
WebSphere® IBM WebSphere Multichannel Bank Transformation Toolkit

Solution Architecture

Version 6.1

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

35.

This edition applies to Version 6, Release 1, Modification 0, of IBM WebSphere MultiChannel Bank Transformation

Toolkit (5724-H82) and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You can send to the following address:

IBM China Software Development Lab

Bank Transformation Toolkit Product

Diamond Building, ZhongGuanCun Software Park, Dongbeiwang West Road No.8,

ShangDi, Haidian District, Beijing 100193 P. R. China

Include the title and order number of this book, and the page number or topic related to your comment.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1998,2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Solution architecture overview 1

Introduction 1

The Value of Bank Transformation Toolkit to

Business 1

The importance of Channels to the Banks . . . 1

Multichannel transformation 3

How BTT helps 4

Architectural objectives 4

Architectural principles 5

Multichannel consideration 7

Multichannel architecture 8

Client 9

Java client environment 9

HTML client environment 10

JSF client environment 11

Web 2.0 client environment 12

Channel application server 13

Application presentation layer 13

Channel aware logic layer 14

SOA fundamentals 14

Enterprise Server 16

Unified invocation architecture 16

Components architecture 16

Core components 17

Presentation components 17

Service components 17

Business components 18

Development tools 18

Runtime tools 18

Support tool 18

Development 18

Development Model 19

Development process phases 20

Physical deployment 20

Cache mechanisms 22

Cache refresh policies 22

JAR files 23

Bank Transformation Toolkit best practices 23

Best practices 23

BTT Context tree 23

Application complexity management 25

Tracing 26

Separation of infrastructure and application

code 27

Programmers’ tips 28

Performance tips 30

Supported platforms and technical requirements . . 32

Components and platforms 32

Components and technical requirements 33

Notices 35

Trademarks 37

© Copyright IBM Corp. 1998,2008 iii

iv IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

Solution architecture overview

This document is mainly for Solution Architects, who require an overall description

of what the IBM® WebSphere® Multichannel Bank Transformation Toolkit (Bank

Transformation Toolkit) provides and how it may be used to build a solution. This

document is also useful for IT professionals and executives who require a broad

understanding of the architecture of this product and the strategy for its

implementation.

Readers of this document are assumed to be familiar with object-oriented software

and related development techniques, and to have a general knowledge of J2EE and

related technologies, network computing, and Internet technologies.

Introduction

The IBM WebSphere Multichannel Bank Transformation Toolkit is a

component-based toolkit for developing enterprise e-business applications. The

Bank Transformation Toolkit enables the development of interfaces to the services

of a financial institution’s information system so that they become ubiquitous

through all delivery channels (such as the traditional branch, call center, banking

kiosk, Internet banking, and mobile access). This minimizes the need for

developing new code and reduces the time required to make new financial services

available to all delivery channels.

The architecture and technological approach of the Bank Transformation Toolkit

creates retail delivery solutions that preserve investment in existing enterprise

systems while accounting for the inherent instability of any infrastructure due to

innovations that appear frequently in the high-tech industry. While providing a

way to preserve existing systems, the Bank Transformation Toolkit is not tied to

one particular platform because it is built on Java™, the programming language of

choice for handling platform change. The toolkit also takes advantage of existing

platforms and technologies such as Eclipse, Web Services, J2EE, Struts, and so on.

The toolkit runtime architecture is based on the J2EE architecture with extensions,

and many development tools the toolkit provides are Eclipse plug-ins.

The Value of Bank Transformation Toolkit to Business

This section lists the value of Bank Transformation Toolkit to your business:

The importance of Channels to the Banks

Financial institutions compete and excel across six common competencies:

Distribution, Manufactory, Operations, Insight, Risk and Financial Management.

The institutions are striving to deliver them faster, at lower cost, and with higher

quality than the competitors. Channel applications are the IT systems that facilitate

the Distribution.

The following diagram shows the six competencies:

© Copyright IBM Corp. 1998,2008 1

A lack of channel integration can cause customer dissatisfaction as shown in the

following figure:

For this and other reasons, banks are investigating the channel applications. Other

reasons include the following:

v Increased domestic and foreign competition

v Increased choices and ease of switching

v Customer service is improving in other industries

v Increasing multichannel contacts are changing expectations

v Constant innovation and improvement

v The branch is the hub of most banking activities and the most visible

distribution outlet

v The online experience is essential to managing the relationship and researching

new opportunities

Bank channel applications enable nearly all the customer interactions.

2 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

The ability to quickly enhance channel applications, while keeping them integrated

and consistent can be the source of competitive advantage.

Multichannel transformation

To pave the way for effective channel application investment, IBM provides a

multichannel transformation based on a Service Oriented Architecture (SOA).

The following figure shows the multichannel transformation to SOA.

A key component of the Multichannel architecture that IBM provides is WebSphere

Multichannel Bank Transformation Toolkit (BTT).

BTT provides a common framework for building integrated and consistent channel

applications as shown in the following figure:

Solution architecture 3

How BTT helps

Bank Transformation Toolkit can help increase and ensure the benefits of IT

investments in channel applications:

v Channel applications are built on a common framework, leveraging new

capabilities across all channels:

– Home Banking

– Teller

– ATM

– Contact Center

By leveraging investments across all channels (as opposed to requiring duplicate

investment), projects are completed with less effort and with greater benefit to

the business.

v Consistent and seamless user experience, including multiple countries with

separate core systems

v Simple, agile and predictable development process leading to:

– More predictable success in development projects

– High confidence in IT

– High level of flexibility in obtaining and reallocating resources
v Proven and stable runtime environment:

– Less risk when deploying new releases
v A smooth migration process for each release of BTT:

– Ensure that investments in IT are leveraged over time

– Existing systems can benefit from continuous new BTT features

Architectural objectives

The architectural objectives of the IBM WebSphere Multichannel Bank

Transformation Toolkit align with IT strategies that have a basis in controlling costs

over time. Following are the objectives:

v Reduce costs - A network computing architecture should exploit the network in

order to reduce costs. It allows reduction of the computing resources required on

4 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

the client and supports deployment on network computers, using the network as

a vehicle for on-demand distribution of software components. In addition, the

architecture supports deployment of reusable business components in a

managed server environment.

v Preserve investment - An important goal is to preserve the financial

institution’s investment in host systems and computing infrastructure, as well as

in the toolkit-based solutions themselves and other new technologies. This

makes it important to carefully consider technology selections in order to ensure

that they are strategic and will have enduring value.

v Offer choices - Allow customers the flexibility to choose their hardware,

operating systems, networking systems, databases, communication protocols,

and third-party software products. The system must also support flexible

distribution of function and data based on the network environment and

physical topology.

v Evolve gracefully - The system must be flexible and resilient to both business

and technological changes. This helps to support rapid application development

and to increase competitiveness by improving time to market.

v Provide manageability - Once deployed and in production, the system must be

easy to manage and resilient to changes in the runtime environment.

v Allow incremental investment - The system must support the ability to

incrementally develop and deploy new business function and technology. In

addition, it must support the ability to include new toolkit-based solutions as

they become available.

v Maximize usability - The system as a whole must be well suited to the needs

of its users: not only end users but also developers and systems management

personnel.

v Maximize reusability - The system must be constructed in such a way as to

maximize reuse of components in all retail delivery solutions. In addition, it

must be able to meet the diverse needs of solutions and access channels in

financial institutions around the world.

