cause delays to other users who are waiting for the same locks and
resources.

Also, each logical unit of work occupies one CICS non-facility task for the duration
of its execution. This means that you must define enough free tasks in the CICS
server to service the maximum expected number of concurrent calls.

Performance monitoring tools
The performance monitoring tools provide a way of measuring system
performance characteristics such as transaction throughput and processor usage.

Resource Management Facility (RMF™)

This tool collects information about activity for selected areas of the system.
Information is collected in the form of System Management Facility (SMF) records.
You can use the tool to measure processor and I/O activity in the CICS Transaction
Gateway address space, and also, for example, to measure similar activity in the
CICS server and WebSphere. For more information see the z/OS Resource
Management Facility (RMF) Performance Management Guide, SC33-7992.

Request monitoring exits

These exits are applications written by independent software vendors that can be
called at significant points in the request flow through the Gateway daemon and
Gateway classes. Request monitoring exits are an important tool used when
analyzing transaction flows during problem determination and performance
tuning.

IBM Tivoli OMEGAMON XE for CICS

This tool monitors and manages CICS transactions and resources. IBM Tivoli
OMEGAMON XE for CICS quickly detects and isolates problems when they occur
on CICS systems.

Refer also to the performance and tuning documentation for WebSphere, TCP/IP,
CICS Transaction Server for z/OS, and TXSeries and the documentation supplied
with your operating system.

Statistics and performance assessment
Use statistics to assess system performance and to identify and resolve
performance problems.

Indicators of performance problems are poor response time, and out of memory
conditions. Statistics provide the information needed to improve system
performance.

Chapter 6. Performance 69

Investigating poor response times
Different system configurations and loads can lead to poor response times. Use the
statistics provided by CICS Transaction Gateway to identify possible causes of poor
response times and improve them.

You can use the statistics that are generated by CICS Transaction Gateway to
establish the reasons why response times might be poor. The following statistics
contain advice for improving poor response times.

Investigate slow transaction response times in CICS

Slow transaction processing times in CICS cause increased response times. This can
occur when a CICS system becomes constrained, or when interconnected database
systems cause delays in transaction processing.

Investigate CICS response times using CICS monitoring facilities and resolve any
constraints that you find. Consider the setting of MAXTASK and TRANCLASS
CICS server parameters.

Monitor the CICS TG statistics CS_IAVRESP and CSx_IAVRESP for each CICS
server. If the value of CS_IAVRESP is higher than you anticipate for the
transaction, a CICS server might be constrained, or interconnected database
systems might be causing delays in transaction processing.

Worker thread queuing in the Gateway daemon

Transaction requests queue in the Gateway daemon due to high usage of worker
threads. This can occur when the number of allocated connection managers is
greater than the number of available worker threads.

You can establish whether your worker threads have been queuing this is the case
by considering the value in WT_ITIMEOUTS. If WT_ITIMEOUTS > 0 worker threads
have been queuing. Also you can establish whether all your worker threads are in
use by considering the value in WT_CCURR. If WT_CCURR = WT_CALLOC all worker
threads are in use.

Increase the number of worker threads by amending the value of the maxworker
configuration parameter to be equal to that of the number of connection managers.
You might need to increase the EXCI pipe limits, see EXCI resource shortage.
Consider reducing the value of the workertimeout configuration parameter if the
queuing time is unacceptably high.

I/O errors during connection to the Gateway daemon

An insufficient number of configured connection managers in the Gateway daemon
causes I/O errors in a remote client. This can occur when all available connection
manager threads are allocated to remote clients.

If CM_CALLOC = CM_SMAX all available connection manager threads are allocated to
remote clients.

Increase the maximum number of connection managers by increasing the value of
the maxconnect configuration parameter. Consider the maximum number of worker
threads that you have defined.

70 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Constraints in the network between the remote client and the
Gateway daemon

The transmission of large amounts of data causes increased response times due to
high network latency over the TCP/IP connection with the Gateway daemon. This
can occur when large payloads, such as 32 KB COMMAREAs, are transmitted
without the network payload being optimized using null truncation.

If the response time at the remote client is higher than the value reported in
GD_LAVRESP or GD_IAVRESP, there might be constraints in the network between
the remote client and the Gateway daemon. If so select one or both of the
following actions:
v Investigate and amend the network bandwidth
v Modify your application design to optimize data flows by using COMMAREA

null truncation, or by using the setCommareaOutboundLength() or
setCommareaInboundLength() method. If your application is using containers,
modify the design of the application to use smaller containers.

Constraints in the network between CICS Transaction Gateway
and CICS

The transmission of large amounts of data causes increased response times due to
network latency over the connection between CICS Transaction Gateway and CICS.
This can occur when large payloads, such as 32 KB COMMAREAs, are transmitted
without the network payload being optimized using null truncation.

If GD_IAVRESP - CS_IAVRESP = a high value there might be constraints in the
network between CICS Transaction Gateway and CICS. If so select one or more of
the following actions:
v Investigate and amend the network bandwidth.
v Modify your application design to optimize data flows by using COMMAREA

null truncation, or by using the setCommareaOutboundLength() or
setCommareaInboundLength() method.

JVM stress causing poor performance in the Gateway daemon

In certain circumstances, the Gateway daemon can suffer poor performance if it
spends a large proportion of its time allocating storage or performing garbage
collection. This can occur if the default JVM heap size (128 MB) is used in an
environment where large payloads (those greater than 16 KB) are in use and a
large number of worker threads (more than 200) are in use concurrently.

You can establish whether Gateway processing time is high by using the statistics
GD_IAVRESP and CS_IAVRESP. If GD_IAVRESP-CS_IAVRESP > 100 milliseconds
Gateway processing time is high.

You can establish whether connection managers are queuing for worker threads by
using the statistics CM_IALLOCHI and WT_IALLOCHI. If (CM_IALLOCHI >
WT_IALLOCHI) and WT_IALLOCHI > 0 connection managers are queuing for worker
threads.

You can establish whether JVM garbage collection (GC) is constrained by using the
following statistics SE_CHEAPGCMIN, SE_SHEAPMAX, SE_IGCTIME,
GD_IRUNTIME and SE_IGCCOUNT. If:

Chapter 6. Performance 71

a. GC does not free at least 50% of the heap, that is
SE_CHEAPGCMIN/SE_SHEAPMAX > 50%

b. Time spent in GC is more than 10% of processing time, that is
SE_IGCTIME/1000/GD_IRUNTIME > 10%

c. Period between GC events is less than once per second, that is
GD_IRUNTIME/SE_IGCCOUNT < 1s

If any of these three conditions are true the JVM GC is constrained. If so increase
Gateway daemon minimum and maximum JVM heap sizes and the associated
region size

Note: SE_IGCTIME is measured in milliseconds and GD_IRUNTIME is measured
in seconds.

Tracing
Full tracing of CICS Transaction Gateway can degrade system performance and
should not be used in a production environment.

Where possible, try to measure response times through the different parts of your
system, without using tracing, to find where delays are happening. For example,
you can measure response times at the client application, and also through CICS
and WebSphere. For more information, see “Investigating poor response times” on
page 70.

72 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Chapter 7. High availability

High availability is a key feature of CICS Transaction Gateway on z/OS. With a
system solution that delivers high availability, any single failure does not cause
failure of the total solution and increased capacity can be provided by adding
additional components. High availability is available for all types of ECI request
including SYNCONRETURN, extended LUW, two-phase commit XA transactions
and all types of ESI request.

High availability of the Gateway daemon uses TCP/IP load balancing to spread
connections across a highly available Gateway group. You can also increase the
efficiency of your load balancing function by taking account of CICS server status
provided by dynamic feedback to the IBM z/OS Workload Manager (WLM).
Related concepts:
“Health monitoring” on page 74
A TCP/IP load balancer that is allocating a connection to the Gateway daemon
detects whether or not a CICS server is available. The Gateway daemon reports the
health of its CICS server connections to the TCP/IP load balancer.
“TCP/IP load balancing”
Load balancing ensures high system availability through the distribution of
workload across multiple components.
“Dynamic server selection” on page 77
Dynamic server selection (DSS) provides the CICS Transaction Gateway
administrator with several mechanisms for dynamically controlling the flow of
work to CICS servers in a high availability operating environment. DSS also
provides flexibility for deployment or change in environment.
Related tasks:
“Determining health status” on page 260
The current health status is available in the GD_CHEALTH statistic. This
information describes how to find the current health status.

TCP/IP load balancing
Load balancing ensures high system availability through the distribution of
workload across multiple components.

TCP/IP load balancing provides high availability of the Gateway daemon by
distributing connections from clients across multiple Gateway daemons. The
efficiency of load balancing can also be increased by taking into account CICS
server status provided by dynamic feedback to the IBM z/OS Workload Manager
(WLM).

When TCP/IP load balancing is being used, a connection request from a Client
application is received through a network socket by the TCP/IP load balancing
component. This component decides which Gateway daemon in the Gateway
group receives the request. A connection is established to the chosen Gateway and,
when it is established, requests from the Client application continue to go through
the same connection to the chosen Gateway daemon. The Client application cannot
determine which Gateway daemon instance is selected.

© Copyright IBM Corp. 2000, 2013 73

If a problem occurs, such as a temporary network failure, or an unplanned
shutdown of CICS Transaction Gateway or WebSphere Application Server, the
existing connection is lost. The next time a request is received, a new connection is
created. This connection can go to any Gateway daemon instance in the Gateway
group.

An IPIC connection between CICS Transaction Gateway and a CICS server must
not be load balanced through any TCP/IP port sharing or load balancing software.

To support TCP/IP load balancing for XA requests a highly available Gateway
group (HA group) must be defined. For more information, see “Highly available
Gateway group” on page 76.

The use of the APPLID qualifier has implications for CICS connections. For more
information, see IPIC server connections.

Port sharing
TCP/IP port sharing enables requests for work to be shared between several
Gateway daemons through a single TCP/IP port. Port sharing provides TCP/IP
load balancing in a single LPAR.

When connections are established between a Client application and a Gateway
daemon, the TCP/IP port sharing component of the z/OS TCP/IP
Communications subsystem distributes requests across multiple Gateway daemons.
When the connection is established, subsequent requests from the Client
application continue to use the same connection.

TCP/IP port sharing is included in Scenario SC03.

Sysplex Distributor
Sysplex Distributor is the strategic IBM solution for connection workload balancing
across a z/OS sysplex. Sysplex Distributor provides TCP/IP load balancing across
multiple LPARs.

When a connection between a Client application and a Gateway daemon is
established, Sysplex Distributor distributes requests across multiple Gateway
daemons. When the connection is established, requests from the Client application
continue to use the same connection.

Sysplex Distributor can be combined with TCP/IP port sharing.

For more information about Sysplex Distributor, see the publications in the z/OS
Communications Server library at:

http://www.ibm.com/software/network/commserver/zos/library/.

Health monitoring
A TCP/IP load balancer that is allocating a connection to the Gateway daemon
detects whether or not a CICS server is available. The Gateway daemon reports the
health of its CICS server connections to the TCP/IP load balancer.

The best results are obtained if one Gateway daemon connects to one CICS server.
If a Gateway daemon connects to more than one CICS server, a failure in one CICS
server may prevent work from being sent to the others.

74 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

http://www.ibm.com/software/network/commserver/zos/library/

Sysplex Distributor and TCP/IP port sharing can both use health monitoring when
allocating new connections. If you do not activate health reporting in the Gateway
daemon, statistics are still collected by the Gateway daemon, but are not reported
to the TCP/IP load balancer.

Health reporting is effective exclusively in TCP/IP load balancing topologies with
CICS Transaction Gateway running in remote mode. Over intervals specified by
the health interval setting, the Gateway daemon monitors certain error codes to
determine the health of communications with CICS. The TCP/IP load balancer
then prioritizes the creation of new incoming client application connections to
Gateway daemons in the load balancing group. Gateway daemons reporting a
higher health value receive a greater proportion of the incoming connections than
those reporting a lower health value.

Health monitoring in a Sysplex with Sysplex Distributor

The diagram shows Gateway daemons reporting on the availability of CICS servers
to IBM Workload Manager.

How health is calculated

The Gateway daemon health interval defines the amount of time, in seconds, that
the Gateway daemon monitors particular error codes to determine the health of
communications with CICS. The default health interval is 60 seconds. If no
connectivity problems occur, the Gateway daemon health remains at 100.

Intermittent problems can cause the health of communications with CICS to drop
which, in turn, causes the load balancer to reduce the amount of work sent to the
CICS server affected. If the problem disappears, health recovers.

Chapter 7. High availability 75

If the health of communications with CICS drops to zero, the Gateway daemon
issues a warning message, and the load balancer stops sending connection requests
to the Gateway daemon until the health value has been reset by a Gateway
daemon administrator.

These CICS return codes indicate that a request failed because of problems with
the health of communications with CICS:
v ECI_ERR_NO_CICS
v ECI_ERR_RESOURCE_SHORTAGE
v ECI_ERR_SYSTEM_ERROR
v ESI_ERR_NO_CICS
v ESI_ERR_RESOURCE_SHORTAGE
v ESI_ERR_SYSTEM_ERROR

The health of communications with CICS represents the percentage of requests
during the health interval that succeeded. If all requests succeed, health of
communications with CICS is 100. If 30% of requests fail, health is 70. If there are
fewer than 20 requests in the interval, each failing request reduces health by 5,
however the health of communications with CICS can never drop below zero.

The table shows how health can fluctuate:

Table 4. Health fluctuation

Event
Requests
processed Requests failed System health

Health interval 1 1000 200 80%

Health interval 2 0 0 80%

Health interval 3 500 50 90%

Health interval 4 15 1 95%

Health interval 5 200 0 100%

Related concepts:
“Health reporting” on page 155
The Gateway daemon can monitor certain error codes to determine the health of
communications with CICS.
Related tasks:
“Determining health status” on page 260
The current health status is available in the GD_CHEALTH statistic. This
information describes how to find the current health status.
Related information:
“Resetting health status” on page 260
This information describes how to reset the health status to 100.

Highly available Gateway group
A highly available (HA) group is a Gateway group that uses TCP/IP load
balancing. You can regard an HA group as a single logical Gateway daemon.

Gateway daemons are defined as belonging to a highly available (HA) group by
definition of a common APPLID qualifier. The use of an APPLID qualifier must
also be taken into account, when configuring IPIC server connections.

76 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Each Gateway daemon in an HA group must have identical configuration details
for:
v TCP and SSL protocol handlers
v IPIC server definitions
v Logical CICS server names
v CICS request exit configuration
v Security settings
v XA support

Gateway daemon instances can resolve XA transactions on behalf of other Gateway
daemon instances in the same HA group. For more information, see Sysplex
restrictions.

For more information about configuring CICS Transaction Gateway in an HA
group to support XA transactions see Configuring for XA transaction support .

Dynamic server selection
Dynamic server selection (DSS) provides the CICS Transaction Gateway
administrator with several mechanisms for dynamically controlling the flow of
work to CICS servers in a high availability operating environment. DSS also
provides flexibility for deployment or change in environment.

DSS supports one-phase commit transactions, two-phase commit transactions, and
ESI requests.

DSS is provided by a default CICS server, policy-based DSS definitions, logical
CICS server definitions (deprecated), or a CICS request exit. You can use a default
CICS server either on its own, or in combination with one of the other DSS
mechanisms. Policy-based DSS, logical CICS server definitions (deprecated) and the
CICS request exit cannot be used in combination with each other.

Default CICS server
The default CICS server is used for requests that do not specify a CICS server
name.

The default CICS server is a product-wide setting. For information about
configuring the default server, see “Default server” on page 148.

Policy-based dynamic server selection
Policy-based dynamic server selection (DSS) provides a flexible mechanism for
controlling the flow of work to CICS servers.

In a high availability topology that uses policy-based DSS, workload can be
dynamically managed across a number of CICS servers by using round-robin
workload distribution; alternatively one or more backup servers can be made
available to a CICS server, if that server becomes unavailable (failover).

Policy-based DSS enables failed requests to be automatically retried on alternative
CICS servers during abnormal conditions, for example during planned
maintenance or overnight batch processing, and for restarted CICS servers to
become available for work again, without operator intervention.

Chapter 7. High availability 77

At runtime, policy-based DSS maps logical CICS server names to CICS server
groups, where a group definition includes a preassigned workload distribution
algorithm. A request specifying a logical CICS server name that arrives at CICS
Transaction Gateway is routed to one of the servers in the CICS server group that
maps to the logical CICS server name, in accordance with the workload
distribution algorithm.

Blank server names can be mapped explicitly to a DSS server group or can be
configured to use a single default CICS server.

Server names for which no explicit mapping has been defined can be mapped to a
default DSS server group; this mapping includes blank server names unless there
is an explicit mapping for them. Such a mapping overrides any default server
definition.

For information about how to configure a DSS policy see “Configuring a dynamic
server selection policy” on page 148.

CICS request exit
A CICS request exit program can be called by CICS Transaction Gateway at run
time to dynamically select a CICS server.

A CICS request exit typically decides which CICS server to select from the CICS
server name, user ID, and transaction ID passed with the request.

If the CICS request exit does not specify the name of a CICS server, CICS
Transaction Gateway uses the default CICS server, if one has been defined.

If the CICS request exit does not specify a CICS server name and a default CICS
server has not been defined, CICS Transaction Gateway assumes that the EXCI
protocol is being used, and delegates the decision about which CICS server to use,
to EXCI. The EXCI interface can then optionally use DFHXCURM to select a target
CICS server.

If a retryable error occurs and the retry limit has not been reached, CICS
Transaction Gateway calls the CICS request exit again. If the retry count limit has
been reached, CICS Transaction Gateway returns the error that occurred on the last
retry.
Related information:
Creating a CICS request exit
Configuring a CICS request exit
The cicsrequestexit parameter specifies the class used to perform dynamic CICS
server selection for ECI requests and ESI requests.
CICS request exit programming reference

CICS request exit and DFHXCURM
If you are using dynamic server selection, the CICS request exit provides a number
of advantages when compared with the DFHXCURM user replaceable module
(URM).

The CICS request exit is part of the Gateway daemon and can be used for
redirecting requests over EXCI or IPIC connections. Because the CICS request exit
supports IPIC, you can use it to redirect ECI requests calling CICS channel based
programs and ESI requests which are not supported over EXCI connections.

78 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

The DFHXCURM user replaceable module is used for redirecting requests over
EXCI in a local mode topology. DFHXCURM cannot be used with IPIC
connections.

Benefits of using the CICS request exit

When implementing dynamic server selection, the CICS request exit provides these
advantages over DFHXCURM:
v The CICS request exit is integrated with the statistics and request monitoring

exits.
v The CICS request exit is invoked for every transaction rather than at pipe

allocation, and provides the ability to quickly discover when failed CICS servers
are restarted.

v CICS Transaction Gateway can track the number of times a CICS request exit is
called; If the value is greater than the number of transactions that have been
processed, this provides an indication that some requests were retried.

v CICS Transaction Gateway can log statistics about the work sent to each CICS
server that the CICS request exit selected.

v If a request fails with an error at the start of a transaction, the CICS request exit
can be called a second time with details of the previous failure.

Chapter 7. High availability 79

80 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Chapter 8. Configuring

The configuration tasks needed to set up a CICS Transaction Gateway installation
depend on factors such as network topology type, server connection type, and
transaction type. Additional factors that determine which configuration tasks must
be completed are the security, monitoring, and statics requirements.

For information about the remote and local mode topologies, see Deployment
topologies.

Configuring the system environment
To configure the system environment, you set the system processing and file
system parameters in the BPXPRMxx parmlib member.

Increasing the MAXCPUTIME value
MAXCPUTIME is the time limit (in seconds) for processes created by rlogind,
telnetd, and other daemons.

When running from batch, the RACF user ID that starts the job is associated with a
USS ID in the RACF OMVS segment. If you set CPUTIMEMAX in the OMVS
segment for the RACF user ID, the Gateway daemon running under that ID takes
the value specified for CPUTIMEMAX in the OMVS segment. If CPUTIMEMAX is
not set in the OMVS segment, the system wide value for MAXCPUTIME that has
been set in BPXPRMxx is used.

You can set a system-wide limit in BPXPRMxx and then set higher limits for
individual users. Use the RACF ADDUSER or ALTUSER command to specify the
CPUTIMEMAX limit for individual processes.

If the volume of traffic is high, it might be necessary to change the MAXCPUTIME
value in the BPXPRMxx member in SYS1.PARMLIB.

You can set this value on a user ID basis using the CPUTIMEMAX value in the
OMVS segment of the RACF user ID profile. For more information, see z/OS UNIX
System Services Planning.

Configuring a local mode topology
The configuration tasks required for a local mode topology.

About the local mode topology

The local mode topology on z/OS is typically used with WebSphere Application
Server, using the ECI resource adapter to connect directly to a CICS server.
However, it is also possible to use a Java client application from UNIX System
Services. Both situations require the same configuration settings but differ in where
those configuration settings are specified. Configuration settings also vary
depending on whether or not the EXCI protocol might be used to connect to CICS.
If the EXCI protocol is not required, the only configuration required is for the
native library path.

© Copyright IBM Corp. 2000, 2013 81

For more information about how to define the local mode configuration settings in
WebSphere Application Server for z/OS see “Deploying the ECI resource adapter
on WebSphere Application Server for z/OS” on page 173.

The sample JCL job SCTGSAMP(CTGTESTL) provides an example of configuring
local mode for EXCI.

Local mode configuration settings

Configure the library path by setting the LIBPATH environment variable to the
product /bin directory. For example, the following entry might be set in the
STDENV section of the CTGTESTL job:
LIBPATH=/usr/lpp/cicstg/ctg900/bin

When using the EXCI protocol to connect with CICS, the following additional
environment variables must be set:

Environment variables to configure local mode to use the EXCI protocol:

v CTG_EXCI_INIT determines whether or not EXCI is loaded (default is YES if
undefined).

v CTG_PIPE_REUSE determines how allocated EXCI pipes are reused.
v DFHJVPIPE defines the name of the pipe that CICS Transaction Gateway uses

for EXCI calls.
v DFHJVSYSTEM_nn defines the name and description of an EXCI connected

CICS server to be returned in response to a request for the CICS_EciListSystems
function.

v STEPLIB identifies the library containing the default EXCI options and the EXCI
load modules.

Path to include Java command:

When using a local mode Java client from UNIX System Services, the PATH might
require updating to include the java command. For example, the following entry
might be set in the STDENV section of the CTGTESTL job:
PATH=<java_path>/bin

For more information about these environment variables see “STDENV file” on
page 98.

Configuring a remote mode topology
In a remote mode topology, you configure the Gateway daemon on the system on
which CICS Transaction Gateway is installed and deploy and configure remote
client applications.

Before starting CICS Transaction Gateway the values in the configuration files must
be correctly defined. After editing the configuration files, you must restart the
Gateway daemon for the changes to the configuration file to take effect.

Configuring the Gateway daemon

The Gateway daemon is configured by creating a configuration file and a set of
environment variable definitions, defined by the STDENV DD card of the Gateway
daemon JCL CTGBATCH job step. See “STDENV file” on page 98 for more

82 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

|

|
|
|

|

|
|

|

|
|

|

|
|

|
|
|

|
|

|

|
|
|

|

|
|

information. The configuration file can reside on the USS file system or as an MVS
dataset on the MVS file system, with the path or MVS dataset defined by the
environment variable CICSCLI. If the environment variable CICSCLI is not
defined, the Gateway daemon will look for a configuration file, ctg.ini, in the
product \bin directory. This is the historical default location, however, it is
recommended to use another location outside the SMP/E-managed product install
path.

You can specify a different location and optionally change the name of the
configuration file ctg.ini by setting the CICSCLI environment variable to point to a
USS file:

If the configuration is maintained in MVS and edited using ISPF, you can set the
CICSCLI environment variable to point to the MVS dataset name or dataset
location:

Use the double forward slash symbol // to denote that the configuration is held in
an MVS dataset not a file. The CICS Transaction Gateway startup message
CTG8400I indicates the location of the configuration if it is in a dataset that uses
the same notation. A sample configuration on MVS is provided in dataset member
CTGCONF, in the CTGSAMP dataset which is installed as part of the product. If a
value is not specified for this environment variable, the default path
<install_path>/bin/ctg.ini is used during startup. The maximum field length is 100
characters.

At startup, the name and location of the configuration file being used is written to
the Gateway information log.
Related information:
“Configuration parameter reference” on page 156
The way in which you configure CICS Transaction Gateway depends on how the
Gateway daemon is to be started.
“Environment variables: local and remote mode” on page 100
Environment variables available for use with local mode and remote mode
topologies.

Configuring Gateway daemon settings
The Gateway daemon settings are used for remote mode scenarios and are defined
in the ctg.ini configuration file. The settings control the Gateway daemon and its
protocol handlers for remote client connections.

Gateway daemon resources
Edit the GATEWAY section of the configuration file to configure the Gateway
daemon resources.

CICSCLI=/u/userid/myconfig.ini

Figure 9. Setting the CICSCLI environment variable to point to a USS file

CICSCLI=//’HLQ.QUAL.PDS(MEMBER)’

Figure 10. Setting the CICSCLI environment variable to point to an MVS dataset

Chapter 8. Configuring 83

Initial number of connection manager threads:

The initconnect parameter determines the number of connection manager threads
that are created on startup that are available for client connections.

initconnect=<number>

Description
Set the value in the range 1 - 1,000,000 to specify the initial number of
connection manager threads. This value should equal the usual number of
JavaGateway objects opened by all connected clients. However, you might
need to set this number to less than the maximum supported value
because of constraints on memory or other system resources.

You can use the ctgstart command with the -initconnect option to
override the value of the port parameter. For more information, see
“Options on the ctgstart command” on page 254

This parameter is in the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 1.

Maximum number of connection manager threads:

The maxconnect parameter defines the maximum number of JavaGateway objects
that can be opened at any one time by all the remotely connected Client
applications.

maxconnect=<number>

Description
Set the value in the range 1-1,000,000 to specify the maximum number of
connection manager threads. You might need to set this value to less than
the supported maximum value because of constraints on memory or other
system resources. You can specify that there is no limit to the number of
connection manager threads by setting the value of maxconnect to -1. For
more information about threading limits, see “Threading model” on page
60.

You can use the ctgstart command with the -maxconnect option to
override the value of the port parameter. For more information, see
“Options on the ctgstart command” on page 254

This parameter is in the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 100.

Initial number of worker threads:

The initworker parameter determines the number of worker threads that are
created on startup that are available for processing client requests.

initworker=<number>

Description
Set the value in the range 1 - 1,000,000 to specify the initial number of
worker threads. This value should equal the number of concurrent requests
that the Gateway daemon is expected to process. However, you might

84 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

need to set this number to less than the maximum supported value
because of constraints on memory or other system resources.

You can use the ctgstart command with the -initworker option to
override the value of the port parameter. For more information, see
“Options on the ctgstart command” on page 254

This parameter is in the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 1.

Maximum number of worker threads:

The maxworker parameter defines the maximum number of concurrent requests that
CICS Transaction Gateway can process.

maxworker=<number>

Description
Set the value in the range 1-1,000,000 to specify the maximum number of
worker threads. Set the value to be less than or equal to maxconnect. If the
value exceeds the EXCI pipes limit, a warning message is issued, and the
value of maxworker is reduced to be equal to the EXCI logon limit,
LOGONLIM. Because all CICS server connections share the same pool of
worker threads, this restriction also affects IPIC connections. If EXCI is
disabled by setting environment variable CTG_EXCI_INIT to NO, this
restriction does not apply.You might need to set the value of maxworker to
less than the supported maximum value because of constraints on memory
or other system resources. You can specify that there is no limit to the
number of worker threads by setting the value of maxworker to -1. For
more information about threading limits, see “Threading model” on page
60.

You can use the ctgstart command with the -maxworker option to override
the value of the port parameter. For more information, see “Options on the
ctgstart command” on page 254

Because there is a maximum limit on the number of EXCI pipes per MVS
address space, set maxworker according to the EXCI pipe reuse model:

Reuse all (CTG_PIPE_REUSE=ALL)
Less than or equal to the EXCI pipe maximum limit set by CICS
(LOGONLIM) divided by the number of unique APPLIDs in
communication with CICS Transaction Gateway.

Reuse one per thread (CTG_PIPE_REUSE=ONE)
Less than or equal to the EXCI pipe maximum limit set by CICS
(LOGONLIM).

In both cases, to avoid resource shortage errors set RECEIVECOUNT in the
CICS sessions definition to be greater than the number of EXCI pipes being
used. For more information see “EXCI pipe limit exceeded” on page 276.
Starting multiple instances of CICS Transaction Gateway can increase
throughput, for more information see “Starting multiple CICS Transaction
Gateways” on page 254.

This parameter is in the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 100.

Chapter 8. Configuring 85

Worker thread availability timeout:

The workertimeout parameter specifies the timeout period, in milliseconds, for a
worker thread to become available.

workertimeout=<number>

Description
Set the value in the range 0 - 1,000,000 to specify the time period in
milliseconds. If you set the value to 0, the request is rejected unless a
worker thread is immediately available.

This parameter is in the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 10,000.

Timeout for in-progress requests to complete:

The closetimeout parameter specifies the timeout for in-progress requests to
complete in milliseconds, when a Client application disconnects from the Gateway
daemon.

closetimeout=<number>

Description
Set the value in the range 1-1,000,000 to specify the timeout value in
milliseconds.

When a remote Client application disconnects from the CICS Transaction
Gateway, the Gateway daemon might still be processing requests on behalf
of that program, if the Client application disconnects before waiting for all
outstanding requests to complete.

If the closetimeout parameter is set to zero, when a Client application
disconnects, any outstanding work is rolled back and the connection
manager and worker threads are returned to the pool. If a time greater
than zero is specified, when a Client application disconnects, the Gateway
daemon continues to process any outstanding requests for that client for
the time specified. When the timeout expires, any outstanding work is
rolled back and the connection manager and worker threads are returned
to the pool.

This parameter is in the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 10,000.

Enable reading input from SDSF:

The noinput parameter enables the reading of input from the MVS console.

noinput=<on|off>

Description
Set the value to on to disable reading of the input from the MVS console.
If you intend to use the CTGBATCH utility to run the CICS Transaction
Gateway set the noinput parameter to on. If you intend to run ctgstart
command under USS set the noinput parameter to off.

86 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

You can use the ctgstart -noinput command to override the value of
noinput. For more information, see “Options on the ctgstart command” on
page 254.

This parameter is in the GATEWAY section of the configuration file.

Default value
By default this parameter is set to off. Therefore, reading of input from the
console is enabled.

Gateway daemon logging
Edit the GATEWAY section of the configuration file to configure the Gateway
daemon logging resources.

Information log messages are written to standard out, Warning and Error log
messages are written to standard error. These destinations can be configured
further when the Gateway daemon is started using CTGBatch. See “Writing
messages to the JES logs” on page 253 for more information.

Log Client connections and disconnections:

The connectionlogging parameter determines whether the CICS Transaction
Gateway writes a message to the log each time that a Client application connects
to or disconnects from the Gateway daemon.

connectionlogging=<on|off>

Description
Set the value to on to enable connection logging.

This parameter is in the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is off.

Log CICS messages:

The cicslogging parameter determines whether messages returned from CICS in
IPIC error flows are logged to the CICS TG error log.

cicslogging=<on|off>

Description
Set the value to on to enable logging of messages returned from CICS. The
messages are logged within a CICS Transaction Gateway warning message.

This parameter is in the GATEWAY section of the configuration file.

Default value
The default for this parameter is off.

Display TCP/IP hostnames:

The dnsnames parameter defines how TCP/IP addresses are displayed in messages.

dnsnames=<on|off>

Description
Set the value to on to enable the display of TCP/IP addresses in messages
as symbolic TCP/IP host names; these are obtained from a Domain Name
System (DNS) query. This conversion makes the messages easier to read

Chapter 8. Configuring 87

but might cause a significant reduction in performance. If the value is set
to off TCP/IP addresses are displayed in messages in numeric form.

You can use the ctgstart command with the -dnsnames option to override
the value of dnsnames.

Note: The dnsnames parameter supersedes the nonames parameter.

This parameter is in the GATEWAY section of the configuration file.

Default value
The default for this parameter is off.

TCP protocol settings
The parameters that you use to define a TCP protocol handler for remote client
connections.

Bind address:

The bind parameter specifies the IP address or name of the host to which the
protocol handler is bound.

bind=<name>

Description
Set the value to the IP address or name of the host. If you specify an IP
address, it can be in the IPv6 format; for example,
3ffe:307:8:0:260:97ff:fe40:efab. If you specify a host name, it is resolved on
startup. If the bind parameter is not specified or is blank, the default
behavior is to bind to all IP addresses.

This parameter is in the “TCP protocol parameters” on page 159 subsection
of the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is no IP address or
name is specified.

Port:

The port parameter specifies the TCP/IP port number on which the protocol
handler listens for incoming client requests.

port=<number>

Description
Set the value in the range 1 - 65,535 to specify the port number.

You can use the ctgstart command with the -port option to override the
value of the port parameter. For more information, see “Options on the
ctgstart command” on page 254.

This parameter is in the “TCP protocol parameters” on page 159 subsection
of the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 2006.

88 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Connection timeout:

The connecttimeout parameter specifies how long the protocol handler waits for a
connection manager thread to become available.

connecttimeout=<number>

Description
Set the value in the range 0 - 65,536 to specify the value in milliseconds.
When a new connection has been accepted, the protocol handler waits for
a connection manager thread to become available. If a connection manager
thread does not become available within this time, the connection is
refused. If this value is set to zero, a connection is refused if a connection
manager thread is not immediately available.

This parameter is in the “TCP protocol parameters” on page 159 subsection
of the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 2000 milliseconds.

Idle timeout:

The idletimeout parameter specifies the period of time, in milliseconds, that a
connection is allowed to remain idle.

idletimeout=<number>

Description
Set the value in the range 0 - 9,999,999 to specify the idle timeout period in
milliseconds. The idle timeout period starts after the last request has
flowed down the connection. When the idle timeout has expired, the Client
application is disconnected. If work is still in progress on behalf of the
connection, the Client application can remain connected, depending on the
setting of the “Drop working connections” on page 90 parameter. If the
idletimeout parameter is not set or is set to zero, idle connections are not
disconnected.

This parameter is in the “TCP protocol parameters” on page 159 subsection
of the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 600000 milliseconds.

Ping frequency interval:

The pingfrequency parameter specifies the frequency that ping messages are sent
by the Gateway daemon to attached Java and .NET Client applications to check
that the applications are still active.

pingfrequency=<number>

Description
Set the value in the range 0 - 65,536 to specify the interval period, in
milliseconds, between pings. If a reply has not been received by the time
the next ping message is due to be sent, the connection is disconnected. If
work is still in progress on behalf of the connection, the Client application
can remain connected, depending on the setting of the “Drop working
connections” on page 90 parameter. If the pingfrequency parameter is not
set or is set to zero, ping messages are not sent.

Chapter 8. Configuring 89

This parameter is in the “TCP protocol parameters” on page 159 subsection
of the GATEWAY section of the configuration file.

Ping messages are not sent to C Client applications.

Default value
If this parameter is not specified, the default value is 60000 milliseconds.

Drop working connections:

The dropworking parameter specifies that a connection can be disconnected due to
an idle timeout or a ping failure, even if work is currently in progress on behalf of
this connection.

dropworking

Description
Include dropworking in the protocol handler parameters to specify that a
connection can be disconnected. If this parameter is not included in the
protocol handler parameters, connections cannot be disconnected.

This parameter is in the “TCP protocol parameters” on page 159 subsection
of the GATEWAY section of the configuration file.

Default value
By default, this parameter is not included in the protocol handler
parameters.

SO_LINGER setting:

The solinger parameter sets the delay, in seconds, that the Gateway waits while
data is being transmitted before closing a socket, after a call has been received to
close the socket.

solinger=<number>

Description
Set the value in the range 0 - 65,536 to specify the delay period in seconds.
If a value greater than zero is specified and data is being transmitted when
a call to close the socket is received, the Gateway waits until the data is
transmitted or until the time specified before closing the socket. If a value
is not specified or is set to zero, the socket is closed immediately,
terminating the data transmission. However, the data transmission can be
successful because TCP/IP repeats the send request for a specified period
of time.

This parameter is in the “TCP protocol parameters” on page 159 subsection
of the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 0.

Require Java Clients to use security classes:

The requiresecurity parameter allows the Gateway to accept only connections
that use security classes.

requiresecurity

Description
Include requiresecurity in the protocol handler parameters to specify that

90 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

|

the CICS Transaction Gateway accepts only connections from Java client
applications that use a pair of security classes. If this parameter is not
included in the protocol handler parameters, CICS Transaction Gateway
accepts connections from Java client applications that do not specify
security classes.

This parameter is in the “TCP protocol parameters” on page 159 subsection
of the GATEWAY section of the configuration file.

For more information, see the CICS Transaction Gateway: Application
Programming Guide.

Default value
By default, this parameter is not included in the protocol handler
parameters.

SSL protocol settings
The parameters that you use to define an SSL protocol handler for remote client
connections.

Note: For a description of the parameters Use hardware cryptography, key ring
location, key ring file, key ring password, and key ring password encryption,
see SSL key ring configuration.

Bind address:

The bind parameter specifies the IP address or name of the host to which the
protocol handler is bound.

bind=<name>

Description
Set the value to the IP address or name of the host. If you specify an IP
address, it can be in the IPv6 format; for example,
3ffe:307:8:0:260:97ff:fe40:efab. If you specify a host name, it is resolved on
startup. If the bind parameter is not specified or is blank, the default
behavior is to bind to all IP addresses.

This parameter is in the “SSL protocol parameters” on page 160 subsection
of the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is no IP address or
name is specified.

Port:

The port parameter specifies the TCP/IP port number on which the protocol
handler listens for incoming client requests.

port=<number>

Description
Set the value in the range 1 - 65,535 to specify the port number.

You can use the ctgstart command with the -sslport option to override the
value of the port parameter. For more information, see “Options on the
ctgstart command” on page 254.

This parameter is in the SSL protocol parameters subsection of the
GATEWAY section of the configuration file.

Chapter 8. Configuring 91

|
|
|

Default value
If this parameter is not specified, the default value for SSL is 8050.

Connection timeout:

The connecttimeout parameter specifies how long the protocol handler waits for a
connection manager thread to become available.

connecttimeout=<number>

Description
Set the value in the range 0 - 65,536 to specify the value in milliseconds.
When a new connection has been accepted, the protocol handler waits for
a connection manager thread to become available. If a connection manager
thread does not become available within this time, the connection is
refused. If this value is set to zero, a connection is refused if a connection
manager thread is not immediately available.

This parameter is in the “SSL protocol parameters” on page 160GATEWAY
section of the configuration file.

Default value
If this parameter is not specified, the default value is 2000 milliseconds.

Idle timeout:

The idletimeout parameter specifies the period of time, in milliseconds, that a
connection is allowed to remain idle.

idletimeout=<number>

Description
Set the value in the range 0 - 9,999,999 to specify the idle timeout period in
milliseconds. The idle timeout period starts after the last request has
flowed down the connection. When the idle timeout has expired, the Client
application is disconnected. If work is still in progress on behalf of the
connection, the Client application can remain connected, depending on the
setting of the “Drop working connections” on page 90 parameter. If the
idletimeout parameter is not set or is set to zero, idle connections are not
disconnected.

This parameter is in the “SSL protocol parameters” on page 160GATEWAY
section of the configuration file.

Default value
If this parameter is not specified, the default value is 600000 milliseconds.

Ping frequency interval:

The pingfrequency parameter specifies the frequency that ping messages are sent
by the Gateway daemon to attached Java applications to check that the
applications are still active.

pingfrequency=<number>

Description
Set the value in the range 0 - 65,536 to specify the interval period, in
milliseconds, between pings. If a reply has not been received by the time
the next ping message is due to be sent, the connection is disconnected. If
work is still in progress on behalf of the connection, the Client application

92 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

can remain connected, depending on the setting of the “Drop working
connections” on page 90 parameter. If the pingfrequency parameter is not
set or is set to zero, ping messages are not sent.

This parameter is in the “SSL protocol parameters” on page 160 subsection
of the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 60000 milliseconds.

Drop working connections:

The dropworking parameter specifies that a connection can be disconnected due to
an idle timeout or a ping failure, even if work is currently in progress on behalf of
this connection.

dropworking

Description
Include dropworking in the protocol handler parameters to specify that a
connection can be disconnected. If this parameter is not included in the
protocol handler parameters, connections cannot be disconnected.

This parameter is in the “SSL protocol parameters” on page 160 subsection
of the GATEWAY section of the configuration file.

Default value
By default, this parameter is not included in the protocol handler
parameters.

Socket close delay:

The solinger parameter sets the delay value in seconds for closing a socket.

solinger=<number>

Description
Set the value in the range 0 - 65,536 to specify the delay period in seconds.
If a value greater than zero is specified and data is being transmitted when
a call to close the socket is received, the Gateway waits until the data is
transmitted or until the time specified before closing the socket. If a value
is not specified or is set to zero, the socket is closed immediately,
terminating the data transmission. However, the data transmission can be
successful because TCP/IP repeats the send request for a specified period
of time.

This parameter is in the “SSL protocol parameters” on page 160 subsection
of the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 0.

Require Java Clients to use security classes (requiresecurity):

The requiresecurity parameter allows your Gateway to accept only connections
that use security classes.

requiresecurity

Description
When a Java client application connects to the Gateway, it can specify a

Chapter 8. Configuring 93

pair of security classes for use on the connection. However, by default, a
Gateway also accepts connections from programs that do not specify this
pair of security classes.

This parameter is in the “SSL protocol parameters” on page 160 subsection
of the GATEWAY section of the configuration file.

For more information, see the CICS Transaction Gateway: Application
Programming Guide.

Default value
By default, this parameter is not included in the protocol handler
parameters.

Use client authentication:

The clientauth parameter determines if client authentication is enabled.

clientauth=<on>

Description
Include clientauth=on in the configuration file to specify that any client
that attempts to connect using the SSL protocol handler must present its
own client certificate.

This parameter is in the “SSL protocol parameters” on page 160GATEWAY
section of the configuration file.

Default value
By default, this parameter is not included in the configuration file.

Use only these ciphers:

Use the ciphersuites parameter to restrict the set of cipher suites that can be used
with the SSL protocol.

ciphersuites=<name>

Description
Specify the cipher suites that Java Client applications can use to connect to
the CICS Transaction Gateway. You can define multiple cipher suites by
separating them with a comma. If the Java Client application does not
support any of the cipher suites listed, it cannot connect to the CICS
Transaction Gateway. If no cipher suite is specified or the parameter is
omitted, all available cipher suites can be used. Because CICS Transaction
Gateway uses cipher suites provided by the Java runtime environment for
the SSL protocol, the cipher suites available are dependant on the Java
version. To determine which cipher suites are available for your version of
Java, complete the following steps:
1. Delete the ciphersuites parameter from your configuration file
2. Save the configuration file.
3. Start CICS Transaction Gateway

If the SSL protocol is correctly configured and CICS Transaction Gateway
starts, a list of valid cipher suites is written to the Gateway daemon
information log. For more information, see the documentation supplied
with your Java runtime environment

Cipher suite information can be found in the Gateway daemon information
log and Java Client application trace.

94 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

This parameter is in the “SSL protocol parameters” on page 160 subsection
of the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default is that all available cipher
suites are available.

Configuring trace settings
Edit the trace attributes in the GATEWAY section of the configuration file.

Gateway trace file:

The tfile parameter is the path name of the trace file where Gateway trace
messages are written, if tracing is enabled.

tfile=<pathname>

Description
Set the value to the path name of the trace file. If you specify a name
without a path, the file is created in the <install_path>/bin No trace is
written if the CICS Transaction Gateway does not have permission to write
to the file you specify. The trace file is overwritten, not appended to, each
time the CICS Transaction Gateway starts. Turning on the Gateway trace
has a significant impact on performance.

You can use the ctgstart -tfile=pathname command to override the value
of tfile. For more information, see Command reference.

This parameter is in the GATEWAY section of the configuration file.

Gateway trace file wrap size (KB):

The tfilesize parameter specifies the maximum size, in kilobytes, of the Gateway
trace file. When the file reaches this size, subsequent trace entries continue to be
written from the beginning of the file.

tfilesize=<number>

Description
Set the value in the range 0 - 1,000,000 to specify the maximum trace file
size. To disable wrapping, set the value to 0. If you set the value in the
range 1 - 39, the CICS Transaction Gateway uses a value of 40 instead, to
guarantee an adequate minimum trace size.

You can use the ctgstart -tfilesize=number command to override the
value of tfilesize. For more information, see Command reference.

This parameter is in the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 0.

Data byte offset in trace data:

The dumpoffset parameter specifies the byte offset in data to start trace output.

dumpoffset=<number>

Description
Set the value to specify the number of bytes from which to start the trace
output for a hex dump.

Chapter 8. Configuring 95

You can use the ctgstart -dumpoffset=number command to override the
value of dumpoffset. For more information, see “Options on the ctgstart
command” on page 254.

This parameter is in the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 0.

Maximum size of trace data blocks:

The truncationsize parameter specifies the maximum size, in bytes, of the
Gateway trace data blocks.

truncationsize=<number>

Description
Set the value to 0 or above to specify the size of the data blocks. If you
specify 0, no data blocks are shown in the trace.

You can use the ctgstart -truncationsize=number command to override
the value of truncationsize. For more information, see “Options on the
ctgstart command” on page 254.

This parameter is in the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 80.

Enable Gateway daemon trace on startup:

Set the trace parameter to on to enable tracing of the Gateway daemon.

This is equivalent to specifying the -trace option on the ctgstart command.

The default setting is off.

This setting is case insensitive.

This parameter is in the GATEWAY section of the configuration file.

Exception stack tracing:

The stack parameter defines if exception stack tracing is enabled.

stack=<on|off>

Description
Set the value to on to enable exception stack tracing.

You can use the ctgstart -stack command to override the value of stack.
For more information, see “Options on the ctgstart command” on page 254.

This parameter is in the GATEWAY section of the configuration file.

Default value
The default for this parameter is off.

96 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

JNI trace:

The CTG_JNI_TRACE and CTG_JNI_TRACE_ON environment variables are used to
control JNI trace.

See “Environment variables: local and remote mode” on page 100 for more
information.

Setting Gateway daemon JVM options
Startup options are used to set the properties of the Gateway daemon JVM, such as
heap size and Java properties.

JVM options can be specified in the parameters passed to the ctgstart command
using the PARM string on the EXEC PGM=CTGBATCH section of the JCL, or using the
CTGSTART_OPTS environment variable. Each JVM option must be prefixed with
-j.

For example, to set the maximum JVM heap size to 512MB:
CTGSTART_OPTS=-j-Xmx512M

The parameter list for the CTGSTART_OPTS environment variable can exceed 100
characters. For more information see “Environment variables: remote mode” on
page 102.

Configuring Java shared classes
CICS Transaction Gateway uses the Java shared classes feature to improve
performance.

Java shared classes provides a transparent and dynamic way of sharing loaded
classes that places no restrictions on Java Virtual Machines (JVMs) that are sharing
class data. Java shared classes helps reduce virtual memory usage and can improve
startup time. CICS Transaction Gateway creates a class cache called cicstgvrm%g,
where vrm is the version, release and modification level of CICS Transaction
Gateway, and %g is the group name of the user that is running the Gateway
daemon job. The cache is created in the /tmp/javasharedresources directory unless
the location is overridden with the cachedir sub-option. The class cache options
used by the Gateway daemon are output in message CTG6134I during
initialization.

The available sub-options are:

groupAccess
Sets the operating system permissions on a new cache to allow group
access to the cache. The default is user access only.

nonpersistent
Creates a nonpersistent cache in shared memory. The shared memory (and
the cache) are lost when the operating system shuts down. Nonpersistent
and persistent caches can have the same name. You must always use the
nonpersistent suboption when running utilities such as destroy on a
nonpersistent cache. The default is persistent.

nonfatal
Ensures that the JVM ignores any potentially fatal permission problems or
disk space problems, and attempts to start normally and to operate

Chapter 8. Configuring 97

normally. For example a JVM does not attempt to open a readonly cache
unless a JVM read/write operation on that cache previously failed.

By default, the following class cache options are specified when the Gateway
daemon starts:
-Xshareclasses:name=cicstgvrm%g,groupAccess,nonpersistent,nonfatal

For more information on the Java shared class cache options see your Java
documentation.

To override the options used by CICS Transaction Gateway for the -Xshareclasses,
set the CTGSTART_OPTS CICS TG environment variable, for example:
CTGSTART_OPTS=-j-Xshareclasses:name=ctgtest%g,cachedir=/tmp/ctgtest,groupAccess,
nonpersistent,nonfatal

To disable class caching for the Gateway daemon, specify the following option:
CTGSTART_OPTS=-j-Xshareclasses:none

To list all the valid sub-options to -Xshareclasses, type the following in the bin
directory of your Java installation:
java -Xshareclasses:help

If Gateway daemons using the same Java major version are started on the same
LPAR by different user IDs, you must ensure that all user IDs have access to the
relevant class cache entities. For more information see your Java documentation.

Setting environment variables
Environment variables control how the CICS Transaction Gateway functions in
both local and remote modes.

To set environment variables for CICS Transaction Gateway for z/OS use the
STDENV file, the ctgenvvar script, or explicitly export the environment variables.

STDENV file
The STDENV file can be used if the Gateway daemon is to be started in batch
mode using CTGBATCH to define the required environment variables.

When using CTGBATCH to start the Gateway daemon, if a ctgenvvar file exists in
the default install directory, the settings in the ctgenvvar file are used in preference
to those defined in the STDENV file. This is because the ctgenvvar file is
referenced within the ctgstart script.

Use the conversion script ctgconvenv, to convert environment variables, previously
set by the ctgenvvar script, into a STDENV file that can then be used by the
CTGBATCH program.

The STDENV file can be an MVS sequential file, a PDS member, or an HFS file and
has the following syntax rules:
v Any line with a hash (#) in column one is interpreted as a comment.
v Blank lines are ignored.
v Leading spaces are removed from a line
v An entry for a name/value pair can start in any column.

98 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

v A valid entry for a name/value pair must not have spaces between the name,
equals sign or value.

v Use backslash (\) as a continuation character.
v Trailing spaces after a continuation character are removed.
v A continuation character can be placed in any column.
v A continuation character must be the last non-whitespace character on a line.
v A value containing continuation characters is deemed to be completed by the

first line that omits the continuation character.
v Trailing spaces are removed from single-line data and from the end of

concatenated multi-line data
v Do not enclose value strings in single or double quotes. Every character, after

the first equals sign, that is not a trailing space or continuation character is
assumed to be part of the value data.

A sample STDENV file is in the SCTGSAMP library as a member CTGENV.
Related information:
“Starting in batch mode” on page 249
The recommended way of running the CICS Transaction Gateway for z/OS
Gateway daemon as a production system is in batch mode. CTGBATCH is a utility,
used to launch USS programs through the MVS batch environment and route
stdout and stderr I/O to MVS destinations.

The ctgenvvar script
Use the ctgenvvar script if the Gateway daemon is to be started via the USS
command line for example, in a test environment.

The ctgenvvar script can be executed alone or referenced by the ctgstart script to
set the variables. You can create the ctgenvvar script by editing the supplied
ctgenvvarsamp script, and then copying or renaming to ctgenvvar, see
“Configuration parameter reference” on page 156.

Because the files under <install_path>/bin are managed by SMP/E, this area is
regarded as read-only. Therefore, the customized ctgenvvar script is likely to be
located under a user-writable HFS path.

When running the Gateway daemon via the ctgstart script the environment
variable "CTGENVVAR", if set, will be used to define the fully qualified location of
a ctgenvvar script (including the file name of the script). If it is not set, ctgstart will
check for the script "ctgenvvar" under HFS path <install_path>/bin (for
compatibility with previous versions). For example,
export CTGENVVAR=/u/ctgusr/ctg700cfg/ctgenvvar

If neither of these locations contains a script, ctgstart will assume that the
environment variables are already in place, and attempt to start the Gateway
daemon.

The target script itself must have the '+x' executable file attribute set at the
appropriate level for the current user.

After you have installed the product, you can use ctgenvvar to establish the
environment that Java client applications

running in local mode will use, for example:

Chapter 8. Configuring 99

. <config_path>/ctgenvvar

where <config_path> is the HFS location of the customized configuration script.

Because by default ctgenvvar searches for ctgstart, ensure that
<install_path>/bin is in the path for the current environment. You can edit
ctgenvvar to define where ctgstart is installed.

Environment variables: local and remote mode
Environment variables available for use with local mode and remote mode
topologies.

AUTH_USERID_PASSWORD
Specifies whether the user ID and password is authenticated with the
External Security Manager (ESM) such as RACF. This setting applies
exclusively to EXCI connections to CICS. Set this variable to YES to enable
authentication by the ESM. Set it to NO if authentication by the ESM is not
required. If the variable is set to any value other than NO, authentication is
enabled. If the variable is not set, authentication is not enabled.

If you set this variable see also “Configuring for client certificate mapping”
on page 143.

COLUMNS

Specifies the maximum line-length for messages output to the console
when CICS Transaction Gateway is started. If this variable is not set, the
line-length is set to 40 columns. The minimum line-length is 40 columns.
The maximum possible line-length is 160 columns.

CTG_EXCI_INIT
Specifies whether or not EXCI is loaded. If this variable is set to YES, EXCI
is loaded. If the variable is set to NO, EXCI is not loaded. The default
value is YES.

If EXCI is not active:
v An information message is logged.
v Attempts to make EXCI calls result in an ECI_ERR_NO_CICS return

code.
v Attempts to use an EXCI server result in a communications failure count

being incremented.
v ListSystems calls do not include EXCI servers.

CTG_JNI_TRACE
Sets the name of the JNI trace file. This environment variable only defines
the name of the JNI trace file; it does not enable trace. The default file
name is ctgjni.trc. JNI trace is output as plain text, and there is no
requirement to use a particular extension for the file name.

CTG_JNI_TRACE_ON
Specifies whether or not JNI trace is enabled. Set this environment variable
to YES to enable JNI trace when the CICS Transaction Gateway is started.
Tracing is not enabled if the variable is set to any value other than YES.

CTG_MIXEDCASE_PW
Specifies whether or not mixed-case passwords are authenticated. Set this
environment variable to YES to enable mixed-case passwords to be
authenticated by an external security manager such as RACF. If you enable
support for mixed-case passwords, you must also set environment variable

100 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

AUTH_USERID_PASSWORD to YES. CTG_MIXEDCASE_PW must be set
to YES to allow password phrases to be authenticated.

If CTG_MIXEDCASE_PW is set to NO, CICS Transaction Gateway converts
all passwords to upper case before authenticating with the ESM.

Valid values are YES|NO. Any other value is treated as not valid, and the
default value used instead.

CTG_PIPE_REUSE
Specifies whether all allocated EXCI pipes are reused by CICS Transaction
Gateway, or only a maximum of one is reused per worker thread.

ALL
Reuse all allocated pipes. This is the default.

Specify this option if maximum throughput is the priority.

If the pipe that is allocated to a given worker thread is not for the
correct server for the next ECI request, using this pipe model, the pipe
remains allocated and a new pipe is allocated for the new server
connection on that worker thread. This model limits the maximum
number of worker threads to the EXCI pipe limit divided by the
maximum number of servers.

ONE
Reuse a maximum of one allocated EXCI pipe for each worker thread.

Specify this option if the maximum number of concurrent worker
threads is the priority.

If the pipe that is allocated to a given worker thread is not for the
correct server for the next ECI request, using this pipe model, the pipe
is deallocated and then reallocated to the new server. This model limits
the maximum number of worker threads to the EXCI pipe limit.

Abbreviations are not allowed. An unrecognized value causes the
default of ALL to be used.

CTG_SWAPPABLE
Specifies whether the address space where CICS Transaction Gateway runs
is swappable or nonswappable. Do not set this environment variable unless
CICS Transaction Gateway runs in local mode. If you do not set the
environment variable, CICS Transaction Gateway runs in a nonswappable
address space. If you set the environment variable to YES, CICS
Transaction Gateway runs in a swappable address space.

If a Java Client application makes an ECI request while CICS Transaction
Gateway is swapped out, the request fails with these error messages:
CCL6668E: Initial handshake flow failed
CCL6666E: Unable to flow request to the Gateway

To avoid this, CICS Transaction Gateway is made nonswappable after the
first ECI request has been successfully flowed. CICS Transaction Gateway
can still be swapped out before the first ECI request is flowed. If this
happens, ECI requests fail until z/OS swaps CICS Transaction Gateway
back in.

Nonswappable mode
You are recommended to run CICS Transaction Gateway in a
nonswappable address space, unless it is running in local mode. (It
always runs in swappable mode under WebSphere Application Server.)

Chapter 8. Configuring 101

To make CICS Transaction Gateway nonswappable, ensure that the
user running the CICS Transaction Gateway process has READ access
to the BPX.STOR.SWAP FACILITY class. No other action is required. If
CICS Transaction Gateway cannot be made nonswappable, a log
message is output, and CICS Transaction Gateway runs in a swappable
address space.

Swappable mode
You are advised to run CICS Transaction Gateway in a swappable
address space if it will run in local mode. To do this, set the
CTG_SWAPPABLE environment variable to YES. If you set this
variable to any other value CICS Transaction Gateway runs in a
nonswappable address space.

When an application makes an address space nonswappable, it might
cause additional real storage in the system to be converted to preferred
storage. Because preferred storage cannot be configured offline, using this
service can reduce the ability of the installation to re-configure storage in
the future. For more information see z/OS UNIX System Services Planning,
GA22-7800.

DFHJVPIPE
Specifies the name of the specific pipe that CICS Transaction Gateway uses
for EXCI calls. If this variable is not set, or is set to a blank value by a
command such as export DFHJVPIPE="", CICS Transaction Gateway uses a
generic pipe.

DFHJVSYSTEM_nn
Specifies the name and description of an EXCI connected CICS server to be
returned in response to a request for the list systems function. You can set
up to 100 environment variables of the form DFHJVSYSTEM_nn, where nn
ranges from 00 to 99. They are listed in order from 00 to 99 with missing
numbers ignored. This function call takes a maximum number of systems
returned value; if the number of systems defined exceeds that value the
call returns the error ECI_ERR_MORE_SYSTEMS.

The value is a string containing the APPLID of the CICS system, followed
by a hyphen (-), followed by a description of the CICS system. The
description must not be more than 60 bytes long. For example if you
specify:
DFHJVSYSTEM_00=MYCICS-Test CICS system

List systems returns details of a CICS system called MYCICS with
description Test CICS system.

STEPLIB
Specifies the library containing the default EXCI options and the EXCI load
modules. Ensure that the STEPLIB environment variable includes any load
library that contains EXCI options table DFHXCOPT ahead of the CICS
EXCI load library SDFHEXCI in the concatenation order, because the
default table supplied is contained in SDFHEXCI.

The maximum length of this field is 200 characters.

Environment variables: remote mode
Environment variables available for use with remote mode topologies.

_BPX_SHAREAS

102 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Specifies whether or not all processes involved in starting the Gateway
daemon run in a single address space. Set this variable to YES to specify
that all processes involved in starting the Gateway daemon run in a single
address space. Set this variable to NO to allow multiple address spaces.

The default value is YES.

_BPXK_SETIBMOPT_TRANSPORT
Specifies the job name of the TCP/IP stack to be used by the Gateway
daemon. This environment variable might be useful in installations
involving multiple TCP/IP stacks where it is necessary to restrict the
Gateway daemon from binding with all TCP/IP stacks. If the specified job
name is not active during Gateway daemon initialization and the protocol
handler definitions do not specify a bind address, the Gateway daemon
protocol handlers are bound to all available TCP/IP stacks.

CICSCLI

Specifies the location of the CICS Transaction Gateway configuration to be
used at startup. The value must be one of the following:
v A path and file name, if the configuration is maintained and edited as a

configuration file, for example:
/u/userid/myconfig.ini

v An MVS dataset name or dataset location, if the configuration is
maintained in MVS and edited using ISPF, for example:
CICSCLI=//’HLQ.QUAL.PDS(MEMBER)’

Use the double forward slash symbol // to denote that the configuration
is held in an MVS dataset not a file. A sample configuration on MVS is
provided in dataset member CTGCONF, in the CTGSAMP dataset which
is installed as part of the product.

If a value is not specified for this environment variable, the default path
<install_path>/bin/ctg.ini is used during startup.

The maximum field length is 100 characters.

The CICS Transaction Gateway startup messages indicate the location of
the configuration file. CICS Transaction Gateway does not start if a
configuration cannot be found.

CTG_WIDTH

Specifies the maximum width of the STDENV output from the ctgconvenv
script. If the variable is not set, the width is set to 80 columns. The
minimum width is 40 columns. The maximum possible width is 160
columns.

This storage is used for storing data on XA transactions. On startup large
enough to handle all the units of recovery for XA transactions from
gateways in the same HA group and at runtime it needs to be large
enough to handle the maximum number of active XA transactions.

Set the value of CTG_XA_MAX_TRAN to be 1000 or a value greater than
the number of configured connection managers, which ever is the larger.
For more information see Highly available Gateway group and Cold start."

CTG_XA_MAX_TRAN
. Set this environment variable to limit the maximum number of concurrent

Chapter 8. Configuring 103

XA transactions that a Gateway daemon can process. The range of values
is 1 to 8192. The default value for a Gateway daemon is 1000.

CICS Transaction Gateway allocates an amount of additional storage on
startup approximately equivalent to 200 times the value of
CTG_XA_MAX_TRAN KB. For example, if the value of CTG_XA_MAX_TRAN is 1024,
then 200 KB of additional storage is allocated on startup. This storage is
used for storing data on XA transactions. On startup, the storage must be
large enough to handle all the units of recovery for XA transactions from
gateways in the same HA group and at runtime it needs to be large
enough to handle the maximum number of active XA transactions.

Set the value of CTG_XA_MAX_TRAN to be 1000 or a value greater than
the number of configured connection managers, which ever is the larger.
For more information see “Highly available Gateway group” on page 76
and “Cold start” on page 245.

CTGENVVAR
Specifies the fully qualified location of a ctgenvvar script to be invoked by
ctgstart. The script is self-contained and exports environment variables
relevant to the Gateway daemon and associated CICS servers.

If CTGENVVAR is not defined, the ctgstart script looks for the ctgenvvar
script in the product bin directory (for compatibility with previous
versions). If no script is found in either location, ctgstart still attempts to
initialize the Gateway daemon, on the assumption that the required
environment variables are already in place.

Use this environment variable when starting the Gateway daemon from
the USS shell, rather than through CTGBATCH.

CTGSTART_OPTS
Specifies options that are too long for inclusion in the JCL step. Because the
PARM string used by the EXEC PGM= step in JCL is limited to 100
characters, there is not enough space to include some of the longer
Gateway daemon startup options (for example, JVM properties for
enabling trace and setting the trace file). Use this environment variable to
specify those options too long for inclusion in the JCL step. The ctgstart
script recognizes this environment variable and appends the supplied
options to the Gateway daemon startup command. The value of the
environment variable must not exceed 300 characters. For example, the
code to turn on CICS TG tracing for Gateway daemon initialization is as
follows:
CTGSTART_OPTS=-j-Dgateway.T=on

PATH Specifies the path in HFS containing the runtime resources necessary to
run ctgstart. These are typically found in /bin, and the Java bin runtime
directory.

TMPDIR
Specifies a temporary directory other than /tmp.

TZ Specify the local time zone and daylight saving time.

The value in this field is similar to the setting of TZ in /etc/profile. The
full format is:
TZ=standardHH[:MM[:SS]] [daylight[HH[:MM[:SS:]]]
[,startdate[/starttime],enddate[/endtime]]]

An example for the United Kingdom is TZ=GMT0BST,M3.5.0,M10.4.0. An
example for United States Eastern Standard time is TZ=EST5EDT

104 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

|
|
|
|
|
|
|
|

|
|
|
|

For further information on time zones, see z/OS UNIX System Services
Command Reference.

Configuring identification using APPLID
CICS Transaction Gateway supports identification using APPLID. This provides a
standard mechanism for identification of Gateway daemon and Java client
components in the CICSplex, and for subsequent task correlation in CICS.

Gateway identification has implications for the following:
v Qualification of log messages
v User interaction via z/OS console
v RRS registration for extended mode LUW or XA transaction support
v IPIC connections to identify the Gateway daemon to CICS
v Gateway daemon statistics and SMF records
v Request monitoring data

APPLID qualifier and APPLID

A fully-qualified APPLID is formed from an APPLID qualifier string and an
APPLID string separated by a period symbol:
<APPLID qualifier>.<APPLID>

Each part can be between 1 and 8 characters in length and is defined
independently. In certain configurations the defining of a fully-qualified APPLID is
mandatory. See “Gateway identity considerations” and “IPIC server connections”
on page 109 for further details.

If the configuration file (ctg.ini) contains an APPLID but not an APPLID qualifier,
the system uses the default value 9UNKNOWN for APPLID qualifier. For more
information, see “Gateway APPLID qualifier” on page 107.

Request monitoring data

The applid is available to the request monitoring exits and also transaction
tracking across a CICSPlex. For more information, see Monitoring and statistics.

Gateway identity considerations
The configuration of your Gateway daemon directly influences the choices
available for Gateway identity the rules are detailed in this section.

When configuring a Gateway daemon there are three possibilities to consider for
the APPLID qualifier and APPLID parameters.
v Define both APPLID qualifier and APPLID to form a fully-qualified APPLID
v Define only an APPLID
v Do not define either APPLID qualifier or APPLID

APPLID qualifier and APPLID

You must define both APPLID qualifier and APPLID when:
v XA transaction support is enabled (xasupport=on)

Chapter 8. Configuring 105

v Multiple Gateway daemons are organized into High availability Gateway groups
for purposes of scalability with TCP/IP load balancing, or for administrative
purposes

The Gateway daemon uses the APPLID for log messages, Gateway daemon
statistics and SMF records. The JOBNAME is used for systems management with
the MODIFY (/F) command.

The fully-qualified APPLID is used to register the Gateway daemon with RRS
using the following structured resource manager name:
CICSTG.<APPLID qualifier>.<APPLID>[.UA]

If XA transaction support is not enabled, the resource manager name is appended
with “.UA”.

The fully-qualified APPLID is used to identify the Gateway daemon to CICS
servers connected using the IPIC protocol.

APPLID only

You can define an APPLID when the following criteria are met:
v XA transaction support is disabled (xasupport=off)
v The Gateway daemon is registered with RRS for Extended LUW transaction

support using a resource manager name defined by an environment variable
CTG_RRMNAME, or generated by the Gateway daemon during initialization

The Gateway daemon uses the specified APPLID for log messages, Gateway
daemon statistics and SMF records. The JOBNAME is used for systems
management with the MODIFY (/F) command.

If the deprecated environment variable CTG_RRMNAME is defined, it is used for
RRS registration, otherwise the following structured resource manager name is
used:
CICSTG.<APPLID>.UA

The APPLID is used to identify the Gateway daemon to CICS servers connected
using the IPIC protocol.

If the configuration file (ctg.ini) contains an APPLID but not an APPLID qualifier,
the system uses the default value 9UNKNOWN for APPLID qualifier. For more
information, see Gateway APPLID qualifier (applidqualifier).

APPLID undefined

You can leave the APPLID and qualifier undefined if XA transaction support is
disabled (xasupport=off). In this situation the Gateway uses the JOBNAME as the
identifier in log messages and SMF records.

Uniqueness

The defined APPLID qualifier or APPLID are not explicitly verified for uniqueness
during initialization. If they are not unique within the sysplex or your wider
organization, failures might occur during initialization or later when connecting to
a CICS server.

106 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

It is recommended that you choose a naming convention that gives each Gateway
daemon an APPLID that is unique within the sysplex or Gateway group and a
fully-qualified APPLID that is unique within the wider organization.

When the fully-qualified APPLID is used for RRS registration the Gateway fails to
initialize if another address space, usually a Gateway daemon, within the sysplex
is already registered using the same resource name.

You might encounter connection problems if more than one Gateway attempts to
establish an IPIC connection to a CICS server when both have the same APPLID or
fully-qualified APPLID. The Gateway daemons might not be within the same
sysplex or might be connecting from a different platform.
Related concepts:
“TCP/IP load balancing” on page 73
Load balancing ensures high system availability through the distribution of
workload across multiple components.

Gateway APPLID
The applid parameter identifies the instance of the CICS Transaction Gateway on
server connections, in messages and data output, and tasks in a CICSplex.

applid=<name>

Description
Set a value of up to eight characters. The value must be unique within the
CICSplex. There is no restriction on the characters that can be used.
However, to ensure that the applid parameter is valid for all scenarios, use
characters in the range A through Z, and 0 through 9. If you do not set a
value, the system automatically generates a unique value. The combination
of the applid and applidqualifer parameters identifies CICS Transaction
Gateway to the CICS system to which it connects.

The applid and applidqualifier parameters can be overridden on the
ctgstart command. For more information, see “Options on the ctgstart
command” on page 254

This parameter is in the PRODUCT section of the configuration file.

Default value
There is no default value for this parameter.

Gateway APPLID qualifier
The applidqualifier parameter is used as a high-level qualifier for the APPLID
parameter.

applidqualifier=<name>

Description
Set a value of up to eight characters. There is no restriction on the
characters that can be used. However, to ensure that the applidqualifier
parameter is valid for all scenarios, use characters in the range A through
Z, and 0 through 9. The combination of the applid and applidqualifier
parameters identifies CICS Transaction Gateway to the CICS system to
which it connects.

Chapter 8. Configuring 107

The applid and applidqualifier parameters can be overridden on the
ctgstart command. For more information, see “Options on the ctgstart
command” on page 254

Default value
If the applid parameter is specified in the configuration file but the
applidqualifier parameter is not specified, the system uses the default,
9UNKNOWN, value for the applidqualifier parameter. This value
matches the initial default in CICS Transaction Server. If the default is kept,
the value is included in messages generated in the Gateway daemon, in
CICS, and in statistics. Having a default provides a reference value to
make problem diagnosis simpler.

Client APPLID and APPLID qualifier
Set the APPLID and APPLID qualifier for Client applications to enable transaction
tracking.

There is no restriction on the characters that can be used for APPLID and APPLID
qualifier, however, to ensure that the APPLID and APPLID qualifier are valid for
all scenarios, use characters in the range A through Z, and 0 through 9.

Java clients

Set the fully-qualified APPLID for Java clients in one of the following ways:
v For JEE applications, set the Applid and ApplidQualifier properties in the

resource adapter custom properties to specify the fully-qualified APPLID.
v For Java client applications, set the APPLID and APPLID qualifier in the

Properties object for the JavaGateway class as follows:

APPLID
CTG_APPLID

APPLID qualifier
CTG_APPLIDQUALIFIER

v Alternatively, for existing applications that you do not want to recompile, you
can set JVM properties using the following system properties:

APPLID
CTG_APPLID

APPLID qualifier
CTG_APPLIDQUALIFIER

For example:
java -DCTG_APPLID=myapplid -DCTG_APPLIDQUALIFIER=applqual my.ctg.application

If the APPLID or APPLID qualifier is set using a JVM property and using a
Properties object passed to the JavaGateway, the JVM property value is used.

ECI V2 clients

For more information see the Programming Guide.

.NET clients

For more information see GatewayConnection class.

108 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

|
|

IPIC server connections
CICS Transaction Gateway IPIC connections in CICS are identified by a
fully-qualified APPLID.

In remote mode set the fully-qualified APPLID to be used to identify CICS
Transaction Gateway to CICS in the configuration file, and in local mode set the
fully-qualified APPLID in the application or environment. If the APPLID and
APPLID qualifier specified in an IPCONN in CICS match this APPLID and
APPLID qualifier, the configuration of that IPCONN is applied to the connection
made by the Gateway daemon.

If there is no matching IPCONN definition, the connection is autoinstalled if the
CICS system has been configured to autoinstall IPCONN connections. If you
configure CICS not to allow autoinstall of IPCONN connections, only requests that
have APPLIDs that are set on the predefined IPCONN definitions are able to
connect.

If the configuration file (ctg.ini) contains an APPLID but not an APPLID qualifier,
the system uses the default value 9UNKNOWN for APPLID qualifier. For more
information, see “Gateway APPLID qualifier” on page 107.

IPIC connections with a defined fully-qualified APPLID

If the Gateway daemon or local mode application is configured with a
fully-qualified APPLID, and connects to a CICS server using the IPIC protocol, no
other Gateway daemon or local mode application configured with the same
fully-qualified APPLID can concurrently establish an IPIC connection with the
same CICS server. If the fully-qualified APPLID is not unique, attempts made to
connect to a CICS server might be rejected because another connection has already
been installed using the same fully-qualified APPLID.

When the Gateway daemon or local mode application is configured with a
fully-qualified APPLID, all application requests sent to a CICS server using the
IPIC protocol use that fully-qualified APPLID. There is no check of fully-qualified
APPLIDs for uniqueness, so you must choose a naming convention carefully to
ensure the uniqueness of fully-qualified APPLIDs across the enterprise.

IPIC connections without a defined fully-qualified APPLID

When a Gateway daemon or local mode application without a defined
fully-qualified APPLID connects to a CICS server using the IPIC protocol the CICS
server generates a fully-qualified APPLID that is unique to that connection. If this
Gateway daemon or local mode application connects to multiple CICS servers
using the IPIC protocol, each connection's own fully-qualified APPLID is generated
independently. Each time that a Gateway daemon or local mode application
without a defined fully-qualified APPLID connects to a CICS server using the IPIC
protocol, the fully-qualified APPLID that is generated changes and cannot be relied
on to be consistent.

Establishing an IPIC Connection

If the APPLID and NETWORKID specified in a CICS IPCONN definition match
the Gateway daemon or local mode application's APPLID and APPLID qualifier,
the configuration of that IPCONN is applied to the connection made by the
Gateway daemon. If there is no matching IPCONN definition, the connection is

Chapter 8. Configuring 109

autoinstalled if the CICS system has been configured to allow autoinstall IPCONN
connections. If you configure CICS to prohibit the autoinstall of IPCONN
connections only requests that have APPLIDs that are set on the predefined
IPCONN definitions can connect.

