
CICS® Universal Clients

C++ Programming
Version 3.1

SC33-1923-01

IBM

CICS® Universal Clients

C++ Programming
Version 3.1

SC33-1923-01

IBM

Note!
Before using this information and the product it supports, read the general information under “Notices” on
page 111.

Second Edition (September 1999)

This edition applies to CICS Universal Clients, Version 3.1, program number 5648-B42, and to all subsequent versions,
releases, and modifications until otherwise indicated in new editions.

The previous edition of this book, CICS Family: OO Programming in C++ for CICS Clients, SC33-1923-00, is still
available and should be used for earlier versions of CICS Clients.

© Copyright International Business Machines Corporation 1996,1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book vii
Who should read this book vii
Conventions and terminology used in this
book vii
Prerequisite and related information . . . viii
How to send your comments viii
Obtaining books from IBM ix

Part 1. Client Classes—Guidance. . 1

Chapter 1. Introduction to OO programming 3
OO support in CICS Clients 3
Programming language support 4

Chapter 2. Establishing the working
environment 5
Environments supported 5

Chapter 3. Using the CICS client C++
classes 7
Compiling and Linking 7

Using IBM VisualAge C++ OS/2 7
Using Microsoft Visual C++ on Windows
NT and Windows 98 7
Using IBM VisualAge C++ for Windows . . 7
Using IBM Compilers on AIX 8
Using Sun Workshop 8

Multi-Threading 8
Handling Exceptions 9

Async Exception Handling 9
External call interface 10

Using Commareas 11
Finding potential servers 11
Server connection 12
Passing data to a server program 12
Controlling server interactions 13
Monitoring server availability 17
Managing logical units of work 18
Security Management for ECI 19

C++ External presentation interface 20
Support for Automatic Transaction
Initiation (ATI) 22
Starting a 3270 terminal connection to
CICS 23

Accessing fields on CICS 3270 screens . . 24
EPI call synchronization types 25
EPI BMS conversion utility 28
Using EPI BMS Map Classes 30
Security Management for EPI 31

Part 2. CICS Client C++ classes -
reference 33

Chapter 4. Ccl class 37
Enumerations 37

Bool. 37
Sync 37
ExCode 37

Chapter 5. CclBuf class 39
CclBuf constructors 40

CclBuf (1) 40
CclBuf (2) 40
CclBuf (3) 40
CclBuf (4) 40

Public methods 41
assign 41
cut 41
dataArea 41
dataAreaLength 41
dataAreaOwner 41
dataAreaType 41
dataLength 42
insert 42
listState 42
operator= (1) 42
operator= (2) 42
operator+= (1) 43
operator+= (2) 43
operator== 43
operator!=. 43
replace 43
setDataLength 44

Enumerations 44
DataAreaOwner. 44
DataAreaType 44

Chapter 6. CclConn class 45

© Copyright IBM Corp. 1996,1999 iii

CclConn constructor 45
Public methods 46

alterSecurity 46
cancel 46
changed 46
changePassword 46
link 47
listState 47
makeSecurityDefault 48
password (1) 48
password (2) 48
serverName (1) 48
serverName (2) 48
status 48
serverStatus 49
serverStatusText. 49
userId (1) 49
userId (2) 49
verifyPassword 49

Enumerations 50
ServerStatus 50

Chapter 7. CclECI class 51
CclECI constructor (protected) 51
Public methods 51

exCode. 51
exCodeText 51
handleException 52
instance 52
listState 52
serverCount 52
serverDesc 52
serverName 52

Chapter 8. CclEPI class 55
CclEPI constructor 55
Public methods 55

diagnose 55
exCode. 55
exCodeText 56
handleException 56
serverCount 56
serverDesc 56
serverName 56
state 57
terminate 57

Enumerations 57
State 57

Chapter 9. CclException class 59

Public methods 59
abendCode 59
className 59
diagnose 59
exCode. 59
exCodeText 60
exObject 60
methodName 60

Chapter 10. CclField class 61
Public methods 61

appendText (1) 61
appendText (2) 61
backgroundColor 61
baseAttribute 61
column. 62
dataTag 62
foregroundColor 62
highlight 62
inputProt 62
inputType 62
intensity 63
length 63
position 63
resetDataTag 63
row 63
setBaseAttribute. 63
setExtAttribute 63
setText (1) 64
setText (2) 64
text 64
textLength 64
transparency 64

Enumerations 65
BaseInts 65
BaseMDT 65
BaseProt 65
BaseType 65
Color 65
Highlight 65
Transparency. 65

Chapter 11. CclFlow class 67
CclFlow constructor 67

CclFlow (1) 67
CclFlow (2) 67

Public methods 68
abendCode 68
callType 68
callTypeText 68

iv C++ Programming

connection 68
diagnose 68
flowId 68
forceReset 68
handleReply 69
listState 69
poll 69
setTimeout 69
syncType 70
timeout 70
uow. 70
wait. 70

Enumerations 70
CallType 70

Chapter 12. CclMap class 71
CclMap constructor 71
Public methods 71

exCode. 71
exCodeText 71
field (1) 72
field (2) 72

Protected methods 72
namedField 72
validate 72

Chapter 13. CclScreen class 75
Public methods 75

cursorCol 75
cursorRow 75
depth 75
field (1) 75
field (2) 75
fieldCount 76
mapName. 76
mapSetName. 76
setAID 76
setCursor 76
width 77

Enumerations 77
AID 77

Chapter 14. CclSecAttr 79
Public Methods 79

expiryTime 79
invalidCount 79
lastAccessTime 79
lastVerifiedTime. 79

Chapter 15. CclSecTime 81

Public Methods 81
day 81
get_time_t. 81
get_tm 81
hours 81
hundredths 81
minutes 81
month 82
seconds 82
year. 82

Chapter 16. CclSession class 83
CclSession constructor 83
Public methods 83

diagnose 83
handleReply 83
state 84
terminal 84
transID. 84

Enumerations 84
State 84

Chapter 17. CclTerminal class 85
CclTerminal constructor 85

CclTerminal 85
Public methods 86

alterSecurity 86
changePassword 86
CCSid 87
diagnose 87
disconnect(1) 87
disconnect(2) 87
discReason 87
exCode. 87
exCodeText 88
install 88
makeSecurityDefault 88
netName 88
password 88
poll 89
queryATI 89
readTimeout 89
receiveATI 89
screen 90
send (1) 90
send (2) 90
setATI 90
signonCapability 91
state 91
serverName 91

Contents v

termID 91
transID. 91
userId 91
verifyPassword 92

Enumerations 92
ATIState 92
signonType 92
State 92
EndTerminalReason 92

Chapter 18. CclUOW class 95
CclUOW constructor 95
Public methods 95

backout 95
commit 95
forceReset 96
listState 96
uowId 96

Part 3. Appendixes 97

Appendix. Exception Objects 99

Glossary 105

Bibliography 107
C++ Programming 107
The CICS Transaction Gateway and CICS
Universal Clients library 107

CICS Transaction Gateway books . . . 107
CICS Universal Clients books 108
CICS Family publications 108
Book filenames. 108
Sample configuration documents. . . . 109
Other publications 109
Viewing the online documentation . . . 109

Notices 111
Trademarks and service marks 112

Index 113

vi C++ Programming

|
||
||
||
||
||
||
||
||

About this book

This book describes object-oriented programming for the CICS external call
interface (ECI) and the CICS external presentation interface (EPI). It provides
guidance on writing programs, with examples, using the classes and methods
provided with IBM CICS Universal Clients version 3.1.

Who should read this book

This book is for CICS application programmers who want to know how to
use the object oriented (OO) classes provided in IBM CICS Universal Clients
version 3.1 to develop object oriented CICS client programs.

Object oriented programs should be more readily understood because they are
written at a higher level, are easier to maintain, and should lend themselves
to reuse. Not only does the code included in the class libraries take some of
the more error-prone and repetitive elements of programming away from the
programmer, but the classes themselves are written to make full and
appropriate use of CICS facilities.

CICS services are available to clients through the External Call Interface (ECI)
and External Presentation Interface (EPI). The CICS client classes allow a C++
programmer to access the ECI and EPI interfaces in an object oriented manner.

C++ is the programming language supported in this version.

The previous edition of this book, CICS Family: OO Programming in C++ for
CICS Clients, SC33-1923-00, is still available and should be used for earlier
versions of CICS Clients.

Conventions and terminology used in this book

Here are some of the conventions used in this book:
Filenames are shown in a monospaced font — cuc.ini

OO classes are shown in bold — CclBuffer

OO methods are shown in bold — fieldCount

Parameters are shown in italic — serverName

© Copyright IBM Corp. 1996,1999 vii

Prerequisite and related information

This document assumes that you are familiar with OO concepts and the C++
language, and have a reasonable understanding of the existing services that
CICS provides.

For more information about using the CICS services, see CICS Family:
Client/Server Programming.

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book, or any
other CICS documentation:
v Visit our Web site at:

http://www.ibm.com/ts/cics/

and follow the library link to our feedback form.

Here you will find the feedback page where you can enter and submit your
comments.

v Send your comments by e-mail to idrcf@hursley.ibm.com
v Fax your comments to:

+44-1962-870229 (if you are outside the UK)
01962-870229 (if you are in the UK)

v Mail your comments to:

Information Development
Mail Point 095
IBM United Kingdom Laboratories
Hursley Park
Winchester
Hampshire
SO21 2JN
United Kingdom

Whichever method you use, ensure that you include:
v The name of the book
v The form number of the book
v If applicable, the version of the product
v The specific location of the text you are commenting on, for example, a

page number or table number.

viii C++ Programming

Obtaining books from IBM

You can order publications through your IBM representative or the IBM
branch office serving your locality.

You can check the availability of books from our Web site at:
http://www.ibm.com/ts/cics/

Follow the library link and download books as required.

Also, you can order books from the Web site at:
http://www.elink.ibmlink.ibm/pbl/pbl

About this book ix

x C++ Programming

Part 1. Client Classes—Guidance

Chapter 1. Introduction to OO programming 3
OO support in CICS Clients 3
Programming language support 4

Chapter 2. Establishing the working
environment 5
Environments supported 5

Chapter 3. Using the CICS client C++
classes 7
Compiling and Linking 7

Using IBM VisualAge C++ OS/2 7
Using Microsoft Visual C++ on Windows
NT and Windows 98 7
Using IBM VisualAge C++ for Windows . . 7
Using IBM Compilers on AIX 8
Using Sun Workshop 8

Multi-Threading 8
Handling Exceptions 9

Async Exception Handling 9
External call interface 10

Using Commareas 11
Finding potential servers 11
Server connection 12
Passing data to a server program 12
Controlling server interactions 13

Synchronous reply handling 14
Asynchronous reply handling 15
Deferred synchronous reply handling 16

Monitoring server availability 17
Managing logical units of work 18
Security Management for ECI 19

C++ External presentation interface 20
Support for Automatic Transaction
Initiation (ATI) 22
Starting a 3270 terminal connection to
CICS 23
Accessing fields on CICS 3270 screens . . 24
EPI call synchronization types 25
EPI BMS conversion utility 28

Mapset containing a single map . . . 29
Using EPI BMS Map Classes 30
Security Management for EPI 31

© Copyright IBM Corp. 1996,1999 1

2 C++ Programming

Chapter 1. Introduction to OO programming

The CICS® family provides robust transaction processing capabilities across
the major hardware platforms that IBM® offers, and also across key non-IBM
platforms such as UNIX. It offers a wide range of features for supporting
client/server applications, and allows the use of modern graphical interfaces
for presenting information to the end user. The CICS family now supports the
emerging technology for object oriented programming and offers CICS users a
way of capitalizing on many of the benefits of object technology while making
use of their investment in CICS skills, data and applications.

Object oriented programming allows more realistic models to be built in
flexible programming languages. You can define new types or classes of
objects, as well as employing a variety of structures to represent these objects.

Object oriented programming also allows you to associate more meaning with
data by creating methods (member functions) that define the behavior
associated with objects of a certain type, thereby capturing more of the
semantics associated with the underlying data.

The hiding or encapsulating of much of the complexity of a piece of software
inside a simpler external shell provides the key to reuse of code. An object
defined in such a way can be used from a wide range of different
applications. The provision of discrete, well defined objects can be the
foundation of a library of reusable parts from which future applications can
be built more quickly and cheaply. The reuse of existing parts leads to better
levels of software quality as they have already been tested and used in other
applications.

OO support in CICS Clients

The principal communication mechanism provided on the CICS Client is the
External Call Interface (ECI). The provision of an ECI class library, modelling
the full function of the ECI in an object oriented way, provides the base upon
which extended support has been built.

Supplied classes offer the capability of making links to servers, making calls
to the CICS programs on the server, finding out status, and making use of
units of work (UOW’s).

The second interface available to application programmers on the CICS Client
is the External Presentation Interface (EPI). Communication with 3270

© Copyright IBM Corp. 1996,1999 3

terminal based CICS applications is provided by classes encapsulating
terminals, screens, fields and BMS maps. The EPI classes make it unnecessary
to work directly with the 3270 datastream and make it easier to examine and
update the contents of an output screen.

Programming language support

OO libraries are provided with CICS Clients Version 3.1 for C++ and BASIC
programmers. This book covers the C++ programming topics. If you wish to
use the COM libraries, please refer to OO Programming in C++ for CICS
Clients.

Introduction to OO programming

4 C++ Programming

Chapter 2. Establishing the working environment

You are provided with C++ (OO) support for CICS clients in OS/2®, AIX,
Solaris and Windows environments. This includes the class library, C++
header files, the BMS map utility, and sample code.

Environments supported

OS/2
IBM OS/2 Version 4 or later
IBM Visual Age C++ for OS/2 Version 3.0 or later

Windows NT

Windows NT Workstation Version 4 SP3 or later
Windows NT Server Version 4 SP3 or later
IBM Visual Age C++ for Windows Version 3.5 or later
Microsoft Visual C++ Version 5.0 or later

Windows 98

Windows 98
Microsoft Visual C++ Version 5.0 or later

AIX®

AIX V4.3.1 or later
IBM C and C++ Compilers Version 3.6
IBM Visual Age C++ V4
IBM C Set C++ V3.1

Solaris

Solaris 2.6 or Solaris 7
Sun Workshop V3.0

Refer to CICS Client Administration, SC33-1436-00, for details of CICS server
platforms supported by the CICS clients.

© Copyright IBM Corp. 1996,1999 5

6 C++ Programming

Chapter 3. Using the CICS client C++ classes

For examples of programs that use the CICS client C++ classes, refer to the
separate samples documentation.

Compiling and Linking

Your C++ program source will need #include statements to include either
CICSECI.HPP (for the ECI classes) or CICSEPI.HPP (for the EPI classes). These
files are in the include subdirectory.

Using IBM VisualAge C++ OS/2
v The preprocessor macro CICS_OS2 must be defined to the compiler using

the /DCICS_OS2 option.
v The /Gm+ compiler option must be specified so that multi-threaded versions

of C++ run-time libraries are linked.
v The application must be linked with the CCLCPOS2.LIB library supplied in

the subdirectory LIB.

Using Microsoft Visual C++ on Windows NT and Windows 98

Compiling and linking on Windows NT and Windows 98 using Microsoft
Visual C++.
v The preprocessor definition CICS_W32 must be defined to the compiler

using the /DCICS_W32 option.
v Multithreaded DLL run-time libraries must be selected in the C++ compiler

code generation options (equivalent to the /MD compiler option).
v The application must be linked with the CCLCPW32.LIB library supplied in

the subdirectory LIB.

Using IBM VisualAge C++ for Windows

Compiling and linking on Windows NT using IBM VisualAge® C++ for
Windows.
v The preprocessor macro CICS_W32 must be defined to the compiler

(equivalent to the /DCICS_W32 compiler option)
v Multithread libraries must be selected in the compiler object code options

(equivalent to the /Gm compiler option)
v The application must be linked with the CCLICW32.LIB library supplied in

subdirectory LIB

© Copyright IBM Corp. 1996,1999 7

Using IBM Compilers on AIX

Compiling and linking on AIX using IBM compilers
v Define the pre-processor macro CICS_AIX. You can do this in your code

before including the header file or define it using a command line directive,
e.g. -DCICS_AIX.

v When compiling specify:

xlC_r to compile with the threadsafe compilers.

-lc_r to use threadsafe C runtime libraries

-lcclcp
to link the shared library libcclcp.a

Using Sun Workshop

Compiling and linking on Solaris using Sun Workshop
v Define the pre-processor macro CICS_SOL. You can do this in your code

before including the header file or define it using a command line directive,
e.g. -DCICS_SOL.

v

-lc to use C runtime libraries

-lcclcp
to link the shared library libcclcp.so

v Specify -lcclcp when compiling. This will link the shared library
libcclcp.so.

Multi-Threading

The CICS Client C++ libraries are not totally ’thread safe’, i.e. they do not
have critical sections or semaphores to prevent two threads interfering if they
both update the same instance of an object. However, the classes do not share
data, so they are useable in a ’well behaved’ multi-threaded program. The
normal technique is for each thread to have its own instance of CclConn,
CclFlow, CclBuf etc (they are light-weight objects).

Using the CICS client C++ classes

8 C++ Programming

Handling Exceptions

Most class methods could generate an exception. The default exception
handler is found in the handleException method in the CclECI and CclEPI
classes. It is a simple routine which does a C++ throw of a CclException
object. It does not perform any action if an exception occurs within the
destruction of an object. Doing a throw within a destructor is a dangerous
thing to do.

This routine is suitable for most needs when using synchronisation modes of
dsync and sync. An example of this could be as follows :-

You might want to implement your own exception handler, by subclassing the
CclECI or CclEPI class, if you want to handle object destruction exceptions
explicitly.
void CclECI::handleException(CclException except) {

if (*(except.methodName()) != 'x') {
throw(except);

} else {

// Handle a destructor exception, but ensure that this
// routine just returns

}
}

Async Exception Handling

You must override the ECI handleException routine by subclassing CclECI if
you are using the async synchronisation mode. With async mode a separate

#include <iostream.h>
#include <cicseci.hpp>

void main(void) {
CclECI *eci;
eci = CclECI::instance();
CclFlow flow(Ccl::sync);
CclBuf buf;
CclConn conn("CICSOS2","SYSAD","SYSAD");
buf.setDataLength(80);
try {
conn.link(flow,"EC01",&buf);
cout << (char *)buf.dataArea() << endl;

}
catch(CclException &exc) {
cout << "link failed" << endl;
cout << "diagnose:" << exc.diagnose() << endl;
cout << "abend code:" << exc.abendCode() << endl;

}
};

Using the CICS client C++ classes

Chapter 3. Using the CICS client C++ classes 9

thread controlled by the class library dll is created and an exception can occur
on that thread. If an exception does occur on that thread, the default exception
handler would throw the exception but there is no code in the class library to
trap the throw. For unhandled exceptions, the default action of most
compilers’ runtimes is to terminate the application.

To create a new exception handler you do the following
class MyCclECI : public CclECI {
public:

void handleException(CclException ex) {
// Place whatever code you want here, for example set a
// semaphore, or generate a Window Message
}

};

Once you have subclassed the ECI Class, you still can only create one object
of this class for your application, however do not use the instance method,
you must create the object either explicitly e.g.
MyCclECI myeci;

or by using the new operator
MyCclECI *pmyeci;
pmyeci = new MyCclECI;

External call interface

The ECI is one of two interfaces through which a non-CICS client program
can interact with a CICS server. The ECI object model consists of a set of
classes which give access to the features of the ECI and supports an
object-oriented approach to CICS client programming with the ECI. The
following classes are included:

Table 1. C++ ECI classes.

Object Classname Description

Global Ccl Contains global enumerations

Buffer CclBuf Used for exchanging data with a server

Connection CclConn Models the connection to a server

ECI CclECI Controls and lists access to CICS servers

Exception CclException Encapsulates exception information

Flow CclFlow Handles a single client/server interaction

SecAttr CclSecAttr Provides information about security
attributes (passwords)

SecTime CclSecTime Provides date and time information

Using the CICS client C++ classes

10 C++ Programming

Table 1. C++ ECI classes. (continued)

Object Classname Description

UOW CclUOW Corresponds with a Unit of Work in the
server—used for managing updates to
recoverable resources.

