

Measured Improvement in Software Economics

Walker Royce

VP, Chief Software Economist IBM Software Group, Rational

± marter planet = Smarter planet = Smarter plane Television of the smarter planet = Smarter plane Television of the smarter

An Evolving Software Delivery Model

Collocated development	Outsourcing/Co-sourcing	Integrated Software Supply Chains
Conocated development	Outsourcing/Co-sourcing	,
Country-based delivery	Onshore / Offshore	Networked Global Centers
Utilization based	Deliverables based	Outcome based
Team collaboration	Project collaboration	Community Collaboration
No workflow management	Manual workflow management	Automated workflow management
No reuse	Ad hoc reuse	Systematic reuse
Limited measurement	Visible project metrics	Pervasive transparent metrics
Waterfall governance	Engineering governance	Economic governance
Technology Platform		
Standalone tools, process	Limited tool integration	Consistent platform Integrated, Collaborative, Optimized

≅ smarter planet ≅ smarter planet = Smarter plane Telegraphic Smarte

Accelerated delivery demands a quid pro quo

Engineering Practitioners

Embrace Measurement

- Design, create, test
- Reuse knowledge, best practices
- Address uncertain things first
- Be adaptive to change

The Speed Of Trust

Governance Stakeholders Enable Agility

- Achieve predictable outcomes
- Manage risk
- Ensure compliance
- Improve software economics
- Visibility and transparency

Software Delivery is an Economic Discipline

Level 5: Completely irreducible uncertainty

Level 4: Partially reducible uncertainty

Level 3: Fully reducible uncertainty

Level 2: Risk without uncertainty

Level 1: Complete certainty

Software →

Software →

Software →

Engineering → Software →

Engineering →

Engineering →

Engineering →

Religion

Philosophy

History

Economics

Biology

Chemistry

Physics

Mathematics

Lo, Andrew, and Mark Mueller. MIT Sloan School of Management, Moody's/NYU 6th Annual Credit Risk Conference, New York, March 2010.

Schedule risk: Imagine you have 12 months to deliver a business critical system

- Your estimators tell you it will be done in 11 months
- What do you do with the information?
 - Rest easy, believing there is no risk?

Maybe you realize that program parameters (cost, schedule, effort, quality, ...) are random variables

Area under curve describes probability of measurement falling in range

Imagine you have 12 months to deliver a business critical systems

So you ask for the distribution and discover there is some uncertainty

Imagine you have 12 months to deliver a business critical systems

In fact there is less than 50% chance of making the date

Then what?

Move out the date to improve likelihood of shipping?

Then what?

Or move in the estimate by sacrificing quality or content?

Managing variances in scope, solution, plans: The real key to improving software economics

- Sources of uncertainty and variance
 - Lack of knowledge
 - Lack of confidence
 - Lack of agreement
- Reduction of variance reflects
 - Increased predictability of outcome
 - Increased knowledge about
 - Client needs
 - Technology capability
 - Team capability
 - Good decisions

Then what?

- Determine the source of the variance
- Over the project lifecycle, reduce the variance to improve likelihood of shipping

Then what?

Over the lifecycle, reduce the variance further to improve likelihood of shipping

≝ marter planet ≦ Smarter planet E Smarter plane Te

Economic Governance: Measurement and Steering

<u>≃</u> a smarter planet ≥ smarter planet ≥ smarter planet = smarter planet

Pivotal Culture Shifts

Integrate Collaborate

Plans/management

Plan for integration to precede unit testing

Progress measures

Quantify progress trends from the integrated code and test base

Quality measures

Optimize

Quantify cost-of-change trends to demonstrate true agility

Avoid false precision in plans and requirements

Don't rely on subjective and speculative measures

Don't attack the easy things first

<u>≃</u> a smarter planet ≥ smarter planet

Measured Improvement: Progress Econometrics

Conventional Engineering
Governance

Modern Economic Governance

Planning Progress

Technical Progress

Economic Progress

± ແ smarter planet ≦ smarter planet E smarter plane ter plane te

Measured Improvement: **Quality Econometrics**

Conventional Engineering
Governance

Modern Economic Governance

Maturity

Defect

Trend

Modularity
Change Volume
Trend

Adaptability
Cost of Change
Trend

Improving Software Economics

ສ marter planet ≦ Smarter planet E Smarter plane Te

Productivity Improvement Leverage

Organization

Project

Team

Individual

± marter planet ≤ Smarter planet = Smarter plane Telegraphic Smarter

Measured Improvement: **Quality Econometrics**

AnDeS is a Monte Carlo simulation to lifecycle of project scope items

Uncertainty is reduced as

- Higher risk work is completed
- Plan items are scoped as work items

The Andes Solution

The Moral of This Story

Better software economics is a result of:

- 1. Measured improvement for improved predictability
- The foundation of economic governance
- Measurement helps you manage uncertainty
- 2. Agility for improved operational efficiency
- Best measured by cost of change trends
- Best achieved by accelerating integration testing

If you play better defense you can play more offense!