Architectural principles

The architecture must be open, scalable, and easy to implement. These principles

are related to the architecture objectives, and are the basis for the platform

selections, programming model specifications, and overall non-functional

requirements of all the toolkit-based solutions. The major architectural principles of

open, scalable, and easy to implement, presented below, demonstrate how the IBM

approach for building robust, cost-effective enterprise systems support the

architectural objectives. Following are the principles supported by the Bank

Transformation Toolkit:

v Open

– Supports industry standards - The architecture is open because it uses open

industry and e-business standards such as TCP/IP, HTML, HTTP, J2EE (Java,

Java Server Pages, JCA, JDBC, EJB, and so on) and Web Services wherever

possible. These standards provide a solid foundation and make it easier to

use available proven components instead of building custom ones, and to

change vendors and implementations to satisfy changing business

requirements. Industry standards tend to be strategic and have longer life

spans because of the high levels of investment and commitment involved

with creating them.

– Is extendable and customizable - The toolkit is extendable and customizable

at many different layers within the architecture. This means it can be used in

Solution architecture 5

a wide range of situations and can accommodate specialized requirements

that are specific to an individual customer, country, or region.

– Provides insulation - The toolkit isolates and abstracts interactions with

other systems to insulate toolkit-based applications from the specifics of other

systems. In a global solution, this is essential to provide the flexibility to

adapt to many diverse environments, particularly different host systems and

databases. The programming model of the toolkit insulates applications from

changes in the underlying technology.

– Preserves investment - The principles listed above ensure the preservation of

customer investments. The toolkit safely preserves the investments in current

hardware, software, operating systems, network, communication

infrastructure and protocols, and back-end subsystems of the customer

environment.
v Scalable

– Supports three logical tiers - The benefits of a logical three-tier architecture

such as the network computing architecture are well known. The network

computing architecture is logical in that it specifies that the presentation layer

must be decoupled from the business logic, which must be decoupled from

the data access layer, but it does not specify how to physically deploy the

tiers. Although this approach is a form of isolation, it also provides scalability

by allowing each of these layers of the system to change independently of the

others. That is, the platform selections and design of each layer can change

without impacting the rest of the system. This architecture also requires that

the presentation layer be ″thin″ to realize the goals of network computing.

This means that workstations with a small amount of physical memory and

no virtual memory can download and execute the application. The main

objective of the solution architecture is to support the model of a multiple-tier

network computing application while also allowing engagement teams to

implement solutions based on other application models such as a two-tier ″fat

client″ application.

– Supports replaceable components - Components are packages of system

function with established interfaces and a predetermined execution

environment. As long as a component is within its required execution

environment and it interacts with other system components through its public

interfaces, it is replaceable with minimal effort. This construction enables high

levels of reuse and allows the system to evolve without causing large ripple

effects. It also allows the implementation of components and their execution

environments to vary to meet performance or scalability requirements.

– Provides enterprise topology independence - This notion extends the idea of

a logical three-tier architecture so that not only are the three tiers independent

of physical location, but system components are independent of any specific

physical topology. This makes toolkit-based solutions highly flexible for

deployment in different environments by allowing customers to configure the

system as needed to achieve the scalability desired for their environment.
v Easy to implement

– Uses visual programming - Where possible, toolkit-based solutions use

visual programming to assemble the application from parts. This technique is

particularly effective in developing application screens and rapid assembly of

graphical user interfaces.

– Separates analysis from design - Analysis should be a separate process from

design and has its own distinct work products. Solutions of this product suite

should use analysis to form an entirely logical representation of system

6 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

function that is independent of technology or implementation. This helps to

retain the value of earlier development effort even if the implementation must

change entirely.

– Provides a development methodology - This solution provides a

methodology for guiding the development process in an engagement project

to make solution implementation easier and the deployment faster.

– Is transaction-oriented - Most projects require a solution in which an

enterprise-centric back-end system executes most of the application business

logic and the front-end of the solution, running in a delivery channel, must

behave as a transaction posting engine to run the transactions in the back-end

system. The Bank Transformation Toolkit excels at this type of solution and

optimizes the processing of the transactions especially in high transaction

volume environments.

– Minimizes development effort - The toolkit highly promotes the

externalization of parameters so that business operations behave differently

depending on their specific set of parameters. This enables solutions to

delivery new functionality without requiring new code, simply by adding

new external parameters to the system. One example is the toolkit business

processes that are defined with BPEL. This enables toolkit application

developers to edit process logic using visual design and modeling tools.

Multichannel consideration

The IBM WebSphere Multichannel Bank Transformation Toolkit provides an

architecture for building applications that are deliverable on multiple channels.

Enterprises within the banking and financial services industries have successfully

deployed the toolkit in various topologies as the infrastructure for enterprise

systems with high transaction volumes. While the following topologies are specific

to the banking and financial services industries, for which the toolkit was

originally conceived, the ability of the toolkit to handle multiple business

distribution channels is generic and can apply to other industries.

Bank teller

A bank teller application topology consists of a number of client

workstations with financial devices attached. The workstation downloads

the client application on request from a Web server. The client applications,

which mainly deal with presentation and local financial device handling,

have access to the branch server (that is, the solution application server)

using the HTTP or SSL protocols.

 The solution application server provides common services such as

electronic journaling and parameter tables to the client workstations, as

well as access to the transactional logic of the back-end enterprise servers.

A toolkit server application can also be deployed on the physical server for

a regional or central data center without changes to the application.

Internet banking

In an Internet banking topology, users obtain access to financial services

through a Web browser (or other device) connected to the Internet. The

user interface is normally HTML with additional technologies such as

JavaScript™, DHTML, or XML. In such an environment, the solution

application server is able to process requests from Web browsers (or other

devices that issue HTTP requests), obtain the proper data from enterprise

servers, and generate the appropriate view for the client device to display,

using HTML pages for Web browsers or XML messages for those devices

that support it. The application server is usually located at the central site,

and is protected by a firewall.

Solution architecture 7

Kiosks and ATMs

The toolkit can be used in kiosks or ATMs that run Internet technologies

such as a Web browser and Java. In this environment, the client usually is

a Java application (or applet). In addition to the presentation logic, the

client application manages the financial devices normally present in a kiosk

(such as MSR/E, chip card reader, receipt printer, passbook printer, bar

code readers, and touch screen displays) using the financial device services

that the toolkit provides. The kiosk connects to the application server using

the HTTP or SSL protocols. In some cases, kiosks are located in branches,

which handle them as branch workstations. Kiosks can also be connected

directly to the server through public or private lines.

Mobile terminal and PDA

Users equipped with laptops running a Web browser can connect to

corporate toolkit servers using the SSL protocol. In this scenario, the toolkit

server is usually located at the central site and is protected by a firewall. It

is also feasible to have mobile users connected to the branches to which

they belong.

 The following diagram illustrates these business distribution channels:

Multichannel architecture

The following diagram shows the architecture of the Bank Transformation Toolkit:

8 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

Client

A client in the three-tier architecture contains little logic. The logic it does have is

usually presentation logic or logic required locally to do such things as accessing

financial devices or validating entered data. The code to execute the client logic is

downloaded on an on-demand basis, and therefore does not reside on the client,

but on a Web server. The Bank Transformation Toolkit supports any kind of

physical client device that uses the following technologies:

v Java Client

v HTML Client

v JSF client

v Web2.0 Client

The toolkit provides implementations for current client technologies but these

concrete implementations anticipate that significant differences might be found

when realizing solutions. The toolkit is not limited to these technologies because its

design is generic and can be extended to support other technologies.

Java client environment

The Java client is an application that runs on client desktop platform. The Bank

Transformation Toolkit recommended solution is the Rich Client Platform (RCP)

which is built on eclipse technology or IBM Lotus® Expeditor. The BTT Rich Client

Infrastructure is used for banking customer to rapidly build banking desktop

systems. BTT offers an end to end solution to develop Rich Client based teller

applications, including transaction development, transaction UI development,

transaction panel deployment, application layout management, and so on.

