
NetRexx Language Overview

23rd August 2000

Mike Cowlishaw

mfc@uk.ibm.com
IBM UK Laboratories

Version 2.00

Table of Contents

NetRexx Overview 1
NetRexx programs 2
Expressions and variables 3
Control instructions 5
NetRexx arithmetic 6
Doing things with strings 7
Parsing strings 8
Indexed strings 9
Arrays 11
Things that aren’t strings 12
Extending classes 14
Tracing 16
Binary types and conversions 18
Exception and error handling 20
Summary and Information Sources 21

Version 2.00 ii

NetRexx Overview

This document summarizes the main features of NetRexx, and is intended to help you
start using it quickly. It’s assumed that you have some knowledge of programming in a
language such as Rexx, C, BASIC, or Java, but a knowledge of “object-oriented” pro-
gramming isn’t needed.

This is not a complete tutorial, though – think of it more as a “taster”; it covers the main
points of the language and shows some examples you can try or modify. For full details
of the language, consult the NetRexx Language Definition and the NetRexx Language
Supplement.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 1

NetRexx programs

The structure of a NetRexx program is extremely simple. This sample program, “toast”,
is complete, documented, and executable as it stands:

/* This wishes you the best of health. */
say 'Cheers!'

This program consists of two lines: the first is an optional comment that describes the
purpose of the program, and the second is a say instruction. say simply displays the
result of the expression following it – in this case just a literal string (you can use either
single or double quotes around strings, as you prefer).

To run this program using the reference implementation of NetRexx, create a file called
toast.nrx and copy or paste the two lines above into it. You can then use the NetRexxC
Java program to compile it:

java COM.ibm.netrexx.process.NetRexxC toast

(this should create a file called toast.class), and then use the java command to run it:

java toast

You may also be able to use the netrexxc or nrc command to compile and run the pro-
gram with a single command (details may vary – see the installation and user’s guide
document for your implementation of NetRexx):

netrexxc toast –run

Of course, NetRexx can do more than just display a character string. Although the lan-
guage has a simple syntax, and has a small number of instruction types, it is powerful;
the reference implementation of the language allows full access to the rapidly growing
collection of Java programs known as class libraries, and allows new class libraries to
be written in NetRexx.

The rest of this overview introduces most of the features of NetRexx. Since the economy,
power, and clarity of expression in NetRexx is best appreciated with use, you are urged
to try using the language yourself.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 2

Expressions and variables

Like say in the “toast” example, many instructions in NetRexx include expressions that
will be evaluated. NetRexx provides arithmetic operators (including integer division,
remainder, and power operators), several concatenation operators, comparison operators,
and logical operators. These can be used in any combination within a NetRexx
expression (provided, of course, that the data values are valid for those operations).

All the operators act upon strings of characters (known as NetRexx strings), which may
be of any length (typically limited only by the amount of storage available). Quotes
(either single or double) are used to indicate literal strings, and are optional if the literal
string is just a number. For example, the expressions:

'2' + '3'
'2' + 3
2 + 3

would all result in '5'.

The results of expressions are often assigned to variables, using a conventional assign-
ment syntax:

var1=5 /* sets var1 to '5' */
var2=(var1+2)*10 /* sets var2 to '70' */

You can write the names of variables (and keywords) in whatever mixture of uppercase
and lowercase that you prefer; the language is not case-sensitive.

This next sample program, “greet”, shows expressions used in various ways:

/* greet.nrx –– a short program to greet you. */
/* First display a prompt: */
say 'Please type your name and then press Enter:'
answer=ask /* Get the reply into 'answer' */

/* If no name was entered, then use a fixed */
/* greeting, otherwise echo the name politely. */
if answer='' then say 'Hello Stranger!'

else say 'Hello' answer'!'

After displaying a prompt, the program reads a line of text from the user (“ask” is a
keyword provided by NetRexx) and assigns it to the variable answer. This is then tested
to see if any characters were entered, and different actions are taken accordingly; for
example, if the user typed “Fred” in response to the prompt, then the program would
display:

Hello Fred!

