
CICS® Transaction Gateway for Solaris™

Administration
Version 3.1

SC34-5592-00

IBM

CICS® Transaction Gateway for Solaris™

Administration
Version 3.1

SC34-5592-00

IBM

Note!
Before using this information and the product it supports, be sure to read the general information under
“Appendix B. Notices” on page 107.

First edition (September 1999)

This edition applies to Version 3.1 of CICS Transaction Gateway for Solaris, program number 5648-B43. It will also
apply to all subsequent versions, releases, and modifications until otherwise indicated in new editions.

This edition replaces SC34-5448-00. Material that was not in that book is indicated by vertical lines to the left of the
material.

© Copyright International Business Machines Corporation 1996, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this book ix
Who should read this book ix
Conventions and terminology used in this
book. ix
Prerequisite and related information x
How to send your comments. x
Obtaining books from IBM xi

Chapter 1. Overview 1
What the CICS Transaction Gateway provides 2
Java technology 3

The Java language 3
Java applets 3
Java servlets 4
Java applications 5
JavaBeans™ 5
Firewalls 6
Web browsers and network computers . . 6
Web servers 7

How the CICS Transaction Gateway accesses
CICS 7
The CICS Transaction Gateway: threading
model 9
The external access interfaces (EPI, ECI, ESI) 11

External Presentation Interface (EPI) . . . 12
External Call Interface (ECI). 12
External Security Interface (ESI) 13

Network security 14
Secure Sockets Layer (SSL) 14
HTTPS 15
Keys and Certificates 15
Security exits. 16

CICS Transaction Gateway and object request
brokers. 16
Other functions 16

Chapter 2. Planning before installation . . 19
Hardware requirements 19
Software requirements 19
Web servers 19
Web browsers 20

Universal CICS Clients 20
CICS servers 21
CICS server PTF requirements 22
Migration issues 22

Migrating from CICS Universal Client
Version 3.0 22
Migrating from CICS Transaction Gateway
Version 3.0 22
Migrating from CICS Gateway for Java . . 23

Chapter 3. Installing CICS Transaction
Gateway 25
Installing CICS Transaction Gateway on
Solaris 25

National language support 25
Using X-Windows from a remote system . . 26

Chapter 4. Configuring CICS Transaction
Gateway 29
Configuring your programming environment
for CICS Transaction Gateway 29

Setting CLASSPATH on Solaris. 29
Using the configuration tool 30

The configuration tool interface 30
Configuring CICS Transaction Gateway
settings 33
Configuring Client settings 38
Configuring Server settings 41
Trace settings 43

The configuration conversion tool 45
Using the conversion tool 46

Editing the configuration file 47
GATEWAY section 47
CLIENT section 48
SERVER section 48
DRIVER section 49

Configuring the client keyboard mapping . . 49
Configuring the client screen colors and
attributes 49
Preparing to use local CICS Transaction
Gateway support 50

Chapter 5. Security 51
Overview 51

What is encryption? 52

© Copyright IBM Corp. 1996, 1999 iii

|
||

||

||

|
||

||

|
||

||

|
||
||
||
||
|
||
||
||
||
||
||
||
||
||
||
||

||
||
||

Digital signatures and digital certificates 53
Obtaining a digital certificate 54
KeyRings 55

SSL and authentication 55
HTTPS 56
The ctgikey tool 57

Distributing iKeyman to client
workstations 57

Using externally-signed certificates (SSLight) 58
Configuring your SSL server 59
Configuring SSL clients 61

Using self-signed certificates (SSLight) . . . 63
Configuring the SSL server 64
Configuring the SSL clients 65
Migrating old self-signed certificates . . . 67
Restricting access to the server KeyRing. . 67

Configuring CICS Transaction Gateway for
SSL and HTTPS 67

Specifying the client KeyRing 68

Chapter 6. CICS Transaction Gateway
operation 71
Starting the Gateway 71

Starting the Gateway with preset options 71
Stopping the Gateway 73

Chapter 7. CICS Transaction Gateway
Terminal Servlet 75
What is the CICS Transaction Gateway
Terminal Servlet? 75
Installing and configuring the Terminal
Servlet 77

Configuring the Web server’s CLASSPATH
and PATH settings 78
Adding the Terminal Servlet to the Web
server’s configuration 78
Configuring the servlet initialization
parameters 78
Considering other configuration options . 82
Loading the Terminal Servlet 83

Using the Terminal Servlet 83
Connecting to CICS and starting a
transaction 83
Invoking the Terminal Servlet 83
What happens next? 86

Displaying screens and fields 86
Sending the screen back to CICS 87
Setting the AID 88
Disconnecting 88

CICS Transaction Gateway Terminal Servlet
samples 89

Setting up the samples 89
Using the Terminal Servlet samples . . . 89

Properties and parameters reference 90
Servlet configuration properties 90
Page mapping properties. 92
Request parameters 93
Displayable properties 94

CICS Transaction Server for OS/390 Web
Interface 95

Chapter 8. Problem determination and
problem solving 97
Preliminary checks 97
What to do next. 97

Using trace 97
Program support 98
Messages 98

Problems with the JDK AppletViewer . . . 98
Problems with starting CICS Transaction
Gateway for Solaris 99
Terminal Servlet problems 99

Appendix A. The CICS Transaction
Gateway and CICS Universal Clients
library 101
CICS Transaction Gateway books 101
CICS Universal Clients books 102
CICS Family publications 102
Book filenames. 103
Sample configuration documents. 103
Other publications 104
Viewing the online documentation 104

Viewing PDF books 105

Appendix B. Notices 107
Trademarks 108

Index 111

iv CICS Transaction Gateway for Solaris Administration

||
||
||
||
||
||
|
||
||
||
||
||
||
||
||
||
|
||
||

|
||
|
||
|
||
|
||
|
||
|
||
||
||
||
|
||
||
||

||
||
||
||
|
||
||
||
||
||
||
||
||
|
||

||
|
||
||

|
|
||
||
||
||
||
||
||
||
||

Figures

1. CICS Transaction Gateway 1
2. CICS Transaction Gateway threading

model for tcp/ssl 10
3. CICS Transaction Gateway threading

model for http/https 10

4. The configuration tool 31
5. SSL handshake with server

authentication. 56
6. CICS Transaction Gateway using

Terminal Servlet invoked by URL . . . 77

© Copyright IBM Corp. 1996, 1999 v

|
||
|
||

||
|
||
|
||

vi CICS Transaction Gateway for Solaris Administration

Tables

1. Thread limits on CICS Transaction
Gateway platforms 11

2. Availability of protocols for connecting
to CICS servers 21

3. Servlet initialization parameters 78
4. CICS Transaction Gateway and CICS

Universal Clients books and file names . 103

© Copyright IBM Corp. 1996, 1999 vii

|
||

||
|
||

viii CICS Transaction Gateway for Solaris Administration

About this book

This book contains the following chapters:
v Chapter 1 introduces the CICS Transaction Gateway and summarizes the

benefits of using it, and the functions it provides.
v Chapter 2 discusses planning issues including the hardware and software

requirements of CICS Transaction Gateway, and various migration issues.
v Chapter 3 describes how to install your CICS Transaction Gateway.
v Chapter 4 describes how to configure your CICS Transaction Gateway.
v Chapter 5 describes how to set up security for the SSL and HTTPS protocols

in the CICS Transaction Gateway.
v Chapter 6 describes how to operate the CICS Transaction Gateway,

including starting and stopping the CICS Transaction Gateway.
v Chapter 7 provides an introduction to the Terminal Servlet provided with

the CICS Transaction Gateway.
v Chapter 8 describes problem determination for CICS Transaction Gateway.
v Appendix A describes how to view the online information in the CICS

Transaction Gateway and CICS Universal Clients library, and how to print
and order books.

Who should read this book

This book is intended for anyone involved with the planning, installation,
customization, or operation, of a CICS Transaction Gateway.

It is assumed that you are familiar with the operating system under which
your CICS Transaction Gateway runs.

An understanding of Internet terminology would also be helpful.

Conventions and terminology used in this book

References to paths in this book use the OS/2® and Microsoft® Windows®

convention of a backslash (\) as delimiter, instead of the / delimiter used on
the AIX ® and Solaris platforms.

In this book, ‘CICS on open systems’ is used to refer to the following CICS
server products, subject to availability:
v CICS for HP-UX

© Copyright IBM Corp. 1996, 1999 ix

|
|

v CICS for Sun Solaris
v TXSeries for AIX
v TXSeries for HP-UX
v TXSeries for Solaris.

Prerequisite and related information

For information on the books available for this product, refer to “Appendix A.
The CICS Transaction Gateway and CICS Universal Clients library” on
page 101. That chapter also gives details of how to view and print softcopy
books, and how to order printed copies from IBM.

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book, or any
other CICS documentation:
v Visit our Web site at:

http://www.ibm.com/software/ts/cics/

and follow the Library link to our feedback form.

Here you will find the feedback page where you can enter and submit your
comments.

v Send your comments by e-mail to idrcf@hursley.ibm.com
v Fax your comments to:

+44-1962-870229 (if you are outside the UK)
01962-870229 (if you are in the UK)

v Mail your comments to:

Information Development
Mail Point 095
IBM United Kingdom Laboratories
Hursley Park
Winchester
Hampshire
SO21 2JN
United Kingdom

Whichever method you use, ensure that you include:
v The name of the book

x CICS Transaction Gateway for Solaris Administration

|
|
|
|

v The form number of the book
v If applicable, the version of the product
v The specific location of the text you are commenting on, for example, a

page number or table number.

When you send information to IBM, you grant IBM a non-exclusive right to
use or distribute the information in any way it believes appropriate without
incurring any obligation to you.

Obtaining books from IBM

For information on books you can download, visit our Web site at:
http://www.ibm.com/software/ts/cics/

and follow the Library link.

You can order hardcopy books:
v Through your IBM representative or the IBM branch office serving your

locality.
v By calling 1-800-879-2755 in the United States.
v From the Web site at:

http://www.elink.ibmlink.ibm.com/pbl/pbl

About this book xi

xii CICS Transaction Gateway for Solaris Administration

Chapter 1. Overview

The IBM CICS Transaction Gateway provides secure, easy access from Web
browsers and network computers to business-critical applications running on
a CICS Transaction Server or TXSeries™ server using standard Internet
protocols in a range of configurations.

CICS Transaction Gateway is a robust and scalable complement to a Web
server, and as such can be implemented as an e-business connector for IBM
WebSphere™, which is a runtime environment for Java™ servlets.

The CICS Transaction Gateway is provided for the OS/2, Windows NT®, AIX,
Solaris, and OS/390® platforms. The CICS Transaction Gateway is also
provided for Windows 95/98, but on these platforms it can only be used for
development purposes and not for production.

Figure 1 shows how a web-client can access CICS programs and data. Note
that the CICS Transaction Gateway is shown as installed on a Web server
machine. This is necessary only if you are using the CICS Transaction
Gateway with Java applets.

Communication with the CICS Transaction Gateway is based on the following
protocols:

Figure 1. CICS Transaction Gateway

© Copyright IBM Corp. 1996, 1999 1

|
|

v TCP/IP sockets
v Hypertext Transfer Protocol (HTTP)
v Secure Sockets Layer (SSL)
v HTTP over SSL (HTTPS)

TCP/IP sockets and SSL provide an efficient method of communication for
intranet applications. Where firewalls exist, HTTP and its secure alternative
HTTPS, are effective communication protocols for Internet applications (see
“Network security” on page 14).

What the CICS Transaction Gateway provides

The CICS Transaction Gateway provides the following:
1. A Java gateway application that is usually resident (for security reasons)

on a Web server workstation. It communicates with CICS applications
running in CICS servers through the ECI (External Call Interface), EPI
(External Presentation Interface), or ESI (External Security Interface)
interfaces provided by the CICS Universal Clients. This Java application
was previously available in the IBM CICS Gateway for Java.

2. A CICS Universal Client that provides the ECI, EPI, and ESI interfaces, as
well as terminal emulation function. The ECI interface enables a non-CICS
Client application to call a CICS program synchronously or
asynchronously as a subroutine. The EPI interface enables a non-CICS
Client application to act as a logical 3270 terminal and so control a CICS
3270 application. The ESI interface enables a non-CICS Client application
to invoke services provided by advanced program-to-program
communication (APPC) password expiration management (PEM). The
CICS Universal Clients allow communication with CICS Servers over the
TCP/IP, APPC, NetBIOS, and other protocols, depending on the platform.
See Table 2 on page 21 for more information.

3. A CICS Java class library that includes classes that provide an application
programming interface (API), and are used to communicate between the
Java gateway application and a Java application (applet or servlet). The
class JavaGateway is used to establish communication with the Gateway
process, and uses the Java sockets protocol. The classes ECIRequest,
EPIRequest, and ESIRequest are used to specify the ECI, EPI, and ESI
calls respectively that are flowed to the gateway.

4. A Terminal Servlet that allows you to use a Web browser as an emulator
for a 3270 CICS application running on any CICS server. The Terminal
Servlet can be used with a Web server or a servlet engine that provides
support equivalent to Java Servlet Development Kit (JSDK) Version 1.1 or
later. This is an enhanced version of the function that was provided by the

Overview

2 CICS Transaction Gateway for Solaris Administration

|

|

|

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

CICS Internet Gateway in IBM CICS Clients Version 2. The Terminal
Servlet provides an alternative to using the EPI programming interfaces.

5. A set of Java EPI beans for creating Java front-ends for existing CICS 3270
applications, without any programming.

The CICS Transaction Gateway can concurrently manage many
communication links to connected Web browsers, and can control
asynchronous conversations to multiple CICS server systems. The
multithreaded architecture of the CICS Transaction Gateway enables a single
Gateway to support multiple concurrently connected users.

Java technology

This section discusses the Java language, including the types of program that
can be developed, and the security implications.

The Java language

The Java language can be used to construct Java servlets, Java applets, and Java
applications.

Java is an interpreted object-oriented language, similar to C++ which can be
used to build programs that are platform-independent in both source and
object form. Its unique operational characteristics, which span Web browsers
as well as Web servers, enable new and powerful functions in Internet
applications.

To achieve platform independence, the Java language allows no platform
dependent-operations, and it excludes some C++ functions such as a
preprocessor, operator overloading, multiple inheritances, and pointers. All
Java programming is encapsulated within classes, and the Java Development
Kit (JDK) includes special classes that are critical to assuring platform
independence, include GUI functions, input/output functions, and network
communications.

The Java compiler produces an intermediate bytecode format that is machine
independent. This, in turn, is processed at execution time by a Java
interpreter. The interpreter also inspects the bytecode at execution time to
ensure its validity and safety to the machine environment. Because of the
isolation the Java interpreter provides, it is sometimes referred to as a Java
Virtual Machine (JVM).

Java applets

A Java applet is a small application program that is downloaded to, and
executed on, a Java-enabled Web browser or network computer. A Java applet

Overview

Chapter 1. Overview 3

typically performs the type of operations that client code would perform in a
client/server architecture. It edits input, controls the screen, and sends
transactions to a server that performs data or database operations.

Applets are started using the <applet> HTML tag; this gives the applet control
and specifies the display area to be used by the applet. When a Java-enabled
server is downloading a page and encounters this tag, it also downloads the
applet bytecode, in the same way that it downloads an image that is
referenced by an HTML image tag. The Java-enabled browser then interprets
and executes the applet bytecode. The applet may edit screen input, generate
screen output, and communicate back to the computer from which it was
downloaded. Multiple applets can execute concurrently.

An example of applet processing is an applet in constant communication with
a server to receive stock trade information, which it would update in a
window on the screen.

The downloading of applets should not have a significant performance impact
on the response time to end users since the applets are typically not very big.
Applets may even improve overall browser performance by eliminating
iterations with the Web server. Also, just as images are cached in Web
browsers, applets are cached, minimizing the frequency of applet
downloading.

Java servlets

Java servlets are small Java applications that run on a Web server machine,
unlike Java applets, which are downloaded to a Web browser.

Java servlets have become popular as a replacement for CGI (Common
Gateway Interface) programs. The advantage of a Java servlet over a CGI
application is that they can execute more quickly since they are invoked as
threads in a daemon process, meaning that they are persistent in memory and
can fulfill multiple requests.

There are three ways in which you can run servlets:

Invoking the servlet by URL (Uniform Resource Locator)
The URL for a servlet typically has the following form:
http://machine-name:port/servlet/servlet-name

This method is used when you do not need the user to enter any
information. Request parameters can be encoded in the URL, in the
form of a query string.

Invoking the servlet with a form
This method involves creating an HTML form in a web page:

Overview

4 CICS Transaction Gateway for Solaris Administration

<FORM METHOD="GET" ACTION="/servlet/servlet-name">
attributes
</FORM>

This method is used when you need the user to enter information.

Invoking the servlet with a server-side include
A server-side include is processed by the Web server before the web
page is sent to the user. In the HTML source, a server-side include
looks like the following:
<SERVLET NAME="TerminalServlet" >
<PARAM NAME="request" VALUE="send">
<PARAM NAME="transaction" VALUE="CECI">
<PARAM NAME="display" VALUE="none">
</SERVLET>

Java applications

A Java application is a program that executes locally on a computer. It has
platform-dependent capabilities in addition to those of an applet. It can access
local files, create and accept general network connections, and call native C or
C++ functions in machine-specific libraries.

JavaBeans ™

The JavaBeans API, developed by Sun Microsystems, allows you to write
component software in Java. Components are self-contained, reusable software
units that you can visually compose into applets or servlets using visual
application builder tools, such as VisualAge® for Java. Any JDK Version
1.1-compliant browser or tool supports JavaBeans.

JavaBeans components are called beans. Most builder tools allow you to
maintain beans in a palette or toolbox. You can select a particular Bean from
the toolbox, drop it onto a form, modify its appearance and behavior, and
define how it interacts with other beans. You can compose your selected Bean
and other beans into an applet, servlet, or new Bean, and all this can be done
without writing any code. For more information on JavaBeans, see the Sun
Web site (www.java.sun.com).

The CICS Transaction Gateway provides EPI Java beans based on high-level
EPI interfaces. These beans allow you to easily create Java programs (applets
and applications) that access data from existing CICS 3270 applications,
without any programming. Using a bean composer tool, such as VisualAge for
Java, you can quickly and easily create new Java front-ends that can connect
to CICS, run transactions, display data from 3270 screens, and send user input
back to the CICS server. For more information, see the CICS Transaction
Gateway Programming book.

Overview

Chapter 1. Overview 5

Firewalls

A current design consideration in the use of Java applet communication is the
impact of firewalls. This is the term given to a configuration of software that
prevents unauthorized traffic between a trusted network and an untrusted
network. Firewalls are put in place to protect company assets from outside
intrusion, but they can also limit legitimate communications as well. Firewalls
come into play in two ways:
1. The general accessibility of a server to outside users - inbound restrictions
2. The ability of end users inside a firewall to perform certain network

functions outside their firewall - outbound restrictions.

A CICS Transaction Gateway configuration is well suited to avoid problems in
the first area since the Gateway processor can be placed outside the firewall
and be connected through the firewall to the CICS server. Outbound firewalls
that end users may have to contend with can be a problem. A large company
might use a firewall to limit the types of connections and protocols that can
be used.

The use of Java on an Intranet (a local implementation of the Internet) works
very well since firewalls are typically not a factor. However, when designing
Internet applications for end users outside a company, you should determine
if end user firewalls will be an implementation factor. If so, then alternative
processing for those users, such as executing the Java code as a Java servlet
on the Web server, may be necessary. Also you should consider the use of the
HTTP and HTTPS protocols supported by CICS Transaction Gateway, see
“Secure Sockets Layer (SSL)” on page 14 and “HTTPS” on page 15.

Web browsers and network computers

The CICS Transaction Gateway requires a Java-enabled Web browser, that is
JDK version 1.1 enabled, for example, Netscape Navigator 2.0.2 or later on
OS/2, Netscape Communicator 4.5.1 or later on Windows and AIX. For more
information, refer to “Web browsers” on page 20.

The Web browser communicates with the Web server using HyperText
Transport Protocol (HTTP) requesting HyperText Markup Language (HTML)
pages to be downloaded. These HTML pages can include calls to Java applets
(see “Java applets” on page 3) or servlets; multiple applets can run
concurrently.

You may find that each browser displays the same information differently.

A network computer is a low-cost computer for the Internet user, it does the
same things as a Web browser.

Overview

6 CICS Transaction Gateway for Solaris Administration

|
|
|
|

Web servers

A Web server is a software program that responds to information requests
generated by Web browsers. When a request from a browser is received, the
Web server processes the request to determine the action to take:
v Return the requested document
v Deny the request
v Pass the request through for further processing by an external application.

The request might be, for example, to a database to perform a search
request, or to a more dynamic form of information delivery such as Lotus
Domino™.

Communication between a Web server and an external application is
transparent, you need to know only the URL of the Web server to direct a
request to it. Also, all Web servers can handle requests from many browsers
concurrently.

Specialized servers can also be configured to limit access to a restricted set of
users, or to provide security for purchase of goods or services.

Web servers exist for almost every platform and are available from many
suppliers. For information on the Web servers supported by CICS Transaction
Gateway, see “Web servers” on page 19.

How the CICS Transaction Gateway accesses CICS

This section describes how the CICS Transaction Gateway allows access to
CICS programs and data.

For Java applets, access is achieved as follows:
1. The Web browser or network computer requests an HTML page from the

Web server using the HTTP (Hypertext Transfer Protocol) protocol.
2. The Web server returns the HTML page containing a tag identifying a

Java applet.
3. The browser starts requesting relevant Java classes from the Web server.
4. The Web server returns Java classes, including CICS Transaction Gateway

classes as requested.
5. As classes are returned, the Java applet starts.
6. At some point the Java applet creates a JavaGateway object to connect to

the CICS Transaction Gateway. This establishes communication between
the browser and the long running Gateway process using Java’s sockets
protocol.

Overview

Chapter 1. Overview 7

7. The Java applet creates an ECIRequest, EPIRequest, or ESIRequest
object containing respectively ECI, EPI, or ESI calls and sends it to the
Gateway using the JavaGateway.flow method.

8. The Gateway receives the request, unpacks it, and makes corresponding
ECI, EPI, or ESI calls to the CICS Universal Client.

9. The CICS Universal Client passes the ECI, EPI, or ESI calls to the
intended CICS server.

10. The CICS server processes the call, including verification of the userid
and password if required, and passes control and user data to the CICS
application program.

11. When it has finished processing, the CICS application program returns
control and data back to CICS, which passes it back to the Gateway.

12. The Gateway packs these results and returns them to the Java applet
running on the Web browser.

For Java servlets, access is achieved as follows:
1. The Web server loads and initializes the servlet. This may be done when

the Web server starts, or the first time a request is made to the servlet. The
servlet may at this point create a JavaGateway object to connect to the
CICS Transaction Gateway.