Using Commareas
A CommArea is a block of storage allocated by the program. The client
program uses the commarea to send data to the server and the server uses the
same storage to return data to the client. Therefore, you must create a
CommArea that is large enough to contain all the information to be sent to
the server and large enough to contain all the information that can be
returned from the server.

For example, you need to send a 12 byte serial number to the server, but you
may receive 20 Kb back from the server. You must create a CommArea of size
20 Kb. Your code would look like this:
In the example, the serial number is stored in the new commarea which is then

increased in size to 20480. The extra bytes are filled with nulls. This is
important as it ensures that the information transmitted to the server is kept
to a minimum. The client software strips off the excess nulls and transmits 12
bytes to the server.

Finding potential servers

Information about the CICS servers that can be used by a client program is
defined in the CICS Client Initialization file, CUC.INI (Client) or CTG.INI
(Gateway). See CICS Clients Administration Manual for more information. The
existence of such a definition doesn’t guarantee availability of a server.

The ECI object—CclECI provides access to this server information through its
serverCount, serverDesc, and serverName methods.

Unless the ECI class has been subclassed, its unique instance is found using
the class method instance as in the following example:

Typical output produced:

// serialNo is a Null terminated string
CclBuf Commarea; // create extensible buffer object
Commarea.assign(strlen(serialNo),serialNo); // Won't include the Null
Commarea.setDataLength(20480); // stores Nulls in the unused area

CclECI* pECI = CclECI::instance();
printf("Server Count = %d\n", pECI-> serverCount());
printf("Server1 Name = %s\n", pECI-> serverName(1));
...

External call interface

Chapter 3. Using the CICS client C++ classes 11

Server Count = 2
Server1 Name = DEVTSERV

Server connection

A client program requires one connection object—CclConn for each CICS
server with which it will interact. When a connection object is created,
optional data can be specified which includes:
v The name of the server to be connected. This must be one of the server

names defined in the CICS Client Initialization file. If this name is omitted,
the default server, as defined by the ECI, will be used.

v A user ID. Some servers may require that a client provides a user ID (and
password) before they permit specific interactions.

v A password.

In this example, a connection object is created with a server name, user ID
and password:

Creating a connection object does not, in itself, cause any interaction with the
server. The information in the connection object is used when one of the
following server request calls is issued:

link—to request the execution of a server program.
status—to request the status (availability) of the server.
changed—to request the notification of any change in this status.
cancel—to request the cancellation of a changed request.

These are methods of the connection class. There are two other server request
calls; the backout and commit methods of the unit of work class. More
information on the use of all these methods can be found in following
sections.

Passing data to a server program

A buffer object—CclBuf is used in the client program to encapsulate the
communication area that is used for passing data to and from a server
program. The use of buffer objects is not limited to communication areas; they
offer considerable flexibility for general-purpose data marshalling.

The following code constructs a buffer object and dynamically extends it as
text strings are assigned, inserted and appended to its data area:

CclConn serv2("Server2","sysad","sysad");

External call interface

12 C++ Programming

Output produced:
Some inserted text at the end

In the second example, an existing memory structure is used. This could, for
example, correspond to a COBOL record used in the server program. In this
case, the buffer object knows the record is fixed-length, externally-defined,
and ensures it can not be extended in any subsequent processing. The link call
requests execution of the program QVALUE on the CICS server defined by
the serv2 connection object and passes data via the structure on which the
buffer object comma2 is overlaid.

The communications area returned from a server is also contained in a buffer
object.

Controlling server interactions

A flow object—CclFlow—controls each interaction between the client program
and a server and determines the synchronization of reply processing;
synchronous, deferred synchronous or asynchronous. This example creates a
synchronous flow object:
A flow object is referenced when a server request call is first issued and

remains active from that time until all client processing of the corresponding
reply from the server has been completed. At that point it is set inactive and
becomes available for reuse or deletion. During its active lifespan, a flow
object maintains the state of the client/server interaction it is controlling.

The flow class should be subclassed to provide the implementation of a reply
handler which will be called when a reply is received; this happens regardless
of the synchronization type. The reply handler is passed a buffer object which
contains the communication area returned by the server. A default reply
handler is provided; it just returns to the caller without doing anything.

CclBuf comma1;
comma1 = "Some text";
comma1.insert(9,"inserted ",5) += " at the end";
cout << (char*)comma1.dataArea() << endl;
...

struct rec{
short key;
char name[8];
char retval[70];
};

rec record1 = { 1234,"Hilary" };
CclBuf comma2(sizeof(rec),&record1);
serv2.link(sflow,"QVALUE",&comma2);
...

CclFlow sflow(Ccl::sync);

External call interface

Chapter 3. Using the CICS client C++ classes 13

Separate flow subclasses could be needed to cater for different client/server
communication area protocols. Many flows may be active at the same time.
Many servers may be used simultaneously by the same client.

Synchronous reply handling

In the synchronous model, the client remains blocked at the server request call
until a reply is eventually received from the server.

The following code calls a server program using parameters supplied on the
command line. It does no subclassing to handle exceptions or to handle the
reply from the server.

The program gains access to the ECI object and constructs a connection object
using the supplied server name, password and user ID. Then a buffer object is
constructed using text from the command line and a synchronous flow object
is created.

The link call requests execution of the ECIWTO sample program on the server
and passes text to it in the buffer. Processing is then blocked until a reply is
received from the server. ECIWTO just writes the communication area to the
operator console on the server and returns it, unchanged, to the client.

After the reply is received, the program reports the most recent exception
code and prints the returned communication area:

If the program ECICPO1 is called as follows:
ECICPO1 DEVTSERV sysad sysad "Hello World"

the following output is expected on successful completion:
Link returned with "no error"
Reply from CICS server: Hello World

If the flow object controlling the interaction is an instance of a subclass which
has implemented a reply handler, this is called and executed before processing

...
CclECI* pECI = CclECI::instance();
CclConn server1(argv[1],argv[2],argv[3]);
CclBuf comma1(argv[4]);
CclFlow sflow(Ccl::sync);
server1.link(sflow,"ECIWTO",&comma1);

cout << "Link returned with \""
<< pECI-> exCodeText() << "\"" << endl;

cout << "Reply from CICS server: "
<< (char*)comma1.dataArea() << endl;

External call interface

14 C++ Programming

continues with the statement following the original server request call. For
example, the flow subclass defined in the asynchronous example which
follows could have been used.

Asynchronous reply handling

In the asynchronous model, the client program issues a server request call and
then continues immediately with the next statement without waiting for a
reply. As soon as the reply is received from the server it is immediately
passed to the reply handler of the flow object controlling the interaction; in
parallel with whatever else the client happens to be doing.

The implementation of asynchronous reply handling uses multi-threading and
is not supported on Windows 3.1.

The code which follows calls a server program using parameters supplied on
the command line. It subclasses the ECI class to handle exceptions and
subclasses the flow class to handle the reply from the server.

Here is a simple subclass of the flow class with a reply handler
implementation which just prints the reply received:

The program constructs a subclassed ECI object; then a connection object
using the supplied server name, password and user ID. It constructs a buffer
object using text from the command line and an asynchronous subclassed
flow object.

The link call requests execution of the ECIWTO sample program on the server
and passes text to it in the buffer object. Processing then continues with the
statement following the link call:

class MyCclFlow : public CclFlow {
public:

MyCclFlow(Ccl::Sync sync) : CclFlow(sync) {}
void handleReply(CclBuf* pcomm){

cout << "Reply from CICS server: "
<< (char*)pcomm-> dataArea() << endl;

}
};

...
MyCclECI myeci;
CclConn server1(argv[1],argv[2],argv[3]);
CclBuf comma1(argv[4]);
MyCclFlow asflow(Ccl::async);
server1.link(asflow,"ECIWTO",&comma1);
...

External call interface

Chapter 3. Using the CICS client C++ classes 15

In the sample, there is nothing else for the main program to do, so to avoid
premature termination, it is made to wait for user input:

Meanwhile, when the reply does come back from the server, the reply handler
is called and, assuming there are no exceptions, prints the returned
communication area. Note that in the asynchronous model, the buffer object
to hold the returned communication area is allocated internally within the
flow object, and is deleted after the reply handler has run. The buffer object
supplied on the original link call is not used for the reply, and can be deleted
as soon as the link call returns.

If the program ECICPO2 is called as follows:
ecicpo2 DEVTSERV sysad sysad "Hello World"

the following output is expected on successful completion:
Server call in progress. Enter q to quit...
Reply from CICS server: Hello World
q

If the client program decides at some point that it really can do no more until
a reply is received from the server, it can use the wait method on the
appropriate flow object. This effectively makes the interaction synchronous,
blocking the client:

Deferred synchronous reply handling

In the deferred synchronous model, the client program issues a server request
call and then continues immediately with the next statement without waiting
for a reply. Unlike the asynchronous case, where a server reply is handled
immediately it arrives, the client decides when it wants to poll for a reply.

When a poll is issued, the flow object checks whether there is, in fact, a reply
from the original server request. If there is, the flow object’s reply handler is
called synchronously and is passed the returned communication area in a
buffer object. Poll returns a value to its caller indicating whether the reply
was received or not; if not it can try again later.

The same simple subclass of the flow class described above is used. There are
some small changes to the main program to indicate deferred synchronous
reply handling:

cout << "Server call in progress. Enter q to quit..." << endl;
char input;
cin >> input;

asflow.wait();

External call interface

16 C++ Programming

For demonstration purposes, the program is now made to loop with a delay
until poll indicates the reply has been received from the server. Note that in
the deferred synchronous model, a buffer object to hold the returned
communication area can be supplied as a parameter to the poll method. If, as
in the example below, no buffer object is supplied on the poll method, one is
allocated internally within the flow object, and is deleted after the reply
handler has run.

Typical output on successful completion would look like this:
DSync polling...
DSync polling...
DSync polling...
Reply from CICS server: Hello World

As in the asynchronous model, the wait method can be used to make a
deferred synchronous flow synchronous, blocking the client.

Monitoring server availability

The connection object—CclConn has 3 methods which can be used to
determine the availability of the server connection that it represents:
status requests the status (that is, the availability) of the server.
changed

requests notification of any change in this status.
cancel

requests cancellation of a changed request.

The example described below shows how server availability can be monitored
in a client program that is busy doing something else.

Here is a subclass of the flow class designed for use with server status calls.
The reply handler implementation prints the server name and its
newly-changed status; it ignores the returned communication area. Next, it
issues a changed server request so that the next server status change will be

...
MyCclECI myeci;
CclConn server1(argv[1],argv[2],argv[3]);
CclBuf comma1(argv[4]);
MyCclFlow dsflow(Ccl::dsync);
server1.link(dsflow,"ECIWTO",&comma1);
...

...
Ccl::Bool reply = Ccl::no;
while (reply == Ccl::no) {
cout << "DSync polling..." << endl;
reply = dsflow.poll();
if (reply == Ccl::no) DosSleep(msecs);
}
...

External call interface

Chapter 3. Using the CICS client C++ classes 17

received. The reply handler will be called every time the availability of the
server changes.

The main program iterates through all the servers listed in the CICS Client
Initialization file. For each one, an asynchronous status request call is issued.
The program continues with whatever else it has to do.

The output produced could look something like this:
PROD1 is unavailable
DEVTSERV is unavailable
PROD1 is available

Initially, both servers are unavailable because the ECI client program is not
running. It starts, and after a while makes contact with one of the servers.

Managing logical units of work

A logical unit of work is all the processing in a server that is needed to
establish a set of updates to recoverable resources such as files or queues. If
the unit of work finishes normally, ALL the changes can then be either
committed or backed out. If it finishes abnormally, for example because a
program abends, ALL the changes will be backed out.

A logical unit of work managed by a client can include many server link
requests and many active units of work can be managed by a client at the
same time, but some restrictions are imposed by the ECI. A given logical unit
of work can include links to only one server. Only one link can be active at a
time in a logical unit of work so care must be taken with non-synchronous
requests.

class ChgFlow : public CclFlow {
public:

ChgFlow(Ccl::Sync stype) : CclFlow(stype) {}
void handleReply(CclBuf*) {

CclConn* ccon = connection();
cout << ccon-> serverName() << " is "

<< ccon-> serverStatusText() << endl;
ChgFlow* sflow = new ChgFlow(Ccl::async);
ccon-> changed(*sflow);
}

};

int numservs = myeci.serverCount();
CclConn* pcon;
ChgFlow* pflo;
for (int i = 1; i <= numservs ; i++) {
pcon = new CclConn(myeci.serverName(i));
pflo = new ChgFlow(Ccl::async);
pcon-> status(*pflo);
}
...

External call interface

18 C++ Programming

A client program uses a unit of work object—CclUOW for each logical unit of
work that it needs to manage. This code creates a unit of work object:
Any server link request which participates in a unit of work references the

corresponding unit of work object. When all the links participating in a unit
of work have successfully completed, the unit of work can be committed by
the commit method of the unit of work object or backed out by backout:

If no UOW object is used, each link call becomes a complete unit of work
(equivalent to LINK SYNCONRETURN in the CICS server).

Whenever using Logical units of work, you must ensure that you backout or
commit active units of work, especially at program termination. You can check
to see if a logical unit of work is still active by checking the uowId method
for a non zero value.

Security Management for ECI

You are now able to do security management on Servers that support
Password Expiry Management.Please refer to the CICS Family: Client/Server
Programming for more information on supported servers and protocols.

To use these features you first must have constructed a Connection object. The
two methods available are verifyPassword which checks the userid and
password within the connection object with the Server Security System, and
changePassword which allows you to change the password at the server. If
successful the connection object password is updated accordingly.

If either call is successful, you are returned a pointer to an internal object
which provides information about the security, a CclSecAttr object. This object
provides access to information such as last verified Date and Time, Expiry
Date and Time and Last access Date and Time. If you query for example last
verified Date, you get back a pointer to an object which allows you to get the
information in various formats. The following is a sample of code to show the
use of these various objects.

CclUOW uow;

serv1.link(sflow, "ECITSQ", &(comma1="1st link in UOW"), &uow);
serv1.link(sflow, "ECITSQ", &(comma1="2nd link in UOW"), &uow);
...

uow.backout(sflow);

External call interface

Chapter 3. Using the CICS client C++ classes 19

Note that the security attributes and date/time memory are all handled by the
connection object. If you destroy the connection object, you destroy the
security information being held by that object.

C++ External presentation interface

Many existing CICS server applications are written for 3270 terminal
interfaces and CICS has some powerful capabilities for dealing with these
datastreams, including Basic Mapping Support (BMS). It is useful for clients to
be able to interface with these server programs.

In procedural programming, the External Presentation Interface (EPI) provides
a mechanism for clients to communicate with transactions on a server and to
handle 3270 datastreams.

The classes provided to support the EPI make it simpler for a programmer
using OO techniques to access the facilities that EPI provides:
v Connection of 3270 sessions to CICS servers
v Starting CICS transactions
v Sending and receiving 3270 datastreams

The classes also enhance the procedural CICS EPI support by providing
higher level constructs for handling 3270 datastreams:

// Connection object already created called conn
CclSecAttr *pAttrblock; // pointer to security attributes
CclSecTime *pDTinfo; // pointer to Date/Time information
try {

pAttrblock = conn->verifyPassword();
pDTinfo = pAttrblock->lastVerifiedTime();
cout << "last verified year :" <<pDTinfo->year() << endl;
cout << "last verified month :" <<pDTinfo->month() << endl;
cout << "last verified day :" <<pDTinfo->day() << endl;
cout << "last verified hours :" <<pDTinfo->hours() << endl;
cout << "last verified mins :" <<pDTinfo->minutes() << endl;
cout << "last verified secs :" <<pDTinfo->seconds() << endl;
cout << "last verified 100ths:" <<pDTinfo->hundredths() << endl;

// Use a tm structure to produce a single line text of information
tm mytime;
mytime = pDTinfo->get_tm();
cout << "full info:" << asctime(&mytime) << endl;

}
catch (CclException &ex)
{

// Could check for expired password error and handle if required
cout << "Exception occurred: " <<ex.diagnose()<< endl;

}

External call interface

20 C++ Programming

1. General purpose C++ classes for handling 3270 datastream, such as fields
and attributes, and CICS transaction routing data, such as transaction ID.

2. Generation of C++ classes for specific CICS applications from BMS map
source files. These classes allow client applications to access data on 3270
panels, using the same field names as used in the CICS server BMS
application.

Note: These classes do not support DBCS fields in 3270 datastreams.

The BMS utility is a tool for statically producing C++ class source code
definitions and implementations from a CICS BMS mapset.

Here is a brief description of the supplied classes:

Table 2. C++ EPI classes.

Object Classname Description

Global Ccl Contains global enumerations.

EPI CclEPI Initializes the EPI. This class also has
methods that obtain information on CICS
servers accessible to the client.

Exception CclException Encapsulates error information.

Field CclField Supports a single field on a virtual screen
and provides access to field text and
attributes.

Map CclMap This class provides access to CclField
objects, using BMS map information. The
CICSBMSC utility generates classes derived
from CclMap.

Screen CclScreen Each terminal (CclTerminal object) has a
virtual screen associated with it. The
CclScreen class contains a collection of
CclField objects and methods to access these
objects. It also has methods for general
screen handling.

SecAttr CclSecAttr Provides information about security
attributes (passwords)

SecTime CclSecTime Provides date and time information

Session CclSession Controls communication with the server in
synchronous, asynchronous and deferred
synchronous modes.

Applications can use CclSession to derive
their own classes to encapsulate specific
CICS transactions.

C++ External presentation interface

Chapter 3. Using the CICS client C++ classes 21

Table 2. C++ EPI classes. (continued)

Object Classname Description

Terminal CclTerminal Controls a 3270 terminal connection to CICS.

The CclTerminal class handles CICS
conversational, pseudo-conversational, and
ATI transactions. One application can create
many CclTerminal objects.

Support for Automatic Transaction Initiation (ATI)

The CICS server API call EXEC CICS START allows a server program to start
a transaction on a particular terminal. This mechanism, called Automatic
Transaction Initiation (ATI), requires additional programming at the client side
to handle the interaction between these transactions and normal
client-initiated transactions.

Firstly, client applications can control whether ATI transactions are allowed by
using the setATI() and queryATI() methods on the CclTerminal class.The
default setting is for ATIs to be disabled. The following code fragment shows
how to enabled ATIs for a particular terminal:
// Create terminal connection to CICS server
CclTerminal terminal("myserver");
// Enable ATIs
terminal.setATI(CclTerminal::enabled);

The CICS client queues ATIs for a terminal while a transaction is in progress.
The CclTerminal class will perform one of more of the following
v run any outstanding ATIs as soon as a transaction ends
v call Additional programming needed to handle the ATI replies
v run ATIs before or between client-initiated transactions

depending on whether the call synchronisation type is Synchronous,
Asynchronous or Deferred synchronous.

Synchronous When you call the CclTerminal send() method,any outstanding
ATIs will be run after the client-initiated transaction has
completed. The CclTerminal class will wait for the ATI replies
then update the CclScreen contents as part of the synchronous
send() call. If you expect an ATI to occur before or between
client-initiated transactions, you can call the CclTerminal
receiveATI() method to wait synchronously for the ATI.

Asynchronous When the client application calls the CclTerminal send()
method for an async session, the CclTerminal class starts a
separate thread to handle replies. If ATIs are disabled, this
thread finishes when the CICS transaction is complete. If ATIs

C++ External presentation interface

22 C++ Programming

are enabled, the reply thread continues to run between
transactions. When the CclTerminal state becomes idle, any
outstanding ATIs are run and ATIs received subsequently are
run immediately. The reply thread is not started until the first
CclTerminal::send() call, so if you expect ATIs to occur before
any client-initiated transactions, you can call the receiveATI()
method to start the reply thread.

