IBM Software Thought Leadership White Paper
Rational

Value-driven quality management for
complex systems

Six strategies for reducing cost and risk

2 Value-driven quality management for complex systems

Introduction

Consider what software means to your business today. Is it just
another component in a larger product or system? Or is it fast
becoming the differentiator that separates your products in a
saturated marketplace? The reality is that companies across
many industries are increasingly relying on software to inno-
vate and create the smarter products and systems that cus-
tomers and marketplaces are demanding. For companies
whose business outcomes hinge on software working correctly,
quality management is vital to success. At the same time,
software quality efforts, which require more rigorous
processes and tools to manage issues such as compliance and
traceability, traditionally have been seen as add-on costs of
development activities. As software’s complexity increases and
its importance grows, this traditional mindset and status quo
approach to quality can lead to serious problems.

Given the danger that software failures can pose to budgets,
brands and even people, it is critical to get quality right. The
challenge is that quality management is a tricky balancing act
that must factor in time, costs and risks. Get it wrong, and you
could face issues ranging from unsustainable costs, missed
windows of opportunity and unhappy customers to a massive
recall or the complete failure of a system at a critical moment,
potentially resulting in loss of life or a failed mission. Get
quality management right, however, and you can achieve a
positive operational return on investment (ROI) from efficien-
cies gained in development activities. But that’s only the
beginning of the potential benefits. With effective quality
management, you can also create opportunities to deliver criti-
cal but difficult-to-qualify benefits, such as improved market
share, higher customer satisfaction and increased brand equity

This paper examines the ROI associated with quality manage-
ment best practices. While each of these practices should be
considered in its own right, collectively, they contribute to an
even stronger business case for applying quality management
as a solution that not only increases quality but also reduces
the cost of quality. As this paper will demonstrate, quality

management best practices do contribute to process improve-
ments, thus improving quality while reducing cost, allowing
you to have your cake and eat it too.

What's the problem with quality?

Complexity is now a given in many products and systems.
Software, microelectronics, sensors and mechanical technolo-
gies are often combined to create products that can respond to
changes; measure conditions; and interact with other products,
people and I'T systems in new ways.

Consider the potential effect of quality issues: In many
industries, large sums of money, the entire success of
organizations—and in some cases lives—can hinge on
constantly getting complex things right. Yet the success and
brand image cultivated over many years can evaporate quickly
when something goes wrong. Examples constantly pop up in
the news: An aerospace agency faced a roughly US$1 billion
loss when a rocket self-destructed because of a bug in a
guidance system. In the healthcare industry, software problems
and poor quality control in cancer treatment systems designed
to deliver precise radiation doses have led to tragic conse-
quences for a number of patients. In these types of cases,
what may seem to be a small defect is actually critical to the
business and its mission.

One of the biggest challenges related to quality management
is how to invest intelligently to minimize risk, given the eco-
nomic constraints of the business. For example, a consumer
products company cannot afford to miss a marketing window
of opportunity to fix something that customers will never
notice. At the same time, an automotive company cannot
afford to ignore an issue that could lead to a massive recall.
Figuring out how to relate quality to business outcomes and
what constitutes the right level of quality for individual prod-
ucts, however, is not always clear.

IBM Software 3

Poor business predictability

Depending on the context, quality has different meanings. A
customer may consider quality as fitness for use, a manufac-
turer may define quality as conformance to requirements and a
company using a value-driven approach may define quality as
a degree of excellence at a certain price point. In each case,
however, a quality failure impairs business predictability and
may manifest itself in one or more of the following ways:

« Operational difficulties—Poor quality can affect the
developmental and operational aspects of product life cycles,
ultimately derailing deadlines and driving higher project
costs. For example, during development, constant replan-
ning may be required as defects and poor alignment with
requirements are discovered, leading to late-cycle rework.

« Through-life costs—Recalls, updates, warranty claims and
litigation are all potential costs of prioritizing delivery tim-
ing over product quality. By imposing testing cycle cutoffs to
meet delivery schedules rather than considering quality, you
inevitably move unpredictability into the operational space,
where the effect can be much more severe.

 Long-term business value decline—When customers are
directly affected by quality issues, the long-term costs, such
as loss of market share and brand equity, can be very high.