If the APPLID qualifier defined for the Gateway daemon or local mode application
is left blank and the NETWORKID in the CICS IPCONN definition is left blank, a
match will not occur even if the APPLIDs match, because CICS defaults the blank
NETWORKID to the local network ID.

EXCI server connections
For EXCI SYNCONRETURN requests through the Gateway daemon, the Gateway
fully qualified APPLID is used to create the EXCI network UOWID and in local
mode the Client application fully qualified APPLID is used.

SMF
If an APPLID is specified in the configuration file, it is written to the relevant field
in the SMF record header. If no APPLID is specified, the job name is written to the
APPLID field in the SMF record header. SMF does not use the APPLID qualifier.

z/OS console
If an APPLID is specified in the configuration file this is the message format.
CTGnnnnI applid <TEXT>

If no APPLID is specified, the message format is:
CTGnnnnI jobname <TEXT>

Configuring CICS server connections
The connections that CICS Transaction Gateway uses when forwarding client
requests to CICS must be configured for the supported protocol.

EXCI and IPIC are the communications interfaces for CICS Transaction Gateway
for z/OS. If you are using IPIC exclusively, you do not need to configure EXCI.
Use the CTG_EXCI_INIT environment variable to specify that EXCI is not loaded.

Configuring IPIC
Perform these steps to configure an IPIC server connection.

The TCP/IP stack on your local machine is typically already correctly configured.
Contact your system administrator if you encounter problems.

An IPIC connection between CICS Transaction Gateway and CICS Transaction
Server must not be load balanced through any TCP/IP port sharing or load
balancing software.

IP interconnectivity (IPIC)
IPIC provides ECI access to CICS applications over the TCP/IP protocol,
supporting both COMMAREA and CICS channel applications and two phase
commit. CICS channels and containers allow you to send and receive more than 32
KB of application data in a single ECI request.

110 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Transactional support

IPIC supports two-phase commit XA transactions in both local and remote modes.

For information about the transaction types supported by the IPIC protocol when
using CICS Transaction Gateway to connect to different CICS servers see “Which
protocol can be used?” on page 14

Connections to CICS

For IPIC communications between CICS Transaction Gateway and CICS
Transaction Server V4.1 (or higher), up to two sockets are used for each IPIC
connection. If the IPIC connection is defined to use a maximum of one session, a
single socket is used. The use of multiple sockets is indicated by a Gateway
daemon log message, which is generated when the connection is established.

For IPIC communications between CICS Transaction Gateway and CICS
Transaction Server V3.2 or TXSeries systems, one socket is used for each IPIC
connection.

If one or more of the socket connections used for an IPIC connection ends
unexpectedly, for example, because of a network error, all the sockets are closed
and the IPIC connection is released.

Connection sessions

Each IPIC connection can be defined with up to 999 sessions. A single session
handles a single request at a time, so that the number of sessions determines the
maximum number of simultaneous requests that can be outstanding over an IPIC
connection. The number of sessions is defined on both the CICS server IPCONN
definition and the CICS TG IPICSERVER definition. If the number of sessions
differs on either end of the connection the actual number of sessions established is
negotiated when the connection is established.
Related information:
“Which API can be used?” on page 14
This table shows which APIs are supported over the IPIC and EXCI protocols in
local and remote mode.
“Which protocol can be used?” on page 14
This table shows what support is available for connecting to different version CICS
servers over IPIC and EXCI.
“IPIC connection security” on page 43
IPIC connections enforce link security to restrict the resources that can be accessed
over a connection to a CICS server, bind security to prevent an unauthorized client
system from connecting to CICS, and user security to restrict the CICS resources
that can be accessed by a user. If the CICS server supports password phrases, a
password phrase can be used for user security.

Configuring IPIC on CICS Transaction Server for z/OS
Perform these steps to configure IPIC on CICS Transaction Server for z/OS.

CICS Transaction Gateway can send IPIC requests over TCP/IP to CICS
Transaction Server for z/OS V3.2 and later. To perform this configuration:
1. Set the System Initialization (SIT) parameter TCPIP=YES.
2. Define the TCP/IP address and host name for the z/OS system. By default,

they are defined in the PROFILE.TCPIP and TCPIP.DATA data sets.

Chapter 8. Configuring 111

|

|
|
|
|
|
|
|

3. Add a TCP/IP listener to CICS. Use the following CEDA command to define a
TCPIPSERVICE in a group:
CEDA DEF TCPIPSERVICE(service-name) GROUP(group-name)

Ensure that the group in which you define the service is in the startup
GRPLIST, so that the listener starts when CICS is started. Key fields are
explained as follows:

POrtnumber
The port on which the TCP/IP service listens.

PRotocol
The protocol of the service is IPIC.

TRansaction
The transaction that CICS runs to handle incoming IPIC requests. Set it
to CISS (the default).

Backlog
The number of TCP/IP requests that are queued before TCP/IP starts
to reject incoming requests.

Ipaddress
The IP address (in dotted decimal form) on which the TCPIPSERVICE
listens. For configurations with more than one IP stack, specify ANY to
make the TCPIPSERVICE listen on all addresses.

SOcketclose
Whether CICS waits before closing the socket after issuing a receive for
incoming data on that socket. NO is recommended for IPIC
connections, to ensure that the connection from the CICS Transaction
Gateway always remains open.

4. Use the following command to install the TCPIPSERVICE definition:
CEDA INS TCPIPSERVICE(service-name) GROUP(group-name)

5. Choose whether to predefine or to autoinstall IPIC connections in CICS
Transaction Server for z/OS. Specific inbound connections can be defined for
different configurations using the CICS definition, IPCONN, or the connection
can be autoinstalled using either the default or a customized autoinstall
program. When CICS TG connects to CICS it flows the fully-qualified APPLID
defined for the Gateway daemon or local mode application and if this matches
that defined on an IPCONN definition, that definition is used to install the
connection. If there is no matching IPCONN definition, the connection is
autoinstalled. For further information on setting the fully-qualified APPLID for
IPIC connections see “IPIC server connections” on page 109.
To customize autoinstalled IPIC connections, for example, to configure security,
an IPCONN definition must be created with the customized attributes to act as
a template and this definition must be referenced as the template in a
customized IPCONN autoinstall user program. The name of the autoinstall user
program must be specified on the URM option of the installed TCPIPSERVICE
definition. For further information on setting security on IPIC connections see
“IPIC connection security” on page 43.
When creating an IPCONN definition for a CICS TG to CICS connection, the
SENDCOUNT parameter must be set to zero, unlike CICS to CICS connections
for which the SENDCOUNT must not be zero.

112 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Setting session limits

The number of simultaneous transactions, or CICS tasks, that are possible over the
connection is determined as follows:

Table 5. How the number of simultaneous transactions possible over an IPIC connection is
determined

SENDSESSIONS setting in
CICS Transaction Gateway

IPCONN Receive Count
setting in CICS Transaction
Server for z/OS

Number of simultaneous
transactions allowed

Set Set (on IPCONN resource
definition or customized
autoinstall)

The lesser of the two values
is used.

Set Not set (default autoinstall) The value of the CICS
Transaction Gateway
SENDSESSIONS setting is
used.

Not set Set (on IPCONN resource
definition or customized
autoinstall)

The value of the CICS
Transaction Server for z/OS
IPCONN Receive Count
setting is used.

Not set Not set (default autoinstall) A value of 100 is used.

Note: For local mode IPIC connections the CICS Transaction Gateway requests 100
send sessions by default. For JEE applications, the number of sessions can be
configured using the ipicSendSessions connection factory property. For Java base
class applications, the number of sessions can be configured using the
CTG_IPIC_SENDSESSIONS Java property.

Each active session uses one CICS task and the maximum number of sessions
allowed is 999. CICS Transaction Gateway allocates 300 KB of memory for each
session. If all the defined sessions are in use, any new requests receive an
ECI_ERR_RESOURCE_SHORTAGE error.

For more information on configuration file definitions for IPIC, see “IPICSERVER
section of the configuration file” on page 161.

Configuring IPIC in local mode
For IPIC connections in local mode, the CICS server name (ServerName) is defined
as a URL. A URL allows you to specify a protocol, host name, and port number,
which is the minimum information you need to connect to CICS.

The URL has the following format:
Protocol://hostname:port
Protocol://hostname:port#CICSAPPLID
Protocol://hostname:port#CICSAPPLIDQUALIFIER.CICSAPPLID

where:
v Protocol is either tcp or ssl.
v hostname is the TCP address of the host.
v port is the port number of the TCPIPSERVICE listener in CICS.
v CICSAPPLID is the APPLID of the CICS server.
v CICSAPPLIDQUALIFIER is the network ID of the CICS server.

Chapter 8. Configuring 113

CICSAPPLID and CICSAPPLIDQUALIFIER are optional parameters. If specified,
these parameters are sent to CICS when the connection is established and are
validated by CICS. The connection is rejected if the CICSAPPLID and
CICSAPPLIDQUALIFIER do not match the CICS server. If you do not specify the
CICSAPPLID and CICSAPPLIDQUALIFIER parameters, no check is made.

The default number of IPIC send sessions in local mode is 100. If you use the ECI
resource adapter, you can change this value by setting the ipicSendSessions
parameter. For more information, see “ECI resource adapter deployment
parameters” on page 170. If you use a Java application, you can change this value
by setting the LOCAL_PROP_IPIC_SENDSESSIONS property on the JavaGateway
object. For more information, see CICS® Transaction Gateway Base API
Programming Reference v9.0.0.1 .

Configuring IPIC in remote mode
In remote mode, the IPIC server definitions are stored in the configuration file
(ctg.ini). If the incoming server name found in the configuration file refers to an
IPIC definition, IPIC is used, otherwise CICS Transaction Gateway uses EXCI to
attempt to connect to the CICS server.

Configuring an IPIC CICS Server definition:

To configure a new IPIC CICS server definition edit the IPICSERVER section of the
configuration file.

The combination of fields that identify an IPIC server are Hostname or IP address,
Port, CICS APPLID and CICS APPLID qualifier. This combination must be unique
for each IPIC server definition to ensure that every connection that the CICS server
and the network protocol see is represented by a unique server definition in the
configuration file.

To configure an IPIC server definition edit the configuration file, see “IPICSERVER
section of the configuration file” on page 161 for more information.

Server name:

The SECTION IPICSERVER parameter defines a logical CICS server name used to
reference the actual CICS server. The logical CICS server name is used in API
requests.

SECTION IPICSERVER=<name>

Description
Set the value to the name of server that can be used for all requests to
access the server from Client applications. The server name can be 1
through 8 characters long. Use characters in the range A through Z, and 0
through 9, and the characters '@', '#', '$', '-'. Lowercase characters, in the
range a through z, are converted to uppercase.

This parameter is in the “IPICSERVER section of the configuration file” on
page 161.

Default value
There is no default value for this parameter.

114 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

|
|
|
|
|
|
|

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/topic/com.ibm.cics.tg.doc/basejavadoc/com/ibm/ctg/client/JavaGateway.html
http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/topic/com.ibm.cics.tg.doc/basejavadoc/com/ibm/ctg/client/JavaGateway.html

Description:

The description parameter is optional and can be used to describe the server
definition.

description=<string>

Description
Set the value to a text string. The string can be 1 - 60 characters. Use
characters in the range a through z, A through Z, and 0 through 9, and the
characters '@', '#', '$', '-'. The description is returned on list systems calls.

This parameter is in the “IPICSERVER section of the configuration file” on
page 161 and the .

Default value
There is no default value for this parameter.

Host name or IP address:

The hostname parameter is the host name or host IP address of the host on which
the CICS server is running.

hostname=<name|address>

Description
Set the value to the host name or host IP address. Host names are mapped
to an IP addresses by either the DNS server or in the hosts system file.

This parameter is in the “IPICSERVER section of the configuration file” on
page 161.

Default value
There is no default value for this parameter.

Port:

The port parameter defines the port number on which the target CICS server is
listening.

port=<number>

Description
Set the value in the range 1 - 65,535.

This parameter is in the “IPICSERVER section of the configuration file” on
page 161.

Default value
There is no default value for this parameter.

IPIC send sessions:

The sendsessions parameter specifies the number of simultaneous transactions or
CICS tasks that are allowed over the CICS connection.

sendsessions=<number>

Description
Set the value in the range 1 - 999 to specify the number of send sessions.
You must also specify the same number in the value in the receivecount

Chapter 8. Configuring 115

|
|

parameter of the IPCONN definition on the CICS server. If you do not
specify a value or specify a lower value in the receivecount than the value
specified in the sendsessions parameter, the value used might be reduced.

This parameter is in the “IPICSERVER section of the configuration file” on
page 161.

Default value
If this parameter is not specified, the default value is 100.

Target CICS APPLID:

The cicsapplid parameter identifies the APPLID of the target CICS server.

The cicsapplid and cicsapplidqualifier parameters can be used to verify that the
connection is made to the correct CICS server.

cicsapplid=<name>

Description
Set a value of up to eight characters, specifying the APPLID of the target
CICS server. The target CICS server is identified by the hostname and port
parameters. Setting the CICSAPPLID parameter is optional. However, if
specified, the cicsapplid parameter must match the APPLID of the target
CICS server and the cicsapplidqualifier parameter must match the
network ID of the target CICS server, otherwise the connection is not
established.

This parameter is in the “IPICSERVER section of the configuration file” on
page 161.

Default value
There is no default value for this parameter.

Target CICS APPLID qualifier:

The cicsapplidqualifier parameter identifies the network ID of the target CICS
server.

The cicsapplid and cicsapplidqualifier parameters can be used to verify that the
connection is made to the correct CICS server.

cicsapplidqualifier=<name>

Description
Set a value of up to eight characters, specifying the network ID of the
target CICS server. The target CICS server is identified by the hostname and
port parameters. Setting the cicsapplidqualifier is optional. However, if
specified, the cicsapplid parameter must also be set, the value specified in
the cicsapplid parameter must match the APPLID of the target CICS
server, and the cicsapplidqualifier parameter must match the network
ID of the target CICS server, otherwise the connection is not established.

This parameter is in the “IPICSERVER section of the configuration file” on
page 161.

Default value
There is no default value for this parameter.

116 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

|
|
|

|
|

Connection timeout:

The connecttimeout parameter specifies the maximum period, in seconds, that
establishing a CICS server connection is permitted to take.

connecttimeout=<number>

Description
Set the value in the range 0 - 3600 to specify the time period in seconds. If
the value of the connecttimeout parameter is set to 0, no limit is set. A
timeout occurs if establishing the connection takes longer than the
specified time.

This parameter is in the “IPICSERVER section of the configuration file” on
page 161.

Default value
If this parameter is not specified, the default value is 0.

Server retry interval:

The srvretryinterval parameter specifies the time, in seconds, between attempts
made by the Gateway daemon to reconnect to a CICS server over an IPIC
connection.

srvretryinterval=<number>

Description
Set the value in the range 0 - 3600 to specify the time interval in seconds. If
the CICS server that is currently connected becomes disconnected, an
attempt is made to reconnect one second after the CICS server becomes
disconnected. If the connection attempt fails, additional attempts are made
to connect at the interval specified by the srvretryinterval parameter. If
you specify a value of 0, connection attempts are only initiated if an ECI
request is directed at the CICS server and no connection attempt is already
in progress. If you specify a value greater than 0, connection attempts are
only initiated at the interval specified by the srvretryinterval parameter.

This parameter is in the “IPICSERVER section of the configuration file” on
page 161.

Default value
If this parameter is not specified, the default value is 60 seconds.

Server idle timeout:

The srvidletimeout parameter specifies the period, in minutes, of inactivity after
which the connection to the CICS server is closed.

srvidletimeout=<number>

Description
Set the value in the range 1 - 1080 to specify the period in minutes. A
connection is considered idle when there are no outstanding transactions
on the CICS server. If an idle connection remains open for the time
specified by srvidletimeout parameter, the connection is closed. The
connection is reestablished when a new a request is sent to the CICS
server.

Chapter 8. Configuring 117

This parameter is in the “IPICSERVER section of the configuration file” on
page 161.

Default value
If this parameter is not specified, the default value is 0.

Send TCP/IP KeepAlive packets:

The tcpkeepalive parameter determines whether TCP/IP periodically sends
keepalive messages to the server to check the connection.

tcpkeepalive=<Y|N>

Description
Set the value to Y to periodically send keepalive messages.

This parameter is in the “IPICSERVER section of the configuration file” on
page 161.

Default value
If this parameter is not specified, the default value is Y.

ECI timeout:

The ecitimeout parameter specifies the maximum period, in seconds, that CICS
Transaction Gateway waits before an ECI request times out.

ecitimeout=<number>

Description
Set the value in the range 0 - 32767 to specify the time period in seconds
for a response to be received for an ECI request. A timeout occurs when no
response is received from the CICS server in the specified time. If a
timeout occurs, the client does not receive confirmation from CICS that a
unit of work is backed out or committed. The ecitimeout parameter
overrides the ECI timeout value set on an ECI request. If the value of the
ecitimeout parameter is set to 0, the ECI timeout values specified by the
ECI requests are used.

This parameter is in the “IPICSERVER section of the configuration file” on
page 161.

Default value
If this parameter is not specified, the default value is 0.

Use SSL:

The ssl parameter controls the use of SSL over an IPIC connection.

ssl=<Yes|No>

Description
Set the value to Yes to use SSL for this IPIC connection.

Default value
The default value is No.

Use only these ciphers:

Use the ciphersuites parameter to restrict the set of cipher suites that can be used
with the SSL protocol.

118 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

ciphersuites=<name>

Description
Specify the cipher suites that CICS Transaction Gateway client applications
can use to connect to CICS Transaction Server for z/OS. You can define
multiple cipher suites by separating them with a comma. If none of the
cipher suites listed are supported by the JSSE provider, CICS Transaction
Gateway fails to start. If no cipher suite is specified or the parameter is
omitted, all available cipher suites can be used.

This parameter is in the IPICSERVER section of the configuration file.

Default value
If this parameter is not specified, the default is that all available cipher
suites are available.

Configuring EXCI
The configuration of EXCI server connections is the same for both local and remote
modes. A server definition is not required in the configuration file (ctg.ini) for
remote mode. EXCI configuration is achieved through setting of environment
variables.

Setting EXCI environment variables
If you are using the EXCI interface, you must ensure that the EXCI environment
variables have been set correctly.

The EXCI environment variables are:

CTG_EXCI_INIT
Specifies whether or not EXCI is loaded.

CTG_PIPE_REUSE
Specifies how allocated EXCI pipes are reused.

DFHJVPIPE
Specifies the name of the pipe that CICS Transaction Gateway uses for
EXCI calls.

DFHJVSYSTEM_nn
Specifies the name and description of an EXCI connected CICS server to be
returned in response to a request for the CICS_EciListSystems function.
The first system should be numbered 00.

STEPLIB
Specifies the library containing the default EXCI options and the EXCI load
modules.

For more information about EXCI environment variables see “Environment
variables: local and remote mode” on page 100.

You must also ensure that any customized EXCI options are used at startup. For
more information see “Referencing your customized EXCI options” on page 121.

Customizing EXCI options
The EXCI options table, DFHXCOPT, allows you to specify a number of
parameters for the EXCI. There is no suffixed version of this program, so the first
DFHXCOPT table located in the STEPLIB concatenation is loaded. If you are using
IPIC, you do not need to customize EXCI.

Chapter 8. Configuring 119

The following table shows the default parameters for the DFHXCOPT macro.

For full details see the CICS Transaction Server for z/OS CICS External Interfaces
Guide. The relevant parameters, shown in bold, are:

TRACE
The default value OFF means that EXCI tracing is not required. Exception trace
entries are always written to the internal trace table.

GTF
If you want to copy entries in the EXCI trace table to the generalized trace
facility (GTF), specify GTF=ON.

CICSSVC
This specifies the CICS type 3 SVC number being used for MRO
communication. EXCI must use the same SVC number that is used by the
CICS MRO servers that are in the z/OS image where the client program is
running. If you do not specify a specific CICS SVC number, the external CICS
interface determines the SVC in use for MRO by means of an z/OS VERIFY
command.

The default value zero means that EXCI will get the CICS SVC number from
z/OS. Specify 0 only when you are sure that at least one CICS server has
logged on to DFHIRP during the life of the z/OS IPL. If you use the default,
and the external CICS interface requests the SVC from z/OS, the request will
fail if no CICS server has logged on to DFHIRP.

In other circumstances, specify the CICS SVC number, in the range 200–255,
that is in use for CICS interregion communications. This must be the SVC
number that is installed in the z/OS image in which the client program is
running (the local z/OS).

Note: All CICS servers using MRO within the same z/OS image must use the
highest level of both DFHIRP and the CICS SVC, DFHCSVC. If your MRO
CICSplex consists of CICS servers at different release levels, the DFHIRP and
DFHCSVC installed in the LPA must be from highest release level of CICS
within the CICSplex.

CONFDATA
The default value SHOW allows user data to be traced. If you wish to hide it,
set this value to HIDETC.

SURROGCHK
The default value YES means that a surrogate security check will be performed
in the EXCI client address space if the flowed user ID is different from the user
ID of the client address space. This occurs regardless of the CICS security
settings. This means that if you flow a user ID in an EXCI request (including

DFHXCO TYPE=CSECT,
TIMEOUT=0, No timeout
TRACE=OFF, Only Exception trace entries
TRACESZE=16, 16K trace table
DURETRY=30, Retry SDUMPS for 30 seconds
TRAP=OFF, DFHXCTRA - OFF
GTF=OFF, GTF - OFF
MSGCASE=MIXED, Mixed case messages
CICSSVC=0, EXCI will obtain CICS SVC number
CONFDATA=SHOW, Show user commarea data in trace
SURROGCHK=YES Perform surrogate-user check @P1C

END DFHXCOPT

Figure 11. EXCI options table DFHXCOPT

120 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

flowing a user ID with an External Call Interface [ECI] request using the CICS
Transaction Gateway for z/OS), you need either to add an RACF surrogate
profile, or disable surrogate security checks by setting this parameter to NO.

Note: If the CICS server has no security (SEC=NO), specify
SURROGCHK=NO. For more information, see the CICS Transaction Server for
z/OS RACF Security Guide.

Referencing your customized EXCI options:

The EXCI options environment variable must point to the library that contains the
table of EXCI customization options. This ensures that these options are used at
startup.

Using STDENV

The STEPLIB environment variable should be updated to reference the dataset
containing your customized DFHXCOPT table ahead of the CICS EXCI load
library. For more information, see “Environment variables: local and remote mode”
on page 100

Using ctgenvvars

If you are using the ctgenvvar script you should update the EXCI_OPTIONS
environment variable to specify the library that contains the customized options
table. Edit the ctgenvvar script. Find the line:
EXCI_OPTIONS="your.user.loadlib"

and change it to specify the appropriate library.

You must update the name of the library specified in the EXCI_LOADLIB
environment variable to that of the latest version of CICS being used. This library
contains:
v The default EXCI options
v The EXCI load modules

Update EXCI_LOADLIB by editing the ctgenvvar script. The sample ctgenvvar script
contains the following definition:
Set EXCI_LOADLIB to the CICS SDFHEXCI library.
EXCI_LOADLIB="<EXCI_LOADLIB>"

Change it to specify the appropriate library and high-level qualifier. The
EXCI_OPTIONS and EXCI_LOADLIB variables are used in the definition of the STEPLIB
environment variable.

For more information about the EXCI options and how to customize them, see the
CICS Transaction Server for z/OS CICS External Interfaces Guide.

Configuring EXCI on CICS Transaction Server for z/OS
This information describes how to configure EXCI connections to allow the CICS
Transaction Gateway to connect to a CICS Transaction Server. See the CICS
Transaction Server for z/OS Installation Guide for further details on EXCI
configuration.

Chapter 8. Configuring 121

CICS server connection definition:

CICS Transaction Server includes sample EXCI connection and session definitions
(EXCG and EXCS). These are in the sample group DFH$EXCI.

You can use the supplied definitions without modification, you can copy and
modify the supplied definitions, or you can create completely new definitions.

Here are two examples of a connection definition:

The key parameters are shown in bold in the two examples, these are:

VIEW GROUP(MYEXCI) CONNECTION(JCOS)
OBJECT CHARACTERISTICS CICS RELEASE = 0620
CEDA View Connection(JCOS)
Connection : JCOS
Group : MYEXCI
DEscription : Sample EXCI Specific connection

CONNECTION IDENTIFIERS
Netname : JGATE400
INDsys :

REMOTE ATTRIBUTES
REMOTESYSTem :
REMOTEName :
REMOTESYSNet :

CONNECTION PROPERTIES
ACcessmethod : IRc Vtam | IRc | INdirect | Xm
PRotocol : Exci Appc | Lu61 | Exci
Conntype : Specific Generic | Specific
SInglesess : No No | Yes
DAtastream : User User | 3270 | SCs | STrfield | Lms

+ RECordformat : U U | Vb

SYSID=CW2C APPLID=IYCWZCFY

PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

OBJECT CHARACTERISTICS CICS RELEASE = 0620
CEDA View Connection(JCOS)
Queuelimit : No No | 0-9999
Maxqtime : No No | 0-9999

OPERATIONAL PROPERTIES
AUtoconnect : No No | Yes | All
INService : Yes Yes | No

SECURITY
SEcurityname :
ATtachsec : Identify Local | Identify | Verify | Persistent | Mixidpe
BINDPassword : PASSWORD NOT SPECIFIED
BINDSecurity : No No | Yes
Usedfltuser : No No | Yes

RECOVERY
PSrecovery : Sysdefault | None
Xlnaction : Keep Keep | Force

SYSID=CW2C APPLID=IYCWZCFY

PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

122 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Parameter Setting

Netname If you enter a Netname, the connection uses a specific pipe. If you leave
it blank, the EXCI connection uses a generic pipe. You should ideally
use a specific pipe because this helps to manage multiple connections,
and to identify problems.

If you use specific pipes, set Netname to be the same as the pipe
specified in the EXCI client program. You specify this on the user_name
parameter of an Initialize_User EXCI call. Set the DFHJVPIPE
environment variable to allow CICS Transaction Gateway to pass this
value to the EXCI. For more information see Setting environment
variables. If you use the sample DFH$EXCI, set the DFHJVPIPE
environment variable to BATCHCLI to use the specific pipe.

If CICS Transaction Gateway is configured to connect to more than one
CICS server, use the same Netname for all EXCI connections.

ACcessmethod Specify IRC (interregion communication).

PRotocol Specify EXCI.

Conntype This defines the type of EXCI connection used for jobs that are not CICS
to communicate with a CICS server on z/OS. This is a type of
multiregion operation (MRO) request and can be either Generic or
Specific.

v Generic: An MRO link with multiple sessions to be shared by
multiple EXCI users. Only one generic EXCI connection can be
installed in each server. Specify Generic if you left the Netname
attribute blank.

v Specific: An MRO link with one or more sessions dedicated to a
single user in a client program. Specify Specific if you completed the
Netname attribute.

ATtachsec This determines whether a check is to be made against the flowed user
ID. Specify Local or Identify.

v Local: CICS Transaction Gateway does not flow a user identifier; just
the link user ID (if specified) is used. If no link user ID is supplied,
all requests are run under the CICS default user ID as specified in the
DFLTUSER SIT parameter.

v Identify: A user ID is flowed on every request, but a password is not
expected, because CICS trusts the user ID as having been already
authenticated.

For security reasons, consider enabling user ID and password
verification within CICS Transaction Gateway, before the EXCI request is
made. The user ID is either the user named in the ECIRequest object(If
null), or the user ID of the thread under which the ECI request runs.

For more information on how to create CICS server connection definitions see the
CICS Transaction Server for z/OS External Interfaces Guide.

CICS server sessions definition:

For each EXCI connection definition, you create a sessions definition.

Chapter 8. Configuring 123

The relevant parameters (shown in bold in the figures) are:

Connection
This sessions definition is associated with the JCOS connection.

Protocol
Specify EXCI.

RECEIVEPfx
This is a one or two character prefix for the receive session names. CICS
creates the remainder of the four character names from the alphanumeric
characters A through Z, and 1 through 9. These two or three character
identifiers begin with the letters AAA, and continue in ascending sequence

VIEW GROUP(MYEXCI) SESSIONS(JCOS)
OBJECT CHARACTERISTICS CICS RELEASE = 0620
CEDA View Sessions(JCOS)
Sessions : JCOS
Group : MYEXCI
DEscription : Sample EXCI Specific sessions definition

SESSION IDENTIFIERS
Connection : JCOS
SESSName :
NETnameq :
MOdename :

SESSION PROPERTIES
Protocol : Exci Appc | Lu61 | Exci
MAximum : 000 , 000 0-999
RECEIVEPfx : JG
RECEIVECount : 004 1-999
SENDPfx :
SENDCount : 1-999
SENDSize : 04096 1-30720

+ RECEIVESize : 04096 1-30720

SYSID=CW2C APPLID=IYCWZCFY

PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 12. Sessions definition—screen 1

OBJECT CHARACTERISTICS CICS RELEASE = 0620
CEDA View Sessions(EXC1SESS)
SESSPriority : 000 0-255
Transaction :

OPERATOR DEFAULTS
OPERId :
OPERPriority : 000 0-255
OPERRsl : 0 0-24,...
OPERSecurity : 1 1-64,...

PRESET SECURITY
USERId :

OPERATIONAL PROPERTIES
Autoconnect : No No | Yes | All
INservice : Yes No | Yes
Buildchain : Yes Yes | No
USERArealen : 000 0-255
IOarealen : 04096 , 04096 0-32767
RELreq : No No | Yes
DIscreq : No No | Yes

SYSID=CW2C APPLID=IYCWZCFY

PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 13. Sessions definition—screen 2

124 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

until the number of session entries reaches the limit set by the RECEIVECount
value (in our example JGAA, JGAB, JGAC, and so on). The default receive
prefix is the < symbol.

RECEIVECount
This defines the number of sessions that can receive before sending. Because all
EXCI sessions are receive sessions, this defines the number of pipes that can be
used simultaneously. Because the EXCI imposes a maximum of LOGONLIM
pipes for each EXCI address space, set RECEIVECount to a value larger than
LOGONLIM.

SENDCount
Leave blank. Because EXCI sessions can only receive, there are no send
sessions.

USERId
This defines the preset user identifier to be used for link security checking. It
provides an additional security check for each transaction in addition to the
flowed user ID. If you do not specify a preset user ID for link security, CICS
uses the flowed user ID.

Open interregion communication:

After you have installed the CONNECTION definitions, you must set interregion
communication (IRC) open.
CEDA INSTALL GROUP(groupname)

to install the group containing the definitions, and:
CEMT SET IRC OPEN

to set IRC open. For more information see the CICS Resource Definition Guide.

EXCI user-replaceable module DFHXCURM:

The user-replaceable module DFHXCURM is invoked on EXCI Allocate_Pipe requests,
and also after detection of EXCI retryable errors.

This occurs in one of these circumstances:
v The target CICS server is not available.
v No pipes are available on the target CICS server.
v IRC has not been active since the last initial program load (IPL).

In early releases of CICS Transaction Gateway, an EXCI pipe was established, used,
and deallocated, for each ECI flow. CICS Transaction Gateway now creates a pipe
only for the first ECI flow. Later calls reuse this pipe. As a result, it is no longer
possible to perform workload management using the EXCI user-replaceable
module DFHXCURM, because the code is called only on the first ECI flow.

An alternative way of performing workload balancing is to take the following
steps:
1. Route all your ECI flows to the same CICS server.
2. Perform the routing to other CICS servers, using, for example, a round-robin

approach to distribution.

Although reusing the same pipe for EXCI calls has an impact on previously
written workload management code, there are benefits in CICS Transaction

Chapter 8. Configuring 125

Gateway performance. This is because the Initialize_User and Allocate_Pipe
EXCI commands are only called once per worker thread per APPLID. In the past
they were called at the start of every ECI flow.

If an EXCI Open_Pipe call fails with a retryable error, the CICS Transaction
Gateway retries the Allocate_Pipe and Open_Pipe calls up to a maximum of five
times, (the same as the EXEC CICS LINK command.) Each time the Allocate_Pipe
is called, the EXCI user-replaceable module DFHXCURM is driven and can change
the specified CICS_APPLID; this allows the CICS Transaction Gateway five retries
to find an available server.

An EXCI pipe to a failed CICS server is deallocated and reallocated when a
subsequent ECI request to that failed CICS server is made. DFHXCURM can be
driven to allocate the pipes to a different server, but the pipes are not reallocated
to the failed server when it comes up again.

Configuring XA support
This information describes what you must do to configure your system for XA
support.

Configuring for XA transaction support
You can configure CICS Transaction Gateway to benefit from XA transactionality.
XA transactionality provides support for two-phase commit transactions and
allows CICS Transaction Gateway to participate in global transactions. This section
describes how to configure a single CICS Transaction Gateway and multiple CICS
Transaction Gateways in a highly-available Gateway group.

Ensuring you have a working Gateway daemon configuration

Before you configure CICS Transaction Gateway with XA support you must have a
working Gateway daemon configuration. If you do not have a working Gateway
daemon configuration, complete the following tasks:
1. Install CICS Transaction Gateway.
2. Configure RACF authorization for user ID and password authentication. For

more information see “Configuring for client certificate mapping” on page 143.

Configuring the application server and client environment with
XA support

Deploy the CICS resource adapters as described in Deploying the CICS resource
adapter.
v If your applications connect to CICS Transaction Gateway in remote mode, you

can use the ECI resource adapter from any supported version of CICS
Transaction Gateway.

v If you have any applications which connect to CICS Transaction Gateway in
local mode, you must use the ECI resource adapter from the same release as
your installed version of CICS Transaction Gateway.

Configuring the Gateway daemon with XA support
1. Ensure that CTGRRMS services are enabled as described in “Enabling

CTGRRMS services” on page 127.
2. You must permit access for the Gateway daemon USERID to one of the

following RACF facilities when XA support is enabled:

126 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

v ALTER access to the MVSADMIN.RRS.COMMANDS.** facility.
v ALTER access to the MVSADMIN.RRS.COMMANDS.gname.sysname facility.

gname
is the logging group name and corresponds to the logging group in
the RRS administrative panels in ISPF. Set gname to the value for the
sysplex where the Gateway is running.

sysname
is the system name. Set sysname to the value for the LPAR where
the Gateway is running

If you give ALTER access to MVSADMIN.RRS.COMMANDS.** the Gateway
daemon is permitted to perform recovery operations for transactions associated
with any system name or logging group. This option requires less
administration but does not provide granularity of control.
If you give ALTER access to MVSADMIN.RRS.COMMANDS.gname.sysname
the Gateway daemon is permitted to perform recovery operations for
transactions associated with the specified system name or logging group. This
option allows for greater granularity of control but requires a greater amount of
administration.
If workload is shared between multiple Gateway daemons within a
highly-available Gateway group, the Gateway USERID must have ALTER
access to each gname.sysname pair used by the highly-available Gateway
group.

3. Set the xasupport configuration keyword in the GATEWAY section of the
configuration file (ctg.ini). For more information see “GATEWAY section of the
configuration file” on page 158.

4. Decide on a fully-qualified APPLID for the CICS Transaction Gateway instance.
If you use TCP/IP load balancing across multiple Gateway daemons in a
highly-available Gateway group, you must specify the same APPLID qualifier
for each Gateway daemon in the group; this denotes each individual Gateway
daemon's membership of the group. Gateway daemons in a highly-available
Gateway group can span multiple LPARs in a sysplex.
See Configuring identification using APPLID for more information about setting a
fully-qualified APPLID.
The APPLID and APPLIDQUALIFIER are defined in the configuration file or as
command line overrides.
The Gateway daemon uses the following name format to register with RRS:
CICSTG.APPLIDQUALIFIER.APPLID.

5. Start each Gateway daemon as described in “Starting CICS Transaction
Gateway” on page 244.

See Sysplex restrictions for information about z/OS image restrictions.

Enabling CTGRRMS services
To support XA, CICS Transaction Gateway issues authorized RRS calls, through
CTGRRMS services. Protect these services with RACF, or another external security
manager. Follow these instructions to add the new services, and to protect them.
1. Add hlq.SCTGLINK to the MVS LNKLST. This load library must be

APF-authorized.
2. Issue the MVS command F LLA,REFRESH to refresh the LNKLST LOOKASIDE

address space (LLA).

Chapter 8. Configuring 127

3. Give the user ID that is running the CICS Transaction Gateway UPDATE
authority to the RACF entity CTG.RRMS.SERVICE in the FACILITY class.
Activate SETROPTS RACLIST processing for the FACILITY general resource
class. When you activate this function, you improve performance because I/O
to the RACF database is reduced. If you are using an external security manager
other than RACF, see its documentation for information about how to give the
user ID that is running CICS Transaction Gateway access to these resources.
Issue the TSO commands:
a.

SETROPTS RACLIST(FACILITY)

Note: If you activate SETROPTS RACLIST processing for the FACILITY
class, any time you make a change to a FACILITY profile, you must also
refresh SETROPTS RACLIST processing for the FACILITY class for the
change to take effect (SETROPTS RACLIST(FACILITY) REFRESH).

b. Create the entity in the FACILITY class:
RDEFINE FACILITY CTG.RRMS.SERVICE UACC(NONE)

c. Enable the user ID for the CICS Transaction Gateway (gway_id):
PERMIT CTG.RRMS.SERVICE CLASS(FACILITY) gway_id ACCESS(UPDATE)

If the CTGINIT module in SCTGLINK is subsequently refreshed, see “Starting,
stopping or refreshing the CTGRRMS services.”

Starting, stopping or refreshing the CTGRRMS services
Use the <install_path>/bin/ctgasi command to start, stop or refresh the CTGRRMS
services that are used for XA support.

There are three levels of access for the CTG.RRMS.SERVICE RACF entity in the
FACILITY class. These levels control the tasks that can be performed. The levels
are:
v UPDATE - this allows the user ID of a Gateway daemon to use the

CTG.RRMS.SERVICE facility. This level of access is required for a Gateway
daemon configured for XA support.

v CONTROL or ALTER - these access levels allow a user ID such as a System
Programmer to perform shutdown or refresh operations on the CTGRRMS
address space, with the <install_path>/bin/ctgasi utility.

v NONE or READ - these levels prevent a user ID from access to the CTGRRMS
services.

Use the <install_path>/bin/ctgasi command to start, stop or refresh the CTGRRMS
services that are used for XA support.

Starting CTGRRMS services
Use the <install_path>/bin/ctgasi command to start CTGRRMS services that are
used for XA support. ctgasi must be run in a UNIX System Services shell. It can
be launched in batch mode using CTGBATCH.

About this task

If the CTGRRMS address space is not already running when a Gateway daemon
with XA support is started, then ctgasi is automatically invoked silently to start
CTGRRMS. You can also manually start CTGRRMS by using the ctgasi command
if, for example, CICS Transaction Gateway fails to start, or a new version of the
CTGINIT module in SCTGLINK is distributed.

128 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

The user ID executing the Gateway daemon, or ctgasi, must have at least UPDATE
level access to the CTG.RRMS.SERVICE in the facility class to start CTGRRMS.

Follow these steps after successfully installing CICS Transaction Gateway and
before running any Gateway daemons:

Procedure
1. Ensure that the user ID which runs ctgasi has UPDATE, CONTROL, or ALTER

authority to the RACF FACILITY CTG.RRMS.SERVICE and log on using this
user ID.

2. Shut down all existing Gateway daemon address spaces, if present, in the
logical partition (LPAR).

3. Add hlq.SCTGLINK to the MVS LNKLST. This load library must be
APF-authorized.

4. Issue the MVS command:
F LLA,REFRESH

to refresh the LNKLST LOOKASIDE address space (LLA).
5. Issue the following command:

ctgasi

6. See the following messages which are issued to the system log when
CTGRRMS services are started successfully:
CTG6241I Initializing CTGRRMS Services

CTG6242I CTGRRMS Services open for business

7. Repeat these steps on every LPAR on which you install this version of CICS
Transaction Gateway.

Refreshing CTGRRMS services
Use the <install_path>/bin/ctgasi command to refresh CTGRRMS services that are
used for XA support. ctgasi must be run in a UNIX System Services shell. It can
be launched in batch mode using CTGBATCH.

About this task

CTGRRMS is a long-running task used by the XA logic in CICS Transaction
Gateway. The executable code for the CTGRRMS services is in the CTGINIT
module shipped with CICS Transaction Gateway. If the version of CTGINIT is
incremented with a new release of CICS Transaction Gateway, you must restart
CTGRRMS to use the new version of CTGINIT. If CTGINIT is at a version that is
lower than the version of the Gateway daemon you have installed, the Gateway
daemon will fail to startup when configured to use XA. CTGRRMS was introduced
in Version 6.1 and upgraded at Version 7.2.

Follow these steps after successfully installing CICS Transaction Gateway and
before running any Gateway daemons. If you do not follow these steps for every
LPAR, Gateway daemons will fail to start.

Procedure
1. Ensure that the user ID which runs ctgasi has CONTROL authority to the

RACF FACILITY CTG.RRMS.SERVICE and log on using this user ID.

Chapter 8. Configuring 129

2. When refreshing the CTGRRMS services, it is good practice to use a different
user ID to the user ID used to run the Gateway daemon because a higher level
of access to CTG.RRMS.SERVICE is required. Enable the refresh user ID
(rfreshid):
PERMIT CTG.RRMS.SERVICE CLASS(FACILITY) rfreshid ACCESS(CONTROL)

3. Shut down all existing Gateway daemons in the LPAR, and ctgmaster if you
are using an earlier version of the CICS Transaction Gateway in this LPAR.

4. Add hlq.SCTGLINK to the MVS LNKLST. hlq is the install directory of the latest
level of CICS Transaction Gateway installed on the LPAR. This load library
must be APF-authorized.

5. Issue the MVS command:
F LLA,REFRESH

to refresh the LNKLST LOOKASIDE address space (LLA).
6. Issue the following commands in the following order:

ctgasi -s

ctgasi

to shut down and restart the CTGRRMS service.
7. If the command detects that instances of the CICS Transaction Gateway are

running, it issues a warning and does not shut down CRGRRMS services.
Check again that no Gateway daemon services and no ctgmaster processes (if
you are using an earlier version in this LPAR) are running.

8. Repeat these steps on every LPAR on which you install this version of CICS
Transaction Gateway.

Results

You can still run Gateway daemons and ctgmaster processes from earlier releases
in the same LPAR after you have completed the refresh process. A running
CTGRRMS service is compatible with earlier releases.

A Gateway daemon, or version of ctgasi, from an earlier release cannot run a
CTGINIT file from a later release. The version of ctgasi which invokes CTGINIT
and causes the service to be refreshed must be from the later release.

Stopping CTGRRMS services
Use the <install_path>/bin/ctgasi command to stop CTGRRMS services that are
used for XA support. ctgasi must be run in a UNIX System Services shell. It can
be launched in batch mode using CTGBATCH.

About this task

If you need to need to re-IPL a logical partition (LPAR), you also need to stop
CTGRRMS services. Follow these steps:

Procedure
1. Ensure that the user ID which runs ctgasi has CONTROL or ALTER authority

to the RACF FACILITY CTG.RRMS.SERVICE and log on using this user ID.
2. Shut down all existing Gateway daemons in the LPAR, and ctgmaster if you

are using an earlier version of the CICS Transaction Gateway in this LPAR.
3. Issue the following command:

ctgasi -s

130 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

4. Repeat these steps on every LPAR on which you install this version of CICS
Transaction Gateway.

LPAR IPLs in an XA environment
If you need to re-IPL an LPAR in an XA environment, follow this procedure.

Procedure
1. Stop all Gateway daemons and the CTGRRMS services in the LPAR. See

“Stopping CTGRRMS services” on page 130 for details about how to do this.
2. Perform the standard procedures required for an IPL of an LPAR.
3. Immediately following the IPL, start the RRMS services at the correct level. See

“Starting CTGRRMS services” on page 128 for details about how to do this.

ctgasi command syntax
The ctgasi command manually starts, stops or refreshes the CTGRRMS services
used for XA support.
ctgasi [[-refresh|-shutdown [-force]]|[-tracedump]][-verbose]
ctgasi [[-r|-s [-f]]|[-td]] [-v]
ctgasi [-?]

Issue the command without parameters to start an address space if one is not
already running. The meaning of the optional parameters is as follows:

-refresh | -r
Stops the CTGRRMS services and then starts a new instance.

-shutdown | -s
Stops the CTGRRMS services, but does not start a new instance.

-force | -f
Forces the command to run even if active instances of the CICS Transaction
Gateway are detected. Used with the -refresh or -shutdown parameters.

-tracedump | -td
Dumps a formatted initialization trace.

-verbose | -v
Displays extended messages while ctgasi is running.

-? Displays help on the command.

XA transaction support activate (xasupport)
The xasupport parameter controls whether the CICS Transaction Gateway supports
XA transactions.

xasupport=<on|off>

Description
You can set the xasupport configuration file parameter to on, to enable
support for XA based JEE global transactions.

This parameter is in the GATEWAY section of the configuration file.

Default value
The default value is off.

Gateway start type
The start parameter determines whether heuristically-completed transactions are
resolved.

Chapter 8. Configuring 131

start=<cold>

Description
Set the value to cold to resolve heuristically-completed transactions. A
heuristic error might occur after the failure of a transactional component or
through manual intervention by an operator using the RRS panels, for
more information, see “Cold start” on page 245.

You can use the ctgstart -start=cold command to override the value of
start. For more information, see “Options on the ctgstart command” on
page 254.

This parameter is in the GATEWAY section of the configuration file.

Default value
By default, this parameter is not included in the configuration file.

Configuring SSL
You can configure CICS Transaction Gateway to use the SSL cryptographic protocol
for security and data integrity of communications over a TCP/IP connection.

Creating and maintaining digital certificates
Digital certificates are used for identifying either end of an SSL connection and
contain information required to establish trust.

A digital certificate is a digitally signed data structure that binds a public key to
the identity of the private key's owner. The use of digital certificates ensures that
the user of a public key can be confident of the ownership of the corresponding
private key. If you intend using SSL, you must always configure server
authentication.

Server authentication tasks (mandatory for SSL)
1. Create a CA certificate on your Server which is self signed, or send a certificate

request to an external CA and have it signed by them.
2. Generate a personal certificate on the Server and sign it with your CA

certificate.
3. Export the personal certificate to a file on your Server.
4. Transfer the file to your Client.
5. Create a keystore/key ring on your Client and import the server personal

certificate from the file into it.

Client authentication tasks (optional for SSL)
1. Create a CA certificate on your Client which is self signed, or send a certificate

request to an external CA and have it signed by them.
2. Generate a personal certificate on the Client and sign it with your CA

certificate.
3. Export the personal certificate to a file on your Client.
4. Transfer the file to your Server.
5. Import the Server personal certificate to the client's RACF key ring or keystore.

Tools for working with digital certificates

Use these tools to work with digital certificates in different scenarios:
v Use keytool for software encryption, if the key ring is stored in zFS

132 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

v Use hwkeytool for hardware encryption, if the key ring is stored in zFS
v You can also use RACF for creating and maintaining certificates and key rings
Related information:
“Using keytool for certificate management”
The keytool command line application is provided with the SDK.
“Creating and maintaining hardware key ring files” on page 140
You can use the hwkeytool command that is provided as part of the IBM Java
software development kit in much the same way as the keytool command to
generate key rings and manage certificates. Extra parameters are available to
specify how the key is stored on the cryptographic device, and how it is to be
used. You also have the option of labeling the key on the cryptographic device.
“Using RACF key rings” on page 139
The key rings that CICS Transaction Gateway uses when establishing secure SSL
connections are stored in RACF. This provides an alternative to Java keystore (.jks)
files stored in the ZFS (a USS filesystem).

Using keytool for certificate management
The keytool command line application is provided with the SDK.

In the production environment you might choose to use externally signed
certificates, which are managed in a similar way.

Configuring your SSL server
To configure your SSL server you create a server key ring and certificate, export
the server's signer certificate, and transfer the server certificate to the client.

Create a server key ring and server certificate

Issue the following command to create both the KeyStore and certificate:
keytool -genkey -alias aliasname -keysize numericvalue -dname distname

-keystore location -keypass password -storepass password
-keyalg algorithm

The options are:

-genkey
Generates a key pair and wraps the public key into a self-signed certificate.

-alias aliasname
Defines the alias name that identifies the store containing the self-signed
certificate and private key.

-keysize numericvalue
Defines the size of the key.

-dname distname
Specifies the X.500 distinguished name to be associated with the alias. This
is used as the issuer and subject fields of the self-signed certificate. The
distinguished name consists of a number of fields separated by commas in
the following format:

Each strvalue is a string value. The meaning of the abbreviations is as
follows:
v cn = common name
v o = organization
v ou = organization unit

Chapter 8. Configuring 133

v l = city/locality
v s = state/province
v c = country name

An example of an X.500 distinguished name is shown here:

-keystore location
The key ring file location. For example: ktserverss.jks

-keypass password
The password used to protect the private key. Set this to the same value as
the -storepass password, to enable the CICS Transaction Gateway to
establish a connection over SSL.

-storepass password
The password used to protect the integrity of the key ring. Set this to the
same value as the -keypass password, to enable the CICS Transaction
Gateway to establish a connection over SSL.

-keyalg algorithm
The algorithm to be used to generate the key pair.

An example of this command is shown here:

View the newly created certificate

Use a command similar to the following to view all certificates in the key ring,
including the one you just created:
keytool -list -keystore storename -storepass password -v

Where the options are:

-list List the contents of the key ring.

-keystore storename
The name of the key ring containing the certificates you want to view.

-storepass password
The password needed to access the key ring.

-v Show details of the certificates in the key ring.

An example of the keytool command to view certificates is shown here:

"cn=someserver.location.ibm.com,o=IBM,ou=IBMGB,
l=Winchester,s=Hants,c=GB"

Figure 14. An X.500 distinguished name

keytool -genkey -alias exampleServerCert -keysize 1024
-dname "cn=vmware2.location.ibm.com,o=IBM,ou=IBMGB,l=Winchester,s=Hants,c=GB"
-keystore ktserverss.jks -keypass default -storepass default
-keyalg RSA

Figure 15. Using the keytool command to create a key ring containing a single self-signed certificate

keytool -list -keystore ktserverss.jks -storepass default -v

Figure 16. Using the keytool command to view certificates

134 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Export the server's signer certificatd

The next step is to export the signer certificate and store it in a safe place. This can
then be imported into the repository of any client that needs to connect to this SSL
server.

The certificate is exported by using the following instance of the keytool command:
keytool -export -alias aliasname -keystore location

-storepass password -file filename -rfc

Where the options are:

-export
Export a certificate.

-alias aliasname
Name of the key (in the key ring) to export.

-keystore location
The key ring location.

-storepass password
The password used to protect the integrity of the key ring.

-file filename
The name of the file to export the certificate to.

-rfc Export the certificate in RFC format (Base64 encoded ASCII).

An example of the keytool command to export a signer certificate is shown here:

Transfer the server certificate to the client

If you use FTP to transfer the file, ensure that your FTP client is in ASCII mode.

Configuring your SSL clients
To configure your SSL clients you create a client key ring and import the server's
signer certificate, create a self-signed certificate in the client. Next you export the
client's signer certificate, and transfer the server certificate to the client. Finally you
import the client signer certificate into the server's key ring file.

If your server does not use client authentication you complete the first task (create
a client key ring and import the server's signer certificate) but you do not have to
complete the other tasks.

Create a client key ring and import the server's signer certificate.

Issuing the following command to create the key ring and import the certificate:
keytool -import -alias aliasname -file certfile -keystore keystorefile

-storepass password -noprompt

Where the options are:

-import
Import a certificate.

keytool -export -alias exampleServerCert -keystore ktserverss.jks -storepass default
-file exampleServerCertKT.arm -rfc

Figure 17. Using the keytool command to export the signer certificate

Chapter 8. Configuring 135

-alias aliasname
The name under which the certificate is to be stored.

-file certfile
The file that contains the certificate.

-keystore keystorefile
The key ring into which the certificate is to be imported.

-storepass password
The password used to protect the integrity of the key ring.

-noprompt
Removes the need to confirm that the certificate is imported.

An example of this command is shown here:

Create a self-signed certificate in the client key ring

To create a new keystore containing a self-signed certificate use the following
instance of the keytool command:
keytool -genkey -alias aliasname -keysize numericvalue -dname distname

-keystore location -keypass password -storepass password
-keyalg algorithm

The options are:

-genkey
Generates a key pair and wraps the public key into a self-signed certificate.

-alias aliasname
Defines the alias name that identifies the store containing the self-signed
certificate and private key.

-keysize numericvalue
Defines the size of the key.

-dname distname
Specifies the X.500 distinguished name to be associated with the alias. This
is used as the issuer and subject fields of the self-signed certificate. The
distinguished name consists of a number of fields separated by commas in
the following format:

Each strvalue is a string value. The meaning of the abbreviations is as
follows:
v cn = common name
v o = organization
v ou = organization unit
v l = city/locality
v s = state/province
v c = country name

An example of an X.500 distinguished name is shown here:

keytool -import -alias exampleServer -file exampleServerCertKT.arm -keystore clientStore.jks
-storepass default -noprompt

Figure 18. Using the keytool command to create a key ring containing the server's signer certificate

136 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

-keystore location
The key ring file location. For example: ktserverss.jks

-keypass password
The password used to protect the private key. Set this to the same value as
the -storepass password, to enable the CICS Transaction Gateway to
establish a connection over SSL.

-storepass password
The password used to protect the integrity of the key ring. Set this to the
same value as the -keypass password, to enable the CICS Transaction
Gateway to establish a connection over SSL.

-keyalg algorithm
The algorithm to be used to generate the key pair.

An example of the keytool command is shown here:

Export the client's signer certificate

This certificate must be imported into the keystores of all servers that the SSL
client needs to connect to.

To export the certificate use the following instance of the keytool command:
keytool -export -alias aliasname -keystore location

-storepass password -file filename -rfc

Where the options are:

-export
Export a certificate.

-alias aliasname
Name of the key (in the key ring) to export.

-keystore location
The key ring location.

-storepass password
The password used to protect the integrity of the key ring.

-file filename
The name of the file to export the certificate to.

-rfc Export the certificate in RFC format (Base64 encoded ASCII).

An example instance of the keytool command to export a signer certificate is
shown here:

"cn=someserver.location.ibm.com,o=IBM,ou=IBMGB,
l=Winchester,s=Hants,c=GB"

Figure 19. An X.500 distinguished name

keytool -genkey -alias exampleClientCert -keysize 1024
-dname "cn=John Doe,o=IBM,ou=IBMGB,l=Winchester,s=Hants,c=GB"
-keystore clientStore.jks -keypass default -storepass default
-keyalg RSA

Figure 20. Using the keytool command to create a key ring containing a single self-signed certificate

Chapter 8. Configuring 137

Transfer the server certificate to the client

If you use FTP to transfer the file, ensure that your FTP client is in ASCII mode.
For details on importing the certificate, see step Create a client key ring and import
the server's signer certificate.

SSL key ring configuration
To use SSL for connections between Java client applications and the Gateway
daemon, or to use SSL for IPIC connections to CICS, you must configure the SSL
key ring in the configuration file, ctg.ini.

Key ring file
The keyring parameter specifies the name of the key ring.

keyring=<file>

Description
Set the value to the name of a keyring, that can be stored in an external
security manager, that the protocol uses. Specify either the full path name
or the path name of the file relative to the CICS Transaction Gateway bin
directory. The user ID that the Gateway daemon is running under must be
able to access the key ring file. If you are using a RACF keyring file, the
value of the keyring parameter is the name of the RACF key ring.

You can use the ctgstart -keyring=file command to override the value of
keyring.

This parameter is in the PRODUCT section of the configuration file.

Default value
There is no default value.

Key ring password
The keyringpw parameter specifies the password associated with the key ring file
defined in the keyring parameter.

keyringpw=<password>

Description
Set the value to the password for the keyring file. If you are using a RACF
keyring, do not specify the keyringpw parameter.

You can use the command ctgstart -keyringpw=password, to override the
value of keyringpw.

This parameter is in the PRODUCT section of the configuration file.

Default value
There is no default value. This parameter must be specified unless using
an ESM key ring.

Key ring password encryption
The keyringpwscrambled parameter specifies whether the keyringpw parameter
value was encrypted.

keyringpwscrambled=<on|off>

keytool -export -alias exampleClientCert -keystore clientStore.jks -storepass default
-file exampleClientCertKT.arm -rfc

Figure 21. Using the keytool command to export the signer certificate

138 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Description
This value is set to on when the value of keyringpw is encrypted.

This parameter is in the PRODUCT section of the configuration file.

The Password Scrambler utility can be used to generate a scrambled
keyring password definition suitable for putting in the configuration file.
See the sample JCL in the CTGSSLPW member of the samples PDS for an
example of how to run the password scrambler utility.

Default value
If this parameter is not specified, the default value is off.

ESM key ring
The esmkeyring parameter takes the value of either on or off which indicates
whether the key ring value is an external security manager (ESM) key ring or a
keystore name.

esmkeyring=<on|off>

Description
Specify esmkeyring=on in the configuration file if you have a key ring
provided by an ESM such as RACF.

This parameter is in the PRODUCT section of the configuration file.

Default value
The default value is off.

Use hardware cryptography
The hwcrypt parameter defines that the key ring is stored using hardware
cryptographic functions.

hwcrypt=<on|off>

Description
Specify the hwcrypt=on parameter in the configuration file to enable
hardware cryptography. Hardware cryptography is managed using an
Integrated Cryptographic Services Facility (ICSF) card and associated
software on the mainframe.

This parameter is in the PRODUCT section of the configuration file.

Default value
The default is off.

Using RACF key rings
The key rings that CICS Transaction Gateway uses when establishing secure SSL
connections are stored in RACF. This provides an alternative to Java keystore (.jks)
files stored in the ZFS (a USS filesystem).

Creating and maintaining key rings

The key ring must contain a personal certificate and the certificate authority
certificate used to sign it. The key ring must be accessible by the user ID under
which the Gateway daemon is running.

To create and maintain RACF key rings, you can either use the RACDCERT native
command or the DIGITAL CERTIFICATES AND KEY RINGS panels found under
the main RACF service options panel in ISPF.

Chapter 8. Configuring 139

For information on creating certificates and key rings in RACF, see the z/OS
Security Server RACF Security Administrator's Guide.

Exporting certificates

The key ring that CICS Transaction Gateway uses must contain the personal
certificate with its private key connected as a personal certificate. It must also
contain the Certificate Authority certificate used to sign the personal certificate,
attached as a CERTAUTH certificate. The use of certificates connected as SITE is
not supported.

You export the personal certificate to the client keystore using FTP:
v If you export as FORMAT(CERTB64), you must FTP the file in ASCII format.
v If you export the certificate as FORMAT(CERTDER), you must FTP the file in

binary format.

Defining key rings in the configuration file

To set the RACF key ring in the configuration file:
v Define the keyring entry as the name of the RACF key ring (omitting the

keyringpw entry).
v Define the esmkeyring parameter. esmkeyring is specified in the PRODUCT

section of the ctg.ini file.

For more information see “SSL protocol parameters” on page 160.

Creating and maintaining hardware key ring files
You can use the hwkeytool command that is provided as part of the IBM Java
software development kit in much the same way as the keytool command to
generate key rings and manage certificates. Extra parameters are available to
specify how the key is stored on the cryptographic device, and how it is to be
used. You also have the option of labeling the key on the cryptographic device.

To create a key ring, issue a command like the following:
hwkeytool -genkey -alias aliasname -keyalg algorithm
-storetype JCE4758KS -dname distname –keypass password
-storepass password -hardwaretype type -hardwareusage KEYMANAGEMENT

The options are as follows:

-genkey
Generates a key pair and wraps the public key into a self-signed certificate.

-alias aliasname
Defines the alias name that identifies the store containing the self-signed
certificate and private key.

-keyalg algorithm
The algorithm to be used to generate the key pair. See your Java SDK
documentation for details.

-storetype
The format of the keystore.

-dname distname
Specifies the X.500 distinguished name to be associated with the alias. This

140 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

is used as the issuer and subject fields of the self-signed certificate. The
distinguished name consists of a number of fields separated by commas in
the following format:

"cn=strvalue1,o=strvalue2,ou=strvalue3,
l=strvalue4,s=strvalue5,c=strvalue6"

Each strvalue is a string value. The meaning of the abbreviations is as
follows:
v cn = common name
v o = organization
v ou = organization unit
v l = city/locality
v s = state/province
v c = country name

An example of an X.500 distinguished name:
"cn=someserver.company.ibm.com,o=IBM,ou=IBMGB,

l=Winchester,s=Hants,c=GB"

-keypass password
The password used to protect the private key. Set this to the same value as
the -storepass password, so that the CICS Transaction Gateway can
establish a connection over SSL.

-storepass password
The password used to protect the integrity of the key ring. Set this to the
same value as the -keypass password, so that the CICS Transaction
Gateway can establish a connection over SSL.

-hardwaretype type
The type of key pair that is being generated. Either CLEAR, PKDS or
RETAINED. The default value is CLEAR.

-hardwareusage KEYMANAGEMENT
Sets the usage of the key pair being generated (SIGNATURE or
KEYMANAGEMENT). The default value is KEYMANAGEMENT except
for DSA keys, where it is SIGNATURE.

The following optional parameter is available when you are using the -genkey flag:

-KeyLabel
The label that will identify the private key on the hardware device. If this is
not present a randomly-generated string is used.

The following optional parameter is available if you use -delete to delete a key:

-hardwarekey
Deletes the key pair from the hardware storage as well as the keystore. The
default is that it is deleted only from the keystore.

The default keystore name when using hwkeytool is .HWkeystore in the user's
home directory. Use the -keystore parameter to change this.

Every keystore file created by hwkeytool needs to have these items in the keystore:
v The personal certificate
v The Certificate Authority certificate used to sign it

Chapter 8. Configuring 141

If the personal certificate is self-signed, (created with the -selfcert parameter), first
export the certificate and then import it into the same keystore file under a
different alias. If you are warned when importing the certificate back into the
keystore that it already exists in the keystore, type Y to confirm that you want to
import it.

Using hardware cryptography
Cryptography within the existing JCE architecture gives Java 2 programmers
security and performance advantages of hardware cryptography with minimal
changes to existing Java applications.

To use hardware cryptographic function provided by the IBMJCECCA provider:
1. Edit the java.security file in the ${java-home}/lib/security directory so that it

contains the following lines:
security.provider.1=com.ibm.crypto.hdwrCCA.provider.IBMJCECCA
security.provider.2=com.ibm.crypto.provider.IBMJCE

2. Copy the unrestricted policy files from the ${java-home}/demo/
jce/policy-files/unrestricted directory to the ${java-home}/lib/security
directory.

If you intend to use the keytool command to create JKS files that do not use
hardware encryption:
1. Edit the java.security file to remove the line that references JCE4758.
2. Create the keystores.
3. If you intend to use hardware cryptography as well, reinstate the line in the

java.security file.

SSL configuration for IPIC connections
SSL can be defined for local or remote IPIC connections.

Local mode

In local mode, IPIC connections use the SSL key ring settings of either the Java
base class or the resource adapter.
1. To configure SSL for the Java base classes:

a. Create a java.util.Properties object
b. Add the following properties:

1) JavaGateway.SSL_KEYRING_CLASS, <keyring file location>

2) JavaGateway.SSL_KEYRING_PASSWORD, <password>

c. Set the properties on the JavaGateway by calling the setProtocolProperties()
method, passing the java.util.Properties object.

d. Define the server name as ssl://<server_name>:<port>. Set the server name
on the ECIRequest object and not on the JavaGateway object.

2. To configure SSL connection for a resource adapter:
a. Define serverName as ssl://<server_name>:<port>.
b. Set the keyRingClass property to the location of the key ring file.
c. Set the keyRingPassword property to the password of the key ring file.

Remote mode

To configure the Gateway daemon to use SSL connections to CICS:

142 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

1. Set the key ring parameters for the Gateway daemon. For more information,
see “SSL key ring configuration” on page 138.

2. To enable SSL on each IPIC connection, set the ssl parameter in the
“IPICSERVER section of the configuration file” on page 161 to Y.

3. If you want to limit the cipher suites that are enabled for the connection, set
the ciphersuites parameter to a comma separated list of cipher suites to use.

SP800-131A compliance
SP800-131A compliance strengthens security by requiring the use of stronger
cryptographic keys and more robust algorithms.

Note: SP800-131A compliance is supplied in APAR PM98779 , PTF UK98510.

To specify that SP800-131A transition or strict compliance is required, set the Java
system property com.ibm.jsse2.sp800-131 as follows:
com.ibm.jsse2.sp800-131=<transition|strict|off>

Set the property for the Java client application in local mode and the Gateway
daemon in remote mode. For strict support on an SSL connection between a Java
client application and the Gateway daemon, both the Java client application and
Gateway daemon must specify com.ibm.jsse2.sp800-131=strict.

For strict support with .NET clients, the SslGatewayConnection must be configured
to use TLS 1.2. This property can be set with the EnabledSslProtocols property or
CtgSslProtocols application configuration setting.

If using Cipher suites that use AES_256 then the Gateway JVM must be updated
with the Unrestricted JCE policy files placed in the directory. To obtain the
Unrestricted JCE policy files and for more information, see IBM SDK Policy Files

CICS Transaction Gateway supports SP800-131a strict mode on IPIC SSL
connections in local and remote mode to CICS Transaction Server and TXSeries
versions which also support SP800-131a strict mode. This includes support for
requests from WebSphere Application Server using the CICS ECI resource adapter.

For more information, see the National Institute of Standards and Technology
(NIST) Special Publications 800-131a at http://csrc.nist.gov/publications/nistpubs/
800-131A/SP800-131A.pdf

Configuring for client certificate mapping
CICS Transaction Gateway supports user ID and password authentication with
RACF, in local and remote modes. Mapping of a registered X.509 certificate to a
RACF user ID is supported in remote mode. RACF user ID and password
authentication is used exclusively for EXCI connections to CICS; authentication of
IPIC connections to CICS is performed by the CICS server.

For more information see, User authentication using SSL client certificates.

Preliminary checks

You use the extattr +p command to mark HFS files as program controlled. To use
this command, you must be the owner of the files, or a superuser. The user ID that
installed CICS Transaction Gateway normally owns the files. You also need READ
access to the BPX.FILEATTR.PROGCTL FACILITY class. See z/OS UNIX System

Chapter 8. Configuring 143

|

|
|

|

|
|

|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

http://pic.dhe.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.security.component.70.doc/security-component/sdkpolicyfiles.html
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf

Services Planning for more information. Your user ID must have the RACF
SPECIAL attribute to perform the actions in step 3. Follow these steps to check that
you have the necessary authority:
1. Log on to TSO.
2. Run ISPF.
3. Choose option 6 (Command).
4. Issue the following command:

SR CLASS(FACILITY)

Check that these entries are in the list:
BPX.SERVER
BPX.FILEATTR.PROGCTL

5. Issue the following command:
SR CLASS(SURROGAT)

Check that this entry is in the list:
*.DFHEXCI

Configuring the system
1. Mark the load modules used by CICS Transaction Gateway as

program-controlled. The HFS files which require the extended attribute +p are
set correctly by SMP/E, however the SCTGLOAD and SDFHEXCI libraries
must be set manually. All Java program files used by CICS Transaction
Gateway during operation must also be program controlled to successfully
run with authentication active. Use the "ls -E" command from an OMVS or
Telnet screen to verify the CICS Transaction Gateway HFS files.

2. If necessary, activate program control by issuing these commands:
SETROPTS CLASSACT(PROGRAM)
RDEFINE PROGRAM * UACC(READ)
SETROPTS WHEN(PROGRAM)

3. Mark the CICS SDFHEXCI library, which provides the EXCI for CICS
Transaction Gateway, as program controlled. For example, if the library was
installed as CICSTS51.CICS.SDFHEXCI, use the following RACF command:
RALTER PROGRAM * ADDMEM(’CICSTS51.CICS.SDFHEXCI’//NOPADCHK)
SETROPTS WHEN(PROGRAM)REFRESH

4. Mark the CICS Transaction Gateway SCTGLOAD library, which provides the
CTGBATCH program for CICS Transaction Gateway as program-controlled.
For example, if this library was installed as CICSTG.CTG900.SCTGLOAD, use
the following RACF command:
RALTER PROGRAM * ADDMEM(’CICSTG.CTG900.SCTGLOAD’//NOPADCHK)
SETROPTS WHEN(PROGRAM)REFRESH

5. Mark the Language Environment® runtime library SCEERUN2 as program
controlled. For example, if this library was installed as CEE.SCEERUN2, use
the following RACF command:
RALTER PROGRAM * ADDMEM(’CEE.SCEERUN2’//NOPADCHK)
SETROPTS WHEN(PROGRAM)REFRESH

6. Mark the CICS SDFHLINK library, which contains DFHRXSVC and
DFHXCSVC, as program controlled.

7. Give the user ID under which CICS Transaction Gateway runs READ access to
the BPX.SERVER FACILITY profile. For more information, see the __passwd()
section in z/OS V2R10.0 C/C++ Run-Time Library Reference, (SC28-1663-08).

144 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

8. Ensure that the user ID that starts CICS Transaction Gateway has READ
access to BPX.STOR.SWAP.

9. Give the user ID under which CICS Transaction Gateway runs READ access to
the RACF profile that protects the TCPIP.STANDARD.TCPXLBIN data set.
This contains tables for translating from ASCII to EBCDIC and from EBCDIC
to ASCII.

10. Use one of the following options to configure CICS Transaction Gateway:

Editing a STDENV file
Ensure that this entry is in the file:
AUTH_USERID_PASSWORD=YES

Editing ctgenvvar
Ensure that this entry is in the file:
export AUTH_USERID_PASSWORD=Yes

11. If you are using CTGBATCH to start CICS Transaction Gateway, ensure that
_BPX_SHAREAS=YES is set in the STDENV DD statement, regardless of
whether a ctgenvvar script is also being used. If starting CICS Transaction
Gateway from USS, set _BPX_SHAREAS=NO in the ctgenvvar script, to force
the use of a clean address space.

Related information:
“Security error due to surrogate checking problem” on page 283
An ECI_ERR_SECURITY_ERROR -27 can occur if a user ID is not authorized as a
surrogate for the user ID specified on the ECI request.

Configuring identity propagation
Identity propagation configuration tasks are required on RACF, CICS Transaction
Server and WebSphere Application Server. Identity propagation must also be
activated in CICS Transaction Gateway.

Configuring identity propagation on RACF
The steps required to configure RACF for identity propagation.

RACF must contain mappings of distinguished names to RACF user IDs. The
distinguished names defined in the mappings must have the same format as they
have in the user registry.

For more information about configuring IPIC connections and RACF, see the CICS
Transaction Server Information Center.

A command RACMAP is available for creating, deleting, and listing a distributed
identity filter. If changes are required, you can delete the filter, and define a new
one. The RACMAP command has the following functions:

MAP creates a distributed identity filter

DELMAP
deletes a distributed identity filter

LISTMAP
lists information about a distributed identity filter

Examples:

Chapter 8. Configuring 145

https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

RACMAP ID(GUSKI) MAP
USERDIDFILTER(NAME(’UID=RICH,OU=Web Sales,O=Rich Radio Ham,L=Internet’))
REGISTRY(NAME(’us.richradioham.com’))
WITHLABEL(’Rich’’s name filter’)

RACMAP ID(SMITH) MAP
USERDIDFILTER(NAME(’uid=JIM,ou=Web Sales,dc=CTGSales, o=HEADOFFICECTG’)) -
REGISTRY(NAME(’uk.websales.com’))

For more information about the RACMAP command, see thez/OS Security Server
RACF Command Language Reference.

Note: It is not possible to modify a distributed identity filter.

Configuring identity propagation on CICS
The steps required to configure identity propagation on CICS Transaction Server.

CICS Transaction Server requires the following:
v The z/OS identity propagation function provided in z/OS, Version 1.11 or later
v CICS Transaction Server for z/OS Version 4.1 or later with the APAR fixes

described in “Configurations that support identity propagation” on page 51. To
download these fixes, go to Fix list for CICS Transaction Server for z/OS V4.1

v An IPIC connection with USERAUTH set to IDENTIFY

If the CICS Transaction Gateway making the request and the CICS server are not
in the same sysplex (for example when a resource adapter using a local Gateway
issues requests directly to CICS), an SSL connection is required to allow the use of
USERAUTH=IDENTIFY. For more information, see the “User security” section of
“IPIC connection security” on page 43.

Configuring identity propagation on WebSphere Application
Server

Configuration is required on WebSphere Application Server to enable identity
propagation.

Setting up the identity propagation login module

WebSphere Application Server must be configured to specify a user registry to
enable user ID and password verification for applications. Any registry supported
by WebSphere Application Server is supported by CICS Transaction Gateway.
Examples of the registries supported by WebSphere Application Server are:
v IBM Tivoli Directory Server (ITDS)
v Microsoft Active Directory
v SunOS Directory
v Novel Directory Service

For more information about supported registries, see the WebSphere Application
Server Information Center.

All JEE applications that call the CICS Transaction Gateway ECI resource adapter
must be configured for container-managed security.

CICS Transaction Gateway includes a JAAS (Java Authentication and Authorization
Service) login module in the ECI resource adapter RAR (cicseci.rar). You must
install the login module into WebSphere Application Server to enable identity

146 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

http://www-01.ibm.com/support/docview.wss?rs=1083&uid=swg27016053
http://www-01.ibm.com/software/webservers/appserv/was/library/index.html
http://www-01.ibm.com/software/webservers/appserv/was/library/index.html

propagation. Install the login module by creating a new JAAS Application Login
alias that refers to the fully-qualified name of the login module:
com.ibm.ctg.security.idprop.LoginModule

One of the following must be configured to use the CICS Transaction Gateway
identity propagation login module:
v The JEE application must be configured to use a custom login configuration that

refers to the CICS Transaction Gateway identity propagation login module. This
is accessed via the connection factory resource references on the application's
configuration panel.

v The connection factory that is used by the application must have a mapping
configuration alias that refers to the CICS Transaction Gateway identity
propagation login module. This is accessed by the connection factory's
configuration panel.