In the following example, the application presentation layer runs dependently on

the client side, and the application logic layer run on the WebSphere Application

Solution architecture 9

Server. This example shows how the presentation layer works and uses BTT Single

Action EJB (SAE) or BTT Operation to perform the business logic:

1. The user requests a transfer request and provides the required input data:

a. The user starts up RCP based teller sample.

b. The user clicks the navigation item named transfer in navigation view or

input corresponding launch code in quick launch bar to start this

transaction.

c. The user chooses FROM account and TO account numbers.

d. The user inputs the transfer number and presses Submit.

e. When the user clicks Submit, the client creates the transfer client operation

and creates a context for it. The client then chains it to an upper level

context.

f. The client operation collects the server required data fields and uses

formatter to format context into a String.

g. The client operation uses CS Client Service to send this formatted String

into the Server side.
2. The application presentation layer sends the customer search request to the

application logic layer.

a. In the server, the servlet acts as the request handler that receives the

transaction operation.

b. The request handler un-formats the request String into request operation

context, and chains it to the session context.

c. The request handler calls BTT Server Operation to execute server side

business logic based on the context request.

d. After business logic is processed, the server context is formatted into String

as response, and the response is sent to the client side.
3. The client side receives the server response:

a. The client operation receives the server response.

b. The client fires an operation replied event to notify other components that

this C/S communication has successfully finished.

c. UI components receive the operation replied event and refresh them. The

reply code displays in the transfer transaction panel.

HTML client environment

An HTML client is generally used for a home banking application built to use the

Bank Transformation Toolkit. An HTML client can also be used in any other kind

of application, such as a bank teller application or a CRMS. The client machine

requires only a Web browser to run the application.

When the user visits the start page of the application and logs in, the browser

displays a menu or HTML desktop with a list of available processes. A detailed

sequence of the events in runtime is as follows:

1. The user requests a customer search and provides the required input data:

v The user clicks a customer search link in the HTML desktop. This user action

sends a request to the server servlet. The request parameters include the

name of the FlowProcessor that is required.

v On the server side, the requested processor is created and initialized. The

FlowProcessor, which is in its initial state because it is the first time it has

been used, moves to the next state, to which a JSP page is assigned. The JSP

page is executed, and it generates the HTML page for the reply. The reply

includes some control data, such as the current processor identifier.

10 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

v On the client side, the HTML page that is the reply displays a form with

input fields for the customer search criteria.

v The user enters the input data and clicks a Submit button. The form data will

be sent as an HTTP post request to the toolkit server servlet. The request

data contains the FlowProcessor name and process ID as hidden fields, along

with the other input data.
2. The Customer Search business operation is executed on the application server.

v On the server side, the requested processor is restored, and the request data

is validated and unformatted on top of the processor context, and the event

is passed to the current state of the processor. These actions advance the

process flow. A result can be an input event for the current state, or a trigger

for the processor to move to its next state. As the entry action for this state,

the Customer Search server operation is executed.

v As part of the execution of the server operation, a customer search

transaction request is sent to the host. When the host returns a reply, the

message is unformatted into the server operation context.

v Another step of the server operation updates the Electronic Journal with data

from the transaction. The execution of the server operation finishes.
3. The client view displays a list of customers matching the search criteria.

v The HTML FlowProcessor moves to its next state, which is a JSP page state.

The JSP page is processed, which generates an HTML page with the reply.

The reply is the list of customers who match the search criteria, which has

been updated in the context by the Customer Search operation.

v The client displays the HTML page that contains the Customer Search

results.
4. The user selects a customer and clicks a Submit button, which performs a

Customer Details operation.

v The user action on the GUI sends a new HTTP request. The request data

contains the FlowProcessor name, the process ID, and the selected customer.

v The process flow advances, and the state executes the Customer Details

server operation.
5. The client displays the details in a different panel, from which additional

actions can be executed.

v The HTML FlowProcessor moves to its next state, which results in the

execution of another JSP page, and generates an HTML reply page. The reply

contains customer information obtained from the processor context, which

was updated with data from the host reply. The process ends when the user

accepts the information and does not perform another operation. The

FlowProcessor in the server then enters a final state, which presents the

home page to the user.

JSF client environment

The application presentation layer and application logic layer run on WebSphere

Process Server so that the example can show how the presentation layer works and

uses Bank Transformation Toolkit (BTT) Single Action EJB (SAE) or BTT Operation

to perform the business logic.

1. The user requests a customer search and provides the required input data:

a. The user clicks a customer search link in the menu. The user action sends a

request to the JSF framework.

b. While resolving the value binding expressions of the JSP pages, the request

will be forwarded to BTT JSF extension.

Solution architecture 11

c. After the BTT JSF extension resolves the value binding expressions, the

request will be returned to the JSF framework. And then the request will be

directed to the JSP page.

d. In the client side, the browser displays the HTML page.

e. The user enters the input data and clicks Submit. BTT JSF extension

resolves the value binding expressions and acquires the data inputted by

the user, and then put the data into the BTT context associated with the

managed bean.

f. BTT JSF extension invokes the corresponding execution method in the base

bean according to the event fired from the JSP page.

g. The base bean delivered by BTT JSF extension constructs a BTT Invoker

instance according to the invoker Id, which is passed as a parameter of the

execute() method, and then the base bean invokes the BTT Invoker to

process the business logic.
2. The application logic layer executes the business process:

a. BTT Invoker invokes the BTT business components, for example, BTT SAE,

BTT Operation and so on.

b. Upon the completion of the business logic, the BTT Invoker returns the

processed result that includes the information needed by the presentation

tier.
3. The client view displays a list of customer matching the search criteria:

v The base bean parses the result from BTT Invoker and picks up the BTT

context and the outcome and so on, and then propagates them to the backing

bean which originally initiates the request.

v JSF framework directs the request to the JSP page according to the outcome.

When displaying the JSP page, the presentation data will be obtained from

the BTT context through the BTT JSF extension.

v The client displays the HTML page.

Web 2.0 client environment

A Web 2.0 client is generally used for a home banking application built to use the

Bank Transformation Toolkit. The client machine requires only a Web Browser to

run the application. A Web 2.0 Channel is used on the server to process the client’s

request. When the user visits the start page of the application and logs in, the

browser displays a menu with a list of available operations. A detailed sequence of

the events in runtime is as follows:

1. The user performs a Customer Search.

v The user selects the Customer Search operation by clicking a link on the

client desktop. This user action sends an XML request to the server servlet.

The request XML includes the name of the operation that will be executed.

v On the server side, the Web 2.0 request handler will parse the XML request

and call the operation to execute the business logic.
2. The Customer Search business operation is executed on the application server.

v On the server side, the request handler will generate the channel context,

parse the request XML and call the operation.

v As part of the execution of the server operation, a customer search

transaction request is sent to the host. When the host returns a reply, the

message is unformatted into the server operation context.

v The execution of the server operation finishes.
3. The client view displays a list of customers matching the search criteria.

v The result will be formatted to an XML and will be sent to the client.

12 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

v The client parses the XML that contains the Customer Search results and

updates the client view.
4. The user selects a customer and clicks Submit, which performs a Customer

Details operation.

v The user action on the GUI sends a new XML request. The request data

contains the operation and the selected customer.

v The Web 2.0 request handler executes the Customer Details server operation.
5. The client displays the details in a panel.

v The XML reply contains customer information that is formatted from the

operation context, which was updated with data from the host reply.

v The client parses the XML that contains the Customer Details results and

updates the client view.