Improving the delivery process

So how can you change the delivery process to address quality
problems early in the life cycle rather than masking their
effects until a later stage? The safest way is to use proven
approaches and process frameworks, such as the Capability
Maturity Model, Capability Maturity Model Integration
(CMMI), agile, clean room or other general or domain-
specific approaches. These approaches are well documented,
so this paper does not delve into them. Rather, it discusses
best practices you can apply regardless of your chosen devel-
opment approach or process framework.

A quality improvement program is an investment, and, as
such, you need to clearly understand the benefits and return

on investment to manage expectations appropriately. A simple
definition of ROI is:

ROI = (cost saved - investment)/investment

Focusing on best practices that can deliver a positive return
provides a way to separate practices that will deliver tangible
business results from merely interesting ideas. Moreover, this
paper will explore how you can further justify investments by
potentially delivering savings that are bigger than the sum of
the individual returns.

Software delivery strategies

During any software delivery process, “When do we release?”
is a key question with no single “correct” answer. Rather you
must consider project-specific variables, such as the cost of
delays, the opportunity value of early delivery, marketplace
quality expectations and the costs associated with defects.
Ultimately, the delivery strategy will be based on the actual or
perceived importance of each variable. Typically, software
delivery strategies are schedule driven, quality driven or risk
driven.

The pitfalls of a schedule-driven strategy

Schedule-driven delivery effectively implies “deliver on time,
regardless of other factors” and is often used in consumer
environments to hit marketplace windows or in contractually
governed environments, where delay penalties may apply.
Such a strategy can prove profitable in the short term, but it
also introduces a high potential for quality risks and relies on
customers as unwitting testers. Quality issues are often magni-
fied, given that software contractors frequently get paid on a
time and materials basis regardless of the quality of software
they deliver. In many cases, you may even end up paying extra
for them to fix their own defects, so the potential costs of
defects can add up quickly.

4 Value-driven quality management for complex systems

According to the Carnegie Mellon Software Engineering
Institute, “Data indicate that 60-80 percent of the cost of soft-
ware development is in rework.” Potential costs don’t stop
there—litigation is an increasingly significant cost risk factor.
Moreover, increasing costs and loss of business affect the abil-
ity to innovate—leading to a vicious circle of problems.

The shortcomings of a quality-driven strategy
Quality-driven delivery can also be costly but for different
reasons. The release timing for this approach is governed by
achieving the right quality—but how do you define that?
Achieving zero defects is practically impossible, given that
there is no way to determine how many defects still exist in a
piece of code or the probability of detecting those defects in
use. A target based on defects fixed might be more realistic—
but it’s still impossible to know the number of remaining
defects in the product. Either way, you may be wasting valu-
able time and money on issues that aren’t significant to prod-
uct success.

The advantages of a risk-driven strategy

In terms of cost-effectively balancing quality risk versus time-
to-market considerations, a risk-driven approach may be ideal.
A risk-driven strategy is a refinement of a quality-driven
approach that optimizes risk exposure against development
cost or time. The overall risk exposure is the sum of the expo-
sures for all identified risks associated with the project:

Risk exposure = 3, (probability of loss x size of loss)

The optimal time to release is when the total risk exposure is
minimal, typically around the time where the risk associated

with competitive threats starts to outweigh the risk reduction
associated with further quality improvements, as illustrated in

figure 1.

& \ Many critical High opportunity cost; /’
(?) \\ defects strong competition ,
o N 7
& N ’
w A N .7
N -
2] RS Phe
o ~ o _-
@ Few minor
defects
Low opportunity cost; Optimum
weak competition release point
TIME

-
=== Quality risk (= Probability of defects x loss due to defects)

m = Competition risk (= Probability of competitors x size of loss to competition)

— = Sum of the two risks

-

Figure 1: Balancing risk exposure and opportunity cost

With different types of products, the optimal time to release
can vary widely and is a tough balancing act. Move too soon,
and customers may be upset with quality issues. Wait too long,
and your competition will beat you to the punch and dominate

IBM Software 5

the space. So, in the end, the optimal time to release lies
where your overall risk is minimal. Consider the following
examples.

o Mass-market products—In the consumer electronics mar-
ketplace, time to market is critical to product success. Here
the opportunity cost of delaying a release to improve quality
can be high, thus pushing the optimum release point to an
earlier date.

o Safety-critical applications—In applications such as flight
control software, quality may be the most critical parameter,
given the potential size of loss caused by a defect. In this
case, the optimum release point would be a later date.

« Systems with high-availability requirements—Systems, such
as those for mobile communications in the telecommunica-
tions industry, have extremely high availability requirements
because of the commercial implications of system outages.
As a result, the potential loss resulting from a defect makes
quality critical, pushing the optimum release point to a
later date.