Deferred synchronous
After the CclTerminal send() method is called for a dsync
session, the poll() method is used to receive the replies.
Outstanding ATIs are started when the last reply has been
received (i.e. on the final poll() call). You can also call the
poll() method to start and receive replies for ATIs between
client-initiated transactions. As the poll() method can be called
before or between client-initiated transactions, the receiveATI()
method is not needed (and is invalid) for deferred
synchronous sessions. For any of the synchronisation types
you can provide a handleReply() method by subclassing the
CclSession class. As for client-initiated transactions, this
method will be called when the ATI 3270 data has been
received and the CclScreen object updated. The transID()
method on the CclTerminal or CclSession can be called to
identify the ATI.

Starting a 3270 terminal connection to CICS

The CICS client EPI must be initialized, by creating a CclEPI object, before a
terminal connection can be made to CICS. The CclEPI object, like the CclECI
object, also provides access to information about CICS servers which have
been configured in the CICS client initialization file, CUC.INI (Client) or
CTG.INI (Gateway). The following C++ sample shows the use of the CclEPI
object:

To establish a 3270 terminal connection to CICS, a CclTerminal object is
created. The CICS server name used must be configured in the client’s Client
initialization file. To start a transaction on the CICS server a CclSession object
is required to control the session. The required transaction (in this example
the CICS-supplied sign-on transaction CESN) can then be started using the
send method on the CclTerminal object:

#include <cicsepi.hpp> // CICS client EPI headers
...

CclEPI epi; // Initialize CICS client EPI
// List all CICS servers in Client initialization file
for (int i=1; i<= EPI.serverCount(); i++)

cout << EPI.serverName(i) << " "
<< EPI.serverDesc(i) << endl;

C++ External presentation interface

Chapter 3. Using the CICS client C++ classes 23

Note the use of try and catch blocks to handle any exceptions thrown by the
CICS classes.

Accessing fields on CICS 3270 screens

Once a terminal connection to CICS has been established, the CclTerminal,
CclSession, CclScreen and CclField objects are used to navigate through the
screens presented by the CICS server application, reading and updating screen
data as required.

The CclScreen object is created by the CclTerminal object and is obtained via
the screen method on the CclTerminal object. It provides methods for
obtaining general information about the 3270 screen (e.g. cursor position) and
for accessing individual fields (by row/column screen position or by index).
The following example prints out field contents, then ends the CESN
transaction (started above) by returning PF3:

The CclField class provides access to the text and attributes of an individual
3270 field. These can be used in a variety of ways to locate and manipulate
information on a 3270 screen:

try {
// Connect to CICS server
CclTerminal terminal("CICS1234");
// Start CESN transaction on CICS server
CclSession session(Ccl::sync);
terminal.send(&session, "CESN");
...

} catch (CclException &exception) {
cout << "CclClass exception: " << exception.diagnose() << endl;

}

// Get access to the CclScreen object
CclScreen* screen = terminal.screen();
for (int i=1; i ≤ screen->fieldCount(); i++) {

CclField* field = screen->field(i); // get field by index
if (field->textLength > 0)

cout << "Field " << i << ": " << field->text();
}
// Return PF3 to CICS
screen->setAID(CclScreen::PF3);
terminal.send(&session);
// Disconnect the terminal from CICS
terminal.disconnect();

C++ External presentation interface

24 C++ Programming

Note that the string “Sign-on” in the above sample may need to be changed
to meet local conventions. For example, an AIX server may use the string
“SIGNON”.

EPI call synchronization types

The CICS client EPI C++ classes support synchronous (“blocking”), and
deferred synchronous (“polling”) and asynchronous (“callback”) protocols.

In the example above the CclSession object is created with the synchronization
type of Ccl::sync. When this CclSession object is passed as the first parameter
on a CclTerminal send method, a synchronous call is made to CICS. The C++
program is then blocked until the reply was received from CICS. When the
reply is received, updates are made to the CclScreen object according to the
3270 datastream received, then control is returned to the C++ program.

To make asynchronous calls the CclSession object used on the CclTerminal
send method is created with a synchronization type of Ccl::async. The call is
made to CICS using the CclTerminal send method, but control returns
immediately to the client application without waiting for a reply from CICS.
The CclTerminal object starts a separate thread which waits for the reply from
CICS. When a reply is received, the handleReply method on the CclSession
object is invoked. To process the reply, the handleReply method should be
overridden in a CclSession subclass:
The implementation of the handleReply method can process the screen data

available in the CclScreen object, which will have been updated in line with
the 3270 datastream send from CICS:

for (int i=1; i ≤ screen->fieldCount(); i++) {
CclField* field = screen->field(i); // get field by index
// Find unprotected (i.e. input) fields
if (field->inputProt() == CclField::unprotect)

...
// Find fields containing a specific text string
if (strstr(field->text(), "CICS Sign-on"))

...
// Find red fields
if (field->foregroundColor() == CclField::red)

...
}

class MySession : public CclSession {
public:

MySession(Ccl::Sync protocol) : CclSession(protocol) {}
// Override reply handler method
void handleReply(State state, CclScreen* screen);

};

C++ External presentation interface

Chapter 3. Using the CICS client C++ classes 25

The handleReply method is called for each transmission received from CICS.
Depending on the design of the CICS server program, a CclTerminal send call
may result in one or more replies. The state parameter on the handleReply
method indicates whether the server has finished sending replies:

CclSession::server
indicates that the CICS server program is still running and has further
data to send. The client application can process the current screen
contents immediately, or simply wait for further replies.

CclSession::client
indicates that the CICS server program is now waiting for a response.
The client application should process the screen contents and send a
reply.

CclSession::idle
indicates that the CICS server program has completed. The client
program should process the screen contents and either disconnect the
terminal, or start a further transaction.

Most client applications will want to wait until the CICS server program has
finished sending data (that is, the CclSession/CclTerminal state is client or
idle) before processing the screen. However, some long-running server
programs may send intermediate results or progress information that can
usefully be accessed while the state is still server.

The implementation of the handleReply method can read and process data
from the CclScreen object, update fields as required, and set the cursor
position and AID key in preparation for the return transmission to CICS. The
application main program should invoke further methods (send or
disconnect) on the CclTerminal object to drive the server application:

void MySession::handleReply(State state, CclScreen* screen) {
// Check the state of the session
switch(state) {
case CclSession::client:
case CclSession::idle:

// Output data from the screen
for (int i=1; i < screen->fieldCount(); i++) {

cout << "Field " << i << ": " << screen->field->text();
screen->setAID(CclScreen::PF3);
...

} // end switch
}

C++ External presentation interface

26 C++ Programming

Note that the handleReply method is run on a separate thread. If the main
program needs to know when the reply has been received, a message or
semaphore could be used to communicate between the handleReply method
and the main program.

To make deferred synchronous calls the CclSession object used on the
CclTerminal send method is created with a synchronization type of
Ccl::dsync. As in the asynchronous case, a call is made to CICS using the
CclTerminal send method and control returns immediately to the client
application without waiting for a reply from CICS. 3270 screen updates from
CICS must be retrieved later using the poll method on the Terminal object:

A CICS server transaction may send more than one reply in response to a
CclTerminal send call. More than one CclTerminal poll call may therefore be
needed to collect all the replies. Use the CclTerminal state method to find out
if further replies are expected. If there are, the value returned will be server.

As in the synchronous and asynchronous cases, the handleReply method can
conveniently be used to encapsulate the code processing the 3270 data
returned from CICS from one or more transmissions.

try {
// Connect to CICS server
CclTerminal terminal("CICS1234");
// Create asynchronous session
MySession session(Ccl::async);
// Start CESN transaction on CICS server
terminal.send(&session, "CESN");
// Replies processed asynchronously in overridden
// handleReply method
...

} catch (CclException &exception) {
cout << "CclClass exception: " << exception.diagnose() << endl;

}

try {
// Connect to CICS server
CclTerminal terminal("CICS1234");
// Create deferred synchronous session
MySession session(Ccl::dsync);
// Start CESN transaction on CICS server
terminal.send(&session, "CESN");
...
if (terminal.poll())

// reply processed in handleReply method
else

// no reply received yet
} catch (CclException &exception) {

cout << "CclClass exception: " << exception.diagnose() << endl;
}

C++ External presentation interface

Chapter 3. Using the CICS client C++ classes 27

EPI BMS conversion utility

A large proportion of existing CICS applications use BMS maps for 3270
screen output. This means that the server application can use data structures
corresponding to named fields in the BMS map rather than handling 3270
datastream directly. The EPI BMS conversion utility uses the information in
the BMS map source to generate classes specific to individual maps, that
allow fields to be accessed by their names, and allow field lengths and
attributes to be known at compile time.

The utility generates C++ class definitions and implementations that
applications can use to access the map data as named fields within a map
object. A class is defined for each map, allowing field names and lengths to be
known at compile time. The C++ classes use the CICS EPI base classes to
handle the inbound and outbound 3270 datastreams. The generated classes
inherit a base class CclMap that provides general functions required by all
map classes.

Run the CICSBMSC utility on the BMS source as follows:
CICSBMSC <filename>.BMS

Client Application BMS Mapsets

BMS Conversion Utility

CICS Map Classes

CICS EPI Classes

CICS Client

Server BMS Application

CICS Server

Figure 1. Use of BMS map classes

C++ External presentation interface

28 C++ Programming

The utility generates .HPP and .CPP files containing the definition and
implementation of the map classes.

Having used the EPI BMS utility to generate the map class, use the base EPI
classes to reach the required 3270 screens in the usual way. Then use the map
classes to access fields by their names in the BMS map. The map classes are
validated against the data in the current CclScreen object.

Mapset containing a single map

The mapset listed in Figure 2 contains a simple map, MAPINQ1.

The BMS Conversion Utility generates the C++ class definition (shown in
Figure 3 on page 30) from this mapset. The class name “MAPINQ1Map” is
derived from the map name in the BMS source. The class inherits the CclMap
class.

The class provides these main operations:
1. The constructor MAPINQ1Map invokes the parent constructor, that

validates the map object against the current screen.
2. The method field provides access to fields in the map, using the BMS

source field names (provided as an enumeration within the class).

* cicssda MAPINQ1 -- Wed 2 Aug 14:14:02 1995

MAPINQ1 DFHMSD TYPE=&SYSPARM,MODE=INOUT,LANG=C,STORAGE=AUTO,TIOAPFX=YES
MAPINQ1 DFHMDI SIZE=(24,80),MAPATTS=(COLOR,HILIGHT,VALIDN),LINE=1, X

COLUMN=1,COLOR=NEUTRAL,HILIGHT=OFF
DTITLE DFHMDF POS=(2,2),LENGTH=5,ATTRB=(PROT,NORM),COLOR=TURQUOISE, X

CASE=MIXED,INITIAL='Date:'
DATE DFHMDF POS=(2,9),LENGTH=8,ATTRB=(PROT,BRT),CASE=MIXED
...
PRODNAM DFHMDF POS=(5,24),LENGTH=40,ATTRB=(PROT,BRT),CASE=MIXED
...
APPLID DFHMDF POS=(15,15),LENGTH=8,ATTRB=(PROT,BRT),CASE=MIXED
...
MAPINQ1 DFHMSD TYPE=FINAL

Figure 2. Sample Map Class—BMS Source

C++ External presentation interface

Chapter 3. Using the CICS client C++ classes 29

Using EPI BMS Map Classes

The map classes generated using CICSBMSC can be compiled and built into a
client application. Note that when building Windows NT and Windows 98
applications using pre-compiled headers, add #include stdafx.h to the .cpp
file generated by CICSBMSC.

CclEPI, CclTerminal and CclSession objects are used in the normal way to
start a CICS transaction:

//************* CICS Client Classes *************************************
//
// FILE NAME: epiinq.hpp
//
// DESCRIPTION: C++ header for epiinq.bms
// Generated by CICS BMS Conversion Utility - Version 1.0
//
//***
#include <cicsepi.hpp> // CICS Client EPI classes
//---
// MAPINQ1Map class declaration
//---
class MAPINQ1Map : public CclMap {
public:

enum FieldName {
DTITLE,
DATE,
...
PRODNAM,
...
APPLID,
...

};
//-------------- Constructors/Destructors -------------------------------

MAPINQ1Map(CclScreen* screen);
˜MAPINQ1Map();

//-------------- Actions --
CclField* field(FieldName name); // access field by name

...
}; // end class

Figure 3. Sample Map Class—Generated C++ Header

try {
// Initialize CICS client EPI
CclEPI epi;
// Connect to CICS server
CclTerminal terminal("CICS1234");
// Start transaction on CICS server
CclSession session(Ccl::sync);
terminal.send(&session, "EPIC");

C++ External presentation interface

30 C++ Programming

In this example the server program uses a BMS map for its first panel, for
which a map class “MAPINQ1Map” has been generated. When the map
object is created, the constructor validates the screen contents with the fields
defined in the map. If validation is successful, fields can then be accessed
using their BMS field names instead of by index or position from the
CclScreen object:

BMS Map objects can also be used within the handleReply method for
asynchronous and deferred synchronous calls.

For validation to succeed, the entire BMS map must be available on the
current screen. A map class cannot therefore be used when some or all of the
BMS map has been overlayed by another map or by individual 3270 fields.

Security Management for EPI

You are now able to do security management on Servers that support
Password Expiry Management. Please refer to the CICS Client General
Programming Guide for more information on supported servers and
protocols.

To use these features you first must have constructed a Terminal object which
is signon incapable, in other words it must have a userid and password (even
if they are null). The two methods available are verifyPassword which checks
the userid and password within the terminal object with the Server Security
System, and changePassword which allows you to change the password at
the server. If successful the connection object password is updated
accordingly.

If either call is successful, you are returned a pointer to an internal object
which provides information about the security, a CclSecAttr object. This object
provides access to information such as last verified Date and Time, Expiry
Date and Time and Last access Date and Time. If you query for example last
verified Date, you get back a pointer to an object which allows you to get the
information in various formats. The following is sample code to show the use
of these various objects.

MAPINQ1Map map(terminal.screen());
CclField* field;
// Output text from "PRODNAM" field
field = map.field(MAPINQ1Map::PRODNAM);
cout << "Product Name: " << field->text() << endl;
// Output text from "APPLID" field
field = map.field(MAPINQ1Map::APPLID);
cout << "Product Name: " << field->text() << endl;

} catch (CclException &exception) {
cout << exception.diagnose()<<endl;

}

C++ External presentation interface

Chapter 3. Using the CICS client C++ classes 31

// Terminal object already created called term
CclSecAttr *pAttrblock; // pointer to security attributes
CclSecTime *pDTinfo; // pointer to Date/Time information
try {

pAttrblock = term->verifyPassword();
pDTinfo = pAttrblock->lastVerifiedTime();
cout << "last verified year :" <<pDTinfo->year() << endl;
cout << "last verified month :" <<pDTinfo->month() << endl;
cout << "last verified day :" <<pDTinfo->day() << endl;
cout << "last verified hours :" <<pDTinfo->hours() << endl;
cout << "last verified mins :" <<pDTinfo->minutes() << endl;
cout << "last verified secs :" <<pDTinfo->seconds() << endl;
cout << "last verified 100ths:" <<pDTinfo->hundredths() << endl;

// Use a tm structure to produce a single line text of information

tm mytime;
mytime = pDTinfo->get_tm();
cout << "full info:" << asctime(&mytime) << endl;

}
catch (CclException &ex)
{

// Could check for expired password error and handle if required
cout << "Exception occurred: " <<ex.diagnose()<< endl;

}

Note that the security attributes and date/time memory are all handled by the
terminal object. If you destroy the terminal object, you destroy the security
information being held by that object.

C++ External presentation interface

32 C++ Programming

Part 2. CICS Client C++ classes - reference

Chapter 4. Ccl class 37
Enumerations 37

Bool. 37
Sync 37
ExCode 37

Chapter 5. CclBuf class 39
CclBuf constructors 40

CclBuf (1) 40
CclBuf (2) 40
CclBuf (3) 40
CclBuf (4) 40

Public methods 41
assign 41
cut 41
dataArea 41
dataAreaLength 41
dataAreaOwner 41
dataAreaType 41
dataLength 42
insert 42
listState 42
operator= (1) 42
operator= (2) 42
operator+= (1) 43
operator+= (2) 43
operator== 43
operator!=. 43
replace 43
setDataLength 44

Enumerations 44
DataAreaOwner. 44
DataAreaType 44

Chapter 6. CclConn class 45
CclConn constructor 45
Public methods 46

alterSecurity 46
cancel 46
changed 46
changePassword 46
link 47
listState 47
makeSecurityDefault 48
password (1) 48

password (2) 48
serverName (1) 48
serverName (2) 48
status 48
serverStatus 49
serverStatusText. 49
userId (1) 49
userId (2) 49
verifyPassword 49

Enumerations 50
ServerStatus 50

Chapter 7. CclECI class 51
CclECI constructor (protected) 51
Public methods 51

exCode. 51
exCodeText 51
handleException 52
instance 52
listState 52
serverCount 52
serverDesc 52
serverName 52

Chapter 8. CclEPI class 55
CclEPI constructor 55
Public methods 55

diagnose 55
exCode. 55
exCodeText 56
handleException 56
serverCount 56
serverDesc 56
serverName 56
state 57
terminate 57

Enumerations 57
State 57

Chapter 9. CclException class 59
Public methods 59

abendCode 59
className 59
diagnose 59
exCode. 59

© Copyright IBM Corp. 1996,1999 33

exCodeText 60
exObject 60
methodName 60

Chapter 10. CclField class 61
Public methods 61

appendText (1) 61
appendText (2) 61
backgroundColor 61
baseAttribute 61
column. 62
dataTag 62
foregroundColor 62
highlight 62
inputProt 62
inputType 62
intensity 63
length 63
position 63
resetDataTag 63
row 63
setBaseAttribute. 63
setExtAttribute 63
setText (1) 64
setText (2) 64
text 64
textLength 64
transparency 64

Enumerations 65
BaseInts 65
BaseMDT 65
BaseProt 65
BaseType 65
Color 65
Highlight 65
Transparency. 65

Chapter 11. CclFlow class 67
CclFlow constructor 67

CclFlow (1) 67
CclFlow (2) 67

Public methods 68
abendCode 68
callType 68
callTypeText 68
connection 68
diagnose 68
flowId 68
forceReset 68
handleReply 69

listState 69
poll 69
setTimeout 69
syncType 70
timeout 70
uow. 70
wait. 70

Enumerations 70
CallType 70

Chapter 12. CclMap class 71
CclMap constructor 71
Public methods 71

exCode. 71
exCodeText 71
field (1) 72
field (2) 72

Protected methods 72
namedField 72
validate 72

Chapter 13. CclScreen class 75
Public methods 75

cursorCol 75
cursorRow 75
depth 75
field (1) 75
field (2) 75
fieldCount 76
mapName. 76
mapSetName. 76
setAID 76
setCursor 76
width 77

Enumerations 77
AID 77

Chapter 14. CclSecAttr 79
Public Methods 79

expiryTime 79
invalidCount 79
lastAccessTime 79
lastVerifiedTime. 79

Chapter 15. CclSecTime 81
Public Methods 81

day 81
get_time_t. 81
get_tm 81
hours 81

34 C++ Programming

hundredths 81
minutes 81
month 82
seconds 82
year. 82

Chapter 16. CclSession class 83
CclSession constructor 83
Public methods 83

diagnose 83
handleReply 83
state 84
terminal 84
transID. 84

Enumerations 84
State 84

Chapter 17. CclTerminal class 85
CclTerminal constructor 85

CclTerminal 85
Public methods 86

alterSecurity 86
changePassword 86
CCSid 87
diagnose 87
disconnect(1) 87
disconnect(2) 87
discReason 87
exCode. 87
exCodeText 88
install 88
makeSecurityDefault 88

netName 88
password 88
poll 89
queryATI 89
readTimeout 89
receiveATI 89
screen 90
send (1) 90
send (2) 90
setATI 90
signonCapability 91
state 91
serverName 91
termID 91
transID. 91
userId 91
verifyPassword 92

Enumerations 92
ATIState 92
signonType 92
State 92
EndTerminalReason 92

Chapter 18. CclUOW class 95
CclUOW constructor 95
Public methods 95

backout 95
commit 95
forceReset 96
listState 96
uowId 96

The following chapters contain descriptions of all the client classes, in
alphabetic order. Within the interfaces, there are alphabetical lists of methods.
For further information on how to use these interfaces, see Part 1.