As you see, the expression on the last say (display) instruction concatenated the string
“Hello” to the value of variable answer with a blank in between them (the blank is here
a valid operator, meaning “concatenate with blank”). The string “!” is then directly
concatenated to the result built up so far. These unobtrusive operators (the blank oper-

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 3

ator and abuttal) for concatenation are very natural and easy to use, and make building
text strings simple and clear.

The layout of instructions is very flexible. In the “greet” example, for instance, the if
instruction could be laid out in a number of ways, according to personal preference. Line
breaks can be added at either side of the then (or following the else).

In general, instructions are ended by the end of a line. To continue a instruction to a
following line, you can use a hyphen (minus sign) just as in English:

say 'Here we have an expression that is quite long,' –
'so it is split over two lines'

This acts as though the two lines were all on one line, with the hyphen and any blanks
around it being replaced by a single blank. The net result is two strings concatenated
together (with a blank in between) and then displayed.

When desired, multiple instructions can be placed on one line with the aid of the semi-
colon separator:

if answer='Yes' then do; say 'OK!'; exit; end

(many people find multiple instructions on one line hard to read, but sometimes it is
convenient).

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 4

Control instructions

NetRexx provides a selection of control instructions, whose form was chosen for read-
ability and similarity to natural languages. The control instructions include if... then...
else (as in the “greet” example) for simple conditional processing:

if ask='Yes' then say "You answered Yes"
else say "You didn't answer Yes"

select... when... otherwise... end for selecting from a number of alternatives:

select
when a>0 then say 'greater than zero'
when a<0 then say 'less than zero'
otherwise say 'zero'

 end

select case i+1
when 1 then say 'one'
when 1+1 then say 'two'
when 3, 4, 5 then say 'many'

 end

do... end for grouping:

if a>3 then do
say 'A is greater than 3; it will be set to zero'

 a=0
 end

and loop... end for repetition:

/* repeat 10 times; I changes from 1 to 10 */
loop i=1 to 10
 say i
 end i

The loop instruction can be used to step a variable to some limit, by some increment, for
a specified number of iterations, and while or until some condition is satisfied. loop forever
is also provided, and loop over can be used to work through a collection of variables.

Loop execution may be modified by leave and iterate instructions that significantly reduce
the complexity of many programs.

The select, do, and loop constructs also have the ability to “catch” exceptions (see page
20) that occur in the body of the construct. All three, too, can specify a finally instruction
which introduces instructions which are to be executed when control leaves the construct,
regardless of how the construct is ended.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 5

NetRexx arithmetic

Character strings in NetRexx are commonly used for arithmetic (assuming, of course,
that they represent numbers). The string representation of numbers can include inte-
gers, decimal notation, and exponential notation; they are all treated the same way. Here
are a few:

'1234'
'12.03'
'–12'
'120e+7'

The arithmetic operations in NetRexx are designed for people rather than machines, so
are decimal rather than binary, do not overflow at certain values, and follow the rules
that people use for arithmetic. The operations are completely defined by the ANSI
X3.274 standard for Rexx, so correct implementations always give the same results.

An unusual feature of NetRexx arithmetic is the numeric instruction: this may be used
to select the arbitrary precision of calculations. You may calculate to whatever precision
that you wish (for financial calculations, perhaps), limited only by available memory.
For example:

numeric digits 50
say 1/7

which would display

0.14285714285714285714285714285714285714285714285714

The numeric precision can be set for an entire program, or be adjusted at will within the
program. The numeric instruction can also be used to select the notation (scientific or
engineering) used for numbers in exponential format.

NetRexx also provides simple access to the native binary arithmetic of computers. Using
binary arithmetic offers many opportunities for errors, but is useful when performance
is paramount. You select binary arithmetic by adding the instruction:

options binary

at the top of a NetRexx program. The language processor will then use binary arithmetic
(see page 18) instead of NetRexx decimal arithmetic for calculations, if it can, throughout
the program.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 6

Doing things with strings

A character string is the fundamental datatype of NetRexx, and so, as you might expect,
NetRexx provides many useful routines for manipulating strings. These are based on the
functions of Rexx, but use a syntax that is more like Java or other similar languages:

phrase='Now is the time for a party'
say phrase.word(7).pos('r')

The second line here can be read from left to right as:

take the variable phrase, find the seventh word, and then find the position of
the first “r” in that word.