2. When the servlet is invoked by an appropriate HTTP request, the Web
server calls its Service method with details of the request.

3. The Java applet creates an ECIRequest, EPIRequest, or ESIRequest object
containing respectively ECI, EPI, or ESI calls and sends it to the Gateway
using the JavaGateway.flow method.

4. The Gateway receives the request, unpacks it, and makes corresponding
ECI, EPI, ESI calls to the CICS Universal Client

5. The CICS Universal Client passes the ECI, EPI, ESI calls to the intended
CICS server.

6. The CICS server processes the call, including verification of the userid and
password if required, and passes control and user data to the CICS
application program.

7. When it has finished processing, the CICS application returns control and
data back to CICS, which passes it back to the Gateway.

8. The Gateway packs these results and returns them to the Java servlet.
9. When the servlet receives the results of the requests it has made to the

CICS Transaction Gateway, it generates a HTTP response to be returned to
the Web browser.

Note: Not all of the ECI, EPI, and ESI calls are supported by ECIRequest,
EPIRequest, and ESIRequest respectively. For more information, refer
to CICS Transaction Gateway Programming.

Overview

8 CICS Transaction Gateway for Solaris Administration

|
|
|

|
|
|

|
|
|

The CICS Transaction Gateway: threading model

The CICS Transaction Gateway provides a multithreaded model for handling
network connections, and assigning threads for requests from and replies to
Java clients. The following components are involved in the threading model:

ConnectionManagers
A ConnectionManager manages all the connections from a particular
Java client (applet or application). When it receives a request, it
allocates a Worker thread from a pool of available Worker threads to
execute the request. The size of the initial ConnectionManager
resource pool is defined by the Initial number of Connection
Manager threads configuration setting. You can specify the maximum
size of the ConnectionManager pool with the Maximum number of
Connection Manager threads setting, see “Using the configuration
tool” on page 30. You can also specify these limits when you start the
CICS Transaction Gateway, see “Starting the Gateway with
user-specified options” on page 71.

Workers
A Worker is the object that actually executes a request from a Java
client. Each Worker object has its own thread, which is activated when
there is some work to do. When a worker thread is finished it goes
back into the pool of available worker threads. As with the
ConnectionManager, the Worker resource pool has an initial size that
is specified using the Initial number of Worker threads setting. You
can specify the maximum size of the Worker pool with the Maximum
number of Worker threads setting, see “Using the configuration tool”
on page 30. You can also specify these limits when you start the CICS

Transaction Gateway, see “Starting the Gateway with user-specified
options” on page 71.

The threading model is illustrated in the following figures:

Chapter 1. Overview 9

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

Figure 2. CICS Transaction Gateway threading model for tcp/ssl

Figure 3. CICS Transaction Gateway threading model for http/https

10 CICS Transaction Gateway for Solaris Administration

|

Table 1 shows thread limits that should be considered when setting the
number of Connection Manager and Worker threads on the various platforms:

Table 1. Thread limits on CICS Transaction Gateway platforms

Platform System-wide limit of
the maximum number
of threads

Process limit of the number of threads

OS/390 This may be restricted
by the total number of
MVS™ Task Control
Blocks (one is created
per OpenEdition
thread)

Governed by the OpenEdition parameters:
MAXTHREADS and MAXTHREADTASKS

OS/2 4095 Governed by the THREAD parameter in
config.sys

Windows
95/98/NT

No limit Limited by the amount of virtual memory
available for the process (by default a
thread has 1M of stack meaning that 2028
threads can be created per process)

AIX 262,143 32768

Solaris No limit No limit

You can set the stack size of the Java threads using the Java -oss and -ss
options. Note that the amount of memory allocated per thread can be the
limiting factor, because memory can run out before the thread limit is reached.

For more information on the use of the Java -oss and -ss options, refer to the
CICS Transaction Gateway Programming book.

The external access interfaces (EPI, ECI, ESI)

The external access interfaces allow non-CICS applications to access and
update CICS resources by initiating CICS transactions, or by calling CICS
programs. When used in conjunction with the CICS communication facilities,
they enable non-CICS programs to access and update resources on any CICS
system. This supports such activities as developing graphical user interface
(GUI) front ends for CICS applications, and allowing the integration of CICS
systems and non-CICS systems.

The external presentation interface (EPI) allows you to develop GUIs, either
for existing CICS systems or for new applications. It is particularly useful for
developing new GUI front ends for existing CICS transactions, which need

Chapter 1. Overview 11

|
|

||

||
|
|

|

||
|
|
|
|
|

|
|

|||
|

|
|
||
|
|
|

|||

|||

|
|
|

|
|

not be changed. The application can use the EPI to communicate with a CICS
transaction, and can exploit the presentation facilities of the client system to
communicate with the end user.

The integration of CICS and non-CICS systems usually involves passing
user-defined data between the programs of the non-CICS system and a CICS
program, and the external call interface (ECI) can be used for this.

In any of these cases, the choice between EPI and ECI is not always clear-cut,
because both interfaces can be used to pass data between a non-CICS
application and a CICS program. However, the mechanism is different in the
two cases: 3270 data streams for EPI; application-defined formats in a
COMMAREA for ECI.

External Presentation Interface (EPI)

The EPI allows a non-CICS application program to be viewed as a 3270
terminal by a CICS server system to which it is connected; both an EPI
application and a CICS terminal can schedule transactions in a CICS server.
The application can be using the facilities of several servers at the same time,
and can act as if it were many different 3270 terminals. The application can
schedule CICS transactions, and for these transactions it is the principal
facility.

With CICS servers that support access through the EPI, other CICS
transactions running in the server can use the CICS START command to
schedule transactions that use the non-CICS application as their initiating
terminal. When a non-CICS application uses the EPI to start a transaction in a
CICS server, 3270 data streams and events are passed between the server and
the application. The application can present the contents of the terminal I/O
to its user in any manner appropriate to the application’s operating
environment. Transactions can be routed to other CICS systems by standard
transaction routing. Resources on other CICS systems can be accessed by
function shipping.

Note that server transactions can be existing transactions that use 3270 input
and output (with some restrictions).

External Call Interface (ECI)

The ECI allows a non-CICS application to call a CICS program in a CICS
server. The application can be connected to several servers at the same time,
and it can have several program calls outstanding at the same time.

The CICS program cannot perform terminal I/O, but can access and update
all other CICS resources. The same CICS program can be called by a
non-CICS application using the ECI, or by a CICS program using EXEC CICS

12 CICS Transaction Gateway for Solaris Administration

LINK. Data is exchanged between the two programs by means of a
COMMAREA, in a similar way to CICS. The user can specify the length of the
COMMAREA data to optimize performance.

Calls may be made synchronously or asynchronously. Synchronous calls
return control when the called program completes, and the information
returned is immediately available. Asynchronous calls return control without
reference to the completion of the called program, and the application can ask
to be notified when the information becomes available.

Calls may also be extended. That is, a single logical unit of work may cover
two or more successive calls, though only one call can be active for each
logical unit of work at any time. If it uses asynchronous calls, the application
can manage many logical units of work concurrently.

The called program can update resources on its own system, it can use
distributed program link (DPL) to call CICS programs on other systems, and
it can access resources on other CICS systems by function shipping, by
distributed transaction processing (DTP), or (in the CICS Transaction Server
for OS/390 or CICS Transaction Server for VSE/ESA™ environment) by the
front end programming interface (FEPI).

For more information on the external access interfaces, see CICS Family:
Client/Server Programming.

External Security Interface (ESI)

The ESI allows a non-CICS application to invoke services provided by
advanced program-to-program communication (APPC) password expiration
management (PEM).

APPC PEM with CICS provides support for an APPC architected sign-on
transaction that signs on user IDs to a CICS server and processes requests for
a password change by:
v Identifying a user and authenticating that user’s identification
v Notifying specific users during the authentication that their passwords have

expired
v Letting users change their passwords when (or before) the passwords expire
v Telling users how long their current passwords will remain valid
v Providing information about unauthorized attempts to access the server

with a particular user identifier.

To use APPC PEM, the CICS Universal Client must be connected to the CICS
server over APPC. An external security manager (ESM), such as resource
access control facility (RACF), must also be available to the CICS server. ESI

Chapter 1. Overview 13

|

|

|
|
|

|
|
|

|

|
|

|

|

|
|

|
|
|

calls can be included within your ECI or EPI application. Only CICS servers
returned by the CICS_EciListSystems and CICS_EpiListSystems functions
are acceptable.

Network security

The CICS Transaction Gateway supports the use of the Secure Sockets Layer
(SSL) and HTTPS protocols to provide secure communication, which is critical
to successful Internet operation.

Network security and its implementation on CICS Transaction Gateway is
discussed in detail in “Chapter 5. Security” on page 51; the following sections
summarize the functions provided by SSL and HTTPS.

Secure Sockets Layer (SSL)

SSL is a Handshake Protocol developed to provide security and privacy over
the Internet. The use of the SSL protocol ensures:

Confidentiality
The data to be exchanged between the client and the server is
encrypted, so only that client (your application or applet) and
that server (the CICS Transaction Gateway) can make sense of
the data.

SSL uses public key encryption as a secure mechanism to
distribute a secret key between the server and the client.
Public key encryption is a technique that uses a pair of
asymmetric keys for encryption and decryption. In the case of
SSL, a secret (symmetric) key is passed between the client and
server (using public key cryptography), which is then used to
encrypt and decrypt all traffic along the SSL connection. This
encryption protects the data from other parties trying to
eavesdrop, as no other parties will have the secret key needed
to decrypt the data. This ensures that private information such
as a credit card number is transferred securely.

Integrity The message transport includes a message integrity check
based on a secure hashing algorithm. This algorithm is
performed when the message is sent, and again when it is
received. If the two hash values do not match, the receiver is
warned that the message may have been tampered with.

Accountability
Accountability is ensured by digital signature, so that if
something goes wrong, you can identify which party is
accountable.

14 CICS Transaction Gateway for Solaris Administration

|
|
|

Authentication
The CICS Transaction Gateway’s implementation of the SSL
protocol provides server authentication, so that when a client
establishes a connection with the CICS Transaction Gateway, it
is required to authenticate the server’s details. Client
authentication can also be enabled, in which case the server
will authenticate the client’s details,

The authentication mechanism is based on the exchange of
digital certificates (X.509v3 certificates). These digital
certificates contain information about an entity, like the system
name and public key, and the server’s digital signature.
Digital certificates are issued by a Certificate Authority (CA),
and encrypted using the CA’s private key. If you can decrypt
the certificate using the CA’s public key, you know that the
information contained within the certificate can be trusted,
that is, that the certificate really does belong to whoever
claims to own it.

HTTPS

Most current browsers support a URL access method, HTTPS, for connecting
to HTTP servers using SSL. HTTPS (HTTP+SSL) is a variant of HTTP for
handling secure transactions.

A secure connection is typically made with a URL similar to
“https://someAddress” The default HTTPS port number is 443, as assigned
by the Internet Assigned Numbers Authority.

Keys and Certificates

The SSL protocol uses public key cryptography, which has been recommended
for use with the ISO authentication framework, also known as the X.509
protocol. This framework provides for authentication across networks.

The most important part of X.509 is its structure for public key certificates. A
trusted Certification Authority (CA) assigns a unique name to each user and
issues a signed certificate containing the name and the user’s public key.

The CICS Transaction Gateway allows you to obtain externally-signed
certificates from a CA, or to establish yourself as a CA to allow you to issue
″self-signed″ X.509 certificates. Externally-signed certificates are more suitable
for Internet use, while self-signed certificates may be suitable for internal use
within an organization.

Chapter 1. Overview 15

|

|

|
|
|

|
|
|

|
|
|
|
|

The X.509 digital certificates are “encapsulated” into a Java classfile, which
can then be used by the SSL and HTTPS protocols. These Java classfiles are
referred to as KeyRing classes.

The CICS Transaction Gateway includes the iKeyman tool for the
management of KeyRing classes. Using this tool, you can create KeyRing files,
generate certificates, store certificates in KeyRings, and perform various other
management functions. See “Chapter 5. Security” on page 51 for more
information.

Security exits

Security Exits are provided that enable the user to define security operations
such as public key encryption. They may also be used for data compression.
Some example source files that demonstrate these functions are provided.

The security exit mechanism can also be used to authenticate/analyze an
X.509 client certificate when client authentication is enabled.

For more information, refer to the CICS Transaction Gateway Programming book.

CICS Transaction Gateway and object request brokers

Some Web servers contain an object request broker (ORB) that conforms to the
Object Management Group’s (OMG) Common Object Request Broker
(CORBA) standard. If you have such a Web server, you can develop servlet
objects that can be invoked from a remote browser using the CORBA Internet
InterORB Protocol (IIOP). IIOP is transmitted to the browser using HTTP.

Some browsers also include an ORB, which enables them to run programs
that issue IIOP requests. This capability is used by Java applets that
communicate by using the Java Remote Method Invocation (RMI), a binding
mechanism that ultimately maps to the IIOP. With this technology an applet
can communicate with servlets using IIOP and have the servlets invoke CICS
transactions.

Other functions

Host on-Demand is supported, providing a means of accessing CICS 3270
applications via EPI on a Java-enabled Web browser. IBM eNetwork™ Host
on-Demand Version 2.0, or later, is required.

Support is provided for a local CICS Transaction Gateway. This enables a
Java program to communicate with a locally installed CICS Transaction

16 CICS Transaction Gateway for Solaris Administration

|
|
|

|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|

Gateway, without use of a network. Refer to “Preparing to use local CICS
Transaction Gateway support” on page 50 for information on how to configure
a local CICS Transaction Gateway.

Chapter 1. Overview 17

18 CICS Transaction Gateway for Solaris Administration

Chapter 2. Planning before installation

This chapter helps you plan the installation of CICS Transaction Gateway by
discussing the hardware and software requirements including the Web servers
and browsers that are supported. The CICS servers to which CICS Transaction
Gateway can connect are listed and possible migration issues are discussed.

Please refer to the product README file for any late changes to hardware
and software requirements.

Hardware requirements

The CICS Transaction Gateway runs on any hardware capable of running the
relevant operating system and other prerequisite software.

The hard disk requirement for your CICS Transaction Gateway (including
documentation) is 22MB.

Software requirements

The operating system requirements for your CICS Transaction Gateway are as
follows:
v Solaris Version 2.5.1, or later
v Solaris 7 (32bit mode and 64bit mode)

Java Development Kit (JDK)/JIT Version 1.1.8, for SPARC-based machines, or
later, with native threads support for Solaris 2.5.1 or later, are supported.

Web servers

CICS Transaction Gateway has been tested with the following Web servers:
v Lotus Domino Go Webserver™ 4.6.2 or later for OS/2, Windows NT, AIX, or

Solaris
v Microsoft Internet Information Server Version 4.0 for Windows NT,

Windows 95, and Windows 98
v Sun Webserver Version 2.0 for Solaris
v IBM HTTP Server (Apache) Version 1.3 for Windows NT, AIX, and Solaris
v WebSphere Advanced Server for OS/390 (included in OS/390 V2 R8)
v Netscape Enterprise Server Version 3.6 for Windows NT, AIX, and Solaris

© Copyright IBM Corp. 1996, 1999 19

|

|
|

|
|

|

|

|

|

If you are going to run the terminal servlet supplied with CICS Transaction
Gateway, you will need a Web server or a servlet engine that provides servlet
support equivalent to Java Servlet Development Kit (JSDK) Version 1.1 or
later, for example:
v IBM WebSphere Application Server, Advanced or Enterprise Edition,

Version 2.02 or later for Windows NT, AIX, or Solaris.

Note: Domino Go WebServer Version 4.6.2 does not support JSDK 1.1

Web browsers

The CICS Transaction Gateway should work with any JDK Version 1.1
compliant Java-enabled browser. This includes the following:
v OS/2:Netscape Version 2.0.2 with 1.1 patch
v Windows NT, 98, 95: Microsoft Internet Explorer Version 4.0.1, or later

(Note that HTTPS as transport does not work.)
v Windows NT, 98, 95: Netscape Version 4.0.8, Netscape Communicator

Version 4.51
v AIX: Netscape Version 4.0.8, Netscape Communicator Version 4.51
v Solaris: HotJava™ Browser Version 1.1

Universal CICS Clients

CICS Transaction Gateway incorporates CICS Universal Clients Version 3.1.
You cannot use CICS Clients Version 2 with CICS Transaction Gateway.

The CICS Universal Clients can communicate with CICS servers using a
number of protocols:

TCP/IP Transmission Control Protocol/Internet Protocol (TCP/IP) is
supported on all platforms.

APPC Advanced Program-to-Program Communication (APPC) is
supported on all platforms.

TCP62 TCP62 is supported on the OS/2 and Windows platforms, this
allows APPC communication over a TCP/IP network.

NetBIOS Network Basic Input/Output System (NetBIOS) is supported
on the OS/2 and Windows platforms.

Refer to the CICS Universal Client for Solaris Administration book for more
information on protocols, communication products that support these
protocols, and also application development language support.

Planning

20 CICS Transaction Gateway for Solaris Administration

|
|

|

|

CICS servers

A CICS server runs real-time multi-user applications and manages the
associated resources and data. CICS servers can run on a range of platforms,
from workstations to highly parallel mainframe systems.

CICS Transaction Servers, and TXSeries Servers, contain CICS servers and
CICS Clients, and can contain system management products.

For more general information see the CICS Web site:
http://www.ibm.com/software/ts/cics/

The CICS Universal Client component of the CICS Transaction Gateway can
connect to CICS servers using a variety of protocols. Table 2 shows the
protocols available to CICS Universal Client for Solaris for connecting to CICS
servers.

Table 2. Availability of protocols for connecting to CICS servers

CICS Server Protocol

CICS for MVS/ESA™ Version 4 Release 1 APPC

CICS Transaction Server for OS/390
Version 1 Release 2, and later

APPC

CICS for VSE/ESA Version 2 Release 3 APPC

CICS Transaction Server for VSE/ESA
Version 1 Release 1

APPC

CICS Transaction Server for OS/2 Warp,
Version 4.1, and later

TCP/IP, APPC

Transaction Server for Windows NT
Version 4, TXSeries Version 4.2 for
Windows NT

TCP/IP, APPC

‘CICS on Open Systems’ (see
“Conventions and terminology used in
this book” on page ix for a definition)

TCP/IP, APPC

CICS for OS/400® Version 4 Release 4
and later

APPC

For more information on connectivity between CICS Universal Clients and
CICS servers, refer to the CICS Universal Client for Solaris Administration book.

Planning

Chapter 2. Planning before installation 21

|

http://www.ibm.com/software/ts/cics/

CICS server PTF requirements

For signon capable terminals, you must ensure that you have the appropriate
PTF level applied to any CICS servers being used. You should refer to the
CICS Transaction Gateway/CICS Universal Client README file for the latest
details and check the PTFs for the CICS servers.

To provide complete support for timeouts, if you are using any TXSeries or
Transaction Server on UNIX® and Windows NT platforms, it must include the
appropriate PTF level. You should refer to the CICS Transaction
Gateway/CICS Universal Client README file for the latest details and check
the PTFs for the CICS server.

Migration issues

This section discusses migration issues that you will encounter if you
previously used a product related to CICS Transaction Gateway.

Migrating from CICS Universal Client Version 3.0

Before you install CICS Transaction Gateway, you may already have installed
CICS Universal Clients Version 3.0. You may have customized versions of the
following configuration files:

File Default Name

Keyboard mapping file CICSKEY.INI

Color mapping file CICSCOL.INI

Windows settings CICSTERM.INI

When you install CICS Transaction Gateway your customized files are
preserved, even though the old CICS Universal Client Version 3.0 is deleted.

In CICS Transaction Gateway Version 3.1 the configuration file, (CTG.INI), is
used instead of the client initialization file (CICSCLI.INI). To convert the client
initialization file, you can run the configuration conversion tool (ctgconv), see
“The configuration conversion tool” on page 45.

Migrating from CICS Transaction Gateway Version 3.0

In CICS Transaction Gateway Version 3.1 the configuration file, (CTG.INI), is
used instead of the Gateway.properties file. To convert the file, you can run
the configuration conversion tool (ctgconv), see “The configuration conversion
tool” on page 45.

Planning

22 CICS Transaction Gateway for Solaris Administration

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|

Migrating from CICS Gateway for Java

If you are a user of CICS Gateway for Java migrating to CICS Transaction
Gateway, you may have a customized version of the Gateway.properties file.
To convert this file, you can run the configuration conversion tool (ctgconv),
see “The configuration conversion tool” on page 45.

When you install over CICS Clients Version 2, the CICS Gateway for Java is
not automatically deleted, so you will need to delete it.

Due to the renaming of the CICS Transaction Gateway package, you must
change all import statements in your programs and recompile them. Therefore
you must change all occurrences of:

import ibm.cics.jgate.client.* to: import com.ibm.ctg.client.*

import ibm.cics.jgate.epi.* to: import com.ibm.ctg.epi.*

import ibm.cics.jgate.security.* to: import com.ibm.ctg.security.*

Programs written for the CICS Gateway for Java prior to Version 2.0.1 that use
the Session interface need to be modified because the parameter to the
Session.handleReply method was changed to TerminalInterface instead of a
Terminal object. Existing programs must be changed then recompiled.

Due to a change in the ClientSecurity and ServerSecurity interfaces, any user
classes that implement these methods need to be changed. The methods called
to generate handshake data are now passed the TCP/IP address of who they
are handshaking with. Also, an AfterDecode method has been added to both
interfaces.

Planning

Chapter 2. Planning before installation 23

|
|
|
|

24 CICS Transaction Gateway for Solaris Administration

Chapter 3. Installing CICS Transaction Gateway

This chapter describes how to install CICS Transaction Gateway for Solaris.

Installing CICS Transaction Gateway on Solaris

The CICS Transaction Gateway is distributed as a compressed tar file
containing the library files, commands, messages and customization files
(.INI) in a single directory tree.

To install CICS Transaction Gateway on Solaris:
1. Log in as root.
2. Find the tar file on the distribution medium. It is called ctg-310s.tar.Z.
3. Copy the compressed tar file ctg-310s.tar.Z to a working directory on your

hard disk.
4. Uncompress the file and extract the files:

uncompress ctg-310s.tar
tar -xvf ctg-310s.tar

The files will be extracted to the /opt/ctg directory.

Samples are provided in the samples subdirectory.
5. Set up the CICS Transaction Gateway by entering:

mkcicscli

Note: You can uninstall CICS Transaction Gateway by using the
mkcicscli -u

command.