Part 2. CICS Client C++ classes - reference 35

36 C++ Programming

Chapter 4. Ccl class

This class defines some enumerations which are used by other classes—both
ECI and EPI.

Enumerations

Bool
There are two equivalent pairs of values:

no and yes
off and on

Sync
Possible values are:
async asynchronous
dsync deferred synchronous
sync synchronous

ExCode
For possible values, refer to Table 3 on page 99.

© Copyright IBM Corp. 1996,1999 37

38 C++ Programming

Chapter 5. CclBuf class

A CclBuf object contains a data area in memory which can be used to hold
information. A particular use for a CclBuf object is to hold a COMMAREA
used to pass data to and from a CICS server.

The CclBuf object is primarily intended for use with byte (binary) data.
Typically a COMMAREA will contain an application-specific data structure,
often originating from a CICS server COBOL, PL/1 or C program. Methods
such as assign() and insert() therefore provide a void* parameter type for
application data input. There is limited support for SBCS null-terminated
strings (some of the code samples make use of this), but there is no code-page
conversion or DBCS support in the CclBuf class.

The maximum data length for a buffer is the maximum value for unsigned
long (232) for 32 bit platforms. CICS imposes a limit of 32500 bytes in
COMMAREA’s. This may be reduced by setting the MaxBufferSize parameter
in the CICS Client initialization file. See the CICS Clients Administration
manual for more information. If a buffer object used as a COMMAREA is too
long, a data length exception is raised.

When a CclBuf object is created it either uses an area of memory passed to it
as its buffer, or allocates its own. The length of the data in this buffer can be
reduced after the CclBuf object is created. The length of the data in this buffer
can only be increased beyond the original length if the CclBuf object is created
with a DataAreaType of extensible. The alternative to extensible is fixed.

If a buffer object has a DataAreaType of fixed and a method is called which
would result in its data area length being exceeded, a buffer overflow
exception is raised. If the exception is not handled, the buffer will contain the
result of the call, truncated to the data area length.

If a method is called that results in a buffer object having a data length
smaller than its data area length, the data is padded with nulls.

Many of the methods return object references. This makes it possible for users
to chain calls to member functions. For example, the code:

would create the following string:
Some inserted text at the end

CclBuf comma1;
comma1="Some text";
comma1.insert(9,"inserted ",5) += " at the end";

© Copyright IBM Corp. 1996,1999 39

CclBuf constructors

CclBuf (1)

CclBuf(unsigned long length = 0, DataAreaType type = extensible)

length
The initial length of the data area, in bytes. The default length is 0.

type
An enumeration indicating whether the data area can be extended.
Possible values are extensible or fixed. The default is extensible.

Creates a CclBuf object, allocating its own data area with the given length. All
the bytes within it are set to null. The data length is set to zero and will
remain zero until data is put in the buffer.

CclBuf (2)

CclBuf(unsigned long length, void* dataArea)

length
The length of the supplied data area, in bytes.

dataArea
The address of the first byte of the supplied data area.

Creates a CclBuf object which cannot be extended, adopting the given data
area as its own. The DataAreaOwner is set external.

CclBuf (3)

CclBuf(const char* text, DataAreaType type = extensible)

text
A string to be copied into the new CclBuf object.

type
An enumeration indicating whether the data area can be extended.
Possible values are extensible or fixed. The default is extensible.

Creates a CclBuf object, allocating its own data area with the same length as
the text string and copies the string into its data area.

CclBuf (4)

CclBuf(const CclBuf& buffer)

buffer
A reference to the CclBuf object which is to be copied.

This copy constructor creates a new CclBuf object which is a copy of the given
object. The data length, data area length and data area type of the new buffer
are the same as the old buffer. The data area owner of the new buffer is
internal.

CclBuf Class

40 C++ Programming

Public methods

assign

CclBuf& assign(unsigned long length, const void* dataArea)

length
The length of the source data area, in bytes.

dataArea
The address of the source data area.

Overwrites the current contents of the data area with the source data and
resets the data length.

cut

CclBuf& cut(unsigned long length, unsigned long offset = 0)

length
The number of bytes to be cut from the data area.

offset
The offset into the data area. The default is zero.

Cuts the specified data from the data area. Data in the data area is padded
with nulls.

dataArea

const void* dataArea(unsigned long offset = 0) const

offset
The offset into the data area. The default is zero.

Returns the address of the given offset into the data area.

dataAreaLength

unsigned long dataAreaLength() const
Returns the length of the data area in bytes.

dataAreaOwner

Returns an enumeration value indicating whether the data area has been
allocated by the CclBuf constructor or has been supplied from elsewhere.
Possible values are internal and external.

dataAreaType

DataAreaOwner dataAreaOwner() const

DataAreaType dataAreaType() const

CclBuf Class

Chapter 5. CclBuf class 41

Returns an enumeration value indicating whether the data area can be
extended. Possible values are extensible and fixed.

dataLength

unsigned long dataLength() const
Returns the length of data in the data area. This cannot be greater than the
value returned by dataAreaLength.

insert

CclBuf& insert(unsigned long length,
const void* dataArea,
unsigned long offset = 0)

length
The length of the data, in bytes, to be inserted into the CclBuf object.

dataArea
The start of the source data to be inserted into the CclBuf object.

offset
The offset into the data area where the data is to be inserted. The default
is zero.

Inserts the source data into the data area at the given offset.

listState

const char* listState() const
Returns a formatted string containing the current state of the object. For
example:
Buffer state..&CclBuf=000489B4 &CclBufI=00203A00
dataLength=8 &dataArea=002039C0
dataAreaLength=8 dataAreaOwner=0 dataAreaType=1

operator= (1)

CclBuf& operator=(const CclBuf& buffer)

buffer
A reference to a CclBuf object.

Assigns data from another buffer object.

operator= (2)

CclBuf& operator=(const char* text)

text
The string to be assigned to the CclBuf object.

Assigns data from a string.

CclBuf Class

42 C++ Programming

operator+= (1)

CclBuf& operator+=(const CclBuf& buffer)

buffer
A reference to a CclBuf object.

Appends data from another buffer object to the data in the data area.

operator+= (2)

CclBuf& operator+=(const char* text)

text
The string to be appended to the CclBuf object.

Appends a string to the data in the data area.

operator==

Ccl::Bool operator==(const CclBuf& buffer) const

buffer
A reference to a CclBuf object.

Returns an enumeration indicating whether the data contained in the buffers
of the two CclBuf objects is the same. Possible values are yes or no. yes means
that the data lengths are the same and the contents are the same.

operator!=

Ccl::Bool operator!=(const CclBuf& buffer) const

buffer
A reference to a CclBuf object.

Returns an enumeration indicating whether the data contained in the buffers
of the two CclBuf objects is different. Possible values are yes or no. no means
that the data lengths are the same and the contents are the same.

replace

CclBuf& replace(unsigned long length,
const void* dataArea,
unsigned long offset = 0)

length
The length of the source data area, in bytes.

dataArea
The address of the start of the source data area.

offset
The position where the new data is to be written, relative to the start of
the CclBuf data area. The default is zero.

CclBuf Class

Chapter 5. CclBuf class 43

Overwrites the current contents of the data area at the given offset with the
source data. The data length remains the same.

setDataLength

unsigned long setDataLength(unsigned long length)

length
The new length of the data area, in bytes.

Changes the current length of the data area and returns the new length. If the
CclBuf object is not extensible, the data area length is set to either the original
length of the data area, or length, whichever is less.

If length is greater than the data area length, the data is padded with nulls.

Enumerations

DataAreaOwner
Indicates whether the data area of a CclBuf object has been allocated outside
the object. Possible values are:
internal

The data area has been allocated by the CclBuf constructor.
external

The data area has been allocated externally.

DataAreaType
Indicates whether the data area of a CclBuf object can be made longer than its
original length. Possible values are:
extensible

The data area of a CclBuf object can be made longer than its original
length.

fixed The data area of a CclBuf object cannot be made longer than its
original length.

CclBuf Class

44 C++ Programming

Chapter 6. CclConn class

An object of class CclConn is used to represent an ECI connection between a
client and a named server. See “Server connection” on page 12. Access to the
server is optionally controlled by a userId and password. It can call a program
in the server or get information on the state of the connection. See “Passing
data to a server program” on page 12 and “Monitoring server availability” on
page 17 for more information.

The creation of a CclConn object does not cause any interaction with the CICS
server, nor does it guarantee that the server is available to process requests.

Any interaction between client and server requires the use of a CclFlow
object. See “Controlling server interactions” on page 13 for more information.

A CclConn object cannot be copied or assigned. An attempt to delete a
CclConn object for which there are active CclFlow or CclUOW objects will
raise an activeFlow or an activeUOW exception.

CclConn constructor

CclConn(const char* serverName = 0,
const char* userId = 0,
const char* password = 0,
const char* runTran = 0,
const char* attachTran = 0)

serverName
The name of the server. If no name is supplied the default server is used.
You can discover this name, after the first call to the server by using the
serverName method. The length is adjusted to 8 characters by padding
with blanks or truncating, if necessary.

userId
The userId, if needed. The length is adjusted to 16 characters by padding
with blanks or truncating, if necessary.

password
The password corresponding to the userId in userID, if needed. The length
is adjusted to 16 characters by padding with blanks or truncating, if
necessary.

runTran
The CICS transaction under which the called program will run. The

© Copyright IBM Corp. 1996,1999 45

default is to use the default server transaction. The length is adjusted to 4
characters by padding with blanks or truncating, if necessary.

attachTran
The CICS transaction to which the called program is attached. The default
is to use the default CPMI. The length is adjusted to 4 characters by
padding with blanks or truncating, if necessary.

This constructor creates a CclConn object; it does not cause any interaction
with the CICS server or guarantee that the server is available to process
requests. The userId and password are not needed if the connection is only
used for status calls or if the server has no security.

Public methods

alterSecurity

void alterSecurity(const char* newUserid, const char* newPassword)

newUserid
The new userid

newPassword
The new password corresponding to the new userid

Updates the Userid and Password to be used on the next link call

cancel

void cancel(CclFlow& flow)

flow
A reference to the CclFlow object used to control the server request call.

Cancels any changed call which was previously issued to the server
associated with this connection.

changed

void changed(CclFlow& flow)

flow
A reference to the CclFlow object used to control the server request call.

Requests the server to notify the client when the current connection status
changes. The call is ignored if there is already an outstanding changed call for
this connection. Use serverStatus or serverStatusText to obtain server
availability.

changePassword

CclSecAttr* changePassword(const char* newPassword)

C++ Class: CclConn

46 C++ Programming

newPassword
the new password to be given

Allows a client application to change the password held in the terminal object
and the password recorded by an external security manager for the userid
held in the terminal object. The external security manager is assumed to be
located in the server defined by the terminal object.

link

void link(CclFlow& flow,
const char* programName,
CclBuf* commarea = 0,
CclUOW* unit = 0)

flow
A reference to the CclFlow object used to control the server request call.

programName
The name of the server program which is being called. The length is
adjusted to 8 characters by padding with blanks or truncating, if
necessary.

commarea
A pointer to a CclBuf object which holds the data to be passed to the
called program in a COMMAREA. The default is not to pass a
COMMAREA.

unit
A pointer to the CclUOW object which identifies the unit of work (UOW)
in which this call participates. The default is none. See “Managing logical
units of work” on page 18.

Requests execution of the specified program on the server. The server
program sees the incoming call as an EXEC CICS LINK call.

If the commarea buffer object is too long, a dataLength exception is raised and
the request is denied. CICS imposes a limit of 32500 bytes which can be made
smaller by using the MaxBufferSize parameter in the CICS Client Initialization
file.

listState

const char* listState() const
Returns a formatted string containing the current state of the object. For
example:
Connection state..&CclConn=000489AC &CclConnI=00203A50
flowCount=0 &CclFlow(changed)=00000000 token(changed)=0
serverName="server " userId="userId " password="password "
&CclUOWI=00000000 runTran="run " attachTran="att "

C++ Class: CclConn

Chapter 6. CclConn class 47

makeSecurityDefault

void makeSecurityDefault()
Informs the client that the current userid and password for this object is to
become the default for ECI and EPI requests passed to the server as specified
in the construction of the connection object.

password (1)

const char* password() const
Returns the password held by the CclConn object, padded with spaces to 10
characters, or blanks if there is no password.

password (2)

void password(Ccl::Bool unpadded)

unpadded

Ccl::Yes
returns a null terminated string of the stored password with no
space padding in the string.

Ccl::No
returns the string padded with spaces — the same as invoking the
password method with no parameters.

serverName (1)

const char* serverName() const
Returns the name of the server system held by the CclConn object, padded
with spaces, or blanks if the default server is being used and no calls have yet
been made.

serverName (2)

void serverName(Ccl::Bool unpadded)

unpadded

Ccl::Yes
returns a null terminated string of the stored server name with no
space padding in the string.

Ccl::No
returns the string padded with spaces — the same as invoking the
serverName method with no parameters.

status

void status(CclFlow& flow)

C++ Class: CclConn

48 C++ Programming

flow
A reference to the CclFlow object used to control the server request call.

Requests the status of the server connection. When the reply has been
received, use serverStatus or serverStatusText to obtain server availability.

serverStatus

Returns an enumeration value, set by an earlier status or changed request,
indicating the availability of the server. Possible values are listed under
Enumerations.

serverStatusText

const char* serverStatusText() const
Returns a string, set by an earlier status or changed request, indicating the
availability of the server.

userId (1)

const char* userId() const
Returns the user ID held by the CclConn object, padded with spaces, or
blanks if none.

userId (2)

void userId(Ccl::Bool unpadded)

unpadded

Ccl::Yes
returns a null terminated string of the stored userid with no space
padding in the string.

Ccl::No
returns the string padded with spaces exactly as invoking the
userId method with no parameters.

verifyPassword

CclSecAttr* verifyPassword()
Allows a client application to verify that the password held in the CclConn
object matches the password recorded by an external security manager for the
userid held in the CclConn object. The external security manager is assumed
to be located in the server defined by the CclConn object.

ServerStatus serverStatus() const

C++ Class: CclConn

Chapter 6. CclConn class 49

Enumerations

ServerStatus
Indicates the availability of the server. Possible values are:
unknown

The server status is unknown.
available

The server is available.
unavailable

The server is not available.

C++ Class: CclConn

50 C++ Programming

Chapter 7. CclECI class

Only one instance of the CclECI class can exist. It is created by the instance
class method. It controls the client interface to the available servers.

CclECI should be sub-classed to implement your own handleException
method.

Only one instance of a CclECI subclass can exist. Any attempt to create more
than one will raise the multipleInstance exception.

A CclECI object cannot be copied or assigned.

CclECI constructor (protected)

CclECI()

This constructor is protected and can only be accessed from a subclass.

Public methods

exCode

Deprecated method
Do not use this method in new applications.The method has been
deprecated and is only provided for backwards compatibility.

Returns an enumeration indicating the most recent exception code. The
possible values are listed under Table 3 on page 99.

exCodeText

Deprecated method
Do not use this method in new applications.The method has been
deprecated and is only provided for backwards compatibility.

const char* exCodeText() const

Ccl::ExCode exCode() const

© Copyright IBM Corp. 1996,1999 51

Returns a text string describing the most recent exception code.

handleException

except
A CclException object that contains information about the exception just
raised.

This method is called whenever an exception is raised. To deal with
exceptions, you should always subclass CclECI, and provide your own
implementation of handleException. See “Handling Exceptions” on page 9.
The default implementation just throws the exception object.

instance

static CclECI* instance()
A class method that returns a pointer to the single CclECI object which exists
on the client. Here is an example of its use:
CclECI* pmgr = CclECI::instance();

listState

const char* listState() const
Returns a formatted string containing the current state of the object. For
example:
ECI state..&CclECI=00203AE0 &CclECII=00203B20
retCode=0 exCode=0
serverCount=0 &serverBuffer=00000000

serverCount

Returns the number of available servers to which the client may be connected,
as configured in the Client initialization file. In practice, some or all of these
servers may not be available. See “Finding potential servers” on page 11.

serverDesc

const char* serverDesc(unsigned short index = 1) const

index
The index of a connected server in the list. The default index is 1.

Returns the description of the indexth server. See “Finding potential servers”
on page 11.

serverName

const char* serverName(unsigned short index = 1) const

virtual void handleException(CclException &except)

unsigned short serverCount() const

C++ Class: CclECI

52 C++ Programming

index
The index of a connected server in the list. The default index is 1.

Returns the name of the indexth server. See “Finding potential servers” on
page 11.

C++ Class: CclECI

Chapter 7. CclECI class 53

54 C++ Programming

Chapter 8. CclEPI class

The CclEPI class initializes and terminates the CICS client EPI function. It also
has methods which allow you to obtain information about CICS servers
configured in the Client Initialization File. You must create one object of this
class for each application process before you create CclTerminal objects to
connect to CICS servers.

CclEPI constructor

CclEPI()

This method initializes the CICS EPI interface on the client. An initEPI
exception is raised if initialization fails. Initialization of the CICS client EPI is
synchronous i.e. initialization is complete when the call to the CclEPI
constructor returns.

Public methods

diagnose

const char* diagnose() const
Returns a character string which holds a description of the condition returned
by the most recent server call.

exCode

Deprecated method
Do not use this method in new applications.The method has been
deprecated and is only provided for backwards compatibility.

Returns an enumeration indicating the most recent exception code. The
possible values are listed under Table 3 on page 99.

Ccl::ExCode exCode() const

© Copyright IBM Corp. 1996,1999 55

exCodeText

Deprecated method
Do not use this method in new applications.The method has been
deprecated and is only provided for backwards compatibility.

const char* exCodeText() const
Returns a text string describing the most recent exception code.

handleException

except
A CclException object that contains information about the exception just
raised.

This method is called whenever an exception is raised. To deal with
exceptions, you can use try...catch or, you can subclass CclEPI and provide
your own implementation of handleException. The default implementation
just throws the exception object.

serverCount

Returns the number of available servers to which the client may be connected,
as configured in the Client initialization file.

serverDesc

const char* serverDesc(unsigned short index = 1)

index
The index of a configured server

Returns a description of the selected CICS server, or NULL if no information
is available in the Client initialization file for the specified server. If the index
exceeds the number of servers configured, a maxServers exception is raised.

serverName

const char* serverName(unsigned short index = 1)

index
The index of a configured server

Returns the name of the requested CICS server, or NULL if no information is
available in the Client initialization file for the specified server. If the index
exceeds the number of servers configured, a maxServers exception is raised.

virtual void handleException(CclException &except)

unsigned short serverCount()

C++ Class: CclEPI

56 C++ Programming

state

Returns an enumeration indicating the state of the EPI. Possible values are:
active EPI has been initialized successfully
discon

EPI has terminated
error EPI initialization has failed

terminate

Deprecated method
Do not use this method in new applications.The method has been
deprecated and is only provided for backwards compatibility.

Terminates the CICS client EPI in a controlled manner. The CclEPI object
remains in being so that anything which occurs during the termination can be
monitored by the application.

The terminate method is invoked during CclEPI object destruction, so it is no
longer necessary to invoke this method yourself.

Enumerations

State
An enumeration indicating the state of the EPI. Possible values are:
active EPI has been initialized successfully
discon

EPI has terminated
error EPI initialization has failed

State state() const

void terminate()

C++ Class: CclEPI

Chapter 8. CclEPI class 57

C++ Class: CclEPI

58 C++ Programming

Chapter 9. CclException class

A CICS client object constructs an object of the CclException class if it
encounters a problem.

To deal with such a problem, you should subclass the CclECI or CclEPI class
and provide your own implementation of the handleException method. See
“Handling Exceptions” on page 9. This method has access to the methods of
the CclException object and can be coded to take whatever action is necessary.
For example, it can stop the program or pop up a dialog box.

Alternatively, you can use a C++ try...catch block to handle exceptions.