For more information about configuring WebSphere Application Server, see the
WebSphere Application Server Information Center.

Specifying the authentication information to propagate

If identity propagation has been configured and activated, the identity information
that can be propagated with a request can be either the identity of the user who
invoked the application, or the identity under which the application programmer
has configured the application to run.
v The identity of the user who invoked the application is known as the “caller” or

“received” identity.
v The identity under which the application programmer has configured the

application to run is known as the “run as” or “invocation” identity.

To specify the identity to propagate to CICS, you set the propIdentity custom
property on the CICS Transaction Gateway identity propagation login module. You
do this from the WebSphere Application Server admin console by setting one of
the following name-value pairs:
propIdentity=Caller

or
propIdentity=RunAs

For example, if you want the “run as” identity to be propagated to CICS, do this:
1. From the WebSphere administrative console; click Security > Global security,

expand Java Authentication and Authorization Service and select Application
logins. In the new window, click New.

2. Enter CTG_idprop as the Alias.
3. Click New under JAAS login modules.
4. Enter com.ibm.ctg.security.idprop.LoginModule as the Module class name.
5. Clear the Use login module proxy check box.
6. Select REQUIRED from the Authentication strategy drop-down list.
7. Under “Custom properties” create an entry with Name as propIdentity and

Value as RunAs.
8. Click OK.

If you do not specify a setting or if you specify an invalid key or value, the system
propagates the “run as” identity by default for application users. The propIdentity

Chapter 8. Configuring 147

http://www-01.ibm.com/software/webservers/appserv/was/library/index.html

key, and the values RunAs and Caller are not case-sensitive.

Configuring identity propagation for CICS Transaction
Gateway

Identity propagation must be activated so that CICS Transaction Gateway can flow
distributed identities to CICS Transaction Server. Activation involves completing
several installation and configuration tasks.

To activate identity propagation for CICS Transaction Gateway:
1. Install a CICS Transaction Gateway ECI resource adapter in WebSphere

Application Server. For more information, see “Deploying the CICS resource
adapter” on page 169.

2. Configure an IPIC server definition from CICS Transaction Gateway into a
CICS server on the same sysplex. Alternatively you can configure an IPIC
connection from a local Gateway directly into CICS, using SSL.

3. Install the CICS Transaction Gateway identity propagation login module in
WebSphere Application Server. For more information, see “Configuring identity
propagation on WebSphere Application Server” on page 146.

4. Configure the Java client application resource references, or the connection
factories used by the applications, to use the CICS Transaction Gateway
identity propagation login module. When applications have been enabled to
use the module, identity propagation is active. For more information about
configuring WebSphere Application Server, see the WebSphere Application
Server Information Center.

Configuring high availability
High availability is supported by the default server, policy-based dynamic server
selection (DSS), the CICS request exit, and the logical CICS server definition
(deprecated).

The logical CICS server definition has been superseded by the policy-based DSS
definition. For information about migration see “Logical CICS server definitions”
on page 29.

Default server
The defaultserver parameter is used for requests where no CICS server name is
specified.

defaultserver=<name>

Description
Specify a CICS server name that is used by the Gateway daemon for
application requests in which no CICS server name is specified. The name
can be a logical CICS server name.

This parameter is in the PRODUCT section of the configuration file.

Default value
There is no default value for this parameter.

Configuring a dynamic server selection policy
Policy-based dynamic server selection provides a set of configurable rules that
determine the destination CICS servers for ECI and ESI requests.

148 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

http://www-01.ibm.com/software/webservers/appserv/was/library/index.html
http://www-01.ibm.com/software/webservers/appserv/was/library/index.html

To determine which policy the Gateway daemon uses at runtime, you set the
DSSPOLICY parameter in the configuration file. For more information see the
“GATEWAY section of the configuration file” on page 158.

Setting the active DSS policy
The dsspolicy parameter specifies the name of the DSS policy to use for dynamic
server selection.

dsspolicy=<name>

Description
Set the value to name a DSSPOLICY section in the configuration file. To
switch policies, you must shut down the Gateway daemon, edit the
configuration file and restart the Gateway daemon.

This parameter is in the GATEWAY section of the configuration file.

Default value
The default is that there is no DSS policy.

Configuring a DSS policy
To configure a DSS policy, you add a DSSPOLICY section to the Gateway daemon
configuration file. The DSSPOLICY section defines the policy name, and the
mappings between logical servers and DSS groups (groups of CICS servers).

Each DSS policy must have a name that is unique within a Gateway daemon
configuration. The active policy is specified by the dsspolicy parameter in the
GATEWAY section.

The mappings themselves are defined in the MAPPINGS subsection of the
DSSPOLICY section. For more information, see “Mappings.”

Here is an example of a DSSPOLICY section:
SECTION DSSPOLICY = POLICY1

SUBSECTION MAPPINGS
CICSX=GROUP1
<NONE>=GROUP2

ENDSUBSECTION
ENDSECTION

Mappings:

The mappings in the DSS policy associate logical CICS server names with DSS
groups (groups of CICS servers).

The MAPPINGS subsection must contain at least one mapping.

<NONE> mapping

If you want a logical CICS server name to be applied to all requests that do not
specify a CICS server name, you must use the value <NONE> as the logical CICS
server name. If you specify both a <NONE> mapping and a default server in the
configuration, the <NONE> mapping takes precedence.

In the example, requests that specify the logical CICS server name CICSX are
mapped to the DSS group GROUP1. Requests that do not specify a server name
are mapped to GROUP2 because of the <NONE> mapping. For more information
about DSS groups, see “Configuring a DSS group” on page 150.

Chapter 8. Configuring 149

SECTION DSSPOLICY = POLICY1
SUBSECTION MAPPINGS

<NONE>=GROUP2
CICSX=GROUP1

ENDSUBSECTION
ENDSECTION

<ANY> mapping

If you want a logical CICS server name to be applied to all requests that do not
match any of the mappings in the policy, you must specify an <ANY> mapping. If
you configure an <ANY> mapping, it is not possible to send requests directly to a
CICS server.

In the example, requests that specify the logical CICS server name CICSX or CICSY
are mapped to the DSS group GROUP1. Requests that do not specify a server
name are mapped to GROUP2 because of the <NONE> mapping. All other requests
are sent to GROUP3.
SECTION DSSPOLICY = POLICY1

SUBSECTION MAPPINGS
<ANY>=GROUP3
CICSX=GROUP1
CICSY=GROUP1
<NONE>=GROUP2

ENDSUBSECTION
ENDSECTION

Configuring a DSS group
To configure a DSS group, you add a DSSGROUP section to the Gateway daemon
configuration file. The DSSGROUP section defines the group name, the CICS
servers that belong to the group, and the algorithm that CICS Transaction Gateway
uses to select a CICS server within the group.

Each DSSGROUP section within a Gateway daemon configuration must have a
unique name, otherwise the configuration is non-valid and the Gateway daemon
fails to start.

Here is an example of a DSSGROUP section:
SECTION DSSGROUP = GROUP1

Servers=CICSA,CICSB,CICSC,CICSD
Algorithm=ROUNDROBIN

ENDSECTION

CICS servers in DSS group:

The Servers parameter defines the names or APPLIDs of the CICS servers that
belong to the DSS group.

Servers=<name1[,name2...]>

Description
Specify one or more SECTION IPICSERVER server names or APPLIDs of
EXCI connected servers in a comma-separated string. If XA support is
enabled, SECTION IPICSERVER server names cannot be mixed with
APPLIDs of EXCI connected servers within the same DSS group.

This parameter is in the DSSGROUP section of the configuration file.

Default value
There is no default value.

150 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Dynamic server selection algorithm:

The Algorithm parameter specifies the algorithm that CICS Transaction Gateway
uses to select a CICS server within a DSS group.

Algorithm=<roundrobin|failover>

Description
Set the value to roundrobin to specify that transactions are distributed
evenly between the CICS servers in the DSS group. If the selected CICS
server is not available, then the other CICS servers in the list are tried in
turn until an available server is found or all of the servers have been tried.
If you set the value to failover, the first CICS server in the DSS group is
selected by default. If the first server is not available, then each server in
the list is tried in turn until an available server is found or there are no
more servers in the list.

This parameter is in the “DSSGROUP section of the configuration file” on
page 163.

Default value
There is no default value.

Configuring a CICS request exit
The cicsrequestexit parameter specifies the class used to perform dynamic CICS
server selection for ECI requests and ESI requests.

cicsrequestexit=<class>

Description
Set the value to a fully qualified class that implements the
com.ibm.ctg.ha.CICSRequestExit interface. The class must be on the class
path of the Gateway daemon. The Gateway daemon supports only a single
exit at any time, for more information see “CICS request exit” on page 78.

This parameter is in the GATEWAY section of the configuration file.

Default value
There is no default value.

Configuring monitoring and statistics
You can configure CICS Transaction Gateway to record monitoring and statistics
data.

Configuring request monitoring exits for the Gateway daemon
The requestexits parameter specifies a list of one or more classes that perform
request monitoring.

requestexits=<fully_qualified_class_name1[,fully_qualified_class_name_n]>

Description
Specify the fully qualified class names for a request monitor classes. You
can define multiple classes by separating them with a comma. For
example:
requestexits=com.ibm.ctg.samples.requestexit.1stMonitor,com.ibm.ctg.
samples.requestexit.2ndMonitor

Chapter 8. Configuring 151

You can use the -requestexits= option on the ctgstart command to
override the value of requestexits. For more information, see Command
reference.

This parameter is in the GATEWAY section of the configuration file.

Default value
There is no default value for this parameter.

Configuring request monitoring for the Gateway classes
The configuration of the request monitoring exits for the Gateway classes uses a
JVM property, or if using a resource adapter, a custom property.

The JVM property requestExits supports monitoring of base classes without
modifying user application code. The resource adapter custom property
RequestExits can be configured to allow individual definition of exits for
connection factories. The precedents for the two properties are defined in the
following table:

Table 6. JVM and resource adapter custom property precedents

JVM property set Custom property set Exits loaded from:

No No None

Yes No JVM property

No Yes Custom property

Yes Yes Custom property

Set the JVM property to enable a request monitoring exit:
-DrequestExits=fully_qualified_class_name

For example:
java -DrequestExits=com.ibm.ctg.samples.requestexit.BasicMonitor com.ibm.ctg.samples.eci.EciB1

You can define multiple exits by separating them with a comma:
-DrequestExits=first_exit_name,second_exit_name

For example:
java -DrequestExits=com.ibm.ctg.samples.requestexit.BasicMonitor,com.ibm.ctg.samples.requestexit.ThreadedMonitor
com.ibm.ctg.samples.eci.EciB1

Related information:
“ECI resource adapter deployment parameters” on page 170
The available deployment parameters for the ECI resource adapter and their effect
on the final deployed resource adapter. The tools used to configure these
parameters are server-specific. The default value is shown where appropriate.
Parameters are optional unless indicated as required.

Configuring statistics settings
Edit the GATEWAY section of the configuration file to configure the Gateway
daemon monitoring resources.

Statistics API protocol settings
To configure the statistics API protocol settings, edit the statistics API protocol
parameters in the GATEWAY section of the configuration file.

152 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Bind address:

The bind parameter specifies the IP address or name of the host to which the
protocol handler is bound.

bind=<name>

Description
Set the value to the IP address or name of the host. If you specify an IP
address, it can be in the IPv6 format; for example,
3ffe:307:8:0:260:97ff:fe40:efab. If you specify a host name, it is resolved on
startup. If the bind parameter is not specified or is blank, the default
behavior is to bind to all IP addresses.

This parameter is in the Statistics API protocol parameters subsection of
the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is no IP address or
name is specified.

Port:

The port parameter specifies the TCP/IP port number on which the protocol
handler listens for incoming client requests.

port=<number>

Description
Set the value in the range 1 - 65,535 to specify the port numbers.

You can use the ctgstart command with the -statsport option to override
the value of the port parameter. For more information, see “Options on the
ctgstart command” on page 254.

This parameter is in the “Statistics API protocol parameters” on page 161
subsection of the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 2980.

Connection timeout:

The connecttimeout parameter specifies how long the protocol handler waits for a
connection manager thread to become available.

connecttimeout=<number>

Description
Set the value in the range 0 - 65,536 to specify the value in milliseconds.
When a new connection has been accepted, the protocol handler waits for
a connection manager thread to become available. If a connection manager
thread does not become available within this time, the connection is
refused. If this value is set to zero, a connection is refused if a connection
manager thread is not immediately available.

This parameter is in the “Statistics API protocol parameters” on page 161
subsection of the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 2000 milliseconds.

Chapter 8. Configuring 153

Maximum number of connections:

The maxconn parameter specifies the maximum number of applications that can
simultaneously connect to Gateway daemon to perform statistics queries.

maxconn=<number>

Description
Set the value to the maximum number of connections.

This parameter is in the “Statistics API protocol parameters” on page 161
subsection of the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 5.

Statistics interval
The statint parameter specifies the recording interval for system statistics.

statint=<HHMMSS>

Description
Set the value in the range 000100 - 240000 to define the CICS Transaction
Gateway statistics recording interval duration. The value must be in the
format HHMMSS. The hours, HH, must be specified in the range 0 - 24.
The minutes, MM, and seconds, SS, must be specified in the range 00 - 59.
If the value set is less than the minimum it is changed to 000100. If the
value set is greater than the maximum, it is changed to 240000. If the value
set does not have the correct format, it is changed to the default value.

This parameter is in the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 030000.

Statistics end of day time
The stateod parameter specifies the end of day time.

stateod=<HHMMSS>

Description
Set the value in the range 000000 - 235959 to define the CICS Transaction
Gateway end of day time in local time. The value must be in the format
HHMMSS, where midnight is 000000 and one second before midnight is
235959. The hours, HH, must be specified in the range 00 - 23. The
minutes, MM, and seconds, SS, must be specified in the range 00 - 59. For
example, to specify an end of day time of 3 mins and 9 seconds after
midnight, the value of the stateod parameter must be set to 000309. If the
value set is greater than the maximum, it is changed to 235959. If the value
set does not have the correct format, it is changed to the default value. The
end of day time is used as a point of reference for the clock rather than to
the CICS CICS Transaction Gateway startup time. This also determines the
point at which statistics are reset and potentially recorded.

This parameter is in the GATEWAY section of the configuration file.

Default value
If this parameter is not specified, the default value is 0.

154 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Enable statistic recording to SMF
The statsrecording parameter determines whether statistics are written to the
System Management Facility (SMF) on z/OS.

statsrecording=<on|off>

Description
Set the value to on to enable recording of statistics. To write to SMF, the
user ID that the CICS Gateway daemon runs, must have READ access to
the BPX.SMF facility. You configure this permission during the installation
or upgrade processes. For further details, see the RACF and UNIX System
Services (USS) documentation.

This parameter is in the GATEWAY section of the configuration file.

Default value
The default for this parameter is off.

Health reporting
The Gateway daemon can monitor certain error codes to determine the health of
communications with CICS.

Health reporting can be enabled for use in TCP/IP load balancing topologies, with
CICS Transaction Gateway running in remote mode. The interval used for this
monitoring is specified by the health interval. Health reporting requires the
IWM4HLTH macro.

The load balancer can use health information to set priorities when creating new
incoming IP socket connections to Gateway daemons in the load balancing group.
To enable TCP/IP port sharing to use the health information for load balancing
decisions, set SHAREPORTWLM on the PORT definition. To enable Sysplex
Distributor to use the health information for load balancing decisions, set
SERVERWLM on the VIPADISTRIBUTE statement.

For information about how health is calculated, see “Health monitoring” on page
74.
Related concepts:
“Health monitoring” on page 74
A TCP/IP load balancer that is allocating a connection to the Gateway daemon
detects whether or not a CICS server is available. The Gateway daemon reports the
health of its CICS server connections to the TCP/IP load balancer.
Related tasks:
“Determining health status” on page 260
The current health status is available in the GD_CHEALTH statistic. This
information describes how to find the current health status.
Related information:
“Resetting health status” on page 260
This information describes how to reset the health status to 100.

Enable health reporting:

The healthreporting parameter is used to specify that the Gateway daemon
reports the health of communications with CICS to a TCP/IP load balancer.

healthreporting=<on>

Chapter 8. Configuring 155

Description
Set the value to on to enable reporting of the health of communications
with CICS to a TCP/IP load balancer. If you do not set healthreporting
parameter to on, statistics relating to the current health of communications
with CICS are still collected by the Gateway daemon, but they are not
reported to the TCP/IP load balancer.

This parameter is in the GATEWAY section of the configuration file.

Default value
By default, this parameter is not included in the configuration file.

Health interval:

The healthinterval parameter specifies the amount of time, in seconds, that the
Gateway daemon monitors error codes that are associated with the health of
communications with CICS.

healthinterval=<number>

Description
Set the value in the range 1 - 9,999 to specify the monitoring period in
seconds. After this monitoring period, the connection health is calculated
and reported to the WLM.

This parameter is in the GATEWAY section of the configuration file.

Default value
The default value is 60 seconds.

Configuring bidirectional data support
Use the -Dctg.bidi.target.layout Java system property to enable right-to-left
bidirectional (bidi) data support.

When right-to-left bidirectional (bidi) data support is enabled, bidi data in CHAR
containers is converted from logical order to visual right-to-left order before the
data is sent to CICS. The data is converted back from visual right-to-left order to
logical order when the data is returned from CICS to CICS Transaction Gateway.

To enable right-to-left bidi text support use the ctgstart command to start CICS
Transaction Gateway with the following option:
ctgstart -j-Dctg.bidi.target.layout=RTL

If you start CICS Transaction Gateway without the system property option
described above, by default, bidi data support is off. However, you can explicitly
turn off bidi support by specifying -Dctg.bidi.target.layout=OFF.

Configuring trace settings
Edit the trace attributes in the GATEWAY section of the configuration file.

Configuration parameter reference
The way in which you configure CICS Transaction Gateway depends on how the
Gateway daemon is to be started.

156 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

|

|
|

|
|
|
|

|
|

|

|
|
|

Sample configuration files are provided in the <install_path>/samples/
configuration directory:

Sample version
(<sample version>)

Used by

ctgsamp.ini The Gateway daemon.

CTGENV

Supplied in MVS data set format
SCTGSAMP(CTGENV)

The Gateway daemon when started using JCL and CTGBATCH, or
applications started by CTGBATCH and using the CICS Transaction
Gateway in local mode.

ctgenvvarsamp The Gateway daemon when started from the USS command line
interface, or USS applications using the CICS Transaction Gateway in
local mode.

Use the CICSCLI and CTGENVVAR environment variables to specify the location of
these files. The default location for the configuration files is <install_path>/bin/.

Note: Some lines of the configuration file are longer than 72 characters; take care
when editing them.

In the following sections relevant settings for each file are shown, together with
their corresponding definition in Configuring a remote mode topology.
Related information:
“STDENV file” on page 98
The STDENV file can be used if the Gateway daemon is to be started in batch
mode using CTGBATCH to define the required environment variables.

The configuration file
An HFS file or MVS dataset can be used to initialize the CICS Transaction
Gateway.

The default configuration used by CICS Transaction Gateway is the HFS file
<install_path>/bin/ctg.ini You can modify the directory and filename if
required. For more information see the CICSCLI environment variable in
“Environment variables: remote mode” on page 102.

To denote comments in the configuration file use the hash (#) character. The hash
(#) character must be positioned at the start of the line, or must have a space or tab
character before it.

To split definitions over multiple lines, use backslash (\) as a continuation
character. The continuation character should be the placed immediately after the
last non-blank character on the line.

Creating a configuration

A sample HFS configuration file and a MVS dataset configuration are supplied
with the product. These sample configurations can be copied and modified as
required. The sample HFS configuration file is located in <install_path>/samples/
configuration/ctgsamp.ini. The sample MVS dataset member is CTGCONF in the
CTGSAMP dataset.

Chapter 8. Configuring 157

|
|

Sections within the configuration

The configuration file must contain at least the GATEWAY section with a TCP
protocol handler definition, otherwise CICS Transaction Gateway will not start. A
section begins with a SECTION element and must be terminated with an
ENDSECTION element. Each SECTION element must be positioned as the first
entry on a given line.

Configuration parameters

For information about configuration parameters and supported values see the
parameter descriptions in “Configuration parameter reference” on page 156.

Default values are automatically applied to parameters that are not explicitly
defined.

PRODUCT section of the configuration file
This table provides the names and descriptions for all parameters that can be set in
the PRODUCT section of the configuration file.

The PRODUCT section of the configuration file defines product wide settings.
There must be no more than one PRODUCT section in the configuration file .

Table 7. SECTION PRODUCT

Entry in the configuration file Description

applid “Gateway APPLID” on page 107

applidqualifier “Gateway APPLID qualifier” on page 107

defaultserver “Default server” on page 148

esmkeyring “ESM key ring” on page 139

hwcrypt “Use hardware cryptography” on page 139

keyring “Key ring file” on page 138

keyringpw “Key ring password” on page 138

keyringpwscrambled “Key ring password encryption” on page 138

GATEWAY section of the configuration file
This table provides the names and descriptions for all parameters that can be set in
the GATEWAY section of the configuration file.

There must be no more than one GATEWAY section in the configuration file.

Table 8. SECTION GATEWAY

Entry in the
configuration file

Description

cicslogging “Log CICS messages” on page 87

cicsrequestexit “Configuring a CICS request exit” on page 151

closetimeout “Timeout for in-progress requests to complete” on page 86

connectionlogging “Log Client connections and disconnections” on page 87

dnsnames “Display TCP/IP hostnames” on page 87

dsspolicy “Setting the active DSS policy” on page 149

158 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Table 8. SECTION GATEWAY (continued)

Entry in the
configuration file

Description

dumpoffset “Data byte offset in trace data” on page 95

healthinterval “Health interval” on page 156

healthreporting “Enable health reporting” on page 155

initconnect “Initial number of connection manager threads” on page 84

initworker “Initial number of worker threads” on page 84

maxconnect “Maximum number of connection manager threads” on page 84

maxworker “Maximum number of worker threads” on page 85

noinput “Enable reading input from SDSF” on page 86

requestexits “Configuring request monitoring exits for the Gateway daemon” on
page 151

stack “Exception stack tracing” on page 96

start “Gateway start type” on page 131

stateod “Statistics end of day time” on page 154

statint “Statistics interval” on page 154

statsrecording “Enable statistic recording to SMF” on page 155

tfile “Gateway trace file” on page 95

tfilesize “Gateway trace file wrap size (KB)” on page 95

trace “Enable Gateway daemon trace on startup” on page 96

truncationsize “Maximum size of trace data blocks” on page 96

workertimeout “Worker thread availability timeout” on page 86

xasupport “XA transaction support activate (xasupport)” on page 131.

TCP protocol parameters
To enable the TCP protocol, add the name of the TCP protocol handler to the
GATEWAY section of the configuration file.

Insert this line:
protocol@tcp.handler=com.ibm.ctg.server.TCPHandler

Follow it with this:
protocol@tcp.parameters=bind=host.domain.org;connecttimeout=<number>
;dropworking;\idletimeout=<number>;pingfrequency=<number>;port=<number>;
requiresecurity;\ solinger=<number>;

Entries for each protocol must be in the form shown:
v Two lines are allowed for each protocol. You can split long lines by placing the

backslash character \ after a semicolon.
v The first line defines the protocol.
v The second line defines the parameters.
v Parameters are separated by a semicolon.

Entries correspond to fields in the TCP settings panel:

Chapter 8. Configuring 159

Table 9. TCP protocol

Entry in the ctg.ini file Description

bind “Bind address” on page 88

connecttimeout “Connection timeout” on page 89

dropworking “Drop working connections” on page 90

idletimeout “Idle timeout” on page 89

pingfrequency “Ping frequency interval” on page 89

port “Port” on page 88

requiresecurity “Require Java Clients to use security classes” on page 90

solinger “SO_LINGER setting” on page 90

SSL protocol parameters
To enable the SSL protocol, add the name of the SSL protocol handler to the
GATEWAY section of the configuration file.

Insert this line:
protocol@ssl.handler=com.ibm.ctg.server.SslHandler

Followed by:
protocol@ssl.parameters=clientauth=<on>;connecttimeout=<number>;\
dropworking;idletimeout=<number>;keyring=<file>;\
keyringpw=<password>;keyringpwscrambled=<on|off>;\
pingfrequency=<number>;port=<number>;requiresecurity;solinger=<number>;\
ciphersuites=<name>;

Note that you do not need to specify the parameters that are not required for your
configuration.

Entries for each protocol must be in the form shown:
v Two lines are allowed for each protocol. You can split long lines by placing the

backslash character \ after a semicolon.
v The first line defines the protocol.
v The second line defines the parameters.
v Parameters are separated by a semicolon.

Entries correspond to fields in the SSL settings panel:

Table 10. SSL protocol

Entry in the configuration file Description

bind

ciphersuites “Use only these ciphers” on page 94

clientauth “Use client authentication” on page 94

connecttimeout “Connection timeout” on page 89

dropworking “Drop working connections” on page 90

idletimeout “Idle timeout” on page 89

pingfrequency “Ping frequency interval” on page 89

port “Port” on page 91

requiresecurity “Require Java Clients to use security classes” on page 90

160 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Table 10. SSL protocol (continued)

Entry in the configuration file Description

solinger “SO_LINGER setting” on page 90

Note: For a description of the parameters esmkeyring, hwcrypt, keyring, keyringpw,
and keyringpwscrambled, see PRODUCT section of the configuration file.

Statistics API protocol parameters
To enable the statistics API protocol, include a protocol handler definition in the
GATEWAY section of the configuration file.

The statsport parameter in the GATEWAY section of the configuration file is
deprecated. If you specify the statsport parameter in addition to specifying a
statistics API protocol handler definition, the statistics API protocol handler
definition takes precedence. You can use the parameter override -statsport to
override the port number for the statistics API listener port.

To enable the protocol, include a protocol handler definition in the GATEWAY
section of the configuration file, for example:

protocol@statsapi.handler=com.ibm.ctg.server.RestrictedTCPHandler
protocol@statsapi.parameters=connecttimeout=2000;port=2980;bind=;maxconn=5;

Entries for each protocol must be in the form shown:
v Two lines are allowed for each protocol. You can split long lines by placing the

backslash character \ after a semicolon.
v The first line defines the protocol.
v The second line defines the parameters.
v Parameters are separated by a semicolon.

Table 11. Statistics API protocol parameters

Entry in the ctg.ini file Description

bind “Bind address” on page 153

connecttimeout Connection timeout

port “Port” on page 153

maxconn “Maximum number of connections” on page 154

IPICSERVER section of the configuration file
An IPICSERVER section in the configuration file defines a CICS server to which
the Gateway daemon can connect over IPIC.

An IPICSERVER section definition is required for each CICS server to be connected
using the IPIC protocol.

Table 12. SECTION IPICSERVER

Entry in the configuration file Description

SECTION IPICSERVER “Server name” on page 114

cicsapplid “Target CICS APPLID” on page 116

cicsapplidqualifier “Target CICS APPLID qualifier” on page 116

connecttimeout “Connection timeout” on page 117

Chapter 8. Configuring 161

|
|

Table 12. SECTION IPICSERVER (continued)

Entry in the configuration file Description

description “Description” on page 30

ecitimeout “ECI timeout” on page 118

hostname “Host name or IP address” on page 115

port “Port” on page 115

sendsessions “IPIC send sessions” on page 115

srvidletimeout “Server idle timeout” on page 117

srvretryinterval “Server retry interval” on page 117

tcpkeepalive “Send TCP/IP KeepAlive packets” on page 118

ssl “Use SSL” on page 118

ciphersuites “Use only these ciphers” on page 118

LOGICALSERVER section of the configuration file
The LOGICALSERVER section of the configuration file defines the mapping
between a logical CICS server name and the name of an actual CICS server.

LOGICALSERVER section definitions are deprecated and superseded by
policy-based dynamic server selection definitions. For more information on
migrating definitions see Logical CICS(r) server definitions.

Table 13. SECTION LOGICALSERVER

Entry in the configuration file Description

SECTION LOGICALSERVER=<Server name> “Server name” on page 30

description Description

server “CICS server name” on page 30

The following template shows the configuration file definition for a logical CICS
server:
SECTION LOGICALSERVER = CICS1

DESCRIPTION=ServerA Alias
SERVER=CICSA

ENDSECTION

DSSPOLICY section of the configuration file
The DSSPOLICY section of the configuration file defines the dynamic server
selection (DSS) mappings between logical CICS server names and actual CICS
servers.

Table 14. SECTION DSSPOLICY

Entry in the configuration file Description

SECTION DSSPOLICY=<policy_name> Configuring a DSS policy (DSSPOLICY)

SUBSECTION MAPPINGS Mappings

Here is an example of a DSSPOLICY entry in the configuration file:

162 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

SECTION DSSPOLICY = POLICY1
SUBSECTION MAPPINGS

CICSX=GROUP1
<NONE>=GROUP2

ENDSUBSECTION
ENDSECTION

DSSGROUP section of the configuration file
The DSSGROUP section of the configuration file defines the mapping between a
logical CICS server name and one or more actual CICS servers, and the algorithm
used for selecting an actual CICS server.

Table 15. SECTION DSSGROUP

Entry in the configuration file Description

SECTION DSSGROUP=<group name> Configuring a DSS group (DSSGROUP)

servers CICS servers in DSS group (servers)

algorithm Dynamic server selection algorithm (algorithm)

Here is an example of a DSSPOLICY entry in the configuration file:
SECTION DSSGROUP = GROUP1

Servers=CICSA,CICSB,CICSC,CICSD
Algorithm=ROUNDROBIN

ENDSECTION

Summary of environment variables
Environment variables control how CICS Transaction Gateway functions.

The table provides further details about the fields in the configuration file, see
Configuring.

Table 16. Environment variables

Environment variable Description

AUTH_USERID_PASSWORD Specifies whether the user ID and password is
authenticated with RACF.

BPX_SHAREAS Specifies whether or not all processes involved in
starting the Gateway daemon run in a single address
space.

BPXK_SETIBMOPT_TRANSPORT Specifies the job name of the TCP/IP stack to be used by
the Gateway daemon.

CICSCLI Specifies a runtime path and file name for the
configuration file, ctg.ini, used in remote mode.

COLUMNS Specifies the maximum line-length for messages output
to the console when the CICS Transaction Gateway is
started.

CTG_EXCI_INIT Specifies whether or not EXCI is loaded. If this variable
is set to YES, EXCI is loaded.

CTG_JNI_TRACE Sets the name of the JNI trace file.

CTG_JNI_TRACE_ON Specifies whether or not JNI trace is enabled.

CTG_MIXEDCASE_PW Specifies whether or not mixed-case passwords are
authenticated.

Chapter 8. Configuring 163

Table 16. Environment variables (continued)

Environment variable Description

CTG_PIPE_REUSE Specifies whether all allocated EXCI pipes are reused by
CICS Transaction Gateway, or only a maximum of one is
reused per worker thread.

CTG_RRMNAME Specifies the name of the resource manager managing
this instance of the CICS Transaction Gateway.

CTG_SWAPPABLE Specifies whether the address space where CICS
Transaction Gateway runs is swappable or
nonswappable.

CTG_WIDTH Specifies the maximum width of the STDENV script
output.

CTG_XA_MAX_TRAN Set this environment variable to limit the maximum
number of concurrent XA transactions that can use the
EXCI protocol in a Gateway daemon.

CTGENVVAR Specifies the fully qualified location of a "ctgenvvar"
script to be invoked by ctgstart.

CTGSTART_OPTS Specifies options that are too long for inclusion in the
JCL step.

DFHJVPIPE Specifies the name of the specific pipe that CICS
Transaction Gateway uses for EXCI calls.

DFHJVSYSTEM_nn Specifies the name and description of an EXCI connected
CICS server to be returned in response to a request for
the CICS_EciListSystems function.

PATH Specifies the path in HFS containing the runtime
resources necessary to run ctgstart.

STEPLIB Specifies the library containing the default EXCI options
and the EXCI load modules.

TMPDIR Specifies a temporary directory other than /tmp.

TZ Specify the local time zone and daylight saving time.

Testing your configuration
Run a test to check that CICS Transaction Gateway has been configured correctly.
v Run the local mode or remote mode test batch jobs to check the configuration

and connectivity from the CICS Transaction Gateway components to CICS.
v Run the JCA resource adapter installation verification test to verify whether the

CICS Transaction Gateway ECI resource adapter can be used with your JEE 1.4
or JEE 5, or later, application server.

v Run the sample programs supplied with CICS Transaction Gateway.

Using the sample batch jobs to check your configuration
To test your configuration, use the sample JCL stored in the SCTGSAMP library
members CTGTESTL and CTGTESTR.

Use CTGTESTL to test a local mode topology and CTGTESTR to test a remote
mode topology. Modify these sample jobs to add details of the data set high-level
qualifiers and HFS paths for your installation.

164 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

JCA resource adapter installation verification test (IVT)
The JCA resource adapter installation verification test (IVT) verifies whether the
ECI resource adapter can be used with a particular application server.

The IVT can be used to verify the use of the ECI resource adapter with an
application server as follows:
v The CICS Transaction Gateway V9.0 ECI resource adapter (cicseci.rar) with a JEE

6 certified application server
v Resource adapters supplied in Supportpac CC03 with a JEE 1.4 certified

application server or JEE 5 certified application server

The IVT runs as a servlet within a JEE application server and calls program EC01
on the CICS server. The IVT sends two ECI requests to CICS:
1. A non-transactional request, which is not coordinated by the transaction

manager.
2. A transactional request, which uses the global transaction support provided by

the application server.

IBM has successfully tested the ECI resource adapter on those application servers
listed on the IBM support page. For other JEE application servers, if you
experience problems after you have successfully run this IVT, you can report
problems to IBM for investigation. If the IVT does not run successfully, problems
you encounter are likely to be caused by incorrect deployment of the ECI resource
adapter. Investigate the problem using your JEE application server documentation
and support organization.

Prerequisites for running the JCA IVT
Before running the JCA resource adapter installation verification test (IVT) ensure
that the JEE application server is compatible, and that the necessary components
have been installed and configured correctly. To complete these tasks, you should
be able to create deployment plans for the chosen JEE application server, configure
CICS Transaction Gateway, and build and install CICS applications.

JEE application server compatibility

The JEE application server you intend using must have passed the JEE 1.4 or JEE 5
(or later) compatibility test suite. For more information see:
http://java.sun.com/javaee/overview/compatibility.jsp

Prerequisites

Complete the following tasks:
v Compile and install the EC01 sample CICS COBOL program on the CICS server.
v Ensure that the CICS Transaction Gateway resource adapter archive RAR file

(cicseci.rar) is available.
v Ensure that the JCA IVT enterprise archive (EAR) file is available and has the

filename ECIIVT.ear.
v Configure a CICS server connection for CICS Transaction Gateway.

The source for EC01 is shipped with CICS Transaction Gateway as a COBOL file in
<install_path>/samples/server/ec01.ccp. Both the RAR files and the EAR files are
shipped with the CICS Transaction Gateway in the <install_path>/deployable
directory.

Chapter 8. Configuring 165

To ensure you have correctly configured the CICS Transaction Gateway, follow the
instructions in the CICS Transaction Gateway for z/OS: Application Programming Guide
to run the EciB1 sample program. The sample program can be found in
<install_path>/samples.

Deploying and configuring the JCA IVT
To deploy and configure the JCA IVT, you install the resource adapter archive file
(.rar), define a connection factory, and set the connection factory properties.

To do this, complete the following tasks:
1. Install the ECI resource adapter (cicseci.rar) into your JEE application server. If

you want to enable XA support, this can be done by setting the custom
property xasupport on the connection factory.

2. Define a connection factory that has the JNDI name set to ECI.
3. Define the connection factory custom properties:

Connection URL
The URL of the CICS Transaction Gateway with which the resource
adapter will communicate. In local mode, set the Connection URL to
“local:”. In remote mode, set the Connection URL to
“protocol://address”, where protocol is tcp or ssl.

Port number
In remote mode this is the TCP/IP or SSL port on which the Gateway
daemon is configured to listen. Set the port number to the port number
of the relevant Gateway daemon protocol handler.

This property is not required in local mode.

Server name
The name of the CICS server to which CICS Transaction Gateway will
connect.
v For IPIC in local mode, set the Server Name to “protocol://

hostname:port” where protocol is tcp or ssl.
v For EXCI, set the server name to the CICS APPLID.
v For all other configurations, set the server name to the server defined

in the configuration file (ctg.ini).
4. Install the application ECIIVT.ear with a target resource JNDI name of

ECIIVTBean1. The ECIIVT.ear is located within the <install_path>/deployable
directory.

Running the JCA IVT
To run the JCA IVT.
1. Use a web browser to display the first IVT Web page index.jsp. If you are using

WebSphere Application Server point your browser at

http://app_server_host:port/ECIIVTWeb/index.jsp
2. Click Run IVT.

If the test is successful, it returns a web page that displays the date and time on
the CICS server and a success confirmation message. If the test fails, it returns a
web page with a failure message containing details of the failure including a stack
trace option. Capture this data for possible use by the application server support
team.

166 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Using the sample programs to check your configuration
After you have configured your system, you can use the sample programs to check
that it is configured correctly.
1. Start the CICS Transaction Gateway.
2. Run one of the sample programs supplied. See the for details, including

compilation instructions and information on compiler considerations.

Chapter 8. Configuring 167

168 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Chapter 9. Deploying applications

The method you must use to deploy your application depends on the CICS TG
API used by the application.

Configuring remote Client application environments
The files required for compiling and running applications on a client machine are
installed with CICS Transaction Gateway and must be copied to the client machine.

Java Client applications

The Java Virtual Machine (JVM) uses the CLASSPATH environment variable to
find classes and zip or jar archives containing classes. To allow the JVM to access
class files, specify the full path of directories containing class files or archives.

To compile and run Java applications on a client machine, add the full path of
ctgclient.jar to the CLASSPATH environment variable. This archive is in the
<install_path>/classes directory. The JEE resource adapters are in the
<install_path>/deployable directory.

You must use a supported version of Java for running Java Client applications, a
supported version of Java is provided on the CICS Transaction Gateway DVD, or
as part of the product download.

C Client applications

The files required for compiling and running C applications on a client machine
are in the ctgredist.tar.gz package on UNIX and Linux or the ctgredist.zip
package on Windows, these are found in the <install_path>/deployable directory.
Copy the package to the client machine before extracting.

To compile ECI version 2 C applications on a Windows client machine you must
include the files ctgclient_eci.h, ctgclient.h, and ctgclient.lib in your C build
environment. To run the applications ctgclient.dll is required in the path.

To compile ECI version 2 C applications on a UNIX and Linux client machine you
must include the files ctgclient_eci.h, ctgclient.h and libctgclient in your C build
environment. To run the applications the shared object libctgclient is required in
the library path.

For information on building the supplied sample programs see the CICS
Transaction Gateway for z/OS: Application Programming Guide.

Deploying the CICS resource adapter
The resource adapter is provided as a standard module, ready for deployment into
a Java Platform, Enterprise Edition (JEE) application server. The resource adapter
can be packaged in a JEE application along with other components such as
Enterprise JavaBeans, and can be used to create larger, more complex systems.

CICS Transaction Gateway includes the following resource adapter which is
located in the <install_path>/deployable directory:

© Copyright IBM Corp. 2000, 2013 169

v ECI resource adapter (cicseci.rar)

The resource adapters can be deployed in 31-bit and 64-bit runtime environments.
For more information on supported environments, see “JEE application servers” on
page 10.

For information on how to deploy the CICS resource adapter in a managed
environment, see your JEE application server documentation.

For more information about nonmanaged environments, see the CICS Transaction
Gateway Programming Guide.

If your JEE application server requires Java 2 Security permissions, or if Java 2
Security permissions are enabled on your JEE application server, consider setting
the security permissions that allow CICS Transaction Gateway to access your
keystores. For more information, see the CICS Transaction Gateway Programming
Guide.

Transaction management models
CICS Transaction Gateway supports both the LocalTransaction and XATransaction
transaction management models.

The xasupport custom property on a ConnectionFactory determines whether
transactions use the XA protocol or not.
v To enable LocalTransaction support, set the xasupport custom property to off.

Local transactions are not supported when using WebSphere Application Server
for z/OS with CICS Transaction Gateway for z/OS in local mode, as the
resource adapter provides global transaction support with MVS RRS.

v To enable XATransaction support, set the xasupport custom property to on.

ECI resource adapter deployment parameters
The available deployment parameters for the ECI resource adapter and their effect
on the final deployed resource adapter. The tools used to configure these
parameters are server-specific. The default value is shown where appropriate.
Parameters are optional unless indicated as required.

applid In local mode, this parameter sets the APPLID used by EXCI and IPIC for
CICS connections. In remote mode, this field is used to identify the client
connection to the Gateway daemon.

applidQualifier
In local mode, this parameter sets the APPLID QUALIFIER used by EXCI
and IPIC for CICS connections. In remote mode, this field is used to
identify the client connection to the Gateway daemon.

connectionURL
The URL of the CICS Transaction Gateway instance with which the
resource adapter will communicate. The URL takes the form
protocol://address. This parameter is required. These protocols are
supported:

tcp
ssl
local

170 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

So, for example, in remote mode you might specify a URL of
tcp://ctg.business.com. In local mode specify local:.

portNumber
The port on which the Gateway daemon is listening. The default value for
TCP/IP is 2006. This parameter is not relevant if you are running in local
mode.

serverName
The name of the CICS server to connect to for all interactions through this
resource adapter. In remote mode, this name must be defined in the CICS
Transaction Gateway configuration file. If this parameter is left blank, the
default CICS server is used; For more information see “PRODUCT section
of the configuration file” on page 158. To use multiple servers within an
environment, you must deploy several Connection Factories, each with a
different serverName attribute. Each Connection Factory can use the same
Resource Adapter. For an IPIC connection in local mode, this field specifies
the server details as a URL: protocol://hostname:port.

socketConnectTimeout
When connecting to a Gateway daemon in remote mode, this value is the
maximum amount of time in milliseconds that the Java Client application
allows for the socket to connect successfully.

When a Java Client application is running in local mode and
communicating with a CICS server using the IPIC protocol, this value is
the maximum amount of time that is allowed for the socket connection to
CICS to happen successfully. If the Java Client application is using a
protocol other than IPIC to communicate with the CICS server in local
mode this value is ignored.

The default value of zero means that no timeout is applied when
applicable.

tranName
The name of the CICS transaction under which you want all programs
started by the resource adapter to run. The called program runs under a
mirror transaction, but is linked to under the tranName transaction name.
This name is available to the called program for querying the transaction
ID.

Setting the tranName in the ECIInteractionSpec overrides the value as set
at deployment (or on the ManagedConnectionFactory, if nonmanaged).

The tranName is equivalent to eci_transid. It does not affect the transaction
under which the mirror program runs, but it can be seen in the exec
interface block (EIB). When this option is used, the remote program runs
under the default mirror transaction id CSMI, but the EIBTRNID field
contains the eci_transid value.

tPNName
The name of the CICS TPN Transaction under which you want all
programs started by the resource adapter to run. tPNName takes
precedence if both tranName and tPNName are specified. If the tPNName
is set on the ECIInteractionSpec, this setting overrides any values set at
deployment time (or on the ManagedConnectionFactory, if nonmanaged).

The tPNName is equivalent to eci_tpn; it specifies a transaction under
which the CICS mirror program runs. This option is like the TRANSID
option in an EXEC CICS LINK command. A transaction definition in CICS
for this TRANSID must point to the DFHMIRS program.

Chapter 9. Deploying applications 171

userName
The CICS user ID to be used if no other security credentials are available.

password
The password for the CICS user ID specified in the userName parameter.

clientSecurity
The fully-qualified name of the ClientSecurity class to use in each
interaction with CICS. This parameter is optional; if no value is given, no
ClientSecurity class is used. If a ClientSecurity class is specified, an
equivalent ServerSecurity class must be specified on the serverSecurity
parameter. For more information about the use of ClientSecurity classes
and how to write them, see the information about CICS Transaction
Gateway security classes in the CICS Transaction Gateway for z/OS:
Programming Guide.

serverSecurity
The fully-qualified name of the ServerSecurity class to use in each
interaction with CICS. This parameter is optional; if no value is given, no
ServerSecurity class is used. If a ServerSecurity class is specified, an
equivalent ClientSecurity class must be specified on the clientSecurity
parameter. For more information about the use of ServerSecurity classes
and how to write them, see the information about CICS Transaction
Gateway security classes in the CICS Transaction Gateway for z/OS:
Programming Guide.

keyRingClass
The fully-qualified name of the SSL keystore to use. The use of this field
depends on the type of connection from the resource adapter. If the
resource adapter is making an IPIC connection directly to CICS (local
mode), then keyRingClass is the name associated with the IPIC connection.
If the resource adapter is using a remote mode SSL connection to a
Gateway daemon, then keyRingClass is the name associated with the SSL
connection.

keyRingPassword
The password for the keystore defined in keyRingClass.

traceLevel
The level of trace to be output by the resource adapter. For more details on
trace levels and tracing see “JEE tracing” on page 297.

cipherSuites
The cipherSuites parameter can be used when establishing an SSL
connection. In the WebSphere Administration console, change the
cipherSuites custom property for the connection factory to a
comma-separated list of the cipher suites that this connection factory is
restricted to use.

requestExits
A list of fully-qualified request monitoring exit class names delimited from
each other by commas (","). Each class must implement the
com.ibm.ctg.monitoring.RequestExit interface and be on the class path. For
more information about the use of RequestExit classes and how to write
them, see the information about Java request monitoring user exits in the
CICS Transaction Gateway for z/OS: Programming Guide.

ipicSendSessions
In local mode, this parameter sets the maximum number of simultaneous
transactions, or CICS tasks, that are allowed over the connection. The

172 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

actual number of send sessions used is determined by the connection
factory property, or the IPCONN RECEIVECOUNT parameter in CICS
Transaction Server for z/OS, whichever is lower.

xaSupport
When using this connection, the transaction type to be used. If this is set to
off, Local transactions are used. If this is set to on, XA transactions are
used.

Predefined attributes

In addition to the user-definable properties, the ECI resource adapter has a set of
predefined attributes that each deployed resource adapter inherits. These
properties are defined in the JEE/CA specification and are as follows:

Reauthentication support
The cicseci resource adapter supports reauthentication. Reauthentication is
the ability to change the security credentials when a connection is
requested from the server and an already existing one is allocated without
having to disconnect and reconnect to the EIS. Reauthentication improves
performance.

The ECI resource adapter has a set of predefined attributes that each deployed
resource adapter inherits when in local mode connecting over IPIC. These
attributes cannot be defined by the user.

Server Idle Timeout
Inactive connections to a CICS server are disconnected after 60 minutes.

Send TCP KeepAlive packets
Periodically send keepalive messages to the server to check the connection.

Deploying the ECI resource adapter on WebSphere
Application Server for z/OS

You must completely remove any resource adapter supplied with a previous
version of the product before installing this version.

Local mode

If you are using local mode, the native path of the resource adapter must point to
the bin directory of the CICS Transaction Gateway installation.

To create this path on WebSphere Application Server:
1. Navigate to Resources > Resource Adapters > Resource Adapters.
2. Click the specific resource adapter.
3. In the Native path box enter the full path to the CICS Transaction Gateway

<install_path>/bin directory, for example:
/usr/lpp/cicstg/ctg900/bin

You must also set the environment variables that are relevant to JCA in WebSphere
Application Server. For a local mode topology, the CICS Transaction Gateway
environment variables are specified using the WebSphere Administration Console:
v CTG_EXCI_INIT determines whether or not EXCI is loaded (default is YES if

undefined). If EXCI is required, you must also set the STEPLIB environment
variable. You can also set CTG_PIPE_REUSE and DFHJVPIPE:

Chapter 9. Deploying applications 173

– STEPLIB identifies the library containing the default EXCI options and the
EXCI load modules (mandatory).

– CTG_PIPE_REUSE determines how allocated EXCI pipes are reused (optional
but recommended).

– DFHJVPIPE defines the name of the pipe that CICS Transaction Gateway uses
for EXCI calls (optional but recommended).

For more information about what values to set for these environment variables see
“Environment variables: local and remote mode” on page 100.

For more information about local mode see “Configuring a local mode topology”
on page 81.

Deploying remote Java client applications
Remote Java client applications are deployed to the runtime environment as Java
Archive (.jar) files.

You are licensed to copy the following files to the computer that is running the
Java client application:
v For non-JEE applications, copy the file ctgclient.jar
v For JEE applications in a managed environment, copy the resource adapters

(RAR files) in the <install_path>\deployable directory.
v For JEE applications in a nonmanaged environment, copy the following files in

the <install_path>\classes directory:

Ensure that any JAR files that you copy are listed on the class path of the remote
computer.

Deploying ECI V2 and ESI V2 to remote systems
Remote ECI V2 and ESI V2 applications are deployed as executable files. The API
is not supported on z/OS but connectivity from a remote ECI V2 or ESI V2
application to CICS TG for z/OS is supported.

You are licensed to copy the following files to the machine that is running the ECI
V2 and ESI V2 application:

ECI V2 and ESI V2 CICS TG API runtime library:
v ctgclient.dll (Windows)
v libctgclient (UNIX and Linux)

You can find a 32-bit version of this file in the <platform>/lib directory of the
ctgredist package.

You can find a 64-bit version of this file in the <platform>/lib64 directory of the
ctgredist package.

On AIX: libctgclient in <platform>/lib supports both 32-bit and 64-bit operation.
There is no <platform>/lib64 directory.

At run time the ctgclient must be available on the system path or in the same
directory as the ECI V2 and ESI V2 application.

174 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

ECI V2 and ESI V2 error log

To enable the error logging of system errors, socket errors, and other Gateway
connection errors, turn on CTG_TRACE_LEVEL1 trace. For more information see
Tracing in ECI V2 and ESI V2 applications.

Deploying .NET applications to remote systems
Remote .NET applications are deployed to the Windows runtime environment as
an executable assembly (.exe) or library assembly (.dll), depending on the type of
application.

You are licensed to copy the following file to the computer that is running the
.NET application:

CICS Transaction Gateway .NET API assembly: IBM.CTG.Client.dll

The CICS Transaction Gateway .NET API supports 32-bit and 64-bit operation.
Support is provided by a single assembly (IBM.CTG.Client.dll) which is included
in the ctgredist package in the directory Windows/lib.

You must deploy IBM.CTG.Client.dll in the Global Assembly Cache, or in the same
directory as the .NET application.

For further information on deploying assemblies in the Global Assembly Cache
refer to the Microsoft documentation.

Chapter 9. Deploying applications 175

|

|
|
|

http://pic.dhe.ibm.com/infocenter/cicstgzo/v9r0/topic/com.ibm.cics.tg.zos.doc/progdezos/TracingInECIVersion2Applications.html

176 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Chapter 10. Scenarios

Follow the steps in these scenarios to learn how to perform tasks such as
configuring connections to CICS, or configuring SSL security. As you work through
each scenario you use real values provided in a reference table. When you have
completed the configuration part of a scenario, you can then test the scenario by
sending a simple ECI request to a CICS server.

Sample files
Sample files containing CICS Transaction Gateway configuration parameter values
and environment variables are provided for the scenarios. The sample files are
installed as part of the product package, and can be accessed from the scenarios
through download links.

Each sample file contains values specific to that scenario; The sample files that
contain configuration parameters have the common file name ctg.ini. The sample
files that contain environment variables have unique filenames such as CTGS05NV.
Environment variables are not required for all scenarios.

To open a sample file and view the contents:
1. Open the introductory topic for the scenario, for example “Configuring a secure

autoinstalled IPIC connection (SC01).”
2. Scroll down to the sample file link (the link is located immediately below the

table of values).
3. Double-click the link.

To download and save a sample file onto your local machine:
1. Right-click the sample file link and select Save Target As...
2. Specify the location where you want to save the sample file.

The samples for MVS are shipped in the SCTGSAMP product library and use the
following naming convention:
hlq.SCTGSAMP(CTGSnnXX)

Where nn is the number of the scenario that uses that sample and XX is a
2-character identifier.

The samples for HFS are installed in the following location:
<install_path>/samples/scenarios/scnn

Where nn is the scenario number, for example:
<install_path>/samples/scenarios/sc01

Configuring a secure autoinstalled IPIC connection (SC01)
You can configure secure autoinstalled IPIC connections using a template. Using a
template allows you to change the default connection settings for IPIC
autoinstalled connections. To implement an IPCONN template so that IPIC
connections are autoinstalled with link security and user security, follow the
step-by-step instructions in this scenario.

© Copyright IBM Corp. 2000, 2013 177

To configure secure autoinstalled IPIC connections, you must modify the CICS TS
sample user-replaceable module (URM) to point to an IPCONN template.

This scenario uses CICS TG connecting to CICS TS V3.2 over IPIC in remote mode.
It uses the default name ctg.ini for the configuration file.

Table 17. Values used in this scenario

Component Parameter Where set Example value
Matching
values

CICS TG Server name IPICSERVER section
of ctg.ini

CICSA

CICS TG Hostname IPICSERVER section
of ctg.ini

cicssrv2.company.com

CICS TG Port �1� IPICSERVER section
of ctg.ini

50889 This value
must be
the same
as �3�

CICS TS IPCONN
template

In DFHISCIP
(autoinstall user
program)

SECTEMPL

CICS TS TCPIPService
�2�

TCPIPService
definition

SRV50889 This value
must be
the same
as �4�

CICS TS Portnumber �3� TCPIPService
definition

50889 This value
must be
the same
as�1�

CICS TS TCPIPService
�4�

IPCONN definition SRV50889 This value
must be
the same
as �2�

RACF User ID for link
security

IPCONN definition
in CICS TS

LINKUSER

RACF User ID for
user security

Client application USERID

RACF Password for
user security

Client application PASSWORD

Prerequisites
You must satisfy these system requirements.

Here are the system requirements for CICS TS for z/OS:
v The server must be CICS V3.2 or later because IPIC is not available in earlier

releases of CICS.
v TCP/IP services must be active in the CICS server.

– To activate these services, set the TCPIP system initialization parameter to
YES.

– To check the status of these services, issue a CEMT INQ TCPIP command and
check that the status is open.

v The CICS server must have access to a TCP/IP stack running on the same LPAR.

178 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

v The TCP/IP network must extend between LPARs if CICS TG for z/OS and the
CICS server exist on different LPARs.

v You must set the SEC system initialization parameter to YES to enable security.
v You must have valid RACF user IDs and passwords.

Here are the system requirements for CICS TG:
v CICS TG must be installed.

To test that the scenario works successfully you can use either the supplied
samples, or your own applications. If you use the supplied samples, this scenario
requires:
v The sample CICS TG server program EC01 must be compiled, defined, and

installed on CICS.
v The CICS TG supplied Java sample EciB2 available on the client machine.

Testing your TCP/IP network

At the transport layer, issue ping requests between the operating system that is
hosting your CICS TG and the LPAR where your CICS server resides. The ping
request response, as shown in the example below, confirms that the TCP/IP
communications are working. The ping request also works if CICS TG and the
CICS server are not in the same LPAR or if you are using multiple IP stacks on the
same LPAR.
ping cicssrv2.company.com

Pinging cicssrv2.company.com [1.23.456.789] with 32 bytes of data:

Reply from 1.23.456.789: bytes=32 time<1ms TTL=61
Reply from 1.23.456.789: bytes=32 time<1ms TTL=61
Reply from 1.23.456.789: bytes=32 time<1ms TTL=61
Reply from 1.23.456.789: bytes=32 time<1ms TTL=61

Ping statistics for 1.23.456.789:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms

Configuring the IPIC server on CICS TG
You must define a server definition for the Gateway daemon to communicate to
CICS over IPIC in remote mode.

To define a server definition for the Gateway daemon:
1. Edit the ctg.ini file and define an IPICSERVER definition for your CICS server:

a. Set HOSTNAME to the name of the z/OS machine that hosts your CICS
server.

b. Set PORT to the port number that your CICS server uses to listen for
incoming IPIC requests.

For example:
SECTION IPICSERVER = CICSA

HOSTNAME=cicssrv2.company.com
PORT=50889

ENDSECTION

2. Save your updated ctg.ini file.
3. Edit the CTGS01A1 data set and define the configuration and Java paths:

v Replace <config_path> with the directory that ctg.ini is stored in.

Chapter 10. Scenarios 179

v Replace <javag_path> with your Java 7 install path. For example:
CICSCLI=/u/ctguser/ctg.ini
PATH=/bin:/java/java70/bin

4. Save your updated data set.
5. Start CICS TG to apply the new IPICSERVER definition.

Configuring the IPCONN autoinstall user program DFHISCIP
on CICS TS

To enable the autoinstall of multiple secure IPCONNs, you must modify the
sample IPCONN autoinstall program.

CICS provides the IPCONN autoinstall sample program called DFHISxIP in
Assembler, C, COBOL, and PL/I , where 'x' denotes the language, which is A, D,
C, and P respectively. The sample program does not use a template by default, so,
for autoinstall requests to use a template you must update the program. In this
example, the COBOL user program DFHISCIP is updated.
1. Add the MOVE statement to the autoinstall user program DFHISCIP in the

A010-INSTALL-IPCONN section. This statement requests CICS to use the
IPCONN template SECTEMPL each time the autoinstall user program is called.
* - - - - - - - - - -
* Install processing
* - - - - - - - - - -
A010-INSTALL-IPCONN SECTION.
* Template for secure IPCONN

MOVE ’SECTEMPL’ TO ISAIC-TEMPLATE

2. Compile and link-edit your program into a data set that will be picked up by
your CICS server.

Configuring the TCPIPSERVICE on CICS TS
The TCPIPSERVICE is a resource that defines the attributes of the IPIC connection,
including the listening port and the IPCONN autoinstall user program, referred to
as a user replaceable module (URM).
1. Use CEDA to define a TCPIPSERVICE; for example, SRV50889. These values

are important:
v The URM is set to point to your compiled IPCONN autoinstall user program.
v The port number is set for incoming IPIC requests.
v The protocol is set to IPIC.
v The transaction is set to CISS.

All other values can be left to default. The security section of the
TCPIPSERVICE is not applicable for the IPIC protocol; security is applied in the
IPCONN definition.
CEDA DEFine TCpipservice(SRV50889)
TCpipservice : SRV50889
GROup : HOLLTCPA
DEscription ==>
Urm ==> DFHISCIP
POrtnumber ==> 50889 1-65535
STatus ==> Open Open | Closed
PROtocol ==> IPIC IIop | Http | Eci | User | IPic
TRansaction ==> CISS
Backlog ==> 00001 0-32767
TSqprefix ==>
Ipaddress ==>
SOcketclose ==> No No | 0-240000 (HHMMSS)
Maxdatalen ==> 3-524288

180 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

2. Install the CEDA definition.
3. Check that the TCPIPSERVICE is active. On CICS TS, issue the command:

CEMT INQ TCPIPSERVICE

Check these values:
v The port number shown is correct.
v The status shows "Ope" for open.
v The protocol shown is Ipic.
v The URM shows the IPCONN autoinstall program that you modified.

For example:
CEMT INQ TCPIPSERVICE
STATUS: RESULTS - OVERTYPE TO MODIFY
Tcpips(SRV50889) Ope Por(50889) Ipic Nos Tra(CISS)
Con(00000) Bac(00001) Max(000000) Urm(DFHISCIP)

Note: You can configure CICS resources using the CICS Explorer , see the CICS
Explorer information in the CICS TS Information Center for more information.

Configuring the IPCONN template on CICS TS
You must define the IPCONN template that each incoming IPIC connection uses.
This example implements both link security and user security.
1. Use CEDA to define an IPCONN. The name of the IPCONN must match the

name of the template specified in the IPCONN autoinstall user program; for
example, SECTEMPL. These values are important:

TCPIPService
Set this value to match the name of the TCPIPService defined earlier.

Receivecount
Set this value to specify the number of parallel IPCONN sessions.

SENdcount
Set this value to zero because IPIC connections are always inbound to
CICS TS from CICS TG.

Inservice
Set this value to Yes.

Linkauth
Set this value to Secuser.

SECurityname
Set this value to an authorized RACF user ID. The user ID must be in a
RACF group that is authorized to establish IPIC connections.

Userauth
Set this value to Verify.

The APPLID field is relevant only for predefined IPCONN connections. The
APPLID field is ignored for autoinstalled IPCONN connections. CICS populates
this field with the name of the IPCONN by default.
This panel is an example of an IPCONN template defined using the CEDA
transaction:
CEDA View Ipconn(SECTEMPL)
Ipconn : SECTEMPL
Group : HOLLIPIC
Description :
IPIC CONNECTION IDENTIFIERS
APplid : SECTEMPL

Chapter 10. Scenarios 181

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.explorer.doc/topics/explorer_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.explorer.doc/topics/explorer_overview.html

Networkid :
Host :
(Lower Case) :
Port : No No | 1-65535
Tcpipservice : SRV50889
IPIC CONNECTION PROPERTIES
Receivecount : 100 1-999
SENdcount : 000 0-999
Queuelimit : No No | 0-9999
Maxqtime : No No | 0-9999
OPERATIONAL PROPERTIES
AUtoconnect : No No | Yes
Inservice : Yes Yes | No
SECURITY
SSl : No No | Yes
CErtificate : (Mixed Case)
CIphers :
Linkauth : Secuser Secuser | Certuser
SECurityname : LINKUSER
Userauth : Verify Local | Identify | Verify | Defaultuser
RECOVERY
Xlnaction : Keep Keep | Force

2. Install the IPCONN definition and check that the output from the CEMT INQ
IPCONN(SECTEMPL) command identifies it as INService RELeased.
CEMT I IPCONN
STATUS: RESULTS - OVERTYPE TO MODIFY
Ipc(SECTEMPL) App(SECTEMPL) Net(GBIBMIYA) Ins Rel Nos

Rece(100) Sen(000) Tcp(SRV50889)

Testing your scenario
To test that your scenario is configured correctly, start the CICS Transaction
Gateway and use the CICS TG Java sample EciB2 to call CICS server program
EC01.
1. To test your scenario using a valid user ID and password, issue the following

command from a command prompt on the machine on which CICS TG is
running. In this example command, the Gateway daemon TCP handler is
listening on the default port.
java com.ibm.ctg.samples.eci.EciB2

jgate=localhost server=CICSA prog0=EC01 commarealength=18
userid=USERID password=PASSWORD ebcdic

The ebcdic option is not required if you have set up a definition for EC01 in
the DFHCNV data conversion macro on CICS.
The output from the command is as follows:
CICS Transaction Gateway Basic ECI Sample 2

Test Parameters
CICS TG address : localhost:2006
Client security : null
Server security : null
CICS Server : CICSA
UserId : USERID
Password : PASSWORD
Data Conversion : ASCII
Commarea : null
Commarea length : 18

Number of programs given : 1
[0] : EC01

Connect to Gateway

182 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Successfully created JavaGateway

CICS servers defined:

System : CICSA

Call Programs

About to call : EC01
Commarea :
Extend_Mode : 0
Luw_Token : 0
Commarea : 22/05/09 10:05:18

Return code : ECI_NO_ERROR(0)
Abend code : null
Successfully closed JavaGateway

In the CICS job log you will see this message:
DFHIS3000 ... IPCONN 00000006 with applid .00000006 autoinstalled
successfully using autoinstall user program DFHISCIP and template
(SECTEMPL) after a connection request was received on tcpipservice 50889
from host 1.23.456.789

where 00000006 is the name of the IPCONN automatically generated by the
autoinstall template.
If you issue the command CEMT INQ IPCONN, the output is as follows:
CEMT INQ IPCONN

STATUS: RESULTS - OVERTYPE TO MODIFY
Ipc(SECTEMPL) App(SECTEMPL) Net(GBIBMIYA) Ins Rel Nos

Rece(100) Sen(000) Tcp(SRV50889)
Ipc(00000001) App(00000001) Ins Acq Nos

Rece(100) Sen(000) Tcp(SRV50889)
Ipc(00000006) App(00000006) Ins Acq Nos

Rece(100) Sen(000) Tcp(SRV50889)

The example shows two active IPCONN connections autoinstalled from
different Gateway daemons. Note that the IPCONN autoinstall template
remains INS REL.

2. If you test your scenario using an incorrect user ID and password combination,
you receive an ECI_ERR_SECURITY_ERROR RC=27 message. In the CICS job log, the
following message is displayed:
DFHIS1027 ... Security violation has been detected using IPCONN 0000006 and
transaction id CPMI by userid CICSUSER

Optional: using the APPLID to identify your CICS TG
To identify your CICS TG to CICS when connecting over IPIC, you can provide
your APPLID in the ctg.ini file or specify an APPLIDQUALIFIER and the APPLID.

To provide your APPLID and APPLIDQUALIFIER in the ctg.ini file, specify:
SECTION PRODUCT

APPLID=MYAPPL
APPLIDQUALIFIER=MYQUAL

ENDSECTION

If you use an APPLID of MYAPPL and an APPLIDQUALIFIER of MYQUAL, the
CICS system log shows the following messages when an IPCONN is installed:
DFHIS3000 IY2GTGA2 IPCONN APPL with applid MYQUAL.MYAPPL
autoinstalled successfully using autoinstall user program DFHISCIP
and template SECTEMPL after a connection request was received on

Chapter 10. Scenarios 183

tcpipservice SRV50889 from host 1.23.456.789

DFHIS2001 IY2GTGA2 Client session from applid MYAPPL accepted for IPCONN
APPL.

By default, the user replaceable module DFHISCIP uses the last four characters of
the incoming CICS TG APPLID as the name of the IPCONN. In this example, the
last four characters of MYAPPL are APPL because padded spaces are ignored.

To view the installed IPCONN (APPL) and the template (SECTEMPL), issue the
CEMT INQ IPCONN command:
CEMT INQ IPCONN
STATUS: RESULTS - OVERTYPE TO MODIFY
Ipc(APPL) App(MYAPPL) Net(MYQUAL) Ins Acq Nos

Rece(100) Sen(000) Tcp(SRV50889)
Ipc(SECTEMPL) App(SECTEMPL) Net(GBIBMIYA) Ins Rel Nos

Rece(100) Sen(000) Tcp(SRV50889)

Note that the IPCONN template must be INS REL for it to be used by an incoming
request. The autoinstalled IPCONN, for example, APPL, is INS ACQ.

Configuring a secure predefined IPIC connection (SC02)
A predefined IPCONN provides a more secure environment and can prevent
unwanted IPCONN autoinstall requests from succeeding. To configure a secure
predefined IPCONN for your IPIC connection between CICS TG and CICS TS,
follow the instructions in this scenario.

This scenario uses CICS TG connecting to CICS TS V3.2 over IPIC in remote mode.
It uses the default name ctg.ini for the configuration file.

Table 18. Values used in this scenario

Component Parameter Where set Example value
Matching
values

CICS TG APPLID �1� PRODUCT
section of
ctg.ini

MYAPPL This value
must be
the same
as �6�

CICS TG APPLIDQUALIFIER
�2�

PRODUCT
section of
ctg.ini

MYQUAL This value
must be
the same
as �7�

CICS TG Server name IPICSERVER
section of
ctg.ini

CICSA

CICS TG Hostname IPICSERVER
section of
ctg.ini

cicssrv2.company.com

CICS TG Port �3� IPICSERVER
section of
ctg.ini

50889 This value
must be
the same
as �5�

CICS TS TCPIPService �4� TCPIPService
definition

SRV50889 This value
must be
the same
as �8�

184 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Table 18. Values used in this scenario (continued)

Component Parameter Where set Example value
Matching
values

CICS TS Portnumber �5� TCPIPService
definition

50889 This value
must be
the same
as �3�

CICS TS APPLID �6� IPCONN
definition

MYAPPL This value
must be
the same
as�1�

CICS TS Network ID �7� IPCONN
definition

MYQUAL This value
must be
the same
as �2�

CICS TS TCPIPService �8� IPCONN
definition

SRV50889 This value
must be
the same
as �4�

RACF User ID for link
security

IPCONN
definition in
CICS TS

LINKUSER

RACF User ID for user
security

Client
application

USERID

RACF Password for user
security

Client
application

PASSWORD

Prerequisites
You must satisfy these system requirements.

Here are the system requirements for CICS TS for z/OS:
v The server must be CICS V3.2 or later because IPIC is not available in earlier

releases of CICS.
v TCP/IP services must be active in the CICS server.

– To activate these services, set the TCP system initialization parameter to YES.
– To check the status of these services, issue a CEMT INQ TCPIP command and

check that the status is open.
v The CICS server must have access to a TCP/IP stack running on the same LPAR.
v The TCP/IP network must extend between LPARs if CICS TG for z/OS and the

CICS server exist on different LPARs.
v You must set the SEC system initialization parameter to YES to enable security.
v You must have valid RACF user IDs and passwords.

Here are the system requirements for CICS TG:
v CICS TG must be installed.

To test that the scenario works successfully you can use either the supplied
samples, or your own applications. If you use the supplied samples, this scenario
requires the following:
v The sample CICS TG server program EC01 must be compiled, defined, and

installed on CICS.

Chapter 10. Scenarios 185

v The CICS TG supplied Java sample EciB2 available on the client machine.

Testing your TCP/IP network

At the transport layer, issue ping requests between the operating system that is
hosting your CICS TG and the LPAR where your CICS server resides. The ping
request response, as shown in the example, confirms that the TCP/IP
communications are working. The ping request also works if CICS TG and the
CICS server are not in the same LPAR or if you are using multiple IP stacks on the
same LPAR.
ping cicssrv2.company.com

Pinging cicssrv2.company.com [1.23.456.789] with 32 bytes of data:

Reply from 1.23.456.789: bytes=32 time<1ms TTL=61
Reply from 1.23.456.789: bytes=32 time<1ms TTL=61
Reply from 1.23.456.789: bytes=32 time<1ms TTL=61
Reply from 1.23.456.789: bytes=32 time<1ms TTL=61

Ping statistics for 1.23.456.789:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms

Configuring the IPIC server on CICS TG
You must edit the ctg.ini file to identify your CICS TG to CICS and to define a
server definition for the Gateway daemon to communicate with CICS over IPIC in
remote mode.
1. To identify your CICS TG to CICS when connecting over IPIC, you must define

your APPLID and APPLIDQUALIFIER, in uppercase, in the PRODUCT section
of the ctg.ini file.
For example:
SECTION PRODUCT

APPLID=MYAPPL
APPLIDQUALIFIER=MYQUAL

ENDSECTION

2. To define an IPICSERVER definition for your CICS server:
a. Set HOSTNAME to the TCP/IP host name or TCP/IP address on which

CICS is listening.
b. Set PORT to the port number that your CICS server uses to listen for

incoming IPIC requests.

For example:
SECTION IPICSERVER = CICSA

HOSTNAME=cicssrv2.company.com
PORT=50889

ENDSECTION

3. Save your updated ctg.ini file.
4. Edit the CTGS02A1 data set and define the configuration and Java paths:

a. Replace <config_path> with the directory that ctg.ini is stored in.
b. Replace <java_path> with your Java 7 install path. For example:

CICSCLI=/u/ctguser/ctg.ini
PATH=/bin:/java/java70/bin

5. Save the updated CTGS02A1 data set.
6. Start CICS TG to apply the new definitions.

186 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Configuring the TCPIPService on CICS TS
The TCPIPService is a resource that defines the attributes of the IPIC connection,
including the listening port.
1. Use CEDA to define a TCPIPService; for example, SRV50889. These values are

important:
v The URM is set to NO to prevent the default IPCONN autoinstall program

from running.
v The port number is set for incoming IPIC requests.
v The protocol is set to IPIC.
v The transaction is set to CISS.

All other values can be left to default. The security section of the TCPIPService
is not applicable for the IPIC protocol; security is applied in the IPCONN
definition.
CEDA DEFine TCpipservice(SRV50889)

TCpipservice : SRV50889
GROup : HOLLIPIC
DEscription ==>
Urm ==> NO
POrtnumber ==> 50889 1-65535
STatus ==> Open Open | Closed
PROtocol ==> IPIC IIop | Http | Eci | User | IPic
TRansaction ==> CISS
Backlog ==> 00001 0-32767
TSqprefix ==>
Ipaddress ==>
SOcketclose ==> No No | 0-240000 (HHMMSS)
Maxdatalen ==> 3-524288

2. Install the CEDA definition.
3. Check that the TCPIPService is active. On CICS TS, issue the command:

CEMT INQ TCPIPSERVICE

Check the following values:
v The port number shown is correct.
v The status shows "Ope" for open.
v The protocol shown is Ipic.
v The URM shows NO to state that IPCONN autoinstall is not permitted on

this TCPIPSERVICE.
For example:
CEMT INQ TCPIPSERVICE
STATUS: RESULTS - OVERTYPE TO MODIFY
Tcpips(SRV50889) Ope Por(50889) Ipic Nos Tra(CISS)
Con(00000) Bac(00001) Max(000000) Urm(NO)

Configuring the IPCONN on CICS TS
You must define the IPCONN for the incoming IPIC connection. This example
implements both link security and user security.
1. Use CEDA to define an IPCONN. These values are important:

APplid
Set this value to match the APPLID specified in the ctg.ini file.

Networkid
Set this value to match the APPLIDQUALIFIER specified in the ctg.ini
file.

Chapter 10. Scenarios 187

TCPIPService
Set this value to match the name of the TCPIPService defined earlier.

Receivecount
Set this value to specify the number of parallel IPCONN sessions.

SENdcount
Set this value to zero because IPIC connections are always inbound to
CICS TS from CICS TG.

Inservice
Set this value to Yes.

Linkauth
Set this value to Secuser.