Channel application server

The channel application server includes the following layers:

v Presentation layer

v Channel aware logic layer

v SOA foundation

Application presentation layer

The application presentation layer works in conjunction with a system application

server (such as IBM WebSphere Application Server) to provide a layered multiple

channel architecture. The application presentation layer works as a bridge that

connects the clients with the application logic layer, which performs business

transactions. Java clients and HTML clients use different application presentation

components to connect to the application logic layer.

To get connected with the application logic layer, the presentation layer defines the

following entities:

v Java RequestHandler processes a Java client request for a particular type of

requester. The toolkit registers these handlers to determine which specific

handler it needs for a specific request. For example, there are different

RequestHandlers for requests coming from a Java client in a home banking

environment, from a Java client in a branch teller environment, and from a Java

client in a call center environment. The RequestHandler is responsible for

interacting with the client side operations that controls the dialog navigation for

a specific client type and for interacting with invokers that call application logic

layer transactions.

v Java PresentationHandler processes the reply for a particular type of requester.

v Struts Extensions processes requests from HTML clients, calls application logic

layer components for business transactions, and renders presentation for HTML

clients based on the business transaction results.

v HTML RequestHandler is responsible for processing a particular request from

an HTML client. The handler may need to be aware of the device type. This is

managed by the channel context. The request handler performs the following

tasks to integrate with the application:

– Establishes the session between the client and the server for the specific

device

– Executes a generic application operation for the HTML channel

– Determines the appropriate presentation handler from the handler registry to

render the results back to the client.

Solution architecture 13

v HTML PresentationHandler is responsible for processing the reply to the HTML

client. The main API provided by this class is void

processReply(ChannelContext, ServerOperation). This starts the process of

dynamically creating the HTML and rendering it to the client using the servlet

JSP engine.

To pass business process requests to the application logic layer, the application

presentation layer has the Bean Invoker Factory. The Bean Invoker Factory creates

invokers so that the requester can invoke the EJBs that perform the business

processes in the application logic layer. The requester can be a request handler

from the Java client or an EJB Action from the toolkit Struts Extensions component.

Channel aware logic layer

The Bank Transformation Toolkit channel logic layer provides all the options to

execute BTT logic related with different channel applications in the application

server from applications running in disparate client environments.

The entry points to the application server are different based on the type of client

device and the communication protocol being used by the client application. Each

of these entry points relates to a specific request handler, which is able to manage

channel-specific considerations. To isolate the way of receiving the requests for a

specific channel from the application server logic, the toolkit defines some common

interfaces to be used by any of the request handler implementations. These

definitions are known as the multichannel architecture, and all the connectors

listed in client/server connectivity implement the multichannel support.

For specific channel application, such as Internet Banking or Teller system,

different channel application has different channel aware logic. For example, the

Account Query transaction in Internet Banking can display the final result to user,

which only contains basic account information, while the Teller System will show

full information, although the two transactions in backend system are the same.

BTT provides channel aware logic layer and associated components, such as

channel-aware Operation/Operation Step Definition, channel-aware Processor. You

can define Operation/Operation Step and Processor components in both the

channel-aware logic layer and the business layer. Note that if you define

Operation/Operation Step and Processor components in the channel-aware logic

layer, the Operation/Operation Step and Processor will only take actions that are

related to the channel logic, but not the reusable channel-independent business

logic.

SOA fundamentals

For backend integration, Bank Transformation Toolkit enables your channel

applications to support Service Oriented Architecture (SOA). BTT interfaces with

WebSphere Process Server (which contains WebSphere ESB) for business process

automation and enterprise application integration. WebSphere Message Broker and

the WebSphere Business Services Fabric can be added depending on the SOA

requirements.

When a complex transaction involves backend Web services, the toolkit supports

Web Services JSR 109 standard and it allows Web service invocations from the

toolkit’s own business layer. On the other hand, the BTT business logic can be

treated as a service to be reused by the other application systems. Furthermore, the

Web service interfaces of JCA SNA LU0/LU62 connectors are in readiness for the

Web service invocation for the legacy connectivity.

14 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

The following diagram shows the relationship between BTT and SOA:

The entire banking SOA reference architecture includes the following flow and

control concepts:

v Channel Interaction Orchestration

– Screenflow: A lightweight Web/rich client tier control mechanism (usually a

finit-state-machine) that guides the user from screen to screen. States and

flows are encoded in XML.

– Channel Application Microflow: A lightweight Web/rich client tier control

mechanism that provides a structured way to organize channel application

operations such as screen flows, logging, reusable channel specific logic,

invocation of business processes, and invoking back-end services. Tooling is

specific to and integrated with the channel application platform. Flows are

visually designed and encoded in XML.
v Business Process Automation

– Macroflow: Long-running process or process involving human tasks to be

performed by multiple people. Encoded in BPEL as a linear process or

Business State Machines.
v Enterprise Application Integration

– Service Composition: The creation of a course-grained service from a number

of finer-grained services and simple flow logic. Usually created using SCA

components.

– Service Orchestration: Invocation of multiple services in the context of a

microflow or macroflow execution. A flow or state machine can be used as

the control construct to create a composite service from element services.

– Routing and Transformation: Routing of a service request to a service

provider at runtime according to pre-determined rules and the transformation

of the service name, number and type of parameters, and data structures as

needed so as to insulate service consumers from service providers.

– Dynamic Service Selection: Determination of how to resolve a service binding

at runtime.

Solution architecture 15

Enterprise Server

The enterprise server, or the back-end server, contains the existing core business

logic of the financial institution that is accessed by the toolkit application. A toolkit

application does not require changes to such a system or changes to its messaging

interface. This is possible because the toolkit includes a rich set of back-end system

connector components and message formatters. BTT JCA SNA and Invoker

components are provided for SNA (LUA interfaces), JMS, EJB, WebServices, and

any other customer extensions.

On the other hand, if you have already built up the SOA based back-end system

such as ESB, the toolkit enables your applications to support Service Oriented

Architecture (SOA) integration.

Bank Transformation Toolkit interfaces with WebSphere Process Server (which

contains WebSphere ESB) for business process automation and enterprise

application integration. WebSphere Message Broker and WebSphere Business

Services Fabric can be added depending on the SOA requirements. But typically,

they do not interface with BTT directly.

Unified invocation architecture

Bank Transformation Toolkit provides a unified invocation architecture.

You can define different types of invoker in the definition XML file. BTT provides

unified APIs to get invocation instance from the Invoker Factory and to execute

synchronous or asynchronous invocation. Because this framework separates the

application code of the invocation and the invocation target definition and

parameter, it can provide great flexibility. If you want to change the invocation

parameter, or change the invocation type, for example, from EJB to Web Service,

the application code does not need to be changed. You only needs to change the

invoker XML definition.

BTT invoker framework also supports multiple XML files of invoker definition.

Invoker Factory is an instance factory. It can have a lot of instances and copies in

memory. Each Invoker Factory represents one XML definition. You can query

Invoker Instance from the factory by the ID defined in the XML files.

This unified invocation architecture can invoke the following types of target:

v POJO

v EJB

v WSProxy

v Web Service DII

v JMS

Components architecture

The Bank Transformation Toolkit contains the following components:

v Core components

v Presentation components

v Service components

v Business components

v Development tools

v Runtime tools

16 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

v Support tool

Core components

The Core components are the main entities of the IBM WebSphere Multichannel

Bank Transformation Toolkit.

The core components includes the following:

v Operation

v Flow

v Formatter

v Data element

v Initialization manager

v Element factory

v Invoker

v Exception

v Events

v Externalizer

v Trace

Presentation components

The Bank Transformation Toolkit provides components that facilitate the

construction of the client presentation logic. The toolkit includes the Rich Client

infrastructure, a set of SWT Visual beans, as well as the support for JavaServer

Pages (JSPs).