A CclException object cannot be assigned and its constructors are intended for
use by the CICS client class implementation only.

Public methods

abendCode

const char* abendCode()
Returns a null-terminated string containing the ECI abend code (returns
blanks if no abend code available).

className

const char* className() const
Returns the name of the class in which the exception was raised.

diagnose

const char* diagnose() const
Returns text explaining the exception for use in diagnostic output, for
example:
unknown server, classname=CclFlowI, methodName=afterReply, originCode=13
"link", flowId=2, retCode=-22, abendCode=" "

exCode

Returns the exception code. See Table 3 on page 99.

Ccl::ExCode exCode() const

© Copyright IBM Corp. 1996,1999 59

exCodeText

const char* exCodeText() const
Returns a text string that describes the exception code.

exObject

void* exObject() const
This method is only relevant to the ECI.

exObject returns a pointer to the object controlling any server interaction at
the time of the exception. If there was no such object, a null pointer is
returned.

The pointer should be cast to a CclFlow*. For example:
CclFlow* pflo = (CclFlow*) ex.exObject();

methodName

const char* methodName() const
Returns the name of the method in which the exception was raised.

C++ Class: CclException

60 C++ Programming

Chapter 10. CclField class

An object of the CclField class is responsible for looking after a single field on
a 3270 screen. CclField objects are created and deleted when 3270 data from
the CICS server is processed by a CclScreen object.

Methods in this class allow field text and attributes to be read and updated.
Modified fields are sent to the CICS server on the next send.

Public methods

appendText (1)

text
The text to be appended to the field

length
The number of characters to be appended to the field

Appends length characters from text to the end of the text already in the field.

appendText (2)

text
The null-terminated text string to be appended to the field

Appends the characters within the text string to the end of the text already in
the field.

backgroundColor

Returns an enumeration indicating the background color of the field. The
possible values are shown under Color at the end of the description of this
class.

baseAttribute

Returns the 3270 base attribute of the field.

void appendText(const char* text, unsigned short length)

void appendText(const char* text)

Color backgroundColor() const

char baseAttribute() const

© Copyright IBM Corp. 1996,1999 61

column

Returns the column number of the position of the start of the field on the
screen, with the leftmost column being 1.

dataTag

Returns an enumeration indicating whether the data in the field has been
modified. Possible values are:

modified
unmodified

foregroundColor

Returns an enumeration indicating the foreground color of the field. The
possible values are shown under Color at the end of the description of this
class.

highlight

Returns an enumeration indicating which type of highlight is being used. The
possible values are shown under Highlight at the end of the description of
this class.

inputProt

Returns an enumeration indicating whether the field is protected. Possible
values are:

protect
unprotect

inputType

Returns an enumeration indicating the input data type for this field. Possible
values are:

alphanumeric
numeric

unsigned short column() const

BaseMDT dataTag() const

Color foregroundColor() const

Highlight highlight() const

BaseProt inputProt() const

BaseType inputType() const

C++ Class: CclField

62 C++ Programming

intensity

Returns an enumeration indicating the field intensity. Possible values are :
dark
normal
intense

length

Returns the total length of the field. This includes one byte used to store the
3270 attribute byte information therefore the actual space for data is one less
than the value returned by this method. See also the textLength method.

position

Returns the position of the start of the field on the screen, given by position =
column number + (n x row number), where n is the number of columns in a
row (usually 80).

resetDataTag

Resets the modified data tag (MDT) to unmodified.

row

Returns the row number of the position of the start of the field on the screen.
The top row is 1.

setBaseAttribute

attribute
The value of the base 3270 attribute byte to be entered into the field

Sets the 3270 base attribute.

setExtAttribute

BaseInts intensity() const

unsigned short length() const

unsigned short position() const

void resetDataTag()

unsigned short row() const

void setBaseAttribute(char attribute)

void setExtAttribute(char attribute, char value)

C++ Class: CclField

Chapter 10. CclField class 63

attribute
The type of extended attribute being set

value
The value of the extended attribute

Sets an extended 3270 attribute. If an invalid 3270 attribute type or value is
supplied, a parameter exception is raised.

setText (1)
These methods update the field with the given text.

text
The text to be entered into the field

length
The number of characters to be entered into the field

Copies length characters from text into the field.

setText (2)

text
The null-terminated text to be entered into the field

Copies text, without the terminating null, into the field.

text

const char* text() const
Returns the text currently held in the field.

textLength

Returns the number of characters currently held in the field.

transparency

Returns an enumeration indicating the background transparency of the field.
Possible values are shown under Transparency at the end of the description of
this class.

void setText(const char* text, unsigned short length)

void setText(const char* text)

unsigned short textLength() const

Transparency transparency() const

C++ Class: CclField

64 C++ Programming

Enumerations

BaseInts
Indicates the field intensity. Possible values are:

normal
intense
dark

BaseMDT
Indicates whether data in the field has been modified. Possible values are:

unmodified
modified

BaseProt
Indicates whether the field is protected. Possible values are:

protect
unprotect

BaseType
Indicates field input data type. Possible values are:

alphanumeric
numeric

Color
Possible values are:

defaultColor yellow paleGreen
blue neutral paleCyan
red black gray
pink darkBlue white
green orange
cyan purple

Highlight
Indicates which type of highlight is being used. Possible values are:

defaultHlt blinkHlt underscoreHlt
normalHlt reverseHlt intenseHlt

Transparency
Indicates the background transparency of the field. Possible values are:
defaultTran

default transparency
orTran

OR with underlying color
xorTran

XOR with underlying color
opaqueTran

opaque

C++ Class: CclField

Chapter 10. CclField class 65

C++ Class: CclField

66 C++ Programming

Chapter 11. CclFlow class

A CclFlow object is used to control ECI communications for a client/server
pair and to determine the synchronization of reply processing. Refer to
“Controlling server interactions” on page 13 for an explanation of
synchronization. CclFlow automatically calls its handleReply method when a
reply is available; this simplifies control of interleaved replies. CclFlow should
be subclassed to implement your own handleReply method.

A CclFlow object is created for each client server interaction (request from
client and response from server). CclFlow objects can be reused when they
become inactive, that is, when reply processing is complete. An attempt to
delete or reuse an active CclFlow object will raise an activeFlow exception.

CclFlow constructor

CclFlow (1)

CclFlow(Ccl::Sync syncType, unsigned long stackPages = 3)

syncType
The type of synchronization

stackPages
If asynchronous, the number of 4kb stack pages. The default is 3. If not
asynchronous, this parameter is ignored.

CclFlow (2)

CclFlow(Ccl::Sync syncType,
unsigned long stackPages,
const unsigned short &timeout)

syncType
The type of synchronization

stackPages
If asynchronous, the number of 4kb stack pages. If not asynchronous, this
parameter is ignored.

timeout
The defined timeout in seconds to wait for the ECI program to respond. If
a timeout occurs, then HandleException method is called with a timeout
CclException Object. valid values are 0-32767.

© Copyright IBM Corp. 1996,1999 67

Public methods

abendCode

const char* abendCode() const
Returns the abend code from the most recently executed CICS transaction, or
blank if there have been none.

callType

Returns an enumeration value indicating the most recent type of server
request.

callTypeText

const char* callTypeText() const
Returns the name of the most recent server request.

connection

CclConn* connection() const
Returns a pointer to the CclConn object which represents the server being
used, if any, or zeros.

diagnose

const char* diagnose() const
Returns text explaining the exception for use in diagnostic output; for
example:
"link", flowId=2, retCode=-22, abendCode=" "

flowId

unsigned short flowId() const
Returns the unique identity of this CclFlow object.

forceReset

Make the flow inactive and reset it. Typically used to prepare a CclFlow object
for re-use or deletion after a flow has been abandoned, for example, when a
C++ throw is used in a exception handler. This applies only to dsync and
async flows. You cannot issue this on a sync call from another thread.

CallType callType() const

void forceReset()

C++ Class: CclFlow

68 C++ Programming

handleReply

virtual void handleReply(CclBuf* commarea)

commarea
A pointer to the CclBuf object containing the returned COMMAREA or
zero if none.

This method is called whenever a reply is received from a server, irrespective
of the type of synchronization or the type of call. See “Controlling server
interactions” on page 13. To deal with replies, you should subclass CclFlow
and provide your own implementation of handleReply. The default
implementation just returns to the caller.

listState

const char* listState() const
Returns a formatted string containing the current state of the object. For
example:
Flow state..&CclFlow=000489A4 &CclFlowI=00203B70
syncType=2 threadId=0 stackPages=9 callType=0 flowId=0 commLength=0
retCode=0 systemRC=0 abendCode=" " &CclConnI=00000000 &CclUOWI=00000000

poll

Ccl::Bool poll(CclBuf* commarea = 0)

commarea
An optional pointer to the CclBuf object which will be used to contain the
returned COMMAREA.

Returns an enumeration, defined within the Ccl class indicating whether a
reply has been received from a deferred synchronous Backout, Cancel,
Changed, Commit, Link, or Status call request. If poll is used on a flow
object which is not deferred synchronous, a syncType exception is raised.
Possible values are:
yes A reply has been received. handleReply has been called

synchronously.
no No reply has been received. The client process is not blocked.

setTimeout

void setTimeout(const unsigned short &timeout)

timeout
the defined timeout in seconds to wait for the ECI program to respond. If
a timeout occurs, then HandleException method is called with a timeout
CclException Object. Valid values are 0-32767.

Sets the timeout value for the flow object for the next activation of the flow.
This value can be set while a flow is active but doesn’t affect the current
active flow

C++ Class: CclFlow

Chapter 11. CclFlow class 69

syncType

Returns an enumeration, defined within the Ccl class indicating the type of
synchronization being used. Possible values are shown in “Sync” on page 37.

timeout

short timeout()
Retrieves the current timeout value set for the flow object.

uow

CclUOW* uow() const
If there is CclUOW object which contains information on any unit of work
(UOW) which is associated with this interaction, returns a pointer to it.

wait

Waits for a reply from the server, blocking the client process in the meantime.
If wait is used on a synchronous flow object, a syncType exception is raised.

Enumerations

CallType
The possible values for server requests in progress under the control of a
CclFlow object are:
inactive

No server call is currently in progress
link A CclConn::link call to a server program
backout

A CclUOW::backout call to back out changes made to recoverable
resources on the server

commit
A CclUOW::commit call to commit changes made to recoverable
resources on the server

status A CclConn::status call to determine the status of a server connection
changed

A CclConn::changed call to request notification when the status of a
connection to a server changes

cancel
A CclConn::cancel call to cancel an earlier CclConn::changed request.

Ccl::Sync syncType() const

void wait()

C++ Class: CclFlow

70 C++ Programming

Chapter 12. CclMap class

The CclMap class is a base class for map classes created by the CICS BMS
Map Conversion Utility. The methods provided by CclMap class are inherited
by the classes generated from BMS maps.

CclMap constructor

CclMap(CclScreen* screen)

screen
A pointer to the matching CclScreen object.

Creates a CclMap object and checks (validates) that the map matches the
content of the screen, defined by the CclScreen object. If validation was
unsuccessful, an invalidMap exception is raised. If the supplied CclScreen
object is invalid, an parameter exception is raised.

Public methods

exCode

Deprecated method
Do not use this method in new applications.The method has been
deprecated and is only provided for backwards compatibility.

Ccl::ExCode exCode() const
Returns an enumeration indicating the most recent exception code. The
possible values are listed in Table 3 on page 99.

exCodeText

Deprecated method
Do not use this method in new applications.The method has been
deprecated and is only provided for backwards compatibility.

const char* exCodeText() const
Returns a text string describing the most recent exception code.

© Copyright IBM Corp. 1996,1999 71

field (1)

CclField* field(unsigned short index)

index
The index number of the required CclField object.

Returns a pointer to the CclField object identified by index in the BMS map.

field (2)

CclField* field(unsigned short row, unsigned short column)

row
The row number of the required CclField object within the map. 1 denotes
the top row.

column
The column number of the required CclField object within the map. 1
denotes the left column.

Returns a pointer to the CclField object identified by position in the BMS
map.

Protected methods

namedField

CclField* namedField(unsigned long index)

index
The index number of the required CclField object.

Returns the address of the indexth object.

validate

void validate(const MapData* map,
const FieldIndex* index,
const FieldData*

fields)

map
A structure which contains information about the map. The structure is
defined within this class and contains the following members which are
all unsigned short integers:
row Map row position on screen
col Map column position on screen
width

Map width in columns
depth Map depth in rows
fields Number of fields

C++ Class: CclMap

72 C++ Programming

labels
Number of labeled fields

index
The index number of the required CclField object. FieldIndex is a typedef
of this class and is equivalent to an unsigned short integer.

fields
A structure which contains information about a particular field. The
structure is defined within this class and contains the following members
which are all unsigned short integers:
row Field row (within map)
col Field column (within map)
len Field length

Validate map against the current screen.

C++ Class: CclMap

Chapter 12. CclMap class 73

74 C++ Programming

Chapter 13. CclScreen class

The CclScreen EPI class maintains all data on the 3270 virtual screen and
provides access to this data. It contains a collection of CclField objects which
represent the fields on the current 3270 screen.

A single CclScreen object is created by the CclTerminal object, and should be
obtained by using the screen method on the CclTerminal object. The CclScreen
object is updated by the CclTerminal object when 3270 data is received from
CICS. A dataStream exception is raised if an unsupported datastream is
received.

Public methods

cursorCol

Returns the column number of the current position of the cursor. Leftmost
column = 1.

cursorRow

Returns the row number of the current position of the cursor. Top row = 1.

depth

Returns the number of rows in the screen.

field (1)
These methods allow you to access fields on the current screen by returning a
pointer to the relevant CclField object.

CclField* field(unsigned short index)

index
The index number of the field of interest

field (2)

CclField* field(unsigned short row, unsigned short column)

unsigned short cursorCol() const

unsigned short cursorRow() const

unsigned short depth() const

© Copyright IBM Corp. 1996,1999 75

row
The row number of the field

column
The column number of the field

fieldCount

Returns the number of fields in the screen.

mapName

const char* mapName()
Returns a padded null terminated string specifying the name of the map that
was most recently referenced in the MAP option of a SEND MAP command
processed for the terminal resource. If the terminal resource is not supported
by BMS, or the server has no record of any map being sent, the value
returned is spaces.

mapSetName

const char* mapSetName()
Returns a padded null terminated string specifying the name of the mapset
that was most recently referenced in the MAPSET option of a SEND MAP
command processed for the terminal resource. If the MAPSET option was not
specified on the most recent request, BMS used the map name as the mapset
name. In both cases, the mapset name used may have been suffixed by a
terminal suffix. If the terminal resource is not supported by BMS, or the server
has no record of any mapset being sent, the value returned is spaces.

setAID

key
An AID key. See the AID enumerations at the end of this §.

Sets the AID key value to be passed to the server on the next transmission.

setCursor

row
The required row number of the cursor. 1 denotes the top row.

col
The required column number of the cursor. 1 denotes the left column.

unsigned short fieldCount() const

void setAID(const AID key)

void setCursor(unsigned short row, unsigned short col)

C++ Class: CclScreen

76 C++ Programming

Requests that the cursor position be set. If the supplied row or column values
are outside the screen boundaries, a parameter exception is raised.

width

Returns the number of columns on the screen.

Enumerations

AID
Indicates an AID key. Possible values are:

enter
clear
PA1—PA3
PF1—PF24

unsigned short width() const

C++ Class: CclScreen

Chapter 13. CclScreen class 77

C++ Class: CclScreen

78 C++ Programming

Chapter 14. CclSecAttr

The CclSecAttr class provides information about passwords reported back by
the external security manager when issuing verifyPassword or
changePassword methods on CclConn or CclTerminal objects.

This object is created and owned by the CclConn or CclTerminal Object and
access to this object is provided when invoking the verifyPassword or
changePassword methods

Public Methods

expiryTime

CclSecTime* expiryTime() const
Returns a CclSecTime Object which contains the Date and Time at which the
password will expire

invalidCount

unsigned short invalidCount() const
Returns the Number of times that an invalid password has been entered for
the userid.

lastAccessTime

CclSecTime* lastAccessTime() const
Returns a CclSecTime Object which contains the Date and Time of the userid
was last accessed

lastVerifiedTime

CclSecTime* lastVerifiedTime() const
Returns a CclSecTime Object which contains the Date and Time of the Last
Verification

© Copyright IBM Corp. 1996,1999 79

80 C++ Programming

Chapter 15. CclSecTime

The CclSecTime class provides date and time information in the CclSecAttr
object for various entries reported back by the external security manager
when issuing verifyPassword or changePassword methods on CclConn or
CclTerminal objects.

These objects are created and owned by the CclSecAttr object and access is
obtained via the various methods available on this object. No Constructors or
Destructors are available.

Public Methods

day

unsigned short day() const
Returns the day with a range from 1 to 31, 1 represents the 1st day of the
month

get_time_t

time_t get_time_t() const
Returns the date and time in a time_t format

get_tm

tm get_tm() const
Returns the date and time in a tm structure

hours

unsigned short hours() const
Returns the hours with a range from 0 to 23

hundredths

unsigned short hundredths() const
Returns the hundredths of seconds with a range from 0 to 99

minutes

unsigned short minutes() const
Returns the minutes with a range from 0 to 59

© Copyright IBM Corp. 1996,1999 81

month

unsigned short month() const
Returns the month with a range from 1 to 12, 1 represents January

seconds

unsigned short seconds() const
Returns the seconds with a range from 0 to 59

year

unsigned short year() const
Returns a 4 digit Year

82 C++ Programming

Chapter 16. CclSession class

The CclSession class allows the programmer to implement reusable code to
handle a segment (one or more transmissions) of a 3270 conversation. In
multi-threaded environments, such as OS/2, it provides asynchronous
handling of replies from CICS.

The CclSession class controls the flow of data to and from CICS within a
single 3270 session. You should derive your own classes from CclSession.

CclSession constructor

CclSession(Ccl::Sync syncType)

syncType
The protocol to be used on transmissions to the CICS server. Possible
values are:
async asynchronous
dsync deferred synchronous
sync synchronous

Public methods

diagnose

const char* diagnose() const
Returns a text description of the last error.

handleReply

state
An enumeration indicating the state of the data flow. The scope of the
values is within this class and they are shown under State at the end of
the description of this class.

screen
A pointer to the CclScreen object

This is a virtual method which you can override when you develop your own
class derived from CclSession. It is called when data is received from CICS.

virtual void handleReply(State state, CclScreen* screen)

© Copyright IBM Corp. 1996,1999 83

state

Returns an enumeration indicating the current state of the session. Possible
values are shown under State at the end of the description of this class.

terminal

CclTerminal* terminal() const
Returns a pointer to the CclTerminal object for this session. Note that this
method will return a NULL pointer until the CclSession object has been
associated with a CclTerminal object (that is, until the CclSession object has
been used as a parameter on a CclTerminal send method).

transID

const char* transID() const
Returns the 4-letter name of the current transaction.

Enumerations

State
Indicates the state of a session. Possible values are:
idle The terminal is connected and there is no CICS transaction in progress
server

There is a CICS transaction in progress in the server
client There is a CICS transaction in progress and the server is waiting for a

response from the client
discon

The terminal is disconnected
error There is an error in the terminal

State state() const

C++ Class: CclSession

84 C++ Programming

Chapter 17. CclTerminal class

An object of class CclTerminal represents a 3270 terminal connection to a
CICS server. A CICS connection is established when the object is created.
Methods can then be used to converse with a 3270 terminal application (often
a BMS application) in the CICS server.

The EPI must be initialized (that is, a CclEPI object created) before a
CclTerminal object can be created.

CclTerminal constructor

CclTerminal

CclTerminal(const char* server,
const char* devtype,
const char* netname,
signonType signonCapability
const char* userid
const char* password
const unsigned short &readTimeOut,
const unsigned short CCSid)

server
The name of the server with which you require to communicate. If no
name is provided the default server system is assumed. The length is
adjusted to 8 characters by padding with blanks.

devtype
The name of the model terminal definition which the server uses to
generate a terminal resource definition. If no string is provided the default
model is used. The length is adjusted to 16 characters by padding with
blanks.

netname
The name of the terminal resource to be installed or reserved. The default
is to use the contents of devtype. The length is adjusted to 8 characters by
padding with blanks.

signonCapability

Sets the type of signon capability for the terminal.