SECurityname
Set this value to an authorized RACF user ID. The user ID must be in a
RACF group that is authorized to establish IPIC connections.

Userauth
Set this value to Verify.

Leave all the other values to default.
This panel is an example of an IPCONN definition defined using the CEDA
transaction:
CEDA View Ipconn(IPC50889)

Ipconn : IPC50889
Group : HOLLIPIC
Description :
IPIC CONNECTION IDENTIFIERS
APplid : MYAPPL
Networkid : MYQUAL
Host :
(Lower Case) :
Port : No No | 1-65535
Tcpipservice : SRV50889
IPIC CONNECTION PROPERTIES
Receivecount : 100 1-999
SENdcount : 000 0-999
Queuelimit : No No | 0-9999
Maxqtime : No No | 0-9999
OPERATIONAL PROPERTIES
AUtoconnect : No No | Yes
Inservice : Yes Yes | No
SECURITY
SSl : No No | Yes
CErtificate : (Mixed Case)
CIphers :
Linkauth : Secuser Secuser | Certuser
SECurityname : LINKUSER
Userauth : Verify Local | Identify | Verify | Defaultuser
RECOVERY
Xlnaction : Keep Keep | Force

2. Install the IPCONN definition and check that the output from the CEMT INQ
IPCONN(IPC50889) command identifies it as INService RELeased.
CEMT I IPCONN

STATUS: RESULTS - OVERTYPE TO MODIFY
Ipc(IPC50889) App(MYAPPL) Net(MYQUAL) Ins Rel Nos

Rece(100) Sen(000) Tcp(SRV50889)

188 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Testing your scenario
To test that your scenario is configured correctly, start the CICS Transaction
Gateway and use the CICS TG Java sample EciB2 to call CICS server program
EC01.
1. To test your scenario using a valid user ID and password, issue the following

command from a command prompt on the machine on which the CICS TG is
running. In this example command, the Gateway daemon TCP handler is
listening on the default port.
java com.ibm.ctg.samples.eci.EciB2

jgate=localhost server=CICSA prog0=EC01 commarealength=18
userid=USERID password=PASSWORD ebcdic

The ebcdic option is not required if you have set up a definition for EC01 in
the DFHCNV data conversion macro on CICS.
The output from the command is as follows:

CICS Transaction Gateway Basic ECI Sample 2

Test Parameters
CICS TG address : localhost:2006

Client security : null
Server security : null
CICS Server : CICSA
UserId : USERID
Password : PASSWORD
Data Conversion : ASCII

Commarea : null
Commarea length : 18

Number of programs given : 1
[0] : EC01

Connect to Gateway
Successfully created JavaGateway

CICS servers defined:
System : CICSA

Call Programs
About to call : EC01

Commarea :
Extend_Mode : 0
Luw_Token : 0
Commarea : 24/06/09 11:17:19

Return code : ECI_NO_ERROR(0)
Abend code : null
Successfully closed JavaGateway

In the CICS job log you will see this message:
DFHIS2001 ... Client session from applid MYAPPL accepted for
IPCONN IPC50889.

Issuing CEMT INQ TCPIPSERVICE shows that the connection count has
increased to 1.
CEMT INQ TCPIPSERVICE

STATUS: RESULTS - OVERTYPE TO MODIFY
Tcpips(SRV50889) Ope Por(50889) Ipic Nos Tra(CISS)
Con(00001) Bac(00001) Max(000000) Urm(NO)

The IPCONN connection remains established until the connection is explicitly
released, either by CICS TS or CICS TG.

Chapter 10. Scenarios 189

2. If you test your scenario using an incorrect user ID and password combination,
you receive an ECI_ERR_SECURITY_ERROR RC=27 message. In the CICS job log, the
following message is displayed:
DFHIS1027 ... Security violation has been detected using
IPCONN IPC50889 and transaction id CPMI by userid CICSUSER

3. If your APPLID and APPLIDQUALIFIER specified in the ctg.ini file do not
match the APPLID and NETWORKID defined on the IPCONN, your IPCONN
connection will not be established; CICS TS will then attempt to autoinstall
your IPCONN connection. However, because autoinstall is not enabled (the
TCPIPService has URM specified as NO) the autoinstall is rejected and your
ECI request causes a program abend with an ECI_ERR_NO_CICS(-3) message. In
the CICS job log, you see this message:
DFHIS3001 ... IPCONN autoinstall rejected after a connection
was received on TCPIPSERVICE SRV50889 from host 1.23.456.789
because the TCPIPSERVICE has URM(NO)

Optional: specifying CICSAPPLID and CICSAPPLIDQUALIFIER
in the IPICSERVER definition

To ensure that your CICS TG connects to the expected CICS server, you can specify
CICSAPPLID and CICSAPPLIDQUALIFIER in the IPICSERVER definition in the
ctg.ini file.
1. Add your CICSAPPLID and CICSAPPLIDQUALIFIER definitions in the

IPICSERVER section.
For example:
SECTION IPICSERVER = A1-IPIC

SRVIDLETIMEOUT=0
HOSTNAME=cicssrv2.company.com
PORT=50889
CONNECTTIMEOUT=60
TCPKEEPALIVE=Y
SENDSESSIONS=100
CICSAPPLID=IY2GTGXX
CICSAPPLIDQUALIFIER=GBIBMIYA

ENDSECTION

2. Save your updated ctg.ini file.
3. Start CICS TG to apply the new definitions.

If the CICSAPPLID and CICSAPPLIDQUALIFIER in your ctg.ini file do not match
the APPLID and network ID of your CICS server as defined in the CICS System
Initialization Table (SIT), your ECI request causes a program abend with an
ECI_ERR_NO_CICS(-3) message. In the CICS job log, you see this message:
DFHIS1013 ... Invalid applid GBIBMIYA.IY2GTGXX received in capability exchange
request on TCPIPSERVICE SRV50889.

Configuring a highly available Gateway group with two-phase commit
and IPIC (SC03)

This scenario shows how to configure a highly available gateway group (HA
group) of Gateway daemons with connections to CICS over IPIC. The scenario
supports two-phase commit (XA) transactions and uses policy-based dynamic
server selection for selecting a CICS server.

A highly available gateway group consists of a group of Gateway daemons that
share the same TCP/IP port and are capable of providing XA transactional
support.

190 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

The figure shows workload from a connection factory in WebSphere Application
Server being served by similar Gateway daemons (CTGA1, CTGA2) which
represent the HA group “GroupA”. Any supported JEE application server can be
used in this scenario.

Each Gateway daemon is connected to CICS servers CICSA1 and CICSA2 using
the IPIC protocol. A transaction might be handled by Gateway daemon CTGA1 or
CTGA2, and the work in CICS will be handled by one of CICSA1 or CICSA2. In
this scenario, the Gateway daemon is configured for dynamic server selection
using a CICS request exit. Dynamic server selection is performed at the start of
each new transaction and manages the associated transactional affinity with the
selected CICS server, for the life of the transaction.

Note: The connection factory definition in WebSphere Application Server does not
need to contain details of the actual CICS servers.

Follow the step-by-step instructions in this scenario to implement an HA group.
This example uses CICS Transaction Gateway connecting to CICS Transaction
Server V4.1 over IPIC and WebSphere Application Server V8.0.

Table 19. Values used in this scenario

Comp- onent Property Where set Details

TCP/IP Port sharing PROFILE.TCPIP 4148 TCP CTGA* SHAREPORT

CICS TG APPLIDQUALIFIER GroupA_GW.ini GROUPA

CICS TG TCP protocol handler GroupA_GW.ini Port number 4148

CICS TG Gateway group A
common configuration

GroupA_GW.ini maxconnect=500
maxworker=250
xasupport=on

CICS TG IPIC connection to
CICSA1

GroupA_GW.ini name=CICSA1
hostname=server.ibm.com
port=4149

Figure 22. XA transactions over IPIC in a high availability scenario

Chapter 10. Scenarios 191

Table 19. Values used in this scenario (continued)

Comp- onent Property Where set Details

CICS TG IPIC connection to
CICSA2

GroupA_GW.ini name=CICSA2
hostname=server.ibm.com
port=4150

CICS TG A1 Gateway instance A1
environment variables

CTGS03A1 CICSCLI=config_path/GroupA_GW.ini
CTGSTART_OPTS=-applid=CTGA1
-statsport=4151

CICS TG A2 Gateway instance A2
environment variables

CTGS03A2 CICSCLI=config_path/GroupA_GW.ini
CTGSTART_OPTS=-applid=CTGA2
-statsport=4152

CICS TS
CICSA1

TCPIPService for IPIC
connection

Using CEDA on
CICSA1

name=SRV4149
protocol=IPIC
port=4149

CICS TS
CICSA2

TCPIPService for IPIC
connection

Using CEDA on
CICSA2

name=SRV4150
protocol=IPIC
port=4150

WebSphere
Application
Server

CICS TG ECI resource
adapter connection
factory

J2C connection
factories

name=ECI-XA-GROUPA

WebSphere
Application
Server

CICS TG ECI resource
adapter connection
factory

J2C connection
factories

JNDI Name=eis/CICSGroupA

WebSphere
Application
Server

CICS TG ECI resource
adapter connection
factory

ECI-XA-GROUPA
connection pool
properties

Maximum connections=500

WebSphere
Application
Server

CICS TG ECI resource
adapter connection
factory

ECI-XA-GROUPA
custom properties

ConnectionURL=tcp://server.ibm.com
PortNumber=4148
ApplidQualifier=GROUPA
Applid=XAWASA
xasupport=on

Prerequisites
The prerequisites for CICS Transaction Gateway, CICS Transaction Server and
WebSphere Application Server.

Here are the system requirements for CICS Transaction Server for z/OS:
v The server must be CICS Transaction Server V3.2 or later because IPIC is not

available in earlier releases of CICS.
v TCP/IP services must be active in the CICS server.

– To activate these services, set the TCPIP system initialization parameter to
YES.

– To check the status of these services, issue a CEMT INQ TCPIP command and
check that the status is open.

v The CICS server must have access to a TCP/IP stack running on the same LPAR.
v The TCP/IP network must extend between LPARs if CICS Transaction Gateway

for z/OS and the CICS server exist on different LPARs.

Here are the system requirements for CICS Transaction Gateway:
v CICS Transaction Gateway must be installed.

192 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

v All prerequisites for XA support must be satisfied. For more information see
“Configuring for XA transaction support” on page 126

Here are the system requirements for WebSphere Application Server:
v The Installation Verification Test (IVT) that you run to test this scenario uses the

ECI resource adapter, cicseci.rar with XA support enabled. The resource adapter
must be downloaded onto the machine that runs the Web browser you use for
accessing the WebSphere Application Server Integrated Solutions Console. The
resource adapter will be installed as part of this scenario.

To test the scenario works successfully run the IVT. For more information see “JCA
resource adapter installation verification test (IVT)” on page 165.

Configuring CICS TG for high availability
Configuring CICS Transaction Gateway for high availability requires the creation of
various JCL files and configuration files.

The common configuration file is installed in the HFS under the directory
<install_path>/samples/scenarios/sc03. The sample environment files are available
in the partitioned data set (PDS) install_HLQ.SCTGSAMP.

The configuration files used to define an HA group GROUPA are:
v A common CICS Transaction Gateway configuration file
v An individual file for each Gateway daemon containing environment variables

(used in the CTGBATCH job step STDENV DD definition)

CICS Transaction Gateway configuration file

Create a CICS Transaction Gateway configuration file GroupA_GW.ini using the
values suggested in the table Table 19 on page 191:
1. Define the HA group GROUPA; define the APPLIDQUALIFIER as GROUPA.

For example:
SECTION PRODUCT

APPLIDQUALIFIER=GROUPA # Common group APPLID qualifier
APPLID is overridden by CTGSTART_OPTS

ENDSECTION

2. Define the common Gateway daemon characteristics. Edit the GroupA_GW.ini
file:
a. Define the thread pool sizes for connection managers and worker.
b. Enable dynamic server selection policy.
c. Enable XA support.
d. Define the TCP/IP protocol handler using port number 4148.
e. Define a statistics protocol handler. The port number will be overridden by

the ctgstart switch -statsport.
For example:
SECTION GATEWAY

maxconnect=500
maxworker=250
noinput=on
xasupport=on

Enable dynamic server selection policy
DSSPOLICY=POLICY1

Chapter 10. Scenarios 193

Define tcp protocol handler, port 4148
protocol@tcp.handler=com.ibm.ctg.server.TCPHandler
protocol@tcp.parameters=connecttimeout=2000;

idletimeout=0;\
pingfrequency=10000;
port=4148;
bind=;
solinger=0;

Define stats protocol handler
Note: This port number is overridden by CTGSTART_OPTS

protocol@statsapi.handler=com.ibm.ctg.server.RestrictedTCPHandler
protocol@statsapi.parameters=port=;

bind=;
connecttimeout=2000;
maxconn=5;

ENDSECTION

3. You must define server definitions for the Gateway daemon to communicate
with CICS over IPIC in remote mode. To define the CICS server definitions for
the Gateway daemon. Edit the GroupA_GW.ini file and add an IPICSERVER
section for each of your CICS servers:
v Set HOSTNAME to the name of the z/OS machine that hosts your CICS

server.
v Set PORT to the port number that your CICS server uses to listen for

incoming IPIC requests.
For example:
SECTION IPICSERVER = CICSA1
DESCRIPTION=IPIC connection to CICSA1
HOSTNAME=server.ibm.com
PORT=4149
CONNECTTIMEOUT=5
SENDSESSIONS=250
ENDSECTION

SECTION IPICSERVER = CICSA2
DESCRIPTION=IPIC connection to CICSA2
HOSTNAME=server.ibm.com
PORT=4150
CONNECTTIMEOUT=5
SENDSESSIONS=250
ENDSECTION

CONNECTTIMEOUT applies when the target machine is not reachable. For
example, if the target LPAR is down or TCP/IP on the target LPAR has been
shut down.

4. You must define a dynamic server selection policy and associated dynamic
server selection group which will be used to determine which CICS server
requests are sent to.
Edit the GroupA_GW.ini file and add a DSSPOLICY and DSSGROUP section.
Set Servers to the name of the CICS servers to contact. Set Algorithm to the
algorithm to be used for choosing a CICS server.
For example:
Define dynamic server selection policy
SECTION DSSPOLICY = POLICY1
SUBSECTION MAPPINGS
<NONE>=GROUP1
ENDSUBSECTION
ENDSECTION

Define dynamic server selection group

194 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

SECTION DSSGROUP = GROUP1
Servers=CICSA1,CICSA2
Algorithm=ROUNDROBIN
ENDSECTION

CICS Transaction Gateway environment variables

Define the characteristics specific to Gateway daemon CTGA1. Create the file
CTGS03A1 with the following environment variables:
CICSCLI=<config_path>/GroupA_GW.ini
CTGSTART_OPTS=-applid=CTGA1 -statsport=4151
PATH=/bin:/usr/sbin:<java_path>/bin
CTG_EXCI_INIT=NO
_BPX_SHAREAS=YES

Define the individual Gateway daemon characteristics for Gateway daemon
CTGA2. Create the file CTGS03A2 with the following environment variables:
CICSCLI=<config_path>/GroupA_GW.ini
CTGSTART_OPTS=-applid=CTGA2 -statsport=4152
PATH=/bin:/usr/sbin:<java_path>/bin
CTG_EXCI_INIT=NO
_BPX_SHAREAS=YES

Configuring TCP/IP for port sharing
Configure TCP/IP for port sharing by adding a PORT entry to the TCPIP profile,
to associate the shared port number with the corresponding Gateway daemon job
names CTGA1, CTGA2.

Add the following PORT entry to the TCPIP profile:

4148 TCP CTGA* SHAREPORT

Configuring the TCPIPService on CICS TS
The TCPIPService is a resource that defines the attributes of the IPIC connection,
including the listening port and the IPCONN autoinstall user program, referred to
as a user replaceable module (URM).

For this scenario, the two CICS servers require separate TCPIPService definitions,
using the port numbers defined in the table of values in “Configuring a highly
available Gateway group with two-phase commit and IPIC (SC03)” on page 190.
1. Use CEDA to define a TCPIPService; for example, SRV4149. The important

values are:
v The URM is set to point to your compiled IPCONN autoinstall user program.
v The port numbers are set for incoming IPIC requests.
v The protocol is set to IPIC.
v The transaction is set to CISS.

All other values can be left to default. The security section of the TCPIPService
is not applicable for the IPIC protocol; security is applied in the IPCONN
definition.
CEDA DEFine TCpipservice(SRV4149)
TCpipservice : SRV4149
GROup : HOLLTCPA
DEscription ==>
Urm ==> DFHISCIP
POrtnumber ==> [port number] 1-65535
STatus ==> Open Open | Closed

Chapter 10. Scenarios 195

PROtocol ==> IPIC IIop | Http | Eci | User | IPic
TRansaction ==> CISS
Backlog ==> 00001 0-32767
TSqprefix ==>
Ipaddress ==>
SOcketclose ==> No No | 0-240000 (HHMMSS)
Maxdatalen ==> 3-524288

2. Follow this pattern to create a TCPIPService definition for each CICS region.
Allocate different port numbers to each definition. For example, 4149 for
CICSA1 and 4150 for CICSA2.

3. Install the CEDA definitions.
4. Check that the TCPIPService definitions are active. On CICS TS, issue the

command:
CEMT INQ TCPIPSERVICE

Check the following values:
v The port number shown is correct.
v The status shows "Ope" for open.
v The protocol shown is IPIC.
v The URM shows the IPCONN autoinstall program that you modified.

For example:
CEMT INQ TCPIPSERVICE
STATUS: RESULTS - OVERTYPE TO MODIFY
Tcpips(SRV4149) Ope Por(4149) Ipic Nos Tra(CISS)
Con(00000) Bac(00001) Max(000000) Urm(DFHISCIP)

Configuring WebSphere Application Server
Use the WebSphere Application Server Integrated Solutions Console (the “admin
console”) to install and configure the CICS ECI resource adapter (cicseci.rar) and
enable XA support.

To install and configure the CICS ECI resource adapter, you complete these key
tasks:
1. Install the ECI resource adapter
2. Create a connection factory
3. Configure a connection factory

Step 1. Install the ECI resource adapter

Start the admin console and select Resource Adapters from the Resources >
Resource Adapters section of the navigation menu. Click Install RAR shown in
Figure 23 on page 197.

196 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

From the Install RAR file dialog shown in Figure 24, click Browse for the Remote
file system. Select the CICS ECI resource adapter cicseci.rar. Take note of the
scope; this choice limits the scope of later connection factory definitions. In this
scenario, the scope is Node.

Click Next. The resource adapter General Properties dialog shown in Figure 25 on
page 198 contains a predefined name and description for the CICS ECI resource
adapter.

Figure 23. Installing a new resource adapter

Figure 24. Selecting the ECI RAR file for installation

Chapter 10. Scenarios 197

Because this scenario implements the remote mode topology, you do not have to
configure the native library path. Accept the default settings and click OK.

The admin console returns you to the Resource adapters dialog shown in Figure 26
on page 199, and prompts you to save the changes. Note that the new resource
adapter ECIResourceAdapter is now visible in the table of available resource
adapters, with the scope matching the node.

Figure 25. Defining the RAR general properties

198 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Save the changes to the master configuration.

Step 2. Create a connection factory

Select J2C connection factories from the Resources > Resource Adapters section of
the navigation menu. Firstly, you must ensure that the scope is correctly selected as
shown in Figure 27 on page 200. For this particular scenario, the resource adapter
is installed within the Node scope. If the scope is set incorrectly, attempts to create
a new connection factory will fail.

Figure 26. Saving the configuration changes for the new resource adapter

Chapter 10. Scenarios 199

Click New to create a new connection factory using the CICS ECI resource adapter.

The J2C connection factory General Properties screen allows you to define the
name, JNDI name and description for the new connection factory. The required
values are provided in the table of values in “Configuring a highly available
Gateway group with two-phase commit and IPIC (SC03)” on page 190, and are
shown in the screen capture.

For the JEE applications, the important value here is the JNDI name. This allocates
a single symbolic name to access CICS, and masks the detail of the underlying
Gateway daemon and CICS topology.

Figure 27. Setting the scope for the new connection factory

200 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Note: This dialog also contains configurable security settings for authentication
but, because the scenario does not cover security, all security fields retain their
default values.

At the bottom of this dialog, click OK. The admin console returns you to the J2C
connection factories dialog. The new connection factory is included in the table as
shown in Figure 29 on page 202.

Figure 28. Defining the new connection factory general properties

Chapter 10. Scenarios 201

If the admin console prompts you to save the changes to the master configuration,
you do not have to save at this point because the configuration task is not yet
complete.

Step 3. Configure a connection factory

In the J2C connection factories dialog, select the new connection factory
ECI-XA-GROUPA from the table of connection factories shown in Figure 30 on
page 203.

The admin console returns you to the J2C connection factories - General
Properties dialog for the connection factory ECI-XA-GROUP. From the Additional
properties section, select Connection pool properties. The admin console displays
the Connection pool properties configuration dialog shown in Figure 30 on page
203.

Figure 29. The new J2C connection factory

202 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Change the value of Maximum connections to 500. If TCP/IP load balancing results
in an even distribution of connections, each Gateway daemon will have 250
connections. If one Gateway daemon should become unavailable, the other
Gateway must be able to handle 500 connections. This is the reason for configuring
the Gateway daemons with MAXCONNECT=500.

For the remaining connection pool properties, use the default values. Click OK.
The admin console returns you to the J2C connection factories - General
properties dialog.

If the admin console prompts you to save the changes to the master configuration,
you do not have to save at this point because the configuration task is not yet
complete. The final part of the configuration task provides the connection factory
with the details required to connect to a Gateway daemon and CICS.

From the J2C connection factories - General properties dialog, Additional
properties section, select Custom properties. The admin console displays the
Custom properties dialog shown in Figure 31 on page 204.

Figure 30. Configuring the connection pools

Chapter 10. Scenarios 203

Set each of the custom properties individually, by clicking on the name:
Applid
ApplidQualifier
ConnectionURL
PortNumber
In this scenario the ServerName is deliberately left blank because the
DSSPOLICY defined in the ctg.ini configuration file is expecting a blank server
name.
xaSupport

The required values for these properties are provided in the table in “Configuring
a highly available Gateway group with two-phase commit and IPIC (SC03)” on
page 190; the default values for all other properties are acceptable. When you have
set the required custom properties, save all changes to the master configuration.

Figure 31. Configuring the connection factory custom properties

204 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Testing the scenario
To test the highly available Gateway group scenario, you configure, then run the
installation verification test (IVT) supplied with CICS Transaction Gateway.

Step 1. Configure the IVT

Install the IVT application ECIIVT.ear. For more information see “JCA resource
adapter installation verification test (IVT)” on page 165.

Configure the IVT application to use the highly available Gateway group GroupA,
by specifying the resource reference.

Select WebSphere enterprise applications from the Applications > Application
types section of the navigation menu. From the Enterprise Applications dialog,
Preferences section, click ECIIVT from the table of applications.

From the Enterprise Applications configuration panel for ECIIVT, References
section, click Resource references.

The Resource references dialog shown in Figure 32 allows you to specify the name
of the JNDI (Java Naming Directory Interface) to be used by the application. Click
Browse to display the Available resources dialog shown in Figure 33 on page 206.

Figure 32. ECI IVT resource references

Chapter 10. Scenarios 205

Select ECI-XA-GROUPA resource and click Apply. The admin console returns you
to the Resource references dialog. The Target Resource JNDI Name now has the
value eis/CICSGroupA shown in Figure 34.

You have now configured the ECIIVT application to use the highly available
Gateway group GroupA. Save the changes to the master configuration.

Step 2. Run the IVT

Start the IVT application in WebSphere Application Server and start the gateway
daemons CTGA1 and CTGA2.

Figure 33. Available resources

Figure 34. Configured ECI IVT resource references

206 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Run the ECI IVT several times to send ECI requests to CICS, using different
combinations of available Gateway daemons and CICS servers each time. If at least
one of the CTGA1, CTGA2 Gateway daemons and one of the CICSA1, CICSA2
servers are available, the request will succeed.

For more information about how to run the IVT see
ftp://ftp.software.ibm.com/software/htp/cics/support/supportpacs/
individual/ch91.pdf

If an error occurs

If an error message indicates that the connection to CICS Transaction Gateway
failed, this is usually because a Gateway daemon has been shut down. The
managed connections in the connection factory pool are reused but if a managed
connection was connected to a Gateway daemon that is no longer running, it
attempts to reuse that Gateway daemon, resulting in the error.

The solution is to ensure that the purge policy for the connection factory pool is set
so that the entire connection pool is purged not just the single connection. Reset
the purge policy then run the IVT again. When you have done this, if a managed
connection cannot connect, all managed connections to that Gateway daemon are
deallocated and the IVT should run successfully.

This error is related to the fact that high availability uses TCP/IP port sharing. The
error can occur if you shut down a Gateway daemon, but should not occur if you
shut down a CICS server.

Configuring identity propagation for a remote mode topology (SC04)
In this scenario, CICS Transaction Gateway and CICS Transaction Server are both
on z/OS. User security information (the distributed identity) is held in IBM Tivoli
Directory Server and, when it is passed to CICS Transaction Server, the identity is
mapped to a user ID in RACF.

Chapter 10. Scenarios 207

This scenario uses WebSphere Application Server and the CICS Transaction
Gateway ECI resource adapter on AIX. The CICS Transaction Gateway
configuration file has the default name ctg.ini.

Values used in this scenario

Component Parameter Where set Example value

WebSphere
Application
Server

Application security WebSphere Admin Console Enable application security (check
box)

WebSphere
Application
Server

Authentication method WebSphere Admin Console CTG_idprop (the name of the
identity propagation login module)

CICS TG APPLID PRODUCT section of ctg.ini MYAPPL

CICS TG APPLIDQUALIFIER PRODUCT section of ctg.ini MYQUAL

CICS TG Server name IPICSERVER section of ctg.ini CICSA

CICS TG HOSTNAME IPICSERVER section of ctg.ini cicssrv2.company.com

CICS TG PORT IPICSERVER section of ctg.ini 50889

CICS TS TCPIPService TCPIPService definition IPICSRV (must match the
TCPIPService specified in the
IPCONN definition in CICS)

CICS TS Portnumber TCPIPService definition 50889 (must match the
IPICSERVER PORT specified in the
ctg.ini file)

CICS TS APplid IPCONN definition on the CICS
server

MYAPPL (must match the APPLID
specified in the ctg.ini file)

CICS TS Networkid IPCONN definition on the CICS
server

MYQUAL (must match the
APPLIDQUALIFIER specified in the
ctg.ini file).

CICS TS TCPIPService IPCONN definition on the CICS
server

IPICSRV (must match the name of
the TCPIPService in CICS)

CICS TS Userauth IPCONN definition on the CICS
server

Must be set to Identify

CICS TS IPConn IPCONN definition on the CICS
server

IPICIP

RACF USERID RACF resource access list TESTID

RACF USERDIDFILTER RACF resource access list uid=CTGuser1,ou=TMS,
dc=CTGTest,o=CTG

RACF REGISTRY RACF ctg-test-
registry.company.com:389

Steps in this scenario

Prerequisites
You must ensure that the prerequisites for CICS Transaction Server, CICS
Transaction Gateway, and WebSphere Application Server are satisfied.

Here are the system prerequisites for CICS Transaction Server for z/OS:

Figure 35. Topology used in this identity propagation scenario

208 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

v The CICS server must be CICS Transaction Server for z/OS Version 4.1 or later,
with the APAR fixes described in “Configurations that support identity
propagation” on page 51.

v The z/OS identity propagation function must be that provided by z/OS, Version
1.11 or later.

v TCP/IP services must be active in the CICS server.
– To activate these services, set the TCPIP system initialization parameter to

YES.
– To check the status of these services, issue a CEMT INQ TCPIP command and

check that the status is open.
v The CICS server must have access to a TCP/IP stack running on the same LPAR.
v The TCP/IP network must extend between LPARs if CICS Transaction Gateway

for z/OS and the CICS server exist on different LPARs.
v You must set the SEC system initialization parameter to YES to enable security.
v You must have valid RACF user IDs and passwords.

Here are the system prerequisites for CICS Transaction Gateway:
v CICS Transaction Gateway must be installed on the same sysplex as CICS

Transaction Server. For more information see “Sysplex restrictions” on page 15.
v The CICS Transaction Gateway STDENV file must be correctly configured. For

more information see “STDENV file” on page 98.

Here are the system prerequisites for WebSphere Application Server:
v Administrative security must be enabled in WebSphere Application Server.
v WebSphere Application Server must already be configured to use an LDAP

server and LDAP authentication, and a Distinguished Name (DN) must exist.
v The CICS Transaction Gateway ECI resource adapter must be installed on

WebSphere Application Server. For more information, see “Deploying the ECI
resource adapter on WebSphere Application Server for z/OS” on page 173.

To test that the scenario works successfully you can use either the supplied
samples, or your own applications. If you use the supplied samples, this scenario
requires the following:
v The ECIDateTime sample EJB application supplied with CICS Transaction

Gateway. This sample must be installed onto WebSphere Application Server.
v The sample CICS Transaction Gateway server program EC01 must be compiled,

defined, and installed on CICS.

Configuring identity propagation on CICS TS
You must configure the TCPIPService and the IPCONN on CICS TS.

Configuring the TCPIPService on CICS TS

The TCPIPService is a resource that defines the attributes of the IPIC connection,
including the listening port.
1. Use CEDA to define a TCPIPService; for example, IPICSRV. These values are

important:
v The URM is set to NO to prevent the default IPCONN autoinstall program

from running.
v The port number is set for incoming IPIC requests; for example, 50889.
v The protocol is set to IPIC.

Chapter 10. Scenarios 209

v The transaction is set to CISS.

All other values can be left to default. The security section of the TCPIPService
is not applicable for the IPIC protocol; security is applied in the IPCONN
definition.

2. Install the CEDA definition.

Configuring the IPCONN on CICS TS

You must define the IPCONN for the incoming IPIC connection.

The following parameters are configured in this step:

Parameter Purpose

APplid Set this to match the APPLID specified in
the ctg.ini file.

Networkid Set this to match the APPLIDQUALIFIER
specified in the ctg.ini file.

TCPIPService Set this to match the name of the
TCPIPService in CICS.

Userauth Set this to Identify.

SENdcount Set this value to zero; for more information,
see “Configuring IPIC on CICS Transaction
Server for z/OS” on page 111

1. Use CEDA to define an IPCONN, for example IPICIP, to include the settings
shown in the table. Leave all the other parameters including IDprop with their
default settings. The IDprop parameter is not applicable to CICS Transaction
Gateway to CICS communication; it is used exclusively for CICS to CICS
communication.
The following example shows an IPCONN definition that has been defined
using the CEDA transaction:
CEDA View Ipconn(IPICIP)
Ipconn : IPICIP
Group :
Description :
IPIC CONNECTION IDENTIFIERS
APplid : MYAPPL
Networkid : MYQUAL
Host :
(Lower Case) :
Port : No No | 1-65535
Tcpipservice : IPICSRV
IPIC CONNECTION PROPERTIES
Receivecount : 100 1-999
SENdcount : 000 0-999
Queuelimit : No No | 0-9999
Maxqtime : No No | 0-9999
OPERATIONAL PROPERTIES
AUtoconnect : No No | Yes
Inservice : Yes Yes | No
SECURITY
SSl : No No | Yes
CErtificate : (Mixed Case)
CIphers :
Linkauth : Secuser | Certuser
SECurityname :
Userauth : Identify Local | Identify | Verify | Defaultuser

210 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

IDprop : Optional Not allowed | Optional | Required
RECOVERY
Xlnaction : Keep Keep | Force

2. Install the IPCONN definition and check that the output from the CEMT INQ
IPCONN(IPICIP) command identifies it as “Inservice Released” (Ins Rel Nos)
in the output:
CEMT I IPCONN
STATUS: RESULTS - OVERTYPE TO MODIFY
Ipc(IPICIP) App(MYAPPL) Net(MYQUAL) Ins Rel Nos
Rece(100) Sen(000) Tcp(IPICSRV)

Configuring identity propagation on CICS TG
You must edit the ctg.ini file to set values for the APPLID, APPLIDQUALIFIER,
and IPICSERVER parameters.
1. Identify the Gateway daemon to CICS for the connection over IPIC. Do this by

setting values for the APPLID and APPLIDQUALIFIER parameters. The values
must be in uppercase and are set in the PRODUCT section of the ctg.ini file; for
example:
SECTION PRODUCT

APPLID=MYAPPL
APPLIDQUALIFIER=MYQUAL

ENDSECTION

2. Define an IPICSERVER definition for your CICS server:
a. Set HOSTNAME to the TCP/IP host name or TCP/IP address on which

CICS is listening.
b. Set PORT to the port number that your CICS server uses to listen for

incoming IPIC requests; for example:
SECTION IPICSERVER = CICSA

HOSTNAME=cicssrv2.company.com
PORT=50889

ENDSECTION

3. Save your updated ctg.ini file.
4. Start CICS Transaction Gateway to apply the new definitions.

Configuring identity propagation on WebSphere Application
Server

You must perform the configuration tasks that set up identity propagation on
WebSphere Application Server.
1. Enable application security. Use the administrative console; navigate to Security

> Global security and select Enable application security:

Chapter 10. Scenarios 211

2. Install the identity propagation login module:
a. From the WebSphere administrative console; click Security > Global

security, and expand Java Authentication and Authorization Service. Click
Application logins and select New. Give this login the alias CTG_idprop and
click OK.

212 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

b. From the WebSphere administrative console; click Security > Global
security, and expand Java Authentication and Authorization Service. Click
Application logins, select CTG_idprop and click New.

c. Set the module class name to com.ibm.ctg.security.idprop.LoginModule.
d. Select REQUIRED from the Authentication strategy drop down list.
e. Under Custom properties create an entry with the Name set to

propIdentity and Value set to RunAs.
f. Click OK.

Chapter 10. Scenarios 213

3. Associate the identity propagation login module with the client application:
a. From the administrative console, navigate Applications > Application types

> WebSphere enterprise applications and select the ECIDateTime
application from the list.

b. Select Resource references.
c. Select the ECI resource reference using the checkbox, and then select

Modify resource authentication method.
d. Select Use Custom login configuration and then select the identity

propagation login module CTG_idprop that you installed in the previous
step.

e. Click Apply, to apply the selected identity propagation login module to the
ECI resource reference

f. Click OK

214 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

4. Save the configuration changes that you have made so far.

Checking that the connection is secure
To check that the connection is secure you run the ECIDateTime application.

LDAP names and RACF names have not yet been mapped using RACMAP. As a
result, the application returns various error messages. The appearance of these
messages at this stage is to be expected and is normal. If some messages do not
appear, their nonappearance might indicate a problem such as security setting
SEC=NO, a default user ID that has too much authority, or RACF mapping that
has already been defined.
1. To run the ECIDateTime application, start the launchClient utility from the

command line by issuing the following command:
app_server_root/bin/launchClient filepath/ECIDateTime.ear

Where filepath is the path to the ECIDateTime .ear file.
2. With application security enabled, when you run the ear file from launchClient,

a dialog prompts you to supply the security credentials (username and
password). Because the application is being authenticated against the LDAP
registry, you must supply the “username” (in reality a Distinguished Name)
that has been defined in the LDAP registry

Chapter 10. Scenarios 215

(uid=CTGuser1,ou=TMS,dc=CTGTest,o=COMPANYCTG). The password is also
required. You now see the return code ECI_ERR_SECURITY_ERROR and a Java
stack trace in the console. The exception starts as follows:
javax.resource.spi.SecurityException: CTG9631E Error occurred during
interaction with CICS: ECI_ERR_SECURITY_ERROR, error code: -27

3. Check the CICS user message log and the JES message log for the CICS job. A
message confirms that the error occurred because identity propagation has not
yet been configured. The JES message log for the CICS job contains this
message:
11.36.45 JOB09604 ICH408I USER(TESTID) GROUP(TSOUSER) NAME(TEST)
113 113 DISTRIBUTED IDENTITY IS NOT DEFINED:
113 uid=CTGuser1,ou=TMS,dc=CTGTest,o=COMPANYCTG

ctg-test-registry.ibm.com:389
11.36.45 JOB09604 IRR012I VERIFICATION FAILED. USER PROFILE NOT FOUND

The CICS user message log contains this message:
DFHIS1027 10/26/2009 11:36:45 IY24CTGC Security violation has been detected
using IPCONN IPICIP and transaction id CSMI by userid BADLINK

Note: In this example, BADLINK is the CICS default user ID defined in the
DFLTUSER system initialization parameter, and does not have permission to
run the CSMI transaction.

If these messages appear, this is not an indication of a problem. On the contrary,
the messages are expected because although the connection to CICS was
established, the application failed because the LDAP identity was not propagated
through to CICS. In the next step “Configuring identity propagation on RACF,”
you configure the mapping between LDAP and RACF identities.

Configuring identity propagation on RACF
You must complete the required configuration tasks on RACF.

To map your distributed identity to your RACF user ID issue the following
command:
RACMAP ID(TESTID) MAP
USERDIDFILTER(NAME(’uid=CTGuser1,ou=TMS,dc=CTGTest,o=COMPANYCTG’))
REGISTRY(NAME(’ctg-test-registry.ibm.com:389’))

For more information about the RACMAP command, see thez/OS Security Server
RACF Command Language Reference.

Testing your scenario
If you have configured your identity mapping correctly, you can now run the
ECIDateTime application successfully to test the scenario and verify that the
application is being run with the correctly mapped RACF ID.
1. On CICS, start CEDX debugging on the CSMI mirror transaction on the CICS

server by issuing the following CEDX CSMI command:
CEDX CSMI

This switches on the debug tool.
2. On WebSphere Application Server, run the ECIDateTime application. To do this,

start launchClient from the command line by issuing the following command:
app_server_root/bin/launchClient path/ECIDateTime.ear

Where path is the path to the ECIDateTime.ear file.

216 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

3. On WebSphere Application Server, when prompted for a user name and
password, provide the user name and password defined in the LDAP server:
uid=CTGuser1,ou=TMS,dc=CTGTest,o=COMPANYCTG

On CICS, when the transaction starts, CEDX intercepts the program and
displays the program initiation screen until you press the Enter key. You can
now examine the task ID number before the transaction completes:

4. On CICS, use a second sign-on to log on to the server and run CEMT INQ
TASK on the CSMI task:

Figure 36. Program initiation screen

Chapter 10. Scenarios 217

The Use field contains the RACF ID to which the distinguished name maps.
The RACF ID in this scenario is TESTID and is evidence that the scenario is
operating correctly.

5. On CICS, unlock the CEDX session by pressing the PF3 key. On WebSphere
Application Server, the launchClient returns the date and time:
WSCL0014I: Invoking the Application Client class
com.ibm.ctg.samples.jee.ECIDateTimeClient
CICS Date/Time=27/10/09 15:48:45

Configuring SSL security between a Java Client and the Gateway
daemon (SC05)

This scenario shows you how to configure SSL security on the Gateway daemon,
configure SSL server authentication and (optionally) SSL client authentication, and
send an ECI request to the CICS server to check that the SSL connection works.

In this scenario, when the Java client attempts to connect to the Gateway daemon's
SSL protocol handler, an SSL handshake between the Java client and the Gateway
daemon is performed to authenticate the server and to establish the cryptographic
keys which are used to protect the data to be transmitted. The scenario includes an
optional step where the Gateway daemon requests the Java client to authenticate
itself by providing its public key and digital certificate. This is known as client
authentication.

The following figure shows the topology used in this scenario.

Figure 37. CEMT INQ task screen

218 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Follow the step-by-step instructions in this scenario using the following values:

Component Parameter Where set Example value

CICS TG protocol@ssl.handler SECTION GATEWAY in ctg.ini com.ibm.ctg.server.SslHandler

CICS TG port In the protocol@ssl.parameters
parameters in the SECTION
GATEWAY in ctg.ini

8573

CICS TG clientauth In the protocol@ssl.parameters
parameters in the SECTION
GATEWAY in ctg.ini

on

CICS TG keyring SECTION PRODUCT in ctg.ini CTGKEYRING

CICS TG esmkeyring SECTION PRODUCT in ctg.ini on

RACF user ID RACDCERT command CTGUSER

RACF name (self-signed
certificate)

RACDCERT command CTG CA CERT

RACF name (personal
certificate)

RACDCERT command CTG PERSONAL CERT

RACF name (keyring) SECTION PRODUCT in ctg.ini CTGKEYRING

RACF filename (personal
certificate)

RACDCERT command CTGUSER.PERSONAL.CERT

Java Client filename (personal
certificate)

FTP command client.personal.cert.arm

Java Client keyring filename iKeyman myclientkeyring.jks

Java Client password iKeyman mypassword

Java Client label iKeyman cics tg racf server certificate

Prerequisites for the SSL scenario
The prerequisites for this SSL scenario.

Here are the system requirements for CICS Transaction Server for z/OS:
v TCP/IP services must be active in the CICS server.

– To activate these services, set the TCPIP system initialization parameter to
YES.

– To check the status of these services, issue a CEMT INQ TCPIP command and
check that the status is open.

v The CICS server must have access to a TCP/IP stack running on the same LPAR.

Figure 38. Topology used in this scenario

Chapter 10. Scenarios 219

v The TCP/IP network must extend between LPARs if CICS Transaction Gateway
for z/OS and the CICS server exist on different LPARs.

v You must have valid RACF user IDs and passwords.

Here are the system requirements for CICS Transaction Gateway:
v CICS Transaction Gateway must be installed.
v A working connection from CICS Transaction Gateway to CICS is required. This

can be IPIC or EXCI. This scenario uses an EXCI connection. For more
information see “Configuring EXCI” on page 119.

To test the scenario works successfully you can either use the supplied samples, or
your own applications. If you choose to use the supplied samples, this scenario
requires:
v The sample CICS Transaction Server program EC01 to be compiled, defined, and

installed on CICS.
v The CICS Transaction Gateway supplied Java sample EciB2 be available on the

Java client machine.

Configure SSL server authentication - step 1
This step involves using RACF commands to create a CA certificate, a signed
personal certificate and a keyring on the server.

You perform these tasks on the z/OS platform by issuing RACDCERT (RACF
digital certificate) commands. The RACDCERT commands enable you to create and
maintain digital certificates, and to create the keyrings which act as repositories for
digital certificates.
1. Create a CA certificate that is self signed on the server (in RACF):

RACDCERT CERTAUTH GENCERT SUBJECTSDN(OU(’CTG TEST’) O(’IBM’)
T(’CTG CA CERT’) C(’GB’)) KEYUSAGE(CERTSIGN) WITHLABEL(’CTG CA CERT’)

2. Refresh the RACF class:
SETR RACLIST(DIGTCERT) REFRESH

3. Check that the CA certificate has been created; do this by verifying that it
exists in the output from listing the DIGTCERT class:
a. Open ISPF.
b. From the ISPF main menu select R RACF.
c. From the RACF - SERVICES OPTION MENU screen select 2 GENERAL

RESOURCE PROFILES.
d. From the GENERAL RESOURCE PROFILE SERVICES screen select D or

8 DISPLAY PROFILE CONTENTS.
e. From the DISPLAY GENERAL RESOURCE PROFILE screen do the

following:
Enter the class name DIGTCERT in the CLASS field.
Leave the PROFILE field blank.
Enter YES to select the profile type DISCRETE.
Enter YES to select the ACCESS LIST option.

Press Enter to display a list of the selected classes and confirm that it
contains the DIGTCERT class you have just created.

4. List the certificate:
RACDCERT CERTAUTH LIST(LABEL(’CTG CA CERT’))

220 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

5. Generate a personal certificate on the server and sign it with your CA
certificate:
RACDCERT ID(CTGUSER) GENCERT SUBJECTSDN(OU(’CTG TEST’) O(’IBM’)
T(’CTG PERSONAL CERT’) C(’GB’)) WITHLABEL(’CTG PERSONAL CERT’)
SIGNWITH(CERTAUTH LABEL(’CTG CA CERT’))

Where CTGUSER is a valid RACF user ID.
6. Refresh the RACF class:

SETR RACLIST(DIGTCERT) REFRESH

7. Create a keyring where certificates are stored:
RACDCERT ADDRING(CTGKEYRING) ID(CTGUSER)

8. Add the CA certificate and personal certificate to the keyring:
a. Add the CA certificate to the keyring:

RACDCERT ID(CTGUSER) CONNECT(CERTAUTH LABEL(’CTG CA CERT’)
RING(CTGKEYRING) USAGE(CERTAUTH))

b. Add the personal certificate to the keyring:
RACDCERT ID(CTGUSER) CONNECT(LABEL(’CTG PERSONAL CERT’)
RING(CTGKEYRING)
DEFAULT USAGE(PERSONAL))

9. List the keyring to confirm that it contains the certificates:
RACDCERT LISTRING(CTGKEYRING) ID(CTGUSER)

Here is an example of the output generated by this command:
Ring:

>CTGKEYRING<
Certificate Label Name Cert Owner USAGE DEFAULT
---------------------------------- ----------- ----- -------
CTG CA CERT CERTAUTH CERTAUTH NO
CTG PERSONAL CERT ID(CTGUSER) PERSONAL YES

10. Export the personal certificate to a file on the server:
RACDCERT ID(CTGUSER) EXPORT(LABEL(’CTG PERSONAL CERT’))
DSN(’CTGUSER.PERSONAL.CERT’) FORMAT(CERTB64)

The FORMAT(CERTB64) specifies that the certificate is stored in ASCII format.
Use ISPF 3.4 to view the certificate.

Configure SSL server authentication - step 2
This step involves using FTP to transfer the signed personal certificate from the
server to the client machine, then using ikeyman to create a Java keystore (jks) file
where the certificate is then stored.

ikeyman is provided as part of the Java Runtime Environment.
1. Transfer the personal certificate to your Client machine using either an FTP

client or the command line.
In the previous task, you specified FORMAT(CERTB64) to ensure that the
certificate was stored in ASCII. You must therefore specify ASCII when you
transfer the certificate using FTP, for example:
C:\CICSTG>ftp server
Connected to server.company.com
User (server.company.com:(none)): name
331 Send password please. Password: 230 name is logged on.
Working directory is "/u/directory".
ftp> asc
200 Representation type is Ascii NonPrint
ftp> get ’CTGUSER.PERSONAL.CERT’

Chapter 10. Scenarios 221

200 Port request OK. 125 Sending data set CTGUSER.PERSONAL.CERT 250
Transfer completed successfully.
ftp: 976 bytes received in 0.02Seconds 61.00Kbytes/sec.
ftp> quit
Rename ’CTGUSER.PERSONAL.CERT’ to client.personal.cert.arm

2. Create a Java keystore file on your Client machine using ikeyman. To start
ikeyman, go to the directory containing ikeyman and double-click the ikeyman
exe file for example:
C:\Program Files\IBM\Java60\jre\bin\ikeyman.exe

a. From the ikeyman main menu select Key Database File > New.
b. From the New dialog, click the Key database type list then select file type

JKS.
c. In the File name field enter the name of the Java keystore file that you want

to create (in this scenario the file name is myclientkeyring.jks)
d. Click OK to confirm.
e. Because you are creating a new Java keystore file, the Password prompt

dialog now prompts you to provide a password. Enter a password into the
Password and Confirm password fields (in this scenario the password is
mypassword).

f. Click OK to confirm.
3. Import the personal certificate from the file into the Java keystore file.

a. Click the downward arrow and select Signer certificates from the list.
b. Click Add and specify the filename and location of the file that you

transferred to the client. This imports the server personal certificate from the
file into the Java keystore file.

c. Click OK.
d. Enter a label for the certificate in the Enter a label dialog. The label

provides a way of identifying the certificate but is not used during security
processing. This scenario used “cics tg racf server certificate”.

e. Click OK. This imports the server personal certificate from the file that you
transferred to the client, into the Java keystore file.

Configure SSL client authentication (optional)
SSL client authentication can optionally be configured if you have already
configured SSL server authentication

You perform some of these tasks on the z/OS platform by issuing RACDCERT
(RACF digital certificate) commands. The RACDCERT commands enable you to
create and maintain digital certificates, and to create the keyrings which act as
repositories for digital certificates. You also use ikeyman.

ikeyman is provided as part of the Java Runtime Environment.
1. Create a CA certificate on your Client that is self signed. Start ikeyman and

open the Java keystore (.jks) file.
2. Click Create > New Self-Signed Certificate. In the Create New Self-Signed

Certificate window, complete the following steps:
a. In the Key label field, type cics tg client certificate. This provides a way of

identifying the certificate, and is not used in security processing.
b. On the Version menu, select X509 V3.
c. On the Key size menu, select 1024.

222 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

d. The Common name defaults to the name of the machine you are using, and
the Validity period defaults to 365 days.

e. Click OK.
3. Select the new personal certificate by selecting Personal Certificates on the

dropdown menu that currently displays Signer Certificates and click Extract
Certificate.... Specify the data type “Base64-encoded ASCII data”, the certificate
file name (this scenario used client.personal.cert.arm), and the location (for
example C:\CICSTG).

4. Check to ensure that the file is visible in the folder.
5. Transfer the file to the server, using either FTP or the command line, for

example:
C:\CICSTG>ftp server
Connected to server.company.com
User : ctguser
Password : xxx
CTGUSER is logged on. Working directory is "/u/ctguser".
ftp> asc
Representation type is Ascii NonPrint
ftp> literal site recfm=vb
200 SITE command was accepted
ftp> cd ’CTGUSER’
"CTGUSER." is the working directory name prefix.
ftp> put client.personal.cert.arm
Storing data set CTGUSER.CLIENT.PERSONAL.CERT.ARM
ftp> quit

6. Add to the certificate to RACF:
RACDCERT ID (CTGUSER) ADD(’CTGUSER.CLIENT.PERSONAL.CERT.ARM’) WITHLABEL
(’MY CLIENT CERT’) TRUST

The following message is displayed:
The new profile for DIGTCERT will not be in effect until a SETROPTS
REFRESH has been issued.
Certificate Authority not defined to RACF. Certificate added with
TRUST status.

7. Refresh the RACF repository on the server:
setr raclist(digtcert) refresh

8. Add the client certificate to the keyring:
RACDCERT ID (CTGUSER) CONNECT(LABEL (’MY CLIENT CERT’)
RING(CTGKEYRING) USAGE (CERTAUTH))

9. Check that the server personal certificate has been added to the keyring:
a. Open ISPF.
b. From the ISPF main menu select R RACF.
c. From the RACF - SERVICES OPTION menu select 7 DIGITAL

CERTIFICATES, KEYRINGS, AND TOKENS.
d. From the DIGITAL CERTIFICATES AND RELATED FUNCTIONS menu

select 2 KEYRING FUNCTIONS.
e. From the DIGITAL CERTIFICATE KEYRING SERVICES menu, specify

user CTGUSER and select the option 3 LIST EXISTING KEYRINGS.
f. At the prompt “Enter specific ring names or an asterisk * to list up to 4

rings”, enter an asterisk (*).

ISPF now lists the available certificate label names:
Ring:

>CTGKEYRING<
Certificate Label Name Cert Owner USAGE DEFAULT

Chapter 10. Scenarios 223

---------------------------------- ----------- ----- -------
CTG CA CERT CERTAUTH CERTAUTH NO
CTG PERSONAL CERT ID(CTGUSER) PERSONAL YES
MY CLIENT CERT ID(CTGUSER) CERTAUTH NO

Configuring the Gateway daemon for SSL
Updating the CICS Transaction Gateway configuration file (ctg.ini) for SSL.
1. Edit the ctg.ini file to add the SSL handler definition

protocol@ssl.handler=com.ibm.ctg.server.SslHandler

2. Add the following parameters to the SSL handler parameters definition
protocol@ssl.parameters:

port This parameter identifies the TCP/IP port on which the protocol
handler listens for incoming client requests.

clientauth
This parameter determines whether or not client authentication occurs.
Valid values are on, client authentication is performed, or off, client
authentication is not performed. The default is off.

For example, if you have taken the optional step of configuring the SSL client
authentication:
protocol@ssl.parameters=port=8573;\

clientauth=on;

3. Add the following parameters to the PRODUCT section:

keyring
This parameter specifies the name of the keyring to be used by this
protocol handler. For more information, see “Key ring file” on page 138

esmkeyring
This parameter specifies that the SSL keyring is stored in an external
security manager (ESM). For more information, see “ESM key ring” on
page 139

For example:
SECTION PRODUCT
KEYRING=CTGKEYRING
ESMKEYRING=ON
ENDSECTION

4. Save the changes.

Verifying that SSL is enabled on the connection
Verify that SSL security is enabled on the Java client connection to CICS
Transaction Gateway.

Start CICS Transaction Gateway. If the SSL protocol handler starts successfully
CICS Transaction Gateway generates two messages.

The first message lists the SSL ciphers that have been enabled, for example:
CTG8489I The following cipher suites are provided by JSSE:
TLS_EMPTY_RENEGOTIATION_INFO_SCSV
SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA256
SSL_RSA_WITH_AES_128_CBC_SHA256
SSL_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
SSL_ECDH_RSA_WITH_AES_128_CBC_SHA256
SSL_DHE_RSA_WITH_AES_128_CBC_SHA256
SSL_DHE_DSS_WITH_AES_128_CBC_SHA256
SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

224 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA
SSL_RSA_WITH_AES_128_CBC_SHA
SSL_ECDH_ECDSA_WITH_AES_128_CBC_SHA
SSL_ECDH_RSA_WITH_AES_128_CBC_SHA
SSL_DHE_RSA_WITH_AES_128_CBC_SHA
SSL_DHE_DSS_WITH_AES_128_CBC_SHA
SSL_ECDHE_ECDSA_WITH_RC4_128_SHA
SSL_ECDHE_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_RC4_128_SHA

The second message confirms that the SSL protocol handler started successfully
and identifies the port that is being used. For example:
CTG6524I Successfully started handler for the ssl: protocol on port 8573

If the SSL protocol handler fails to start, CICS Transaction Gateway generates the
following message:
CTG6525E Unable to start handler for the ssl: protocol, port: 8573, because:

The message is followed by a reason, for example invalid port number and a Java
exception. If an exception occurs, rectify the problem and restart CICS Transaction
Gateway.

Testing the SSL scenario
Set the environment variables then test the scenario by starting CICS Transaction
Gateway and sending an ECI request to the CICS server.

Set the environment variables

If you have not already done so, you must set the Java CLASSPATH environment
variable so that the ctgclient.jar and ctgsamples.jar files can be found.

To set the CLASSPATH environment variable:
1. Open a command prompt window and go to the directory where the Java

keystore file is located.
2. Set the Java CLASSPATH environment variable by issuing the set CLASSPATH

command, for example:
set CLASSPATH=<install_path>\classes\ctgclient.jar;<install_path>\classes\

ctgsamples.jar;%CLASSPATH%

Send an ECI request to CICS

When you send an ECI request from the Java client application EciB1 specifying
the ssl:// protocol, an SSL handshake between the Java client and the Gateway
daemon is attempted. When server authentication, and if configured, client
authentication have been successful, the Gateway daemon lists the available CICS
servers to forward the ECI request to. When you have selected your CICS server,
the CICS application EC01 returns the current date and time.

The source for the EciB1 application is located in the samples folder, for example:
<install_path>\samples\java\com\ibm\ctg\samples\eci

To test the scenario:
1. Start CICS Transaction Gateway.
2. Send the ECI request to the CICS server by issuing a Java command that has

the following format:

Chapter 10. Scenarios 225

java com.ibm.ctg.samples.eci.EciB1 ssl://Gateway_URL
Gateway_port_number jks_filename jks_password

For example:
java com.ibm.ctg.samples.eci.EciB1 ssl://server.company.com 8573
myclientkeyring.jks MyPassword

3. The command returns a list of CICS servers, for example:
CICS Servers Defined:

1. CICSA -CICS V4.1 Server

Choose Server to connect to, or q to quit:

4. When prompted, type the number of the CICS server to which you want the
ECI request sent.

The CICS server returns the current date and time, for example:
Program EC01 returned with data:-

Hex: 32382f30312f31302031353a33323a34360
ASCII text: 28/01/10 15:32:46

You have now successfully completed the scenario.

Configuring SSL between CICS TG and CICS (SC07)
This scenario shows you how to configure SSL security on an IPIC connection
between CICS Transaction Gateway running in local mode on WebSphere
Application Server V8.0 and CICS Transaction Server V4.1.

The following figure shows the topology used in this scenario:

Follow the step-by-step instructions in this scenario using these values:

Component Parameter Where set Example value

CICS server user ID CTGUSER

CICS server CA certificate name RACDCERT command CTG CA CERT

CICS server personal certificate
name

RACDCERT command CTG PERSONAL CERT

CICS server keyring name RACDCERT command CICSSERVERKEYRING

226 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Component Parameter Where set Example value

CICS server personal certificate file
name

RACDCERT command CTGUSER.PERSONAL.CERT

CICS server TCPIPService TCPIPService definition SSL51190

CICS server port TCPIPService definition 51190

Java client personal certificate file
name

ikeyman personalcert.arm

Java client keyring file name ikeyman ctgclientkeyring.jks

Java client keyring password ikeyman MyPassword

Java client CTG_APPLID WebSphere Application Server SSLAH

Prerequisites for the SSL scenario
Before you can complete this scenario, you must ensure that the system
requirements for CICS Transaction Server, CICS Transaction Gateway, and
WebSphere Application Server are satisfied.

CICS Transaction Server:
v The CICS server version must be CICS Transaction Server V3.2 or later because

IPIC is not available in earlier releases of CICS.
v TCP/IP services must be active in the CICS server.

– To activate these services, set the TCPIP system initialization parameter to
YES.

– To check the status of these services, issue a CEMT INQ TCPIP command and
check that the status is open.

v The SEC system initialization parameter must be set to YES to enable security.

CICS Transaction Gateway:
v CICS Transaction Gateway must be correctly installed.

WebSphere Application Server:
v WebSphere Application Server must be installed on the same machine as CICS

Transaction Gateway.

To test that the scenario works successfully you can use either the supplied
samples, or your own applications. If you use the supplied samples you must
complete the following tasks:
v Install the sample CICS COBOL programs EC01, EC03 on the CICS server.

For information about the samples see

Configuring SSL server authentication on the CICS server
To complete this task you use RACF commands to create a CA certificate, a signed
personal certificate, and a keyring on the CICS server.

You perform this task by issuing ISPF RACDCERT (RACF digital certificate)
commands. You use RACDCERT commands to create and maintain digital
certificates, and create the keyrings that are the repositories for digital certificates.
1. Create a CA certificate that is self-signed on the server (in RACF):

Chapter 10. Scenarios 227

RACDCERT CERTAUTH GENCERT SUBJECTSDN(OU(’CTG TEST’) O(’IBM’)
T(’CTG CA CERT’) C(’GB’)) KEYUSAGE(CERTSIGN) WITHLABEL(’CTG CA CERT’)

2. Refresh the RACF class:
SETR RACLIST(DIGTCERT) REFRESH

3. Check that the CA certificate has been created by verifying that it exists in the
output from listing the DIGTCERT class:
a. From the ISPF main menu, enter R to display the RACF dialog.
b. Press Enter.
c. From the RACF - SERVICES OPTION MENU panel, enter 2 to display the

RACF - GENERAL RESOURCE PROFILES panel. Press Enter.
d. From the RACF - GENERAL RESOURCE PROFILE SERVICES panel, enter

8 to display the profile contents. Press Enter.
e. From the RACF - GENERAL RESOURCE SERVICES - DISPLAY panel,

type the class name DIGTCERT into the CLASS field, leaving the Profile
field blank. Press Enter.

f. From the next RACF - GENERAL RESOURCE SERVICES - DISPLAY panel,
complete the following steps:
1) Ensure that the CLASS field contains the class name DIGTCERT.
2) Leave the PROFILE field blank.
3) In the DISCRETE field, enter Yes, to select the profile type.
4) In the ACCESS LIST field, enter Yes to select the access list option.
5) Press Enter.

RACF now displays a list of the selected classes; check that the list contains
the DIGTCERT class that you have just created.

4. List the certificate:
RACDCERT CERTAUTH LIST(LABEL(’CTG CA CERT’))

5. Create a personal certificate on the server and sign it with your CA certificate:
RACDCERT ID(CTGUSER) GENCERT SUBJECTSDN(OU(’CTG TEST’) O(’IBM’)
T(’CTG PERSONAL CERT’) C(’GB’)) WITHLABEL(’CTG PERSONAL CERT’)
SIGNWITH(CERTAUTH LABEL(’CTG CA CERT’))

CTGUSER must be a valid RACF user ID.
6. Refresh the RACF class:

SETR RACLIST(DIGTCERT) REFRESH

7. Create a keyring where certificates are stored:
RACDCERT ADDRING(CTGSERVERKEYRING) ID(CTGUSER)

8. Add the CA certificate and personal certificate to the keyring:
a. Add the CA certificate to the keyring:

RACDCERT ID(CTGUSER) CONNECT(CERTAUTH LABEL(’CTG CA CERT’)
RING(CTGSERVERKEYRING) USAGE(CERTAUTH))

b. Add the personal certificate to the keyring:
RACDCERT ID(CTGUSER) CONNECT(LABEL(’CTG PERSONAL CERT’)
RING(CTGSERVERKEYRING)
DEFAULT USAGE(PERSONAL))

9. List the keyring to confirm that it contains the certificates:
RACDCERT LISTRING(CTGSERVERKEYRING) ID(CTGUSER)

Here is an example of the output generated by this command:

228 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Ring:
>CTGSERVERKEYRING<

Certificate Label Name Cert Owner USAGE DEFAULT
---------------------------------- ----------- ----- -------
CTG CA CERT CERTAUTH CERTAUTH NO
CTG PERSONAL CERT ID(CTGUSER) PERSONAL YES

10. Export the personal certificate to a file on the server:
RACDCERT ID(CTGUSER) EXPORT(LABEL(’CTG PERSONAL CERT’))
DSN(’CTGUSER.PERSONAL.CERT’) FORMAT(CERTB64)

FORMAT(CERTB64) specifies that the certificate is stored in ASCII format.
11. Use ISPF 3.4 to view the certificate.

You have now configured SSL server authentication on the CICS server.

Configuring SSL server authentication on the client
To complete this task you use FTP to transfer the signed personal certificate from
the CICS server to the client machine, then iKeyman to create a Java keystore (jks)
file where the certificate is stored.

iKeyman is installed in:
v <install_path>\jvm17\bin on Windows
v <install_path>/jvm17/bin on UNIX and Linux
1. Transfer the personal certificate to your Client machine using an FTP client.

Alternatively you can issue FTP commands on the command line.
In “Configuring SSL server authentication on the CICS server” on page 227,
you specified FORMAT(CERTB64) to ensure that the certificate was stored in
ASCII. You must therefore specify ASCII when you transfer the certificate using
FTP. The following example shows the FTP commands required to transfer the
certificate, and the associated system responses:
C:\ftp server

Connected to server.company.com
User (server.company.com:(none)): name
331 Send password please. Password: xxx name is logged on.
Working directory is "/u/directory".
ftp> asc
Representation type is Ascii NonPrint
ftp> quote site recfm=vb
SITE command was accepted
ftp> get ’CTGUSER.PERSONAL.CERT’
Port request OK. 125 Sending data set CTGUSER.PERSONAL.CERT
Transfer completed successfully.
ftp> quit

You have to specify the site recfm=vb FTP command because the server
certificate is stored in a variable blocked data set.

2. Rename CTGUSER.PERSONAL.CERT to personalcert.arm.
3. Start ikeyman on your Client machine.
4. Create a new Java keystore file:

a. From the iKeyman main menu, select Key Database File > New.
b. From the New dialog, click the Key database type list then select the file

type JKS.
c. In the File name field enter the name of the Java keystore file that you want

to create. In this scenario the file name is ctgclientkeyring.jks.

Chapter 10. Scenarios 229

d. Click OK. Because you are creating a new Java keystore file, the Password
prompt dialog now prompts you to provide a password. Enter a password
into the Password and Confirm password fields. In this scenario the
password is MyPassword.

e. Click OK.
5. Import the personal certificate personalcert.arm from the data set into the Java

keystore file:
a. Click the arrow and select Signer certificates from the list.
b. Click Add and specify the file name and location of the file that you

transferred to the client (in this scenario personalcert.arm).
c. Click OK.
d. In the Enter a label dialog, enter a label for the certificate. The label

identifies the certificate but is not used during security processing. This
scenario uses the label cics tg racf server certificate.

e. Click OK. The server personal certificate is imported from the data set that
you transferred to the client, into the Java keystore file.

You have now configured SSL server authentication on the client.

Configuring SSL client authentication
To complete this task you use iKeyman to create and export the client certificate,
FTP to transfer the certificate file to the server, and a RACDCERT (RACF digital
certificate) command to import the certificate into the RACF keyring.

iKeyman is installed in:
v <install_path>\jvm17\bin on Windows
v <install_path>/jvm17/bin on UNIX and Linux

SSL client authentication provides extra security between the client and the CICS
server. SSL client authentication builds on the security provided by SSL server
authentication. SSL client authentication requires that the client keyring contains a
self-signed certificate that is used to identify the connecting client.
1. Create a client certificate:

a. Start iKeyman and open the key database file (ctgclientkeyring.jks) that you
created when completing the previous task “Configuring SSL server
authentication on the client” on page 229.

b. From the menu, select Personal Certificates.
c. Click New Self-Signed.
d. Complete the following mandatory fields:

Key label
Enter exampleclientcert.

Version
Select X509 V3.

Key size
Select 1024.

Common name
Specify the default value. This is the name of the machine you are
using.

230 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Validity period
Specify the default value 365 days.

e. Click OK.
The iKeyman tool now generates a public/private key pair.
The self-signed client certificate appears in the Personal Certificates window.
The certificate has the name that you entered in the Key label field, in this
example exampleclientcert.

2. Export the client signer certificate:
a. With exampleclientcert highlighted, select Extract Certificate.
b. On the Data type menu, select Base64-encoded ASCII.
c. Enter the name and location of the text file containing your Client

Certificate data. This scenario uses exampleclientcert.arm.
d. Click OK.
The exported certificate is a signer certificate generated from the personal
certificate in the keyring, it does not contain the private key. Import the keyring
into the keyring of all servers that need to communicate with the SSL client.
The server uses the certificate to verify the identity of the client.

3. Import the client signer certificate into your RACF keyring:
a. Transfer the file to the server into an MVS sequential data set using FTP, for

example:
ftp winmvs2g
Connected to server.company.com
User (server.company.com:(none)): name
331 Send password please. Password: xxx name is logged on.
Working directory is "/u/directory".
ftp> asc
Representation type is Ascii NonPrint
ftp> quote site recfm=vb
SITE command was accepted
ftp> put exampleclientcert.arm ’CTGUSER.CLIENT.CERT.ARM’
Port request OK. 125 Sending data set ’CTGUSER.CLIENT.CERT.ARM’
Transfer completed successfully.
ftp> quit

b. Add the client certificate to CLASS(DIGTCERT) using the ISPF RACF
command:
RACDCERT ID(CTGUSER) ADD(’CTGUSER.CLIENT.CERT.ARM’)
WITHLABEL(’CLIENT.CERT’) TRUST

The command returns a message confirming that the certificate has been
added with TRUST status and that the class needs to be refreshed:
Certificate Authority not defined to RACF. Certificate added with
TRUST status

c. Refresh the RACF class:
SETR RACLIST(DIGTCERT) REFRESH

d. Connect the client certificate to your RACF keyring using the ISPF RACF
command:
RACDCERT ID(CTGUSER) CONNECT(LABEL(’CLIENT.CERT’)
RING(CTGSERVERKEYRING) USAGE(CERTAUTH))

The new signer certificate is added to the list in the Signer Certificates view,
and can be used by the server to verify the identity of the client application.

You have now configured SSL client authentication.

Chapter 10. Scenarios 231

Configuring the IPIC connection on CICS
To complete this task you use an editor to add a parameter to the startup JCL, you
then edit the IPCONN autoinstall user program DFHISCIP, you then use a CEDA
command to configure the TCPIPService definition and the IPCONN template
definition.
1. Define the system initialization parameter for the key ring by adding the

following system initialization parameter to the startup JCL:
KEYRING=CTGSERVERKEYRING

2. Configure an IPCONN autoinstall user program DFHISCIP:
a. Modify the sample IPCONN autoinstall program to enable the autoinstall of

multiple secure IPCONNs.
CICS provides the IPCONN autoinstall sample program DFHISxIP in
Assembler, C, COBOL, and PL/I , where x is the program language (A, D,
C or P). The sample program does not use a template by default, so if you
want autoinstall requests to use a template you must update the program.
In this example, the COBOL user program DFHISCIP is updated.

b. Add the following lines to DFHISCIP to ensure that, when a request arrives
from a Java Client with an APPLID beginning with SSL, the correct
IPCONN template is used to install an IPCONN with the required SSL
settings. If the APPLID starts SSLxxxxx use the SSLIDP template.
IF ISAIC-APPLID(1:3) = ’SSL’

MOVE ’SSLIDP ’ TO ISAIC-TEMPLATE
MOVE ISAIC-APPLID TO ISAIC-IPCONN
PERFORM X000-FINIS.

c. Compile and link-edit your program into a data set that can be picked up
by your CICS server.

3. Configure a TCP/IP service:
a. Create the following TCPIPService definition:

CEDA View TCpipservice(SSL51190)
TCpipservice : SSL51190
GROup : SSLGROUP
DEScription : IPIC LISTENER
Urm : DFHISCIP
POrtnumber : 51190 1-65535
STatus : Open Open | Closed
PROtocol : IPic IIop | Http | Eci | User | IPic
TRansaction : CISS
Backlog : 00001 0-32767
TSqprefix :
Host : ANY
(Mixed Case) :
Ipaddress : ANY
SOcketclose : No No | 0-240000 (HHMMSS)
Maxdatalen : 3-524288
SECURITY
SSl : Clientauth Yes | No | Clientauth
CErtificate :
(Mixed Case)
PRIvacy : Supported |Notsupported | Required | Supported
CIphers : 050435363738392F303132330A1613100D0915120F0C03060201
AUthenticate : | No | Basic | Certificate | AUTORegister

| AUTOMatic | ASserted
Realm :
(Mixed Case)
ATtachsec : Local | Verify

b. Ensure that the SSl parameter is set to Clientauth so that client
authentication is performed on the connection.

232 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

4. Configure an IPCONN template:
a. Create the following IPCONN definition:

CEDA View Ipconn(SSLIDP)
Ipconn : SSLIDP
Group : SSLGROUP
DEScription :
IPIC CONNECTION IDENTIFIERS
APplid : SSLIDP
Networkid :
Host :
(Mixed Case) :
Port : No No | 1-65535
Tcpipservice : SSL51190
IPIC CONNECTION PROPERTIES
Receivecount : 100 1-999
SENdcount : 000 0-999
Queuelimit : No No | 0-9999
Maxqtime : No No | 0-9999
OPERATIONAL PROPERTIES
AUtoconnect : No No | Yes
INservice : Yes Yes | No
SECURITY
SSl : Yes No | Yes
CErtificate : CTG PERSONAL CERT (Mixed Case)
CIphers : 050435363738392F303132330A1613100D0915120F0C03060201
Linkauth : Certuser Secuser | Certuser
SECurityname :
Userauth : Identify Local | Identify | Verify | Defaultuser
IDprop : Notallowed Notallowed | Optional | Required
RECOVERY
Xlnaction : Keep Keep | Force

b. Use CEDA to install the TCPIPService and the IPConn definitions.

You have now configured the IPIC connection on CICS.

Verifying the connection
To complete this task you issue a Java command then follow a series of on screen
prompts.

The Java sample program EciB3 enables you to verify that the SSL connection
between CICS Transaction Gateway and CICS has been correctly configured. You
can optionally complete this task before completing the next task “Configuring
WebSphere Application Server” on page 234.

To verify the connection:
1. Enter the following command to run the sample program EciB3. Qualify the

location of the SSL key ring, for example ctgclientkeyring.jks, if required:
java -DCTG_APPLID=SSLAH com.ibm.ctg.samples.eci.EciB3 local:
2006 ctgclientkeyring.jks MyPassword

The following information is displayed on the screen:
CICS Transaction Gateway Basic ECI Sample 3

Usage: java com.ibm.ctg.samples.eci.EciB3 [Gateway URL]
[Gateway Port Number]
[SSL Keyring
SSL Password]

To enable client tracing, run the sample with the following Java option:
-Dgateway.T.trace=on

The address of the Gateway daemon has been set to local: port 2006

Chapter 10. Scenarios 233

IPIC servers are not listed when running in local mode.
Enter URL of a CICS server, or Q to quit:

2. At the prompt, type the following URL: ssl://lpar:51190. Where lpar is the
z/OS LPAR where CICS is running.

3. At the prompt, type a text string to send to the CICS program, for example my
test data.

4. Type your CICS user ID: CTGUSER
5. Type your CICS password.

The sample program returns verification information, for example:
Program EC03 returned 5 containers in channel "SAMPLECHANNEL":

[CHAR] CICSDATETIME = 19/05/2010 16:29:31
[BIT] INPUTDATALENGTH = 0000000c
[CHAR] OUTPUTMESSAGE = Input data was: my test data
[CHAR] INPUTDATACCSID = 5348
[CHAR] INPUTDATA = my test data

If the sample program returns CICS server not found, this indicates that the SSL
connection has not been established. Check the CICS Transaction Server system log
for more information, and ensure that the JKS keyring file name and password are
correct (the CICS password you entered is not checked because the IPIC connection
is configured with Userauth=Identify).

You have now verified the connection.

Configuring WebSphere Application Server
To complete this task you use the WebSphere Application Server Integrated
Solutions Console to install the ECI resource adapter, create a connection factory,
specify the connection factory properties, and deploy the ECIIVT installation
verification test .ear file.
1. Install the CICS Transaction Gateway ECI resource adapter archive (RAR):

a. In the WebSphere Administrative Console, click Resources > Resource
Adapters, click Install RAR .

b. Click Browse for the Local file system. Select the CICS ECI resource adapter
cicseci.rar. Take note of the scope; this choice limits the scope of later
connection factory definitions. In this scenario, the scope is Node.

c. Click Next. The resource adapter General Properties dialog contains a
predefined name and description for the CICS ECI resource adapter. Leave
the class path as it is currently set, and leave the native library path blank.

d. Click OK.
e. Save the changes to the master configuration.