Although development and delivery teams have control over
time to release, many external factors in your industry and
marketplace dictate your time to market. In practice, the
required time to market typically may be before your optimal
time to release, where your overall risk exposure is the lowest.
Tackling this problem requires approaches to accelerate risk
reduction to hit time-to-market windows.

Quality management versus testing

If a faster reduction in risk is the goal, how do you achieve it?
The answer is not testing, which is focused on discovering
defects rather than on being a risk reduction mechanism in its
own right. Quality management, which is the implementation
of practices to proactively reduce risk, is the better answer.
By choosing quality management practices with the potential
to deliver a positive ROI, you can justify risk reduction
measures from not only a quality standpoint but also a
financial standpoint.

Traditionally, testing has been a late-stage activity in the
development life cycle, conducted between the construction of
software and its eventual release. Before you can test anything,
testable entities must exist, and you can’t know the level of risk
until testing determines the defect density in the entities being
tested.

Quality management can be considered as its own life cycle
within the overall software development life cycle, as shown in
figure 2. Its activities take place across the development
process and are synchronized with the development process in
key points. For example, requirements definition provides the
input for the start of test planning, software construction pro-
vides the entities for test execution, and testing provides the
results data for defect management and resolution.

Requirements definition
and management

Build and
release management

Defect
resolution

Dynamic
planning

Analysis
and design
Risk
management

Test
management

Collaborative
quality
management
life cycle

Coverage
analysis

Figure 2: The quality management life cycle within the software develop-
ment life cycle

6 Value-driven quality management for complex systems

The entire process is closely linked to change and configura-
tion management. Discovered defects are work items (or
change requests) that must be managed along with other
change types in the change management process.

There are many strategies for reducing risk, so it is essential to
distinguish between those that are good ideas and those that
also deliver a positive ROL The following are six strategies
that are proven to deliver a positive ROL

Strategy 1: Drive testing from requirements

Linking test definitions to requirements can help ensure that
what you ultimately test reflects requirements. This approach
can help reduce risk by helping to ensure that tests demon-
strate compliance with requirements. It also reduces the risk
of overengineering the product by effectively detecting
feature creep in the form of code that can’t be linked to any
requirement—a factor that is often the source of major quality
and instability issues.

The tooling used to maintain the traceability between require-
ments and tests can have a major effect on productivity.

For example, in many cases, teams maintain requirements and
test cases in conventional office applications, such as text
documents and spreadsheets. Consider a hypothetical
medium-size project with some 5,000 requirements and
10,000 test cases. Assuming it takes 20 minutes to locate and
link the appropriate artifacts for each requirement, it would
take approximately 10 person-months to create the traceability
between requirements and test cases.

You could potentially reduce this time to one to two minutes
per requirement—and a total of just 10 to 20 person-days—
using a dedicated quality management solution with support
for capturing traceability links between requirements and test
cases. At a nominal hourly rate of US$50, this single change
corresponds to a potential saving of around US$75,000.

Strategy 2: Reduce planning overhead with collaborative
quality management

Quality management is an activity with implications across the
development life cycle. As such, managing the testing plan is a
collaborative activity involving many stakeholders. It requires
a central repository where stakeholders can share information
and access a “single version of the truth.” Definition and man-
agement of workflows, so that all stakeholders understand
expectations placed on them and others, are also important.

How efficiently and effectively stakeholders collaborate can
have a big influence on productivity. For example, client inter-
views conducted by IBM have shown that testers typically only
spend 60 percent of their time testing; the rest is spent in
collaborative activities such as communicating with engineers,
tracking decisions and retrieving information. IBM clients that
have automated various collaborative tasks have seen collabo-
ration efficiency improve by 20 percent on average, leading to
a roughly eight percent improvement in overall tester produc-
tivity. For a team of 100 testers, this could lead to savings of
around US$750,000 over 12 months (assuming a US$50 per
hour rate). This means a team of 92 testers could do the work
of 100, leaving the other 8 to accelerate the delivery schedule.

Strategy 3: Prioritize testing according to risk

Although you cannot completely remove risk from a develop-
ment program, you can measure it and manage it by taking
proportional mitigation actions. As previously discussed, the
risk associated with a particular outcome is the product of the
probability of the outcome and the size of the resulting loss.
You can use this quantification of risk to prioritize testing,
helping to ensure that you test high-risk functionality and
requirements first. This approach helps make sure that you are
optimally using finite testing resources to reduce risk as rap-
idly as possible in the development cycle.