Possible values are:
CclTerminal::SignonCapable

© Copyright IBM Corp. 1996,1999 85

CclTerminal::SignonIncapable

userid
The name of the userid to associate with this terminal resource

password
The password to associate with the userid

readTimeOut
A value in the range 0 through 3600, specifying the maximum time in
seconds between the time the classes go clientrepl state and the
application program invokes the reply method.

CCSid
An unsigned short specifying the coded character set indentifier(CCSID)
that identifies the coded graphic character set used by the client
application for data passed between the terminal resource and CICS
transactions. A zero string implies a default will be used.

Creates a Terminal object which doesn’t do an implicit install terminal. You
must run the install method to install the terminal.

Public methods

alterSecurity

void alterSecurity(const char* userid,const char* password)

userid
The new userid

password
The new password for userid

Allows you to re-define the userid and password for a terminal resource. You
may call the method before you install a terminal. It will only change the
terminal definition and the new userid and password will be used for the
terminal when install is called.

changePassword

CclSecAttr* changePassword(const char* newPassword)

newPassword
The new password

Allows a client application to change the password held in the terminal object
and the password recorded by an external security manager for the userid
held in the terminal object. The external security manager is assumed to be
located in the server defined by the terminal object.

C++ Class: CclTerminal

86 C++ Programming

CCSid

unsigned short CCSid()
Returns the selected code page as an unsigned short .

diagnose

Returns a character string which holds a description of the error returned by
the most recent server call.

disconnect(1)

Disconnects the terminal from CICS. No attempt is made to purge any
outstanding running transaction.

disconnect(2)

withPurge

Ccl::Yes
Disconnects the terminal from CICS and will attempt to purge any
outstanding running transaction

Ccl::No
Disconnects the terminal from CICS. No attempt is made to purge
any outstanding running transaction.

discReason

Returns the reasons for a disconnection. See “EndTerminalReason” on page 92.

exCode

Deprecated method
Do not use this method in new applications.The method has been
deprecated and is only provided for backwards compatibility.

const char* diagnose()

void disconnect()

void disconnect(Ccl::Bool withPurge)

void discReason(void)

Ccl::ExCode exCode() const

C++ Class: CclTerminal

Chapter 17. CclTerminal class 87

Returns an enumeration indicating the most recent exception code. The
possible values are listed in Table 3 on page 99.

exCodeText

Deprecated method
Do not use this method in new applications.The method has been
deprecated and is only provided for backwards compatibility.

const char* exCodeText() const
Returns a text string describing the most recent exception code.

install

void install(CclSession *session,
const unsigned short &installTimeOut)

session
A pointer to the CclSession object which is to be used for the CICS server
interaction.

installTimeOut
A value in the range 0 through 3600, specifying the maximum time in
seconds that installation of the terminal resource is allowed to take. A
value of 0 means that no limit is set

Connects a non-connected terminal resource. Throws an invalidState error if
already connected, or a timeout error if a timeout occurs.

makeSecurityDefault

void makeSecurityDefault()
Informs the client that the current userid and password for this object is to
become the default for ECI and EPI requests passed to the server as specified
in the construction of the Terminal object.

netName

const char* netName() const
Returns the network name of the terminal as a null terminated string .

password

const char* password()
Returns a null terminated string containing the current password setting for
the terminal, Null if none.

C++ Class: CclTerminal

88 C++ Programming

poll

Polls for data from the CICS server.

For deferred synchronous transmissions (that is, if a deferred synchronous
CclSession object was used on a previous send call) the poll method is called
by the application when it wishes to receive data from the CICS server. If a
reply from CICS is ready, the CclTerminal object updates the CclScreen object
with the contents of the 3270 datastream received from CICS, the
handleReply virtual function on the CclSession object is called, and the poll
method returns Ccl::yes. If no reply has been received from CICS yet, the
poll method returns Ccl::no.

The poll method is only used for deferred synchronous transmissions, a
syncType exception is raised if the poll method is called when a synchronous
or asynchronous session is in use. An invalidState exception is raised if the
poll method is called when there was no previous send call. The CclTerminal
object should be in server state for poll to be called.

A CICS server transaction may send more than one reply in response to a
CclTerminal send call. More than one CclTerminal poll call may therefore be
needed to collect all the replies. Use the CclTerminal state method to find out
if further replies are expected. If there are, the value returned will be server.
See “EPI call synchronization types” on page 25.

queryATI

Returns an enumeration indicating whether the “Automatic Transaction
Initiation” (ATI) is enabled or disabled. Possible values are:

disabled
enabled

readTimeout

const char* readTimeout()
Returns the read timout value for the terminal as a null terminated string .

receiveATI

void receiveATI(CclSession* session)

session
pointer to the CclSession object which is to be used for the CICS server
interaction.

Ccl::Bool poll()

ATIState queryATI()

C++ Class: CclTerminal

Chapter 17. CclTerminal class 89

Waits for and receives 3270 datastream for a CICS ATI transaction. The
CclSession object supplied as a parameter determines whether the call is
synchronous or asynchronous, and can be subclassed to provide a reply
handler

screen

CclScreen* screen() const
Returns a pointer to the CclScreen object that is handling the 3270 screen
associated with this terminal session.

send (1)

void send(CclSession* session,
const char* transid,
const char* startdata = NULL)

session
A pointer to the CclSession object which controls the session which is to
be used. If no valid CclSession object is supplied, a parameter exception is
raised.

transid
The name of the transaction which is to be started

startdata
start transaction data. The default is to have no data for the transaction
being started.

Formats and sends a 3270 datastream, starting the named transaction. The
CclTerminal object must be in idle state (that is, connected to a CICS server
but with no transaction in progress). If the object is not in idle state, an
invalidState exception is raised.

send (2)

The session parameter is described above.

Formats and sends a 3270 datastream. The CclTerminal object must be idle
state (see above) or in client state (that is, with a transaction in progress and
the CICS server is waiting for a response). If the object is not in idle or client
state, an invalidState exception is raised.

setATI

void send(CclSession* session)

void setATI(ATIState newstate)

C++ Class: CclTerminal

90 C++ Programming

newstate
An enumeration indicating whether the ATI is to be enabled or disabled.
The scope of the values is within this class and the possible values are
disabled and enabled.

signonCapability

signonType signonCapability()
Returns the type of signon capability applied to the terminal at installation.

Possible values are:
CclTerminal::signonCapable

CclTerminal::signonIncapable

CclTerminal::signonUnknown

state

Returns an enumeration indicating the current state of the session. Possible
values are shown at the end of the description of this class.

serverName

const char* serverName() const
Returns the name of the CICS server to which this terminal session is
connected.

termID

const char* termID() const
Returns the 4-character terminal ID.

transID

const char* transID() const
Returns the 4-character name of the current CICS transaction.Note that if a
RETURN IMMEDIATE is run from the current transaction, TransId will not
provide the name of the new transaction, it will still contain the name of the
first transaction.

userId

const char* userId()
Returns a null terminated string containing the current userid setting for the
terminal, Null if none.

State state() const

C++ Class: CclTerminal

Chapter 17. CclTerminal class 91

verifyPassword

CclSecAttr* verifyPassword()
Allows a client application to verify that the password held in the terminal
object matches the password recorded by an external security manager for the
userid held in the terminal object. The external security manager is assumed
to be located in the server defined by the terminal object.

Enumerations

ATIState
Indicates whether “Automatic Transaction Initiation” (ATI) is enabled or
disabled. Possible values are:

enabled
disabled

signonType
Indicates the signon capability of a terminal. Possible values are:
signonCapable

Signon Capable
signonIncapable

Signon Incapable
signonUnknown

Signon Unknown

State
Indicates the state of the CclTerminal object. Possible values are:
client There is a CICS transaction in progress and the server is waiting for a

response from the client
discon

The terminal is disconnected
error There is an error in the terminal
idle The terminal is connected and there is no CICS transaction in progress
server

There is a CICS transaction in progress in the server
termDefined

A terminal has been defined but not installed.

EndTerminalReason
Indicates the EndTerminalReason of the CclTerminal object. Possible values
are:
signoff

A disconnect was requested or the user has signed off the terminal.
shutdown

The CICS server has been shutdown.
outofService

The terminal has been switched to out of service.

C++ Class: CclTerminal

92 C++ Programming

unknown
An unknown situation has occurred.

failed The terminal failed to disconnect.
notDiscon

The terminal is not disconnected.

C++ Class: CclTerminal

Chapter 17. CclTerminal class 93

C++ Class: CclTerminal

94 C++ Programming

Chapter 18. CclUOW class

Use this ECI class when you make updates to recoverable resources in the
server within a “unit of work” (UOW). Each update in a UOW is identified at
the client by a reference to its CclUOW—see link in CclConn (“link” on
page 47).

A CclUOW object cannot be copied or assigned. An attempt to delete a
CclUOW object for which there is an active CclFlow object will raise an
activeFlow exception. An attempt to delete an active CclUOW object, that is
one which has not been committed or backed out, will raise an activeUOW
exception.

CclUOW constructor

CclUOW()

Creates a CclUOW object.

Public methods

backout

void backout(CclFlow& flow)

flow
A reference to the CclFlow object which is used to control the client-server
call

Terminate this UOW and back out all changes made to recoverable resources
in the server.

commit

void commit(CclFlow& flow)

flow
A reference to the CclFlow object which is used to control the client-server
call

Terminate this UOW and commit all changes made to recoverable resources in
the server.

© Copyright IBM Corp. 1996,1999 95

forceReset

Make this UOW inactive and reset it.

listState

const char* listState() const
Returns a zero-terminated formatted string containing the current state of the
object. For example:
UOW state..&CclUOW=0004899C &CclUOWI=00203BD0
&CclConnI=00000000 uowId=0 &CclFlowI=00000000

uowId

Returns the identifier of the UOW. 0 indicates that the UOW is either
complete or has not yet started. In other words, it is inactive.

void forceReset()

unsigned long uowId() const

C++ Class: CclUOW

96 C++ Programming

Part 3. Appendixes

© Copyright IBM Corp. 1996,1999 97

98 C++ Programming

Appendix. Exception Objects

All exception objects provide the following information
v Class Name
v Method Name
v Exception Code
v Exception Text
v Abend Code (ECI Only)
v Origin Point

The Class name can contain a trailing ’I’ for example CclFlowI which implies
it is a internally contained class for the well known class, e.g. CclFlowI is
contained by CclFlow. if an internal class is reported the method reported
may be an internal method, not an external one.

The Origin Point is a unique value which defines the exact point within the
class library where the exception was generated. These are mainly useful for
service.

The more important items of information are the Exception Code, Exception
Text and Abend Code (ECI only). The following is a Summary of these
Exception Codes and Text and whether they are relevent to ECI or EPI or
both.Enumeration

Table 3. Exception codes

Enumeration Text Description ECI EPI

Ccl::noError no error No error occurred Yes Yes

Ccl::bufferOverflow buffer overflow Attempted to increase
a CclBuf object which
isn’t Extensible

Yes

Ccl::multipleInstance multiple instance Attempted to create
more than one ECI
object

Yes

Ccl::activeFlow flow is active Current Flow is still
active, you cannot use
this flow until it is
inactive

Yes

Ccl::activeUOW UOW is active Current UOW is still
active, you need to
backout or commit.

Yes

© Copyright IBM Corp. 1996,1999 99

Table 3. Exception codes (continued)

Enumeration Text Description ECI EPI

Ccl::syncType sync error Incorrect
synchronisation type
for method call.

Yes Yes

Ccl::threadCreate thread create error Internal thread
creation error

Yes Yes

Ccl::threadWait thread wait error Internal thread wait
error

Yes

Ccl::threadKill thread kill error Internal thread kill
error

Yes

Ccl::dataLength data length invalid CommArea > 32768
Bytes or inbound 3270
data stream too large
for Terminal Buffer
size.

Yes Yes

Ccl::noCICS no CICS The client is
unavailable, or the
server implementation
is unavailable, or a
logical unit of work
was to be begun, but
the CICS server
specified is not
available. No resources
have been updated

Yes Yes

Ccl::CICSDied CICS died A logical unit of work
was to be begun or
continued, but the
CICS server was no
longer available. If this
is a link call with an
active UOW, the
changes are backed
out. If This was a
UOW Commit or the
application cannot
determine whether the
changes have been
committed or backed
out, and must log this
condition to aid future
manual recovery

Yes

Ccl::noReply no reply There was no
outstanding reply

Yes

100 C++ Programming

Table 3. Exception codes (continued)

Enumeration Text Description ECI EPI

Ccl::transaction transaction abend ECI Program Abended Yes

Ccl::systemError system error Unknown internal
error occurred

Yes Yes

Ccl::resource resource shortage The server
implementation or the
client did not have
enough resources to
complete the request
e.g. insufficient SNA
sessions.

Yes Yes

Ccl::maxUOWs exceeded max UOWs A new logical unit of
work was being
created, but the
application already has
as many outstanding
logical units of work
as the configuration
will support.

Yes

Ccl::unknownServer unknown server The requested server
could not be located

Yes Yes

Ccl::security security error You did not supply a
valid combination of
user ID and password,
though the server
expects it.

Yes Yes

Ccl::maxServers exceeded max servers You attempted to start
requests to more
servers than your
configuration allows.
You should consult the
documentation for
your client or server to
see how to control the
number of servers you
can use.

Yes Yes

Appendix. Exception Objects 101

Table 3. Exception codes (continued)

Enumeration Text Description ECI EPI

Ccl::maxRequests exceeded max requests There were not enough
communication
resources to satisfy the
request. You should
consult the
documentation for
your client or server to
see how to control
communication
resources

Yes Yes

Ccl::rolledBack rolled back An attempt was made
to commit a logical
unit of work, but the
server was unable to
commit the changes,
and backed them out
instead

Yes

Ccl::parameter parameter error Incorrect parameter
supplied

Yes Yes

Ccl::invalidState invalid object state The Object is not in
the correct state to
invoke the method,
e.g. terminal object still
in server state and an
attempt to send data is
made.

Yes Yes

Ccl::transId invalid transaction Null transid supplied
or returned for a
Pseudo Conversional
transaction

Yes

Ccl::initEPI EPI not initialised No EPI object or EPI
failed to initiliase
correctly

Yes

Ccl::connect connection failed Unexpected error
trying to add the
terminal

Yes

Ccl::dataStream 3270 datastream error Unsupported Data
Stream

Yes

Ccl::invalidMap map/screen mismatch Map definition and
Screen do not match

Yes

Ccl::cclClass CICS class error Unknown internal
Class error occurred.

Yes Yes

102 C++ Programming

Table 3. Exception codes (continued)

Enumeration Text Description ECI EPI

Ccl::startTranFailure Start Transaction
Failure

Transaction failed to
start

Yes

Ccl::timeout Timeout Occurred Timeout occurred
before response from
Server

Yes Yes

Ccl::noPassword Password is Null The object’s password
is null.

Yes Yes

Ccl::noUserid Userid is Null The object’s userid is
null

Yes Yes

Ccl::nullNewPassword A NULL new
password was
supplied

The provided
password is null

Yes Yes

Ccl::pemNotSupported PEM is not supported
on the server

The CICS Server
doesn’t support the
Password Expiry
Management facilities.
The method cannot be
used

Yes Yes

Ccl::pemNotActive PEM is not active on
the server

Password Expiry
Management is not
active

Yes Yes

Ccl::passwordExpired Password has expired The password has
expired. No
information has been
returned

Yes Yes

Ccl::passwordInvalid Password is invalid The password is
invalid.

Yes Yes

Ccl::passwordRejected New password was
rejected

Change password
failed because the
password doesn’t
conform to standards
defined

Yes Yes

Ccl::useridInvalid Userid unknown at
server

The userid is unknown Yes Yes

Ccl:invalidTermid Termid is invalid The terminal ID is
invalid

Yes

Ccl:invalidModelid Modelid is invalid Invalid Model/Device
Type

Yes

Ccl:not3270 Not a 3270 device Not a 3270 device Yes

Appendix. Exception Objects 103

Table 3. Exception codes (continued)

Enumeration Text Description ECI EPI

Ccl:invalidCCSid Codepage (CCSid
value) is invalid

Invalid CCSid Yes

Ccl:serverBusy Server is too busy CICS server is busy Yes

Ccl:signonNotPossible Signon Capable
terminal is not possible

The server does not
allow the terminal to
be installed as signon
capable.

Yes

104 C++ Programming

Glossary

AID. Attention Identifier

ATI. Automatic Transaction Initiation

BMS. Basic Mapping Support

COMMAREA. CICS Communications Area

ECI. External Call Interface

EPI. External Presentation Interface

ESI. External Security Interface

ISC. Inter-Systems Communication

OLE. Object Linking and Embedding

UOW. Unit of Work

© Copyright IBM Corp. 1996,1999 105

106 C++ Programming

Bibliography

Here are some books that you may find
useful.

C++ Programming

You should read the books supplied with
your C++ compiler.

The following are some non-IBM
publications that are generally available.
This is not an exhaustive list. IBM does not
specifically recommend these books, and
other publications may be available in your
local library or bookstore.
v Lippman, Stanley B., C++ Primer:

Addison-Wesley Publishing Company.
v Stroustrup, Bjarne, The C++ Programming

Language: Addison-Wesley Publishing
Company.

v Ellis, Margaret A. and Bjarne Stroustrup,
The Annotated C++Reference Manual:
Addison-Wesley Publishing Company.

The CICS Transaction Gateway and
CICS Universal Clients library

This chapter lists all the CICS Transaction
Gateway, CICS Universal Clients, and
related books, and discusses the various
forms in which they are available.

The headings in this chapter are:
v “CICS Transaction Gateway books”
v “CICS Universal Clients books” on

page 108
v “CICS Family publications” on page 108
v “Book filenames” on page 108

v “Sample configuration documents” on
page 109

v “Other publications” on page 109
v “Viewing the online documentation” on

page 109

CICS Transaction Gateway books
v CICS Transaction Gateway for OS/2

Administration, SC34-5590
This book describes the administration of
the CICS Transaction Gateway for OS/2.

v CICS Transaction Gateway for Windows
Administration, SC34-5589
This book describes the administration of
CICS Transaction Gateway for Windows
98 and CICS Transaction Gateway for
Windows NT.

v CICS Transaction Gateway for AIX
Administration, SC34-5591
This book describes the administration of
the CICS Transaction Gateway for AIX.

v CICS Transaction Gateway for Solaris
Administration, SC34-5592
This book describes the administration of
the CICS Transaction Gateway for Solaris.

v CICS Transaction Gateway for OS/390
Administration, SC34-5528
This book describes the administration of
the CICS Transaction Gateway for
OS/390.

v CICS Transaction Gateway Messages

This online book lists and explains the
error messages that can be generated by
CICS Transaction Gateway.
You cannot order this book.

v CICS Transaction Gateway Programming,
SC34-5594

© Copyright IBM Corp. 1996,1999 107

|
|

|

|
|
|
|

|

|

|
|

|

|

|
|

|

|
|

|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|

|
|
|

|

|
|

This book provides an introduction to
Java programming with the CICS
Transaction Gateway.
There are also additional HTML pages
that contain programming reference
information.

CICS Universal Clients books
v CICS Universal Client for OS/2

Administration, SC34-5450
This book describes the administration of
the CICS Universal Client for OS/2.

v CICS Universal Client for Windows
Administration, SC34-5449
This book describes the administration of
the CICS Universal Client for Windows
98 and CICS Universal Client for
Windows NT.

v CICS Universal Client for AIX
Administration, SC34-5348
This book describes the administration of
the CICS Universal Client for AIX.

v CICS Universal Client for Solaris
Administration, SC34-5451
This book describes the administration of
the CICS Universal Client for Solaris.

v IBM CICS Universal Clients Messages

This online book lists and explains the
error and trace messages that can be
generated by CICS Universal Clients.
You cannot order this book.

v IBM CICS Universal Clients C++
Programming, SC33-1923
This book describes how to write object
oriented programs for the ECI and EPI in
the C++ language.

v IBM CICS Universal Clients COM
Automation Programming, SC33-1924
This book describes how to write object
oriented programs for the ECI and EPI
according to the Component Object
Model (COM) standard.