This would display “3” in this case, because “r” is the third character in “party”.

(In Rexx, the second line above would have been written using nested function calls:

say pos('r', word(phrase, 7))

which is not as easy to read; you have to follow the nesting and then backtrack from right
to left to work out exactly what’s going on.)

In the NetRexx syntax, at each point in the sequence of operations some routine is acting
on the result of what has gone before. These routines are called methods, to make the
distinction from functions (which act in isolation). NetRexx provides (as methods) most
of the functions that were evolved for Rexx, including:

• changestr (change all occurrences of a substring to another)

• copies (make multiple copies of a string)

• lastpos (find rightmost occurrence)

• left and right (return leftmost/rightmost character(s))

• pos and wordpos (find the position of string or a word in a string)

• reverse (swap end-to-end)

• space (pad between words with fixed spacing)

• strip (remove leading and/or trailing white space)

• verify (check the contents of a string for selected characters)

• word, wordindex, wordlength, and words (work with words).

These and the others like them, and the parsing described in the next section, make it
especially easy to process text with NetRexx.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 7

Parsing strings

The previous section described some of the string-handling facilities available; NetRexx
also provides string parsing, which is an easy way of breaking up strings of characters
using simple pattern matching.

A parse instruction first specifies the string to be parsed. This can be any term, but is
often taken simply from a variable. The term is followed by a template which describes
how the string is to be split up, and where the pieces are to be put.

Parsing into words

The simplest form of parsing template consists of a list of variable names. The string
being parsed is split up into words (sequences of characters separated by blanks), and
each word from the string is assigned (copied) to the next variable in turn, from left to
right. The final variable is treated specially in that it will be assigned a copy of whatever
is left of the original string and may therefore contain several words. For example, in:

parse 'This is a sentence.' v1 v2 v3

the variable v1 would be assigned the value “This”, v2 would be assigned the value
“is”, and v3 would be assigned the value “a sentence.”.

Literal patterns

A literal string may be used in a template as a pattern to split up the string. For example

parse 'To be, or not to be?' w1 ',' w2 w3 w4

would cause the string to be scanned for the comma, and then split at that point; each
section is then treated in just the same way as the whole string was in the previous
example.

Thus, w1 would be set to “To be”, w2 and w3 would be assigned the values “or” and
“not”, and w4 would be assigned the remainder: “to be?”. Note that the pattern itself is
not assigned to any variable.

The pattern may be specified as a variable, by putting the variable name in parentheses.
The following instructions:

comma=','
parse 'To be, or not to be?' w1 (comma) w2 w3 w4

therefore have the same effect as the previous example.

Positional patterns

The third kind of parsing mechanism is the numeric positional pattern. This allows
strings to be parsed using column positions.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 8

Indexed strings

NetRexx provides indexed strings, adapted from the compound variables of Rexx.
Indexed strings form a powerful “associative lookup”, or dictionary, mechanism which can
be used with a convenient and simple syntax.

NetRexx string variables can be referred to simply by name, or also by their name qual-
ified by another string (the index). When an index is used, a value associated with that
index is either set:

fred=0 –– initial value
fred[3]='abc' –– indexed value

or retrieved:

say fred[3] –– would say "abc"

in the latter case, the simple (initial) value of the variable is returned if the index has
not been used to set a value. For example, the program:

bark='woof'
bark['pup']='yap'
bark['bulldog']='grrrrr'
say bark['pup'] bark['terrier'] bark['bulldog']

would display

yap woof grrrrr

Note that it is not necessary to use a number as the index; any expression may be used
inside the brackets; the resulting string is used as the index. Multiple dimensions may
be used, if required:

bark='woof'
bark['spaniel', 'brown']='ruff'
bark['bulldog']='grrrrr'
animal='dog'
say bark['spaniel', 'brown'] bark['terrier'] bark['bull'animal]

which would display

ruff woof grrrrr

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 9

Here’s a more complex example using indexed strings, a test program with a function
(called a static method in NetRexx) that removes all duplicate words from a string of
words:

/* justonetest.nrx –– test the justone function. */
say justone('to be or not to be') /* simple testcase */
exit

/* This removes duplicate words from a string, and */
/* shows the use of a variable (HADWORD) which is */
/* indexed by arbitrary data (words). */
method justone(wordlist) static
hadword=0 /* show all possible words as new */
outlist='' /* initialize the output list */
loop while wordlist\='' /* loop while we have data */

/* split WORDLIST into first word and residue */
parse wordlist word wordlist
if hadword[word] then iterate /* loop if had word */
hadword[word]=1 /* remember we have had this word */
outlist=outlist word /* add word to output list */

 end
return outlist /* finally return the result */

Running this program would display just the four words “to”, “be”, “or”, and “not”.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 10

Arrays

NetRexx also supports fixed-size arrays. These are an ordered set of items, indexed by
integers. To use an array, you first have to construct it; an individual item may then be
selected by an index whose value must be in the range 0 through n–1, where n is the
number of items in the array:

array=String[3] –– make an array of three Strings
array[0]='String one' –– set each array item
array[1]='Another string'
array[2]='foobar'
loop i=0 to 2 –– display the items
 say array[i]
 end

This example also shows NetRexx line comments; the sequence “––” (outside of literal
strings or “/*” comments) indicates that the remainder of the line is not part of the pro-
gram and is commentary.

NetRexx makes it easy to initialize arrays: a term which is a list of one or more
expressions, enclosed in brackets, defines an array. Each expression initializes an ele-
ment of the array. For example:

words=['Ogof', 'Ffynnon', 'Ddu']

would set words to refer to an array of three elements, each referring to a string. So, for
example, the instruction:

say words[1]

would then display Ffynnon.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 11

Things that aren’t strings

In all the examples so far, the data being manipulated (numbers, words, and so on) were
expressed as a string of characters. Many things, however, can be expressed more easily
in some other way, so NetRexx allows variables to refer to other collections of data, which
are known as objects.

Objects are defined by a name that lets NetRexx determine the data and methods that
are associated with the object. This name identifies the type of the object, and is usually
called the class of the object.

For example, an object of class Oblong might represent an oblong to be manipulated and
displayed. The oblong could be defined by two values: its width and its height. These
values are called the properties of the Oblong class.

Most methods associated with an object perform operations on the object; for example a
size method might be provided to change the size of an Oblong object. Other methods
are used to construct objects (just as for arrays, an object must be constructed before it
can be used). In NetRexx and Java, these constructor methods always have the same
name as the class of object that they build (“Oblong”, in this case).

Here’s how an Oblong class might be written in NetRexx (by convention, this would be
written in a file called Oblong.nrx; implementations often expect the name of the file to
match the name of the class inside it):

/* Oblong.nrx –– simple oblong class */
class Oblong
width –– size (X dimension)
height –– size (Y dimension)

/* Constructor method to make a new oblong */
method Oblong(newwidth, newheight)
–– when we get here, a new (uninitialized) object
–– has been created. Copy the parameters we have
–– been given to the properties of the object:

 width=newwidth; height=newheight

/* Change the size of an Oblong */
method size(newwidth, newheight) returns Oblong

 width=newwidth; height=newheight
return this –– return the resized object

/* Change the size of an Oblong, relatively */
method relsize(relwidth, relheight)–

 returns Oblong
 width=width+relwidth; height=height+relheight
 return this

/* 'Print' what we know about the oblong */
 method print

say 'Oblong' width 'x' height

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 12

To summarize:

1. A class is started by the class instruction, which names the class.

2. The class instruction is followed by a list of the properties of the object. These can
be assigned initial values, if required.

3. The properties are followed by the methods of the object. Each method is introduced
by a method instruction which names the method and describes the arguments that
must be supplied to the method. The body of the method is ended by the next
method instruction (or by the end of the file).