The following are the provided presentation components:

v Rich Client infrastructure, which offers pre-build components to save your effort

on developing teller systems.

v SWT Visual beans, which is based on Rational® Application Developer, Visual

editor and DSE Visual Beans.

v JSP support, which includes custom JSP tags and utility beans to enable

applications to retrieve information from the operation context hierarchy, get

resources, and handle errors. If your application requires additional behavior,

you can build new tags using the JspContextServices interface.

Service components

The Bank Transformation Toolkit provides a set of service objects that enable an

application to complete an operation. These services include host communications,

journaling, store-and-forward for off-line operations, financial devices for input and

output operations, and more.

The service components include the following:

v Communication services:

– JCA LU0

– JCA LU62

– MQ connector
v Database services:

– Database Table Mapping

– Electronic Journal

Solution architecture 17

– Store
v LDAP Access service

v Generic Pool

v Financial Device services:

– Check Reader Device service

– JXFS service

– LANDP® MSR/E Device service

– WOSA Device service

Business components

The business components include the following:

v Foreign Exchange

v Cash Drawer

v Counter

Development tools

The Bank Transformation Toolkit provides a number of tools that support the

development of applications. The Bank Transformation Toolkit provides a number

of tools that support the development of applications. All the tools are plug-ins of

Rational Application Developer (RAD) and WebSphere Integration Developer

(WID).

The development tools include the following:

v Formatter Simulator

v Migration Tool

v SWT Visual Beans Editor

v Transaction Editor

v Validation Tools

Runtime tools

Runtime tools are used to fetch or record information of the BTT runtime.

The Runtime tools include the following:

v Runtime Monitor tool

v Trace Facility

Support tool

The Support tool includes the following:

v APAR Tool

Development

The Bank Transformation Toolkit is developed using Rational Application

Developer or WebSphere Integration Developer. The Bank Transformation Toolkit

consists of a set of tools that support end-to-end development and deployment of

e-business applications. It facilitates development tasks such as rapid application

development, creating industrial-strength Java programs, and maintaining multiple

editions of programs.

18 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

The toolkit provides a set of components built as Java classes and JavaBeans™. The

method signatures and class definition of a bean follow a pattern that permits

visual development environments to determine the bean’s properties and behavior.

The following development tools can be used to build a solution using the Bank

Transformation Toolkit:

v Formatter Simulator

v SWT Visual Beans Editor

v Transaction Editor

v Validation Tools

Development Model

The Bank Transformation Toolkit proposes a repository-based development model

where all the relevant information about financial transactions (data, formats,

contexts, services, processors, and views) is externalized to a set of definition and

configuration files and separated from the Java code. The development model

allows developers to add new processes or transactions in a toolkit-based

application with minimum coding required, by adding some definitions into the

definition repository. The following diagram depicts the role that the definition

repository plays in the development and deployment of a toolkit-based solution:

Solution architecture 19

This separation allows parallel resources to be focused in each of the areas, but it

requires a common understanding and definition of the model to get a final

consistent solution.

Development process phases

During the overall development process four main phases are identified:

1. Analysis and design.

2. Coding reusable entities.

3. Code the runtime application and feed the repository.

4. Generate the runtime resources and test.

The phases are iterative and contain tasks that may be refined during the project

life cycle. For information on the tasks within Bank Transformation Toolkit

development and where you can find more information on these tasks, see

Creating an application with Bank Transformation Toolkit.

Physical deployment

A toolkit-based application should use the standard mechanisms of the Internet or

network computing technology for the distribution of objects and should exploit

the cache mechanisms to get the best response times.

The physical location of the toolkit components depends on the particular project

environment and requirements. The classes and required resources for the toolkit

components, such as configuration files, definition files, and icons, may reside

either on the local workstation where the application is executed or on a remote

server being accessed through HTTP. Its resources are drawn from two main

sources:

v The classes with their corresponding resources, obtained from the Java resources

environment; that is, loaded by the existing class loader following the active

classpath. This will be done regardless of whether the code is executed as an

application (resources will be located locally) or as an applet running inside a

browser (resources will be located either locally or remotely).

v The required configuration and external definition files, as specified in the user

settings of the toolkit environment. These allow the resources to be located either

locally or on the server, regardless of whether the code executes as an

application or as an applet running inside a browser.

The following diagrams depict sample deployments, with the application code

being executed inside a Web browser in the first diagram, and with the application

code being executed as an application in the second diagram. Note that the

application server and the Web server are different logical entities and can be

located in different physical locations, although in simpler configurations, they

would coexist in the same server.

20 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

Solution architecture 21

Cache mechanisms

An Internet or network computing architecture has the required installation base

code and resources in a central location. Nothing is installed on the client

workstations and the central location distributes the required resources on demand

from the Web server through the communications network for execution on the

client. This topology requires high-speed communication lines, and is enhanced by

the use of cache mechanisms in the Web browser and in the proxy servers. The

cache mechanisms allow the reuse of objects previously distributed, thereby

reducing the requirements of the physical transport layer.

Cache refresh policies

The use of caching requires a refresh policy that prevents the executing application

from using out-of-date versions of objects in the caches. Proxy servers can be

scheduled to refresh their caches automatically at a prescribed interval or on

demand at a particular time. All refresh policies are based on actions started in the

proxy server, either because an object has expired or through scheduled processes

for checking the versions of server objects. There are no dynamic updates of

objects in the proxy when the objects are updated on the Web server. Therefore,

depending on the specific system environment and the detailed analysis of the

proxy server features, the issue of consistency between the proxy and the server

must be resolved, and its solution built as part of the application process.

22 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

JAR files

Part of a physical deployment strategy is to set the policy for packaging the code

and the resources for an application, as well as to decide the locations for code and

resources and their distribution to the final destination workstations. A solution

based on the toolkit may use Java Archive (JAR) files, which provides a physical

packaging mechanism for a set of HTTP objects or resources (including classes and

files). The JAR files have the following advantages:

v Reduce the number of interactions with the server during the download process

of the resources

v Compress the objects, thus improving the performance in the transmission and

the memory optimization in the cache of the browser

The following packaging considerations regarding JAR files enter into finding a

satisfactory balance between the number of objects to handle and the desired

network performance:

v The number of JAR files

v Grouping objects that are used when a specific business function is executed

v Grouping objects on the basis of likelihood or frequency of change

v Size of the JARs

Application components and toolkit components may be packaged in JARs, since

JARs can be used to package not only the Java classes but all the configuration and

external definition files required by the solution.

Bank Transformation Toolkit best practices

This section introduces the best practices, programmers’ tips, and performance tips

of Bank Transformation Toolkit:

Best practices

This section contains a set of recommendations and best practices to be used when

developing Bank Transformation Toolkit applications.

BTT Context tree

The BTT Context tree is a central piece of the framework. A proper design of the

context tree is critical for the maintainability and robustness of the application. The

following recommendations are given in relationship with this subject.

Session context size: This section contains recommended best practices on how to

minimize the allocation of data in the BTT session context. The BTT session context

stores the data and services a given user needs across several requests. It is usually

the major consumer of memory resources in the server. The average size of this

data determines how many users can be allocated in a given JVM; thus highly

impacting the application’s scalability. Moreover, if session persistence is used, for

example in order to enable transparent failover, the session size becomes more

critical because it greatly impacts performance, given that all the session data will

be serialized at the end of each request.

The recommendations for minimizing the session context size are as follows:

v Session size profiling: Calculate the average session size of the application in

order to ensure that the available hardware can allocate the planned number of

users.