National language support

You can select the language in which user messages are displayed by CICS
Transaction Gateway by entering the command:
mkclimsgs XX

where XX is the message language. To obtain a list of the available languages,
enter the command without the XX parameter:

© Copyright IBM Corp. 1996, 1999 25

|

|

|

|
|

|

|
|

|

|

|

|

|

|

|

|

CICS Client for Solaris - User messages

Language Locale Code Set
--------------------- --------- ------------

us US English en_US 8859-1
fr French fr_FR 8859-1
it Italian it_IT 8859-1
jp Japanese ja eucJP
kr Korean ko eucKR
es Spanish es_ES 8859-1

Example: mkclimsgs us for US English

This also shows the locale and code set associated with the language.

To use an alternate code set, you can use the iconv routine for the flat file
/opt/ctg/CCLMSG.TXT. For example, to convert /opt/ctg/CCLMSG.TXT
from code set ISO8859-1 to code set ISO-850 enter:
iconv -f ISO8859-1 -t ISO-850 /opt/ctg/CCLMSG.TXT > CCLMSG.NEW

When you have done this conversion, you can overwrite the CCLMSG.TXT
file with the new file:
mv CCLMSG.NEW /opt/ctg/CCLMSG.TXT

Using X-Windows from a remote system

When using X-Windows from a remote system, for example, to access the
configuration tool and iKeyman, you must set up the DISPLAY environment
variable to allow the application to display its windows on that system.

On the display system (that is the one that will display the windows), enter
the command:
xhost +appl

where appl is the network name of the system being used to run the
application.

On the application system, before you run the application, enter the
command:
DISPLAY=disp:0

followed by
export DISPLAY

Installing CICS Transaction Gateway

26 CICS Transaction Gateway for Solaris Administration

|
|

|
|
|

|
|

|

|
|

|
|

|

|

|

where disp is the network name of the system where the windows will be
displayed (followed by a colon and the display id—normally 0). The
application windows are then displayed on the disp system.

Installing CICS Transaction Gateway

Chapter 3. Installing CICS Transaction Gateway 27

|
|
|

28 CICS Transaction Gateway for Solaris Administration

Chapter 4. Configuring CICS Transaction Gateway

This chapter describes the following:
v “Configuring your programming environment for CICS Transaction

Gateway”
v “Using the configuration tool” on page 30
v “The configuration conversion tool” on page 45.
v “Editing the configuration file” on page 47.
v “Configuring the client keyboard mapping” on page 49.
v “Configuring the client screen colors and attributes” on page 49.
v “Preparing to use local CICS Transaction Gateway support” on page 50.

Configuring your programming environment for CICS Transaction Gateway

The Java Virtual Machine (JVM) uses the CLASSPATH environment variable
to find classes, and zip or jar archives containing classes. To allow the JVM to
access class files, you must specify the full path of directories containing class
files or archives.

To compile and run Java applications for use with the CICS Transaction
Gateway, add the full path of the following to the CLASSPATH environment
variable:
v ctgclient.jar
v ctgserver.jar (if you are using a local gateway)

These archives are in the classes subdirectory of the directory where you
installed the CICS Transaction Gateway.

Setting CLASSPATH on Solaris

To set the CLASSPATH environment variable, use a shell command like the
following (assuming the ksh shell):
export CLASSPATH=.:/opt/classes:/opt/ctg/classes/ctgclient.jar

This shell command makes the classes in the current directory, the directory
/opt/classes, and in archive /opt/ctg/classes/ctgclient.jar accessible by the
JVM.

© Copyright IBM Corp. 1996, 1999 29

|

|

|
|

|
|
|
|

|
|
|

|

|

|
|

|

|
|

|

|
|
|

You may want to place the shell command in the .profile file in your home
directory so that the CLASSPATH environment variable is automatically set
when you log on to your system.

To display the value of the CLASSPATH environment variable use the
following shell command:

echo $CLASSPATH

Using the configuration tool

You use the configuration tool to set configuration parameters for the CICS
Transaction Gateway and CICS Universal Clients.

To use the configuration tool you must export the display using the
commands described in “Using X-Windows from a remote system” on
page 26.

To start the configuration tool, enter the ctgcfg command.

When you start the configuration tool for the first time, a number of
TaskGuides help you in setting up a new configuration. The TaskGuides let
you:
1. Create CICS server definitions, and define the protocols to be used by the

CICS Universal Clients
2. Decide which protocols to use with the CICS Transaction Gateway

Default settings for the CICS Universal Clients are created.

The configuration is stored by default in the CTG.INI file in the bin
subdirectory where you installed the CICS Transaction Gateway. You can edit
this file directly, but it is recommended that you use the configuration tool to
perform configuration.

The configuration file contains equivalent entries to the Gateway.properties
file of CICS Transaction Gateway Version 3.0 and CICS Gateway for Java.

If a configuration file already exists when you start the configuration tool, the
settings in the file are loaded into the configuration tool.

The configuration tool interface

The user interface of the configuration tool consists of a menu bar, toolbar,
tree structure, and Settings panel.

Configuring CICS Transaction Gateway

30 CICS Transaction Gateway for Solaris Administration

|
|
|

|
|

|

|
|

|
|

|
|
|

|

|
|
|

|
|

|

|

|
|
|
|

|
|

|
|

|

|
|
|

Note: On your platform, the configuration tool may not appear exactly as
shown in Figure 4.

Tree structure

The tree structure (see Figure 4) allows you to navigate through all of the
settings in your configuration. The types of root node are as follows:

Gateway Contains up to four subnodes, that is, one for each protocol
the CICS Transaction Gateway can use (TCP, SSL, HTTP, and
HTTPS).

Client Contains a subnode for each of your server definitions.

Figure 4. The configuration tool

Configuring CICS Transaction Gateway

Chapter 4. Configuring CICS Transaction Gateway 31

|
|

|

|
|

||
|
|

||

Menu bar

The menu bar contains the File, Tools, and Help pulldowns.

The File pulldown has the following options:

New Creates a new configuration.

Open Opens an existing configuration.

Save Saves the current configuration. If a new configuration has
been created, the file name is CTG.INI (in the bin
subdirectory).

Save As Allows you to override the default path and name of the
configuration file.

Exit Exits the configuration tool. You are asked whether you want
to save the configuration.

The Tools pulldown has the following options:

Trace Settings Displays the Trace Settings dialog.

New Server Starts the TaskGuide for creating new server definitions.

Delete Server Deletes a server node from the tree structure.

The Help pulldown has the following options:

Context Help Displays online help information according to the current
screen context, for example, for a particular configuration
setting.

Contents Displays the contents list for the online help information.

Index Displays a subject index for the online help information.

Toolbar

The toolbar has the same functionality as that of the menu bar, except that it
does not include the Save As or Exit options. The icons have hover helps, so
that when you move the cursor over them, a text box describing the option
appears.

Settings panels

When you select nodes in the tree structure, the relevant settings panel is
displayed. The settings in these panels correspond to parameters in the
CTG.INI file.

Configuring CICS Transaction Gateway

32 CICS Transaction Gateway for Solaris Administration

|

|

|

||

||

||
|
|

||
|

||
|

|

||

||

||

|

||
|
|

||

||

|

|
|
|
|

|

|
|
|

On each settings panel there is an Undo Changes button that allows you to
undo changes you have made.

Configuring CICS Transaction Gateway settings

To display the Gateway Settings panel, select the Gateway node in the tree
structure. The settings map to the parameters in the Gateway section of the
CTG.INI file.

Using the configuration tool, you can provide preset values for any parameter
that can be specified using a Gateway command line option.

If a parameter defined using the configuration tool is specified via the
associated command line option when the Gateway is started, the command
line setting takes precedence.

General Gateway settings

The general Gateway settings are:

Initial number of Connection Manager threads: Enter the initial number of
ConnectionManager threads. The default is 10.

You can override this setting with the ctgstart -initconnect command.

Maximum number of Connection Manager threads: Enter the maximum
number of ConnectionManager threads. The default is 100.

If this value is set to -1, no limits are applied to the number of
ConnectionManager threads.

You can override this setting with the ctgstart -maxconnect command.

For information on threading limits, see Table 1 on page 11.

Initial number of Worker threads: Enter the initial number of Worker
threads. The default is 20.

You can override this setting with the ctgstart -initworker command.

Maximum number of Worker threads: Enter the maximum number of
Worker threads. The default is 200.

If this value is set to -1, no limits are applied to the number of Worker
threads.

Configuring CICS Transaction Gateway

Chapter 4. Configuring CICS Transaction Gateway 33

|
|

|

|
|
|

|
|

|
|
|

|

|

|
|

|

|
|

|
|

|

|

|
|

|

|
|

|
|

You can override this setting with the ctgstart -maxworker command.

For information on threading limits, see Table 1 on page 11.

Time shown in messages: Select this check box to enable timing information
in messages. (Timings are shown to millisecond accuracy.)

Timing information is enabled by default.

You can override this setting with the ctgstart -notime command.

Enable reading input from console: Select this check box to enable the
reading of input from the console.

Reading of input from the console is enabled by default.

You can override this setting with the ctgstart -noinput command.

Display TCP/IP hostnames: Select this check box to enable the display of
TCP/IP hostnames.

You can override this setting with the ctgstart -nonames command.

Let Java clients obtain generic ECI replies: Select this check box if you wish
Java clients to be able to obtain generic ECI replies from the CICS Transaction
Gateway.

Generic replies are those obtained using the Call_Type: ECI_GET_REPLY or
ECI_GET_REPLY_WAIT. Specific replies are those obtained using the
Call_Type: ECI_GET_SPECIFIC_REPLY or ECI_GET_SPECIFIC_REPLY_WAIT.
This setting does not apply to local Gateways.

Timeout for in-progress requests to complete: Enter a value in milliseconds.

When a Java-client program disconnects from the Gateway, the Gateway may
still be processing requests on behalf of that program. If work is still in
progress, the ConnectionManager that was managing requests on behalf of
that Java-client waits for in-progress requests to complete for up to the
timeout period. If after this period there are still requests in progress, the
ConnectionManager continues its processing and marks itself as available for
use by a new connection. By default this timeout is set to 1000 milliseconds,
but you may enter a value to override that default.

If this value is set to zero, the ConnectionManager does not wait for
in-progress requests to complete.

Configuring CICS Transaction Gateway

34 CICS Transaction Gateway for Solaris Administration

|

|

|
|

|

|

|
|

|

|

|
|

|

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|

Worker thread available timeout: Enter a value in milliseconds.

When a ConnectionManager accepts a request, it must allocate a Worker
thread to execute that request. If however, a Worker does not become
available within the timeout period an error message is sent rejecting that
request and the request is not executed. By default, this timeout is set to 1000
milliseconds, but you can enter a value to override that default.

If this value is set to zero, the request is rejected, if a Worker is not
immediately available.

TCP protocol settings

Select the TCP subnode to display the settings for TCP:

Enable protocol handler: Select this check box to configure the CICS
Transaction Gateway for using this protocol.

Port: Enter the TCP/IP port number for the protocol:

For TCP, the default is 2006.

For HTTP, the default is 8080.

For SSL, the default is 8050.

For HTTPS, the default is 443.

You can override this setting for the TCP protocol with the ctgstart -port
command.

Handler wakeup timeout: Enter a value in milliseconds.

This setting controls how frequently the protocol handler wakes from
accepting inbound connections. When it wakes, it checks to see whether the
Gateway is being stopped, and so this value affects the time taken for the
Gateway to shutdown cleanly. If you set this value to zero then the handler
only wakes when a new connection is accepted, and so the Gateway will not
shutdown cleanly until that time.

Connection timeout: Enter a value in milliseconds.

When a new connection has been accepted, this value specifies how long the
protocol handler waits for a ConnectionManager thread to become available.
If a ConnectionManager thread does not become available, then the

Configuring CICS Transaction Gateway

Chapter 4. Configuring CICS Transaction Gateway 35

|

|
|
|
|
|

|
|

|

|

|
|

|

|

|

|

|

|
|

|

|
|
|
|
|
|

|

|
|
|

connection is refused. If this value is set to zero, a connection is refused if a
ConnectionManager is not immediately available.

Idle timeout: Enter a value in milliseconds.

This setting specifies how long a connection is allowed to remain dormant.
The idle timeout period is counted from when a request was last flowed
down the connection. When the idle timeout has expired, the connection is
disconnected, though if work is still in progress on behalf of the connection, it
may be left connected. If this value is not set, or is set to zero, then idle
connections will not be disconnected.

Drop working connections: Select this check box to specify that a connection
can be disconnected, due to an idle timeout or a PING/PONG failure even if
work is still in progress on behalf of this connection.

SO_LINGER setting: Enter a SO_LINGER setting for any Socket used by
this handler. If this value is not entered, or set to zero, then SO_LINGER is
disabled for any Sockets used by this protocol handler.

Ping time frequency: Enter a value in milliseconds.

This value specifies how often a PING message is sent by the Gateway to an
attached client to check that client is still active. If a PONG response has not
been received by the time the next PING message is due to be sent, then the
connection is disconnected. Again, if work is still in progress on behalf of the
connection it may be left connected. If this value is not set, or is set to zero,
then PING messages are not sent.

SSL protocol settings

Select the SSL subnode to display the settings for SSL. The settings are the
same as for TCP, with the following in addition:

Require security: Select this check box if you wish your Gateway to only
accept connections that use security classes.

When a Java-client program connects to the Gateway, it can specify a pair of
security classes that should be used on the connection. However, by default a
Gateway also accepts connections from programs that do not specify this pair
of security classes.

You can control which security classes are valid by controlling the set of
xxxServerSecurity classes that can be accessed by your Gateway.

For more information on CICS Transaction Gateway security exits, see
“Security exits” on page 16.

Configuring CICS Transaction Gateway

36 CICS Transaction Gateway for Solaris Administration

|
|

|

|
|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|

|

|
|

|
|

|
|
|
|

|
|

|
|

KeyRing classname: Enter the class name of the server KeyRing.

The server KeyRing should consist of a valid x.509 certificate that is used to
identify this server to connecting clients. This KeyRing class is generated
using the SSL tools supplied with this product.

For more information about SSL and its associated KeyRing classes, see
“Chapter 5. Security” on page 51.

KeyRing password: Enter the Password for the server KeyRing class you
specified during the creation process.

Use client authentication: Select this check box to enable client
authentication for the CICS Transaction Gateway. The default is that client
authentication is disabled.

When client authentication is enabled, any connection attempted to either the
ssl: or https: handler requires the client to present its own Client Certificate
(also known as a Digital ID).

For information on how to obtain Client Certificates for the clients, see
“Configuring SSL clients” on page 61.

The default port for SSL is 8050.

HTTP protocol settings

Select the HTTP subnode to display the settings for HTTP. The settings are
the same as for TCP, except that there is no Ping time frequency setting.

The default port for HTTP is 8080.

HTTPS protocol settings

Select the HTTPS subnode to display the settings for HTTPS. The settings are
the same as HTTP, except that HTTPS has Require security, KeyRing
classname KeyRing password, and Use client authentication settings.

The default port for HTTPS is 443.

Configuring CICS Transaction Gateway

Chapter 4. Configuring CICS Transaction Gateway 37

|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|

|

|

|
|

|

|

|
|
|

|

Configuring Client settings

To display the Client Settings panel, select the Client node in the tree
structure. The settings map to the parameters in the Client section of the
CTG.INI file.

Applid

Enter up to 8 characters, or leave this field with the default value of *.

This value specifies the applid of the CICS Universal Client workstation in the
form in which it will be autoinstalled as a system at the CICS server. The
name must be unique within the CICS server system. The value of *
automatically generates a name that is guaranteed to be unique.

Note: If the client is to be autoinstalled to more than one CICS server, and if
you enter a specific name for the applid, that name must be unique
with respect to all servers it is connected to. If the name is not unique,
then attempts to connect to a server may be rejected because another
client has already been installed using the same name. If a name of * is
used, the client may be known by a different unique name at each
server.

If the client is to communicate with a given server via APPC, then this applid
may be overridden at the time the client is installed at the server by the Local
LU name for the client.

Maximum buffer size

Enter a number of kilobytes, in the range 4 through 32. The default is 32 KB.

This value specifies the size of the transmission buffers in which application
or terminal data will flow. The value should be large enough to cater for the
largest possible COMMAREA or terminal input/output area (TIOA) to be
used. The value does not include an overhead of 512 bytes needed by the
clients for some protocols.

This setting need normally be specified only for clients running in a
memory-constrained environment.

Terminal exit

Enter a character string of between 1 and 4 characters. The default is EXIT.

Configuring CICS Transaction Gateway

38 CICS Transaction Gateway for Solaris Administration

|

|
|
|

|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|

|
|
|
|
|

|
|

|

|

The string, when entered at a terminal emulator at any time and place where
a transaction name can be entered, causes the terminal emulator to terminate.
The string must not contain any blank characters.

The string is case-sensitive. If a terminal emulator has uppercase translation in
its CICS terminal definition, you should enter this string in uppercase.

Maximum servers

Enter a value in the range 1 through 256. The default is 10.

This value specifies the maximum number of servers that can be accessed
concurrently from the client.

Maximum requests

Enter a value in the range 1 through 10 000. The default is 90.

This value specifies the maximum number of concurrent items that may be
executing on the client, when an item is defined as a terminal emulator, an
EPI terminal or an ECI unit of work.

This value is used to detect runaway situations where an application could, in
error, submit an excessive number of requests to a server. The actual limit
may be less than this setting if other operating system limits (for example,
memory constraint or communication sessions), come into effect.

Print command

Enter a character string, from 1 to 256 characters long.

The specified string is a command specific to the operating system under
which the client is running. When a request to print is received at the client,
the client generates a temporary print file with a unique name per print
request.

The parameter string is appended with the temporary file name, and the
resultant command executed. This allows, for example, print requests to be
copied to a file, directed to a local printer, formatted for inclusion into
documentation, and so on.

It is the responsibility of the Print Command to delete the temporary print file
after it has finished processing it.

Use a shell script with the print command (for example, lpr) followed by the
command to delete (rm).

Configuring CICS Transaction Gateway

Chapter 4. Configuring CICS Transaction Gateway 39

|
|
|

|
|

|

|

|
|

|

|

|
|
|

|
|
|
|

|

|

|
|
|
|

|
|
|
|

|
|

|
|

See also the Print file description for more information.

Print file

Enter a character string, 1 to 256 characters long.

This option is applicable only if the Print Command setting is omitted.

The specified string identifies a file to which output from print requests
received at the client is directed. Each print request is appended to the end of
the current file.

Note: This setting acts only as a default. The terminal and print emulators
provide options to override this value.

Codepage identifier override

Enter a value indicating a Coded Character Set Identifier (CCSID) to override
your local codepage identifier.

You should use this setting if your platform has been updated for Euro
support, and the CICS Server has Euro support. For example, for Latin-1
countries, use a CCSID value of 858 to indicate that the codepage 850 includes
Euro support. For codepage 1252, specify a CCSID value of 5348.

Note that cicsterm will always display characters based on the local codepage
of the workstation, regardless of the value specified by the Codepage
identifier override setting.

Also note that if you use the CCSID to change the codepage identifier used,
data that was stored previously in the server may be modified when retrieved
to the Client, if it includes characters for which the code points produce
different characters.

Server retry interval

Enter a number of seconds. This is the time in seconds between attempts by
the client to reconnect to a server to which it was connected. The default
interval is 60 seconds.

When the client becomes aware that a server it was connected to is no longer
active, it attempts to reconnect to the server 1 second after it becomes inactive.
Subsequent retry attempts then occur at the interval defined by Server retry
interval.

Configuring CICS Transaction Gateway

40 CICS Transaction Gateway for Solaris Administration

|

|

|

|

|
|
|

|
|

|

|
|

|
|
|
|

|
|
|

|
|
|
|

|

|
|
|

|
|
|
|

Log file

Enter the name of the log file to be used for problem diagnosis.

If not specified, the log filename defaults to CICSCLI.LOG in the /var/cicscli
subdirectory.

Configuring Server settings

To display the Server Settings panel, select a Server node in the tree structure.
The settings map to the parameters in a Server section of the CTG.INI file.

Server name

Enter a name of between 1 and 8 characters. This provides a
communications-protocol-independent name for the server, local to the client.

Requests to access the server from ECI, EPI, ESI, or terminal emulators
reference the server through this name.

Description

Enter a description for the server of between 1 and 60 characters. This
description is optional.

The description is returned to applications running on the client via the
CICS_EpiListSystems and CICS_EciListSystems functions. (See the CICS
Family: Client/Server Programming book).

Initial transaction

Enter a transaction identifier of between 1 and 128 characters.

This string is case-sensitive and identifies the initial transaction (and any
parameters) to be run when the terminal emulator connects to the server. If
you do not enter anything, no initial transaction is run. The first four
characters, or the characters up to the first blank in the string are taken as the
transaction. The remaining data is passed to the transaction on its invocation.

Model terminal definition

Enter a string of between 1 and 16 characters.

The string is case-sensitive and specifies the name of a model terminal
definition at the server, identifying the characteristics of terminals to be

Configuring CICS Transaction Gateway

Chapter 4. Configuring CICS Transaction Gateway 41

|

|

|
|

|

|
|

|

|
|

|
|

|

|
|

|
|
|

|

|

|
|
|
|
|

|

|

|
|

autoinstalled from the client. If the model cannot be located at the server, or
you do not enter anything, a default terminal definition is used. This default
is server-specific.

The interpretation of the Model terminal definition setting is server-specific.
For example, for a CICS for OS/2 server, the value is validated (by the server)
as a 1- to 4-character string identifying a model entry in the CICS terminal
definition control tables with a terminal name set to the value specified on
this parameter. For a TXSeries for AIX server, the value is 1 to 16 characters,
and is the DevType for a CICS terminal definition entry to be used as the
model.

Use upper case security

Select this check box to specify that any userid or password from an ECI
application or resulting from a user prompt is converted to uppercase.

This setting is disabled by default.

TCP/IP

Select this option to specify TCP/IP as the protocol for the server connection.

SNA

Select this option to specify SNA as the protocol for the server connection.

Protocol settings displayed on the panel change according to the protocol
button you select.

TCP/IP settings

To display these settings, select the TCP/IP option.

Hostname or IP address: Enter the character or numeric TCP/IP identifier
for the host on which the CICS server is running. For example,
cicssrv2.company.com (HostName) or 9.20.4.1 (IPAddress).

Hostnames are mapped to IP addresses either by the name server or in the
hosts file in the etc subdirectory. It is, however, better to use a Hostname in
case the IP address changes.

Port: Enter a numeric value in the range 0 through 65 535 defining the port
number at the server to which the client should connect. The default value is
0.

Configuring CICS Transaction Gateway

42 CICS Transaction Gateway for Solaris Administration

|
|
|

|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|
|

|

|

|
|
|

|
|
|

|
|
|

A value of 0 indicates that the services file in the TCP/IP /etc directory
should be used to locate the port number for the service CICS using a
protocol of TCP.