2. Create and configure a J2C connection factory:
a. In the WebSphere Administrative Console, click Resources > Resource

Adapters. Click on the ECIResourceAdapter.
b. Under Additional Properties click on J2C connection factories.
c. Click New.
d. Specify a name for the new J2C connection factory, for example CF-20 and

specify the JNDI lookup name eis/CF-20. Leave everything else with the
default settings.

e. Click OK.
f. Click the new J2C connection factory CF-20.
g. Click Additional Properties >Custom Properties.

234 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

h. In the Value column of the Custom properties table, enter the values shown
in the following screen:

You do not have to supply a CICS password in the password field because
the IPIC connection is qualified with AttachSec=Identify.

i. Save your configuration.
3. Deploy the ECIIVT ECI resource adapter installation verification test program:

Chapter 10. Scenarios 235

a. Install the application ECIIVT.ear with a target resource JNDI name of
ECIIVTBean1. The ECIIVT.ear is located within the <install_path>/
deployable directory.

b. Map the resource reference to your connection factory JNDI name
eis/CF-20:

c. Save your configuration.
d. Restart WebSphere Application Server if necessary (this depends on the

version of WebSphere Application Server you are using).

You have now configured WebSphere Application Server.

Testing the SSL scenario
To complete this task you use a browser to go to the ECIIVT web page where you
start the ECI resource adapter installation verification test.
1. Open a web browser and enter the following URL:

http://localhost:9080/ECIIVTWeb/index.jsp

2. Click Run IVT.
The JEE Connector Architecture IVT Successful web page is displayed:

236 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

If errors have occurred, run a stack trace by clicking Stack trace on the IVT
web page. You can also activate CICS Transaction Gateway trace in WebSphere
Application Server:
a. From the WebSphere Administrative Console click Servers > Application

servers.
b. Click server1.
c. Click Java and Process Management > Process Definition > Java Virtual

Machine.
d. In the Generic JVM arguments pane add the following entry:

-Dgateway.T=on

e. Restart WebSphere Application Server if necessary.
f. Look for the CICS Transaction Gateway trace in the systemerr.log file.

You have now completed the scenario.

Configuring an autoinstalled IPIC connection (SC08)
You can configure autoinstalled IPIC connections by using the default connection
settings for IPIC autoinstalled connections. To implement IPIC connections that are
autoinstalled without security, follow the step-by-step instructions in this scenario.

This scenario uses CICS TG connecting to CICS TS V3.2 over IPIC in remote mode.
It uses the default name ctg.ini for the configuration file.

Chapter 10. Scenarios 237

Table 20. Values used in this scenario

Component Parameter Where set Example value
Matching
values

CICS TG Server name IPICSERVER section
of ctg.ini

CICSA

CICS TG Hostname IPICSERVER section
of ctg.ini

cicssrv2.company.com

CICS TG Port �1� IPICSERVER section
of ctg.ini

50889 This value
must be
the same
as �3�

CICS TS TCPIPService
�2�

TCPIPService
definition

SRV50889 This value
must be
the same
as �4�

CICS TS Portnumber �3� TCPIPService
definition

50889 This value
must be
the same
as�1�

CICS TS TCPIPService
�4�

IPCONN definition SRV50889 This value
must be
the same
as �2�

Prerequisites
You must satisfy these system requirements.

Here are the system requirements for CICS TS for z/OS:
v The server must be CICS V3.2 or later because IPIC is not available in earlier

releases of CICS.
v TCP/IP services must be active in the CICS server.

– To activate these services, set the TCPIP system initialization parameter to
YES.

– To check the status of these services, issue a CEMT INQ TCPIP command and
check that the status is open.

v The CICS server must have access to a TCP/IP stack running on the same LPAR.
v The TCP/IP network must extend between LPARs if CICS TG for z/OS and the

CICS server exist on different LPARs.
v You must set the SEC system initialization parameter to YES to enable security.
v You must have valid RACF user IDs and passwords.

Here are the system requirements for CICS TG:
v CICS TG must be installed.

To test that the scenario works successfully you can use either the supplied
samples, or your own applications. If you use the supplied samples, this scenario
requires:
v The sample CICS TG server program EC01 must be compiled, defined, and

installed on CICS.
v The CICS TG supplied Java sample EciB2 available on the client machine.

238 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Testing your TCP/IP network

At the transport layer, issue ping requests between the operating system that is
hosting your CICS TG and the LPAR where your CICS server resides. The ping
request response, as shown in the example below, confirms that the TCP/IP
communications are working. The ping request also works if CICS TG and the
CICS server are not in the same LPAR or if you are using multiple IP stacks on the
same LPAR.
ping cicssrv2.company.com

Pinging cicssrv2.company.com [1.23.456.789] with 32 bytes of data:

Reply from 1.23.456.789: bytes=32 time<1ms TTL=61
Reply from 1.23.456.789: bytes=32 time<1ms TTL=61
Reply from 1.23.456.789: bytes=32 time<1ms TTL=61
Reply from 1.23.456.789: bytes=32 time<1ms TTL=61

Ping statistics for 1.23.456.789:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms

Configuring the IPIC server on CICS TG
You must define a server definition for the Gateway daemon to communicate to
CICS over IPIC in remote mode.

To define a server definition for the Gateway daemon:
1. Edit the ctg.ini file and define an IPICSERVER definition for your CICS server:

a. Set HOSTNAME to the name of the z/OS machine that hosts your CICS
server.

b. Set PORT to the port number that your CICS server uses to listen for
incoming IPIC requests.

For example:
SECTION IPICSERVER = CICSA

HOSTNAME=cicssrv2.company.com
PORT=50889

ENDSECTION

2. Save your updated ctg.ini file.
3. Start CICS TG to apply the new IPICSERVER definition.

Configuring the TCPIPSERVICE on CICS TS
The TCPIPSERVICE is a resource that defines the attributes of the IPIC connection,
including the listening port and the IPCONN autoinstall user program, referred to
as a user replaceable module (URM).
1. Use CEDA to define a TCPIPSERVICE; for example, SRV50889. These values

are important:
v The Group is set to the name of your CICS group
v The URM is set to point to the default IPIC autoinstall user program,

DFHISAIP.
v The port number is set for incoming IPIC requests.
v The protocol is set to IPIC.
v The transaction is set to CISS.

All other values can be left to default.

Chapter 10. Scenarios 239

CEDA DEFine TCpipservice(SRV50889)
TCpipservice : SRV50889
GROup : HOLLTCPA
DEscription ==> IPIC AUTOINSTALL
Urm ==> DFHISAIP
POrtnumber ==> 50889 1-65535
STatus ==> Open Open | Closed
PROtocol ==> IPIC IIop | Http | Eci | User | IPic
TRansaction ==> CISS
Backlog ==> 00001 0-32767
TSqprefix ==>
Ipaddress ==>
SOcketclose ==> No No | 0-240000 (HHMMSS)
Maxdatalen ==> 3-524288

2. Install the CEDA definition.
3. Check that the TCPIPSERVICE is active. On CICS TS, issue the command:

CEMT INQ TCPIPSERVICE

Check these values:
v The port number shown is correct.
v The status shows "Ope" for open.
v The protocol shown is Ipic.
v The URM shows the IPCONN autoinstall program, DFHISAIP.

For example:
CEMT INQ TCPIPSERVICE
STATUS: RESULTS - OVERTYPE TO MODIFY
Tcpips(SRV50889) Ope Por(50889) Ipic Nos Tra(CISS)
Con(00000) Bac(00001) Max(000000) Urm(DFHISAIP)

Note: You can configure CICS resources using the CICS Explorer , see the CICS
Explorer information in the CICS TS Information Center for more information.

Testing your scenario
To test that your scenario is configured correctly, start the CICS Transaction
Gateway and use the CICS TG Java sample EciB2 to call CICS server program
EC01.
1. To test your scenario, issue the following command from a command prompt

on the machine on which CICS TG is running. In this example command, the
Gateway daemon TCP handler is listening on the default port.
java com.ibm.ctg.samples.eci.EciB2

jgate=localhost server=CICSA prog0=EC01 commarealength=18 ebcdic

The ebcdic option is not required if you have set up a definition for EC01 in
the DFHCNV data conversion macro on CICS.
The output from the command is as follows:
CICS Transaction Gateway Basic ECI Sample 2

Test Parameters
CICS TG address : localhost:2006
Client security : null
Server security : null
CICS Server : CICSA
UserId : null
Password : null
Data Conversion : ASCII
Commarea : null
Commarea length : 18

240 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.explorer.doc/topics/explorer_overview.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.explorer.doc/topics/explorer_overview.html

Number of programs given : 1
[0] : EC01

Connect to Gateway

Successfully created JavaGateway

Call Programs

About to call : EC01
Commarea :
Extend_Mode : 0
Luw_Token : 0
Commarea : 22/05/09 10:05:18

Return code : ECI_NO_ERROR(0)
Abend code : null
Successfully closed JavaGateway

In the CICS job log you will see this message:
DFHIS3000 ... IPCONN 00000006 with applid .00000006 autoinstalled
successfully using autoinstall user program DFHISAIP and template
(NONE) after a connection request was received on tcpipservice SRV50889
from host 1.23.456.789

where 00000006 is the name of the IPCONN automatically generated by the
autoinstall template, DFHISAIP.
If you issue the command CEMT INQ IPCONN, the output is as follows:
CEMT INQ IPCONN

STATUS: RESULTS - OVERTYPE TO MODIFY
Ipc(00000006) App(00000006) Net(GBIBMIYA) Ins Acq Nos

Rece(100) Sen(000) Tcp(SRV50889)

Optional: using the APPLID to identify your CICS TG
To identify your CICS TG to CICS when connecting over IPIC, you can provide
your APPLID in the ctg.ini file or specify an APPLIDQUALIFIER and the APPLID.

To provide your APPLID and APPLIDQUALIFIER in the ctg.ini file, specify:
SECTION PRODUCT

APPLID=MYAPPL
APPLIDQUALIFIER=MYQUAL

ENDSECTION

If you use an APPLID of MYAPPL and an APPLIDQUALIFIER of MYQUAL, the
CICS system log shows the following messages when an IPCONN is installed:
DFHIS3000 IPCONN APPL with applid MYQUAL.MYAPPL
autoinstalled successfully using autoinstall user program DFHISAIP
and template NONE after a connection request was received on
tcpipservice SRV50889 from host 1.23.456.789

DFHIS2001 Client session from applid MYAPPL accepted for IPCONN
APPL.

By default, the user replaceable module DFHISAIP uses the last four characters of
the incoming CICS TG APPLID as the name of the IPCONN. In this example, the
last four characters of MYAPPL are APPL because padded spaces are ignored.

To view the installed IPCONN (APPL), issue the CEMT INQ IPCONN command:
CEMT INQ IPCONN
STATUS: RESULTS - OVERTYPE TO MODIFY
Ipc(APPL) App(MYAPPL) Net(MYQUAL) Ins Acq Nos

Rece(100) Sen(000) Tcp(SRV50889)

Chapter 10. Scenarios 241

242 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Chapter 11. Operating

When operating CICS Transaction Gateway, it is important to start the product,
and the services it uses, in the correct sequence. It is also important to shut down
everything in the correct sequence, so that inflight transactions can complete.

Startup and shutdown
The preferred order in which to start CICS, CICS Transaction Gateway and certain
services, and optional considerations such as Resource Recovery Services (RRS).

Ways of starting CICS Transaction Gateway

You can start the Gateway daemon in either of the following ways:
v In batch mode using CTGBATCH. For more information about CTGBATCH see

“Starting in batch mode” on page 249.
v Using the USS command line interface; see “Starting from a command line” on

page 254.

Using CTGBATCH

If you are running in batch mode using CTGBATCH, you create these files:
v ctg.ini (text file)
v ctg.env (STDENV file)

Using the USS command line

If you are using the USS command line method, for example in a test
environment, you create these files:
v ctg.ini (text file)
v ctgenvvar (text file)

You can create the files by editing copies of the sample configuration files.

Start command options are available to override some ctg.ini configuration file
parameters. See “Options on the ctgstart command” on page 254 for further
details.

Startup sequence

Start items in the following order:
1. RRS

If transactional support is required, RRS must be running on the same z/OS
image as the one that CICS Transaction Gateway will use. CICS Transaction
Gateway does not support a restart of RRS.

2. TCP/IP
TCP/IP needs to be running before CICS Transaction Gateway is started. CICS
Transaction Gateway supports a restart of TCP/IP, although no requests can be
serviced until the stack is restarted.

3. CICS

© Copyright IBM Corp. 2000, 2013 243

Consider running CICS and CICS Transaction Gateway in the same z/OS
image, to avoid EXCI pipes using slots in the XCF (cross-system coupling
facility) group in the sysplex couple data set.
If transactional support is required, and the EXCI protocol is used to
communicate with CICS, CICS and CICS Transaction Gateway must be in the
same z/OS image.
CICS Transaction Gateway supports a restart of CICS, but requests fail with an
ECI_ERR_NO_CICS error until CICS is available again.

4. Gateway daemon
If an automation tool requires the console to listen and write from the same
address space as the invoking executable, set environment variable
_BPX_SHAREAS to YES. This causes the Gateway daemon to run in the same
address space as CTGBATCH.

Shutdown sequence

The system and its components must be shut down in this order:
1. Shut down the Gateway daemon normally, allowing all transactions that are

in-flight to complete.
2. Shut down TCP/IP normally.
3. Shut down CICS normally.
4. Terminate CTGRRMS.
5. Shut down CTGRRM normally.

Starting CICS Transaction Gateway
CICS Transaction Gateway can be started either as a batch job (the recommended
option) or from the command line.
v Submit JCL to start CICS Transaction Gateway as a batch job if you want to

register with the ARM (Automatic Restart Manager) component of MVS. For
more information see “Automatic restart management” on page 246. ARM is the
recommended option.

v Alternatively you can start CICS Transaction Gateway from the z/OS UNIX
System Services command line.

When you start the CICS Transaction Gateway, it reads configuration information
from ctg.ini, ctgenvvar, and stdenv. When you issue the ctgstart command, you can
specify startup options to override this configuration information. These options
and their values are described in “Options on the ctgstart command” on page 254.

If XA support is enabled, the recoverable resource management services (RRMS) of
the z/OS sync point manager are required.CICS Transaction Gateway accesses
RRMS through CTGRRMS services which run in a separate address space. This
address space is started in these circumstances:
v The first time you start the Gateway daemon.
v When you run the ctgasi command; see “Starting, stopping or refreshing the

CTGRRMS services” on page 128.

The CTGRRMS address space remains for the life of the z/OS image. See
“Enabling CTGRRMS services” on page 127 for information about CTGRRMS
services. See “Starting, stopping or refreshing the CTGRRMS services” on page 128
for information about how to start, stop and restart CTGRRMS services.

244 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

A Gateway daemon cold start option startup is provided. Cold start is for use with
XA transactions and ensures residual records in RRS are cleaned up after failure of
a transactional component, or by manual intervention by an operator through the
RRS panels. For more information see “Cold start.”

Cold start
A Gateway daemon cold start option is provided to resolve heuristically-completed
transactions. A heuristic error might occur after the failure of a transactional
component, or manual intervention by an operator through the RRS panels.

In normal operation, the XA transaction manager component is responsible for
issuing requests to “forget” transaction branches that have been heuristically
resolved. If there is a heuristic error and the transaction manager is still running, it
issues a “forget” call directly. However, if there is a heuristic error and the
transaction manager is restarted before it has time to issue a “forget” call, the
following happens:
v The transaction manager issues a “recover” call on startup.
v The recover returns a list of prepared and heuristically-completed transactions.
v The transaction manager issues “forget” calls as appropriate.

In exceptional cases, the XA transaction manager might not have a record of a
transaction branch being in “InForget” state, whereas RRS still has a record of the
transaction branch being “InForget”, “InCommit” or “InBackout” state. In this
situation, the XA transaction manager does not issue an XA “forget” call, even if
the Unit of Recovery (UR) is returned in response to an XA recover flow. This can
happen:
v If the XA transaction manager is unable to issue the XA “forget” call and is

timed out after multiple attempts (if the transaction manager issues a “forget”
call to the Gateway, the “forget” call fails, the transaction manager repeats this
and eventually times out issuing the “forget” call).

v If RRS recreates committed or backed out units of recovery (UR) during CICS
Transaction Gateway restart processing (when RRS is restarted, or if a UR has
been completed by a different Gateway daemon with the HA group).

The Gateway daemon indicates the number of recovered URs during initialization
by issuing message CTG8628I. If this number is greater than zero, review the
outstanding URs through RRS and consider restarting the Gateway daemon using
the cold start option to remove those URs in “InForget” state. If a cold start is not
specified (normal start), CICS Transaction Gateway does not issue any forget calls
and the URs remain visible in RRS.

URs in “InCommit” or in “InBackout” state have been resolved by a Gateway
daemon in the HA group on behalf of another Gateway daemon, following a
failure during two-phase commit processing. Such URs progress to “InForget”
state, when the resolving Gateway daemon is shut down. These URs are cleared
when the originating Gateway daemon performs a cold start. The statistic
GD_LXACOMP indicates when a Gateway daemon has resolved XA transactions
on behalf of another Gateway daemon in the HA group.

Multiple address spaces
When running the CICS Transaction Gateway, multiple address spaces can be used
for running the individual processes involved in starting the Gateway daemon. If
you want these processes to run in a single address space, take the following
actions:

Chapter 11. Operating 245

v Set the _BPX_SHAREAS environment variable in STDENV to either YES or
MUST.

v Also ensure that the extended attribute for the shared address space on the
ctgstart script has not been unset.
1. To display the extended attributes for files, use USS command ls -E

2. To set the shared address space attribute on files use USS command extattr +s

The following table shows the results of different combinations:

extattr setting _BPX_SHAREAS
setting

Result

+s YES Same address space

+s MUST Same address space

+s NO Separate address space

-s YES Separate address spaces

-s MUST CTGBATCH fails to start the Gateway daemon

-s NO Separate address spaces

(any) Not set Warning, separate address space

If you use CTGBATCH to run the Gateway daemon, and you have defined the
environment variable AUTH_USERID_PASSWORD=YES to enforce user ID and
password authentication, set environment variable _BPX_SHAREAS to YES and
ensure that the SCTGLOAD library, and all other libraries in the STEPLIB have
been defined as program controlled. For more details see “Configuring for client
certificate mapping” on page 143.

If you run the Gateway daemon from USS, and you have defined the environment
variable AUTH_USERID_PASSWORD=YES, ensure that environment variable
_BPX_SHAREAS is set to NO. This forces the Gateway daemon to run in a new
program controlled address space.
Related information:
“Environment variables: local and remote mode” on page 100
Environment variables available for use with local mode and remote mode
topologies.

Automatic restart management
Use the Automatic Restart Manager (ARM) to restart the Gateway daemon if a
failure occurs.

If you start the CICS Transaction Gateway with JCL (see “Starting in batch mode”
on page 249), you can register the job with z/OS ARM. This allows z/OS to restart
the Gateway automatically if it fails, or if the system on which it was running fails.

Automatic restart management is a sysplex-wide integrated automatic restart
mechanism that:
v restarts a subsystem in place if an abend occurs (or if a monitor program notifies

ARM of a stall condition)
v restarts CICS data sharing servers in the event of a server failure
v restarts a failed z/OS image

246 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

The main benefits of ARM are that it:
v Eliminates the need for operator-initiated restarts, or restarts by other automatic

packages, thereby:
– Improving emergency restart times
– Reducing errors
– Reducing complexity

v Provides cross-system restart capability. It ensures that the workload is restarted
on z/OS images with spare capacity, by working with the z/OS workload
manager.

v Allows all elements within a restart group to be restarted in parallel. Restart
levels (using the ARM WAITPRED protocol) ensure the correct starting sequence
of dependent or related subsystems.

For more information about Automatic Restart Management, see the relevant
version of the publication z/OS MVS Setting up a Sysplex, SA22–7625.

See the SCTGSAMP PDS library for sample JCL. The job steps relating to
CTGARM are commented-out, so that users who do not use ARM can run the
samples.

Prerequisites:

Use the CTGARM utility to register the CICS Transaction Gateway. This utility is
supplied in the load library SCTGAUTH. It is used to register and deregister with
ARM, around the Gateway daemon JCL step, which invokes the ctgstart script
through CTGBATCH.

To use ARM you need ARM and a Sysplex controller. You need to define policies
for automatic restart management; see z/OS MVS Programming: Sysplex Services
Guide, SA22-7617. If XA support is enabled, create a policy that restarts the CICS
Transaction Gateway in the same z/OS image as the CICS server.

The SCTGAUTH load library must be defined as APF-authorized. To do this
dynamically, use a command like the following:
SETPROG APF,ADD,dsname=xxxxxxx,volume(xxxxxx)

To register the library permanently, include an entry in the appropriate
SYS1.PARMLIB member 'PROGxx'.

The CTGARM utility takes one of the following parameters:
v ’R[egister] ARM_ID [ARM_TYPE]’

v ’D[eregister]’

CTGARM messages are written to the SYSPRINT DD destination, which must be
defined in the calling JCL step. If SYSPRINT is not defined, the step will fail.

ARM_ID is a unique 16–character ID. ARM_TYPE is an 8–character restart level;
the default is SYSLVL2. Valid characters for both ARM_ID and ARM_TYPE are:
v Uppercase alphabetic characters
v The numbers 0 through 9
v $, #, @, and underscore (_).

The first character might not be a number.

Chapter 11. Operating 247

CTGARM returns the following codes:

0 No errors.

4 Restarting.

8 Miscellaneous error, including already registered or not unique ID.

12 Severe error, for example ARM is not installed.

For ARM error codes see z/OS MVS Programming: Sysplex Services Reference,
SA22-7618.

System automation messages:

Startup and shutdown messages, which could be used with a systems management
program such as IBM Tivoli System Automation, are logged to the z/OS console.
Consult the documentation supplied with your systems management program for
details of how to use these messages in its configuration.

Messages

Table 21. Messages logged to the z/OS console on CICS Transaction Gateway startup and
shutdown

Messages Event

CTG6400I CICS Transaction Gateway is starting The CICS TG is initializing,
following a startup request.

CTG6405E The Gateway daemon has terminated
abnormally

The CICS TG has terminated
abnormally.

CTG6420I Health value has been reset to 100 Health value has been reset to 100.

CTG6421W Health value has been set to 0 Health value has been set to 0.

CTG6490I Normal shutdown of Gateway daemon
started by user or systems management program

The CICS TG is initializing a
shutdown.

CTG6509I Immediate shutdown of Gateway daemon
started by user or systems management program

The CICS TG is initializing a
shutdown.

CTG6511I Gateway daemon has shut down The CICS TG has shut down.

CTG6512I CICS Transaction Gateway initialization
complete

The CICS TG startup is complete;
ready for work.

CTG6513E CICS Transaction Gateway failed to
initialize

The CICS TG initialization process
started, but could not be completed.
Operator intervention is required.

S806 abend EXCI load library incorrect. Unable
to initialize JNI.

When the messages in this table are output to the z/OS console, the jobname of
the Gateway daemon is also shown, after the message identifier:
<CTGnnnnI> <JOBNAME> <TEXT>

ATR229D CANCEL DELAYED

The following WTOR is written to the system log when XA support is enabled and
a network connection is broken when a transaction is in doubt:
0000 *<NN> ATR229D CANCEL DELAYED. REPLY WAIT, BACKOUT, OR COMMIT TO
RESOLVE

INDOUBT UR. URID = <UR identifier>

248 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

If a network connection is broken between the application server, that is
WebSphere, and the Gateway daemon when a unit of recovery is in doubt the
message above is written to the system log. When WebSphere reconnects to the
Gateway daemon, or any Gateway daemon in the group, and issues a commit or
backout request the transaction is resolved, the WTOR is cancelled and the
following message is written to the log:
10:45:09.23 00000010 IEE400I THESE MESSAGES CANCELLED - <NN>

The connection manager thread which was dealing with the network connection
that failed stays blocked until the unit of recovery is resolved.

It is recommended that you do not reply to this message and that you allow
WebSphere to reconnect to a Gateway daemon in the group and resolve the
transaction. When the transaction is resolved the WTOR is cancelled and does not
need a response. Do not use an automated systems management system to
respond to the ATR229D.
Related information:
“Multiple address spaces” on page 245
When running the CICS Transaction Gateway, multiple address spaces can be used
for running the individual processes involved in starting the Gateway daemon. If
you want these processes to run in a single address space, take the following
actions:
“Automatic restart management” on page 246
Use the Automatic Restart Manager (ARM) to restart the Gateway daemon if a
failure occurs.
“Startup and shutdown” on page 243
The preferred order in which to start CICS, CICS Transaction Gateway and certain
services, and optional considerations such as Resource Recovery Services (RRS).

Starting in batch mode
The recommended way of running the CICS Transaction Gateway for z/OS
Gateway daemon as a production system is in batch mode. CTGBATCH is a utility,
used to launch USS programs through the MVS batch environment and route
stdout and stderr I/O to MVS destinations.

The CTGBATCH batch mode program provides the ability to write log messages to
the following destinations from the CICS Transaction Gateway for the Gateway
daemon:
v The JES log
v An HFS file

Define the log message destinations by including STOUT and STDERR DD
statements in the CTGBATCH job step. Do not use an MVS sequential data set for
log messages.

CTGBATCH is used primarily to start the Gateway daemon by invoking the USS
script ctgstart. To successfully run the ctgstart script some configuration
environment variables need to be in place. CTGBATCH parses a STDENV file to
set environment variables used by the Gateway daemon. The STDENV file is
defined by DD statement STDENV on the CTGBATCH job step.

If you are an existing user, use the conversion tool ctgconvenv to convert the
ctgenvvar script to the STDENV file. For information about the STDENV file see
STDENV file.

Chapter 11. Operating 249

A comprehensive sample is supplied in the SCTGSAMP library. Sample JCL for
CTGBATCH can be found in the SCTGSAMP library as members CTGJOB and
CTGPROC.

CTGBATCH considerations:

Things to consider when using CTBATCH to launch USS programs through the
MVS batch environment include the location of message logs and the national
language for messages.

Start CTGBATCH using a JCL step in the following format:
//CTGBATCH EXEC PGM=CTGBATCH,

PARM=’<LE runtime options><fully qualified HFS path to target
executable><parameters>’

where:

<LE runtime options>
Is a free-form string of Language Environment options, terminated by a
slash (/) character. At the very least, the slash (/) must be included to
indicate an empty set of options.

<fully qualified HFS path to target executable>
Explicitly represents the target program. For example,
’/usr/lpp/cicstg/ctg700/bin/ctgstart’

<parameters>
Is the parameter string to be supplied to the target program. For example,
’-noinput -x’

Note: There must be a space between the target executable and the <parameters>
string.

Therefore, a JCL step using CTGBATCH to invoke the ctgstart script is as follows:
//CTGBATCH EXEC PGM=CTGBATCH,
// PARM=’//usr/lpp/cicstg/ctg700/bin/ctgstart -noinput’

An important difference between CTGBATCH and BPXBATCH is that the
Language Environment options override was not part of the BPXBATCH PARM
string syntax. If a BPXBATCH PARM string is used, unchanged, with CTGBATCH,
everything preceding and including the first slash (/) character is processed as
Language Environment options, and the rest as CTGBATCH parameters. The likely
result is message "CTG0828E CTGBATCH The target executable 'target-program'
does not exist".

Note:

1. The PARM parameter in the JCL EXEC PGM= statement is limited to a string
value of 100 characters (this applies to BPXBATCH aswell). See “Environment
variables: remote mode” on page 102 for details on using the CTGSTART_OPTS
environment variable to circumvent this limitation with ctgstart parameters.

2. When CTGBATCH is used to start the CICS Transaction Gateway for z/OS
daemon via the ctgstart script, the '-noinput' switch must be specified to enable
the TSO-SDSF systems management function

CTGBATCH accepts the following DD statements:
v STDOUT

250 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

v STDERR
v STDENV
v CTGDBG

and one of the following national language support DD statements:
v CTGMSGEN
v CTGMSGJA
v CTGMSGZH

STDOUT and STDERR DD statements:

To route log messages to a particular destination, the JCL must contain DD cards
STDOUT and STDERR in the DD statements which mean route stdout and stderr
to the specified DD location.

DD cards STDOUT and STDERR must be writable destinations. Valid options are:
v SYSOUT=x for JES logs
v DSN=<MVS sequential data set>,DISP=SHR
v DSN=<MVS partitioned data set member>,DISP=SHR
v PATH=<HFS file> PATHMODE=<mode> PATHOPTS=<options>

DD cards STDOUT and STDERR are defined as writable HFS files, as shown in the
following examples, to be created if they do not already exist (OCREAT),
appended if they do exist (OAPPEND), and opened for writing only (OWRONLY).
Read-write permissions are given to the batch user ID (SIRUSR,SIWUSR) with
read-only to all other users (SIRGRP,SIROTH).
//STDOUT DD PATH=’/u/ctgusr/ctglogs/ctg1_stdout.log’,
// PATHOPTS=(OCREAT,OAPPEND,OWRONLY),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIROTH)
//STDERR DD PATH=’/u/ctgusr/ctglogs/ctg1_stdoerrlog’,
// PATHOPTS=(OCREAT,OAPPEND,OWRONLY),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIROTH)

If the STDOUT DD statement is omitted, a JES log with the name 'SYS00001' will
be dynamically allocated the first time that data is written to the stdout
destination.

If the STDERR DD statement is omitted, a JES log will be dynamically allocated.
The name is dependent upon the MSGFILE Language Environment runtime
option. If allowed to default the name will be 'SYSOUT'.

Note: The location specified in the STDERR DD statement will also contain remote
mode JNI log messages.

STDENV DD statement:

DD card STDENV must be a readable source. If no STDENV DD statement is
defined in the JCL, CTGBATCH will still attempt to run the target program
specified in the PARM string. This is acceptable if the target program is itself a
self-contained executable program, for example, ctgasi.

Valid options are:
v SYSIN to have the STDENV data inline with the JCL
v DSN=<MVS sequential data set>,DISP=SHR
v DSN=<MVS partitioned data set member>,DISP=SHR

Chapter 11. Operating 251

v PATH=<HFS file> PATHMODE=<mode> PATHOPTS=<options>

For example, the following DD card STDENV is defined to be opened for reading
only (ORDONLY) with read-only permissions for the batch user ID (SIRUSR).
//STDENV DD PATH=’/u/ctgusr/ctgcfg/my_ctg1.env’,
// PATHOPTS=(ORDONLY),PATHMODE=SIRUSR

CTGDBG DD statement:

If you include a dummy DD statement CTGDBG in the CTGBATCH job, extra
runtime environment and status log messages are generated.

These messages are written to the STDOUT and STDERR destinations as
appropriate. This facility can be used as an aid to resolving upgrade problems and
also for problem determination.

National language support DD statements:

Inclusion of one dummy DD statement from CTGMSGEN (English), CTGMSGJA
(Japanese) or CTGMSGZH (Chinese) in the CTGBATCH job will determine which
of the three national language message bundles is used by CTGBATCH. This does
not affect the national language resources of the Gateway daemon itself.

If no national language support DD statements are defined in the CTGBATCH JCL,
the default of CTGMSGEN (English) is assumed. If more than one of the valid
three national language support DD statements are defined, CTGBATCH fails with
message CTG0832E and JES return code 20.

z/OS considerations:

To make CTGBATCH and the Gateway daemon run in the same address space, set
the _BPX_SHAREAS environment variable in STDENV to either YES or MUST.

The recommended value for the Gateway daemon is YES. If you set it to NO, they
run in separate address spaces. If you do not set it, CTGBATCH issues a warning,
and they run in separate address spaces. See “Multiple address spaces” on page
245 for information about problem determination with multiple address spaces.

To run CTGBATCH and the Gateway daemon in a single address space with
security active, CTGBATCH needs to be program controlled. For information about
program control see “Security error due to surrogate checking problem” on page
283.

The setting of _BPX_SHAREAS can affect the JOBNAME that the user must specify
when issuing system management commands to the Gateway daemon. If the
JOBNAME is less than 8 characters in length, and the Gateway daemon runs in a
separate address space, the JOBNAME to use for system management commands
via TSO/SDSF is the base JOBNAME with a numeric suffix.

Region size considerations:

Set the REGION parameter on the EXEC card in the JCL according to the virtual
storage requirements for thread and Java heap settings in the Gateway daemon.

For more information about calculating the required setting see Avoiding out of
memory conditions.

252 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

To verify the actual region size allocated for the CICS Transaction Gateway, include
the CTGDBG DUMMY DD statement in the JCL step for CTGBATCH. Message
CTG0813I shows the current region size.

The following parameters can also limit the values that you can choose for the
REGION parameter:
1. The ASSIZEMAX parameter of the OMVS segment of a RACF user ID; for

more information see the RACF Command Language Reference.
2. The UNIX System Services MAXASSIZE parameter found in

SYS1.PARMLIB(BPXPRMxx); for more information see the UNIX System Services
Planning. The value specified for ASSIZEMAX overrides any value provided by
the MAXASSIZE parameter

Note: Use of REGION=0M. The actual region size available when REGION=0M is
used is unpredictable, due to optional implementation of the system exit routine
IEFUSI. REGION=0M indicates that the address space must be given as much
memory as possible. However, large REGION sizes might be policed by the IEFUSI
exit, and reduced to a default size. If this default size is too small the CICS
Transaction Gateway is likely to fail with out of memory problems.

CTGBATCH examples:

Example JCL follows that enables log messages to be written to the various
destinations and various sources for the STDENV data.

Writing messages to the JES logs:

This JCL snippet shows how to write messages to the JES logs STDOUT and
STDERR and read the environment variables from the HFS file
'/u/ctgusr/stdenv.txt'.

//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//STDENV DD PATH=’/u/ctgusr/stdenv.txt’,
// PATHOPTS=(ORDONLY),PATHMODE=SIRUSR
/*

Writing messages to HFS files:

This example JCL snippet shows how to write all stdout and stderr data to HFS
files and store the environment variables in-line.

//STDENV DD *
PATH=/bin:/usr/lpp/java/bin
_BPX_SHAREAS=YES
AUTH_USERID_PASSWORD=YES
CICSCLI=/u/ctgusr/cfg/myctg1.ini
/*
//STDOUT DD PATH=’/u/ctgusr/ctglogs/ctg1_stdout.log’,
// PATHOPTS=(OCREAT,OAPPEND,OWRONLY),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIROTH)
//STDERR DD PATH=’/u/ctgusr/ctglogs/ctg1_stdoerrlog’,
// PATHOPTS=(OCREAT,OAPPEND,OWRONLY),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIROTH)
//*

JES return codes:

The following list contains JES return codes and their meanings.

Chapter 11. Operating 253

0 OK The target program was started successfully.

4 WARNING_STATE
The target program was started successfully, but CTGBATCH found some
potential problems. See log messages for details.

8 SPAWN_FAILURE
The target program did not start.

12 LOGINIT_FAILURE
CTGBATCH failed to open the defined DD statement and the dynamically
allocated JES destination was also unavailable.

16 PIPEINIT_FAILURE
CTGBATCH failed to create the interprocess pipes required for
communicating with the target program.

20 INITSTATE_FAILURE
CTGBATCH initialization failed. See log messages for details.

24 LOG_WRITE_FAILURE
CTGBATCH log write failure. During run time, CTGBATCH did not write
to one of the defined STDOUT or STDERR log destinations. A subsequent
attempt to write data to the default Language Environment stdout or
stderr destination also failed.

Starting multiple CICS Transaction Gateways
See the SCTGSAMP PDS library for sample JCL.

To start multiple CICS Transaction Gateways from OMVS with console input when
directed to a port that is portshared, define the jobname "OMVS" as having access
to the shared port in the TCP/IP profile. If console input is not required, then start
the CICS Transaction Gateways via JCL and define the JCL jobname in the TCPIP
profile.

See “Port is in use by another task” on page 274, for information on a problem that
can be caused when the CICS Transaction Gateway jobname is shorter than eight
characters.

Starting from a command line
To start the CICS Transaction Gateway with the default options, type ctgstart at
the command line and press Enter.

A Gateway console session starts, and messages are displayed showing the values
being used. To override the startup defaults, type: ctgstart at the command line,
followed by the startup options you require, and press Enter. A Gateway console
session starts, and messages are displayed showing the values being used.

To get help for the startup options, enter: ctgstart -?

Options on the ctgstart command:

To override the startup defaults, from the command line enter ctgstart at the
command line, followed by the required startup options.

Option Purpose

-applid The Gateway daemon applid.

-applidqualifier The Gateway daemon applid qualifier.

254 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Option Purpose

-classpath=classpath Additional classpath entries to use when launching the
JVM. For example, the location of a jar file containing
request exits.

-dnsnames Displays symbolic TCP/IP host names in messages.

-dumpoffset=offset The offset from which displays of any data blocks start. If
the specified offset is greater than the total length of data,
the data is dumped as if the offset were 0.

-initconnect=number The initial number of connection manager threads.

-initworker=number The initial number of worker threads.

-j Passes an argument to the JVM. For example,
-j-D<name>=<value> sets a JVM system property. See the
JVM command line interpreter help for guidance in using
this switch.

-keyring=keyring The SSL key ring path and file name.

-keyringpw=keyringpw The SSL key ring password. For example:

ctgstart -sslport=port_number -keyring=keyring
-keyringpw=keyringpw

An error message is generated if the keyringpw parameter
is used on its own without the corresponding keyring
parameter in the ctgstart - command line.

-maxconnect=number The maximum number of connection manager threads. If
this value is set to -1, no limits are applied to the number
of connection manager threads.

-maxworker=number The maximum number of worker threads. If this value is
set to -1, no limit is applied to the number of worker
threads.

-noinput Disables the reading of input from the console. If this
option is selected you cannot stop the Gateway by input to
the console session. See “Stopping the CICS Transaction
Gateway” on page 256.

-port=port_number The TCP/IP port number assigned to the CICS Transaction
Gateway

-stack Enables exception stack tracing but no other type of
tracing. All checked Java exceptions are traced, including
exceptions that are expected during typical operation of
the CICS Transaction Gateway.

-start=cold Ensures that CICS Transaction Gateway issues a call to
RRS to forget each unit of recovery associated with the
Gateway daemon which is in 'in-forget' state in RRS. If
you specify this value, the forget calls are completed
before any requests are processed by the Gateway daemon.
If this option is not specified, the default CICS Transaction
Gateway startup logic is used and the forget calls are not
issued to RRS. For more information see “Cold start” on
page 245.

-statsport=port_number The TCP/IP port on which the Gateway daemon listens
for statistics API requests.

-sslport=port_number The TCP/IP port on which the Gateway daemon listens
for SSL requests.

Chapter 11. Operating 255

Option Purpose

-trace The standard trace option . If this option is selected the
first 80 bytes of the COMMAREA are traced by default. For
more information see Tracing.

Trace output is written to stderr.

-truncationsize=nnn The maximum size of any data blocks shown in the trace,
where nnn is any positive integer. You can use this option
in addition to either -trace or -x to override the default size
set by these options. For example, to switch on standard
tracing and dump a maximum of 20,000 bytes:

ctgstart -trace -truncationsize=20000

If you specify a value of 0, no data blocks are shown in
the trace.

-tfile=pathname Writes trace messages to the file specified in pathname if
tracing is enabled. This option overrides the default
destination for trace output (see the -trace option).

-tfilesize=number The maximum size of the trace text file in KB.

-x Enables full debug tracing. Full debug tracing includes
everything traced by the -trace option, with additional
information including information about the internal
workings of the CICS Transaction Gateway. This option
traces the entire COMMAREA by default.

This option significantly decreases performance.

Stopping the CICS Transaction Gateway
There are two scenarios for shutdown, normal and immediate.

The normal shutdown scenario is the recommended method for stopping the CICS
Transaction Gateway. The immediate shutdown scenario is not recommended
except in emergencies; there is no guarantee that work in progress will complete.

Normal shutdown
In a normal shutdown, the Gateway daemon waits for work in progress to
complete. During this time, new work is not allowed to start. When all
work has completed or all Java clients have disconnected, the Gateway
daemon shuts down.

Immediate shutdown
Any outstanding work is terminated abruptly. Existing connections are
broken; requests for new connections are refused. The Gateway daemon
shuts down without waiting for XA transactions to complete. Extended
LUWs and work in a pre-prepare state are rolled back.

XA transactions that are in post-prepare state are not rolled back during an
immediate shutdown. If no other instance of the CICS Transaction Gateway
is running under the same RRM name, it is not possible for the transaction
manager (WebSphere) to recover indoubt XA transactions until the CICS
Transaction Gateway is restarted.

If TCP/IP load balancing is in use, multiple CICS Transaction Gateways
are running under the same RRS name. Requests to resolve indoubt XA
transactions are sent to other Gateway daemons that are still running in
the same Gateway group.

256 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

You can perform an immediate shutdown if a normal shutdown is taking too long.
You cannot request a normal shutdown after you have issued the command for an
immediate shutdown.

Normal shutdown
When CICS Transaction Gateway shuts down normally, transactions that are
already in progress are completed.
v All one-phase-commit transactions and XA transactions are allowed to complete

as normal.
v No new transaction requests are accepted.
v No new XA recover requests are accepted.

Stop the Gateway daemon, as described in “Stopping a Gateway daemon.”

Immediate shutdown
Immediate shutdown of CICS Transaction Gateway forces the abnormal
termination of transactions that are already in progress.

This method of shutdown is not recommended, for the following reasons:
v There is no guarantee that any work will complete.
v There is no guarantee that any tidy-up is performed.

During an immediate shutdown, the following guidelines apply:
v Transactions already in progress are terminated abnormally.
v All in progress one-phase-commit LUWs are backed out (rolled back) and not

recovered.
v For XA transactions:

– All pre-prepare work is rolled back.
– All post-prepare work is left in RRS to be recovered either upon restart, or by

another CICS Transaction Gateway in the same Gateway group.

Stop the Gateway daemon, as described in “Stopping a Gateway daemon.”

Stopping a Gateway daemon
If you started the CICS Transaction Gateway from the command line, and you did
not specify the -noinput parameter, you can stop the Gateway by typing the
correct character and pressing the Enter key in the Gateway console session.

Accepted characters are as follows:

Usual shutdown
Q or -

Immediate shutdown
I

If you did not start the CICS Transaction Gateway with the -noinput option,
messages describing which keys to use for shutdown are displayed at the end of
startup. If you used the -noinput option, you must kill the process to stop the
CICS Transaction Gateway.

If you used JCL to start the CICS Transaction Gateway, use one of the supported
MVS system commands to shut down the Gateway. See Gateway daemon
administration for details.

Chapter 11. Operating 257

Note: When you cancel the main CICS Transaction Gateway job, all other jobs are
cancelled. For example, for a jobname CICSTGQ, the jobs named CICSTGQ1
through CICSTGQn would also be cancelled.

If you have problems stopping the Gateway daemon, see fails to shut down.

Gateway daemon administration
Gateway daemon administration tasks include starting and stopping, tracing,
displaying statistics and obtaining JVM dumps.

If each Gateway daemon runs as a separate MVS address space, with a unique job
name, you can complete the following tasks using MVS system commands:
v Set the Gateway daemon trace
v Set JNI trace
v Query trace settings
v Stop the Gateway daemon
v Display statistical information about the CICS Transaction Gateway.
v Obtain a Java heap dump, a system dump, or a Java dump from a running JVM.
v Obtain dumps containing information about the CICS Transaction Gateway

configuration, and the current JVM.

Shutting down
To perform a typical shutdown, issue one of the following MVS system commands.
v /P JOB_NAME

v /F JOB_NAME,APPL=SHUTDOWN|SHUT

where JOB_NAME is the name of the CICS Transaction Gateway job that you want to
send the command to.

You can use either SHUTDOWN or SHUT command. If the command is
misspelled, the command is rejected, and a message issued.

If the command is not acceptable because an immediate shutdown has already
been issued, the request is ignored.

Shutting down immediately
If the command is successful, a message is displayed, and written to the system
log.

To perform an immediate shutdown, issue the following MVS system command:
/F JOB_NAME,APPL=SHUTDOWN|SHUT,IMMEDIATE|IMM

where JOB_NAME is the name of the CICS Transaction Gateway job that you want to
send the command to. You can use either of the following pairs of commands:

SHUTDOWN or SHUT
IMMEDIATE or IMM

If the command is misspelled, the command is rejected, and a message is issued.

258 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Controlling trace
Trace is controlled through commands issued from the administration interface.

Commands are provided for the following tasks:
v Set the trace level for the Gateway daemon
v Set the trace file size limit
v Set the amount of data from the hex dump to trace
v Set the offset within a hex dump
v Do a full hex dump
v Turn JNI trace on or off
v Query trace settings

Use the MVS MODIFY command /F JOB_NAME,APPL=TRACE, together with
appropriate options, to control trace. Some examples of controlling trace follow. See
Trace options for an explanation of the options.

Querying trace settings
Query trace settings to see values such as the trace file size limit or the amount of
data to trace.

To query trace settings, enter the following command:
/F JOB_NAME,APPL=TRACE

Setting the Gateway trace
Use this command to set the trace level to full debug.

To set the level to full debug tracing, enter the following command:
/F JOB_NAME,APPL=TRACE,TLEVEL=4

To set a DUMPOFFSET of 128 and TRUNCATIONSIZE of 512, enter the following
command:
/F JOB_NAME,APPL=TRACE,DUMPOFFSET=128,TRUNCATIONSIZE=512

Setting the JNI trace
Use these commands to set the level of the Java Native Interface (JNI) trace, and to
disable the trace.

To enable JNI trace, enter the following command:
/F JOB_NAME,APPL=TRACE,JNILEVEL=1

To disable JNI trace, enter the following command:
/F JOB_NAME,APPL=TRACE,JNILEVEL=0

Combining options
Use multiple options on a single command to specify the required tracing
characteristics.

For example, the following command sets the trace level for the Gateway daemon
to 2, specifies a full data dump, and enables JNI trace:
/F JOB_NAME,APPL=TRACE,TLEVEL=2,JNILEVEL=1,FULLDATADUMP

Chapter 11. Operating 259

Controlling health monitoring
You can find the current health status of your system, and reset the health status to
100.

Determining health status
The current health status is available in the GD_CHEALTH statistic. This
information describes how to find the current health status.

Procedure
1. Log on to TSO and navigate to the SDSF console.
2. Enter the following MVS system command: /F

<JOB>,APPL=STATS,GS=GD_CHEALTH where <JOB> is the JCL jobname of the
Gateway daemon. A message tells you the current value for health status.

Related concepts:
“Health reporting” on page 155
The Gateway daemon can monitor certain error codes to determine the health of
communications with CICS.
Related information:
“Resetting health status”
This information describes how to reset the health status to 100.

Resetting health status
This information describes how to reset the health status to 100.

Communication problems can cause the health status to drop. If the status drops to
0, it might have to be reset before the load balancer will send any new connections
to the affected Gateway daemon. The health status can be reset regardless of the
current health status value; you do not have to wait until the status drops to 0.

The health status can recover without intervention in some circumstances. For
example, if a Java client application has 21 established connections to the Gateway
daemon, and an ECI request is sent across each of the first 20 connections and fails
with ECI_ERR_NO_CICS, health drops to 0. No new connections can be
established, but because the Java client application still holds an existing
connection to the Gateway, a successful request sent over that connection will
cause the health to recover.
1. Log on to TSO and navigate to the SDSF console.
2. Enter the following command: /F <JOB>,APPL=HEALTH,RESET where <JOB> is the

JCL jobname of the Gateway daemon. A message tells you whether the
command completed successfully.

Administration options
Options are available for shutdown, tracing, statistics, and dumps. An option is
also available for dynamic interaction with request monitoring exits.

Shutdown options
This option is available for use with the MVS system command /F
<JOB_NAME>,APPL=SHUT.

To get help on these options, issue the following command:
/F <JOB_NAME>,APPL=SHUT,?

260 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Option Short form Comments

IMMEDIATE IMM Specifies that the Gateway daemon
shuts down immediately. If you do not
specify this option, a normal shutdown
is performed.

Trace options
These options are available for use with the MVS system command /F
<JOB_NAME>,APPL=TRACE.

To get help on these options, issue the following command:
/F <JOB_NAME>,APPL=TRACE,?

Option Short form Description

DUMPOFFSET
=integer

OF=integer Specifies the offset from which displays of any data blocks
start, for example 512. If the offset is greater than the total
length of data to be displayed, an offset of 0 is used. This
option applies only to the Gateway trace, not JNI trace.

You cannot use this together with the fulldatadump option.

FULL
DATA
DUMP

FD Sets the dumpoffset to 0 and ignores any value specified in
truncationsize. This option applies only to the Gateway
trace, not JNI trace.

Specifies the name of the output file for JNI tracing. You
must specify a value for this option. If you do not, an error
is displayed. JNI trace is output as plain text, and there is
no requirement to use a particular extension for the file
name.

JNILEVEL=0|1 JL
0 Off. No trace information is output.

1 On.

TFILESIZE
=integer

TS=integer Specifies the maximum size, in kilobytes, of the Gateway
trace output file, for example 50000.

Specifies the output file for Gateway tracing, for example
./tracefile.trc on UNIX and Linux or .\tracefile.trc on
Windows. If you do not specify a value for this option,
trace output is sent to the console.

TLEVEL
=1|2|3|4

TL Specifies the Gateway trace level. Permitted values are:

0 Off. No trace information is output.

1 Exception tracing. Only exceptions are traced. See
“Options on the ctgstart command” on page 254.

2 Trace exceptions, and entry and exit of methods.

3 Trace exceptions, some internals, and entry and
exit of methods.

4 Full debug tracing (all trace points).

Chapter 11. Operating 261

Option Short form Description

TRUNCATION
SIZE =integer

TR=integer Specifies the byte at which to stop the hex dump, for
example 2000. It defines the end point, not the number of
bytes to display. So if on a dump of size 40 you set the
dumpoffset to 11, and the truncationsize to 25, you will
see 15 bytes (from 11 to 25).

You cannot use this together with the fulldatadump option.
This option applies only to the Gateway trace, not JNI
trace.

Querying statistics
Options are available for selectively querying statistics.

To get help on these options, issue the following command:
/F <JOB_NAME>,APPL=STATS,?

Option Short form Description

GETSTATS GS Lists all available statistics.

GETSTATS=
QUERY
STRING

GS=QUERY
STRING

Lists statistics for the IDs specified in query string.

RESOURCE
GROUPS

RG Lists available resource group IDs

STATIDS SI Lists available statistical IDs

STATIDS=
RESOURCE
GROUP ID

SI=RESOURCE
GROUP ID

Lists available statistical IDs for the specified resource
group, or list of resource groups.

STATTYPE
=STATISTICS
TYPE

ST=STATISTICS
TYPE

Lists available statistical values for the specified statistics
types.

Related information:
“Displaying statistics” on page 315
You can use MVS system commands to display statistical information about the
CICS Transaction Gateway, or obtain statistics using either the C or Java Statistics
API interface.

Dumping diagnostic information
Dumps contain diagnostic information that can be used when investigating system
problems. Various options are available when obtaining dumps.

Dump options are available for use with the MVS system command /F
<JOBNAME>,APPL=DUMP.

To get help on the available dump options, issue the following command:
/F <JOB_NAME>,APPL=DUMP,?

If the IBM JVM is used, a subset of the options can be used to provide JVM
dumps. The IBM JVM can produce a Java heap dump, a Java dump, or a Java
system dump. These are produced by a running JVM, and can be requested during
typical operation of the CICS Transaction Gateway. The dumps contain diagnostic
information that can be used when investigating system problems.

262 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

For further information on IBM JVM dumps, see the IBM Java Diagnostic Guide at
IBM Java Diagnostic Guide.

Parameters

There are no short forms of the parameter names.

Option Description

ALL Generates all dumps. This option must be specified as the only option and
cannot be combined with other dump options.

CTGINFO Generates a dump containing information about the configuration of CICS
Transaction Gateway.

HEAP Generates a Java heap dump.

JAVA Generates a Java dump.

JVM Generates a dump containing current JVM memory usage.

JVMSTACK Generates a dump containing only the Java call stack.

SYSTEM Generates a Java system dump.

Responses

The Gateway daemon responds to a dump request with a message to the console.
In some cases, if the request takes a long time to complete, the message NO
RESPONSE RECEIVED is output, although the dump is produced. The stderr log
contains the location of the dump.

IBM JVM dump responses

Messages from the JVM contain the name of the dump, and indicate whether the
dump was successful. The JVM messages are sent to the stderr error stream.

Possible responses to the dump request are as follows:
v The Gateway daemon successfully processed the dump request; the dump

request completed successfully.
v Null response received from the Gateway daemon during the dump request; the

Gateway daemon received the dump request, but returned an invalid or null
response.

v The dump type is unsupported in the remote JVM; the remote JVM does not
support the requested dump type.

v An invalid response was returned from the Gateway daemon during the dump
request; the Gateway daemon received the dump request, but the response
returned was invalid.

v The Gateway daemon encountered a serious error while processing the dump
type; the Gateway daemon received the dump request, but an error was
detected.

v Some dump types are unsupported in the remote JVM; the remote JVM
executing the Gateway daemon does not support some dump types.

Request monitoring exit control
Options are available for commands sent to all configured and active request
monitoring user exits.

To get help on the available rmexit options, issue the following command:

Chapter 11. Operating 263

http://www.ibm.com/developerworks/java/jdk/diagnosis/

/F <JOB_NAME>,APPL=RMEXIT,?

Option Short form Description

=commandCOMMAND=command=commandCMD
=command

The command that will be sent
to all configured and active
request monitoring user exits.
This is a string.

The eventFired() method is
driven with a RequestEvent
command. The command input
data will be included as a string
in the data map with
RequestData key
“CommandData”.

CICS request exit options
This option is available to interact with CICS request exits dynamically.

To get help on these options, issue the following command:
/F <JOB_NAME>,APPL=CREXIT,?

Option Short form Comments

COMMAND=command CMD=command The command that is sent to the CICS
request exit. The value is a string. The
eventFired() method is driven with an
ExitEvent.Command event. The
command input data is included as a
string value in the data map for the
key “ExitEventData.CommandData”.

Administering XA transactions with Resource Recovery Services
If communications between an application server and the CICS Transaction
Gateway are interrupted and XA transactions are in progress, some transactions
might be left in an indoubt state. To resolve these issues, restore communication
with the application server, and use the application server system to correct the
state of the transactions.

If communication with the application server cannot be restored, use Resource
Recovery Services (RRS) under the control of the Interactive System Productivity
Facility (ISPF) to resolve any indoubt transactions. WebSphere Application Server
for z/OS manages resources for local mode transactions; shut it down before
attempting to use RRS.

A copy of the XID is available in the RRS ISPF panel. For more information about
RRS, see Systems Programmers Guide to Resource Recovery Services (RRS),
SG24-6980-00.

The ISPF panels contain references to all the resource managers that are involved
with a unit of recovery (UR). For XA requests, the name of the resource manager is
based on the fully qualified APPLID of the Gateway daemon; it has a format of
CICSTG.APPLIDQUALIFIER.APPLID. To identify all of the indoubt work from a
gateway daemon instance, look for the work associated with the resource manager
with the name CICSTG.APPLIDQUALIFIER.APPLID on the RRS panels.

264 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

|

If you attempt to manually back out CICS Transaction Gateway from RRS, and
other resource managers are involved in a transaction, transactional integrity can
be compromised.

Transactions that are initiated using the IPIC protocol are not viewable in RRS, and
RRS configuration is not required for this protocol. For more information about
IPIC queries on a CICS terminal, see “Administering transactions that use IPIC
connections.”

Administering transactions that use IPIC connections
Support for XA is provided for all transactions that use IPIC connections. You use
the CEMT inquire command to discover the transactions that use IPIC connections.

To discover XA transactions that use IPIC connections, issue the following CEMT
INQUIRE command from a CICS terminal:
CEMT INQUIRE UOWLINK IPIC

You can filter the transactions by entering an IP address or a wildcard for example:
CEMT INQUIRE UOWLINK IPIC HOST(9.20.*)

If the unit of work is part of an XA transaction (the default for all XA transactions
using IPIC connections), the UOWLINK displays the global transaction identifier
(GTRID) of the XID. Press PF2 in CEMT to find the hex value of GTRID. You can
use this value to compare XIDs. Use the value to compare the CICS task to the
corresponding transaction in the JEE application server.

When you have found your transaction, standard CICS management applies.

Understanding system time
The system time can be changed while CICS Transaction Gateway is running. If
you do this, active processes respond to the changed time and not to the elapsed
time.

When setting clocks forward or back, the behavior of timeout settings will change.
When the clock is set back the elapsed time for a timeout might be increased.
When the clock is set forward a timeout might expire earlier. The maximum
elapsed time for a timeout will be the original timeout value plus the value of the
change in time. For example, if the current time is 19:00, and a timeout is set to
expire 5 minutes from now; the effect of setting the clock back by 1 hour is to
increase the value of the timeout by 1 hour. The total elapsed time for the timeout
is 1 hour and 5 minutes.

The following time outs are effected by this change:
v Gateway daemon close
v Gateway daemon idle
v Gateway daemon ping
v Server idle times
v Worker thread available thread

Note: Absolute times provided by the statistics APIs and request monitoring exits,
and timestamps written to logs and traces, are obtained from the operating system.

Chapter 11. Operating 265

|
|

Restarting Resource Recovery Services (RRS)
The CICS Transaction Gateway does not support a restart of the Resource Recovery
Services (RRS) while any instances of the Gateway are running.

If RRS is restarted, a message is written to the JNI log. The following limitations
apply to EXCI extended LUW and XA transactional requests.
v Non-transactional requests continue to work.
v The CICS Transaction Gateway must be restarted before transactional requests

start working.

266 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Chapter 12. Resolving problems

If a problem occurs you should first do some preliminary checks to try and narrow
down the cause. You can then try and analyze the problem in more detail using
tools such as trace, debug, or diagnostic commands.

A wide range of additional resources are also available for problem solving,
including: forums and newsgroups, IBM Technotes, IBM Developerworks, and IBM
Redbooks. You can also contact your IBM Support organization as described on the
support page at http://www.ibm.com/support/entry/portal/Overview/Software/
Other_Software/CICS_Transaction_Gateway .

Preliminary checks
Before you examine the cause of the problem in more detail, perform these
preliminary checks. These might highlight a simple cause or, at least, narrow the
range of possible causes.

As you go through the questions, make a note of anything that might be relevant
to the problem. Even if the observations you record do not at first suggest a cause,
they could be useful to you later if you need to carry out systematic problem
determination.

Has the system run successfully before?

If the system has not run successfully before, it might not have been installed or
configured correctly. You can check that CICS Transaction Gateway installed
correctly by running one of the sample programs; for more information, see “Using
the sample programs to check your configuration” on page 167. You can also use
the “JCA resource adapter installation verification test (IVT)” on page 165 to test
that the connection from WebSphere Application Server through CICS Transaction
Gateway to CICS Transaction Server is working correctly.

If you are currently upgrading CICS Transaction Gateway, ensure that you are
aware of all the changes that have been made for this release, and make sure you
have made any necessary configuration changes. For more information, see
Chapter 4, “Upgrading,” on page 25.

What messages were produced about the problem?

CICS Transaction Gateway writes information, warning and error messages to the
message logs (for more information, see “General information about messages” on
page 294). Information messages allow you to check that your system is working
correctly; warning and error messages inform you about problems. If warning or
error messages were produced when CICS Transaction Gateway started, or while
the system was running, these might indicate the cause of the problem.

What software components have been changed since the last
successful run?

If you have installed new versions of software components, or a new or modified
application, check for warning and error messages. Consider backing out the
changes and see if the problem still occurs.

© Copyright IBM Corp. 2000, 2013 267

http://www.ibm.com/support/entry/portal/Overview/Software/Other_Software/CICS_Transaction_Gateway
http://www.ibm.com/support/entry/portal/Overview/Software/Other_Software/CICS_Transaction_Gateway

What administrative changes have been made since the last
successful run?

If you have changed your CICS TG configuration or changed any CICS resources
check that the changes have not caused any warning or error messages. Also check
the configuration of the client application. For more information, see Configuring.

What service changes have been applied since the last
successful run?

If you have applied a PTF, check that it installed successfully and that you did not
receive any warning or error messages during installation. Also consider any
service changes that have been applied to other programs, which might affect CICS
Transaction Gateway.

Review the documentation that was supplied with the PTF to ensure that the
instructions were followed correctly. If the PTF was installed correctly, try
uninstalling it and see if the problem still occurs.

Is the problem related to a particular client application?

If you can identify a client application that is always in the system when the
problem occurs, check it for coding errors. If the client application has not yet run
successfully, examine it carefully to see if you can find any errors. If you have
made changes to the client application since it last ran successfully, examine the
new or modified part of the application. Consider the functions of the client
application that might not have been fully exercised before.

Is the problem related to system loading?

If the problem seems to be related to system loading, the system might be running
near its maximum capacity, or it might be in need of tuning. Check that you have
defined sufficient resources (for example, connection manager threads and worker
threads). Typically, if you had not defined sufficient resources, you might find that
the problem is related to the number of users of the application.

Does the problem occur at specific times of day?

If the problem occurs at specific times of day, it could be dependent on system
loading. Typically, peak system loading is at mid-morning and mid-afternoon, so
those are the times when load-dependent problems are most likely to happen. Use
the CICS TG interval statistics to determine when peak loading occurs and the
resource usage at the time; for more information, see “Statistics” on page 309.

Regular backup jobs or other system maintenance might also cause unexpected
problems at specific times of day.

What to do next
If preliminary checks have revealed the cause of the problem, you should now be
able to resolve it, possibly with the help of other information in the CICS
Transaction Gateway information center. If you have not yet found the cause of the
problem, you must start to investigate it in greater detail.

To investigate the problem in more detail, begin by deciding the best category for
the problem, for example is the problem related to installation, configuration or

268 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

performance? Then go to “Dealing with problems” on page 270 where you will see
a list of problems organized into the various categories. Each topic covers a single
problem, and provides details on the symptom, probable cause and action to take.

If the problem is not listed in the categories, you might need to use one of the
“Problem determination tools” or you might need to refer to “Problem solving and
support” on page 299.

Problem determination tools
Various tools are available for Java debug, JVM dump, system dump, tracing,
testing connections, and viewing the logs. TCP/IP diagnostic commands can also
be used during problem determination.

For additional information on Java diagnosis see: . http://
publib.boulder.ibm.com/infocenter/java7sdk/v7r0/index.jsp

For more information about trace see “Tracing” on page 295.

JVM dump and system dump
JVM dumps and system dumps provide detailed information about the internal
status of an IBM JVM, and the configuration of a running CICS Transaction
Gateway.

JVM dumps provide a snapshot of a Java Runtime Environment (JRE). System
dumps provide a snapshot of the JRE at a process level and also provide
diagnostic information regarding the system status and configuration.

For more information, see “Dumping diagnostic information” on page 262.

With some Java Virtual Machines (JVMs) on UNIX and Linux you can force Java to
write a stack dump showing the states of the current threads.

For example, on IBM JVMs, you can send a SIGQUIT (-3) signal to a Java process
to make it write a stack dump to stderr. This shows the states of the current
threads. Do not do this on a working production system but only on a system
which is completely locked.

TCP/IP diagnostic commands
Use the TCP/IP diagnostic commands for displaying network configuration
details, statistics and other information. These commands can be useful during
problem determination.

Command Purpose

arp Display or modify IP-to-Ethernet or token ring physical address
translation tables used by address resolution protocol (ARP).

hostname Display workstation host name. This command is available under UNIX
System Services.

ifconfig Display all TCP/IP network configuration values. This is useful when
determining whether or not an IP interface is active. (Linux operating
systems only)

ipconfig Display all TCP/IP network configuration values. This is useful when
determining whether or not an IP interface is active. (All operating
systems except Linux)

Chapter 12. Resolving problems 269

Command Purpose

netstat Display protocol statistics and TCP/IP network connections. This is
used for obtaining information about your own IP interfaces, for
example, listing IP addresses and TCP/IP routing tables used on your
workstation. This command is available under UNIX System Services.

nslookup Display information on Domain Name System (DNS) name servers. This
command is available under UNIX System Services.

ping Verify connection to a remote computer or computers. The equivalent
command for IPv6 is ping6. This command is available under UNIX
System Services.

tracert Trace TCP/IP path to a requested destination. This is useful for
determining whether a problem exists with an intermediate node or not.
The equivalent command for IPv6 is tracert6. (Windows operating
systems only)

traceroute Trace TCP/IP path to a requested destination. This is useful for
determining whether a problem exists with an intermediate node or not.
(All operating systems except Windows)

Dealing with problems
The problems in this section are organized into categories, for example installation,
configuration, and performance. Each topic covers a single problem and provides
details of the symptom, probable cause, and the action to take.

Startup and shutdown problems
Problems when starting and stopping CICS Transaction Gateway.

Gateway daemon not able to access load library
When starting the Gateway, a CEE3250C ABEND S806 message is issued if the
Gateway daemon cannot access the CICS EXCI load library.

Symptom

The following message is generated when starting the Gateway:

CEE3250C The system or user abend S806 R=00000004 was issued. From entry
point MVS_CcicsInit at compile unit offset -FFFF8D84 at address 1AEB158C.

Probable cause

The Gateway daemon cannot access the CICS EXCI load library.

Action

Check the STEPLIB environment variable setting and modify it if necessary. For
more information, see “Environment variables: local and remote mode” on page
100 for more information. Also check that the user ID is authorized to access the
CICS EXCI load library.

CTGRRMS services fails to initialize
CICS Transaction Gateway might fail to start the CTGRRMS services if the
CTGRRMS version is incompatible.

270 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Symptom

Message CTG8659E with return code 1792 is issued.

If CICS Transaction Gateway V7.2 or V8.0 is used with a V6.1, V7.0, or V7.1
CTGRRMS, the following message is also written to the system log:
IEF170I 1 CTGRRMS IEA995I SYMPTOM DUMP OUTPUT 269
SYSTEM COMPLETION CODE=0C4 REASON CODE=00000011
...
ACTIVE LOAD MODULE ADDRESS=1AD00048 OFFSET=0000117C
NAME=CTGINIT

Probable cause

The return code 1792 might indicate that SCTGLINK installed with a version V6.1,
V7.1 or V7.2 of CICS Transaction Gateway is specified on the LNKLST and CICS
Transaction Gateway Version 7.2 or 8.0 is used.

Action

Configure the LNKLST to refer to the SCTGLINK data set that is installed with the
release of the Gateway daemon you are using. See “Starting CTGRRMS services”
on page 128 for more information. When multiple releases of the CICS Transaction
Gateway are installed on the same z/OS image, the LNKLST must refer to the
SCTGLINK that is installed with the latest release of the CICS Transaction
Gateway.

Address space fails to initialize
If CTGRRMS is not running on the z/OS image and ctgasi is used to call it,
CTGRRMS might fail to start.

Symptom

The following messages are issued:

CTG6201I ctgasi - CTGRRMS Services Address Space Initiator.

CTG6200I ctgasi - CTG6200I (C) Copyright IBM Corporation 2005. All rights
reserved.

CTG6237I ctgasi - starting up services address space.

CTG6216E ctgasi - ASCRE failed for CTGINIT, Post value = FFFFFFFF.

CTG6255E ctgasi - timed out waiting for address space to initialize.

CTG6240E ctgasi - the version of CTGINIT may be incompatible with ctgasi.

Probable cause
v CTGRRMS service is not starting because CTGINIT on the LNKLST is at the

wrong version. CTGRRMS is trying to reuse an LX value that is corrupt. You can
further diagnose this by checking the MVS System Log for an 052 abend from
the CTGRRMS process. If this dump is taking place, probably with a reason
code of 0512, (in R15 for the dump), the reserved LX value might be corrupt.

v The timeout and post value of FFFFFF might indicate that the version of
SCTGLINK referred to in the LNKLST is for a CICS Transaction Gateway V6.1,

Chapter 12. Resolving problems 271

V7.0 or V7.1 and a ctgasi is for a V7.2 or later of the CICS Transaction Gateway.
CTGRRMS is trying to reuse an LX value previously used for the CTGRRMS
services and the LX value is in use by another process. This might be due to a
previous CTGRRMS process not terminating completely, or completing but not
releasing the LX value.

There are two reasons why the message CTG6255E might be returned:
v CTGRRMS service is not starting because CTGINIT on the LNKLST is at the

wrong version.
v CTGRRMS is trying to reuse an LX value that is corrupt. You can further

diagnose this by checking the MVS™ System Log for an 052 abend from the
CTGRRMS process. If this dump is taking place, probably with a reason code of
0512, (in R15 for the dump), the reserved LX value might be corrupt.

Action
1. Change the LNKLST to refer to a SCTGLINK PDS from the same version of the

Gateway as the ctgasi tool. When multiple releases of CICS Transaction
Gateway are installed on the same LPAR, SCTGLINK and ctgasi from the latest
installed version must be used.

2. First check there is no CTGRRMS process running. If there is, force the process
to end and retry. If the problem persists you can renew the LX value by
starting CTGRRMS again using the force option: ctgasi -f.
This removes the old LX value and a new value is chosen. Because a limited
number of LX values available on a z/OS image, do not use this option unless
there is no alternative. When all the LX values have been used you must IPL
the z/OS image before new services, including CTGRRMS services, can be
started.

CICS Transaction Gateway fails to initialize after an ARM restart
If CICS Transaction Gateway stops and if ARM (z/OS Automatic Restart Manager)
is configured for cross-system restarts, it attempts to restart CICS Transaction
Gateway on a different z/OS image within in the same sysplex.

Symptom

CICS Transaction Gateway fails to initialize following an Automatic Restart
Manager (ARM) restart.

Probable cause

If z/OS fails, a whole group of related subsystems and applications also fail. ARM
can restart all the failed systems automatically, in a predefined order, on a different
z/OS image within the sysplex. This is called a cross-system restart.

In this situation, z/OS has failed and ARM has performed a cross-system restart of
CICS Transaction Gateway on a different z/OS image in the same sysplex.

Action

Modify the ARM profile for the ARM_ID to prevent cross-system restarts.

For more information, see z/OS V1R4.0 MVS Setting Up a Sysplex (SA22-7625-06) at:
http://www-01.ibm.com/support/docview.wss?uid=pub1sa22762505

272 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

CTGRRMS fails to start when XA support is active
If XA support has been activated, the Gateway daemon and CTGRRMS might not
start.

Symptom

The CICS Transaction Gateway fails to start, and a log message indicates that
CTGRRMS services could not be started.

Probable cause

The CTGINIT module is missing from the LNKLST.

Action

Check that the CTGINIT module is in the LNKLST. Dump symptoms, similar to
the following, indicate that the CTGINIT module cannot be found:
CSV003I REQUESTED MODULE CTGINIT NOT FOUND
CSV028I ABEND806-04 JOBNAME=MSTJCL00 STEPNAME=LLA
IEA989I SLIP TRAP ID=X806 MATCHED. JOBNAME=CTGRRMS , ASID=018B.
IEE824I CTGRRMS FAILED, TERMINATED
IEA995I SYMPTOM DUMP OUTPUT 495
SYSTEM COMPLETION CODE=806 REASON CODE=00000004
TIME=12.33.27 SEQ=62869 CPU=0000 ASID=018B
PSW AT TIME OF ERROR 070C1000 8142E1EE ILC 2 INTC 0D

NO ACTIVE MODULE FOUND
NAME=UNKNOWN
DATA AT PSW 0142E1E8 - 9024181E 0A0D18FB 180C181D
GR 0: 00001E00 1: 84806000

2: 00FCB218 3: 00000000
4: 00000000 5: 008FD5C0
6: 000000FF 7: 00000000
8: 008FA250 9: 0142E6B4
A: 00000000 B: 00000004
C: 00000000 D: 008FA250
E: 84806000 F: 00000004

END OF SYMPTOM DUMP

Follow the steps in “Enabling CTGRRMS services” on page 127 to add the module
to the LNKLST.

If a network failure occurs, the transaction is rolled back if the Java Transaction
API (JTA) specification allows this. If the state of the transaction does not allow the
transaction to be rolled back, the transaction manager repeatedly attempts to open
new connections and reissue requests. The transaction manager rolls back the
transaction or completes the transaction, depending on the state when the error
occurs. In this situation, the transaction manager is responsible for rolling back or
completing the transaction.

Gateway daemon fails to shut down
During the initiation phase of a normal shutdown, some calls and requests prevent
the shutdown from completing.

Symptom

The Gateway daemon fails to shut down normally (quiesce) or fails to shut down
in the expected time.

Chapter 12. Resolving problems 273

Probable cause

Outstanding API requests, such as ECI or EPI requests that are waiting to
complete, prevent the Gateway daemon from quiescing.

Action

Wait for the API calls to complete. The following API calls do not block a normal
shutdown of CICS Transaction Gateway:
v ECI_GET_REPLY_WAIT
v ECI_GET_SPECIFIC_REPLY_WAIT
v EPI_GET_EVENT and waitState is EPI_WAIT (an EPIRequest.getEvent call that

has its second parameter set to EPI_WAIT causes the request object to wait for
events)

If there are any active applications or tasks in “wait” state in CICS, you must
investigate these. For example, to query a CICS task that is in “wait” state, use the
CEMT INQ TASK command. For more information about tasks that are in “wait” state
see the CICS Transaction Server Information Centers Library at:
http://www-01.ibm.com/software/htp/cics/library/.

If normal shutdown fails you can promote this to an immediate shutdown.

CICS connection problems
Problems with connections to CICS Transaction Server.

Port is in use by another task
A permission denied error occurs if a port that CICS Transaction Gateway attempts
to use is already in use by another task.