Solution architecture 23

A profiling done with tools such as LoadRunner or Rational Application

Developer (RAD) will help determine the exact size of a given session instance.

Whereas, WAS Performance Monitoring Infrastructure (PMI) can directly report

the average HttpSession size in a server.

v Session size capacity planning: The following calculations should be performed

for each WebSphere cluster where BTT is planned to be installed:

– Determine the memory available to the application (JVM size) per server.

– Keep failover in mind. In the case where one server in the cluster is down,

the rest of the servers should still be able to allocate the extra resources. This

means that you must account for one server less than the total number of

servers available.

– Divide the total available memory by the planned number of users.

This will result in a rough estimation of the maximum session size. If, after

profiling, the average session size is close to this maximum, the application

should be modified in order to reduce its session size.

v Reducing session size: The following tips can be applied when designing or

reviewing the session context.

– Ensure that all data defined in the session context is really necessary at that

level:

- The data is user-specific, and therefore cannot be placed on a higher-level,

shared context.

- The data is required along several user interactions, and therefore cannot

be placed at a lower-level, operation context.

If any of these two requirements is not present, then the data can be placed at

a different level, reducing the total size of the session context.

– If a given data entity is required at the session level, analyze the usage

pattern of this entity:

- If the data is seldom used and the performance impact of retrieving it from

the source is not too big, consider defining it at a lower-level context.

- If the data is used throughout several steps of an interaction involving

multiple pages, implement a mechanism for creating the data structure at

the beginning of the interaction and destroying it at the end. This can be

done by defining data at the flow context level, or by adding data to the

session context (for example through a dynamic keyed collection) and

removing it at the end of the interaction.

If session persistence is enabled, the following recommendations should also be

considered in order to reduce the performance impact of the persistence process:

v Persistence performance impact is mostly caused by the serialization process. It

is therefore very beneficial to provide a custom serialization implementation for

the data being serialized. With the BTT framework, this means usually only the

DataField, KeyedCollection and IndexedCollection will need to be extended,

since all context data is stored in this kind of structures.

v Instead of serializing all session context data after every request, consider

developing an extension that marks which objects have been updated, then

design your persistence database so that each different session object is stored in

a separate field. This approach can have great performance benefits, but is

difficult to implement and may require active participation of the application

code, that is to notify whenever an object has been modified so it can be

appropriately marked for serialization.

24 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

Shared contexts: Shared contexts are those contexts above the session contexts.

These contexts are potentially accessed from multiple threads corresponding to

different user requests at the same time, so some considerations have to be taken

into account:

v Read-only data: only place the read-only data in shared contexts. There are no

concurrency problems when accessing read-only data, so this is perfectly safe.

v Read-write data: in the case where data needs to be updated during the

execution of the application, consider the following two problems:

– Concurrency: because multiple threads can access the same field in a shared

context, there are concurrency problems if the data are not accessed with

proper synchronization safeguards.

– Server clustering: when more than one server clone is used, there is a copy of

the shared context tree for each JVM where the application runs. If a user’s

request requires that a data field in a shared context to be updated, its new

value will only be visible to the users whose session is located in the same

server where the original request was executed. This is probably not what is

expected, as shared values are designed to be transparently accessed by

multiple users independent of the clone they are running on. Consider for

example the case of a branch-level unique receipt counter that gets

incremented every time a receipt gets printed. That could be in principle

located in a branch context, but then two users of the same branch whose

session runs in different clones will manipulate totally independent receipt

counter values.

Both the concurrency and clustering problem can be solved by using a safe

persistence-based mechanism to manipulate all read-write shared data. A simple,

ad-hoc approach is to use a custom database table to access these values. There is

also a more generic way supported by BTT since version 5.2: the shared data can

be set up so that they are automatically persisted by the framework. This is known

as the CHA (Context Hierarchy Area), and since version 6.1, there is a high level of

flexibility in the way that this can be configured, either through entity bean

persistence, shared memory or any other user-provided mechanism.

Application complexity management

This section contains recommendations aimed at reducing the complexity of the

application, thus increasing its manageability and maintainability.

Naming conventions: Development is basically a process of creating a big

amount of code artefacts such as Java class, JSP pages, XML files, and in the case

of BTT, XML tags with an ID attribute. For maintainability reasons, it is very

important that clear naming conventions are documented and followed throughout

the development process. Which conventions are used is not so relevant as long as

they are consistent and based on common sense.

In order to ensure that the conventions are followed, a process to verify the

naming convention rules can be added to the code quality review toolbox used in

the project.

BTT application grouping: The recommendation is actually not BTT specific, and

it can be applied to any J2EE application: avoid packaging and deploying a system

as a single WAR/EAR package. Try to break the application into smaller functional

groups based on dependencies, function set, development and maintenance

groups, etc. Apply the standard J2EE and WebSphere recommendations on this

subject, and consult an expert if required.

Solution architecture 25

Breaking a big project into smaller projects renders it more maintainable, easier to

test and administer on the runtime environment, and isolates any failures in the

failing subprojects.

XML management: The size and manageability of BTT XML files has to be

controlled: if all the XML code resides in a few large XML file, there is no easy

way to allow several developers to edit the same file in parallel, since committing

the changed code to the repository will require a complex merge operation of the

changes made by each developer.

That is why it is recommended to use BTT XML mixed modularity. The operation

and process instances can be placed each in a separate XML file, and the global,

shared definitions (such as the higher-level contexts and all their data and services)

are placed in the root XML files.

Using an XML validation and review tool is also recommended: this can range

from simply using the provided BTT DTD/Schema files in the XML editor, to

applying a custom-made quality review tool that verifies naming conventions,

searches for dead unreferenced code, and checks any other project-specific rules.

Even with these rules in place, there is still a lot of XML code to be managed.

Some other recommendations are the following:

v If even with a mixed modularity approach, the size of some XML files is too big,

consider splitting these files into smaller chunks. The files can be easily merged

at server startup time, just before instructing BTT to process the XML file.

v Apply the recommendation given above: separating a project into a smaller

WAR/EAR deployment units. For example a big project with 1000 XML files is

split into four independent applications, each application will have an average

of 250 files, which is a more manageable figure.

Tracing

The following recommendations can be applied to the BTT framework and

application traces. Most of the recommendations are not BTT specific, but can be

applied to any tracing implementation:

v Consider using Aspect Oriented Programming to de-clutter the application and

infrastructure code. In some cases, around half of the code might be trace code

that complicates its understanding and therefore its maintenance. Naming

conventions are important when using AOP since they help define clear AOP

rules.

v Avoid by all means tracing to the system console through System.out or

System.err. This cannot be switched off easily and therefore it will still execute in

the production environment.

v Add a check before each trace to verify if the traces are enabled for the provided

level and component ID, only trace if the check returns true. Strictly speaking,

this is required only if the message string is generated by executing some

concatenation or rendering code, in order to avoid the useless execution of that

code. If AOP is not used, the check might be skipped when tracing simple

predefined messages, in order to reduce code clutter.

v Use the appropriate trace levels, and then review the high-severity messages. A

step of the quality review process can consist of reading the traces and ensuring

that no trace above the warning level is ever generated in otherwise correctly

working code. If a high severity trace is detected, it should be fixed through one

of the following actions:

26 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

– Either the code is really failing and needs to be fixed until no trace is

generated, or

– The trace level for that component is incorrect and needs to be lowered down.
v In the production environment, disable all the trace levels except the highest

severity ones. Tracing can degrade performance: if required, use the

pre-production environment, which should have more traces to locate problems.

v Do not mistake technical-levle tracing, which should be used exclusively by

developers to pinpoint potential problems, with business level-logging. If you

need to keep an audit trail of the execution of the business function, use a

separate system, and implement it through a BTT service.