The Oblong.nrx file is compiled just like any other NetRexx program, and should create
a class file called Oblong.class. Here’s a program to try out the Oblong class:

/* tryOblong.nrx –– try the Oblong class */

first=Oblong(5,3) –– make an oblong
first.print –– show it
first.relsize(1,1).print –– enlarge and print again

second=Oblong(1,2) –– make another oblong
second.print –– and print it

when tryOblong.nrx is compiled, you’ll notice (if your compiler makes a cross-reference
listing available) that the variables first and second have type Oblong. These variables
refer to Oblongs, just as the variables in earlier examples referred to NetRexx strings.

Once a variable has been assigned a type, it can only refer to objects of that type. This
helps avoid errors where a variable refers to an object that it wasn’t meant to.

Programs are classes, too

It’s worth pointing out, here, that all the example programs in this overview are in fact
classes (you may have noticed that compiling them with the reference implementation
creates xxx.class files, where xxx is the name of the source file). The environment
underlying the implementation will allow a class to run as a stand-alone application if
it has a static method called main which takes an array of strings as its argument.

If necessary (that is, if there is no class instruction) NetRexx automatically adds the
necessary class and method instructions for a stand-alone application, and also an
instruction to convert the array of strings (each of which holds one word from the com-
mand string) to a single NetRexx string.

The automatic additions can also be included explicitly; the “toast” example could there-
fore have been written:

/* This wishes you the best of health. */
class toast
method main(argwords=String[]) static

 arg=Rexx(argwords)
 say 'Cheers!'

though in this program the argument string, arg, is not used.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 13

Extending classes

It’s common, when dealing with objects, to take an existing class and extend it. One way
to do this is to modify the source code of the original class – but this isn’t always avail-
able, and with many different people modifying a class, classes could rapidly get over-
complicated.

Languages that deal with objects, like NetRexx, therefore allow new classes of objects to
be set up which are derived from existing classes. For example, if you wanted a different
kind of Oblong in which the Oblong had a new property that would be used when printing
the Oblong as a rectangle, you might define it thus:

/* charOblong.nrx –– an oblong class with character */
class charOblong extends Oblong
printchar –– the character for display

/* Constructor to make a new oblong with character */
method charOblong(newwidth, newheight, newprintchar)
super(newwidth, newheight) –– make an oblong
printchar=newprintchar –– and set the character

/* 'Print' the oblong */
 method print

loop for super.height
 say printchar.copies(super.width)
 end

There are several things worth noting about this example:

1. The “extends Oblong” on the class instruction means that this class is an extension
of the Oblong class. The properties and methods of the Oblong class are inherited
by this class (that is, appear as though they were part of this class).

Another common way of saying this is that “charOblong” is a subclass of “Oblong”
(and “Oblong” is the superclass of “charOblong”).

2. This class adds the printchar property to the properties already defined for Oblong.

3. The constructor for this class takes a width and height (just like Oblong) and adds
a third argument to specify a print character. It first invokes the constructor of its
superclass (Oblong) to build an Oblong, and finally sets the printchar for the new
object.

4. The new charOblong object also prints differently, as a rectangle of characters,
according to its dimension. The print method (as it has the same name and argu-
ments – none – as that of the superclass) replaces (overrides) the print method of
Oblong.

5. The other methods of Oblong are not overridden, and therefore can be used on
charOblong objects.

The charOblong.nrx file is compiled just like Oblong.nrx was, and should create a file
called charOblong.class.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 14

Here’s a program to try it out:

/* trycharOblong.nrx –– try the charOblong class */

first=charOblong(5,3,'#') –– make an oblong
first.print –– show it
first.relsize(1,1).print –– enlarge and print again

second=charOblong(1,2,'*') –– make another oblong
second.print –– and print it

This should create the two charOblong objects, and print them out in a simple “character
graphics” form. Note the use of the method relsize from Oblong to resize the
charOblong object.