If no entry can be located in the services file, a value of 1435 is assumed, this
being the TCP/IP architecture assigned port for CICS Universal Clients.

Connection timeout: Enter a value in the range 0 through 3600, specifying
the maximum time in seconds that establishing a connection is allowed to
take; the default value of 0 means that no limit is set by the client.

A timeout occurs if connection establishment takes longer than the specified
time. The TCP/IP socket is closed and the return code passed back to the
client application is either ECI_ERR_NO_CICS or CICS_EPI_ERR_FAILED.

Send TCP/IP Keepalive packets: Select this check box if you want TCP/IP
to periodically send KeepAlive packets to the server to check the connection.

SNA settings

To display these settings, select the SNA option.

Use LU alias names: Select this check box to use LU alias names.

LU names are always aliases on AIX and Solaris, so this setting is ignored for
these clients.

Partner LU name: Enter the LU Name of the server as it is known to the
APPC configuration at the CICS Universal Client.

This must be an eight-character alias name.

Local LU name: Enter the name of a local LU to be used when connecting to
the server. The same LU can be used for all server connections.

This must be an eight-character alias name.

Mode name: Enter between 1 and 8 characters specifying the mode name to
be used when connecting to the server. Omitting this setting results in a blank
mode name.

Trace settings

To configure the trace settings, select the Trace option from the Tools menu.

Configuring CICS Transaction Gateway

Chapter 4. Configuring CICS Transaction Gateway 43

|
|
|

|
|

|
|
|

|
|
|

|
|

|

|

|

|
|

|
|

|

|
|

|

|
|
|

|

|

Trace Settings

Select check boxes to specify the CICS Transaction Gateway and CICS
Universal Client components that will be traced when tracing is turned on.

Trace everything All components.

Client API level 1 The client API layer (level 1).

Client API level 2 The client API layer (level 1 and 2).

CICSCLI command line The cicscli command interface.

CICSTELD cicsteld process.

CICSTERM and CICSPRINT cicsterm and cicsprnt emulators.

CPP classes The C++ class libraries.

Client daemon CICS Universal Client daemon.

Transport layer Interprocess communication.

Protocol drivers Protocol drivers (TCP, SNA, and so on).

Java Gateway The CICS Transaction Gateway. If you only
have a CICS Universal Client, you will not see
this setting.

You can also specify trace components by using the -m parameter on the
cicscli command (except the Java Gateway component). Any component
tracing specified using cicscli overrides that specified with the configuration
tool. If component tracing is not specified either by the cicscli command or
the configuration tool, a default set of components is traced, namely: Protocol
drivers, Client daemon, and Client API level 1. If you select any of the check
boxes, this overrides the default set of components.

For the API component, you can specify the level of information to trace. The
Client API level 1 check box specifies that basic API-related information is
traced, for example, before and after ECI, EPI, and ESI calls. The Client API
level 2 check box specifies that additional API trace entries are produced in
addition to those of level 1.

Note that the cicscli -d=nnn command is used to set the maximum size of the
data areas to be traced. The trace data may be truncated if you set nnn lower
than the size of data expected.

Java gateway trace file

Enter the pathname of a trace file to which trace messages will be written, if
tracing is enabled. If no path is specified, the trace is written to the CTG.TRC
file in the bin subdirectory where CICS Transaction Gateway is installed.

Configuring CICS Transaction Gateway

44 CICS Transaction Gateway for Solaris Administration

|

|
|

||

||

||

||

||

||

||

||

||

||

||
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|

You can also specify a trace file using the -tfile option on the ctgstart
command.

The trace file is not appended to each time the CICS Transaction Gateway
starts, the file is overwritten.

Client trace file

Enter the pathname of a trace file to which trace messages will be written, if
tracing is enabled.

You do not have to enter an extension for the filename, as a file of type .BIN
is always generated (or .WRP if the trace file wraps).

If no path is specified, the trace is written to the CICSCLI.BIN file. This is in
the /var/cicscli subdirectory.

You can convert the binary trace file to an ASCII file using the cicsftrc
command.

Maximum Client wrap size

Enter a value in the range 0 through 999 kilobytes. The default is 0.

This value specifies how large the trace file will grow on disk before
wrapping. If the default value of 0 is specified, wrapping of trace is disabled.

The configuration conversion tool

You use the configuration conversion tool (ctgconv) to convert the
configuration files of previous versions of CICS Transaction Gateway, IBM
CICS Universal Clients, and CICS Gateway for Java to the new format of the
CICS Transaction Gateway Version 3.1 configuration file.

The conversion tool converts the following:

Gateway.properties Properties file of CICS Transaction Gateway
Version 3.0 and CICS Gateway for Java.

CICSCLI.INI Client initialization file of CICS Clients
Version 2 and Version 3.0.

The conversion tool produces one output file called CTG.INI by default.
Samples from this file are shown in “Editing the configuration file” on
page 47.

Configuring CICS Transaction Gateway

Chapter 4. Configuring CICS Transaction Gateway 45

|
|

|
|

|

|
|

|
|

|
|

|
|

|

|

|
|

|
|

|
|
|
|

|

||
|

||
|

|
|
|

The old files are renamed with the .BAK extension, but a banner is inserted
into them stating that they are obsolete.

Using the conversion tool

The parameters of ctgconv are:
ctgconv -c=file [-g=file] [-o=file]

for each parameter, file can be:
v a filename with extension, in which case the /opt/ctg/bin directory is

assumed. The extension must be .INI, except for the CICS Transaction
Gateway input file, which has the .properties extension.

v a full pathname.
v a directory name (without / at the end), in which case the default filename

is assumed.

-c=file
Specifies, the client initialization file to be converted. This parameter is
mandatory.

If file specifies a directory, a filename of CICSCLI.INI is assumed.

If the parameter is not specified, the CICSCLI environment variable is
used to locate the client initialization file. If CICSCLI is not set, the file
/opt/ctg/bin/CICSCLI.INI is assumed.

-g=file
Specifies the Gateway.properties file to be converted.

If you do not specify the -g parameter, no Gateway section is created in
CTG.INI.

-o=file
Specifies the pathname of the converted file. The default is
/opt/ctg/bin/CTG.INI.

To get help on using ctgconv, enter: ctgconv -?

During conversion, the input files are renamed so that the last three characters
of the file extension become .BAK. Any file with that name is overwritten, and
any output file that exists before the conversion is renamed in the same way.

Redundant parameters are removed from the old configuration files, and
other parameters are given new names in the converted file.

Configuring CICS Transaction Gateway

46 CICS Transaction Gateway for Solaris Administration

|
|

|

|

|

|

|
|
|

|

|
|

|
|
|

|

|
|
|

|
|

|
|

|
|
|

|

|
|
|

|
|

Editing the configuration file

Although it is recommended that you use the configuration tool you can
perform the configuration by editing the configuration file.

The configuration file is used for both CICS Universal Clients and CICS
Transaction Gateway, and contains the following sections:
1. GATEWAY (CICS Transaction Gateway only)
2. CLIENT
3. SERVER
4. DRIVER

These sections have the format:
SECTION sectioname [=value]

property1=value
property2=value
...
propertyN=value

ENDSECTION

You must restart both the CICS Universal Client and the CICS Transaction
Gateway to pick up any changes to the configuration file.

The following sections give examples of the properties in each section. For
information on the properties, refer to the descriptions of the corresponding
settings in the configuration tool.

GATEWAY section
SECTION GATEWAY

Properties file for the CICS Transaction Gateway

initconnect=1 # Initial number of ConnectionManager threads
maxconnect=100 # Maximum number of ConnectionManager threads
initworker=1 # Initial number of Worker threads
maxworker=100 # Maximum number of Worker threads
trace=on # Enable extra tracing messages
notime=on # Disable timing information in messages
noinput=on # Disable the reading of input from the console
nonames=on # Do not display TCP/IP hostnames

Entries to define the protocols which this CICS Transaction Gateway daemon will
accept.
#
Entries for a particular protocol begin with protocol@<protocol-name>.
followed by which property is being set. The following properties MUST be set
for each protocol handler to be used :

Configuring CICS Transaction Gateway

Chapter 4. Configuring CICS Transaction Gateway 47

|
|

|
|

|
|

|

|

|

|

|

|
|
|
|
|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#
(1) protocol@<protocol-name>.handler =
The name of the class which provides the handler for this protocol
#
(2) protocol@<protocol-name>.parameters =
The parameters passed to the protocol handler. The possible parameters
vary upon the protocol handler.
#

protocol@tcp.handler=com.ibm.ctg.server.TCPHandler
Protocol@tcp.parameters=port=2006;sotimeout=1000;
connecttimeout=2000;idletimeout=600000;pingfrequency=60000

protocol@http.handler=com.ibm.ctg.server.HttpHandler
Protocol@http.parameters=port=8080;sotimeout=1000;connecttimeout=2000;
idletimeout=120000;requiresecurity

protocol@ssl.handler=com.ibm.ctg.server.SslHandler
Protocol@ssl.parameters=port=8050;sotimeout=1000;connecttimeout=2000;
Idletimeout=600000;pingfrequency=60000;keyring=ServerKeyRing;keyringpw=default;
clientauth=off;

Protocol@https.handler=com.ibm.ctg.server.HttpsHandler
Protocol@https.parameters=port=443;sotimeout=1000;
connecttimeout=2000;Idletimeout=120000;keyring=ServerKeyRing;keyringpw=default;
clientauth=off;

Advanced settings.

ecigenericreplies=off
workertimeout=10000
closetimeout=10000

ENDSECTION

CLIENT section
SECTION CLIENT = *
#---
Client section - This section defines the local CICS client. There
should only be one Client section.

MaxServers = 1 # Only allow one server connection
MaxRequests = 256 # Limit the maximum server interaction
MaxBufferSize = 32 # Allow for a 32K maximum COMMAREA

CCSID=850

ENDSECTION

SERVER section
SECTION SERVER = cicssna1
#---
Server section - This section defines a server to which the client may
connect. There may be several Server sections.

Configuring CICS Transaction Gateway

48 CICS Transaction Gateway for Solaris Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

Description = A SNA Server # Arbitrary description for the server
Protocol = SNA # Matches with a Driver section below
NetName = ABCDEFGH # The server's Alias Name
LocalLUName = WXYZ9999 # The client's local LU name alias
ModeName = LU62PS # The SNA communications mode name

ENDSECTION

DRIVER section
SECTION DRIVER = SNA ; TCPIP, SNA
#--
Driver section - This section defines a communications protocol DLL
used to communicate with a server. There may be
several Driver sections.

DriverName = CCLIBMSN #CCLIBMSN, etc.

ENDSECTION

Note: The DRIVER section does not correspond to any settings in the
configuration tool. The configuration tool selects the correct protocol
drivers automatically.

Configuring the client keyboard mapping

The keyboard mapping for terminal emulator operation is defined in a file
called CICSKEY.INI by default. A sample mapping file is supplied, but it is
recommended that you create your own customized mapping file.

You can identify which keyboard mapping file is used with the environment
variable CICSKEY, or with the -f parameter of the cicsterm command.

For information on configuring the keyboard mapping file, refer to the CICS
Universal Client for Solaris Administration book.

Configuring the client screen colors and attributes

A color mapping file is used to provide alternative representations in
hardware environments where it is not possible to exactly replicate 3270
screen attributes, for example, blinking or underscore. The color mapping file
therefore defines how 3270 screen attributes are emulated on the client
hardware.

The screen colors and attributes are defined in a file called CICSCOL.INI by
default. A sample mapping file is supplied, but it is recommended that you
create your own customized mapping file.

Configuring CICS Transaction Gateway

Chapter 4. Configuring CICS Transaction Gateway 49

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|

|

You can identify which color mapping file is used with the environment
variable CICSCOL, or with the -c parameter of the cicsterm command.

For information on configuring the color mapping file, refer to the CICS
Universal Client for Solaris Administration book.

Preparing to use local CICS Transaction Gateway support

Before you can run an application that uses the local CICS Transaction
Gateway support, you must ensure that your environment is correctly
configured. The following requirements must be met:
1. A correctly configured Java environment

A Java application that makes use of the local CICS Transaction Gateway
support can be considered a normal Java program and so is executed with
the standard JDK java executable. Therefore your environment must be
correctly set so that the Java binaries, libraries, and classes can be found.
You should refer to the JDK documentation for the correct environment
settings.

2. Correct settings to allow the CICS Transaction Gateway binaries to be
found

The CICS Transaction Gateway .class files need to be available. You should
set your CLASSPATH environment variable to include the CICS
Transaction Gateway’s ctgserver.jar and ctgclient.jar archives. Also, the
relevant binaries must be available.
You should set your LD_LIBRARY_PATH environment variable to include
CICS Transaction Gateway’s bin subdirectory so that libCTGJNI.so can be
found by your application.

To run the application: enter the JDK java command.

Configuring CICS Transaction Gateway

50 CICS Transaction Gateway for Solaris Administration

|
|
|
|

|

Chapter 5. Security

This chapter describes how to set up CICS Transaction Gateway to use the
network security protocols SSL and HTTPS.
v “Overview” provides an overview of network security concepts and

terminology. It introduces the concepts of encryption keys, digital
certificates, and KeyRings.

v “SSL and authentication” on page 55 describes the SSL protocol and the
types of authentication it provides.

v “The ctgikey tool” on page 57 introduces iKeyMan, the tool provided by
CICS Transaction Gateway for managing your digital certificates.

v “Using externally-signed certificates (SSLight)” on page 58 describes how to
obtain externally-signed digital certificates and store them in KeyRing files
for use by the CICS Transaction Gateway.

v “Using self-signed certificates (SSLight)” on page 63 describes how to
generate self-signed digital certificates for use by the CICS Transaction
Gateway

v “Configuring CICS Transaction Gateway for SSL and HTTPS” on page 67
describes how to configure CICS Transaction Gateway to use the secure
protocols.

The implementation of SSL provided by CICS Transaction Gateway is written
in pure Java, and is referred to as SSLight. Another implementation, System
SSL applies only to the CICS Transaction Gateway on OS/390 and can only
be used for SSL servers on that platform.

Overview

The CICS Transaction Gateway provides comprehensive support for secure
communication, which is critical to successful Internet operation. The secure
network protocols allow your client applets and applications to communicate
securely with your CICS Transaction Gateway using SSL. The SSL and HTTPS
protocols were introduced in “Chapter 1. Overview” on page 1; this chapter
provides more detail about setting up your CICS Transaction Gateway to use
these protocols.

The following are the characteristics of secure communication:
v Confidentiality

© Copyright IBM Corp. 1996, 1999 51

|

|

|
|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

|

|

Confidentiality means that the contents of messages remain private as they
pass over the Internet, or your intranet. Confidentiality is ensured through
encryption of messages.

v Integrity

Integrity means that messages are not altered while being transmitted. Any
router along the way can insert or delete text or garble the message as it
passes by. Without integrity, you have no guarantee that the message you
sent matches the message received. Integrity is ensured by encryption and
digital signature.

v Accountability

Accountability means that both the sender and the receiver agree that the
exchange took place. Without accountability, the receiver can say the
message never arrived. Accountability is ensured by digital signature, so
that if something goes wrong, you can identify who is accountable.

v Authenticity

Authenticity means that you know who you are talking to and that you can
trust that person. Authenticity requires verifying identity, so that you can
make sure that others are who they say they are. Authentication is achieved
by using digital signatures and digital certificates.

What is encryption?

Encryption ensures confidentiality in transmissions sent over the Internet. In
its simplest form, encryption is the scrambling of a message so that it cannot
be read until it is unscrambled later by the receiver. The sender uses an
algorithmic pattern, or key, to encrypt the message, and the receiver uses a
decryption key to unscramble the message.

There are two kinds of keys that can be used for encryption (as well as for
digital signature and authentication):
1. Symmetric
2. Asymmetric

With symmetric keys, the sender and receiver share some kind of pattern,
which is used by the sender to encrypt the message, and by the receiver to
decrypt the message. The risk involved with symmetric keys is that you have
to find a safe transportation method to use when sharing your secret key with
the people with which you want to communicate.

With asymmetric keys, you create a key pair. This key pair consists of a public
key and a private key. Unlike symmetric keys, these are different from each
other, and the private key holds more of the secret encryption pattern than the
public key.

Overview of security concepts

52 CICS Transaction Gateway for Solaris Administration

|
|
|

|

|
|
|
|
|

|

|
|
|
|

|

|
|
|
|

|

|
|
|
|
|

|
|

|

|

|
|
|
|
|

|
|
|
|

A sender can broadcast its public key to whomever it wants to communicate
with securely. It retains the private key and protects it with a password. Only
the sender can decrypt a received message encrypted with its public key,
because only it has the private key.

A protocol like SSL uses both asymmetric (also known as public key)
cryptography and symmetric key cryptography. Public key cryptography is
used for the TCP/IP handshake. During the handshake the master key is
passed from the client to the server. The client and server make their own
session keys using the master key. The session keys are then used to encrypt
and decrypt data for the remainder of the session.

Digital signatures and digital certificates

A digital signature is a unique mathematically computed signature that ensures
accountability.

A digital certificate allows unique identification of an entity; it is essentially an
electronic ID card, issued by a trusted third party.

A digital certificate serves two purposes: it establishes the owner’s identity,
and it makes the owner’s public key available. A digital certificate is issued by
a trusted authority, a certification authority (CA), for example VeriSign Inc,
Thawte. It is issued only for a limited time, and when its expiration date has
passed, it must be replaced.

A digital certificate is made up of:
v The public key of the person being certified.
v The name and address of the person being certified, also known as the

Distinguished Name (DN).
v The digital signature of the CA.
v The issue date.
v The expiration date.

The Distinguished Name is the name and address of a person or organization.
You enter your Distinguished Name as part of requesting a certificate. The
digitally-signed certificate includes not only your own Distinguished Name,
but the Distinguished Name of the CA, which allows verification of the CA.

To communicate securely, the receiver in a transmission must trust the CA
that issued the certificate that the sender is using. As a result, any time a
sender signs a message, the receiver must have the corresponding CA’s signer
certificate and public key designated as a trusted root key. As an example, your
Web browser will have a default list of signer certificates for trusted CAs. If

Overview of security concepts

Chapter 5. Security 53

|
|
|
|

|
|
|
|
|
|

|

|
|

|
|

|
|
|
|
|

|

|

|
|

|

|

|

|
|
|
|

|
|
|
|
|

you want to trust certificates from another CA, you must receive a certificate
from that CA and designate it as a trusted root key.

If you send your digital certificate containing your public key to someone
else, what keeps that person from misusing your digital certificate and posing
as you? The answer is: your private key. A digital certificate alone is never
proof of anyone’s identity. The digital certificate only allows verification of the
owner’s identity by providing the public key needed to check the owner’s
digital signature. Therefore, the digital certificate owner must protect the
private key that belongs with the public key in the digital certificate.
Otherwise, if the private key were stolen, anyone could pose as the legitimate
owner of the digital certificate.

Obtaining a digital certificate

You can obtain a certificate in two ways:
1. Buy a certificate from a CA
2. Issue yourself a certificate, that is, act as your own CA.

Buying a certificate from a CA

If you plan to conduct commercial business on the Internet, you should buy a
server certificate from a CA such as VeriSign Inc (the home page is at
https://www.verisign.com/).

When you submit a certificate request to VeriSign, you are expected to prove
who you are before they issue you a certificate. Although the approval process
is necessary to protect you, your organization, and VeriSign, it may take
longer than you would like. VeriSign will digitally sign your certificate
request and return the unique certificate to you through e-mail.

Obtaining an externally-signed certificate is described in “Using
externally-signed certificates (SSLight)” on page 58.

Note: VeriSign server certificates cannot be shared among servers on different
machines.

Issuing certificates yourself

If you act as a CA, you can sign your own or anyone else’s certificate request.
This is a good choice if you only need the certificates within your own
organization, and not for external Internet commerce. In such a scenario you
might want to allow access only to a carefully controlled group of key people
within your intranet.

Overview of security concepts

54 CICS Transaction Gateway for Solaris Administration

|
|

|
|
|
|
|
|
|
|
|

|

|

|

|

|

|
|
|

|
|
|
|
|

|
|

|
|

|

|
|
|
|
|

Your key people would have browsers such as Netscape Navigator, that can
receive your self-signed CA certificate and designate it as a trusted root. They
would then be able to trust your communications and share information
safely.

Generating a self-signed certificate is described in “Using self-signed
certificates (SSLight)” on page 63.

KeyRings

So where are digital certificates and their associated keys kept? The answer is
that public keys, private keys, certificates and trusted root keys are kept in a
KeyRing file.

The CICS Transaction Gateway uses Java classes to hold certificate and key
data on both the SSL server and SSL clients. The CICS Transaction Gateway
daemon (which acts as an SSL server) uses a server KeyRing, for example,
ServerKeyRing.class, while all SSL clients use a client KeyRing, for example,
ClientKeyRing.class. The SSL and HTTPS protocols require access to these
Java classes to establish secure connections. You establish this access when
you configure the CICS Transaction Gateway, see “Configuring CICS
Transaction Gateway for SSL and HTTPS” on page 67.

Subsequent sections in this chapter tell you how to:
v Create your KeyRing files.
v Obtain your digital certificates
v Receive the digital certificates into the KeyRing files.

SSL and authentication

SSL allows the client to authenticate the identity of the server, which is called
server authentication.

SSL Version 3 also allows the server to authenticate a client, which is called
client authentication. This is used if the server needs to ensure who a client is
before responding. If SSL client authentication is set up, the server requests
the client’s certificate whenever the client makes an SSL connection. The
server validates the DN information in the client request with the DN
information in the client’s certificate before serving the document.

SSL uses a security handshake to initiate the TCP/IP connection between the
client and the server. During the handshake, the client and server agree on the
security keys that they will use for the session and the algorithms they will
use for encryption. The client authenticates the server. In addition, if the client

Overview of security concepts

Chapter 5. Security 55

|
|
|
|

|
|

|

|
|
|

|
|
|
|
|
|
|
|

|

|

|

|

|
|

|
|

|
|
|
|
|
|

|
|
|
|

requests a document protected by SSL client authentication, the server
requests the client’s certificate. After the handshakes, SSL is used to encrypt
and decrypt all of the information in both the client request and the server
response, including:
v The URL the client is requesting
v The contents of any form being submitted
v Access authorization information like user names and passwords
v All data sent between the client and the server

SSL handshaking is illustrated in Figure 5.

HTTPS

HTTPS is a unique protocol that combines SSL and HTTP. You need to specify
https:// as an anchor in HTML documents that link to SSL-protected
documents. A client user can also open a URL by specifying https:// to
request an SSL-protected document.