IBM Software 7

"Tools that automate the measurement, assessment and prioriti-
zation of risk provide a way to help optimize a risk-driven
development workflow. For example, if your target is to test
for 99 percent of identified risk, without a risk-based
approach, you would need to execute 99 percent of tests. By
measuring risk and prioritizing tests accordingly, you may be
able to test for 99 percent of identified risk with, for example,
90 percent of tests—effectively improving testing productivity
by 10 percent. Again, for a team of 100 testers, this can corre-
spond to savings in excess of US$900,000 over 12 months
(assuming a US$50 per hour rate).

Strategy 4: Integrate testing and quality management to
improve accuracy and repeatability

Integrating both manual and automated testing within the
quality management environment can deliver several benefits,
including:

« Improved management of tests

« A greater likelihood of executing the correct set of tests

o Enhanced collaboration resulting from better information
on testing status and results

Automation delivers further advantages because it increases
the likelihood of executing the tests—resulting in earlier
defect detection and more consistent regression testing.
Although the benefits of testing integration are clear, a quan-
tifiable business case depends on the nature and frequency of
the tests being automated and on the costs to implement the
automation.

Strategy 5: Automate reporting to improve efficiency,
consistency and decision making

Reporting is a key element of the quality management process
because it facilitates educated decision making based on the
information captured across the process. The costs of report-
ing correspond to the complexity of reports and how many
people are required to locate and format the information as

well as how often you generate reports. Manual reporting
costs tend to be proportional to the number of report versions
created. By automating the process, however, you can produce
subsequent reports with minimal additional resources

and cost.

Automation also helps improve the accuracy, consistency and
timeliness of reporting—factors that can positively influence
project management, productivity and quality, all of which
have implications for project ROI. A specific business case
depends on the complexity and number of reports you typi-
cally generate; however, given that many reports require
frequent updates, it is likely that automation will show
positive ROIL.

Strategy 6: Improve efficiency by applying smart defect
management to eliminate duplicates

As project complexity increases, the number of defects
detected can be expected to increase—but often defects are
reported more than once. An IBM study identified this prob-
lem as a significant hidden cost factor in development projects.

Consider a project in which testers detect 1,000 defects, all of
which developers must investigate. Suppose that 20 percent of
those defects are duplicates and that each duplicate requires an
average of two hours of development time to establish that it
has already been fixed. This corresponds to 400 hours of
developer time—or approximately 50 days (equaling about
US$20,000) of overhead simply dealing with duplicates—an

activity that adds no incremental value to the project.

In reality, a defect actually may be detected many times.
Moreover, in a geographically distributed team, which is typi-
cal of today’s complex projects, it may take significantly longer
than two hours of developer time to detect the duplication.
Tooling that automates the detection of duplicate defects as
testers log them can therefore help reduce overhead costs and
shorten delivery timelines.

8 Value-driven quality management for complex systems

The overdall effect of risk reduction CMMI for process maturity provides a good example for ana-
strategies lyzing the overall effect of a quality management life cycle
Each of the individual strategies discussed in this paper deliv- because it can be related to a lot of industry and academic
ers clear benefits and is worth considering in its own right. data. Figure 3 shows a detailed IBM analysis of comprehensive
data from both industry and academic studies. The chart
demonstrates that the transition from one CMMI level to the

next can have a significant effect on the efficiency of the qual-

However, combining all of the strategies to implement quality
management as a life cycle can contribute to a much larger
ROL. In other words, the overall return is bigger than the sum
of all of the individual returns. That’s because a thorough
quality management life cycle can root out defects earlier—
when they are cheaper to fix.

ity process. For example, one effect is a decrease in the ratio of
detected defects to escaped defects during functional testing as
the CMMI level achieved increases. Figure 3 shows the rela-
tionship among three measures at each CMMI level.

Impact of CMMI uplift on quality process efficiency

100% 6
5.7 -
20% <+ 85% 85% g
15 2
80% - 3
o 1 =
70% 1l 4 8 8
O +
60% o8
g =
50% 4 + 3 3¢
3=
40% + 5 &
> &2
30% -+ 8 c
. 8
20% 15% L1103
10% < E
0% 0
1 2 3 4 5
Rational Quality 20% 40% 40% 40% 10%
Manager impact CMMI levels A EEB —o-C

Figure 3: This figure shows the relationship among three measures at each CMMI level. The bars represented by A show initial detected defects as a per-
centage of total defects. The bars represented by B show detected defects as a percentage of total defects with the best practices deployed. Line C shows
the initial ratio of escaping defects to detected defects.