Optional arguments
All methods in NetRexx may have optional arguments (omitted from the right) if desired.
For an argument to be optional, you must supply a default value. For example, if the
charOblong constructor was to have a default value for printchar, its method instruction
could have been written:

method charOblong(newwidth, newheight, newprintchar='X')

which indicates that if no third argument is supplied then 'X' should be used. A program
creating a charOblong could then simply write:

first=charOblong(5,3) –– make an oblong

which would have exactly the same effect as if 'X' were specified as the third argument.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 15

Tracing

NetRexx tracing is defined as part of the language. The flow of execution of programs
may be traced, and this trace can be viewed as it occurs (or captured in a file). The trace
can show each clause as it is executed, and optionally show the results of expressions,
etc. For example, the trace results in the program “trace1.nrx”:

trace results
number=1/7
parse number before '.' after
say after'.'before

would result in:

 ––– trace1.nrx
 2 *=* number=1/7

>v> number "0.142857143"
 3 *=* parse number before '.' after

>v> before "0"
>v> after "142857143"

 4 *=* say after'.'before
 >>> "142857143.0"
142857143.0

where the line marked with “–––” indicates the context of the trace, lines marked with
“*=*” are the instructions in the program, lines with “>v>” show results assigned to local
variables, and lines with “>>>” show results of un-named expressions.

Further, trace methods lets you trace the use of all methods in a class, along with the
values of the arguments passed to each method. Here’s the result of adding trace
methods to the Oblong class shown earlier and then running tryOblong:

 ––– Oblong.nrx
8 *=* method Oblong(newwidth, newheight)

>a> newwidth "5"
>a> newheight "3"

 26 *=* method print
Oblong 5 x 3
 20 *=* method relsize(relwidth, relheight)–
 21 *–* returns Oblong

>a> relwidth "1"
>a> relheight "1"

 26 *=* method print
Oblong 6 x 4
 10 *=* method Oblong(newwidth, newheight)

>a> newwidth "1"
>a> newheight "2"

 26 *=* method print
Oblong 1 x 2

where lines with “>a>” show the names and values of the arguments.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 16

It’s often useful to be able to find out when (and where) a variable’s value is changed.
The trace var instruction does just that; it adds names to or removes names from a list
of monitored variables. If the name of a variable in the current class or method is in the
list, then trace results is turned on for any assignment, loop, or parse instruction that
assigns a new value to the named variable.

Variable names to be added to the list are specified by listing them after the var keyword.
Any name may be optionally prefixed by a – sign., which indicates that the variable is
to be removed from the list.

For example, the program “trace2.nrx”:

trace var a b
–– now variables a and b will be traced
a=3
b=4
c=5
trace var –b c
–– now variables a and c will be traced
a=a+1
b=b+1
c=c+1
say a b c

would result in:

 ––– trace2.nrx
3 *=* a=3

>v> a "3"
4 *=* b=4

>v> b "4"
8 *=* a=a+1

>v> a "4"
 10 *=* c=c+1

>v> c "6"
4 5 6

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 17

Binary types and conversions

Most programming environments support the notion of fixed-precision “primitive” binary
types, which correspond closely to the binary operations usually available at the hard-
ware level in computers. For the reference implementation, these types are:

• byte, short, int, and long – signed integers that will fit in 8, 16, 32, or 64 bits
respectively

• float and double – signed floating point numbers that will fit in 32 or 64 bits
respectively.

• char – an unsigned 16-bit quantity, holding a Unicode character

• boolean – a 1-bit logical value, representing 0 or 1 (“false” or “true”).

Objects of these types are handled specially by the implementation “under the covers” in
order to achieve maximum efficiency; in particular, they cannot be constructed like other
objects – their value is held directly. This distinction rarely matters to the NetRexx
programmer: in the case of string literals an object is constructed automatically; in the
case of an int literal, an object is not constructed.

Further, NetRexx automatically allows the conversion between the various forms of
character strings in implementations1 and the primitive types. The “golden rule” that is
followed by NetRexx is that any automatic conversion which is applied must not lose
information: either it can be determined before execution that the conversion is safe (as
in int to String) or it will be detected at execution time if the conversion fails (as in
String to int).

The automatic conversions greatly simplify the writing of programs; the exact type of
numeric and string-like method arguments rarely needs to be a concern of the program-
mer.

For certain applications where early checking or performance override other consider-
ations, the reference implementation of NetRexx provides options for different treatment
of the primitive types:

1. options strictassign – ensures exact type matching for all assignments. No conver-
sions (including those from shorter integers to longer ones) are applied. This option
provides stricter type-checking than most other languages, and ensures that all
types are an exact match.