Separation of infrastructure and application code

In the past, J2EE did not provide all the necessary components for an end-to-end

application architecture, so a framework was much needed. Frameworks such as

Struts, Spring or BTT had to be used to provide the extra functionality, mainly:

v Rich web component-based rendering

v View componentization and reuse

v Presentation flow management

v Data definition, validation, conversion, and mapping

v Business flows / Integration flows

v Back-end connectors

The present set of J2EE standards in combination with world-class WebSphere

products now provides very standard and robust implementations for each of

these functionalities:

v Rich web component-based rendering: JSF

v View componentization and reuse: JSR 168 Portlets / IBM Portal

v Presentation flow management: JSF

v Data definition, validation, conversion, and mapping: JSF

v Business flows / integration flows: BPEL / IBM WebSphere Process Server

v Back-end connectors: JCA

However, there is still much need for a framework: the focus of its importance is

no longer in the functionality that its components provide, but in the order it

brings to the complexity of J2EE. With only J2EE and standard development tools,

an application developer needs to continuously make architectural decisions,

because there are many ways to develop a given functionality, and many possible

patterns to apply. This approach would pose a risk in the robustness and

maintainability of an application. Even if all developers of a project were highly

skilled J2EE architects, there should be a consensus on which patterns to apply,

and these should be respected all over the application, otherwise, the application

would be hard to maintain.

BTT is a framework that solves this problem by providing a well-defined

architecture for an application and a set of patterns that can be applied in a

repeatable way. However, BTT still needs to be adapted and extended to fit the

target environment. The run-time and development architecture, BTT extensions,

customized tools, and development patterns need to be carefully designed and

implemented by skilled developers, as it will be the infrastructure used in the rest

of the project. This infrastructure can then be reused in other projects and

gradually improved according to changing demands.

Solution architecture 27

This infrastructure is developed in two phases:

v An initial phase where the basic patterns are laid out according to the

architecture phase, providing the necessary code and tool extensions for it. The

functionality provided should enable the development of a relatively simple but

real part of an application, which can be developed alongside the infrastructure

extensions; both infrastructure and sub-applications are used to test each other.

At the end of this phase, normal application development can begin.

v During the rest of the project, the infrastructure is enriched, driven by the

demand of developer. The infrastructure grows in parallel with the rest of the

application.

This approach divides the project team in two groups:

1. Standard developers, who make use of the infrastructure ″as-is″, or make

simple extensions to it if required. Most of the developers in a project fall into

this group.

2. A reduced group of architect-developers, who are continuously in contact with

the standard developers, and expand the infrastructure driven by the project

demands. The expansion points are decided under the criteria of productivity

and robustness improvements.

When a standard developer needs a feature not yet available in the infrastructure,

he or she should request it from the architect developers. If for any reason, he or

she develops the extension himself or herself, he or she should submit the code to

the architect developers for review and proper incorporation into the infrastructure

codebase.

The best way to enforce this practice is by clearly defining a narrow set of code

artefacts that the standard developers are allowed to create. Examples of such

artefacts are BTT XML files, JSP files, and maybe a small set of Java classes

extending from well-defined superclasses and with a strict code size limit.

Declarative code such as XML is easy to constrain, which ensures that the

developer is following a given set of rules. On the other hand, imperative code

such as Java is dangerously versatile. Therefore, the advantages of declarative

constrained code are the following:

v Ensure that the developer is following the rules set by the architecture team,

since each declaration must comply with a set of constraints.

v It is easier to maintain, as all its artefacts fit into a given predefined pattern. BTT

has many examples of this: Formats, Operations, Contexts, and so on.

v It is easier to manipulate through tooling, as parsing and representing its

structure in memory is easier than doing the same task with a full-fledged

imperative programming language.

v Migration is simpler, since parsing and transforming the application code is

easier as compared with an imperative programming language.

This is the model followed by many banks using BTT, which has been extended to

match the customer’s particular requirements. Typical developer group sizes are 20

to 50 standard developers against 3 to 8 architect developers. The number of

people in the latter group usually diminishes as the project matures.

Programmers’ tips

Following are the tips for programmers:

v Channel:

28 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

There is a default rule in BTT Channels to define the data formatter and

response formatter.

If you do not specify them in the request, BTT uses csRequestFormat and

csReplyFormat configured in operation as data format and response format.

The operation configuration file is as follows:

<QueryStockOp.xml>

<operation id="QueryStockOp" context="stockCtx" implClass="com.ibm.btt.poc.opstep.QueryStockOp">

<refFormat name="csRequestFormat" refId="stockFmt" />

<refFormat name="csReplyFormat" refId="stockFmt" />

</operation>

<fmtDef id="stockFmt">

<fXML dataName="stockCtxData">

<fString dataName="code" />

<fString dataName="price" />

</fXML>

</fmtDef>

</QueryStockOp.xml>

v Migration:

During migration, if you do not set the migration rules for the migration tool,

the migration tool will set the BTT Version 4.3 to BTT Version 6.1 migration rules

as the default rules.

v Trace:

BTT trace must be initialized at first before the applications use it. Otherwise,

the default trace configuration is set and the trace configuration in btt.xml will

not take effect.

If BTT is not initialized, the default trace target is WAS by using

BTTLogFactoryToWASImp as the implementation class of BTTLogFactory.

v CHA mode:

When passing local mode CHA context across JVM, only the current context is

serialized or deserialized. The parent and children of the current context are not

serialized or deserialized. If you want to obtain the data of the parent context,

you need to transfer the current context and its parent context separately.

v Invoker:

It is recommended to generate the definition information file of the Web Service

before runtime when using the Web Service DII invoker. This will improve

performance and help problem determination.

v Element Factory

ElementFactory is an implementation of IoC (Inversion of Control) Container.

You can use it to apply Dependency Injection pattern in your application.

Following are the best practices in applying Dependency Injection:

1. Follow three phases in developing your services or components:

a. Startup:

To startup your component, you must set up the configurations and

dependencies of your component. Using setter injection helps you to

make your configuration file as simple as possible.

You can implement initialize() method in your component. In this

method, you can check the configurations and dependencies and you can

also allocate required resources in this method.

You can implement com.ibm.btt.element.LifeCycle interface to enable

lifecycle support. Or you can define InitMethod="destroy" in the XML

definition to enable lifecycle support for your element. The benefit of

implementing the LifeCycle interface is that the ElementFactory will call

Solution architecture 29

init() and destroy() method. As a result, you do not need to add the

InitMethod="initialize" DestroyMethod="destroy" definition and your

services or components will import BTT classes.

b. Handle requests:

After your component starts up, you can call the business logic in your

component. Do not name the business logic methods after get** and

set**, because get** and set** are used in startup phase.

c. Tear down:

Destroy all the allocated resources in the destroy() method.
2. Choose stateless style instead of stateful style:

Choose stateless style whenever you can.

3. Choose singleton scope instead of prototype scope:

Singleton is only applicable to stateless style.

Performance tips

The performance tips given in this section are intended to help Bank

Transformation Toolkit solutions achieve the best performance results. A solution

architect should decide, based on the solution design, which of the following

suggestions apply.

v Object cache:

– The caching of formatters and operations is enabled or disabled in the

configuration file. However, the application must exploit this feature by

returning objects to the cache.
v Configuration file:

– The toolkit expects some configuration settings to be available in the

configuration file. If these settings are not available, internal exceptions are

thrown and trace entries are generated, thus consuming CPU cycles even

though the default values are still used. When migrating existing applications

to an environment where a new product release is installed, consider

reviewing the provided configuration file and identifying the changes. Also,

consider removing any setting not required in your solution from the

configuration file.
v Data access:

– Avoid using wildcards when using the getValueAt access method. Use

complete data element’s paths instead.
v Synchronized code:

– The application flow definitively needs to synchronize those critical code lines

when they are executed from concurrent threads (such as arranging the

context hierarchy). However, big chunks of synchronized code lines may

represent a bottleneck in the solution and reduce the overall throughput.
v Services access and pooling:

– Usually, a solution seeks to improve performance when launching business

operations after logging on. It is therefore good design to perform as many

processes as possible during the initialization of the services, during the

session establishment or user logon, so that the actual business processes

execute as quickly as possible.