Because HTTPS (HTTP + SSL) and HTTP are different protocols and usually
use different ports (443 and 8080, respectively), you can run both SSL and
non-SSL requests at the same time. As a result, you can choose to provide

Figure 5. SSL handshake with server authentication

Overview of security concepts

56 CICS Transaction Gateway for Solaris Administration

|
|
|
|

|

|

|

|

|
|

|
|

|
|
|
|

|
|
|

information to all users using no security, and specific information only to
browsers who make secure requests. This is how a retail company on the
Internet can allow users to look through the merchandise without security, but
then fill out order forms and send their credit card numbers using security.

A browser that does not have support for HTTP over SSL will naturally not
be able to request URLs using HTTPS. The non-SSL browsers will not allow
submission of forms that need to be submitted securely.

The ctgikey tool

CICS Transaction Gateway provides a tool, iKeyman for maintaining your
digital certificates. You use the ctgikey command to set up the correct
environment (including the JAVA_HOME environment variable) and invoke
iKeyman.

With iKeyMan, you can:
v Request and receive a digital certificate from a CA, see “Using

externally-signed certificates (SSLight)” on page 58.
v Generate self-signed certificates, see “Using self-signed certificates

(SSLight)” on page 63.
v Add certificates to your KeyRing files.
v Change your KeyRing password.
v Set a private key as the default.
v Delete keys.
v Export a key by copying it to a file.
v Import a key from an exported copy and add it to a KeyRing.

Distributing iKeyman to client workstations

Although the majority of KeyRing management will be performed on the
CICS Transaction Gateway machine, it may be necessary to supply the
iKeyman tool to clients connecting to your SSL server. The client machines
must have the minimum level of CICS Transaction Gateway Java support,
which is JDK/JRE Version 1.1.8. They also require a script or command file to
invoke the iKeyman Java startup class.

As an example, the following is the Windows NT command line for invoking
iKeyman with the JDK:
java.exe -classpath
"e:\jdk118\lib\classes.zip;e:\ikeyman\cfwk.zip;e:\ikeyman\gsk4cls.jar;e:\ikeyman
\swingall.jar;" -Dkeyman.javaOnly=true com.ibm.gsk.ikeyman.Ikeyman

or, to invoke with the JRE:

Overview of security concepts

Chapter 5. Security 57

|
|
|
|

|
|
|

|
|

|
|
|
|

|

|
|

|
|

|

|

|

|

|

|

|

|
|
|
|
|
|

|
|

|
|
|

|

jre.exe -classpath
"e:\jdk118\lib\classes.zip;e:\ikeyman\cfwk.zip;e:\ikeyman\gsk4cls.jar;e:\ikeyman
\swingall.jar;" -Dkeyman.javaOnly=true com.ibm.gsk.ikeyman.Ikeyman

These examples assume that the client workstation has the following files in
the ikeyman directory:
v cfwk.zip
v cfwk.sec
v gsk4cls.jar
v swingall.jar
v ikminit.properties

All of this files can be found in the bin subdirectory where CICS Transaction
Gateway is installed.

Note: You must ensure that cfwk.zip is the first IBM-supplied archive to
appear in your CLASSPATH setting.

Using externally-signed certificates (SSLight)

The CICS Transaction Gateway can function as an SSL server, with the ability
to authenticate SSL clients and accept externally-signed certificates from
Certificate Authorities such as VeriSign Inc.

This section describes how to configure both an SSL server and SSL clients
using the certificate management interface, iKeyMan. This is written in pure
Java, so it can be distributed to a number of client/server workstations that
have a suitable JVM installed.

Configuring your SSL server and clients involves: creating the KeyRing
classes, obtaining the digital certificates, and receiving them into the KeyRing
classes.

A server KeyRing class contains a Server Certificate and the corresponding
private key, along with a number of signer certificates. The Server Certificate
is a digital certificate that is used to identify the SSL server to connecting
clients.

A client KeyRing class contains as a minimum, the signer certificate of the
SSL server, along with a client x.509 certificate, if client authentication is
required.

Overview of security concepts

58 CICS Transaction Gateway for Solaris Administration

|
|
|

|
|

|

|

|

|

|

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

Configuring your SSL server

This section describes how to obtain a Trial (Test) Server Certificate from the
VeriSign Web site (www.verisign.com). VeriSign allow the use of a trial Server
Certificate for the period of 14 days. As this is a demonstration Server
Certificate, it is not signed by the trusted VeriSign Certificate Authority, but a
VeriSign Test CA.

All SSL clients will need the VeriSign Test signer certificate root key installed
in their client KeyRing(s), or in the case of HTTPS connections, the repository
in the browser.

The examples in this book assume you are using Netscape Communicator
Version 4.5.

Obtaining a full VeriSign Server Certificate follows the same procedures as
described here for the trial version.

Creating the server KeyRing

The first step is to create a server KeyRing class, which will eventually contain
your signer certificates along with your Server Certificate (and its associated
private-key). This repository is password-protected and you are given an
indication of the password “strength” when the .class is created with
iKeyMan. It is recommended that a sequence of alphanumeric characters is
used; this makes the password more robust to “brute force dictionary” attacks.

To obtain the certificate:
1. Start ctgikey.
2. Select Key Database File.
3. From Key Database Type, select SSLight key database class.
4. Enter ServerKeyRing.class as the File name

5. In Location, enter a suitable location to store your ServerKeyRing.class.
6. Select OK.

The generated ServerKeyRing.class contains, by default, a number of the
popular signer certificates including the VeriSign root signer certificate along
with its Test signer certificate. It also contains VeriSign Class 1 through 4
Public Certification Authority signer certificates, which enables the Server to
verify clients with VeriSign Client Certificates. This is explained in more detail
in “Configuring SSL clients” on page 61.

Using externally-signed certificates

Chapter 5. Security 59

|

|
|
|
|
|

|
|
|

|
|

|
|

|

|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|
|
|
|

Preparing a certificate request

Before you can obtain a Server Certificate from www.verisign.com, the SSL
server must make a Certificate Request and store it locally:
1. From iKeyMan, select Create.
2. Select Create New Certificate Request.
3. You must fill out the certificate request. Some fields are optional, but you

must fill in at least the following (examples are shown):

Key Label verisignServerCert

Key Size 1024

Common Name servermachine.hursley.ibm.com

Organization IBM UK

Country GB
4. Specify the name of a file in which store to store the certificate request and

select OK. iKeyMan will then generate a public/private keypair, which
may take some time depending on your processor speed.

Obtaining the Server Certificate

The next stage is to connect to the VeriSign Web site and request a Trial Server
Certificate. Point your browser at http://www.verisign.com and continue to
the page at: https://digitalid.verisign.com/server/trial/trialIntro.htm. You are
now ready to enroll for your Trial Server Certificate.
1. Select Continue.
2. Select Continue again, and you are presented with Step 2 of 5 - Submit

CSR.
3. Paste the contents of your certificate request file into the text box

provided. The contents of your certificate request should look similar to:
-----BEGIN NEW CERTIFICATE REQUEST-----
MIIB1jCCAT8CAQAwgZUxIDAeBgNVBAMTF2NocmlzdHAuaHVyc2xleS5pYm0u
Y29tMRswGQYDVQQLExJDbGllbnRzICsgR2F0ZXdheXMxDzANBgNVBAoTBklC
TSBVSzETMBEGA1UEBxMKV0luY2hlc3RlcjEOMAwGA1UECBMFSGFudHMxETAP
BgNVBBETCFNPMjEgMkpOMQswCQYDVQQGEwJHQjCBnzANBgkqhkiG9w0BAQEF
AAOBjQAwgYkCgYEAkAth9Ar6k6ijNZ3JxdPGH6yiikwYTuA0RZDLZBSpaSEx
4qNKN/CrdF1LgfQYbZcN5NGCeC4sC478NhT+ltf5dnR3pNWBzEzmWn5mN0lH
tqJ3oibOUmDui+tQc2J9z6iRBKjkcQwjPlJp0sp5KKsev1ahAETL7LqmqMIq
pJlzKi0CAwEAAaAAMA0GCSqGSIb3DQEBBAUAA4GBAHaMHpizPs8Q3bi3I6dh
4yw0UNhojTlS1+ffiph3hK98lMHJuMztr0UMBLl/SZGNw85OJRiWuDjGYUQW
inJ0uNH34IUsnygBmt78+WlXT5nJuayg+UrAc5Ao2H8QZpRE5Sfaoc8lQcvY
plTggCdMxpYN7I33LrZDl3Po0TT8gjxQ
-----END NEW CERTIFICATE REQUEST-----

4. Select Continue.

Using externally-signed certificates

60 CICS Transaction Gateway for Solaris Administration

|

|
|

|

|

|
|

||

||

||

||

||

|
|
|

|

|
|
|
|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

5. The next page allows you to verify the contents of your certificate request.
You must also provide the personal details requested. If a full VeriSign
Server ID (rather than a trial version) were being requested these details
would be used to authenticate your application.

6. When you have entered your details, and have read the VeriSign
agreement, select Accept.

7. The next stage (4 of 5) is to install the Test signer certificate root on any
browser that you will be using to connect to the SSL server. In the case of
SSL connections from Java applets to the CICS Transaction Gateway this is
not necessary, as the client applet requires a client KeyRing class, which by
default will contain the Test signer certificate. However, the HTTPS
protocol uses the repository in the browser, hence your need to install the
Test signer certificate. Note that you do not need to install the Test signer
certificate if you apply for a full VeriSign Server Certificate.

The VeriSign Trial Server Certificate will be e-mailed to the address specified
in your personal details. This can typically take between one and three hours.

Receiving the Server Certificate into the server KeyRing

When you have obtained the Server Certificate, you must “receive” it into the
server KeyRing using iKeyMan.
1. First copy and paste the Server Certificate data into a blank text file, using

a text editor, and save the file as verisignServerID.arm.
2. From iKeyMan, select Personal Certificates from the pull-down menu, this

is located below the Key database content label.
3. Select Receive...

4. Locate the text file containing your Server Certificate data; this will be in
Base64-encoded ASCII.

5. Select OK.
6. Select Key Database File then Exit.

The ServerKeyRing.class is now ready for use with the CICS Transaction
Gateway. It contains the default signer certificates along with your VeriSign
Server Certificate and its corresponding private key.

Configuring SSL clients

In normal (default) operation the CICS Transaction Gateway uses only server
authentication when performing an SSL handshake. and the client need only
accept the presented Server Certificate. For server authentication to work, the
client KeyRing class, or in the case of HTTPS, the browser certificate
repository, must contain the signer certificate of the Server Certificate. In our
example, the signer certificate is the VeriSign Test signer certificate.

Using externally-signed certificates

Chapter 5. Security 61

|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

|

|
|

|
|

|
|

|

|
|

|

|

|
|
|

|

|
|
|
|
|
|

As with the server KeyRing class, when you use iKeyMan to generate a client
KeyRing class it will contain a default selection of the most popular signer
certificates.

In addition to server authentication, the CICS Transaction Gateway also
supports client authentication. With this option enabled, any connection
attempted to either the ssl: or https: handler requires the client to present its
own Client Certificate (also known as a Digital ID).

The following sections describes how to obtain a VeriSign Digital ID and
generate the necessary client KeyRing class.

Obtaining the Client Certificate

In contrast to obtaining Server Certificates, it is not necessary to use iKeyMan
to generate any form of certificate request. VeriSign provide a method of
obtaining a Class 1 Digital ID using either Netscape or Internet Explorer
browsers.

Once the Client Certificate has been obtained and installed in the browser
repository, it is possible to export the certificate data, together with its
associated private key, into a secure vault known as a #PKCS12 file. This file
is password protected and can be imported into a client KeyRing class using
the iKeyMan tool.
1. Using Netscape Communicator Version 4.5, point your browser to

www.verisign.com and follow links for Individual Certificates.

2. Once you have reached the HTML page at
https://digitalid.verisign.com/client/class1Netscape.htm, fill in the details
as requested. The details will be used by VeriSign to authenticate the client
application.

3. Select Accept.
4. Netscape will now generate a private key - it will request a password to

protect this private key.
5. VeriSign will e-mail information for downloading and installing the Class

1 Digital ID to the address you submitted in your application.

During the installation process, Netscape Communicator allows you to store
the Client Certificate in a password protected file (#PKCS12 format). The
iKeyMan tool supports #PKCS12 format files and allows you to import
certificates (along with their private key) into a client KeyRing class.

Creating the client KeyRing

To create a client KeyRing class:
1. Start ctgikey.

Using externally-signed certificates

62 CICS Transaction Gateway for Solaris Administration

|
|
|

|
|
|
|

|
|

|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|

|
|

|
|

|
|
|
|

|

|

|

2. Select Key Database File.
3. From Key Database Type select SSLight key database class.
4. Enter ClientKeyRing.class as the File name.
5. In Location, enter a suitable location to store your ClientKeyRing.class.
6. Select OK.

A ClientKeyRing.class has now been created containing the default signer
certificates, which are as follows:

VeriSign Class 1 Public Primary Certification Authority
VeriSign Class 2 Public Primary Certification Authority
VeriSign Class 3 Public Primary Certification Authority
VeriSign Class 4 Public Primary Certification Authority
RSA Secure Server Certification Authority
Thawte Personal Basic CA
VeriSign Test CA Root Certificate
Thawte Personal Premium CA
Thawte Premium Server CA
Thawte Personal Freemail CA
Thawte Server CA

Importing the Client Certificate into the client KeyRing

To import the #PKCS12 vault file containing the Client Certificate:
1. Select Personal Certificates from the pulldown selector below the Key

database content label.
2. Select Import...

3. Set Key file type to PKCS12 file.
4. Locate the stored #PKCS12 file.
5. Select OK.
6. Select Key Database File then Close.
7. Select Key Database File then Exit.

The ClientKeyRing.class is now ready for use with the CICS Transaction
Gateway. It contains the default signer certificate along with your VeriSign
Client Certificate (Class 1 Digital ID) and its corresponding private-key.

Using self-signed certificates (SSLight)

The CICS Transaction Gateway provides a mechanism for you to “self-sign”
your certificates. You establish yourself as your own Certification Authority
and generate the X.509 digital certificates for the server (CICS Transaction
Gateway) and client (browser) side.

This section describes how to configure both an SSL server and SSL clients
using the certificate management interface, iKeyMan.

Using externally-signed certificates

Chapter 5. Security 63

|

|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|

|

|

|

|

|
|
|

|
|

|
|
|
|

|
|

Configuring the SSL server

Configuring your SSL server involves: creating the server KeyRing class,
generating the self-signed certificate, and receiving it into the KeyRing class.

Creating the server KeyRing

The first step is to create a server KeyRing class file to hold the Server
Certificate and key information.
1. Start ctgikey.
2. Select Key Database File - New.
3. From Key Database Type, select SSLight key database class.
4. Enter ServerKeyRing.class as the File name.
5. In Location, enter a suitable location to store your ServerKeyRing.class.
6. Select OK.

Generating the Server Certificate

Now you are ready to create the self-signed Server Certificate and store it
along with its private key in your server KeyRing class:
1. From iKeyMan, select Personal Certificates from the pull-down menu, this

is located below the Key database content label.
2. Select New Self-Signed...

3. You must fill out the certificate details. Some fields are optional, but you
must fill in at least the following (examples are shown):

Key Label exampleServerCert

Version X509 V3

Key Size 1024

Common Name clientmachine.hursley.ibm.com

Organization IBM UK

Country GB

Validity Period 365 (days)
4. Select OK. iKeyMan will then generate a public/private keypair, which

may take some time depending on your processor speed.
5. When iKeyman has successfully created the self-signed Server Certificate,

it will appear in the Personal Certificates window. The certificate will be
named according to the Key Label specified during the generation
process, in this example exampleServerCert.

6. With exampleServerCert highlighted, select View/Edit. Notice that the
Certificate information in the issued to and issued by textboxes are the

Using self-signed certificates

64 CICS Transaction Gateway for Solaris Administration

|

|
|

|

|
|

|

|

|

|

|

|

|

|
|

|
|

|

|
|

||

||

||

||

||

||

||

|
|

|
|
|
|

|
|

same, hence the certificate requester (issued to) is the same as the signer
(issued by). To establish SSL connections with a server presenting this
certificate, the client must trust the signer of the exampleServerCert. To do
this the client key repository must contain the signer certificate of the site
presenting exampleServerCert.

Exporting the Servers signer certificate

Now export the signer (public) certificate of the SSL server.
1. With exampleServerCert highlighted, select Extract Certificate...

2. Select the Data type of the exported certificate, this is typically
Base64-encoded ASCII data.

3. Enter the name/location of the exported certificate, our example uses
exampleServercert.arm.

4. Select OK.

The exported certificate should be stored in a safe place, and imported into
any client key repository that needs to handshake with this particular SSL
Server Certificate.

Configuring the SSL clients

If the SSL handler used by the CICS Transaction Gateway is configured to
support only server authentication, you do not need to generate a self-signed
Client Certificate. In this case the client KeyRing class need only contain the
signer certificate of the Server, which is the certificate file exported in our
example, exampleServercert.arm.

The following steps describe the process of creating a client KeyRing and
importing the Server’s signer certificate.

Creating the client KeyRing
1. Start ctgikey.
2. Select Key Database File - New.
3. From Key Database Type, select SSLight key database class.
4. Enter ClientKeyRing.class as the File name

5. In Location, enter a suitable location to store your ClientKeyRing.class.
6. Select OK.
7. Once the ClientKeyRing.class has been generated you should see the list of

default Signers.

Using self-signed certificates

Chapter 5. Security 65

|
|
|
|
|

|

|

|

|
|

|
|

|

|
|
|

|

|
|
|
|
|

|
|

|
|

|

|

|

|

|

|
|

Importing the server’s signer certificate

The next stage is to import the server’s signer certificate:
1. Select Add.
2. Locate the stored Server Base64-encoded ASCII certificate file, in our

example, exampleServercert.arm.
3. Give this signer certificate a unique label, for example, My Self-Signed

Server Authority.
4. Select OK. This new signer certificate should be added to the list of

default signers.

The generated ClientKeyRing.class can be used with the CICS Transaction
Gateway’s SSL protocol, which is configured to support server authentication.
If the HTTPS protocol is used to establish a secure connection from the applet;
the particular browser where the applet is running will need to import the
exampleServercert.arm into its key/certificate repository.

Refer to your browser online help for importing Base64-encoded ASCII
certificate files.

Generating a Client Certificate

Client authentication requires the client KeyRing class to also contain a
self-signed Certificate that is used to identify the connecting client.

Following the same steps as for generating a self-signed Server Certificate,
create (or open an existing) client KeyRing class (ClientKeyRing.class in our
example), then:
1. From iKeyMan, select Personal Certificates from the pull-down menu, this

is located below the Key database content label.
2. Select New Self-Signed...

3. Fill out the certificate details.
4. Select OK. iKeyMan will then generate a public/private keypair, which

may take some time depending on your processor speed.
5. Like the SSL server, the client needs to install its signer certificate in the

SSL server’s key/certificate repository. This allows the SSL server to verify
the client’s details. With exampleClientCert highlighted, select Extract
Certificate...

6. Select the Data type of the exported certificate, this is typically
Base64-encoded ASCII data.

7. Enter the name/location of the exported certificate, our example uses
exampleClientcert.arm

8. Select OK.

Using self-signed certificates

66 CICS Transaction Gateway for Solaris Administration

|

|

|

|
|

|
|

|
|

|
|
|
|
|

|
|

|

|
|

|
|
|

|
|

|

|

|
|

|
|
|
|

|
|

|
|

|

The exported certificate should be stored in a safe place, and imported into
any client key repository that needs to handshake with this particular SSL
Client Certificate.

Migrating old self-signed certificates

CICS Transaction Gateway Version 3.0 only allowed the use of self-signed
certificates, and did not support externally signed certificates.

In CICS Transaction Gateway Version 3.1 you can use old self-signed
certificates, because the KeyRing class files created with Version 3.0 can be
imported into the iKeyman tool.

Restricting access to the server KeyRing

The contents of the server KeyRing are password encrypted; however it is
highly recommended that you:
v Ensure correct file permissions are in place
v Restrict access, where applicable, to the CICS Transaction Gateway machine.

It is not good practice to share certificates among servers. You do not want
servers to share a private key, particularly if they are running on different
machines. A private key should never be communicated to others.

Configuring CICS Transaction Gateway for SSL and HTTPS

The CICS Transaction Gateway supports various protocols for communicating
with its clients, including TCP, HTTP, SSL, and HTTPS. To use the SSL and
HTTPS protocols, you must enable them using the configuration tool (see
“Using the configuration tool” on page 30). The SSL and HTTPS protocols will
then be started when the CICS Transaction Gateway is executed. You can
specify that just one of the security protocols is used, or both. With these
handlers specified, when the CICS Transaction Gateway is started, it listens
for SSL requests on port 8050, and for HTTPS requests on port 443.

The settings that are specific to the SSL and HTTPS protocols are:

KeyRing classname
This setting specifies the name of the server KeyRing classfile.
CLASSPATH must be set so that this class can be found.

KeyRing password
This setting specifies the password used to decrypt the
encrypted server KeyRing.

Using self-signed certificates

Chapter 5. Security 67

|
|
|

|

|
|

|
|
|

|

|
|

|

|

|
|
|

|
|

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

Use client authentication
This setting specifies that client authentication is to be used.
The default is that server authentication is used.

Using the configuration tool will create the necessary entries in the
configuration file. Full examples of SSL and HTTPS protocol entries are
contained in the sample configuration file CTGSAMP.INI.

The CICS Transaction Gateway provides two default KeyRing class files that
can be used to establish SSL and HTTPS connections. The ClientKeyRing and
ServerKeyRing are both encrypted using the password default, and are only
recommended for use in testing environments. Therefore, to use the SSL and
HTTPS protocols, we recommend that you generate your own KeyRings, as
described in preceding sections.

Specifying the client KeyRing

Which secure protocol is used will determine whether a client KeyRing is
required. The HTTPS protocol is designed for secure communication from
within a Java applet, where the browser (client) itself has the necessary
functionality to establish a secure connection with the CICS Transaction
Gateway (server). For this reason the HTTPS protocol only requires a
server-side KeyRing to be specified, the client side is handled by the browser
software.

The SSL protocol is designed at a much lower level in which the CICS
Transaction Gateway has code to handle the server and the client in a secure
fashion. The SSL protocol requires a KeyRing classfile for both the server and
the client.

The client KeyRing is specified by setting a static field in the
SslJavaGateway.class. This class forms part of the CICS Transaction Gateway
client-side code.