2. options binary – uses implementation-dependent fixed precision arithmetic on binary
types (also, literal numbers, for example, will be treated as binary, and local vari-
ables will be given “native” types such as int or String, where possible).

Binary arithmetic currently gives better performance than NetRexx decimal arith-
metic, but places the burden of avoiding overflows and loss of information on the
programmer.

1 In the reference implementation, these are String, char, char[] (an array of characters), and the
NetRexx string type, Rexx.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 18

The options instruction (which may list more than one option) is placed before the first
class instruction in a file; the binary keyword may also be used on a class or method
instruction, to allow an individual class or method to use binary arithmetic.

Explicit type assignment

You may explicitly assign a type to an expression or variable:

i=int 3000000 –– 'i' is an 'int' with value 3000000
j=int 4000000 –– 'j' is an 'int' with value 4000000
k=int –– 'k' is an 'int', with no initial value
say i*j –– multiply and display the result
k=i*j –– multiply and assign result to 'k'

This example also illustrates an important difference between options nobinary and
options binary. With the former (the default) the say instruction would display the result
“1.20000000E+13” and a conversion overflow would be reported when the same
expression is assigned to the variable k.

With options binary, binary arithmetic would be used for the multiplications, and so no
error would be detected; the say would display “–138625024” and the variable k takes the
incorrect result.

Binary types in practice

In practice, explicit type assignment is only occasionally needed in NetRexx. Those con-
versions that are necessary for using existing classes (or those that use options binary)
are generally automatic. For example, here is an “Applet” for use by Java-enabled
browsers:

/* A simple graphics Applet */
class Rainbow extends Applet
method paint(g=Graphics) –– called to repaint window

 maxx=size.width–1
 maxy=size.height–1

loop y=0 to maxy
col=Color.getHSBColor(y/maxy, 1, 1) –– new colour
g.setColor(col) –– set it
g.drawLine(0, y, maxx, y) –– fill slice

 end y

In this example, the variable col will have type Color, and the three arguments to the
method getHSBColor will all automatically be converted to type float. As no overflows
are possible in this example, options binary may be added to the top of the program with
no other changes being necessary.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 19

Exception and error handling

NetRexx doesn’t have a goto instruction, but a signal instruction is provided for abnormal
transfer of control, such as when something unusual occurs. Using signal raises an
exception; all control instructions are then “unwound” until the exception is caught by a
control instruction that specifies a suitable catch instruction for handling the exception.

Exceptions are also raised when various errors occur, such as attempting to divide a
number by zero. For example:

say 'Please enter a number:'
number=ask
do
say 'The reciprocal of' number 'is:' 1/number

catch Exception
say 'Sorry, could not divide "'number'" into 1'
say 'Please try again.'

end

Here, the catch instruction will catch any exception that is raised when the division is
attempted (conversion error, divide by zero, etc.), and any instructions that follow it are
then executed. If no exception is raised, the catch instruction (and any instructions that
follow it) are ignored.

Any of the control instructions that end with end (do, loop, or select) may be modified
with one or more catch instructions to handle exceptions.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 20

Summary and Information Sources

The NetRexx language, as you will have seen, allows the writing of programs for the Java
environment with a minimum of overhead and “boilerplate syntax”; using NetRexx for
writing Java classes could increase your productivity by 30% or more.

Further, by simplifying the variety of numeric and string types of Java down to a single
class that follows the rules of Rexx strings, programming is greatly simplified. Where
necessary, however, full access to all Java types and classes is available.

Other examples are available, including both stand-alone applications and samples of
applets for Java-enabled browsers (for example, an applet that plays an audio clip, and
another that displays the time in English). You can find these from the NetRexx web
pages, at

http://www2.hursley.ibm.com/netrexx/

Also at that location, you’ll find the NetRexx language specification and other informa-
tion, and downloadable packages containing the NetRexx software and documentation.
The software should run on any platform that supports the Java Development Kit, ver-
sion 1.1.2 or later.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 21