– To avoid bottlenecks while accessing services that cannot be re-entered from

concurrent users/threads, use services pools. The number of services in the

pool must be sized according to the expected load rate. Correct sizing will

have a definitive impact on the overall solution throughput.

30 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

v Formatter decorators:

– When a record formatter definition includes many formatter entries followed

by the same kind of decoration (such as a fixed ″#″ as a delimiter), consider

extending the formatter class to include the decoration inside the format

process. This mechanism will create only one object (usually a StringBuffer)

instead of several strings.
v Exceptions that are part of the normal flow:

– Avoid exceptions that are normal during the application execution flow (such

as DSEObjectNotFound).
v Extended classes to be customized:

– Classes available in extension packages (such as com.ibm.btt.automaton.ext

and com.ibm.btt.base.types.ext) are especially provided to be further extended

in a solution. Consider extending these classes both to add your own logic

and to remove non-required logic.
v Client/Server Mechanism:

– Consider using a compression decorator in the client/server request and

response formatters to minimize the amount of data sent through the

communications network.
v JSPs.

– Use JSPTags and do not use JSPBeans.

– Consider a solution based on an XML-formatted data set being returned to

the client and processed by a template processor in the client (XSLT). The

corresponding request handler may be extended to build a faster stream

based on formatters instead of JSPs. This approach requires less network

bandwidth and is faster than building the response on the server. However, it

has other implications that need to be considered such as the XSL support in

the Web browsers.
v Deployed JARs:

– Choose only the JARs that belong to the components that are used in the

solution. Keep JAR files granular and as small as possible.
v High availability, load balancing, failover, and session persistence:

– 24x7 available solutions have a very high performance or monetary cost.

Consider using load balancing with session affinity, so that once the user

establishes a session with a server image or clone, all the requests will be

routed to that clone.
v Trace:

– Use the BTTLog.doXXX(doDebug/doInfo/doWarn/doError/doFatal) method as a

Boolean condition for tracing in the application flow, to check whether the

system will trace the entry based on the external configuration. The

application will only create the string if the returned Boolean for the doXXX

method is true.
v JDBC Table access services:

– Consider using stored procedures when requiring access to several tables in

the application flow. Cross-logic against several tables using many JDBC Table

access calls is not recommended.
v Java Profiler:

– Identifying the objects that are created most often and the classes and

methods that use more CPU time during the request process is crucial to

optimizing the solution performance. Any Java profiler may be used to get

Solution architecture 31

this information, and this is a task that should be done during the whole

development cycle, without waiting until the final implementation of the

solution.

Supported platforms and technical requirements

This section presents the supported platforms and software required by each of the

Bank Transformation Toolkit components. Because the toolkit is built in Java, any

additional platform that provides the corresponding Java Virtual Machine is

supported by the toolkit architecture.

A new solution with additional platforms may require changes to the toolkit to

make it more generic so that the new solution can cope with the current platform

as well as the new one. These changes may involve enabling the toolkit interfaces

or components to support the new platform, and may be required for both the

hardware and software components of the solution. In cases where native

interfaces are required, a gap analysis is needed to support the new specific

modules not provided by the toolkit. The components that are actually used

depend on the specific requirements of each customer.

Components and platforms

In the following table, an X indicates that the service or component can be

installed on that particular platform. Note that nothing prevents an application

from accessing a service or component installed on another platform.

 Table 1. Java client components

Component name

Windows® Server

2003 Windows XP Linux® Intel®

BTT Core X X X

BTT Visual Beans X X X

BTT Rich Client X X X

Financial devices WOSA/XFS X X

J/XFS X X X

 Table 2. Application server components

Component name

Windows

Server 2003 Windows XP AIX® Solaris Linux Intel

BTT Core X X X X X

CHA X X X X X

BTT Channels X X X X X

BTT Business Components X X X X X

BTT Database Services X X X X X

BTT Invoker X X X X X

BTT Services LDAP Service X X X X X

MQ Service X X X X X

Communications JCA LU0 or LU62 X X X X

Database services Database Table Mapping X X X X X

Electronic Journal X X X X X

32 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

Table 3. Tools

Component name

Windows

Server 2003

Windows

XP AIX Solaris Linux Intel

BTT Runtime Monitor X X X

BTT SWT Visual Beans Editor X X X

BTT Transaction Based Tool X X X

BTT Validation Tool X X X

Formatter Simulator X X X

BTT Migration Tool X X X

Components and technical requirements

The following table shows the additional technical prerequisites of the Bank

Transformation Toolkit components. For version information, see the Installation

Guide.

 Table 4. Additional technical prerequisites

Component name Technical requirements

Financial device services WOSA/XFS WOSA/XFS manager and

device-specific SPM

J/XFS J/XFS manager and specific

device service

LDAP Service IBM Tivoli® Directory Server

MQ Service IBM WebSphere MQ

Tools Rational Application

Developer 7.0.0.5 or

WebSphere Integration

Developer 6.1.0.0

Solution architecture 33

34 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or program(s) described in this publication

at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1998,2008 35

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Lab Director

IBM China Software Development Lab

Diamond Building, ZhongGuanCun Software Park, Dongbeiwang West Road No.8,

ShangDi, Haidian District, Beijing 100193 P. R. China

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

36 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. If these and other IBM trademarked terms are marked on their first

occurrence in this information with a trademark symbol (® or

™), these symbols

indicate U.S. registered or common law trademarks owned by IBM at the time this

information was published. Such trademarks may also be registered or common

law trademarks in other countries. A current list of IBM trademarks is available on

the Web at ″Copyright and trademark information″ at www.ibm.com/legal/
copytrade.shtml

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Java is a trademark of Sun Microsystems, Inc. in the United States, other countries,

or both.

Other company, product, or service names may be trademarks or service marks of

others.

Notices 37

www.ibm.com/legal/copytrade.shtml
www.ibm.com/legal/copytrade.shtml

	Contents
	Solution architecture overview
	Introduction
	The Value of Bank Transformation Toolkit to Business
	The importance of Channels to the Banks
	Multichannel transformation
	How BTT helps

	Architectural objectives
	Architectural principles
	Multichannel consideration

	Multichannel architecture
	Client
	Java client environment
	HTML client environment
	JSF client environment
	Web 2.0 client environment

	Channel application server
	Application presentation layer
	Channel aware logic layer
	SOA fundamentals

	Enterprise Server

	Unified invocation architecture
	Components architecture
	Core components
	Presentation components
	Service components
	Business components
	Development tools
	Runtime tools
	Support tool

	Development
	Development Model
	Development process phases

	Physical deployment
	Cache mechanisms
	Cache refresh policies
	JAR files

	Bank Transformation Toolkit best practices
	Best practices
	BTT Context tree
	Session context size
	Shared contexts

	Application complexity management
	Naming conventions
	BTT application grouping
	XML management

	Tracing
	Separation of infrastructure and application code

	Programmers' tips
	Performance tips

	Supported platforms and technical requirements
	Components and platforms
	Components and technical requirements

	Notices
	Trademarks