CICS Family publications
v CICS Family: Client/Server Programming,

SC33-1435
This book describes the programming
interfaces associated with CICS
client/server Programming— the External
Call Interface (ECI), the External
Presentation Interface (EPI), and the
External Security Interface (ESI). It is
intended for application designers and
programmers who wish to develop client
applications to communicate with CICS
server systems.

Book filenames
Table 4 on page 109 show the softcopy
filenames of the CICS Transaction Gateway
and CICS Universal Client books.

The CICS Transaction Gateway and CICS Universal Clients library

108 C++ Programming

|
|
|

|
|
|

|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|

|

|
|
|

|

|
|

|
|
|

|
|

|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|

Table 4. CICS Transaction Gateway and CICS
Universal Clients books and file names

Book title File
name

IBM CICS Universal Clients
Messages

CCLHAB

CICS Universal Client for AIX
Administration

CCLHAD

CICS Universal Client for OS/2
Administration

CCLHAE

CICS Universal Client for Windows
Administration

CCLHAF

CICS Universal Client for Solaris
Administration

CCLHAG

CICS Transaction Gateway for
OS/390 Administration

CCLHAI

CICS Transaction Gateway Messages CCLHAJ

CICS Transaction Gateway
Programming

CCLHAK

CICS Transaction Gateway for
Windows Administration

CCLHAL

CICS Transaction Gateway for OS/2
Administration

CCLHAM

CICS Transaction Gateway for AIX
Administration

CCLHAN

CICS Transaction Gateway for Solaris
Administration

CCLHAO

IBM CICS Universal Clients C++
Programming

CCLHAP

IBM CICS Universal Clients COM
Automation Programming

CCLHAQ

CICS Family: Client/Server
Programming

DFHZAD

Note: The File names in this table do not
include the 2-digit suffix.

Sample configuration documents
A number of sample configuration
documents are available in the Portable
Document Format (PDF) format.

These documents provide step-by-step
guidance to help you, for example, in
configuring your CICS Universal Clients for
communication with CICS servers, using
various protocols. They provide detailed
instructions that extend the information in
the CICS Transaction Gateway and CICS
Universal Client libraries.

As more sample configuration documents
become available, you can download them
from our Web site; go to:
http://www.ibm.com/software/ts/cics/

and follow the Library link.

Other publications
The following International Technical
Support Organization (ITSO) Redbook
publication contains many examples of
client/server configurations:
v Revealed! CICS Transaction Gateway with

more CICS Clients Unmasked, SG24-5277

This book supersedes the following book:
v CICS Clients Unmasked, GG24-2534

You can obtain ITSO Redbooks from a
number of sources. For the latest
information, see:
http://www.ibm.com/redbooks/

You can find information on CICS products
at:
http://www.ibm.com/software/ts/cics/

Viewing the online documentation

You can access all of the documentation
provided with CICS Transaction Gateway
and CICS Universal Client in our online
library. You need Adobe Acrobat Reader
and a suitable Web browser to use the
online library (and you may need to
configure these).

CICS Family publications

Bibliography 109

||
|

||
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

||

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|

|

|
|
|
|

|
|

|

|

|
|
|

|

|
|

|

|

|
|
|
|
|
|
|

http://www.ibm.com/software/ts/cics/
http://www.ibm.com/redbooks/
http://www.ibm.com/software/ts/cics/

To get to the online library:
v On Windows and OS/2, select the

Documentation icon
v On AIX and Solaris, run the ctgdoc script

and the library home page is displayed.

The online library allows you to link to:
v CICS Transaction Gateway and CICS

Universal Clients books in PDF format.
v Programming reference documentation in

HyperText Markup Language (HTML)
files (provided for CICS Transaction
Gateway only).

v README files.
v Sample configuration documents in PDF

format.
v Translated books in PDF format. (You

may find that not all books are translated
for your language.)

v The CICS Web site.

Guidance information on using Acrobat
Reader is also provided.

Updated versions of the books may be
provided from time to time, check our Web
site at:
http://www.ibm.com/software/ts/cics/

and follow the Library link.

Viewing PDF books

The PDF information provides powerful
functions for:
v Navigating through the information.

There are hypertext links within PDF
documents, and to other PDF documents
and Web pages.

v Searching for specific information.
v Printing all or part of PDF documents on

a PostScript printer.

You can find out more about Acrobat
Reader at the Adobe Web site:
http://www.adobe.com/acrobat/

Viewing the online documentation

110 C++ Programming

|

|
|

|

|

|

|
|

|
|
|
|

|

|
|

|
|
|

|

|
|

|
|
|

|

|

|

|
|

|
|
|
|

|

|
|

|
|

|

http://www.ibm.com/software/ts/cics/
http://www.adobe.com/acrobat/

Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

© Copyright IBM Corp. 1996,1999 111

|

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the information. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM United
Kingdom Laboratories, MP151, Hursley Park, Winchester, Hampshire,
England, SO21 2JN. Such information may be available, subject to appropriate
terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

Trademarks and service marks

The following terms, used in this publication, are trademarks or service marks
of IBM Corporation in the United States or other countries:

AIX IBM VisualAge
CICS OS/2

Microsoft, Windows, Windows NT and the Windows logo are trademarks of
Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

112 C++ Programming

Index

Special Characters
-DCICS_AIX 8
-DCICS_SOL 8
-lc 8
-lc_r 8
-lcclcp 8
(parameter)

in changed 46

Numerics
3270 datastreams 21

A
abendCode

in CclException class 59
in CclFlow class 68
in Public methods 59, 68

Accessing fields on CICS 3270
screens

in C++ External presentation
interface 24

in Using the CICS client C++
classes 24

active
in state 57
in State 57

activeFlow
in CclConn class 45
in CclFlow class 67
in CclUOW class 95

activeUOW
in CclConn class 45
in CclUOW class 95

AID
in CclScreen class 77
in Enumerations 77

AIX
in Environments supported 5

alphanumeric
in BaseType 65
in inputType 62

alterSecurity
in CclConn class 46
in CclTerminal class 86
in Public methods 46, 86

alterSecurity (parameter)
in alterSecurity 46

appendText
in CclField class 61
in Public methods 61

assign
in CclBuf class 41
in Public methods 41

async
in CclSession constructor 83
in Sync 37

Async Exception Handling 9
Asynchronous call synchronisation

in ATI 22
Asynchronous reply handling

in C++ External call interface 15
in Controlling server

interactions 15
ATI 22
ATIState

in CclTerminal class 92
in Enumerations 92

attachTran (parameter)
in CclConn constructor 45, 46

attribute (parameter)
in setBaseAttribute 63
in setExtAttribute 64

Automatic Transaction Initiation 22
available

in ServerStatus 50

B
backgroundColor

in CclField class 61
in Public methods 61

backout
in CallType 70
in CclUOW class 95
in Managing logical units of

work 19
in Public methods 95
in Server connection 12

baseAttribute
in CclField class 61
in Public methods 61

BaseInts
in CclField class 65
in Enumerations 65

BaseMDT
in CclField class 65
in Enumerations 65

BaseProt
in CclField class 65
in Enumerations 65

BaseType
in CclField class 65
in Enumerations 65

Basic Mapping Support
in C++ External presentation

interface 20
in Glossary 105

black
in Color 65

blinkHlt
in Highlight 65

blue
in Color 65

BMS
map source files 21
utility 21

books 107
CICS Transaction Gateway and

CICS Universal Clients
library 107

online 109
PDF 110
printed 110

Bool
in Ccl class 37
in Enumerations 37

buffer (parameter)
in CclBuf 40
in operator= 42
in operator!= 43
in operator+= 43
in operator== 43

C
C++ External call interface

Asynchronous reply
handling 15

Controlling server
interactions 13

Deferred synchronous reply
handling 16

Finding potential servers 11
Managing logical units of

work 18
Monitoring server

availability 17
Passing data to a server

program 12
Server connection 12
Synchronous reply handling 14

© Copyright IBM Corp. 1996,1999 113

C++ External presentation interface
Accessing fields on CICS 3270

screens 24
EPI BMS conversion utility 28
EPI call synchronization

types 25
in Using the CICS client C++

classes 20
Mapset containing a single

map 29
Starting a 3270 terminal

connection to CICS 23
Using EPI BMS Map Classes 30

C++ Programming
in Bibliography 107

callType
in CclFlow class 68
in Public methods 68

CallType
in CclFlow class 70
in Enumerations 70

callTypeText
in CclFlow class 68
in Public methods 68

cancel
in CallType 70
in CclConn class 46
in Monitoring server

availability 17
in Public methods 46
in Server connection 12

Ccl::async
in EPI call synchronization

types 25
Ccl::dsync

in EPI call synchronization
types 27

Ccl::sync
in EPI call synchronization

types 25
Ccl class

Bool 37
Sync 37

CclBuf
in CclBuf class 40
in CclBuf constructors 40
in Passing data to a server

program 12
CclBuf class

assign 41
CclBuf 40
cut 41
dataArea 41
dataAreaLength 41
dataAreaOwner 41

CclBuf class (continued)
DataAreaOwner 44
dataAreaType 41
DataAreaType 44
dataLength 42
insert 42
listState 42
operator= 42
operator!= 43
operator+= 43
operator== 43
replace 43
setDataLength 44

CclBuf constructors
CclBuf 40
in CclBuf class 40

CclConn
in Monitoring server

availability 17
in Server connection 12

CclConn class
alterSecurity 46
cancel 46
change password 46
changed 46
link 47
listState 47
makeSecurityDefault 48
password 48
serverName 48
serverStatus 49
ServerStatus 50
serverStatusText 49
status 48
userId 49
verifyPassword 49

CclConn constructor
in CclConn class 45

CCLCPOS2.LIB
in Using the CICS client C++

classes 7
CCLCPW32.LIB

in Using the CICS client C++
classes 7

CclECI
in Finding potential servers 11

CclECI class
exCode 51
exCodeText 51
handleException 52
instance 52
listState 52
serverCount 52
serverDesc 52
serverName 52

CclECI constructor (protected)
in CclECI class 51

CclEPI class
diagnose 55
exCode 55
exCodeText 56
handleException 56
serverCount 56
serverDesc 56
serverName 56
state 57
State 57
terminate 57

CclEPI constructor
in CclEPI class 55

CclException class
abendCode 59
className 59
diagnose 59
exCode 59
exCodeText 60
exObject 60
methodName 60

CclField
in Accessing fields on CICS 3270

screens 24
in C++ External presentation

interface 22
CclField class

appendText 61
backgroundColor 61
baseAttribute 61
BaseInts 65
BaseMDT 65
BaseProt 65
BaseType 65
Color 65
column 62
dataTag 62
foregroundColor 62
highlight 62
Highlight 65
inputProt 62
inputType 62
intensity 63
length 63
position 63
resetDataTag 63
row 63
setBaseAttribute 63
setExtAttribute 63
setText 64
text 64
textLength 64
transparency 64

114 C++ Programming

CclField class (continued)
Transparency 65

CclFlow
in CclFlow class 67
in CclFlow constructor 67
in Controlling server

interactions 13
CclFlow class

abendCode 68
callType 68
CallType 70
callTypeText 68
CclFlow 67
connection 68
diagnose 68
flowId 68
forceReset 68
handleReply 69
listState 69
poll 69
setTimeout 69
syncType 70
timeout 70
uow 70
wait 70

CclFlow constructor
CclFlow 67
in CclFlow class 67

CCLICW32.LIB
in Using the CICS client C++

classes 7
CclMap

in C++ External presentation
interface 22

in EPI BMS conversion
utility 28

in Mapset containing a single
map 29

CclMap class
exCode 71
exCodeText 71
field 72
namedField 72
validate 72

CclMap constructor
in CclMap class 71

CclScreen 23
in C++ External presentation

interface 22
in EPI BMS conversion

utility 29
CclScreen class

AID 77
cursorCol 75
cursorRow 75

CclScreen class (continued)
depth 75
field 75
fieldCount 76
mapName 76
mapSetName 76
setAID 76
setCursor 76
width 77

CclSecAttr 19, 31, 79
CclSession 23

in C++ External presentation
interface 22

in EPI call synchronization
types 25

CclSession::client
in EPI call synchronization

types 26
CclSession::idle

in EPI call synchronization
types 26

CclSession::server
in EPI call synchronization

types 26
CclSession class

diagnose 83
handleReply 83
state 84
State 84
terminal 84
transID 84

CclSession constructor
in CclSession class 83

CclTerminal 22, 23
in C++ External presentation

interface 22
CclTerminal class

alterSecurity 86
ATIState 92
CCSid 87
changePassword 86
diagnose 87
disconnect 87
discReason 87
EndTerminalReason 92
exCode 87
exCodeText 88
install 88
makeSecurityDefault 88
netName 88
password 88
poll 89
queryATI 89
readTimeout 89
receiveATI 89

CclTerminal class (continued)
screen 90
send 90
serverName 91
setATI 90
signonCapability 91
signonType 92
state 91
State 92
termID 91
transID 91
userId 91
verifyPassword 92

CclTerminal constructor
in CclTerminal class 85

CclUOW
in Managing logical units of

work 19
CclUOW class

backout 95
commit 95
forceReset 96
listState 96
uowId 96

CclUOW constructor
in CclUOW class 95

CCSid
in CclTerminal class 87
in Public methods 87

CCSid (parameter)
in CclTerminal constructor 85

change password
in CclConn class 46
in Public methods 46

changed
in CallType 70
in CclConn class 46
in Monitoring server

availability 17
in Public methods 46
in Server connection 12

changePassword 19, 31
in CclTerminal class 86
in Public methods 86

CICS_AIX 8
CICS_OS2

in Using the CICS client C++
classes 7

CICS_SOL 8
CICS_W32

in Using the CICS client C++
classes 7

cicscli
in Starting a 3270 terminal

connection to CICS 23

Index 115

CICSECI.HPP
in Using the CICS client C++

classes 7
CICSEPI.HPP

in Using the CICS client C++
classes 7

className
in CclException class 59
in Public methods 59

clear
in AID 77

client
in EPI call synchronization

types 26
in send 90
in State 84, 92

Client initialization file
in Finding potential servers 11
in serverCount 52, 56
in serverDesc 56
in serverName 56
in Starting a 3270 terminal

connection to CICS 23
col

in validate 72, 73
col (parameter)

in setCursor 76
Color

in CclField class 65
in Enumerations 65

column
in CclField class 62
in Public methods 62

column (parameter)
in field 72, 75, 76

CommArea 11
commarea (parameter)

in handleReply 69
in link 47
in poll 69

commit
in CallType 70
in CclUOW class 95
in Managing logical units of

work 19
in Public methods 95
in Server connection 12

communication, synchronous 14
connection

in CclFlow class 68
in Public methods 68

Connection object 19
Controlling server interactions

Asynchronous reply
handling 15

Controlling server interactions
(continued)

Deferred synchronous reply
handling 16

in C++ External call interface 13
in Using the CICS client C++

classes 13
Synchronous reply handling 14

cursorCol
in CclScreen class 75
in Public methods 75

cursorRow
in CclScreen class 75
in Public methods 75

cut
in CclBuf class 41
in Public methods 41

cyan
in Color 65

D
dark

in BaseInts 65
in intensity 63

darkBlue
in Color 65

dataArea
in CclBuf class 41
in Public methods 41

dataArea (parameter)
in assign 41
in CclBuf 40
in insert 42
in replace 43

dataAreaLength
in CclBuf class 41
in Public methods 41

dataAreaOwner
in CclBuf class 41
in Public methods 41

DataAreaOwner
in CclBuf class 44
in Enumerations 44

dataAreaType
in CclBuf class 41
in Public methods 41

DataAreaType
in CclBuf class 44
in Enumerations 44

dataLength
in CclBuf class 42
in link 47
in Public methods 42

dataStream
in CclScreen class 75

dataTag
in CclField class 62
in Public methods 62

DBCS 21
default exception handler 10
defaultColor

in Color 65
defaultHlt

in Highlight 65
defaultTran

in Transparency 65
Deferred synchronous call

synchronisation
in ATI 23

Deferred synchronous reply
handling

in C++ External call interface 16
in Controlling server

interactions 16
depth

in CclScreen class 75
in Public methods 75
in validate 72

devtype (parameter)
in CclTerminal constructor 85

diagnose
in CclEPI class 55
in CclException class 59
in CclFlow class 68
in CclSession class 83
in CclTerminal class 87
in Public methods 55, 59, 68, 83,

87
disabled

in ATIState 92
in queryATI 89
in setATI 91

discon
in state 57
in State 57, 84, 92

disconnect
in CclTerminal class 87
in EPI call synchronization

types 26
in Public methods 87

discReason
in CclTerminal class 87
in Public methods 87

documentation 107
HTML 109
PDF 110

dsync
in CclSession constructor 83
in Sync 37

116 C++ Programming

E
enabled

in ATIState 92
in queryATI 89
in setATI 91

EndTerminalReason
in CclTerminal class 92
in Enumerations 92

enter
in AID 77

Enumerations
AID 77
ATIState 92
BaseInts 65
BaseMDT 65
BaseProt 65
BaseType 65
Bool 37
CallType 70
Color 65
DataAreaOwner 44
DataAreaType 44
EndTerminalReason 92
Highlight 65
in Ccl class 37
in CclBuf class 44
in CclConn class 50
in CclEPI class 57
in CclField class 65
in CclFlow class 70
in CclScreen class 77
in CclSession class 84
in CclTerminal class 92
ServerStatus 50
signonType 92
State 57, 84, 92
Sync 37
Transparency 65

Environments supported
in Establishing the working

environment 5
EPI BMS conversion utility

in C++ External presentation
interface 28

in Using the CICS client C++
classes 28

Mapset containing a single
map 29

EPI call synchronization types
in C++ External presentation

interface 25
in Using the CICS client C++

classes 25
error

in state 57

error (continued)
in State 57, 84, 92

except (parameter)
in handleException 52, 56

exception handler, default 10
Exception Handling, Async 9
exceptions, handling 9
exCode

in CclECI class 51
in CclEPI class 55
in CclException class 59
in CclMap class 71
in CclTerminal class 87
in Public methods 51, 55, 59, 71,

87
exCodeText

in CclECI class 51
in CclEPI class 56
in CclException class 60
in CclMap class 71
in CclTerminal class 88
in Public methods 51, 56, 60, 71,