The SslJavaGateway.class provides two methods: one for ”getting” and one for
“setting” the client KeyRing:
public static void setKeyRing(String strSetKeyRing, String strSetKeyRingPW)
public static String getKeyRing()

To set the client KeyRing class to be used by the SSL protocol, your client
application or applet would make a static call to the following method:

SslJavaGateway.setKeyRing(CLASSname, PASSword);

where:

Using self-signed certificates

68 CICS Transaction Gateway for Solaris Administration

|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|

|

|

v CLASSname denotes the classname of the Java KeyRing class generated for
the client

v PASSword is used to decipher the embedded X.509 certificate.

The SslJavaGateway.class also provides the “getter” method getKeyRing() to
return the CLASSname of the currently specified client KeyRing.

Using the SSL/HTTPS protocols to establish a connection from a client
application or applet to the CICS Transaction Gateway is no different from
using the TCP or HTTP protocols. The client application or applet simply
“flows” its request to the CICS Transaction Gateway using the relevant URL.
For example, for SSL the application would use
ssl://transGatewayMachine:8050, or for HTTPS it would use
https://transGatewayMachine:443.

See the CICS Transaction Gateway Programming book and the CICS Transaction
Gateway programming interface HTML pages for further information
regarding the design and implementation of client-side programs.

Using self-signed certificates

Chapter 5. Security 69

|
|

|

|
|

|
|
|
|
|
|
|

|
|
|

70 CICS Transaction Gateway for Solaris Administration

Chapter 6. CICS Transaction Gateway operation

This chapter describes:
v “Starting the Gateway”.
v “Stopping the Gateway” on page 73.

Starting the Gateway

You start the Gateway at the operating system command prompt of the
computer on which you have installed it.

First, set your working directory to the CICS Transaction Gateway’s bin
directory.

You can start the CICS Transaction Gateway in two ways:
v “Starting the Gateway with preset options”

v “Starting the Gateway with user-specified options”.

Starting the Gateway with preset options

To start the Gateway with predefined options: Type ctgstart at the command
prompt and press Enter.

When you start the Gateway in this way, the default configuration settings, or
those you configured using the configuration tool, are used. (see “Using the
configuration tool” on page 30).

A Gateway console session is started, and the following message is displayed:
CCL6500I: Starting the Gateway with default values.

This is followed by lines showing the values being used:
CCL6502I: [Initial ConnectionManagers = 1, Maximum ConnectionManagers = 100,
CCL6502I: Initial Workers = 1, Maximum Workers = 100, Port = 2345]

Starting the Gateway with user-specified options

The user definable options on the start command are:
-port=port_number
-initconnect=number
-maxconnect=number
-initworker=number

© Copyright IBM Corp. 1996, 1999 71

|
|

|
|
|

|
|
|
|

-maxworker=number
-trace
-notime
-tfile=pathname
-noinput
-nonames

where:

-port
Specifies a TCP/IP port number for the tcp: protocol.

-initconnect
Specifies an initial number of ConnectionManager threads.

-maxconnect
Specifies a maximum number of ConnectionManager threads. If this value
is set to -1, no limits are applied to the number of ConnectionManager
threads.

-initworker
Specifies an initial number of Worker threads.

-maxworker
Specifies a maximum number of Worker threads. If this value is set to -1,
no limits are applied to the number of ConnectionManager threads.

-trace
Enables extra tracing messages (see “Using trace” on page 97.)

-notime
Disables timing information in messages (times are shown to millisecond
accuracy).

-tfile=pathname
If tracing is enabled, writes the trace messages to the file specified in
pathname. If no path is specified, the trace is written to the CTG.TRC file
in the bin subdirectory where CICS Transaction Gateway is installed.

-noinput
Disables the reading of input from the console.

-nonames
Disables display of TCP/IP hostnames.

-x Enables full debug tracing. This includes everything traced by the -trace
option, plus additional information. This option will decrease performance
significantly.

Operation

72 CICS Transaction Gateway for Solaris Administration

|
|
|
|
|
|

|
|

|
|
|
|

||
|
|

To override the startup defaults type ctgstart at the command prompt,
followed by the start-up options you require, and press Enter. Options
specified on the command line override those specified using the
configuration tool.

The following startup message is displayed:
CCL6501I: Starting the CICS Transaction Gateway with user specified values.

This is followed by lines showing the values being used, for example:
CCL6502I: [Initial ConnectionManagers = 10, Maximum ConnectionManagers = 100,
CCL6502I: Initial Workers = 10, Maximum Workers = 100, Port = 2345]

To get help on the startup options, enter:
ctgstart ?

Stopping the Gateway

To stop the Gateway:
v If you have not started the Gateway with the -noinput parameter, you can

stop the Gateway by typing the correct character and pressing the Enter
key in the Gateway console session. The allowable characters may be
localized for your country; the default characters allowed are the Q or -
characters.
You can determine which characters will stop the Gateway by simply
pressing the Enter key in the Gateway console session. A message like the
following is displayed:
CCL6508I: Type Q or - to stop the CICS Transaction Gateway.

v If you have used the -noinput parameter, you must stop the Gateway
process using some other method, for example:
– Use the kill command

Operation

Chapter 6. CICS Transaction Gateway operation 73

|
|
|
|

Operation

74 CICS Transaction Gateway for Solaris Administration

Chapter 7. CICS Transaction Gateway Terminal Servlet

This chapter describes how to use the Terminal Servlet to access CICS 3270
applications using a Web browser.
v “What is the CICS Transaction Gateway Terminal Servlet?” tells you what a

servlet is, and in particular what the CICS Transaction Gateway Terminal
Servlet does.

v “Installing and configuring the Terminal Servlet” on page 77 discusses how
you install and configure the Terminal Servlet.

v “Using the Terminal Servlet” on page 83 describes what you can do with
the Terminal Servlet, and how to invoke it from your Web pages.

v “CICS Transaction Gateway Terminal Servlet samples” on page 89 describes
how to use the samples supplied with the Terminal Servlet.

v “Properties and parameters reference” on page 90 provides a complete
reference to the servlet properties you can specify for the Terminal Servlet.

v “CICS Transaction Server for OS/390 Web Interface” on page 95 describes
how HTML templates generated for use by the CICS Web Interface can be
used by the Terminal Servlet.

It is advisable to read through all of this chapter before configuring and using
the Terminal Servlet.

What is the CICS Transaction Gateway Terminal Servlet?

Servlets are Java programs that run on a Web server machine, inside a
Java-enabled Web server or servlet engine, for example, WebSphere
Application Server (see Figure 6 on page 77). Java servlets have become
popular as alternatives to Common Gateway Interface (CGI) programs—the
Terminal Servlet is a replacement for the CICS Internet Gateway shipped with
IBM CICS Clients Version 2, which was a CGI program.

A servlet can be loaded automatically when the Web server is started, or
loaded when the first client request for the services of the servlet is made.
Unlike CGI programs, servlets are persistent, that is, once they are loaded
they stay running, waiting for additional client requests. This makes servlets
faster than CGI programs, as no time is wasted in creating and destroying
processes.

© Copyright IBM Corp. 1996, 1999 75

|

|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

Being Java programs, servlets are portable across operating systems. And,
because the servlet interface is a standard, they can be used with different
Web servers on different platforms.

The Terminal Servlet allows you to access CICS 3270 applications using a Web
browser. You create Web pages that invoke the Terminal Servlet to start a
CICS transaction, display screen information sent from a CICS server, and
send screens back to CICS.

The Terminal Servlet can:
v Behave like a simple terminal emulator.

The CICS screen is displayed in the browser as part of an HTML form.
When you press one of the buttons in the form, the form is submitted and
data is sent to CICS.

v Substitute data from a CICS screen into HTML template files.
An HTML template file is used to determine how CICS data appears in the
browser. The Terminal Servlet replaces variables in the HTML template file
with CICS screen information, and the resulting output is sent to the
browser. For more information, see “Using variable substitution” on
page 86.

v Using server-side includes, incorporate variable information in a Web
page, or drive a terminal emulator without user interaction.
Server-side includes are statements in an HTML file (.shtml) that are
processed by the Web server before the Web page is returned to the
browser. For example, you can use a server-side include to invoke the
Terminal Servlet to display the value of fields in a CICS screen. For more
information, see “Invoking the servlet with a server-side include” on
page 85.

v Map CICS screens to Web pages.
Using the page mapping properties of the Terminal Servlet, you can
associate particular Web pages with particular CICS screens. For example,
you can specify the Web page to be displayed when the terminal is idle,
and no transaction is running. For more information, see “Page mapping
properties” on page 92.

Like EPI programming, the Terminal Servlet allows you to create new front
ends to existing CICS transactions. However, it also allows you to exploit the
power, flexibility, and platform-independence of Java programming.

Note: The Terminal Servlet does not support DBCS fields in 3270 data
streams.

CICS Transaction Gateway Terminal Servlet

76 CICS Transaction Gateway for Solaris Administration

|
|
|

|
|
|
|

|

|

|
|
|

|

|
|
|
|
|

|
|

|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|

|

Installing and configuring the Terminal Servlet

This section discusses how to install the Terminal Servlet on the Web server
machine, and set the initialization parameters of the Terminal Servlet.

The procedure for installing and configuring the Terminal Servlet will vary
according to the Web server. However, you will need to do at least the
following:
v Configure the Web server’s CLASSPATH and PATH settings
v Add the Terminal Servlet to the Web server’s configuration
v Configure the servlet initialization parameters
v Consider other configuration options, such as security, logging, and

whether the Web server can process server-side includes.

An example of installing and configuring the Terminal Servlet on a particular
Web server is given in any configuration document that may be available, see
“Sample configuration documents” on page 103. The principles described in
that document should apply to other Web servers also.

Figure 6. CICS Transaction Gateway using Terminal Servlet invoked by URL

CICS Transaction Gateway Terminal Servlet

Chapter 7. CICS Transaction Gateway Terminal Servlet 77

|
|

|
|

|
|
|

|

|

|

|
|

|
|
|
|

Regardless of the Web server you use, you should refer to its documentation
for guidance in installing and configuring servlets.

Configuring the Web server’s CLASSPATH and PATH settings

You must ensure that the two CICS Transaction Gateway jar files (ctgclient.jar
and ctgserver.jar) are in the Web server’s classpath. In the case of WebSphere
Application Server, you do this in the Java Engine section of WebSphere’s
Administration tool.

If you do not make the correct classpath settings, you may get a message to
the effect that you cannot update the servlet, and that the class
com.ibm.ctg.servlet.TerminalServlet cannot be loaded.

You must also ensure that the CICS Transaction Gateway bin subdirectory is
in the Web server’s path.

Adding the Terminal Servlet to the Web server’s configuration

To add the Terminal Servlet to the Web server’s configuration, you must
provide a Servlet Name and associate this servlet instance with the Terminal
Servlet class, which is com.ibm.ctg.servlet.TerminalServlet. In the case of
WebSphere Application Server, you do this in the Servlet Configuration
section of WebSphere’s Administration tool.

You can configure more than one instance of the Terminal Servlet. Each of
them would have a different Servlet Name, but would refer to the same
Servlet Class. In fact, you must create a different Terminal Servlet instance for
each CICS server that you want to connect to. Each instance of the Terminal
Servlet may use different initialization parameters, and this can be useful
when configuring for different CICS servers.

Configuring the servlet initialization parameters

After adding the Terminal Servlet to the Web server’s configuration, you must
set up the initialization parameters for the Terminal Servlet. In the case of
WebSphere Application Server, you do this in the Servlet Configuration
section of WebSphere’s Administration tool.

The following sections give some insight into how the Terminal Servlet works,
which will help you in setting appropriate servlet initialization parameters.

The full set of initialization parameters are listed in “Properties and
parameters reference” on page 90. However, to start with, you should consider
setting some of the following parameters:

CICS Transaction Gateway Terminal Servlet

78 CICS Transaction Gateway for Solaris Administration

|
|

|

|
|
|
|

|
|
|

|
|

|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|

|
|
|

Table 3. Servlet initialization parameters

Parameter name Notes

servlet@propertyFile The servlet can load configuration information from a
properties file. A sample servlet.properties file is
supplied, in the subdirectory
/samples/Java/com/ibm/ctg/servlet.

To use a properties file, set this parameter to the full
path name of the properties file you want the Terminal
Servlet to load. If you specify a properties file then you
may want to use this file for all other servlet
parameters. In this case, servlet@propertyFile is the
only parameter that you need to set.

servlet@extendedLogging The servlet writes logging information, for example,
error messages, to the standard servlet log. Set this
property to true to write more information to the log
file. You may find this helpful when first configuring
the servlet, but it should be turned off once the servlet
is set up correctly.

pool@maxTerminals Set this property to the maximum allowable number of
connections to the CICS server. You should ensure that
the CICS server has sufficient free tasks to handle this
number of concurrent connections. You should also
ensure that the CICS Client Maximum requests
configuration setting is at least as large as this property.

pool@serverName Each instance of the Terminal Servlet can connect to
only one CICS server. This gives you more control of
resource usage and security. Set this property to the
name of the required CICS server, as defined by the
appropriate Server name setting in your configuration.
If this property is not set, the default CICS server is
used.

pool@gatewayUrl Set this property if you want the servlet to connect over
the network to the CICS Transaction Gateway.

Apart from the name of the property file, all the servlet properties can either
be loaded from a properties file or set as servlet initialization parameters.
Initialization parameters override properties file entries.

The servlet property names are not case sensitive.

Terminal pooling

The Terminal Servlet uses a pool of terminals, and the servlet configuration
properties allow you to control the behavior of the terminal pool. The default

CICS Transaction Gateway Terminal Servlet

Chapter 7. CICS Transaction Gateway Terminal Servlet 79

||

||

||
|
|
|

|
|
|
|
|
|

||
|
|
|
|
|

||
|
|
|
|
|

||
|
|
|
|
|
|

||
|

|
|
|

|

|

|
|

behavior is that a new terminal is connected to CICS whenever a user requires
one, up to the pool@maxTerminals limit. When the user has finished with the
terminal, it is disconnected.

If the pool@minTerminals property is set, this number of terminals is
connected to CICS when the servlet starts, and up to that number may be
connected to CICS but not in use at any time. This allows new users to be
allocated a terminal immediately, without waiting for a connection.

Setting the pool@reusingTerminals property allows terminals to be reused,
that is, when a user session ends, the terminal may be allocated to a new user
instead of being disconnected. This property has no effect if
pool@minTerminals is 0. Any transaction running on the terminal is ended
and the screen is cleared, before it is reused. However, if a user has signed on
to CICS (using CESN for example), the terminal will still be signed on when it
is reused. For this reason, do not set this property unless you are sure it is
suitable for your environment.

The pool@idleTimeout property allows terminals that have been allocated to
a user to be released if they have not been used for the specified timeout
period. This property defaults to 0, that is, no timeout.

Using a display request with the values: pool@connectedTerminals,
pool@freeTerminals, and pool@terminalsInUse, you can query the number of
terminals that are connected, free, or in use for a particular instance of the
Terminal Servlet.

Page mappings

Page mappings tell the Terminal Servlet what Web page to display for a
particular CICS screen or terminal state.

The servlet’s choice of which page to display is based on the current page
mapping settings, the current screen handler class, and the state of the
terminal.

The Terminal Servlet first looks at the page mapping properties to see if there
is a specific page set for the current state of the session, as follows:

Session State Page Mapping Property

an error has occurred page@error

the terminal is idle - no transaction is
running

page@idle

the terminal has been disconnected page@disconnected

CICS Transaction Gateway Terminal Servlet

80 CICS Transaction Gateway for Solaris Administration

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|

|
|

|
|
|

|
|

|||

||

|
|
|

||

Session State Page Mapping Property

there is a screen handler for the current
screen

Page mapping for the class name of the
screen handler

If no specific page is found, the page identified by the page mapping property
page@default is used. If this is not set, an error message is displayed instead.

The value of a page mapping property can be set in two ways:
1. A URL, for example:

http://webserver/index.html

2. A template file to be loaded for variable substitution. This must start with
″file://″, for example:
file://d:/pages/template.html

If you set the servlet@templateDir property, template filenames can be
specified relative to the template directory.

Example settings for page mapping properties are as follows:
page@error=http://server/errors.html
page@idle=http://server/idle.html
page@disconnected=/ctglab/html/servlet/epissam.html
page@default=file://epissam1.html

To set a page mapping for a particular screen, you must create a Screen
Handler bean that can recognize that screen. Then, you must set the
pool@handlerPath property to ensure that the Screen Handler bean is loaded
by the Terminal Servlet. If, for example, you have created a Screen Handler
bean called MAP1ScreenHandler in a package called testmaps, then the page
mapping property for that screen handler is:
page@testmaps.MAP1ScreenHandler.

The name of the class is case sensitive. As for the standard page mappings,
you set the property to the name of the Web page to display, for example:
page@testmaps.MAP1ScreenHandler=http://server/test.html

A page mapping can also be set in a request parameter to the Terminal
Servlet, in which case it applies only to that request and overrides any page
mappings associated with the instance of the servlet being used. You can
query the current setting of a page mapping with an appropriate request (see
“Displayable properties” on page 94).

Screen Handler beans and terminal disconnection

For a terminal to be disconnected successfully, it must exit from running
transactions. The Terminal Servlet’s default behavior for achieving this is to

CICS Transaction Gateway Terminal Servlet

Chapter 7. CICS Transaction Gateway Terminal Servlet 81

||

|
|
|
|

|
|

|

|

|

|
|

|

|
|

|

|
|
|
|

|
|
|
|
|
|

|

|
|

|

|
|
|
|
|

|

|
|

send the AID (Attention identifier) PF3 key to CICS. However, if you will be
running transactions for which this will not work, you should create one or
more Screen Handler beans that know how to exit the relevant screens.

You can generate Screen Handler beans automatically from BMS maps using
the BMS Map Conversion Utility (BMSMapConvert) supplied with the CICS
Transaction Gateway, or you can write your own classes. For information
about Screen handlers and how to create them, see the CICS Transaction
Gateway Programming book.

To load screen handlers into the servlet, set the pool@handlerPath property.
The handler path can include .jar files, .zip files and directories, although
sub-directories will not be searched. For example, in the servlet properties file
you might add:
pool@handlerPath=d:/handlers/handlers.jar;d:/handlers/test

to load screen handler classes from a .jar file and from a directory. See the
sample properties file for more information on setting this property.

You can also specify a default screen handler (using the property
pool@defaultHandler), which is used to exit from a screen if no other screen
handler recognizes it. The sample default screen handler is
com.ibm.ctg.epi.DefaultScreenHandler, which sends the AID PF3 to CICS.
The source for this class can be found in the directory
samples/java/com/ibm/ctg/epi. Any screen handler bean that can be loaded
from the classpath or from the handler path can be used as the default screen
handler.

The servlet will not keep trying to exit a running transaction indefinitely. The
property pool@exitRetryLimit controls how many attempts it makes to exit
the transaction. The default value of this property is 10, but you should
ensure it is large enough for your environment. If the servlet finds there is
still a transaction running on the terminal after this many attempts to exit, the
terminal is assumed to be ‘dead’ and it will not be disconnected or allocated
to a user. The only way to discard dead terminals is to unload the servlet,
stop and restart the CICS Transaction Gateway, and load the servlet again.

If you have configured the servlet properly and provided Screen handler
beans, you should not have any dead terminals.

Considering other configuration options

Other configuration options that you should consider are:
v Security

You may need to control access to the Terminal Servlet.

CICS Transaction Gateway Terminal Servlet

82 CICS Transaction Gateway for Solaris Administration

|
|
|

|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|

|

|

|

v Logging

The Terminal Servlet writes log information to the standard servlet log. You
can set logging on or off.

v Session tracking

You should configure the Terminal Servlet to use session tracking.
v Server-side includes

You may wish to configure your Web server to process server-side includes.

Note: IBM WebSphere Application Server, Version 1.01, does not fully support
input or output of DBCS data by servlets, and other servlet engines
may have the same restriction. In this situation, the Terminal Servlet
displays DBCS characters as ???? (question marks).

Loading the Terminal Servlet

After you have configured the Terminal Servlet and saved the settings, you
must load it. You can choose whether to load it immediately, or each time
your Web server starts up.

If you have not configured the Terminal Servlet properly, error messages are
displayed when Web server attempts to load the Terminal Servlet. For more
information refer to the Terminal Servlet section in the CICS Transaction
Gateway Messages book.

Using the Terminal Servlet

This section describes how to use the Terminal Servlet. It describes the
different ways in which the Terminal Servlet can be invoked, and also how to
develop the Web pages that use the Terminal Servlet.

Connecting to CICS and starting a transaction

An instance of the Terminal Servlet can only connect to one CICS server. For
each CICS server that you want to allow access to, you will have created an
instance of the servlet. You might also have created instances of the servlet
that have different initialization parameters.

To start a transaction on the CICS server, you must invoke the Terminal
Servlet with a suitable request.

Invoking the Terminal Servlet

There are three ways to invoke the Terminal Servlet:
v by URL
v with an HTML form

CICS Transaction Gateway Terminal Servlet

Chapter 7. CICS Transaction Gateway Terminal Servlet 83

|

|
|

|

|

|

|

|
|
|
|

|

|
|
|

|
|
|
|

|
|

|
|
|

|

|
|
|
|

|
|

|

|

|

|

v with a server-side include.

In each case, you need to know the name of the servlet instance that you
want to use, and you pass the servlet one or more request parameters that tell
it what action to take. The parameter names and values are the same in all
cases, but the way you specify them is different.

To start a transaction on the CICS server, the parameters you must provide
are:

Parameter Name Parameter Value

request send

transaction the transaction ID of the transaction you want started.

Note however that ATI transactions cannot be started for the
Terminal Servlet.

The servlet will allocate a terminal to the user, if it is required.

The full set of request parameters are listed in “Request parameters” on
page 93.

Invoking the servlet by URL

To invoke a servlet instance called TerminalServlet, link to the URL:
http://your_webserver/servlet/TerminalServlet

where your_webserver is the hostname of your Web server.

You can encode request parameters in the URL in the form of a query string,
for example:
http://your_webserver/servlet/TerminalServlet?request=send&transaction=CECI

You should use this method of invoking the servlet when you do not need the
user to enter any information.

Invoking the servlet with an HTML form

With this method, you create an HTML form in a Web page. For example:
<FORM METHOD="GET" ACTION="/servlet/TerminalServlet">
(Tags to place text entry areas, buttons, and other prompts go here)
</FORM>

is a form that would invoke the servlet called TerminalServlet. The METHOD
can be GET or POST. The various elements of the form have names and
values, and these are sent to the servlet when the form is submitted. If you

Using the Terminal Servlet

84 CICS Transaction Gateway for Solaris Administration

|

|
|
|
|

|
|

|||

||

||

|
|

|

|
|

|

|

|

|

|
|

|

|
|

|

|

|
|
|

|
|
|

know you want to set a particular request parameter, add it as a hidden item
in the form, for example: <input type=″hidden″ name=″request″
value=″send″>. Hidden inputs are always sent to the servlet. In general, the
name of a form element is the name of a request parameter, and its value is
the value of the request parameter.