IBM Software 9

For illustrative purposes, consider a project that is at level two,
where functional testing is detecting 1,000 defects. Line C in
figure 3 suggests that testing will miss 2,300 defects, resulting
in a total of 3,300. With the help of best practices, defect
detection rates could be increased to 58 percent, resulting in
the detection of 914 more defects.

Fixing defects earlier for potentially significant cost
savings

The later you discover defects in the development cycle, the
more you pay: An IBM Global Business Services study found
that it costs 7 to 14 times more to fix a defect in user accept-
ance than during unit testing. Using the lower of the two fig-
ures, if it costs approximately US$120 to fix a defect during
unit testing, then by finding the 914 additional defects earlier,
an organization could save the following:

US$120 x 914 x (7 - 1) = US$658,080

Compounding benefits: Greater than the sum of the
parts

The various quality management strategies outlined in this
paper can all deliver efficiency or productivity benefits. So
when you take those benefits into account, along with the
fact that teams will detect more than 1,000 defects for
many large projects, and consider the potential sum of
risk reduction strategy savings plus early defect detection
savings, you arrive at potentially very large operational
cost savings. And this doesn’t even take into account
downstream benefits related to protecting the brand
image and customer satisfaction with higher-quality
offerings.

Improving quality with the help of

IBM solutions

Achieving the benefits of thorough quality life cycle
management requires a strategic combination of integrated
capabilities that can help you manage collaboration and
testing. IBM offers a number of domain-focused workbenches
to address the needs of different software and systems devel-
opment teams. The IBM Rational® Workbench for Systems
and Software Engineering is designed to help you deliver
high quality systems while reducing costs and risks. The
Workbench, which comprises IBM Rational DOORS®
software, IBM Rational Rhapsody® software, IBM Rational
Quality Manager software and IBM Rational Team Concert™
software together with best practice process offerings and
deployment services, provides a core development capability,
encompassing requirements management, model-driven devel-
opment, quality management, collaboration and workflow, and
change and configuration management. Rational Workbench
for Systems and Software Engineering capabilities may be
extended through integrations with other IBM and third-party
offerings.

Providing a quality management hub

Rational Quality Manager software provides a collaborative,
customizable web-based test and quality management hub for
the quality management life cycle. Whether they are down the
hall or across the globe, quality professionals and other deci-
sion makers can use Rational Quality Manager software to
collaborate on virtually all aspects of quality maturation, such
as test planning and management, risk-based testing, and
defect management, including duplicate defect detection.

10 Value-driven quality management for complex systems

The solution uses a Web 2.0-style interface and flexible, auto-
mated reporting capabilities to provide project members
up-to-the-minute project metrics and analytics customized to
their role, so they can detect defects earlier and keep projects
on track. Decision makers can also use detailed, timely infor-
mation to identify trends and make ongoing improvements.

Delivering quality in complex systems is a wide-ranging activ-
ity that requires interoperation with other technologies and
tooling. Rational Quality Manager software can be integrated
with other Rational offerings and also provides open interfaces
that you can use to connect to other testing solutions from

both IBM and third-party vendors.

Supporting requirements-driven testing

Traceability is essential to tracking whether a product ulti-
mately meets requirements. To support this need, Rational
Quality Manager software is integrated with Rational

DOORS software, which provides comprehensive features for
structuring, managing, tracking and tracing requirements from
business needs, through technical specifications, to software
and system test cases.

Supporting model-driven testing

The increasing complexity of systems has caused a shift to
model-based development techniques for many delivery teams,
allowing greater team productivity and better understanding
and communication of design information through the use of
visual modeling languages such as the Systems Modeling
Language (SysML) and the Unified Modeling Language
(UML). Model-driven testing enables the testing activity to
keep up with model-driven design productivity. Rational
Quality Manager software is integrated with IBM Rational
Rhapsody TestConductor Add On software, allowing model-
based testing to be efficiently managed as part of the quality
management process.