Symptom

The following error message is displayed:

EDC5111I PERMISSION DENIED

Probable cause

The port that CICS Transaction Gateway is attempting to use is already in use.

Action

Do one of the following:
v Enforce the exclusive use of the port for this CICS Transaction Gateway job. You

can reserve a port for a given jobname in TCPIP.PROFILE. Reconfigure the
address space that is already using the required port so that it uses a different
port, then restart.

v Configure the Gateway daemon to use a different port number.

Conflict exists with a default port
A conflict exists between a default port used by CICS Transaction Gateway for one
of its supported protocols and another port that is already in use.

274 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Symptom

One or more protocols fail to start successfully and the following message is
generated:

CTG6525E Unable to start handler for the protocol:protocol, port:port,
because:[RC]

Possible cause

A conflict might exist between the CICS Transaction Gateway default port and a
port that is already in use.

Action

Change the port number in the configuration file (ctg.ini). For more information,
see Configuring a remote mode topology.

Attempting connection to CICS on wrong TCP/IP port
If CICS Transaction Gateway attempts to connect to CICS on the wrong TCP/IP
port an error occurs.

Symptom

The following error is returned:

ECI_ERR_NO_CICS

Probable cause

The CICS server is listening on a different TCP/IP communications port to the one
through which CICS Transaction Gateway is attempting the connection. This is
because the SERVER section of the CICS Transaction Gateway configuration file
(ctg.ini) is specifying the wrong port number.

Action
1. Check which port the CICS server is listening on. To check the port an IPIC

TCPIPService is defined to listen on in CICS Transaction Server:
On TSO option 6, issue the command:
NETSTAT ALLCON (APPLD *CISS*

On USS, issue the command:
netstat -a -G *CISS*

Sample output:
IY2GTGA2 0005AD5F Listen
Local Socket: 1.23.456.789..1120
Foreign Socket: 2.34.567.890..43066
Application Data: DFHIIY2GTGA2CISSIPIC IP50889
IY2GTGA2 0005DB97 Establsh
Local Socket: 1.23.456.789..1120
Foreign Socket: 2.34.567.890..43066
Application Data: DFHIIY2GTGA2CISSIPIC 0000000700000007

This example shows that the IPIC TCPIPService is listening on port 50889 and
also that an IPCONN is in use. The generated IPCONN name is 00000007.

Chapter 12. Resolving problems 275

2. Change the port number in the configuration file (ctg.ini). For more
information, see “Port” on page 88.

Additional information

The Application Data string in the example contains these values:

DFH The CICS Transaction Server prefix.

I Inbound.

IY2GTGA2
The CICS APPLID.

CISS The listening transaction CISS for inbound IPIC requests.

IPIC The TCPIPService.

IP50889
The TCPIPService name.

0000007
The generated IPCONN name.

EXCI connection problems
Problems when connecting to CICS over EXCI

EXCI pipe limit exceeded:

A problem with error ECI_ERR_SYSTEM_ERROR can occur if the EXCI pipe limit
is exceeded during communication between CICS servers. This is due to an MVS
system pipe limit.

Symptom

An ECI application has received the following return code:

-9 (ECI_ERR_SYSTEM_ERROR)

Probable cause

The EXCI pipe limit has been exceeded during communication between CICS
servers.

A single z/OS address space is limited by CICS interregion communication (IRC)
to allocating a maximum number of EXCI pipes for all attached CICS servers.

When the maximum limit has been reached, the next EXCI Allocate_Pipe call,
made from a particular address space, fails with a SYSTEM_ERROR response code
and a reason code 608. The ECI application receives a return code -9
(ECI_ERR_SYSTEM_ERROR), indicating that the maximum pipe limit has been
exceeded.

Action

Modify the CICS system initialization parameter LOGONLIM to change the limit
when MVS is initially loaded. You can allocate up to 250 pipes in an EXCI address
space. The default limit is 100 pipes.

276 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Pipe limit exceeded for available sessions:

A failure with error CTG6882E can occur if CICS Transaction Gateway tries to
allocate more pipes than the number of available sessions defined in the CICS
sessions definition. This is due to a CICS Transaction Gateway system pipe limit.

Symptom

The ECI application receives a return code -16 (ECI_ERR_RESOURCE_SHORTAGE)
and DFHXCURM is invoked.

A RETRYABLE response code, and a reason code 202.

If the pipe limit is exceeded, a message is written to the JNI log, indicating the
total number of pipes that the CICS Transaction Gateway was using at the time:

This tells you how many the CICS Transaction Gateway was using, and might be
useful if other products are using pipes in the same address space.

Probable cause

The CICS Transaction Gateway has tried to allocate more pipes than there are
available sessions defined in the CICS sessions definition, and the EXCI Open_Pipe
call has failed.

Action

Consider setting the RECEIVECOUNT parameter in the CICS sessions to at least
the maximum EXCI pipe limit. For more information, see “CICS server sessions
definition” on page 123.

IPIC connection problems
Problems when connecting to CICS over IPIC

Unable to acquire IPCONN:

A problem can occur if the system cannot acquire an IPCONN.

Symptom

The following message appears in the CICS Transaction Server log, where nnnn is
the CICS server name:

DFHIS1011 CICS_server_name Unable to acquire IPCONN IPCONN_name. An
EXCEPTION response to the capability exchange was received,
reason=SECURITY_VIOLATION

Probable cause

The IPCONN definition is not configured to use SSL and CICS Transaction
Gateway, and the resource adapter is running on a different sysplex to CICS

Action

If you are using a resource adapter in local mode, configure it to use SSL. Put the
Gateway on the same sysplex as the CICS server. For more information see

Chapter 12. Resolving problems 277

“Configurations that support identity propagation” on page 51.

IPIC connection to CICS fails:

The client application receives an ECI_ERR_NO_CICS error when attempting to
send a request to CICS over an IPIC connection.

Symptom

An ECI_ERR_NO_CICS error occurs and the following message is written to the
CICS Transaction Gateway log:

CTG8431E Handshake failure for IPIC connection to CICS server CICSIPIC
response code=ISCER_EXCEPTION, reason=AUTOINSTALL_FAILED [1]

The following message is written to the CICS Transaction Server log:

Probable cause

The TCPIPService is configured to use predefined IPCONNs exclusively but a
matching IPCONN definition was not found.

Action

Check the IPCONN definitions installed on CICS; look to see if one exists that has
an APPLID that matches the APPLID and APPLID qualifier of the Gateway
daemon. For more information see “IPIC server connections” on page 109.

Alternatively you can enable autoinstall on the TCPIPService. For more
information see http://www-01.ibm.com/software/htp/cics/library/.

TCP/IP failure:

Problems with connections to CICS Transaction Server.

If a TCP/IP subsystem fails, the CICS Transaction Gateway tries to reconnect to
TCP/IP when it becomes available again. However, if multiple TCP/IP stacks are
in use on the z/OS system the CICS Transaction Gateway cannot detect that a
TCP/IP subsystem has failed unless all the TCP/IP stacks to which it is bound fail.
Consider using the TCP/IP environment variable
_BPXK_SETIBMOPT_TRANSPORT to control which TCP/IP stacks the CICS
Transaction Gateway can bind to; for more details see the z/OS Communications
Server: IP Configuration Guide, SC31-8775.

Security problems
Problems with security.

Identity propagation problems
Problems when using identity propagation.

Identity propagation not supported:

A security exception and message CTG9631E occur when a back-level CICS server
that does not support identity propagation is used.

278 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Symptom

The following message is returned as an API return code or as an exception to the
EJB:

Probable cause

Work is being passed to a back-level CICS server, which does not support identity
propagation, resulting in an ECI_ERR_SECURITY_ERROR return code.

Action

Use a level of CICS that supports identity propagation. For more information, see
see the CICS Transaction Server Information Centers Library at:
http://www-01.ibm.com/software/htp/cics/library/.

Security violation during identity propagation:

A security violation and message DFHIS1027 occurred during identity propagation.

Symptom

The following message appears in the CICS Transaction Server log:

Probable cause

The IPIC connection is incorrectly set to use VERIFY user authentication.

Action

Modify the IPCONN definition for the IPIC connection referred to in message
DFHIS1027; change the user authentication setting from USERAUTH=VERIFY to
USERAUTH=IDENTIFY.

RACF mapping problem during identity propagation:

A RACF mapping problem and message ICH408I occurred during identity
propagation.

Symptom

The following message appears in the z/OS system log:

ICH408I USER userid GROUP group NAME userid owner DISTRIBUTED IDENTITY IS
NOT DEFINED: distinguished_name realm_name

Probable cause

RACF does not contain a mapping that associates the distinguished name of the
user with a RACF user ID.

Action

If the user is permitted to access the CICS resources, create a RACF mapping that
includes the distinguished name of this user. For more information see
“Configuring RACF for identity propagation” in the CICS Transaction Server

Chapter 12. Resolving problems 279

Information Center at: https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/
index.jsp

Identity propagation login module not enabled:

The CICS Transaction Gateway identity propagation login module is not enabled
and verification fails with an IRR012I message.

Symptom

The following message appears in the z/OS system log:

IRR012I VERIFICATION FAILED. USER PROFILE NOT FOUND

Probable cause

The CICS Transaction Gateway identity propagation login module is not enabled.

Action

Enable the CICS Transaction Gateway identity propagation login module in
WebSphere Application Server.

SSL problems
SSL connection problems are reported to Java client applications via message
CTG6651E.

CTG6651E Unable to connect to the Gateway daemon: [address = IP address ,
port = port] [error]CTG6651E Unable to connect to the Gateway daemon:
[address = IP address , port = port] [error]

If an SSL exception occurs, enable stack tracing in the CICS Transaction Gateway.
Stack tracing indicates what was happening when the exception occurred. It also
provides information about the configuration, such as the value of the
CLASSPATH environment variable. If this does not give you enough information
to diagnose the problem, obtain a standard trace and contact your IBM support
organization.

For more information see “Exception stack tracing” on page 96.

JSSE:

SSL problems with JSSE

Client not authorized to access key store:

The client application is denied access to the file system that contains the key store.

Symptom

The following Java exception occurs:
java.io.IOException: CTG6651E: Unable to connect to the Gateway.

[address = killerb2b, port = 8050]
[java.security.AccessControlException: access denied
(java.io.FilePermission \jssekeys\testclient.jks read)]

280 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Probable cause

This happens if your application does not have permission to read from the file
system containing the keystore.

Action

Configure SSL security correctly. For more information, see Configuring SSL.

Key ring file path not recognized:

The key ring file path is not recognized by Java.

Symptom

A Java exception occurs and a message similar to the following is generated:

CTG6525E Unable to start handler for the ssl: protocol because:
java.lang.Exception: java.io.IOException:R_datalib (IRRSDL00) error:
profile for ring not found (8, 8, 84)

Probable cause

A backslash (\) character has been incorrectly used as a directory separator in the
path name of the key ring file and has not been recognized by Java.

Java interprets the backslash (\) character as a parameter delimiter. If you used the
backslash character as a directory separator when entering the path name of the
key ring file during configuration, Java cannot recognize the name.

Action

Modify the configuration path names to use either a forward slash (/) or double
backslash (\\) as a separator in the path name on all operating systems.

For example:
/mykeys/jsse/keystore.jks
\\mykeys\\jsse\\keystore.jks

Problem importing a client certificate into RACF:

Unable to import a client certificate into RACF.

Symptom

The following message is displayed in the RACF - Add digital certificate dialog:

The input data set does not contain a valid certificate.

Probable cause

The client certificate is in the wrong data format.

Chapter 12. Resolving problems 281

Action

If you export as Base64 the output will be in EBCDIC encoding so will require
conversion to ISO8859-1 from IBM-1047 before it can be imported using the keytool
command.

128-bit encryption problem:

An encryption error might occur if the cipher suite is not specified correctly in the
CICS Transaction Gateway configuration file.

Symptom

CICS Transaction Gateway starts with the following Java exception:

CTG6525E Unable to start handler for the ssl: protocol because:
java.lang.IllegalArgumentException:CTG6495E No cipher suites available for
use by SSL connection

If more than one cipher suite is used but only one is valid, the following message
is displayed for the valid cipher suite (the other is ignored):

CTG8401I The following ciphers are enabled: SSL_RSA_WITH_NULL_SHA >

Probable cause

The cipher suite is not specified correctly in the ciphersuites parameter in the
CICS Transaction Gateway configuration file.

Action

Edit the CICS Transaction Gateway configuration file to specify the cipher suite
correctly.

SSL handshake failure:

An SSL handshake failure can occur if an IPCONN is not configured to use SSL in
some situations.

Symptom

This problem results in an ECI_ERR_NO_CICS error.

Probable cause

The IPCONN definition is not configured to use SSL and CICS Transaction
Gateway or the resource adapter is running on a different sysplex to CICS (if the
Gateway daemon is running on z/OS).

Action

Put the Gateway daemon on the same sysplex as the CICS server.

282 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Application receives an “access denied” exception:

An application configured to connect to the Gateway daemon using SSL is not able
to read from the file system containing the keystore.

Symptom

An application receives a message similar to this:
java.io.IOException: CTG6651E: Unable to connect to the Gateway.

[address = cicstgd2, port = 8050]
[java.security.AccessControlException: access denied
(java.io.FilePermission \jssekeys\testclient.jks read)]

Probable cause

The application is running with Java security enabled and does not have
permission to read from the file system containing the keystore.

Action

Add a FilePermission for the location of the keyring file. For more information, see
Permissions to access the file system.

Security error due to surrogate checking problem
An ECI_ERR_SECURITY_ERROR -27 can occur if a user ID is not authorized as a
surrogate for the user ID specified on the ECI request.

Symptom

An ECI_ERR_SECURITY_ERROR -27 security error is issued.

Probable cause

Surrogate checking has been enabled in the EXCI options table DFHXCOPT but the
user ID under which the CICS Transaction Gateway is running is not authorized as
a surrogate for the user ID specified on the ECI request. The SURROGCHK option
in the DFHXCOPT table enables surrogate checking. The default is YES; see
“Customizing EXCI options” on page 119. The method used by the CICS
Transaction Gateway to authenticate user ID and password, when
AUTH_USERID_PASSWORD is set, changed with Version 5.0. Previously surrogate
user checking was not performed even if the SURROGAT option was set in the
DFHXCOPT options table on CICS. This change causes ECI requests to fail with a
-27 security error if surrogate user checking is enabled and the user ID under
which the CICS Transaction Gateway is running is not authorized as a surrogate
for the user ID specified on the ECI request.

Action

See the CICS Transaction Server for z/OS CICS External Interfaces Guide and CICS
Transaction Server for z/OS RACF Security Guide for more information about
surrogate user checking.

Security error due to RACF problem
An ECI_ERR_SECURITY_ERROR -27 can occur if RACF program control is not
active for the CICS Transaction Gateway load library.

Chapter 12. Resolving problems 283

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/topic/com.ibm.cics.tg.doc/progde/ccl99j2s.ide0.html

Symptom

An ECI_ERR_SECURITY_ERROR -27 security error occurs.

Probable cause

RACF program control is not active for the CICS Transaction Gateway load library
SCTGLOAD, and the CICS Transaction Server for z/OS SDFHEXCI load library.
RACF program control must be active for the CICS Transaction Gateway load
library SCTGLOAD, and the CICS Transaction Server for z/OS SDFHEXCI load
library.

Action

Activate RACF program control:
SETROPTS CLASSACT(PROGRAM)
RDEFINE PROGRAM * UACC(READ)
SETROPTS WHEN(PROGRAM)

To add the CICS library when program control is active:
RALTER PROGRAM * ADDMEM(’hlq.SDFHEXCI’/volser/NOPADCHK)
SETROPTS WHEN(PROGRAM) REFRESH

To add the CICS Transaction Gateway library when program control is active:
RALTER PROGRAM * ADDMEM(’hlq.SCTGLOAD’/volser/NOPADCHK)
SETROPTS WHEN(PROGRAM) REFRESH

Additional information

Extended attributes settings are incorrect for certain HFS files.

Extended attributes for HFS files of the <install_path>/bin directory are set during
the SMP/E installation process. However, if they are subsequently modified,
program control might be compromised. Use the ls -E command from the USS
shell command line to verify that extended attributes are set correctly.

The following extattr commands mark the load modules used by the CICS
Transaction Gateway as program controlled. Issue commands similar to the
following from an OMVS shell or a Telnet session:
extattr +p <install_path>/bin/lib*.so
extattr +ps <install_path>/bin/ctgstart

The Java SDK must also be program controlled. By default, the SDK is installed as
program controlled. If necessary issue the following command:
extattr +p javapath/bin/*

where javapath is the location of the JVM. For further information, see “Configuring
for client certificate mapping” on page 143.

Running ctgstart from the USS command line with AUTH_USER_PASSWORD set

To perform the necessary security calls to verify passwords, the Gateway daemon
must run in a program controlled address space. Under the USS shell, the first
non-program controlled program that runs (for example ls) makes that particular
USS address space "dirty", and unable to subsequently run program controlled
code.

284 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Therefore, if you intend to run the Gateway daemon by executing the ctgstart
script directly from a USS shell, set environment variable _BPX_SHAREAS to NO.
This ensures that the Gateway daemon runs in a separate "clean" address space.

Note: This is in direct contrast to the setting of _BPX_SHAREAS used when
executing the Gateway daemon via CTGBATCH.

The CICS Transaction Gateway failed to authenticate the user ID and password
specified in the ECI call.

If user IDs and passwords are not to be authenticated within the CICS Transaction
Gateway, ensure the variable AUTH_USERID_PASSWORD is not set in the CICS
Transaction Gateway STDENV file or shell environment.

The JAVA_PROPAGATE environment variable has not been set for a CICS
Transaction Gateway application running in local mode. You must set:
JAVA_PROPAGATE=NO

in the environment under which the application runs.

If the environment variable is not set, z/OS traces show that a pthread_security_np
call with the CREATE_SECURITY_ENV parameter has failed with a 157
(EMVSERR) return code.

Program control error with security enabled
An error can occur if security is enabled and a load module is not program
controlled.

Symptom

The following message is issued:

CTG6876E EXCI error: Function Call = function, Response = response, EXCI
Reason = return code, Subreason field-1 = return code, subreason field-2 =
return code, ctg_rc=error

with EXCI Reason=631.

You will also see system log entries similar to this:

ICH422I THE ENVIRONMENT CANNOT BECOME UNCONTROLLED.

CSV042I REQUESTED MODULE MODULE NOT ACCESSED. THE MODULE IS NOT PROGRAM
CONTROLLED

BPXP014I ENVIRONMENT MUST REMAIN CONTROLLED FOR DAEMON (BPX.DAEMON)
PROCESSING.

Probable cause

Security is enabled (AUTH_USERID_PWD is set to YES) and the load module
MODULE is not program controlled. The system log messages are repeated if more
than one load module is affected.

Chapter 12. Resolving problems 285

Action

Ensure that the load module is program controlled. For information about which
load modules need to be program controlled if security is enabled see
“Configuring for client certificate mapping” on page 143.

Security violation
An ECI_ERR_SYSTEM_ERROR return code might be generated as a result of
problems in the CICS address space because of a security violation.

Symptom

An ECI_ERR_SYSTEM_ERROR return code.

Probable cause

A security violation has occurred.

Action

Check the MVS system log for more information about the cause of the error.

User not authorized to access DFHAPPL profiles
A problem might occur in the CICS address space because a user is not authorized
to access DFHAPPL resources.

Symptom

An ECI_ERR_SYSTEM_ERROR return code and the following message:

DFH FC0400 applid This CICS system is not authorized to provide shared
access to data tables - reason code X'code'.

Probable cause

This error is generated in the EXCI code if the user ID of the CICS Transaction
Gateway host address space is not permitted to the DFHAPPL.dfhjvpipe or the
DFHAPPL.applid facilities.

CICS tried to open a data table but the table could not be shared with other CICS
systems because a security check for update access to the resource name
DFHAPPL.applid failed. The value of the reason code, X'code', provides further
information on the reason for the failure of the security check.

For more information see the CICS messages information in: https://
publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

Action

Check the MVS system log for more information about the cause of the error.

Memory problems
Problems caused by insufficient memory being available.

286 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Memory use increases over time
The amount of memory used by the Gateway daemon might increases over time
and a java.lang.OutOfMemory exception might occur.

The maximum number of connection manager threads and worker threads is
defined in the CICS Transaction Gateway configuration.

Symptom

The Gateway daemon stops responding and the JVM writes a
java.lang.OutOfMemory exception to the stderror log file or to the Java dump file.
The JVM also creates various dump files in the information log. There is probably
no noticeable decrease in performance before the problem occurs. If you happened
to be monitoring memory usage before the dump occurred, you would have seen
that memory usage gradually increased over time until eventually the limit was
reached.

Probable cause
v There is a problem with a user-written application, for example a request exit

which has remained inadvertently connected and is using Java resources.
v There are too many active Java threads (connection manager threads and worker

threads).
v The Java heap size is unnecessarily large. Because the memory required to create

Java heap and Java threads is allocated from the same finite storage area, it is
possible that making the Java heap too large could indirectly cause a
java.lang.OutOfMemory exception because there would then be insufficient
memory available to create enough Java threads.

v The Java heap size is too small.
v The CICS REGION size is too small.

Action
v If there is a problem with a user application, ensure that the application

practices good memory management techniques, such as freeing resources when
they are no longer required.

v If the Java heap size is unnecessarily large or too small, set the maximum
amount of heap memory available to the JVM by using the -Xmx option. The
default heap size specified by the CICS Transaction Gateway is 128MB.

v Run a memory usage monitor against the Gateway daemon process.

Additional information

The way that Java allocates memory depends on your JVM implementation. Most
JVMs allow you to adjust the maximum amount of heap memory and adjust the
amount of memory allocated to each thread.

The amount of memory that Java allocates to each thread is set by using the -Xmso
and -Xss options. Do not change the Java stack and native stack sizes from their
default values.

For more information on thread limits see “Threading model” on page 60. For
more information on Java memory allocation and JVM stack sizes, see the IBM Java
Diagnostics Guides Information Center.

Also see “Tuning the gateway to avoid out of memory conditions” on page 61.

Chapter 12. Resolving problems 287

|
|
|

Related reference:
“List of statistics” on page 319
These statistics are available from the CICS Transaction Gateway.
Related information:
“Displaying statistics” on page 315
You can use MVS system commands to display statistical information about the
CICS Transaction Gateway, or obtain statistics using either the C or Java Statistics
API interface.
“Gateway daemon resources” on page 83
Edit the GATEWAY section of the configuration file to configure the Gateway
daemon resources.

Resource problems
Problems due to shortage of resources.

Shortage of EXCI resources on the CICS server
An error can occur if there is a shortage of CICS receive sessions.

Symptom

Intermittent ECI_ERR_RESOURCE_SHORTAGE messages when sending an ECI
request to CICS.

Probable cause

There are not enough receive sessions in the sessions definition.

Action

Increase the RECEIVECOUNT value on the SESSIONS resource definition on the
CICS server to a value substantially greater than is theoretically necessary. Do this
by setting RECEIVECOUNT to a value greater than the LOGONLIM value. For
more information, see “CICS server sessions definition” on page 123.

Shortage of IPIC resources on the CICS server
An error can occur if there is a shortage of IPIC resources.

Symptom

Intermittent ECI_ERR_RESOURCE_SHORTAGE errors occur when sending an ECI
request to CICS over IPIC.

Probable cause

All the defined sessions for the connection are in use. Each active session uses one
CICS task, and the maximum number of sessions allowed is 999. CICS Transaction
Gateway allocates 300 KB of memory for each session. If all the defined sessions
are in use, any new requests receive an ECI_ERR_RESOURCE_SHORTAGE error.

Action
v In remote mode topologies, increase the SENDSESSIONS value in the CICS

Transaction Gateway configuration file (ctg.ini).
v In local mode topologies using JEE, increase the value of the ipicSendSessions

property in the connection factory configuration.

288 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

v In local mode topologies using Java base classes, use the CTG_IPIC_SENDSESSIONS
Java property to set the maximum number of IPIC send sessions.

v Increase the IPCONN ReceiveCount value in CICS.
v Increase the Java heap size.

For more information see “Configuring IPIC on CICS Transaction Server for z/OS”
on page 111

Java problems
Problems related to Java.

JVM dumps and system dumps provide detailed information about the internal
status of an IBM JVM, and the configuration of a running CICS Transaction
Gateway.

JVM dumps provide a snapshot of a Java Runtime Environment (JRE). System
dumps provide a snapshot of the Java Runtime Environment at a process level and
also provide diagnostic information regarding the system status or configuration.

For more information, see “Dumping diagnostic information” on page 262.

Failure to handle a Java exception
If an application or CICS Transaction Gateway fails to handle a Java exception, the
Java Virtual Machine (JVM) writes a Java stack dump. This applies to Java
exceptions in general.

Symptom

The JVM has written a Java stack dump.

Probable cause

An application or CICS Transaction Gateway failed to handle an exception.

Action

The destination for the dump output depends on your JVM implementation; check
your Java documentation for more information.

To increase the information written to the Java stack dump, disable the
Just-In-Time (JIT) compiler. The information included in the dump might include
the line of Java source code where the exception happened. How you disable the
JIT compiler depends on your JVM implementation; check your Java
documentation for more information.

The following example shows a Java stack dump that was created with the JIT
compiler disabled:
Exception in thread "main" java.lang.OutOfMemoryError

at java.lang.Thread.start(Native Method)
at com.ibm.ctg.server.ThreadManager.createObject

(ThreadManager.java:345)
at com.ibm.ctg.server.ThreadManager.<init>(ThreadManager.java:131)
at com.ibm.ctg.server.ManagedResources.<init>

(ManagedResources.java:106)
at com.ibm.ctg.server.JGate.main(JGate.java:895)

Chapter 12. Resolving problems 289

If the CICS Transaction Gateway handles an exception, a Java stack dump is
written only if tracing is enabled. Try to reproduce the problem with tracing
enabled because it helps to show you what was happening before the exception
occurred. For more information, see Tracing.

Java class cache problems
Gateway daemon reports Java errors during initialization and, when -Xshareclasses
option nonfatal is not specified, fails to start.

Symptom

Some, or all, of the following messages are written to the CICS TG job log:
JVMSHRC022E Error creating shared memory region
JVMSHRC336E Port layer error code = -302 or -308
JVMSHRC337E Platform error message: EDC5111I Permission denied.
JVMSHRC028E Permission Denied

ICH408I USER(userid) GROUP(group-name) NAME(user-name)
/tmp/javasharedresources/C240D2A32_semaphore_cicstgvrmgroup-name_Gnn
CL(FSOBJ) FID(0000000000000000000000D200000000)
INSUFFICIENT AUTHORITY TO OPEN
ACCESS INTENT(RW-) ACCESS ALLOWED(GROUP R--)
EFFECTIVE UID(uid) EFFECTIVE GID(gid)

ICH408I USER(userid) GROUP(group-name) NAME(user-name)
/tmp/javasharedresources/C240D2A32_memory_cicstgvrmgroup-name_Gnn
CL(FSOBJ) FID(0000000000000000000000D300000000)
INSUFFICIENT AUTHORITY TO OPEN
ACCESS INTENT(RW-) ACCESS ALLOWED(GROUP R--)
EFFECTIVE UID(uid) EFFECTIVE GID(gid)

Probable cause

CICS Transaction Gateway uses Java class caching and the user ID starting the
Gateway daemon should have the relevant permissions to allow the user ID to
create, or use existing, Java shared resources in the /tmp/javasharedresources
directory. If the user ID starting the Gateway daemon does not have the relevant
permissions some, or all, of the messages above are written to the CICS TG job log.
CICS Transaction Gateway specifies the -Xshareclasses option nonfatal, which
ensures that failure to access the Java shared class cache resources does not prevent
the Gateway daemon from starting. If the -Xshareclasses option nonfatal is
removed, the Gateway daemon will fail to initialize if it cannot access the Java
shared class cache resources.

This might occur if the Gateway daemon is started by different user IDs that do
not have the correct permissions to access the shared class cache resources in the
/tmp/javasharedresources directory.

Action

Ensure that all user IDs starting a Gateway daemon have the correct permissions
to access the tmp/javasharedresources directory and the Java shared class cache
resources. See “Configuring Java shared classes” on page 97 for details of how to
configure CICS TG with Java class caching.

For more information see your Java documentation.

290 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Unable to load class that supports TCP/IP
If Java attempts to use class files from the local file system, this contravenes
security rules and generates an exception.

Symptom

The following error occurs when running applications:

java.io.IOException: CTG6664E Protocol tcp not supported

Probable cause

You are using a Web browser and CICS Transaction Gateway on the same
workstation, and the ctgclient.jar and ctgserver.jar are referenced in the
CLASSPATH setting.

Java searches the CLASSPATH environment variable before downloading classes
across the network. If the required class is local, Java attempts to use it. However,
use of class files from the local file system contravenes the application security
rules, and generates an exception.

Action

Edit the CLASSPATH setting to remove ctgclient.jar and ctgserver.jar.

Application development problems
Problems with developing applications for CICS Transaction Gateway.

Corrupted data when using channels and containers
Data corruption when using channels and containers can occur if an incorrect
CCSID is specified.

Symptom

Unexpected or corrupt data is returned to the client application when using an
IPIC connection and channels and containers.

Probable cause
v The wrong CCSID is specified on the client application channel and has been

inherited by the container.
v The wrong CCSID is specified on the container.

Action
1. If corrupted or unexpected data is returned, run a Gateway daemon trace to

find out which code page the JVM is running on. Look in the System Properties
section at the top of the trace.

2. For Java applications, use the setCCSID method to set the required code page
on the channel. You must explicitly specify a CCSID when creating the
container. For C or .NET applications, specify a CCSID when creating a CHAR
container.

For more information on how to find the code page that the Client has sent to the
server, see Data conversion.

Chapter 12. Resolving problems 291

WebSphere Application Server problems
Problems with WebSphere Application Server.

Authorization failure using servlets with WebSphere
A user ID and password authorization failure can occur for servlets that use the
WebSphere autostart function. This is indicated by a message in the JNI trace.

Symptom

The following message appears in the JNI trace:

CcicsECI: Authorize userid/password with RACF. Return code = -1, errno =
157

Probable cause

Servlets that use the WebSphere autostart function do not have the required
authority to access CICS Transaction Gateway.

Action

Use “user-driven” servlets. With these the initialization is performed in the
servlet's init() method.

Gateway daemon startup fails due to dirty address space
The Gateway daemon fails to start because the address space where it runs has
previously been used for running non program-controlled code.

Symptom

The Gateway daemon fails to start with the following error:

CTG9549E Gateway daemon failed to start, see Gateway error log; the log
location is defined by configuration file file name

Probable cause

The CICS Transaction Gateway HFS (Hierarchical File Store) is mounted with
NOSETUID.

Action

Ensure that HFS is mounted with the default of SETUID.

Loss of connection with unit of recovery in doubt
A network connection between WebSphere Application Server and the Gateway
daemon is terminated while a UOR is in doubt. This results in an ATR229D write
to operator with reply (WTOR) message.

Symptom

A WTOR message similar to the following is written to the system log:

0000 *NN ATR229D CANCEL DELAYED. REPLY WAIT, BACKOUT, OR COMMIT TO RESOLVE
INDOUBT UR. URID = UR identifier.

292 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Where NN is a number for the operator to reply to and UR identifier is a URID.

Probable cause

A network connection between WebSphere Application Server and the Gateway
daemon is terminated, when a UOR is in doubt.

Action

No further action is required because WebSphere Application Server reconnects
automatically and resolves the transaction.

When WebSphere Application Server reconnects to the Gateway daemon, or to any
other Gateway daemon in the group, and issues a commit or backout request, the
transaction is resolved, the WTOR is cancelled, and the following message is
written to the log:

10:45:09.23 00000010 IEE400I THESE MESSAGES CANCELLED - NN

The connection manager thread that was dealing with the network connection that
failed stays blocked until the UOR is resolved and the message cancelled.

Note: If you do reply to the message with BACKOUT or COMMIT before
WebSphere Application Server has reconnected and resolved the transaction, a
heuristic hazard error is returned to WebSphere Application Server. In this case it is
your responsibility to ensure that transaction integrity is maintained. You should
not respond to this message but instead, allow WebSphere Application Server to
resolve the transaction.

Version problems
Problems due to product version non-compatibility.

Version compatibility problem with CTGRRMS
If CICS Transaction Gateway and the active CTGRRMS PC services have different
versions, CICS Transaction Gateway terminates with a CTG9215E error.

Symptom

CICS Transaction Gateway terminates and the following error message is issued:

CTG9215E CICS TG version different from the active CTGRRMS PC services

Probable cause

The version of the CICS Transaction Gateway that you are using is not the same as
the version of the CTGRRMS service address space that is running on the z/OS
image. The executable code for CTGRRMS is supplied in CTGINIT which is
shipped with CICS Transaction Gateway. If the version of CTGINIT is incremented
at a new release of CICS Transaction Gateway, you must refresh CTGRRMS to start
using the new version.

Action

Ensure that the versions of the CICS Transaction Gateway and the CTGRRMS
services are the same. See “Refreshing CTGRRMS services” on page 129 for
information on how to do this.

Chapter 12. Resolving problems 293

General information about messages
Information about message locations, formats, redirection, codes, and prefixes.

Message locations

The Gateway daemon writes log messages to standard output (stdout, referred to
as the error log), or to standard error (stderr, referred to as the information log) . If
Gateway daemon tracing is enabled, the Gateway daemon also writes log messages
to the trace output file.

Message format

Messages have the following format:
CTGnnnnt: <message text>

where nnnn is a number, and t is one of the following:

Identifier Purpose of message Written to

I information stdout

E error stderr

W warning stderr

Message redirection

Standard output and standard error can optionally be redirected to the same file.
For more information, see “Starting in batch mode” on page 249.

All CICS Transaction Gateway messages can be optionally redirected to standard
error, and standard error can be written to a file called outputfile. To do this, use
the following command:
ctgstart 2>outputfile >&2

For more information about redirecting messages, see the documentation for your
operating system.

Message prefixes

CICS Transaction Gateway messages have the prefix CTG.

For an explanation of all CICS Transaction Gateway messages, see the CICS
Transaction Gateway: Messages book.

API errors

Error codes resulting from incorrect use of the APIs are returned to the associated
applications. Applications must notify the user about such errors, and must
provide information on the required user response.
Related reference:
“Gateway daemon logging” on page 87
Edit the GATEWAY section of the configuration file to configure the Gateway
daemon logging resources.

294 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Tracing
Tracing can be enabled and controlled for different components of the CICS
Transaction Gateway.

Note: Tracing, especially debug tracing, decreases performance.
Related reference:
“Transaction tracking” on page 303
Transaction tracking can assist in diagnosing problems that sometimes occur when
complex distributed transactions spread across a CICSplex.

Gateway daemon tracing
Gateway daemon tracing can be set in the Gateway daemon configuration file, or
with a command option.

For information about controlling trace at run time using the MVS system
commands see “Trace options” on page 261.

You can use options on the ctgstart command to enable and control tracing in the
Gateway. For example, to enable standard trace, use the following command when
starting the Gateway:
ctgstart -trace

For more information see “Options on the ctgstart command” on page 254.

Specifying trace output destination

If you do not set the TFILE parameter in the ctg.ini file, trace output is written to
stderr. You can override the default destination for trace output by using the
ctgstart -tfile option. For example, the command:
ctgstart -x -tfile=filename

starts the Gateway with debug tracing enabled and writes the trace output to the
file specified by filename.

Gateway daemon trace levels
There are three main levels of Gateway daemon tracing: stack trace, standard trace,
and debug trace.

Stack tracing
Trace entries are written only when a Java exception occurs. They can help
to determine the source of the exception. Use this when it is important to
maintain performance.

Standard tracing
Java exceptions and the main Gateway daemon functions and events are
traced. By default, the Gateway daemon displays only the first 128 bytes of
any data blocks (for example the COMMAREA, or network flows) in the
trace.

Debug tracing
Java exceptions and the main Gateway daemon functions and events are
traced in greater detail than with stack or standard tracing. By default, the
Gateway daemon fully outputs any data blocks in the trace. Use this only
when performance is not important or if standard tracing did not give
enough information to solve the problem.

Chapter 12. Resolving problems 295

Tracing Java client applications
You can enable tracing in the application by using a Java directive when you start
the JVM, or by adding calls to the CICS Transaction Gateway tracing API.

Use the -D option on the java command to specify Java directives. The tracing API
comprises several static methods in the T class of the CICS Transaction Gateway.
See the information about tracing in Java client programs in the CICS Transaction
Gateway for Multiplatforms: Programming Guide for further information.

Tracing in Java Applets

When using Java Applets on Windows, data written to the error stream can be
viewed using the Java Console. See your Java documentation for information on
how to enable your Java Console.

JNI tracing
Enable JNI trace by setting environment variables, by using a ctgstart command
override, or when starting an application in local mode.
v While the CICS Transaction Gateway is running, use the MVS MODIFY

command to enable JNI trace:
/F JOB_NAME,APPL=TRACE,JNILEVEL=1

v When you start the CICS Transaction Gateway, issue the command:
ctgstart -j-Dgateway.T.setJNITFile=filename

where filename is the name of the file to which trace output is to be sent. If you
do not specify a full path to the file, the location is <install_path>/bin.

v Set the following environment variables before you start the CICS Transaction
Gateway or Java Client applications running in local mode:

CTG_JNI_TRACE
Use this environment variable to set the name of the JNI trace file. This
environment variable only defines the name of the JNI trace file; it does not
enable trace. JNI trace is output as plain text, and there is no requirement to
use a particular extension for the file name.

CTG_JNI_TRACE_ON
Set this environment variable to YES (case-insensitive) to enable JNI trace
when the CICS Transaction Gateway or Java Client application is started.

v For Java Client applications running in local mode, use Java to launch your
application and set the system property gateway.T.setJNITFile, as shown in the
following example:
java -Dgateway.T.setJNITFile=filename application

where
– filename is the name of the file to which trace output is to be sent
– application is the application to launch

When JNI tracing is enabled, some trace points might be written from threads
running under different user IDs. To ensure that all trace points can be written to
an existing file, change the permissions to allow all users to write to it:
chmod a+w filename

Do not allow more than one process to write to the same trace file, because this
can cause trace points to be lost.

296 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

JEE tracing
A detailed trace mechanism is provided for the ECI resource adapter. Trace is
useful when problem solving for applications that use the CICS resource adapters.

The CICS resource adapters support four levels of trace:

Level Trace

0 No trace messages

1 Exception tracing only (default level)

2 Exception and method entry/exit trace messages

3 Exception, method entry/exit and debug trace messages

To provide more control over tracing, these system properties are available:

Property Purpose

com.ibm.connector2.cics.tracelevel Overrides the deployed trace level for the
resource adapters without having to
redeploy or deploy another CICS resource
adapter.

com.ibm.connector2.cics.dumpoffset The offset into a byte array at which a hex
dump will start.

com.ibm.connector2.cics.dumplength The maximum length of data displayed in a
hex dump.

com.ibm.connector2.cics.outputerr Declaring this directive sends trace output
to standard error, if no other trace location
has been specified either by the JEE server,
or by the application developer working in
a nonmanaged environment. In other
circumstances the provided logwriter takes
precedence.

These are JVM System properties that can be passed to the JVM on startup. The
com.ibm.connector2.cics.tracelevel option is equivalent to the managed
environment property "tracelevel" that is set as a custom property on the
connection factory.

When you deploy the CICS resource adapters into your environment, security
restrictions are set up to allow access to the local file system for the purpose of
writing trace files.

Access is given to the IBM/ctg directory in your home directory.

On Windows this might map to:
C:\Documents and Settings\Administrator\IBM\ctg\

This might map to:
/u/ctguser/IBM/ctg/

On UNIX and Linux this might map to:
/home/ctguser/IBM/ctg/

Chapter 12. Resolving problems 297

Therefore, when setting the name and path of the trace file in your JEE
environment, use a location under this directory structure to store your trace.
Otherwise the resource adapters will not have security permissions to write to the
file.

Tracing issues when serializing Connection Factories
In a nonmanaged environment, when a ConnectionFactory object is serialized the
reference to the LogWriter used for tracing is lost.

If you want trace to be written to a LogWriter you can use the setLogWriter
method which can call on the DefaultConnectionManager object. This method
ensures that the LogWriter is used on any Connection created from a
ConnectionFactory, regardless of whether or not it was previously serialized and
de-serialized. An example of this, writing trace to the standard error stream, is
shown:
DefaultConnectionManager.setLogWriter(new java.io.PrintWriter(System.err));
Connection Conn = (Connection)cxf.getConnection();

The trace level within the ConnectionFactory is maintained throughout the
serialization process and is unaffected by the LogWriter in the
DefaultConnectionManager.

EXCI trace
The CICS Transaction Gateway writes trace entries to the EXCI trace. Entries are in
the CICS trace EXCI format.

The trace entries in a dump can be printed using standard z/OS utilities.

To start an EXCI trace from the administration interface:
1. Use the command

/D OMVS,A=ALL

to display OMVS tasks.
2. Find the CICS Transaction Gateway task, and note the ASID.
3. Enter the DUMP command with a suitable comment. For example:

/DUMP COMM=(JGATE DUMP)

4. Reply to the message with the ASID as follows:

/R nn,ASID=aa,END

where nn is the message number for the reply, and aa is the ASID.

See the System dumps section in the CICS Transaction Server for z/OS CICS External
Interfaces Guide for information on how to format the trace.

Collecting SVC dumps of the Gateway daemon address space
The IBM support organization might request an SVC dump of the Gateway
address space, or a problem might cause an SVC dump to be generated. Options
are available for ensuring that information about the required components is
captured.

Use the following command (or a similar command) to set the required dump
options:
CD SET,SDUMP=(ALLPSA,SQA,SUMDUMP,NUC,RGN,LPA,TRT,CSA,GRSQ)

298 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

To take an SVC dump of a running Gateway daemon, use the following command
sequence, setting the recommended options specifically for this dump instance:
DUMP COMM=(<Dump Title>)
R xx,SDATA=(<Dump Options>),CONT
R xx,JOBNAME=(<CICSTG Jobname>,OMVS),CONT
R xx,DSPNAME=(’OMVS’.*),END

The command is shown split over several replies due to the restricted space
available on the MVS system command line. You can enter it through the extended
console command line as a single command:
DUMP COMM=(<Dump Title>),SDATA=(<Dump Options>),JOBNAME=(<CICSTG Jobname>,
OMVS),DSPNAME=(’OMVS’.*)

The system log shows the result of the command, including the name of SVC
dump data set, if successful.

Problem solving and support
This section provides information about how to resolve problems with your IBM
software, including instructions for searching knowledge databases, downloading
fixes, and getting support.

IBM Technotes and other support documents are published on the CICS
Transaction Gateway support Web site. You can also search Web-based support
resources by using the customized query fields in the Web search topic. For more
information, see http://www-01.ibm.com/software/htp/cics/ctg/support/.

Searching knowledge bases
If you have a problem with CICS Transaction Gateway, you want it resolved
quickly. Begin by searching the available knowledge bases to determine whether
the solution to your problem is already documented.
1. Search the CICS Transaction Gateway Information Center.
2. Search the Internet. If you cannot find an answer to your question in the

information center, search the Internet for the latest, most complete information
that might help you resolve your problem. To search multiple Internet
resources for CICS Transaction Gateway, use the Web search tool. The tool
enables you to search a variety of resources including:

IBM Technotes
Downloads
IBM Redbooks® publications
IBM DeveloperWorks
Forums and newsgroups
Google

Contacting IBM Software Support
IBM Software Support provides assistance with product defects.

Before contacting IBM Software Support, your company must have an active IBM
software maintenance contract, and you must be authorized to submit problems to
IBM.

Follow the steps in this topic to contact IBM Software Support:
1. Determine the business impact of your problem.

Chapter 12. Resolving problems 299

2. Describe your problem and gather background information.
3. Submit your problem to IBM Software Support.

Determine the business impact of your problem

When you report a problem to IBM, you will be asked to supply a severity level.
Therefore, you need to understand and assess the business impact of the problem
you are reporting. Use the following criteria:

Severity Impact Characteristic

1 Critical You are unable to use the program, resulting in a critical
impact on operations. This condition requires an
immediate solution.

2 Significant The program is usable but is severely limited.

3 Moderate The program is usable with less significant features (not
critical to operations) unavailable.

4 Minimal The problem causes little impact on operations, or a
reasonable circumvention to the problem has been
implemented.

Describe your problem and gather background information

When explaining a problem to IBM, be as specific as possible. Include all relevant
background information so that IBM Software Support specialists can help you
solve the problem efficiently. To save time, know the answers to these questions:
v What software versions were you running when the problem occurred?
v Do you have logs, traces, and messages that are related to the problem

symptoms? IBM Software Support is likely to ask for this information.
v Can the problem be recreated? If so, what steps led to the failure?
v Have any changes been made to the system? For example, hardware, operating

system, networking software, and so on.
v Are you currently using a workaround for this problem? If so, please be

prepared to explain it when you report the problem.

To find out what information and files you will need to supply when opening a
problem management record (PMR), see http://www-01.ibm.com/support/
docview.wss?uid=swg21287335#submit

Submit your problem to IBM Software Support

You can submit your problem in one of two ways:
v Online: Go to the Submit and track problems page on the IBM Software Support

site. Enter your information into the appropriate problem submission tool.
v By phone: For the phone number to call in your country, go to the contacts page

of the IBM Software Support Handbook on the Web and click the name of your
geographic region.

If the problem you submit is for a software defect or for missing or inaccurate
documentation, IBM Software Support will create an Authorized Program Analysis
Report (APAR). The APAR describes the problem in detail. Whenever possible,
IBM Software Support will provide a workaround for you to implement until the
APAR is resolved and a fix is delivered.

300 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

IBM publishes resolved APARs on the IBM product support Web pages daily, so
that other users who experience the same problem can benefit from the same
resolutions.

Chapter 12. Resolving problems 301

302 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Chapter 13. Monitoring and statistics

Monitoring provides information about the status of individual requests. Statistics
provide information about the performance of runtime components.

Monitoring

Request monitoring exits can optionally be used for driving user exit code on a per
request basis. One or more user exit programs can be called for each request if
details of each request are made available. All user exit code is called inline; this
means that performance of the user exit code is critical.

Statistics

CICS Transaction Gateway statistics are always active and predefined by IBM.
Unlike the request monitoring exits, the statistics provide summary information
such as running totals, averages, status, and configuration values. Statistics are
either displayed from system management commands, or can be obtained through
a program that uses the statistics API. Statistics are optionally recorded to the
System Management Facility (SMF) at regular intervals and are always written to
SMF at the logical end of day.

Transaction tracking
Transaction tracking can assist in diagnosing problems that sometimes occur when
complex distributed transactions spread across a CICSplex.

Transaction tracking across a CICSPlex
Transaction tracking can assist in diagnosing problems that sometimes occur when
complex distributed transactions spread across a CICSplex.

Transaction tracking is available for Java, ECI V2 and .NET client requests, through
the availability of origin data to the monitoring exits. Origin data associated with
each transaction is forwarded by CICS on each subsequent DPL between CICS
regions. This enables tracking of requests associated with a given client application,
as they pass through the Gateway daemon, through the connected CICS servers, to
the target programs in CICS.

Any tasks in CICS initiated using ECI through IPIC connections have associated
origin data in CICS carrying a fully-qualified APPLID field. Origin data in CICS
can be viewed using CICSPlex® SM or using the INQUIRE ASSOCIATION SPI
command. You can also use the CICS Transaction Gateway request monitoring
exits in the Gateway daemon to view the origin data, and Java client applications
have access to origin data in their request monitoring exits. These commands allow
an administrator to identify the Client application that originated a particular task.

If you specify an APPLID and APPLID qualifier for the Client application, they are
used in the origin data. If they are not specified, but you are running in remote
mode and the values are specified in the configuration file, these values are used.
If an APPLID and APPLID qualifier are not specified at all, the values
automatically generated by CICS for the IPIC connection are used. The

© Copyright IBM Corp. 2000, 2013 303

fully-qualified APPLID can be viewed in CICS using the CEMT INQUIRE IPCONN
command. It is displayed in the Applid and NetworkId fields.
Related concepts:
“Configuring identification using APPLID” on page 105
CICS Transaction Gateway supports identification using APPLID. This provides a
standard mechanism for identification of Gateway daemon and Java client
components in the CICSplex, and for subsequent task correlation in CICS.
“Client APPLID and APPLID qualifier” on page 108
Set the APPLID and APPLID qualifier for Client applications to enable transaction
tracking.

Transaction tracking with Cross Component Trace (XCT)
You can use Cross Component Trace (XCT) to track individual requests as they
flow between WebSphere Application Server, CICS Transaction Gateway and CICS,
assisting both problem diagnosis and system planning and configuration.

The XCT facility is available when using IPIC connections and WebSphere
Application Server V8.5 or later, when High Performance Extensible Logging
(HPEL) is enabled. As a request flows through the system, the related XCT
information is in the WebSphere HPEL log, CICS TG request monitoring exit data
and CICS task association data, which you can view in a variety of ways.

XCT contexts

XCT contexts are hierarchical and Begin and End demarcate component
boundaries. A thread of execution can have up to three XCT contexts at any one
time:
v Root – the initial context (Request ID) of the component at the point of entry.
v Parent – the context of the calling component.
v Current – the context of the current component.

304 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

In the diagram above, A refers to the context assigned to the incoming request, B
to the context of the Channel Framework, and C to the JCA CICS.

XCT data in WebSphere

XCT context data is written to the HPEL log. For the ECI resource adapter, the log
is annotated with the target CICS server, the CICS program name and, on exit, the
CICS return code.

An example of XCT context data written to the HPEL repository viewed through
the WebSphere Application Server Log Viewer:

Chapter 13. Monitoring and statistics 305

The XCT context data can also be seen in the WebSphere Application Server log
file:
[9/3/12 12:45:10:016 GMT] 00000046 I UOW= source=com.ibm.websphere.XCT class= method= org=null prod=null component=null

thread=[WebSphere WLM Dispatch Thread t=007c40b8] requestID=[BKwWqX+HPuK-AAAAAAAAAAG]
BEGIN BKwWqz2kOGV-AAAAAAAAAAE BKwWqz2kOGV-AAAAAAAAAAD ECIRA(Server(24TGNSIP) Program(EC01))

[9/3/12 12:45:31:106 GMT] 00000046 I UOW= source=com.ibm.websphere.XCT class= method= org=null prod=null component=null
thread=[WebSphere WLM Dispatch Thread t=007c40b8] requestID=[BKwWqX+HPuK-AAAAAAAAAAG]
END BKwWqz2kOGV-AAAAAAAAAAE BKwWqz2kOGV-AAAAAAAAAAD ECIRA(Server(24TGNSIP) Program(EC01) RC(ECI_NO_ERROR))

Additional information can be viewed using the WebSphere Application Server
Cross Component Trace.

For more information about configuring Cross Component Trace, see the
WebSphere Application Server V8.5 information center"

XCT data in CICS TG

Within the Gateway daemon, the XCT context data is available in the request
monitoring exits. At all request monitoring exit points, three XCT request
identifiers are available:
v XctRoot, the initial context of the component at the point of entry.
v XctParent, the context of the calling component.
v XctCurrent, the context of the current component, CICS TG.

The XCT data in the Gateway daemon is available for all CICS server protocols but
it is only when using IPIC that the context data is propagated to CICS in the origin
data. The root and current XCT contexts are available in the origin data at the
RequestDetails and ResponseExit exit points.

The following example shows the XCT and origin data entries in the request
monitoring log when using the supplied sample request monitor BasicMonitor:

306 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.home.doc_wasinfo_v8r5/welcome_ic_home.html

[00000000001]: com.ibm.ctg.samples.requestexit.BasicMonitor:eventFired called with event = RequestEntry
: : : : : :

[00000000001]: XctRoot = BKwWqX+HPuK-AAAAAAAAAAG
[00000000001]: XctParent = BKwWqz2kOGV-AAAAAAAAAAD
[00000000001]: XctCurrent = BKwWqz2kOGV-AAAAAAAAAAE

[00000000001]: com.ibm.ctg.samples.requestexit.BasicMonitor:eventFired called with event = RequestDetails
: : : : : :
[00000000001]: OriginData - Transaction Group ID = 1A10C2C1 E8D3C9E2 E22EC7C1 E3C5E6C1 E8F1CA1D BCBD6459 8200

- User Correlator = XCT BKwWqX+HPuK-AAAAAAAAAAG BKwWqz2kOGV-AAAAAAAAAAE
: : : : : :
[00000000001]: XctRoot = BKwWqX+HPuK-AAAAAAAAAAG
[00000000001]: XctParent = BKwWqz2kOGV-AAAAAAAAAAD
[00000000001]: XctCurrent = BKwWqz2kOGV-AAAAAAAAAAE

[00000000001]: com.ibm.ctg.samples.requestexit.BasicMonitor:eventFired called with event = ResponseExit
: : : : : :
[00000000001]: OriginData - Transaction Group ID = 1A10C2C1 E8D3C9E2 E22EC7C1 E3C5E6C1 E8F1CA1D BCBD6459 8200

- User Correlator = XCT BKwWqX+HPuK-AAAAAAAAAAG BKwWqz2kOGV-AAAAAAAAAAE
: : : : : :
[00000000001]: XctRoot = BKwWqX+HPuK-AAAAAAAAAAG
[00000000001]: XctParent = BKwWqz2kOGV-AAAAAAAAAAD
[00000000001]: XctCurrent = BKwWqz2kOGV-AAAAAAAAAAE

For more information about when the XCT request identifiers are available, see
Data available by FlowType and RequestEvent Data available by FlowType and
RequestEvent

XCT data in CICS

For IPIC only, the user correlation data containing the root and current XCT
contexts is sent from CICS TG to CICS as part of the origin data. In addition to
obtaining the user correlation data through the CICS API, the user correlation data
can be viewed in the task's association data, using the command CEMT INQUIRE
ASSOCIATION(taskid), or in the Task Associations view in CICS Explorer, and is
recorded to SMF in type 110, sub-type 01 records.

The following screenshot shows association data displayed using the CICS API
command INQUIRE ASSOCIATION(taskid):

The CICS Explorer can also be used to display the user correlation data, for
example:

Request monitoring exits
Request monitoring exits provide information about individual requests as they are
processed by CICS Transaction Gateway.

Chapter 13. Monitoring and statistics 307

https://infocenters.hursley.ibm.com/tgzos_latest/help/index.jsp?topic=%2Fcom.ibm.cics.tg.zos.doc%2Fprogdezos%2Fuserexitsdata.html
https://infocenters.hursley.ibm.com/tgzos_latest/help/index.jsp?topic=%2Fcom.ibm.cics.tg.zos.doc%2Fprogdezos%2Fuserexitsdata.html

Exit points in the product allow user code to be run in the context of each
individual transaction. This context allows the user code to take action based on
information specific to the current request. For example, an exit might be written
to trigger an alert if an individual transaction runs for longer than a specified time.
You use request monitoring exits to analyze transaction flows to assist with
problem determination and performance tuning. Samples exits are provided; these
demonstrate how request exits can be used.

The Java based request monitoring exits are available on the Gateway classes and
the Gateway daemon and can be stacked, enabling multiple exits to be driven for
an individual request. Exits are called for each ECI flow at the point of request
entry to, and response exit from, the CICS Transaction Gateway code. The data
available to the exit depends on the type of ECI flow and the point at which the
exit is driven from.

The data values available to request monitoring exits are passed to the RequestExit
eventFired() method.

Table 22. Data available to request monitoring exits

Request data description Description

Channel Channel associated with the request.

CicsAbendCode CICS abend code on a response.

CicsReturnCode CICS return code on a response.

CicsServer Server to which CICS Transaction Gateway sent the request.

ClientCtgApplid APPLID of the Client application.

ClientCtgApplidQualifier APPLID qualifier of the Client application.

ClientCtgCorrelator Correlator generated by the Java client application.

ClientLocation The location of the Client application (IP address).

CommandData Command data originating from a request monitor exit administration request.

CtgApplid If the FlowTopology is "Gateway" this is the Gateway daemon APPLID, otherwise it
is the client application APPLID.

CtgApplidQualifier If the FlowTopology is "Gateway" this is the Gateway daemon APPLID qualifier,
otherwise it is the client application APPLID qualifier.

CtgCorrelator CICS Transaction Gateway identifier used to track this flow within the CICS
Transaction Gateway instance.

CtgReturnCode CICS Transaction Gateway return code on a response.

DistributedIdentity Distributed identity associated with this transaction.

FlowTopology Topology from which the request exit was called:

v Gateway - from the Gateway daemon

v RemoteClient - from a remote client

v LocalClient - from a local client

FlowType Flow type of this request or response.

GatewayUrl URL of the Gateway to which the Java client is connecting.

Location Location of this monitor. The value is an IP address.

LuwToken CICS Transaction Gateway logical unit of work token.

OriginData Data identifying the Client application that originated a CICS task and which
contains the APPLID and APPLID qualifier. This is available only when using the
IPIC protocol.

PayLoad Copy of the COMMAREA for use in the exit.

Program CICS program name.

RequestReceived Timestamp of request flow received in the Gateway classes or Gateway daemon
classes; number of milliseconds since January 1, 1970, 00:00:00 GMT.

308 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Table 22. Data available to request monitoring exits (continued)

Request data description Description

RequestSent Timestamp of request flow sent from the Gateway classes or Gateway daemon
classes; number of milliseconds since January 1, 1970, 00:00:00 GMT.

ResponseReceived Timestamp of response flow received in the Gateway classes or Gateway daemon
classes; number of milliseconds since January 1, 1970, 00:00:00 GMT.

ResponseSent Timestamp of response flow sent from the Gateway classes or Gateway daemon
classes; number of milliseconds since January 1, 1970, 00:00:00 GMT.

RetryCount Number of times the Gateway daemon retried sending a request to CICS.

Server Server specified in the request.

TpnName TPN name.

TranName Transaction ID.

Urid RRMS URID for this XA transaction. This value is supported exclusively for XA
transactions on z/OS and is an array of 16 bytes.

Userid User ID.

WireSize Number of bytes of data received from or about to be sent to the remote client.

WorkerWaitTime Period in milliseconds that the Gateway daemon waited for a worker thread to
become available to process the request. If the Gateway daemon times out waiting
for a worker thread to become free, this value contains the time in milliseconds that
the Gateway daemon waited before the timeout occurred.

XaReturnCode XA return code on a response.

XctCurrent The identifier for this transaction.

XctParent The identifier for the parent of this transaction.

XctRoot The root identifier for this transaction.

Xid XID for XA transaction.

Related information:
Java request monitoring exits
Request monitoring exits configuration
Request monitoring exit API information

Request monitoring exits configuration
In a remote mode topology, you can configure request monitoring exits
individually for the Gateway classes and the Gateway daemon. In a local mode
topology, you can only configure request monitoring exits for the Gateway classes.

In both situations, the exit configuration data must follow this format:
v Each exit must be defined using a fully qualified class name.
v Exits must be delimited from each other by commas (",").

When the Gateway classes or the Gateway daemon processes the configuration
data, each class is instantiated and failures are logged. When a request monitoring
exit object is used, any exceptions or runtime errors are logged and the exit
becomes inactive.

For more information see “Configuring request monitoring exits for the Gateway
daemon” on page 151.

Statistics
Statistics can help with problem determination and capacity planning, and make it
possible to gain a snapshot of the current activity in CICS Transaction Gateway.

Chapter 13. Monitoring and statistics 309

||

||

||

Statistics can be displayed using the administration interface or retrieved using a
program through the Statistics API. Statistical values reflect the status or activity of
the Gateway daemon from which they were collected. Statistical data is based on
Client applications that run in remote mode. No statistical data is available for Java
Client applications that run in local mode. The collection of statistics has an
insignificant impact on performance, and statistics are always available.

CICS Transaction Gateway statistics aim to assist you in the following activities:
v Capacity planning information and throughput analysis
v Critical resource usage
v Problem determination

Interval and end-of-day statistics reflect those used by the CICS Transaction Server
products to allow for synchronization of statistics collection between the products.
Further information can be found from the Statistics parameters section of the CICS
Transaction Server for z/OS System Definition Guide.

Resource group ID

Statistics resource groups are a logical grouping of resources such as connection
manager threads, and represented by resource group IDs. A resource group ID is
associated with a number of resource group statistics, each identified by a statistic
ID.

Statistic ID

A statistic ID is a label referring to a specific statistical value, and is used to
identify or retrieve statistical data. The statistic ID consists of three parts: <resource
group ID>_<statistical type><statistic ID suffix>. For example, the statistic ID
CM_CALLOC is part of the connection manager (CM) resource group, and
represents the current (C) number of allocated (ALLOC) connection manager
threads. See “List of statistics” on page 319 for a list statistic IDs arranged by
resource group.

Statistical type

There are four statistical types: C (Current), I (Interval), L (Lifetime) and S
(Startup). For more information, see “List of statistics” on page 319

Statistic ID suffix

The statistic ID suffix is the part of the statistic ID that follows the statistical type
character. This suffix is usually a noun representing the particular characteristic of
the resource group represented by the statistic ID. Similar characteristics that are
shared by resource groups can use the same statistic ID suffix for consistency. For
example, the suffix ALLOC is used in statistical IDs WT_CALLOC, CM_CALLOC,
and CS_CALLOC.

Statistics recording to SMF

CICS Transaction Gateway provides a mechanism to record interval, end-of-day
data, and shutdown statistics data to the System Management Facility on z/OS.
For more information, see “Recording statistics to SMF” on page 338.

310 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Statistics configuration
You can configure parameters for statistics interval, statistics end of day, recording
statistics to SMF, and statistics API port.

Interval timing patterns

The interval and end-of-day parameters combine to form a timing pattern. This
timing pattern determines when statistics intervals begin and end. At interval
boundaries, all statistics are optionally recorded to SMF, and statistics of statistical
type "Interval" are reset to the default values. For examples, see “Interval timing
patterns” on page 313.

Statistics interval

Statistics are gathered by CICS Transaction Gateway during a specified interval.
You can change the interval value using the statint system parameter. You can set
the statint parameter using the Gateway settings in the configuration file.

CICS writes the interval statistics to the SMF data set automatically at the expiry of
the interval if the statistics recording status is set ON by the statsrecording
system parameter.

The statint parameter equates to the CICS Transaction Server keyword and
concepts of the parameter of the same name.

See “Statistics interval” on page 154 for more information.

Statistics end of day

The end-of-day value (stateod) defines a logical point in the 24–hour operation of
CICS Transaction Gateway. At this point, the interval ends and data is written to
SMF regardless of the setting of the statsrecording system parameter.

You can change the end of day value using the Gateway settings in the
configuration file.

The stateod parameter equates to the CICS Transaction Server keyword and
concepts of the parameter of the same name. See “Statistics end of day time” on
page 154 for more information.

Recording to SMF

CICS Transaction Gateway provides a mechanism for recording interval statistics
and end-of-day data to the System Management Facility (SMF) on z/OS.

You can set the statsrecording parameter using the Gateway settings in the
configuration file.

See “Enable statistic recording to SMF” on page 155 for more information.

Statistics API port

The Statistics API port allows the Gateway daemon to handle incoming requests
for the Statistics API. You can select the port number on which to listen for
Statistics API requests using the Gateway settings in the configuration file.

Chapter 13. Monitoring and statistics 311

See “Statistics API protocol settings” on page 152 for more information.
Related reference:
“Statistics interval” on page 154
The statint parameter specifies the recording interval for system statistics.
“Statistics end of day time” on page 154
The stateod parameter specifies the end of day time.
“Recording statistics to SMF” on page 338
CICS Transaction Server, TXSeries, and WebSphere support the recording of
statistics to SMF. The z/OS based products write SMF records. CICS Transaction
Gateway provides similar function on the z/OS platform using type 111 SMF
record format.
“Statistics API protocol settings” on page 152
To configure the statistics API protocol settings, edit the statistics API protocol
parameters in the GATEWAY section of the configuration file.

Setting up your system for statistics
To configure your system to deal with requests for statistics edit the configuration
file, ctg.ini, following these steps.

Procedure
1. Add the statsapi handler to the GATEWAY section of the configuration file.
2. Set the statistics interval parameter statint. The parameter has the format

HHMMSS. The default value is three hours (030000).
3. Set the end of day parameter stateod. The parameter has the format HHMMSS.

The default value is midnight (000000).
4. Set the statistics recording parameter statsrecording to on to enable statistics

to be recorded to SMF.
5. Save the configuration file, then stop and restart the Gateway daemon.
Related reference:
“Statistics API protocol settings” on page 152
To configure the statistics API protocol settings, edit the statistics API protocol
parameters in the GATEWAY section of the configuration file.
Related information:
“Statistics API protocol parameters” on page 161
To enable the statistics API protocol, include a protocol handler definition in the
GATEWAY section of the configuration file.

Interval statistics
The statint keyword shows the statistics interval duration and the stateod
keyword shows the End-of-Day time. These two keywords match the equivalent
setting in CICS Transaction Server, and are familiar to CICS Transaction Server
administrators.

If either or both keywords are undefined, on Gateway daemon initialization, they
default to three hours statint and midnight stateod. The default is shown in the
sample configuration file, ctgsamp.ini:

StatInt = 030000 # Statistics interval in the form HHMMSS
StatEOD = 000000 # Statistics end of day time in the form HHMMSS

The Statistics Interval combines with the Statistics End of Day time to formulate
times at which interval statistics are reset. Interval statistics can also be optionally

312 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

recorded. Reset occurs at the end of the current interval or at the Statistics End of
Day time (the logical end of day), whichever comes first. Valid values for the
statistics interval parameter, statint, are between 1 minute and 24 hours. The field
requires the interval to be specified in the format HHMMSS, and accepts interval
times only within the specified range.

If an irregular interval is specified and the end of interval and the Statistics End of
Day time might not coincide, that interval is truncated. The next interval starts
from Statistics End of Day time. For further details see “Interval timing patterns.”
Valid values for the End of Day time parameter, stateod, can range between
midnight (000000) and 1 second before midnight (235959). The field requires the
interval to be specified in the format HHMMSS, and accepts interval time only
within the specified range.

The statint and stateod keywords are in the GATEWAY section of the
configuration file.

Interval timing patterns
Interval boundaries are aligned to the logical end of day. It is most likely that the
first statistics interval after Gateway daemon initialization will be of a shorter
duration than the configured interval length.

The first interval period is shorter than subsequent interval periods if either of the
following conditions are met:
v The Gateway daemon start time does not match one of the interval end times, as

shown in the examples in the following tables.
v You select a figure for an interval period that does not divide equally into 24, for

example 5 hours (050000).

Examples of Statistics Interval timings

Interval Statistics timing – Example 1:

The Gateway daemon starts at 5:20 a.m. (052000) and is configured with
statint=030000 stateod=000000.

The first Interval is scheduled to end at 6:00 a.m. (060000), and is of 40 minutes
duration. This schedule allows subsequent intervals be aligned with the end-of-day
event. In this case, statistics are reset and optionally recorded at the following
times during the 27 hours following Gateway initialization:

Table 23. Interval Statistics timing – Example 1

Time Event type Interval length HH:MM:SS

05:20:00 Gateway starts Not applicable

06:00:00 Interval reset 00:40:00

09:00:00 Interval reset 03:00:00

12:00:00 Interval reset 03:00:00

15:00:00 Interval reset 03:00:00

18:00:00 Interval reset 03:00:00

21:00:00 Interval reset 03:00:00

00:00:00 End of Day reset 03:00:00

03:00:00 Interval reset 03:00:00

Chapter 13. Monitoring and statistics 313

Table 23. Interval Statistics timing – Example 1 (continued)

Time Event type Interval length HH:MM:SS

Sequence repeats

Interval Statistics timing – Example 2:

The Gateway daemon starts at 5:20 a.m. (052000) and is configured for six hour
statistics intervals, with logical end of day at 23:59 with statint=060000
stateod=235900.

The first Interval is scheduled to end at 5:59 a.m. (055900), and is of 39 minutes
duration. This schedule allows subsequent intervals be aligned with the end-of-day
event. In this case, statistics are reset and optionally recorded at the following
times during the 30 hours following Gateway initialization:

Table 24. Interval Statistics timing – Example 2

Time Event type Interval length HH:MM:SS

05:20:00 Gateway starts Not applicable

05:59:00 Interval reset 00:39:00

11:59:00 Interval reset 06:00:00

17:59:00 Interval reset 06:00:00

23:59:00 End of Day reset 06:00:00

05:59:00 Interval reset 06:00:00

11:59:00 Interval reset 06:00:00

Sequence repeats

Interval Statistics timing - Example 3:

The Gateway daemon starts at 5:20 a.m. (052000) and is configured for a 24 hour
statistics interval, with logical end of day at 23:59 with statint=240000
stateod=235900.

The first Interval is scheduled to end at 23:59 (235900), and is of 17 hours and 39
minutes duration. This schedule allows subsequent intervals be aligned with the
end-of-day event. In this case, statistics are reset and optionally recorded at the
following times during the days following Gateway initialization:

Table 25. Interval Statistics timing – Example 3

Time Event type Interval length HH:MM:SS

05:20:00 Gateway starts Not applicable

23:59:00 End of Day reset 17:39:00

23:59:00 End of Day reset 24:00:00

23:59:00 End of Day reset 24:00:00

Sequence repeats

314 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Displaying statistics
You can use MVS system commands to display statistical information about the
CICS Transaction Gateway, or obtain statistics using either the C or Java Statistics
API interface.

Use MVS system commands to display statistical information about the CICS
Transaction Gateway. Use the options listed in Statistical options to display
statistical information. Do not combine options.

Enter a command like the following using MVS system commands:
/F <JOBNAME>,APPL=STATS,<OPTIONS>

For example, to display all available statistics about the CICS Transaction Gateway,
enter the following command:
/F <JOBNAME>,APPL=STATS,GS

The command is not case-sensitive.

Displaying all available statistics
Use the administration interface with the GS option with no parameters, to display
all available statistical information about the CICS Transaction Gateway.

Enter the following command:

/F <JOBNAME>,APPL=STATS,GS

Selecting the statistics to display
Use the administration interface , with the GS option followed by a list of IDs, to
display statistics for one or more statistical IDs and resource groups.

Use the GS option, followed by a list of IDs for the statistics or resource groups.
Separate each item in the list by a colon (:).

For example, to display information about the worker thread resource group, the
maximum number of connection managers, and the Gateway daemon resource
group, enter the following command:

/F <JOBNAME>,APPL=STATS,GS=WT:CM_SMAX:GD

You might use an optional parameter, stattype, (st) to filter on statistic type. The
parameter is case-insensitive and consists of colon-separated single characters each
of which denotes a statistic type:
v S = Startup
v C = Current
v L = Lifetime
v I = Interval

To display the interval statistical values, for all resource groups, enter one of the
following commands:

/F ,APPL=STATS,GS,ST=I

/F ,APPL=STATS,GETSTATS,STATTYPE=I

Chapter 13. Monitoring and statistics 315

To display the current statistical values from the CS resource group, enter the
following command:

/F ,APPL=STATS,GS=CS,ST=C

To display all lifetime and interval statistical values from the GD resource group,
enter the following command:

/F ,APPL=STATS,GS=GD,ST=L:I

If the stattype option is omitted, the output is unfiltered. Any repeated statistical
type characters or unrecognized statistical type characters are ignored. If any of the
specified statistical type characters are unrecognized, the command produces a
warning message.

Listing available resource groups
Use the administration interface, together with the RG parameter with no other
options, to list available resource groups.

To list available resource groups, enter the following command:

/F <JOBNAME>,APPL=STATS,RG

Listing all available statistical IDs
Use the administration interface, together with the SI parameter, to list available
statistical IDs.

To list all available statistical IDs, enter the following command:

/F <JOBNAME>,APPL=STATS,SI

Listing statistical IDs for selected resource groups
Use the administration interface, with the SI parameter followed by a list of
resource group IDs, to list available statistical IDs.

To list statistical IDs for one or more resource groups, use the SI parameter
followed by a colon-separated list of resource groups. For example, to list statistical
IDs for the connection manager and worker thread resource groups, enter the
following command:
/F <JOBNAME>,APPL=STATS,SI=CM:WT

Getting help on statistics
Use the administration interface with the ? option to get help on statistics.

Issue the following command:

/F <JOBNAME>,APPL=STATS,?

Statistics resource groups
Every statistic belongs to a resource group. Resource groups define an area for
which statistical data can be associated and retrieved. Resource groups are
available from the CICS Transaction Gateway.

A resource group is a logical grouping of resources, such as connection managers.
It defines an area for which statistical data can be associated and retrieved. Each
resource group has these characteristics:

316 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

ID A unique identifier for the resource group. The ID is used by the
administration interface and the statistical API to retrieve statistics, and is not
case-sensitive.

Name
The name of the resource group, displayed when the administration interface
is used to display statistical information.

Description
A description of the resource group.

These resource groups are defined:

Table 26. Resource groups

ID Name Description

CM Connection manager
statistics

Statistics about connection manager threads.

CS CICS server (all) statistics Statistics about all CICS servers.

CSx CICS server (instance)
statistics

Statistics for an individual CICS server, where x is the APPLID of the
CICS server.

GD Gateway daemon statistics Statistics on transaction counts, request counts, and Gateway status.

LS Logical CICS server (all)
statistics

Statistics for logical CICS servers.

LSx Logical CICS server
(instance) statistics

Statistics for an individual logical CICS server.

PH Protocol handler statistics Statistics about protocol handlers.

SE System environment
statistics

Statistics about the System Environment of the Gateway daemon.

WT Worker thread statistics Statistics about worker threads.

Connection manager resource group (CM)

Statistics are available for connection manager threads. These statistics identify the
characteristics for the pool of connection manager threads and are useful for
analyzing resource usage, capacity planning and diagnosing system problems.

CICS Server (all) resource group (CS)

Statistics are available that summarize interactions with all associated CICS servers.