This is the only way to send user-entered information to the servlet.

The supplied sample, epissam3.html, illustrates the HTML form method, see
“CICS Transaction Gateway Terminal Servlet samples” on page 89.

Invoking the servlet with a server-side include

A server-side include is processed by the Web server before the Web page is
sent to the user. The servlet is invoked, and any output it generates is
included in the Web page in place of the server-side include tags. The user
only sees the servlet output in the Web page.

In the HTML source, a server-side include of the servlet looks like this:
<SERVLET NAME="TerminalServlet" >
<PARAM NAME="request" VALUE="send">
<PARAM NAME="transaction" VALUE="CECI">
<PARAM NAME="display" VALUE="none">
</SERVLET>

A server-side include can be used to add variable information to a Web page,
or to drive a terminal to perform some action whenever a Web page is
displayed, without any user involvement.

You can add as many server-side includes to a Web page as you wish, but
note:
v Server-side includes in one page may be processed in parallel. You can

therefore not be sure in which order they are performed, although usually
this is the order in which they occur in the source.

v The servlet stores session information that allows it to access the terminal
allocated to a user. If the user session is invoked by a server-side include,
subsequent server-side includes in the same page will not be able to access
the session information. Once the page has been sent to the user, the
session is established, and a page with multiple server-side includes will
work correctly.

The supplied sample epissam2.shtml, illustrates the server-side include
method, see “CICS Transaction Gateway Terminal Servlet samples” on
page 89.

Using the Terminal Servlet

Chapter 7. CICS Transaction Gateway Terminal Servlet 85

|
|
|
|
|

|

|
|

|

|
|
|
|

|

|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|

What happens next?

When the servlet has been invoked from a form or by linking to a URL, some
output must be sent back to the browser. To decide what should be displayed
to the user, the servlet uses the page mapping properties that you have set up,
see “Page mappings” on page 80.

Displaying screens and fields

There are two ways to include CICS screen information in a Web page:
v server-side includes
v variable substitution.

You can mix the two approaches if you want to.

Using server-side includes

Your Web server must be configured to process server-side includes. You
create SHTML pages that contain server-side includes that invoke the servlet.
The output from the servlet is inserted into the page in place of the
server-side include.

For example, to display the screen (as part of an HTML form):
<SERVLET NAME="TerminalServlet" >
<PARAM NAME="display" VALUE="screen">
</SERVLET>

or to display the contents of the 22nd field on the screen:
<SERVLET NAME="TerminalServlet" >
<PARAM NAME="display" VALUE="22">
</SERVLET>

Using variable substitution

You create HTML template files that the servlet will load. The servlet replaces
variables in the file with CICS screen information, and the resulting output is
sent to the browser. You use page mapping properties to tell the servlet what
template file to load (see “Page mappings” on page 80).

For example, a template file for the CESN signon screen might look like:
<html>
<head>
<title>CICS Signon</title>
</head>
<body>
<h1>CICS Signon</h1>
<form method="POST" action="/servlet/TermServlet">

Using the Terminal Servlet

86 CICS Transaction Gateway for Solaris Administration

|

|
|
|
|

|

|

|

|

|

|

|
|
|
|

|

|
|
|

|

|
|
|

|

|
|
|
|

|

|
|
|
|
|
|
|

<input type="hidden" name="request" value="send">
<pre>
Userid: <input type="text" name="USERID" value="&USERID;" size="8" >
Password: <input type="text" name="PASSWORD" value="&PASSWORD;" size="8" >
</pre>
<input type="submit" name="DFH_ENTER" value="Sign on">
<input type="submit" name="DFH_PF1" value="Help">
<input type="submit" name="DFH_PF3" value="Exit">
</form>
</body></html>

where the variables are &USERID; and &PASSWORD;. You can identify fields
by number - to use names for fields, as in this example, you must have a
Screen Handler bean which can recognize the screen and set fields by name.

Page mapping property values can be the names of HTML template files or
any URL. So that the servlet knows that a page mapping property identifies
an HTML template, you should set it to the value file://template_filename, for
example: file://d:/html/templates/test.html.

What can be displayed?

Any piece of information that can be displayed by a server-side include can
also be used for variable substitution, and vice-versa. The variable name used
in a template is the same as the value of the display parameter in the
server-side include.

Generally, you can display:
v The screen, as part of an HTML form
v A field - identified by number, or by name, if you have a Screen Handler

bean for it
v Servlet configuration settings
v The number of terminals that are currently connected, in use, and free.

The full set of properties that can be displayed is listed in “Properties and
parameters reference” on page 90.

Sending the screen back to CICS

To send the screen back to CICS you must invoke the servlet with the request
parameter set to ″send″. You do not need to provide a transaction parameter -
it is ignored if a transaction is already running. To update the screen with
new information before sending it back to CICS, you specify further request
parameters that identify the fields (by name or number) and what they should
be set to.

Using the Terminal Servlet

Chapter 7. CICS Transaction Gateway Terminal Servlet 87

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|
|

|

|

|
|

|

|

|
|

|

|
|
|
|
|
|

For example, the following server-side include:
<SERVLET NAME="TerminalServlet" >
<PARAM NAME="request" VALUE="send">
<PARAM NAME="USERID" VALUE="sysad">
<PARAM NAME="PASSWORD" VALUE="sysad">
<PARAM NAME="display" VALUE="none">
</SERVLET>

would set the fields named USERID and PASSWORD to the values given, and
then send the screen to CICS. In an HTML form, you might use the form
element <input type=″text″ name=″USERID″ value=″″ size=″8″>. When the
user submits the form, the request parameter USERID is set to the value that
they entered.

Setting the AID

The default AID is Enter.

To set the AID from an HTML form, include a Submit button, specified like
this:
<input type="submit" name="DFH_PF3" value="Exit" >.

If the user presses the button, the servlet is sent the request parameter
″DFH_PF3″ with the value ″Exit″ (which the servlet ignores). The AID is set to
PF3. In a server-side include, you could set the AID like this:
<SERVLET NAME="TerminalServlet" >
<PARAM NAME="request" VALUE="send">
<PARAM NAME="DFH_PF3" VALUE="ignored">
<PARAM NAME="display" VALUE="none">
</SERVLET>

The full set of request parameters is listed in see “Properties and parameters
reference” on page 90.

Disconnecting

When the servlet has allocated a terminal to a user, it is retained until:
v The servlet is invoked with the parameter ″request″ set to ″disconnect″
v The user’s session on the Web server expires
v If the pool@idleTimeout property has been set, the terminal is

automatically disconnected if it is not accessed for the specified period of
time.

v The CICS Client is stopped
v The connection to the CICS server is lost - or the server goes down
v The servlet is unloaded by the Web server.

Using the Terminal Servlet

88 CICS Transaction Gateway for Solaris Administration

|

|
|
|
|
|
|

|
|
|
|
|

|

|

|
|

|

|
|
|

|
|
|
|
|

|
|

|

|

|

|

|
|
|

|

|

|

You should try to explicitly release terminals when they are no longer
required.

Note that when a user has established a session with the servlet and been
allocated a terminal, any instance of the servlet to which the user has access
can continue the session. The same terminal is used until the user disconnects
or the session is ended for some other reason. The page mappings and other
properties used for any particular request are those set for the instance of the
servlet that is processing the request.

Properties that can be set as request parameters, for example, page mappings,
override the settings for the servlet, but usually only apply to the current
request, and do not affect requests by other users or subsequent requests by
the same user.

CICS Transaction Gateway Terminal Servlet samples

This section describes how to use the samples provided with the Terminal
Servlet.

Setting up the samples

The samples assume that you have configured the Terminal Servlet on your
Web server with the instance name ‘TerminalServlet’. If you have used a
different instance name, you will need to edit each of the sample HTML files
and change ‘TerminalServlet’ to the correct name.

Copy all the sample HTML files to a suitable directory on your Web server.

Edit the sample properties file servlet.properties and set the following
properties, using the instructions in the file:
1. page@disconnected

2. page@default

3. page@demo.MAPINQ1ScreenHandler

4. pool@handlerPath

Set the servlet initialization parameter servlet@propertyFile to the filename of
the file servlet.properties.

To pick up the changes, unload and load the servlet.

Using the Terminal Servlet samples

These samples show you some of the ways you can use the CICS Transaction
Gateway Terminal Servlet.

Using the Terminal Servlet

Chapter 7. CICS Transaction Gateway Terminal Servlet 89

|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|

|

|
|
|
|

|

|
|

|

|

|

|

|
|

|

|

|
|

Basic Terminal Emulation
This sample shows you how to use the servlet as a replacement for a
CICS terminal. It uses a server-side include to display the CICS screen
as part of an HTML form. If you do not want to use server-side
includes, change the value of the page@default property in the
sample properties file to file://[filename of epissam1.shtml].

The next two samples use the transaction EPIC, which is a sample transaction
supplied with the CICS Transaction Gateway. You can find the source code for
the program epiinq.ccs and for the map epiinq.bms in the subdirectory
samples/server. They also use the sample screen handler beans supplied in
the file sample.jar. You must compile both the program and map on your
CICS server system and define a transaction EPIC to run the program epiinq.

Server-Side Includes Sample (epissam2.shtml)
This sample shows you how to use server-side includes to display
information from a CICS screen and to drive the terminal.

HTML Template Sample (epissam3.shtml)
This sample shows you how to use an HTML template file.

Administrator information sample (epissam4.shtml)
This sample shows you how to display information that might be
useful to an administrator.

Properties and parameters reference

This section describes the Terminal Servlet properties

Servlet configuration properties

In general, these properties can be specified either in a properties file or as
servlet initialization parameters when you configure the Web server. The
names are not case sensitive. Values given as servlet initialization parameters
override settings loaded from a properties file. Apart from the servlet@debug
and servlet@extendedLogging properties, these settings cannot be changed
while the servlet is running. However, using the request parameter display,
you can query the current settings of a property, see “Displayable properties”
on page 94.

servlet@propertyFile
The full path name of a properties file to load. This property can only
usefully be set as a servlet initialization parameter.

servlet@debug
If set to true, turns tracing on for all instances of the servlet. You can

CICS Transaction Gateway Terminal Servlet samples

90 CICS Transaction Gateway for Solaris Administration

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|

|

|

|
|
|
|
|
|
|
|

|
|
|

|
|

turn tracing on or off while the servlet is running, and output is
directed to standard output. Note that turning tracing on seriously
impacts performance!

servlet@extendedLogging
If set to true, turns extended logging on. Output is directed to the
servlet log.

servlet@allocateTimeout
The maximum time in milliseconds that the servlet will wait for a
terminal to be allocated to a user. The default is 20000 (20 seconds).

servlet@templateDir
The name of a directory from which HTML template files can be
loaded. Setting this property prevents users from viewing files that
are not in the template directory or its subdirectories. If you do not set
this property, the servlet can load any file on the Web server that it
has access to.

servlet@coloring
If set to Y, colored fields are displayed in the color indicated in the
3270 datastream.

Due to the limitations of HTML, unprotected fields cannot be colored
and always appear as black text on a white background.

If the property is not specified. the Terminal Servlet displays the
screen with black text on a white background.

pool@maxTerminals
The maximum number of terminals that can be connected to CICS
concurrently. The default value is 5.

pool@minTerminals
The number of terminals that should be kept connected to CICS when
not in use. The default value is 0.

pool@serverName
The name of the CICS server to connect to. If this property is not set,
the default CICS server, as defined in your configuration is used.

pool@deviceType
The terminal model definition to use. If this property is not set, the
default is used.

pool@handlerPath
The path from which Screen Handler beans are loaded. You can
include directories, .jar files, and .zip files, but subdirectories are not
searched.

pool@defaultHandler
The screen handler to use to exit screens when no specific handler is

Properties and parameters reference

Chapter 7. CICS Transaction Gateway Terminal Servlet 91

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

found. If you set this to be one of the Screen Handlers loaded from
the Screen Handler path, make sure that the handler path is set before
the default handler.

pool@idleTimeout
The maximum time in milliseconds to allow a terminal to be left idle
before it is automatically disconnected. The default value is 0,
meaning no timeout.

pool@exitRetryLimit
The number of times that the servlet will try to exit a running
transaction during terminal disconnection. This prevents the servlet
looping, if a screen cannot be exited.

pool@reusingTerminals
If set to true, released terminals are kept connected for the next user.
The default behavior is to disconnect terminals when a user session
ends. You must also set pool@minTerminals for this property to have
any effect.

pool@gatewayUrl
The URL of the CICS Transaction Gateway that the servlet should
connect to. The default is to use a local Gateway, that is local://.

screen@cursoring
If set to true, JavaScript sets the screen cursor position. The default
setting is false.

screen@stripBlanks
If set to true, the Web Browser formats the field text.

screen@stripEmptyRows
If set to true, screen rows that do not contain data are removed.

Page mapping properties

Page mappings associate Web pages with particular screens or terminal states.
Page mappings can be specified in a properties file, or as servlet initialization
parameters, when you configure the Web server. However, using the request
parameter display, you can query the current settings of a page mapping, see
“Displayable properties” on page 94.

Standard page mapping properties Value

page@disconnected The page to show when the terminal is
disconnected.

page@error The page to show when an error occurs

page@idle The page to show when the terminal is
idle, that is, no transaction is running

Properties and parameters reference

92 CICS Transaction Gateway for Solaris Administration

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|

|
|

|

|
|
|
|
|

|||

||
|

||

||
|

Standard page mapping properties Value

page@default The page if no other page is specified.

page@screen The page to show for this screen.

Request parameters

These parameters are set only when a request is made. You can also specify
any other property that can be set on a request, for example:
servlet@extendedLogging.

Parameter name Parameter value

request Set to ″send″ to send a screen to CICS or ″disconnect″ to
end a session

If required, a new terminal session is started.

display The name of a property that can be displayed, see
“Displayable properties” on page 94.

translateText Set to ″true″ to translate the characters <, > and & to
< > and & respectively. This is used when
text is displayed.

transaction The transaction ID of a transaction to be started. This is
only used if the request is ″send″ and the terminal state
is idle.

ATI transactions cannot be started for the Terminal
Servlet.

transactionData Additional parameters to pass to a transaction. This is
only used if the request is ″send″ and the terminal state
is idle, and a transaction was specified.

DFH_CURSOR The field where the screen cursor should be placed, as a
field index (a number), or the name of the field, if a
screen handler bean is available for the current screen.

This parameter name must be in upper case.

DFH_ENTER,
DFH_CLEAR, DFH_PA1 -
3, DFH_PF1 - 24

The value is ignored.

Use one of these parameters to specify the AID key to
be sent to CICS. This must be in upper case.

A field index The text to be set in the field.

Use to set the contents of a field when you know the
field index.

Properties and parameters reference

Chapter 7. CICS Transaction Gateway Terminal Servlet 93

||

||

||

|

|
|
|

|||

||
|

|

||
|

||
|
|

||
|
|

|
|

||
|
|

||
|
|

|

|
|
|

|

|
|

||

|
|

Parameter name Parameter value

usingSession Set to false if no terminal session is required.

If this parameter is set, any terminal used for this
request is discarded after use.

matchOnIdle Set to false by default.

Normally the servlet only attempts to find a
ScreenHandler for the current screen when the terminal
state is ‘client’, that is, a conversational or
pseudo-conversational transaction is expecting a
response. Setting this property to true causes the servlet
to check the current ScreenHandler every time the
screen changes regardless of the state. You may want to
do this if you have transactions that use BMS maps, but
which are not conversational or pseudo-conversational.
If you have a large number of ScreenHandlers, the
servlet may run more slowly when this property is set
to true. For this reason, the default value is false.

In addition, if a Screen Handler bean is available for the current screen, you
can set any properties on that bean by specifying them in the request. For
beans generated by BMSMapConvert, the field names defined in the BMS
map are properties that can be set to the required text in the field.

Displayable properties

The following table shows the values that can be specified for the ″display″
request parameter or used for variable substitution, see “Using variable
substitution” on page 86.

Display values Displays

none Nothing. Use to suppress output from a
server-side include.

screen The screen - as part of an HTML form.

errorMessage If an error has occurred, the error
message.

errorCause If an error has occurred, further
information about the error.

DFH_CURSOR The name of the field where the cursor is,
if it can be determined, otherwise the
field index.

a field index The field text

Properties and parameters reference

94 CICS Transaction Gateway for Solaris Administration

||

||

|
|

||

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|

|||

||
|

||

||
|

||
|

||
|
|

||

Display values Displays

a screen handler property name The value of the property if it can be
determined.

any of the servlet configuration properties
listed above

The value of the property for the current
servlet instance.

any page mapping property The value of the property for the current
servlet instance.

any request parameter, except for
″request″ and ″display″

The value of the property for the current
request.

pool@connectedTerminals The current number of connected
terminals, for this servlet instance.

pool@freeTerminals The current number of connected
terminals that are not in use, for this
servlet instance.

pool@terminalsInUse The current number of terminals allocated
to users, for this servlet instance.

CICS Transaction Server for OS/390 Web Interface

The CICS Web Interface, included in CICS Transaction for OS/390 Version 1.2,
is a collection of transactions and programs supporting direct access to CICS
transaction processing services from Web browsers.

If you have generated HTML templates for use by the CICS Web Interface,
they can also be used as HTML templates by the Terminal Servlet. You will
have to make some changes to invoke the servlet instead of the CICS Web
Interface, but the format is basically the same.

To use the template file:
1. Copy the template file to a directory on the Web server.
2. Edit it to change the <FORM> action to /servlet/TerminalServlet and add

a hidden <FORM> element with name ″request″ and the value ″send″.
3. Generate a Map class and Screen Handler bean for the BMS map that the

HTML template refers to.
4. Compile the generated Java source files.
5. Copy the compiled class files to a suitable directory on the Web server.
6. Set the servlet property pool@handlerPath so that it will load the new

classes.
7. Set a page mapping property to associate the new Screen Handler bean

with the HTML template file.

Properties and parameters reference

Chapter 7. CICS Transaction Gateway Terminal Servlet 95

||

||
|

|
|
|
|

||
|

|
|
|
|

||
|

||
|
|

||
|

|
|

|
|
|

|
|
|
|

|

|

|
|

|
|

|

|

|
|

|
|

Properties and parameters reference

96 CICS Transaction Gateway for Solaris Administration

Chapter 8. Problem determination and problem solving

Problem determination is not to be confused with problem solving, although
while investigating a problem you may find enough information to solve the
problem. Examples of the types of problem that can arise are:
v End-user errors
v Programming errors
v Configuration errors.

Preliminary checks

Before investigating the problem, it is worth checking to see whether there is
an obvious cause:
v Has the system run successfully before?
v Have you made any changes to the configuration of the system or added

new features or programs?
v Is your CLASSPATH path set correctly? (See “Configuring your

programming environment for CICS Transaction Gateway” on page 29.)
v Is the CICS Universal Client environment set correctly?
v Are there any messages explaining the failure?
v Can the failure be reproduced?

What to do next

If you think the problem is in the CICS Transaction Gateway, you need to
collect as much information as possible and contact your support
organization.

If you started the Gateway without trace enabled, you need to stop the
Gateway, restart it with the trace option, and recreate the problem.

If you suspect the problem is in the CICS Universal Client or elsewhere in the
network, you should follow the problem determination procedures provided
with those other products. CICS Universal Clients problem determination is
described in the CICS Clients Universal Administration book for your platform;
for CICS Servers, see the Problem Determination book for the relevant server.

Using trace

The CICS Transaction Gateway trace records information passing between the
browser and the Gateway.

© Copyright IBM Corp. 1996, 1999 97

|

To route messages and trace information to a file, specify:
ctgstart -trace -tfile

when starting the Gateway, which generates a CTG.TRC file in the bin
directory. For more information on starting CICS Transaction Gateway, see
“Starting the Gateway” on page 71.

To produce a full debug trace, you can use the ctgstart -x option.

Program support

To obtain program support for the CICS Transaction Gateway you need to
report the problem against the CICS Universal Client version you are using.

Different levels of program support are available and you should check what
level you have before contacting IBM. Warranty and support information is
provided in the License documents you get with the product; some products
also include a Service and Support card, or visit our Web site at:
http://www.ibm.com/software/ts/cics/

and follow the Support link.

Messages

The CICS Transaction Gateway messages have a CCL prefix; which has
traditionally been used for CICS Clients.

For a list of the messages generated by the CICS Transaction Gateway, see the
CICS Transaction Gateway Messages book.

Problems with the JDK AppletViewer

When using AppletViewer to run any of the CICS Transaction Gateway
sample applets from your local file system, the message
CCL6664E Unable to load relevant class to support the protocol protocol

may be displayed.

To solve this problem, select Applet from the AppletViewer menu; then select
Properties; then set both Network Access and Class Access to Unrestricted.

Problem determination

98 CICS Transaction Gateway for Solaris Administration

|

|

|
|
|

|

|

|
|

|
|

|

|

|
|

Problems with starting CICS Transaction Gateway for Solaris

If you have problems starting or running the client, you may need to change
your system specification file, which can be found in the /etc/system file.
This problem is fully discussed in the CICS Universal Client for Solaris
Administration book.

Terminal Servlet problems

A servlet log is provided by the servlet engine that runs the Terminal Servlet,
and all instances of the servlet write to the same log. For WebSphere the
servlet log is:
\Websphere\Appserver\logs\servlet\servletservice\event_log

The Terminal Servlet writes to the log when it is started or stopped, and
whenever an error occurs. When the servlet engine initializes or destroys an
instance of the servlet, it is also recorded in the servlet log.

Using the servlet@extendedLogging property, you can control whether
extended logging is performed. If extended logging is turned on, additional
information is written to the servlet log, that is, the servlet writes to the log
every time it receives a request. This can provide further valuable information,
but you should turn extended logging off when not required, as it slows
down the servlet.

Using the servlet@debug property, you can control whether tracing is
performed for the Terminal Servlet. If tracing is turned on, full Gateway trace
is turned on for every servlet instance. The destination of the trace output
depends on the servlet engine. For WebSphere, you must enable trace by
editing the file:
\Websphere\AppServer\properties\bootstrap.properties

and setting the following:
java.debug=true

and trace output will be written to the
\Websphere\AppServer\logs\jvm_stdout.log and jvm_stderr.log files. You
should turn this tracing off when not required, as it slows down the servlet.

You can turn both extended logging and tracing on while the Terminal Servlet
is running. For more information on Terminal Servlet properties see
“Properties and parameters reference” on page 90.