Unifying defect management and change workflows
Constant change is the norm in complex systems development
as requirements evolve and you detect and resolve errors and
defects. As a result, change management efficiency can
significantly influence project success. Rational Quality
Management software is integrated with Rational Team
Concert software to unify the defect and change management
workflows. The integration also enables you to automate

IBM Software 11

notifications of build status from Rational Team Concert
software to Rational Quality Manager software, so you can
execute tests against new work products and manage the
resolution of defects found in testing in a single change
management environment.

Conclusion

The momentum of technology, coupled with customer
demands, is pushing organizations to deliver ever-smarter
products. Given the added complexity in development
processes, finding ways to continually optimize time, cost and
quality is critical to ongoing successful innovation. A risk-
driven development approach not only can help you balance
quality risk with time-to-market drivers to better support
business needs but also can do so while delivering a positive
ROL. The cost benefits are achieved through addressing

defects earlier in the development process when they are less
expensive to fix as well as through productivity and efficiency
gains in development processes.

What’s more, a positive ROI and improved project outcomes
are only the start of the benefits from a risk-based approach to
quality management. Such an approach can also support long-
term benefits that cannot be easily quantified but are key to
long-term business growth and success, including customer
satisfaction, reduced in-service costs, and a strong reputation
and brand. When you are ready to improve the quality of your
systems while reducing risks and costs, look no further than
IBM for the tools needed to implement the strategies outlined
in this paper.

For more information

"To learn more about IBM products that support quality
management, please contact your IBM marketing
representative or IBM Business Partner, or visit:
ibm.com/software/rational/offerings/quality

Additionally, financing solutions from IBM Global Financing
can enable effective cash management, protection from tech-
nology obsolescence, improved total cost of ownership and
return on investment. Also, our Global Asset Recovery
Services help address environmental concerns with new, more
energy-efficient solutions. For more information on

IBM Global Financing, visit: ibm.com/financing

software

<|||i

© Copyright IBM Corporation 2010

IBM Corporation
Software Group
Route 100
Somers, NY 10589
USA.

Produced in the United States of America
July 2010
All Rights Reserved

IBM, the IBM logo, ibm.com, and Rational are trademarks of
International Business Machines Corp., registered in many jurisdictions
worldwide. Other product and service names might be trademarks

of IBM or other companies. A current list of IBM trademarks is
available on the web at “Copyright and trademark information” at
ibm.com/legal/copytrade.shtml

References in this publication to IBM products or services do not imply
that IBM intends to make them available in all countries in which
IBM operates.

The information contained in this documentation is provided for
informational purposes only. While efforts were made to verify the
completeness and accuracy of the information contained in this
documentation, it is provided “as is” without warranty of any kind, express
or implied. In addition, this information is based on IBM’s current
product plans and strategy, which are subject to change by IBM without
notice. IBM shall not be responsible for any damages arising out of the
use of, or otherwise related to, this documentation or any other
documentation. Nothing contained in this documentation is intended to,
nor shall have the effect of, creating any warranties or representations
from IBM (or its suppliers or licensors), or altering the terms and
conditions of the applicable license agreement governing the use of
IBM software.

Paul D. Nielsen, “About Us: From Director and CEO Paul D. Nielsen,”
Carnegie Mellon Software Engineering Institute,
http://www.sei.cmu.edu/about/message

%& Please Recycle

RAW14223-USEN-00

http://ibm.com/software/rational
http://www.ibm.com/legal/copytrade.shtml
http://www.sei.cmu.edu/about/message
http://www.ibm.com/software/rational/offerings/quality
http://www.ibm.com/financing

	Untitled
	IBMSoftwareRational
	Thought Leadership White Paper
	Value-driven quality management forcompl
	Six strategies for reducing cost and ris
	Introduction
	What’s the problem with quality?
	Poor business predictability
	Improving the delivery process
	Software delivery strategies
	The pitfalls of a schedule-driven strate
	The shortcomings of a quality-driven str
	The advantages of a risk-driven strategy
	Quality management versus testing
	Strategy 1: Drive testing from requireme
	Strategy 2: Reduce planning overhead wit
	Strategy 3: Prioritize testing according
	Strategy 4: Integrate testing and qualit
	Strategy 5: Automate reporting to improv
	Strategy 6: Improve efficiency by applyi
	The overall effect of risk reductionstra
	Fixing defects earlier for potentially s
	Compounding benefits: Greater than the s
	Improving quality with the help ofIBMsol
	Providing a quality management hub
	Supporting requirements-driven testing
	Supporting model-driven testing
	Unifying defect management and change wo
	Conclusion
	For more information