CICS Server (instance) resource group (CSx)

Statistics are available for each specific CICS server "x". In general, the statistic IDs
of the CS resource group which summarize activity across all associated CICS
servers, can be found for each CICS server in the corresponding CSx resource
group.

For example, a CICS Transaction Gateway connected to a CICS server defined by
the name CICSAOR1 is represented by resource group CSCICSAOR1. An example
of a statistical ID available for such a resource group is CSCICSAOR1_LALLREQ. If
the server name contains any underscores (_), they are replaced with hyphens (-) in
the resource group ID.

Chapter 13. Monitoring and statistics 317

A CSx resource group is available for a connected CICS server regardless of the
protocol used. However, there are some protocol-specific statistic IDs. The
CSx_SPROTOCOL statistic is provided to distinguish the set of values that can be
expected for a given CSx resource group, especially for use by a Statistics API
program.

Statistics for a CICS server connected over IPIC or EXCI are available after a
connection is attempted.

Gateway daemon resource group (GD)

Statistics are available for the Gateway daemon. These statistics include status, an
indication of work done on behalf of remote mode Client applications, completed
and active transactions. Although there is a correlation between the number of
requests counted in the GD and CS resource groups, requests counted in the GD
resource group reflect remote Client requests and are likely to be different from the
CS resource group request counts. Some Client requests do not require any
interaction with a CICS server; for example, list systems. Other Client requests
might require more than one interaction with a CICS server.

Logical CICS server (all) resource group (LS)

CICS Transaction Gateway records the number of requests, for all associated logical
CICS servers, that have been remapped, since startup and since the start of the
interval. A runtime statistic enables the proportion of mapped requests to be
calculated.

Logical CICS server (instance) resource group (LSx)

Statistics are available for each specific logical CICS server "x" to show the number
of requests that have been received for this logical CICS server in the interval and
since startup.

Protocol handler resource group (PH)

Statistics are available to identify whether the SSL and TCP protocol handlers are
enabled and the port numbers in use. A value of -1 is returned if the protocol is
not enabled.

System environment resource group (SE)

Statistics are available to assist in the analysis of storage usage by the Gateway
daemon. JVM Heap storage and Garbage Collection (GC) information is provided.
In addition, statistical values representing region storage availability and current
usage are provide on the z/OS platform.

Worker thread resource group (WT)

Statistics are available for the worker threads. These statistics identify the
characteristics for the pool of worker threads that can be used by connection
managers. These statistics are useful for analyzing resource usage and capacity
planning, and for diagnosing system problems.

318 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

List of statistics
These statistics are available from the CICS Transaction Gateway.

Each statistic has the following characteristics:

ID A unique identifier for the statistic. The ID is used by the administration
interface and the statistical API to retrieve statistics, and is not case-sensitive.
The structure of the ID is as follows:
<resource group>_<statistics type><statistics suffix>

Each part of the ID is mandatory; their characteristics are as follows:

<resource group>
An alphanumeric string of one or more characters representing the
resource group to which the statistic belongs.

<statistics type>
A single character; valid values are C, I, L, and S.

C Current: the statistic is based on a current evaluation; the value
is dynamic.

I Interval: the statistic is based on interval equivalents of
existing Lifetime statistics, Gateway bandwidth or throughput,
average response times, and thread utilization.

L Lifetime: the statistic is based on observations since the
Gateway daemon started; the value is dynamic. Each lifetime
statistic has a default value, which is set when the Gateway
daemon is initialized.

If a characteristic of the product is reflected by a statistical ID
of type Lifetime, in general there is an equivalent statistical ID
of type Interval.

S Startup: the statistic is based on a configuration setting for the
Gateway daemon; the value is static.

<statistics suffix>
An alphanumeric string of one or more characters representing the
resource about which information is being returned.

Short description
The short description is displayed when the administration interface is used to
display statistical information.

Description
A description of the information returned by the statistic.

Value returned
The type of information returned by the statistics:

Integer
The string value represents a 4-byte numeric value.

Long The string value represents an 8-byte numeric value.

String The string value represents character data.

These subtopics describe the statistics that are defined:

Chapter 13. Monitoring and statistics 319

Connection manager statistics:

The statistics listed here belong to the connection manager resource group.

Table 27. Connection manager statistics

ID Description Default value Data type

CM_CALLOC The current number of connection manager
threads allocated to clients.

0 Integer

CM_CCURR The current number of connection manager
threads created.

0 Integer

CM_CWAITING The current number of connection managers
waiting for a worker thread to become
available.

0 Integer

CM_IALLOC The number of allocations for connection
manager threads representing the number of
connections that have been established from
remote clients. A low value represents
efficient connection reuse.

0 Integer

CM_IALLOCHI The peak number of connection manager
threads concurrently allocated to client
applications. This number represents a high
water mark for CM_CALLOC.

<CM_CALLOC> Integer

CM_ICREATED The number of connection manager threads
created.

0 Integer

CM_ITIMEOUTS The number of times that the Gateway
daemon failed to allocate a connection
manager thread to a client application
within the defined connecttimeout length of
time.

0 Integer

CM_LALLOC The number of allocations for connection
manager threads representing the number of
connections that have been established from
remote clients. A stable value represents
efficient connection reuse.

0 Integer

CM_LTIMEOUTS The number of times that the Gateway
daemon failed to allocate a connection
manager thread to a client application
within the defined (connecttimeout) length
of time.

0 Integer

CM_SINIT The initial number of connection manager
threads initconnect created by the Gateway
daemon.

0 Integer

CM_SMAX The maximum number of connection
manager threads maxconnect that can
possibly be created and allocated by the
Gateway daemon.

0 Integer
Note: A value of
-1 indicates no
limit.

320 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

CICS server (all) statistics:

The statistics listed here belong to the CICS server (all) resource group.

Table 28. CICS server (all) statistics

ID Description Default value Data type

CS_CALLOC The current number of allocated EXCI pipes
across all CICS servers.

0 Integer

CS_CSESSCURR The number of IPIC sessions in use with
CICS servers.

0 Integer

CS_CSESSMAX The number of IPIC sessions negotiated with
CICS servers.

0 Integer

CS_CWAITING The number of requests currently waiting
for a response from a CICS server.

0 Integer

CS_IALLOCFAIL The number of times the Gateway daemon
has tried and failed to allocate a pipe to a
CICS server.

0 Integer

CS_IALLREQ The number of requests to CICS servers
(successful and failed) that have been
processed.

0 Integer

CS_IAVRESP The average time taken (in milliseconds) for
a connected CICS server to respond to the
Gateway daemon over the course of this
interval.

0 Integer

CS_ICOMMSFAIL The number of times communication with a
CICS server has failed after a connection has
already been established, or when there has
been a failure with the link during
communication with the server.

0 Integer

CS_ICONNFAIL The number of times an attempt to connect
to a CICS server has failed.

0 Integer

CS_ICOUNT The number of CICS servers to which
requests have been sent. This number equals
the number of CICS servers in CS_ILIST.

0 Integer

CS_IIDLETIMEOUT The number of times a connection to a CICS
server has timed out.

0 Integer

CS_ILIST The list of CICS servers to which requests
have been sent.

<empty string> String

CS_ILOSTCONN The number of times an established
connection with a CICS server has been lost.

0 Integer

CS_IREALLOC The number of times that a worker thread
has to deallocate its existing pipe and
reallocate a new pipe because the existing
pipe points to a different CICS server from
that required by the request. This statistic
applies only when the environment variable
CTG_PIPE_REUSE is set to ONE. Cases
where the pipe for the worker thread was
deallocated and reallocated because the
CICS server was not available are excluded.

0 Integer

Chapter 13. Monitoring and statistics 321

Table 28. CICS server (all) statistics (continued)

ID Description Default value Data type

CS_IREQDATA The amount of request data (in bytes) sent
to connected CICS servers. This amount
includes both application and CICS protocol
data.

0 Long

CS_IRESPDATA The amount of response data (in bytes)
received from connected CICS servers. This
amount includes both application and CICS
protocol data.

0 Long

CS_ISESSFAIL The number of failures on IPIC sessions to
CICS servers.

0 Integer

CS_LALLOCFAIL The number of times the Gateway daemon
has tried and failed to allocate a pipe to a
CICS server.

0 Integer

CS_LALLREQ The number of requests to CICS servers
(successful and failed) that have been
processed.

0 Integer

CS_LAVRESP The average time taken (in milliseconds) for
a connected CICS server to respond to the
Gateway daemon over the lifetime of the
current Gateway daemon.

0 Integer

CS_LCOMMSFAIL The number of times communication with a
CICS server has failed after a connection has
already been established, or when there has
been a failure with the link during
communication with the server. In EXCI, a
pipe was available but the request failed.

0 Integer

CS_LCONNFAIL The number of times an attempt to connect
to a CICS server has failed.

0 Integer

CS_LCOUNT The number of CICS servers to which
requests have been sent. This number equals
the number of CICS servers in CS_LLIST.

0 Integer

CS_LIDLETIMEOUT The number of times a connection to a CICS
server has timed out.

0 Integer

CS_LLIST The list of CICS servers to which requests
have been sent.

<empty string> String

CS_LLOSTCONN The number of times an established
connection with a CICS server has been lost.

0 Integer

CS_LREALLOC The number of times that a worker thread
has to deallocate its existing pipe and
reallocate a new pipe because the existing
pipe points to a different CICS server from
that required by the request.

0 Integer

CS_LRESPDATA The amount of response data (in bytes)
received from connected CICS servers. This
amount includes both application and CICS
protocol data. For IPIC, the data comprises
COMMAREA and CICS headers.

0 Long

322 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Table 28. CICS server (all) statistics (continued)

ID Description Default value Data type

CS_LREQDATA The amount of request data (in bytes) sent
to connected CICS servers. This amount
includes both application and CICS protocol
data. For IPIC, the data comprises
COMMAREA and CICS headers.

0 Long

CS_LSESSFAIL The number of failures on IPIC sessions to
CICS servers.

0 Integer

CS_SCOUNT The number of CICS servers defined in the
configuration file.

0 Integer

CS_SLIST The list of all CICS servers defined in the
configuration file.

<empty string> String

CS_SLOGONLIM The maximum EXCI pipe allocation for each
MVS address space. This value is the
equivalent to the CICS subsystem
initialization parameter LOGONLIM.

100 Integer

CS_SNETNAME The NETNAME of the specific pipe used for
EXCI calls or empty string if generic pipes
are being used. The NETNAME is defined
by the environment variable DFHJVPIPE.

<empty string> String

CICS server (instance) statistics:

The statistics listed here belong to the CICS server (instance) resource group.

Table 29. CICS server (instance) statistics

ID Description Default value Data type

CSx_CALLOC The current number of allocated EXCI pipes
for CICS server x.

0 Integer

CSx_CAPPLID The APPLID of the connected CICS server x. <empty string> String

CSx_CAPPLIDQ The APPLID qualifier of the connected CICS
server x.

<empty string> String

CSx_CSESSCURR The number of IPIC sessions in use with
CICS server x.

0 Integer

CSx_CSESSMAX The number of IPIC sessions negotiated with
CICS server x.

0 Integer

CSx_CWAITING The number of requests currently waiting
for a response from CICS server x.

0 Integer

CSx_IALLOCFAIL The number of times the Gateway daemon
has tried and failed to allocate a pipe to
CICS server x.

0 Integer

CSx_IALLREQ The number of requests to CICS server x
(successful and failed) that have been
processed.

0 Integer

CSx_IAVRESP The average time taken (in milliseconds) for
connected CICS server x to respond to the
Gateway daemon.

0 Integer

Chapter 13. Monitoring and statistics 323

Table 29. CICS server (instance) statistics (continued)

ID Description Default value Data type

CSx_ICOMMSFAIL The number of times communication with
CICS server x has failed after a connection
has already been established, or when there
has been a failure with the link during
communication with the server. In EXCI, a
pipe was available but the request failed.

0 Integer

CSx_ICONNFAIL The number of times an attempt to connect
to a CICS server has failed.

0 Integer

CSx_IIDLETIMEOUT The number of times a connection to CICS
server x has timed out.

0 Integer

CSx_ILOSTCONN The number of times an established
connection with a CICS server has been lost.

0 Integer

CSx_IREQDATA The amount of request data (in bytes) sent
to connected CICS server x. This amount
includes both application and CICS protocol
data.

0 Long

CSx_IRESPDATA The amount of response data (in bytes)
received from connected CICS server x. This
amount includes both application and CICS
protocol data.

0 Long

CSx_ISESSFAIL The number of failures on IPIC sessions to
CICS server x.

0 Integer

CSx_LALLOCFAIL The number of times the Gateway daemon
has tried and failed to allocate a pipe to
CICS server x.

0 Integer

CSx_LALLREQ The number of requests to CICS server x
(successful and failed) that have been
processed.

0 Integer

CSx_LAVRESP The average time taken (in milliseconds) for
connected CICS server x to respond.

0 Integer

CSx_LCOMMSFAIL The number of times communication with
CICS server x has failed after a connection
has already been established, or when there
has been a failure with the link during
communication with the server. In EXCI, a
pipe was available but the request failed.

0 Integer

CSx_LCONNFAIL The number of times an attempt to connect
to a CICS server has failed.

0 Integer

CSx_LIDLETIMEOUT The number of times a connection to CICS
server x has timed out.

0 Integer

CSx_LLOSTCONN The number of times an established
connection with a CICS server has been lost.

0 Integer

CSx_LREQDATA The amount of request data (in bytes) sent
to connected CICS server x. This amount
includes both application and CICS protocol
data. For IPIC, the data comprises
COMMAREA and CICS headers.

0 Long

324 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Table 29. CICS server (instance) statistics (continued)

ID Description Default value Data type

CSx_LRESPDATA The amount of response data (in bytes)
received from connected CICS server x. This
amount includes both application and CICS
protocol data. For IPIC, the data comprises
COMMAREA and CICS headers.

0 Long

CSx_LSESSFAIL The number of failures on IPIC sessions to
CICS server x.

0 Integer

CSx_SIPADDR The defined host name or IP address of the
CICS server.

<empty string> String

CSx_SIPPORT The TCP/IP port of the CICS server. 0 Integer

CSx_SPROTOCOL The protocol used to communicate with the
CICS server x. The protocol name is one of
the following: EXCI, IPIC, IPICSSL, SNA,
TCPIP.

N/A String

CSx_SSESSMAX The number of requested IPIC sessions for
CICS server x.

0 Integer

Gateway daemon statistics:

The statistics listed here are members of the Gateway daemon resource group.

Table 30. Gateway daemon statistics

ID Description Default value Data type

GD_CHEALTH The current health of communications
between the Gateway daemon and CICS.

100 Integer

GD_CLUWTXN The current number of inflight extended
LUW transactions. These transactions might
or might not be active in a CICS server;
however, they always represent one mirror
transaction, which might be in a suspended
state.

0 Integer

GD_CNEXTRESET The local time of the next scheduled interval
statistics reset event (and optionally
recording event). The value is in 24-hour
HHMMSS format.

First scheduled
reset time.

String

GD_CSTATUS The status of the Gateway daemon. Status is
one of the following: STARTING,
RUNNING, SHUTTING DOWN.

N/A String

GD_CSYNCTXN The current number of inflight
SYNCONRETURN transactions.

0 Integer

GD_CXATXN The current number of inflight XA
transactions. These transactions might or
might not be active in CICS; however, they
represent one mirror transaction, which
might be in a suspended state.

0 Integer

GD_IALLREQ The number of API calls (ECI, ESI) and XA
requests that have been processed.
Successful and failed requests are included.
Administrative requests and handshakes are
excluded.

0 Integer

Chapter 13. Monitoring and statistics 325

Table 30. Gateway daemon statistics (continued)

ID Description Default value Data type

GD_IAVRESP The average time taken in milliseconds for
the Gateway daemon to respond to API
(ECI, ESI) and XA requests from remote
clients. Successful and failed requests are
included. This value is inclusive of the CICS
response time, as provided by the
corresponding CS_IAVRESP statistic.

0 Integer

GD_IAVRESPIO The average time in milliseconds for the
Gateway daemon to respond to API (ECI)
and XA requests from remote clients
including network I/O time. Successful and
failed requests are included. This value is
inclusive of the Gateway response time, as
provided by the corresponding
GD_IAVRESP statistic.

0 Integer

GD_IHAEXIT The number of times the CICS request exit
was called.

0 Integer

GD_ILUWTXNC The number of extended LUW-based
transactions that were committed. This
statistic returns information about 1–phase
commit transactions.

0 Integer

GD_ILUWTXNR The number of extended LUW-based
transactions that were rolled back. This
statistic returns information about 1–phase
commit transactions.

0 Integer

GD_IREQDATA The amount of request data in bytes
received from client applications. All
requests are included.

0 Long

GD_IRESPDATA The amount of response data in bytes sent
to client applications. All responses are
included.

0 Long

GD_IRUNTIME The time in seconds since the last reset
event, or age of the current interval.

0 Integer

GD_ISYNCFAIL The number of SYNCONRETURN
transactions that have failed in the current
interval.

0 Integer

GD_ISYNCTXN The number of successful
SYNCONRETURN transactions.

0 Integer

GD_IXACOMP The number of completed XA transactions
that were started by another Gateway
daemon in the group. This is an interval
statistic. See also the description of the
GD_LXACOMP lifetime statistic.

0 Integer

GD_IXAREQ The number of XA requests processed for
XA transactions.

0 Integer

GD_IXATXNC The number of XA commit requests that
were successfully processed.

0 Integer

326 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Table 30. Gateway daemon statistics (continued)

ID Description Default value Data type

GD_IXATXNHI The peak number of XA transactions that
have been in flight at the same time.

The default is the
value for
GD_CXATXN
(current number of
inflight XA
transactions)

Integer

GD_IXATXNR The number of XA rollback requests that
were successfully processed.

0 Integer

GD_LALLREQ The number of API calls (ECI, ESI) and XA
requests that have been processed.
Successful and failed requests are included.
Administrative requests and handshakes are
excluded.

0 Integer

GD_LAVRESP The average time in milliseconds for the
Gateway daemon to respond to API (ECI,
ESI) and XA requests from remote clients.
Successful and failed requests are included.
This value is inclusive of the CICS response
time, as provided by the corresponding
CS_LAVRESP statistic.

0 Integer

GD_LAVRESPIO The average time in milliseconds for the
Gateway daemon to respond to API (ECI)
and XA requests from remote clients
including network I/O time. Successful and
failed requests are included. This value is
inclusive of the Gateway response time, as
provided by the corresponding
GD_LAVRESP statistic.

0 Integer

GD_LHAEXIT The number of times the CICS request exit
was called.

0 Integer

GD_LLUWTXNC The number of extended LUW-based
transactions that were committed. This
statistic returns information about 1–phase
commit transactions.

0 Integer

GD_LLUWTXNR The number of extended LUW-based
transactions that were rolled back. This
statistic returns information about 1–phase
commit transactions.

0 Integer

GD_LREQDATA The amount of request data in bytes
received from client applications. All
requests are included.

0 Long

GD_LRESPDATA The amount of response data in bytes sent
to client applications. All responses are
included.

0 Long

GD_LRUNTIME The length of time in seconds since the
Gateway daemon successfully initialized.

0 Long

GD_LSYNCFAIL The number of SYNCONRETURN
transactions that have failed for the duration
of the Gateway daemon process.

0 Integer

GD_LSYNCTXN The number of successful
SYNCONRETURN transactions.

0 Integer

Chapter 13. Monitoring and statistics 327

Table 30. Gateway daemon statistics (continued)

ID Description Default value Data type

GD_LXACOMP The number of completed XA transactions
that were started by another Gateway
daemon in the group. This is a lifetime
statistic. See also the description of the
GD_IXACOMP interval statistic.

0 Integer

GD_LXAREQ The number of XA requests processed for
XA transactions.

0 Integer

GD_LXATXNC The number of XA commit requests that
were successfully processed.

0 Integer

GD_LXATXNHI The peak number of XA transactions that
have been in flight at the same time.

0 Integer

GD_LXATXNR The number of XA rollback requests that
were successfully processed.

0 Integer

GD_SAPPLID The APPLID of the CICS Transaction
Gateway, which identifies the instance of the
CICS Transaction Gateway on CICS server
connections.

<empty string> String

GD_SAPPLIDQ The APPLID qualifier of the CICS
Transaction Gateway. GD_SAPPLIDQ is
used as a high-level qualifier for the
APPLID of the CICS Transaction Gateway.
In combination with the APPLID, the fully
qualified APPLID identifies the Gateway to
the CICS system to which it connects.

<empty string> String

GD_SHOSTNAME The host name of the CICS Transaction
Gateway computer. If the host name cannot
be determined this statistic is set to
“Unknown”.

N/A String

GD_SNAME The jobname of the Gateway daemon. N/A String

GD_SPLATFORM The platform on which the CICS Transaction
Gateway is running. Platform is one of the
following: AIX, HP-UX (Itanium), Linux
(Intel), Linux (POWER), Linux (zSeries),
Solaris, Windows, z/OS, Unknown.

“Unknown” String

GD_SDFLTSRV The default CICS server for the CICS
Transaction Gateway.

N/A String

GD_SSTATEOD The local time to be designated as the
logical end of day by a Gateway daemon. At
the logical end-of-day, all interval statistics
are reset according to their defined default
value. If the statint parameter has been set
to an irregular value, the interval
immediately prior to the stateod end-of-day
is truncated. The value is in 24-hour
HHMMSS format.

The value of the
stateod parameter
in the
configuration file.
If not specified in
the configuration
file the default
value will be
midnight, local
time.

String

328 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Table 30. Gateway daemon statistics (continued)

ID Description Default value Data type

GD_SSTATINT The duration of the statistics interval in use
by a Gateway daemon. At the end of each
interval, all interval statistics are reset
according to their defined default value. The
value is in HHMMSS format.

The value of the
statint parameter
in the
configuration file.
If not specified in
the configuration
file the default
value represents 3
hours.

String

GD_SVER The version of the CICS Transaction
Gateway.

N/A String

Logical CICS server (all) statistics:

The statistics listed here are members of the logical CICS server (all) resource
group.

Table 31. Logical CICS server (all) statistics

ID Description Default value Data type

LS_IALLREQ The number of requests to logical CICS
servers (successful and failed) that have
been processed.

0 Integer

LS_ICOUNT The number of logical CICS servers to which
requests have been sent.

0 Integer

LS_ILIST The list of logical CICS servers to which
requests have been sent.

<empty string> String

LS_LALLREQ The number of requests to logical CICS
servers (successful and failed) that have
been processed.

0 Integer

LS_LCOUNT The number of logical CICS servers to which
requests have been sent.

0 Integer

LS_LLIST The list of logical CICS servers to which
requests have been sent.

<empty string> String

LS_SCOUNT The number of logical CICS servers defined
in the configuration file.

0 Integer

LS_SLIST The list of all logical CICS servers defined in
the configuration file.

<empty string> String

Logical CICS server (instance) statistics:

The statistics listed here are members of the logical CICS server (instance) resource
group.

Table 32. CICS server (instance) statistics

ID Description Default value Data type

LSx_IALLREQ The number of requests to logical CICS
server x (successful and failed) that have
been processed.

0 Integer

Chapter 13. Monitoring and statistics 329

Table 32. CICS server (instance) statistics (continued)

ID Description Default value Data type

LSx_LALLREQ The number of requests to logical CICS
server x (successful and failed) that have
been processed.

0 Integer

LSx_SLIST The list of all CICS servers that logical CICS
server x is mapped to in the configuration
file.

N/A String

System environment statistics:

The statistics listed here belong to the System Environment resource group.

Table 33. System Environment statistics

ID Description
Default
value Data type

SE_CELOAL The amount of currently allocated
extended user private storage (in bytes) in
the Gateway daemon address space. This
value can increase or decrease.

0 Integer

SE_C31MAX The real-time limit for the “used” storage
indicated by SE_CELOAL. If SE_CELOAL
approaches SE_C31MAX, then the Gateway
daemon is at risk of failing with a Java
OutOfMemory exception.

0 Integer

SE_CHEAPGCMIN The Gateway daemon JVM heap size (in
bytes) after the last garbage collection
(GC).

0 Long

SE_IGCCOUNT The number of garbage collection (GC)
events.

0 Long

SE_IGCTIME The length of time (in milliseconds) taken
by the JVM for garbage collection (GC).

0 Long

SE_LGCCOUNT The number of garbage collection (GC)
events.

0 Long

SE_LGCTIME The length of time (in milliseconds) taken
by the JVM for garbage collection (GC).

0 Long

SE_SELIM The amount of available extended user
private storage (in bytes) in the Gateway
daemon address space. This amount is less
than or equal to the amount of storage
specified by the job REGION parameter.

0 Integer

SE_SHEAPINIT The size of the Gateway daemon initial
JVM heap (in bytes).

0 Long

SE_SHEAPMAX The size of the Gateway daemon
maximum JVM heap (in bytes).

0 Long

Protocol handler statistics:

The protocol handler bind and port statistics listed here belong to the Protocol
handler resource group.

330 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Table 34. Protocol handler statistics

ID Description Default value Data type

PH_SBINDSSL The address or host name to which the SSL
protocol handler is bound. This statistic does
not contain a value if the protocol handler is
not enabled.

none String

PH_SBINDTCP The address or host name to which the TCP
protocol handler is bound. This statistic does
not contain a value if the protocol handler is
not enabled.

none String

PH_SPORTSSL The SSL protocol handler port number, or -1
if the protocol is not enabled.

-1 Integer

PH_SPORTTCP The TCP protocol handler port number, or -1
if the protocol is not enabled.

-1 Integer

Worker thread statistics:

The statistics listed here belong to the worker thread resource group.

Table 35. Worker thread statistics

ID Description Default value Data type

WT_CALLOC The current number of worker threads that
are being used by connection managers.
Another way of viewing this value is the
number of worker threads processing
requests.

0 Integer

WT_CCURR The current number of worker threads
created.

0 Integer

WT_IALLOCHI The peak number of worker threads
concurrently allocated to connection
manager threads. This number represents a
high water mark for WT_CALLOC.

<WT_CALLOC> Integer

WT_ITIMEOUTS The number of times the Gateway daemon
failed to allocate a worker thread to a
connection manager within the defined
workertimeout length of time.

0 Integer

WT_LTIMEOUTS The number of times the Gateway daemon
failed to allocate a worker thread to a
connection manager within the defined
workertimeout length of time.

0 Integer

WT_SINIT The initial number of worker threads
initworker created by the Gateway daemon.

0 Integer

WT_SMAX The maximum number of parallel requests
maxworker that the Gateway daemon can
process.

0 Integer

A value of -1
indicates no limit.

Using the statistics
This information classifies statistics into different categories, according to how they
are most likely to be used. Some statistics are in more than one category.

Chapter 13. Monitoring and statistics 331

Statistics for tuning and capacity planning
Look at these key statistics when analyzing the performance of the CICS
Transaction Gateway.

Capture statistics when the CICS Transaction Gateway is operating under a
number of different operating conditions. This will help you understand changes
that might affect the performance of the system.

CM_CALLOC
The current number of connection manager threads allocated to clients.

CM_CCURR
The current number of connection manager threads created. If this value is
greater than the configuration parameter initconnect, it signifies the peak
number of remote clients connected at any one time. This value cannot exceed
the maximum number of connection managers defined in CM_SMAX.

CM_CWAITING
The current number of connection managers waiting for a worker thread to
become available. This statistic shows the number of requests that are queuing
in the Gateway daemon. It is usually low or zero in a well-tuned Gateway
daemon. If it is higher than expected, consider increasing the maxworker
configuration parameter.

CM_IALLOC
The number of allocations for connection manager threads representing the
number of connections that have been established from remote clients. A low
value represents efficient connection reuse.

CM_IALLOCHI
The peak number of connection manager threads concurrently allocated to
client applications. This number represents a high water mark for
CM_CALLOC.

CM_ICREATED
The number of connection manager threads created.

CM_ITIMEOUTS
The number of times that the Gateway daemon failed to allocate a connection
manager thread to a client application within the defined connecttimeout
length of time.

CM_LALLOC
The number of allocations for connection manager threads representing the
number of connections that have been established from remote clients. A stable
value represents efficient connection reuse.

CM_LTIMEOUTS
The number of times that the Gateway daemon failed to allocate a connection
manager thread to a client application within the defined (connecttimeout)
length of time. This statistic shows the number of incoming connection
requests that have been refused. It is usually low or zero in a well-tuned
Gateway daemon. If it is high, consider increasing the connecttimeout or
maxconnect configuration parameters.

CM_SMAX
The maximum number of connection manager threads maxconnect that can
possibly be created and allocated by the Gateway daemon. This value limits
the number of Java clients that can be connected at any one time.

332 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

CS_CALLOC
The current number of allocated EXCI pipes across all CICS servers. Compare
this value to the number of pipes available on this CICS Transaction Gateway;
see CS_SLOGONLIM. If the number of pipes is close to the maximum
available, it indicates that your CICS Transaction Gateway system is running
near full capacity. Check that your CICS system can run with the maximum
available 250 EXCI available pipes. If the number of EXCI pipes cannot
support your workload, you might need to make more EXCI pipes available by
running with multiple Gateway daemons.

There are some other reasons why you might be running with many EXCI
pipes:
v The CICS transactions are relatively long-running and therefore occupy EXCI

connections for longer.
v Your CICS Transaction Gateway system is using the pipe reuse model

CTG_PIPE_REUSE=ALL, and is communicating with more than one CICS
server. This model gives optimum performance. However, after a pipe has
been allocated, it remains allocated to this particular server and is not
available for use with other CICS servers. Consider using pipe model
CTG_PIPE_REUSE=ONE or direct all CICS Transaction Gateway requests
into a single CICS TOR; this can then route these requests into other CICS
servers.

CS_ICOUNT
The number of CICS servers to which requests have been sent. This number
equals the number of CICS servers in CS_ILIST.

CS_IREALLOC
The number of times that a worker thread has to deallocate its existing pipe
and reallocate a new pipe because the existing pipe points to a different CICS
server from that required by the request. This statistic applies only when the
environment variable CTG_PIPE_REUSE is set to ONE. Cases where the pipe
for the worker thread was deallocated and reallocated because the CICS server
was not available are excluded.

CS_LCOUNT
The number of CICS servers to which requests have been sent. This number
equals the number of CICS servers in CS_LLIST. The value of CS_LCOUNT
can be useful when trying to understand EXCI pipe shortage problems. See
CS_CALLOC.

CS_LREALLOC
The number of times that a worker thread has to deallocate its existing pipe
and reallocate a new pipe because the existing pipe points to a different CICS
server from that required by the request. This statistic is useful when
determining how many additional EXCI pipe deallocate and allocate calls have
occurred when using the pipe model EXCI_PIPE_REUSE=ONE. The
performance overhead of using EXCI_PIPE_REUSE=ONE is small in the
context of typical overall transaction costs, but if this value is high relative to
the total number of requests (CS_LALLREQ), consider using the pipe reuse
model CTG_PIPE_REUSE=ALL.

CS_SLOGONLIM
The maximum EXCI pipe allocation for each MVS address space. This value is
the equivalent to the CICS subsystem initialization parameter LOGONLIM.
You can use this value to verify the maximum number of EXCI pipes that are
available to your CICS Transaction Gateway.

Chapter 13. Monitoring and statistics 333

CSX_CALLOC
The current number of allocated EXCI pipes for CICS server x. See
CS_CALLOC.

WT_CALLOC
The current number of worker threads that are being used by connection
managers. Another way of viewing this value is the number of worker threads
processing requests. If this value is close to WT_SMAX, consider increasing the
maxworker configuration parameter.

If the CTG_PIPE_REUSE environment variable is set to ONE, increasing
maxworker to the maximum number of EXCI connections available can allow
for a higher throughput.

WT_CCURR
The current number of worker threads created. If this value is greater than the
configuration parameter initworker, it signifies the peak number of parallel
requests that have been in process at any one time. This value cannot exceed
the maximum number of worker threads defined in WT_SMAX.

WT_IALLOCHI
The peak number of worker threads concurrently allocated to connection
manager threads. This number represents a high water mark for WT_CALLOC.

WT_ITIMEOUTS
The number of times the Gateway daemon failed to allocate a worker thread to
a connection manager within the defined workertimeout length of time.

WT_LTIMEOUTS
The number of times the Gateway daemon failed to allocate a worker thread to
a connection manager within the defined workertimeout length of time. This
number signifies that requests are timing out while queuing in the Gateway
daemon. It is typically low or zero in a well-tuned Gateway daemon. If it is
higher than expected, consider increasing the maxworker or workertimeout
configuration parameters.

WT_SMAX
The maximum number of parallel requests maxworker that the Gateway
daemon can process.

Related information:
“Environment variables: local and remote mode” on page 100
Environment variables available for use with local mode and remote mode
topologies.

Statistics for diagnosing system problems
Look at these key statistics when diagnosing system problems.

CM_ITIMEOUTS and CM_LTIMEOUTS
The number of times that the Gateway daemon failed to allocate a connection
manager thread to a client application within the defined connecttimeout
length of time.

CS_IALLOCFAIL
The number of times the Gateway daemon has tried and failed to allocate a
pipe to a CICS server.

CS_IAVRESP
The average time taken (in milliseconds) for a connected CICS server to
respond to the Gateway daemon over the course of this interval.

334 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

CS_ICOMMSFAIL
The number of times communication with a CICS server has failed after a
connection has already been established, or when there has been a failure with
the link during communication with the server.

CS_LALLOCFAIL
The number of times the Gateway daemon has tried and failed to allocate a
pipe to a CICS server. If this value is high, consider increasing the LOGONLIM
or modifying the pipe allocation model using the variable
CTG_PIPE_REUSE=ONE. For more details, refer to the value for
CSX_LALLOCFAIL.

CS_LCOMMSFAIL
The number of times communication with a CICS server has failed after a
connection has already been established, or when there has been a failure with
the link during communication with the server. In EXCI, a pipe was available
but the request failed.

CSX_IALLOCFAIL
The number of times the Gateway daemon has tried and failed to allocate a
pipe to CICS server x.

CSX_IAVRESP and CSX_LAVRESP
The average time taken (in milliseconds) for connected CICS server x to
respond to the Gateway daemon.

CSX_LALLOCFAIL
The number of times the Gateway daemon has tried and failed to allocate a
pipe to CICS server x.

GD_CHEALTH
The current health of communications between the Gateway daemon and
CICS. For more details, see “Health reporting” on page 155.

GD_IAVRESP and GD_LAVRESP
The average time taken in milliseconds for the Gateway daemon to respond to
API (ECI, ESI) and XA requests from remote clients. Successful and failed
requests are included. This value is inclusive of the CICS response time, as
provided by the corresponding CS_IAVRESP statistic.

WT_ITIMEOUTS and WT_LTIMEOUTS
The number of times the Gateway daemon failed to allocate a worker thread to
a connection manager within the defined workertimeout length of time.

Statistics for the analysis of resource usage
Look at these key statistics when considering the resources used by your system.

CM_CALLOC
The current number of connection manager threads allocated to clients.

CM_CCURR
The current number of connection manager threads created. If this value is
greater than the configuration parameter initconnect, it signifies the peak
number of remote clients connected at any one time. This value cannot exceed
the maximum number of connection managers defined in CM_SMAX.

CM_IALLOC
The number of allocations for connection manager threads representing the
number of connections that have been established from remote clients. A low
value represents efficient connection reuse.

Chapter 13. Monitoring and statistics 335

CM_IALLOCHI
The peak number of connection manager threads concurrently allocated to
client applications. This number represents a high water mark for
CM_CALLOC.

CM_ICREATED
The number of connection manager threads created.

CM_LALLOC
The number of allocations for connection manager threads representing the
number of connections that have been established from remote clients. A stable
value represents efficient connection reuse.

CS ICOUNT
The number of CICS servers to which requests have been sent. This number
equals the number of CICS servers in CS_ILIST.

CS_ILIST
The list of CICS servers to which requests have been sent.

CS_LCOUNT
The number of CICS servers to which requests have been sent. This number
equals the number of CICS servers in CS_LLIST.

CS_LLIST
The list of CICS servers to which requests have been sent.

CSX_CALLOC
The current number of allocated EXCI pipes for CICS server x. See
CS_CALLOC for more information.

WT_CALLOC
The current number of worker threads that are being used by connection
managers. Another way of viewing this value is the number of worker threads
processing requests. If this value is close to WT_SMAX, consider increasing the
maxworker configuration parameter.

If the CTG_PIPE_REUSE environment variable is set to ONE, increasing
maxworker to the maximum number of EXCI connections available can allow
for a higher throughput.

WT_CCURR
The current number of worker threads created. If this value is greater than the
configuration parameter initworker, it signifies the peak number of parallel
requests that have been in process at any one time. This value cannot exceed
the maximum number of worker threads defined in WT_SMAX.

WT_IALLOCHI
The peak number of worker threads concurrently allocated to connection
manager threads. This number represents a high water mark for WT_CALLOC.

Statistics for throughput analysis
Look at these key statistics when considering transaction throughput through the
Gateway daemon.

CS_IALLREQ
The number of requests to CICS servers (successful and failed) that have been
processed.

CS_IREQDATA
The amount of request data (in bytes) sent to connected CICS servers. This
amount includes both application and CICS protocol data.

336 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

CS_IRESPDATA
The amount of response data (in bytes) received from connected CICS servers.
This amount includes both application and CICS protocol data.

CS_LALLREQ
The number of requests to CICS servers (successful and failed) that have been
processed.

CS_LREQDATA
The amount of request data (in bytes) sent to connected CICS servers. This
amount includes both application and CICS protocol data. For IPIC, the data
comprises COMMAREA and CICS headers.

CS_LRESPDATA
The amount of response data (in bytes) received from connected CICS servers.
This amount includes both application and CICS protocol data. For IPIC, the
data comprises COMMAREA and CICS headers.

CSX_IALLREQ
The number of requests to CICS server x (successful and failed) that have been
processed.

CSX_IREQDATA
The amount of request data (in bytes) sent to connected CICS server x. This
amount includes both application and CICS protocol data.

CSX_IRESPDATA
The amount of response data (in bytes) received from connected CICS server x.
This amount includes both application and CICS protocol data.

CSX_LALLREQ
The number of requests to CICS server x (successful and failed) that have been
processed.

CSX_LREQDATA
The amount of request data (in bytes) sent to connected CICS server x. This
amount includes both application and CICS protocol data. For IPIC, the data
comprises COMMAREA and CICS headers.

CSX_LRESPDATA
The amount of response data (in bytes) received from connected CICS server x.
This amount includes both application and CICS protocol data. For IPIC, the
data comprises COMMAREA and CICS headers.

GD_IALLREQ
The number of API calls (ECI, ESI) and XA requests that have been processed.
Successful and failed requests are included. Administrative requests and
handshakes are excluded.

GD_ILUWTXNC
The number of extended LUW-based transactions that were committed. This
statistic returns information about 1–phase commit transactions.

GD_ILUWTXNR
The number of extended LUW-based transactions that were rolled back. This
statistic returns information about 1–phase commit transactions.

GD_IREQDATA
The amount of request data in bytes received from client applications. All
requests are included.

Chapter 13. Monitoring and statistics 337

GD_IRESPDATA
The amount of response data in bytes sent to client applications. All responses
are included.

GD_IRUNTIME
The time in seconds since the last reset event, or age of the current interval.

GD_ISYNCTXN
The number of successful SYNCONRETURN transactions.

GD_IXATXNC
The number of XA commit requests that were successfully processed.

GD_IXATXNR
The number of XA rollback requests that were successfully processed.

GD_LALLREQ
The number of API calls (ECI, ESI) and XA requests that have been processed.
Successful and failed requests are included. Administrative requests and
handshakes are excluded.

GD_LLUWTXNC
The number of extended LUW-based transactions that were committed. This
statistic returns information about 1–phase commit transactions.

GD_LLUWTXNR
The number of extended LUW-based transactions that were rolled back. This
statistic returns information about 1–phase commit transactions.

GD_LREQDATA
The amount of request data in bytes received from client applications. All
requests are included.

GD_LRESPDATA
The amount of response data in bytes sent to client applications. All responses
are included.

GD_LRUNTIME
The length of time in seconds since the Gateway daemon successfully
initialized.

GD_LSYNCTXN
The number of successful SYNCONRETURN transactions.

GD_LXATXNC
The number of XA commit requests that were successfully processed.

GD_LXATXNR
The number of XA rollback requests that were successfully processed.

Recording statistics to SMF
CICS Transaction Server, TXSeries, and WebSphere support the recording of
statistics to SMF. The z/OS based products write SMF records. CICS Transaction
Gateway provides similar function on the z/OS platform using type 111 SMF
record format.

End-of-day and shutdown statistics

An attempt is always made to write end-of-day and shutdown statistics to SMF
regardless of whether the statsrecording parameter is set to on or off. A message
is logged if this attempt fails.

338 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Interval correlation number

Interval statistics are captured at predefined intervals by issuing requests for them
to be recorded at the correct time.

The interval statistics component periodically requests the SMF recording facility to
record statistics information. The interval statistics component takes a snapshot of
all current statistics and sends them to the SMF recorder. The SMF recorder
formats the statistics into the documented SMF record format. This data is then
sent to the SMF facility. Every time the interval statistics component issues a
request to record statistics, a unique number is generated. This number is known
as the interval correlation number and is unique, for a specific CICS Transaction
Gateway instance, over the lifetime of that CICS Transaction Gateway.

The interval correlation number is included as an external field in every SMF
record header.

The SMF subsystem allows a maximum of 30 KB per record. If the formatted data
for a statistics request exceeds 30 KB, the data is split across multiple SMF records.
Each SMF record is given the same interval correlation number. This correlation
allows the records relevant to an individual statistics interval to be linked.

Correlating multiple SMF records within the same interval

The timestamp and datestamp fields, CTG_COLTIME and CTG_COLDATE, are
used to correlate records for a specific CICS Transaction Gateway APPLID. A CICS
Transaction Gateway instance cannot have intervals of less than 1 minute, so these
fields can be used to identify the record. This correlation is valid if the CICS
Transaction Gateway is stopped and restarted, whereas the interval count is reset
at a stop and restart.

You do not need multiple records unless you have a large number of servers,
because CICS Transaction Gateway writes data of greater than 30 KB in size.

For more information about configuring recording statistics to SMF, see
“Configuring monitoring and statistics” on page 151

Correlating multiple SMF records from the same Gateway
daemon

The CTG_STARTDATE and CTG_STARTTIME fields are used to correlate records
for a specific instance of a CICS Transaction Gateway daemon. The fields are
described in “SMF product section data structure” on page 341

Configuration for recording statistics to SMF
You can record statistics data from CICS Transaction Gateway at predefined
intervals to the System Management Facility (SMF) on z/OS.

To set statistics recording to SMF manually, set the statsrecording parameter in
the GATEWAY section of the Gateway daemon configuration file (ctg.ini) to on:
statsrecording=on

Valid values are on or off. Any other value results in an error sent to the JES log
and CICS Transaction Gateway fails to start. Like the other Boolean parameters in
the configuration file this parameter and the values it takes are not case-sensitive.

Chapter 13. Monitoring and statistics 339

|
|

|
|
|

READ access to the BPX.SMF facility

To write to SMF, the user ID under which the CICS Gateway daemon runs, must
be permitted READ access to the BPX.SMF facility. An example of the syntax is
shown here:
PERMIT BPX.SMF CLASS(FACILITY) ACCESS(READ) ID(USERID)

You must configure this permission during the installation and upgrade processes.
For further details, see the RACF and UNIX System Services (USS) documentation.

This parameter is in the GATEWAY section of the configuration file, see GATEWAY
section of the configuration file for more information about other parameters in
this section.

SMF records
When you install CICS Transaction Gateway, a C header file and a z/OS assembler
copy macro are provided to define the SMF record structure. The C header file is
CTGSMF, located in the SCTGINCL data set and the z/OS assembler copy macro is
file CTGSMFA, located in the SCTGMAC data set.

SMF header data structure:

The format of the header for the SMF record for type 111 records is fixed and is
common to SMF records from other CICS products. The Gateway daemon fills in
the following fields that are marked with "*". The SMF subsystem fills in the rest of
the fields. User applications are not required to fill in any SMF fields.

The entire data structure is initialized to binary zeros before setting any fields. All
fields that are not filled have the default value of zero.

Figure 39. SMF record format

340 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Table 36. SMF header data structure

Field name Type Offset Length(bytes) Description Default value

SMF111_LEN* Integer 0 2 Record length 32756 is the
maximum

SMF111_SEG Integer 2 2 Segment descriptor NULL

SMF111_FLG* Bit field 4 1 Operating system
indicator. The Gateway
daemon sets this value to
0xC0 to indicate that the
CICS TG record supports
triplets.

0xC0

SMF111_RTY* Integer 5 1 Record type 0x6F (111 reserved
for CICS TG)

SMF111_TIME Integer 6 4 Time Record moved to
SMF (100ths of a second)

Filled in by SMF

SMF111_SDTE Packed 10 4 Date moved to SMF. PL4
Julian format.
(OCYYDDD+)

Filled in by SMF

SMF111_SID Char 14 4 System identification Filled in by SMF

SMF111_SSI* Char 18 4 Subsystem identification CTGZ

SMF111_STY* Integer 22 2 Record subtype. CICS
Transaction Gateway uses
only one subtype. This
value is always zero.

0x0000

SMF111_TRN* Integer 24 2 Number of triplets 2

26 2 Reserved

SMF111_APS* Integer 28 4 Offset to product section

SMF111_LPS* Integer 32 2 Length of product section Size of this
structure

SMF111_NPS* Integer 34 2 Number of product
sections

1

SMF111_ASS* Integer 36 4 Offset to DATA section

SMF111_ASL* Integer 40 2 Length of DATA section The total length of
all the CICS TG
records included
in the data section.

SMF111_ASN* Integer 42 2 Number of DATA sections 1

SMF product section data structure:

The Gateway daemon fills in all the fields in the generic product section for the
SMF record for type 111 records. Parts of the record are of fixed format and
common to all SMF products. Some parts of this record are specific to CICS
Transaction Gateway and have the prefix "CTG".

Chapter 13. Monitoring and statistics 341

Table 37. SMF product section data structure

Field name Type Offset
Length
(bytes) Description Default value

SMF111_VRM Integer 0 2 Record version (0x0VRM)

v Each letter represents a
numeric digit from
values 0 to 9

v V = Version

v R = Release

v M = Maintenance

Version 7.1.0 of CICS
Transaction Gateway
would be represented as
0x0710

SMF111_PRN Char 2 8 Generic product name CICSTGGW

SMF111_SPN Char 10 8 Gateway daemon identifier The CICS Transaction
Gateway APPLID is used.
If the APPLID is not set,
the Jobname is used.

SMF111_MFL Integer 18 2 Record maintenance
indicator

0

Reserved 20 2 NULL

CTG_STATTYPE Integer 22 1 Statistics type. This event
drives the statistic to be
recorded

v 0x00 for interval

v 0x01 for end-of-day

v 0x02 for shutdown

Reserved 23 1 NULL

CTG_COLDATE Packed 24 4 Collection date
(0CYYDDD+) Local time

Set to the time that the
Gateway daemon requests
that records for a statistics
interval are cut. This value
represents the time that the
interval is initially
requested. Time to process
the interval data and
perform the I/O is not
included. The value
corresponds to the statint
and stateod values in the
configuration file. The date
that the record is written is
filled in by SMF in
SMF111_SMFSTDTE.

CTG_COLTIME Packed 28 4 Collection time
(00HHMMSS) Local time.
The last byte is used; it is
not reserved or set to +.

Set to the time that the
Gateway daemonrequests
that records for a statistics
interval are cut. This value
represents the time that the
interval is initially
requested. Time to process
the interval data and
perform the I/O is not
included. The value
corresponds to the statint
and stateod values in the
configuration file. The time
that the record is written is
filled in by SMF in
SMF111_SMFTME.

342 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Table 37. SMF product section data structure (continued)

Field name Type Offset
Length
(bytes) Description Default value

CTG_LOCOFFSET Signed
Integer

32 4 Offset from GMT to local
time in seconds. Signed
integer.

Number to add to the
system local time to derive
GMT

CTG_LSTRESET Integer 36 4 Last reset time or
initialization time (in
seconds)

The period in time in
seconds since the last reset.
If the first time stats have
been issued in the lifetime
of the CICS Transaction
Gateway this value
represents time since
initialization. The reset is
performed each time that
interval statistics are cut.

CTG_INTERVAL Integer 40 4 Interval seconds Length of time remaining
before the next interval

CTG_INTVCOUNT Integer 44 4 Interval number A sequence number that
increments each time an
interval is requested. The
scope of this is within a
specific Gateway
daemoninstance, for the
lifetime of that Gateway
daemon. The first interval
is defined as 1.

CTG_STARTDATE Packed 48 4 Gateway start date
(0CYYDDD+) Local time

Set to the date that the
Gateway daemon started.

CTG_STARTTIME Packed 52 4 Gateway start time
(00HHMMSS) Local time.
The last byte is used; it is
not reserved or set to +.

Set to the time that the
Gateway daemon started.

Related concepts:
“SMF date format - byte packed date format” on page 353
Definition of the format used to represent dates (OCYYDDD+) for SMF.
“SMF data format - sample values” on page 354
Sample values for CTG_COLTIME and CTG_LOCOFFSET.

Statistics record header:

The data section contains a number of statistics records. Each statistics record has a
header. The header is common to all CICS Transaction Gateway statistics records.
You can work out the type of data that follows the record from the CTG_RECORDID
and CTG_RECVER fields.

Each CICS Transaction Gateway statistics record has one instance except for CSX
statistics for EXCI and IPIC, for which multiple instances of the records occur in
one SMF record, because each server has one CSX statistics record, uniquely
identified by the netname of the server. The netname (CTG_CSX_SAPPLID) is
unique for each CSX statistics record.

Chapter 13. Monitoring and statistics 343

Table 38. CICS Transaction Gateway Statistics record header

Field name Type Offset
Length
(bytes) Description Default value

CTG_DATALEN Integer 0 2 Length of record Length of this header
record + the length of the
data that follows

CTG_RECORDID Integer 2 2 Record ID resource group Each CICS TG statistics
resource group has a
numeric ID allocated to it:

v CM 0x00

v CS 0x01

v CSx for EXCI 0x02

v GD 0x03

v PH 0x04

v WT 0x05

v SE 0x06

v CSx for IPIC 0x07

CTG_RECVER Integer 4 1 Data section version A combination of
CTGRECID and
CTGRECVER controls the
version of the structure.
Because structures are
fixed length, you change
CTGRECVER every time a
statistic is added to a
resource group (in between
releases).

Reserved 5 3 NOT DISPLAYED Pads length up to a
multiple of 8

Connection Manager (CM) statistics SMF data:

CICS Transaction Gateway CM statistics use this format for writing SMF records.

For a full description of these statistics see “Connection manager statistics” on
page 320.

Table 39. Connection Manager (CM) statistics data

Field name Statistic ID Description Type Offset
Length
(bytes)

CTG_CM_CALLOC CM_CALLOC Currently allocated
connection managers

Integer 0 4

CTG_CM_CCURR CM_CCURR Current number of
connection managers

Integer 4 4

CTG_CM_CWAITING CM_CWAITING Number of
connection managers
waiting

Integer 8 4

CTG_CM_LTIMEOUTS CM_LTIMEOUTS Number of times
connect timeout
reached

Integer 12 4

CTG_CM_SINIT CM_SINIT Initial number of
connection managers

Integer 16 4

344 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Table 39. Connection Manager (CM) statistics data (continued)

Field name Statistic ID Description Type Offset
Length
(bytes)

CTG_CM_SMAX CM_SMAX Maximum number of
connection managers

Signed Integer 20 4

CTG_CM_ITIMEOUTS CM_ITIMEOUTS Number of times
connect timeout
reached

Integer 24 4

CTG_CM_IALLOCHI CM_IALLOCHI Peak number of
allocated connection
manager threads

Integer 28 4

CTG_CM_ICREATED CM_ICREATED Number of
connection manager
threads created

Integer 32 4

CTG_CM_IALLOC CM_IALLOC Number of times a
connection manager
thread was allocated

Integer 36 4

CTG_CM_LALLOC CM_LALLOC Number of
allocations for
connection manager
threads representing
the number of
connections that
have been
established from
remote clients.

Integer 40 4

Reserved 44 4

CICS Server all (CS) statistics SMF data:

CICS Transaction Gateway CS statistics use this format for writing SMF records.

For a full description of these statistics see “CICS server (all) statistics” on page
321.

Table 40. CICS Server all (CS) statistics data

Field name Statistic ID Description Type Offset
Length
(bytes)

CTG_CS_CALLOC CS_CALLOC Number of EXCI pipes
allocated

Integer 0 4

CTG_CS_LALLOCFAIL CS_LALLOCFAIL Number of EXCI pipe
allocate failures

Integer 4 4

CTG_CS_LALLREQ CS_LALLREQ Number of requests
processed

Integer 8 4

CTG_CS_LCOMMSFAIL CS_LCOMMSFAIL Number of CICS
communication failures

Integer 12 4

CTG_CS_LCOUNT CS_LCOUNT Number of CICS
servers

Integer 16 4

CTG_CS_LREALLOC CS_LREALLOC Number of EXCI pipe
reallocations

Integer 20 4

CTG_CS_SLOGONLIM CS_SLOGONLIM EXCI pipe limit Integer 24 4

CTG_CS_SNETNAME CS_SNETNAME EXCI NETNAME Char 28 8

Chapter 13. Monitoring and statistics 345

Table 40. CICS Server all (CS) statistics data (continued)

Field name Statistic ID Description Type Offset
Length
(bytes)

CTG_CS_IALLOCFAIL CS_IALLOCFAIL Number of EXCI pipe
allocate failures

Integer 36 4

CTG_CS_IALLREQ CS_IALLREQ Number of requests
processed

Integer 40 4

CTG_CS_ICOMMSFAIL CS_ICOMMSFAIL Number of CICS
communication failures

Integer 44 4

CTG_CS_ICOUNT CS_ICOUNT Number of CICS
servers

Integer 48 4

CTG_CS_IREALLOC CS_IREALLOC Number of EXCI pipe
reallocations

Integer 52 4

CTG_CS_IREQDATA CS_IREQDATA Amount of CICS
request data

Integer 56 8

CTG_CS_LREQDATA CS_LREQDATA Amount of CICS
request data

Integer 64 8

CTG_CS_IRESPDATA CS_IRESPDATA Amount of CICS
response data

Integer 72 8

CTG_CS_LRESPDATA CS_LRESPDATA Amount of CICS
response data

Integer 80 8

CTG_CS_SCOUNT CS_SCOUNT Number of defined
CICS servers

Integer 88 4

CTG_CS_ICONNFAIL CS_ICONNFAIL Number of connect
failures

Integer 92 4

CTG_CS_LCONNFAIL CS_LCONNFAIL Number of connect
failures

Integer 96 4

CTG_CS_ILOSTCON CS_ILOSTCON Number of lost
connections

Integer 100 4

CTG_CS_LLOSTCON CS_LLOSTCON Number of lost
connections

Integer 104 4

CTG_CS_LIDLETIMEOUT CS_LIDLETIMEOUT Number of timed out
connections

Integer 108 4

CTG_CS_CSESSCURR CS_CSESSCURR Number of IPIC
sessions in use

Integer 112 4

CTG_CS_CSESSMAX CS_CSESSMAX Number of negotiated
IPIC sessions

Integer 116 4

CTG_CS_LSESSFAIL CS_LSESSFAIL Number of IPIC session
failures

Integer 120 4

CTG_CS_ISESSFAIL CS_ISESSFAIL Number of IPIC session
failures

Integer 124 4

CTG_CS_CWAITING CS_CWAITING Number of requests
waiting on a response

Integer 128 4

CTG_CS_IIDLETIMEOUT CS_IIDLETIMEOUT Number of timed out
connections

Integer 132 4

CTG_CS_IAVRESP CS_IAVRESP Average CICS response
time

Integer 136 4

CTG_CS_LAVRESP CS_LAVRESP Average CICS response
time

Integer 140 4

346 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

CICS Server Instance (CSx) SMF statistics for EXCI:

Each CICS Transaction Gateway statistics record has one instance, except for CSx
statistics for EXCI and IPIC, for which multiple instances of the records occur in
one SMF record, because each server has one CSx statistics record uniquely
identified by the netname of the server. The netname (CTG_CSx_SAPPLID) is
unique for each CSxstatistics record.If the server name contains one or more
underscore characters (_), they are replaced by minus characters (-).

One record is written in an SMF interval, when the data collected is less than 30
KB. If the data exceeds 30 KB, multiple records are written. Correlation of multiple
SMF records is achieved using the COLTIME field, in the product section data
structure, because this is unique for each interval.

For a full description of these statistics see “CICS server (instance) statistics” on
page 323.

Table 41. CICS Server Instance (CSx) statistics for EXCI

Field name Statistic ID Description Type Offset
Length
(bytes)

CTG_CSx_SAPPLID Not applicable Name of CICS server Char 0 8

CTG_CSx_CALLOC CSx_CALLOC Number of EXCI
pipes allocated

Integer 8 4

CTG_CSx_LALLOCFAIL CSx_LALLOCFAIL Number of EXCI pipe
allocate failures

Integer 12 4

CTG_CSx_LALLREQ CSx_LALLREQ Number of requests
processed

Integer 16 4

CTG_CSx_IALLOCFAIL CSx_IALLOCFAIL Number of EXCI pipe
allocate failures

Integer 20 4

CTG_CSx_IALLREQ CSx_IALLREQ Number of requests
processed

Integer 24 4

CTG_CSx_IAVRESP CSx_IAVRESP Average CICS
response time

Integer 28 4

CTG_CSx_LAVRESP CSx_LAVRESP Average CICS
response time

Integer 32 4

CTG_CSx_LCOMMSFAIL CSx_LCOMMSFAIL Number of CICS
communication
failures

Integer 36 4

CTG_CSx_IREQDATA CSx_IREQDATA Amount of CICS
request data

Integer 40 8

CTG_CSx_LREQDATA CSx_LREQDATA Amount of CICS
request data

Integer 48 8

CTG_CSx_IRESPDATA CSx_IRESPDATA Amount of CICS
response data

Integer 56 8

CTG_CSx_LRESPDATA CSx_LRESPDATA Amount of CICS
response data

Integer 64 8

CTG_CSx_SPROTOCOL CSx_SPROTOCOL CICS server protocol String 72 8

CTG_CSx_ICOMMSFAIL CSx_ICOMMSFAIL Number of CICS
communication
failures

Integer 80 4

CTG_CSx_CWAITING CSx_CWAITING Number of requests
waiting on a response

Integer 84 4

Chapter 13. Monitoring and statistics 347

CICS Server Instance (CSx) SMF statistics for IPIC:

Each CICS Transaction Gateway statistics record has one instance, except for CSx
statistics for EXCI and IPIC, for which multiple instances of the records occur in
one SMF record, because each server has one CSx statistics record uniquely
identified by the netname of the server. The server name that is configured in the
configuration file (CTG_CSx_SININAME) is unique for each CSx statistics record. If
the server name contains one or more underscore characters (_), they are replaced
by minus characters (-).

One record is written in an SMF interval, when the data collected is less than 30
KB. If the data exceeds 30 KB, multiple records are written. Correlation of multiple
SMF records is achieved using the COLTIME field, in the product section data
structure, because this is unique for each interval.

For a full description of these statistics see “CICS server (instance) statistics” on
page 323.

Table 42. CICS Server Instance (CSx) statistics for IPIC

Field name Statistic ID Description Type Offset
Length
(bytes)

CTG_CSx_SININAME Not applicable CICS server name String 0 8

CTG_CSx_IREQDATA CSx_IREQDATA Amount of CICS
request data

Integer 8 8

CTG_CSx_LREQDATA CSx_LREQDATA Amount of CICS
request data

Integer 16 8

CTG_CSx_IRESPDATA CSx_IRESPDATA Amount of CICS
response data

Integer 24 8

CTG_CSx_LRESPDATA CSx_LRESPDATA Amount of CICS
response data

Integer 32 8

CTG_CSx_IALLREQ CSx_IALLREQ Number of requests
processed

Integer 40 4

CTG_CSx_LALLREQ CSx_LALLREQ Number of requests
processed

Integer 44 4

CTG_CSx_ICONNFAIL CSx_ICONNFAIL Number of connection
failures

Integer 48 4

CTG_CSx_LCONNFAIL CSx_LCONNFAIL Number of lost
connections

Integer 52 4

CTG_CSx_ILOSTCONN CSx_ILOSTCONN Number of lost
connections

Integer 56 4

CTG_CSx_LLOSTCONN CSx_LLOSTCONN Number of lost
connections

Integer 60 4

CTG_CSx_IIDLETIMEOUT CSx_IIDLETIMEOUT Number of timed out
connections

Integer 64 4

CTG_CSx_LIDLETIMEOUT CSx_LIDLETIMEOUT Number of timed out
connections

Integer 68 4

CTG_CSx_SIPADDR CSx_SIPADDR CICS server TCP/IP
address

String 72 104

CTG_CSx_SIPPORT CSx_SIPPORT CICS server TCP/IP
port

Integer 176 4

348 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Table 42. CICS Server Instance (CSx) statistics for IPIC (continued)

Field name Statistic ID Description Type Offset
Length
(bytes)

CTG_CSx_CSESSCURR CSx_CSESSCURR Number of IPIC
sessions in use

Integer 180 4

CTG_CSx_ CSESSMAX CSx_ CSESSMAX Number of negotiated
IPIC sessions

Integer 184 4

CTG_CSx_ SSESSMAX CSx_ SSESSMAX Number of requested
IPIC sessions

Integer 188 4

CTG_CSx_LSESSFAIL CSx_LSESSFAIL Number of IPIC
session failures

Integer 192 4

CTG_CSx_ISESSFAIL CSx_ISESSFAIL Number of IPIC
session failures

Integer 196 4

CTG_CSx_SPROTOCOL CSx_SPROTOCOL CICS server protocol String 200 8

CTG_CSx_LCOMMSFAIL CSx_LCOMMSFAIL Number of CICS
communication failures

Integer 208 4

CTG_CSx_ICOMMSFAIL CSx_ICOMMSFAIL Number of CICS
communication failures

Integer 212 4

CTG_CSx_CWAITING CSx_CWAITING Number of requests
waiting on a response

Integer 216 4

CTG_CSx_IAVRESP CSx_IAVRESP Average CICS response
time

Integer 220 4

CTG_CSx_LAVRESP CSx_LAVRESP Average CICS response
time

Integer 224 4

CTG_CSx_CAPPLIDQ CSx_CAPPLIDQ APPLID qualifier of the
connected CICS server

String 228 8

CTG_CSx_CAPPLID CSx_CAPPLID APPLID of the
connected CICS server

String 236 8

Reserved 244 4

Gateway daemon (GD) statistics SMF data:

CICS Transaction Gateway daemon statistics use this format for writing SMF
records.

For a full description of these statistics see “Gateway daemon statistics” on page
325.

Table 43. Gateway daemon (GD) statistics data

Field name Statistic ID Description Type Offset
Length
(bytes)

CTG_GD_CHEALTH GD_CHEALTH Gateway daemon
health

Integer 0 4

CTG_GD_CSTATUS GD_CSTATUS Gateway daemon
status

Char 4 16

CTG_GD_LALLREQ GD_LALLREQ Requests processed Integer 20 4

CTG_GD_LLUWTXNC GD_LLUWTXNC Extended LUW
transactions
committed

Integer 24 4

Chapter 13. Monitoring and statistics 349

Table 43. Gateway daemon (GD) statistics data (continued)

Field name Statistic ID Description Type Offset
Length
(bytes)

CTG_GD_LLUWTXNR GD_LLUWTXNR Extended LUW
transactions rolled
back

Integer 28 4

CTG_GD_LRUNTIME GD_LRUNTIME Gateway daemon
running time

Integer 32 8

CTG_GD_LSYNCTXN GD_LSYNCTXN Successful
SYNCONRETURN
transactions

Integer 40 4

CTG_GD_LXATXNC GD_LXATXNC XA commit requests
successfully
processed

Integer 44 4

CTG_GD_LXATXNR GD_LXATXNR XA rollback requests
successfully
processed

Integer 48 4

CTG_GD_SNAME GD_SNAME Gateway daemon
name

Char 52 8

CTG_GD_IALLREQ GD_IALLREQ Requests processed Integer 60 4

CTG_GD_IRUNTIME GD_IRUNTIME Interval running time Integer 64 4

CTG_GD_ISYNCTXN GD_ISYNCTXN Successful
SYNCONRETURN
transactions

Integer 68 4

CTG_GD_IXATXNC GD_IXATXNC XA commit requests
successfully
processed

Integer 72 4

CTG_GD_IXATXNR GD_IXATXNR XA rollback requests
successfully
processed

Integer 76 4

CTG_GD_ILUWTXNC GD_ILUWTXNC Extended LUW
transactions
committed

Integer 80 4

CTG_GD_ILUWTXNR GD_ILUWTXNR Extended LUW
transactions rolled
back

Integer 84 4

CTG_GD_IAVRESP GD_IAVRESP Average Gateway
daemon response
time

Integer 88 4

CTG_GD_LAVRESP GD_LAVRESP Average Gateway
daemon response
time

Integer 92 4

CTG_GD_IREQDATA GD_IREQDATA Amount of client
request data

Integer 96 8

CTG_GD_LREQDATA GD_LREQDATA Amount of client
request data

Integer 104 8

CTG_GD_IRESPDATA GD_IRESPDATA Amount of client
response data

Integer 112 8

CTG_GD_LRESPDATA GD_LRESPDATA Amount of client
response data

Integer 120 8

350 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Table 43. Gateway daemon (GD) statistics data (continued)

Field name Statistic ID Description Type Offset
Length
(bytes)

CTG_GD_CSYNCTXN GD_CSYNCTXN SYNCONRETURN
transactions

Integer 128 4

CTG_GD_CLUWTXN GD_CLUWTXN Extended LUW
transactions

Integer 132 4

CTG_GD_CXATXN GD_CXATXN XA transactions Integer 136 4

CTG_GD_LXAREQ GD_LXAREQ XA requests Integer 140 4

CTG_GD_IXAREQ GD_IXAREQ XA requests Integer 144 4

CTG_GD_SAPPLID GD_SAPPLID CICS TG APPLID String 148 8

CTG_GD_SAPPLIDQ GD_SAPPLIDQ CICS TG APPLID
qualifier

String 156 8

CTG_GD_SSTATINT GD_SSTATINT Length of the
statistics interval
HHMMSS

String 164 6

CTG_GD_SSTATEOD GD_SSTATEOD Logical end-of-day
time HHMMSS

String 170 6

CTG_GD_CNEXTRESET GD_CNEXTRESET End of interval time
HHMMSS

String 176 6

CTG_GD_LHAEXIT GD_LHAEXIT Times the CICS
request exit was
called

Integer 184 4

CTG_GD_IHAEXIT GD_IHAEXIT Times the CICS
request exit was
called

Integer 188 4

CTG_GD_LSYNCFAIL GD_LSYNCFAIL SYNCONRETURN
transactions that
have failed for the
duration of the
Gateway daemon
process

Integer 192 4

CTG_GD_ISYNCFAIL GD_ISYNCFAIL SYNCONRETURN
transactions that
have failed in the
current interval

Integer 196 4

CTG_GD_SDFLTSRV GD_SDFLTSRV The default CICS
server for the CICS
Transaction Gateway

String 200 8

CTG_GD_SHOSTNAME GD_SHOSTNAME The host name of the
CICS Transaction
Gateway computer

String 208 128

CTG_GD_LXACOMP GD_LXACOMP XA transactions
completed for HA
group

Integer 336 4

CTG_GD_IXACOMP GD_IXACOMP XA transactions
completed for HA
group

Integer 340 4

CTG_GD_LXATXNHI GD_LXATXNHI Peak number of in
flight XA transactions

Integer 344 4

Chapter 13. Monitoring and statistics 351

Table 43. Gateway daemon (GD) statistics data (continued)

Field name Statistic ID Description Type Offset
Length
(bytes)

CTG_GD_IXATXNHI GD_IXATXNHI Peak number of in
flight XA transactions

Integer 348 4

CTG_GD_LAVRESPIO GD_LAVRESPIO Average Gateway
daemon response
time with I/O

Integer 352 4

CTG_GD_IAVRESPIO GD_IAVRESPIO Average Gateway
daemon response
time with I/O

Integer 356 4

Protocol handler (PH) statistics SMF data:

CICS Transaction Gateway PH statistics have this format.

For a full description of these statistics see “Protocol handler statistics” on page
330.

Table 44. Protocol handler (PH) statistics data

Field name Statistic ID Description Type Offset
Length
(bytes)

CTG_PH_SPORTSSL PH_SPORTSSL SSL protocol handler
port number

Signed integer 0 4

CTG_PH_SPORTTCP PH_SPORTTCP TCP protocol handler
port number

Signed integer 4 4

System environment (SE) statistics SMF data:

CICS Transaction Gateway SE statistics have this format.

For full descriptions of these statistics see “System environment statistics” on page
330,

Table 45. System environment (SE) statistics data

Field name Statistic ID Description Type Offset
Length
(bytes)

CTG_SE_SELIM SE_SELIM Amount of available
memory ELIM

Integer 0 4

CTG_SE_CELOAL SE_CELOAL Amount of used
memory ELOAL

Integer 4 4

CTG_SE_CHEAPGCMIN SE_CHEAPGCMIN JVM heap size after
GC

Integer 8 8

CTG_SE_SHEAPINIT SE_SHEAPINIT JVM initial heap size Integer 16 8

CTG_SE_ SHEAPMAX SE_ SHEAPMAX JVM maximum heap
size

Integer 24 8

CTG_SE_ IGCTIME SE_ IGCTIME JVM GC time Integer 32 8

CTG_SE_ LGCTIME SE_ LGCTIME JVM GC time Integer 40 8

CTG_SE_ IGCCOUNT SE_ IGCCOUNT JVM GC count Integer 48 8

CTG_SE_ LGCCOUNT SE_ LGCCOUNT JVM GC count Integer 56 8

352 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Table 45. System environment (SE) statistics data (continued)

Field name Statistic ID Description Type Offset
Length
(bytes)

CTG_SE_C31MAX SE_C31MAX Limit of used memory
ELOAL

Integer 64 4

Worker thread (WT) statistics SMF data:

CICS Transaction Gateway WT statistics have this format.

For a full description of these statistics see “Worker thread statistics” on page 331.

Table 46. Worker thread (WT) statistics data

Field name Statistic ID Description Type Offset
Length
(bytes)

CTG_WT_CALLOC WT_CALLOC Currently allocated
worker threads

Char 0 4

CTG_WT_CCURR WT_CCURR Current number of
worker threads

Integer 4 4

CTG_WT_LTIMEOUTS WT_LTIMEOUTS Number of times
worker timeout
reached

Integer 8 4

CTG_WT_SINIT WT_SINIT Initial number of
worker threads

Integer 12 4

CTG_WT_SMAX WT_SMAX Maximum number of
worker threads

Signed
integer

16 4

CTG_WT_ITIMEOUTS WT_ITIMEOUTS Number of times
worker timeout
reached

Integer 20 4

CTG_WT_IALLOCHI WT_IALLOCHI Peak number of
allocated worker
threads

Integer 24 4

Reserved 28 4

SMF date format - byte packed date format:

Definition of the format used to represent dates (OCYYDDD+) for SMF.

The numbers are written in +ve byte packed decimal.

'0C' is the number of centuries since 1900. All dates in the 21st century have '01'.

'YY' is the year.

'DDD' is the day of the year. The first day of the year is '1' and the last day of the
year '366'.

'+' is hard coded as 0xC.

Chapter 13. Monitoring and statistics 353

Examples

10 January 2007 = 0x0107010C

1 January 2001 = 0x0101001C

31December 2012 = 0x0112366C

SMF data format - sample values:

Sample values for CTG_COLTIME and CTG_LOCOFFSET.

Table 47. CTG_COLTIME

Interval cut at: Value

00:00.00 local time 0x00000000

00:00.01 local time 0x00000001

23:59.59 local time 0x00235959

02:10.15 local time 0x00021015

The numbers are written in +ve byte packed decimal.

Table 48. CTG_LOCOFFSET

System time zone Value

System time zone is GMT CTG_LOCOFFSET= 0

System time zone is GMT +1 CTG_LOCOFFSET= 3600

System time zone is GMT -1 CTG_LOCOFFSET= -3600

CICS TG plug-in for CICS Explorer
The CICS TG perspective of the CICS Explorer includes a Gateway daemons view,
CICS connections view, and a CICS TG Explorer view.

To download the CICS TG plug-in see CICS Explorer.

354 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

http://www-01.ibm.com/software/htp/cics/explorer/

Related literature

Other documentation relating to CICS Transaction Gateway.

IBM Redbooks titles are available on a wide range of subjects relevant to CICS
Transaction Gateway programming, installation, operation and troubleshooting. See
the: IBM Redbooks site for more information.

Documentation for many IBM products is available online from the IBM
Publications Center.

© Copyright IBM Corp. 2000, 2013 355

http://www.ibm.com/redbooks/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

356 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Accessibility

Accessibility features help users with a physical disability, for example restricted
mobility or limited vision, to use information technology products successfully.
CICS Transaction gateway is compatible with the JAWS screen reader. CICS
Transaction Gateway provides accessibility by enabling keyboard-only operation.

For more information about the IBM commitment to accessibility, visit the IBM
Accessibility Center.

© Copyright IBM Corp. 2000, 2013 357

http://www.ibm.com/able
http://www.ibm.com/able

358 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Glossary

This glossary defines the terms and abbreviations used in CICS Transaction
Gateway and in the information centers.

A

abnormal end of task (abend)
The termination of a task, job, or subsystem because of an error condition
that recovery facilities cannot resolve.

Advanced program-to-program communication (APPC)
An implementation of the SNA/SDLC LU 6.2 protocol that allows
interconnected systems to communicate and share the processing of
programs. The Client daemon uses APPC to communicate with CICS
systems.

APAR See Authorized program analysis report.

API See application programming interface.