Problem determination

Chapter 8. Problem determination and problem solving 99

|
|

|
|
|
|

|
|

|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|

|

|
|
|

|
|
|

100 CICS Transaction Gateway for Solaris Administration

Appendix A. The CICS Transaction Gateway and CICS
Universal Clients library

This chapter lists all the CICS Transaction Gateway, CICS Universal Clients,
and related books, and discusses the various forms in which they are
available.

The headings in this chapter are:
v “CICS Transaction Gateway books”
v “CICS Universal Clients books” on page 102
v “CICS Family publications” on page 102
v “Book filenames” on page 103
v “Sample configuration documents” on page 103
v “Other publications” on page 104
v “Viewing the online documentation” on page 104

CICS Transaction Gateway books

v CICS Transaction Gateway for OS/2 Administration, SC34-5590

This book describes the administration of the CICS Transaction Gateway for
OS/2.

v CICS Transaction Gateway for Windows Administration, SC34-5589

This book describes the administration of CICS Transaction Gateway for
Windows 98 and CICS Transaction Gateway for Windows NT.

v CICS Transaction Gateway for AIX Administration, SC34-5591

This book describes the administration of the CICS Transaction Gateway for
AIX.

v CICS Transaction Gateway for Solaris Administration, SC34-5592
This book describes the administration of the CICS Transaction Gateway for
Solaris.

v CICS Transaction Gateway for OS/390 Administration, SC34-5528

This book describes the administration of the CICS Transaction Gateway for
OS/390.

v CICS Transaction Gateway Messages

This online book lists and explains the error messages that can be generated
by CICS Transaction Gateway.
You cannot order this book.

© Copyright IBM Corp. 1996, 1999 101

|

|

|

|
|
|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

v CICS Transaction Gateway Programming, SC34-5594
This book provides an introduction to Java programming with the CICS
Transaction Gateway.
There are also additional HTML pages that contain programming reference
information.

CICS Universal Clients books

v CICS Universal Client for OS/2 Administration, SC34-5450

This book describes the administration of the CICS Universal Client for
OS/2.

v CICS Universal Client for Windows Administration, SC34-5449

This book describes the administration of the CICS Universal Client for
Windows 98 and CICS Universal Client for Windows NT.

v CICS Universal Client for AIX Administration, SC34-5348

This book describes the administration of the CICS Universal Client for
AIX.

v CICS Universal Client for Solaris Administration, SC34-5451
This book describes the administration of the CICS Universal Client for
Solaris.

v CICS Universal Clients Messages

This online book lists and explains the error and trace messages that can be
generated by CICS Universal Clients.
You cannot order this book.

v CICS Universal Clients C++ Programming, SC33-1923
This book describes how to write object oriented programs for the ECI and
EPI in the C++ language.

v CICS Universal Clients COM Automation Programming, SC33-1924
This book describes how to write object oriented programs for the ECI and
EPI according to the Component Object Model (COM) standard.

CICS Family publications

v CICS Family: Client/Server Programming, SC33-1435
This book describes the programming interfaces associated with CICS
client/server Programming— the External Call Interface (ECI), the External
Presentation Interface (EPI), and the External Security Interface (ESI). It is
intended for application designers and programmers who wish to develop
client applications to communicate with CICS server systems.

The CICS Transaction Gateway and CICS Universal Clients library

102 CICS Transaction Gateway for Solaris Administration

|

|
|

|
|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

|

|
|

|

|
|

|
|

|

|
|
|
|
|

Book filenames

Table 4 show the softcopy filenames of the CICS Transaction Gateway and
CICS Universal Client books.

Table 4. CICS Transaction Gateway and CICS Universal Clients books and file names

Book title File name

CICS Universal Clients Messages CCLHAB

CICS Universal Client for AIX Administration CCLHAD

CICS Universal Client for OS/2 Administration CCLHAE

CICS Universal Client for Windows Administration CCLHAF

CICS Universal Client for Solaris Administration CCLHAG

CICS Transaction Gateway for OS/390 Administration CCLHAI

CICS Transaction Gateway Messages CCLHAJ

CICS Transaction Gateway Programming CCLHAK

CICS Transaction Gateway for Windows Administration CCLHAL

CICS Transaction Gateway for OS/2 Administration CCLHAM

CICS Transaction Gateway for AIX Administration CCLHAN

CICS Transaction Gateway for Solaris Administration CCLHAO

CICS Universal Clients C++ Programming CCLHAP

CICS Universal Clients COM Automation Programming CCLHAQ

CICS Family: Client/Server Programming DFHZAD

Note: The File names in this table do not include the 2-digit suffix.

Sample configuration documents

A number of sample configuration documents are available in the Portable
Document Format (PDF) format.

These documents provide step-by-step guidance to help you, for example, in
configuring your CICS Universal Clients for communication with CICS
servers, using various protocols. They provide detailed instructions that
extend the information in the CICS Transaction Gateway and CICS Universal
Client libraries.

As more sample configuration documents become available, you can
download them from our Web site; go to:
http://www.ibm.com/software/ts/cics/

CICS Family publications

Appendix A. The CICS Transaction Gateway and CICS Universal Clients library 103

|
|

|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

|

|
|

|
|

|
|
|
|
|

|
|

|

http://www.ibm.com/software/ts/cics/

and follow the Library link.

Other publications

The following International Technical Support Organization (ITSO) Redbook
publication contains many examples of client/server configurations:
v Revealed! CICS Transaction Gateway with more CICS Clients Unmasked,

SG24-5277

This book supersedes the following book:
v CICS Clients Unmasked, GG24-2534

You can obtain ITSO Redbooks from a number of sources. For the latest
information, see:
http://www.ibm.com/redbooks/

You can find information on CICS products at:
http://www.ibm.com/software/ts/cics/

Viewing the online documentation

You can access all of the documentation provided with CICS Transaction
Gateway and CICS Universal Client in our online library. You need Adobe
Acrobat Reader and a suitable Web browser to use the online library (and you
may need to configure these).

To get to the online library:
v On Windows and OS/2, select the Documentation icon.
v On AIX and Solaris, run the ctgdoc script.

and the library home page is displayed.

The online library allows you to link to:
v CICS Transaction Gateway and CICS Universal Clients books in PDF

format.
v Programming reference documentation in HyperText Markup Language

(HTML) files (provided for CICS Transaction Gateway only).
v README files.
v Sample configuration documents in PDF format.
v Translated books in PDF format. (You may find that not all books are

translated for your language.)
v The CICS Web site.

Other publications

104 CICS Transaction Gateway for Solaris Administration

|

|
|

|
|

|
|

|

|

|
|

|

|

|

|
|

|
|
|
|

|

|

|

|

|

|
|

|
|

|

|

|
|

|

http://www.ibm.com/redbooks/
http://www.ibm.com/software/ts/cics/

Guidance information on using Acrobat Reader is also provided.

Updated versions of the books may be provided from time to time, check our
Web site at:
http://www.ibm.com/software/ts/cics/

and follow the Library link.

Viewing PDF books

The PDF information provides powerful functions for:
v Navigating through the information. There are hypertext links within PDF

documents, and to other PDF documents and Web pages.
v Searching for specific information.
v Printing all or part of PDF documents on a PostScript printer.

You can find out more about Acrobat Reader at the Adobe Web site:
http://www.adobe.com/acrobat/

Viewing the online documentation

Appendix A. The CICS Transaction Gateway and CICS Universal Clients library 105

|

|
|

|

|

|

|

|
|

|

|

|

|

http://www.ibm.com/software/ts/cics/
http://www.adobe.com/acrobat/

Viewing the online documentation

106 CICS Transaction Gateway for Solaris Administration

Appendix B. Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

© Copyright IBM Corp. 1996, 1999 107

|

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the information. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM United
Kingdom Laboratories, MP151, Hursley Park, Winchester, Hampshire,
England, SO21 2JN. Such information may be available, subject to appropriate
terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX Anynet
CICS eNetwork
IBM MQSeries
MVS MVS/ESA
OS/2 OS/390
OS/400 RETAIN
TXSeries
VisualAge VSE/ESA
VTAM WebSphere

108 CICS Transaction Gateway for Solaris Administration

Lotus Domino, Lotus Notes, and Domino Go Webserver are trademarks of
Lotus Development Corporation.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java, and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, or other countries, or both.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service
marks of others.

Appendix B. Notices 109

110 CICS Transaction Gateway for Solaris Administration

Index

A
Advanced Program-to-Program

Communication (APPC) 20
APPC (Advanced

Program-to-Program
Communication) 20

AppletViewer 98
Applid configuration setting 38
asymmetric keys 52

B
beans, Java 5
BMS Map Conversion Utility 82, 94
books 101

CICS Transaction Gateway and
CICS Universal Clients
library 101

online 104
PDF 105
printed 105

browsers 20

C
certification authority (CA) 53
CICS Gateway for Java 23
CICS server PTF requirements 22
CICS servers 21
CICS Transaction Gateway

configuring 29
hardware requirements 19
Host on-Demand 16
load balancing 16
local 16, 50
migration 22
problem determination 97
software requirements 19
starting CICS Transaction

Gateway with preset
options 71

starting Gateway with
user-specified options 71

startup options 71
stopping 73

CICSCLI.LOG 41
CICSCOL environment variable 50
CICSKEY environment variable 49
CLASSPATH 29
CLASSPATH setting 57
Client KeyRing class file 55

Client trace file configuration
setting 45

Codepage identifier override
configuration setting 40

Common Object Request Broker
(CORBA) standard 16

communication
protocols 20

configuration
CLASSPATH 29
color mapping 49
configuration file 30
configuration tool 30
Gateway.properties file 30
keyboard mapping 49
programming environment 29
web servers 29

configuration conversion tool 45
configuration file 30
configuration settings

Applid 38
Client trace file 45
Codepage identifier override 40
Connection timeout 35, 43
Description 41
Display TCP/IP hostnames 34
Drop working connections 36
Enable protocol handler 35
Enable reading input from

console 34
Handler wakeup timeout 35
Hostname or IP address 42
Idle timeout 36
Initial number of Connection

Manager threads 33
Initial number of Worker

threads 33
Initial transaction 41
Java gateway trace file 44
KeyRing classname 37
KeyRing password 37
Let Java clients obtain generic

ECI replies 34
Local LU name 43
Log file 41
Maximum buffer size 38
Maximum Client wrap size 45
Maximum number of Connection

Manager threads 33

configuration settings (continued)
Maximum number of Worker

threads 33
Maximum requests 39
Maximum servers 39
Mode name 43
Model terminal definition 41
Partner LU name 43
Ping time frequency 36
Port 35, 42
Print command 39
Print file 40
Require security 36
Send TCP/IP Keepalive

packets 43
Server name 41
Server retry interval 40
SNA 42
SO_LINGER setting 36
TCP/IP 42
Terminal exit 38
Time shown in messages 34
Timeout for in-progress requests

to complete 34
Trace 44
Use client authentication 37
Use LU alias names 43
Use upper case security 42
Worker thread available

timeout 35
configuration tool 30
configuring 29
Connection timeout configuration

setting 35, 43
CORBA (Common Object Request

Broker) standard 16
ctgconv, conversion tool 46
ctgikey 57
ctgstart command 71

D
Description configuration setting 41
digital certificates 14, 53
digital signatures 53
DISPLAY environment variable 26
Display TCP/IP hostnames

configuration setting 34
distinguished name 53
documentation 101

HTML 104

© Copyright IBM Corp. 1996, 1999 111

documentation 101 (continued)
PDF 105

Drop working connections
configuration setting 36

E
Enable protocol handler

configuration setting 35
Enable reading input from console

configuration setting 34
encryption 14, 52
environment variables

CICSCOL 50
CICSKEY 49
CLASSPATH 29
LD_LIBRARY_LIBPATH 50

ESI (external security interface) 13
Euro support 40
external security interface (ESI) 13
externally-signed certificates 58

F
firewalls 6
free memory 38

G
Gateway.properties file 30

H
Handler wakeup timeout

configuration setting 35
hardcopy books 105
hardware requirements 19
Host on-Demand 16
Hostname or IP address

configuration setting 42
HTML (HyperText Markup

Language) 104
HTML documentation, viewing 104
HTTPS 15
HyperText Markup Language

(HTML) 104

I
Idle timeout configuration

setting 36
IIOP (Internet InterOrb Protocol) 16
Initial number of Connection

Manager threads configuration
setting 33

Initial number of Worker threads
configuration setting 33

Initial transaction configuration
setting 41

initialization files
CICSCOL.INI 49
CICSKEY.INI 49

installation
CICS Transaction Gateway on

Solaris 25
Internet InterOrb Protocol (IIOP) 16

J
Java

applet 3
application 5
beans 5
classes 2
firewall 6
Java language 3
servlet 4

Java gateway trace file configuration
setting 44

JAVA_HOME environment
variable 57

Java Servlet Development Kit
(JSDK) 2

JSDK (Java Servlet Development
Kit) 2

K
KeyRing classname configuration

setting 37
KeyRing file 55
KeyRing password configuration

setting 37
KeyRings 15, 55

L
Let Java clients obtain generic ECI

replies configuration setting 34
load balancing 16
local CICS Transaction Gateway 16,

50
Local LU name configuration

setting 43
Log file configuration setting 41

M
Maximum buffer size configuration

setting 38
Maximum Client wrap size

configuration setting 45
Maximum number of Connection

Manager threads configuration
setting 33

Maximum number of Worker
threads configuration setting 33

Maximum requests configuration
setting 39

Maximum servers configuration
setting 39

memory requirements 38
messages 98

migration
CICS Gateway for Java 23
CICS Transaction Gateway

Version 3.0 22
CICS Universal Clients Version

2 22
CICS Universal Clients Version

3.0 22
migration issues 22
Mode name configuration

setting 43
Model terminal definition

configuration setting 41

N
national language support 25
NetBIOS (Network Basic

Input/Output System) 20
Network Basic Input/Output System

(NetBIOS), 20
network computers 6

O
object request broker (ORB) 16
online books, PDF 105
online documenatation, HTML 104
operation

starting the Gateway 71
stopping the Gateway 73

ORB (object request broker) 16

P
Partner LU name configuration

setting 43
PDF (Portable Document

Format) 105
PDF books, viewing 105
Ping time frequency configuration

setting 36
planning 19
Port configuration setting 35, 42
Portable Document Format

(PDF) 105
PostScript books 105
Print command configuration

setting 39
Print file configuration setting 40
problem determination 97

CICS Universal Client
problems 97

messages 98
preliminary checks 97
program support 98
trace 97

program support 98
protocols 20

112 CICS Transaction Gateway for Solaris Administration

protocols 20 (continued)
APPC 2, 20
HTML 7
HTTPS 14
NetBIOS 2, 20
Secure Sockets Layer (SSL) 14
TCP/IP 2, 20
TCP62 20

public key cryptography 53
publications, CICS Transaction

Gateway and CICS Universal
Clients library 101

R
Remote Method Invocation

(RMI) 16
Require security configuration

setting 36
RMI (Remote Method

Invocation) 16

S
Secure Sockets Layer (SSL) 14
security 42

authentication 55
authorization 14
certificates 15
certification authority (CA) 53
client authentication 55
concepts 51
ctgikey 57
digital certificates 14, 53
digital signatures 53
distinguished name 53
Distributing iKeyman to client

workstations 57
embedding the certificates 63
encryption 14, 52
external security interface

(ESI) 13
externally-signed certificates 15,

58
HTTPS 15, 67
key/certificate repository 66
KeyRing file 55
KeyRings 15, 55
keys 52
maintaining digital

certificates 57
migrating old self-signed

certificates 67
public key cryptography 53
Secure Sockets Layer (SSL) 14
security exits 16
self-signed CA certificate 63
self-signed certificates 15

security 42 (continued)
server authentication 55
signer certificate 53
SSL 67
SSL (Secure Sockets Layer) 14
SSL handshaking 56
trusted root key 53

security exits 16
self-signed certificates 63
Send TCP/IP Keepalive packets

configuration setting 43
server KeyRing class file 55
Server name configuration

setting 41
Server retry interval configuration

setting 40
servlet engine 20
servlet log 99
servlets 4
signer certificate 53
signon capable terminals 22
SNA (Systems Network

Architecture) 20
SNA configuration setting 42
SO_LINGER setting configuration

setting 36
softcopy books, PDF 105
software requirements 19

Java Development Kit (JDK) 19
operating system 19
Web browsers 20
Web servers 19

SSL (Secure Sockets Layer) 14
SSL handshaking 56
starting CICS Transaction

Gateway 71
stopping the Gateway 73
symmetric keys 52
Systems Network Architecture

(SNA) 20

T
TCP/IP (Transmission Control

Protocol/Internet Protocol) 20
TCP/IP configuration setting 42
TCP62 20
Terminal exit configuration

setting 38
thread limits 11
Time shown in messages

configuration setting 34
Timeout for in-progress requests to

complete configuration setting 34
trace 97
Trace configuration setting 44

Transmission Control
Protocol/Internet Protocol
(TCP/IP) 20

trusted root key 53

U
Use client authentication

configuration setting 37
Use LU alias names configuration

setting 43
Use upper case security

configuration setting 42

V
viewing online documentation 104

W
Web browsers 6, 20
Web servers 7, 19
WebSphere 20
Worker thread available timeout

configuration setting 35

Index 113

114 CICS Transaction Gateway for Solaris Administration

IBMR

Program Number: 5648-B43

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5592-00

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Conventions and terminology used in this book
	Prerequisite and related information
	How to send your comments
	Obtaining books from IBM

	Chapter 1. Overview
	What the CICS Transaction Gateway provides
	Java technology
	The Java language
	Java applets
	Java servlets
	Java applications
	JavaBeans™
	Firewalls
	Web browsers and network computers
	Web servers

	How the CICS Transaction Gateway accesses CICS
	The CICS Transaction Gateway: threading model
	The external access interfaces (EPI, ECI, ESI)
	External Presentation Interface (EPI)
	External Call Interface (ECI)
	External Security Interface (ESI)

	Network security
	Secure Sockets Layer (SSL)
	HTTPS
	Keys and Certificates
	Security exits

	CICS Transaction Gateway and object request brokers
	Other functions

	Chapter 2. Planning before installation
	Hardware requirements
	Software requirements
	Web servers
	Web browsers
	Universal CICS Clients
	CICS servers
	CICS server PTF requirements
	Migration issues
	Migrating from CICS Universal Client Version 3.0
	Migrating from CICS Transaction Gateway Version 3.0
	Migrating from CICS Gateway for Java

	Chapter 3. Installing CICS Transaction Gateway
	Installing CICS Transaction Gateway on Solaris
	National language support

	Using X-Windows from a remote system

	Chapter 4. Configuring CICS Transaction Gateway
	Configuring your programming environment for CICS Transaction Gateway
	Setting CLASSPATH on Solaris

	Using the configuration tool
	The configuration tool interface
	Tree structure
	Menu bar
	Toolbar
	Settings panels

	Configuring CICS Transaction Gateway settings
	General Gateway settings
	TCP protocol settings
	SSL protocol settings
	HTTP protocol settings
	HTTPS protocol settings

	Configuring Client settings
	Applid
	Maximum buffer size
	Terminal exit
	Maximum servers
	Maximum requests
	Print command
	Print file
	Codepage identifier override
	Server retry interval
	Log file

	Configuring Server settings
	Server name
	Description
	Initial transaction
	Model terminal definition
	Use upper case security
	TCP/IP
	SNA
	TCP/IP settings
	SNA settings

	Trace settings
	Trace Settings
	Java gateway trace file
	Client trace file
	Maximum Client wrap size

	The configuration conversion tool
	Using the conversion tool

	Editing the configuration file
	GATEWAY section
	CLIENT section
	SERVER section
	DRIVER section

	Configuring the client keyboard mapping
	Configuring the client screen colors and attributes
	Preparing to use local CICS Transaction Gateway support

	Chapter 5. Security
	Overview
	What is encryption?
	Digital signatures and digital certificates
	Obtaining a digital certificate
	Buying a certificate from a CA
	Issuing certificates yourself

	KeyRings

	SSL and authentication
	HTTPS
	The ctgikey tool
	Distributing iKeyman to client workstations

	Using externally-signed certificates (SSLight)
	Configuring your SSL server
	Creating the server KeyRing
	Preparing a certificate request
	Obtaining the Server Certificate
	Receiving the Server Certificate into the server KeyRing

	Configuring SSL clients
	Obtaining the Client Certificate
	Creating the client KeyRing
	Importing the Client Certificate into the client KeyRing

	Using self-signed certificates (SSLight)
	Configuring the SSL server
	Creating the server KeyRing
	Generating the Server Certificate
	Exporting the Servers signer certificate

	Configuring the SSL clients
	Creating the client KeyRing
	Importing the server's signer certificate
	Generating a Client Certificate

	Migrating old self-signed certificates
	Restricting access to the server KeyRing

	Configuring CICS Transaction Gateway for SSL and HTTPS
	Specifying the client KeyRing

	Chapter 6. CICS Transaction Gateway operation
	Starting the Gateway
	Starting the Gateway with preset options
	Starting the Gateway with user-specified options

	Stopping the Gateway

	Chapter 7. CICS Transaction Gateway Terminal Servlet
	What is the CICS Transaction Gateway Terminal Servlet?
	Installing and configuring the Terminal Servlet
	Configuring the Web server’s CLASSPATH and PATH settings
	Adding the Terminal Servlet to the Web server’s configuration
	Configuring the servlet initialization parameters
	Terminal pooling
	Page mappings
	Screen Handler beans and terminal disconnection

	Considering other configuration options
	Loading the Terminal Servlet

	Using the Terminal Servlet
	Connecting to CICS and starting a transaction
	Invoking the Terminal Servlet
	Invoking the servlet by URL
	Invoking the servlet with an HTML form
	Invoking the servlet with a server-side include

	What happens next?
	Displaying screens and fields
	Using server-side includes
	Using variable substitution
	What can be displayed?

	Sending the screen back to CICS
	Setting the AID
	Disconnecting

	CICS Transaction Gateway Terminal Servlet samples
	Setting up the samples
	Using the Terminal Servlet samples

	Properties and parameters reference
	Servlet configuration properties
	Page mapping properties
	Request parameters
	Displayable properties

	CICS Transaction Server for OS/390 Web Interface

	Chapter 8. Problem determination and problem solving
	Preliminary checks
	What to do next
	Using trace
	Program support
	Messages

	Problems with the JDK AppletViewer
	Problems with starting CICS Transaction Gateway for Solaris
	Terminal Servlet problems

	Appendix A. The CICS Transaction Gateway and CICSUniversal Clients library
	CICS Transaction Gateway books
	CICS Universal Clients books
	CICS Family publications
	Book filenames
	Sample configuration documents
	Other publications
	Viewing the online documentation
	Viewing PDF books

	Appendix B. Notices
	Trademarks

	Index