88
exObject

in CclException class 60
in Public methods 60

Expiry Management, Password 19,
31

extensible
in CclBuf 40
in CclBuf class 39
in dataAreaType 42
in DataAreaType 44
in setDataLength 44

external
in dataAreaOwner 41
in DataAreaOwner 44

External call interface
in Using the CICS client C++

classes 10

F
failed

in EndTerminalReason 93
field

in CclMap class 72
in CclScreen class 75
in Mapset containing a single

map 29
in Public methods 72, 75

field()
in Mapset containing a single

map 29
fieldCount

in CclScreen class 76

fieldCount (continued)
in Public methods 76

fields
in validate 72

fields (parameter)
in validate 72, 73

Finding potential servers
in C++ External call interface 11
in Using the CICS client C++

classes 11
fixed

in CclBuf 40
in CclBuf class 39
in dataAreaType 42
in DataAreaType 44

flow (parameter)
in backout 95
in cancel 46
in changed 46
in commit 95
in link 47
in status 48, 49

flowId
in CclFlow class 68
in Public methods 68

forceReset
in CclFlow class 68
in CclUOW class 96
in Public methods 68, 96

foregroundColor
in CclField class 62
in Public methods 62

G
gray

in Color 65
green

in Color 65

H
handleException 9

in CclECI class 52
in CclEPI class 56
in Public methods 52, 56

handleReply 23
in CclFlow class 69
in CclSession class 83
in EPI call synchronization

types 25, 26, 27
in Public methods 69, 83
in Using EPI BMS Map

Classes 31
handling exceptions 9
hardcopy books 110

Index 117

highlight
in CclField class 62
in Public methods 62

Highlight
in CclField class 65
in Enumerations 65

HTML (HyperText Markup
Language) 109

HTML documentation, viewing 109
HyperText Markup Language

(HTML) 109

I
IBM VisualAge C++ 7
idle

in EPI call synchronization
types 26

in send 90
in State 84, 92

inactive
in CallType 70

index (parameter)
in field 72, 75
in namedField 72
in serverDesc 52, 56
in serverName 52, 53, 56
in validate 72, 73

initEPI
in CclEPI constructor 55

Initiation, Automatic Transaction 22
inputProt

in CclField class 62
in Public methods 62

inputType
in CclField class 62
in Public methods 62

insert
in CclBuf class 42
in Public methods 42

install
in CclTerminal class 88
in Public methods 88

instance
in CclECI class 52
in Finding potential servers 11
in Public methods 52

intense
in BaseInts 65
in intensity 63

intenseHlt
in Highlight 65

intensity
in CclField class 63
in Public methods 63

internal
in CclBuf 40

internal (continued)
in dataAreaOwner 41
in DataAreaOwner 44

invalidMap
in CclMap constructor 71

invalidState
in poll 89
in send 90

K
key (parameter)

in setAID 76

L
labels

in validate 73
len

in validate 73
length

in CclField class 63
in Public methods 63

length (parameter)
in appendText 61
in assign 41
in CclBuf 40
in cut 41
in insert 42
in replace 43
in setDataLength 44
in setText 64

libcclcp.a 8
link

in CallType 70
in CclConn class 47
in Public methods 47
in Server connection 12

listState
in CclBuf class 42
in CclConn class 47
in CclECI class 52
in CclFlow class 69
in CclUOW class 96
in Public methods 42, 47, 52, 69,

96

M
makeSecurityDefault

in CclConn class 48
in CclTerminal class 88
in Public methods 48, 88

Management, Password Expiry 19,
31

Managing logical units of work
in C++ External call interface 18
in Using the CICS client C++

classes 18

map (parameter)
in validate 72

MAPINQ1Map
in Mapset containing a single

map 29
mapName

in CclScreen class 76
in Public methods 76

Mapset containing a single map
in C++ External presentation

interface 29
in EPI BMS conversion

utility 29
mapSetName

in CclScreen class 76
in Public methods 76

MaxBufferSize (parameter)
in CclBuf class 39

maxServers
in serverDesc 56
in serverName 56

methodName
in CclException class 60
in Public methods 60

Microsoft Visual C++ 7
modified

in BaseMDT 65
in dataTag 62

Monitoring server availability
in C++ External call interface 17
in Using the CICS client C++

classes 17
multi-threading 8
multipleInstance

in CclECI class 51

N
n (parameter)

in position 63
namedField

in CclMap class 72
in Protected methods 72

netName
in CclTerminal class 88
in Public methods 88

netname (parameter)
in CclTerminal constructor 85

neutral
in Color 65

newPassword (parameter)
in alterSecurity 46
in changed 47
in changePassword method 86

newstate (parameter)
in setATI 91

118 C++ Programming

newUserid (parameter)
in alterSecurity 46

no
in Bool 37
in operator!= 43
in operator== 43
in poll 69

normal
in BaseInts 65
in intensity 63

normalHlt
in Highlight 65

notDiscon
in EndTerminalReason 93

numeric
in BaseType 65
in inputType 62

O
off

in Bool 37
offset (parameter)

in cut 41
in dataArea 41
in insert 42
in replace 43

on
in Bool 37

online books, PDF 110
online documenatation, HTML 109
OO support in CICS Clients

in Introduction to OO
programming 3

opaqueTran
in Transparency 65

operator=
in CclBuf class 42
in Public methods 42

operator!=
in CclBuf class 43
in Public methods 43

operator+=
in CclBuf class 43
in Public methods 43

operator==
in CclBuf class 43
in Public methods 43

orange
in Color 65

orTran
in Transparency 65

OS/2
in Environments supported 5

outofService
in EndTerminalReason 92

P
PA1

in AID 77
PA3

in AID 77
paleCyan

in Color 65
paleGreen

in Color 65
parameter

in CclMap constructor 71
in send 90
in setCursor 77
in setExtAttribute 64

Passing data to a server program
in C++ External call interface 12
in Using the CICS client C++

classes 12
password 19, 47

in CclConn class 48
in CclTerminal class 88
in Public methods 48, 88
in verifyPassword method 49

password (parameter)
in alterSecurity method 86
in CclConn constructor 45
in CclTerminal constructor 85

Password Expiry Management 19,
31

PDF (Portable Document
Format) 110

PDF books, viewing 110
PF1

in AID 77
PF24

in AID 77
PF3

in Accessing fields on CICS 3270
screens 24

pink
in Color 65

poll
in CclFlow class 69
in CclTerminal class 89
in Deferred synchronous reply

handling 16, 17
in EPI call synchronization

types 27
in Public methods 69, 89

poll method 23
Portable Document Format

(PDF) 110
position

in CclField class 63
in Public methods 63

PostScript books 110
Programming language support

in Introduction to OO
programming 4

programName (parameter)
in link 47

protect
in BaseProt 65
in inputProt 62

Protected methods
in CclMap class 72
namedField 72
validate 72

Public methods
abendCode 59, 68
alterSecurity 46, 86
appendText 61
assign 41
backgroundColor 61
backout 95
baseAttribute 61
callType 68
callTypeText 68
cancel 46
CCSid 87
change password 46
changed 46
changePassword 86
className 59
column 62
commit 95
connection 68
cursorCol 75
cursorRow 75
cut 41
dataArea 41
dataAreaLength 41
dataAreaOwner 41
dataAreaType 41
dataLength 42
dataTag 62
depth 75
diagnose 55, 59, 68, 83, 87
disconnect 87
discReason 87
exCode 51, 55, 59, 71, 87
exCodeText 51, 56, 60, 71, 88
exObject 60
field 72, 75
fieldCount 76
flowId 68
forceReset 68, 96
foregroundColor 62
handleException 52, 56
handleReply 69, 83

Index 119

Public methods (continued)
highlight 62
in CclBuf class 41
in CclConn class 46
in CclECI class 51
in CclEPI class 55
in CclException class 59
in CclField class 61
in CclFlow class 68
in CclMap class 71
in CclScreen class 75
in CclSession class 83
in CclTerminal class 86
in CclUOW class 95
inputProt 62
inputType 62
insert 42
install 88
instance 52
intensity 63
length 63
link 47
listState 42, 47, 52, 69, 96
makeSecurityDefault 48, 88
mapName 76
mapSetName 76
methodName 60
netName 88
operator= 42
operator!= 43
operator+= 43
operator== 43
password 48, 88
poll 69, 89
position 63
queryATI 89
readTimeout 89
receiveATI 89
replace 43
resetDataTag 63
row 63
screen 90
send 90
serverCount 52, 56
serverDesc 52, 56
serverName 48, 52, 56, 91
serverStatus 49
serverStatusText 49
setAID 76
setATI 90
setBaseAttribute 63
setCursor 76
setDataLength 44
setExtAttribute 63
setText 64

Public methods (continued)
setTimeout 69
signonCapability 91
state 57, 84, 91
status 48
syncType 70
termID 91
terminal 84
terminate 57
text 64
textLength 64
timeout 70
transID 84, 91
transparency 64
uow 70
uowId 96
userId 49, 91
verifyPassword 49, 92
wait 70
width 77

publications, CICS Transaction
Gateway and CICS Universal
Clients library 107

purple
in Color 65

Q
queryATI 22

in CclTerminal class 89
in Public methods 89

R
readTimeout

in CclTerminal class 89
in Public methods 89

readTimeOut (parameter)
in CclTerminal constructor 85

receiveATI 23
in CclTerminal class 89
in Public methods 89

red
in Color 65

replace
in CclBuf class 43
in Public methods 43

reply handling, asynchronous 15
resetDataTag

in CclField class 63
in Public methods 63

reverseHlt
in Highlight 65

row
in CclField class 63
in Public methods 63
in validate 72, 73

row (parameter)
in field 72, 75, 76
in setCursor 76

runTran (parameter)
in CclConn constructor 45

S
screen

in Accessing fields on CICS 3270
screens 24

in CclTerminal class 90
in Public methods 90

screen (parameter)
in CclMap constructor 71
in handleReply 83

Security Management
ECI 19
EPI 31

send
in CclTerminal class 90
in EPI call synchronization

types 25, 26, 27
in Public methods 90
in Starting a 3270 terminal

connection to CICS 23
send method

in ATI 22
server

in EPI call synchronization
types 26, 27

in poll 89
in State 84, 92

server (parameter)
in CclTerminal constructor 85

Server connection
in C++ External call interface 12
in Using the CICS client C++

classes 12
serverCount

in CclECI class 52
in CclEPI class 56
in Finding potential servers 11
in Public methods 52, 56

serverDesc
in CclECI class 52
in CclEPI class 56
in Finding potential servers 11
in Public methods 52, 56

serverName
in CclConn class 48
in CclECI class 52
in CclEPI class 56
in CclTerminal class 91
in Finding potential servers 11
in Public methods 48, 52, 56, 91

120 C++ Programming

serverName (parameter)
in CclConn constructor 45

serverStatus
in CclConn class 49
in Public methods 49

ServerStatus
in CclConn class 50
in Enumerations 50

serverStatusText
in CclConn class 49
in Public methods 49

session (parameter)
in receiveATI method 89
in send 90

setAID
in CclScreen class 76
in Public methods 76

setATI 22
in CclTerminal class 90
in Public methods 90

setBaseAttribute
in CclField class 63
in Public methods 63

setCursor
in CclScreen class 76
in Public methods 76

setDataLength
in CclBuf class 44
in Public methods 44

setExtAttribute
in CclField class 63
in Public methods 63

setText
in CclField class 64
in Public methods 64

setTimeout
in CclFlow class 69
in Public methods 69

shutdown
in EndTerminalReason 92

signoff
in EndTerminalReason 92

signonCapability
in CclTerminal class 91
in Public methods 91

signonCapability (parameter)
in CclTerminal constructor 85

signonCapable
in signonType 92

signonIncapable
in signonType 92

signonType
in CclTerminal class 92
in Enumerations 92

signonUnknown
in signonType 92

softcopy books, PDF 110
Solaris 8

in Environments supported 5
stackPages (parameter)

in CclFlow 67
startdata (parameter)

in send 90
Starting a 3270 terminal connection

to CICS
in C++ External presentation

interface 23
in Using the CICS client C++

classes 23
state

in CclEPI class 57
in CclSession class 84
in CclTerminal class 91
in EPI call synchronization

types 27
in Public methods 57, 84, 91

State
in CclEPI class 57
in CclSession class 84
in CclTerminal class 92
in Enumerations 57, 84, 92

state (parameter)
in EPI call synchronization

types 26
in handleReply 83

status
in CallType 70
in CclConn class 48
in Monitoring server

availability 17
in Public methods 48
in Server connection 12

Sun Workshop 8
sync

in CclSession constructor 83
in Sync 37

Sync
in Ccl class 37
in Enumerations 37

synchronous, Deferred 23
Synchronous call synchronisation

in ATI 22
Synchronous reply handling

in C++ External call interface 14
in Controlling server

interactions 14
syncType

in CclFlow class 70
in poll 69, 89

syncType (continued)
in Public methods 70
in wait 70

syncType (parameter)
in CclFlow 67
in CclSession constructor 83

T
termDefined

in State 92
termID

in CclTerminal class 91
in Public methods 91

terminal
in CclSession class 84
in Public methods 84

terminate
in CclEPI class 57
in Public methods 57

text
in CclField class 64
in Public methods 64

text (parameter)
in appendText 61
in CclBuf 40
in operator= 42
in operator+= 43
in setText 64

textLength
in CclField class 64
in Public methods 64

threads, multiple 8
timeout

in CclFlow class 70
in Public methods 70

timeout (parameter)
in CclFlow 67
in setTimeout 69

Trademarks and service marks
in Notices 112

Transaction Initiation, Automatic 22
transID 23

in CclSession class 84
in CclTerminal class 91
in Public methods 84, 91

transid (parameter)
in send 90

transparency
in CclField class 64
in Public methods 64

Transparency
in CclField class 65
in Enumerations 65

type (parameter)
in CclBuf 40

Index 121

U
unavailable

in ServerStatus 50
underscoreHlt

in Highlight 65
unit (parameter)

in link 47
unknown

in EndTerminalReason 93
in ServerStatus 50

unmodified
in BaseMDT 65
in dataTag 62

unmodified (parameter)
in resetDataTag 63

unpadded (parameter)
in status 48, 49

unprotect
in BaseProt 65
in inputProt 62

uow
in CclFlow class 70
in Public methods 70

uowId 19
in CclUOW class 96
in Public methods 96

userId
in CclConn class 49
in CclTerminal class 91
in Public methods 49, 91

userid (parameter)
in alterSecurity method 86
in CclTerminal constructor 85

userId (parameter)
in CclConn constructor 45

userID (parameter)
in CclConn constructor 45

Using EPI BMS Map Classes
in C++ External presentation

interface 30
in Using the CICS client C++

classes 30
Using the CICS client C++ classes

Accessing fields on CICS 3270
screens 24

Controlling server
interactions 13

EPI BMS conversion utility 28
EPI call synchronization

types 25
Finding potential servers 11
Managing logical units of

work 18
Monitoring server

availability 17

Using the CICS client C++ classes
(continued)

Passing data to a server
program 12

Server connection 12
Starting a 3270 terminal

connection to CICS 23
Using EPI BMS Map Classes 30

V
validate

in CclMap class 72
in Protected methods 72

value (parameter)
in setExtAttribute 64

verifyPassword 19, 31
in CclConn class 49
in CclTerminal class 92
in Public methods 49, 92

viewing online documentation 109

W
wait

in Asynchronous reply
handling 16

in CclFlow class 70
in Deferred synchronous reply

handling 17
in Public methods 70

white
in Color 65

width
in CclScreen class 77
in Public methods 77
in validate 72

Windows 98
in Environments supported 5

Windows NT
in Environments supported 5

withPurge
in disconnect method

in CclTerminal class 87
Workshop, Sun 8

X
xlC_r 8
xorTran

in Transparency 65

Y
yellow

in Color 65
yes

in Bool 37
in operator!= 43
in operator== 43

yes (continued)
in poll 69

122 C++ Programming

IBMR

Program Number: 5648-B42

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1923-01

	Contents
	About this book
	Who should read this book
	Conventions and terminology used in this book
	Prerequisite and related information
	How to send your comments
	Obtaining books from IBM

	Part 1. Client Classes—Guidance
	Chapter 1. Introduction to OO programming
	OO support in CICS Clients
	Programming language support

	Chapter 2. Establishing the working environment
	Environments supported

	Chapter 3. Using the CICS client C++ classes
	Compiling and Linking
	Using IBM VisualAge C++ OS/2
	Using Microsoft Visual C++ on Windows NT and Windows 98
	Using IBM VisualAge C++ for Windows
	Using IBM Compilers on AIX
	Using Sun Workshop

	Multi-Threading
	Handling Exceptions
	Async Exception Handling

	External call interface
	Using Commareas
	Finding potential servers
	Server connection
	Passing data to a server program
	Controlling server interactions
	Synchronous reply handling
	Asynchronous reply handling
	Deferred synchronous reply handling

	Monitoring server availability
	Managing logical units of work
	Security Management for ECI

	C++ External presentation interface
	Support for Automatic Transaction Initiation (ATI)
	Starting a 3270 terminal connection to CICS
	Accessing fields on CICS 3270 screens
	EPI call synchronization types
	EPI BMS conversion utility
	Mapset containing a single map

	Using EPI BMS Map Classes
	Security Management for EPI

	Part 2. CICS Client C++ classes - reference
	Chapter 4. Ccl class
	Enumerations
	Bool
	Sync
	ExCode

	Chapter 5. CclBuf class
	CclBuf constructors
	CclBuf (1)
	CclBuf (2)
	CclBuf (3)
	CclBuf (4)

	Public methods
	assign
	cut
	dataArea
	dataAreaLength
	dataAreaOwner
	dataAreaType
	dataLength
	insert
	listState
	operator= (1)
	operator= (2)
	operator+= (1)
	operator+= (2)
	operator==
	operator!=
	replace
	setDataLength

	Enumerations
	DataAreaOwner
	DataAreaType

	Chapter 6. CclConn class
	CclConn constructor
	Public methods
	alterSecurity
	cancel
	changed
	changePassword
	link
	listState
	makeSecurityDefault
	password (1)
	password (2)
	serverName (1)
	serverName (2)
	status
	serverStatus
	serverStatusText
	userId (1)
	userId (2)
	verifyPassword

	Enumerations
	ServerStatus

	Chapter 7. CclECI class
	CclECI constructor (protected)
	Public methods
	exCode
	exCodeText
	handleException
	instance
	listState
	serverCount
	serverDesc
	serverName

	Chapter 8. CclEPI class
	CclEPI constructor
	Public methods
	diagnose
	exCode
	exCodeText
	handleException
	serverCount
	serverDesc
	serverName
	state
	terminate

	Enumerations
	State

	Chapter 9. CclException class
	Public methods
	abendCode
	className
	diagnose
	exCode
	exCodeText
	exObject
	methodName

	Chapter 10. CclField class
	Public methods
	appendText (1)
	appendText (2)
	backgroundColor
	baseAttribute
	column
	dataTag
	foregroundColor
	highlight
	inputProt
	inputType
	intensity
	length
	position
	resetDataTag
	row
	setBaseAttribute
	setExtAttribute
	setText (1)
	setText (2)
	text
	textLength
	transparency

	Enumerations
	BaseInts
	BaseMDT
	BaseProt
	BaseType
	Color
	Highlight
	Transparency

	Chapter 11. CclFlow class
	CclFlow constructor
	CclFlow (1)
	CclFlow (2)

	Public methods
	abendCode
	callType
	callTypeText
	connection
	diagnose
	flowId
	forceReset
	handleReply
	listState
	poll
	setTimeout
	syncType
	timeout
	uow
	wait

	Enumerations
	CallType

	Chapter 12. CclMap class
	CclMap constructor
	Public methods
	exCode
	exCodeText
	field (1)
	field (2)

	Protected methods
	namedField
	validate

	Chapter 13. CclScreen class
	Public methods
	cursorCol
	cursorRow
	depth
	field (1)
	field (2)
	fieldCount
	mapName
	mapSetName
	setAID
	setCursor
	width

	Enumerations
	AID

	Chapter 14. CclSecAttr
	Public Methods
	expiryTime
	invalidCount
	lastAccessTime
	lastVerifiedTime

	Chapter 15. CclSecTime
	Public Methods
	day
	get_time_t
	get_tm
	hours
	hundredths
	minutes
	month
	seconds
	year

	Chapter 16. CclSession class
	CclSession constructor
	Public methods
	diagnose
	handleReply
	state
	terminal
	transID

	Enumerations
	State

	Chapter 17. CclTerminal class
	CclTerminal constructor
	CclTerminal

	Public methods
	alterSecurity
	changePassword
	CCSid
	diagnose
	disconnect(1)
	disconnect(2)
	discReason
	exCode
	exCodeText
	install
	makeSecurityDefault
	netName
	password
	poll
	queryATI
	readTimeout
	receiveATI
	screen
	send (1)
	send (2)
	setATI
	signonCapability
	state
	serverName
	termID
	transID
	userId
	verifyPassword

	Enumerations
	ATIState
	signonType
	State
	EndTerminalReason

	Chapter 18. CclUOW class
	CclUOW constructor
	Public methods
	backout
	commit
	forceReset
	listState
	uowId

	Part 3. Appendixes
	Appendix. Exception Objects
	Glossary
	Bibliography
	C++ Programming
	The CICS Transaction Gateway andCICS Universal Clients library
	CICS Transaction Gateway books
	CICS Universal Clients books
	CICS Family publications
	Book filenames
	Sample configuration documents
	Other publications
	Viewing the online documentation
	Viewing PDF books

	Notices
	Trademarks and service marks

	Index