APPC See Advanced program-to-program communication.

application programming interface (API)
A functional interface that allows an application program that is written in
a high-level language to use specific data or functions of the operating
system or another program.

APPLID

1. On CICS Transaction Gateway: The application identifier that is used to
identify connections on the CICS server and tasks in a CICSplex. See
also APPLID qualifier and fully-qualified APPLID.

2. On CICS Transaction Server: The name by which a CICS system is
known in a network of interconnected CICS systems. CICS Transaction
Gateway application identifiers do not need to be defined in
SYS1.VTAMLST. The CICS APPLID is specified in the APPLID system
initialization parameter.

APPLID qualifier
Optionally used as a high-level qualifier for the APPLID to form a
fully-qualified APPLID. See also APPLID and fully-qualified APPLID.

ARM See automatic restart manager.

Authorized program analysis report (APAR)
A request for correction of a defect in a current release of an IBM-supplied
program.

ATI See automatic transaction initiation.

attach In SNA, the request unit that flows on a session to initiate a conversation.

Attach Manager
The component of APPC that matches attaches received from remote
computers to accepts issued by local programs.

autoinstall
A method of creating and installing resources dynamically as terminals log
on, and deleting them at logoff.

© Copyright IBM Corp. 2000, 2013 359

automatic restart manager (ARM)
A z/OS recovery function that can improve the availability of specific
batch jobs or started tasks, and therefore result in faster resumption of
productive work.

automatic transaction initiation (ATI)
The initiation of a CICS transaction by an internally generated request, for
example, the issue of an EXEC CICS START command or the reaching of a
transient data trigger level. CICS resource definition can associate a trigger
level and a transaction with a transient data destination. When the number
of records written to the destination reaches the trigger level, the specified
transaction is automatically initiated.

B

bean A definition or instance of a JavaBeans component. See also JavaBeans.

bean-managed transaction
A transaction where the JEE bean itself is responsible for administering
transaction tasks such as committal or rollback. See also container-managed
transaction.

BIND command
In SNA, a request to activate a session between two logical units (LUs).

business logic
The part of a distributed application that is concerned with the application
logic rather than the user interface of the application. Compare with
presentation logic.

C

CA See certificate authority.

CCIN The CCIN transaction is invoked by the Client daemon, for each TCP/IP
or SNA connection established. CCIN installs a Client connection on the
CICS server.

CCSID
Coded Character Set Identifier. A 16-bit number that includes a specific set
of encoding scheme identifiers, character set identifiers, code page
identifiers, and other information that uniquely identifies the coded
graphic-character representation.

CTIN The CTIN transaction is invoked by the Client daemon to install a Client
terminal definition on the CICS server.

callback
A way for one thread to notify another application thread that an event
has happened.

certificate authority (CA)
In computer security, an organization that issues certificates. The certificate
authority authenticates the certificate owner's identity and the services that
the owner is authorized to use. It issues new certificates and revokes
certificates from users who are no longer authorized to use them.

change-number-of-sessions (CNOS)
An internal transaction program that regulates the number of parallel
sessions between the partner LUs with specific characteristics.

360 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

channel
A channel is a set of containers, grouped together to pass data to CICS.
There is no limit to the number of containers that can be added to a
channel, and the size of individual containers is limited only by the
amount of storage that you have available.

CICS connectivity components
A generic reference to the Client daemon, EXCI, and the IPIC protocol.

CICS connectivity components
The Client daemon, the EXCI (External CICS Interface), and the IPIC (IP
Interconnectivity) protocol are collectively called the 'CICS connectivity
components'. The Client daemon handles the TCP/IP and the SNA
protocols.

CICS Request Exit
An exit that is invoked by the CICS Transaction Gateway for z/OS at run
time to determine which CICS server to use.

CICS server name
A defined server known to CICS Transaction Gateway.

CICS TS
Abbreviation of CICS Transaction Server.

class In object-oriented programming, a model or template that can be
instantiated to create objects with a common definition and therefore,
common properties, operations, and behavior. An object is an instance of a
class.

CLASSPATH
In the execution environment, an environment variable keyword that
specifies the directories in which to look for class and resource files.

Client API
The Client API is the interface used by Client applications to interact with
CICS using the Client daemon. See External Call Interface, External
Presentation Interface, and External Security Interface.

Client application
The client application is a user application written in a supported
programming language that uses one or more of the CICS Transaction
Gateways APIs.

Client daemon
The Client daemon manages TCP/IP and SNA connections to CICS servers
on UNIX, Linux, and Windows. It processes ECI, EPI, and ESI requests,
sending and receiving the appropriate flows to and from the CICS server
to satisfy Client application requests. It can support concurrent requests to
one or more CICS servers. The CICS Transaction Gateway initialization file
defines the operation of the Client daemon and the servers and protocols
used for communication.

client/server
Pertaining to the model of interaction in distributed data processing in
which a program on one computer sends a request to a program on
another computer and awaits a response. The requesting program is called
a client; the answering program is called a server.

CNOS See Change-Number-of-Sessions.

Glossary 361

code page
An assignment of hexadecimal identifiers (code points) to graphic
characters. Within a given code page, a code point can have only one
meaning.

color mapping file
A file that is used to customize the 3270 screen color attributes on client
workstations.

COMMAREA
See communication area.

commit phase
The second phase in a XA process. If all participants acknowledge that
they are prepared to commit , the transaction manager issues the commit
request. If any participant is not prepared to commit the transaction
manager issues a back-out request to all participants.

communication area (COMMAREA)
A communication area that is used for passing data both between
programs within a transaction and between transactions.

Configuration file
A file that specifies the characteristics of a program, system device, server
or network.

connection
In data communication, an association established between functional units
for conveying information.

In Open Systems Interconnection architecture, an association established by
a given layer between two or more entities of the next higher layer for the
purpose of data transfer.

In TCP/IP, the path between two protocol application that provides
reliable data stream delivery service.

In Internet, a connection extends from a TCP application on one system to
a TCP application on another system.

container
A container is a named block of data designed for passing information
between programs. A container is a "named COMMAREA" that is not
limited to 32KB. Containers are grouped together in sets called channels.

container-managed transaction
A transaction where the EJB container is responsible for administration of
tasks such as committal or rollback. See also bean-managed transaction.

control table
In CICS, a storage area used to describe or define the configuration or
operation of the system.

conversation
A connection between two programs over a session that allows them to
communicate with each other while processing a transaction.

conversation security
In APPC, a process that allows validation of a user ID or group ID and
password before establishing a connection.

D

362 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

daemon
A program that runs unattended to perform continuous or periodic
systemwide functions, such as network control. A daemon can be launched
automatically, such as when the operating system is started, or manually.

data link control (DLC)
A set of rules used by nodes on a data link (such as an SDLC link or a
token ring) to accomplish an orderly exchange of information.

DBCS See double-byte character set.

default CICS server
The CICS server that is used if a server name is not specified on an ECI,
EPI, or ESI request. The default CICS server name is defined as a product
wide setting in the configuration file (ctg.ini).

dependent logical unit
A logical unit that requires assistance from a system services control point
(SSCP) to instantiate an LU-to-LU session.

deprecated
Pertaining to an entity, such as a programming element or feature, that is
supported but no longer recommended, and that might become obsolete.

digital certificate
An electronic document used to identify an individual, server, company, or
some other entity, and to associate a public key with the entity. A digital
certificate is issued by a certificate authority and is digitally signed by that
authority.

digital signature
Information that is encrypted with an entity's private key and is appended
to a message to assure the recipient of the authenticity and integrity of the
message. The digital signature proves that the message was signed by the
entity that owns, or has access to, the private key or shared secret
symmetric key.

distinguished name
The name that uniquely identifies an entry in a directory. A distinguished
name is made up of attribute:value pairs, separated by commas. The
format of a distinguished name is defined by RFC4514. For more
information, see http://www.ietf.org/rfc/rfc4514.txt. See also realm
name and identity propagation.

distributed application
An application for which the component application programs are
distributed between two or more interconnected processors.

distributed identity
User identity information that originates from a remote system. The
distributed identity is created in one system and is passed to one or more
other systems over a network. See also distinguished name and realm name.

distributed processing
The processing of different parts of the same application in different
systems, on one or more processors.

distributed program link (DPL)
A link that enables an application program running on one CICS system to
link to another application program running in another CICS system.

DLC See data link control.

Glossary 363

DLL See dynamic link library.

domain
In the Internet, a part of a naming hierarchy in which the domain name
consists of a sequence of names (labels) separated by periods (dots).

domain name
In TCP/IP, a name of a host system in a network.

domain name server
In TCP/IP, a server program that supplies name-to-address translation by
mapping domain names to IP addresses. Synonymous with name server.

dotted decimal notation
The syntactical representation for a 32-bit integer that consists of four 8-bit
numbers written in base 10 with periods (dots) separating them. It is used
to represent IP addresses.

double-byte character set (DBCS)
A set of characters in which each character is represented by 2 bytes.
Languages such as Japanese, Chinese and Korean, which contain more
symbols than can be represented by 256 code points, require double-byte
character sets. Because each character requires 2 bytes, the typing, display,
and printing of DBCS characters requires hardware and programs that
support DBCS. Contrast with single-byte character set.

DPL See distributed program link.

dynamic link library (DLL)
A collection of runtime routines made available to applications as required.

dynamic server selection (DSS)
The mapping of a logical CICS server name to an actual CICS server name
at run time.

E

EBCDIC
See extended binary-coded decimal interchange code.

ECI See external call interface.

EJB See Enterprise JavaBeans.

emulation program
A program that allows a host system to communicate with a workstation
in the same way as it would with the emulated terminal.

emulator
A program that causes a computer to act as a workstation attached to
another system.

encryption
The process of transforming data into an unintelligible form in such a way
that the original data can be obtained only by using a decryption process.

enterprise bean
A Java component that can be combined with other resources to create JEE
applications. There are three types of enterprise beans: entity beans, session
beans, and message-driven beans.

Enterprise Information System (EIS)
The applications that comprise an enterprise's existing system for handling

364 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

company-wide information. An enterprise information system offers a
well-defined set of services that are exposed as local or remote interfaces or
both.

Enterprise JavaBeans (EJB)
A component architecture defined by Sun Microsystems for the
development and deployment of object-oriented, distributed,
enterprise-level applications (JEE).

environment variable
A variable that specifies the operating environment for a process. For
example, environment variables can describe the home directory, the
command search path, the terminal in use, and the current time zone.

EPI See external presentation interface.

ESI See external security interface.

Ethernet
A local area network that allows multiple stations to access the
transmission medium at will without prior coordination, avoids contention
by using carrier sense and deference, and resolves contention by using
collision detection and transmission. Ethernet uses carrier sense multiple
access with collision detection (CSMA/CD).

EXCI See external CICS interface.

extended binary-coded decimal interchange code (EBCDIC)
A coded character set of 256 8-bit characters developed for the
representation of textual data.

extended logical unit of work (extended LUW)
A logical unit of work that is extended across successive ECI requests to
the same CICS server.

external call interface (ECI)
A facility that allows a non CICS program to run a CICS program. Data is
exchanged in a COMMAREA or a channel as for usual CICS interprogram
communication.

external communications interface (EXCI)
An MVS application programming interface provided by CICS Transaction
Server for z/OS that enables a non-CICS program to call a CICS program
and to pass and receive data using a COMMAREA. The CICS application
program is started as if linked-to by another CICS application program.

external presentation interface (EPI)
A facility that allows a non CICS program to appear to CICS as one or
more standard 3270 terminals. 3270 data can be presented to the user by
emulating a 3270 terminal or by using a graphical user interface.

external security interface (ESI)
A facility that enables client applications to verify and change passwords
for user IDs on CICS servers.

External Security Manager (ESM)
A security manager that operates outside CICS. For example, RACF can be
used as an external security manager with CICS Transaction Server.

F

Glossary 365

firewall
A configuration of software that prevents unauthorized traffic between a
trusted network and an untrusted network.

FMH See function management header.

fully-qualified APPLID
Used to identify CICS Transaction Gateway connections on the CICS server
and tasks in a CICSplex. It is composed of an APPLID with an optional
network qualifier. See also APPLID and APPLID qualifier.

function management header (FMH)
One or more headers, optionally present in the leading request units (RUs)
of an RU chain, that allow one LU to (a) select a transaction program or
device at the session partner and control the way in which the end-user
data it sends is handled at the destination, (b) change the destination or
the characteristics of the data during the session, and (c) transmit between
session partners status or user information about the destination (for
example, a program or device). Function management headers can be used
with LU type 1, 4, and 6.2 protocols.

G

Gateway
A device or program used to connect two systems or networks.

Gateway classes
The Gateway classes provide APIs for ECI, EPI, and ESI that allow
communication between Java client applications and the Gateway daemon.

Gateway daemon
A long-running Java process that listens for network requests from remote
Client applications. It issues these requests to CICS servers using the CICS
connectivity components. The Gateway daemon on z/OS processes ECI
requests and on UNIX, Windows, and Linux platforms it process EPI and
ESI requests as well. The Gateway daemon uses the GATEWAY section of
ctg.ini for its configuration.

Gateway group
A set of Gateway daemons that share an APPLID qualifier, and where each
Gateway daemon has a unique APPLID within the Gateway group.

Gateway token
A token that represents a specific Gateway daemon, when a connection is
established successfully. Gateway tokens are used in the C language
statistics and ECI V2 APIs.

global transaction
A recoverable unit of work performed by one or more resource managers
in a distributed transaction processing environment and coordinated by an
external transaction manager.

H

HA group
See highly available Gateway group.

highly available Gateway group (HA group)
A Gateway group that utilizes TCP/IP load balancing, and can be viewed

366 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

as a single logical Gateway daemon. A Gateway daemon instance in a HA
group can recover indoubt XA transactions on behalf of another Gateway
daemon within the HA group

host A computer that is connected to a network (such as the Internet or an SNA
network) and provides an access point to that network. The host can be
any system; it does not have to be a mainframe.

host address
An IP address that is used to identify a host on a network.

host ID
In TCP/IP, that part of the IP address that defines the host on the network.
The length of the host ID depends on the type of network or network class
(A, B, or C).

host name
In the Internet suite of protocols, the name given to a computer.
Sometimes, host name is used to mean the fully qualified domain name;
other times, it is used to mean the most specific subname of a fully
qualified domain name. For example, if mycomputer.city.company.com is
the fully qualified domain name, either of the following can be considered
the host name: mycomputer.city.company.com, mycomputer.

hover help
Information that can be viewed by holding a mouse over an item such as
an icon in the user interface.

HTTP See Hypertext Transfer Protocol.

HTTPS
See Hypertext Transfer Protocol Secure.

Hypertext Transfer Protocol (HTTP)
In the Internet suite of protocols, the protocol that is used to transfer and
display hypertext and XML documents.

Hypertext Transfer Protocol Secure (HTTPS)
A TCP/IP protocol that is used by World Wide Web servers and Web
browsers to transfer and display hypermedia documents securely across
the Internet.

I

ID data
An ID data structure holds an individual result from a statistical API
function.

identity propagation
The concept of preserving a user's security identity information (the
distributed identity) independent of where the identity information has
been created, for use during authorization and for auditing purposes. The
distributed identity is carried with a request from the distributed client
application to the CICS server, and is incorporated in the access control of
the server as part of the authorization process, for example, using RACF.
CICS Transaction Gateway flows the distributed identity to CICS. See also
distributed identity.

identity propagation login module
A code component that provides support for identity propagation. The
identity propagation login module is included with the CICS Transaction

Glossary 367

Gateway ECI resource adapter (cicseci.rar), conforms to the JAAS
specification and is contained in a single Java class within the resource
adapter. See also identity propagation.

iKeyman
A tool for maintaining digital certificates for JSSE.

in doubt
The state of a transaction that has completed the prepare phase of the
two-phase commit process and is waiting to be completed.

in flight
The state of a transaction that has not yet completed the prepare phase of
the two-phase commit process.

independent logical unit
A logical unit (LU) that can both send and receive a BIND, and which
supports single, parallel, and multiple sessions. See BIND.

<install_path>
This term is used in file paths to represent the directory where you
installed the product. For more information, see File path terminology.

Internet Architecture Board
The technical body that oversees the development of the internet suite of
protocols known as TCP/IP.

Internet Protocol (IP)
In TCP/IP, a protocol that routes data from its source to its destination in
an Internet environment.

interoperability
The capability to communicate, run programs, or transfer data among
various functional units in a way that requires the user to have little or no
knowledge of the unique characteristics of those units.

IP Internet Protocol.

IPIC See IP interconnectivity.

IP address
A unique address for a device or logical unit on a network that uses the IP
standard.

IP interconnectivity (IPIC)
The IPIC protocol enables Distributed Program Link (DPL) access from a
non-CICS program to a CICS program over TCP/IP, using the External
Call Interface (ECI). IPIC passes and receives data using COMMAREAs, or
containers.

J

JEE (formerly J2EE)
See Java 2 Platform Enterprise Edition

JEE Connector architecture (JCA)
A standard architecture for connecting the JEE platform to heterogeneous
enterprise information systems (EIS).

Java An object-oriented programming language for portable interpretive code
that supports interaction among remote objects.

Java 2 Platform Enterprise Edition (JEE)
An environment for developing and deploying enterprise applications,

368 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

defined by Sun Microsystems Inc. The JEE platform consists of a set of
services, application programming interfaces (APIs), and protocols that
allow multi-tiered, Web-based applications to be developed.

JavaBeans
As defined for Java by Sun Microsystems, a portable, platform-
independent, reusable component model.

Java Client application
The Java client application is a user application written in Java, including
servlets and enterprise beans, that uses the Gateway classes.

Java Development Kit (JDK)
The name of the software development kit that Sun Microsystems provided
for the Java platform, up to and including v 1.1.x. Sometimes used
erroneously to mean the Java platform or as a generic term for any
software developer kits for Java.

JavaGateway
The URL of the CICS Transaction Gateway with which the Java Client
application communicates. The JavaGateway takes the form
protocol://address:port. These protocols are supported: tcp://, ssl://,
and local:. CICS Transaction Gateway runs with the default port value of
2006. This parameter is not relevant if you are using the protocol local:.
For example, you might specify a JavaGateway of tcp://
ctg.business.com:2006. If you specify the protocol as local: you will
connect directly to the CICS server, bypassing any CICS Transaction
Gateway servers.

Java Native Interface (JNI)
A programming interface that allows Java code running in a Java virtual
machine to work with functions that are written in other programming
languages.

Java Runtime Environment (JRE)
A subset of the Java Software Development Kit (SDK) that supports the
execution, but not the development, of Java applications. The JRE
comprises the Java Virtual Machine (JVM), the core classes, and supporting
files.

Java Secure Socket Extension (JSSE)
A Java package that enables secure Internet communications. It implements
a Java version of the Secure Sockets Layer (SSL) and Transport Layer
Security (TSL) protocols and supports data encryption, server
authentication, message integrity, and optionally client authentication.

Java virtual machine (JVM)
A software implementation of a processor that runs compiled Java code
(applets and applications).

JDK See Java development kit.

JCA See JEE Connector Architecture .

JNI See Java Native Interface.

JRE See Java Runtime Environment

JSSE See Java Secure Socket Extension.

JVM See Java Virtual Machine.

K

Glossary 369

keyboard mapping
A list that establishes a correspondence between keys on the keyboard and
characters displayed on a display screen, or action taken by a program,
when that key is pressed.

Keystore
In the JSSE protocol, a file that contains public keys, private keys, trusted
roots, and certificates.

L

local mode
Local mode describes the use of the CICS Transaction Gateway local
protocol. The Gateway daemon is not used in local mode.

local transaction
A recoverable unit of work managed by a resource manager and not
coordinated by an external transaction manager.

logical CICS server
An alias that can be passed on an ECI request when running in remote
mode to CICS Transaction Gateway for z/OS. The alias name is mapped to
an actual CICS server name by a dynamic server selection (DSS)
mechanism.

logical end of day
The local time of day on the 24-hour clock to which a Gateway daemon
aligns statistics intervals. If the statistics interval is 24 hours, this is the
local time at which interval statistics will be reset and, on z/OS, optionally
recorded to SMF. This time is set using the stateod parameter in the
configuration file (ctg.ini).

logical unit (LU)
In SNA, a port through which an end user accesses the SNA network to
communicate with another end user and through which the end user
accesses the functions provided by system services control points (SSCP).
An LU can support at least two sessions, one with an SSCP and one with
another LU, and might be capable of supporting many sessions with other
logical units. See also network addressable unit, primary logical unit, secondary
logical unit.

logical unit 6.2 (LU 6.2)
A type of logical unit that supports general communications between
programs in a distributed processing environment.

The LU type that supports sessions between two applications using APPC.

logical unit of work (LUW)
The processing that a program performs between synchronization points

LU See logical unit.

LU 6.2 See logical unit 6.2.

LU-LU session
In SNA, a session between two logical units (LUs) in an SNA network. It
provides communication between two end users, or between an end user
and an LU services component.

LU-LU session type 6.2
In SNA, a type of session for communication between peer systems.
Synonymous with APPC protocol.

370 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

LUW See logical unit of work.

M

managed mode
Describes an environment in which connections are obtained from
connection factories that the JEE server has set up. Such connections are
owned by the JEE server.

media access control (MAC) sublayer
One of two sublayers of the ISO Open Systems Interconnection data link
layer proposed for local area networks by the IEEE Project 802 Committee
on Local Area Networks and the European Computer Manufacturers
Association (ECMA). It provides functions that depend on the topology of
the network and uses services of the physical layer to provide services to
the logical link control (LLC) sublayer. The OSI data link layer corresponds
to the SNA data link control layer.

method
In object-oriented programming, an operation that an object can perform.
An object can have many methods.

mode In SNA, a set of parameters that defines the characteristics of a session
between two LUs.

N

name server
In TCP/IP, synonym for Domain Name Server. In Internet
communications, a host that translates symbolic names assigned to
networks and hosts into IP addresses.

NAU See network addressable unit.

network address
In SNA, an address, consisting of subarea and element fields, that
identifies a link, link station, or network addressable unit (NAU). Subarea
nodes use network addresses; peripheral nodes use local addresses. The
boundary function in the subarea node to which a peripheral node is
attached transforms local addresses to network addresses and vice versa.
See also network name.

network addressable unit (NAU)
In SNA, a logical unit, a physical unit, or a system services control point.
The NAU is the origin or the destination of information transmitted by the
path control network. See also logical unit, network address, network name.

network name
In SNA, the symbolic identifier by which end users refer to a network
addressable unit (NAU), link station, or link. See also network address.

node type
In SNA, a designation of a node according to the protocols it supports and
the network addressable units (NAUs) it can contain. Four types are
defined: 1, 2, 4, and 5. Type 1 and type 2 nodes are peripheral nodes; type
4 and type 5 nodes are subarea nodes.

nonextended logical unit of work
See SYNCONRETURN.

nonmanaged mode
An environment in which the application is responsible for generating and

Glossary 371

configuring connection factories. The JEE server does not own or know
about these connection factories and therefore provides no Quality of
Service facilities.

O

object In object-oriented programming, a concrete realization of a class that
consists of data and the operations associated with that data.

object-oriented (OO)
Describing a computer system or programming language that supports
objects.

one-phase commit
A protocol with a single commit phase, that is used for the coordination of
changes to recoverable resources when a single resource manager is
involved.

OO See object-oriented.

P

pacing
A technique by which a receiving station controls the rate of transmission
of a sending station to prevent overrun.

parallel session
In SNA, two or more concurrently active sessions between the same two
LUs using different pairs of network addresses. Each session can have
independent session parameters.

PING In Internet communications, a program used in TCP/IP networks to test
the ability to reach destinations by sending the destinations an Internet
Control Message Protocol (ICMP) echo request and waiting for a reply.

partner logical unit (PLU)
In SNA, the remote participant in a session.

partner transaction program
The transaction program engaged in an APPC conversation with a local
transaction program.

password phrase
A character string, between 9 and 100 characters in length, that is used for
authentication when a user signs on to CICS. Because a password phrase
can provide an exponentially greater number of possible combinations of
characters than a standard 8 character password, the use of password
phrases can enhance system security. Password phrases are verified by the
External Security Manager (ESM), and can contain alphanumeric
characters, and any of the other non alphanumeric characters that are
supported by the ESM. See also External Security Manager (ESM).

PLU See primary logical unit and partner logical unit.

policy-based dynamic server selection (DSS)
A selection mechanism that CICS transaction Gateway uses when deciding
which CICS servers will receive workload. Policy-based DSS ensures that
requests are sent to targeted groups of CICS servers, and that CICS servers
within the groups are selected for workload using a specified algorithm
(round robin or failover).

port An endpoint for communication between devices, generally referring to a

372 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

logical connection. A 16-bit number identifying a particular Transmission
Control Protocol (TCP) or User Datagram Protocol (UDP) resource within a
given TCP/IP node.

port sharing
A way of load balancing TCP/IP connections across a group of servers
running in the same z/OS image.

prepare phase
The first phase of a XA process in which all participants are requested to
confirm readiness to commit.

presentation logic
The part of a distributed application that is concerned with the user
interface of the application. Compare with business logic.

primary logical unit (PLU)
In SNA, the logical unit that contains the primary half-session for a
particular logical unit-to-logical unit (LU-to-LU) session. See also secondary
logical unit.

<product_data_path>
This term represents the directory used by the Windows CICS Transaction
Gateway for common application data. For more information, see File path
terminology.

protocol boundary
The signals and rules governing interactions between two components
within a node.

Q

Query strings
Query strings are used in the statistical data API. A query string is an
input parameter, specifying the statistical data to be retrieved.

R

RACF See Resource Access Control Facility.

realm A named collection of users and groups that can be used in a specific
security context. See also distinguished name and identity propagation.

Recoverable resource management services (RRMS)
The registration services, context services, and resource recovery services
provided by the z/OS sync point manager that enable consistent changes
to be made to multiple protected resources.

Resource Access Control Facility (RACF)
An IBM licensed program that provides access control by identifying users
to the system; verifying users of the system; authorizing access to protected
resources; logging detected unauthorized attempts to enter the system; and
logging detected accesses to protected resources.

region In workload management on CICS Transaction Gateway for Windows, an
instance of a CICS server.

remote mode
Remote mode describes the use of one of the supported CICS Transaction
Gateway network protocols to connect to the Gateway daemon.

Glossary 373

remote procedure call (RPC)
A protocol that allows a program on a client computer to run a program
on a server.

Request monitoring exits
Exits that provide information about individual requests as they are
processed by the CICS Transaction Gateway.

request unit (RU)
In SNA, a message unit that contains control information such as a request
code, or function management (FM) headers, end-user data, or both.

request/response unit
A generic term for a request unit or a response unit. See also request unit
and response unit.

response file
A file that contains predefined values that is used instead of someone
having to enter those values one at a time. See also CID methodology.

response unit (RU)
A message unit that acknowledges a request unit; it can contain prefix
information received in a request unit.

Resource adapter
A system-level software driver that is used by an EJB container or an
application client to connect to an enterprise information system (EIS). A
resource adapter plugs in to a container; the application components
deployed on the container then use the client API (exposed by adapter) or
tool-generated, high-level abstractions to access the underlying EIS.

resource group ID
A resource group ID is a logical grouping of resources, grouped for
statistical purposes. A resource group ID is associated with a number of
resource group statistics, each identified by a statistic ID.

resource ID
A resource ID refers to a specific resource. Information about the resource
is included in resource-specific statistics. Each statistic is identified by a
statistic ID.

resource manager
The participant in a transaction responsible for controlling access to
recoverable resources. In terms of the CICS resource adapters this is
represented by an instance of a ConnectionFactory.

Resource Recovery Services (RRS)
A z/OS facility that provides two-phase sync point support across
participating resource managers.

Result set
A result set is a set of data calculated or recorded by a statistical API
function.

Result set token
A result set token is a reference to the set of results returned by a statistical
API function.

rollback
An operation in a transaction that reverses all the changes made during the
unit of work. After the operation is complete, the unit of work is finished.
Also known as a backout.

374 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

RU See Request unit and Response unit.

RPC See remote procedure call.

RRMS
See Recoverable resource management services.

RRS See Resource Recovery Services.

S

SBCS See single-byte character set.

secondary logical unit (SLU)
In SNA, the logical unit (LU) that contains the secondary half-session for a
particular LU-LU session. Contrast with primary logical unit. See also
logical unit.

Secure Sockets Layer (SSL)
A security protocol that provides communication privacy. SSL enables
client/server applications to communicate in a way that is designed to
prevent eavesdropping, tampering, and message forgery. SSL applies only
to internet protocols, and is not applicable to SNA.

server name remapping
See dynamic server selection.

servlet
A Java program that runs on a Web server and extends the server's
functionality by generating dynamic content in response to Web client
requests. Servlets are commonly used to connect databases to the Web.

session limit
In SNA, the maximum number of concurrently active logical unit to logical
unit (LU-to-LU) sessions that a particular logical unit (LU) can support.

silent installation
Installation that does not display messages or windows during its progress.
Silent installation is not a synonym of "unattended installation", although it
is often improperly used as such.

single-byte character set (SBCS)
A character set in which each character is represented by 1 byte. Contrast
with double-byte character set.

sign-on capable terminal
A sign-on capable terminal allows sign-on transactions that are either
supplied with CICS (CESN) or written by the user, to be run. Contrast with
sign-on incapable terminal.

SIT See system initialization table.

SLU See secondary logical unit.

SMF The z/OS System Management Facility (SMF) collects and records system
and job-related information that your z/OS installation can use for
reporting, billing, analysis, profiling, and maintaining system security.
CICS TG for z/OS writes statistical data to SMF.

SMIT See System Management Interface Tool.

SNA See Systems Network Architecture.

Glossary 375

SNA sense data
An SNA-defined encoding of error information In SNA, the data sent with
a negative response, indicating the reason for the response.

SNASVCMG mode name
The SNA service manager mode name. This is the architecturally-defined
mode name identifying sessions on which CNOS is exchanged. Most
APPC-providing products predefine SNASVCMG sessions.

socket A network communication concept, typically representing a point of
connection between a client and a server. A TCP/IP socket will normally
combine a host name or IP address, and a port number.

SSL See Secure Sockets Layer.

SSLight
An implementation of SSL, written in Java, and no longer supported by
CICS Transaction Gateway.

statistic data
A statistic data structure holds individual statistical result returned after
calling a statistical API function.

statistic group
A generic term for a collection of statistic IDs.

statistic ID
A label referring to a specific statistic. A statistic ID is used to retrieve
specific statistical data, and always has a direct relationship with a statistic
group.

standard error
In many workstation-based operating systems, the output stream to which
error messages or diagnostic messages are sent.

subnet
An interconnected, but independent segment of a network that is identified
by its Internet Protocol (IP) address.

subnet address
In Internet communications, an extension to the basic IP addressing scheme
where a portion of the host address is interpreted as the local network
address.

sync point
Synchronization point. During transaction processing, a reference point to
which protected resources can be restored if a failure occurs.

SYNCONRETURN
A request where the CICS server takes a sync point on successful
completion of the server program. Changes to recoverable resources made
by the server program are committed or rolled-back independently of
changes to recoverable resources made by the client program issuing the
ECI request, or changes made by the server in any subsequent ECI request.
Also referred to as a nonextended logical unit of work.

system initialization table (SIT)
A table containing parameters used to start a CICS control region.

System Management Command
An administrative request received by a Gateway daemon (or Gateway
daemon address space on z/OS) from the ctgadmin command (on UNIX,
Linux, or Windows) or the z/OS console. The request might be made to

376 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

retrieve information about the Gateway daemon, or to alter some aspect of
Gateway daemon behavior. Typically, a ctgadmin command in the form
ctgadmin <command string> is entered by an operator using the command
line interface, or a modify command in the form /F <job
name>,APPL=<command string> is entered by an operator on the z/OS
console.

System Management Interface Tool (SMIT)
An interface tool of the AIX operating system for installing, maintaining,
configuring, and diagnosing tasks.

Systems Network Architecture (SNA)
An architecture that describes the logical structure, formats, protocols, and
operational sequences for transmitting information units through the
networks and also the operational sequences for controlling the
configuration and operation of networks.

System SSL
An implementation of SSL, no longer supported by CICS Transaction
Gateway on z/OS.

T

TCP/IP
See Transmission Control Protocol/Internet Protocol.

TCP/IP load balancing
The ability to distribute TCP/IP connections across target servers.

terminal emulation
The capability of a personal computer to operate as if it were a particular
type of terminal linked to a processing unit and to access data. See also
emulator, emulation program.

thread A stream of computer instructions that is in control of a process. In some
operating systems, a thread is the smallest unit of operation in a process.
Several threads can run concurrently, performing different jobs.

timeout
A time interval that is allotted for an event to occur or complete before
operation is interrupted.

TLS See Transport Layer Security.

token-ring network
A local area network that connects devices in a ring topology and allows
unidirectional data transmission between devices by a token-passing
procedure. A device must receive a token before it can transmit data.

trace A record of the processing of a computer program. It exhibits the
sequences in which the instructions were processed.

transaction manager
A software unit that coordinates the activities of resource managers by
managing global transactions and coordinating the decision to commit
them or roll them back.

transaction program
A program that uses the Advanced Program-to-Program Communications
(APPC) application programming interface (API) to communicate with a
partner application program on a remote system.

Glossary 377

Transmission Control Protocol/Internet Protocol (TCP/IP)
An industry-standard, nonproprietary set of communications protocols that
provide reliable end-to-end connections between applications over
interconnected networks of different types.

Transport Layer Security (TLS)
A security protocol that provides communication privacy. TLS enables
client/server applications to communicate in a way that is designed to
prevent eavesdropping, tampering, and message forgery. TLS applies only
to internet protocols, and is not applicable to SNA. TLS is also known as
SSL 3.1.

Two-phase commit
A protocol with both a prepare and a commit phase, that is used for the
coordination of changes to recoverable resources when more than one
resource manager is used by a single transaction.

type 2.0 node
A node that attaches to a subarea network as a peripheral node and
provides a range of end-user services but no intermediate routing services.

type 2.1 node
An SNA node that can be configured as an endpoint or intermediate
routing node in a network, or as a peripheral node attached to a subarea
network.

U

unattended installation
Unattended installation is installation performed without user interaction
during its progress, or, with no user present at all, except for the initial
launch of the process. -

Uniform Resource Locator (URL)
A sequence of characters that represent information resources on a
computer or in a network such as the Internet. This sequence of characters
includes (a) the abbreviated name of the protocol used to access the
information resource and (b) the information used by the protocol to locate
the information resource.

unit of recovery (UR)
A defined package of work to be performed by the RRS.

unit of work (UOW)
A recoverable sequence of operations performed by an application between
two points of consistency. A unit of work begins when a transaction starts
or at a user-requested sync point. It ends either at a user-requested sync
point or at the end of a transaction.

UOW See unit of work.

UR See unit of recovery.

URL See Uniform Resource Locator.

user registry
The location where the distinguished name of a user is defined and
authenticated. See also distinguished name.

user session
Any APPC session other than a SNASVCMG session.

378 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

V

verb A reserved word that expresses an action to be taken by an application
programming interface (API), a compiler, or an object program.

In SNA, the general name for a transaction program's request for
communication services.

version string
A character string containing version information about the statistical data
API.

W

WAN See wide area network.

Web browser
A software program that sends requests to a Web server and displays the
information that the server returns.

Web server
A software program that responds to information requests generated by
Web browsers.

wide area network (WAN)
A network that provides communication services to a geographic area
larger than that served by a local area network or a metropolitan area
network, and that can use or provide public communication facilities.

Wrapping trace
On Windows, UNIX, and Linux, a configuration in which the Maximum
Client wrap size setting is greater than 0. The total size of Client daemon
binary trace files is limited to the value specified in the Maximum Client
wrap size setting. With standard I/O tracing, two files, called cicscli.bin
and cicscli.wrp, are used; each can be up to half the size of the
Maximum Client wrap size.

X

XA request
Any request sent or received by the CICS Transaction Gateway in support
of an XA transaction. These requests include the XA commands commit,
complete, end, forget, prepare, recover, rollback, and start.

XA transaction
A global transaction that adheres to the X/Open standard for distributed
transaction processing (DTP.)

Glossary 379

380 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Index

Special characters
_BPX_SHAREAS 143
_BPXK_SETIBMOPT_TRANSPORT 278
<install_path> 21
'In-forget' transactions 245
'no cics' error when sending request over

IPIC 278

Numerics
64-bit

other system factors 56

A
accessibility 357
activating identity propagation in CICS

Transaction Gateway 148
administration 258
Advantages and benefits 1
Advantages of local mode 4
Advantages of remote mode 3
aliasname 140
Allocate_Pipe 126
APIs 2
application development 291
Application programming interfaces 2
application tracing 296
applications compiled for use with earlier

versions of CICS TG� 14
Applid 170
APPLID configuration setting 107, 116
APPLID qualifier configuration

setting 107, 116
ApplidQualifier 170
applying, trace settings 95, 156
associating a client certificate with a

RACF user ID 49
asymmetric keys 47
automatic restart management 246

B
bidi 156
bidirectional data 156
bidirectional data support 156
bidirectional data support environment

variable 156
Bind address 88, 91, 153
Bind address configuration setting 88,

91, 153
BPX.FILEATTR.PROGCTL 143
BPX.SERVER 143
BPX.SERVER FACILITY profile 143
BPXP014I 285
BPXPRMxx member 81
Byte offset 95

C
CA (certification authority) 47
certification authority (CA) 47
changing the system time 265
check connection is secure 215
CICS connection problems 274, 278
CICS Explorer 354
CICS request exit 77, 78, 151
CICS request exit options 264
CICS request exit versus

DFHXCURM 78
CICS resource adapter 169
CICS Server all (CS) statistics SMF

data 345
CICS server connections 110
CICS Server Instance (CSx) SMF statistics

for EXCI 347
CICS Server Instance (CSx) SMF statistics

for IPIC 348
CICS server name 30
CICS server resource definitions 122
CICS servers 10
CICS servers in DSS group 150
CICS SESSIONS 65
CICS TG plug-in for CICS Explorer 354
CICS TG redistributable component 11
CICS TG V9 enhancements ix
CICS Transaction Gateway 4, 256, 258

batch mode 249
command line options 254
CTGBATCH 249
starting 244
Starting from a command line 254

CICS Transaction Gateway .NET
applications 28

CICSCLI environment variable 82
cicseci resource adapter 170
cicsrequestexit 151
Citrix 18
CLASSPATH 138, 169
CLASSPATH environment variable 138
Client APPLID 108
Client APPLID qualifier 108
Client side security 6
ClientSecurity 170
Cold start 245
communication protocols and interfaces

API 14
EXCI 14
IPIC 14
SNA 14
TCP/IP 14
which API can be used? 14

compatibility
CICS server compatibility 16

configuration
CLASSPATH 169
programming environment 169

configuration file 82, 158
GATEWAY section 158
referencing 82

configuration file, interval statistics 312
configuration setting 96

Enable Gateway daemon trace on
startup 96

configuration settings
ECI timeout 118
enable health reporting 155
server retry interval 117

Configuration settings 30, 84, 86, 87, 88,
89, 90, 91, 92, 93, 94, 95, 115, 118, 119,
132, 138, 149, 150, 151, 153, 154, 155

APPLID 107, 116
APPLID qualifier 107, 116
Connection timeout 117
Enable XA transaction support 131
Health interval 156
Host name or IP address 115
JNI trace file 97
Key ring location 139
Maximum number of Worker

threads 85
Port 115
Require Java Clients to use security

classes 93
Send sessions 115
Send TCP/IP KeepAlive packets 118
Server idle timeout (mins) 117
Server name 114
solinger setting 93
Use hardware cryptography 139

configuration, recording statistics to
SMF 339

configuration, request monitoring
exits 309

Configure CICS server 110
configure CICS Transaction Server for

identity propagation 146
configure RACF for identity

propagation 145
configure SSL 132

configure SSL client authentication
(optional) 222

configure SSL server authentication -
step 1 220

configure SSL server authentication -
step 2 221

configure SSL server 133
configure the JRE 97
configuring 81

JRE 97
configuring an HA group with two-phase

commit and IPIC 190
configuring an IPIC CICS Server

definition 114
configuring IPCONN 187
configuring IPCONN autoinstall user

program DFHISCIP 180
configuring IPCONN template 181
configuring IPIC in local mode 113
configuring JVM 97

© Copyright IBM Corp. 2000, 2013 381

configuring monitoring and
statistics 151

configuring request monitoring exits,
gateway classes 152

configuring request monitoring exits,
Gateway daemon 151

configuring secure autoinstalled IPIC
connection 178, 237

configuring secure predefined IPIC
connection 184

configuring TCP/IP for port sharing 195
configuring the CICS Transaction

Gateway with XA support 126
configuring the ctg.ini file 179, 186, 193,

196, 205, 239
configuring the TCPIPService on CICS

TS 180, 187, 195, 239
configuring your SSL clients 135
configuring your system, high

availability 148
configuring, logical CICS server 30
Connection 89, 92, 153
connection definition 122
connection manager 65
Connection Manager (CM) statistics SMF

data 344
connection manager threads 254
Connection timeout 89, 92, 153
Connection timeout (ms) 89, 92, 153
Connection timeout (ms) configuration

setting 89, 92, 153
Connection timeout configuration

setting 117
Connections 110
ConnectionURL 170
contacting IBM Software Support 299
core components 9
correlating multiple SMF records 338
CPUTIME timeout 81
CSV042I 285
CTG_JNI_TRACE environment

variable 296
CTG_JNI_TRACE_ON environment

variable 296
CTG_PIPE_REUSE 65
CTG_WIDTH environment variable 103
CTG_XA_MAX_TRAN

environment variable 103
ctg.ini 157
ctg2local script 22
CTGARM utility 247
CTGBATCH considerations 250
ctgcfg command 82
CTGENVVAR environment variable 104
ctgenvvar script 98, 99
ctgenvvarsamp 157
ctgenvvarsamp script 99
CTGINIT 128
CTGRRMS 127, 128, 129, 130

Refreshing services 129
Starting services 128
Starting, stopping or refreshing

services 128
Stopping services 130

ctgsamp.ini 157
ctgstart command 254

CTGSTART_OPTS environment
variable 104

D
dealing with problems

CICS TG and CTGRRMS version
compatibility problem 271

CTG8659E 271
CTGRRMS fails to initialize 271
problem determination 271

default CICS server 77
default server 148
definitions 29
deploying .NET applications to remote

systems 175
deploying CICS TG applications 169
deploying ECI V2 and ESI V2 to remote

systems 174
deploying the ECI resource adapter on

WebSphere Application Server for
z/OS 173

deployment topologies 2
Description 30, 115
Description configuration setting 30, 115
development environments 13
DFHJVPIPE environment variable 102,

122
DFHXCOPT, EXCI options table 120,

121
DFHXCURM 78, 125
diagnosing problems 267, 268
digital certificates 132
digital signatures 47
disability 357
Display TCP/IP hostnames 87
Display TCP/IP hostnames configuration

setting 87
distinguished name 51, 145, 146, 148
distinguished name (DN) 47
distributed identity 51, 145, 146, 148

precedence over user ID 53
dname 140
documentation 355
Drop working connections 90, 93
Drop working connections configuration

setting 90, 93
DSS group 150
DSS policy 149
DSSGROUP section of configuration

file 163
DSSPOLICY section of configuration

file 162
Dump options 262

dump parameters 263
dump responses 263
dumpoffset 95
dynamic server selection 77
dynamic server selection algorithm

algorithm configuration
parameter 151

dynamically select CICS server group
using algorithm 151

E
ECI resource adapter 170
ECI timeout configuration setting 118
ECI_ERR_NO_CICS 278
ECI_ERR_SECURITY_ERROR 279
eCICS Transaction Gateways 254
enable health reporting configuration

setting 155
Enable reading input from console 86
Enable reading input from SDSF 86
Enable reading input from SDSF

configuration setting 86
Enable statistic recording 155
Enable XA transaction support

configuration setting 131
end of day time 154
End to end security 6
end-of-day shutdown statistics 338
environment variables 132, 138

CICSCLI 82
CLASSPATH 169
CTG_WIDTH 103
CTG_XA_MAX_TRAN 103
CTGENVVAR 104
CTGSTART_OPTS 104
DFHJVPIPE 102
EXCI_LOADLIB 121
EXCI_OPTIONS 121
LD_LIBRARY_PATH 81
PATH 81
SHLIB_PATH 81
STEPLIB 143

environment variables: local and remote
mode 100

environment variables: remote
mode 102

exception stack tracing 96
EXCI

configuring 119
set environment variables 119

EXCI connections 110
EXCI Open_Pipe call 126
EXCI options 121
EXCI options table, DFHXCOPT 120,

121
EXCI pipes

Reuse 125
EXCI_LOADLIB environment

variable 121
EXCI_OPTIONS environment

variable 121
extattr command 143
external security managers 139

F
fully-qualified APPLID 105

G
gateway classes, configuring request

monitoring exits 152
Gateway daemon (GD) statistics SMF

data 349
Gateway daemon and local mode 9

382 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

gateway daemon, configuring request
monitoring exits 151

Gateway group XA support 36
gateway identification 105
GATEWAY section 158
Gateway start type 132
Gateway trace file 95
Gateway trace file configuration

setting 95
Gateway trace file wrap size (KB) 95
Gateway trace file wrap size (KB)

configuration setting 95
genkey 140
glossary of terms and abbreviations 359

H
HA 4, 77, 78
hardware key ring files 140
hardwarekey 140
hardwaretype 140
hardwareusage 140
health 155
Health interval configuration setting 156
health monitoring 74
health of communications 155
health reporting

determining status 260
resetting status 260

high availability 77, 148
High availability 4
High Availability 73
Host name or IP address configuration

setting 115
how an SSL connection is established 45
hwkeytool 140

I
IBM JVM

dump 258
dump responses 263

ICH422I 285
identity propagation 51, 145, 146, 148,

215
precedence over user ID 53

identity propagation overview 51, 145
Idle timeout (ms) 89, 92
Idle timeout (ms) configuration

setting 89, 92
iKeyMan 132
indoubt transactions 264
initconnect 65
Initial number of Connection Manager

threads 84
Initial number of Connection Manager

threads configuration setting 84
Initial number of worker threads 84
Initial number of worker threads

configuration setting 84
Installation

changing code page 22
installation planning

README file 9
installation verification test (IVT) 165
installation, actions after 21

installed files, location 21
installing CICS Transaction Gateway 21
Integration with CICS Explorer 7
Integration with IBM Rational

Application Developer 7
Integration with statistical data

interface 7
Interfaces 2
interregion communication 125
Interval 154
interval correlation number 338
interval statistics, configuration file 312
interval timing patterns 313
IP interconnectivity 111
IPIC

acquiring CICS connections 110
IPIC CICS Server definition,

configuring 114
IPIC connection problems 278
IPIC server connections 109
IPIC transactions, administering 265
ISPF 139

J
Java and JEE application runtime

environments 11
JAVA_HOME 132
JAVA_HOME environment variable 132
JCA resource adapter 165
JEE application servers 10
JEE Tracing 297
JEE transactional considerations 65
JES return codes 254
JNI trace file 261, 296
JNI trace file configuration setting 97
JNI tracing 258, 296
JSSE 132

K
Key ring file 138
Key ring file configuration setting 138
Key ring location configuration

setting 139
Key ring password 138
Key ring password configuration

setting 138
key rings

creating and maintaining 139
keyalg 140
KeyLabel 140
KeyRingClass 170
KeyRingPassword 170
KeyStores 132
keytool 132, 133
knowledge bases 299

L
LD_LIBRARY_PATH 81
libctgjni.so 81
load balancing, TCP/IP 73, 76
Local mode 4
local mode, configuring IPIC in 113
local support 81

Log CICS messages 87
Log CICS messages configuration

setting 87
logical CICS server 29, 30, 77
Logical units of work

extending 56, 65, 68
LOGONLIM 65
LPAR IPL 131

M
maintaining 132
manager, connection 65
maxconn 154
maxconnect 65
MAXCPUTIME value 81
Maximum number of connection

manager threads 84
Maximum number of connection

manager threads configuration
setting 84

maximum number of connections 154
Maximum number of Worker threads

configuration setting 85
MAXTHREADS parameter 60
MAXTHREADSTASK parameter 60
migration

.NET application compatibility 16
CICS Transaction Gateway API 16
Client API 17
compatibility 16, 17, 18
ECI Version 2 applications 17
Java Client applications 16
resource adapters 18
statistics and applications 17
user exit programs 17

monitoring 262, 315, 316, 319, 320, 321,
323, 325, 329, 330, 331, 332, 334, 335, 336

Monitoring 6
monitoring and statistics 303
multiple address spaces 246

N
network security 45, 132, 133

about SSL 45
accountability (non-repudiation) 45
authentication 45
authorization 45
cipher suites 48
concepts 44
confidentiality 45
data integrity 45
digital certificates 47
digital signatures 47
encryption 47
keys 47
Secure Sockets Layer (SSL) 44
signer certificate 47
SSL (Secure Sockets Layer) 44
SSL and IPIC 142
SSL cipher suites 48
what is SSL? 45
Why use SSL? 45
X.509 protocol 47

noinput 257

Index 383

O
Open_Pipe 126
Operating mode (local) 4
Operating mode (remote) 3
operating modes 2
other supported software 13
Overview 1, 4

P
Password 170
PATH 81
performance 55

avoiding
out of memory conditions 61

configuration 57
considerations 64
factors that affect performance 55
factors that improve performance 55
improving 69

poor response times 70
indicators 55
monitoring 69
other system factors 65, 68
out of memory conditions 61
poor response times 70
statistics 69
tracing 72

Ping time frequency (ms) 89, 92
Ping time frequency (ms) configuration

setting 89, 92
policy-based dynamic server selection

(DSS) 77
Port 88, 91, 153
Port configuration setting 88, 91, 115,

153
Port number 88, 91, 153
port sharing 74
Port sharing 4
PortNumber 170
preparing for identity propagation 146
prerequisites, scenario configuring an HA

group with two-phase commit and
IPIC 192

prerequisites, scenario IPIC 178, 185, 238
problem determination 274, 276, 277,

278, 282, 288, 299
128-bit encryption problem 282
access denied exception 280, 283
address space fails to initialize 271
address space problem

ECI_ERR_SYSTEM_ERROR 286
security violation 286

application tracing 296
ATR229D 292
attempted connection to CICS on

wrong TCP/IP port 275
authorization failure when using

servlets 292
Automatic Restart Manager

(ARM) 272
CEE3250C ABEND S806 270
CICS TG and CTGRRMS version

incompatibility 293
client not able to access library 270
code page problem 291

problem determination (continued)
cross-system restart problem 272
CTG6200I 271
CTG6201I 271
CTG6216E 271
CTG6237I 271
CTG6240I 271
CTG6255E 271
CTG6651E 280, 283
CTG6876E Reason=631 285
CTG6882E 277
CTG9215E 293
CTG9631E 279
CTGINIT module missing from

LNKLST 273
CTGRRMS fail to start when XA

support active 273
CTGRRMS services not running 271
dealing with problems 270
default port conflict 275
DFHIS1027 279
ECI_ERR_SECURITY_ERROR

-27 283, 284
ECI_ERR_SYSTEM_ERROR 276, 286
EDC5111I 274
EXCI pipe limit exceeded during

interserver communication 276
failure to handle Java exception 289,

290
Gateway daemon fails to shut

down 273
Gateway daemon startup fails due to

dirty address space 292
Gateway daemon tracing 295
ICH4081 279
identity propagation login module not

enabled 280
Identity propagation not

supported 279
insufficient thread memory 287
IRR012I 280
Java problems 289
Java stack dump 289, 290
java.lang.OutOfMemory

exception 287
JNI tracing 296
JVM dumps and system dumps 269
key ring file path not recognized 281
key ring name not recognized 280,

283
loss of connection with unit of

recovery in doubt 292
message location, format, code,

prefix 294
non program-controlled code 292
permission denied 274
pipe limit exceeded for available

sessions 277
port in use 274
preliminary checks 267
problem importing client certificate to

RACF 281
problems development CICS

Transaction Gateway 291
program control error 285
RACF mapping problem during

identity propagation 279

problem determination (continued)
RACF problems 278
security error due to RACF

problem 284
security error due to surrogate

checking 283
security violation during identity

propagation 279
shortage of EXCI resources 288
shortage of IPIC resources 288
SSL encryption problems 278
SSL key ring problems 278
SSL problems 280, 283
startup and shutdown problems 270
TCP/IP diagnostic commands 269
tools 269
tracing 81

Gateway daemon 295
unable to load class that supports

TCP/IP 291
user not authorized to access

DFHAPPL profiles 286
version non-compatibility 293
WebSphere Application Server

problems 292
work in progress preventing Gateway

daemon shutdown 273
problem solving and support 299
problems connecting to CICS over

EXCI 276
problems when connecting to CICS over

IPIC 277
Product integration 7
Product overview 1
program controlled 143
protocol handler (PH) statistics SMF

data 352
protocols 111
pthread_security_np 143
public key encryption 47
publications 355

R
RACF

CICS Transaction Gateway to use
RACF 143

key rings 139
RACDCERT command 49
setting extended attributes on HFS

files 143
RACF mappings for identity

propagation 145
RADCERT 139
re authentication support 170
RECEIVECOUNT 65
recording to SMF, statistics 338
redistributable components 22
region size considerations 252
remote and local modes 2
Remote mode 3
request monitoring exit options 263
request monitoring exits

configuration 309
Require Java Clients to use security

classes 90

384 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Require Java Clients to use security
classes configuration setting 90, 93

resource adapter 169
Resource Recovery Services 264
resource shortages 288
retryable error 126
runtime environments 9, 11

S
scenario 179, 186, 193, 195, 196, 205, 215,

239
configure identity propagation on

CICS 209
configure identity propagation on

CICS Transaction Gateway 211
configure identity propagation on

RACF 216
configure SSL 218
configuring identity propagation 216
identity propagation 209, 211

configure identity propagation on
WebSphere Application
Server 211

prerequisites 208
scenario: configure SSL

configure SSL on the Gateway
daemon 224

prerequisites 219
testing the scenario 225
verify that SSL is enabled on a

connection to the Gateway
daemon 224

scenario: configure SSL between CICS TG
and CICS

configure SSL client
authentication 230

configure SSL server authentication -
step 1 227

configure SSL server authentication -
step 2 229

configure the IPIC connection on
CICS 232

configure WebSphere Application
Server 234

prerequisites 227
test the SSL scenario 236
verify the connection 233

scenario: configure SSL on connection
between CICS TG local mode and CICS

overview 226
scenarios 177, 178, 180, 181, 182, 183,

184, 187, 189, 190, 195, 216, 237, 239,
240, 241

configure identity propagation 207
overview 207

SCTGLINK 127, 129, 130
SCTGLOAD 143
SDFHEXCI 143
security

CICS connection security 42, 43
EXCI connection security 42
IPIC connection security 43
permissions to security class 143
security considerations 41
setting extended attributes on HFS

files 143

security (continued)
surrogate options in DFHXCOPT 121
User authentication using SSL client

certificates 49
Security 6
security realm 51, 145, 146, 148
Send sessions configuration setting 115
Send TCP/IP KeepAlive packets

configuration setting 118
Server idle timeout (mins) configuration

setting 117
server name 30
Server name configuration setting 114
Server name remapping 4
server retry interval configuration

setting 117
Server side security 6
ServerName 170
ServerSecurity 170
sessions definition 122
SESSIONS, CICS 65
SHLIB_PATH 81
shut down options 260
shutting down 258
shutting down immediately 258
SMF 110
SMF data format, sample values 354
SMF data, CICS Server all (CS)

statistics 345
SMF data, Gateway daemon (GD)

statistics 349
SMF data, protocol handler (PH)

statistics 352
SMF data, system environment (SE)

statistics 352
SMF data, worker thread (WT)

statistics 353
SMF date format, byte packed date

format 353
SMF for EXCI CICS Server Instance

(CSx), statistics 347
SMF header data structure 340
SMF product section data structure 342
SMF record 340
SMF statistics, CICS Server Instance (CSx)

for IPIC 348
SO_LINGER setting 90
SO_LINGER setting configuration

setting 90
SocketConnectTimeout 170
solinger configuration setting 93
SP800-131A

compliance 143
SSL 132

client authentication 45
server authentication 45
SSL handshake 45
X.509 certificate 45

SSL clients, configuring 135
SSL encryption 47
SSL handshake failure 282
SSL protocol 160
SSL server, configuring 133
stack 96
start 132
Startup 245
startup and shutdown 243

startup options 254
Statistic recording 155
Statistical data 6
statistics 262, 310, 315, 316, 319, 320,

321, 323, 325, 329, 330, 331, 332, 334,
335, 336

Statistics 6, 154
Statistics and monitoring, differences 6
Statistics API port 153
Statistics API port configuration

setting 153
statistics API protocol 161
statistics configuration 311
Statistics End of Day time

(HHMMSS) 154
Statistics End of Day time (HHMMSS)

configuration setting 154
Statistics Interval (HHMMSS) 154
Statistics Interval (HHMMSS)

configuration setting 154
statistics record header 343
statistics recording to SMF 338
statistics requests 153
statistics, CICS Server all (CS) SMF

data 345
statistics, CICS Server Instance (CSx) SMF

for EXCI 347
statistics, CICS Server Instance (CSx) SMF

for IPIC 348
statistics, configuration recording

statistics to SMF 339
statistics, Connection Manager (CM) SMF

data 344
statistics, correlating multiple SMF

records 338
statistics, end-of-day shutdown 338
statistics, Gateway daemon (GD) SMF

data 349
statistics, interval correlation

number 338
statistics, protocol handler (PH) SMF

data 352
statistics, system environment (SE) SMF

data 352
statistics, system setup 312
statistics, worker thread (WT) SMF

data 353
STDENV DD statement 251
STDENV file 98
STDOUT and STDERR DD

statements 251
STEPLIB environment variable 143
storetype 140
supported code pages 22
supported configurations 51
supported software 9, 11, 14
SURROGCHK, DFHXCOPT table

option 121
SVC dump 298
symmetric keys 47
SYS1.PARMLIB 81
Sysplex Distributor 74
Sysplex recovery 4
system environment (SE) statistics SMF

data 352

Index 385

T
TCP protocol 159
TCP/IP failure 278
TCP/IP load balancing 73, 74, 76
TCP/IP port number 88, 91, 153
testing your scenario 182, 189, 216, 240
thread limits 60
thread, worker 65
Timeout 89, 92, 153
Timeout for in-progress requests to

complete 86
Timeout for in-progress requests to

complete configuration setting 86
TLS 47
TLS (Transport Layer Security) 47
Tooling 7
topologies 2
TPNName 170
trace 254
trace data blocks, maximum size 96
trace settings 95, 156
trace settings, applying 95, 156
TraceLevel 170
tracing 81

dynamic 258
Gateway daemon 258, 295
JNI 258
levels 297
query current trace settings 258

tracing, JNI 296
trademarks 384
tranName 171
transaction management models 170
transaction support 170
transaction tracking 108, 303, 304
transactional considerations, JEE 65
transactions, indoubt 264
Transport Layer Security (TLS) 47
truncationsize 96
trusted root key 47

U
unable to acquire IPCONN 277
UNIX System Services parameters

MAXTHREADS 60
MAXTHREADSTASK 60

upgrade V7.2, a Gateway with XA 35
upgrading 25
upgrading from Version 6 Release 0 39
upgrading from Version 7 Release 0 37
upgrading from Version 7 Release 1 33
upgrading from Version 7 Release 2 30
upgrading from Version 8 Release 0 25,

26
Use hardware cryptography configuration

setting 139
Use only these ciphers 94, 119
Use only these ciphers configuration

setting 94, 119
Use SSL 118
Use SSL configuration setting 118
user exits, monitoring 308
USERAUTH=IDENTIFY and identity

propagation 146
userid 172

using the APPLID to identify your CICS
TG 183, 190, 241

W
what's new in CICS TG V9 ix
Windows operating systems 9
Work load management 125
worker thread 65
worker thread (WT) statistics SMF

data 353
worker thread available timeout 86
worker thread available timeout

configuration setting 86
Worker threads 254
workload balancing 74
Workload balancing 4

X
XA

Administering Websphere transactions
with RRS 264

automatic restart management 247
configuration setting 131
configuring your system 126
CTG_XA_MAX_TRAN environment

variable 103
ctgasi command 128
ctgasi command to refresh 129
ctgasi command to start 128
ctgasi command to stop 130
CTGRRMS 128
CTGRRMS address space 244
CTGRRMS refreshing 129
CTGRRMS starting 128
CTGRRMS stopping 130
enabling CTGRRMS services 127
indoubt transactions 264
long running address space 128, 129,

130
LPAR IPL 131
shutdown 256
xasupport environment variable 131
z/OS image restrictions 15

XA support, configuring the CICS
Transaction Gateway with 126

XA support, considerations when z/OS
image contains Gateways from
multiples releases 15

XA support, upgrade to CTG V7R2 35
XA, upgrading the Gateway V7.2 35
xasupport 35
XCT 304

Z
z/OS console 110
z/OS environment settings

enable health reporting 155
z/OS image restrictions 15

386 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom

© Copyright IBM Corp. 2000, 2013 387

Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.
Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

388 CICS Transaction Gateway for z/OS V9.0: z/OS Administration

http://www.ibm.com/legal/copytrade.shtml

Readers’ Comments — We'd Like to Hear from You

CICS Transaction Gateway
Version 9 Release 0
z/OS Administration

Publication No. SC34-2832-02

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +44 1962 816151
v Send your comments via email to: idrcf@uk.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-2832-02

SC34-2832-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited
User Technologies Department (MP095)
Hursley Park
Winchester
Hampshire
United Kingdom
SO21 2JN

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

SC34-2832-02

	Contents
	About this information
	What's new in CICS Transaction Gateway V9.0
	Chapter 1. Overview
	Application programming interfaces (APIs)
	Deployment topologies
	Remote mode
	Local mode
	Connectivity to CICS

	High availability
	Security
	Statistics and monitoring
	Tooling and product integration

	Chapter 2. Planning
	Hardware requirements
	Supported software
	CICS Transaction Gateway core components
	Operating systems
	Java runtime environments for core components

	CICS servers
	JEE application servers
	Java application runtime environments
	Redistributable component runtime environments
	Development environments
	CICS Explorer
	Applications compiled for earlier versions

	Which protocol can be used?
	Which API can be used?
	Sysplex restrictions
	Using multiple releases of CICS TG
	Compatibility
	Application compatibility
	.NET Framework application compatibility
	Java client application compatibility
	C application compatibility
	Statistics application compatibility
	User exit program compatibility

	Resource adapter compatibility

	National Language Support
	Tools

	Chapter 3. Installing
	File path terminology
	Actions after installation
	Changing the code page
	Supported code pages

	Redistributable components

	Chapter 4. Upgrading
	Upgrading from Version 8 Release 1
	Upgrading from Version 8 Release 0
	CICS Transaction Gateway .NET applications
	Logical CICS server definitions
	Configuring a logical CICS server

	Upgrading from Version 7 Release 2
	Upgrading from Version 7 Release 1
	Upgrading XA configurations
	Upgrading a Gateway with XA support
	Upgrading a Gateway group with XA support

	Upgrading from Version 7 Release 0
	Upgrading from Version 6 and earlier

	Chapter 5. Security
	Security considerations
	CICS connection security
	EXCI connection security
	IPIC connection security

	Connection security and SSL
	Why use SSL?
	What is SSL?
	How an SSL connection is established

	User authentication using SSL client certificates
	Associating a client certificate with a RACF user ID
	RACF certificate name filtering
	Determining the RACF user ID associated with a certificate

	Identity propagation
	Benefits of using identity propagation
	Configurations that support identity propagation
	Precedence of distributed identities over asserted user IDs

	Chapter 6. Performance
	Performance indicators and factors
	Benefits of using a 64-bit Gateway
	Tuning the Gateway
	Threading model

	Tuning the gateway to avoid out of memory conditions
	Tuning the JVM
	Tuning JEE
	Configuring z/OS parameters
	EXCI considerations
	IPIC considerations
	Client applications
	Performance monitoring tools
	Statistics and performance assessment
	Investigating poor response times

	Tracing

	Chapter 7. High availability
	TCP/IP load balancing
	Port sharing
	Sysplex Distributor
	Health monitoring
	Highly available Gateway group

	Dynamic server selection
	Default CICS server
	Policy-based dynamic server selection
	CICS request exit
	CICS request exit and DFHXCURM

	Chapter 8. Configuring
	Configuring the system environment
	Increasing the MAXCPUTIME value

	Configuring a local mode topology
	Configuring a remote mode topology
	Configuring Gateway daemon settings
	Gateway daemon resources
	Gateway daemon logging
	TCP protocol settings
	SSL protocol settings
	Configuring trace settings

	Setting Gateway daemon JVM options
	Configuring Java shared classes

	Setting environment variables
	STDENV file
	The ctgenvvar script
	Environment variables: local and remote mode
	Environment variables: remote mode

	Configuring identification using APPLID
	Gateway identity considerations
	Gateway APPLID
	Gateway APPLID qualifier
	Client APPLID and APPLID qualifier
	IPIC server connections
	EXCI server connections
	SMF
	z/OS console

	Configuring CICS server connections
	Configuring IPIC
	IP interconnectivity (IPIC)
	Configuring IPIC on CICS Transaction Server for z/OS
	Configuring IPIC in local mode
	Configuring IPIC in remote mode

	Configuring EXCI
	Setting EXCI environment variables
	Customizing EXCI options
	Configuring EXCI on CICS Transaction Server for z/OS

	Configuring XA support
	Configuring for XA transaction support
	Enabling CTGRRMS services
	Starting, stopping or refreshing the CTGRRMS services
	Starting CTGRRMS services
	Refreshing CTGRRMS services
	Stopping CTGRRMS services
	LPAR IPLs in an XA environment
	ctgasi command syntax

	XA transaction support activate (xasupport)
	Gateway start type

	Configuring SSL
	Creating and maintaining digital certificates
	Using keytool for certificate management
	Configuring your SSL server
	Configuring your SSL clients

	SSL key ring configuration
	Key ring file
	Key ring password
	Key ring password encryption
	ESM key ring
	Use hardware cryptography

	Using RACF key rings
	Creating and maintaining hardware key ring files
	Using hardware cryptography

	SSL configuration for IPIC connections
	SP800-131A compliance

	Configuring for client certificate mapping
	Configuring identity propagation
	Configuring identity propagation on RACF
	Configuring identity propagation on CICS
	Configuring identity propagation on WebSphere Application Server
	Configuring identity propagation for CICS Transaction Gateway

	Configuring high availability
	Default server
	Configuring a dynamic server selection policy
	Setting the active DSS policy
	Configuring a DSS policy
	Configuring a DSS group

	Configuring a CICS request exit

	Configuring monitoring and statistics
	Configuring request monitoring exits for the Gateway daemon
	Configuring request monitoring for the Gateway classes
	Configuring statistics settings
	Statistics API protocol settings
	Statistics interval
	Statistics end of day time
	Enable statistic recording to SMF
	Health reporting

	Configuring bidirectional data support
	Configuring trace settings
	Configuration parameter reference
	The configuration file
	PRODUCT section of the configuration file
	GATEWAY section of the configuration file
	TCP protocol parameters
	SSL protocol parameters
	Statistics API protocol parameters

	IPICSERVER section of the configuration file
	LOGICALSERVER section of the configuration file
	DSSPOLICY section of the configuration file
	DSSGROUP section of the configuration file
	Summary of environment variables

	Testing your configuration
	Using the sample batch jobs to check your configuration
	JCA resource adapter installation verification test (IVT)
	Prerequisites for running the JCA IVT
	Deploying and configuring the JCA IVT
	Running the JCA IVT

	Using the sample programs to check your configuration

	Chapter 9. Deploying applications
	Configuring remote Client application environments
	Deploying the CICS resource adapter
	Transaction management models
	ECI resource adapter deployment parameters
	Deploying the ECI resource adapter on WebSphere Application Server for z/OS

	Deploying remote Java client applications
	Deploying ECI V2 and ESI V2 to remote systems
	Deploying .NET applications to remote systems

	Chapter 10. Scenarios
	Sample files
	Configuring a secure autoinstalled IPIC connection (SC01)
	Prerequisites
	Configuring the IPIC server on CICS TG
	Configuring the IPCONN autoinstall user program DFHISCIP on CICS TS
	Configuring the TCPIPSERVICE on CICS TS
	Configuring the IPCONN template on CICS TS
	Testing your scenario
	Optional: using the APPLID to identify your CICS TG

	Configuring a secure predefined IPIC connection (SC02)
	Prerequisites
	Configuring the IPIC server on CICS TG
	Configuring the TCPIPService on CICS TS
	Configuring the IPCONN on CICS TS
	Testing your scenario
	Optional: specifying CICSAPPLID and CICSAPPLIDQUALIFIER in the IPICSERVER definition

	Configuring a highly available Gateway group with two-phase commit and IPIC (SC03)
	Prerequisites
	Configuring CICS TG for high availability
	Configuring TCP/IP for port sharing
	Configuring the TCPIPService on CICS TS
	Configuring WebSphere Application Server
	Testing the scenario

	Configuring identity propagation for a remote mode topology (SC04)
	Prerequisites
	Configuring identity propagation on CICS TS
	Configuring identity propagation on CICS TG
	Configuring identity propagation on WebSphere Application Server
	Checking that the connection is secure
	Configuring identity propagation on RACF
	Testing your scenario

	Configuring SSL security between a Java Client and the Gateway daemon (SC05)
	Prerequisites for the SSL scenario
	Configure SSL server authentication - step 1
	Configure SSL server authentication - step 2
	Configure SSL client authentication (optional)
	Configuring the Gateway daemon for SSL
	Verifying that SSL is enabled on the connection
	Testing the SSL scenario

	Configuring SSL between CICS TG and CICS (SC07)
	Prerequisites for the SSL scenario
	Configuring SSL server authentication on the CICS server
	Configuring SSL server authentication on the client
	Configuring SSL client authentication
	Configuring the IPIC connection on CICS
	Verifying the connection
	Configuring WebSphere Application Server
	Testing the SSL scenario

	Configuring an autoinstalled IPIC connection (SC08)
	Prerequisites
	Configuring the IPIC server on CICS TG
	Configuring the TCPIPSERVICE on CICS TS
	Testing your scenario
	Optional: using the APPLID to identify your CICS TG

	Chapter 11. Operating
	Startup and shutdown
	Starting CICS Transaction Gateway
	Cold start
	Multiple address spaces
	Automatic restart management
	Starting in batch mode
	Starting multiple CICS Transaction Gateways
	Starting from a command line

	Stopping the CICS Transaction Gateway
	Normal shutdown
	Immediate shutdown
	Stopping a Gateway daemon

	Gateway daemon administration
	Shutting down
	Shutting down immediately
	Controlling trace
	Querying trace settings
	Setting the Gateway trace
	Setting the JNI trace
	Combining options

	Controlling health monitoring
	Determining health status
	Resetting health status

	Administration options
	Shutdown options
	Trace options
	Querying statistics
	Dumping diagnostic information
	Request monitoring exit control
	CICS request exit options

	Administering XA transactions with Resource Recovery Services
	Administering transactions that use IPIC connections
	Understanding system time
	Restarting Resource Recovery Services (RRS)

	Chapter 12. Resolving problems
	Preliminary checks
	What to do next
	Problem determination tools
	JVM dump and system dump
	TCP/IP diagnostic commands

	Dealing with problems
	Startup and shutdown problems
	Gateway daemon not able to access load library
	CTGRRMS services fails to initialize
	Address space fails to initialize
	CICS Transaction Gateway fails to initialize after an ARM restart
	CTGRRMS fails to start when XA support is active
	Gateway daemon fails to shut down

	CICS connection problems
	Port is in use by another task
	Conflict exists with a default port
	Attempting connection to CICS on wrong TCP/IP port
	EXCI connection problems
	IPIC connection problems

	Security problems
	Identity propagation problems
	SSL problems
	Security error due to surrogate checking problem
	Security error due to RACF problem
	Program control error with security enabled
	Security violation
	User not authorized to access DFHAPPL profiles

	Memory problems
	Memory use increases over time

	Resource problems
	Shortage of EXCI resources on the CICS server
	Shortage of IPIC resources on the CICS server

	Java problems
	Failure to handle a Java exception
	Java class cache problems
	Unable to load class that supports TCP/IP

	Application development problems
	Corrupted data when using channels and containers

	WebSphere Application Server problems
	Authorization failure using servlets with WebSphere
	Gateway daemon startup fails due to dirty address space
	Loss of connection with unit of recovery in doubt

	Version problems
	Version compatibility problem with CTGRRMS

	General information about messages
	Tracing
	Gateway daemon tracing
	Gateway daemon trace levels

	Tracing Java client applications
	JNI tracing
	JEE tracing
	Tracing issues when serializing Connection Factories

	EXCI trace
	Collecting SVC dumps of the Gateway daemon address space

	Problem solving and support
	Searching knowledge bases
	Contacting IBM Software Support

	Chapter 13. Monitoring and statistics
	Transaction tracking
	Transaction tracking across a CICSPlex
	Transaction tracking with Cross Component Trace (XCT)

	Request monitoring exits
	Request monitoring exits configuration

	Statistics
	Statistics configuration
	Setting up your system for statistics
	Interval statistics
	Interval timing patterns

	Displaying statistics
	Displaying all available statistics
	Selecting the statistics to display
	Listing available resource groups
	Listing all available statistical IDs
	Listing statistical IDs for selected resource groups
	Getting help on statistics

	Statistics resource groups
	List of statistics

	Using the statistics
	Statistics for tuning and capacity planning
	Statistics for diagnosing system problems
	Statistics for the analysis of resource usage
	Statistics for throughput analysis

	Recording statistics to SMF
	Configuration for recording statistics to SMF
	SMF records

	CICS TG plug-in for CICS Explorer

	Related literature
	Accessibility
	Glossary
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X
	Z

	Notices
	Trademarks

	Readers’ Comments — We'd Like to Hear from You

